* block.c (contained_in): Return zero for nested functions.
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "objfiles.h"
27 #include "frame.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "target.h"
31 #include "inferior.h"
32 #include "annotate.h"
33 #include "regcache.h"
34 #include "gdb_assert.h"
35 #include "dummy-frame.h"
36 #include "command.h"
37 #include "gdbcmd.h"
38 #include "block.h"
39 #include "inline-frame.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_blockframe (void);
44
45 /* Return the innermost lexical block in execution
46 in a specified stack frame. The frame address is assumed valid.
47
48 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
49 address we used to choose the block. We use this to find a source
50 line, to decide which macro definitions are in scope.
51
52 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
53 PC, and may not really be a valid PC at all. For example, in the
54 caller of a function declared to never return, the code at the
55 return address will never be reached, so the call instruction may
56 be the very last instruction in the block. So the address we use
57 to choose the block is actually one byte before the return address
58 --- hopefully pointing us at the call instruction, or its delay
59 slot instruction. */
60
61 struct block *
62 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
63 {
64 const CORE_ADDR pc = get_frame_address_in_block (frame);
65 struct frame_info *next_frame;
66 struct block *bl;
67 int inline_count;
68
69 if (addr_in_block)
70 *addr_in_block = pc;
71
72 bl = block_for_pc (pc);
73 if (bl == NULL)
74 return NULL;
75
76 inline_count = frame_inlined_callees (frame);
77
78 while (inline_count > 0)
79 {
80 if (block_inlined_p (bl))
81 inline_count--;
82
83 bl = BLOCK_SUPERBLOCK (bl);
84 gdb_assert (bl != NULL);
85 }
86
87 return bl;
88 }
89
90 CORE_ADDR
91 get_pc_function_start (CORE_ADDR pc)
92 {
93 struct block *bl;
94 struct minimal_symbol *msymbol;
95
96 bl = block_for_pc (pc);
97 if (bl)
98 {
99 struct symbol *symbol = block_linkage_function (bl);
100
101 if (symbol)
102 {
103 bl = SYMBOL_BLOCK_VALUE (symbol);
104 return BLOCK_START (bl);
105 }
106 }
107
108 msymbol = lookup_minimal_symbol_by_pc (pc);
109 if (msymbol)
110 {
111 CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
112
113 if (find_pc_section (fstart))
114 return fstart;
115 }
116
117 return 0;
118 }
119
120 /* Return the symbol for the function executing in frame FRAME. */
121
122 struct symbol *
123 get_frame_function (struct frame_info *frame)
124 {
125 struct block *bl = get_frame_block (frame, 0);
126
127 if (bl == NULL)
128 return NULL;
129
130 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
131 bl = BLOCK_SUPERBLOCK (bl);
132
133 return BLOCK_FUNCTION (bl);
134 }
135 \f
136
137 /* Return the function containing pc value PC in section SECTION.
138 Returns 0 if function is not known. */
139
140 struct symbol *
141 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section)
142 {
143 struct block *b = block_for_pc_sect (pc, section);
144 if (b == 0)
145 return 0;
146 return block_linkage_function (b);
147 }
148
149 /* Return the function containing pc value PC.
150 Returns 0 if function is not known. Backward compatibility, no section */
151
152 struct symbol *
153 find_pc_function (CORE_ADDR pc)
154 {
155 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
156 }
157
158 /* These variables are used to cache the most recent result
159 * of find_pc_partial_function. */
160
161 static CORE_ADDR cache_pc_function_low = 0;
162 static CORE_ADDR cache_pc_function_high = 0;
163 static char *cache_pc_function_name = 0;
164 static struct obj_section *cache_pc_function_section = NULL;
165
166 /* Clear cache, e.g. when symbol table is discarded. */
167
168 void
169 clear_pc_function_cache (void)
170 {
171 cache_pc_function_low = 0;
172 cache_pc_function_high = 0;
173 cache_pc_function_name = (char *) 0;
174 cache_pc_function_section = NULL;
175 }
176
177 /* Finds the "function" (text symbol) that is smaller than PC but
178 greatest of all of the potential text symbols in SECTION. Sets
179 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
180 If ENDADDR is non-null, then set *ENDADDR to be the end of the
181 function (exclusive), but passing ENDADDR as non-null means that
182 the function might cause symbols to be read. This function either
183 succeeds or fails (not halfway succeeds). If it succeeds, it sets
184 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
185 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
186 returns 0. */
187
188 /* Backward compatibility, no section argument. */
189
190 int
191 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
192 CORE_ADDR *endaddr)
193 {
194 struct obj_section *section;
195 struct partial_symtab *pst;
196 struct symbol *f;
197 struct minimal_symbol *msymbol;
198 struct partial_symbol *psb;
199 int i;
200 CORE_ADDR mapped_pc;
201
202 /* To ensure that the symbol returned belongs to the correct setion
203 (and that the last [random] symbol from the previous section
204 isn't returned) try to find the section containing PC. First try
205 the overlay code (which by default returns NULL); and second try
206 the normal section code (which almost always succeeds). */
207 section = find_pc_overlay (pc);
208 if (section == NULL)
209 section = find_pc_section (pc);
210
211 mapped_pc = overlay_mapped_address (pc, section);
212
213 if (mapped_pc >= cache_pc_function_low
214 && mapped_pc < cache_pc_function_high
215 && section == cache_pc_function_section)
216 goto return_cached_value;
217
218 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
219 pst = find_pc_sect_psymtab (mapped_pc, section);
220 if (pst)
221 {
222 /* Need to read the symbols to get a good value for the end address. */
223 if (endaddr != NULL && !pst->readin)
224 {
225 /* Need to get the terminal in case symbol-reading produces
226 output. */
227 target_terminal_ours_for_output ();
228 PSYMTAB_TO_SYMTAB (pst);
229 }
230
231 if (pst->readin)
232 {
233 /* Checking whether the msymbol has a larger value is for the
234 "pathological" case mentioned in print_frame_info. */
235 f = find_pc_sect_function (mapped_pc, section);
236 if (f != NULL
237 && (msymbol == NULL
238 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
239 >= SYMBOL_VALUE_ADDRESS (msymbol))))
240 {
241 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
242 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
243 cache_pc_function_name = SYMBOL_LINKAGE_NAME (f);
244 cache_pc_function_section = section;
245 goto return_cached_value;
246 }
247 }
248 else
249 {
250 /* Now that static symbols go in the minimal symbol table, perhaps
251 we could just ignore the partial symbols. But at least for now
252 we use the partial or minimal symbol, whichever is larger. */
253 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
254
255 if (psb
256 && (msymbol == NULL ||
257 (SYMBOL_VALUE_ADDRESS (psb)
258 >= SYMBOL_VALUE_ADDRESS (msymbol))))
259 {
260 /* This case isn't being cached currently. */
261 if (address)
262 *address = SYMBOL_VALUE_ADDRESS (psb);
263 if (name)
264 *name = SYMBOL_LINKAGE_NAME (psb);
265 /* endaddr non-NULL can't happen here. */
266 return 1;
267 }
268 }
269 }
270
271 /* Not in the normal symbol tables, see if the pc is in a known section.
272 If it's not, then give up. This ensures that anything beyond the end
273 of the text seg doesn't appear to be part of the last function in the
274 text segment. */
275
276 if (!section)
277 msymbol = NULL;
278
279 /* Must be in the minimal symbol table. */
280 if (msymbol == NULL)
281 {
282 /* No available symbol. */
283 if (name != NULL)
284 *name = 0;
285 if (address != NULL)
286 *address = 0;
287 if (endaddr != NULL)
288 *endaddr = 0;
289 return 0;
290 }
291
292 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
293 cache_pc_function_name = SYMBOL_LINKAGE_NAME (msymbol);
294 cache_pc_function_section = section;
295
296 /* If the minimal symbol has a size, use it for the cache.
297 Otherwise use the lesser of the next minimal symbol in the same
298 section, or the end of the section, as the end of the
299 function. */
300
301 if (MSYMBOL_SIZE (msymbol) != 0)
302 cache_pc_function_high = cache_pc_function_low + MSYMBOL_SIZE (msymbol);
303 else
304 {
305 /* Step over other symbols at this same address, and symbols in
306 other sections, to find the next symbol in this section with
307 a different address. */
308
309 for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
310 {
311 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
312 && SYMBOL_OBJ_SECTION (msymbol + i) == SYMBOL_OBJ_SECTION (msymbol))
313 break;
314 }
315
316 if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
317 && SYMBOL_VALUE_ADDRESS (msymbol + i) < obj_section_endaddr (section))
318 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
319 else
320 /* We got the start address from the last msymbol in the objfile.
321 So the end address is the end of the section. */
322 cache_pc_function_high = obj_section_endaddr (section);
323 }
324
325 return_cached_value:
326
327 if (address)
328 {
329 if (pc_in_unmapped_range (pc, section))
330 *address = overlay_unmapped_address (cache_pc_function_low, section);
331 else
332 *address = cache_pc_function_low;
333 }
334
335 if (name)
336 *name = cache_pc_function_name;
337
338 if (endaddr)
339 {
340 if (pc_in_unmapped_range (pc, section))
341 {
342 /* Because the high address is actually beyond the end of
343 the function (and therefore possibly beyond the end of
344 the overlay), we must actually convert (high - 1) and
345 then add one to that. */
346
347 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
348 section);
349 }
350 else
351 *endaddr = cache_pc_function_high;
352 }
353
354 return 1;
355 }
356
357 /* Return the innermost stack frame executing inside of BLOCK,
358 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
359
360 struct frame_info *
361 block_innermost_frame (struct block *block)
362 {
363 struct frame_info *frame;
364 CORE_ADDR start;
365 CORE_ADDR end;
366
367 if (block == NULL)
368 return NULL;
369
370 start = BLOCK_START (block);
371 end = BLOCK_END (block);
372
373 frame = get_current_frame ();
374 while (frame != NULL)
375 {
376 struct block *frame_block = get_frame_block (frame, NULL);
377 if (frame_block != NULL && contained_in (frame_block, block))
378 return frame;
379
380 frame = get_prev_frame (frame);
381 }
382
383 return NULL;
384 }
This page took 0.044932 seconds and 5 git commands to generate.