Guard against 'current_directory == NULL' on gdb_abspath (PR gdb/23613)
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "bfd.h"
24 #include "objfiles.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "value.h"
28 #include "target.h"
29 #include "inferior.h"
30 #include "annotate.h"
31 #include "regcache.h"
32 #include "dummy-frame.h"
33 #include "command.h"
34 #include "gdbcmd.h"
35 #include "block.h"
36 #include "inline-frame.h"
37
38 /* Return the innermost lexical block in execution in a specified
39 stack frame. The frame address is assumed valid.
40
41 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
42 address we used to choose the block. We use this to find a source
43 line, to decide which macro definitions are in scope.
44
45 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
46 PC, and may not really be a valid PC at all. For example, in the
47 caller of a function declared to never return, the code at the
48 return address will never be reached, so the call instruction may
49 be the very last instruction in the block. So the address we use
50 to choose the block is actually one byte before the return address
51 --- hopefully pointing us at the call instruction, or its delay
52 slot instruction. */
53
54 const struct block *
55 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
56 {
57 CORE_ADDR pc;
58 const struct block *bl;
59 int inline_count;
60
61 if (!get_frame_address_in_block_if_available (frame, &pc))
62 return NULL;
63
64 if (addr_in_block)
65 *addr_in_block = pc;
66
67 bl = block_for_pc (pc);
68 if (bl == NULL)
69 return NULL;
70
71 inline_count = frame_inlined_callees (frame);
72
73 while (inline_count > 0)
74 {
75 if (block_inlined_p (bl))
76 inline_count--;
77
78 bl = BLOCK_SUPERBLOCK (bl);
79 gdb_assert (bl != NULL);
80 }
81
82 return bl;
83 }
84
85 CORE_ADDR
86 get_pc_function_start (CORE_ADDR pc)
87 {
88 const struct block *bl;
89 struct bound_minimal_symbol msymbol;
90
91 bl = block_for_pc (pc);
92 if (bl)
93 {
94 struct symbol *symbol = block_linkage_function (bl);
95
96 if (symbol)
97 {
98 bl = SYMBOL_BLOCK_VALUE (symbol);
99 return BLOCK_ENTRY_PC (bl);
100 }
101 }
102
103 msymbol = lookup_minimal_symbol_by_pc (pc);
104 if (msymbol.minsym)
105 {
106 CORE_ADDR fstart = BMSYMBOL_VALUE_ADDRESS (msymbol);
107
108 if (find_pc_section (fstart))
109 return fstart;
110 }
111
112 return 0;
113 }
114
115 /* Return the symbol for the function executing in frame FRAME. */
116
117 struct symbol *
118 get_frame_function (struct frame_info *frame)
119 {
120 const struct block *bl = get_frame_block (frame, 0);
121
122 if (bl == NULL)
123 return NULL;
124
125 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
126 bl = BLOCK_SUPERBLOCK (bl);
127
128 return BLOCK_FUNCTION (bl);
129 }
130 \f
131
132 /* Return the function containing pc value PC in section SECTION.
133 Returns 0 if function is not known. */
134
135 struct symbol *
136 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section)
137 {
138 const struct block *b = block_for_pc_sect (pc, section);
139
140 if (b == 0)
141 return 0;
142 return block_linkage_function (b);
143 }
144
145 /* Return the function containing pc value PC.
146 Returns 0 if function is not known.
147 Backward compatibility, no section */
148
149 struct symbol *
150 find_pc_function (CORE_ADDR pc)
151 {
152 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
153 }
154
155 /* See symtab.h. */
156
157 struct symbol *
158 find_pc_sect_containing_function (CORE_ADDR pc, struct obj_section *section)
159 {
160 const block *bl = block_for_pc_sect (pc, section);
161
162 if (bl == nullptr)
163 return nullptr;
164
165 return block_containing_function (bl);
166 }
167
168 /* These variables are used to cache the most recent result of
169 find_pc_partial_function.
170
171 The addresses cache_pc_function_low and cache_pc_function_high
172 record the range in which PC was found during the most recent
173 successful lookup. When the function occupies a single contiguous
174 address range, these values correspond to the low and high
175 addresses of the function. (The high address is actually one byte
176 beyond the last byte of the function.) For a function with more
177 than one (non-contiguous) range, the range in which PC was found is
178 used to set the cache bounds.
179
180 When determining whether or not these cached values apply to a
181 particular PC value, PC must be within the range specified by
182 cache_pc_function_low and cache_pc_function_high. In addition to
183 PC being in that range, cache_pc_section must also match PC's
184 section. See find_pc_partial_function() for details on both the
185 comparison as well as how PC's section is determined.
186
187 The other values aren't used for determining whether the cache
188 applies, but are used for setting the outputs from
189 find_pc_partial_function. cache_pc_function_low and
190 cache_pc_function_high are used to set outputs as well. */
191
192 static CORE_ADDR cache_pc_function_low = 0;
193 static CORE_ADDR cache_pc_function_high = 0;
194 static const char *cache_pc_function_name = 0;
195 static struct obj_section *cache_pc_function_section = NULL;
196 static const struct block *cache_pc_function_block = nullptr;
197
198 /* Clear cache, e.g. when symbol table is discarded. */
199
200 void
201 clear_pc_function_cache (void)
202 {
203 cache_pc_function_low = 0;
204 cache_pc_function_high = 0;
205 cache_pc_function_name = (char *) 0;
206 cache_pc_function_section = NULL;
207 cache_pc_function_block = nullptr;
208 }
209
210 /* See symtab.h. */
211
212 bool
213 find_pc_partial_function (CORE_ADDR pc, const char **name, CORE_ADDR *address,
214 CORE_ADDR *endaddr, const struct block **block)
215 {
216 struct obj_section *section;
217 struct symbol *f;
218 struct bound_minimal_symbol msymbol;
219 struct compunit_symtab *compunit_symtab = NULL;
220 CORE_ADDR mapped_pc;
221
222 /* To ensure that the symbol returned belongs to the correct section
223 (and that the last [random] symbol from the previous section
224 isn't returned) try to find the section containing PC. First try
225 the overlay code (which by default returns NULL); and second try
226 the normal section code (which almost always succeeds). */
227 section = find_pc_overlay (pc);
228 if (section == NULL)
229 section = find_pc_section (pc);
230
231 mapped_pc = overlay_mapped_address (pc, section);
232
233 if (mapped_pc >= cache_pc_function_low
234 && mapped_pc < cache_pc_function_high
235 && section == cache_pc_function_section)
236 goto return_cached_value;
237
238 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
239 for (objfile *objfile : current_program_space->objfiles ())
240 {
241 if (objfile->sf)
242 {
243 compunit_symtab
244 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
245 mapped_pc,
246 section,
247 0);
248 }
249 if (compunit_symtab != NULL)
250 break;
251 }
252
253 if (compunit_symtab != NULL)
254 {
255 /* Checking whether the msymbol has a larger value is for the
256 "pathological" case mentioned in stack.c:find_frame_funname.
257
258 We use BLOCK_ENTRY_PC instead of BLOCK_START_PC for this
259 comparison because the minimal symbol should refer to the
260 function's entry pc which is not necessarily the lowest
261 address of the function. This will happen when the function
262 has more than one range and the entry pc is not within the
263 lowest range of addresses. */
264 f = find_pc_sect_function (mapped_pc, section);
265 if (f != NULL
266 && (msymbol.minsym == NULL
267 || (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (f))
268 >= BMSYMBOL_VALUE_ADDRESS (msymbol))))
269 {
270 const struct block *b = SYMBOL_BLOCK_VALUE (f);
271
272 cache_pc_function_name = f->linkage_name ();
273 cache_pc_function_section = section;
274 cache_pc_function_block = b;
275
276 /* For blocks occupying contiguous addresses (i.e. no gaps),
277 the low and high cache addresses are simply the start
278 and end of the block.
279
280 For blocks with non-contiguous ranges, we have to search
281 for the range containing mapped_pc and then use the start
282 and end of that range.
283
284 This causes the returned *ADDRESS and *ENDADDR values to
285 be limited to the range in which mapped_pc is found. See
286 comment preceding declaration of find_pc_partial_function
287 in symtab.h for more information. */
288
289 if (BLOCK_CONTIGUOUS_P (b))
290 {
291 cache_pc_function_low = BLOCK_START (b);
292 cache_pc_function_high = BLOCK_END (b);
293 }
294 else
295 {
296 int i;
297 for (i = 0; i < BLOCK_NRANGES (b); i++)
298 {
299 if (BLOCK_RANGE_START (b, i) <= mapped_pc
300 && mapped_pc < BLOCK_RANGE_END (b, i))
301 {
302 cache_pc_function_low = BLOCK_RANGE_START (b, i);
303 cache_pc_function_high = BLOCK_RANGE_END (b, i);
304 break;
305 }
306 }
307 /* Above loop should exit via the break. */
308 gdb_assert (i < BLOCK_NRANGES (b));
309 }
310
311
312 goto return_cached_value;
313 }
314 }
315
316 /* Not in the normal symbol tables, see if the pc is in a known
317 section. If it's not, then give up. This ensures that anything
318 beyond the end of the text seg doesn't appear to be part of the
319 last function in the text segment. */
320
321 if (!section)
322 msymbol.minsym = NULL;
323
324 /* Must be in the minimal symbol table. */
325 if (msymbol.minsym == NULL)
326 {
327 /* No available symbol. */
328 if (name != NULL)
329 *name = 0;
330 if (address != NULL)
331 *address = 0;
332 if (endaddr != NULL)
333 *endaddr = 0;
334 if (block != nullptr)
335 *block = nullptr;
336 return false;
337 }
338
339 cache_pc_function_low = BMSYMBOL_VALUE_ADDRESS (msymbol);
340 cache_pc_function_name = msymbol.minsym->linkage_name ();
341 cache_pc_function_section = section;
342 cache_pc_function_high = minimal_symbol_upper_bound (msymbol);
343 cache_pc_function_block = nullptr;
344
345 return_cached_value:
346
347 if (address)
348 {
349 if (pc_in_unmapped_range (pc, section))
350 *address = overlay_unmapped_address (cache_pc_function_low, section);
351 else
352 *address = cache_pc_function_low;
353 }
354
355 if (name)
356 *name = cache_pc_function_name;
357
358 if (endaddr)
359 {
360 if (pc_in_unmapped_range (pc, section))
361 {
362 /* Because the high address is actually beyond the end of
363 the function (and therefore possibly beyond the end of
364 the overlay), we must actually convert (high - 1) and
365 then add one to that. */
366
367 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
368 section);
369 }
370 else
371 *endaddr = cache_pc_function_high;
372 }
373
374 if (block != nullptr)
375 *block = cache_pc_function_block;
376
377 return true;
378 }
379
380 /* See symtab.h. */
381
382 bool
383 find_function_entry_range_from_pc (CORE_ADDR pc, const char **name,
384 CORE_ADDR *address, CORE_ADDR *endaddr)
385 {
386 const struct block *block;
387 bool status = find_pc_partial_function (pc, name, address, endaddr, &block);
388
389 if (status && block != nullptr && !BLOCK_CONTIGUOUS_P (block))
390 {
391 CORE_ADDR entry_pc = BLOCK_ENTRY_PC (block);
392
393 for (int i = 0; i < BLOCK_NRANGES (block); i++)
394 {
395 if (BLOCK_RANGE_START (block, i) <= entry_pc
396 && entry_pc < BLOCK_RANGE_END (block, i))
397 {
398 if (address != nullptr)
399 *address = BLOCK_RANGE_START (block, i);
400
401 if (endaddr != nullptr)
402 *endaddr = BLOCK_RANGE_END (block, i);
403
404 return status;
405 }
406 }
407
408 /* It's an internal error if we exit the above loop without finding
409 the range. */
410 internal_error (__FILE__, __LINE__,
411 _("Entry block not found in find_function_entry_range_from_pc"));
412 }
413
414 return status;
415 }
416
417 /* See symtab.h. */
418
419 struct type *
420 find_function_type (CORE_ADDR pc)
421 {
422 struct symbol *sym = find_pc_function (pc);
423
424 if (sym != NULL && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == pc)
425 return SYMBOL_TYPE (sym);
426
427 return NULL;
428 }
429
430 /* See symtab.h. */
431
432 struct type *
433 find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr)
434 {
435 struct type *resolver_type = find_function_type (resolver_funaddr);
436 if (resolver_type != NULL)
437 {
438 /* Get the return type of the resolver. */
439 struct type *resolver_ret_type
440 = check_typedef (TYPE_TARGET_TYPE (resolver_type));
441
442 /* If we found a pointer to function, then the resolved type
443 is the type of the pointed-to function. */
444 if (TYPE_CODE (resolver_ret_type) == TYPE_CODE_PTR)
445 {
446 struct type *resolved_type
447 = TYPE_TARGET_TYPE (resolver_ret_type);
448 if (TYPE_CODE (check_typedef (resolved_type)) == TYPE_CODE_FUNC)
449 return resolved_type;
450 }
451 }
452
453 return NULL;
454 }
455
456 /* Return the innermost stack frame that is executing inside of BLOCK and is
457 at least as old as the selected frame. Return NULL if there is no
458 such frame. If BLOCK is NULL, just return NULL. */
459
460 struct frame_info *
461 block_innermost_frame (const struct block *block)
462 {
463 struct frame_info *frame;
464
465 if (block == NULL)
466 return NULL;
467
468 frame = get_selected_frame_if_set ();
469 if (frame == NULL)
470 frame = get_current_frame ();
471 while (frame != NULL)
472 {
473 const struct block *frame_block = get_frame_block (frame, NULL);
474 if (frame_block != NULL && contained_in (frame_block, block))
475 return frame;
476
477 frame = get_prev_frame (frame);
478 }
479
480 return NULL;
481 }
This page took 0.041021 seconds and 4 git commands to generate.