gdb/
[deliverable/binutils-gdb.git] / gdb / bfin-tdep.c
1 /* Target-dependent code for Analog Devices Blackfin processor, for GDB.
2
3 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Analog Devices, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "dis-asm.h"
34 #include "gdb_assert.h"
35 #include "sim-regno.h"
36 #include "gdb/sim-bfin.h"
37 #include "dwarf2-frame.h"
38 #include "symtab.h"
39 #include "elf-bfd.h"
40 #include "elf/bfin.h"
41 #include "osabi.h"
42 #include "infcall.h"
43 #include "xml-syscall.h"
44 #include "bfin-tdep.h"
45
46 /* Macros used by prologue functions. */
47 #define P_LINKAGE 0xE800
48 #define P_MINUS_SP1 0x0140
49 #define P_MINUS_SP2 0x05C0
50 #define P_MINUS_SP3 0x0540
51 #define P_MINUS_SP4 0x04C0
52 #define P_SP_PLUS 0x6C06
53 #define P_P2_LOW 0xE10A
54 #define P_P2_HIGH 0XE14A
55 #define P_SP_EQ_SP_PLUS_P2 0X5BB2
56 #define P_SP_EQ_P2_PLUS_SP 0x5B96
57 #define P_MINUS_MINUS_SP_EQ_RETS 0x0167
58
59 /* Macros used for program flow control. */
60 /* 16 bit instruction, max */
61 #define P_16_BIT_INSR_MAX 0xBFFF
62 /* 32 bit instruction, min */
63 #define P_32_BIT_INSR_MIN 0xC000
64 /* 32 bit instruction, max */
65 #define P_32_BIT_INSR_MAX 0xE801
66 /* jump (preg), 16-bit, min */
67 #define P_JUMP_PREG_MIN 0x0050
68 /* jump (preg), 16-bit, max */
69 #define P_JUMP_PREG_MAX 0x0057
70 /* jump (pc+preg), 16-bit, min */
71 #define P_JUMP_PC_PLUS_PREG_MIN 0x0080
72 /* jump (pc+preg), 16-bit, max */
73 #define P_JUMP_PC_PLUS_PREG_MAX 0x0087
74 /* jump.s pcrel13m2, 16-bit, min */
75 #define P_JUMP_S_MIN 0x2000
76 /* jump.s pcrel13m2, 16-bit, max */
77 #define P_JUMP_S_MAX 0x2FFF
78 /* jump.l pcrel25m2, 32-bit, min */
79 #define P_JUMP_L_MIN 0xE200
80 /* jump.l pcrel25m2, 32-bit, max */
81 #define P_JUMP_L_MAX 0xE2FF
82 /* conditional jump pcrel11m2, 16-bit, min */
83 #define P_IF_CC_JUMP_MIN 0x1800
84 /* conditional jump pcrel11m2, 16-bit, max */
85 #define P_IF_CC_JUMP_MAX 0x1BFF
86 /* conditional jump(bp) pcrel11m2, 16-bit, min */
87 #define P_IF_CC_JUMP_BP_MIN 0x1C00
88 /* conditional jump(bp) pcrel11m2, 16-bit, max */
89 #define P_IF_CC_JUMP_BP_MAX 0x1FFF
90 /* conditional !jump pcrel11m2, 16-bit, min */
91 #define P_IF_NOT_CC_JUMP_MIN 0x1000
92 /* conditional !jump pcrel11m2, 16-bit, max */
93 #define P_IF_NOT_CC_JUMP_MAX 0x13FF
94 /* conditional jump(bp) pcrel11m2, 16-bit, min */
95 #define P_IF_NOT_CC_JUMP_BP_MIN 0x1400
96 /* conditional jump(bp) pcrel11m2, 16-bit, max */
97 #define P_IF_NOT_CC_JUMP_BP_MAX 0x17FF
98 /* call (preg), 16-bit, min */
99 #define P_CALL_PREG_MIN 0x0060
100 /* call (preg), 16-bit, max */
101 #define P_CALL_PREG_MAX 0x0067
102 /* call (pc+preg), 16-bit, min */
103 #define P_CALL_PC_PLUS_PREG_MIN 0x0070
104 /* call (pc+preg), 16-bit, max */
105 #define P_CALL_PC_PLUS_PREG_MAX 0x0077
106 /* call pcrel25m2, 32-bit, min */
107 #define P_CALL_MIN 0xE300
108 /* call pcrel25m2, 32-bit, max */
109 #define P_CALL_MAX 0xE3FF
110 /* RTS */
111 #define P_RTS 0x0010
112 /* MNOP */
113 #define P_MNOP 0xC803
114 /* EXCPT, 16-bit, min */
115 #define P_EXCPT_MIN 0x00A0
116 /* EXCPT, 16-bit, max */
117 #define P_EXCPT_MAX 0x00AF
118 /* multi instruction mask 1, 16-bit */
119 #define P_BIT_MULTI_INS_1 0xC000
120 /* multi instruction mask 2, 16-bit */
121 #define P_BIT_MULTI_INS_2 0x0800
122
123 /* The maximum bytes we search to skip the prologue. */
124 #define UPPER_LIMIT 40
125
126 /* ASTAT bits */
127 #define ASTAT_CC_POS 5
128 #define ASTAT_CC (1 << ASTAT_CC_POS)
129
130 /* Initial value: Register names used in BFIN's ISA documentation. */
131
132 static const char * const bfin_register_name_strings[] =
133 {
134 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
135 "p0", "p1", "p2", "p3", "p4", "p5", "sp", "fp",
136 "i0", "i1", "i2", "i3", "m0", "m1", "m2", "m3",
137 "b0", "b1", "b2", "b3", "l0", "l1", "l2", "l3",
138 "a0x", "a0w", "a1x", "a1w", "astat", "rets",
139 "lc0", "lt0", "lb0", "lc1", "lt1", "lb1", "cycles", "cycles2",
140 "usp", "seqstat", "syscfg", "reti", "retx", "retn", "rete",
141 "pc", "cc",
142 };
143
144 #define NUM_BFIN_REGNAMES ARRAY_SIZE (bfin_register_name_strings)
145
146
147 /* In this diagram successive memory locations increase downwards or the
148 stack grows upwards with negative indices. (PUSH analogy for stack.)
149
150 The top frame is the "frame" of the current function being executed.
151
152 +--------------+ SP -
153 | local vars | ^
154 +--------------+ |
155 | save regs | |
156 +--------------+ FP |
157 | old FP -|-- top
158 +--------------+ | frame
159 | RETS | | |
160 +--------------+ | |
161 | param 1 | | |
162 | param 2 | | |
163 | ... | | V
164 +--------------+ | -
165 | local vars | | ^
166 +--------------+ | |
167 | save regs | | |
168 +--------------+<- |
169 | old FP -|-- next
170 +--------------+ | frame
171 | RETS | | |
172 +--------------+ | |
173 | param 1 | | |
174 | param 2 | | |
175 | ... | | V
176 +--------------+ | -
177 | local vars | | ^
178 +--------------+ | |
179 | save regs | | |
180 +--------------+<- next frame
181 | old FP | |
182 +--------------+ |
183 | RETS | V
184 +--------------+ -
185
186 The frame chain is formed as following:
187
188 FP has the topmost frame.
189 FP + 4 has the previous FP and so on. */
190
191
192 /* Map from DWARF2 register number to GDB register number. */
193
194 static const int map_gcc_gdb[] =
195 {
196 BFIN_R0_REGNUM,
197 BFIN_R1_REGNUM,
198 BFIN_R2_REGNUM,
199 BFIN_R3_REGNUM,
200 BFIN_R4_REGNUM,
201 BFIN_R5_REGNUM,
202 BFIN_R6_REGNUM,
203 BFIN_R7_REGNUM,
204 BFIN_P0_REGNUM,
205 BFIN_P1_REGNUM,
206 BFIN_P2_REGNUM,
207 BFIN_P3_REGNUM,
208 BFIN_P4_REGNUM,
209 BFIN_P5_REGNUM,
210 BFIN_SP_REGNUM,
211 BFIN_FP_REGNUM,
212 BFIN_I0_REGNUM,
213 BFIN_I1_REGNUM,
214 BFIN_I2_REGNUM,
215 BFIN_I3_REGNUM,
216 BFIN_B0_REGNUM,
217 BFIN_B1_REGNUM,
218 BFIN_B2_REGNUM,
219 BFIN_B3_REGNUM,
220 BFIN_L0_REGNUM,
221 BFIN_L1_REGNUM,
222 BFIN_L2_REGNUM,
223 BFIN_L3_REGNUM,
224 BFIN_M0_REGNUM,
225 BFIN_M1_REGNUM,
226 BFIN_M2_REGNUM,
227 BFIN_M3_REGNUM,
228 BFIN_A0_DOT_X_REGNUM,
229 BFIN_A1_DOT_X_REGNUM,
230 BFIN_CC_REGNUM,
231 BFIN_RETS_REGNUM,
232 BFIN_RETI_REGNUM,
233 BFIN_RETX_REGNUM,
234 BFIN_RETN_REGNUM,
235 BFIN_RETE_REGNUM,
236 BFIN_ASTAT_REGNUM,
237 BFIN_SEQSTAT_REGNUM,
238 BFIN_USP_REGNUM,
239 BFIN_LT0_REGNUM,
240 BFIN_LT1_REGNUM,
241 BFIN_LC0_REGNUM,
242 BFIN_LC1_REGNUM,
243 BFIN_LB0_REGNUM,
244 BFIN_LB1_REGNUM
245 };
246
247
248 struct bfin_frame_cache
249 {
250 /* Base address. */
251 CORE_ADDR base;
252 CORE_ADDR sp_offset;
253 CORE_ADDR pc;
254 int frameless_pc_value;
255
256 /* Saved registers. */
257 CORE_ADDR saved_regs[BFIN_NUM_REGS];
258 CORE_ADDR saved_sp;
259
260 /* Stack space reserved for local variables. */
261 long locals;
262 };
263
264 /* Allocate and initialize a frame cache. */
265
266 static struct bfin_frame_cache *
267 bfin_alloc_frame_cache (void)
268 {
269 struct bfin_frame_cache *cache;
270 int i;
271
272 cache = FRAME_OBSTACK_ZALLOC (struct bfin_frame_cache);
273
274 /* Base address. */
275 cache->base = 0;
276 cache->sp_offset = -4;
277 cache->pc = 0;
278 cache->frameless_pc_value = 0;
279
280 /* Saved registers. We initialize these to -1 since zero is a valid
281 offset (that's where fp is supposed to be stored). */
282 for (i = 0; i < BFIN_NUM_REGS; i++)
283 cache->saved_regs[i] = -1;
284
285 /* Frameless until proven otherwise. */
286 cache->locals = -1;
287
288 return cache;
289 }
290
291 static struct bfin_frame_cache *
292 bfin_frame_cache (struct frame_info *this_frame, void **this_cache)
293 {
294 struct bfin_frame_cache *cache;
295 int i;
296
297 if (*this_cache)
298 return *this_cache;
299
300 cache = bfin_alloc_frame_cache ();
301 *this_cache = cache;
302
303 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
304 if (cache->base == 0)
305 return cache;
306
307 /* For normal frames, PC is stored at [FP + 4]. */
308 cache->saved_regs[BFIN_PC_REGNUM] = 4;
309 cache->saved_regs[BFIN_FP_REGNUM] = 0;
310
311 /* Adjust all the saved registers such that they contain addresses
312 instead of offsets. */
313 for (i = 0; i < BFIN_NUM_REGS; i++)
314 if (cache->saved_regs[i] != -1)
315 cache->saved_regs[i] += cache->base;
316
317 cache->pc = get_frame_func (this_frame) ;
318 if (cache->pc == 0 || cache->pc == get_frame_pc (this_frame))
319 {
320 /* Either there is no prologue (frameless function) or we are at
321 the start of a function. In short we do not have a frame.
322 PC is stored in rets register. FP points to previous frame. */
323
324 cache->saved_regs[BFIN_PC_REGNUM] =
325 get_frame_register_unsigned (this_frame, BFIN_RETS_REGNUM);
326 cache->frameless_pc_value = 1;
327 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
328 cache->saved_regs[BFIN_FP_REGNUM] = cache->base;
329 cache->saved_sp = cache->base;
330 }
331 else
332 {
333 cache->frameless_pc_value = 0;
334
335 /* Now that we have the base address for the stack frame we can
336 calculate the value of SP in the calling frame. */
337 cache->saved_sp = cache->base + 8;
338 }
339
340 return cache;
341 }
342
343 static void
344 bfin_frame_this_id (struct frame_info *this_frame,
345 void **this_cache,
346 struct frame_id *this_id)
347 {
348 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
349
350 /* This marks the outermost frame. */
351 if (cache->base == 0)
352 return;
353
354 /* See the end of bfin_push_dummy_call. */
355 *this_id = frame_id_build (cache->base + 8, cache->pc);
356 }
357
358 static struct value *
359 bfin_frame_prev_register (struct frame_info *this_frame,
360 void **this_cache,
361 int regnum)
362 {
363 struct gdbarch *gdbarch = get_frame_arch (this_frame);
364 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
365
366 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
367 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
368
369 if (regnum < BFIN_NUM_REGS && cache->saved_regs[regnum] != -1)
370 return frame_unwind_got_memory (this_frame, regnum,
371 cache->saved_regs[regnum]);
372
373 return frame_unwind_got_register (this_frame, regnum, regnum);
374 }
375
376 static const struct frame_unwind bfin_frame_unwind =
377 {
378 NORMAL_FRAME,
379 default_frame_unwind_stop_reason,
380 bfin_frame_this_id,
381 bfin_frame_prev_register,
382 NULL,
383 default_frame_sniffer
384 };
385
386 /* Check for "[--SP] = <reg>;" insns. These are appear in function
387 prologues to save misc registers onto the stack. */
388
389 static int
390 is_minus_minus_sp (int op)
391 {
392 op &= 0xFFC0;
393
394 if ((op == P_MINUS_SP1) || (op == P_MINUS_SP2)
395 || (op == P_MINUS_SP3) || (op == P_MINUS_SP4))
396 return 1;
397
398 return 0;
399 }
400
401 /* Skip all the insns that appear in generated function prologues. */
402
403 static CORE_ADDR
404 bfin_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
405 {
406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
407 int op = read_memory_unsigned_integer (pc, 2, byte_order);
408 CORE_ADDR orig_pc = pc;
409 int done = 0;
410
411 /* The new gcc prologue generates the register saves BEFORE the link
412 or RETS saving instruction.
413 So, our job is to stop either at those instructions or some upper
414 limit saying there is no frame! */
415
416 while (!done)
417 {
418 if (is_minus_minus_sp (op))
419 {
420 while (is_minus_minus_sp (op))
421 {
422 pc += 2;
423 op = read_memory_unsigned_integer (pc, 2, byte_order);
424 }
425
426 if (op == P_LINKAGE)
427 pc += 4;
428
429 done = 1;
430 }
431 else if (op == P_LINKAGE)
432 {
433 pc += 4;
434 done = 1;
435 }
436 else if (op == P_MINUS_MINUS_SP_EQ_RETS)
437 {
438 pc += 2;
439 done = 1;
440 }
441 else if (op == P_RTS)
442 {
443 done = 1;
444 }
445 else if ((op >= P_JUMP_PREG_MIN && op <= P_JUMP_PREG_MAX)
446 || (op >= P_JUMP_PC_PLUS_PREG_MIN
447 && op <= P_JUMP_PC_PLUS_PREG_MAX)
448 || (op == P_JUMP_S_MIN && op <= P_JUMP_S_MAX))
449 {
450 done = 1;
451 }
452 else if (pc - orig_pc >= UPPER_LIMIT)
453 {
454 warning (_("Function Prologue not recognised; "
455 "pc will point to ENTRY_POINT of the function"));
456 pc = orig_pc + 2;
457 done = 1;
458 }
459 else
460 {
461 pc += 2; /* Not a terminating instruction go on. */
462 op = read_memory_unsigned_integer (pc, 2, byte_order);
463 }
464 }
465
466 /* TODO:
467 Dwarf2 uses entry point value AFTER some register initializations.
468 We should perhaps skip such asssignments as well (R6 = R1, ...). */
469
470 return pc;
471 }
472
473 /* Return the GDB type object for the "standard" data type of data in
474 register N. This should be void pointer for P0-P5, SP, FP;
475 void pointer to function for PC; int otherwise. */
476
477 static struct type *
478 bfin_register_type (struct gdbarch *gdbarch, int regnum)
479 {
480 if ((regnum >= BFIN_P0_REGNUM && regnum <= BFIN_FP_REGNUM)
481 || regnum == BFIN_USP_REGNUM)
482 return builtin_type (gdbarch)->builtin_data_ptr;
483
484 if (regnum == BFIN_PC_REGNUM || regnum == BFIN_RETS_REGNUM
485 || regnum == BFIN_RETI_REGNUM || regnum == BFIN_RETX_REGNUM
486 || regnum == BFIN_RETN_REGNUM || regnum == BFIN_RETE_REGNUM
487 || regnum == BFIN_LT0_REGNUM || regnum == BFIN_LB0_REGNUM
488 || regnum == BFIN_LT1_REGNUM || regnum == BFIN_LB1_REGNUM)
489 return builtin_type (gdbarch)->builtin_func_ptr;
490
491 return builtin_type (gdbarch)->builtin_int32;
492 }
493
494 static CORE_ADDR
495 bfin_push_dummy_call (struct gdbarch *gdbarch,
496 struct value *function,
497 struct regcache *regcache,
498 CORE_ADDR bp_addr,
499 int nargs,
500 struct value **args,
501 CORE_ADDR sp,
502 int struct_return,
503 CORE_ADDR struct_addr)
504 {
505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
507 char buf[4];
508 int i;
509 long reg_r0, reg_r1, reg_r2;
510 int total_len = 0;
511 enum bfin_abi abi = bfin_abi (gdbarch);
512 CORE_ADDR func_addr = find_function_addr (function, NULL);
513
514 for (i = nargs - 1; i >= 0; i--)
515 {
516 struct type *value_type = value_enclosing_type (args[i]);
517 int len = TYPE_LENGTH (value_type);
518
519 total_len += (len + 3) & ~3;
520 }
521
522 /* At least twelve bytes of stack space must be allocated for the function's
523 arguments, even for functions that have less than 12 bytes of argument
524 data. */
525
526 if (total_len < 12)
527 sp -= 12 - total_len;
528
529 /* Push arguments in reverse order. */
530
531 for (i = nargs - 1; i >= 0; i--)
532 {
533 struct type *value_type = value_enclosing_type (args[i]);
534 struct type *arg_type = check_typedef (value_type);
535 int len = TYPE_LENGTH (value_type);
536 int container_len = (len + 3) & ~3;
537
538 sp -= container_len;
539 write_memory (sp, value_contents_writeable (args[i]), container_len);
540 }
541
542 /* Initialize R0, R1, and R2 to the first 3 words of parameters. */
543
544 reg_r0 = read_memory_integer (sp, 4, byte_order);
545 regcache_cooked_write_unsigned (regcache, BFIN_R0_REGNUM, reg_r0);
546 reg_r1 = read_memory_integer (sp + 4, 4, byte_order);
547 regcache_cooked_write_unsigned (regcache, BFIN_R1_REGNUM, reg_r1);
548 reg_r2 = read_memory_integer (sp + 8, 4, byte_order);
549 regcache_cooked_write_unsigned (regcache, BFIN_R2_REGNUM, reg_r2);
550
551 /* Store struct value address. */
552
553 if (struct_return)
554 regcache_cooked_write_unsigned (regcache, BFIN_P0_REGNUM, struct_addr);
555
556 /* Set the dummy return value to bp_addr.
557 A dummy breakpoint will be setup to execute the call. */
558
559 regcache_cooked_write_unsigned (regcache, BFIN_RETS_REGNUM, bp_addr);
560
561 /* Finally, update the stack pointer. */
562
563 regcache_cooked_write_unsigned (regcache, BFIN_SP_REGNUM, sp);
564
565 return sp;
566 }
567
568 /* Convert DWARF2 register number REG to the appropriate register number
569 used by GDB. */
570
571 static int
572 bfin_reg_to_regnum (struct gdbarch *gdbarch, int reg)
573 {
574 if (reg > ARRAY_SIZE (map_gcc_gdb))
575 return 0;
576
577 return map_gcc_gdb[reg];
578 }
579
580 /* This function implements the BREAKPOINT_FROM_PC macro. It returns
581 a pointer to a string of bytes that encode a breakpoint instruction,
582 stores the length of the string to *lenptr, and adjusts the program
583 counter (if necessary) to point to the actual memory location where
584 the breakpoint should be inserted. */
585
586 static const unsigned char *
587 bfin_breakpoint_from_pc (struct gdbarch *gdbarch,
588 CORE_ADDR *pcptr, int *lenptr)
589 {
590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
591 unsigned short iw;
592 static unsigned char bfin_breakpoint[] = {0xa1, 0x00, 0x00, 0x00};
593 static unsigned char bfin_sim_breakpoint[] = {0x25, 0x00, 0x00, 0x00};
594
595 iw = read_memory_unsigned_integer (*pcptr, 2, byte_order);
596
597 if ((iw & 0xf000) >= 0xc000)
598 /* 32-bit instruction. */
599 *lenptr = 4;
600 else
601 *lenptr = 2;
602
603 if (strcmp (target_shortname, "sim") == 0)
604 return bfin_sim_breakpoint;
605 else
606 return bfin_breakpoint;
607 }
608
609 static void
610 bfin_extract_return_value (struct type *type,
611 struct regcache *regs,
612 gdb_byte *dst)
613 {
614 struct gdbarch *gdbarch = get_regcache_arch (regs);
615 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
616 bfd_byte *valbuf = dst;
617 int len = TYPE_LENGTH (type);
618 ULONGEST tmp;
619 int regno = BFIN_R0_REGNUM;
620
621 gdb_assert (len <= 8);
622
623 while (len > 0)
624 {
625 regcache_cooked_read_unsigned (regs, regno++, &tmp);
626 store_unsigned_integer (valbuf, (len > 4 ? 4 : len), tmp, byte_order);
627 len -= 4;
628 valbuf += 4;
629 }
630 }
631
632 /* Write into appropriate registers a function return value of type
633 TYPE, given in virtual format. */
634
635 static void
636 bfin_store_return_value (struct type *type,
637 struct regcache *regs,
638 const gdb_byte *src)
639 {
640 const bfd_byte *valbuf = src;
641
642 /* Integral values greater than one word are stored in consecutive
643 registers starting with R0. This will always be a multiple of
644 the register size. */
645
646 int len = TYPE_LENGTH (type);
647 int regno = BFIN_R0_REGNUM;
648
649 gdb_assert (len <= 8);
650
651 while (len > 0)
652 {
653 regcache_cooked_write (regs, regno++, valbuf);
654 len -= 4;
655 valbuf += 4;
656 }
657 }
658
659 /* Determine, for architecture GDBARCH, how a return value of TYPE
660 should be returned. If it is supposed to be returned in registers,
661 and READBUF is nonzero, read the appropriate value from REGCACHE,
662 and copy it into READBUF. If WRITEBUF is nonzero, write the value
663 from WRITEBUF into REGCACHE. */
664
665 static enum return_value_convention
666 bfin_return_value (struct gdbarch *gdbarch,
667 struct type *func_type,
668 struct type *type,
669 struct regcache *regcache,
670 gdb_byte *readbuf,
671 const gdb_byte *writebuf)
672 {
673 if (TYPE_LENGTH (type) > 8)
674 return RETURN_VALUE_STRUCT_CONVENTION;
675
676 if (readbuf)
677 bfin_extract_return_value (type, regcache, readbuf);
678
679 if (writebuf)
680 bfin_store_return_value (type, regcache, writebuf);
681
682 return RETURN_VALUE_REGISTER_CONVENTION;
683 }
684
685 /* Return the BFIN register name corresponding to register I. */
686
687 static const char *
688 bfin_register_name (struct gdbarch *gdbarch, int i)
689 {
690 return bfin_register_name_strings[i];
691 }
692
693 static enum register_status
694 bfin_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
695 int regnum, gdb_byte *buffer)
696 {
697 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
698 enum register_status status;
699
700 if (regnum != BFIN_CC_REGNUM)
701 internal_error (__FILE__, __LINE__,
702 _("invalid register number %d"), regnum);
703
704 /* Extract the CC bit from the ASTAT register. */
705 status = regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
706 if (status == REG_VALID)
707 {
708 buffer[1] = buffer[2] = buffer[3] = 0;
709 buffer[0] = !!(buf[0] & ASTAT_CC);
710 }
711 return status;
712 }
713
714 static void
715 bfin_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
716 int regnum, const gdb_byte *buffer)
717 {
718 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
719
720 if (regnum != BFIN_CC_REGNUM)
721 internal_error (__FILE__, __LINE__,
722 _("invalid register number %d"), regnum);
723
724 /* Overlay the CC bit in the ASTAT register. */
725 regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
726 buf[0] = (buf[0] & ~ASTAT_CC) | ((buffer[0] & 1) << ASTAT_CC_POS);
727 regcache_raw_write (regcache, BFIN_ASTAT_REGNUM, buf);
728 }
729
730 static CORE_ADDR
731 bfin_frame_base_address (struct frame_info *this_frame, void **this_cache)
732 {
733 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
734
735 return cache->base;
736 }
737
738 static CORE_ADDR
739 bfin_frame_local_address (struct frame_info *this_frame, void **this_cache)
740 {
741 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
742
743 return cache->base - 4;
744 }
745
746 static CORE_ADDR
747 bfin_frame_args_address (struct frame_info *this_frame, void **this_cache)
748 {
749 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
750
751 return cache->base + 8;
752 }
753
754 static const struct frame_base bfin_frame_base =
755 {
756 &bfin_frame_unwind,
757 bfin_frame_base_address,
758 bfin_frame_local_address,
759 bfin_frame_args_address
760 };
761
762 static struct frame_id
763 bfin_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
764 {
765 CORE_ADDR sp;
766
767 sp = get_frame_register_unsigned (this_frame, BFIN_SP_REGNUM);
768
769 return frame_id_build (sp, get_frame_pc (this_frame));
770 }
771
772 static CORE_ADDR
773 bfin_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
774 {
775 return frame_unwind_register_unsigned (next_frame, BFIN_PC_REGNUM);
776 }
777
778 static CORE_ADDR
779 bfin_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
780 {
781 return (address & ~0x3);
782 }
783
784 enum bfin_abi
785 bfin_abi (struct gdbarch *gdbarch)
786 {
787 return gdbarch_tdep (gdbarch)->bfin_abi;
788 }
789
790 /* Initialize the current architecture based on INFO. If possible,
791 re-use an architecture from ARCHES, which is a list of
792 architectures already created during this debugging session.
793
794 Called e.g. at program startup, when reading a core file, and when
795 reading a binary file. */
796
797 static struct gdbarch *
798 bfin_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
799 {
800 struct gdbarch_tdep *tdep;
801 struct gdbarch *gdbarch;
802 int elf_flags;
803 enum bfin_abi abi;
804
805 /* Extract the ELF flags, if available. */
806 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
807 elf_flags = elf_elfheader (info.abfd)->e_flags;
808 else
809 elf_flags = 0;
810
811 abi = BFIN_ABI_FLAT;
812
813 /* If there is already a candidate, use it. */
814
815 for (arches = gdbarch_list_lookup_by_info (arches, &info);
816 arches != NULL;
817 arches = gdbarch_list_lookup_by_info (arches->next, &info))
818 {
819 if (gdbarch_tdep (arches->gdbarch)->bfin_abi != abi)
820 continue;
821 return arches->gdbarch;
822 }
823
824 tdep = XMALLOC (struct gdbarch_tdep);
825 gdbarch = gdbarch_alloc (&info, tdep);
826
827 tdep->bfin_abi = abi;
828
829 set_gdbarch_num_regs (gdbarch, BFIN_NUM_REGS);
830 set_gdbarch_pseudo_register_read (gdbarch, bfin_pseudo_register_read);
831 set_gdbarch_pseudo_register_write (gdbarch, bfin_pseudo_register_write);
832 set_gdbarch_num_pseudo_regs (gdbarch, BFIN_NUM_PSEUDO_REGS);
833 set_gdbarch_sp_regnum (gdbarch, BFIN_SP_REGNUM);
834 set_gdbarch_pc_regnum (gdbarch, BFIN_PC_REGNUM);
835 set_gdbarch_ps_regnum (gdbarch, BFIN_ASTAT_REGNUM);
836 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, bfin_reg_to_regnum);
837 set_gdbarch_register_name (gdbarch, bfin_register_name);
838 set_gdbarch_register_type (gdbarch, bfin_register_type);
839 set_gdbarch_dummy_id (gdbarch, bfin_dummy_id);
840 set_gdbarch_push_dummy_call (gdbarch, bfin_push_dummy_call);
841 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
842 set_gdbarch_return_value (gdbarch, bfin_return_value);
843 set_gdbarch_skip_prologue (gdbarch, bfin_skip_prologue);
844 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
845 set_gdbarch_breakpoint_from_pc (gdbarch, bfin_breakpoint_from_pc);
846 set_gdbarch_decr_pc_after_break (gdbarch, 2);
847 set_gdbarch_frame_args_skip (gdbarch, 8);
848 set_gdbarch_unwind_pc (gdbarch, bfin_unwind_pc);
849 set_gdbarch_frame_align (gdbarch, bfin_frame_align);
850 set_gdbarch_print_insn (gdbarch, print_insn_bfin);
851
852 /* Hook in ABI-specific overrides, if they have been registered. */
853 gdbarch_init_osabi (info, gdbarch);
854
855 dwarf2_append_unwinders (gdbarch);
856
857 frame_base_set_default (gdbarch, &bfin_frame_base);
858
859 frame_unwind_append_unwinder (gdbarch, &bfin_frame_unwind);
860
861 return gdbarch;
862 }
863
864 /* Provide a prototype to silence -Wmissing-prototypes. */
865 extern initialize_file_ftype _initialize_bfin_tdep;
866
867 void
868 _initialize_bfin_tdep (void)
869 {
870 register_gdbarch_init (bfd_arch_bfin, bfin_gdbarch_init);
871 }
This page took 0.046934 seconds and 5 git commands to generate.