Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "objfiles.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info : public allocate_on_obstack
35 {
36 const char *scope = nullptr;
37 struct using_direct *using_decl = nullptr;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* See block.h. */
44
45 struct objfile *
46 block_objfile (const struct block *block)
47 {
48 const struct global_block *global_block;
49
50 if (BLOCK_FUNCTION (block) != NULL)
51 return symbol_objfile (BLOCK_FUNCTION (block));
52
53 global_block = (struct global_block *) block_global_block (block);
54 return COMPUNIT_OBJFILE (global_block->compunit_symtab);
55 }
56
57 /* See block. */
58
59 struct gdbarch *
60 block_gdbarch (const struct block *block)
61 {
62 if (BLOCK_FUNCTION (block) != NULL)
63 return symbol_arch (BLOCK_FUNCTION (block));
64
65 return block_objfile (block)->arch ();
66 }
67
68 /* See block.h. */
69
70 bool
71 contained_in (const struct block *a, const struct block *b,
72 bool allow_nested)
73 {
74 if (!a || !b)
75 return false;
76
77 do
78 {
79 if (a == b)
80 return true;
81 /* If A is a function block, then A cannot be contained in B,
82 except if A was inlined. */
83 if (!allow_nested && BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
84 return false;
85 a = BLOCK_SUPERBLOCK (a);
86 }
87 while (a != NULL);
88
89 return false;
90 }
91
92
93 /* Return the symbol for the function which contains a specified
94 lexical block, described by a struct block BL. The return value
95 will not be an inlined function; the containing function will be
96 returned instead. */
97
98 struct symbol *
99 block_linkage_function (const struct block *bl)
100 {
101 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
102 && BLOCK_SUPERBLOCK (bl) != NULL)
103 bl = BLOCK_SUPERBLOCK (bl);
104
105 return BLOCK_FUNCTION (bl);
106 }
107
108 /* Return the symbol for the function which contains a specified
109 block, described by a struct block BL. The return value will be
110 the closest enclosing function, which might be an inline
111 function. */
112
113 struct symbol *
114 block_containing_function (const struct block *bl)
115 {
116 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
117 bl = BLOCK_SUPERBLOCK (bl);
118
119 return BLOCK_FUNCTION (bl);
120 }
121
122 /* Return one if BL represents an inlined function. */
123
124 int
125 block_inlined_p (const struct block *bl)
126 {
127 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
128 }
129
130 /* A helper function that checks whether PC is in the blockvector BL.
131 It returns the containing block if there is one, or else NULL. */
132
133 static const struct block *
134 find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
135 {
136 const struct block *b;
137 int bot, top, half;
138
139 /* If we have an addrmap mapping code addresses to blocks, then use
140 that. */
141 if (BLOCKVECTOR_MAP (bl))
142 return (const struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);
143
144 /* Otherwise, use binary search to find the last block that starts
145 before PC.
146 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
147 They both have the same START,END values.
148 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
149 fact that this choice was made was subtle, now we make it explicit. */
150 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
151 bot = STATIC_BLOCK;
152 top = BLOCKVECTOR_NBLOCKS (bl);
153
154 while (top - bot > 1)
155 {
156 half = (top - bot + 1) >> 1;
157 b = BLOCKVECTOR_BLOCK (bl, bot + half);
158 if (BLOCK_START (b) <= pc)
159 bot += half;
160 else
161 top = bot + half;
162 }
163
164 /* Now search backward for a block that ends after PC. */
165
166 while (bot >= STATIC_BLOCK)
167 {
168 b = BLOCKVECTOR_BLOCK (bl, bot);
169 if (!(BLOCK_START (b) <= pc))
170 return NULL;
171 if (BLOCK_END (b) > pc)
172 return b;
173 bot--;
174 }
175
176 return NULL;
177 }
178
179 /* Return the blockvector immediately containing the innermost lexical
180 block containing the specified pc value and section, or 0 if there
181 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
182 don't pass this information back to the caller. */
183
184 const struct blockvector *
185 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
186 const struct block **pblock,
187 struct compunit_symtab *cust)
188 {
189 const struct blockvector *bl;
190 const struct block *b;
191
192 if (cust == NULL)
193 {
194 /* First search all symtabs for one whose file contains our pc */
195 cust = find_pc_sect_compunit_symtab (pc, section);
196 if (cust == NULL)
197 return 0;
198 }
199
200 bl = COMPUNIT_BLOCKVECTOR (cust);
201
202 /* Then search that symtab for the smallest block that wins. */
203 b = find_block_in_blockvector (bl, pc);
204 if (b == NULL)
205 return NULL;
206
207 if (pblock)
208 *pblock = b;
209 return bl;
210 }
211
212 /* Return true if the blockvector BV contains PC, false otherwise. */
213
214 int
215 blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
216 {
217 return find_block_in_blockvector (bv, pc) != NULL;
218 }
219
220 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
221 must be the next instruction after call (or after tail call jump). Throw
222 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
223
224 struct call_site *
225 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
226 {
227 struct compunit_symtab *cust;
228 void **slot = NULL;
229
230 /* -1 as tail call PC can be already after the compilation unit range. */
231 cust = find_pc_compunit_symtab (pc - 1);
232
233 if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
234 slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
235
236 if (slot == NULL)
237 {
238 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
239
240 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
241 the call target. */
242 throw_error (NO_ENTRY_VALUE_ERROR,
243 _("DW_OP_entry_value resolving cannot find "
244 "DW_TAG_call_site %s in %s"),
245 paddress (gdbarch, pc),
246 (msym.minsym == NULL ? "???"
247 : msym.minsym->print_name ()));
248 }
249
250 return (struct call_site *) *slot;
251 }
252
253 /* Return the blockvector immediately containing the innermost lexical block
254 containing the specified pc value, or 0 if there is none.
255 Backward compatibility, no section. */
256
257 const struct blockvector *
258 blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
259 {
260 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
261 pblock, NULL);
262 }
263
264 /* Return the innermost lexical block containing the specified pc value
265 in the specified section, or 0 if there is none. */
266
267 const struct block *
268 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
269 {
270 const struct blockvector *bl;
271 const struct block *b;
272
273 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
274 if (bl)
275 return b;
276 return 0;
277 }
278
279 /* Return the innermost lexical block containing the specified pc value,
280 or 0 if there is none. Backward compatibility, no section. */
281
282 const struct block *
283 block_for_pc (CORE_ADDR pc)
284 {
285 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
286 }
287
288 /* Now come some functions designed to deal with C++ namespace issues.
289 The accessors are safe to use even in the non-C++ case. */
290
291 /* This returns the namespace that BLOCK is enclosed in, or "" if it
292 isn't enclosed in a namespace at all. This travels the chain of
293 superblocks looking for a scope, if necessary. */
294
295 const char *
296 block_scope (const struct block *block)
297 {
298 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
299 {
300 if (BLOCK_NAMESPACE (block) != NULL
301 && BLOCK_NAMESPACE (block)->scope != NULL)
302 return BLOCK_NAMESPACE (block)->scope;
303 }
304
305 return "";
306 }
307
308 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
309 OBSTACK. (It won't make a copy of SCOPE, however, so that already
310 has to be allocated correctly.) */
311
312 void
313 block_set_scope (struct block *block, const char *scope,
314 struct obstack *obstack)
315 {
316 block_initialize_namespace (block, obstack);
317
318 BLOCK_NAMESPACE (block)->scope = scope;
319 }
320
321 /* This returns the using directives list associated with BLOCK, if
322 any. */
323
324 struct using_direct *
325 block_using (const struct block *block)
326 {
327 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
328 return NULL;
329 else
330 return BLOCK_NAMESPACE (block)->using_decl;
331 }
332
333 /* Set BLOCK's using member to USING; if needed, allocate memory via
334 OBSTACK. (It won't make a copy of USING, however, so that already
335 has to be allocated correctly.) */
336
337 void
338 block_set_using (struct block *block,
339 struct using_direct *using_decl,
340 struct obstack *obstack)
341 {
342 block_initialize_namespace (block, obstack);
343
344 BLOCK_NAMESPACE (block)->using_decl = using_decl;
345 }
346
347 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
348 initialize its members to zero. */
349
350 static void
351 block_initialize_namespace (struct block *block, struct obstack *obstack)
352 {
353 if (BLOCK_NAMESPACE (block) == NULL)
354 BLOCK_NAMESPACE (block) = new (obstack) struct block_namespace_info ();
355 }
356
357 /* Return the static block associated to BLOCK. Return NULL if block
358 is NULL or if block is a global block. */
359
360 const struct block *
361 block_static_block (const struct block *block)
362 {
363 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
364 return NULL;
365
366 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
367 block = BLOCK_SUPERBLOCK (block);
368
369 return block;
370 }
371
372 /* Return the static block associated to BLOCK. Return NULL if block
373 is NULL. */
374
375 const struct block *
376 block_global_block (const struct block *block)
377 {
378 if (block == NULL)
379 return NULL;
380
381 while (BLOCK_SUPERBLOCK (block) != NULL)
382 block = BLOCK_SUPERBLOCK (block);
383
384 return block;
385 }
386
387 /* Allocate a block on OBSTACK, and initialize its elements to
388 zero/NULL. This is useful for creating "dummy" blocks that don't
389 correspond to actual source files.
390
391 Warning: it sets the block's BLOCK_MULTIDICT to NULL, which isn't a
392 valid value. If you really don't want the block to have a
393 dictionary, then you should subsequently set its BLOCK_MULTIDICT to
394 dict_create_linear (obstack, NULL). */
395
396 struct block *
397 allocate_block (struct obstack *obstack)
398 {
399 struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
400
401 return bl;
402 }
403
404 /* Allocate a global block. */
405
406 struct block *
407 allocate_global_block (struct obstack *obstack)
408 {
409 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
410
411 return &bl->block;
412 }
413
414 /* Set the compunit of the global block. */
415
416 void
417 set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
418 {
419 struct global_block *gb;
420
421 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
422 gb = (struct global_block *) block;
423 gdb_assert (gb->compunit_symtab == NULL);
424 gb->compunit_symtab = cu;
425 }
426
427 /* See block.h. */
428
429 struct dynamic_prop *
430 block_static_link (const struct block *block)
431 {
432 struct objfile *objfile = block_objfile (block);
433
434 /* Only objfile-owned blocks that materialize top function scopes can have
435 static links. */
436 if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
437 return NULL;
438
439 return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
440 }
441
442 /* Return the compunit of the global block. */
443
444 static struct compunit_symtab *
445 get_block_compunit_symtab (const struct block *block)
446 {
447 struct global_block *gb;
448
449 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
450 gb = (struct global_block *) block;
451 gdb_assert (gb->compunit_symtab != NULL);
452 return gb->compunit_symtab;
453 }
454
455 \f
456
457 /* Initialize a block iterator, either to iterate over a single block,
458 or, for static and global blocks, all the included symtabs as
459 well. */
460
461 static void
462 initialize_block_iterator (const struct block *block,
463 struct block_iterator *iter)
464 {
465 enum block_enum which;
466 struct compunit_symtab *cu;
467
468 iter->idx = -1;
469
470 if (BLOCK_SUPERBLOCK (block) == NULL)
471 {
472 which = GLOBAL_BLOCK;
473 cu = get_block_compunit_symtab (block);
474 }
475 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
476 {
477 which = STATIC_BLOCK;
478 cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
479 }
480 else
481 {
482 iter->d.block = block;
483 /* A signal value meaning that we're iterating over a single
484 block. */
485 iter->which = FIRST_LOCAL_BLOCK;
486 return;
487 }
488
489 /* If this is an included symtab, find the canonical includer and
490 use it instead. */
491 while (cu->user != NULL)
492 cu = cu->user;
493
494 /* Putting this check here simplifies the logic of the iterator
495 functions. If there are no included symtabs, we only need to
496 search a single block, so we might as well just do that
497 directly. */
498 if (cu->includes == NULL)
499 {
500 iter->d.block = block;
501 /* A signal value meaning that we're iterating over a single
502 block. */
503 iter->which = FIRST_LOCAL_BLOCK;
504 }
505 else
506 {
507 iter->d.compunit_symtab = cu;
508 iter->which = which;
509 }
510 }
511
512 /* A helper function that finds the current compunit over whose static
513 or global block we should iterate. */
514
515 static struct compunit_symtab *
516 find_iterator_compunit_symtab (struct block_iterator *iterator)
517 {
518 if (iterator->idx == -1)
519 return iterator->d.compunit_symtab;
520 return iterator->d.compunit_symtab->includes[iterator->idx];
521 }
522
523 /* Perform a single step for a plain block iterator, iterating across
524 symbol tables as needed. Returns the next symbol, or NULL when
525 iteration is complete. */
526
527 static struct symbol *
528 block_iterator_step (struct block_iterator *iterator, int first)
529 {
530 struct symbol *sym;
531
532 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
533
534 while (1)
535 {
536 if (first)
537 {
538 struct compunit_symtab *cust
539 = find_iterator_compunit_symtab (iterator);
540 const struct block *block;
541
542 /* Iteration is complete. */
543 if (cust == NULL)
544 return NULL;
545
546 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
547 iterator->which);
548 sym = mdict_iterator_first (BLOCK_MULTIDICT (block),
549 &iterator->mdict_iter);
550 }
551 else
552 sym = mdict_iterator_next (&iterator->mdict_iter);
553
554 if (sym != NULL)
555 return sym;
556
557 /* We have finished iterating the appropriate block of one
558 symtab. Now advance to the next symtab and begin iteration
559 there. */
560 ++iterator->idx;
561 first = 1;
562 }
563 }
564
565 /* See block.h. */
566
567 struct symbol *
568 block_iterator_first (const struct block *block,
569 struct block_iterator *iterator)
570 {
571 initialize_block_iterator (block, iterator);
572
573 if (iterator->which == FIRST_LOCAL_BLOCK)
574 return mdict_iterator_first (block->multidict, &iterator->mdict_iter);
575
576 return block_iterator_step (iterator, 1);
577 }
578
579 /* See block.h. */
580
581 struct symbol *
582 block_iterator_next (struct block_iterator *iterator)
583 {
584 if (iterator->which == FIRST_LOCAL_BLOCK)
585 return mdict_iterator_next (&iterator->mdict_iter);
586
587 return block_iterator_step (iterator, 0);
588 }
589
590 /* Perform a single step for a "match" block iterator, iterating
591 across symbol tables as needed. Returns the next symbol, or NULL
592 when iteration is complete. */
593
594 static struct symbol *
595 block_iter_match_step (struct block_iterator *iterator,
596 const lookup_name_info &name,
597 int first)
598 {
599 struct symbol *sym;
600
601 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
602
603 while (1)
604 {
605 if (first)
606 {
607 struct compunit_symtab *cust
608 = find_iterator_compunit_symtab (iterator);
609 const struct block *block;
610
611 /* Iteration is complete. */
612 if (cust == NULL)
613 return NULL;
614
615 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
616 iterator->which);
617 sym = mdict_iter_match_first (BLOCK_MULTIDICT (block), name,
618 &iterator->mdict_iter);
619 }
620 else
621 sym = mdict_iter_match_next (name, &iterator->mdict_iter);
622
623 if (sym != NULL)
624 return sym;
625
626 /* We have finished iterating the appropriate block of one
627 symtab. Now advance to the next symtab and begin iteration
628 there. */
629 ++iterator->idx;
630 first = 1;
631 }
632 }
633
634 /* See block.h. */
635
636 struct symbol *
637 block_iter_match_first (const struct block *block,
638 const lookup_name_info &name,
639 struct block_iterator *iterator)
640 {
641 initialize_block_iterator (block, iterator);
642
643 if (iterator->which == FIRST_LOCAL_BLOCK)
644 return mdict_iter_match_first (block->multidict, name,
645 &iterator->mdict_iter);
646
647 return block_iter_match_step (iterator, name, 1);
648 }
649
650 /* See block.h. */
651
652 struct symbol *
653 block_iter_match_next (const lookup_name_info &name,
654 struct block_iterator *iterator)
655 {
656 if (iterator->which == FIRST_LOCAL_BLOCK)
657 return mdict_iter_match_next (name, &iterator->mdict_iter);
658
659 return block_iter_match_step (iterator, name, 0);
660 }
661
662 /* See block.h. */
663
664 bool
665 best_symbol (struct symbol *a, const domain_enum domain)
666 {
667 return (SYMBOL_DOMAIN (a) == domain
668 && SYMBOL_CLASS (a) != LOC_UNRESOLVED);
669 }
670
671 /* See block.h. */
672
673 struct symbol *
674 better_symbol (struct symbol *a, struct symbol *b, const domain_enum domain)
675 {
676 if (a == NULL)
677 return b;
678 if (b == NULL)
679 return a;
680
681 if (SYMBOL_DOMAIN (a) == domain
682 && SYMBOL_DOMAIN (b) != domain)
683 return a;
684 if (SYMBOL_DOMAIN (b) == domain
685 && SYMBOL_DOMAIN (a) != domain)
686 return b;
687
688 if (SYMBOL_CLASS (a) != LOC_UNRESOLVED
689 && SYMBOL_CLASS (b) == LOC_UNRESOLVED)
690 return a;
691 if (SYMBOL_CLASS (b) != LOC_UNRESOLVED
692 && SYMBOL_CLASS (a) == LOC_UNRESOLVED)
693 return b;
694
695 return a;
696 }
697
698 /* See block.h.
699
700 Note that if NAME is the demangled form of a C++ symbol, we will fail
701 to find a match during the binary search of the non-encoded names, but
702 for now we don't worry about the slight inefficiency of looking for
703 a match we'll never find, since it will go pretty quick. Once the
704 binary search terminates, we drop through and do a straight linear
705 search on the symbols. Each symbol which is marked as being a ObjC/C++
706 symbol (language_cplus or language_objc set) has both the encoded and
707 non-encoded names tested for a match. */
708
709 struct symbol *
710 block_lookup_symbol (const struct block *block, const char *name,
711 symbol_name_match_type match_type,
712 const domain_enum domain)
713 {
714 struct block_iterator iter;
715 struct symbol *sym;
716
717 lookup_name_info lookup_name (name, match_type);
718
719 if (!BLOCK_FUNCTION (block))
720 {
721 struct symbol *other = NULL;
722
723 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
724 {
725 /* See comment related to PR gcc/debug/91507 in
726 block_lookup_symbol_primary. */
727 if (best_symbol (sym, domain))
728 return sym;
729 /* This is a bit of a hack, but symbol_matches_domain might ignore
730 STRUCT vs VAR domain symbols. So if a matching symbol is found,
731 make sure there is no "better" matching symbol, i.e., one with
732 exactly the same domain. PR 16253. */
733 if (symbol_matches_domain (sym->language (),
734 SYMBOL_DOMAIN (sym), domain))
735 other = better_symbol (other, sym, domain);
736 }
737 return other;
738 }
739 else
740 {
741 /* Note that parameter symbols do not always show up last in the
742 list; this loop makes sure to take anything else other than
743 parameter symbols first; it only uses parameter symbols as a
744 last resort. Note that this only takes up extra computation
745 time on a match.
746 It's hard to define types in the parameter list (at least in
747 C/C++) so we don't do the same PR 16253 hack here that is done
748 for the !BLOCK_FUNCTION case. */
749
750 struct symbol *sym_found = NULL;
751
752 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
753 {
754 if (symbol_matches_domain (sym->language (),
755 SYMBOL_DOMAIN (sym), domain))
756 {
757 sym_found = sym;
758 if (!SYMBOL_IS_ARGUMENT (sym))
759 {
760 break;
761 }
762 }
763 }
764 return (sym_found); /* Will be NULL if not found. */
765 }
766 }
767
768 /* See block.h. */
769
770 struct symbol *
771 block_lookup_symbol_primary (const struct block *block, const char *name,
772 const domain_enum domain)
773 {
774 struct symbol *sym, *other;
775 struct mdict_iterator mdict_iter;
776
777 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
778
779 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
780 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
781 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
782
783 other = NULL;
784 for (sym
785 = mdict_iter_match_first (block->multidict, lookup_name, &mdict_iter);
786 sym != NULL;
787 sym = mdict_iter_match_next (lookup_name, &mdict_iter))
788 {
789 /* With the fix for PR gcc/debug/91507, we get for:
790 ...
791 extern char *zzz[];
792 char *zzz[ ] = {
793 "abc",
794 "cde"
795 };
796 ...
797 DWARF which will result in two entries in the symbol table, a decl
798 with type char *[] and a def with type char *[2].
799
800 If we return the decl here, we don't get the value of zzz:
801 ...
802 $ gdb a.spec.out -batch -ex "p zzz"
803 $1 = 0x601030 <zzz>
804 ...
805 because we're returning the symbol without location information, and
806 because the fallback that uses the address from the minimal symbols
807 doesn't work either because the type of the decl does not specify a
808 size.
809
810 To fix this, we prefer def over decl in best_symbol and
811 better_symbol.
812
813 In absence of the gcc fix, both def and decl have type char *[], so
814 the only option to make this work is improve the fallback to use the
815 size of the minimal symbol. Filed as PR exp/24989. */
816 if (best_symbol (sym, domain))
817 return sym;
818
819 /* This is a bit of a hack, but symbol_matches_domain might ignore
820 STRUCT vs VAR domain symbols. So if a matching symbol is found,
821 make sure there is no "better" matching symbol, i.e., one with
822 exactly the same domain. PR 16253. */
823 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
824 other = better_symbol (other, sym, domain);
825 }
826
827 return other;
828 }
829
830 /* See block.h. */
831
832 struct symbol *
833 block_find_symbol (const struct block *block, const char *name,
834 const domain_enum domain,
835 block_symbol_matcher_ftype *matcher, void *data)
836 {
837 struct block_iterator iter;
838 struct symbol *sym;
839
840 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
841
842 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
843 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
844 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
845
846 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
847 {
848 /* MATCHER is deliberately called second here so that it never sees
849 a non-domain-matching symbol. */
850 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain)
851 && matcher (sym, data))
852 return sym;
853 }
854 return NULL;
855 }
856
857 /* See block.h. */
858
859 int
860 block_find_non_opaque_type (struct symbol *sym, void *data)
861 {
862 return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
863 }
864
865 /* See block.h. */
866
867 int
868 block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
869 {
870 struct symbol **best = (struct symbol **) data;
871
872 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
873 return 1;
874 *best = sym;
875 return 0;
876 }
877
878 /* See block.h. */
879
880 struct blockranges *
881 make_blockranges (struct objfile *objfile,
882 const std::vector<blockrange> &rangevec)
883 {
884 struct blockranges *blr;
885 size_t n = rangevec.size();
886
887 blr = (struct blockranges *)
888 obstack_alloc (&objfile->objfile_obstack,
889 sizeof (struct blockranges)
890 + (n - 1) * sizeof (struct blockrange));
891
892 blr->nranges = n;
893 for (int i = 0; i < n; i++)
894 blr->range[i] = rangevec[i];
895 return blr;
896 }
897
This page took 0.046336 seconds and 4 git commands to generate.