Replace the MSYMBOL_*_NAME macros with member functions
[deliverable/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "objfiles.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info : public allocate_on_obstack
35 {
36 const char *scope = nullptr;
37 struct using_direct *using_decl = nullptr;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* See block.h. */
44
45 struct objfile *
46 block_objfile (const struct block *block)
47 {
48 const struct global_block *global_block;
49
50 if (BLOCK_FUNCTION (block) != NULL)
51 return symbol_objfile (BLOCK_FUNCTION (block));
52
53 global_block = (struct global_block *) block_global_block (block);
54 return COMPUNIT_OBJFILE (global_block->compunit_symtab);
55 }
56
57 /* See block. */
58
59 struct gdbarch *
60 block_gdbarch (const struct block *block)
61 {
62 if (BLOCK_FUNCTION (block) != NULL)
63 return symbol_arch (BLOCK_FUNCTION (block));
64
65 return get_objfile_arch (block_objfile (block));
66 }
67
68 /* See block.h. */
69
70 bool
71 contained_in (const struct block *a, const struct block *b,
72 bool allow_nested)
73 {
74 if (!a || !b)
75 return false;
76
77 do
78 {
79 if (a == b)
80 return true;
81 /* If A is a function block, then A cannot be contained in B,
82 except if A was inlined. */
83 if (!allow_nested && BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
84 return false;
85 a = BLOCK_SUPERBLOCK (a);
86 }
87 while (a != NULL);
88
89 return false;
90 }
91
92
93 /* Return the symbol for the function which contains a specified
94 lexical block, described by a struct block BL. The return value
95 will not be an inlined function; the containing function will be
96 returned instead. */
97
98 struct symbol *
99 block_linkage_function (const struct block *bl)
100 {
101 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
102 && BLOCK_SUPERBLOCK (bl) != NULL)
103 bl = BLOCK_SUPERBLOCK (bl);
104
105 return BLOCK_FUNCTION (bl);
106 }
107
108 /* Return the symbol for the function which contains a specified
109 block, described by a struct block BL. The return value will be
110 the closest enclosing function, which might be an inline
111 function. */
112
113 struct symbol *
114 block_containing_function (const struct block *bl)
115 {
116 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
117 bl = BLOCK_SUPERBLOCK (bl);
118
119 return BLOCK_FUNCTION (bl);
120 }
121
122 /* Return one if BL represents an inlined function. */
123
124 int
125 block_inlined_p (const struct block *bl)
126 {
127 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
128 }
129
130 /* A helper function that checks whether PC is in the blockvector BL.
131 It returns the containing block if there is one, or else NULL. */
132
133 static const struct block *
134 find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
135 {
136 const struct block *b;
137 int bot, top, half;
138
139 /* If we have an addrmap mapping code addresses to blocks, then use
140 that. */
141 if (BLOCKVECTOR_MAP (bl))
142 return (const struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);
143
144 /* Otherwise, use binary search to find the last block that starts
145 before PC.
146 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
147 They both have the same START,END values.
148 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
149 fact that this choice was made was subtle, now we make it explicit. */
150 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
151 bot = STATIC_BLOCK;
152 top = BLOCKVECTOR_NBLOCKS (bl);
153
154 while (top - bot > 1)
155 {
156 half = (top - bot + 1) >> 1;
157 b = BLOCKVECTOR_BLOCK (bl, bot + half);
158 if (BLOCK_START (b) <= pc)
159 bot += half;
160 else
161 top = bot + half;
162 }
163
164 /* Now search backward for a block that ends after PC. */
165
166 while (bot >= STATIC_BLOCK)
167 {
168 b = BLOCKVECTOR_BLOCK (bl, bot);
169 if (BLOCK_END (b) > pc)
170 return b;
171 bot--;
172 }
173
174 return NULL;
175 }
176
177 /* Return the blockvector immediately containing the innermost lexical
178 block containing the specified pc value and section, or 0 if there
179 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
180 don't pass this information back to the caller. */
181
182 const struct blockvector *
183 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
184 const struct block **pblock,
185 struct compunit_symtab *cust)
186 {
187 const struct blockvector *bl;
188 const struct block *b;
189
190 if (cust == NULL)
191 {
192 /* First search all symtabs for one whose file contains our pc */
193 cust = find_pc_sect_compunit_symtab (pc, section);
194 if (cust == NULL)
195 return 0;
196 }
197
198 bl = COMPUNIT_BLOCKVECTOR (cust);
199
200 /* Then search that symtab for the smallest block that wins. */
201 b = find_block_in_blockvector (bl, pc);
202 if (b == NULL)
203 return NULL;
204
205 if (pblock)
206 *pblock = b;
207 return bl;
208 }
209
210 /* Return true if the blockvector BV contains PC, false otherwise. */
211
212 int
213 blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
214 {
215 return find_block_in_blockvector (bv, pc) != NULL;
216 }
217
218 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
219 must be the next instruction after call (or after tail call jump). Throw
220 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
221
222 struct call_site *
223 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
224 {
225 struct compunit_symtab *cust;
226 void **slot = NULL;
227
228 /* -1 as tail call PC can be already after the compilation unit range. */
229 cust = find_pc_compunit_symtab (pc - 1);
230
231 if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
232 slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
233
234 if (slot == NULL)
235 {
236 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
237
238 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
239 the call target. */
240 throw_error (NO_ENTRY_VALUE_ERROR,
241 _("DW_OP_entry_value resolving cannot find "
242 "DW_TAG_call_site %s in %s"),
243 paddress (gdbarch, pc),
244 (msym.minsym == NULL ? "???"
245 : msym.minsym->print_name ()));
246 }
247
248 return (struct call_site *) *slot;
249 }
250
251 /* Return the blockvector immediately containing the innermost lexical block
252 containing the specified pc value, or 0 if there is none.
253 Backward compatibility, no section. */
254
255 const struct blockvector *
256 blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
257 {
258 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
259 pblock, NULL);
260 }
261
262 /* Return the innermost lexical block containing the specified pc value
263 in the specified section, or 0 if there is none. */
264
265 const struct block *
266 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
267 {
268 const struct blockvector *bl;
269 const struct block *b;
270
271 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
272 if (bl)
273 return b;
274 return 0;
275 }
276
277 /* Return the innermost lexical block containing the specified pc value,
278 or 0 if there is none. Backward compatibility, no section. */
279
280 const struct block *
281 block_for_pc (CORE_ADDR pc)
282 {
283 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
284 }
285
286 /* Now come some functions designed to deal with C++ namespace issues.
287 The accessors are safe to use even in the non-C++ case. */
288
289 /* This returns the namespace that BLOCK is enclosed in, or "" if it
290 isn't enclosed in a namespace at all. This travels the chain of
291 superblocks looking for a scope, if necessary. */
292
293 const char *
294 block_scope (const struct block *block)
295 {
296 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
297 {
298 if (BLOCK_NAMESPACE (block) != NULL
299 && BLOCK_NAMESPACE (block)->scope != NULL)
300 return BLOCK_NAMESPACE (block)->scope;
301 }
302
303 return "";
304 }
305
306 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
307 OBSTACK. (It won't make a copy of SCOPE, however, so that already
308 has to be allocated correctly.) */
309
310 void
311 block_set_scope (struct block *block, const char *scope,
312 struct obstack *obstack)
313 {
314 block_initialize_namespace (block, obstack);
315
316 BLOCK_NAMESPACE (block)->scope = scope;
317 }
318
319 /* This returns the using directives list associated with BLOCK, if
320 any. */
321
322 struct using_direct *
323 block_using (const struct block *block)
324 {
325 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
326 return NULL;
327 else
328 return BLOCK_NAMESPACE (block)->using_decl;
329 }
330
331 /* Set BLOCK's using member to USING; if needed, allocate memory via
332 OBSTACK. (It won't make a copy of USING, however, so that already
333 has to be allocated correctly.) */
334
335 void
336 block_set_using (struct block *block,
337 struct using_direct *using_decl,
338 struct obstack *obstack)
339 {
340 block_initialize_namespace (block, obstack);
341
342 BLOCK_NAMESPACE (block)->using_decl = using_decl;
343 }
344
345 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
346 initialize its members to zero. */
347
348 static void
349 block_initialize_namespace (struct block *block, struct obstack *obstack)
350 {
351 if (BLOCK_NAMESPACE (block) == NULL)
352 BLOCK_NAMESPACE (block) = new (obstack) struct block_namespace_info ();
353 }
354
355 /* Return the static block associated to BLOCK. Return NULL if block
356 is NULL or if block is a global block. */
357
358 const struct block *
359 block_static_block (const struct block *block)
360 {
361 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
362 return NULL;
363
364 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
365 block = BLOCK_SUPERBLOCK (block);
366
367 return block;
368 }
369
370 /* Return the static block associated to BLOCK. Return NULL if block
371 is NULL. */
372
373 const struct block *
374 block_global_block (const struct block *block)
375 {
376 if (block == NULL)
377 return NULL;
378
379 while (BLOCK_SUPERBLOCK (block) != NULL)
380 block = BLOCK_SUPERBLOCK (block);
381
382 return block;
383 }
384
385 /* Allocate a block on OBSTACK, and initialize its elements to
386 zero/NULL. This is useful for creating "dummy" blocks that don't
387 correspond to actual source files.
388
389 Warning: it sets the block's BLOCK_MULTIDICT to NULL, which isn't a
390 valid value. If you really don't want the block to have a
391 dictionary, then you should subsequently set its BLOCK_MULTIDICT to
392 dict_create_linear (obstack, NULL). */
393
394 struct block *
395 allocate_block (struct obstack *obstack)
396 {
397 struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
398
399 return bl;
400 }
401
402 /* Allocate a global block. */
403
404 struct block *
405 allocate_global_block (struct obstack *obstack)
406 {
407 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
408
409 return &bl->block;
410 }
411
412 /* Set the compunit of the global block. */
413
414 void
415 set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
416 {
417 struct global_block *gb;
418
419 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
420 gb = (struct global_block *) block;
421 gdb_assert (gb->compunit_symtab == NULL);
422 gb->compunit_symtab = cu;
423 }
424
425 /* See block.h. */
426
427 struct dynamic_prop *
428 block_static_link (const struct block *block)
429 {
430 struct objfile *objfile = block_objfile (block);
431
432 /* Only objfile-owned blocks that materialize top function scopes can have
433 static links. */
434 if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
435 return NULL;
436
437 return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
438 }
439
440 /* Return the compunit of the global block. */
441
442 static struct compunit_symtab *
443 get_block_compunit_symtab (const struct block *block)
444 {
445 struct global_block *gb;
446
447 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
448 gb = (struct global_block *) block;
449 gdb_assert (gb->compunit_symtab != NULL);
450 return gb->compunit_symtab;
451 }
452
453 \f
454
455 /* Initialize a block iterator, either to iterate over a single block,
456 or, for static and global blocks, all the included symtabs as
457 well. */
458
459 static void
460 initialize_block_iterator (const struct block *block,
461 struct block_iterator *iter)
462 {
463 enum block_enum which;
464 struct compunit_symtab *cu;
465
466 iter->idx = -1;
467
468 if (BLOCK_SUPERBLOCK (block) == NULL)
469 {
470 which = GLOBAL_BLOCK;
471 cu = get_block_compunit_symtab (block);
472 }
473 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
474 {
475 which = STATIC_BLOCK;
476 cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
477 }
478 else
479 {
480 iter->d.block = block;
481 /* A signal value meaning that we're iterating over a single
482 block. */
483 iter->which = FIRST_LOCAL_BLOCK;
484 return;
485 }
486
487 /* If this is an included symtab, find the canonical includer and
488 use it instead. */
489 while (cu->user != NULL)
490 cu = cu->user;
491
492 /* Putting this check here simplifies the logic of the iterator
493 functions. If there are no included symtabs, we only need to
494 search a single block, so we might as well just do that
495 directly. */
496 if (cu->includes == NULL)
497 {
498 iter->d.block = block;
499 /* A signal value meaning that we're iterating over a single
500 block. */
501 iter->which = FIRST_LOCAL_BLOCK;
502 }
503 else
504 {
505 iter->d.compunit_symtab = cu;
506 iter->which = which;
507 }
508 }
509
510 /* A helper function that finds the current compunit over whose static
511 or global block we should iterate. */
512
513 static struct compunit_symtab *
514 find_iterator_compunit_symtab (struct block_iterator *iterator)
515 {
516 if (iterator->idx == -1)
517 return iterator->d.compunit_symtab;
518 return iterator->d.compunit_symtab->includes[iterator->idx];
519 }
520
521 /* Perform a single step for a plain block iterator, iterating across
522 symbol tables as needed. Returns the next symbol, or NULL when
523 iteration is complete. */
524
525 static struct symbol *
526 block_iterator_step (struct block_iterator *iterator, int first)
527 {
528 struct symbol *sym;
529
530 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
531
532 while (1)
533 {
534 if (first)
535 {
536 struct compunit_symtab *cust
537 = find_iterator_compunit_symtab (iterator);
538 const struct block *block;
539
540 /* Iteration is complete. */
541 if (cust == NULL)
542 return NULL;
543
544 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
545 iterator->which);
546 sym = mdict_iterator_first (BLOCK_MULTIDICT (block),
547 &iterator->mdict_iter);
548 }
549 else
550 sym = mdict_iterator_next (&iterator->mdict_iter);
551
552 if (sym != NULL)
553 return sym;
554
555 /* We have finished iterating the appropriate block of one
556 symtab. Now advance to the next symtab and begin iteration
557 there. */
558 ++iterator->idx;
559 first = 1;
560 }
561 }
562
563 /* See block.h. */
564
565 struct symbol *
566 block_iterator_first (const struct block *block,
567 struct block_iterator *iterator)
568 {
569 initialize_block_iterator (block, iterator);
570
571 if (iterator->which == FIRST_LOCAL_BLOCK)
572 return mdict_iterator_first (block->multidict, &iterator->mdict_iter);
573
574 return block_iterator_step (iterator, 1);
575 }
576
577 /* See block.h. */
578
579 struct symbol *
580 block_iterator_next (struct block_iterator *iterator)
581 {
582 if (iterator->which == FIRST_LOCAL_BLOCK)
583 return mdict_iterator_next (&iterator->mdict_iter);
584
585 return block_iterator_step (iterator, 0);
586 }
587
588 /* Perform a single step for a "match" block iterator, iterating
589 across symbol tables as needed. Returns the next symbol, or NULL
590 when iteration is complete. */
591
592 static struct symbol *
593 block_iter_match_step (struct block_iterator *iterator,
594 const lookup_name_info &name,
595 int first)
596 {
597 struct symbol *sym;
598
599 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
600
601 while (1)
602 {
603 if (first)
604 {
605 struct compunit_symtab *cust
606 = find_iterator_compunit_symtab (iterator);
607 const struct block *block;
608
609 /* Iteration is complete. */
610 if (cust == NULL)
611 return NULL;
612
613 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
614 iterator->which);
615 sym = mdict_iter_match_first (BLOCK_MULTIDICT (block), name,
616 &iterator->mdict_iter);
617 }
618 else
619 sym = mdict_iter_match_next (name, &iterator->mdict_iter);
620
621 if (sym != NULL)
622 return sym;
623
624 /* We have finished iterating the appropriate block of one
625 symtab. Now advance to the next symtab and begin iteration
626 there. */
627 ++iterator->idx;
628 first = 1;
629 }
630 }
631
632 /* See block.h. */
633
634 struct symbol *
635 block_iter_match_first (const struct block *block,
636 const lookup_name_info &name,
637 struct block_iterator *iterator)
638 {
639 initialize_block_iterator (block, iterator);
640
641 if (iterator->which == FIRST_LOCAL_BLOCK)
642 return mdict_iter_match_first (block->multidict, name,
643 &iterator->mdict_iter);
644
645 return block_iter_match_step (iterator, name, 1);
646 }
647
648 /* See block.h. */
649
650 struct symbol *
651 block_iter_match_next (const lookup_name_info &name,
652 struct block_iterator *iterator)
653 {
654 if (iterator->which == FIRST_LOCAL_BLOCK)
655 return mdict_iter_match_next (name, &iterator->mdict_iter);
656
657 return block_iter_match_step (iterator, name, 0);
658 }
659
660 /* See block.h.
661
662 Note that if NAME is the demangled form of a C++ symbol, we will fail
663 to find a match during the binary search of the non-encoded names, but
664 for now we don't worry about the slight inefficiency of looking for
665 a match we'll never find, since it will go pretty quick. Once the
666 binary search terminates, we drop through and do a straight linear
667 search on the symbols. Each symbol which is marked as being a ObjC/C++
668 symbol (language_cplus or language_objc set) has both the encoded and
669 non-encoded names tested for a match. */
670
671 struct symbol *
672 block_lookup_symbol (const struct block *block, const char *name,
673 symbol_name_match_type match_type,
674 const domain_enum domain)
675 {
676 struct block_iterator iter;
677 struct symbol *sym;
678
679 lookup_name_info lookup_name (name, match_type);
680
681 if (!BLOCK_FUNCTION (block))
682 {
683 struct symbol *other = NULL;
684
685 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
686 {
687 if (SYMBOL_DOMAIN (sym) == domain)
688 return sym;
689 /* This is a bit of a hack, but symbol_matches_domain might ignore
690 STRUCT vs VAR domain symbols. So if a matching symbol is found,
691 make sure there is no "better" matching symbol, i.e., one with
692 exactly the same domain. PR 16253. */
693 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
694 SYMBOL_DOMAIN (sym), domain))
695 other = sym;
696 }
697 return other;
698 }
699 else
700 {
701 /* Note that parameter symbols do not always show up last in the
702 list; this loop makes sure to take anything else other than
703 parameter symbols first; it only uses parameter symbols as a
704 last resort. Note that this only takes up extra computation
705 time on a match.
706 It's hard to define types in the parameter list (at least in
707 C/C++) so we don't do the same PR 16253 hack here that is done
708 for the !BLOCK_FUNCTION case. */
709
710 struct symbol *sym_found = NULL;
711
712 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
713 {
714 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
715 SYMBOL_DOMAIN (sym), domain))
716 {
717 sym_found = sym;
718 if (!SYMBOL_IS_ARGUMENT (sym))
719 {
720 break;
721 }
722 }
723 }
724 return (sym_found); /* Will be NULL if not found. */
725 }
726 }
727
728 /* See block.h. */
729
730 struct symbol *
731 block_lookup_symbol_primary (const struct block *block, const char *name,
732 const domain_enum domain)
733 {
734 struct symbol *sym, *other;
735 struct mdict_iterator mdict_iter;
736
737 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
738
739 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
740 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
741 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
742
743 other = NULL;
744 for (sym
745 = mdict_iter_match_first (block->multidict, lookup_name, &mdict_iter);
746 sym != NULL;
747 sym = mdict_iter_match_next (lookup_name, &mdict_iter))
748 {
749 if (SYMBOL_DOMAIN (sym) == domain)
750 return sym;
751
752 /* This is a bit of a hack, but symbol_matches_domain might ignore
753 STRUCT vs VAR domain symbols. So if a matching symbol is found,
754 make sure there is no "better" matching symbol, i.e., one with
755 exactly the same domain. PR 16253. */
756 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
757 SYMBOL_DOMAIN (sym), domain))
758 other = sym;
759 }
760
761 return other;
762 }
763
764 /* See block.h. */
765
766 struct symbol *
767 block_find_symbol (const struct block *block, const char *name,
768 const domain_enum domain,
769 block_symbol_matcher_ftype *matcher, void *data)
770 {
771 struct block_iterator iter;
772 struct symbol *sym;
773
774 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
775
776 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
777 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
778 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
779
780 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
781 {
782 /* MATCHER is deliberately called second here so that it never sees
783 a non-domain-matching symbol. */
784 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
785 SYMBOL_DOMAIN (sym), domain)
786 && matcher (sym, data))
787 return sym;
788 }
789 return NULL;
790 }
791
792 /* See block.h. */
793
794 int
795 block_find_non_opaque_type (struct symbol *sym, void *data)
796 {
797 return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
798 }
799
800 /* See block.h. */
801
802 int
803 block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
804 {
805 struct symbol **best = (struct symbol **) data;
806
807 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
808 return 1;
809 *best = sym;
810 return 0;
811 }
812
813 /* See block.h. */
814
815 struct blockranges *
816 make_blockranges (struct objfile *objfile,
817 const std::vector<blockrange> &rangevec)
818 {
819 struct blockranges *blr;
820 size_t n = rangevec.size();
821
822 blr = (struct blockranges *)
823 obstack_alloc (&objfile->objfile_obstack,
824 sizeof (struct blockranges)
825 + (n - 1) * sizeof (struct blockrange));
826
827 blr->nranges = n;
828 for (int i = 0; i < n; i++)
829 blr->range[i] = rangevec[i];
830 return blr;
831 }
832
This page took 0.057959 seconds and 5 git commands to generate.