DWARF: handle non-local references in nested functions
[deliverable/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "objfiles.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info
35 {
36 const char *scope;
37 struct using_direct *using_decl;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* See block.h. */
44
45 struct objfile *
46 block_objfile (const struct block *block)
47 {
48 const struct global_block *global_block;
49
50 if (BLOCK_FUNCTION (block) != NULL)
51 return symbol_objfile (BLOCK_FUNCTION (block));
52
53 global_block = (struct global_block *) block_global_block (block);
54 return COMPUNIT_OBJFILE (global_block->compunit_symtab);
55 }
56
57 /* See block. */
58
59 struct gdbarch *
60 block_gdbarch (const struct block *block)
61 {
62 if (BLOCK_FUNCTION (block) != NULL)
63 return symbol_arch (BLOCK_FUNCTION (block));
64
65 return get_objfile_arch (block_objfile (block));
66 }
67
68 /* Return Nonzero if block a is lexically nested within block b,
69 or if a and b have the same pc range.
70 Return zero otherwise. */
71
72 int
73 contained_in (const struct block *a, const struct block *b)
74 {
75 if (!a || !b)
76 return 0;
77
78 do
79 {
80 if (a == b)
81 return 1;
82 /* If A is a function block, then A cannot be contained in B,
83 except if A was inlined. */
84 if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
85 return 0;
86 a = BLOCK_SUPERBLOCK (a);
87 }
88 while (a != NULL);
89
90 return 0;
91 }
92
93
94 /* Return the symbol for the function which contains a specified
95 lexical block, described by a struct block BL. The return value
96 will not be an inlined function; the containing function will be
97 returned instead. */
98
99 struct symbol *
100 block_linkage_function (const struct block *bl)
101 {
102 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
103 && BLOCK_SUPERBLOCK (bl) != NULL)
104 bl = BLOCK_SUPERBLOCK (bl);
105
106 return BLOCK_FUNCTION (bl);
107 }
108
109 /* Return the symbol for the function which contains a specified
110 block, described by a struct block BL. The return value will be
111 the closest enclosing function, which might be an inline
112 function. */
113
114 struct symbol *
115 block_containing_function (const struct block *bl)
116 {
117 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
118 bl = BLOCK_SUPERBLOCK (bl);
119
120 return BLOCK_FUNCTION (bl);
121 }
122
123 /* Return one if BL represents an inlined function. */
124
125 int
126 block_inlined_p (const struct block *bl)
127 {
128 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
129 }
130
131 /* A helper function that checks whether PC is in the blockvector BL.
132 It returns the containing block if there is one, or else NULL. */
133
134 static struct block *
135 find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
136 {
137 struct block *b;
138 int bot, top, half;
139
140 /* If we have an addrmap mapping code addresses to blocks, then use
141 that. */
142 if (BLOCKVECTOR_MAP (bl))
143 return addrmap_find (BLOCKVECTOR_MAP (bl), pc);
144
145 /* Otherwise, use binary search to find the last block that starts
146 before PC.
147 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
148 They both have the same START,END values.
149 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
150 fact that this choice was made was subtle, now we make it explicit. */
151 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
152 bot = STATIC_BLOCK;
153 top = BLOCKVECTOR_NBLOCKS (bl);
154
155 while (top - bot > 1)
156 {
157 half = (top - bot + 1) >> 1;
158 b = BLOCKVECTOR_BLOCK (bl, bot + half);
159 if (BLOCK_START (b) <= pc)
160 bot += half;
161 else
162 top = bot + half;
163 }
164
165 /* Now search backward for a block that ends after PC. */
166
167 while (bot >= STATIC_BLOCK)
168 {
169 b = BLOCKVECTOR_BLOCK (bl, bot);
170 if (BLOCK_END (b) > pc)
171 return b;
172 bot--;
173 }
174
175 return NULL;
176 }
177
178 /* Return the blockvector immediately containing the innermost lexical
179 block containing the specified pc value and section, or 0 if there
180 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
181 don't pass this information back to the caller. */
182
183 const struct blockvector *
184 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
185 const struct block **pblock,
186 struct compunit_symtab *cust)
187 {
188 const struct blockvector *bl;
189 struct block *b;
190
191 if (cust == NULL)
192 {
193 /* First search all symtabs for one whose file contains our pc */
194 cust = find_pc_sect_compunit_symtab (pc, section);
195 if (cust == NULL)
196 return 0;
197 }
198
199 bl = COMPUNIT_BLOCKVECTOR (cust);
200
201 /* Then search that symtab for the smallest block that wins. */
202 b = find_block_in_blockvector (bl, pc);
203 if (b == NULL)
204 return NULL;
205
206 if (pblock)
207 *pblock = b;
208 return bl;
209 }
210
211 /* Return true if the blockvector BV contains PC, false otherwise. */
212
213 int
214 blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
215 {
216 return find_block_in_blockvector (bv, pc) != NULL;
217 }
218
219 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
220 must be the next instruction after call (or after tail call jump). Throw
221 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
222
223 struct call_site *
224 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
225 {
226 struct compunit_symtab *cust;
227 void **slot = NULL;
228
229 /* -1 as tail call PC can be already after the compilation unit range. */
230 cust = find_pc_compunit_symtab (pc - 1);
231
232 if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
233 slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
234
235 if (slot == NULL)
236 {
237 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
238
239 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
240 the call target. */
241 throw_error (NO_ENTRY_VALUE_ERROR,
242 _("DW_OP_GNU_entry_value resolving cannot find "
243 "DW_TAG_GNU_call_site %s in %s"),
244 paddress (gdbarch, pc),
245 (msym.minsym == NULL ? "???"
246 : MSYMBOL_PRINT_NAME (msym.minsym)));
247 }
248
249 return *slot;
250 }
251
252 /* Return the blockvector immediately containing the innermost lexical block
253 containing the specified pc value, or 0 if there is none.
254 Backward compatibility, no section. */
255
256 const struct blockvector *
257 blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
258 {
259 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
260 pblock, NULL);
261 }
262
263 /* Return the innermost lexical block containing the specified pc value
264 in the specified section, or 0 if there is none. */
265
266 const struct block *
267 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
268 {
269 const struct blockvector *bl;
270 const struct block *b;
271
272 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
273 if (bl)
274 return b;
275 return 0;
276 }
277
278 /* Return the innermost lexical block containing the specified pc value,
279 or 0 if there is none. Backward compatibility, no section. */
280
281 const struct block *
282 block_for_pc (CORE_ADDR pc)
283 {
284 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
285 }
286
287 /* Now come some functions designed to deal with C++ namespace issues.
288 The accessors are safe to use even in the non-C++ case. */
289
290 /* This returns the namespace that BLOCK is enclosed in, or "" if it
291 isn't enclosed in a namespace at all. This travels the chain of
292 superblocks looking for a scope, if necessary. */
293
294 const char *
295 block_scope (const struct block *block)
296 {
297 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
298 {
299 if (BLOCK_NAMESPACE (block) != NULL
300 && BLOCK_NAMESPACE (block)->scope != NULL)
301 return BLOCK_NAMESPACE (block)->scope;
302 }
303
304 return "";
305 }
306
307 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
308 OBSTACK. (It won't make a copy of SCOPE, however, so that already
309 has to be allocated correctly.) */
310
311 void
312 block_set_scope (struct block *block, const char *scope,
313 struct obstack *obstack)
314 {
315 block_initialize_namespace (block, obstack);
316
317 BLOCK_NAMESPACE (block)->scope = scope;
318 }
319
320 /* This returns the using directives list associated with BLOCK, if
321 any. */
322
323 struct using_direct *
324 block_using (const struct block *block)
325 {
326 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
327 return NULL;
328 else
329 return BLOCK_NAMESPACE (block)->using_decl;
330 }
331
332 /* Set BLOCK's using member to USING; if needed, allocate memory via
333 OBSTACK. (It won't make a copy of USING, however, so that already
334 has to be allocated correctly.) */
335
336 void
337 block_set_using (struct block *block,
338 struct using_direct *using_decl,
339 struct obstack *obstack)
340 {
341 block_initialize_namespace (block, obstack);
342
343 BLOCK_NAMESPACE (block)->using_decl = using_decl;
344 }
345
346 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
347 ititialize its members to zero. */
348
349 static void
350 block_initialize_namespace (struct block *block, struct obstack *obstack)
351 {
352 if (BLOCK_NAMESPACE (block) == NULL)
353 {
354 BLOCK_NAMESPACE (block)
355 = obstack_alloc (obstack, sizeof (struct block_namespace_info));
356 BLOCK_NAMESPACE (block)->scope = NULL;
357 BLOCK_NAMESPACE (block)->using_decl = NULL;
358 }
359 }
360
361 /* Return the static block associated to BLOCK. Return NULL if block
362 is NULL or if block is a global block. */
363
364 const struct block *
365 block_static_block (const struct block *block)
366 {
367 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
368 return NULL;
369
370 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
371 block = BLOCK_SUPERBLOCK (block);
372
373 return block;
374 }
375
376 /* Return the static block associated to BLOCK. Return NULL if block
377 is NULL. */
378
379 const struct block *
380 block_global_block (const struct block *block)
381 {
382 if (block == NULL)
383 return NULL;
384
385 while (BLOCK_SUPERBLOCK (block) != NULL)
386 block = BLOCK_SUPERBLOCK (block);
387
388 return block;
389 }
390
391 /* Allocate a block on OBSTACK, and initialize its elements to
392 zero/NULL. This is useful for creating "dummy" blocks that don't
393 correspond to actual source files.
394
395 Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
396 valid value. If you really don't want the block to have a
397 dictionary, then you should subsequently set its BLOCK_DICT to
398 dict_create_linear (obstack, NULL). */
399
400 struct block *
401 allocate_block (struct obstack *obstack)
402 {
403 struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
404
405 return bl;
406 }
407
408 /* Allocate a global block. */
409
410 struct block *
411 allocate_global_block (struct obstack *obstack)
412 {
413 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
414
415 return &bl->block;
416 }
417
418 /* Set the compunit of the global block. */
419
420 void
421 set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
422 {
423 struct global_block *gb;
424
425 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
426 gb = (struct global_block *) block;
427 gdb_assert (gb->compunit_symtab == NULL);
428 gb->compunit_symtab = cu;
429 }
430
431 /* See block.h. */
432
433 struct dynamic_prop *
434 block_static_link (const struct block *block)
435 {
436 struct objfile *objfile = block_objfile (block);
437
438 /* Only objfile-owned blocks that materialize top function scopes can have
439 static links. */
440 if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
441 return NULL;
442
443 return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
444 }
445
446 /* Return the compunit of the global block. */
447
448 static struct compunit_symtab *
449 get_block_compunit_symtab (const struct block *block)
450 {
451 struct global_block *gb;
452
453 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
454 gb = (struct global_block *) block;
455 gdb_assert (gb->compunit_symtab != NULL);
456 return gb->compunit_symtab;
457 }
458
459 \f
460
461 /* Initialize a block iterator, either to iterate over a single block,
462 or, for static and global blocks, all the included symtabs as
463 well. */
464
465 static void
466 initialize_block_iterator (const struct block *block,
467 struct block_iterator *iter)
468 {
469 enum block_enum which;
470 struct compunit_symtab *cu;
471
472 iter->idx = -1;
473
474 if (BLOCK_SUPERBLOCK (block) == NULL)
475 {
476 which = GLOBAL_BLOCK;
477 cu = get_block_compunit_symtab (block);
478 }
479 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
480 {
481 which = STATIC_BLOCK;
482 cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
483 }
484 else
485 {
486 iter->d.block = block;
487 /* A signal value meaning that we're iterating over a single
488 block. */
489 iter->which = FIRST_LOCAL_BLOCK;
490 return;
491 }
492
493 /* If this is an included symtab, find the canonical includer and
494 use it instead. */
495 while (cu->user != NULL)
496 cu = cu->user;
497
498 /* Putting this check here simplifies the logic of the iterator
499 functions. If there are no included symtabs, we only need to
500 search a single block, so we might as well just do that
501 directly. */
502 if (cu->includes == NULL)
503 {
504 iter->d.block = block;
505 /* A signal value meaning that we're iterating over a single
506 block. */
507 iter->which = FIRST_LOCAL_BLOCK;
508 }
509 else
510 {
511 iter->d.compunit_symtab = cu;
512 iter->which = which;
513 }
514 }
515
516 /* A helper function that finds the current compunit over whose static
517 or global block we should iterate. */
518
519 static struct compunit_symtab *
520 find_iterator_compunit_symtab (struct block_iterator *iterator)
521 {
522 if (iterator->idx == -1)
523 return iterator->d.compunit_symtab;
524 return iterator->d.compunit_symtab->includes[iterator->idx];
525 }
526
527 /* Perform a single step for a plain block iterator, iterating across
528 symbol tables as needed. Returns the next symbol, or NULL when
529 iteration is complete. */
530
531 static struct symbol *
532 block_iterator_step (struct block_iterator *iterator, int first)
533 {
534 struct symbol *sym;
535
536 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
537
538 while (1)
539 {
540 if (first)
541 {
542 struct compunit_symtab *cust
543 = find_iterator_compunit_symtab (iterator);
544 const struct block *block;
545
546 /* Iteration is complete. */
547 if (cust == NULL)
548 return NULL;
549
550 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
551 iterator->which);
552 sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
553 }
554 else
555 sym = dict_iterator_next (&iterator->dict_iter);
556
557 if (sym != NULL)
558 return sym;
559
560 /* We have finished iterating the appropriate block of one
561 symtab. Now advance to the next symtab and begin iteration
562 there. */
563 ++iterator->idx;
564 first = 1;
565 }
566 }
567
568 /* See block.h. */
569
570 struct symbol *
571 block_iterator_first (const struct block *block,
572 struct block_iterator *iterator)
573 {
574 initialize_block_iterator (block, iterator);
575
576 if (iterator->which == FIRST_LOCAL_BLOCK)
577 return dict_iterator_first (block->dict, &iterator->dict_iter);
578
579 return block_iterator_step (iterator, 1);
580 }
581
582 /* See block.h. */
583
584 struct symbol *
585 block_iterator_next (struct block_iterator *iterator)
586 {
587 if (iterator->which == FIRST_LOCAL_BLOCK)
588 return dict_iterator_next (&iterator->dict_iter);
589
590 return block_iterator_step (iterator, 0);
591 }
592
593 /* Perform a single step for a "name" block iterator, iterating across
594 symbol tables as needed. Returns the next symbol, or NULL when
595 iteration is complete. */
596
597 static struct symbol *
598 block_iter_name_step (struct block_iterator *iterator, const char *name,
599 int first)
600 {
601 struct symbol *sym;
602
603 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
604
605 while (1)
606 {
607 if (first)
608 {
609 struct compunit_symtab *cust
610 = find_iterator_compunit_symtab (iterator);
611 const struct block *block;
612
613 /* Iteration is complete. */
614 if (cust == NULL)
615 return NULL;
616
617 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
618 iterator->which);
619 sym = dict_iter_name_first (BLOCK_DICT (block), name,
620 &iterator->dict_iter);
621 }
622 else
623 sym = dict_iter_name_next (name, &iterator->dict_iter);
624
625 if (sym != NULL)
626 return sym;
627
628 /* We have finished iterating the appropriate block of one
629 symtab. Now advance to the next symtab and begin iteration
630 there. */
631 ++iterator->idx;
632 first = 1;
633 }
634 }
635
636 /* See block.h. */
637
638 struct symbol *
639 block_iter_name_first (const struct block *block,
640 const char *name,
641 struct block_iterator *iterator)
642 {
643 initialize_block_iterator (block, iterator);
644
645 if (iterator->which == FIRST_LOCAL_BLOCK)
646 return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
647
648 return block_iter_name_step (iterator, name, 1);
649 }
650
651 /* See block.h. */
652
653 struct symbol *
654 block_iter_name_next (const char *name, struct block_iterator *iterator)
655 {
656 if (iterator->which == FIRST_LOCAL_BLOCK)
657 return dict_iter_name_next (name, &iterator->dict_iter);
658
659 return block_iter_name_step (iterator, name, 0);
660 }
661
662 /* Perform a single step for a "match" block iterator, iterating
663 across symbol tables as needed. Returns the next symbol, or NULL
664 when iteration is complete. */
665
666 static struct symbol *
667 block_iter_match_step (struct block_iterator *iterator,
668 const char *name,
669 symbol_compare_ftype *compare,
670 int first)
671 {
672 struct symbol *sym;
673
674 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
675
676 while (1)
677 {
678 if (first)
679 {
680 struct compunit_symtab *cust
681 = find_iterator_compunit_symtab (iterator);
682 const struct block *block;
683
684 /* Iteration is complete. */
685 if (cust == NULL)
686 return NULL;
687
688 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
689 iterator->which);
690 sym = dict_iter_match_first (BLOCK_DICT (block), name,
691 compare, &iterator->dict_iter);
692 }
693 else
694 sym = dict_iter_match_next (name, compare, &iterator->dict_iter);
695
696 if (sym != NULL)
697 return sym;
698
699 /* We have finished iterating the appropriate block of one
700 symtab. Now advance to the next symtab and begin iteration
701 there. */
702 ++iterator->idx;
703 first = 1;
704 }
705 }
706
707 /* See block.h. */
708
709 struct symbol *
710 block_iter_match_first (const struct block *block,
711 const char *name,
712 symbol_compare_ftype *compare,
713 struct block_iterator *iterator)
714 {
715 initialize_block_iterator (block, iterator);
716
717 if (iterator->which == FIRST_LOCAL_BLOCK)
718 return dict_iter_match_first (block->dict, name, compare,
719 &iterator->dict_iter);
720
721 return block_iter_match_step (iterator, name, compare, 1);
722 }
723
724 /* See block.h. */
725
726 struct symbol *
727 block_iter_match_next (const char *name,
728 symbol_compare_ftype *compare,
729 struct block_iterator *iterator)
730 {
731 if (iterator->which == FIRST_LOCAL_BLOCK)
732 return dict_iter_match_next (name, compare, &iterator->dict_iter);
733
734 return block_iter_match_step (iterator, name, compare, 0);
735 }
736
737 /* See block.h.
738
739 Note that if NAME is the demangled form of a C++ symbol, we will fail
740 to find a match during the binary search of the non-encoded names, but
741 for now we don't worry about the slight inefficiency of looking for
742 a match we'll never find, since it will go pretty quick. Once the
743 binary search terminates, we drop through and do a straight linear
744 search on the symbols. Each symbol which is marked as being a ObjC/C++
745 symbol (language_cplus or language_objc set) has both the encoded and
746 non-encoded names tested for a match. */
747
748 struct symbol *
749 block_lookup_symbol (const struct block *block, const char *name,
750 const domain_enum domain)
751 {
752 struct block_iterator iter;
753 struct symbol *sym;
754
755 if (!BLOCK_FUNCTION (block))
756 {
757 struct symbol *other = NULL;
758
759 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
760 {
761 if (SYMBOL_DOMAIN (sym) == domain)
762 return sym;
763 /* This is a bit of a hack, but symbol_matches_domain might ignore
764 STRUCT vs VAR domain symbols. So if a matching symbol is found,
765 make sure there is no "better" matching symbol, i.e., one with
766 exactly the same domain. PR 16253. */
767 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
768 SYMBOL_DOMAIN (sym), domain))
769 other = sym;
770 }
771 return other;
772 }
773 else
774 {
775 /* Note that parameter symbols do not always show up last in the
776 list; this loop makes sure to take anything else other than
777 parameter symbols first; it only uses parameter symbols as a
778 last resort. Note that this only takes up extra computation
779 time on a match.
780 It's hard to define types in the parameter list (at least in
781 C/C++) so we don't do the same PR 16253 hack here that is done
782 for the !BLOCK_FUNCTION case. */
783
784 struct symbol *sym_found = NULL;
785
786 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
787 {
788 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
789 SYMBOL_DOMAIN (sym), domain))
790 {
791 sym_found = sym;
792 if (!SYMBOL_IS_ARGUMENT (sym))
793 {
794 break;
795 }
796 }
797 }
798 return (sym_found); /* Will be NULL if not found. */
799 }
800 }
801
802 /* See block.h. */
803
804 struct symbol *
805 block_lookup_symbol_primary (const struct block *block, const char *name,
806 const domain_enum domain)
807 {
808 struct symbol *sym, *other;
809 struct dict_iterator dict_iter;
810
811 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
812 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
813 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
814
815 other = NULL;
816 for (sym = dict_iter_name_first (block->dict, name, &dict_iter);
817 sym != NULL;
818 sym = dict_iter_name_next (name, &dict_iter))
819 {
820 if (SYMBOL_DOMAIN (sym) == domain)
821 return sym;
822
823 /* This is a bit of a hack, but symbol_matches_domain might ignore
824 STRUCT vs VAR domain symbols. So if a matching symbol is found,
825 make sure there is no "better" matching symbol, i.e., one with
826 exactly the same domain. PR 16253. */
827 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
828 SYMBOL_DOMAIN (sym), domain))
829 other = sym;
830 }
831
832 return other;
833 }
834
835 /* See block.h. */
836
837 struct symbol *
838 block_find_symbol (const struct block *block, const char *name,
839 const domain_enum domain,
840 block_symbol_matcher_ftype *matcher, void *data)
841 {
842 struct block_iterator iter;
843 struct symbol *sym;
844
845 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
846 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
847 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
848
849 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
850 {
851 /* MATCHER is deliberately called second here so that it never sees
852 a non-domain-matching symbol. */
853 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
854 SYMBOL_DOMAIN (sym), domain)
855 && matcher (sym, data))
856 return sym;
857 }
858 return NULL;
859 }
860
861 /* See block.h. */
862
863 int
864 block_find_non_opaque_type (struct symbol *sym, void *data)
865 {
866 return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
867 }
868
869 /* See block.h. */
870
871 int
872 block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
873 {
874 struct symbol **best = data;
875
876 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
877 return 1;
878 *best = sym;
879 return 0;
880 }
This page took 0.071312 seconds and 5 git commands to generate.