053ccef0fa2c081b46beb4fe8d9a5609135ee7eb
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (const char *,
106 void (*) (struct breakpoint *,
107 void *),
108 void *);
109
110 static void ignore_command (char *, int);
111
112 static int breakpoint_re_set_one (void *);
113
114 static void breakpoint_re_set_default (struct breakpoint *);
115
116 static void
117 create_sals_from_location_default (const struct event_location *location,
118 struct linespec_result *canonical,
119 enum bptype type_wanted);
120
121 static void create_breakpoints_sal_default (struct gdbarch *,
122 struct linespec_result *,
123 gdb::unique_xmalloc_ptr<char>,
124 gdb::unique_xmalloc_ptr<char>,
125 enum bptype,
126 enum bpdisp, int, int,
127 int,
128 const struct breakpoint_ops *,
129 int, int, int, unsigned);
130
131 static void decode_location_default (struct breakpoint *b,
132 const struct event_location *location,
133 struct program_space *search_pspace,
134 struct symtabs_and_lines *sals);
135
136 static void clear_command (char *, int);
137
138 static void catch_command (char *, int);
139
140 static int can_use_hardware_watchpoint (struct value *);
141
142 static void break_command_1 (char *, int, int);
143
144 static void mention (struct breakpoint *);
145
146 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
147 enum bptype,
148 const struct breakpoint_ops *);
149 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
150 const struct symtab_and_line *);
151
152 /* This function is used in gdbtk sources and thus can not be made
153 static. */
154 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
155 struct symtab_and_line,
156 enum bptype,
157 const struct breakpoint_ops *);
158
159 static struct breakpoint *
160 momentary_breakpoint_from_master (struct breakpoint *orig,
161 enum bptype type,
162 const struct breakpoint_ops *ops,
163 int loc_enabled);
164
165 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
166
167 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
168 CORE_ADDR bpaddr,
169 enum bptype bptype);
170
171 static void describe_other_breakpoints (struct gdbarch *,
172 struct program_space *, CORE_ADDR,
173 struct obj_section *, int);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static int breakpoint_location_address_range_overlap (struct bp_location *,
183 struct address_space *,
184 CORE_ADDR, int);
185
186 static void breakpoints_info (char *, int);
187
188 static void watchpoints_info (char *, int);
189
190 static int breakpoint_1 (char *, int,
191 int (*) (const struct breakpoint *));
192
193 static int breakpoint_cond_eval (void *);
194
195 static void cleanup_executing_breakpoints (void *);
196
197 static void commands_command (char *, int);
198
199 static void condition_command (char *, int);
200
201 static int remove_breakpoint (struct bp_location *);
202 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
203
204 static enum print_stop_action print_bp_stop_message (bpstat bs);
205
206 static int watchpoint_check (void *);
207
208 static void maintenance_info_breakpoints (char *, int);
209
210 static int hw_breakpoint_used_count (void);
211
212 static int hw_watchpoint_use_count (struct breakpoint *);
213
214 static int hw_watchpoint_used_count_others (struct breakpoint *except,
215 enum bptype type,
216 int *other_type_used);
217
218 static void hbreak_command (char *, int);
219
220 static void thbreak_command (char *, int);
221
222 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
223 int count);
224
225 static void stop_command (char *arg, int from_tty);
226
227 static void stopin_command (char *arg, int from_tty);
228
229 static void stopat_command (char *arg, int from_tty);
230
231 static void tcatch_command (char *arg, int from_tty);
232
233 static void free_bp_location (struct bp_location *loc);
234 static void incref_bp_location (struct bp_location *loc);
235 static void decref_bp_location (struct bp_location **loc);
236
237 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
238
239 /* update_global_location_list's modes of operation wrt to whether to
240 insert locations now. */
241 enum ugll_insert_mode
242 {
243 /* Don't insert any breakpoint locations into the inferior, only
244 remove already-inserted locations that no longer should be
245 inserted. Functions that delete a breakpoint or breakpoints
246 should specify this mode, so that deleting a breakpoint doesn't
247 have the side effect of inserting the locations of other
248 breakpoints that are marked not-inserted, but should_be_inserted
249 returns true on them.
250
251 This behavior is useful is situations close to tear-down -- e.g.,
252 after an exec, while the target still has execution, but
253 breakpoint shadows of the previous executable image should *NOT*
254 be restored to the new image; or before detaching, where the
255 target still has execution and wants to delete breakpoints from
256 GDB's lists, and all breakpoints had already been removed from
257 the inferior. */
258 UGLL_DONT_INSERT,
259
260 /* May insert breakpoints iff breakpoints_should_be_inserted_now
261 claims breakpoints should be inserted now. */
262 UGLL_MAY_INSERT,
263
264 /* Insert locations now, irrespective of
265 breakpoints_should_be_inserted_now. E.g., say all threads are
266 stopped right now, and the user did "continue". We need to
267 insert breakpoints _before_ resuming the target, but
268 UGLL_MAY_INSERT wouldn't insert them, because
269 breakpoints_should_be_inserted_now returns false at that point,
270 as no thread is running yet. */
271 UGLL_INSERT
272 };
273
274 static void update_global_location_list (enum ugll_insert_mode);
275
276 static void update_global_location_list_nothrow (enum ugll_insert_mode);
277
278 static int is_hardware_watchpoint (const struct breakpoint *bpt);
279
280 static void insert_breakpoint_locations (void);
281
282 static void tracepoints_info (char *, int);
283
284 static void delete_trace_command (char *, int);
285
286 static void enable_trace_command (char *, int);
287
288 static void disable_trace_command (char *, int);
289
290 static void trace_pass_command (char *, int);
291
292 static void set_tracepoint_count (int num);
293
294 static int is_masked_watchpoint (const struct breakpoint *b);
295
296 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
297
298 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
299 otherwise. */
300
301 static int strace_marker_p (struct breakpoint *b);
302
303 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
304 that are implemented on top of software or hardware breakpoints
305 (user breakpoints, internal and momentary breakpoints, etc.). */
306 static struct breakpoint_ops bkpt_base_breakpoint_ops;
307
308 /* Internal breakpoints class type. */
309 static struct breakpoint_ops internal_breakpoint_ops;
310
311 /* Momentary breakpoints class type. */
312 static struct breakpoint_ops momentary_breakpoint_ops;
313
314 /* The breakpoint_ops structure to be used in regular user created
315 breakpoints. */
316 struct breakpoint_ops bkpt_breakpoint_ops;
317
318 /* Breakpoints set on probes. */
319 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
320
321 /* Dynamic printf class type. */
322 struct breakpoint_ops dprintf_breakpoint_ops;
323
324 /* The style in which to perform a dynamic printf. This is a user
325 option because different output options have different tradeoffs;
326 if GDB does the printing, there is better error handling if there
327 is a problem with any of the arguments, but using an inferior
328 function lets you have special-purpose printers and sending of
329 output to the same place as compiled-in print functions. */
330
331 static const char dprintf_style_gdb[] = "gdb";
332 static const char dprintf_style_call[] = "call";
333 static const char dprintf_style_agent[] = "agent";
334 static const char *const dprintf_style_enums[] = {
335 dprintf_style_gdb,
336 dprintf_style_call,
337 dprintf_style_agent,
338 NULL
339 };
340 static const char *dprintf_style = dprintf_style_gdb;
341
342 /* The function to use for dynamic printf if the preferred style is to
343 call into the inferior. The value is simply a string that is
344 copied into the command, so it can be anything that GDB can
345 evaluate to a callable address, not necessarily a function name. */
346
347 static char *dprintf_function;
348
349 /* The channel to use for dynamic printf if the preferred style is to
350 call into the inferior; if a nonempty string, it will be passed to
351 the call as the first argument, with the format string as the
352 second. As with the dprintf function, this can be anything that
353 GDB knows how to evaluate, so in addition to common choices like
354 "stderr", this could be an app-specific expression like
355 "mystreams[curlogger]". */
356
357 static char *dprintf_channel;
358
359 /* True if dprintf commands should continue to operate even if GDB
360 has disconnected. */
361 static int disconnected_dprintf = 1;
362
363 /* A reference-counted struct command_line. This lets multiple
364 breakpoints share a single command list. */
365 struct counted_command_line
366 {
367 /* The reference count. */
368 int refc;
369
370 /* The command list. */
371 struct command_line *commands;
372 };
373
374 struct command_line *
375 breakpoint_commands (struct breakpoint *b)
376 {
377 return b->commands ? b->commands->commands : NULL;
378 }
379
380 /* Flag indicating that a command has proceeded the inferior past the
381 current breakpoint. */
382
383 static int breakpoint_proceeded;
384
385 const char *
386 bpdisp_text (enum bpdisp disp)
387 {
388 /* NOTE: the following values are a part of MI protocol and
389 represent values of 'disp' field returned when inferior stops at
390 a breakpoint. */
391 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
392
393 return bpdisps[(int) disp];
394 }
395
396 /* Prototypes for exported functions. */
397 /* If FALSE, gdb will not use hardware support for watchpoints, even
398 if such is available. */
399 static int can_use_hw_watchpoints;
400
401 static void
402 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's willingness to use "
408 "watchpoint hardware is %s.\n"),
409 value);
410 }
411
412 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
413 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
414 for unrecognized breakpoint locations.
415 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
416 static enum auto_boolean pending_break_support;
417 static void
418 show_pending_break_support (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's behavior regarding "
424 "pending breakpoints is %s.\n"),
425 value);
426 }
427
428 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
429 set with "break" but falling in read-only memory.
430 If 0, gdb will warn about such breakpoints, but won't automatically
431 use hardware breakpoints. */
432 static int automatic_hardware_breakpoints;
433 static void
434 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Automatic usage of hardware breakpoints is %s.\n"),
440 value);
441 }
442
443 /* If on, GDB keeps breakpoints inserted even if the inferior is
444 stopped, and immediately inserts any new breakpoints as soon as
445 they're created. If off (default), GDB keeps breakpoints off of
446 the target as long as possible. That is, it delays inserting
447 breakpoints until the next resume, and removes them again when the
448 target fully stops. This is a bit safer in case GDB crashes while
449 processing user input. */
450 static int always_inserted_mode = 0;
451
452 static void
453 show_always_inserted_mode (struct ui_file *file, int from_tty,
454 struct cmd_list_element *c, const char *value)
455 {
456 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
457 value);
458 }
459
460 /* See breakpoint.h. */
461
462 int
463 breakpoints_should_be_inserted_now (void)
464 {
465 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
466 {
467 /* If breakpoints are global, they should be inserted even if no
468 thread under gdb's control is running, or even if there are
469 no threads under GDB's control yet. */
470 return 1;
471 }
472 else if (target_has_execution)
473 {
474 struct thread_info *tp;
475
476 if (always_inserted_mode)
477 {
478 /* The user wants breakpoints inserted even if all threads
479 are stopped. */
480 return 1;
481 }
482
483 if (threads_are_executing ())
484 return 1;
485
486 /* Don't remove breakpoints yet if, even though all threads are
487 stopped, we still have events to process. */
488 ALL_NON_EXITED_THREADS (tp)
489 if (tp->resumed
490 && tp->suspend.waitstatus_pending_p)
491 return 1;
492 }
493 return 0;
494 }
495
496 static const char condition_evaluation_both[] = "host or target";
497
498 /* Modes for breakpoint condition evaluation. */
499 static const char condition_evaluation_auto[] = "auto";
500 static const char condition_evaluation_host[] = "host";
501 static const char condition_evaluation_target[] = "target";
502 static const char *const condition_evaluation_enums[] = {
503 condition_evaluation_auto,
504 condition_evaluation_host,
505 condition_evaluation_target,
506 NULL
507 };
508
509 /* Global that holds the current mode for breakpoint condition evaluation. */
510 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
511
512 /* Global that we use to display information to the user (gets its value from
513 condition_evaluation_mode_1. */
514 static const char *condition_evaluation_mode = condition_evaluation_auto;
515
516 /* Translate a condition evaluation mode MODE into either "host"
517 or "target". This is used mostly to translate from "auto" to the
518 real setting that is being used. It returns the translated
519 evaluation mode. */
520
521 static const char *
522 translate_condition_evaluation_mode (const char *mode)
523 {
524 if (mode == condition_evaluation_auto)
525 {
526 if (target_supports_evaluation_of_breakpoint_conditions ())
527 return condition_evaluation_target;
528 else
529 return condition_evaluation_host;
530 }
531 else
532 return mode;
533 }
534
535 /* Discovers what condition_evaluation_auto translates to. */
536
537 static const char *
538 breakpoint_condition_evaluation_mode (void)
539 {
540 return translate_condition_evaluation_mode (condition_evaluation_mode);
541 }
542
543 /* Return true if GDB should evaluate breakpoint conditions or false
544 otherwise. */
545
546 static int
547 gdb_evaluates_breakpoint_condition_p (void)
548 {
549 const char *mode = breakpoint_condition_evaluation_mode ();
550
551 return (mode == condition_evaluation_host);
552 }
553
554 void _initialize_breakpoint (void);
555
556 /* Are we executing breakpoint commands? */
557 static int executing_breakpoint_commands;
558
559 /* Are overlay event breakpoints enabled? */
560 static int overlay_events_enabled;
561
562 /* See description in breakpoint.h. */
563 int target_exact_watchpoints = 0;
564
565 /* Walk the following statement or block through all breakpoints.
566 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
567 current breakpoint. */
568
569 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
570
571 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
572 for (B = breakpoint_chain; \
573 B ? (TMP=B->next, 1): 0; \
574 B = TMP)
575
576 /* Similar iterator for the low-level breakpoints. SAFE variant is
577 not provided so update_global_location_list must not be called
578 while executing the block of ALL_BP_LOCATIONS. */
579
580 #define ALL_BP_LOCATIONS(B,BP_TMP) \
581 for (BP_TMP = bp_locations; \
582 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
583 BP_TMP++)
584
585 /* Iterates through locations with address ADDRESS for the currently selected
586 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
587 to where the loop should start from.
588 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
589 appropriate location to start with. */
590
591 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
592 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
593 BP_LOCP_TMP = BP_LOCP_START; \
594 BP_LOCP_START \
595 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
596 && (*BP_LOCP_TMP)->address == ADDRESS); \
597 BP_LOCP_TMP++)
598
599 /* Iterator for tracepoints only. */
600
601 #define ALL_TRACEPOINTS(B) \
602 for (B = breakpoint_chain; B; B = B->next) \
603 if (is_tracepoint (B))
604
605 /* Chains of all breakpoints defined. */
606
607 struct breakpoint *breakpoint_chain;
608
609 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
610
611 static struct bp_location **bp_locations;
612
613 /* Number of elements of BP_LOCATIONS. */
614
615 static unsigned bp_locations_count;
616
617 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
618 ADDRESS for the current elements of BP_LOCATIONS which get a valid
619 result from bp_location_has_shadow. You can use it for roughly
620 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
621 an address you need to read. */
622
623 static CORE_ADDR bp_locations_placed_address_before_address_max;
624
625 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
626 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
627 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
628 You can use it for roughly limiting the subrange of BP_LOCATIONS to
629 scan for shadow bytes for an address you need to read. */
630
631 static CORE_ADDR bp_locations_shadow_len_after_address_max;
632
633 /* The locations that no longer correspond to any breakpoint, unlinked
634 from the bp_locations array, but for which a hit may still be
635 reported by a target. */
636 VEC(bp_location_p) *moribund_locations = NULL;
637
638 /* Number of last breakpoint made. */
639
640 static int breakpoint_count;
641
642 /* The value of `breakpoint_count' before the last command that
643 created breakpoints. If the last (break-like) command created more
644 than one breakpoint, then the difference between BREAKPOINT_COUNT
645 and PREV_BREAKPOINT_COUNT is more than one. */
646 static int prev_breakpoint_count;
647
648 /* Number of last tracepoint made. */
649
650 static int tracepoint_count;
651
652 static struct cmd_list_element *breakpoint_set_cmdlist;
653 static struct cmd_list_element *breakpoint_show_cmdlist;
654 struct cmd_list_element *save_cmdlist;
655
656 /* See declaration at breakpoint.h. */
657
658 struct breakpoint *
659 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
660 void *user_data)
661 {
662 struct breakpoint *b = NULL;
663
664 ALL_BREAKPOINTS (b)
665 {
666 if (func (b, user_data) != 0)
667 break;
668 }
669
670 return b;
671 }
672
673 /* Return whether a breakpoint is an active enabled breakpoint. */
674 static int
675 breakpoint_enabled (struct breakpoint *b)
676 {
677 return (b->enable_state == bp_enabled);
678 }
679
680 /* Set breakpoint count to NUM. */
681
682 static void
683 set_breakpoint_count (int num)
684 {
685 prev_breakpoint_count = breakpoint_count;
686 breakpoint_count = num;
687 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
688 }
689
690 /* Used by `start_rbreak_breakpoints' below, to record the current
691 breakpoint count before "rbreak" creates any breakpoint. */
692 static int rbreak_start_breakpoint_count;
693
694 /* Called at the start an "rbreak" command to record the first
695 breakpoint made. */
696
697 void
698 start_rbreak_breakpoints (void)
699 {
700 rbreak_start_breakpoint_count = breakpoint_count;
701 }
702
703 /* Called at the end of an "rbreak" command to record the last
704 breakpoint made. */
705
706 void
707 end_rbreak_breakpoints (void)
708 {
709 prev_breakpoint_count = rbreak_start_breakpoint_count;
710 }
711
712 /* Used in run_command to zero the hit count when a new run starts. */
713
714 void
715 clear_breakpoint_hit_counts (void)
716 {
717 struct breakpoint *b;
718
719 ALL_BREAKPOINTS (b)
720 b->hit_count = 0;
721 }
722
723 /* Allocate a new counted_command_line with reference count of 1.
724 The new structure owns COMMANDS. */
725
726 static struct counted_command_line *
727 alloc_counted_command_line (struct command_line *commands)
728 {
729 struct counted_command_line *result = XNEW (struct counted_command_line);
730
731 result->refc = 1;
732 result->commands = commands;
733
734 return result;
735 }
736
737 /* Increment reference count. This does nothing if CMD is NULL. */
738
739 static void
740 incref_counted_command_line (struct counted_command_line *cmd)
741 {
742 if (cmd)
743 ++cmd->refc;
744 }
745
746 /* Decrement reference count. If the reference count reaches 0,
747 destroy the counted_command_line. Sets *CMDP to NULL. This does
748 nothing if *CMDP is NULL. */
749
750 static void
751 decref_counted_command_line (struct counted_command_line **cmdp)
752 {
753 if (*cmdp)
754 {
755 if (--(*cmdp)->refc == 0)
756 {
757 free_command_lines (&(*cmdp)->commands);
758 xfree (*cmdp);
759 }
760 *cmdp = NULL;
761 }
762 }
763
764 /* A cleanup function that calls decref_counted_command_line. */
765
766 static void
767 do_cleanup_counted_command_line (void *arg)
768 {
769 decref_counted_command_line ((struct counted_command_line **) arg);
770 }
771
772 /* Create a cleanup that calls decref_counted_command_line on the
773 argument. */
774
775 static struct cleanup *
776 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
777 {
778 return make_cleanup (do_cleanup_counted_command_line, cmdp);
779 }
780
781 \f
782 /* Return the breakpoint with the specified number, or NULL
783 if the number does not refer to an existing breakpoint. */
784
785 struct breakpoint *
786 get_breakpoint (int num)
787 {
788 struct breakpoint *b;
789
790 ALL_BREAKPOINTS (b)
791 if (b->number == num)
792 return b;
793
794 return NULL;
795 }
796
797 \f
798
799 /* Mark locations as "conditions have changed" in case the target supports
800 evaluating conditions on its side. */
801
802 static void
803 mark_breakpoint_modified (struct breakpoint *b)
804 {
805 struct bp_location *loc;
806
807 /* This is only meaningful if the target is
808 evaluating conditions and if the user has
809 opted for condition evaluation on the target's
810 side. */
811 if (gdb_evaluates_breakpoint_condition_p ()
812 || !target_supports_evaluation_of_breakpoint_conditions ())
813 return;
814
815 if (!is_breakpoint (b))
816 return;
817
818 for (loc = b->loc; loc; loc = loc->next)
819 loc->condition_changed = condition_modified;
820 }
821
822 /* Mark location as "conditions have changed" in case the target supports
823 evaluating conditions on its side. */
824
825 static void
826 mark_breakpoint_location_modified (struct bp_location *loc)
827 {
828 /* This is only meaningful if the target is
829 evaluating conditions and if the user has
830 opted for condition evaluation on the target's
831 side. */
832 if (gdb_evaluates_breakpoint_condition_p ()
833 || !target_supports_evaluation_of_breakpoint_conditions ())
834
835 return;
836
837 if (!is_breakpoint (loc->owner))
838 return;
839
840 loc->condition_changed = condition_modified;
841 }
842
843 /* Sets the condition-evaluation mode using the static global
844 condition_evaluation_mode. */
845
846 static void
847 set_condition_evaluation_mode (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 const char *old_mode, *new_mode;
851
852 if ((condition_evaluation_mode_1 == condition_evaluation_target)
853 && !target_supports_evaluation_of_breakpoint_conditions ())
854 {
855 condition_evaluation_mode_1 = condition_evaluation_mode;
856 warning (_("Target does not support breakpoint condition evaluation.\n"
857 "Using host evaluation mode instead."));
858 return;
859 }
860
861 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
862 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
863
864 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
865 settings was "auto". */
866 condition_evaluation_mode = condition_evaluation_mode_1;
867
868 /* Only update the mode if the user picked a different one. */
869 if (new_mode != old_mode)
870 {
871 struct bp_location *loc, **loc_tmp;
872 /* If the user switched to a different evaluation mode, we
873 need to synch the changes with the target as follows:
874
875 "host" -> "target": Send all (valid) conditions to the target.
876 "target" -> "host": Remove all the conditions from the target.
877 */
878
879 if (new_mode == condition_evaluation_target)
880 {
881 /* Mark everything modified and synch conditions with the
882 target. */
883 ALL_BP_LOCATIONS (loc, loc_tmp)
884 mark_breakpoint_location_modified (loc);
885 }
886 else
887 {
888 /* Manually mark non-duplicate locations to synch conditions
889 with the target. We do this to remove all the conditions the
890 target knows about. */
891 ALL_BP_LOCATIONS (loc, loc_tmp)
892 if (is_breakpoint (loc->owner) && loc->inserted)
893 loc->needs_update = 1;
894 }
895
896 /* Do the update. */
897 update_global_location_list (UGLL_MAY_INSERT);
898 }
899
900 return;
901 }
902
903 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
904 what "auto" is translating to. */
905
906 static void
907 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c, const char *value)
909 {
910 if (condition_evaluation_mode == condition_evaluation_auto)
911 fprintf_filtered (file,
912 _("Breakpoint condition evaluation "
913 "mode is %s (currently %s).\n"),
914 value,
915 breakpoint_condition_evaluation_mode ());
916 else
917 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
918 value);
919 }
920
921 /* A comparison function for bp_location AP and BP that is used by
922 bsearch. This comparison function only cares about addresses, unlike
923 the more general bp_locations_compare function. */
924
925 static int
926 bp_locations_compare_addrs (const void *ap, const void *bp)
927 {
928 const struct bp_location *a = *(const struct bp_location **) ap;
929 const struct bp_location *b = *(const struct bp_location **) bp;
930
931 if (a->address == b->address)
932 return 0;
933 else
934 return ((a->address > b->address) - (a->address < b->address));
935 }
936
937 /* Helper function to skip all bp_locations with addresses
938 less than ADDRESS. It returns the first bp_location that
939 is greater than or equal to ADDRESS. If none is found, just
940 return NULL. */
941
942 static struct bp_location **
943 get_first_locp_gte_addr (CORE_ADDR address)
944 {
945 struct bp_location dummy_loc;
946 struct bp_location *dummy_locp = &dummy_loc;
947 struct bp_location **locp_found = NULL;
948
949 /* Initialize the dummy location's address field. */
950 dummy_loc.address = address;
951
952 /* Find a close match to the first location at ADDRESS. */
953 locp_found = ((struct bp_location **)
954 bsearch (&dummy_locp, bp_locations, bp_locations_count,
955 sizeof (struct bp_location **),
956 bp_locations_compare_addrs));
957
958 /* Nothing was found, nothing left to do. */
959 if (locp_found == NULL)
960 return NULL;
961
962 /* We may have found a location that is at ADDRESS but is not the first in the
963 location's list. Go backwards (if possible) and locate the first one. */
964 while ((locp_found - 1) >= bp_locations
965 && (*(locp_found - 1))->address == address)
966 locp_found--;
967
968 return locp_found;
969 }
970
971 void
972 set_breakpoint_condition (struct breakpoint *b, const char *exp,
973 int from_tty)
974 {
975 xfree (b->cond_string);
976 b->cond_string = NULL;
977
978 if (is_watchpoint (b))
979 {
980 struct watchpoint *w = (struct watchpoint *) b;
981
982 w->cond_exp.reset ();
983 }
984 else
985 {
986 struct bp_location *loc;
987
988 for (loc = b->loc; loc; loc = loc->next)
989 {
990 loc->cond.reset ();
991
992 /* No need to free the condition agent expression
993 bytecode (if we have one). We will handle this
994 when we go through update_global_location_list. */
995 }
996 }
997
998 if (*exp == 0)
999 {
1000 if (from_tty)
1001 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1002 }
1003 else
1004 {
1005 const char *arg = exp;
1006
1007 /* I don't know if it matters whether this is the string the user
1008 typed in or the decompiled expression. */
1009 b->cond_string = xstrdup (arg);
1010 b->condition_not_parsed = 0;
1011
1012 if (is_watchpoint (b))
1013 {
1014 struct watchpoint *w = (struct watchpoint *) b;
1015
1016 innermost_block = NULL;
1017 arg = exp;
1018 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1019 if (*arg)
1020 error (_("Junk at end of expression"));
1021 w->cond_exp_valid_block = innermost_block;
1022 }
1023 else
1024 {
1025 struct bp_location *loc;
1026
1027 for (loc = b->loc; loc; loc = loc->next)
1028 {
1029 arg = exp;
1030 loc->cond =
1031 parse_exp_1 (&arg, loc->address,
1032 block_for_pc (loc->address), 0);
1033 if (*arg)
1034 error (_("Junk at end of expression"));
1035 }
1036 }
1037 }
1038 mark_breakpoint_modified (b);
1039
1040 observer_notify_breakpoint_modified (b);
1041 }
1042
1043 /* Completion for the "condition" command. */
1044
1045 static VEC (char_ptr) *
1046 condition_completer (struct cmd_list_element *cmd,
1047 const char *text, const char *word)
1048 {
1049 const char *space;
1050
1051 text = skip_spaces_const (text);
1052 space = skip_to_space_const (text);
1053 if (*space == '\0')
1054 {
1055 int len;
1056 struct breakpoint *b;
1057 VEC (char_ptr) *result = NULL;
1058
1059 if (text[0] == '$')
1060 {
1061 /* We don't support completion of history indices. */
1062 if (isdigit (text[1]))
1063 return NULL;
1064 return complete_internalvar (&text[1]);
1065 }
1066
1067 /* We're completing the breakpoint number. */
1068 len = strlen (text);
1069
1070 ALL_BREAKPOINTS (b)
1071 {
1072 char number[50];
1073
1074 xsnprintf (number, sizeof (number), "%d", b->number);
1075
1076 if (strncmp (number, text, len) == 0)
1077 VEC_safe_push (char_ptr, result, xstrdup (number));
1078 }
1079
1080 return result;
1081 }
1082
1083 /* We're completing the expression part. */
1084 text = skip_spaces_const (space);
1085 return expression_completer (cmd, text, word);
1086 }
1087
1088 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1089
1090 static void
1091 condition_command (char *arg, int from_tty)
1092 {
1093 struct breakpoint *b;
1094 char *p;
1095 int bnum;
1096
1097 if (arg == 0)
1098 error_no_arg (_("breakpoint number"));
1099
1100 p = arg;
1101 bnum = get_number (&p);
1102 if (bnum == 0)
1103 error (_("Bad breakpoint argument: '%s'"), arg);
1104
1105 ALL_BREAKPOINTS (b)
1106 if (b->number == bnum)
1107 {
1108 /* Check if this breakpoint has a "stop" method implemented in an
1109 extension language. This method and conditions entered into GDB
1110 from the CLI are mutually exclusive. */
1111 const struct extension_language_defn *extlang
1112 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1113
1114 if (extlang != NULL)
1115 {
1116 error (_("Only one stop condition allowed. There is currently"
1117 " a %s stop condition defined for this breakpoint."),
1118 ext_lang_capitalized_name (extlang));
1119 }
1120 set_breakpoint_condition (b, p, from_tty);
1121
1122 if (is_breakpoint (b))
1123 update_global_location_list (UGLL_MAY_INSERT);
1124
1125 return;
1126 }
1127
1128 error (_("No breakpoint number %d."), bnum);
1129 }
1130
1131 /* Check that COMMAND do not contain commands that are suitable
1132 only for tracepoints and not suitable for ordinary breakpoints.
1133 Throw if any such commands is found. */
1134
1135 static void
1136 check_no_tracepoint_commands (struct command_line *commands)
1137 {
1138 struct command_line *c;
1139
1140 for (c = commands; c; c = c->next)
1141 {
1142 int i;
1143
1144 if (c->control_type == while_stepping_control)
1145 error (_("The 'while-stepping' command can "
1146 "only be used for tracepoints"));
1147
1148 for (i = 0; i < c->body_count; ++i)
1149 check_no_tracepoint_commands ((c->body_list)[i]);
1150
1151 /* Not that command parsing removes leading whitespace and comment
1152 lines and also empty lines. So, we only need to check for
1153 command directly. */
1154 if (strstr (c->line, "collect ") == c->line)
1155 error (_("The 'collect' command can only be used for tracepoints"));
1156
1157 if (strstr (c->line, "teval ") == c->line)
1158 error (_("The 'teval' command can only be used for tracepoints"));
1159 }
1160 }
1161
1162 struct longjmp_breakpoint : public breakpoint
1163 {
1164 ~longjmp_breakpoint () override;
1165 };
1166
1167 /* Encapsulate tests for different types of tracepoints. */
1168
1169 static bool
1170 is_tracepoint_type (bptype type)
1171 {
1172 return (type == bp_tracepoint
1173 || type == bp_fast_tracepoint
1174 || type == bp_static_tracepoint);
1175 }
1176
1177 static bool
1178 is_longjmp_type (bptype type)
1179 {
1180 return type == bp_longjmp || type == bp_exception;
1181 }
1182
1183 int
1184 is_tracepoint (const struct breakpoint *b)
1185 {
1186 return is_tracepoint_type (b->type);
1187 }
1188
1189 /* Factory function to create an appropriate instance of breakpoint given
1190 TYPE. */
1191
1192 static std::unique_ptr<breakpoint>
1193 new_breakpoint_from_type (bptype type)
1194 {
1195 breakpoint *b;
1196
1197 if (is_tracepoint_type (type))
1198 b = new tracepoint ();
1199 else if (is_longjmp_type (type))
1200 b = new longjmp_breakpoint ();
1201 else
1202 b = new breakpoint ();
1203
1204 return std::unique_ptr<breakpoint> (b);
1205 }
1206
1207 /* A helper function that validates that COMMANDS are valid for a
1208 breakpoint. This function will throw an exception if a problem is
1209 found. */
1210
1211 static void
1212 validate_commands_for_breakpoint (struct breakpoint *b,
1213 struct command_line *commands)
1214 {
1215 if (is_tracepoint (b))
1216 {
1217 struct tracepoint *t = (struct tracepoint *) b;
1218 struct command_line *c;
1219 struct command_line *while_stepping = 0;
1220
1221 /* Reset the while-stepping step count. The previous commands
1222 might have included a while-stepping action, while the new
1223 ones might not. */
1224 t->step_count = 0;
1225
1226 /* We need to verify that each top-level element of commands is
1227 valid for tracepoints, that there's at most one
1228 while-stepping element, and that the while-stepping's body
1229 has valid tracing commands excluding nested while-stepping.
1230 We also need to validate the tracepoint action line in the
1231 context of the tracepoint --- validate_actionline actually
1232 has side effects, like setting the tracepoint's
1233 while-stepping STEP_COUNT, in addition to checking if the
1234 collect/teval actions parse and make sense in the
1235 tracepoint's context. */
1236 for (c = commands; c; c = c->next)
1237 {
1238 if (c->control_type == while_stepping_control)
1239 {
1240 if (b->type == bp_fast_tracepoint)
1241 error (_("The 'while-stepping' command "
1242 "cannot be used for fast tracepoint"));
1243 else if (b->type == bp_static_tracepoint)
1244 error (_("The 'while-stepping' command "
1245 "cannot be used for static tracepoint"));
1246
1247 if (while_stepping)
1248 error (_("The 'while-stepping' command "
1249 "can be used only once"));
1250 else
1251 while_stepping = c;
1252 }
1253
1254 validate_actionline (c->line, b);
1255 }
1256 if (while_stepping)
1257 {
1258 struct command_line *c2;
1259
1260 gdb_assert (while_stepping->body_count == 1);
1261 c2 = while_stepping->body_list[0];
1262 for (; c2; c2 = c2->next)
1263 {
1264 if (c2->control_type == while_stepping_control)
1265 error (_("The 'while-stepping' command cannot be nested"));
1266 }
1267 }
1268 }
1269 else
1270 {
1271 check_no_tracepoint_commands (commands);
1272 }
1273 }
1274
1275 /* Return a vector of all the static tracepoints set at ADDR. The
1276 caller is responsible for releasing the vector. */
1277
1278 VEC(breakpoint_p) *
1279 static_tracepoints_here (CORE_ADDR addr)
1280 {
1281 struct breakpoint *b;
1282 VEC(breakpoint_p) *found = 0;
1283 struct bp_location *loc;
1284
1285 ALL_BREAKPOINTS (b)
1286 if (b->type == bp_static_tracepoint)
1287 {
1288 for (loc = b->loc; loc; loc = loc->next)
1289 if (loc->address == addr)
1290 VEC_safe_push(breakpoint_p, found, b);
1291 }
1292
1293 return found;
1294 }
1295
1296 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1297 validate that only allowed commands are included. */
1298
1299 void
1300 breakpoint_set_commands (struct breakpoint *b,
1301 command_line_up &&commands)
1302 {
1303 validate_commands_for_breakpoint (b, commands.get ());
1304
1305 decref_counted_command_line (&b->commands);
1306 b->commands = alloc_counted_command_line (commands.release ());
1307 observer_notify_breakpoint_modified (b);
1308 }
1309
1310 /* Set the internal `silent' flag on the breakpoint. Note that this
1311 is not the same as the "silent" that may appear in the breakpoint's
1312 commands. */
1313
1314 void
1315 breakpoint_set_silent (struct breakpoint *b, int silent)
1316 {
1317 int old_silent = b->silent;
1318
1319 b->silent = silent;
1320 if (old_silent != silent)
1321 observer_notify_breakpoint_modified (b);
1322 }
1323
1324 /* Set the thread for this breakpoint. If THREAD is -1, make the
1325 breakpoint work for any thread. */
1326
1327 void
1328 breakpoint_set_thread (struct breakpoint *b, int thread)
1329 {
1330 int old_thread = b->thread;
1331
1332 b->thread = thread;
1333 if (old_thread != thread)
1334 observer_notify_breakpoint_modified (b);
1335 }
1336
1337 /* Set the task for this breakpoint. If TASK is 0, make the
1338 breakpoint work for any task. */
1339
1340 void
1341 breakpoint_set_task (struct breakpoint *b, int task)
1342 {
1343 int old_task = b->task;
1344
1345 b->task = task;
1346 if (old_task != task)
1347 observer_notify_breakpoint_modified (b);
1348 }
1349
1350 void
1351 check_tracepoint_command (char *line, void *closure)
1352 {
1353 struct breakpoint *b = (struct breakpoint *) closure;
1354
1355 validate_actionline (line, b);
1356 }
1357
1358 /* A structure used to pass information through
1359 map_breakpoint_numbers. */
1360
1361 struct commands_info
1362 {
1363 /* True if the command was typed at a tty. */
1364 int from_tty;
1365
1366 /* The breakpoint range spec. */
1367 const char *arg;
1368
1369 /* Non-NULL if the body of the commands are being read from this
1370 already-parsed command. */
1371 struct command_line *control;
1372
1373 /* The command lines read from the user, or NULL if they have not
1374 yet been read. */
1375 struct counted_command_line *cmd;
1376 };
1377
1378 /* A callback for map_breakpoint_numbers that sets the commands for
1379 commands_command. */
1380
1381 static void
1382 do_map_commands_command (struct breakpoint *b, void *data)
1383 {
1384 struct commands_info *info = (struct commands_info *) data;
1385
1386 if (info->cmd == NULL)
1387 {
1388 command_line_up l;
1389
1390 if (info->control != NULL)
1391 l = copy_command_lines (info->control->body_list[0]);
1392 else
1393 {
1394 struct cleanup *old_chain;
1395 char *str;
1396
1397 str = xstrprintf (_("Type commands for breakpoint(s) "
1398 "%s, one per line."),
1399 info->arg);
1400
1401 old_chain = make_cleanup (xfree, str);
1402
1403 l = read_command_lines (str,
1404 info->from_tty, 1,
1405 (is_tracepoint (b)
1406 ? check_tracepoint_command : 0),
1407 b);
1408
1409 do_cleanups (old_chain);
1410 }
1411
1412 info->cmd = alloc_counted_command_line (l.release ());
1413 }
1414
1415 /* If a breakpoint was on the list more than once, we don't need to
1416 do anything. */
1417 if (b->commands != info->cmd)
1418 {
1419 validate_commands_for_breakpoint (b, info->cmd->commands);
1420 incref_counted_command_line (info->cmd);
1421 decref_counted_command_line (&b->commands);
1422 b->commands = info->cmd;
1423 observer_notify_breakpoint_modified (b);
1424 }
1425 }
1426
1427 static void
1428 commands_command_1 (const char *arg, int from_tty,
1429 struct command_line *control)
1430 {
1431 struct cleanup *cleanups;
1432 struct commands_info info;
1433
1434 info.from_tty = from_tty;
1435 info.control = control;
1436 info.cmd = NULL;
1437 /* If we read command lines from the user, then `info' will hold an
1438 extra reference to the commands that we must clean up. */
1439 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1440
1441 std::string new_arg;
1442
1443 if (arg == NULL || !*arg)
1444 {
1445 if (breakpoint_count - prev_breakpoint_count > 1)
1446 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1447 breakpoint_count);
1448 else if (breakpoint_count > 0)
1449 new_arg = string_printf ("%d", breakpoint_count);
1450 }
1451 else
1452 new_arg = arg;
1453
1454 info.arg = new_arg.c_str ();
1455
1456 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1457
1458 if (info.cmd == NULL)
1459 error (_("No breakpoints specified."));
1460
1461 do_cleanups (cleanups);
1462 }
1463
1464 static void
1465 commands_command (char *arg, int from_tty)
1466 {
1467 commands_command_1 (arg, from_tty, NULL);
1468 }
1469
1470 /* Like commands_command, but instead of reading the commands from
1471 input stream, takes them from an already parsed command structure.
1472
1473 This is used by cli-script.c to DTRT with breakpoint commands
1474 that are part of if and while bodies. */
1475 enum command_control_type
1476 commands_from_control_command (const char *arg, struct command_line *cmd)
1477 {
1478 commands_command_1 (arg, 0, cmd);
1479 return simple_control;
1480 }
1481
1482 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1483
1484 static int
1485 bp_location_has_shadow (struct bp_location *bl)
1486 {
1487 if (bl->loc_type != bp_loc_software_breakpoint)
1488 return 0;
1489 if (!bl->inserted)
1490 return 0;
1491 if (bl->target_info.shadow_len == 0)
1492 /* BL isn't valid, or doesn't shadow memory. */
1493 return 0;
1494 return 1;
1495 }
1496
1497 /* Update BUF, which is LEN bytes read from the target address
1498 MEMADDR, by replacing a memory breakpoint with its shadowed
1499 contents.
1500
1501 If READBUF is not NULL, this buffer must not overlap with the of
1502 the breakpoint location's shadow_contents buffer. Otherwise, a
1503 failed assertion internal error will be raised. */
1504
1505 static void
1506 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1507 const gdb_byte *writebuf_org,
1508 ULONGEST memaddr, LONGEST len,
1509 struct bp_target_info *target_info,
1510 struct gdbarch *gdbarch)
1511 {
1512 /* Now do full processing of the found relevant range of elements. */
1513 CORE_ADDR bp_addr = 0;
1514 int bp_size = 0;
1515 int bptoffset = 0;
1516
1517 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1518 current_program_space->aspace, 0))
1519 {
1520 /* The breakpoint is inserted in a different address space. */
1521 return;
1522 }
1523
1524 /* Addresses and length of the part of the breakpoint that
1525 we need to copy. */
1526 bp_addr = target_info->placed_address;
1527 bp_size = target_info->shadow_len;
1528
1529 if (bp_addr + bp_size <= memaddr)
1530 {
1531 /* The breakpoint is entirely before the chunk of memory we are
1532 reading. */
1533 return;
1534 }
1535
1536 if (bp_addr >= memaddr + len)
1537 {
1538 /* The breakpoint is entirely after the chunk of memory we are
1539 reading. */
1540 return;
1541 }
1542
1543 /* Offset within shadow_contents. */
1544 if (bp_addr < memaddr)
1545 {
1546 /* Only copy the second part of the breakpoint. */
1547 bp_size -= memaddr - bp_addr;
1548 bptoffset = memaddr - bp_addr;
1549 bp_addr = memaddr;
1550 }
1551
1552 if (bp_addr + bp_size > memaddr + len)
1553 {
1554 /* Only copy the first part of the breakpoint. */
1555 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1556 }
1557
1558 if (readbuf != NULL)
1559 {
1560 /* Verify that the readbuf buffer does not overlap with the
1561 shadow_contents buffer. */
1562 gdb_assert (target_info->shadow_contents >= readbuf + len
1563 || readbuf >= (target_info->shadow_contents
1564 + target_info->shadow_len));
1565
1566 /* Update the read buffer with this inserted breakpoint's
1567 shadow. */
1568 memcpy (readbuf + bp_addr - memaddr,
1569 target_info->shadow_contents + bptoffset, bp_size);
1570 }
1571 else
1572 {
1573 const unsigned char *bp;
1574 CORE_ADDR addr = target_info->reqstd_address;
1575 int placed_size;
1576
1577 /* Update the shadow with what we want to write to memory. */
1578 memcpy (target_info->shadow_contents + bptoffset,
1579 writebuf_org + bp_addr - memaddr, bp_size);
1580
1581 /* Determine appropriate breakpoint contents and size for this
1582 address. */
1583 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1584
1585 /* Update the final write buffer with this inserted
1586 breakpoint's INSN. */
1587 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1588 }
1589 }
1590
1591 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1592 by replacing any memory breakpoints with their shadowed contents.
1593
1594 If READBUF is not NULL, this buffer must not overlap with any of
1595 the breakpoint location's shadow_contents buffers. Otherwise,
1596 a failed assertion internal error will be raised.
1597
1598 The range of shadowed area by each bp_location is:
1599 bl->address - bp_locations_placed_address_before_address_max
1600 up to bl->address + bp_locations_shadow_len_after_address_max
1601 The range we were requested to resolve shadows for is:
1602 memaddr ... memaddr + len
1603 Thus the safe cutoff boundaries for performance optimization are
1604 memaddr + len <= (bl->address
1605 - bp_locations_placed_address_before_address_max)
1606 and:
1607 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1608
1609 void
1610 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1611 const gdb_byte *writebuf_org,
1612 ULONGEST memaddr, LONGEST len)
1613 {
1614 /* Left boundary, right boundary and median element of our binary
1615 search. */
1616 unsigned bc_l, bc_r, bc;
1617
1618 /* Find BC_L which is a leftmost element which may affect BUF
1619 content. It is safe to report lower value but a failure to
1620 report higher one. */
1621
1622 bc_l = 0;
1623 bc_r = bp_locations_count;
1624 while (bc_l + 1 < bc_r)
1625 {
1626 struct bp_location *bl;
1627
1628 bc = (bc_l + bc_r) / 2;
1629 bl = bp_locations[bc];
1630
1631 /* Check first BL->ADDRESS will not overflow due to the added
1632 constant. Then advance the left boundary only if we are sure
1633 the BC element can in no way affect the BUF content (MEMADDR
1634 to MEMADDR + LEN range).
1635
1636 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1637 offset so that we cannot miss a breakpoint with its shadow
1638 range tail still reaching MEMADDR. */
1639
1640 if ((bl->address + bp_locations_shadow_len_after_address_max
1641 >= bl->address)
1642 && (bl->address + bp_locations_shadow_len_after_address_max
1643 <= memaddr))
1644 bc_l = bc;
1645 else
1646 bc_r = bc;
1647 }
1648
1649 /* Due to the binary search above, we need to make sure we pick the
1650 first location that's at BC_L's address. E.g., if there are
1651 multiple locations at the same address, BC_L may end up pointing
1652 at a duplicate location, and miss the "master"/"inserted"
1653 location. Say, given locations L1, L2 and L3 at addresses A and
1654 B:
1655
1656 L1@A, L2@A, L3@B, ...
1657
1658 BC_L could end up pointing at location L2, while the "master"
1659 location could be L1. Since the `loc->inserted' flag is only set
1660 on "master" locations, we'd forget to restore the shadow of L1
1661 and L2. */
1662 while (bc_l > 0
1663 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1664 bc_l--;
1665
1666 /* Now do full processing of the found relevant range of elements. */
1667
1668 for (bc = bc_l; bc < bp_locations_count; bc++)
1669 {
1670 struct bp_location *bl = bp_locations[bc];
1671
1672 /* bp_location array has BL->OWNER always non-NULL. */
1673 if (bl->owner->type == bp_none)
1674 warning (_("reading through apparently deleted breakpoint #%d?"),
1675 bl->owner->number);
1676
1677 /* Performance optimization: any further element can no longer affect BUF
1678 content. */
1679
1680 if (bl->address >= bp_locations_placed_address_before_address_max
1681 && memaddr + len <= (bl->address
1682 - bp_locations_placed_address_before_address_max))
1683 break;
1684
1685 if (!bp_location_has_shadow (bl))
1686 continue;
1687
1688 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1689 memaddr, len, &bl->target_info, bl->gdbarch);
1690 }
1691 }
1692
1693 \f
1694
1695 /* Return true if BPT is either a software breakpoint or a hardware
1696 breakpoint. */
1697
1698 int
1699 is_breakpoint (const struct breakpoint *bpt)
1700 {
1701 return (bpt->type == bp_breakpoint
1702 || bpt->type == bp_hardware_breakpoint
1703 || bpt->type == bp_dprintf);
1704 }
1705
1706 /* Return true if BPT is of any hardware watchpoint kind. */
1707
1708 static int
1709 is_hardware_watchpoint (const struct breakpoint *bpt)
1710 {
1711 return (bpt->type == bp_hardware_watchpoint
1712 || bpt->type == bp_read_watchpoint
1713 || bpt->type == bp_access_watchpoint);
1714 }
1715
1716 /* Return true if BPT is of any watchpoint kind, hardware or
1717 software. */
1718
1719 int
1720 is_watchpoint (const struct breakpoint *bpt)
1721 {
1722 return (is_hardware_watchpoint (bpt)
1723 || bpt->type == bp_watchpoint);
1724 }
1725
1726 /* Returns true if the current thread and its running state are safe
1727 to evaluate or update watchpoint B. Watchpoints on local
1728 expressions need to be evaluated in the context of the thread that
1729 was current when the watchpoint was created, and, that thread needs
1730 to be stopped to be able to select the correct frame context.
1731 Watchpoints on global expressions can be evaluated on any thread,
1732 and in any state. It is presently left to the target allowing
1733 memory accesses when threads are running. */
1734
1735 static int
1736 watchpoint_in_thread_scope (struct watchpoint *b)
1737 {
1738 return (b->pspace == current_program_space
1739 && (ptid_equal (b->watchpoint_thread, null_ptid)
1740 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1741 && !is_executing (inferior_ptid))));
1742 }
1743
1744 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1745 associated bp_watchpoint_scope breakpoint. */
1746
1747 static void
1748 watchpoint_del_at_next_stop (struct watchpoint *w)
1749 {
1750 if (w->related_breakpoint != w)
1751 {
1752 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1753 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1754 w->related_breakpoint->disposition = disp_del_at_next_stop;
1755 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1756 w->related_breakpoint = w;
1757 }
1758 w->disposition = disp_del_at_next_stop;
1759 }
1760
1761 /* Extract a bitfield value from value VAL using the bit parameters contained in
1762 watchpoint W. */
1763
1764 static struct value *
1765 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1766 {
1767 struct value *bit_val;
1768
1769 if (val == NULL)
1770 return NULL;
1771
1772 bit_val = allocate_value (value_type (val));
1773
1774 unpack_value_bitfield (bit_val,
1775 w->val_bitpos,
1776 w->val_bitsize,
1777 value_contents_for_printing (val),
1778 value_offset (val),
1779 val);
1780
1781 return bit_val;
1782 }
1783
1784 /* Allocate a dummy location and add it to B, which must be a software
1785 watchpoint. This is required because even if a software watchpoint
1786 is not watching any memory, bpstat_stop_status requires a location
1787 to be able to report stops. */
1788
1789 static void
1790 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1791 struct program_space *pspace)
1792 {
1793 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1794
1795 b->loc = allocate_bp_location (b);
1796 b->loc->pspace = pspace;
1797 b->loc->address = -1;
1798 b->loc->length = -1;
1799 }
1800
1801 /* Returns true if B is a software watchpoint that is not watching any
1802 memory (e.g., "watch $pc"). */
1803
1804 static int
1805 is_no_memory_software_watchpoint (struct breakpoint *b)
1806 {
1807 return (b->type == bp_watchpoint
1808 && b->loc != NULL
1809 && b->loc->next == NULL
1810 && b->loc->address == -1
1811 && b->loc->length == -1);
1812 }
1813
1814 /* Assuming that B is a watchpoint:
1815 - Reparse watchpoint expression, if REPARSE is non-zero
1816 - Evaluate expression and store the result in B->val
1817 - Evaluate the condition if there is one, and store the result
1818 in b->loc->cond.
1819 - Update the list of values that must be watched in B->loc.
1820
1821 If the watchpoint disposition is disp_del_at_next_stop, then do
1822 nothing. If this is local watchpoint that is out of scope, delete
1823 it.
1824
1825 Even with `set breakpoint always-inserted on' the watchpoints are
1826 removed + inserted on each stop here. Normal breakpoints must
1827 never be removed because they might be missed by a running thread
1828 when debugging in non-stop mode. On the other hand, hardware
1829 watchpoints (is_hardware_watchpoint; processed here) are specific
1830 to each LWP since they are stored in each LWP's hardware debug
1831 registers. Therefore, such LWP must be stopped first in order to
1832 be able to modify its hardware watchpoints.
1833
1834 Hardware watchpoints must be reset exactly once after being
1835 presented to the user. It cannot be done sooner, because it would
1836 reset the data used to present the watchpoint hit to the user. And
1837 it must not be done later because it could display the same single
1838 watchpoint hit during multiple GDB stops. Note that the latter is
1839 relevant only to the hardware watchpoint types bp_read_watchpoint
1840 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1841 not user-visible - its hit is suppressed if the memory content has
1842 not changed.
1843
1844 The following constraints influence the location where we can reset
1845 hardware watchpoints:
1846
1847 * target_stopped_by_watchpoint and target_stopped_data_address are
1848 called several times when GDB stops.
1849
1850 [linux]
1851 * Multiple hardware watchpoints can be hit at the same time,
1852 causing GDB to stop. GDB only presents one hardware watchpoint
1853 hit at a time as the reason for stopping, and all the other hits
1854 are presented later, one after the other, each time the user
1855 requests the execution to be resumed. Execution is not resumed
1856 for the threads still having pending hit event stored in
1857 LWP_INFO->STATUS. While the watchpoint is already removed from
1858 the inferior on the first stop the thread hit event is kept being
1859 reported from its cached value by linux_nat_stopped_data_address
1860 until the real thread resume happens after the watchpoint gets
1861 presented and thus its LWP_INFO->STATUS gets reset.
1862
1863 Therefore the hardware watchpoint hit can get safely reset on the
1864 watchpoint removal from inferior. */
1865
1866 static void
1867 update_watchpoint (struct watchpoint *b, int reparse)
1868 {
1869 int within_current_scope;
1870 struct frame_id saved_frame_id;
1871 int frame_saved;
1872
1873 /* If this is a local watchpoint, we only want to check if the
1874 watchpoint frame is in scope if the current thread is the thread
1875 that was used to create the watchpoint. */
1876 if (!watchpoint_in_thread_scope (b))
1877 return;
1878
1879 if (b->disposition == disp_del_at_next_stop)
1880 return;
1881
1882 frame_saved = 0;
1883
1884 /* Determine if the watchpoint is within scope. */
1885 if (b->exp_valid_block == NULL)
1886 within_current_scope = 1;
1887 else
1888 {
1889 struct frame_info *fi = get_current_frame ();
1890 struct gdbarch *frame_arch = get_frame_arch (fi);
1891 CORE_ADDR frame_pc = get_frame_pc (fi);
1892
1893 /* If we're at a point where the stack has been destroyed
1894 (e.g. in a function epilogue), unwinding may not work
1895 properly. Do not attempt to recreate locations at this
1896 point. See similar comments in watchpoint_check. */
1897 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1898 return;
1899
1900 /* Save the current frame's ID so we can restore it after
1901 evaluating the watchpoint expression on its own frame. */
1902 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1903 took a frame parameter, so that we didn't have to change the
1904 selected frame. */
1905 frame_saved = 1;
1906 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1907
1908 fi = frame_find_by_id (b->watchpoint_frame);
1909 within_current_scope = (fi != NULL);
1910 if (within_current_scope)
1911 select_frame (fi);
1912 }
1913
1914 /* We don't free locations. They are stored in the bp_location array
1915 and update_global_location_list will eventually delete them and
1916 remove breakpoints if needed. */
1917 b->loc = NULL;
1918
1919 if (within_current_scope && reparse)
1920 {
1921 const char *s;
1922
1923 b->exp.reset ();
1924 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1925 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1926 /* If the meaning of expression itself changed, the old value is
1927 no longer relevant. We don't want to report a watchpoint hit
1928 to the user when the old value and the new value may actually
1929 be completely different objects. */
1930 value_free (b->val);
1931 b->val = NULL;
1932 b->val_valid = 0;
1933
1934 /* Note that unlike with breakpoints, the watchpoint's condition
1935 expression is stored in the breakpoint object, not in the
1936 locations (re)created below. */
1937 if (b->cond_string != NULL)
1938 {
1939 b->cond_exp.reset ();
1940
1941 s = b->cond_string;
1942 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1943 }
1944 }
1945
1946 /* If we failed to parse the expression, for example because
1947 it refers to a global variable in a not-yet-loaded shared library,
1948 don't try to insert watchpoint. We don't automatically delete
1949 such watchpoint, though, since failure to parse expression
1950 is different from out-of-scope watchpoint. */
1951 if (!target_has_execution)
1952 {
1953 /* Without execution, memory can't change. No use to try and
1954 set watchpoint locations. The watchpoint will be reset when
1955 the target gains execution, through breakpoint_re_set. */
1956 if (!can_use_hw_watchpoints)
1957 {
1958 if (b->ops->works_in_software_mode (b))
1959 b->type = bp_watchpoint;
1960 else
1961 error (_("Can't set read/access watchpoint when "
1962 "hardware watchpoints are disabled."));
1963 }
1964 }
1965 else if (within_current_scope && b->exp)
1966 {
1967 int pc = 0;
1968 struct value *val_chain, *v, *result, *next;
1969 struct program_space *frame_pspace;
1970
1971 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1972
1973 /* Avoid setting b->val if it's already set. The meaning of
1974 b->val is 'the last value' user saw, and we should update
1975 it only if we reported that last value to user. As it
1976 happens, the code that reports it updates b->val directly.
1977 We don't keep track of the memory value for masked
1978 watchpoints. */
1979 if (!b->val_valid && !is_masked_watchpoint (b))
1980 {
1981 if (b->val_bitsize != 0)
1982 {
1983 v = extract_bitfield_from_watchpoint_value (b, v);
1984 if (v != NULL)
1985 release_value (v);
1986 }
1987 b->val = v;
1988 b->val_valid = 1;
1989 }
1990
1991 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1992
1993 /* Look at each value on the value chain. */
1994 for (v = val_chain; v; v = value_next (v))
1995 {
1996 /* If it's a memory location, and GDB actually needed
1997 its contents to evaluate the expression, then we
1998 must watch it. If the first value returned is
1999 still lazy, that means an error occurred reading it;
2000 watch it anyway in case it becomes readable. */
2001 if (VALUE_LVAL (v) == lval_memory
2002 && (v == val_chain || ! value_lazy (v)))
2003 {
2004 struct type *vtype = check_typedef (value_type (v));
2005
2006 /* We only watch structs and arrays if user asked
2007 for it explicitly, never if they just happen to
2008 appear in the middle of some value chain. */
2009 if (v == result
2010 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
2011 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
2012 {
2013 CORE_ADDR addr;
2014 enum target_hw_bp_type type;
2015 struct bp_location *loc, **tmp;
2016 int bitpos = 0, bitsize = 0;
2017
2018 if (value_bitsize (v) != 0)
2019 {
2020 /* Extract the bit parameters out from the bitfield
2021 sub-expression. */
2022 bitpos = value_bitpos (v);
2023 bitsize = value_bitsize (v);
2024 }
2025 else if (v == result && b->val_bitsize != 0)
2026 {
2027 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2028 lvalue whose bit parameters are saved in the fields
2029 VAL_BITPOS and VAL_BITSIZE. */
2030 bitpos = b->val_bitpos;
2031 bitsize = b->val_bitsize;
2032 }
2033
2034 addr = value_address (v);
2035 if (bitsize != 0)
2036 {
2037 /* Skip the bytes that don't contain the bitfield. */
2038 addr += bitpos / 8;
2039 }
2040
2041 type = hw_write;
2042 if (b->type == bp_read_watchpoint)
2043 type = hw_read;
2044 else if (b->type == bp_access_watchpoint)
2045 type = hw_access;
2046
2047 loc = allocate_bp_location (b);
2048 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
2049 ;
2050 *tmp = loc;
2051 loc->gdbarch = get_type_arch (value_type (v));
2052
2053 loc->pspace = frame_pspace;
2054 loc->address = addr;
2055
2056 if (bitsize != 0)
2057 {
2058 /* Just cover the bytes that make up the bitfield. */
2059 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2060 }
2061 else
2062 loc->length = TYPE_LENGTH (value_type (v));
2063
2064 loc->watchpoint_type = type;
2065 }
2066 }
2067 }
2068
2069 /* Change the type of breakpoint between hardware assisted or
2070 an ordinary watchpoint depending on the hardware support
2071 and free hardware slots. REPARSE is set when the inferior
2072 is started. */
2073 if (reparse)
2074 {
2075 int reg_cnt;
2076 enum bp_loc_type loc_type;
2077 struct bp_location *bl;
2078
2079 reg_cnt = can_use_hardware_watchpoint (val_chain);
2080
2081 if (reg_cnt)
2082 {
2083 int i, target_resources_ok, other_type_used;
2084 enum bptype type;
2085
2086 /* Use an exact watchpoint when there's only one memory region to be
2087 watched, and only one debug register is needed to watch it. */
2088 b->exact = target_exact_watchpoints && reg_cnt == 1;
2089
2090 /* We need to determine how many resources are already
2091 used for all other hardware watchpoints plus this one
2092 to see if we still have enough resources to also fit
2093 this watchpoint in as well. */
2094
2095 /* If this is a software watchpoint, we try to turn it
2096 to a hardware one -- count resources as if B was of
2097 hardware watchpoint type. */
2098 type = b->type;
2099 if (type == bp_watchpoint)
2100 type = bp_hardware_watchpoint;
2101
2102 /* This watchpoint may or may not have been placed on
2103 the list yet at this point (it won't be in the list
2104 if we're trying to create it for the first time,
2105 through watch_command), so always account for it
2106 manually. */
2107
2108 /* Count resources used by all watchpoints except B. */
2109 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2110
2111 /* Add in the resources needed for B. */
2112 i += hw_watchpoint_use_count (b);
2113
2114 target_resources_ok
2115 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2116 if (target_resources_ok <= 0)
2117 {
2118 int sw_mode = b->ops->works_in_software_mode (b);
2119
2120 if (target_resources_ok == 0 && !sw_mode)
2121 error (_("Target does not support this type of "
2122 "hardware watchpoint."));
2123 else if (target_resources_ok < 0 && !sw_mode)
2124 error (_("There are not enough available hardware "
2125 "resources for this watchpoint."));
2126
2127 /* Downgrade to software watchpoint. */
2128 b->type = bp_watchpoint;
2129 }
2130 else
2131 {
2132 /* If this was a software watchpoint, we've just
2133 found we have enough resources to turn it to a
2134 hardware watchpoint. Otherwise, this is a
2135 nop. */
2136 b->type = type;
2137 }
2138 }
2139 else if (!b->ops->works_in_software_mode (b))
2140 {
2141 if (!can_use_hw_watchpoints)
2142 error (_("Can't set read/access watchpoint when "
2143 "hardware watchpoints are disabled."));
2144 else
2145 error (_("Expression cannot be implemented with "
2146 "read/access watchpoint."));
2147 }
2148 else
2149 b->type = bp_watchpoint;
2150
2151 loc_type = (b->type == bp_watchpoint? bp_loc_other
2152 : bp_loc_hardware_watchpoint);
2153 for (bl = b->loc; bl; bl = bl->next)
2154 bl->loc_type = loc_type;
2155 }
2156
2157 for (v = val_chain; v; v = next)
2158 {
2159 next = value_next (v);
2160 if (v != b->val)
2161 value_free (v);
2162 }
2163
2164 /* If a software watchpoint is not watching any memory, then the
2165 above left it without any location set up. But,
2166 bpstat_stop_status requires a location to be able to report
2167 stops, so make sure there's at least a dummy one. */
2168 if (b->type == bp_watchpoint && b->loc == NULL)
2169 software_watchpoint_add_no_memory_location (b, frame_pspace);
2170 }
2171 else if (!within_current_scope)
2172 {
2173 printf_filtered (_("\
2174 Watchpoint %d deleted because the program has left the block\n\
2175 in which its expression is valid.\n"),
2176 b->number);
2177 watchpoint_del_at_next_stop (b);
2178 }
2179
2180 /* Restore the selected frame. */
2181 if (frame_saved)
2182 select_frame (frame_find_by_id (saved_frame_id));
2183 }
2184
2185
2186 /* Returns 1 iff breakpoint location should be
2187 inserted in the inferior. We don't differentiate the type of BL's owner
2188 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2189 breakpoint_ops is not defined, because in insert_bp_location,
2190 tracepoint's insert_location will not be called. */
2191 static int
2192 should_be_inserted (struct bp_location *bl)
2193 {
2194 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2195 return 0;
2196
2197 if (bl->owner->disposition == disp_del_at_next_stop)
2198 return 0;
2199
2200 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2201 return 0;
2202
2203 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2204 return 0;
2205
2206 /* This is set for example, when we're attached to the parent of a
2207 vfork, and have detached from the child. The child is running
2208 free, and we expect it to do an exec or exit, at which point the
2209 OS makes the parent schedulable again (and the target reports
2210 that the vfork is done). Until the child is done with the shared
2211 memory region, do not insert breakpoints in the parent, otherwise
2212 the child could still trip on the parent's breakpoints. Since
2213 the parent is blocked anyway, it won't miss any breakpoint. */
2214 if (bl->pspace->breakpoints_not_allowed)
2215 return 0;
2216
2217 /* Don't insert a breakpoint if we're trying to step past its
2218 location, except if the breakpoint is a single-step breakpoint,
2219 and the breakpoint's thread is the thread which is stepping past
2220 a breakpoint. */
2221 if ((bl->loc_type == bp_loc_software_breakpoint
2222 || bl->loc_type == bp_loc_hardware_breakpoint)
2223 && stepping_past_instruction_at (bl->pspace->aspace,
2224 bl->address)
2225 /* The single-step breakpoint may be inserted at the location
2226 we're trying to step if the instruction branches to itself.
2227 However, the instruction won't be executed at all and it may
2228 break the semantics of the instruction, for example, the
2229 instruction is a conditional branch or updates some flags.
2230 We can't fix it unless GDB is able to emulate the instruction
2231 or switch to displaced stepping. */
2232 && !(bl->owner->type == bp_single_step
2233 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2234 {
2235 if (debug_infrun)
2236 {
2237 fprintf_unfiltered (gdb_stdlog,
2238 "infrun: skipping breakpoint: "
2239 "stepping past insn at: %s\n",
2240 paddress (bl->gdbarch, bl->address));
2241 }
2242 return 0;
2243 }
2244
2245 /* Don't insert watchpoints if we're trying to step past the
2246 instruction that triggered one. */
2247 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2248 && stepping_past_nonsteppable_watchpoint ())
2249 {
2250 if (debug_infrun)
2251 {
2252 fprintf_unfiltered (gdb_stdlog,
2253 "infrun: stepping past non-steppable watchpoint. "
2254 "skipping watchpoint at %s:%d\n",
2255 paddress (bl->gdbarch, bl->address),
2256 bl->length);
2257 }
2258 return 0;
2259 }
2260
2261 return 1;
2262 }
2263
2264 /* Same as should_be_inserted but does the check assuming
2265 that the location is not duplicated. */
2266
2267 static int
2268 unduplicated_should_be_inserted (struct bp_location *bl)
2269 {
2270 int result;
2271 const int save_duplicate = bl->duplicate;
2272
2273 bl->duplicate = 0;
2274 result = should_be_inserted (bl);
2275 bl->duplicate = save_duplicate;
2276 return result;
2277 }
2278
2279 /* Parses a conditional described by an expression COND into an
2280 agent expression bytecode suitable for evaluation
2281 by the bytecode interpreter. Return NULL if there was
2282 any error during parsing. */
2283
2284 static agent_expr_up
2285 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2286 {
2287 if (cond == NULL)
2288 return NULL;
2289
2290 agent_expr_up aexpr;
2291
2292 /* We don't want to stop processing, so catch any errors
2293 that may show up. */
2294 TRY
2295 {
2296 aexpr = gen_eval_for_expr (scope, cond);
2297 }
2298
2299 CATCH (ex, RETURN_MASK_ERROR)
2300 {
2301 /* If we got here, it means the condition could not be parsed to a valid
2302 bytecode expression and thus can't be evaluated on the target's side.
2303 It's no use iterating through the conditions. */
2304 }
2305 END_CATCH
2306
2307 /* We have a valid agent expression. */
2308 return aexpr;
2309 }
2310
2311 /* Based on location BL, create a list of breakpoint conditions to be
2312 passed on to the target. If we have duplicated locations with different
2313 conditions, we will add such conditions to the list. The idea is that the
2314 target will evaluate the list of conditions and will only notify GDB when
2315 one of them is true. */
2316
2317 static void
2318 build_target_condition_list (struct bp_location *bl)
2319 {
2320 struct bp_location **locp = NULL, **loc2p;
2321 int null_condition_or_parse_error = 0;
2322 int modified = bl->needs_update;
2323 struct bp_location *loc;
2324
2325 /* Release conditions left over from a previous insert. */
2326 bl->target_info.conditions.clear ();
2327
2328 /* This is only meaningful if the target is
2329 evaluating conditions and if the user has
2330 opted for condition evaluation on the target's
2331 side. */
2332 if (gdb_evaluates_breakpoint_condition_p ()
2333 || !target_supports_evaluation_of_breakpoint_conditions ())
2334 return;
2335
2336 /* Do a first pass to check for locations with no assigned
2337 conditions or conditions that fail to parse to a valid agent expression
2338 bytecode. If any of these happen, then it's no use to send conditions
2339 to the target since this location will always trigger and generate a
2340 response back to GDB. */
2341 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2342 {
2343 loc = (*loc2p);
2344 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2345 {
2346 if (modified)
2347 {
2348 /* Re-parse the conditions since something changed. In that
2349 case we already freed the condition bytecodes (see
2350 force_breakpoint_reinsertion). We just
2351 need to parse the condition to bytecodes again. */
2352 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2353 loc->cond.get ());
2354 }
2355
2356 /* If we have a NULL bytecode expression, it means something
2357 went wrong or we have a null condition expression. */
2358 if (!loc->cond_bytecode)
2359 {
2360 null_condition_or_parse_error = 1;
2361 break;
2362 }
2363 }
2364 }
2365
2366 /* If any of these happened, it means we will have to evaluate the conditions
2367 for the location's address on gdb's side. It is no use keeping bytecodes
2368 for all the other duplicate locations, thus we free all of them here.
2369
2370 This is so we have a finer control over which locations' conditions are
2371 being evaluated by GDB or the remote stub. */
2372 if (null_condition_or_parse_error)
2373 {
2374 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2375 {
2376 loc = (*loc2p);
2377 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2378 {
2379 /* Only go as far as the first NULL bytecode is
2380 located. */
2381 if (!loc->cond_bytecode)
2382 return;
2383
2384 loc->cond_bytecode.reset ();
2385 }
2386 }
2387 }
2388
2389 /* No NULL conditions or failed bytecode generation. Build a condition list
2390 for this location's address. */
2391 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2392 {
2393 loc = (*loc2p);
2394 if (loc->cond
2395 && is_breakpoint (loc->owner)
2396 && loc->pspace->num == bl->pspace->num
2397 && loc->owner->enable_state == bp_enabled
2398 && loc->enabled)
2399 {
2400 /* Add the condition to the vector. This will be used later
2401 to send the conditions to the target. */
2402 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2403 }
2404 }
2405
2406 return;
2407 }
2408
2409 /* Parses a command described by string CMD into an agent expression
2410 bytecode suitable for evaluation by the bytecode interpreter.
2411 Return NULL if there was any error during parsing. */
2412
2413 static agent_expr_up
2414 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2415 {
2416 struct cleanup *old_cleanups = 0;
2417 struct expression **argvec;
2418 const char *cmdrest;
2419 const char *format_start, *format_end;
2420 struct format_piece *fpieces;
2421 int nargs;
2422 struct gdbarch *gdbarch = get_current_arch ();
2423
2424 if (cmd == NULL)
2425 return NULL;
2426
2427 cmdrest = cmd;
2428
2429 if (*cmdrest == ',')
2430 ++cmdrest;
2431 cmdrest = skip_spaces_const (cmdrest);
2432
2433 if (*cmdrest++ != '"')
2434 error (_("No format string following the location"));
2435
2436 format_start = cmdrest;
2437
2438 fpieces = parse_format_string (&cmdrest);
2439
2440 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2441
2442 format_end = cmdrest;
2443
2444 if (*cmdrest++ != '"')
2445 error (_("Bad format string, non-terminated '\"'."));
2446
2447 cmdrest = skip_spaces_const (cmdrest);
2448
2449 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2450 error (_("Invalid argument syntax"));
2451
2452 if (*cmdrest == ',')
2453 cmdrest++;
2454 cmdrest = skip_spaces_const (cmdrest);
2455
2456 /* For each argument, make an expression. */
2457
2458 argvec = (struct expression **) alloca (strlen (cmd)
2459 * sizeof (struct expression *));
2460
2461 nargs = 0;
2462 while (*cmdrest != '\0')
2463 {
2464 const char *cmd1;
2465
2466 cmd1 = cmdrest;
2467 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2468 argvec[nargs++] = expr.release ();
2469 cmdrest = cmd1;
2470 if (*cmdrest == ',')
2471 ++cmdrest;
2472 }
2473
2474 agent_expr_up aexpr;
2475
2476 /* We don't want to stop processing, so catch any errors
2477 that may show up. */
2478 TRY
2479 {
2480 aexpr = gen_printf (scope, gdbarch, 0, 0,
2481 format_start, format_end - format_start,
2482 fpieces, nargs, argvec);
2483 }
2484 CATCH (ex, RETURN_MASK_ERROR)
2485 {
2486 /* If we got here, it means the command could not be parsed to a valid
2487 bytecode expression and thus can't be evaluated on the target's side.
2488 It's no use iterating through the other commands. */
2489 }
2490 END_CATCH
2491
2492 do_cleanups (old_cleanups);
2493
2494 /* We have a valid agent expression, return it. */
2495 return aexpr;
2496 }
2497
2498 /* Based on location BL, create a list of breakpoint commands to be
2499 passed on to the target. If we have duplicated locations with
2500 different commands, we will add any such to the list. */
2501
2502 static void
2503 build_target_command_list (struct bp_location *bl)
2504 {
2505 struct bp_location **locp = NULL, **loc2p;
2506 int null_command_or_parse_error = 0;
2507 int modified = bl->needs_update;
2508 struct bp_location *loc;
2509
2510 /* Clear commands left over from a previous insert. */
2511 bl->target_info.tcommands.clear ();
2512
2513 if (!target_can_run_breakpoint_commands ())
2514 return;
2515
2516 /* For now, limit to agent-style dprintf breakpoints. */
2517 if (dprintf_style != dprintf_style_agent)
2518 return;
2519
2520 /* For now, if we have any duplicate location that isn't a dprintf,
2521 don't install the target-side commands, as that would make the
2522 breakpoint not be reported to the core, and we'd lose
2523 control. */
2524 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2525 {
2526 loc = (*loc2p);
2527 if (is_breakpoint (loc->owner)
2528 && loc->pspace->num == bl->pspace->num
2529 && loc->owner->type != bp_dprintf)
2530 return;
2531 }
2532
2533 /* Do a first pass to check for locations with no assigned
2534 conditions or conditions that fail to parse to a valid agent expression
2535 bytecode. If any of these happen, then it's no use to send conditions
2536 to the target since this location will always trigger and generate a
2537 response back to GDB. */
2538 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2539 {
2540 loc = (*loc2p);
2541 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2542 {
2543 if (modified)
2544 {
2545 /* Re-parse the commands since something changed. In that
2546 case we already freed the command bytecodes (see
2547 force_breakpoint_reinsertion). We just
2548 need to parse the command to bytecodes again. */
2549 loc->cmd_bytecode
2550 = parse_cmd_to_aexpr (bl->address,
2551 loc->owner->extra_string);
2552 }
2553
2554 /* If we have a NULL bytecode expression, it means something
2555 went wrong or we have a null command expression. */
2556 if (!loc->cmd_bytecode)
2557 {
2558 null_command_or_parse_error = 1;
2559 break;
2560 }
2561 }
2562 }
2563
2564 /* If anything failed, then we're not doing target-side commands,
2565 and so clean up. */
2566 if (null_command_or_parse_error)
2567 {
2568 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2569 {
2570 loc = (*loc2p);
2571 if (is_breakpoint (loc->owner)
2572 && loc->pspace->num == bl->pspace->num)
2573 {
2574 /* Only go as far as the first NULL bytecode is
2575 located. */
2576 if (loc->cmd_bytecode == NULL)
2577 return;
2578
2579 loc->cmd_bytecode.reset ();
2580 }
2581 }
2582 }
2583
2584 /* No NULL commands or failed bytecode generation. Build a command list
2585 for this location's address. */
2586 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2587 {
2588 loc = (*loc2p);
2589 if (loc->owner->extra_string
2590 && is_breakpoint (loc->owner)
2591 && loc->pspace->num == bl->pspace->num
2592 && loc->owner->enable_state == bp_enabled
2593 && loc->enabled)
2594 {
2595 /* Add the command to the vector. This will be used later
2596 to send the commands to the target. */
2597 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2598 }
2599 }
2600
2601 bl->target_info.persist = 0;
2602 /* Maybe flag this location as persistent. */
2603 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2604 bl->target_info.persist = 1;
2605 }
2606
2607 /* Return the kind of breakpoint on address *ADDR. Get the kind
2608 of breakpoint according to ADDR except single-step breakpoint.
2609 Get the kind of single-step breakpoint according to the current
2610 registers state. */
2611
2612 static int
2613 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2614 {
2615 if (bl->owner->type == bp_single_step)
2616 {
2617 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2618 struct regcache *regcache;
2619
2620 regcache = get_thread_regcache (thr->ptid);
2621
2622 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2623 regcache, addr);
2624 }
2625 else
2626 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2627 }
2628
2629 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2630 location. Any error messages are printed to TMP_ERROR_STREAM; and
2631 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2632 Returns 0 for success, 1 if the bp_location type is not supported or
2633 -1 for failure.
2634
2635 NOTE drow/2003-09-09: This routine could be broken down to an
2636 object-style method for each breakpoint or catchpoint type. */
2637 static int
2638 insert_bp_location (struct bp_location *bl,
2639 struct ui_file *tmp_error_stream,
2640 int *disabled_breaks,
2641 int *hw_breakpoint_error,
2642 int *hw_bp_error_explained_already)
2643 {
2644 enum errors bp_err = GDB_NO_ERROR;
2645 const char *bp_err_message = NULL;
2646
2647 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2648 return 0;
2649
2650 /* Note we don't initialize bl->target_info, as that wipes out
2651 the breakpoint location's shadow_contents if the breakpoint
2652 is still inserted at that location. This in turn breaks
2653 target_read_memory which depends on these buffers when
2654 a memory read is requested at the breakpoint location:
2655 Once the target_info has been wiped, we fail to see that
2656 we have a breakpoint inserted at that address and thus
2657 read the breakpoint instead of returning the data saved in
2658 the breakpoint location's shadow contents. */
2659 bl->target_info.reqstd_address = bl->address;
2660 bl->target_info.placed_address_space = bl->pspace->aspace;
2661 bl->target_info.length = bl->length;
2662
2663 /* When working with target-side conditions, we must pass all the conditions
2664 for the same breakpoint address down to the target since GDB will not
2665 insert those locations. With a list of breakpoint conditions, the target
2666 can decide when to stop and notify GDB. */
2667
2668 if (is_breakpoint (bl->owner))
2669 {
2670 build_target_condition_list (bl);
2671 build_target_command_list (bl);
2672 /* Reset the modification marker. */
2673 bl->needs_update = 0;
2674 }
2675
2676 if (bl->loc_type == bp_loc_software_breakpoint
2677 || bl->loc_type == bp_loc_hardware_breakpoint)
2678 {
2679 if (bl->owner->type != bp_hardware_breakpoint)
2680 {
2681 /* If the explicitly specified breakpoint type
2682 is not hardware breakpoint, check the memory map to see
2683 if the breakpoint address is in read only memory or not.
2684
2685 Two important cases are:
2686 - location type is not hardware breakpoint, memory
2687 is readonly. We change the type of the location to
2688 hardware breakpoint.
2689 - location type is hardware breakpoint, memory is
2690 read-write. This means we've previously made the
2691 location hardware one, but then the memory map changed,
2692 so we undo.
2693
2694 When breakpoints are removed, remove_breakpoints will use
2695 location types we've just set here, the only possible
2696 problem is that memory map has changed during running
2697 program, but it's not going to work anyway with current
2698 gdb. */
2699 struct mem_region *mr
2700 = lookup_mem_region (bl->target_info.reqstd_address);
2701
2702 if (mr)
2703 {
2704 if (automatic_hardware_breakpoints)
2705 {
2706 enum bp_loc_type new_type;
2707
2708 if (mr->attrib.mode != MEM_RW)
2709 new_type = bp_loc_hardware_breakpoint;
2710 else
2711 new_type = bp_loc_software_breakpoint;
2712
2713 if (new_type != bl->loc_type)
2714 {
2715 static int said = 0;
2716
2717 bl->loc_type = new_type;
2718 if (!said)
2719 {
2720 fprintf_filtered (gdb_stdout,
2721 _("Note: automatically using "
2722 "hardware breakpoints for "
2723 "read-only addresses.\n"));
2724 said = 1;
2725 }
2726 }
2727 }
2728 else if (bl->loc_type == bp_loc_software_breakpoint
2729 && mr->attrib.mode != MEM_RW)
2730 {
2731 fprintf_unfiltered (tmp_error_stream,
2732 _("Cannot insert breakpoint %d.\n"
2733 "Cannot set software breakpoint "
2734 "at read-only address %s\n"),
2735 bl->owner->number,
2736 paddress (bl->gdbarch, bl->address));
2737 return 1;
2738 }
2739 }
2740 }
2741
2742 /* First check to see if we have to handle an overlay. */
2743 if (overlay_debugging == ovly_off
2744 || bl->section == NULL
2745 || !(section_is_overlay (bl->section)))
2746 {
2747 /* No overlay handling: just set the breakpoint. */
2748 TRY
2749 {
2750 int val;
2751
2752 val = bl->owner->ops->insert_location (bl);
2753 if (val)
2754 bp_err = GENERIC_ERROR;
2755 }
2756 CATCH (e, RETURN_MASK_ALL)
2757 {
2758 bp_err = e.error;
2759 bp_err_message = e.message;
2760 }
2761 END_CATCH
2762 }
2763 else
2764 {
2765 /* This breakpoint is in an overlay section.
2766 Shall we set a breakpoint at the LMA? */
2767 if (!overlay_events_enabled)
2768 {
2769 /* Yes -- overlay event support is not active,
2770 so we must try to set a breakpoint at the LMA.
2771 This will not work for a hardware breakpoint. */
2772 if (bl->loc_type == bp_loc_hardware_breakpoint)
2773 warning (_("hardware breakpoint %d not supported in overlay!"),
2774 bl->owner->number);
2775 else
2776 {
2777 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2778 bl->section);
2779 /* Set a software (trap) breakpoint at the LMA. */
2780 bl->overlay_target_info = bl->target_info;
2781 bl->overlay_target_info.reqstd_address = addr;
2782
2783 /* No overlay handling: just set the breakpoint. */
2784 TRY
2785 {
2786 int val;
2787
2788 bl->overlay_target_info.kind
2789 = breakpoint_kind (bl, &addr);
2790 bl->overlay_target_info.placed_address = addr;
2791 val = target_insert_breakpoint (bl->gdbarch,
2792 &bl->overlay_target_info);
2793 if (val)
2794 bp_err = GENERIC_ERROR;
2795 }
2796 CATCH (e, RETURN_MASK_ALL)
2797 {
2798 bp_err = e.error;
2799 bp_err_message = e.message;
2800 }
2801 END_CATCH
2802
2803 if (bp_err != GDB_NO_ERROR)
2804 fprintf_unfiltered (tmp_error_stream,
2805 "Overlay breakpoint %d "
2806 "failed: in ROM?\n",
2807 bl->owner->number);
2808 }
2809 }
2810 /* Shall we set a breakpoint at the VMA? */
2811 if (section_is_mapped (bl->section))
2812 {
2813 /* Yes. This overlay section is mapped into memory. */
2814 TRY
2815 {
2816 int val;
2817
2818 val = bl->owner->ops->insert_location (bl);
2819 if (val)
2820 bp_err = GENERIC_ERROR;
2821 }
2822 CATCH (e, RETURN_MASK_ALL)
2823 {
2824 bp_err = e.error;
2825 bp_err_message = e.message;
2826 }
2827 END_CATCH
2828 }
2829 else
2830 {
2831 /* No. This breakpoint will not be inserted.
2832 No error, but do not mark the bp as 'inserted'. */
2833 return 0;
2834 }
2835 }
2836
2837 if (bp_err != GDB_NO_ERROR)
2838 {
2839 /* Can't set the breakpoint. */
2840
2841 /* In some cases, we might not be able to insert a
2842 breakpoint in a shared library that has already been
2843 removed, but we have not yet processed the shlib unload
2844 event. Unfortunately, some targets that implement
2845 breakpoint insertion themselves can't tell why the
2846 breakpoint insertion failed (e.g., the remote target
2847 doesn't define error codes), so we must treat generic
2848 errors as memory errors. */
2849 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2850 && bl->loc_type == bp_loc_software_breakpoint
2851 && (solib_name_from_address (bl->pspace, bl->address)
2852 || shared_objfile_contains_address_p (bl->pspace,
2853 bl->address)))
2854 {
2855 /* See also: disable_breakpoints_in_shlibs. */
2856 bl->shlib_disabled = 1;
2857 observer_notify_breakpoint_modified (bl->owner);
2858 if (!*disabled_breaks)
2859 {
2860 fprintf_unfiltered (tmp_error_stream,
2861 "Cannot insert breakpoint %d.\n",
2862 bl->owner->number);
2863 fprintf_unfiltered (tmp_error_stream,
2864 "Temporarily disabling shared "
2865 "library breakpoints:\n");
2866 }
2867 *disabled_breaks = 1;
2868 fprintf_unfiltered (tmp_error_stream,
2869 "breakpoint #%d\n", bl->owner->number);
2870 return 0;
2871 }
2872 else
2873 {
2874 if (bl->loc_type == bp_loc_hardware_breakpoint)
2875 {
2876 *hw_breakpoint_error = 1;
2877 *hw_bp_error_explained_already = bp_err_message != NULL;
2878 fprintf_unfiltered (tmp_error_stream,
2879 "Cannot insert hardware breakpoint %d%s",
2880 bl->owner->number, bp_err_message ? ":" : ".\n");
2881 if (bp_err_message != NULL)
2882 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2883 }
2884 else
2885 {
2886 if (bp_err_message == NULL)
2887 {
2888 char *message
2889 = memory_error_message (TARGET_XFER_E_IO,
2890 bl->gdbarch, bl->address);
2891 struct cleanup *old_chain = make_cleanup (xfree, message);
2892
2893 fprintf_unfiltered (tmp_error_stream,
2894 "Cannot insert breakpoint %d.\n"
2895 "%s\n",
2896 bl->owner->number, message);
2897 do_cleanups (old_chain);
2898 }
2899 else
2900 {
2901 fprintf_unfiltered (tmp_error_stream,
2902 "Cannot insert breakpoint %d: %s\n",
2903 bl->owner->number,
2904 bp_err_message);
2905 }
2906 }
2907 return 1;
2908
2909 }
2910 }
2911 else
2912 bl->inserted = 1;
2913
2914 return 0;
2915 }
2916
2917 else if (bl->loc_type == bp_loc_hardware_watchpoint
2918 /* NOTE drow/2003-09-08: This state only exists for removing
2919 watchpoints. It's not clear that it's necessary... */
2920 && bl->owner->disposition != disp_del_at_next_stop)
2921 {
2922 int val;
2923
2924 gdb_assert (bl->owner->ops != NULL
2925 && bl->owner->ops->insert_location != NULL);
2926
2927 val = bl->owner->ops->insert_location (bl);
2928
2929 /* If trying to set a read-watchpoint, and it turns out it's not
2930 supported, try emulating one with an access watchpoint. */
2931 if (val == 1 && bl->watchpoint_type == hw_read)
2932 {
2933 struct bp_location *loc, **loc_temp;
2934
2935 /* But don't try to insert it, if there's already another
2936 hw_access location that would be considered a duplicate
2937 of this one. */
2938 ALL_BP_LOCATIONS (loc, loc_temp)
2939 if (loc != bl
2940 && loc->watchpoint_type == hw_access
2941 && watchpoint_locations_match (bl, loc))
2942 {
2943 bl->duplicate = 1;
2944 bl->inserted = 1;
2945 bl->target_info = loc->target_info;
2946 bl->watchpoint_type = hw_access;
2947 val = 0;
2948 break;
2949 }
2950
2951 if (val == 1)
2952 {
2953 bl->watchpoint_type = hw_access;
2954 val = bl->owner->ops->insert_location (bl);
2955
2956 if (val)
2957 /* Back to the original value. */
2958 bl->watchpoint_type = hw_read;
2959 }
2960 }
2961
2962 bl->inserted = (val == 0);
2963 }
2964
2965 else if (bl->owner->type == bp_catchpoint)
2966 {
2967 int val;
2968
2969 gdb_assert (bl->owner->ops != NULL
2970 && bl->owner->ops->insert_location != NULL);
2971
2972 val = bl->owner->ops->insert_location (bl);
2973 if (val)
2974 {
2975 bl->owner->enable_state = bp_disabled;
2976
2977 if (val == 1)
2978 warning (_("\
2979 Error inserting catchpoint %d: Your system does not support this type\n\
2980 of catchpoint."), bl->owner->number);
2981 else
2982 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2983 }
2984
2985 bl->inserted = (val == 0);
2986
2987 /* We've already printed an error message if there was a problem
2988 inserting this catchpoint, and we've disabled the catchpoint,
2989 so just return success. */
2990 return 0;
2991 }
2992
2993 return 0;
2994 }
2995
2996 /* This function is called when program space PSPACE is about to be
2997 deleted. It takes care of updating breakpoints to not reference
2998 PSPACE anymore. */
2999
3000 void
3001 breakpoint_program_space_exit (struct program_space *pspace)
3002 {
3003 struct breakpoint *b, *b_temp;
3004 struct bp_location *loc, **loc_temp;
3005
3006 /* Remove any breakpoint that was set through this program space. */
3007 ALL_BREAKPOINTS_SAFE (b, b_temp)
3008 {
3009 if (b->pspace == pspace)
3010 delete_breakpoint (b);
3011 }
3012
3013 /* Breakpoints set through other program spaces could have locations
3014 bound to PSPACE as well. Remove those. */
3015 ALL_BP_LOCATIONS (loc, loc_temp)
3016 {
3017 struct bp_location *tmp;
3018
3019 if (loc->pspace == pspace)
3020 {
3021 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
3022 if (loc->owner->loc == loc)
3023 loc->owner->loc = loc->next;
3024 else
3025 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3026 if (tmp->next == loc)
3027 {
3028 tmp->next = loc->next;
3029 break;
3030 }
3031 }
3032 }
3033
3034 /* Now update the global location list to permanently delete the
3035 removed locations above. */
3036 update_global_location_list (UGLL_DONT_INSERT);
3037 }
3038
3039 /* Make sure all breakpoints are inserted in inferior.
3040 Throws exception on any error.
3041 A breakpoint that is already inserted won't be inserted
3042 again, so calling this function twice is safe. */
3043 void
3044 insert_breakpoints (void)
3045 {
3046 struct breakpoint *bpt;
3047
3048 ALL_BREAKPOINTS (bpt)
3049 if (is_hardware_watchpoint (bpt))
3050 {
3051 struct watchpoint *w = (struct watchpoint *) bpt;
3052
3053 update_watchpoint (w, 0 /* don't reparse. */);
3054 }
3055
3056 /* Updating watchpoints creates new locations, so update the global
3057 location list. Explicitly tell ugll to insert locations and
3058 ignore breakpoints_always_inserted_mode. */
3059 update_global_location_list (UGLL_INSERT);
3060 }
3061
3062 /* Invoke CALLBACK for each of bp_location. */
3063
3064 void
3065 iterate_over_bp_locations (walk_bp_location_callback callback)
3066 {
3067 struct bp_location *loc, **loc_tmp;
3068
3069 ALL_BP_LOCATIONS (loc, loc_tmp)
3070 {
3071 callback (loc, NULL);
3072 }
3073 }
3074
3075 /* This is used when we need to synch breakpoint conditions between GDB and the
3076 target. It is the case with deleting and disabling of breakpoints when using
3077 always-inserted mode. */
3078
3079 static void
3080 update_inserted_breakpoint_locations (void)
3081 {
3082 struct bp_location *bl, **blp_tmp;
3083 int error_flag = 0;
3084 int val = 0;
3085 int disabled_breaks = 0;
3086 int hw_breakpoint_error = 0;
3087 int hw_bp_details_reported = 0;
3088
3089 string_file tmp_error_stream;
3090
3091 /* Explicitly mark the warning -- this will only be printed if
3092 there was an error. */
3093 tmp_error_stream.puts ("Warning:\n");
3094
3095 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3096
3097 ALL_BP_LOCATIONS (bl, blp_tmp)
3098 {
3099 /* We only want to update software breakpoints and hardware
3100 breakpoints. */
3101 if (!is_breakpoint (bl->owner))
3102 continue;
3103
3104 /* We only want to update locations that are already inserted
3105 and need updating. This is to avoid unwanted insertion during
3106 deletion of breakpoints. */
3107 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3108 continue;
3109
3110 switch_to_program_space_and_thread (bl->pspace);
3111
3112 /* For targets that support global breakpoints, there's no need
3113 to select an inferior to insert breakpoint to. In fact, even
3114 if we aren't attached to any process yet, we should still
3115 insert breakpoints. */
3116 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3117 && ptid_equal (inferior_ptid, null_ptid))
3118 continue;
3119
3120 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3121 &hw_breakpoint_error, &hw_bp_details_reported);
3122 if (val)
3123 error_flag = val;
3124 }
3125
3126 if (error_flag)
3127 {
3128 target_terminal_ours_for_output ();
3129 error_stream (tmp_error_stream);
3130 }
3131 }
3132
3133 /* Used when starting or continuing the program. */
3134
3135 static void
3136 insert_breakpoint_locations (void)
3137 {
3138 struct breakpoint *bpt;
3139 struct bp_location *bl, **blp_tmp;
3140 int error_flag = 0;
3141 int val = 0;
3142 int disabled_breaks = 0;
3143 int hw_breakpoint_error = 0;
3144 int hw_bp_error_explained_already = 0;
3145
3146 string_file tmp_error_stream;
3147
3148 /* Explicitly mark the warning -- this will only be printed if
3149 there was an error. */
3150 tmp_error_stream.puts ("Warning:\n");
3151
3152 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3153
3154 ALL_BP_LOCATIONS (bl, blp_tmp)
3155 {
3156 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3157 continue;
3158
3159 /* There is no point inserting thread-specific breakpoints if
3160 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3161 has BL->OWNER always non-NULL. */
3162 if (bl->owner->thread != -1
3163 && !valid_global_thread_id (bl->owner->thread))
3164 continue;
3165
3166 switch_to_program_space_and_thread (bl->pspace);
3167
3168 /* For targets that support global breakpoints, there's no need
3169 to select an inferior to insert breakpoint to. In fact, even
3170 if we aren't attached to any process yet, we should still
3171 insert breakpoints. */
3172 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3173 && ptid_equal (inferior_ptid, null_ptid))
3174 continue;
3175
3176 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3177 &hw_breakpoint_error, &hw_bp_error_explained_already);
3178 if (val)
3179 error_flag = val;
3180 }
3181
3182 /* If we failed to insert all locations of a watchpoint, remove
3183 them, as half-inserted watchpoint is of limited use. */
3184 ALL_BREAKPOINTS (bpt)
3185 {
3186 int some_failed = 0;
3187 struct bp_location *loc;
3188
3189 if (!is_hardware_watchpoint (bpt))
3190 continue;
3191
3192 if (!breakpoint_enabled (bpt))
3193 continue;
3194
3195 if (bpt->disposition == disp_del_at_next_stop)
3196 continue;
3197
3198 for (loc = bpt->loc; loc; loc = loc->next)
3199 if (!loc->inserted && should_be_inserted (loc))
3200 {
3201 some_failed = 1;
3202 break;
3203 }
3204 if (some_failed)
3205 {
3206 for (loc = bpt->loc; loc; loc = loc->next)
3207 if (loc->inserted)
3208 remove_breakpoint (loc);
3209
3210 hw_breakpoint_error = 1;
3211 tmp_error_stream.printf ("Could not insert "
3212 "hardware watchpoint %d.\n",
3213 bpt->number);
3214 error_flag = -1;
3215 }
3216 }
3217
3218 if (error_flag)
3219 {
3220 /* If a hardware breakpoint or watchpoint was inserted, add a
3221 message about possibly exhausted resources. */
3222 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3223 {
3224 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3225 You may have requested too many hardware breakpoints/watchpoints.\n");
3226 }
3227 target_terminal_ours_for_output ();
3228 error_stream (tmp_error_stream);
3229 }
3230 }
3231
3232 /* Used when the program stops.
3233 Returns zero if successful, or non-zero if there was a problem
3234 removing a breakpoint location. */
3235
3236 int
3237 remove_breakpoints (void)
3238 {
3239 struct bp_location *bl, **blp_tmp;
3240 int val = 0;
3241
3242 ALL_BP_LOCATIONS (bl, blp_tmp)
3243 {
3244 if (bl->inserted && !is_tracepoint (bl->owner))
3245 val |= remove_breakpoint (bl);
3246 }
3247 return val;
3248 }
3249
3250 /* When a thread exits, remove breakpoints that are related to
3251 that thread. */
3252
3253 static void
3254 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3255 {
3256 struct breakpoint *b, *b_tmp;
3257
3258 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3259 {
3260 if (b->thread == tp->global_num && user_breakpoint_p (b))
3261 {
3262 b->disposition = disp_del_at_next_stop;
3263
3264 printf_filtered (_("\
3265 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3266 b->number, print_thread_id (tp));
3267
3268 /* Hide it from the user. */
3269 b->number = 0;
3270 }
3271 }
3272 }
3273
3274 /* Remove breakpoints of process PID. */
3275
3276 int
3277 remove_breakpoints_pid (int pid)
3278 {
3279 struct bp_location *bl, **blp_tmp;
3280 int val;
3281 struct inferior *inf = find_inferior_pid (pid);
3282
3283 ALL_BP_LOCATIONS (bl, blp_tmp)
3284 {
3285 if (bl->pspace != inf->pspace)
3286 continue;
3287
3288 if (bl->inserted && !bl->target_info.persist)
3289 {
3290 val = remove_breakpoint (bl);
3291 if (val != 0)
3292 return val;
3293 }
3294 }
3295 return 0;
3296 }
3297
3298 int
3299 reattach_breakpoints (int pid)
3300 {
3301 struct cleanup *old_chain;
3302 struct bp_location *bl, **blp_tmp;
3303 int val;
3304 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3305 struct inferior *inf;
3306 struct thread_info *tp;
3307
3308 tp = any_live_thread_of_process (pid);
3309 if (tp == NULL)
3310 return 1;
3311
3312 inf = find_inferior_pid (pid);
3313 old_chain = save_inferior_ptid ();
3314
3315 inferior_ptid = tp->ptid;
3316
3317 string_file tmp_error_stream;
3318
3319 ALL_BP_LOCATIONS (bl, blp_tmp)
3320 {
3321 if (bl->pspace != inf->pspace)
3322 continue;
3323
3324 if (bl->inserted)
3325 {
3326 bl->inserted = 0;
3327 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3328 if (val != 0)
3329 {
3330 do_cleanups (old_chain);
3331 return val;
3332 }
3333 }
3334 }
3335 do_cleanups (old_chain);
3336 return 0;
3337 }
3338
3339 static int internal_breakpoint_number = -1;
3340
3341 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3342 If INTERNAL is non-zero, the breakpoint number will be populated
3343 from internal_breakpoint_number and that variable decremented.
3344 Otherwise the breakpoint number will be populated from
3345 breakpoint_count and that value incremented. Internal breakpoints
3346 do not set the internal var bpnum. */
3347 static void
3348 set_breakpoint_number (int internal, struct breakpoint *b)
3349 {
3350 if (internal)
3351 b->number = internal_breakpoint_number--;
3352 else
3353 {
3354 set_breakpoint_count (breakpoint_count + 1);
3355 b->number = breakpoint_count;
3356 }
3357 }
3358
3359 static struct breakpoint *
3360 create_internal_breakpoint (struct gdbarch *gdbarch,
3361 CORE_ADDR address, enum bptype type,
3362 const struct breakpoint_ops *ops)
3363 {
3364 struct symtab_and_line sal;
3365 struct breakpoint *b;
3366
3367 init_sal (&sal); /* Initialize to zeroes. */
3368
3369 sal.pc = address;
3370 sal.section = find_pc_overlay (sal.pc);
3371 sal.pspace = current_program_space;
3372
3373 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3374 b->number = internal_breakpoint_number--;
3375 b->disposition = disp_donttouch;
3376
3377 return b;
3378 }
3379
3380 static const char *const longjmp_names[] =
3381 {
3382 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3383 };
3384 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3385
3386 /* Per-objfile data private to breakpoint.c. */
3387 struct breakpoint_objfile_data
3388 {
3389 /* Minimal symbol for "_ovly_debug_event" (if any). */
3390 struct bound_minimal_symbol overlay_msym;
3391
3392 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3393 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3394
3395 /* True if we have looked for longjmp probes. */
3396 int longjmp_searched;
3397
3398 /* SystemTap probe points for longjmp (if any). */
3399 VEC (probe_p) *longjmp_probes;
3400
3401 /* Minimal symbol for "std::terminate()" (if any). */
3402 struct bound_minimal_symbol terminate_msym;
3403
3404 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3405 struct bound_minimal_symbol exception_msym;
3406
3407 /* True if we have looked for exception probes. */
3408 int exception_searched;
3409
3410 /* SystemTap probe points for unwinding (if any). */
3411 VEC (probe_p) *exception_probes;
3412 };
3413
3414 static const struct objfile_data *breakpoint_objfile_key;
3415
3416 /* Minimal symbol not found sentinel. */
3417 static struct minimal_symbol msym_not_found;
3418
3419 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3420
3421 static int
3422 msym_not_found_p (const struct minimal_symbol *msym)
3423 {
3424 return msym == &msym_not_found;
3425 }
3426
3427 /* Return per-objfile data needed by breakpoint.c.
3428 Allocate the data if necessary. */
3429
3430 static struct breakpoint_objfile_data *
3431 get_breakpoint_objfile_data (struct objfile *objfile)
3432 {
3433 struct breakpoint_objfile_data *bp_objfile_data;
3434
3435 bp_objfile_data = ((struct breakpoint_objfile_data *)
3436 objfile_data (objfile, breakpoint_objfile_key));
3437 if (bp_objfile_data == NULL)
3438 {
3439 bp_objfile_data =
3440 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3441
3442 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3443 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3444 }
3445 return bp_objfile_data;
3446 }
3447
3448 static void
3449 free_breakpoint_probes (struct objfile *obj, void *data)
3450 {
3451 struct breakpoint_objfile_data *bp_objfile_data
3452 = (struct breakpoint_objfile_data *) data;
3453
3454 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3455 VEC_free (probe_p, bp_objfile_data->exception_probes);
3456 }
3457
3458 static void
3459 create_overlay_event_breakpoint (void)
3460 {
3461 struct objfile *objfile;
3462 const char *const func_name = "_ovly_debug_event";
3463
3464 ALL_OBJFILES (objfile)
3465 {
3466 struct breakpoint *b;
3467 struct breakpoint_objfile_data *bp_objfile_data;
3468 CORE_ADDR addr;
3469 struct explicit_location explicit_loc;
3470
3471 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3472
3473 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3474 continue;
3475
3476 if (bp_objfile_data->overlay_msym.minsym == NULL)
3477 {
3478 struct bound_minimal_symbol m;
3479
3480 m = lookup_minimal_symbol_text (func_name, objfile);
3481 if (m.minsym == NULL)
3482 {
3483 /* Avoid future lookups in this objfile. */
3484 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3485 continue;
3486 }
3487 bp_objfile_data->overlay_msym = m;
3488 }
3489
3490 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3491 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3492 bp_overlay_event,
3493 &internal_breakpoint_ops);
3494 initialize_explicit_location (&explicit_loc);
3495 explicit_loc.function_name = ASTRDUP (func_name);
3496 b->location = new_explicit_location (&explicit_loc);
3497
3498 if (overlay_debugging == ovly_auto)
3499 {
3500 b->enable_state = bp_enabled;
3501 overlay_events_enabled = 1;
3502 }
3503 else
3504 {
3505 b->enable_state = bp_disabled;
3506 overlay_events_enabled = 0;
3507 }
3508 }
3509 }
3510
3511 static void
3512 create_longjmp_master_breakpoint (void)
3513 {
3514 struct program_space *pspace;
3515
3516 scoped_restore_current_program_space restore_pspace;
3517
3518 ALL_PSPACES (pspace)
3519 {
3520 struct objfile *objfile;
3521
3522 set_current_program_space (pspace);
3523
3524 ALL_OBJFILES (objfile)
3525 {
3526 int i;
3527 struct gdbarch *gdbarch;
3528 struct breakpoint_objfile_data *bp_objfile_data;
3529
3530 gdbarch = get_objfile_arch (objfile);
3531
3532 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3533
3534 if (!bp_objfile_data->longjmp_searched)
3535 {
3536 VEC (probe_p) *ret;
3537
3538 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3539 if (ret != NULL)
3540 {
3541 /* We are only interested in checking one element. */
3542 struct probe *p = VEC_index (probe_p, ret, 0);
3543
3544 if (!can_evaluate_probe_arguments (p))
3545 {
3546 /* We cannot use the probe interface here, because it does
3547 not know how to evaluate arguments. */
3548 VEC_free (probe_p, ret);
3549 ret = NULL;
3550 }
3551 }
3552 bp_objfile_data->longjmp_probes = ret;
3553 bp_objfile_data->longjmp_searched = 1;
3554 }
3555
3556 if (bp_objfile_data->longjmp_probes != NULL)
3557 {
3558 int i;
3559 struct probe *probe;
3560 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3561
3562 for (i = 0;
3563 VEC_iterate (probe_p,
3564 bp_objfile_data->longjmp_probes,
3565 i, probe);
3566 ++i)
3567 {
3568 struct breakpoint *b;
3569
3570 b = create_internal_breakpoint (gdbarch,
3571 get_probe_address (probe,
3572 objfile),
3573 bp_longjmp_master,
3574 &internal_breakpoint_ops);
3575 b->location = new_probe_location ("-probe-stap libc:longjmp");
3576 b->enable_state = bp_disabled;
3577 }
3578
3579 continue;
3580 }
3581
3582 if (!gdbarch_get_longjmp_target_p (gdbarch))
3583 continue;
3584
3585 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3586 {
3587 struct breakpoint *b;
3588 const char *func_name;
3589 CORE_ADDR addr;
3590 struct explicit_location explicit_loc;
3591
3592 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3593 continue;
3594
3595 func_name = longjmp_names[i];
3596 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3597 {
3598 struct bound_minimal_symbol m;
3599
3600 m = lookup_minimal_symbol_text (func_name, objfile);
3601 if (m.minsym == NULL)
3602 {
3603 /* Prevent future lookups in this objfile. */
3604 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3605 continue;
3606 }
3607 bp_objfile_data->longjmp_msym[i] = m;
3608 }
3609
3610 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3611 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3612 &internal_breakpoint_ops);
3613 initialize_explicit_location (&explicit_loc);
3614 explicit_loc.function_name = ASTRDUP (func_name);
3615 b->location = new_explicit_location (&explicit_loc);
3616 b->enable_state = bp_disabled;
3617 }
3618 }
3619 }
3620 }
3621
3622 /* Create a master std::terminate breakpoint. */
3623 static void
3624 create_std_terminate_master_breakpoint (void)
3625 {
3626 struct program_space *pspace;
3627 const char *const func_name = "std::terminate()";
3628
3629 scoped_restore_current_program_space restore_pspace;
3630
3631 ALL_PSPACES (pspace)
3632 {
3633 struct objfile *objfile;
3634 CORE_ADDR addr;
3635
3636 set_current_program_space (pspace);
3637
3638 ALL_OBJFILES (objfile)
3639 {
3640 struct breakpoint *b;
3641 struct breakpoint_objfile_data *bp_objfile_data;
3642 struct explicit_location explicit_loc;
3643
3644 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3645
3646 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3647 continue;
3648
3649 if (bp_objfile_data->terminate_msym.minsym == NULL)
3650 {
3651 struct bound_minimal_symbol m;
3652
3653 m = lookup_minimal_symbol (func_name, NULL, objfile);
3654 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3655 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3656 {
3657 /* Prevent future lookups in this objfile. */
3658 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3659 continue;
3660 }
3661 bp_objfile_data->terminate_msym = m;
3662 }
3663
3664 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3665 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3666 bp_std_terminate_master,
3667 &internal_breakpoint_ops);
3668 initialize_explicit_location (&explicit_loc);
3669 explicit_loc.function_name = ASTRDUP (func_name);
3670 b->location = new_explicit_location (&explicit_loc);
3671 b->enable_state = bp_disabled;
3672 }
3673 }
3674 }
3675
3676 /* Install a master breakpoint on the unwinder's debug hook. */
3677
3678 static void
3679 create_exception_master_breakpoint (void)
3680 {
3681 struct objfile *objfile;
3682 const char *const func_name = "_Unwind_DebugHook";
3683
3684 ALL_OBJFILES (objfile)
3685 {
3686 struct breakpoint *b;
3687 struct gdbarch *gdbarch;
3688 struct breakpoint_objfile_data *bp_objfile_data;
3689 CORE_ADDR addr;
3690 struct explicit_location explicit_loc;
3691
3692 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3693
3694 /* We prefer the SystemTap probe point if it exists. */
3695 if (!bp_objfile_data->exception_searched)
3696 {
3697 VEC (probe_p) *ret;
3698
3699 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3700
3701 if (ret != NULL)
3702 {
3703 /* We are only interested in checking one element. */
3704 struct probe *p = VEC_index (probe_p, ret, 0);
3705
3706 if (!can_evaluate_probe_arguments (p))
3707 {
3708 /* We cannot use the probe interface here, because it does
3709 not know how to evaluate arguments. */
3710 VEC_free (probe_p, ret);
3711 ret = NULL;
3712 }
3713 }
3714 bp_objfile_data->exception_probes = ret;
3715 bp_objfile_data->exception_searched = 1;
3716 }
3717
3718 if (bp_objfile_data->exception_probes != NULL)
3719 {
3720 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3721 int i;
3722 struct probe *probe;
3723
3724 for (i = 0;
3725 VEC_iterate (probe_p,
3726 bp_objfile_data->exception_probes,
3727 i, probe);
3728 ++i)
3729 {
3730 struct breakpoint *b;
3731
3732 b = create_internal_breakpoint (gdbarch,
3733 get_probe_address (probe,
3734 objfile),
3735 bp_exception_master,
3736 &internal_breakpoint_ops);
3737 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3738 b->enable_state = bp_disabled;
3739 }
3740
3741 continue;
3742 }
3743
3744 /* Otherwise, try the hook function. */
3745
3746 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3747 continue;
3748
3749 gdbarch = get_objfile_arch (objfile);
3750
3751 if (bp_objfile_data->exception_msym.minsym == NULL)
3752 {
3753 struct bound_minimal_symbol debug_hook;
3754
3755 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3756 if (debug_hook.minsym == NULL)
3757 {
3758 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3759 continue;
3760 }
3761
3762 bp_objfile_data->exception_msym = debug_hook;
3763 }
3764
3765 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3766 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3767 &current_target);
3768 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3769 &internal_breakpoint_ops);
3770 initialize_explicit_location (&explicit_loc);
3771 explicit_loc.function_name = ASTRDUP (func_name);
3772 b->location = new_explicit_location (&explicit_loc);
3773 b->enable_state = bp_disabled;
3774 }
3775 }
3776
3777 /* Does B have a location spec? */
3778
3779 static int
3780 breakpoint_event_location_empty_p (const struct breakpoint *b)
3781 {
3782 return b->location != NULL && event_location_empty_p (b->location.get ());
3783 }
3784
3785 void
3786 update_breakpoints_after_exec (void)
3787 {
3788 struct breakpoint *b, *b_tmp;
3789 struct bp_location *bploc, **bplocp_tmp;
3790
3791 /* We're about to delete breakpoints from GDB's lists. If the
3792 INSERTED flag is true, GDB will try to lift the breakpoints by
3793 writing the breakpoints' "shadow contents" back into memory. The
3794 "shadow contents" are NOT valid after an exec, so GDB should not
3795 do that. Instead, the target is responsible from marking
3796 breakpoints out as soon as it detects an exec. We don't do that
3797 here instead, because there may be other attempts to delete
3798 breakpoints after detecting an exec and before reaching here. */
3799 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3800 if (bploc->pspace == current_program_space)
3801 gdb_assert (!bploc->inserted);
3802
3803 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3804 {
3805 if (b->pspace != current_program_space)
3806 continue;
3807
3808 /* Solib breakpoints must be explicitly reset after an exec(). */
3809 if (b->type == bp_shlib_event)
3810 {
3811 delete_breakpoint (b);
3812 continue;
3813 }
3814
3815 /* JIT breakpoints must be explicitly reset after an exec(). */
3816 if (b->type == bp_jit_event)
3817 {
3818 delete_breakpoint (b);
3819 continue;
3820 }
3821
3822 /* Thread event breakpoints must be set anew after an exec(),
3823 as must overlay event and longjmp master breakpoints. */
3824 if (b->type == bp_thread_event || b->type == bp_overlay_event
3825 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3826 || b->type == bp_exception_master)
3827 {
3828 delete_breakpoint (b);
3829 continue;
3830 }
3831
3832 /* Step-resume breakpoints are meaningless after an exec(). */
3833 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3834 {
3835 delete_breakpoint (b);
3836 continue;
3837 }
3838
3839 /* Just like single-step breakpoints. */
3840 if (b->type == bp_single_step)
3841 {
3842 delete_breakpoint (b);
3843 continue;
3844 }
3845
3846 /* Longjmp and longjmp-resume breakpoints are also meaningless
3847 after an exec. */
3848 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3849 || b->type == bp_longjmp_call_dummy
3850 || b->type == bp_exception || b->type == bp_exception_resume)
3851 {
3852 delete_breakpoint (b);
3853 continue;
3854 }
3855
3856 if (b->type == bp_catchpoint)
3857 {
3858 /* For now, none of the bp_catchpoint breakpoints need to
3859 do anything at this point. In the future, if some of
3860 the catchpoints need to something, we will need to add
3861 a new method, and call this method from here. */
3862 continue;
3863 }
3864
3865 /* bp_finish is a special case. The only way we ought to be able
3866 to see one of these when an exec() has happened, is if the user
3867 caught a vfork, and then said "finish". Ordinarily a finish just
3868 carries them to the call-site of the current callee, by setting
3869 a temporary bp there and resuming. But in this case, the finish
3870 will carry them entirely through the vfork & exec.
3871
3872 We don't want to allow a bp_finish to remain inserted now. But
3873 we can't safely delete it, 'cause finish_command has a handle to
3874 the bp on a bpstat, and will later want to delete it. There's a
3875 chance (and I've seen it happen) that if we delete the bp_finish
3876 here, that its storage will get reused by the time finish_command
3877 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3878 We really must allow finish_command to delete a bp_finish.
3879
3880 In the absence of a general solution for the "how do we know
3881 it's safe to delete something others may have handles to?"
3882 problem, what we'll do here is just uninsert the bp_finish, and
3883 let finish_command delete it.
3884
3885 (We know the bp_finish is "doomed" in the sense that it's
3886 momentary, and will be deleted as soon as finish_command sees
3887 the inferior stopped. So it doesn't matter that the bp's
3888 address is probably bogus in the new a.out, unlike e.g., the
3889 solib breakpoints.) */
3890
3891 if (b->type == bp_finish)
3892 {
3893 continue;
3894 }
3895
3896 /* Without a symbolic address, we have little hope of the
3897 pre-exec() address meaning the same thing in the post-exec()
3898 a.out. */
3899 if (breakpoint_event_location_empty_p (b))
3900 {
3901 delete_breakpoint (b);
3902 continue;
3903 }
3904 }
3905 }
3906
3907 int
3908 detach_breakpoints (ptid_t ptid)
3909 {
3910 struct bp_location *bl, **blp_tmp;
3911 int val = 0;
3912 struct cleanup *old_chain = save_inferior_ptid ();
3913 struct inferior *inf = current_inferior ();
3914
3915 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3916 error (_("Cannot detach breakpoints of inferior_ptid"));
3917
3918 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3919 inferior_ptid = ptid;
3920 ALL_BP_LOCATIONS (bl, blp_tmp)
3921 {
3922 if (bl->pspace != inf->pspace)
3923 continue;
3924
3925 /* This function must physically remove breakpoints locations
3926 from the specified ptid, without modifying the breakpoint
3927 package's state. Locations of type bp_loc_other are only
3928 maintained at GDB side. So, there is no need to remove
3929 these bp_loc_other locations. Moreover, removing these
3930 would modify the breakpoint package's state. */
3931 if (bl->loc_type == bp_loc_other)
3932 continue;
3933
3934 if (bl->inserted)
3935 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3936 }
3937
3938 do_cleanups (old_chain);
3939 return val;
3940 }
3941
3942 /* Remove the breakpoint location BL from the current address space.
3943 Note that this is used to detach breakpoints from a child fork.
3944 When we get here, the child isn't in the inferior list, and neither
3945 do we have objects to represent its address space --- we should
3946 *not* look at bl->pspace->aspace here. */
3947
3948 static int
3949 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3950 {
3951 int val;
3952
3953 /* BL is never in moribund_locations by our callers. */
3954 gdb_assert (bl->owner != NULL);
3955
3956 /* The type of none suggests that owner is actually deleted.
3957 This should not ever happen. */
3958 gdb_assert (bl->owner->type != bp_none);
3959
3960 if (bl->loc_type == bp_loc_software_breakpoint
3961 || bl->loc_type == bp_loc_hardware_breakpoint)
3962 {
3963 /* "Normal" instruction breakpoint: either the standard
3964 trap-instruction bp (bp_breakpoint), or a
3965 bp_hardware_breakpoint. */
3966
3967 /* First check to see if we have to handle an overlay. */
3968 if (overlay_debugging == ovly_off
3969 || bl->section == NULL
3970 || !(section_is_overlay (bl->section)))
3971 {
3972 /* No overlay handling: just remove the breakpoint. */
3973
3974 /* If we're trying to uninsert a memory breakpoint that we
3975 know is set in a dynamic object that is marked
3976 shlib_disabled, then either the dynamic object was
3977 removed with "remove-symbol-file" or with
3978 "nosharedlibrary". In the former case, we don't know
3979 whether another dynamic object might have loaded over the
3980 breakpoint's address -- the user might well let us know
3981 about it next with add-symbol-file (the whole point of
3982 add-symbol-file is letting the user manually maintain a
3983 list of dynamically loaded objects). If we have the
3984 breakpoint's shadow memory, that is, this is a software
3985 breakpoint managed by GDB, check whether the breakpoint
3986 is still inserted in memory, to avoid overwriting wrong
3987 code with stale saved shadow contents. Note that HW
3988 breakpoints don't have shadow memory, as they're
3989 implemented using a mechanism that is not dependent on
3990 being able to modify the target's memory, and as such
3991 they should always be removed. */
3992 if (bl->shlib_disabled
3993 && bl->target_info.shadow_len != 0
3994 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3995 val = 0;
3996 else
3997 val = bl->owner->ops->remove_location (bl, reason);
3998 }
3999 else
4000 {
4001 /* This breakpoint is in an overlay section.
4002 Did we set a breakpoint at the LMA? */
4003 if (!overlay_events_enabled)
4004 {
4005 /* Yes -- overlay event support is not active, so we
4006 should have set a breakpoint at the LMA. Remove it.
4007 */
4008 /* Ignore any failures: if the LMA is in ROM, we will
4009 have already warned when we failed to insert it. */
4010 if (bl->loc_type == bp_loc_hardware_breakpoint)
4011 target_remove_hw_breakpoint (bl->gdbarch,
4012 &bl->overlay_target_info);
4013 else
4014 target_remove_breakpoint (bl->gdbarch,
4015 &bl->overlay_target_info,
4016 reason);
4017 }
4018 /* Did we set a breakpoint at the VMA?
4019 If so, we will have marked the breakpoint 'inserted'. */
4020 if (bl->inserted)
4021 {
4022 /* Yes -- remove it. Previously we did not bother to
4023 remove the breakpoint if the section had been
4024 unmapped, but let's not rely on that being safe. We
4025 don't know what the overlay manager might do. */
4026
4027 /* However, we should remove *software* breakpoints only
4028 if the section is still mapped, or else we overwrite
4029 wrong code with the saved shadow contents. */
4030 if (bl->loc_type == bp_loc_hardware_breakpoint
4031 || section_is_mapped (bl->section))
4032 val = bl->owner->ops->remove_location (bl, reason);
4033 else
4034 val = 0;
4035 }
4036 else
4037 {
4038 /* No -- not inserted, so no need to remove. No error. */
4039 val = 0;
4040 }
4041 }
4042
4043 /* In some cases, we might not be able to remove a breakpoint in
4044 a shared library that has already been removed, but we have
4045 not yet processed the shlib unload event. Similarly for an
4046 unloaded add-symbol-file object - the user might not yet have
4047 had the chance to remove-symbol-file it. shlib_disabled will
4048 be set if the library/object has already been removed, but
4049 the breakpoint hasn't been uninserted yet, e.g., after
4050 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4051 always-inserted mode. */
4052 if (val
4053 && (bl->loc_type == bp_loc_software_breakpoint
4054 && (bl->shlib_disabled
4055 || solib_name_from_address (bl->pspace, bl->address)
4056 || shared_objfile_contains_address_p (bl->pspace,
4057 bl->address))))
4058 val = 0;
4059
4060 if (val)
4061 return val;
4062 bl->inserted = (reason == DETACH_BREAKPOINT);
4063 }
4064 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4065 {
4066 gdb_assert (bl->owner->ops != NULL
4067 && bl->owner->ops->remove_location != NULL);
4068
4069 bl->inserted = (reason == DETACH_BREAKPOINT);
4070 bl->owner->ops->remove_location (bl, reason);
4071
4072 /* Failure to remove any of the hardware watchpoints comes here. */
4073 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4074 warning (_("Could not remove hardware watchpoint %d."),
4075 bl->owner->number);
4076 }
4077 else if (bl->owner->type == bp_catchpoint
4078 && breakpoint_enabled (bl->owner)
4079 && !bl->duplicate)
4080 {
4081 gdb_assert (bl->owner->ops != NULL
4082 && bl->owner->ops->remove_location != NULL);
4083
4084 val = bl->owner->ops->remove_location (bl, reason);
4085 if (val)
4086 return val;
4087
4088 bl->inserted = (reason == DETACH_BREAKPOINT);
4089 }
4090
4091 return 0;
4092 }
4093
4094 static int
4095 remove_breakpoint (struct bp_location *bl)
4096 {
4097 /* BL is never in moribund_locations by our callers. */
4098 gdb_assert (bl->owner != NULL);
4099
4100 /* The type of none suggests that owner is actually deleted.
4101 This should not ever happen. */
4102 gdb_assert (bl->owner->type != bp_none);
4103
4104 scoped_restore_current_pspace_and_thread restore_pspace_thread;
4105
4106 switch_to_program_space_and_thread (bl->pspace);
4107
4108 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4109 }
4110
4111 /* Clear the "inserted" flag in all breakpoints. */
4112
4113 void
4114 mark_breakpoints_out (void)
4115 {
4116 struct bp_location *bl, **blp_tmp;
4117
4118 ALL_BP_LOCATIONS (bl, blp_tmp)
4119 if (bl->pspace == current_program_space)
4120 bl->inserted = 0;
4121 }
4122
4123 /* Clear the "inserted" flag in all breakpoints and delete any
4124 breakpoints which should go away between runs of the program.
4125
4126 Plus other such housekeeping that has to be done for breakpoints
4127 between runs.
4128
4129 Note: this function gets called at the end of a run (by
4130 generic_mourn_inferior) and when a run begins (by
4131 init_wait_for_inferior). */
4132
4133
4134
4135 void
4136 breakpoint_init_inferior (enum inf_context context)
4137 {
4138 struct breakpoint *b, *b_tmp;
4139 struct bp_location *bl;
4140 int ix;
4141 struct program_space *pspace = current_program_space;
4142
4143 /* If breakpoint locations are shared across processes, then there's
4144 nothing to do. */
4145 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4146 return;
4147
4148 mark_breakpoints_out ();
4149
4150 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4151 {
4152 if (b->loc && b->loc->pspace != pspace)
4153 continue;
4154
4155 switch (b->type)
4156 {
4157 case bp_call_dummy:
4158 case bp_longjmp_call_dummy:
4159
4160 /* If the call dummy breakpoint is at the entry point it will
4161 cause problems when the inferior is rerun, so we better get
4162 rid of it. */
4163
4164 case bp_watchpoint_scope:
4165
4166 /* Also get rid of scope breakpoints. */
4167
4168 case bp_shlib_event:
4169
4170 /* Also remove solib event breakpoints. Their addresses may
4171 have changed since the last time we ran the program.
4172 Actually we may now be debugging against different target;
4173 and so the solib backend that installed this breakpoint may
4174 not be used in by the target. E.g.,
4175
4176 (gdb) file prog-linux
4177 (gdb) run # native linux target
4178 ...
4179 (gdb) kill
4180 (gdb) file prog-win.exe
4181 (gdb) tar rem :9999 # remote Windows gdbserver.
4182 */
4183
4184 case bp_step_resume:
4185
4186 /* Also remove step-resume breakpoints. */
4187
4188 case bp_single_step:
4189
4190 /* Also remove single-step breakpoints. */
4191
4192 delete_breakpoint (b);
4193 break;
4194
4195 case bp_watchpoint:
4196 case bp_hardware_watchpoint:
4197 case bp_read_watchpoint:
4198 case bp_access_watchpoint:
4199 {
4200 struct watchpoint *w = (struct watchpoint *) b;
4201
4202 /* Likewise for watchpoints on local expressions. */
4203 if (w->exp_valid_block != NULL)
4204 delete_breakpoint (b);
4205 else
4206 {
4207 /* Get rid of existing locations, which are no longer
4208 valid. New ones will be created in
4209 update_watchpoint, when the inferior is restarted.
4210 The next update_global_location_list call will
4211 garbage collect them. */
4212 b->loc = NULL;
4213
4214 if (context == inf_starting)
4215 {
4216 /* Reset val field to force reread of starting value in
4217 insert_breakpoints. */
4218 if (w->val)
4219 value_free (w->val);
4220 w->val = NULL;
4221 w->val_valid = 0;
4222 }
4223 }
4224 }
4225 break;
4226 default:
4227 break;
4228 }
4229 }
4230
4231 /* Get rid of the moribund locations. */
4232 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4233 decref_bp_location (&bl);
4234 VEC_free (bp_location_p, moribund_locations);
4235 }
4236
4237 /* These functions concern about actual breakpoints inserted in the
4238 target --- to e.g. check if we need to do decr_pc adjustment or if
4239 we need to hop over the bkpt --- so we check for address space
4240 match, not program space. */
4241
4242 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4243 exists at PC. It returns ordinary_breakpoint_here if it's an
4244 ordinary breakpoint, or permanent_breakpoint_here if it's a
4245 permanent breakpoint.
4246 - When continuing from a location with an ordinary breakpoint, we
4247 actually single step once before calling insert_breakpoints.
4248 - When continuing from a location with a permanent breakpoint, we
4249 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4250 the target, to advance the PC past the breakpoint. */
4251
4252 enum breakpoint_here
4253 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4254 {
4255 struct bp_location *bl, **blp_tmp;
4256 int any_breakpoint_here = 0;
4257
4258 ALL_BP_LOCATIONS (bl, blp_tmp)
4259 {
4260 if (bl->loc_type != bp_loc_software_breakpoint
4261 && bl->loc_type != bp_loc_hardware_breakpoint)
4262 continue;
4263
4264 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4265 if ((breakpoint_enabled (bl->owner)
4266 || bl->permanent)
4267 && breakpoint_location_address_match (bl, aspace, pc))
4268 {
4269 if (overlay_debugging
4270 && section_is_overlay (bl->section)
4271 && !section_is_mapped (bl->section))
4272 continue; /* unmapped overlay -- can't be a match */
4273 else if (bl->permanent)
4274 return permanent_breakpoint_here;
4275 else
4276 any_breakpoint_here = 1;
4277 }
4278 }
4279
4280 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4281 }
4282
4283 /* See breakpoint.h. */
4284
4285 int
4286 breakpoint_in_range_p (struct address_space *aspace,
4287 CORE_ADDR addr, ULONGEST len)
4288 {
4289 struct bp_location *bl, **blp_tmp;
4290
4291 ALL_BP_LOCATIONS (bl, blp_tmp)
4292 {
4293 if (bl->loc_type != bp_loc_software_breakpoint
4294 && bl->loc_type != bp_loc_hardware_breakpoint)
4295 continue;
4296
4297 if ((breakpoint_enabled (bl->owner)
4298 || bl->permanent)
4299 && breakpoint_location_address_range_overlap (bl, aspace,
4300 addr, len))
4301 {
4302 if (overlay_debugging
4303 && section_is_overlay (bl->section)
4304 && !section_is_mapped (bl->section))
4305 {
4306 /* Unmapped overlay -- can't be a match. */
4307 continue;
4308 }
4309
4310 return 1;
4311 }
4312 }
4313
4314 return 0;
4315 }
4316
4317 /* Return true if there's a moribund breakpoint at PC. */
4318
4319 int
4320 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4321 {
4322 struct bp_location *loc;
4323 int ix;
4324
4325 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4326 if (breakpoint_location_address_match (loc, aspace, pc))
4327 return 1;
4328
4329 return 0;
4330 }
4331
4332 /* Returns non-zero iff BL is inserted at PC, in address space
4333 ASPACE. */
4334
4335 static int
4336 bp_location_inserted_here_p (struct bp_location *bl,
4337 struct address_space *aspace, CORE_ADDR pc)
4338 {
4339 if (bl->inserted
4340 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4341 aspace, pc))
4342 {
4343 if (overlay_debugging
4344 && section_is_overlay (bl->section)
4345 && !section_is_mapped (bl->section))
4346 return 0; /* unmapped overlay -- can't be a match */
4347 else
4348 return 1;
4349 }
4350 return 0;
4351 }
4352
4353 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4354
4355 int
4356 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4357 {
4358 struct bp_location **blp, **blp_tmp = NULL;
4359
4360 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4361 {
4362 struct bp_location *bl = *blp;
4363
4364 if (bl->loc_type != bp_loc_software_breakpoint
4365 && bl->loc_type != bp_loc_hardware_breakpoint)
4366 continue;
4367
4368 if (bp_location_inserted_here_p (bl, aspace, pc))
4369 return 1;
4370 }
4371 return 0;
4372 }
4373
4374 /* This function returns non-zero iff there is a software breakpoint
4375 inserted at PC. */
4376
4377 int
4378 software_breakpoint_inserted_here_p (struct address_space *aspace,
4379 CORE_ADDR pc)
4380 {
4381 struct bp_location **blp, **blp_tmp = NULL;
4382
4383 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4384 {
4385 struct bp_location *bl = *blp;
4386
4387 if (bl->loc_type != bp_loc_software_breakpoint)
4388 continue;
4389
4390 if (bp_location_inserted_here_p (bl, aspace, pc))
4391 return 1;
4392 }
4393
4394 return 0;
4395 }
4396
4397 /* See breakpoint.h. */
4398
4399 int
4400 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4401 CORE_ADDR pc)
4402 {
4403 struct bp_location **blp, **blp_tmp = NULL;
4404
4405 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4406 {
4407 struct bp_location *bl = *blp;
4408
4409 if (bl->loc_type != bp_loc_hardware_breakpoint)
4410 continue;
4411
4412 if (bp_location_inserted_here_p (bl, aspace, pc))
4413 return 1;
4414 }
4415
4416 return 0;
4417 }
4418
4419 int
4420 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4421 CORE_ADDR addr, ULONGEST len)
4422 {
4423 struct breakpoint *bpt;
4424
4425 ALL_BREAKPOINTS (bpt)
4426 {
4427 struct bp_location *loc;
4428
4429 if (bpt->type != bp_hardware_watchpoint
4430 && bpt->type != bp_access_watchpoint)
4431 continue;
4432
4433 if (!breakpoint_enabled (bpt))
4434 continue;
4435
4436 for (loc = bpt->loc; loc; loc = loc->next)
4437 if (loc->pspace->aspace == aspace && loc->inserted)
4438 {
4439 CORE_ADDR l, h;
4440
4441 /* Check for intersection. */
4442 l = std::max<CORE_ADDR> (loc->address, addr);
4443 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4444 if (l < h)
4445 return 1;
4446 }
4447 }
4448 return 0;
4449 }
4450 \f
4451
4452 /* bpstat stuff. External routines' interfaces are documented
4453 in breakpoint.h. */
4454
4455 int
4456 is_catchpoint (struct breakpoint *ep)
4457 {
4458 return (ep->type == bp_catchpoint);
4459 }
4460
4461 /* Frees any storage that is part of a bpstat. Does not walk the
4462 'next' chain. */
4463
4464 static void
4465 bpstat_free (bpstat bs)
4466 {
4467 if (bs->old_val != NULL)
4468 value_free (bs->old_val);
4469 decref_counted_command_line (&bs->commands);
4470 decref_bp_location (&bs->bp_location_at);
4471 xfree (bs);
4472 }
4473
4474 /* Clear a bpstat so that it says we are not at any breakpoint.
4475 Also free any storage that is part of a bpstat. */
4476
4477 void
4478 bpstat_clear (bpstat *bsp)
4479 {
4480 bpstat p;
4481 bpstat q;
4482
4483 if (bsp == 0)
4484 return;
4485 p = *bsp;
4486 while (p != NULL)
4487 {
4488 q = p->next;
4489 bpstat_free (p);
4490 p = q;
4491 }
4492 *bsp = NULL;
4493 }
4494
4495 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4496 is part of the bpstat is copied as well. */
4497
4498 bpstat
4499 bpstat_copy (bpstat bs)
4500 {
4501 bpstat p = NULL;
4502 bpstat tmp;
4503 bpstat retval = NULL;
4504
4505 if (bs == NULL)
4506 return bs;
4507
4508 for (; bs != NULL; bs = bs->next)
4509 {
4510 tmp = (bpstat) xmalloc (sizeof (*tmp));
4511 memcpy (tmp, bs, sizeof (*tmp));
4512 incref_counted_command_line (tmp->commands);
4513 incref_bp_location (tmp->bp_location_at);
4514 if (bs->old_val != NULL)
4515 {
4516 tmp->old_val = value_copy (bs->old_val);
4517 release_value (tmp->old_val);
4518 }
4519
4520 if (p == NULL)
4521 /* This is the first thing in the chain. */
4522 retval = tmp;
4523 else
4524 p->next = tmp;
4525 p = tmp;
4526 }
4527 p->next = NULL;
4528 return retval;
4529 }
4530
4531 /* Find the bpstat associated with this breakpoint. */
4532
4533 bpstat
4534 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4535 {
4536 if (bsp == NULL)
4537 return NULL;
4538
4539 for (; bsp != NULL; bsp = bsp->next)
4540 {
4541 if (bsp->breakpoint_at == breakpoint)
4542 return bsp;
4543 }
4544 return NULL;
4545 }
4546
4547 /* See breakpoint.h. */
4548
4549 int
4550 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4551 {
4552 for (; bsp != NULL; bsp = bsp->next)
4553 {
4554 if (bsp->breakpoint_at == NULL)
4555 {
4556 /* A moribund location can never explain a signal other than
4557 GDB_SIGNAL_TRAP. */
4558 if (sig == GDB_SIGNAL_TRAP)
4559 return 1;
4560 }
4561 else
4562 {
4563 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4564 sig))
4565 return 1;
4566 }
4567 }
4568
4569 return 0;
4570 }
4571
4572 /* Put in *NUM the breakpoint number of the first breakpoint we are
4573 stopped at. *BSP upon return is a bpstat which points to the
4574 remaining breakpoints stopped at (but which is not guaranteed to be
4575 good for anything but further calls to bpstat_num).
4576
4577 Return 0 if passed a bpstat which does not indicate any breakpoints.
4578 Return -1 if stopped at a breakpoint that has been deleted since
4579 we set it.
4580 Return 1 otherwise. */
4581
4582 int
4583 bpstat_num (bpstat *bsp, int *num)
4584 {
4585 struct breakpoint *b;
4586
4587 if ((*bsp) == NULL)
4588 return 0; /* No more breakpoint values */
4589
4590 /* We assume we'll never have several bpstats that correspond to a
4591 single breakpoint -- otherwise, this function might return the
4592 same number more than once and this will look ugly. */
4593 b = (*bsp)->breakpoint_at;
4594 *bsp = (*bsp)->next;
4595 if (b == NULL)
4596 return -1; /* breakpoint that's been deleted since */
4597
4598 *num = b->number; /* We have its number */
4599 return 1;
4600 }
4601
4602 /* See breakpoint.h. */
4603
4604 void
4605 bpstat_clear_actions (void)
4606 {
4607 struct thread_info *tp;
4608 bpstat bs;
4609
4610 if (ptid_equal (inferior_ptid, null_ptid))
4611 return;
4612
4613 tp = find_thread_ptid (inferior_ptid);
4614 if (tp == NULL)
4615 return;
4616
4617 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4618 {
4619 decref_counted_command_line (&bs->commands);
4620
4621 if (bs->old_val != NULL)
4622 {
4623 value_free (bs->old_val);
4624 bs->old_val = NULL;
4625 }
4626 }
4627 }
4628
4629 /* Called when a command is about to proceed the inferior. */
4630
4631 static void
4632 breakpoint_about_to_proceed (void)
4633 {
4634 if (!ptid_equal (inferior_ptid, null_ptid))
4635 {
4636 struct thread_info *tp = inferior_thread ();
4637
4638 /* Allow inferior function calls in breakpoint commands to not
4639 interrupt the command list. When the call finishes
4640 successfully, the inferior will be standing at the same
4641 breakpoint as if nothing happened. */
4642 if (tp->control.in_infcall)
4643 return;
4644 }
4645
4646 breakpoint_proceeded = 1;
4647 }
4648
4649 /* Stub for cleaning up our state if we error-out of a breakpoint
4650 command. */
4651 static void
4652 cleanup_executing_breakpoints (void *ignore)
4653 {
4654 executing_breakpoint_commands = 0;
4655 }
4656
4657 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4658 or its equivalent. */
4659
4660 static int
4661 command_line_is_silent (struct command_line *cmd)
4662 {
4663 return cmd && (strcmp ("silent", cmd->line) == 0);
4664 }
4665
4666 /* Execute all the commands associated with all the breakpoints at
4667 this location. Any of these commands could cause the process to
4668 proceed beyond this point, etc. We look out for such changes by
4669 checking the global "breakpoint_proceeded" after each command.
4670
4671 Returns true if a breakpoint command resumed the inferior. In that
4672 case, it is the caller's responsibility to recall it again with the
4673 bpstat of the current thread. */
4674
4675 static int
4676 bpstat_do_actions_1 (bpstat *bsp)
4677 {
4678 bpstat bs;
4679 struct cleanup *old_chain;
4680 int again = 0;
4681
4682 /* Avoid endless recursion if a `source' command is contained
4683 in bs->commands. */
4684 if (executing_breakpoint_commands)
4685 return 0;
4686
4687 executing_breakpoint_commands = 1;
4688 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4689
4690 scoped_restore preventer = prevent_dont_repeat ();
4691
4692 /* This pointer will iterate over the list of bpstat's. */
4693 bs = *bsp;
4694
4695 breakpoint_proceeded = 0;
4696 for (; bs != NULL; bs = bs->next)
4697 {
4698 struct counted_command_line *ccmd;
4699 struct command_line *cmd;
4700 struct cleanup *this_cmd_tree_chain;
4701
4702 /* Take ownership of the BSP's command tree, if it has one.
4703
4704 The command tree could legitimately contain commands like
4705 'step' and 'next', which call clear_proceed_status, which
4706 frees stop_bpstat's command tree. To make sure this doesn't
4707 free the tree we're executing out from under us, we need to
4708 take ownership of the tree ourselves. Since a given bpstat's
4709 commands are only executed once, we don't need to copy it; we
4710 can clear the pointer in the bpstat, and make sure we free
4711 the tree when we're done. */
4712 ccmd = bs->commands;
4713 bs->commands = NULL;
4714 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4715 cmd = ccmd ? ccmd->commands : NULL;
4716 if (command_line_is_silent (cmd))
4717 {
4718 /* The action has been already done by bpstat_stop_status. */
4719 cmd = cmd->next;
4720 }
4721
4722 while (cmd != NULL)
4723 {
4724 execute_control_command (cmd);
4725
4726 if (breakpoint_proceeded)
4727 break;
4728 else
4729 cmd = cmd->next;
4730 }
4731
4732 /* We can free this command tree now. */
4733 do_cleanups (this_cmd_tree_chain);
4734
4735 if (breakpoint_proceeded)
4736 {
4737 if (current_ui->async)
4738 /* If we are in async mode, then the target might be still
4739 running, not stopped at any breakpoint, so nothing for
4740 us to do here -- just return to the event loop. */
4741 ;
4742 else
4743 /* In sync mode, when execute_control_command returns
4744 we're already standing on the next breakpoint.
4745 Breakpoint commands for that stop were not run, since
4746 execute_command does not run breakpoint commands --
4747 only command_line_handler does, but that one is not
4748 involved in execution of breakpoint commands. So, we
4749 can now execute breakpoint commands. It should be
4750 noted that making execute_command do bpstat actions is
4751 not an option -- in this case we'll have recursive
4752 invocation of bpstat for each breakpoint with a
4753 command, and can easily blow up GDB stack. Instead, we
4754 return true, which will trigger the caller to recall us
4755 with the new stop_bpstat. */
4756 again = 1;
4757 break;
4758 }
4759 }
4760 do_cleanups (old_chain);
4761 return again;
4762 }
4763
4764 void
4765 bpstat_do_actions (void)
4766 {
4767 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4768
4769 /* Do any commands attached to breakpoint we are stopped at. */
4770 while (!ptid_equal (inferior_ptid, null_ptid)
4771 && target_has_execution
4772 && !is_exited (inferior_ptid)
4773 && !is_executing (inferior_ptid))
4774 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4775 and only return when it is stopped at the next breakpoint, we
4776 keep doing breakpoint actions until it returns false to
4777 indicate the inferior was not resumed. */
4778 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4779 break;
4780
4781 discard_cleanups (cleanup_if_error);
4782 }
4783
4784 /* Print out the (old or new) value associated with a watchpoint. */
4785
4786 static void
4787 watchpoint_value_print (struct value *val, struct ui_file *stream)
4788 {
4789 if (val == NULL)
4790 fprintf_unfiltered (stream, _("<unreadable>"));
4791 else
4792 {
4793 struct value_print_options opts;
4794 get_user_print_options (&opts);
4795 value_print (val, stream, &opts);
4796 }
4797 }
4798
4799 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4800 debugging multiple threads. */
4801
4802 void
4803 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4804 {
4805 if (uiout->is_mi_like_p ())
4806 return;
4807
4808 uiout->text ("\n");
4809
4810 if (show_thread_that_caused_stop ())
4811 {
4812 const char *name;
4813 struct thread_info *thr = inferior_thread ();
4814
4815 uiout->text ("Thread ");
4816 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4817
4818 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4819 if (name != NULL)
4820 {
4821 uiout->text (" \"");
4822 uiout->field_fmt ("name", "%s", name);
4823 uiout->text ("\"");
4824 }
4825
4826 uiout->text (" hit ");
4827 }
4828 }
4829
4830 /* Generic routine for printing messages indicating why we
4831 stopped. The behavior of this function depends on the value
4832 'print_it' in the bpstat structure. Under some circumstances we
4833 may decide not to print anything here and delegate the task to
4834 normal_stop(). */
4835
4836 static enum print_stop_action
4837 print_bp_stop_message (bpstat bs)
4838 {
4839 switch (bs->print_it)
4840 {
4841 case print_it_noop:
4842 /* Nothing should be printed for this bpstat entry. */
4843 return PRINT_UNKNOWN;
4844 break;
4845
4846 case print_it_done:
4847 /* We still want to print the frame, but we already printed the
4848 relevant messages. */
4849 return PRINT_SRC_AND_LOC;
4850 break;
4851
4852 case print_it_normal:
4853 {
4854 struct breakpoint *b = bs->breakpoint_at;
4855
4856 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4857 which has since been deleted. */
4858 if (b == NULL)
4859 return PRINT_UNKNOWN;
4860
4861 /* Normal case. Call the breakpoint's print_it method. */
4862 return b->ops->print_it (bs);
4863 }
4864 break;
4865
4866 default:
4867 internal_error (__FILE__, __LINE__,
4868 _("print_bp_stop_message: unrecognized enum value"));
4869 break;
4870 }
4871 }
4872
4873 /* A helper function that prints a shared library stopped event. */
4874
4875 static void
4876 print_solib_event (int is_catchpoint)
4877 {
4878 int any_deleted
4879 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4880 int any_added
4881 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4882
4883 if (!is_catchpoint)
4884 {
4885 if (any_added || any_deleted)
4886 current_uiout->text (_("Stopped due to shared library event:\n"));
4887 else
4888 current_uiout->text (_("Stopped due to shared library event (no "
4889 "libraries added or removed)\n"));
4890 }
4891
4892 if (current_uiout->is_mi_like_p ())
4893 current_uiout->field_string ("reason",
4894 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4895
4896 if (any_deleted)
4897 {
4898 char *name;
4899 int ix;
4900
4901 current_uiout->text (_(" Inferior unloaded "));
4902 ui_out_emit_list list_emitter (current_uiout, "removed");
4903 for (ix = 0;
4904 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4905 ix, name);
4906 ++ix)
4907 {
4908 if (ix > 0)
4909 current_uiout->text (" ");
4910 current_uiout->field_string ("library", name);
4911 current_uiout->text ("\n");
4912 }
4913 }
4914
4915 if (any_added)
4916 {
4917 struct so_list *iter;
4918 int ix;
4919
4920 current_uiout->text (_(" Inferior loaded "));
4921 ui_out_emit_list list_emitter (current_uiout, "added");
4922 for (ix = 0;
4923 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4924 ix, iter);
4925 ++ix)
4926 {
4927 if (ix > 0)
4928 current_uiout->text (" ");
4929 current_uiout->field_string ("library", iter->so_name);
4930 current_uiout->text ("\n");
4931 }
4932 }
4933 }
4934
4935 /* Print a message indicating what happened. This is called from
4936 normal_stop(). The input to this routine is the head of the bpstat
4937 list - a list of the eventpoints that caused this stop. KIND is
4938 the target_waitkind for the stopping event. This
4939 routine calls the generic print routine for printing a message
4940 about reasons for stopping. This will print (for example) the
4941 "Breakpoint n," part of the output. The return value of this
4942 routine is one of:
4943
4944 PRINT_UNKNOWN: Means we printed nothing.
4945 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4946 code to print the location. An example is
4947 "Breakpoint 1, " which should be followed by
4948 the location.
4949 PRINT_SRC_ONLY: Means we printed something, but there is no need
4950 to also print the location part of the message.
4951 An example is the catch/throw messages, which
4952 don't require a location appended to the end.
4953 PRINT_NOTHING: We have done some printing and we don't need any
4954 further info to be printed. */
4955
4956 enum print_stop_action
4957 bpstat_print (bpstat bs, int kind)
4958 {
4959 enum print_stop_action val;
4960
4961 /* Maybe another breakpoint in the chain caused us to stop.
4962 (Currently all watchpoints go on the bpstat whether hit or not.
4963 That probably could (should) be changed, provided care is taken
4964 with respect to bpstat_explains_signal). */
4965 for (; bs; bs = bs->next)
4966 {
4967 val = print_bp_stop_message (bs);
4968 if (val == PRINT_SRC_ONLY
4969 || val == PRINT_SRC_AND_LOC
4970 || val == PRINT_NOTHING)
4971 return val;
4972 }
4973
4974 /* If we had hit a shared library event breakpoint,
4975 print_bp_stop_message would print out this message. If we hit an
4976 OS-level shared library event, do the same thing. */
4977 if (kind == TARGET_WAITKIND_LOADED)
4978 {
4979 print_solib_event (0);
4980 return PRINT_NOTHING;
4981 }
4982
4983 /* We reached the end of the chain, or we got a null BS to start
4984 with and nothing was printed. */
4985 return PRINT_UNKNOWN;
4986 }
4987
4988 /* Evaluate the expression EXP and return 1 if value is zero.
4989 This returns the inverse of the condition because it is called
4990 from catch_errors which returns 0 if an exception happened, and if an
4991 exception happens we want execution to stop.
4992 The argument is a "struct expression *" that has been cast to a
4993 "void *" to make it pass through catch_errors. */
4994
4995 static int
4996 breakpoint_cond_eval (void *exp)
4997 {
4998 struct value *mark = value_mark ();
4999 int i = !value_true (evaluate_expression ((struct expression *) exp));
5000
5001 value_free_to_mark (mark);
5002 return i;
5003 }
5004
5005 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5006
5007 static bpstat
5008 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5009 {
5010 bpstat bs;
5011
5012 bs = (bpstat) xmalloc (sizeof (*bs));
5013 bs->next = NULL;
5014 **bs_link_pointer = bs;
5015 *bs_link_pointer = &bs->next;
5016 bs->breakpoint_at = bl->owner;
5017 bs->bp_location_at = bl;
5018 incref_bp_location (bl);
5019 /* If the condition is false, etc., don't do the commands. */
5020 bs->commands = NULL;
5021 bs->old_val = NULL;
5022 bs->print_it = print_it_normal;
5023 return bs;
5024 }
5025 \f
5026 /* The target has stopped with waitstatus WS. Check if any hardware
5027 watchpoints have triggered, according to the target. */
5028
5029 int
5030 watchpoints_triggered (struct target_waitstatus *ws)
5031 {
5032 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5033 CORE_ADDR addr;
5034 struct breakpoint *b;
5035
5036 if (!stopped_by_watchpoint)
5037 {
5038 /* We were not stopped by a watchpoint. Mark all watchpoints
5039 as not triggered. */
5040 ALL_BREAKPOINTS (b)
5041 if (is_hardware_watchpoint (b))
5042 {
5043 struct watchpoint *w = (struct watchpoint *) b;
5044
5045 w->watchpoint_triggered = watch_triggered_no;
5046 }
5047
5048 return 0;
5049 }
5050
5051 if (!target_stopped_data_address (&current_target, &addr))
5052 {
5053 /* We were stopped by a watchpoint, but we don't know where.
5054 Mark all watchpoints as unknown. */
5055 ALL_BREAKPOINTS (b)
5056 if (is_hardware_watchpoint (b))
5057 {
5058 struct watchpoint *w = (struct watchpoint *) b;
5059
5060 w->watchpoint_triggered = watch_triggered_unknown;
5061 }
5062
5063 return 1;
5064 }
5065
5066 /* The target could report the data address. Mark watchpoints
5067 affected by this data address as triggered, and all others as not
5068 triggered. */
5069
5070 ALL_BREAKPOINTS (b)
5071 if (is_hardware_watchpoint (b))
5072 {
5073 struct watchpoint *w = (struct watchpoint *) b;
5074 struct bp_location *loc;
5075
5076 w->watchpoint_triggered = watch_triggered_no;
5077 for (loc = b->loc; loc; loc = loc->next)
5078 {
5079 if (is_masked_watchpoint (b))
5080 {
5081 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5082 CORE_ADDR start = loc->address & w->hw_wp_mask;
5083
5084 if (newaddr == start)
5085 {
5086 w->watchpoint_triggered = watch_triggered_yes;
5087 break;
5088 }
5089 }
5090 /* Exact match not required. Within range is sufficient. */
5091 else if (target_watchpoint_addr_within_range (&current_target,
5092 addr, loc->address,
5093 loc->length))
5094 {
5095 w->watchpoint_triggered = watch_triggered_yes;
5096 break;
5097 }
5098 }
5099 }
5100
5101 return 1;
5102 }
5103
5104 /* Possible return values for watchpoint_check (this can't be an enum
5105 because of check_errors). */
5106 /* The watchpoint has been deleted. */
5107 #define WP_DELETED 1
5108 /* The value has changed. */
5109 #define WP_VALUE_CHANGED 2
5110 /* The value has not changed. */
5111 #define WP_VALUE_NOT_CHANGED 3
5112 /* Ignore this watchpoint, no matter if the value changed or not. */
5113 #define WP_IGNORE 4
5114
5115 #define BP_TEMPFLAG 1
5116 #define BP_HARDWAREFLAG 2
5117
5118 /* Evaluate watchpoint condition expression and check if its value
5119 changed.
5120
5121 P should be a pointer to struct bpstat, but is defined as a void *
5122 in order for this function to be usable with catch_errors. */
5123
5124 static int
5125 watchpoint_check (void *p)
5126 {
5127 bpstat bs = (bpstat) p;
5128 struct watchpoint *b;
5129 struct frame_info *fr;
5130 int within_current_scope;
5131
5132 /* BS is built from an existing struct breakpoint. */
5133 gdb_assert (bs->breakpoint_at != NULL);
5134 b = (struct watchpoint *) bs->breakpoint_at;
5135
5136 /* If this is a local watchpoint, we only want to check if the
5137 watchpoint frame is in scope if the current thread is the thread
5138 that was used to create the watchpoint. */
5139 if (!watchpoint_in_thread_scope (b))
5140 return WP_IGNORE;
5141
5142 if (b->exp_valid_block == NULL)
5143 within_current_scope = 1;
5144 else
5145 {
5146 struct frame_info *frame = get_current_frame ();
5147 struct gdbarch *frame_arch = get_frame_arch (frame);
5148 CORE_ADDR frame_pc = get_frame_pc (frame);
5149
5150 /* stack_frame_destroyed_p() returns a non-zero value if we're
5151 still in the function but the stack frame has already been
5152 invalidated. Since we can't rely on the values of local
5153 variables after the stack has been destroyed, we are treating
5154 the watchpoint in that state as `not changed' without further
5155 checking. Don't mark watchpoints as changed if the current
5156 frame is in an epilogue - even if they are in some other
5157 frame, our view of the stack is likely to be wrong and
5158 frame_find_by_id could error out. */
5159 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5160 return WP_IGNORE;
5161
5162 fr = frame_find_by_id (b->watchpoint_frame);
5163 within_current_scope = (fr != NULL);
5164
5165 /* If we've gotten confused in the unwinder, we might have
5166 returned a frame that can't describe this variable. */
5167 if (within_current_scope)
5168 {
5169 struct symbol *function;
5170
5171 function = get_frame_function (fr);
5172 if (function == NULL
5173 || !contained_in (b->exp_valid_block,
5174 SYMBOL_BLOCK_VALUE (function)))
5175 within_current_scope = 0;
5176 }
5177
5178 if (within_current_scope)
5179 /* If we end up stopping, the current frame will get selected
5180 in normal_stop. So this call to select_frame won't affect
5181 the user. */
5182 select_frame (fr);
5183 }
5184
5185 if (within_current_scope)
5186 {
5187 /* We use value_{,free_to_}mark because it could be a *long*
5188 time before we return to the command level and call
5189 free_all_values. We can't call free_all_values because we
5190 might be in the middle of evaluating a function call. */
5191
5192 int pc = 0;
5193 struct value *mark;
5194 struct value *new_val;
5195
5196 if (is_masked_watchpoint (b))
5197 /* Since we don't know the exact trigger address (from
5198 stopped_data_address), just tell the user we've triggered
5199 a mask watchpoint. */
5200 return WP_VALUE_CHANGED;
5201
5202 mark = value_mark ();
5203 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5204
5205 if (b->val_bitsize != 0)
5206 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5207
5208 /* We use value_equal_contents instead of value_equal because
5209 the latter coerces an array to a pointer, thus comparing just
5210 the address of the array instead of its contents. This is
5211 not what we want. */
5212 if ((b->val != NULL) != (new_val != NULL)
5213 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5214 {
5215 if (new_val != NULL)
5216 {
5217 release_value (new_val);
5218 value_free_to_mark (mark);
5219 }
5220 bs->old_val = b->val;
5221 b->val = new_val;
5222 b->val_valid = 1;
5223 return WP_VALUE_CHANGED;
5224 }
5225 else
5226 {
5227 /* Nothing changed. */
5228 value_free_to_mark (mark);
5229 return WP_VALUE_NOT_CHANGED;
5230 }
5231 }
5232 else
5233 {
5234 /* This seems like the only logical thing to do because
5235 if we temporarily ignored the watchpoint, then when
5236 we reenter the block in which it is valid it contains
5237 garbage (in the case of a function, it may have two
5238 garbage values, one before and one after the prologue).
5239 So we can't even detect the first assignment to it and
5240 watch after that (since the garbage may or may not equal
5241 the first value assigned). */
5242 /* We print all the stop information in
5243 breakpoint_ops->print_it, but in this case, by the time we
5244 call breakpoint_ops->print_it this bp will be deleted
5245 already. So we have no choice but print the information
5246 here. */
5247
5248 SWITCH_THRU_ALL_UIS ()
5249 {
5250 struct ui_out *uiout = current_uiout;
5251
5252 if (uiout->is_mi_like_p ())
5253 uiout->field_string
5254 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5255 uiout->text ("\nWatchpoint ");
5256 uiout->field_int ("wpnum", b->number);
5257 uiout->text (" deleted because the program has left the block in\n"
5258 "which its expression is valid.\n");
5259 }
5260
5261 /* Make sure the watchpoint's commands aren't executed. */
5262 decref_counted_command_line (&b->commands);
5263 watchpoint_del_at_next_stop (b);
5264
5265 return WP_DELETED;
5266 }
5267 }
5268
5269 /* Return true if it looks like target has stopped due to hitting
5270 breakpoint location BL. This function does not check if we should
5271 stop, only if BL explains the stop. */
5272
5273 static int
5274 bpstat_check_location (const struct bp_location *bl,
5275 struct address_space *aspace, CORE_ADDR bp_addr,
5276 const struct target_waitstatus *ws)
5277 {
5278 struct breakpoint *b = bl->owner;
5279
5280 /* BL is from an existing breakpoint. */
5281 gdb_assert (b != NULL);
5282
5283 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5284 }
5285
5286 /* Determine if the watched values have actually changed, and we
5287 should stop. If not, set BS->stop to 0. */
5288
5289 static void
5290 bpstat_check_watchpoint (bpstat bs)
5291 {
5292 const struct bp_location *bl;
5293 struct watchpoint *b;
5294
5295 /* BS is built for existing struct breakpoint. */
5296 bl = bs->bp_location_at;
5297 gdb_assert (bl != NULL);
5298 b = (struct watchpoint *) bs->breakpoint_at;
5299 gdb_assert (b != NULL);
5300
5301 {
5302 int must_check_value = 0;
5303
5304 if (b->type == bp_watchpoint)
5305 /* For a software watchpoint, we must always check the
5306 watched value. */
5307 must_check_value = 1;
5308 else if (b->watchpoint_triggered == watch_triggered_yes)
5309 /* We have a hardware watchpoint (read, write, or access)
5310 and the target earlier reported an address watched by
5311 this watchpoint. */
5312 must_check_value = 1;
5313 else if (b->watchpoint_triggered == watch_triggered_unknown
5314 && b->type == bp_hardware_watchpoint)
5315 /* We were stopped by a hardware watchpoint, but the target could
5316 not report the data address. We must check the watchpoint's
5317 value. Access and read watchpoints are out of luck; without
5318 a data address, we can't figure it out. */
5319 must_check_value = 1;
5320
5321 if (must_check_value)
5322 {
5323 char *message
5324 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5325 b->number);
5326 struct cleanup *cleanups = make_cleanup (xfree, message);
5327 int e = catch_errors (watchpoint_check, bs, message,
5328 RETURN_MASK_ALL);
5329 do_cleanups (cleanups);
5330 switch (e)
5331 {
5332 case WP_DELETED:
5333 /* We've already printed what needs to be printed. */
5334 bs->print_it = print_it_done;
5335 /* Stop. */
5336 break;
5337 case WP_IGNORE:
5338 bs->print_it = print_it_noop;
5339 bs->stop = 0;
5340 break;
5341 case WP_VALUE_CHANGED:
5342 if (b->type == bp_read_watchpoint)
5343 {
5344 /* There are two cases to consider here:
5345
5346 1. We're watching the triggered memory for reads.
5347 In that case, trust the target, and always report
5348 the watchpoint hit to the user. Even though
5349 reads don't cause value changes, the value may
5350 have changed since the last time it was read, and
5351 since we're not trapping writes, we will not see
5352 those, and as such we should ignore our notion of
5353 old value.
5354
5355 2. We're watching the triggered memory for both
5356 reads and writes. There are two ways this may
5357 happen:
5358
5359 2.1. This is a target that can't break on data
5360 reads only, but can break on accesses (reads or
5361 writes), such as e.g., x86. We detect this case
5362 at the time we try to insert read watchpoints.
5363
5364 2.2. Otherwise, the target supports read
5365 watchpoints, but, the user set an access or write
5366 watchpoint watching the same memory as this read
5367 watchpoint.
5368
5369 If we're watching memory writes as well as reads,
5370 ignore watchpoint hits when we find that the
5371 value hasn't changed, as reads don't cause
5372 changes. This still gives false positives when
5373 the program writes the same value to memory as
5374 what there was already in memory (we will confuse
5375 it for a read), but it's much better than
5376 nothing. */
5377
5378 int other_write_watchpoint = 0;
5379
5380 if (bl->watchpoint_type == hw_read)
5381 {
5382 struct breakpoint *other_b;
5383
5384 ALL_BREAKPOINTS (other_b)
5385 if (other_b->type == bp_hardware_watchpoint
5386 || other_b->type == bp_access_watchpoint)
5387 {
5388 struct watchpoint *other_w =
5389 (struct watchpoint *) other_b;
5390
5391 if (other_w->watchpoint_triggered
5392 == watch_triggered_yes)
5393 {
5394 other_write_watchpoint = 1;
5395 break;
5396 }
5397 }
5398 }
5399
5400 if (other_write_watchpoint
5401 || bl->watchpoint_type == hw_access)
5402 {
5403 /* We're watching the same memory for writes,
5404 and the value changed since the last time we
5405 updated it, so this trap must be for a write.
5406 Ignore it. */
5407 bs->print_it = print_it_noop;
5408 bs->stop = 0;
5409 }
5410 }
5411 break;
5412 case WP_VALUE_NOT_CHANGED:
5413 if (b->type == bp_hardware_watchpoint
5414 || b->type == bp_watchpoint)
5415 {
5416 /* Don't stop: write watchpoints shouldn't fire if
5417 the value hasn't changed. */
5418 bs->print_it = print_it_noop;
5419 bs->stop = 0;
5420 }
5421 /* Stop. */
5422 break;
5423 default:
5424 /* Can't happen. */
5425 case 0:
5426 /* Error from catch_errors. */
5427 {
5428 SWITCH_THRU_ALL_UIS ()
5429 {
5430 printf_filtered (_("Watchpoint %d deleted.\n"),
5431 b->number);
5432 }
5433 watchpoint_del_at_next_stop (b);
5434 /* We've already printed what needs to be printed. */
5435 bs->print_it = print_it_done;
5436 }
5437 break;
5438 }
5439 }
5440 else /* must_check_value == 0 */
5441 {
5442 /* This is a case where some watchpoint(s) triggered, but
5443 not at the address of this watchpoint, or else no
5444 watchpoint triggered after all. So don't print
5445 anything for this watchpoint. */
5446 bs->print_it = print_it_noop;
5447 bs->stop = 0;
5448 }
5449 }
5450 }
5451
5452 /* For breakpoints that are currently marked as telling gdb to stop,
5453 check conditions (condition proper, frame, thread and ignore count)
5454 of breakpoint referred to by BS. If we should not stop for this
5455 breakpoint, set BS->stop to 0. */
5456
5457 static void
5458 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5459 {
5460 const struct bp_location *bl;
5461 struct breakpoint *b;
5462 int value_is_zero = 0;
5463 struct expression *cond;
5464
5465 gdb_assert (bs->stop);
5466
5467 /* BS is built for existing struct breakpoint. */
5468 bl = bs->bp_location_at;
5469 gdb_assert (bl != NULL);
5470 b = bs->breakpoint_at;
5471 gdb_assert (b != NULL);
5472
5473 /* Even if the target evaluated the condition on its end and notified GDB, we
5474 need to do so again since GDB does not know if we stopped due to a
5475 breakpoint or a single step breakpoint. */
5476
5477 if (frame_id_p (b->frame_id)
5478 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5479 {
5480 bs->stop = 0;
5481 return;
5482 }
5483
5484 /* If this is a thread/task-specific breakpoint, don't waste cpu
5485 evaluating the condition if this isn't the specified
5486 thread/task. */
5487 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5488 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5489
5490 {
5491 bs->stop = 0;
5492 return;
5493 }
5494
5495 /* Evaluate extension language breakpoints that have a "stop" method
5496 implemented. */
5497 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5498
5499 if (is_watchpoint (b))
5500 {
5501 struct watchpoint *w = (struct watchpoint *) b;
5502
5503 cond = w->cond_exp.get ();
5504 }
5505 else
5506 cond = bl->cond.get ();
5507
5508 if (cond && b->disposition != disp_del_at_next_stop)
5509 {
5510 int within_current_scope = 1;
5511 struct watchpoint * w;
5512
5513 /* We use value_mark and value_free_to_mark because it could
5514 be a long time before we return to the command level and
5515 call free_all_values. We can't call free_all_values
5516 because we might be in the middle of evaluating a
5517 function call. */
5518 struct value *mark = value_mark ();
5519
5520 if (is_watchpoint (b))
5521 w = (struct watchpoint *) b;
5522 else
5523 w = NULL;
5524
5525 /* Need to select the frame, with all that implies so that
5526 the conditions will have the right context. Because we
5527 use the frame, we will not see an inlined function's
5528 variables when we arrive at a breakpoint at the start
5529 of the inlined function; the current frame will be the
5530 call site. */
5531 if (w == NULL || w->cond_exp_valid_block == NULL)
5532 select_frame (get_current_frame ());
5533 else
5534 {
5535 struct frame_info *frame;
5536
5537 /* For local watchpoint expressions, which particular
5538 instance of a local is being watched matters, so we
5539 keep track of the frame to evaluate the expression
5540 in. To evaluate the condition however, it doesn't
5541 really matter which instantiation of the function
5542 where the condition makes sense triggers the
5543 watchpoint. This allows an expression like "watch
5544 global if q > 10" set in `func', catch writes to
5545 global on all threads that call `func', or catch
5546 writes on all recursive calls of `func' by a single
5547 thread. We simply always evaluate the condition in
5548 the innermost frame that's executing where it makes
5549 sense to evaluate the condition. It seems
5550 intuitive. */
5551 frame = block_innermost_frame (w->cond_exp_valid_block);
5552 if (frame != NULL)
5553 select_frame (frame);
5554 else
5555 within_current_scope = 0;
5556 }
5557 if (within_current_scope)
5558 value_is_zero
5559 = catch_errors (breakpoint_cond_eval, cond,
5560 "Error in testing breakpoint condition:\n",
5561 RETURN_MASK_ALL);
5562 else
5563 {
5564 warning (_("Watchpoint condition cannot be tested "
5565 "in the current scope"));
5566 /* If we failed to set the right context for this
5567 watchpoint, unconditionally report it. */
5568 value_is_zero = 0;
5569 }
5570 /* FIXME-someday, should give breakpoint #. */
5571 value_free_to_mark (mark);
5572 }
5573
5574 if (cond && value_is_zero)
5575 {
5576 bs->stop = 0;
5577 }
5578 else if (b->ignore_count > 0)
5579 {
5580 b->ignore_count--;
5581 bs->stop = 0;
5582 /* Increase the hit count even though we don't stop. */
5583 ++(b->hit_count);
5584 observer_notify_breakpoint_modified (b);
5585 }
5586 }
5587
5588 /* Returns true if we need to track moribund locations of LOC's type
5589 on the current target. */
5590
5591 static int
5592 need_moribund_for_location_type (struct bp_location *loc)
5593 {
5594 return ((loc->loc_type == bp_loc_software_breakpoint
5595 && !target_supports_stopped_by_sw_breakpoint ())
5596 || (loc->loc_type == bp_loc_hardware_breakpoint
5597 && !target_supports_stopped_by_hw_breakpoint ()));
5598 }
5599
5600
5601 /* Get a bpstat associated with having just stopped at address
5602 BP_ADDR in thread PTID.
5603
5604 Determine whether we stopped at a breakpoint, etc, or whether we
5605 don't understand this stop. Result is a chain of bpstat's such
5606 that:
5607
5608 if we don't understand the stop, the result is a null pointer.
5609
5610 if we understand why we stopped, the result is not null.
5611
5612 Each element of the chain refers to a particular breakpoint or
5613 watchpoint at which we have stopped. (We may have stopped for
5614 several reasons concurrently.)
5615
5616 Each element of the chain has valid next, breakpoint_at,
5617 commands, FIXME??? fields. */
5618
5619 bpstat
5620 bpstat_stop_status (struct address_space *aspace,
5621 CORE_ADDR bp_addr, ptid_t ptid,
5622 const struct target_waitstatus *ws)
5623 {
5624 struct breakpoint *b = NULL;
5625 struct bp_location *bl;
5626 struct bp_location *loc;
5627 /* First item of allocated bpstat's. */
5628 bpstat bs_head = NULL, *bs_link = &bs_head;
5629 /* Pointer to the last thing in the chain currently. */
5630 bpstat bs;
5631 int ix;
5632 int need_remove_insert;
5633 int removed_any;
5634
5635 /* First, build the bpstat chain with locations that explain a
5636 target stop, while being careful to not set the target running,
5637 as that may invalidate locations (in particular watchpoint
5638 locations are recreated). Resuming will happen here with
5639 breakpoint conditions or watchpoint expressions that include
5640 inferior function calls. */
5641
5642 ALL_BREAKPOINTS (b)
5643 {
5644 if (!breakpoint_enabled (b))
5645 continue;
5646
5647 for (bl = b->loc; bl != NULL; bl = bl->next)
5648 {
5649 /* For hardware watchpoints, we look only at the first
5650 location. The watchpoint_check function will work on the
5651 entire expression, not the individual locations. For
5652 read watchpoints, the watchpoints_triggered function has
5653 checked all locations already. */
5654 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5655 break;
5656
5657 if (!bl->enabled || bl->shlib_disabled)
5658 continue;
5659
5660 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5661 continue;
5662
5663 /* Come here if it's a watchpoint, or if the break address
5664 matches. */
5665
5666 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5667 explain stop. */
5668
5669 /* Assume we stop. Should we find a watchpoint that is not
5670 actually triggered, or if the condition of the breakpoint
5671 evaluates as false, we'll reset 'stop' to 0. */
5672 bs->stop = 1;
5673 bs->print = 1;
5674
5675 /* If this is a scope breakpoint, mark the associated
5676 watchpoint as triggered so that we will handle the
5677 out-of-scope event. We'll get to the watchpoint next
5678 iteration. */
5679 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5680 {
5681 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5682
5683 w->watchpoint_triggered = watch_triggered_yes;
5684 }
5685 }
5686 }
5687
5688 /* Check if a moribund breakpoint explains the stop. */
5689 if (!target_supports_stopped_by_sw_breakpoint ()
5690 || !target_supports_stopped_by_hw_breakpoint ())
5691 {
5692 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5693 {
5694 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5695 && need_moribund_for_location_type (loc))
5696 {
5697 bs = bpstat_alloc (loc, &bs_link);
5698 /* For hits of moribund locations, we should just proceed. */
5699 bs->stop = 0;
5700 bs->print = 0;
5701 bs->print_it = print_it_noop;
5702 }
5703 }
5704 }
5705
5706 /* A bit of special processing for shlib breakpoints. We need to
5707 process solib loading here, so that the lists of loaded and
5708 unloaded libraries are correct before we handle "catch load" and
5709 "catch unload". */
5710 for (bs = bs_head; bs != NULL; bs = bs->next)
5711 {
5712 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5713 {
5714 handle_solib_event ();
5715 break;
5716 }
5717 }
5718
5719 /* Now go through the locations that caused the target to stop, and
5720 check whether we're interested in reporting this stop to higher
5721 layers, or whether we should resume the target transparently. */
5722
5723 removed_any = 0;
5724
5725 for (bs = bs_head; bs != NULL; bs = bs->next)
5726 {
5727 if (!bs->stop)
5728 continue;
5729
5730 b = bs->breakpoint_at;
5731 b->ops->check_status (bs);
5732 if (bs->stop)
5733 {
5734 bpstat_check_breakpoint_conditions (bs, ptid);
5735
5736 if (bs->stop)
5737 {
5738 ++(b->hit_count);
5739 observer_notify_breakpoint_modified (b);
5740
5741 /* We will stop here. */
5742 if (b->disposition == disp_disable)
5743 {
5744 --(b->enable_count);
5745 if (b->enable_count <= 0)
5746 b->enable_state = bp_disabled;
5747 removed_any = 1;
5748 }
5749 if (b->silent)
5750 bs->print = 0;
5751 bs->commands = b->commands;
5752 incref_counted_command_line (bs->commands);
5753 if (command_line_is_silent (bs->commands
5754 ? bs->commands->commands : NULL))
5755 bs->print = 0;
5756
5757 b->ops->after_condition_true (bs);
5758 }
5759
5760 }
5761
5762 /* Print nothing for this entry if we don't stop or don't
5763 print. */
5764 if (!bs->stop || !bs->print)
5765 bs->print_it = print_it_noop;
5766 }
5767
5768 /* If we aren't stopping, the value of some hardware watchpoint may
5769 not have changed, but the intermediate memory locations we are
5770 watching may have. Don't bother if we're stopping; this will get
5771 done later. */
5772 need_remove_insert = 0;
5773 if (! bpstat_causes_stop (bs_head))
5774 for (bs = bs_head; bs != NULL; bs = bs->next)
5775 if (!bs->stop
5776 && bs->breakpoint_at
5777 && is_hardware_watchpoint (bs->breakpoint_at))
5778 {
5779 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5780
5781 update_watchpoint (w, 0 /* don't reparse. */);
5782 need_remove_insert = 1;
5783 }
5784
5785 if (need_remove_insert)
5786 update_global_location_list (UGLL_MAY_INSERT);
5787 else if (removed_any)
5788 update_global_location_list (UGLL_DONT_INSERT);
5789
5790 return bs_head;
5791 }
5792
5793 static void
5794 handle_jit_event (void)
5795 {
5796 struct frame_info *frame;
5797 struct gdbarch *gdbarch;
5798
5799 if (debug_infrun)
5800 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5801
5802 /* Switch terminal for any messages produced by
5803 breakpoint_re_set. */
5804 target_terminal_ours_for_output ();
5805
5806 frame = get_current_frame ();
5807 gdbarch = get_frame_arch (frame);
5808
5809 jit_event_handler (gdbarch);
5810
5811 target_terminal_inferior ();
5812 }
5813
5814 /* Prepare WHAT final decision for infrun. */
5815
5816 /* Decide what infrun needs to do with this bpstat. */
5817
5818 struct bpstat_what
5819 bpstat_what (bpstat bs_head)
5820 {
5821 struct bpstat_what retval;
5822 bpstat bs;
5823
5824 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5825 retval.call_dummy = STOP_NONE;
5826 retval.is_longjmp = 0;
5827
5828 for (bs = bs_head; bs != NULL; bs = bs->next)
5829 {
5830 /* Extract this BS's action. After processing each BS, we check
5831 if its action overrides all we've seem so far. */
5832 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5833 enum bptype bptype;
5834
5835 if (bs->breakpoint_at == NULL)
5836 {
5837 /* I suspect this can happen if it was a momentary
5838 breakpoint which has since been deleted. */
5839 bptype = bp_none;
5840 }
5841 else
5842 bptype = bs->breakpoint_at->type;
5843
5844 switch (bptype)
5845 {
5846 case bp_none:
5847 break;
5848 case bp_breakpoint:
5849 case bp_hardware_breakpoint:
5850 case bp_single_step:
5851 case bp_until:
5852 case bp_finish:
5853 case bp_shlib_event:
5854 if (bs->stop)
5855 {
5856 if (bs->print)
5857 this_action = BPSTAT_WHAT_STOP_NOISY;
5858 else
5859 this_action = BPSTAT_WHAT_STOP_SILENT;
5860 }
5861 else
5862 this_action = BPSTAT_WHAT_SINGLE;
5863 break;
5864 case bp_watchpoint:
5865 case bp_hardware_watchpoint:
5866 case bp_read_watchpoint:
5867 case bp_access_watchpoint:
5868 if (bs->stop)
5869 {
5870 if (bs->print)
5871 this_action = BPSTAT_WHAT_STOP_NOISY;
5872 else
5873 this_action = BPSTAT_WHAT_STOP_SILENT;
5874 }
5875 else
5876 {
5877 /* There was a watchpoint, but we're not stopping.
5878 This requires no further action. */
5879 }
5880 break;
5881 case bp_longjmp:
5882 case bp_longjmp_call_dummy:
5883 case bp_exception:
5884 if (bs->stop)
5885 {
5886 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5887 retval.is_longjmp = bptype != bp_exception;
5888 }
5889 else
5890 this_action = BPSTAT_WHAT_SINGLE;
5891 break;
5892 case bp_longjmp_resume:
5893 case bp_exception_resume:
5894 if (bs->stop)
5895 {
5896 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5897 retval.is_longjmp = bptype == bp_longjmp_resume;
5898 }
5899 else
5900 this_action = BPSTAT_WHAT_SINGLE;
5901 break;
5902 case bp_step_resume:
5903 if (bs->stop)
5904 this_action = BPSTAT_WHAT_STEP_RESUME;
5905 else
5906 {
5907 /* It is for the wrong frame. */
5908 this_action = BPSTAT_WHAT_SINGLE;
5909 }
5910 break;
5911 case bp_hp_step_resume:
5912 if (bs->stop)
5913 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5914 else
5915 {
5916 /* It is for the wrong frame. */
5917 this_action = BPSTAT_WHAT_SINGLE;
5918 }
5919 break;
5920 case bp_watchpoint_scope:
5921 case bp_thread_event:
5922 case bp_overlay_event:
5923 case bp_longjmp_master:
5924 case bp_std_terminate_master:
5925 case bp_exception_master:
5926 this_action = BPSTAT_WHAT_SINGLE;
5927 break;
5928 case bp_catchpoint:
5929 if (bs->stop)
5930 {
5931 if (bs->print)
5932 this_action = BPSTAT_WHAT_STOP_NOISY;
5933 else
5934 this_action = BPSTAT_WHAT_STOP_SILENT;
5935 }
5936 else
5937 {
5938 /* There was a catchpoint, but we're not stopping.
5939 This requires no further action. */
5940 }
5941 break;
5942 case bp_jit_event:
5943 this_action = BPSTAT_WHAT_SINGLE;
5944 break;
5945 case bp_call_dummy:
5946 /* Make sure the action is stop (silent or noisy),
5947 so infrun.c pops the dummy frame. */
5948 retval.call_dummy = STOP_STACK_DUMMY;
5949 this_action = BPSTAT_WHAT_STOP_SILENT;
5950 break;
5951 case bp_std_terminate:
5952 /* Make sure the action is stop (silent or noisy),
5953 so infrun.c pops the dummy frame. */
5954 retval.call_dummy = STOP_STD_TERMINATE;
5955 this_action = BPSTAT_WHAT_STOP_SILENT;
5956 break;
5957 case bp_tracepoint:
5958 case bp_fast_tracepoint:
5959 case bp_static_tracepoint:
5960 /* Tracepoint hits should not be reported back to GDB, and
5961 if one got through somehow, it should have been filtered
5962 out already. */
5963 internal_error (__FILE__, __LINE__,
5964 _("bpstat_what: tracepoint encountered"));
5965 break;
5966 case bp_gnu_ifunc_resolver:
5967 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5968 this_action = BPSTAT_WHAT_SINGLE;
5969 break;
5970 case bp_gnu_ifunc_resolver_return:
5971 /* The breakpoint will be removed, execution will restart from the
5972 PC of the former breakpoint. */
5973 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5974 break;
5975
5976 case bp_dprintf:
5977 if (bs->stop)
5978 this_action = BPSTAT_WHAT_STOP_SILENT;
5979 else
5980 this_action = BPSTAT_WHAT_SINGLE;
5981 break;
5982
5983 default:
5984 internal_error (__FILE__, __LINE__,
5985 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5986 }
5987
5988 retval.main_action = std::max (retval.main_action, this_action);
5989 }
5990
5991 return retval;
5992 }
5993
5994 void
5995 bpstat_run_callbacks (bpstat bs_head)
5996 {
5997 bpstat bs;
5998
5999 for (bs = bs_head; bs != NULL; bs = bs->next)
6000 {
6001 struct breakpoint *b = bs->breakpoint_at;
6002
6003 if (b == NULL)
6004 continue;
6005 switch (b->type)
6006 {
6007 case bp_jit_event:
6008 handle_jit_event ();
6009 break;
6010 case bp_gnu_ifunc_resolver:
6011 gnu_ifunc_resolver_stop (b);
6012 break;
6013 case bp_gnu_ifunc_resolver_return:
6014 gnu_ifunc_resolver_return_stop (b);
6015 break;
6016 }
6017 }
6018 }
6019
6020 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6021 without hardware support). This isn't related to a specific bpstat,
6022 just to things like whether watchpoints are set. */
6023
6024 int
6025 bpstat_should_step (void)
6026 {
6027 struct breakpoint *b;
6028
6029 ALL_BREAKPOINTS (b)
6030 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6031 return 1;
6032 return 0;
6033 }
6034
6035 int
6036 bpstat_causes_stop (bpstat bs)
6037 {
6038 for (; bs != NULL; bs = bs->next)
6039 if (bs->stop)
6040 return 1;
6041
6042 return 0;
6043 }
6044
6045 \f
6046
6047 /* Compute a string of spaces suitable to indent the next line
6048 so it starts at the position corresponding to the table column
6049 named COL_NAME in the currently active table of UIOUT. */
6050
6051 static char *
6052 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6053 {
6054 static char wrap_indent[80];
6055 int i, total_width, width, align;
6056 const char *text;
6057
6058 total_width = 0;
6059 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6060 {
6061 if (strcmp (text, col_name) == 0)
6062 {
6063 gdb_assert (total_width < sizeof wrap_indent);
6064 memset (wrap_indent, ' ', total_width);
6065 wrap_indent[total_width] = 0;
6066
6067 return wrap_indent;
6068 }
6069
6070 total_width += width + 1;
6071 }
6072
6073 return NULL;
6074 }
6075
6076 /* Determine if the locations of this breakpoint will have their conditions
6077 evaluated by the target, host or a mix of both. Returns the following:
6078
6079 "host": Host evals condition.
6080 "host or target": Host or Target evals condition.
6081 "target": Target evals condition.
6082 */
6083
6084 static const char *
6085 bp_condition_evaluator (struct breakpoint *b)
6086 {
6087 struct bp_location *bl;
6088 char host_evals = 0;
6089 char target_evals = 0;
6090
6091 if (!b)
6092 return NULL;
6093
6094 if (!is_breakpoint (b))
6095 return NULL;
6096
6097 if (gdb_evaluates_breakpoint_condition_p ()
6098 || !target_supports_evaluation_of_breakpoint_conditions ())
6099 return condition_evaluation_host;
6100
6101 for (bl = b->loc; bl; bl = bl->next)
6102 {
6103 if (bl->cond_bytecode)
6104 target_evals++;
6105 else
6106 host_evals++;
6107 }
6108
6109 if (host_evals && target_evals)
6110 return condition_evaluation_both;
6111 else if (target_evals)
6112 return condition_evaluation_target;
6113 else
6114 return condition_evaluation_host;
6115 }
6116
6117 /* Determine the breakpoint location's condition evaluator. This is
6118 similar to bp_condition_evaluator, but for locations. */
6119
6120 static const char *
6121 bp_location_condition_evaluator (struct bp_location *bl)
6122 {
6123 if (bl && !is_breakpoint (bl->owner))
6124 return NULL;
6125
6126 if (gdb_evaluates_breakpoint_condition_p ()
6127 || !target_supports_evaluation_of_breakpoint_conditions ())
6128 return condition_evaluation_host;
6129
6130 if (bl && bl->cond_bytecode)
6131 return condition_evaluation_target;
6132 else
6133 return condition_evaluation_host;
6134 }
6135
6136 /* Print the LOC location out of the list of B->LOC locations. */
6137
6138 static void
6139 print_breakpoint_location (struct breakpoint *b,
6140 struct bp_location *loc)
6141 {
6142 struct ui_out *uiout = current_uiout;
6143
6144 scoped_restore_current_program_space restore_pspace;
6145
6146 if (loc != NULL && loc->shlib_disabled)
6147 loc = NULL;
6148
6149 if (loc != NULL)
6150 set_current_program_space (loc->pspace);
6151
6152 if (b->display_canonical)
6153 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6154 else if (loc && loc->symtab)
6155 {
6156 struct symbol *sym
6157 = find_pc_sect_function (loc->address, loc->section);
6158 if (sym)
6159 {
6160 uiout->text ("in ");
6161 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6162 uiout->text (" ");
6163 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6164 uiout->text ("at ");
6165 }
6166 uiout->field_string ("file",
6167 symtab_to_filename_for_display (loc->symtab));
6168 uiout->text (":");
6169
6170 if (uiout->is_mi_like_p ())
6171 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6172
6173 uiout->field_int ("line", loc->line_number);
6174 }
6175 else if (loc)
6176 {
6177 string_file stb;
6178
6179 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6180 demangle, "");
6181 uiout->field_stream ("at", stb);
6182 }
6183 else
6184 {
6185 uiout->field_string ("pending",
6186 event_location_to_string (b->location.get ()));
6187 /* If extra_string is available, it could be holding a condition
6188 or dprintf arguments. In either case, make sure it is printed,
6189 too, but only for non-MI streams. */
6190 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6191 {
6192 if (b->type == bp_dprintf)
6193 uiout->text (",");
6194 else
6195 uiout->text (" ");
6196 uiout->text (b->extra_string);
6197 }
6198 }
6199
6200 if (loc && is_breakpoint (b)
6201 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6202 && bp_condition_evaluator (b) == condition_evaluation_both)
6203 {
6204 uiout->text (" (");
6205 uiout->field_string ("evaluated-by",
6206 bp_location_condition_evaluator (loc));
6207 uiout->text (")");
6208 }
6209 }
6210
6211 static const char *
6212 bptype_string (enum bptype type)
6213 {
6214 struct ep_type_description
6215 {
6216 enum bptype type;
6217 const char *description;
6218 };
6219 static struct ep_type_description bptypes[] =
6220 {
6221 {bp_none, "?deleted?"},
6222 {bp_breakpoint, "breakpoint"},
6223 {bp_hardware_breakpoint, "hw breakpoint"},
6224 {bp_single_step, "sw single-step"},
6225 {bp_until, "until"},
6226 {bp_finish, "finish"},
6227 {bp_watchpoint, "watchpoint"},
6228 {bp_hardware_watchpoint, "hw watchpoint"},
6229 {bp_read_watchpoint, "read watchpoint"},
6230 {bp_access_watchpoint, "acc watchpoint"},
6231 {bp_longjmp, "longjmp"},
6232 {bp_longjmp_resume, "longjmp resume"},
6233 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6234 {bp_exception, "exception"},
6235 {bp_exception_resume, "exception resume"},
6236 {bp_step_resume, "step resume"},
6237 {bp_hp_step_resume, "high-priority step resume"},
6238 {bp_watchpoint_scope, "watchpoint scope"},
6239 {bp_call_dummy, "call dummy"},
6240 {bp_std_terminate, "std::terminate"},
6241 {bp_shlib_event, "shlib events"},
6242 {bp_thread_event, "thread events"},
6243 {bp_overlay_event, "overlay events"},
6244 {bp_longjmp_master, "longjmp master"},
6245 {bp_std_terminate_master, "std::terminate master"},
6246 {bp_exception_master, "exception master"},
6247 {bp_catchpoint, "catchpoint"},
6248 {bp_tracepoint, "tracepoint"},
6249 {bp_fast_tracepoint, "fast tracepoint"},
6250 {bp_static_tracepoint, "static tracepoint"},
6251 {bp_dprintf, "dprintf"},
6252 {bp_jit_event, "jit events"},
6253 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6254 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6255 };
6256
6257 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6258 || ((int) type != bptypes[(int) type].type))
6259 internal_error (__FILE__, __LINE__,
6260 _("bptypes table does not describe type #%d."),
6261 (int) type);
6262
6263 return bptypes[(int) type].description;
6264 }
6265
6266 /* For MI, output a field named 'thread-groups' with a list as the value.
6267 For CLI, prefix the list with the string 'inf'. */
6268
6269 static void
6270 output_thread_groups (struct ui_out *uiout,
6271 const char *field_name,
6272 VEC(int) *inf_num,
6273 int mi_only)
6274 {
6275 int is_mi = uiout->is_mi_like_p ();
6276 int inf;
6277 int i;
6278
6279 /* For backward compatibility, don't display inferiors in CLI unless
6280 there are several. Always display them for MI. */
6281 if (!is_mi && mi_only)
6282 return;
6283
6284 ui_out_emit_list list_emitter (uiout, field_name);
6285
6286 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6287 {
6288 if (is_mi)
6289 {
6290 char mi_group[10];
6291
6292 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6293 uiout->field_string (NULL, mi_group);
6294 }
6295 else
6296 {
6297 if (i == 0)
6298 uiout->text (" inf ");
6299 else
6300 uiout->text (", ");
6301
6302 uiout->text (plongest (inf));
6303 }
6304 }
6305 }
6306
6307 /* Print B to gdb_stdout. */
6308
6309 static void
6310 print_one_breakpoint_location (struct breakpoint *b,
6311 struct bp_location *loc,
6312 int loc_number,
6313 struct bp_location **last_loc,
6314 int allflag)
6315 {
6316 struct command_line *l;
6317 static char bpenables[] = "nynny";
6318
6319 struct ui_out *uiout = current_uiout;
6320 int header_of_multiple = 0;
6321 int part_of_multiple = (loc != NULL);
6322 struct value_print_options opts;
6323
6324 get_user_print_options (&opts);
6325
6326 gdb_assert (!loc || loc_number != 0);
6327 /* See comment in print_one_breakpoint concerning treatment of
6328 breakpoints with single disabled location. */
6329 if (loc == NULL
6330 && (b->loc != NULL
6331 && (b->loc->next != NULL || !b->loc->enabled)))
6332 header_of_multiple = 1;
6333 if (loc == NULL)
6334 loc = b->loc;
6335
6336 annotate_record ();
6337
6338 /* 1 */
6339 annotate_field (0);
6340 if (part_of_multiple)
6341 {
6342 char *formatted;
6343 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6344 uiout->field_string ("number", formatted);
6345 xfree (formatted);
6346 }
6347 else
6348 {
6349 uiout->field_int ("number", b->number);
6350 }
6351
6352 /* 2 */
6353 annotate_field (1);
6354 if (part_of_multiple)
6355 uiout->field_skip ("type");
6356 else
6357 uiout->field_string ("type", bptype_string (b->type));
6358
6359 /* 3 */
6360 annotate_field (2);
6361 if (part_of_multiple)
6362 uiout->field_skip ("disp");
6363 else
6364 uiout->field_string ("disp", bpdisp_text (b->disposition));
6365
6366
6367 /* 4 */
6368 annotate_field (3);
6369 if (part_of_multiple)
6370 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6371 else
6372 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6373 uiout->spaces (2);
6374
6375
6376 /* 5 and 6 */
6377 if (b->ops != NULL && b->ops->print_one != NULL)
6378 {
6379 /* Although the print_one can possibly print all locations,
6380 calling it here is not likely to get any nice result. So,
6381 make sure there's just one location. */
6382 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6383 b->ops->print_one (b, last_loc);
6384 }
6385 else
6386 switch (b->type)
6387 {
6388 case bp_none:
6389 internal_error (__FILE__, __LINE__,
6390 _("print_one_breakpoint: bp_none encountered\n"));
6391 break;
6392
6393 case bp_watchpoint:
6394 case bp_hardware_watchpoint:
6395 case bp_read_watchpoint:
6396 case bp_access_watchpoint:
6397 {
6398 struct watchpoint *w = (struct watchpoint *) b;
6399
6400 /* Field 4, the address, is omitted (which makes the columns
6401 not line up too nicely with the headers, but the effect
6402 is relatively readable). */
6403 if (opts.addressprint)
6404 uiout->field_skip ("addr");
6405 annotate_field (5);
6406 uiout->field_string ("what", w->exp_string);
6407 }
6408 break;
6409
6410 case bp_breakpoint:
6411 case bp_hardware_breakpoint:
6412 case bp_single_step:
6413 case bp_until:
6414 case bp_finish:
6415 case bp_longjmp:
6416 case bp_longjmp_resume:
6417 case bp_longjmp_call_dummy:
6418 case bp_exception:
6419 case bp_exception_resume:
6420 case bp_step_resume:
6421 case bp_hp_step_resume:
6422 case bp_watchpoint_scope:
6423 case bp_call_dummy:
6424 case bp_std_terminate:
6425 case bp_shlib_event:
6426 case bp_thread_event:
6427 case bp_overlay_event:
6428 case bp_longjmp_master:
6429 case bp_std_terminate_master:
6430 case bp_exception_master:
6431 case bp_tracepoint:
6432 case bp_fast_tracepoint:
6433 case bp_static_tracepoint:
6434 case bp_dprintf:
6435 case bp_jit_event:
6436 case bp_gnu_ifunc_resolver:
6437 case bp_gnu_ifunc_resolver_return:
6438 if (opts.addressprint)
6439 {
6440 annotate_field (4);
6441 if (header_of_multiple)
6442 uiout->field_string ("addr", "<MULTIPLE>");
6443 else if (b->loc == NULL || loc->shlib_disabled)
6444 uiout->field_string ("addr", "<PENDING>");
6445 else
6446 uiout->field_core_addr ("addr",
6447 loc->gdbarch, loc->address);
6448 }
6449 annotate_field (5);
6450 if (!header_of_multiple)
6451 print_breakpoint_location (b, loc);
6452 if (b->loc)
6453 *last_loc = b->loc;
6454 break;
6455 }
6456
6457
6458 if (loc != NULL && !header_of_multiple)
6459 {
6460 struct inferior *inf;
6461 VEC(int) *inf_num = NULL;
6462 int mi_only = 1;
6463
6464 ALL_INFERIORS (inf)
6465 {
6466 if (inf->pspace == loc->pspace)
6467 VEC_safe_push (int, inf_num, inf->num);
6468 }
6469
6470 /* For backward compatibility, don't display inferiors in CLI unless
6471 there are several. Always display for MI. */
6472 if (allflag
6473 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6474 && (number_of_program_spaces () > 1
6475 || number_of_inferiors () > 1)
6476 /* LOC is for existing B, it cannot be in
6477 moribund_locations and thus having NULL OWNER. */
6478 && loc->owner->type != bp_catchpoint))
6479 mi_only = 0;
6480 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6481 VEC_free (int, inf_num);
6482 }
6483
6484 if (!part_of_multiple)
6485 {
6486 if (b->thread != -1)
6487 {
6488 /* FIXME: This seems to be redundant and lost here; see the
6489 "stop only in" line a little further down. */
6490 uiout->text (" thread ");
6491 uiout->field_int ("thread", b->thread);
6492 }
6493 else if (b->task != 0)
6494 {
6495 uiout->text (" task ");
6496 uiout->field_int ("task", b->task);
6497 }
6498 }
6499
6500 uiout->text ("\n");
6501
6502 if (!part_of_multiple)
6503 b->ops->print_one_detail (b, uiout);
6504
6505 if (part_of_multiple && frame_id_p (b->frame_id))
6506 {
6507 annotate_field (6);
6508 uiout->text ("\tstop only in stack frame at ");
6509 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6510 the frame ID. */
6511 uiout->field_core_addr ("frame",
6512 b->gdbarch, b->frame_id.stack_addr);
6513 uiout->text ("\n");
6514 }
6515
6516 if (!part_of_multiple && b->cond_string)
6517 {
6518 annotate_field (7);
6519 if (is_tracepoint (b))
6520 uiout->text ("\ttrace only if ");
6521 else
6522 uiout->text ("\tstop only if ");
6523 uiout->field_string ("cond", b->cond_string);
6524
6525 /* Print whether the target is doing the breakpoint's condition
6526 evaluation. If GDB is doing the evaluation, don't print anything. */
6527 if (is_breakpoint (b)
6528 && breakpoint_condition_evaluation_mode ()
6529 == condition_evaluation_target)
6530 {
6531 uiout->text (" (");
6532 uiout->field_string ("evaluated-by",
6533 bp_condition_evaluator (b));
6534 uiout->text (" evals)");
6535 }
6536 uiout->text ("\n");
6537 }
6538
6539 if (!part_of_multiple && b->thread != -1)
6540 {
6541 /* FIXME should make an annotation for this. */
6542 uiout->text ("\tstop only in thread ");
6543 if (uiout->is_mi_like_p ())
6544 uiout->field_int ("thread", b->thread);
6545 else
6546 {
6547 struct thread_info *thr = find_thread_global_id (b->thread);
6548
6549 uiout->field_string ("thread", print_thread_id (thr));
6550 }
6551 uiout->text ("\n");
6552 }
6553
6554 if (!part_of_multiple)
6555 {
6556 if (b->hit_count)
6557 {
6558 /* FIXME should make an annotation for this. */
6559 if (is_catchpoint (b))
6560 uiout->text ("\tcatchpoint");
6561 else if (is_tracepoint (b))
6562 uiout->text ("\ttracepoint");
6563 else
6564 uiout->text ("\tbreakpoint");
6565 uiout->text (" already hit ");
6566 uiout->field_int ("times", b->hit_count);
6567 if (b->hit_count == 1)
6568 uiout->text (" time\n");
6569 else
6570 uiout->text (" times\n");
6571 }
6572 else
6573 {
6574 /* Output the count also if it is zero, but only if this is mi. */
6575 if (uiout->is_mi_like_p ())
6576 uiout->field_int ("times", b->hit_count);
6577 }
6578 }
6579
6580 if (!part_of_multiple && b->ignore_count)
6581 {
6582 annotate_field (8);
6583 uiout->text ("\tignore next ");
6584 uiout->field_int ("ignore", b->ignore_count);
6585 uiout->text (" hits\n");
6586 }
6587
6588 /* Note that an enable count of 1 corresponds to "enable once"
6589 behavior, which is reported by the combination of enablement and
6590 disposition, so we don't need to mention it here. */
6591 if (!part_of_multiple && b->enable_count > 1)
6592 {
6593 annotate_field (8);
6594 uiout->text ("\tdisable after ");
6595 /* Tweak the wording to clarify that ignore and enable counts
6596 are distinct, and have additive effect. */
6597 if (b->ignore_count)
6598 uiout->text ("additional ");
6599 else
6600 uiout->text ("next ");
6601 uiout->field_int ("enable", b->enable_count);
6602 uiout->text (" hits\n");
6603 }
6604
6605 if (!part_of_multiple && is_tracepoint (b))
6606 {
6607 struct tracepoint *tp = (struct tracepoint *) b;
6608
6609 if (tp->traceframe_usage)
6610 {
6611 uiout->text ("\ttrace buffer usage ");
6612 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6613 uiout->text (" bytes\n");
6614 }
6615 }
6616
6617 l = b->commands ? b->commands->commands : NULL;
6618 if (!part_of_multiple && l)
6619 {
6620 annotate_field (9);
6621 ui_out_emit_tuple tuple_emitter (uiout, "script");
6622 print_command_lines (uiout, l, 4);
6623 }
6624
6625 if (is_tracepoint (b))
6626 {
6627 struct tracepoint *t = (struct tracepoint *) b;
6628
6629 if (!part_of_multiple && t->pass_count)
6630 {
6631 annotate_field (10);
6632 uiout->text ("\tpass count ");
6633 uiout->field_int ("pass", t->pass_count);
6634 uiout->text (" \n");
6635 }
6636
6637 /* Don't display it when tracepoint or tracepoint location is
6638 pending. */
6639 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6640 {
6641 annotate_field (11);
6642
6643 if (uiout->is_mi_like_p ())
6644 uiout->field_string ("installed",
6645 loc->inserted ? "y" : "n");
6646 else
6647 {
6648 if (loc->inserted)
6649 uiout->text ("\t");
6650 else
6651 uiout->text ("\tnot ");
6652 uiout->text ("installed on target\n");
6653 }
6654 }
6655 }
6656
6657 if (uiout->is_mi_like_p () && !part_of_multiple)
6658 {
6659 if (is_watchpoint (b))
6660 {
6661 struct watchpoint *w = (struct watchpoint *) b;
6662
6663 uiout->field_string ("original-location", w->exp_string);
6664 }
6665 else if (b->location != NULL
6666 && event_location_to_string (b->location.get ()) != NULL)
6667 uiout->field_string ("original-location",
6668 event_location_to_string (b->location.get ()));
6669 }
6670 }
6671
6672 static void
6673 print_one_breakpoint (struct breakpoint *b,
6674 struct bp_location **last_loc,
6675 int allflag)
6676 {
6677 struct ui_out *uiout = current_uiout;
6678
6679 {
6680 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6681
6682 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6683 }
6684
6685 /* If this breakpoint has custom print function,
6686 it's already printed. Otherwise, print individual
6687 locations, if any. */
6688 if (b->ops == NULL || b->ops->print_one == NULL)
6689 {
6690 /* If breakpoint has a single location that is disabled, we
6691 print it as if it had several locations, since otherwise it's
6692 hard to represent "breakpoint enabled, location disabled"
6693 situation.
6694
6695 Note that while hardware watchpoints have several locations
6696 internally, that's not a property exposed to user. */
6697 if (b->loc
6698 && !is_hardware_watchpoint (b)
6699 && (b->loc->next || !b->loc->enabled))
6700 {
6701 struct bp_location *loc;
6702 int n = 1;
6703
6704 for (loc = b->loc; loc; loc = loc->next, ++n)
6705 {
6706 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6707 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6708 }
6709 }
6710 }
6711 }
6712
6713 static int
6714 breakpoint_address_bits (struct breakpoint *b)
6715 {
6716 int print_address_bits = 0;
6717 struct bp_location *loc;
6718
6719 /* Software watchpoints that aren't watching memory don't have an
6720 address to print. */
6721 if (is_no_memory_software_watchpoint (b))
6722 return 0;
6723
6724 for (loc = b->loc; loc; loc = loc->next)
6725 {
6726 int addr_bit;
6727
6728 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6729 if (addr_bit > print_address_bits)
6730 print_address_bits = addr_bit;
6731 }
6732
6733 return print_address_bits;
6734 }
6735
6736 struct captured_breakpoint_query_args
6737 {
6738 int bnum;
6739 };
6740
6741 static int
6742 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6743 {
6744 struct captured_breakpoint_query_args *args
6745 = (struct captured_breakpoint_query_args *) data;
6746 struct breakpoint *b;
6747 struct bp_location *dummy_loc = NULL;
6748
6749 ALL_BREAKPOINTS (b)
6750 {
6751 if (args->bnum == b->number)
6752 {
6753 print_one_breakpoint (b, &dummy_loc, 0);
6754 return GDB_RC_OK;
6755 }
6756 }
6757 return GDB_RC_NONE;
6758 }
6759
6760 enum gdb_rc
6761 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6762 char **error_message)
6763 {
6764 struct captured_breakpoint_query_args args;
6765
6766 args.bnum = bnum;
6767 /* For the moment we don't trust print_one_breakpoint() to not throw
6768 an error. */
6769 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6770 error_message, RETURN_MASK_ALL) < 0)
6771 return GDB_RC_FAIL;
6772 else
6773 return GDB_RC_OK;
6774 }
6775
6776 /* Return true if this breakpoint was set by the user, false if it is
6777 internal or momentary. */
6778
6779 int
6780 user_breakpoint_p (struct breakpoint *b)
6781 {
6782 return b->number > 0;
6783 }
6784
6785 /* See breakpoint.h. */
6786
6787 int
6788 pending_breakpoint_p (struct breakpoint *b)
6789 {
6790 return b->loc == NULL;
6791 }
6792
6793 /* Print information on user settable breakpoint (watchpoint, etc)
6794 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6795 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6796 FILTER is non-NULL, call it on each breakpoint and only include the
6797 ones for which it returns non-zero. Return the total number of
6798 breakpoints listed. */
6799
6800 static int
6801 breakpoint_1 (char *args, int allflag,
6802 int (*filter) (const struct breakpoint *))
6803 {
6804 struct breakpoint *b;
6805 struct bp_location *last_loc = NULL;
6806 int nr_printable_breakpoints;
6807 struct cleanup *bkpttbl_chain;
6808 struct value_print_options opts;
6809 int print_address_bits = 0;
6810 int print_type_col_width = 14;
6811 struct ui_out *uiout = current_uiout;
6812
6813 get_user_print_options (&opts);
6814
6815 /* Compute the number of rows in the table, as well as the size
6816 required for address fields. */
6817 nr_printable_breakpoints = 0;
6818 ALL_BREAKPOINTS (b)
6819 {
6820 /* If we have a filter, only list the breakpoints it accepts. */
6821 if (filter && !filter (b))
6822 continue;
6823
6824 /* If we have an "args" string, it is a list of breakpoints to
6825 accept. Skip the others. */
6826 if (args != NULL && *args != '\0')
6827 {
6828 if (allflag && parse_and_eval_long (args) != b->number)
6829 continue;
6830 if (!allflag && !number_is_in_list (args, b->number))
6831 continue;
6832 }
6833
6834 if (allflag || user_breakpoint_p (b))
6835 {
6836 int addr_bit, type_len;
6837
6838 addr_bit = breakpoint_address_bits (b);
6839 if (addr_bit > print_address_bits)
6840 print_address_bits = addr_bit;
6841
6842 type_len = strlen (bptype_string (b->type));
6843 if (type_len > print_type_col_width)
6844 print_type_col_width = type_len;
6845
6846 nr_printable_breakpoints++;
6847 }
6848 }
6849
6850 if (opts.addressprint)
6851 bkpttbl_chain
6852 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6853 nr_printable_breakpoints,
6854 "BreakpointTable");
6855 else
6856 bkpttbl_chain
6857 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6858 nr_printable_breakpoints,
6859 "BreakpointTable");
6860
6861 if (nr_printable_breakpoints > 0)
6862 annotate_breakpoints_headers ();
6863 if (nr_printable_breakpoints > 0)
6864 annotate_field (0);
6865 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6866 if (nr_printable_breakpoints > 0)
6867 annotate_field (1);
6868 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6869 if (nr_printable_breakpoints > 0)
6870 annotate_field (2);
6871 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6872 if (nr_printable_breakpoints > 0)
6873 annotate_field (3);
6874 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6875 if (opts.addressprint)
6876 {
6877 if (nr_printable_breakpoints > 0)
6878 annotate_field (4);
6879 if (print_address_bits <= 32)
6880 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6881 else
6882 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6883 }
6884 if (nr_printable_breakpoints > 0)
6885 annotate_field (5);
6886 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6887 uiout->table_body ();
6888 if (nr_printable_breakpoints > 0)
6889 annotate_breakpoints_table ();
6890
6891 ALL_BREAKPOINTS (b)
6892 {
6893 QUIT;
6894 /* If we have a filter, only list the breakpoints it accepts. */
6895 if (filter && !filter (b))
6896 continue;
6897
6898 /* If we have an "args" string, it is a list of breakpoints to
6899 accept. Skip the others. */
6900
6901 if (args != NULL && *args != '\0')
6902 {
6903 if (allflag) /* maintenance info breakpoint */
6904 {
6905 if (parse_and_eval_long (args) != b->number)
6906 continue;
6907 }
6908 else /* all others */
6909 {
6910 if (!number_is_in_list (args, b->number))
6911 continue;
6912 }
6913 }
6914 /* We only print out user settable breakpoints unless the
6915 allflag is set. */
6916 if (allflag || user_breakpoint_p (b))
6917 print_one_breakpoint (b, &last_loc, allflag);
6918 }
6919
6920 do_cleanups (bkpttbl_chain);
6921
6922 if (nr_printable_breakpoints == 0)
6923 {
6924 /* If there's a filter, let the caller decide how to report
6925 empty list. */
6926 if (!filter)
6927 {
6928 if (args == NULL || *args == '\0')
6929 uiout->message ("No breakpoints or watchpoints.\n");
6930 else
6931 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6932 args);
6933 }
6934 }
6935 else
6936 {
6937 if (last_loc && !server_command)
6938 set_next_address (last_loc->gdbarch, last_loc->address);
6939 }
6940
6941 /* FIXME? Should this be moved up so that it is only called when
6942 there have been breakpoints? */
6943 annotate_breakpoints_table_end ();
6944
6945 return nr_printable_breakpoints;
6946 }
6947
6948 /* Display the value of default-collect in a way that is generally
6949 compatible with the breakpoint list. */
6950
6951 static void
6952 default_collect_info (void)
6953 {
6954 struct ui_out *uiout = current_uiout;
6955
6956 /* If it has no value (which is frequently the case), say nothing; a
6957 message like "No default-collect." gets in user's face when it's
6958 not wanted. */
6959 if (!*default_collect)
6960 return;
6961
6962 /* The following phrase lines up nicely with per-tracepoint collect
6963 actions. */
6964 uiout->text ("default collect ");
6965 uiout->field_string ("default-collect", default_collect);
6966 uiout->text (" \n");
6967 }
6968
6969 static void
6970 breakpoints_info (char *args, int from_tty)
6971 {
6972 breakpoint_1 (args, 0, NULL);
6973
6974 default_collect_info ();
6975 }
6976
6977 static void
6978 watchpoints_info (char *args, int from_tty)
6979 {
6980 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6981 struct ui_out *uiout = current_uiout;
6982
6983 if (num_printed == 0)
6984 {
6985 if (args == NULL || *args == '\0')
6986 uiout->message ("No watchpoints.\n");
6987 else
6988 uiout->message ("No watchpoint matching '%s'.\n", args);
6989 }
6990 }
6991
6992 static void
6993 maintenance_info_breakpoints (char *args, int from_tty)
6994 {
6995 breakpoint_1 (args, 1, NULL);
6996
6997 default_collect_info ();
6998 }
6999
7000 static int
7001 breakpoint_has_pc (struct breakpoint *b,
7002 struct program_space *pspace,
7003 CORE_ADDR pc, struct obj_section *section)
7004 {
7005 struct bp_location *bl = b->loc;
7006
7007 for (; bl; bl = bl->next)
7008 {
7009 if (bl->pspace == pspace
7010 && bl->address == pc
7011 && (!overlay_debugging || bl->section == section))
7012 return 1;
7013 }
7014 return 0;
7015 }
7016
7017 /* Print a message describing any user-breakpoints set at PC. This
7018 concerns with logical breakpoints, so we match program spaces, not
7019 address spaces. */
7020
7021 static void
7022 describe_other_breakpoints (struct gdbarch *gdbarch,
7023 struct program_space *pspace, CORE_ADDR pc,
7024 struct obj_section *section, int thread)
7025 {
7026 int others = 0;
7027 struct breakpoint *b;
7028
7029 ALL_BREAKPOINTS (b)
7030 others += (user_breakpoint_p (b)
7031 && breakpoint_has_pc (b, pspace, pc, section));
7032 if (others > 0)
7033 {
7034 if (others == 1)
7035 printf_filtered (_("Note: breakpoint "));
7036 else /* if (others == ???) */
7037 printf_filtered (_("Note: breakpoints "));
7038 ALL_BREAKPOINTS (b)
7039 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7040 {
7041 others--;
7042 printf_filtered ("%d", b->number);
7043 if (b->thread == -1 && thread != -1)
7044 printf_filtered (" (all threads)");
7045 else if (b->thread != -1)
7046 printf_filtered (" (thread %d)", b->thread);
7047 printf_filtered ("%s%s ",
7048 ((b->enable_state == bp_disabled
7049 || b->enable_state == bp_call_disabled)
7050 ? " (disabled)"
7051 : ""),
7052 (others > 1) ? ","
7053 : ((others == 1) ? " and" : ""));
7054 }
7055 printf_filtered (_("also set at pc "));
7056 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7057 printf_filtered (".\n");
7058 }
7059 }
7060 \f
7061
7062 /* Return true iff it is meaningful to use the address member of
7063 BPT locations. For some breakpoint types, the locations' address members
7064 are irrelevant and it makes no sense to attempt to compare them to other
7065 addresses (or use them for any other purpose either).
7066
7067 More specifically, each of the following breakpoint types will
7068 always have a zero valued location address and we don't want to mark
7069 breakpoints of any of these types to be a duplicate of an actual
7070 breakpoint location at address zero:
7071
7072 bp_watchpoint
7073 bp_catchpoint
7074
7075 */
7076
7077 static int
7078 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7079 {
7080 enum bptype type = bpt->type;
7081
7082 return (type != bp_watchpoint && type != bp_catchpoint);
7083 }
7084
7085 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7086 true if LOC1 and LOC2 represent the same watchpoint location. */
7087
7088 static int
7089 watchpoint_locations_match (struct bp_location *loc1,
7090 struct bp_location *loc2)
7091 {
7092 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7093 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7094
7095 /* Both of them must exist. */
7096 gdb_assert (w1 != NULL);
7097 gdb_assert (w2 != NULL);
7098
7099 /* If the target can evaluate the condition expression in hardware,
7100 then we we need to insert both watchpoints even if they are at
7101 the same place. Otherwise the watchpoint will only trigger when
7102 the condition of whichever watchpoint was inserted evaluates to
7103 true, not giving a chance for GDB to check the condition of the
7104 other watchpoint. */
7105 if ((w1->cond_exp
7106 && target_can_accel_watchpoint_condition (loc1->address,
7107 loc1->length,
7108 loc1->watchpoint_type,
7109 w1->cond_exp.get ()))
7110 || (w2->cond_exp
7111 && target_can_accel_watchpoint_condition (loc2->address,
7112 loc2->length,
7113 loc2->watchpoint_type,
7114 w2->cond_exp.get ())))
7115 return 0;
7116
7117 /* Note that this checks the owner's type, not the location's. In
7118 case the target does not support read watchpoints, but does
7119 support access watchpoints, we'll have bp_read_watchpoint
7120 watchpoints with hw_access locations. Those should be considered
7121 duplicates of hw_read locations. The hw_read locations will
7122 become hw_access locations later. */
7123 return (loc1->owner->type == loc2->owner->type
7124 && loc1->pspace->aspace == loc2->pspace->aspace
7125 && loc1->address == loc2->address
7126 && loc1->length == loc2->length);
7127 }
7128
7129 /* See breakpoint.h. */
7130
7131 int
7132 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7133 struct address_space *aspace2, CORE_ADDR addr2)
7134 {
7135 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7136 || aspace1 == aspace2)
7137 && addr1 == addr2);
7138 }
7139
7140 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7141 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7142 matches ASPACE2. On targets that have global breakpoints, the address
7143 space doesn't really matter. */
7144
7145 static int
7146 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7147 int len1, struct address_space *aspace2,
7148 CORE_ADDR addr2)
7149 {
7150 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7151 || aspace1 == aspace2)
7152 && addr2 >= addr1 && addr2 < addr1 + len1);
7153 }
7154
7155 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7156 a ranged breakpoint. In most targets, a match happens only if ASPACE
7157 matches the breakpoint's address space. On targets that have global
7158 breakpoints, the address space doesn't really matter. */
7159
7160 static int
7161 breakpoint_location_address_match (struct bp_location *bl,
7162 struct address_space *aspace,
7163 CORE_ADDR addr)
7164 {
7165 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7166 aspace, addr)
7167 || (bl->length
7168 && breakpoint_address_match_range (bl->pspace->aspace,
7169 bl->address, bl->length,
7170 aspace, addr)));
7171 }
7172
7173 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7174 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7175 match happens only if ASPACE matches the breakpoint's address
7176 space. On targets that have global breakpoints, the address space
7177 doesn't really matter. */
7178
7179 static int
7180 breakpoint_location_address_range_overlap (struct bp_location *bl,
7181 struct address_space *aspace,
7182 CORE_ADDR addr, int len)
7183 {
7184 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7185 || bl->pspace->aspace == aspace)
7186 {
7187 int bl_len = bl->length != 0 ? bl->length : 1;
7188
7189 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7190 return 1;
7191 }
7192 return 0;
7193 }
7194
7195 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7196 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7197 true, otherwise returns false. */
7198
7199 static int
7200 tracepoint_locations_match (struct bp_location *loc1,
7201 struct bp_location *loc2)
7202 {
7203 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7204 /* Since tracepoint locations are never duplicated with others', tracepoint
7205 locations at the same address of different tracepoints are regarded as
7206 different locations. */
7207 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7208 else
7209 return 0;
7210 }
7211
7212 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7213 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7214 represent the same location. */
7215
7216 static int
7217 breakpoint_locations_match (struct bp_location *loc1,
7218 struct bp_location *loc2)
7219 {
7220 int hw_point1, hw_point2;
7221
7222 /* Both of them must not be in moribund_locations. */
7223 gdb_assert (loc1->owner != NULL);
7224 gdb_assert (loc2->owner != NULL);
7225
7226 hw_point1 = is_hardware_watchpoint (loc1->owner);
7227 hw_point2 = is_hardware_watchpoint (loc2->owner);
7228
7229 if (hw_point1 != hw_point2)
7230 return 0;
7231 else if (hw_point1)
7232 return watchpoint_locations_match (loc1, loc2);
7233 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7234 return tracepoint_locations_match (loc1, loc2);
7235 else
7236 /* We compare bp_location.length in order to cover ranged breakpoints. */
7237 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7238 loc2->pspace->aspace, loc2->address)
7239 && loc1->length == loc2->length);
7240 }
7241
7242 static void
7243 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7244 int bnum, int have_bnum)
7245 {
7246 /* The longest string possibly returned by hex_string_custom
7247 is 50 chars. These must be at least that big for safety. */
7248 char astr1[64];
7249 char astr2[64];
7250
7251 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7252 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7253 if (have_bnum)
7254 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7255 bnum, astr1, astr2);
7256 else
7257 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7258 }
7259
7260 /* Adjust a breakpoint's address to account for architectural
7261 constraints on breakpoint placement. Return the adjusted address.
7262 Note: Very few targets require this kind of adjustment. For most
7263 targets, this function is simply the identity function. */
7264
7265 static CORE_ADDR
7266 adjust_breakpoint_address (struct gdbarch *gdbarch,
7267 CORE_ADDR bpaddr, enum bptype bptype)
7268 {
7269 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7270 {
7271 /* Very few targets need any kind of breakpoint adjustment. */
7272 return bpaddr;
7273 }
7274 else if (bptype == bp_watchpoint
7275 || bptype == bp_hardware_watchpoint
7276 || bptype == bp_read_watchpoint
7277 || bptype == bp_access_watchpoint
7278 || bptype == bp_catchpoint)
7279 {
7280 /* Watchpoints and the various bp_catch_* eventpoints should not
7281 have their addresses modified. */
7282 return bpaddr;
7283 }
7284 else if (bptype == bp_single_step)
7285 {
7286 /* Single-step breakpoints should not have their addresses
7287 modified. If there's any architectural constrain that
7288 applies to this address, then it should have already been
7289 taken into account when the breakpoint was created in the
7290 first place. If we didn't do this, stepping through e.g.,
7291 Thumb-2 IT blocks would break. */
7292 return bpaddr;
7293 }
7294 else
7295 {
7296 CORE_ADDR adjusted_bpaddr;
7297
7298 /* Some targets have architectural constraints on the placement
7299 of breakpoint instructions. Obtain the adjusted address. */
7300 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7301
7302 /* An adjusted breakpoint address can significantly alter
7303 a user's expectations. Print a warning if an adjustment
7304 is required. */
7305 if (adjusted_bpaddr != bpaddr)
7306 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7307
7308 return adjusted_bpaddr;
7309 }
7310 }
7311
7312 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7313 {
7314 bp_location *loc = this;
7315
7316 gdb_assert (ops != NULL);
7317
7318 loc->ops = ops;
7319 loc->owner = owner;
7320 loc->cond_bytecode = NULL;
7321 loc->shlib_disabled = 0;
7322 loc->enabled = 1;
7323
7324 switch (owner->type)
7325 {
7326 case bp_breakpoint:
7327 case bp_single_step:
7328 case bp_until:
7329 case bp_finish:
7330 case bp_longjmp:
7331 case bp_longjmp_resume:
7332 case bp_longjmp_call_dummy:
7333 case bp_exception:
7334 case bp_exception_resume:
7335 case bp_step_resume:
7336 case bp_hp_step_resume:
7337 case bp_watchpoint_scope:
7338 case bp_call_dummy:
7339 case bp_std_terminate:
7340 case bp_shlib_event:
7341 case bp_thread_event:
7342 case bp_overlay_event:
7343 case bp_jit_event:
7344 case bp_longjmp_master:
7345 case bp_std_terminate_master:
7346 case bp_exception_master:
7347 case bp_gnu_ifunc_resolver:
7348 case bp_gnu_ifunc_resolver_return:
7349 case bp_dprintf:
7350 loc->loc_type = bp_loc_software_breakpoint;
7351 mark_breakpoint_location_modified (loc);
7352 break;
7353 case bp_hardware_breakpoint:
7354 loc->loc_type = bp_loc_hardware_breakpoint;
7355 mark_breakpoint_location_modified (loc);
7356 break;
7357 case bp_hardware_watchpoint:
7358 case bp_read_watchpoint:
7359 case bp_access_watchpoint:
7360 loc->loc_type = bp_loc_hardware_watchpoint;
7361 break;
7362 case bp_watchpoint:
7363 case bp_catchpoint:
7364 case bp_tracepoint:
7365 case bp_fast_tracepoint:
7366 case bp_static_tracepoint:
7367 loc->loc_type = bp_loc_other;
7368 break;
7369 default:
7370 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7371 }
7372
7373 loc->refc = 1;
7374 }
7375
7376 /* Allocate a struct bp_location. */
7377
7378 static struct bp_location *
7379 allocate_bp_location (struct breakpoint *bpt)
7380 {
7381 return bpt->ops->allocate_location (bpt);
7382 }
7383
7384 static void
7385 free_bp_location (struct bp_location *loc)
7386 {
7387 loc->ops->dtor (loc);
7388 delete loc;
7389 }
7390
7391 /* Increment reference count. */
7392
7393 static void
7394 incref_bp_location (struct bp_location *bl)
7395 {
7396 ++bl->refc;
7397 }
7398
7399 /* Decrement reference count. If the reference count reaches 0,
7400 destroy the bp_location. Sets *BLP to NULL. */
7401
7402 static void
7403 decref_bp_location (struct bp_location **blp)
7404 {
7405 gdb_assert ((*blp)->refc > 0);
7406
7407 if (--(*blp)->refc == 0)
7408 free_bp_location (*blp);
7409 *blp = NULL;
7410 }
7411
7412 /* Add breakpoint B at the end of the global breakpoint chain. */
7413
7414 static void
7415 add_to_breakpoint_chain (struct breakpoint *b)
7416 {
7417 struct breakpoint *b1;
7418
7419 /* Add this breakpoint to the end of the chain so that a list of
7420 breakpoints will come out in order of increasing numbers. */
7421
7422 b1 = breakpoint_chain;
7423 if (b1 == 0)
7424 breakpoint_chain = b;
7425 else
7426 {
7427 while (b1->next)
7428 b1 = b1->next;
7429 b1->next = b;
7430 }
7431 }
7432
7433 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7434
7435 static void
7436 init_raw_breakpoint_without_location (struct breakpoint *b,
7437 struct gdbarch *gdbarch,
7438 enum bptype bptype,
7439 const struct breakpoint_ops *ops)
7440 {
7441 gdb_assert (ops != NULL);
7442
7443 b->ops = ops;
7444 b->type = bptype;
7445 b->gdbarch = gdbarch;
7446 b->language = current_language->la_language;
7447 b->input_radix = input_radix;
7448 b->related_breakpoint = b;
7449 }
7450
7451 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7452 that has type BPTYPE and has no locations as yet. */
7453
7454 static struct breakpoint *
7455 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7456 enum bptype bptype,
7457 const struct breakpoint_ops *ops)
7458 {
7459 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7460
7461 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7462 add_to_breakpoint_chain (b.get ());
7463
7464 return b.release ();
7465 }
7466
7467 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7468 resolutions should be made as the user specified the location explicitly
7469 enough. */
7470
7471 static void
7472 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7473 {
7474 gdb_assert (loc->owner != NULL);
7475
7476 if (loc->owner->type == bp_breakpoint
7477 || loc->owner->type == bp_hardware_breakpoint
7478 || is_tracepoint (loc->owner))
7479 {
7480 int is_gnu_ifunc;
7481 const char *function_name;
7482 CORE_ADDR func_addr;
7483
7484 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7485 &func_addr, NULL, &is_gnu_ifunc);
7486
7487 if (is_gnu_ifunc && !explicit_loc)
7488 {
7489 struct breakpoint *b = loc->owner;
7490
7491 gdb_assert (loc->pspace == current_program_space);
7492 if (gnu_ifunc_resolve_name (function_name,
7493 &loc->requested_address))
7494 {
7495 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7496 loc->address = adjust_breakpoint_address (loc->gdbarch,
7497 loc->requested_address,
7498 b->type);
7499 }
7500 else if (b->type == bp_breakpoint && b->loc == loc
7501 && loc->next == NULL && b->related_breakpoint == b)
7502 {
7503 /* Create only the whole new breakpoint of this type but do not
7504 mess more complicated breakpoints with multiple locations. */
7505 b->type = bp_gnu_ifunc_resolver;
7506 /* Remember the resolver's address for use by the return
7507 breakpoint. */
7508 loc->related_address = func_addr;
7509 }
7510 }
7511
7512 if (function_name)
7513 loc->function_name = xstrdup (function_name);
7514 }
7515 }
7516
7517 /* Attempt to determine architecture of location identified by SAL. */
7518 struct gdbarch *
7519 get_sal_arch (struct symtab_and_line sal)
7520 {
7521 if (sal.section)
7522 return get_objfile_arch (sal.section->objfile);
7523 if (sal.symtab)
7524 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7525
7526 return NULL;
7527 }
7528
7529 /* Low level routine for partially initializing a breakpoint of type
7530 BPTYPE. The newly created breakpoint's address, section, source
7531 file name, and line number are provided by SAL.
7532
7533 It is expected that the caller will complete the initialization of
7534 the newly created breakpoint struct as well as output any status
7535 information regarding the creation of a new breakpoint. */
7536
7537 static void
7538 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7539 struct symtab_and_line sal, enum bptype bptype,
7540 const struct breakpoint_ops *ops)
7541 {
7542 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7543
7544 add_location_to_breakpoint (b, &sal);
7545
7546 if (bptype != bp_catchpoint)
7547 gdb_assert (sal.pspace != NULL);
7548
7549 /* Store the program space that was used to set the breakpoint,
7550 except for ordinary breakpoints, which are independent of the
7551 program space. */
7552 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7553 b->pspace = sal.pspace;
7554 }
7555
7556 /* set_raw_breakpoint is a low level routine for allocating and
7557 partially initializing a breakpoint of type BPTYPE. The newly
7558 created breakpoint's address, section, source file name, and line
7559 number are provided by SAL. The newly created and partially
7560 initialized breakpoint is added to the breakpoint chain and
7561 is also returned as the value of this function.
7562
7563 It is expected that the caller will complete the initialization of
7564 the newly created breakpoint struct as well as output any status
7565 information regarding the creation of a new breakpoint. In
7566 particular, set_raw_breakpoint does NOT set the breakpoint
7567 number! Care should be taken to not allow an error to occur
7568 prior to completing the initialization of the breakpoint. If this
7569 should happen, a bogus breakpoint will be left on the chain. */
7570
7571 struct breakpoint *
7572 set_raw_breakpoint (struct gdbarch *gdbarch,
7573 struct symtab_and_line sal, enum bptype bptype,
7574 const struct breakpoint_ops *ops)
7575 {
7576 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7577
7578 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7579 add_to_breakpoint_chain (b.get ());
7580
7581 return b.release ();
7582 }
7583
7584 /* Call this routine when stepping and nexting to enable a breakpoint
7585 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7586 initiated the operation. */
7587
7588 void
7589 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7590 {
7591 struct breakpoint *b, *b_tmp;
7592 int thread = tp->global_num;
7593
7594 /* To avoid having to rescan all objfile symbols at every step,
7595 we maintain a list of continually-inserted but always disabled
7596 longjmp "master" breakpoints. Here, we simply create momentary
7597 clones of those and enable them for the requested thread. */
7598 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7599 if (b->pspace == current_program_space
7600 && (b->type == bp_longjmp_master
7601 || b->type == bp_exception_master))
7602 {
7603 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7604 struct breakpoint *clone;
7605
7606 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7607 after their removal. */
7608 clone = momentary_breakpoint_from_master (b, type,
7609 &momentary_breakpoint_ops, 1);
7610 clone->thread = thread;
7611 }
7612
7613 tp->initiating_frame = frame;
7614 }
7615
7616 /* Delete all longjmp breakpoints from THREAD. */
7617 void
7618 delete_longjmp_breakpoint (int thread)
7619 {
7620 struct breakpoint *b, *b_tmp;
7621
7622 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7623 if (b->type == bp_longjmp || b->type == bp_exception)
7624 {
7625 if (b->thread == thread)
7626 delete_breakpoint (b);
7627 }
7628 }
7629
7630 void
7631 delete_longjmp_breakpoint_at_next_stop (int thread)
7632 {
7633 struct breakpoint *b, *b_tmp;
7634
7635 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7636 if (b->type == bp_longjmp || b->type == bp_exception)
7637 {
7638 if (b->thread == thread)
7639 b->disposition = disp_del_at_next_stop;
7640 }
7641 }
7642
7643 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7644 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7645 pointer to any of them. Return NULL if this system cannot place longjmp
7646 breakpoints. */
7647
7648 struct breakpoint *
7649 set_longjmp_breakpoint_for_call_dummy (void)
7650 {
7651 struct breakpoint *b, *retval = NULL;
7652
7653 ALL_BREAKPOINTS (b)
7654 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7655 {
7656 struct breakpoint *new_b;
7657
7658 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7659 &momentary_breakpoint_ops,
7660 1);
7661 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7662
7663 /* Link NEW_B into the chain of RETVAL breakpoints. */
7664
7665 gdb_assert (new_b->related_breakpoint == new_b);
7666 if (retval == NULL)
7667 retval = new_b;
7668 new_b->related_breakpoint = retval;
7669 while (retval->related_breakpoint != new_b->related_breakpoint)
7670 retval = retval->related_breakpoint;
7671 retval->related_breakpoint = new_b;
7672 }
7673
7674 return retval;
7675 }
7676
7677 /* Verify all existing dummy frames and their associated breakpoints for
7678 TP. Remove those which can no longer be found in the current frame
7679 stack.
7680
7681 You should call this function only at places where it is safe to currently
7682 unwind the whole stack. Failed stack unwind would discard live dummy
7683 frames. */
7684
7685 void
7686 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7687 {
7688 struct breakpoint *b, *b_tmp;
7689
7690 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7691 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7692 {
7693 struct breakpoint *dummy_b = b->related_breakpoint;
7694
7695 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7696 dummy_b = dummy_b->related_breakpoint;
7697 if (dummy_b->type != bp_call_dummy
7698 || frame_find_by_id (dummy_b->frame_id) != NULL)
7699 continue;
7700
7701 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7702
7703 while (b->related_breakpoint != b)
7704 {
7705 if (b_tmp == b->related_breakpoint)
7706 b_tmp = b->related_breakpoint->next;
7707 delete_breakpoint (b->related_breakpoint);
7708 }
7709 delete_breakpoint (b);
7710 }
7711 }
7712
7713 void
7714 enable_overlay_breakpoints (void)
7715 {
7716 struct breakpoint *b;
7717
7718 ALL_BREAKPOINTS (b)
7719 if (b->type == bp_overlay_event)
7720 {
7721 b->enable_state = bp_enabled;
7722 update_global_location_list (UGLL_MAY_INSERT);
7723 overlay_events_enabled = 1;
7724 }
7725 }
7726
7727 void
7728 disable_overlay_breakpoints (void)
7729 {
7730 struct breakpoint *b;
7731
7732 ALL_BREAKPOINTS (b)
7733 if (b->type == bp_overlay_event)
7734 {
7735 b->enable_state = bp_disabled;
7736 update_global_location_list (UGLL_DONT_INSERT);
7737 overlay_events_enabled = 0;
7738 }
7739 }
7740
7741 /* Set an active std::terminate breakpoint for each std::terminate
7742 master breakpoint. */
7743 void
7744 set_std_terminate_breakpoint (void)
7745 {
7746 struct breakpoint *b, *b_tmp;
7747
7748 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7749 if (b->pspace == current_program_space
7750 && b->type == bp_std_terminate_master)
7751 {
7752 momentary_breakpoint_from_master (b, bp_std_terminate,
7753 &momentary_breakpoint_ops, 1);
7754 }
7755 }
7756
7757 /* Delete all the std::terminate breakpoints. */
7758 void
7759 delete_std_terminate_breakpoint (void)
7760 {
7761 struct breakpoint *b, *b_tmp;
7762
7763 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7764 if (b->type == bp_std_terminate)
7765 delete_breakpoint (b);
7766 }
7767
7768 struct breakpoint *
7769 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7770 {
7771 struct breakpoint *b;
7772
7773 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7774 &internal_breakpoint_ops);
7775
7776 b->enable_state = bp_enabled;
7777 /* location has to be used or breakpoint_re_set will delete me. */
7778 b->location = new_address_location (b->loc->address, NULL, 0);
7779
7780 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7781
7782 return b;
7783 }
7784
7785 struct lang_and_radix
7786 {
7787 enum language lang;
7788 int radix;
7789 };
7790
7791 /* Create a breakpoint for JIT code registration and unregistration. */
7792
7793 struct breakpoint *
7794 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7795 {
7796 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7797 &internal_breakpoint_ops);
7798 }
7799
7800 /* Remove JIT code registration and unregistration breakpoint(s). */
7801
7802 void
7803 remove_jit_event_breakpoints (void)
7804 {
7805 struct breakpoint *b, *b_tmp;
7806
7807 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7808 if (b->type == bp_jit_event
7809 && b->loc->pspace == current_program_space)
7810 delete_breakpoint (b);
7811 }
7812
7813 void
7814 remove_solib_event_breakpoints (void)
7815 {
7816 struct breakpoint *b, *b_tmp;
7817
7818 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7819 if (b->type == bp_shlib_event
7820 && b->loc->pspace == current_program_space)
7821 delete_breakpoint (b);
7822 }
7823
7824 /* See breakpoint.h. */
7825
7826 void
7827 remove_solib_event_breakpoints_at_next_stop (void)
7828 {
7829 struct breakpoint *b, *b_tmp;
7830
7831 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7832 if (b->type == bp_shlib_event
7833 && b->loc->pspace == current_program_space)
7834 b->disposition = disp_del_at_next_stop;
7835 }
7836
7837 /* Helper for create_solib_event_breakpoint /
7838 create_and_insert_solib_event_breakpoint. Allows specifying which
7839 INSERT_MODE to pass through to update_global_location_list. */
7840
7841 static struct breakpoint *
7842 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7843 enum ugll_insert_mode insert_mode)
7844 {
7845 struct breakpoint *b;
7846
7847 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7848 &internal_breakpoint_ops);
7849 update_global_location_list_nothrow (insert_mode);
7850 return b;
7851 }
7852
7853 struct breakpoint *
7854 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7855 {
7856 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7857 }
7858
7859 /* See breakpoint.h. */
7860
7861 struct breakpoint *
7862 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7863 {
7864 struct breakpoint *b;
7865
7866 /* Explicitly tell update_global_location_list to insert
7867 locations. */
7868 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7869 if (!b->loc->inserted)
7870 {
7871 delete_breakpoint (b);
7872 return NULL;
7873 }
7874 return b;
7875 }
7876
7877 /* Disable any breakpoints that are on code in shared libraries. Only
7878 apply to enabled breakpoints, disabled ones can just stay disabled. */
7879
7880 void
7881 disable_breakpoints_in_shlibs (void)
7882 {
7883 struct bp_location *loc, **locp_tmp;
7884
7885 ALL_BP_LOCATIONS (loc, locp_tmp)
7886 {
7887 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7888 struct breakpoint *b = loc->owner;
7889
7890 /* We apply the check to all breakpoints, including disabled for
7891 those with loc->duplicate set. This is so that when breakpoint
7892 becomes enabled, or the duplicate is removed, gdb will try to
7893 insert all breakpoints. If we don't set shlib_disabled here,
7894 we'll try to insert those breakpoints and fail. */
7895 if (((b->type == bp_breakpoint)
7896 || (b->type == bp_jit_event)
7897 || (b->type == bp_hardware_breakpoint)
7898 || (is_tracepoint (b)))
7899 && loc->pspace == current_program_space
7900 && !loc->shlib_disabled
7901 && solib_name_from_address (loc->pspace, loc->address)
7902 )
7903 {
7904 loc->shlib_disabled = 1;
7905 }
7906 }
7907 }
7908
7909 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7910 notification of unloaded_shlib. Only apply to enabled breakpoints,
7911 disabled ones can just stay disabled. */
7912
7913 static void
7914 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7915 {
7916 struct bp_location *loc, **locp_tmp;
7917 int disabled_shlib_breaks = 0;
7918
7919 ALL_BP_LOCATIONS (loc, locp_tmp)
7920 {
7921 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7922 struct breakpoint *b = loc->owner;
7923
7924 if (solib->pspace == loc->pspace
7925 && !loc->shlib_disabled
7926 && (((b->type == bp_breakpoint
7927 || b->type == bp_jit_event
7928 || b->type == bp_hardware_breakpoint)
7929 && (loc->loc_type == bp_loc_hardware_breakpoint
7930 || loc->loc_type == bp_loc_software_breakpoint))
7931 || is_tracepoint (b))
7932 && solib_contains_address_p (solib, loc->address))
7933 {
7934 loc->shlib_disabled = 1;
7935 /* At this point, we cannot rely on remove_breakpoint
7936 succeeding so we must mark the breakpoint as not inserted
7937 to prevent future errors occurring in remove_breakpoints. */
7938 loc->inserted = 0;
7939
7940 /* This may cause duplicate notifications for the same breakpoint. */
7941 observer_notify_breakpoint_modified (b);
7942
7943 if (!disabled_shlib_breaks)
7944 {
7945 target_terminal_ours_for_output ();
7946 warning (_("Temporarily disabling breakpoints "
7947 "for unloaded shared library \"%s\""),
7948 solib->so_name);
7949 }
7950 disabled_shlib_breaks = 1;
7951 }
7952 }
7953 }
7954
7955 /* Disable any breakpoints and tracepoints in OBJFILE upon
7956 notification of free_objfile. Only apply to enabled breakpoints,
7957 disabled ones can just stay disabled. */
7958
7959 static void
7960 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7961 {
7962 struct breakpoint *b;
7963
7964 if (objfile == NULL)
7965 return;
7966
7967 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7968 managed by the user with add-symbol-file/remove-symbol-file.
7969 Similarly to how breakpoints in shared libraries are handled in
7970 response to "nosharedlibrary", mark breakpoints in such modules
7971 shlib_disabled so they end up uninserted on the next global
7972 location list update. Shared libraries not loaded by the user
7973 aren't handled here -- they're already handled in
7974 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7975 solib_unloaded observer. We skip objfiles that are not
7976 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7977 main objfile). */
7978 if ((objfile->flags & OBJF_SHARED) == 0
7979 || (objfile->flags & OBJF_USERLOADED) == 0)
7980 return;
7981
7982 ALL_BREAKPOINTS (b)
7983 {
7984 struct bp_location *loc;
7985 int bp_modified = 0;
7986
7987 if (!is_breakpoint (b) && !is_tracepoint (b))
7988 continue;
7989
7990 for (loc = b->loc; loc != NULL; loc = loc->next)
7991 {
7992 CORE_ADDR loc_addr = loc->address;
7993
7994 if (loc->loc_type != bp_loc_hardware_breakpoint
7995 && loc->loc_type != bp_loc_software_breakpoint)
7996 continue;
7997
7998 if (loc->shlib_disabled != 0)
7999 continue;
8000
8001 if (objfile->pspace != loc->pspace)
8002 continue;
8003
8004 if (loc->loc_type != bp_loc_hardware_breakpoint
8005 && loc->loc_type != bp_loc_software_breakpoint)
8006 continue;
8007
8008 if (is_addr_in_objfile (loc_addr, objfile))
8009 {
8010 loc->shlib_disabled = 1;
8011 /* At this point, we don't know whether the object was
8012 unmapped from the inferior or not, so leave the
8013 inserted flag alone. We'll handle failure to
8014 uninsert quietly, in case the object was indeed
8015 unmapped. */
8016
8017 mark_breakpoint_location_modified (loc);
8018
8019 bp_modified = 1;
8020 }
8021 }
8022
8023 if (bp_modified)
8024 observer_notify_breakpoint_modified (b);
8025 }
8026 }
8027
8028 /* FORK & VFORK catchpoints. */
8029
8030 /* An instance of this type is used to represent a fork or vfork
8031 catchpoint. A breakpoint is really of this type iff its ops pointer points
8032 to CATCH_FORK_BREAKPOINT_OPS. */
8033
8034 struct fork_catchpoint : public breakpoint
8035 {
8036 /* Process id of a child process whose forking triggered this
8037 catchpoint. This field is only valid immediately after this
8038 catchpoint has triggered. */
8039 ptid_t forked_inferior_pid;
8040 };
8041
8042 /* Implement the "insert" breakpoint_ops method for fork
8043 catchpoints. */
8044
8045 static int
8046 insert_catch_fork (struct bp_location *bl)
8047 {
8048 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8049 }
8050
8051 /* Implement the "remove" breakpoint_ops method for fork
8052 catchpoints. */
8053
8054 static int
8055 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8056 {
8057 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8058 }
8059
8060 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8061 catchpoints. */
8062
8063 static int
8064 breakpoint_hit_catch_fork (const struct bp_location *bl,
8065 struct address_space *aspace, CORE_ADDR bp_addr,
8066 const struct target_waitstatus *ws)
8067 {
8068 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8069
8070 if (ws->kind != TARGET_WAITKIND_FORKED)
8071 return 0;
8072
8073 c->forked_inferior_pid = ws->value.related_pid;
8074 return 1;
8075 }
8076
8077 /* Implement the "print_it" breakpoint_ops method for fork
8078 catchpoints. */
8079
8080 static enum print_stop_action
8081 print_it_catch_fork (bpstat bs)
8082 {
8083 struct ui_out *uiout = current_uiout;
8084 struct breakpoint *b = bs->breakpoint_at;
8085 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8086
8087 annotate_catchpoint (b->number);
8088 maybe_print_thread_hit_breakpoint (uiout);
8089 if (b->disposition == disp_del)
8090 uiout->text ("Temporary catchpoint ");
8091 else
8092 uiout->text ("Catchpoint ");
8093 if (uiout->is_mi_like_p ())
8094 {
8095 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8096 uiout->field_string ("disp", bpdisp_text (b->disposition));
8097 }
8098 uiout->field_int ("bkptno", b->number);
8099 uiout->text (" (forked process ");
8100 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8101 uiout->text ("), ");
8102 return PRINT_SRC_AND_LOC;
8103 }
8104
8105 /* Implement the "print_one" breakpoint_ops method for fork
8106 catchpoints. */
8107
8108 static void
8109 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8110 {
8111 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8112 struct value_print_options opts;
8113 struct ui_out *uiout = current_uiout;
8114
8115 get_user_print_options (&opts);
8116
8117 /* Field 4, the address, is omitted (which makes the columns not
8118 line up too nicely with the headers, but the effect is relatively
8119 readable). */
8120 if (opts.addressprint)
8121 uiout->field_skip ("addr");
8122 annotate_field (5);
8123 uiout->text ("fork");
8124 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8125 {
8126 uiout->text (", process ");
8127 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8128 uiout->spaces (1);
8129 }
8130
8131 if (uiout->is_mi_like_p ())
8132 uiout->field_string ("catch-type", "fork");
8133 }
8134
8135 /* Implement the "print_mention" breakpoint_ops method for fork
8136 catchpoints. */
8137
8138 static void
8139 print_mention_catch_fork (struct breakpoint *b)
8140 {
8141 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8142 }
8143
8144 /* Implement the "print_recreate" breakpoint_ops method for fork
8145 catchpoints. */
8146
8147 static void
8148 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8149 {
8150 fprintf_unfiltered (fp, "catch fork");
8151 print_recreate_thread (b, fp);
8152 }
8153
8154 /* The breakpoint_ops structure to be used in fork catchpoints. */
8155
8156 static struct breakpoint_ops catch_fork_breakpoint_ops;
8157
8158 /* Implement the "insert" breakpoint_ops method for vfork
8159 catchpoints. */
8160
8161 static int
8162 insert_catch_vfork (struct bp_location *bl)
8163 {
8164 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8165 }
8166
8167 /* Implement the "remove" breakpoint_ops method for vfork
8168 catchpoints. */
8169
8170 static int
8171 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8172 {
8173 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8174 }
8175
8176 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8177 catchpoints. */
8178
8179 static int
8180 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8181 struct address_space *aspace, CORE_ADDR bp_addr,
8182 const struct target_waitstatus *ws)
8183 {
8184 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8185
8186 if (ws->kind != TARGET_WAITKIND_VFORKED)
8187 return 0;
8188
8189 c->forked_inferior_pid = ws->value.related_pid;
8190 return 1;
8191 }
8192
8193 /* Implement the "print_it" breakpoint_ops method for vfork
8194 catchpoints. */
8195
8196 static enum print_stop_action
8197 print_it_catch_vfork (bpstat bs)
8198 {
8199 struct ui_out *uiout = current_uiout;
8200 struct breakpoint *b = bs->breakpoint_at;
8201 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8202
8203 annotate_catchpoint (b->number);
8204 maybe_print_thread_hit_breakpoint (uiout);
8205 if (b->disposition == disp_del)
8206 uiout->text ("Temporary catchpoint ");
8207 else
8208 uiout->text ("Catchpoint ");
8209 if (uiout->is_mi_like_p ())
8210 {
8211 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8212 uiout->field_string ("disp", bpdisp_text (b->disposition));
8213 }
8214 uiout->field_int ("bkptno", b->number);
8215 uiout->text (" (vforked process ");
8216 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8217 uiout->text ("), ");
8218 return PRINT_SRC_AND_LOC;
8219 }
8220
8221 /* Implement the "print_one" breakpoint_ops method for vfork
8222 catchpoints. */
8223
8224 static void
8225 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8226 {
8227 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8228 struct value_print_options opts;
8229 struct ui_out *uiout = current_uiout;
8230
8231 get_user_print_options (&opts);
8232 /* Field 4, the address, is omitted (which makes the columns not
8233 line up too nicely with the headers, but the effect is relatively
8234 readable). */
8235 if (opts.addressprint)
8236 uiout->field_skip ("addr");
8237 annotate_field (5);
8238 uiout->text ("vfork");
8239 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8240 {
8241 uiout->text (", process ");
8242 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8243 uiout->spaces (1);
8244 }
8245
8246 if (uiout->is_mi_like_p ())
8247 uiout->field_string ("catch-type", "vfork");
8248 }
8249
8250 /* Implement the "print_mention" breakpoint_ops method for vfork
8251 catchpoints. */
8252
8253 static void
8254 print_mention_catch_vfork (struct breakpoint *b)
8255 {
8256 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8257 }
8258
8259 /* Implement the "print_recreate" breakpoint_ops method for vfork
8260 catchpoints. */
8261
8262 static void
8263 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8264 {
8265 fprintf_unfiltered (fp, "catch vfork");
8266 print_recreate_thread (b, fp);
8267 }
8268
8269 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8270
8271 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8272
8273 /* An instance of this type is used to represent an solib catchpoint.
8274 A breakpoint is really of this type iff its ops pointer points to
8275 CATCH_SOLIB_BREAKPOINT_OPS. */
8276
8277 struct solib_catchpoint : public breakpoint
8278 {
8279 ~solib_catchpoint () override;
8280
8281 /* True for "catch load", false for "catch unload". */
8282 unsigned char is_load;
8283
8284 /* Regular expression to match, if any. COMPILED is only valid when
8285 REGEX is non-NULL. */
8286 char *regex;
8287 std::unique_ptr<compiled_regex> compiled;
8288 };
8289
8290 solib_catchpoint::~solib_catchpoint ()
8291 {
8292 xfree (this->regex);
8293 }
8294
8295 static int
8296 insert_catch_solib (struct bp_location *ignore)
8297 {
8298 return 0;
8299 }
8300
8301 static int
8302 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8303 {
8304 return 0;
8305 }
8306
8307 static int
8308 breakpoint_hit_catch_solib (const struct bp_location *bl,
8309 struct address_space *aspace,
8310 CORE_ADDR bp_addr,
8311 const struct target_waitstatus *ws)
8312 {
8313 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8314 struct breakpoint *other;
8315
8316 if (ws->kind == TARGET_WAITKIND_LOADED)
8317 return 1;
8318
8319 ALL_BREAKPOINTS (other)
8320 {
8321 struct bp_location *other_bl;
8322
8323 if (other == bl->owner)
8324 continue;
8325
8326 if (other->type != bp_shlib_event)
8327 continue;
8328
8329 if (self->pspace != NULL && other->pspace != self->pspace)
8330 continue;
8331
8332 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8333 {
8334 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8335 return 1;
8336 }
8337 }
8338
8339 return 0;
8340 }
8341
8342 static void
8343 check_status_catch_solib (struct bpstats *bs)
8344 {
8345 struct solib_catchpoint *self
8346 = (struct solib_catchpoint *) bs->breakpoint_at;
8347 int ix;
8348
8349 if (self->is_load)
8350 {
8351 struct so_list *iter;
8352
8353 for (ix = 0;
8354 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8355 ix, iter);
8356 ++ix)
8357 {
8358 if (!self->regex
8359 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8360 return;
8361 }
8362 }
8363 else
8364 {
8365 char *iter;
8366
8367 for (ix = 0;
8368 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8369 ix, iter);
8370 ++ix)
8371 {
8372 if (!self->regex
8373 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8374 return;
8375 }
8376 }
8377
8378 bs->stop = 0;
8379 bs->print_it = print_it_noop;
8380 }
8381
8382 static enum print_stop_action
8383 print_it_catch_solib (bpstat bs)
8384 {
8385 struct breakpoint *b = bs->breakpoint_at;
8386 struct ui_out *uiout = current_uiout;
8387
8388 annotate_catchpoint (b->number);
8389 maybe_print_thread_hit_breakpoint (uiout);
8390 if (b->disposition == disp_del)
8391 uiout->text ("Temporary catchpoint ");
8392 else
8393 uiout->text ("Catchpoint ");
8394 uiout->field_int ("bkptno", b->number);
8395 uiout->text ("\n");
8396 if (uiout->is_mi_like_p ())
8397 uiout->field_string ("disp", bpdisp_text (b->disposition));
8398 print_solib_event (1);
8399 return PRINT_SRC_AND_LOC;
8400 }
8401
8402 static void
8403 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8404 {
8405 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8406 struct value_print_options opts;
8407 struct ui_out *uiout = current_uiout;
8408 char *msg;
8409
8410 get_user_print_options (&opts);
8411 /* Field 4, the address, is omitted (which makes the columns not
8412 line up too nicely with the headers, but the effect is relatively
8413 readable). */
8414 if (opts.addressprint)
8415 {
8416 annotate_field (4);
8417 uiout->field_skip ("addr");
8418 }
8419
8420 annotate_field (5);
8421 if (self->is_load)
8422 {
8423 if (self->regex)
8424 msg = xstrprintf (_("load of library matching %s"), self->regex);
8425 else
8426 msg = xstrdup (_("load of library"));
8427 }
8428 else
8429 {
8430 if (self->regex)
8431 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8432 else
8433 msg = xstrdup (_("unload of library"));
8434 }
8435 uiout->field_string ("what", msg);
8436 xfree (msg);
8437
8438 if (uiout->is_mi_like_p ())
8439 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8440 }
8441
8442 static void
8443 print_mention_catch_solib (struct breakpoint *b)
8444 {
8445 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8446
8447 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8448 self->is_load ? "load" : "unload");
8449 }
8450
8451 static void
8452 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8453 {
8454 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8455
8456 fprintf_unfiltered (fp, "%s %s",
8457 b->disposition == disp_del ? "tcatch" : "catch",
8458 self->is_load ? "load" : "unload");
8459 if (self->regex)
8460 fprintf_unfiltered (fp, " %s", self->regex);
8461 fprintf_unfiltered (fp, "\n");
8462 }
8463
8464 static struct breakpoint_ops catch_solib_breakpoint_ops;
8465
8466 /* Shared helper function (MI and CLI) for creating and installing
8467 a shared object event catchpoint. If IS_LOAD is non-zero then
8468 the events to be caught are load events, otherwise they are
8469 unload events. If IS_TEMP is non-zero the catchpoint is a
8470 temporary one. If ENABLED is non-zero the catchpoint is
8471 created in an enabled state. */
8472
8473 void
8474 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8475 {
8476 struct solib_catchpoint *c;
8477 struct gdbarch *gdbarch = get_current_arch ();
8478 struct cleanup *cleanup;
8479
8480 if (!arg)
8481 arg = "";
8482 arg = skip_spaces_const (arg);
8483
8484 c = new solib_catchpoint ();
8485 cleanup = make_cleanup (xfree, c);
8486
8487 if (*arg != '\0')
8488 {
8489 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8490 _("Invalid regexp")));
8491 c->regex = xstrdup (arg);
8492 }
8493
8494 c->is_load = is_load;
8495 init_catchpoint (c, gdbarch, is_temp, NULL,
8496 &catch_solib_breakpoint_ops);
8497
8498 c->enable_state = enabled ? bp_enabled : bp_disabled;
8499
8500 discard_cleanups (cleanup);
8501 install_breakpoint (0, c, 1);
8502 }
8503
8504 /* A helper function that does all the work for "catch load" and
8505 "catch unload". */
8506
8507 static void
8508 catch_load_or_unload (char *arg, int from_tty, int is_load,
8509 struct cmd_list_element *command)
8510 {
8511 int tempflag;
8512 const int enabled = 1;
8513
8514 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8515
8516 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8517 }
8518
8519 static void
8520 catch_load_command_1 (char *arg, int from_tty,
8521 struct cmd_list_element *command)
8522 {
8523 catch_load_or_unload (arg, from_tty, 1, command);
8524 }
8525
8526 static void
8527 catch_unload_command_1 (char *arg, int from_tty,
8528 struct cmd_list_element *command)
8529 {
8530 catch_load_or_unload (arg, from_tty, 0, command);
8531 }
8532
8533 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8534 is non-zero, then make the breakpoint temporary. If COND_STRING is
8535 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8536 the breakpoint_ops structure associated to the catchpoint. */
8537
8538 void
8539 init_catchpoint (struct breakpoint *b,
8540 struct gdbarch *gdbarch, int tempflag,
8541 const char *cond_string,
8542 const struct breakpoint_ops *ops)
8543 {
8544 struct symtab_and_line sal;
8545
8546 init_sal (&sal);
8547 sal.pspace = current_program_space;
8548
8549 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8550
8551 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8552 b->disposition = tempflag ? disp_del : disp_donttouch;
8553 }
8554
8555 void
8556 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8557 {
8558 add_to_breakpoint_chain (b);
8559 set_breakpoint_number (internal, b);
8560 if (is_tracepoint (b))
8561 set_tracepoint_count (breakpoint_count);
8562 if (!internal)
8563 mention (b);
8564 observer_notify_breakpoint_created (b);
8565
8566 if (update_gll)
8567 update_global_location_list (UGLL_MAY_INSERT);
8568 }
8569
8570 static void
8571 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8572 int tempflag, const char *cond_string,
8573 const struct breakpoint_ops *ops)
8574 {
8575 struct fork_catchpoint *c = new fork_catchpoint ();
8576
8577 init_catchpoint (c, gdbarch, tempflag, cond_string, ops);
8578
8579 c->forked_inferior_pid = null_ptid;
8580
8581 install_breakpoint (0, c, 1);
8582 }
8583
8584 /* Exec catchpoints. */
8585
8586 /* An instance of this type is used to represent an exec catchpoint.
8587 A breakpoint is really of this type iff its ops pointer points to
8588 CATCH_EXEC_BREAKPOINT_OPS. */
8589
8590 struct exec_catchpoint : public breakpoint
8591 {
8592 ~exec_catchpoint () override;
8593
8594 /* Filename of a program whose exec triggered this catchpoint.
8595 This field is only valid immediately after this catchpoint has
8596 triggered. */
8597 char *exec_pathname;
8598 };
8599
8600 /* Exec catchpoint destructor. */
8601
8602 exec_catchpoint::~exec_catchpoint ()
8603 {
8604 xfree (this->exec_pathname);
8605 }
8606
8607 static int
8608 insert_catch_exec (struct bp_location *bl)
8609 {
8610 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8611 }
8612
8613 static int
8614 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8615 {
8616 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8617 }
8618
8619 static int
8620 breakpoint_hit_catch_exec (const struct bp_location *bl,
8621 struct address_space *aspace, CORE_ADDR bp_addr,
8622 const struct target_waitstatus *ws)
8623 {
8624 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8625
8626 if (ws->kind != TARGET_WAITKIND_EXECD)
8627 return 0;
8628
8629 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8630 return 1;
8631 }
8632
8633 static enum print_stop_action
8634 print_it_catch_exec (bpstat bs)
8635 {
8636 struct ui_out *uiout = current_uiout;
8637 struct breakpoint *b = bs->breakpoint_at;
8638 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8639
8640 annotate_catchpoint (b->number);
8641 maybe_print_thread_hit_breakpoint (uiout);
8642 if (b->disposition == disp_del)
8643 uiout->text ("Temporary catchpoint ");
8644 else
8645 uiout->text ("Catchpoint ");
8646 if (uiout->is_mi_like_p ())
8647 {
8648 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8649 uiout->field_string ("disp", bpdisp_text (b->disposition));
8650 }
8651 uiout->field_int ("bkptno", b->number);
8652 uiout->text (" (exec'd ");
8653 uiout->field_string ("new-exec", c->exec_pathname);
8654 uiout->text ("), ");
8655
8656 return PRINT_SRC_AND_LOC;
8657 }
8658
8659 static void
8660 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8661 {
8662 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8663 struct value_print_options opts;
8664 struct ui_out *uiout = current_uiout;
8665
8666 get_user_print_options (&opts);
8667
8668 /* Field 4, the address, is omitted (which makes the columns
8669 not line up too nicely with the headers, but the effect
8670 is relatively readable). */
8671 if (opts.addressprint)
8672 uiout->field_skip ("addr");
8673 annotate_field (5);
8674 uiout->text ("exec");
8675 if (c->exec_pathname != NULL)
8676 {
8677 uiout->text (", program \"");
8678 uiout->field_string ("what", c->exec_pathname);
8679 uiout->text ("\" ");
8680 }
8681
8682 if (uiout->is_mi_like_p ())
8683 uiout->field_string ("catch-type", "exec");
8684 }
8685
8686 static void
8687 print_mention_catch_exec (struct breakpoint *b)
8688 {
8689 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8690 }
8691
8692 /* Implement the "print_recreate" breakpoint_ops method for exec
8693 catchpoints. */
8694
8695 static void
8696 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8697 {
8698 fprintf_unfiltered (fp, "catch exec");
8699 print_recreate_thread (b, fp);
8700 }
8701
8702 static struct breakpoint_ops catch_exec_breakpoint_ops;
8703
8704 static int
8705 hw_breakpoint_used_count (void)
8706 {
8707 int i = 0;
8708 struct breakpoint *b;
8709 struct bp_location *bl;
8710
8711 ALL_BREAKPOINTS (b)
8712 {
8713 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8714 for (bl = b->loc; bl; bl = bl->next)
8715 {
8716 /* Special types of hardware breakpoints may use more than
8717 one register. */
8718 i += b->ops->resources_needed (bl);
8719 }
8720 }
8721
8722 return i;
8723 }
8724
8725 /* Returns the resources B would use if it were a hardware
8726 watchpoint. */
8727
8728 static int
8729 hw_watchpoint_use_count (struct breakpoint *b)
8730 {
8731 int i = 0;
8732 struct bp_location *bl;
8733
8734 if (!breakpoint_enabled (b))
8735 return 0;
8736
8737 for (bl = b->loc; bl; bl = bl->next)
8738 {
8739 /* Special types of hardware watchpoints may use more than
8740 one register. */
8741 i += b->ops->resources_needed (bl);
8742 }
8743
8744 return i;
8745 }
8746
8747 /* Returns the sum the used resources of all hardware watchpoints of
8748 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8749 the sum of the used resources of all hardware watchpoints of other
8750 types _not_ TYPE. */
8751
8752 static int
8753 hw_watchpoint_used_count_others (struct breakpoint *except,
8754 enum bptype type, int *other_type_used)
8755 {
8756 int i = 0;
8757 struct breakpoint *b;
8758
8759 *other_type_used = 0;
8760 ALL_BREAKPOINTS (b)
8761 {
8762 if (b == except)
8763 continue;
8764 if (!breakpoint_enabled (b))
8765 continue;
8766
8767 if (b->type == type)
8768 i += hw_watchpoint_use_count (b);
8769 else if (is_hardware_watchpoint (b))
8770 *other_type_used = 1;
8771 }
8772
8773 return i;
8774 }
8775
8776 void
8777 disable_watchpoints_before_interactive_call_start (void)
8778 {
8779 struct breakpoint *b;
8780
8781 ALL_BREAKPOINTS (b)
8782 {
8783 if (is_watchpoint (b) && breakpoint_enabled (b))
8784 {
8785 b->enable_state = bp_call_disabled;
8786 update_global_location_list (UGLL_DONT_INSERT);
8787 }
8788 }
8789 }
8790
8791 void
8792 enable_watchpoints_after_interactive_call_stop (void)
8793 {
8794 struct breakpoint *b;
8795
8796 ALL_BREAKPOINTS (b)
8797 {
8798 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8799 {
8800 b->enable_state = bp_enabled;
8801 update_global_location_list (UGLL_MAY_INSERT);
8802 }
8803 }
8804 }
8805
8806 void
8807 disable_breakpoints_before_startup (void)
8808 {
8809 current_program_space->executing_startup = 1;
8810 update_global_location_list (UGLL_DONT_INSERT);
8811 }
8812
8813 void
8814 enable_breakpoints_after_startup (void)
8815 {
8816 current_program_space->executing_startup = 0;
8817 breakpoint_re_set ();
8818 }
8819
8820 /* Create a new single-step breakpoint for thread THREAD, with no
8821 locations. */
8822
8823 static struct breakpoint *
8824 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8825 {
8826 struct breakpoint *b = new breakpoint ();
8827
8828 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8829 &momentary_breakpoint_ops);
8830
8831 b->disposition = disp_donttouch;
8832 b->frame_id = null_frame_id;
8833
8834 b->thread = thread;
8835 gdb_assert (b->thread != 0);
8836
8837 add_to_breakpoint_chain (b);
8838
8839 return b;
8840 }
8841
8842 /* Set a momentary breakpoint of type TYPE at address specified by
8843 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8844 frame. */
8845
8846 struct breakpoint *
8847 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8848 struct frame_id frame_id, enum bptype type)
8849 {
8850 struct breakpoint *b;
8851
8852 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8853 tail-called one. */
8854 gdb_assert (!frame_id_artificial_p (frame_id));
8855
8856 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8857 b->enable_state = bp_enabled;
8858 b->disposition = disp_donttouch;
8859 b->frame_id = frame_id;
8860
8861 /* If we're debugging a multi-threaded program, then we want
8862 momentary breakpoints to be active in only a single thread of
8863 control. */
8864 if (in_thread_list (inferior_ptid))
8865 b->thread = ptid_to_global_thread_id (inferior_ptid);
8866
8867 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8868
8869 return b;
8870 }
8871
8872 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8873 The new breakpoint will have type TYPE, use OPS as its
8874 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8875
8876 static struct breakpoint *
8877 momentary_breakpoint_from_master (struct breakpoint *orig,
8878 enum bptype type,
8879 const struct breakpoint_ops *ops,
8880 int loc_enabled)
8881 {
8882 struct breakpoint *copy;
8883
8884 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8885 copy->loc = allocate_bp_location (copy);
8886 set_breakpoint_location_function (copy->loc, 1);
8887
8888 copy->loc->gdbarch = orig->loc->gdbarch;
8889 copy->loc->requested_address = orig->loc->requested_address;
8890 copy->loc->address = orig->loc->address;
8891 copy->loc->section = orig->loc->section;
8892 copy->loc->pspace = orig->loc->pspace;
8893 copy->loc->probe = orig->loc->probe;
8894 copy->loc->line_number = orig->loc->line_number;
8895 copy->loc->symtab = orig->loc->symtab;
8896 copy->loc->enabled = loc_enabled;
8897 copy->frame_id = orig->frame_id;
8898 copy->thread = orig->thread;
8899 copy->pspace = orig->pspace;
8900
8901 copy->enable_state = bp_enabled;
8902 copy->disposition = disp_donttouch;
8903 copy->number = internal_breakpoint_number--;
8904
8905 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8906 return copy;
8907 }
8908
8909 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8910 ORIG is NULL. */
8911
8912 struct breakpoint *
8913 clone_momentary_breakpoint (struct breakpoint *orig)
8914 {
8915 /* If there's nothing to clone, then return nothing. */
8916 if (orig == NULL)
8917 return NULL;
8918
8919 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8920 }
8921
8922 struct breakpoint *
8923 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8924 enum bptype type)
8925 {
8926 struct symtab_and_line sal;
8927
8928 sal = find_pc_line (pc, 0);
8929 sal.pc = pc;
8930 sal.section = find_pc_overlay (pc);
8931 sal.explicit_pc = 1;
8932
8933 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8934 }
8935 \f
8936
8937 /* Tell the user we have just set a breakpoint B. */
8938
8939 static void
8940 mention (struct breakpoint *b)
8941 {
8942 b->ops->print_mention (b);
8943 if (current_uiout->is_mi_like_p ())
8944 return;
8945 printf_filtered ("\n");
8946 }
8947 \f
8948
8949 static int bp_loc_is_permanent (struct bp_location *loc);
8950
8951 static struct bp_location *
8952 add_location_to_breakpoint (struct breakpoint *b,
8953 const struct symtab_and_line *sal)
8954 {
8955 struct bp_location *loc, **tmp;
8956 CORE_ADDR adjusted_address;
8957 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8958
8959 if (loc_gdbarch == NULL)
8960 loc_gdbarch = b->gdbarch;
8961
8962 /* Adjust the breakpoint's address prior to allocating a location.
8963 Once we call allocate_bp_location(), that mostly uninitialized
8964 location will be placed on the location chain. Adjustment of the
8965 breakpoint may cause target_read_memory() to be called and we do
8966 not want its scan of the location chain to find a breakpoint and
8967 location that's only been partially initialized. */
8968 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8969 sal->pc, b->type);
8970
8971 /* Sort the locations by their ADDRESS. */
8972 loc = allocate_bp_location (b);
8973 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8974 tmp = &((*tmp)->next))
8975 ;
8976 loc->next = *tmp;
8977 *tmp = loc;
8978
8979 loc->requested_address = sal->pc;
8980 loc->address = adjusted_address;
8981 loc->pspace = sal->pspace;
8982 loc->probe.probe = sal->probe;
8983 loc->probe.objfile = sal->objfile;
8984 gdb_assert (loc->pspace != NULL);
8985 loc->section = sal->section;
8986 loc->gdbarch = loc_gdbarch;
8987 loc->line_number = sal->line;
8988 loc->symtab = sal->symtab;
8989
8990 set_breakpoint_location_function (loc,
8991 sal->explicit_pc || sal->explicit_line);
8992
8993 /* While by definition, permanent breakpoints are already present in the
8994 code, we don't mark the location as inserted. Normally one would expect
8995 that GDB could rely on that breakpoint instruction to stop the program,
8996 thus removing the need to insert its own breakpoint, except that executing
8997 the breakpoint instruction can kill the target instead of reporting a
8998 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8999 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9000 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9001 breakpoint be inserted normally results in QEMU knowing about the GDB
9002 breakpoint, and thus trap before the breakpoint instruction is executed.
9003 (If GDB later needs to continue execution past the permanent breakpoint,
9004 it manually increments the PC, thus avoiding executing the breakpoint
9005 instruction.) */
9006 if (bp_loc_is_permanent (loc))
9007 loc->permanent = 1;
9008
9009 return loc;
9010 }
9011 \f
9012
9013 /* See breakpoint.h. */
9014
9015 int
9016 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9017 {
9018 int len;
9019 CORE_ADDR addr;
9020 const gdb_byte *bpoint;
9021 gdb_byte *target_mem;
9022 struct cleanup *cleanup;
9023 int retval = 0;
9024
9025 addr = address;
9026 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9027
9028 /* Software breakpoints unsupported? */
9029 if (bpoint == NULL)
9030 return 0;
9031
9032 target_mem = (gdb_byte *) alloca (len);
9033
9034 /* Enable the automatic memory restoration from breakpoints while
9035 we read the memory. Otherwise we could say about our temporary
9036 breakpoints they are permanent. */
9037 cleanup = make_show_memory_breakpoints_cleanup (0);
9038
9039 if (target_read_memory (address, target_mem, len) == 0
9040 && memcmp (target_mem, bpoint, len) == 0)
9041 retval = 1;
9042
9043 do_cleanups (cleanup);
9044
9045 return retval;
9046 }
9047
9048 /* Return 1 if LOC is pointing to a permanent breakpoint,
9049 return 0 otherwise. */
9050
9051 static int
9052 bp_loc_is_permanent (struct bp_location *loc)
9053 {
9054 gdb_assert (loc != NULL);
9055
9056 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9057 attempt to read from the addresses the locations of these breakpoint types
9058 point to. program_breakpoint_here_p, below, will attempt to read
9059 memory. */
9060 if (!breakpoint_address_is_meaningful (loc->owner))
9061 return 0;
9062
9063 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9064 switch_to_program_space_and_thread (loc->pspace);
9065 return program_breakpoint_here_p (loc->gdbarch, loc->address);
9066 }
9067
9068 /* Build a command list for the dprintf corresponding to the current
9069 settings of the dprintf style options. */
9070
9071 static void
9072 update_dprintf_command_list (struct breakpoint *b)
9073 {
9074 char *dprintf_args = b->extra_string;
9075 char *printf_line = NULL;
9076
9077 if (!dprintf_args)
9078 return;
9079
9080 dprintf_args = skip_spaces (dprintf_args);
9081
9082 /* Allow a comma, as it may have terminated a location, but don't
9083 insist on it. */
9084 if (*dprintf_args == ',')
9085 ++dprintf_args;
9086 dprintf_args = skip_spaces (dprintf_args);
9087
9088 if (*dprintf_args != '"')
9089 error (_("Bad format string, missing '\"'."));
9090
9091 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9092 printf_line = xstrprintf ("printf %s", dprintf_args);
9093 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9094 {
9095 if (!dprintf_function)
9096 error (_("No function supplied for dprintf call"));
9097
9098 if (dprintf_channel && strlen (dprintf_channel) > 0)
9099 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9100 dprintf_function,
9101 dprintf_channel,
9102 dprintf_args);
9103 else
9104 printf_line = xstrprintf ("call (void) %s (%s)",
9105 dprintf_function,
9106 dprintf_args);
9107 }
9108 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9109 {
9110 if (target_can_run_breakpoint_commands ())
9111 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9112 else
9113 {
9114 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9115 printf_line = xstrprintf ("printf %s", dprintf_args);
9116 }
9117 }
9118 else
9119 internal_error (__FILE__, __LINE__,
9120 _("Invalid dprintf style."));
9121
9122 gdb_assert (printf_line != NULL);
9123 /* Manufacture a printf sequence. */
9124 {
9125 struct command_line *printf_cmd_line = XNEW (struct command_line);
9126
9127 printf_cmd_line->control_type = simple_control;
9128 printf_cmd_line->body_count = 0;
9129 printf_cmd_line->body_list = NULL;
9130 printf_cmd_line->next = NULL;
9131 printf_cmd_line->line = printf_line;
9132
9133 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
9134 }
9135 }
9136
9137 /* Update all dprintf commands, making their command lists reflect
9138 current style settings. */
9139
9140 static void
9141 update_dprintf_commands (char *args, int from_tty,
9142 struct cmd_list_element *c)
9143 {
9144 struct breakpoint *b;
9145
9146 ALL_BREAKPOINTS (b)
9147 {
9148 if (b->type == bp_dprintf)
9149 update_dprintf_command_list (b);
9150 }
9151 }
9152
9153 /* Create a breakpoint with SAL as location. Use LOCATION
9154 as a description of the location, and COND_STRING
9155 as condition expression. If LOCATION is NULL then create an
9156 "address location" from the address in the SAL. */
9157
9158 static void
9159 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9160 struct symtabs_and_lines sals,
9161 event_location_up &&location,
9162 gdb::unique_xmalloc_ptr<char> filter,
9163 gdb::unique_xmalloc_ptr<char> cond_string,
9164 gdb::unique_xmalloc_ptr<char> extra_string,
9165 enum bptype type, enum bpdisp disposition,
9166 int thread, int task, int ignore_count,
9167 const struct breakpoint_ops *ops, int from_tty,
9168 int enabled, int internal, unsigned flags,
9169 int display_canonical)
9170 {
9171 int i;
9172
9173 if (type == bp_hardware_breakpoint)
9174 {
9175 int target_resources_ok;
9176
9177 i = hw_breakpoint_used_count ();
9178 target_resources_ok =
9179 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9180 i + 1, 0);
9181 if (target_resources_ok == 0)
9182 error (_("No hardware breakpoint support in the target."));
9183 else if (target_resources_ok < 0)
9184 error (_("Hardware breakpoints used exceeds limit."));
9185 }
9186
9187 gdb_assert (sals.nelts > 0);
9188
9189 for (i = 0; i < sals.nelts; ++i)
9190 {
9191 struct symtab_and_line sal = sals.sals[i];
9192 struct bp_location *loc;
9193
9194 if (from_tty)
9195 {
9196 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9197 if (!loc_gdbarch)
9198 loc_gdbarch = gdbarch;
9199
9200 describe_other_breakpoints (loc_gdbarch,
9201 sal.pspace, sal.pc, sal.section, thread);
9202 }
9203
9204 if (i == 0)
9205 {
9206 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9207 b->thread = thread;
9208 b->task = task;
9209
9210 b->cond_string = cond_string.release ();
9211 b->extra_string = extra_string.release ();
9212 b->ignore_count = ignore_count;
9213 b->enable_state = enabled ? bp_enabled : bp_disabled;
9214 b->disposition = disposition;
9215
9216 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9217 b->loc->inserted = 1;
9218
9219 if (type == bp_static_tracepoint)
9220 {
9221 struct tracepoint *t = (struct tracepoint *) b;
9222 struct static_tracepoint_marker marker;
9223
9224 if (strace_marker_p (b))
9225 {
9226 /* We already know the marker exists, otherwise, we
9227 wouldn't see a sal for it. */
9228 const char *p
9229 = &event_location_to_string (b->location.get ())[3];
9230 const char *endp;
9231 char *marker_str;
9232
9233 p = skip_spaces_const (p);
9234
9235 endp = skip_to_space_const (p);
9236
9237 marker_str = savestring (p, endp - p);
9238 t->static_trace_marker_id = marker_str;
9239
9240 printf_filtered (_("Probed static tracepoint "
9241 "marker \"%s\"\n"),
9242 t->static_trace_marker_id);
9243 }
9244 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9245 {
9246 t->static_trace_marker_id = xstrdup (marker.str_id);
9247 release_static_tracepoint_marker (&marker);
9248
9249 printf_filtered (_("Probed static tracepoint "
9250 "marker \"%s\"\n"),
9251 t->static_trace_marker_id);
9252 }
9253 else
9254 warning (_("Couldn't determine the static "
9255 "tracepoint marker to probe"));
9256 }
9257
9258 loc = b->loc;
9259 }
9260 else
9261 {
9262 loc = add_location_to_breakpoint (b, &sal);
9263 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9264 loc->inserted = 1;
9265 }
9266
9267 if (b->cond_string)
9268 {
9269 const char *arg = b->cond_string;
9270
9271 loc->cond = parse_exp_1 (&arg, loc->address,
9272 block_for_pc (loc->address), 0);
9273 if (*arg)
9274 error (_("Garbage '%s' follows condition"), arg);
9275 }
9276
9277 /* Dynamic printf requires and uses additional arguments on the
9278 command line, otherwise it's an error. */
9279 if (type == bp_dprintf)
9280 {
9281 if (b->extra_string)
9282 update_dprintf_command_list (b);
9283 else
9284 error (_("Format string required"));
9285 }
9286 else if (b->extra_string)
9287 error (_("Garbage '%s' at end of command"), b->extra_string);
9288 }
9289
9290 b->display_canonical = display_canonical;
9291 if (location != NULL)
9292 b->location = std::move (location);
9293 else
9294 b->location = new_address_location (b->loc->address, NULL, 0);
9295 b->filter = filter.release ();
9296 }
9297
9298 static void
9299 create_breakpoint_sal (struct gdbarch *gdbarch,
9300 struct symtabs_and_lines sals,
9301 event_location_up &&location,
9302 gdb::unique_xmalloc_ptr<char> filter,
9303 gdb::unique_xmalloc_ptr<char> cond_string,
9304 gdb::unique_xmalloc_ptr<char> extra_string,
9305 enum bptype type, enum bpdisp disposition,
9306 int thread, int task, int ignore_count,
9307 const struct breakpoint_ops *ops, int from_tty,
9308 int enabled, int internal, unsigned flags,
9309 int display_canonical)
9310 {
9311 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9312
9313 init_breakpoint_sal (b.get (), gdbarch,
9314 sals, std::move (location),
9315 std::move (filter),
9316 std::move (cond_string),
9317 std::move (extra_string),
9318 type, disposition,
9319 thread, task, ignore_count,
9320 ops, from_tty,
9321 enabled, internal, flags,
9322 display_canonical);
9323
9324 install_breakpoint (internal, b.release (), 0);
9325 }
9326
9327 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9328 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9329 value. COND_STRING, if not NULL, specified the condition to be
9330 used for all breakpoints. Essentially the only case where
9331 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9332 function. In that case, it's still not possible to specify
9333 separate conditions for different overloaded functions, so
9334 we take just a single condition string.
9335
9336 NOTE: If the function succeeds, the caller is expected to cleanup
9337 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9338 array contents). If the function fails (error() is called), the
9339 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9340 COND and SALS arrays and each of those arrays contents. */
9341
9342 static void
9343 create_breakpoints_sal (struct gdbarch *gdbarch,
9344 struct linespec_result *canonical,
9345 gdb::unique_xmalloc_ptr<char> cond_string,
9346 gdb::unique_xmalloc_ptr<char> extra_string,
9347 enum bptype type, enum bpdisp disposition,
9348 int thread, int task, int ignore_count,
9349 const struct breakpoint_ops *ops, int from_tty,
9350 int enabled, int internal, unsigned flags)
9351 {
9352 int i;
9353 struct linespec_sals *lsal;
9354
9355 if (canonical->pre_expanded)
9356 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9357
9358 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9359 {
9360 /* Note that 'location' can be NULL in the case of a plain
9361 'break', without arguments. */
9362 event_location_up location
9363 = (canonical->location != NULL
9364 ? copy_event_location (canonical->location.get ()) : NULL);
9365 gdb::unique_xmalloc_ptr<char> filter_string
9366 (lsal->canonical != NULL ? xstrdup (lsal->canonical) : NULL);
9367
9368 create_breakpoint_sal (gdbarch, lsal->sals,
9369 std::move (location),
9370 std::move (filter_string),
9371 std::move (cond_string),
9372 std::move (extra_string),
9373 type, disposition,
9374 thread, task, ignore_count, ops,
9375 from_tty, enabled, internal, flags,
9376 canonical->special_display);
9377 }
9378 }
9379
9380 /* Parse LOCATION which is assumed to be a SAL specification possibly
9381 followed by conditionals. On return, SALS contains an array of SAL
9382 addresses found. LOCATION points to the end of the SAL (for
9383 linespec locations).
9384
9385 The array and the line spec strings are allocated on the heap, it is
9386 the caller's responsibility to free them. */
9387
9388 static void
9389 parse_breakpoint_sals (const struct event_location *location,
9390 struct linespec_result *canonical)
9391 {
9392 struct symtab_and_line cursal;
9393
9394 if (event_location_type (location) == LINESPEC_LOCATION)
9395 {
9396 const char *address = get_linespec_location (location);
9397
9398 if (address == NULL)
9399 {
9400 /* The last displayed codepoint, if it's valid, is our default
9401 breakpoint address. */
9402 if (last_displayed_sal_is_valid ())
9403 {
9404 struct linespec_sals lsal;
9405 struct symtab_and_line sal;
9406 CORE_ADDR pc;
9407
9408 init_sal (&sal); /* Initialize to zeroes. */
9409 lsal.sals.sals = XNEW (struct symtab_and_line);
9410
9411 /* Set sal's pspace, pc, symtab, and line to the values
9412 corresponding to the last call to print_frame_info.
9413 Be sure to reinitialize LINE with NOTCURRENT == 0
9414 as the breakpoint line number is inappropriate otherwise.
9415 find_pc_line would adjust PC, re-set it back. */
9416 get_last_displayed_sal (&sal);
9417 pc = sal.pc;
9418 sal = find_pc_line (pc, 0);
9419
9420 /* "break" without arguments is equivalent to "break *PC"
9421 where PC is the last displayed codepoint's address. So
9422 make sure to set sal.explicit_pc to prevent GDB from
9423 trying to expand the list of sals to include all other
9424 instances with the same symtab and line. */
9425 sal.pc = pc;
9426 sal.explicit_pc = 1;
9427
9428 lsal.sals.sals[0] = sal;
9429 lsal.sals.nelts = 1;
9430 lsal.canonical = NULL;
9431
9432 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9433 return;
9434 }
9435 else
9436 error (_("No default breakpoint address now."));
9437 }
9438 }
9439
9440 /* Force almost all breakpoints to be in terms of the
9441 current_source_symtab (which is decode_line_1's default).
9442 This should produce the results we want almost all of the
9443 time while leaving default_breakpoint_* alone.
9444
9445 ObjC: However, don't match an Objective-C method name which
9446 may have a '+' or '-' succeeded by a '['. */
9447 cursal = get_current_source_symtab_and_line ();
9448 if (last_displayed_sal_is_valid ())
9449 {
9450 const char *address = NULL;
9451
9452 if (event_location_type (location) == LINESPEC_LOCATION)
9453 address = get_linespec_location (location);
9454
9455 if (!cursal.symtab
9456 || (address != NULL
9457 && strchr ("+-", address[0]) != NULL
9458 && address[1] != '['))
9459 {
9460 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9461 get_last_displayed_symtab (),
9462 get_last_displayed_line (),
9463 canonical, NULL, NULL);
9464 return;
9465 }
9466 }
9467
9468 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9469 cursal.symtab, cursal.line, canonical, NULL, NULL);
9470 }
9471
9472
9473 /* Convert each SAL into a real PC. Verify that the PC can be
9474 inserted as a breakpoint. If it can't throw an error. */
9475
9476 static void
9477 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9478 {
9479 int i;
9480
9481 for (i = 0; i < sals->nelts; i++)
9482 resolve_sal_pc (&sals->sals[i]);
9483 }
9484
9485 /* Fast tracepoints may have restrictions on valid locations. For
9486 instance, a fast tracepoint using a jump instead of a trap will
9487 likely have to overwrite more bytes than a trap would, and so can
9488 only be placed where the instruction is longer than the jump, or a
9489 multi-instruction sequence does not have a jump into the middle of
9490 it, etc. */
9491
9492 static void
9493 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9494 struct symtabs_and_lines *sals)
9495 {
9496 int i, rslt;
9497 struct symtab_and_line *sal;
9498 char *msg;
9499 struct cleanup *old_chain;
9500
9501 for (i = 0; i < sals->nelts; i++)
9502 {
9503 struct gdbarch *sarch;
9504
9505 sal = &sals->sals[i];
9506
9507 sarch = get_sal_arch (*sal);
9508 /* We fall back to GDBARCH if there is no architecture
9509 associated with SAL. */
9510 if (sarch == NULL)
9511 sarch = gdbarch;
9512 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9513 old_chain = make_cleanup (xfree, msg);
9514
9515 if (!rslt)
9516 error (_("May not have a fast tracepoint at %s%s"),
9517 paddress (sarch, sal->pc), (msg ? msg : ""));
9518
9519 do_cleanups (old_chain);
9520 }
9521 }
9522
9523 /* Given TOK, a string specification of condition and thread, as
9524 accepted by the 'break' command, extract the condition
9525 string and thread number and set *COND_STRING and *THREAD.
9526 PC identifies the context at which the condition should be parsed.
9527 If no condition is found, *COND_STRING is set to NULL.
9528 If no thread is found, *THREAD is set to -1. */
9529
9530 static void
9531 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9532 char **cond_string, int *thread, int *task,
9533 char **rest)
9534 {
9535 *cond_string = NULL;
9536 *thread = -1;
9537 *task = 0;
9538 *rest = NULL;
9539
9540 while (tok && *tok)
9541 {
9542 const char *end_tok;
9543 int toklen;
9544 const char *cond_start = NULL;
9545 const char *cond_end = NULL;
9546
9547 tok = skip_spaces_const (tok);
9548
9549 if ((*tok == '"' || *tok == ',') && rest)
9550 {
9551 *rest = savestring (tok, strlen (tok));
9552 return;
9553 }
9554
9555 end_tok = skip_to_space_const (tok);
9556
9557 toklen = end_tok - tok;
9558
9559 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9560 {
9561 tok = cond_start = end_tok + 1;
9562 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9563 cond_end = tok;
9564 *cond_string = savestring (cond_start, cond_end - cond_start);
9565 }
9566 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9567 {
9568 const char *tmptok;
9569 struct thread_info *thr;
9570
9571 tok = end_tok + 1;
9572 thr = parse_thread_id (tok, &tmptok);
9573 if (tok == tmptok)
9574 error (_("Junk after thread keyword."));
9575 *thread = thr->global_num;
9576 tok = tmptok;
9577 }
9578 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9579 {
9580 char *tmptok;
9581
9582 tok = end_tok + 1;
9583 *task = strtol (tok, &tmptok, 0);
9584 if (tok == tmptok)
9585 error (_("Junk after task keyword."));
9586 if (!valid_task_id (*task))
9587 error (_("Unknown task %d."), *task);
9588 tok = tmptok;
9589 }
9590 else if (rest)
9591 {
9592 *rest = savestring (tok, strlen (tok));
9593 return;
9594 }
9595 else
9596 error (_("Junk at end of arguments."));
9597 }
9598 }
9599
9600 /* Decode a static tracepoint marker spec. */
9601
9602 static struct symtabs_and_lines
9603 decode_static_tracepoint_spec (const char **arg_p)
9604 {
9605 VEC(static_tracepoint_marker_p) *markers = NULL;
9606 struct symtabs_and_lines sals;
9607 struct cleanup *old_chain;
9608 const char *p = &(*arg_p)[3];
9609 const char *endp;
9610 char *marker_str;
9611 int i;
9612
9613 p = skip_spaces_const (p);
9614
9615 endp = skip_to_space_const (p);
9616
9617 marker_str = savestring (p, endp - p);
9618 old_chain = make_cleanup (xfree, marker_str);
9619
9620 markers = target_static_tracepoint_markers_by_strid (marker_str);
9621 if (VEC_empty(static_tracepoint_marker_p, markers))
9622 error (_("No known static tracepoint marker named %s"), marker_str);
9623
9624 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9625 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9626
9627 for (i = 0; i < sals.nelts; i++)
9628 {
9629 struct static_tracepoint_marker *marker;
9630
9631 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9632
9633 init_sal (&sals.sals[i]);
9634
9635 sals.sals[i] = find_pc_line (marker->address, 0);
9636 sals.sals[i].pc = marker->address;
9637
9638 release_static_tracepoint_marker (marker);
9639 }
9640
9641 do_cleanups (old_chain);
9642
9643 *arg_p = endp;
9644 return sals;
9645 }
9646
9647 /* See breakpoint.h. */
9648
9649 int
9650 create_breakpoint (struct gdbarch *gdbarch,
9651 const struct event_location *location,
9652 const char *cond_string,
9653 int thread, const char *extra_string,
9654 int parse_extra,
9655 int tempflag, enum bptype type_wanted,
9656 int ignore_count,
9657 enum auto_boolean pending_break_support,
9658 const struct breakpoint_ops *ops,
9659 int from_tty, int enabled, int internal,
9660 unsigned flags)
9661 {
9662 struct linespec_result canonical;
9663 struct cleanup *bkpt_chain = NULL;
9664 int pending = 0;
9665 int task = 0;
9666 int prev_bkpt_count = breakpoint_count;
9667
9668 gdb_assert (ops != NULL);
9669
9670 /* If extra_string isn't useful, set it to NULL. */
9671 if (extra_string != NULL && *extra_string == '\0')
9672 extra_string = NULL;
9673
9674 TRY
9675 {
9676 ops->create_sals_from_location (location, &canonical, type_wanted);
9677 }
9678 CATCH (e, RETURN_MASK_ERROR)
9679 {
9680 /* If caller is interested in rc value from parse, set
9681 value. */
9682 if (e.error == NOT_FOUND_ERROR)
9683 {
9684 /* If pending breakpoint support is turned off, throw
9685 error. */
9686
9687 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9688 throw_exception (e);
9689
9690 exception_print (gdb_stderr, e);
9691
9692 /* If pending breakpoint support is auto query and the user
9693 selects no, then simply return the error code. */
9694 if (pending_break_support == AUTO_BOOLEAN_AUTO
9695 && !nquery (_("Make %s pending on future shared library load? "),
9696 bptype_string (type_wanted)))
9697 return 0;
9698
9699 /* At this point, either the user was queried about setting
9700 a pending breakpoint and selected yes, or pending
9701 breakpoint behavior is on and thus a pending breakpoint
9702 is defaulted on behalf of the user. */
9703 pending = 1;
9704 }
9705 else
9706 throw_exception (e);
9707 }
9708 END_CATCH
9709
9710 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9711 return 0;
9712
9713 /* ----------------------------- SNIP -----------------------------
9714 Anything added to the cleanup chain beyond this point is assumed
9715 to be part of a breakpoint. If the breakpoint create succeeds
9716 then the memory is not reclaimed. */
9717 bkpt_chain = make_cleanup (null_cleanup, 0);
9718
9719 /* Resolve all line numbers to PC's and verify that the addresses
9720 are ok for the target. */
9721 if (!pending)
9722 {
9723 int ix;
9724 struct linespec_sals *iter;
9725
9726 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9727 breakpoint_sals_to_pc (&iter->sals);
9728 }
9729
9730 /* Fast tracepoints may have additional restrictions on location. */
9731 if (!pending && type_wanted == bp_fast_tracepoint)
9732 {
9733 int ix;
9734 struct linespec_sals *iter;
9735
9736 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9737 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9738 }
9739
9740 /* Verify that condition can be parsed, before setting any
9741 breakpoints. Allocate a separate condition expression for each
9742 breakpoint. */
9743 if (!pending)
9744 {
9745 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9746 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9747
9748 if (parse_extra)
9749 {
9750 char *rest;
9751 char *cond;
9752 struct linespec_sals *lsal;
9753
9754 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9755
9756 /* Here we only parse 'arg' to separate condition
9757 from thread number, so parsing in context of first
9758 sal is OK. When setting the breakpoint we'll
9759 re-parse it in context of each sal. */
9760
9761 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9762 &cond, &thread, &task, &rest);
9763 cond_string_copy.reset (cond);
9764 extra_string_copy.reset (rest);
9765 }
9766 else
9767 {
9768 if (type_wanted != bp_dprintf
9769 && extra_string != NULL && *extra_string != '\0')
9770 error (_("Garbage '%s' at end of location"), extra_string);
9771
9772 /* Create a private copy of condition string. */
9773 if (cond_string)
9774 cond_string_copy.reset (xstrdup (cond_string));
9775 /* Create a private copy of any extra string. */
9776 if (extra_string)
9777 extra_string_copy.reset (xstrdup (extra_string));
9778 }
9779
9780 ops->create_breakpoints_sal (gdbarch, &canonical,
9781 std::move (cond_string_copy),
9782 std::move (extra_string_copy),
9783 type_wanted,
9784 tempflag ? disp_del : disp_donttouch,
9785 thread, task, ignore_count, ops,
9786 from_tty, enabled, internal, flags);
9787 }
9788 else
9789 {
9790 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9791
9792 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9793 b->location = copy_event_location (location);
9794
9795 if (parse_extra)
9796 b->cond_string = NULL;
9797 else
9798 {
9799 /* Create a private copy of condition string. */
9800 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9801 b->thread = thread;
9802 }
9803
9804 /* Create a private copy of any extra string. */
9805 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9806 b->ignore_count = ignore_count;
9807 b->disposition = tempflag ? disp_del : disp_donttouch;
9808 b->condition_not_parsed = 1;
9809 b->enable_state = enabled ? bp_enabled : bp_disabled;
9810 if ((type_wanted != bp_breakpoint
9811 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9812 b->pspace = current_program_space;
9813
9814 install_breakpoint (internal, b.release (), 0);
9815 }
9816
9817 if (VEC_length (linespec_sals, canonical.sals) > 1)
9818 {
9819 warning (_("Multiple breakpoints were set.\nUse the "
9820 "\"delete\" command to delete unwanted breakpoints."));
9821 prev_breakpoint_count = prev_bkpt_count;
9822 }
9823
9824 /* That's it. Discard the cleanups for data inserted into the
9825 breakpoint. */
9826 discard_cleanups (bkpt_chain);
9827
9828 /* error call may happen here - have BKPT_CHAIN already discarded. */
9829 update_global_location_list (UGLL_MAY_INSERT);
9830
9831 return 1;
9832 }
9833
9834 /* Set a breakpoint.
9835 ARG is a string describing breakpoint address,
9836 condition, and thread.
9837 FLAG specifies if a breakpoint is hardware on,
9838 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9839 and BP_TEMPFLAG. */
9840
9841 static void
9842 break_command_1 (char *arg, int flag, int from_tty)
9843 {
9844 int tempflag = flag & BP_TEMPFLAG;
9845 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9846 ? bp_hardware_breakpoint
9847 : bp_breakpoint);
9848 struct breakpoint_ops *ops;
9849
9850 event_location_up location = string_to_event_location (&arg, current_language);
9851
9852 /* Matching breakpoints on probes. */
9853 if (location != NULL
9854 && event_location_type (location.get ()) == PROBE_LOCATION)
9855 ops = &bkpt_probe_breakpoint_ops;
9856 else
9857 ops = &bkpt_breakpoint_ops;
9858
9859 create_breakpoint (get_current_arch (),
9860 location.get (),
9861 NULL, 0, arg, 1 /* parse arg */,
9862 tempflag, type_wanted,
9863 0 /* Ignore count */,
9864 pending_break_support,
9865 ops,
9866 from_tty,
9867 1 /* enabled */,
9868 0 /* internal */,
9869 0);
9870 }
9871
9872 /* Helper function for break_command_1 and disassemble_command. */
9873
9874 void
9875 resolve_sal_pc (struct symtab_and_line *sal)
9876 {
9877 CORE_ADDR pc;
9878
9879 if (sal->pc == 0 && sal->symtab != NULL)
9880 {
9881 if (!find_line_pc (sal->symtab, sal->line, &pc))
9882 error (_("No line %d in file \"%s\"."),
9883 sal->line, symtab_to_filename_for_display (sal->symtab));
9884 sal->pc = pc;
9885
9886 /* If this SAL corresponds to a breakpoint inserted using a line
9887 number, then skip the function prologue if necessary. */
9888 if (sal->explicit_line)
9889 skip_prologue_sal (sal);
9890 }
9891
9892 if (sal->section == 0 && sal->symtab != NULL)
9893 {
9894 const struct blockvector *bv;
9895 const struct block *b;
9896 struct symbol *sym;
9897
9898 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9899 SYMTAB_COMPUNIT (sal->symtab));
9900 if (bv != NULL)
9901 {
9902 sym = block_linkage_function (b);
9903 if (sym != NULL)
9904 {
9905 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9906 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9907 sym);
9908 }
9909 else
9910 {
9911 /* It really is worthwhile to have the section, so we'll
9912 just have to look harder. This case can be executed
9913 if we have line numbers but no functions (as can
9914 happen in assembly source). */
9915
9916 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9917 switch_to_program_space_and_thread (sal->pspace);
9918
9919 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9920 if (msym.minsym)
9921 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9922 }
9923 }
9924 }
9925 }
9926
9927 void
9928 break_command (char *arg, int from_tty)
9929 {
9930 break_command_1 (arg, 0, from_tty);
9931 }
9932
9933 void
9934 tbreak_command (char *arg, int from_tty)
9935 {
9936 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9937 }
9938
9939 static void
9940 hbreak_command (char *arg, int from_tty)
9941 {
9942 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9943 }
9944
9945 static void
9946 thbreak_command (char *arg, int from_tty)
9947 {
9948 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9949 }
9950
9951 static void
9952 stop_command (char *arg, int from_tty)
9953 {
9954 printf_filtered (_("Specify the type of breakpoint to set.\n\
9955 Usage: stop in <function | address>\n\
9956 stop at <line>\n"));
9957 }
9958
9959 static void
9960 stopin_command (char *arg, int from_tty)
9961 {
9962 int badInput = 0;
9963
9964 if (arg == (char *) NULL)
9965 badInput = 1;
9966 else if (*arg != '*')
9967 {
9968 char *argptr = arg;
9969 int hasColon = 0;
9970
9971 /* Look for a ':'. If this is a line number specification, then
9972 say it is bad, otherwise, it should be an address or
9973 function/method name. */
9974 while (*argptr && !hasColon)
9975 {
9976 hasColon = (*argptr == ':');
9977 argptr++;
9978 }
9979
9980 if (hasColon)
9981 badInput = (*argptr != ':'); /* Not a class::method */
9982 else
9983 badInput = isdigit (*arg); /* a simple line number */
9984 }
9985
9986 if (badInput)
9987 printf_filtered (_("Usage: stop in <function | address>\n"));
9988 else
9989 break_command_1 (arg, 0, from_tty);
9990 }
9991
9992 static void
9993 stopat_command (char *arg, int from_tty)
9994 {
9995 int badInput = 0;
9996
9997 if (arg == (char *) NULL || *arg == '*') /* no line number */
9998 badInput = 1;
9999 else
10000 {
10001 char *argptr = arg;
10002 int hasColon = 0;
10003
10004 /* Look for a ':'. If there is a '::' then get out, otherwise
10005 it is probably a line number. */
10006 while (*argptr && !hasColon)
10007 {
10008 hasColon = (*argptr == ':');
10009 argptr++;
10010 }
10011
10012 if (hasColon)
10013 badInput = (*argptr == ':'); /* we have class::method */
10014 else
10015 badInput = !isdigit (*arg); /* not a line number */
10016 }
10017
10018 if (badInput)
10019 printf_filtered (_("Usage: stop at <line>\n"));
10020 else
10021 break_command_1 (arg, 0, from_tty);
10022 }
10023
10024 /* The dynamic printf command is mostly like a regular breakpoint, but
10025 with a prewired command list consisting of a single output command,
10026 built from extra arguments supplied on the dprintf command
10027 line. */
10028
10029 static void
10030 dprintf_command (char *arg, int from_tty)
10031 {
10032 event_location_up location = string_to_event_location (&arg, current_language);
10033
10034 /* If non-NULL, ARG should have been advanced past the location;
10035 the next character must be ','. */
10036 if (arg != NULL)
10037 {
10038 if (arg[0] != ',' || arg[1] == '\0')
10039 error (_("Format string required"));
10040 else
10041 {
10042 /* Skip the comma. */
10043 ++arg;
10044 }
10045 }
10046
10047 create_breakpoint (get_current_arch (),
10048 location.get (),
10049 NULL, 0, arg, 1 /* parse arg */,
10050 0, bp_dprintf,
10051 0 /* Ignore count */,
10052 pending_break_support,
10053 &dprintf_breakpoint_ops,
10054 from_tty,
10055 1 /* enabled */,
10056 0 /* internal */,
10057 0);
10058 }
10059
10060 static void
10061 agent_printf_command (char *arg, int from_tty)
10062 {
10063 error (_("May only run agent-printf on the target"));
10064 }
10065
10066 /* Implement the "breakpoint_hit" breakpoint_ops method for
10067 ranged breakpoints. */
10068
10069 static int
10070 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10071 struct address_space *aspace,
10072 CORE_ADDR bp_addr,
10073 const struct target_waitstatus *ws)
10074 {
10075 if (ws->kind != TARGET_WAITKIND_STOPPED
10076 || ws->value.sig != GDB_SIGNAL_TRAP)
10077 return 0;
10078
10079 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10080 bl->length, aspace, bp_addr);
10081 }
10082
10083 /* Implement the "resources_needed" breakpoint_ops method for
10084 ranged breakpoints. */
10085
10086 static int
10087 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10088 {
10089 return target_ranged_break_num_registers ();
10090 }
10091
10092 /* Implement the "print_it" breakpoint_ops method for
10093 ranged breakpoints. */
10094
10095 static enum print_stop_action
10096 print_it_ranged_breakpoint (bpstat bs)
10097 {
10098 struct breakpoint *b = bs->breakpoint_at;
10099 struct bp_location *bl = b->loc;
10100 struct ui_out *uiout = current_uiout;
10101
10102 gdb_assert (b->type == bp_hardware_breakpoint);
10103
10104 /* Ranged breakpoints have only one location. */
10105 gdb_assert (bl && bl->next == NULL);
10106
10107 annotate_breakpoint (b->number);
10108
10109 maybe_print_thread_hit_breakpoint (uiout);
10110
10111 if (b->disposition == disp_del)
10112 uiout->text ("Temporary ranged breakpoint ");
10113 else
10114 uiout->text ("Ranged breakpoint ");
10115 if (uiout->is_mi_like_p ())
10116 {
10117 uiout->field_string ("reason",
10118 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10119 uiout->field_string ("disp", bpdisp_text (b->disposition));
10120 }
10121 uiout->field_int ("bkptno", b->number);
10122 uiout->text (", ");
10123
10124 return PRINT_SRC_AND_LOC;
10125 }
10126
10127 /* Implement the "print_one" breakpoint_ops method for
10128 ranged breakpoints. */
10129
10130 static void
10131 print_one_ranged_breakpoint (struct breakpoint *b,
10132 struct bp_location **last_loc)
10133 {
10134 struct bp_location *bl = b->loc;
10135 struct value_print_options opts;
10136 struct ui_out *uiout = current_uiout;
10137
10138 /* Ranged breakpoints have only one location. */
10139 gdb_assert (bl && bl->next == NULL);
10140
10141 get_user_print_options (&opts);
10142
10143 if (opts.addressprint)
10144 /* We don't print the address range here, it will be printed later
10145 by print_one_detail_ranged_breakpoint. */
10146 uiout->field_skip ("addr");
10147 annotate_field (5);
10148 print_breakpoint_location (b, bl);
10149 *last_loc = bl;
10150 }
10151
10152 /* Implement the "print_one_detail" breakpoint_ops method for
10153 ranged breakpoints. */
10154
10155 static void
10156 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10157 struct ui_out *uiout)
10158 {
10159 CORE_ADDR address_start, address_end;
10160 struct bp_location *bl = b->loc;
10161 string_file stb;
10162
10163 gdb_assert (bl);
10164
10165 address_start = bl->address;
10166 address_end = address_start + bl->length - 1;
10167
10168 uiout->text ("\taddress range: ");
10169 stb.printf ("[%s, %s]",
10170 print_core_address (bl->gdbarch, address_start),
10171 print_core_address (bl->gdbarch, address_end));
10172 uiout->field_stream ("addr", stb);
10173 uiout->text ("\n");
10174 }
10175
10176 /* Implement the "print_mention" breakpoint_ops method for
10177 ranged breakpoints. */
10178
10179 static void
10180 print_mention_ranged_breakpoint (struct breakpoint *b)
10181 {
10182 struct bp_location *bl = b->loc;
10183 struct ui_out *uiout = current_uiout;
10184
10185 gdb_assert (bl);
10186 gdb_assert (b->type == bp_hardware_breakpoint);
10187
10188 if (uiout->is_mi_like_p ())
10189 return;
10190
10191 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10192 b->number, paddress (bl->gdbarch, bl->address),
10193 paddress (bl->gdbarch, bl->address + bl->length - 1));
10194 }
10195
10196 /* Implement the "print_recreate" breakpoint_ops method for
10197 ranged breakpoints. */
10198
10199 static void
10200 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10201 {
10202 fprintf_unfiltered (fp, "break-range %s, %s",
10203 event_location_to_string (b->location.get ()),
10204 event_location_to_string (b->location_range_end.get ()));
10205 print_recreate_thread (b, fp);
10206 }
10207
10208 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10209
10210 static struct breakpoint_ops ranged_breakpoint_ops;
10211
10212 /* Find the address where the end of the breakpoint range should be
10213 placed, given the SAL of the end of the range. This is so that if
10214 the user provides a line number, the end of the range is set to the
10215 last instruction of the given line. */
10216
10217 static CORE_ADDR
10218 find_breakpoint_range_end (struct symtab_and_line sal)
10219 {
10220 CORE_ADDR end;
10221
10222 /* If the user provided a PC value, use it. Otherwise,
10223 find the address of the end of the given location. */
10224 if (sal.explicit_pc)
10225 end = sal.pc;
10226 else
10227 {
10228 int ret;
10229 CORE_ADDR start;
10230
10231 ret = find_line_pc_range (sal, &start, &end);
10232 if (!ret)
10233 error (_("Could not find location of the end of the range."));
10234
10235 /* find_line_pc_range returns the start of the next line. */
10236 end--;
10237 }
10238
10239 return end;
10240 }
10241
10242 /* Implement the "break-range" CLI command. */
10243
10244 static void
10245 break_range_command (char *arg, int from_tty)
10246 {
10247 char *arg_start, *addr_string_start;
10248 struct linespec_result canonical_start, canonical_end;
10249 int bp_count, can_use_bp, length;
10250 CORE_ADDR end;
10251 struct breakpoint *b;
10252 struct symtab_and_line sal_start, sal_end;
10253 struct cleanup *cleanup_bkpt;
10254 struct linespec_sals *lsal_start, *lsal_end;
10255
10256 /* We don't support software ranged breakpoints. */
10257 if (target_ranged_break_num_registers () < 0)
10258 error (_("This target does not support hardware ranged breakpoints."));
10259
10260 bp_count = hw_breakpoint_used_count ();
10261 bp_count += target_ranged_break_num_registers ();
10262 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10263 bp_count, 0);
10264 if (can_use_bp < 0)
10265 error (_("Hardware breakpoints used exceeds limit."));
10266
10267 arg = skip_spaces (arg);
10268 if (arg == NULL || arg[0] == '\0')
10269 error(_("No address range specified."));
10270
10271 arg_start = arg;
10272 event_location_up start_location = string_to_event_location (&arg,
10273 current_language);
10274 parse_breakpoint_sals (start_location.get (), &canonical_start);
10275
10276 if (arg[0] != ',')
10277 error (_("Too few arguments."));
10278 else if (VEC_empty (linespec_sals, canonical_start.sals))
10279 error (_("Could not find location of the beginning of the range."));
10280
10281 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10282
10283 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10284 || lsal_start->sals.nelts != 1)
10285 error (_("Cannot create a ranged breakpoint with multiple locations."));
10286
10287 sal_start = lsal_start->sals.sals[0];
10288 addr_string_start = savestring (arg_start, arg - arg_start);
10289 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10290
10291 arg++; /* Skip the comma. */
10292 arg = skip_spaces (arg);
10293
10294 /* Parse the end location. */
10295
10296 arg_start = arg;
10297
10298 /* We call decode_line_full directly here instead of using
10299 parse_breakpoint_sals because we need to specify the start location's
10300 symtab and line as the default symtab and line for the end of the
10301 range. This makes it possible to have ranges like "foo.c:27, +14",
10302 where +14 means 14 lines from the start location. */
10303 event_location_up end_location = string_to_event_location (&arg,
10304 current_language);
10305 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10306 sal_start.symtab, sal_start.line,
10307 &canonical_end, NULL, NULL);
10308
10309 if (VEC_empty (linespec_sals, canonical_end.sals))
10310 error (_("Could not find location of the end of the range."));
10311
10312 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10313 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10314 || lsal_end->sals.nelts != 1)
10315 error (_("Cannot create a ranged breakpoint with multiple locations."));
10316
10317 sal_end = lsal_end->sals.sals[0];
10318
10319 end = find_breakpoint_range_end (sal_end);
10320 if (sal_start.pc > end)
10321 error (_("Invalid address range, end precedes start."));
10322
10323 length = end - sal_start.pc + 1;
10324 if (length < 0)
10325 /* Length overflowed. */
10326 error (_("Address range too large."));
10327 else if (length == 1)
10328 {
10329 /* This range is simple enough to be handled by
10330 the `hbreak' command. */
10331 hbreak_command (addr_string_start, 1);
10332
10333 do_cleanups (cleanup_bkpt);
10334
10335 return;
10336 }
10337
10338 /* Now set up the breakpoint. */
10339 b = set_raw_breakpoint (get_current_arch (), sal_start,
10340 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10341 set_breakpoint_count (breakpoint_count + 1);
10342 b->number = breakpoint_count;
10343 b->disposition = disp_donttouch;
10344 b->location = std::move (start_location);
10345 b->location_range_end = std::move (end_location);
10346 b->loc->length = length;
10347
10348 do_cleanups (cleanup_bkpt);
10349
10350 mention (b);
10351 observer_notify_breakpoint_created (b);
10352 update_global_location_list (UGLL_MAY_INSERT);
10353 }
10354
10355 /* Return non-zero if EXP is verified as constant. Returned zero
10356 means EXP is variable. Also the constant detection may fail for
10357 some constant expressions and in such case still falsely return
10358 zero. */
10359
10360 static int
10361 watchpoint_exp_is_const (const struct expression *exp)
10362 {
10363 int i = exp->nelts;
10364
10365 while (i > 0)
10366 {
10367 int oplenp, argsp;
10368
10369 /* We are only interested in the descriptor of each element. */
10370 operator_length (exp, i, &oplenp, &argsp);
10371 i -= oplenp;
10372
10373 switch (exp->elts[i].opcode)
10374 {
10375 case BINOP_ADD:
10376 case BINOP_SUB:
10377 case BINOP_MUL:
10378 case BINOP_DIV:
10379 case BINOP_REM:
10380 case BINOP_MOD:
10381 case BINOP_LSH:
10382 case BINOP_RSH:
10383 case BINOP_LOGICAL_AND:
10384 case BINOP_LOGICAL_OR:
10385 case BINOP_BITWISE_AND:
10386 case BINOP_BITWISE_IOR:
10387 case BINOP_BITWISE_XOR:
10388 case BINOP_EQUAL:
10389 case BINOP_NOTEQUAL:
10390 case BINOP_LESS:
10391 case BINOP_GTR:
10392 case BINOP_LEQ:
10393 case BINOP_GEQ:
10394 case BINOP_REPEAT:
10395 case BINOP_COMMA:
10396 case BINOP_EXP:
10397 case BINOP_MIN:
10398 case BINOP_MAX:
10399 case BINOP_INTDIV:
10400 case BINOP_CONCAT:
10401 case TERNOP_COND:
10402 case TERNOP_SLICE:
10403
10404 case OP_LONG:
10405 case OP_DOUBLE:
10406 case OP_DECFLOAT:
10407 case OP_LAST:
10408 case OP_COMPLEX:
10409 case OP_STRING:
10410 case OP_ARRAY:
10411 case OP_TYPE:
10412 case OP_TYPEOF:
10413 case OP_DECLTYPE:
10414 case OP_TYPEID:
10415 case OP_NAME:
10416 case OP_OBJC_NSSTRING:
10417
10418 case UNOP_NEG:
10419 case UNOP_LOGICAL_NOT:
10420 case UNOP_COMPLEMENT:
10421 case UNOP_ADDR:
10422 case UNOP_HIGH:
10423 case UNOP_CAST:
10424
10425 case UNOP_CAST_TYPE:
10426 case UNOP_REINTERPRET_CAST:
10427 case UNOP_DYNAMIC_CAST:
10428 /* Unary, binary and ternary operators: We have to check
10429 their operands. If they are constant, then so is the
10430 result of that operation. For instance, if A and B are
10431 determined to be constants, then so is "A + B".
10432
10433 UNOP_IND is one exception to the rule above, because the
10434 value of *ADDR is not necessarily a constant, even when
10435 ADDR is. */
10436 break;
10437
10438 case OP_VAR_VALUE:
10439 /* Check whether the associated symbol is a constant.
10440
10441 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10442 possible that a buggy compiler could mark a variable as
10443 constant even when it is not, and TYPE_CONST would return
10444 true in this case, while SYMBOL_CLASS wouldn't.
10445
10446 We also have to check for function symbols because they
10447 are always constant. */
10448 {
10449 struct symbol *s = exp->elts[i + 2].symbol;
10450
10451 if (SYMBOL_CLASS (s) != LOC_BLOCK
10452 && SYMBOL_CLASS (s) != LOC_CONST
10453 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10454 return 0;
10455 break;
10456 }
10457
10458 /* The default action is to return 0 because we are using
10459 the optimistic approach here: If we don't know something,
10460 then it is not a constant. */
10461 default:
10462 return 0;
10463 }
10464 }
10465
10466 return 1;
10467 }
10468
10469 /* Watchpoint destructor. */
10470
10471 watchpoint::~watchpoint ()
10472 {
10473 xfree (this->exp_string);
10474 xfree (this->exp_string_reparse);
10475 value_free (this->val);
10476 }
10477
10478 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10479
10480 static void
10481 re_set_watchpoint (struct breakpoint *b)
10482 {
10483 struct watchpoint *w = (struct watchpoint *) b;
10484
10485 /* Watchpoint can be either on expression using entirely global
10486 variables, or it can be on local variables.
10487
10488 Watchpoints of the first kind are never auto-deleted, and even
10489 persist across program restarts. Since they can use variables
10490 from shared libraries, we need to reparse expression as libraries
10491 are loaded and unloaded.
10492
10493 Watchpoints on local variables can also change meaning as result
10494 of solib event. For example, if a watchpoint uses both a local
10495 and a global variables in expression, it's a local watchpoint,
10496 but unloading of a shared library will make the expression
10497 invalid. This is not a very common use case, but we still
10498 re-evaluate expression, to avoid surprises to the user.
10499
10500 Note that for local watchpoints, we re-evaluate it only if
10501 watchpoints frame id is still valid. If it's not, it means the
10502 watchpoint is out of scope and will be deleted soon. In fact,
10503 I'm not sure we'll ever be called in this case.
10504
10505 If a local watchpoint's frame id is still valid, then
10506 w->exp_valid_block is likewise valid, and we can safely use it.
10507
10508 Don't do anything about disabled watchpoints, since they will be
10509 reevaluated again when enabled. */
10510 update_watchpoint (w, 1 /* reparse */);
10511 }
10512
10513 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10514
10515 static int
10516 insert_watchpoint (struct bp_location *bl)
10517 {
10518 struct watchpoint *w = (struct watchpoint *) bl->owner;
10519 int length = w->exact ? 1 : bl->length;
10520
10521 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10522 w->cond_exp.get ());
10523 }
10524
10525 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10526
10527 static int
10528 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10529 {
10530 struct watchpoint *w = (struct watchpoint *) bl->owner;
10531 int length = w->exact ? 1 : bl->length;
10532
10533 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10534 w->cond_exp.get ());
10535 }
10536
10537 static int
10538 breakpoint_hit_watchpoint (const struct bp_location *bl,
10539 struct address_space *aspace, CORE_ADDR bp_addr,
10540 const struct target_waitstatus *ws)
10541 {
10542 struct breakpoint *b = bl->owner;
10543 struct watchpoint *w = (struct watchpoint *) b;
10544
10545 /* Continuable hardware watchpoints are treated as non-existent if the
10546 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10547 some data address). Otherwise gdb won't stop on a break instruction
10548 in the code (not from a breakpoint) when a hardware watchpoint has
10549 been defined. Also skip watchpoints which we know did not trigger
10550 (did not match the data address). */
10551 if (is_hardware_watchpoint (b)
10552 && w->watchpoint_triggered == watch_triggered_no)
10553 return 0;
10554
10555 return 1;
10556 }
10557
10558 static void
10559 check_status_watchpoint (bpstat bs)
10560 {
10561 gdb_assert (is_watchpoint (bs->breakpoint_at));
10562
10563 bpstat_check_watchpoint (bs);
10564 }
10565
10566 /* Implement the "resources_needed" breakpoint_ops method for
10567 hardware watchpoints. */
10568
10569 static int
10570 resources_needed_watchpoint (const struct bp_location *bl)
10571 {
10572 struct watchpoint *w = (struct watchpoint *) bl->owner;
10573 int length = w->exact? 1 : bl->length;
10574
10575 return target_region_ok_for_hw_watchpoint (bl->address, length);
10576 }
10577
10578 /* Implement the "works_in_software_mode" breakpoint_ops method for
10579 hardware watchpoints. */
10580
10581 static int
10582 works_in_software_mode_watchpoint (const struct breakpoint *b)
10583 {
10584 /* Read and access watchpoints only work with hardware support. */
10585 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10586 }
10587
10588 static enum print_stop_action
10589 print_it_watchpoint (bpstat bs)
10590 {
10591 struct cleanup *old_chain;
10592 struct breakpoint *b;
10593 enum print_stop_action result;
10594 struct watchpoint *w;
10595 struct ui_out *uiout = current_uiout;
10596
10597 gdb_assert (bs->bp_location_at != NULL);
10598
10599 b = bs->breakpoint_at;
10600 w = (struct watchpoint *) b;
10601
10602 old_chain = make_cleanup (null_cleanup, NULL);
10603
10604 annotate_watchpoint (b->number);
10605 maybe_print_thread_hit_breakpoint (uiout);
10606
10607 string_file stb;
10608
10609 switch (b->type)
10610 {
10611 case bp_watchpoint:
10612 case bp_hardware_watchpoint:
10613 if (uiout->is_mi_like_p ())
10614 uiout->field_string
10615 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10616 mention (b);
10617 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10618 uiout->text ("\nOld value = ");
10619 watchpoint_value_print (bs->old_val, &stb);
10620 uiout->field_stream ("old", stb);
10621 uiout->text ("\nNew value = ");
10622 watchpoint_value_print (w->val, &stb);
10623 uiout->field_stream ("new", stb);
10624 uiout->text ("\n");
10625 /* More than one watchpoint may have been triggered. */
10626 result = PRINT_UNKNOWN;
10627 break;
10628
10629 case bp_read_watchpoint:
10630 if (uiout->is_mi_like_p ())
10631 uiout->field_string
10632 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10633 mention (b);
10634 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10635 uiout->text ("\nValue = ");
10636 watchpoint_value_print (w->val, &stb);
10637 uiout->field_stream ("value", stb);
10638 uiout->text ("\n");
10639 result = PRINT_UNKNOWN;
10640 break;
10641
10642 case bp_access_watchpoint:
10643 if (bs->old_val != NULL)
10644 {
10645 if (uiout->is_mi_like_p ())
10646 uiout->field_string
10647 ("reason",
10648 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10649 mention (b);
10650 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10651 uiout->text ("\nOld value = ");
10652 watchpoint_value_print (bs->old_val, &stb);
10653 uiout->field_stream ("old", stb);
10654 uiout->text ("\nNew value = ");
10655 }
10656 else
10657 {
10658 mention (b);
10659 if (uiout->is_mi_like_p ())
10660 uiout->field_string
10661 ("reason",
10662 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10663 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10664 uiout->text ("\nValue = ");
10665 }
10666 watchpoint_value_print (w->val, &stb);
10667 uiout->field_stream ("new", stb);
10668 uiout->text ("\n");
10669 result = PRINT_UNKNOWN;
10670 break;
10671 default:
10672 result = PRINT_UNKNOWN;
10673 }
10674
10675 do_cleanups (old_chain);
10676 return result;
10677 }
10678
10679 /* Implement the "print_mention" breakpoint_ops method for hardware
10680 watchpoints. */
10681
10682 static void
10683 print_mention_watchpoint (struct breakpoint *b)
10684 {
10685 struct watchpoint *w = (struct watchpoint *) b;
10686 struct ui_out *uiout = current_uiout;
10687 const char *tuple_name;
10688
10689 switch (b->type)
10690 {
10691 case bp_watchpoint:
10692 uiout->text ("Watchpoint ");
10693 tuple_name = "wpt";
10694 break;
10695 case bp_hardware_watchpoint:
10696 uiout->text ("Hardware watchpoint ");
10697 tuple_name = "wpt";
10698 break;
10699 case bp_read_watchpoint:
10700 uiout->text ("Hardware read watchpoint ");
10701 tuple_name = "hw-rwpt";
10702 break;
10703 case bp_access_watchpoint:
10704 uiout->text ("Hardware access (read/write) watchpoint ");
10705 tuple_name = "hw-awpt";
10706 break;
10707 default:
10708 internal_error (__FILE__, __LINE__,
10709 _("Invalid hardware watchpoint type."));
10710 }
10711
10712 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10713 uiout->field_int ("number", b->number);
10714 uiout->text (": ");
10715 uiout->field_string ("exp", w->exp_string);
10716 }
10717
10718 /* Implement the "print_recreate" breakpoint_ops method for
10719 watchpoints. */
10720
10721 static void
10722 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10723 {
10724 struct watchpoint *w = (struct watchpoint *) b;
10725
10726 switch (b->type)
10727 {
10728 case bp_watchpoint:
10729 case bp_hardware_watchpoint:
10730 fprintf_unfiltered (fp, "watch");
10731 break;
10732 case bp_read_watchpoint:
10733 fprintf_unfiltered (fp, "rwatch");
10734 break;
10735 case bp_access_watchpoint:
10736 fprintf_unfiltered (fp, "awatch");
10737 break;
10738 default:
10739 internal_error (__FILE__, __LINE__,
10740 _("Invalid watchpoint type."));
10741 }
10742
10743 fprintf_unfiltered (fp, " %s", w->exp_string);
10744 print_recreate_thread (b, fp);
10745 }
10746
10747 /* Implement the "explains_signal" breakpoint_ops method for
10748 watchpoints. */
10749
10750 static int
10751 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10752 {
10753 /* A software watchpoint cannot cause a signal other than
10754 GDB_SIGNAL_TRAP. */
10755 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10756 return 0;
10757
10758 return 1;
10759 }
10760
10761 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10762
10763 static struct breakpoint_ops watchpoint_breakpoint_ops;
10764
10765 /* Implement the "insert" breakpoint_ops method for
10766 masked hardware watchpoints. */
10767
10768 static int
10769 insert_masked_watchpoint (struct bp_location *bl)
10770 {
10771 struct watchpoint *w = (struct watchpoint *) bl->owner;
10772
10773 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10774 bl->watchpoint_type);
10775 }
10776
10777 /* Implement the "remove" breakpoint_ops method for
10778 masked hardware watchpoints. */
10779
10780 static int
10781 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10782 {
10783 struct watchpoint *w = (struct watchpoint *) bl->owner;
10784
10785 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10786 bl->watchpoint_type);
10787 }
10788
10789 /* Implement the "resources_needed" breakpoint_ops method for
10790 masked hardware watchpoints. */
10791
10792 static int
10793 resources_needed_masked_watchpoint (const struct bp_location *bl)
10794 {
10795 struct watchpoint *w = (struct watchpoint *) bl->owner;
10796
10797 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10798 }
10799
10800 /* Implement the "works_in_software_mode" breakpoint_ops method for
10801 masked hardware watchpoints. */
10802
10803 static int
10804 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10805 {
10806 return 0;
10807 }
10808
10809 /* Implement the "print_it" breakpoint_ops method for
10810 masked hardware watchpoints. */
10811
10812 static enum print_stop_action
10813 print_it_masked_watchpoint (bpstat bs)
10814 {
10815 struct breakpoint *b = bs->breakpoint_at;
10816 struct ui_out *uiout = current_uiout;
10817
10818 /* Masked watchpoints have only one location. */
10819 gdb_assert (b->loc && b->loc->next == NULL);
10820
10821 annotate_watchpoint (b->number);
10822 maybe_print_thread_hit_breakpoint (uiout);
10823
10824 switch (b->type)
10825 {
10826 case bp_hardware_watchpoint:
10827 if (uiout->is_mi_like_p ())
10828 uiout->field_string
10829 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10830 break;
10831
10832 case bp_read_watchpoint:
10833 if (uiout->is_mi_like_p ())
10834 uiout->field_string
10835 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10836 break;
10837
10838 case bp_access_watchpoint:
10839 if (uiout->is_mi_like_p ())
10840 uiout->field_string
10841 ("reason",
10842 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10843 break;
10844 default:
10845 internal_error (__FILE__, __LINE__,
10846 _("Invalid hardware watchpoint type."));
10847 }
10848
10849 mention (b);
10850 uiout->text (_("\n\
10851 Check the underlying instruction at PC for the memory\n\
10852 address and value which triggered this watchpoint.\n"));
10853 uiout->text ("\n");
10854
10855 /* More than one watchpoint may have been triggered. */
10856 return PRINT_UNKNOWN;
10857 }
10858
10859 /* Implement the "print_one_detail" breakpoint_ops method for
10860 masked hardware watchpoints. */
10861
10862 static void
10863 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10864 struct ui_out *uiout)
10865 {
10866 struct watchpoint *w = (struct watchpoint *) b;
10867
10868 /* Masked watchpoints have only one location. */
10869 gdb_assert (b->loc && b->loc->next == NULL);
10870
10871 uiout->text ("\tmask ");
10872 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10873 uiout->text ("\n");
10874 }
10875
10876 /* Implement the "print_mention" breakpoint_ops method for
10877 masked hardware watchpoints. */
10878
10879 static void
10880 print_mention_masked_watchpoint (struct breakpoint *b)
10881 {
10882 struct watchpoint *w = (struct watchpoint *) b;
10883 struct ui_out *uiout = current_uiout;
10884 const char *tuple_name;
10885
10886 switch (b->type)
10887 {
10888 case bp_hardware_watchpoint:
10889 uiout->text ("Masked hardware watchpoint ");
10890 tuple_name = "wpt";
10891 break;
10892 case bp_read_watchpoint:
10893 uiout->text ("Masked hardware read watchpoint ");
10894 tuple_name = "hw-rwpt";
10895 break;
10896 case bp_access_watchpoint:
10897 uiout->text ("Masked hardware access (read/write) watchpoint ");
10898 tuple_name = "hw-awpt";
10899 break;
10900 default:
10901 internal_error (__FILE__, __LINE__,
10902 _("Invalid hardware watchpoint type."));
10903 }
10904
10905 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10906 uiout->field_int ("number", b->number);
10907 uiout->text (": ");
10908 uiout->field_string ("exp", w->exp_string);
10909 }
10910
10911 /* Implement the "print_recreate" breakpoint_ops method for
10912 masked hardware watchpoints. */
10913
10914 static void
10915 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10916 {
10917 struct watchpoint *w = (struct watchpoint *) b;
10918 char tmp[40];
10919
10920 switch (b->type)
10921 {
10922 case bp_hardware_watchpoint:
10923 fprintf_unfiltered (fp, "watch");
10924 break;
10925 case bp_read_watchpoint:
10926 fprintf_unfiltered (fp, "rwatch");
10927 break;
10928 case bp_access_watchpoint:
10929 fprintf_unfiltered (fp, "awatch");
10930 break;
10931 default:
10932 internal_error (__FILE__, __LINE__,
10933 _("Invalid hardware watchpoint type."));
10934 }
10935
10936 sprintf_vma (tmp, w->hw_wp_mask);
10937 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10938 print_recreate_thread (b, fp);
10939 }
10940
10941 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10942
10943 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10944
10945 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10946
10947 static int
10948 is_masked_watchpoint (const struct breakpoint *b)
10949 {
10950 return b->ops == &masked_watchpoint_breakpoint_ops;
10951 }
10952
10953 /* accessflag: hw_write: watch write,
10954 hw_read: watch read,
10955 hw_access: watch access (read or write) */
10956 static void
10957 watch_command_1 (const char *arg, int accessflag, int from_tty,
10958 int just_location, int internal)
10959 {
10960 struct breakpoint *scope_breakpoint = NULL;
10961 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10962 struct value *val, *mark, *result;
10963 int saved_bitpos = 0, saved_bitsize = 0;
10964 const char *exp_start = NULL;
10965 const char *exp_end = NULL;
10966 const char *tok, *end_tok;
10967 int toklen = -1;
10968 const char *cond_start = NULL;
10969 const char *cond_end = NULL;
10970 enum bptype bp_type;
10971 int thread = -1;
10972 int pc = 0;
10973 /* Flag to indicate whether we are going to use masks for
10974 the hardware watchpoint. */
10975 int use_mask = 0;
10976 CORE_ADDR mask = 0;
10977 struct watchpoint *w;
10978 char *expression;
10979 struct cleanup *back_to;
10980
10981 /* Make sure that we actually have parameters to parse. */
10982 if (arg != NULL && arg[0] != '\0')
10983 {
10984 const char *value_start;
10985
10986 exp_end = arg + strlen (arg);
10987
10988 /* Look for "parameter value" pairs at the end
10989 of the arguments string. */
10990 for (tok = exp_end - 1; tok > arg; tok--)
10991 {
10992 /* Skip whitespace at the end of the argument list. */
10993 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10994 tok--;
10995
10996 /* Find the beginning of the last token.
10997 This is the value of the parameter. */
10998 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10999 tok--;
11000 value_start = tok + 1;
11001
11002 /* Skip whitespace. */
11003 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11004 tok--;
11005
11006 end_tok = tok;
11007
11008 /* Find the beginning of the second to last token.
11009 This is the parameter itself. */
11010 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11011 tok--;
11012 tok++;
11013 toklen = end_tok - tok + 1;
11014
11015 if (toklen == 6 && startswith (tok, "thread"))
11016 {
11017 struct thread_info *thr;
11018 /* At this point we've found a "thread" token, which means
11019 the user is trying to set a watchpoint that triggers
11020 only in a specific thread. */
11021 const char *endp;
11022
11023 if (thread != -1)
11024 error(_("You can specify only one thread."));
11025
11026 /* Extract the thread ID from the next token. */
11027 thr = parse_thread_id (value_start, &endp);
11028
11029 /* Check if the user provided a valid thread ID. */
11030 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11031 invalid_thread_id_error (value_start);
11032
11033 thread = thr->global_num;
11034 }
11035 else if (toklen == 4 && startswith (tok, "mask"))
11036 {
11037 /* We've found a "mask" token, which means the user wants to
11038 create a hardware watchpoint that is going to have the mask
11039 facility. */
11040 struct value *mask_value, *mark;
11041
11042 if (use_mask)
11043 error(_("You can specify only one mask."));
11044
11045 use_mask = just_location = 1;
11046
11047 mark = value_mark ();
11048 mask_value = parse_to_comma_and_eval (&value_start);
11049 mask = value_as_address (mask_value);
11050 value_free_to_mark (mark);
11051 }
11052 else
11053 /* We didn't recognize what we found. We should stop here. */
11054 break;
11055
11056 /* Truncate the string and get rid of the "parameter value" pair before
11057 the arguments string is parsed by the parse_exp_1 function. */
11058 exp_end = tok;
11059 }
11060 }
11061 else
11062 exp_end = arg;
11063
11064 /* Parse the rest of the arguments. From here on out, everything
11065 is in terms of a newly allocated string instead of the original
11066 ARG. */
11067 innermost_block = NULL;
11068 expression = savestring (arg, exp_end - arg);
11069 back_to = make_cleanup (xfree, expression);
11070 exp_start = arg = expression;
11071 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11072 exp_end = arg;
11073 /* Remove trailing whitespace from the expression before saving it.
11074 This makes the eventual display of the expression string a bit
11075 prettier. */
11076 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11077 --exp_end;
11078
11079 /* Checking if the expression is not constant. */
11080 if (watchpoint_exp_is_const (exp.get ()))
11081 {
11082 int len;
11083
11084 len = exp_end - exp_start;
11085 while (len > 0 && isspace (exp_start[len - 1]))
11086 len--;
11087 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11088 }
11089
11090 exp_valid_block = innermost_block;
11091 mark = value_mark ();
11092 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11093
11094 if (val != NULL && just_location)
11095 {
11096 saved_bitpos = value_bitpos (val);
11097 saved_bitsize = value_bitsize (val);
11098 }
11099
11100 if (just_location)
11101 {
11102 int ret;
11103
11104 exp_valid_block = NULL;
11105 val = value_addr (result);
11106 release_value (val);
11107 value_free_to_mark (mark);
11108
11109 if (use_mask)
11110 {
11111 ret = target_masked_watch_num_registers (value_as_address (val),
11112 mask);
11113 if (ret == -1)
11114 error (_("This target does not support masked watchpoints."));
11115 else if (ret == -2)
11116 error (_("Invalid mask or memory region."));
11117 }
11118 }
11119 else if (val != NULL)
11120 release_value (val);
11121
11122 tok = skip_spaces_const (arg);
11123 end_tok = skip_to_space_const (tok);
11124
11125 toklen = end_tok - tok;
11126 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11127 {
11128 innermost_block = NULL;
11129 tok = cond_start = end_tok + 1;
11130 parse_exp_1 (&tok, 0, 0, 0);
11131
11132 /* The watchpoint expression may not be local, but the condition
11133 may still be. E.g.: `watch global if local > 0'. */
11134 cond_exp_valid_block = innermost_block;
11135
11136 cond_end = tok;
11137 }
11138 if (*tok)
11139 error (_("Junk at end of command."));
11140
11141 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
11142
11143 /* Save this because create_internal_breakpoint below invalidates
11144 'wp_frame'. */
11145 frame_id watchpoint_frame = get_frame_id (wp_frame);
11146
11147 /* If the expression is "local", then set up a "watchpoint scope"
11148 breakpoint at the point where we've left the scope of the watchpoint
11149 expression. Create the scope breakpoint before the watchpoint, so
11150 that we will encounter it first in bpstat_stop_status. */
11151 if (exp_valid_block != NULL && wp_frame != NULL)
11152 {
11153 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
11154
11155 if (frame_id_p (caller_frame_id))
11156 {
11157 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
11158 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
11159
11160 scope_breakpoint
11161 = create_internal_breakpoint (caller_arch, caller_pc,
11162 bp_watchpoint_scope,
11163 &momentary_breakpoint_ops);
11164
11165 /* create_internal_breakpoint could invalidate WP_FRAME. */
11166 wp_frame = NULL;
11167
11168 scope_breakpoint->enable_state = bp_enabled;
11169
11170 /* Automatically delete the breakpoint when it hits. */
11171 scope_breakpoint->disposition = disp_del;
11172
11173 /* Only break in the proper frame (help with recursion). */
11174 scope_breakpoint->frame_id = caller_frame_id;
11175
11176 /* Set the address at which we will stop. */
11177 scope_breakpoint->loc->gdbarch = caller_arch;
11178 scope_breakpoint->loc->requested_address = caller_pc;
11179 scope_breakpoint->loc->address
11180 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11181 scope_breakpoint->loc->requested_address,
11182 scope_breakpoint->type);
11183 }
11184 }
11185
11186 /* Now set up the breakpoint. We create all watchpoints as hardware
11187 watchpoints here even if hardware watchpoints are turned off, a call
11188 to update_watchpoint later in this function will cause the type to
11189 drop back to bp_watchpoint (software watchpoint) if required. */
11190
11191 if (accessflag == hw_read)
11192 bp_type = bp_read_watchpoint;
11193 else if (accessflag == hw_access)
11194 bp_type = bp_access_watchpoint;
11195 else
11196 bp_type = bp_hardware_watchpoint;
11197
11198 w = new watchpoint ();
11199
11200 if (use_mask)
11201 init_raw_breakpoint_without_location (w, NULL, bp_type,
11202 &masked_watchpoint_breakpoint_ops);
11203 else
11204 init_raw_breakpoint_without_location (w, NULL, bp_type,
11205 &watchpoint_breakpoint_ops);
11206 w->thread = thread;
11207 w->disposition = disp_donttouch;
11208 w->pspace = current_program_space;
11209 w->exp = std::move (exp);
11210 w->exp_valid_block = exp_valid_block;
11211 w->cond_exp_valid_block = cond_exp_valid_block;
11212 if (just_location)
11213 {
11214 struct type *t = value_type (val);
11215 CORE_ADDR addr = value_as_address (val);
11216
11217 w->exp_string_reparse
11218 = current_language->la_watch_location_expression (t, addr).release ();
11219
11220 w->exp_string = xstrprintf ("-location %.*s",
11221 (int) (exp_end - exp_start), exp_start);
11222 }
11223 else
11224 w->exp_string = savestring (exp_start, exp_end - exp_start);
11225
11226 if (use_mask)
11227 {
11228 w->hw_wp_mask = mask;
11229 }
11230 else
11231 {
11232 w->val = val;
11233 w->val_bitpos = saved_bitpos;
11234 w->val_bitsize = saved_bitsize;
11235 w->val_valid = 1;
11236 }
11237
11238 if (cond_start)
11239 w->cond_string = savestring (cond_start, cond_end - cond_start);
11240 else
11241 w->cond_string = 0;
11242
11243 if (frame_id_p (watchpoint_frame))
11244 {
11245 w->watchpoint_frame = watchpoint_frame;
11246 w->watchpoint_thread = inferior_ptid;
11247 }
11248 else
11249 {
11250 w->watchpoint_frame = null_frame_id;
11251 w->watchpoint_thread = null_ptid;
11252 }
11253
11254 if (scope_breakpoint != NULL)
11255 {
11256 /* The scope breakpoint is related to the watchpoint. We will
11257 need to act on them together. */
11258 w->related_breakpoint = scope_breakpoint;
11259 scope_breakpoint->related_breakpoint = w;
11260 }
11261
11262 if (!just_location)
11263 value_free_to_mark (mark);
11264
11265 TRY
11266 {
11267 /* Finally update the new watchpoint. This creates the locations
11268 that should be inserted. */
11269 update_watchpoint (w, 1);
11270 }
11271 CATCH (e, RETURN_MASK_ALL)
11272 {
11273 delete_breakpoint (w);
11274 throw_exception (e);
11275 }
11276 END_CATCH
11277
11278 install_breakpoint (internal, w, 1);
11279 do_cleanups (back_to);
11280 }
11281
11282 /* Return count of debug registers needed to watch the given expression.
11283 If the watchpoint cannot be handled in hardware return zero. */
11284
11285 static int
11286 can_use_hardware_watchpoint (struct value *v)
11287 {
11288 int found_memory_cnt = 0;
11289 struct value *head = v;
11290
11291 /* Did the user specifically forbid us to use hardware watchpoints? */
11292 if (!can_use_hw_watchpoints)
11293 return 0;
11294
11295 /* Make sure that the value of the expression depends only upon
11296 memory contents, and values computed from them within GDB. If we
11297 find any register references or function calls, we can't use a
11298 hardware watchpoint.
11299
11300 The idea here is that evaluating an expression generates a series
11301 of values, one holding the value of every subexpression. (The
11302 expression a*b+c has five subexpressions: a, b, a*b, c, and
11303 a*b+c.) GDB's values hold almost enough information to establish
11304 the criteria given above --- they identify memory lvalues,
11305 register lvalues, computed values, etcetera. So we can evaluate
11306 the expression, and then scan the chain of values that leaves
11307 behind to decide whether we can detect any possible change to the
11308 expression's final value using only hardware watchpoints.
11309
11310 However, I don't think that the values returned by inferior
11311 function calls are special in any way. So this function may not
11312 notice that an expression involving an inferior function call
11313 can't be watched with hardware watchpoints. FIXME. */
11314 for (; v; v = value_next (v))
11315 {
11316 if (VALUE_LVAL (v) == lval_memory)
11317 {
11318 if (v != head && value_lazy (v))
11319 /* A lazy memory lvalue in the chain is one that GDB never
11320 needed to fetch; we either just used its address (e.g.,
11321 `a' in `a.b') or we never needed it at all (e.g., `a'
11322 in `a,b'). This doesn't apply to HEAD; if that is
11323 lazy then it was not readable, but watch it anyway. */
11324 ;
11325 else
11326 {
11327 /* Ahh, memory we actually used! Check if we can cover
11328 it with hardware watchpoints. */
11329 struct type *vtype = check_typedef (value_type (v));
11330
11331 /* We only watch structs and arrays if user asked for it
11332 explicitly, never if they just happen to appear in a
11333 middle of some value chain. */
11334 if (v == head
11335 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11336 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11337 {
11338 CORE_ADDR vaddr = value_address (v);
11339 int len;
11340 int num_regs;
11341
11342 len = (target_exact_watchpoints
11343 && is_scalar_type_recursive (vtype))?
11344 1 : TYPE_LENGTH (value_type (v));
11345
11346 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11347 if (!num_regs)
11348 return 0;
11349 else
11350 found_memory_cnt += num_regs;
11351 }
11352 }
11353 }
11354 else if (VALUE_LVAL (v) != not_lval
11355 && deprecated_value_modifiable (v) == 0)
11356 return 0; /* These are values from the history (e.g., $1). */
11357 else if (VALUE_LVAL (v) == lval_register)
11358 return 0; /* Cannot watch a register with a HW watchpoint. */
11359 }
11360
11361 /* The expression itself looks suitable for using a hardware
11362 watchpoint, but give the target machine a chance to reject it. */
11363 return found_memory_cnt;
11364 }
11365
11366 void
11367 watch_command_wrapper (char *arg, int from_tty, int internal)
11368 {
11369 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11370 }
11371
11372 /* A helper function that looks for the "-location" argument and then
11373 calls watch_command_1. */
11374
11375 static void
11376 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11377 {
11378 int just_location = 0;
11379
11380 if (arg
11381 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11382 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11383 {
11384 arg = skip_spaces (arg);
11385 just_location = 1;
11386 }
11387
11388 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11389 }
11390
11391 static void
11392 watch_command (char *arg, int from_tty)
11393 {
11394 watch_maybe_just_location (arg, hw_write, from_tty);
11395 }
11396
11397 void
11398 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11399 {
11400 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11401 }
11402
11403 static void
11404 rwatch_command (char *arg, int from_tty)
11405 {
11406 watch_maybe_just_location (arg, hw_read, from_tty);
11407 }
11408
11409 void
11410 awatch_command_wrapper (char *arg, int from_tty, int internal)
11411 {
11412 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11413 }
11414
11415 static void
11416 awatch_command (char *arg, int from_tty)
11417 {
11418 watch_maybe_just_location (arg, hw_access, from_tty);
11419 }
11420 \f
11421
11422 /* Data for the FSM that manages the until(location)/advance commands
11423 in infcmd.c. Here because it uses the mechanisms of
11424 breakpoints. */
11425
11426 struct until_break_fsm
11427 {
11428 /* The base class. */
11429 struct thread_fsm thread_fsm;
11430
11431 /* The thread that as current when the command was executed. */
11432 int thread;
11433
11434 /* The breakpoint set at the destination location. */
11435 struct breakpoint *location_breakpoint;
11436
11437 /* Breakpoint set at the return address in the caller frame. May be
11438 NULL. */
11439 struct breakpoint *caller_breakpoint;
11440 };
11441
11442 static void until_break_fsm_clean_up (struct thread_fsm *self,
11443 struct thread_info *thread);
11444 static int until_break_fsm_should_stop (struct thread_fsm *self,
11445 struct thread_info *thread);
11446 static enum async_reply_reason
11447 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11448
11449 /* until_break_fsm's vtable. */
11450
11451 static struct thread_fsm_ops until_break_fsm_ops =
11452 {
11453 NULL, /* dtor */
11454 until_break_fsm_clean_up,
11455 until_break_fsm_should_stop,
11456 NULL, /* return_value */
11457 until_break_fsm_async_reply_reason,
11458 };
11459
11460 /* Allocate a new until_break_command_fsm. */
11461
11462 static struct until_break_fsm *
11463 new_until_break_fsm (struct interp *cmd_interp, int thread,
11464 struct breakpoint *location_breakpoint,
11465 struct breakpoint *caller_breakpoint)
11466 {
11467 struct until_break_fsm *sm;
11468
11469 sm = XCNEW (struct until_break_fsm);
11470 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11471
11472 sm->thread = thread;
11473 sm->location_breakpoint = location_breakpoint;
11474 sm->caller_breakpoint = caller_breakpoint;
11475
11476 return sm;
11477 }
11478
11479 /* Implementation of the 'should_stop' FSM method for the
11480 until(location)/advance commands. */
11481
11482 static int
11483 until_break_fsm_should_stop (struct thread_fsm *self,
11484 struct thread_info *tp)
11485 {
11486 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11487
11488 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11489 sm->location_breakpoint) != NULL
11490 || (sm->caller_breakpoint != NULL
11491 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11492 sm->caller_breakpoint) != NULL))
11493 thread_fsm_set_finished (self);
11494
11495 return 1;
11496 }
11497
11498 /* Implementation of the 'clean_up' FSM method for the
11499 until(location)/advance commands. */
11500
11501 static void
11502 until_break_fsm_clean_up (struct thread_fsm *self,
11503 struct thread_info *thread)
11504 {
11505 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11506
11507 /* Clean up our temporary breakpoints. */
11508 if (sm->location_breakpoint != NULL)
11509 {
11510 delete_breakpoint (sm->location_breakpoint);
11511 sm->location_breakpoint = NULL;
11512 }
11513 if (sm->caller_breakpoint != NULL)
11514 {
11515 delete_breakpoint (sm->caller_breakpoint);
11516 sm->caller_breakpoint = NULL;
11517 }
11518 delete_longjmp_breakpoint (sm->thread);
11519 }
11520
11521 /* Implementation of the 'async_reply_reason' FSM method for the
11522 until(location)/advance commands. */
11523
11524 static enum async_reply_reason
11525 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11526 {
11527 return EXEC_ASYNC_LOCATION_REACHED;
11528 }
11529
11530 void
11531 until_break_command (char *arg, int from_tty, int anywhere)
11532 {
11533 struct symtabs_and_lines sals;
11534 struct symtab_and_line sal;
11535 struct frame_info *frame;
11536 struct gdbarch *frame_gdbarch;
11537 struct frame_id stack_frame_id;
11538 struct frame_id caller_frame_id;
11539 struct breakpoint *location_breakpoint;
11540 struct breakpoint *caller_breakpoint = NULL;
11541 struct cleanup *old_chain;
11542 int thread;
11543 struct thread_info *tp;
11544 struct until_break_fsm *sm;
11545
11546 clear_proceed_status (0);
11547
11548 /* Set a breakpoint where the user wants it and at return from
11549 this function. */
11550
11551 event_location_up location = string_to_event_location (&arg, current_language);
11552
11553 if (last_displayed_sal_is_valid ())
11554 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11555 get_last_displayed_symtab (),
11556 get_last_displayed_line ());
11557 else
11558 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11559 NULL, (struct symtab *) NULL, 0);
11560
11561 if (sals.nelts != 1)
11562 error (_("Couldn't get information on specified line."));
11563
11564 sal = sals.sals[0];
11565 xfree (sals.sals); /* malloc'd, so freed. */
11566
11567 if (*arg)
11568 error (_("Junk at end of arguments."));
11569
11570 resolve_sal_pc (&sal);
11571
11572 tp = inferior_thread ();
11573 thread = tp->global_num;
11574
11575 old_chain = make_cleanup (null_cleanup, NULL);
11576
11577 /* Note linespec handling above invalidates the frame chain.
11578 Installing a breakpoint also invalidates the frame chain (as it
11579 may need to switch threads), so do any frame handling before
11580 that. */
11581
11582 frame = get_selected_frame (NULL);
11583 frame_gdbarch = get_frame_arch (frame);
11584 stack_frame_id = get_stack_frame_id (frame);
11585 caller_frame_id = frame_unwind_caller_id (frame);
11586
11587 /* Keep within the current frame, or in frames called by the current
11588 one. */
11589
11590 if (frame_id_p (caller_frame_id))
11591 {
11592 struct symtab_and_line sal2;
11593 struct gdbarch *caller_gdbarch;
11594
11595 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11596 sal2.pc = frame_unwind_caller_pc (frame);
11597 caller_gdbarch = frame_unwind_caller_arch (frame);
11598 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11599 sal2,
11600 caller_frame_id,
11601 bp_until);
11602 make_cleanup_delete_breakpoint (caller_breakpoint);
11603
11604 set_longjmp_breakpoint (tp, caller_frame_id);
11605 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11606 }
11607
11608 /* set_momentary_breakpoint could invalidate FRAME. */
11609 frame = NULL;
11610
11611 if (anywhere)
11612 /* If the user told us to continue until a specified location,
11613 we don't specify a frame at which we need to stop. */
11614 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11615 null_frame_id, bp_until);
11616 else
11617 /* Otherwise, specify the selected frame, because we want to stop
11618 only at the very same frame. */
11619 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11620 stack_frame_id, bp_until);
11621 make_cleanup_delete_breakpoint (location_breakpoint);
11622
11623 sm = new_until_break_fsm (command_interp (), tp->global_num,
11624 location_breakpoint, caller_breakpoint);
11625 tp->thread_fsm = &sm->thread_fsm;
11626
11627 discard_cleanups (old_chain);
11628
11629 proceed (-1, GDB_SIGNAL_DEFAULT);
11630 }
11631
11632 /* This function attempts to parse an optional "if <cond>" clause
11633 from the arg string. If one is not found, it returns NULL.
11634
11635 Else, it returns a pointer to the condition string. (It does not
11636 attempt to evaluate the string against a particular block.) And,
11637 it updates arg to point to the first character following the parsed
11638 if clause in the arg string. */
11639
11640 const char *
11641 ep_parse_optional_if_clause (const char **arg)
11642 {
11643 const char *cond_string;
11644
11645 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11646 return NULL;
11647
11648 /* Skip the "if" keyword. */
11649 (*arg) += 2;
11650
11651 /* Skip any extra leading whitespace, and record the start of the
11652 condition string. */
11653 *arg = skip_spaces_const (*arg);
11654 cond_string = *arg;
11655
11656 /* Assume that the condition occupies the remainder of the arg
11657 string. */
11658 (*arg) += strlen (cond_string);
11659
11660 return cond_string;
11661 }
11662
11663 /* Commands to deal with catching events, such as signals, exceptions,
11664 process start/exit, etc. */
11665
11666 typedef enum
11667 {
11668 catch_fork_temporary, catch_vfork_temporary,
11669 catch_fork_permanent, catch_vfork_permanent
11670 }
11671 catch_fork_kind;
11672
11673 static void
11674 catch_fork_command_1 (char *arg_entry, int from_tty,
11675 struct cmd_list_element *command)
11676 {
11677 const char *arg = arg_entry;
11678 struct gdbarch *gdbarch = get_current_arch ();
11679 const char *cond_string = NULL;
11680 catch_fork_kind fork_kind;
11681 int tempflag;
11682
11683 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11684 tempflag = (fork_kind == catch_fork_temporary
11685 || fork_kind == catch_vfork_temporary);
11686
11687 if (!arg)
11688 arg = "";
11689 arg = skip_spaces_const (arg);
11690
11691 /* The allowed syntax is:
11692 catch [v]fork
11693 catch [v]fork if <cond>
11694
11695 First, check if there's an if clause. */
11696 cond_string = ep_parse_optional_if_clause (&arg);
11697
11698 if ((*arg != '\0') && !isspace (*arg))
11699 error (_("Junk at end of arguments."));
11700
11701 /* If this target supports it, create a fork or vfork catchpoint
11702 and enable reporting of such events. */
11703 switch (fork_kind)
11704 {
11705 case catch_fork_temporary:
11706 case catch_fork_permanent:
11707 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11708 &catch_fork_breakpoint_ops);
11709 break;
11710 case catch_vfork_temporary:
11711 case catch_vfork_permanent:
11712 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11713 &catch_vfork_breakpoint_ops);
11714 break;
11715 default:
11716 error (_("unsupported or unknown fork kind; cannot catch it"));
11717 break;
11718 }
11719 }
11720
11721 static void
11722 catch_exec_command_1 (char *arg_entry, int from_tty,
11723 struct cmd_list_element *command)
11724 {
11725 const char *arg = arg_entry;
11726 struct exec_catchpoint *c;
11727 struct gdbarch *gdbarch = get_current_arch ();
11728 int tempflag;
11729 const char *cond_string = NULL;
11730
11731 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11732
11733 if (!arg)
11734 arg = "";
11735 arg = skip_spaces_const (arg);
11736
11737 /* The allowed syntax is:
11738 catch exec
11739 catch exec if <cond>
11740
11741 First, check if there's an if clause. */
11742 cond_string = ep_parse_optional_if_clause (&arg);
11743
11744 if ((*arg != '\0') && !isspace (*arg))
11745 error (_("Junk at end of arguments."));
11746
11747 c = new exec_catchpoint ();
11748 init_catchpoint (c, gdbarch, tempflag, cond_string,
11749 &catch_exec_breakpoint_ops);
11750 c->exec_pathname = NULL;
11751
11752 install_breakpoint (0, c, 1);
11753 }
11754
11755 void
11756 init_ada_exception_breakpoint (struct breakpoint *b,
11757 struct gdbarch *gdbarch,
11758 struct symtab_and_line sal,
11759 char *addr_string,
11760 const struct breakpoint_ops *ops,
11761 int tempflag,
11762 int enabled,
11763 int from_tty)
11764 {
11765 if (from_tty)
11766 {
11767 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11768 if (!loc_gdbarch)
11769 loc_gdbarch = gdbarch;
11770
11771 describe_other_breakpoints (loc_gdbarch,
11772 sal.pspace, sal.pc, sal.section, -1);
11773 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11774 version for exception catchpoints, because two catchpoints
11775 used for different exception names will use the same address.
11776 In this case, a "breakpoint ... also set at..." warning is
11777 unproductive. Besides, the warning phrasing is also a bit
11778 inappropriate, we should use the word catchpoint, and tell
11779 the user what type of catchpoint it is. The above is good
11780 enough for now, though. */
11781 }
11782
11783 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11784
11785 b->enable_state = enabled ? bp_enabled : bp_disabled;
11786 b->disposition = tempflag ? disp_del : disp_donttouch;
11787 b->location = string_to_event_location (&addr_string,
11788 language_def (language_ada));
11789 b->language = language_ada;
11790 }
11791
11792 static void
11793 catch_command (char *arg, int from_tty)
11794 {
11795 error (_("Catch requires an event name."));
11796 }
11797 \f
11798
11799 static void
11800 tcatch_command (char *arg, int from_tty)
11801 {
11802 error (_("Catch requires an event name."));
11803 }
11804
11805 /* A qsort comparison function that sorts breakpoints in order. */
11806
11807 static int
11808 compare_breakpoints (const void *a, const void *b)
11809 {
11810 const breakpoint_p *ba = (const breakpoint_p *) a;
11811 uintptr_t ua = (uintptr_t) *ba;
11812 const breakpoint_p *bb = (const breakpoint_p *) b;
11813 uintptr_t ub = (uintptr_t) *bb;
11814
11815 if ((*ba)->number < (*bb)->number)
11816 return -1;
11817 else if ((*ba)->number > (*bb)->number)
11818 return 1;
11819
11820 /* Now sort by address, in case we see, e..g, two breakpoints with
11821 the number 0. */
11822 if (ua < ub)
11823 return -1;
11824 return ua > ub ? 1 : 0;
11825 }
11826
11827 /* Delete breakpoints by address or line. */
11828
11829 static void
11830 clear_command (char *arg, int from_tty)
11831 {
11832 struct breakpoint *b, *prev;
11833 VEC(breakpoint_p) *found = 0;
11834 int ix;
11835 int default_match;
11836 struct symtabs_and_lines sals;
11837 struct symtab_and_line sal;
11838 int i;
11839 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11840
11841 if (arg)
11842 {
11843 sals = decode_line_with_current_source (arg,
11844 (DECODE_LINE_FUNFIRSTLINE
11845 | DECODE_LINE_LIST_MODE));
11846 make_cleanup (xfree, sals.sals);
11847 default_match = 0;
11848 }
11849 else
11850 {
11851 sals.sals = XNEW (struct symtab_and_line);
11852 make_cleanup (xfree, sals.sals);
11853 init_sal (&sal); /* Initialize to zeroes. */
11854
11855 /* Set sal's line, symtab, pc, and pspace to the values
11856 corresponding to the last call to print_frame_info. If the
11857 codepoint is not valid, this will set all the fields to 0. */
11858 get_last_displayed_sal (&sal);
11859 if (sal.symtab == 0)
11860 error (_("No source file specified."));
11861
11862 sals.sals[0] = sal;
11863 sals.nelts = 1;
11864
11865 default_match = 1;
11866 }
11867
11868 /* We don't call resolve_sal_pc here. That's not as bad as it
11869 seems, because all existing breakpoints typically have both
11870 file/line and pc set. So, if clear is given file/line, we can
11871 match this to existing breakpoint without obtaining pc at all.
11872
11873 We only support clearing given the address explicitly
11874 present in breakpoint table. Say, we've set breakpoint
11875 at file:line. There were several PC values for that file:line,
11876 due to optimization, all in one block.
11877
11878 We've picked one PC value. If "clear" is issued with another
11879 PC corresponding to the same file:line, the breakpoint won't
11880 be cleared. We probably can still clear the breakpoint, but
11881 since the other PC value is never presented to user, user
11882 can only find it by guessing, and it does not seem important
11883 to support that. */
11884
11885 /* For each line spec given, delete bps which correspond to it. Do
11886 it in two passes, solely to preserve the current behavior that
11887 from_tty is forced true if we delete more than one
11888 breakpoint. */
11889
11890 found = NULL;
11891 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11892 for (i = 0; i < sals.nelts; i++)
11893 {
11894 const char *sal_fullname;
11895
11896 /* If exact pc given, clear bpts at that pc.
11897 If line given (pc == 0), clear all bpts on specified line.
11898 If defaulting, clear all bpts on default line
11899 or at default pc.
11900
11901 defaulting sal.pc != 0 tests to do
11902
11903 0 1 pc
11904 1 1 pc _and_ line
11905 0 0 line
11906 1 0 <can't happen> */
11907
11908 sal = sals.sals[i];
11909 sal_fullname = (sal.symtab == NULL
11910 ? NULL : symtab_to_fullname (sal.symtab));
11911
11912 /* Find all matching breakpoints and add them to 'found'. */
11913 ALL_BREAKPOINTS (b)
11914 {
11915 int match = 0;
11916 /* Are we going to delete b? */
11917 if (b->type != bp_none && !is_watchpoint (b))
11918 {
11919 struct bp_location *loc = b->loc;
11920 for (; loc; loc = loc->next)
11921 {
11922 /* If the user specified file:line, don't allow a PC
11923 match. This matches historical gdb behavior. */
11924 int pc_match = (!sal.explicit_line
11925 && sal.pc
11926 && (loc->pspace == sal.pspace)
11927 && (loc->address == sal.pc)
11928 && (!section_is_overlay (loc->section)
11929 || loc->section == sal.section));
11930 int line_match = 0;
11931
11932 if ((default_match || sal.explicit_line)
11933 && loc->symtab != NULL
11934 && sal_fullname != NULL
11935 && sal.pspace == loc->pspace
11936 && loc->line_number == sal.line
11937 && filename_cmp (symtab_to_fullname (loc->symtab),
11938 sal_fullname) == 0)
11939 line_match = 1;
11940
11941 if (pc_match || line_match)
11942 {
11943 match = 1;
11944 break;
11945 }
11946 }
11947 }
11948
11949 if (match)
11950 VEC_safe_push(breakpoint_p, found, b);
11951 }
11952 }
11953
11954 /* Now go thru the 'found' chain and delete them. */
11955 if (VEC_empty(breakpoint_p, found))
11956 {
11957 if (arg)
11958 error (_("No breakpoint at %s."), arg);
11959 else
11960 error (_("No breakpoint at this line."));
11961 }
11962
11963 /* Remove duplicates from the vec. */
11964 qsort (VEC_address (breakpoint_p, found),
11965 VEC_length (breakpoint_p, found),
11966 sizeof (breakpoint_p),
11967 compare_breakpoints);
11968 prev = VEC_index (breakpoint_p, found, 0);
11969 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11970 {
11971 if (b == prev)
11972 {
11973 VEC_ordered_remove (breakpoint_p, found, ix);
11974 --ix;
11975 }
11976 }
11977
11978 if (VEC_length(breakpoint_p, found) > 1)
11979 from_tty = 1; /* Always report if deleted more than one. */
11980 if (from_tty)
11981 {
11982 if (VEC_length(breakpoint_p, found) == 1)
11983 printf_unfiltered (_("Deleted breakpoint "));
11984 else
11985 printf_unfiltered (_("Deleted breakpoints "));
11986 }
11987
11988 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11989 {
11990 if (from_tty)
11991 printf_unfiltered ("%d ", b->number);
11992 delete_breakpoint (b);
11993 }
11994 if (from_tty)
11995 putchar_unfiltered ('\n');
11996
11997 do_cleanups (cleanups);
11998 }
11999 \f
12000 /* Delete breakpoint in BS if they are `delete' breakpoints and
12001 all breakpoints that are marked for deletion, whether hit or not.
12002 This is called after any breakpoint is hit, or after errors. */
12003
12004 void
12005 breakpoint_auto_delete (bpstat bs)
12006 {
12007 struct breakpoint *b, *b_tmp;
12008
12009 for (; bs; bs = bs->next)
12010 if (bs->breakpoint_at
12011 && bs->breakpoint_at->disposition == disp_del
12012 && bs->stop)
12013 delete_breakpoint (bs->breakpoint_at);
12014
12015 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12016 {
12017 if (b->disposition == disp_del_at_next_stop)
12018 delete_breakpoint (b);
12019 }
12020 }
12021
12022 /* A comparison function for bp_location AP and BP being interfaced to
12023 qsort. Sort elements primarily by their ADDRESS (no matter what
12024 does breakpoint_address_is_meaningful say for its OWNER),
12025 secondarily by ordering first permanent elements and
12026 terciarily just ensuring the array is sorted stable way despite
12027 qsort being an unstable algorithm. */
12028
12029 static int
12030 bp_locations_compare (const void *ap, const void *bp)
12031 {
12032 const struct bp_location *a = *(const struct bp_location **) ap;
12033 const struct bp_location *b = *(const struct bp_location **) bp;
12034
12035 if (a->address != b->address)
12036 return (a->address > b->address) - (a->address < b->address);
12037
12038 /* Sort locations at the same address by their pspace number, keeping
12039 locations of the same inferior (in a multi-inferior environment)
12040 grouped. */
12041
12042 if (a->pspace->num != b->pspace->num)
12043 return ((a->pspace->num > b->pspace->num)
12044 - (a->pspace->num < b->pspace->num));
12045
12046 /* Sort permanent breakpoints first. */
12047 if (a->permanent != b->permanent)
12048 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12049
12050 /* Make the internal GDB representation stable across GDB runs
12051 where A and B memory inside GDB can differ. Breakpoint locations of
12052 the same type at the same address can be sorted in arbitrary order. */
12053
12054 if (a->owner->number != b->owner->number)
12055 return ((a->owner->number > b->owner->number)
12056 - (a->owner->number < b->owner->number));
12057
12058 return (a > b) - (a < b);
12059 }
12060
12061 /* Set bp_locations_placed_address_before_address_max and
12062 bp_locations_shadow_len_after_address_max according to the current
12063 content of the bp_locations array. */
12064
12065 static void
12066 bp_locations_target_extensions_update (void)
12067 {
12068 struct bp_location *bl, **blp_tmp;
12069
12070 bp_locations_placed_address_before_address_max = 0;
12071 bp_locations_shadow_len_after_address_max = 0;
12072
12073 ALL_BP_LOCATIONS (bl, blp_tmp)
12074 {
12075 CORE_ADDR start, end, addr;
12076
12077 if (!bp_location_has_shadow (bl))
12078 continue;
12079
12080 start = bl->target_info.placed_address;
12081 end = start + bl->target_info.shadow_len;
12082
12083 gdb_assert (bl->address >= start);
12084 addr = bl->address - start;
12085 if (addr > bp_locations_placed_address_before_address_max)
12086 bp_locations_placed_address_before_address_max = addr;
12087
12088 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12089
12090 gdb_assert (bl->address < end);
12091 addr = end - bl->address;
12092 if (addr > bp_locations_shadow_len_after_address_max)
12093 bp_locations_shadow_len_after_address_max = addr;
12094 }
12095 }
12096
12097 /* Download tracepoint locations if they haven't been. */
12098
12099 static void
12100 download_tracepoint_locations (void)
12101 {
12102 struct breakpoint *b;
12103 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12104
12105 scoped_restore_current_pspace_and_thread restore_pspace_thread;
12106
12107 ALL_TRACEPOINTS (b)
12108 {
12109 struct bp_location *bl;
12110 struct tracepoint *t;
12111 int bp_location_downloaded = 0;
12112
12113 if ((b->type == bp_fast_tracepoint
12114 ? !may_insert_fast_tracepoints
12115 : !may_insert_tracepoints))
12116 continue;
12117
12118 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12119 {
12120 if (target_can_download_tracepoint ())
12121 can_download_tracepoint = TRIBOOL_TRUE;
12122 else
12123 can_download_tracepoint = TRIBOOL_FALSE;
12124 }
12125
12126 if (can_download_tracepoint == TRIBOOL_FALSE)
12127 break;
12128
12129 for (bl = b->loc; bl; bl = bl->next)
12130 {
12131 /* In tracepoint, locations are _never_ duplicated, so
12132 should_be_inserted is equivalent to
12133 unduplicated_should_be_inserted. */
12134 if (!should_be_inserted (bl) || bl->inserted)
12135 continue;
12136
12137 switch_to_program_space_and_thread (bl->pspace);
12138
12139 target_download_tracepoint (bl);
12140
12141 bl->inserted = 1;
12142 bp_location_downloaded = 1;
12143 }
12144 t = (struct tracepoint *) b;
12145 t->number_on_target = b->number;
12146 if (bp_location_downloaded)
12147 observer_notify_breakpoint_modified (b);
12148 }
12149 }
12150
12151 /* Swap the insertion/duplication state between two locations. */
12152
12153 static void
12154 swap_insertion (struct bp_location *left, struct bp_location *right)
12155 {
12156 const int left_inserted = left->inserted;
12157 const int left_duplicate = left->duplicate;
12158 const int left_needs_update = left->needs_update;
12159 const struct bp_target_info left_target_info = left->target_info;
12160
12161 /* Locations of tracepoints can never be duplicated. */
12162 if (is_tracepoint (left->owner))
12163 gdb_assert (!left->duplicate);
12164 if (is_tracepoint (right->owner))
12165 gdb_assert (!right->duplicate);
12166
12167 left->inserted = right->inserted;
12168 left->duplicate = right->duplicate;
12169 left->needs_update = right->needs_update;
12170 left->target_info = right->target_info;
12171 right->inserted = left_inserted;
12172 right->duplicate = left_duplicate;
12173 right->needs_update = left_needs_update;
12174 right->target_info = left_target_info;
12175 }
12176
12177 /* Force the re-insertion of the locations at ADDRESS. This is called
12178 once a new/deleted/modified duplicate location is found and we are evaluating
12179 conditions on the target's side. Such conditions need to be updated on
12180 the target. */
12181
12182 static void
12183 force_breakpoint_reinsertion (struct bp_location *bl)
12184 {
12185 struct bp_location **locp = NULL, **loc2p;
12186 struct bp_location *loc;
12187 CORE_ADDR address = 0;
12188 int pspace_num;
12189
12190 address = bl->address;
12191 pspace_num = bl->pspace->num;
12192
12193 /* This is only meaningful if the target is
12194 evaluating conditions and if the user has
12195 opted for condition evaluation on the target's
12196 side. */
12197 if (gdb_evaluates_breakpoint_condition_p ()
12198 || !target_supports_evaluation_of_breakpoint_conditions ())
12199 return;
12200
12201 /* Flag all breakpoint locations with this address and
12202 the same program space as the location
12203 as "its condition has changed". We need to
12204 update the conditions on the target's side. */
12205 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12206 {
12207 loc = *loc2p;
12208
12209 if (!is_breakpoint (loc->owner)
12210 || pspace_num != loc->pspace->num)
12211 continue;
12212
12213 /* Flag the location appropriately. We use a different state to
12214 let everyone know that we already updated the set of locations
12215 with addr bl->address and program space bl->pspace. This is so
12216 we don't have to keep calling these functions just to mark locations
12217 that have already been marked. */
12218 loc->condition_changed = condition_updated;
12219
12220 /* Free the agent expression bytecode as well. We will compute
12221 it later on. */
12222 loc->cond_bytecode.reset ();
12223 }
12224 }
12225 /* Called whether new breakpoints are created, or existing breakpoints
12226 deleted, to update the global location list and recompute which
12227 locations are duplicate of which.
12228
12229 The INSERT_MODE flag determines whether locations may not, may, or
12230 shall be inserted now. See 'enum ugll_insert_mode' for more
12231 info. */
12232
12233 static void
12234 update_global_location_list (enum ugll_insert_mode insert_mode)
12235 {
12236 struct breakpoint *b;
12237 struct bp_location **locp, *loc;
12238 struct cleanup *cleanups;
12239 /* Last breakpoint location address that was marked for update. */
12240 CORE_ADDR last_addr = 0;
12241 /* Last breakpoint location program space that was marked for update. */
12242 int last_pspace_num = -1;
12243
12244 /* Used in the duplicates detection below. When iterating over all
12245 bp_locations, points to the first bp_location of a given address.
12246 Breakpoints and watchpoints of different types are never
12247 duplicates of each other. Keep one pointer for each type of
12248 breakpoint/watchpoint, so we only need to loop over all locations
12249 once. */
12250 struct bp_location *bp_loc_first; /* breakpoint */
12251 struct bp_location *wp_loc_first; /* hardware watchpoint */
12252 struct bp_location *awp_loc_first; /* access watchpoint */
12253 struct bp_location *rwp_loc_first; /* read watchpoint */
12254
12255 /* Saved former bp_locations array which we compare against the newly
12256 built bp_locations from the current state of ALL_BREAKPOINTS. */
12257 struct bp_location **old_locations, **old_locp;
12258 unsigned old_locations_count;
12259
12260 old_locations = bp_locations;
12261 old_locations_count = bp_locations_count;
12262 bp_locations = NULL;
12263 bp_locations_count = 0;
12264 cleanups = make_cleanup (xfree, old_locations);
12265
12266 ALL_BREAKPOINTS (b)
12267 for (loc = b->loc; loc; loc = loc->next)
12268 bp_locations_count++;
12269
12270 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12271 locp = bp_locations;
12272 ALL_BREAKPOINTS (b)
12273 for (loc = b->loc; loc; loc = loc->next)
12274 *locp++ = loc;
12275 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12276 bp_locations_compare);
12277
12278 bp_locations_target_extensions_update ();
12279
12280 /* Identify bp_location instances that are no longer present in the
12281 new list, and therefore should be freed. Note that it's not
12282 necessary that those locations should be removed from inferior --
12283 if there's another location at the same address (previously
12284 marked as duplicate), we don't need to remove/insert the
12285 location.
12286
12287 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12288 and former bp_location array state respectively. */
12289
12290 locp = bp_locations;
12291 for (old_locp = old_locations;
12292 old_locp < old_locations + old_locations_count;
12293 old_locp++)
12294 {
12295 struct bp_location *old_loc = *old_locp;
12296 struct bp_location **loc2p;
12297
12298 /* Tells if 'old_loc' is found among the new locations. If
12299 not, we have to free it. */
12300 int found_object = 0;
12301 /* Tells if the location should remain inserted in the target. */
12302 int keep_in_target = 0;
12303 int removed = 0;
12304
12305 /* Skip LOCP entries which will definitely never be needed.
12306 Stop either at or being the one matching OLD_LOC. */
12307 while (locp < bp_locations + bp_locations_count
12308 && (*locp)->address < old_loc->address)
12309 locp++;
12310
12311 for (loc2p = locp;
12312 (loc2p < bp_locations + bp_locations_count
12313 && (*loc2p)->address == old_loc->address);
12314 loc2p++)
12315 {
12316 /* Check if this is a new/duplicated location or a duplicated
12317 location that had its condition modified. If so, we want to send
12318 its condition to the target if evaluation of conditions is taking
12319 place there. */
12320 if ((*loc2p)->condition_changed == condition_modified
12321 && (last_addr != old_loc->address
12322 || last_pspace_num != old_loc->pspace->num))
12323 {
12324 force_breakpoint_reinsertion (*loc2p);
12325 last_pspace_num = old_loc->pspace->num;
12326 }
12327
12328 if (*loc2p == old_loc)
12329 found_object = 1;
12330 }
12331
12332 /* We have already handled this address, update it so that we don't
12333 have to go through updates again. */
12334 last_addr = old_loc->address;
12335
12336 /* Target-side condition evaluation: Handle deleted locations. */
12337 if (!found_object)
12338 force_breakpoint_reinsertion (old_loc);
12339
12340 /* If this location is no longer present, and inserted, look if
12341 there's maybe a new location at the same address. If so,
12342 mark that one inserted, and don't remove this one. This is
12343 needed so that we don't have a time window where a breakpoint
12344 at certain location is not inserted. */
12345
12346 if (old_loc->inserted)
12347 {
12348 /* If the location is inserted now, we might have to remove
12349 it. */
12350
12351 if (found_object && should_be_inserted (old_loc))
12352 {
12353 /* The location is still present in the location list,
12354 and still should be inserted. Don't do anything. */
12355 keep_in_target = 1;
12356 }
12357 else
12358 {
12359 /* This location still exists, but it won't be kept in the
12360 target since it may have been disabled. We proceed to
12361 remove its target-side condition. */
12362
12363 /* The location is either no longer present, or got
12364 disabled. See if there's another location at the
12365 same address, in which case we don't need to remove
12366 this one from the target. */
12367
12368 /* OLD_LOC comes from existing struct breakpoint. */
12369 if (breakpoint_address_is_meaningful (old_loc->owner))
12370 {
12371 for (loc2p = locp;
12372 (loc2p < bp_locations + bp_locations_count
12373 && (*loc2p)->address == old_loc->address);
12374 loc2p++)
12375 {
12376 struct bp_location *loc2 = *loc2p;
12377
12378 if (breakpoint_locations_match (loc2, old_loc))
12379 {
12380 /* Read watchpoint locations are switched to
12381 access watchpoints, if the former are not
12382 supported, but the latter are. */
12383 if (is_hardware_watchpoint (old_loc->owner))
12384 {
12385 gdb_assert (is_hardware_watchpoint (loc2->owner));
12386 loc2->watchpoint_type = old_loc->watchpoint_type;
12387 }
12388
12389 /* loc2 is a duplicated location. We need to check
12390 if it should be inserted in case it will be
12391 unduplicated. */
12392 if (loc2 != old_loc
12393 && unduplicated_should_be_inserted (loc2))
12394 {
12395 swap_insertion (old_loc, loc2);
12396 keep_in_target = 1;
12397 break;
12398 }
12399 }
12400 }
12401 }
12402 }
12403
12404 if (!keep_in_target)
12405 {
12406 if (remove_breakpoint (old_loc))
12407 {
12408 /* This is just about all we can do. We could keep
12409 this location on the global list, and try to
12410 remove it next time, but there's no particular
12411 reason why we will succeed next time.
12412
12413 Note that at this point, old_loc->owner is still
12414 valid, as delete_breakpoint frees the breakpoint
12415 only after calling us. */
12416 printf_filtered (_("warning: Error removing "
12417 "breakpoint %d\n"),
12418 old_loc->owner->number);
12419 }
12420 removed = 1;
12421 }
12422 }
12423
12424 if (!found_object)
12425 {
12426 if (removed && target_is_non_stop_p ()
12427 && need_moribund_for_location_type (old_loc))
12428 {
12429 /* This location was removed from the target. In
12430 non-stop mode, a race condition is possible where
12431 we've removed a breakpoint, but stop events for that
12432 breakpoint are already queued and will arrive later.
12433 We apply an heuristic to be able to distinguish such
12434 SIGTRAPs from other random SIGTRAPs: we keep this
12435 breakpoint location for a bit, and will retire it
12436 after we see some number of events. The theory here
12437 is that reporting of events should, "on the average",
12438 be fair, so after a while we'll see events from all
12439 threads that have anything of interest, and no longer
12440 need to keep this breakpoint location around. We
12441 don't hold locations forever so to reduce chances of
12442 mistaking a non-breakpoint SIGTRAP for a breakpoint
12443 SIGTRAP.
12444
12445 The heuristic failing can be disastrous on
12446 decr_pc_after_break targets.
12447
12448 On decr_pc_after_break targets, like e.g., x86-linux,
12449 if we fail to recognize a late breakpoint SIGTRAP,
12450 because events_till_retirement has reached 0 too
12451 soon, we'll fail to do the PC adjustment, and report
12452 a random SIGTRAP to the user. When the user resumes
12453 the inferior, it will most likely immediately crash
12454 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12455 corrupted, because of being resumed e.g., in the
12456 middle of a multi-byte instruction, or skipped a
12457 one-byte instruction. This was actually seen happen
12458 on native x86-linux, and should be less rare on
12459 targets that do not support new thread events, like
12460 remote, due to the heuristic depending on
12461 thread_count.
12462
12463 Mistaking a random SIGTRAP for a breakpoint trap
12464 causes similar symptoms (PC adjustment applied when
12465 it shouldn't), but then again, playing with SIGTRAPs
12466 behind the debugger's back is asking for trouble.
12467
12468 Since hardware watchpoint traps are always
12469 distinguishable from other traps, so we don't need to
12470 apply keep hardware watchpoint moribund locations
12471 around. We simply always ignore hardware watchpoint
12472 traps we can no longer explain. */
12473
12474 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12475 old_loc->owner = NULL;
12476
12477 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12478 }
12479 else
12480 {
12481 old_loc->owner = NULL;
12482 decref_bp_location (&old_loc);
12483 }
12484 }
12485 }
12486
12487 /* Rescan breakpoints at the same address and section, marking the
12488 first one as "first" and any others as "duplicates". This is so
12489 that the bpt instruction is only inserted once. If we have a
12490 permanent breakpoint at the same place as BPT, make that one the
12491 official one, and the rest as duplicates. Permanent breakpoints
12492 are sorted first for the same address.
12493
12494 Do the same for hardware watchpoints, but also considering the
12495 watchpoint's type (regular/access/read) and length. */
12496
12497 bp_loc_first = NULL;
12498 wp_loc_first = NULL;
12499 awp_loc_first = NULL;
12500 rwp_loc_first = NULL;
12501 ALL_BP_LOCATIONS (loc, locp)
12502 {
12503 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12504 non-NULL. */
12505 struct bp_location **loc_first_p;
12506 b = loc->owner;
12507
12508 if (!unduplicated_should_be_inserted (loc)
12509 || !breakpoint_address_is_meaningful (b)
12510 /* Don't detect duplicate for tracepoint locations because they are
12511 never duplicated. See the comments in field `duplicate' of
12512 `struct bp_location'. */
12513 || is_tracepoint (b))
12514 {
12515 /* Clear the condition modification flag. */
12516 loc->condition_changed = condition_unchanged;
12517 continue;
12518 }
12519
12520 if (b->type == bp_hardware_watchpoint)
12521 loc_first_p = &wp_loc_first;
12522 else if (b->type == bp_read_watchpoint)
12523 loc_first_p = &rwp_loc_first;
12524 else if (b->type == bp_access_watchpoint)
12525 loc_first_p = &awp_loc_first;
12526 else
12527 loc_first_p = &bp_loc_first;
12528
12529 if (*loc_first_p == NULL
12530 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12531 || !breakpoint_locations_match (loc, *loc_first_p))
12532 {
12533 *loc_first_p = loc;
12534 loc->duplicate = 0;
12535
12536 if (is_breakpoint (loc->owner) && loc->condition_changed)
12537 {
12538 loc->needs_update = 1;
12539 /* Clear the condition modification flag. */
12540 loc->condition_changed = condition_unchanged;
12541 }
12542 continue;
12543 }
12544
12545
12546 /* This and the above ensure the invariant that the first location
12547 is not duplicated, and is the inserted one.
12548 All following are marked as duplicated, and are not inserted. */
12549 if (loc->inserted)
12550 swap_insertion (loc, *loc_first_p);
12551 loc->duplicate = 1;
12552
12553 /* Clear the condition modification flag. */
12554 loc->condition_changed = condition_unchanged;
12555 }
12556
12557 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12558 {
12559 if (insert_mode != UGLL_DONT_INSERT)
12560 insert_breakpoint_locations ();
12561 else
12562 {
12563 /* Even though the caller told us to not insert new
12564 locations, we may still need to update conditions on the
12565 target's side of breakpoints that were already inserted
12566 if the target is evaluating breakpoint conditions. We
12567 only update conditions for locations that are marked
12568 "needs_update". */
12569 update_inserted_breakpoint_locations ();
12570 }
12571 }
12572
12573 if (insert_mode != UGLL_DONT_INSERT)
12574 download_tracepoint_locations ();
12575
12576 do_cleanups (cleanups);
12577 }
12578
12579 void
12580 breakpoint_retire_moribund (void)
12581 {
12582 struct bp_location *loc;
12583 int ix;
12584
12585 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12586 if (--(loc->events_till_retirement) == 0)
12587 {
12588 decref_bp_location (&loc);
12589 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12590 --ix;
12591 }
12592 }
12593
12594 static void
12595 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12596 {
12597
12598 TRY
12599 {
12600 update_global_location_list (insert_mode);
12601 }
12602 CATCH (e, RETURN_MASK_ERROR)
12603 {
12604 }
12605 END_CATCH
12606 }
12607
12608 /* Clear BKP from a BPS. */
12609
12610 static void
12611 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12612 {
12613 bpstat bs;
12614
12615 for (bs = bps; bs; bs = bs->next)
12616 if (bs->breakpoint_at == bpt)
12617 {
12618 bs->breakpoint_at = NULL;
12619 bs->old_val = NULL;
12620 /* bs->commands will be freed later. */
12621 }
12622 }
12623
12624 /* Callback for iterate_over_threads. */
12625 static int
12626 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12627 {
12628 struct breakpoint *bpt = (struct breakpoint *) data;
12629
12630 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12631 return 0;
12632 }
12633
12634 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12635 callbacks. */
12636
12637 static void
12638 say_where (struct breakpoint *b)
12639 {
12640 struct value_print_options opts;
12641
12642 get_user_print_options (&opts);
12643
12644 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12645 single string. */
12646 if (b->loc == NULL)
12647 {
12648 /* For pending locations, the output differs slightly based
12649 on b->extra_string. If this is non-NULL, it contains either
12650 a condition or dprintf arguments. */
12651 if (b->extra_string == NULL)
12652 {
12653 printf_filtered (_(" (%s) pending."),
12654 event_location_to_string (b->location.get ()));
12655 }
12656 else if (b->type == bp_dprintf)
12657 {
12658 printf_filtered (_(" (%s,%s) pending."),
12659 event_location_to_string (b->location.get ()),
12660 b->extra_string);
12661 }
12662 else
12663 {
12664 printf_filtered (_(" (%s %s) pending."),
12665 event_location_to_string (b->location.get ()),
12666 b->extra_string);
12667 }
12668 }
12669 else
12670 {
12671 if (opts.addressprint || b->loc->symtab == NULL)
12672 {
12673 printf_filtered (" at ");
12674 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12675 gdb_stdout);
12676 }
12677 if (b->loc->symtab != NULL)
12678 {
12679 /* If there is a single location, we can print the location
12680 more nicely. */
12681 if (b->loc->next == NULL)
12682 printf_filtered (": file %s, line %d.",
12683 symtab_to_filename_for_display (b->loc->symtab),
12684 b->loc->line_number);
12685 else
12686 /* This is not ideal, but each location may have a
12687 different file name, and this at least reflects the
12688 real situation somewhat. */
12689 printf_filtered (": %s.",
12690 event_location_to_string (b->location.get ()));
12691 }
12692
12693 if (b->loc->next)
12694 {
12695 struct bp_location *loc = b->loc;
12696 int n = 0;
12697 for (; loc; loc = loc->next)
12698 ++n;
12699 printf_filtered (" (%d locations)", n);
12700 }
12701 }
12702 }
12703
12704 /* Default bp_location_ops methods. */
12705
12706 static void
12707 bp_location_dtor (struct bp_location *self)
12708 {
12709 xfree (self->function_name);
12710 }
12711
12712 static const struct bp_location_ops bp_location_ops =
12713 {
12714 bp_location_dtor
12715 };
12716
12717 /* Destructor for the breakpoint base class. */
12718
12719 breakpoint::~breakpoint ()
12720 {
12721 decref_counted_command_line (&this->commands);
12722 xfree (this->cond_string);
12723 xfree (this->extra_string);
12724 xfree (this->filter);
12725 }
12726
12727 static struct bp_location *
12728 base_breakpoint_allocate_location (struct breakpoint *self)
12729 {
12730 return new bp_location (&bp_location_ops, self);
12731 }
12732
12733 static void
12734 base_breakpoint_re_set (struct breakpoint *b)
12735 {
12736 /* Nothing to re-set. */
12737 }
12738
12739 #define internal_error_pure_virtual_called() \
12740 gdb_assert_not_reached ("pure virtual function called")
12741
12742 static int
12743 base_breakpoint_insert_location (struct bp_location *bl)
12744 {
12745 internal_error_pure_virtual_called ();
12746 }
12747
12748 static int
12749 base_breakpoint_remove_location (struct bp_location *bl,
12750 enum remove_bp_reason reason)
12751 {
12752 internal_error_pure_virtual_called ();
12753 }
12754
12755 static int
12756 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12757 struct address_space *aspace,
12758 CORE_ADDR bp_addr,
12759 const struct target_waitstatus *ws)
12760 {
12761 internal_error_pure_virtual_called ();
12762 }
12763
12764 static void
12765 base_breakpoint_check_status (bpstat bs)
12766 {
12767 /* Always stop. */
12768 }
12769
12770 /* A "works_in_software_mode" breakpoint_ops method that just internal
12771 errors. */
12772
12773 static int
12774 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12775 {
12776 internal_error_pure_virtual_called ();
12777 }
12778
12779 /* A "resources_needed" breakpoint_ops method that just internal
12780 errors. */
12781
12782 static int
12783 base_breakpoint_resources_needed (const struct bp_location *bl)
12784 {
12785 internal_error_pure_virtual_called ();
12786 }
12787
12788 static enum print_stop_action
12789 base_breakpoint_print_it (bpstat bs)
12790 {
12791 internal_error_pure_virtual_called ();
12792 }
12793
12794 static void
12795 base_breakpoint_print_one_detail (const struct breakpoint *self,
12796 struct ui_out *uiout)
12797 {
12798 /* nothing */
12799 }
12800
12801 static void
12802 base_breakpoint_print_mention (struct breakpoint *b)
12803 {
12804 internal_error_pure_virtual_called ();
12805 }
12806
12807 static void
12808 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12809 {
12810 internal_error_pure_virtual_called ();
12811 }
12812
12813 static void
12814 base_breakpoint_create_sals_from_location
12815 (const struct event_location *location,
12816 struct linespec_result *canonical,
12817 enum bptype type_wanted)
12818 {
12819 internal_error_pure_virtual_called ();
12820 }
12821
12822 static void
12823 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12824 struct linespec_result *c,
12825 gdb::unique_xmalloc_ptr<char> cond_string,
12826 gdb::unique_xmalloc_ptr<char> extra_string,
12827 enum bptype type_wanted,
12828 enum bpdisp disposition,
12829 int thread,
12830 int task, int ignore_count,
12831 const struct breakpoint_ops *o,
12832 int from_tty, int enabled,
12833 int internal, unsigned flags)
12834 {
12835 internal_error_pure_virtual_called ();
12836 }
12837
12838 static void
12839 base_breakpoint_decode_location (struct breakpoint *b,
12840 const struct event_location *location,
12841 struct program_space *search_pspace,
12842 struct symtabs_and_lines *sals)
12843 {
12844 internal_error_pure_virtual_called ();
12845 }
12846
12847 /* The default 'explains_signal' method. */
12848
12849 static int
12850 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12851 {
12852 return 1;
12853 }
12854
12855 /* The default "after_condition_true" method. */
12856
12857 static void
12858 base_breakpoint_after_condition_true (struct bpstats *bs)
12859 {
12860 /* Nothing to do. */
12861 }
12862
12863 struct breakpoint_ops base_breakpoint_ops =
12864 {
12865 base_breakpoint_allocate_location,
12866 base_breakpoint_re_set,
12867 base_breakpoint_insert_location,
12868 base_breakpoint_remove_location,
12869 base_breakpoint_breakpoint_hit,
12870 base_breakpoint_check_status,
12871 base_breakpoint_resources_needed,
12872 base_breakpoint_works_in_software_mode,
12873 base_breakpoint_print_it,
12874 NULL,
12875 base_breakpoint_print_one_detail,
12876 base_breakpoint_print_mention,
12877 base_breakpoint_print_recreate,
12878 base_breakpoint_create_sals_from_location,
12879 base_breakpoint_create_breakpoints_sal,
12880 base_breakpoint_decode_location,
12881 base_breakpoint_explains_signal,
12882 base_breakpoint_after_condition_true,
12883 };
12884
12885 /* Default breakpoint_ops methods. */
12886
12887 static void
12888 bkpt_re_set (struct breakpoint *b)
12889 {
12890 /* FIXME: is this still reachable? */
12891 if (breakpoint_event_location_empty_p (b))
12892 {
12893 /* Anything without a location can't be re-set. */
12894 delete_breakpoint (b);
12895 return;
12896 }
12897
12898 breakpoint_re_set_default (b);
12899 }
12900
12901 static int
12902 bkpt_insert_location (struct bp_location *bl)
12903 {
12904 CORE_ADDR addr = bl->target_info.reqstd_address;
12905
12906 bl->target_info.kind = breakpoint_kind (bl, &addr);
12907 bl->target_info.placed_address = addr;
12908
12909 if (bl->loc_type == bp_loc_hardware_breakpoint)
12910 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12911 else
12912 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12913 }
12914
12915 static int
12916 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12917 {
12918 if (bl->loc_type == bp_loc_hardware_breakpoint)
12919 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12920 else
12921 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12922 }
12923
12924 static int
12925 bkpt_breakpoint_hit (const struct bp_location *bl,
12926 struct address_space *aspace, CORE_ADDR bp_addr,
12927 const struct target_waitstatus *ws)
12928 {
12929 if (ws->kind != TARGET_WAITKIND_STOPPED
12930 || ws->value.sig != GDB_SIGNAL_TRAP)
12931 return 0;
12932
12933 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12934 aspace, bp_addr))
12935 return 0;
12936
12937 if (overlay_debugging /* unmapped overlay section */
12938 && section_is_overlay (bl->section)
12939 && !section_is_mapped (bl->section))
12940 return 0;
12941
12942 return 1;
12943 }
12944
12945 static int
12946 dprintf_breakpoint_hit (const struct bp_location *bl,
12947 struct address_space *aspace, CORE_ADDR bp_addr,
12948 const struct target_waitstatus *ws)
12949 {
12950 if (dprintf_style == dprintf_style_agent
12951 && target_can_run_breakpoint_commands ())
12952 {
12953 /* An agent-style dprintf never causes a stop. If we see a trap
12954 for this address it must be for a breakpoint that happens to
12955 be set at the same address. */
12956 return 0;
12957 }
12958
12959 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12960 }
12961
12962 static int
12963 bkpt_resources_needed (const struct bp_location *bl)
12964 {
12965 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12966
12967 return 1;
12968 }
12969
12970 static enum print_stop_action
12971 bkpt_print_it (bpstat bs)
12972 {
12973 struct breakpoint *b;
12974 const struct bp_location *bl;
12975 int bp_temp;
12976 struct ui_out *uiout = current_uiout;
12977
12978 gdb_assert (bs->bp_location_at != NULL);
12979
12980 bl = bs->bp_location_at;
12981 b = bs->breakpoint_at;
12982
12983 bp_temp = b->disposition == disp_del;
12984 if (bl->address != bl->requested_address)
12985 breakpoint_adjustment_warning (bl->requested_address,
12986 bl->address,
12987 b->number, 1);
12988 annotate_breakpoint (b->number);
12989 maybe_print_thread_hit_breakpoint (uiout);
12990
12991 if (bp_temp)
12992 uiout->text ("Temporary breakpoint ");
12993 else
12994 uiout->text ("Breakpoint ");
12995 if (uiout->is_mi_like_p ())
12996 {
12997 uiout->field_string ("reason",
12998 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12999 uiout->field_string ("disp", bpdisp_text (b->disposition));
13000 }
13001 uiout->field_int ("bkptno", b->number);
13002 uiout->text (", ");
13003
13004 return PRINT_SRC_AND_LOC;
13005 }
13006
13007 static void
13008 bkpt_print_mention (struct breakpoint *b)
13009 {
13010 if (current_uiout->is_mi_like_p ())
13011 return;
13012
13013 switch (b->type)
13014 {
13015 case bp_breakpoint:
13016 case bp_gnu_ifunc_resolver:
13017 if (b->disposition == disp_del)
13018 printf_filtered (_("Temporary breakpoint"));
13019 else
13020 printf_filtered (_("Breakpoint"));
13021 printf_filtered (_(" %d"), b->number);
13022 if (b->type == bp_gnu_ifunc_resolver)
13023 printf_filtered (_(" at gnu-indirect-function resolver"));
13024 break;
13025 case bp_hardware_breakpoint:
13026 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13027 break;
13028 case bp_dprintf:
13029 printf_filtered (_("Dprintf %d"), b->number);
13030 break;
13031 }
13032
13033 say_where (b);
13034 }
13035
13036 static void
13037 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13038 {
13039 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13040 fprintf_unfiltered (fp, "tbreak");
13041 else if (tp->type == bp_breakpoint)
13042 fprintf_unfiltered (fp, "break");
13043 else if (tp->type == bp_hardware_breakpoint
13044 && tp->disposition == disp_del)
13045 fprintf_unfiltered (fp, "thbreak");
13046 else if (tp->type == bp_hardware_breakpoint)
13047 fprintf_unfiltered (fp, "hbreak");
13048 else
13049 internal_error (__FILE__, __LINE__,
13050 _("unhandled breakpoint type %d"), (int) tp->type);
13051
13052 fprintf_unfiltered (fp, " %s",
13053 event_location_to_string (tp->location.get ()));
13054
13055 /* Print out extra_string if this breakpoint is pending. It might
13056 contain, for example, conditions that were set by the user. */
13057 if (tp->loc == NULL && tp->extra_string != NULL)
13058 fprintf_unfiltered (fp, " %s", tp->extra_string);
13059
13060 print_recreate_thread (tp, fp);
13061 }
13062
13063 static void
13064 bkpt_create_sals_from_location (const struct event_location *location,
13065 struct linespec_result *canonical,
13066 enum bptype type_wanted)
13067 {
13068 create_sals_from_location_default (location, canonical, type_wanted);
13069 }
13070
13071 static void
13072 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13073 struct linespec_result *canonical,
13074 gdb::unique_xmalloc_ptr<char> cond_string,
13075 gdb::unique_xmalloc_ptr<char> extra_string,
13076 enum bptype type_wanted,
13077 enum bpdisp disposition,
13078 int thread,
13079 int task, int ignore_count,
13080 const struct breakpoint_ops *ops,
13081 int from_tty, int enabled,
13082 int internal, unsigned flags)
13083 {
13084 create_breakpoints_sal_default (gdbarch, canonical,
13085 std::move (cond_string),
13086 std::move (extra_string),
13087 type_wanted,
13088 disposition, thread, task,
13089 ignore_count, ops, from_tty,
13090 enabled, internal, flags);
13091 }
13092
13093 static void
13094 bkpt_decode_location (struct breakpoint *b,
13095 const struct event_location *location,
13096 struct program_space *search_pspace,
13097 struct symtabs_and_lines *sals)
13098 {
13099 decode_location_default (b, location, search_pspace, sals);
13100 }
13101
13102 /* Virtual table for internal breakpoints. */
13103
13104 static void
13105 internal_bkpt_re_set (struct breakpoint *b)
13106 {
13107 switch (b->type)
13108 {
13109 /* Delete overlay event and longjmp master breakpoints; they
13110 will be reset later by breakpoint_re_set. */
13111 case bp_overlay_event:
13112 case bp_longjmp_master:
13113 case bp_std_terminate_master:
13114 case bp_exception_master:
13115 delete_breakpoint (b);
13116 break;
13117
13118 /* This breakpoint is special, it's set up when the inferior
13119 starts and we really don't want to touch it. */
13120 case bp_shlib_event:
13121
13122 /* Like bp_shlib_event, this breakpoint type is special. Once
13123 it is set up, we do not want to touch it. */
13124 case bp_thread_event:
13125 break;
13126 }
13127 }
13128
13129 static void
13130 internal_bkpt_check_status (bpstat bs)
13131 {
13132 if (bs->breakpoint_at->type == bp_shlib_event)
13133 {
13134 /* If requested, stop when the dynamic linker notifies GDB of
13135 events. This allows the user to get control and place
13136 breakpoints in initializer routines for dynamically loaded
13137 objects (among other things). */
13138 bs->stop = stop_on_solib_events;
13139 bs->print = stop_on_solib_events;
13140 }
13141 else
13142 bs->stop = 0;
13143 }
13144
13145 static enum print_stop_action
13146 internal_bkpt_print_it (bpstat bs)
13147 {
13148 struct breakpoint *b;
13149
13150 b = bs->breakpoint_at;
13151
13152 switch (b->type)
13153 {
13154 case bp_shlib_event:
13155 /* Did we stop because the user set the stop_on_solib_events
13156 variable? (If so, we report this as a generic, "Stopped due
13157 to shlib event" message.) */
13158 print_solib_event (0);
13159 break;
13160
13161 case bp_thread_event:
13162 /* Not sure how we will get here.
13163 GDB should not stop for these breakpoints. */
13164 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13165 break;
13166
13167 case bp_overlay_event:
13168 /* By analogy with the thread event, GDB should not stop for these. */
13169 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13170 break;
13171
13172 case bp_longjmp_master:
13173 /* These should never be enabled. */
13174 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13175 break;
13176
13177 case bp_std_terminate_master:
13178 /* These should never be enabled. */
13179 printf_filtered (_("std::terminate Master Breakpoint: "
13180 "gdb should not stop!\n"));
13181 break;
13182
13183 case bp_exception_master:
13184 /* These should never be enabled. */
13185 printf_filtered (_("Exception Master Breakpoint: "
13186 "gdb should not stop!\n"));
13187 break;
13188 }
13189
13190 return PRINT_NOTHING;
13191 }
13192
13193 static void
13194 internal_bkpt_print_mention (struct breakpoint *b)
13195 {
13196 /* Nothing to mention. These breakpoints are internal. */
13197 }
13198
13199 /* Virtual table for momentary breakpoints */
13200
13201 static void
13202 momentary_bkpt_re_set (struct breakpoint *b)
13203 {
13204 /* Keep temporary breakpoints, which can be encountered when we step
13205 over a dlopen call and solib_add is resetting the breakpoints.
13206 Otherwise these should have been blown away via the cleanup chain
13207 or by breakpoint_init_inferior when we rerun the executable. */
13208 }
13209
13210 static void
13211 momentary_bkpt_check_status (bpstat bs)
13212 {
13213 /* Nothing. The point of these breakpoints is causing a stop. */
13214 }
13215
13216 static enum print_stop_action
13217 momentary_bkpt_print_it (bpstat bs)
13218 {
13219 return PRINT_UNKNOWN;
13220 }
13221
13222 static void
13223 momentary_bkpt_print_mention (struct breakpoint *b)
13224 {
13225 /* Nothing to mention. These breakpoints are internal. */
13226 }
13227
13228 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13229
13230 It gets cleared already on the removal of the first one of such placed
13231 breakpoints. This is OK as they get all removed altogether. */
13232
13233 longjmp_breakpoint::~longjmp_breakpoint ()
13234 {
13235 thread_info *tp = find_thread_global_id (this->thread);
13236
13237 if (tp != NULL)
13238 tp->initiating_frame = null_frame_id;
13239 }
13240
13241 /* Specific methods for probe breakpoints. */
13242
13243 static int
13244 bkpt_probe_insert_location (struct bp_location *bl)
13245 {
13246 int v = bkpt_insert_location (bl);
13247
13248 if (v == 0)
13249 {
13250 /* The insertion was successful, now let's set the probe's semaphore
13251 if needed. */
13252 if (bl->probe.probe->pops->set_semaphore != NULL)
13253 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13254 bl->probe.objfile,
13255 bl->gdbarch);
13256 }
13257
13258 return v;
13259 }
13260
13261 static int
13262 bkpt_probe_remove_location (struct bp_location *bl,
13263 enum remove_bp_reason reason)
13264 {
13265 /* Let's clear the semaphore before removing the location. */
13266 if (bl->probe.probe->pops->clear_semaphore != NULL)
13267 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13268 bl->probe.objfile,
13269 bl->gdbarch);
13270
13271 return bkpt_remove_location (bl, reason);
13272 }
13273
13274 static void
13275 bkpt_probe_create_sals_from_location (const struct event_location *location,
13276 struct linespec_result *canonical,
13277 enum bptype type_wanted)
13278 {
13279 struct linespec_sals lsal;
13280
13281 lsal.sals = parse_probes (location, NULL, canonical);
13282 lsal.canonical
13283 = xstrdup (event_location_to_string (canonical->location.get ()));
13284 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13285 }
13286
13287 static void
13288 bkpt_probe_decode_location (struct breakpoint *b,
13289 const struct event_location *location,
13290 struct program_space *search_pspace,
13291 struct symtabs_and_lines *sals)
13292 {
13293 *sals = parse_probes (location, search_pspace, NULL);
13294 if (!sals->sals)
13295 error (_("probe not found"));
13296 }
13297
13298 /* The breakpoint_ops structure to be used in tracepoints. */
13299
13300 static void
13301 tracepoint_re_set (struct breakpoint *b)
13302 {
13303 breakpoint_re_set_default (b);
13304 }
13305
13306 static int
13307 tracepoint_breakpoint_hit (const struct bp_location *bl,
13308 struct address_space *aspace, CORE_ADDR bp_addr,
13309 const struct target_waitstatus *ws)
13310 {
13311 /* By definition, the inferior does not report stops at
13312 tracepoints. */
13313 return 0;
13314 }
13315
13316 static void
13317 tracepoint_print_one_detail (const struct breakpoint *self,
13318 struct ui_out *uiout)
13319 {
13320 struct tracepoint *tp = (struct tracepoint *) self;
13321 if (tp->static_trace_marker_id)
13322 {
13323 gdb_assert (self->type == bp_static_tracepoint);
13324
13325 uiout->text ("\tmarker id is ");
13326 uiout->field_string ("static-tracepoint-marker-string-id",
13327 tp->static_trace_marker_id);
13328 uiout->text ("\n");
13329 }
13330 }
13331
13332 static void
13333 tracepoint_print_mention (struct breakpoint *b)
13334 {
13335 if (current_uiout->is_mi_like_p ())
13336 return;
13337
13338 switch (b->type)
13339 {
13340 case bp_tracepoint:
13341 printf_filtered (_("Tracepoint"));
13342 printf_filtered (_(" %d"), b->number);
13343 break;
13344 case bp_fast_tracepoint:
13345 printf_filtered (_("Fast tracepoint"));
13346 printf_filtered (_(" %d"), b->number);
13347 break;
13348 case bp_static_tracepoint:
13349 printf_filtered (_("Static tracepoint"));
13350 printf_filtered (_(" %d"), b->number);
13351 break;
13352 default:
13353 internal_error (__FILE__, __LINE__,
13354 _("unhandled tracepoint type %d"), (int) b->type);
13355 }
13356
13357 say_where (b);
13358 }
13359
13360 static void
13361 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13362 {
13363 struct tracepoint *tp = (struct tracepoint *) self;
13364
13365 if (self->type == bp_fast_tracepoint)
13366 fprintf_unfiltered (fp, "ftrace");
13367 else if (self->type == bp_static_tracepoint)
13368 fprintf_unfiltered (fp, "strace");
13369 else if (self->type == bp_tracepoint)
13370 fprintf_unfiltered (fp, "trace");
13371 else
13372 internal_error (__FILE__, __LINE__,
13373 _("unhandled tracepoint type %d"), (int) self->type);
13374
13375 fprintf_unfiltered (fp, " %s",
13376 event_location_to_string (self->location.get ()));
13377 print_recreate_thread (self, fp);
13378
13379 if (tp->pass_count)
13380 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13381 }
13382
13383 static void
13384 tracepoint_create_sals_from_location (const struct event_location *location,
13385 struct linespec_result *canonical,
13386 enum bptype type_wanted)
13387 {
13388 create_sals_from_location_default (location, canonical, type_wanted);
13389 }
13390
13391 static void
13392 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13393 struct linespec_result *canonical,
13394 gdb::unique_xmalloc_ptr<char> cond_string,
13395 gdb::unique_xmalloc_ptr<char> extra_string,
13396 enum bptype type_wanted,
13397 enum bpdisp disposition,
13398 int thread,
13399 int task, int ignore_count,
13400 const struct breakpoint_ops *ops,
13401 int from_tty, int enabled,
13402 int internal, unsigned flags)
13403 {
13404 create_breakpoints_sal_default (gdbarch, canonical,
13405 std::move (cond_string),
13406 std::move (extra_string),
13407 type_wanted,
13408 disposition, thread, task,
13409 ignore_count, ops, from_tty,
13410 enabled, internal, flags);
13411 }
13412
13413 static void
13414 tracepoint_decode_location (struct breakpoint *b,
13415 const struct event_location *location,
13416 struct program_space *search_pspace,
13417 struct symtabs_and_lines *sals)
13418 {
13419 decode_location_default (b, location, search_pspace, sals);
13420 }
13421
13422 struct breakpoint_ops tracepoint_breakpoint_ops;
13423
13424 /* The breakpoint_ops structure to be use on tracepoints placed in a
13425 static probe. */
13426
13427 static void
13428 tracepoint_probe_create_sals_from_location
13429 (const struct event_location *location,
13430 struct linespec_result *canonical,
13431 enum bptype type_wanted)
13432 {
13433 /* We use the same method for breakpoint on probes. */
13434 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13435 }
13436
13437 static void
13438 tracepoint_probe_decode_location (struct breakpoint *b,
13439 const struct event_location *location,
13440 struct program_space *search_pspace,
13441 struct symtabs_and_lines *sals)
13442 {
13443 /* We use the same method for breakpoint on probes. */
13444 bkpt_probe_decode_location (b, location, search_pspace, sals);
13445 }
13446
13447 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13448
13449 /* Dprintf breakpoint_ops methods. */
13450
13451 static void
13452 dprintf_re_set (struct breakpoint *b)
13453 {
13454 breakpoint_re_set_default (b);
13455
13456 /* extra_string should never be non-NULL for dprintf. */
13457 gdb_assert (b->extra_string != NULL);
13458
13459 /* 1 - connect to target 1, that can run breakpoint commands.
13460 2 - create a dprintf, which resolves fine.
13461 3 - disconnect from target 1
13462 4 - connect to target 2, that can NOT run breakpoint commands.
13463
13464 After steps #3/#4, you'll want the dprintf command list to
13465 be updated, because target 1 and 2 may well return different
13466 answers for target_can_run_breakpoint_commands().
13467 Given absence of finer grained resetting, we get to do
13468 it all the time. */
13469 if (b->extra_string != NULL)
13470 update_dprintf_command_list (b);
13471 }
13472
13473 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13474
13475 static void
13476 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13477 {
13478 fprintf_unfiltered (fp, "dprintf %s,%s",
13479 event_location_to_string (tp->location.get ()),
13480 tp->extra_string);
13481 print_recreate_thread (tp, fp);
13482 }
13483
13484 /* Implement the "after_condition_true" breakpoint_ops method for
13485 dprintf.
13486
13487 dprintf's are implemented with regular commands in their command
13488 list, but we run the commands here instead of before presenting the
13489 stop to the user, as dprintf's don't actually cause a stop. This
13490 also makes it so that the commands of multiple dprintfs at the same
13491 address are all handled. */
13492
13493 static void
13494 dprintf_after_condition_true (struct bpstats *bs)
13495 {
13496 struct cleanup *old_chain;
13497 struct bpstats tmp_bs = { NULL };
13498 struct bpstats *tmp_bs_p = &tmp_bs;
13499
13500 /* dprintf's never cause a stop. This wasn't set in the
13501 check_status hook instead because that would make the dprintf's
13502 condition not be evaluated. */
13503 bs->stop = 0;
13504
13505 /* Run the command list here. Take ownership of it instead of
13506 copying. We never want these commands to run later in
13507 bpstat_do_actions, if a breakpoint that causes a stop happens to
13508 be set at same address as this dprintf, or even if running the
13509 commands here throws. */
13510 tmp_bs.commands = bs->commands;
13511 bs->commands = NULL;
13512 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13513
13514 bpstat_do_actions_1 (&tmp_bs_p);
13515
13516 /* 'tmp_bs.commands' will usually be NULL by now, but
13517 bpstat_do_actions_1 may return early without processing the whole
13518 list. */
13519 do_cleanups (old_chain);
13520 }
13521
13522 /* The breakpoint_ops structure to be used on static tracepoints with
13523 markers (`-m'). */
13524
13525 static void
13526 strace_marker_create_sals_from_location (const struct event_location *location,
13527 struct linespec_result *canonical,
13528 enum bptype type_wanted)
13529 {
13530 struct linespec_sals lsal;
13531 const char *arg_start, *arg;
13532 char *str;
13533 struct cleanup *cleanup;
13534
13535 arg = arg_start = get_linespec_location (location);
13536 lsal.sals = decode_static_tracepoint_spec (&arg);
13537
13538 str = savestring (arg_start, arg - arg_start);
13539 cleanup = make_cleanup (xfree, str);
13540 canonical->location = new_linespec_location (&str);
13541 do_cleanups (cleanup);
13542
13543 lsal.canonical
13544 = xstrdup (event_location_to_string (canonical->location.get ()));
13545 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13546 }
13547
13548 static void
13549 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13550 struct linespec_result *canonical,
13551 gdb::unique_xmalloc_ptr<char> cond_string,
13552 gdb::unique_xmalloc_ptr<char> extra_string,
13553 enum bptype type_wanted,
13554 enum bpdisp disposition,
13555 int thread,
13556 int task, int ignore_count,
13557 const struct breakpoint_ops *ops,
13558 int from_tty, int enabled,
13559 int internal, unsigned flags)
13560 {
13561 int i;
13562 struct linespec_sals *lsal = VEC_index (linespec_sals,
13563 canonical->sals, 0);
13564
13565 /* If the user is creating a static tracepoint by marker id
13566 (strace -m MARKER_ID), then store the sals index, so that
13567 breakpoint_re_set can try to match up which of the newly
13568 found markers corresponds to this one, and, don't try to
13569 expand multiple locations for each sal, given than SALS
13570 already should contain all sals for MARKER_ID. */
13571
13572 for (i = 0; i < lsal->sals.nelts; ++i)
13573 {
13574 struct symtabs_and_lines expanded;
13575 struct tracepoint *tp;
13576 event_location_up location;
13577
13578 expanded.nelts = 1;
13579 expanded.sals = &lsal->sals.sals[i];
13580
13581 location = copy_event_location (canonical->location.get ());
13582
13583 tp = new tracepoint ();
13584 init_breakpoint_sal (tp, gdbarch, expanded,
13585 std::move (location), NULL,
13586 std::move (cond_string),
13587 std::move (extra_string),
13588 type_wanted, disposition,
13589 thread, task, ignore_count, ops,
13590 from_tty, enabled, internal, flags,
13591 canonical->special_display);
13592 /* Given that its possible to have multiple markers with
13593 the same string id, if the user is creating a static
13594 tracepoint by marker id ("strace -m MARKER_ID"), then
13595 store the sals index, so that breakpoint_re_set can
13596 try to match up which of the newly found markers
13597 corresponds to this one */
13598 tp->static_trace_marker_id_idx = i;
13599
13600 install_breakpoint (internal, tp, 0);
13601 }
13602 }
13603
13604 static void
13605 strace_marker_decode_location (struct breakpoint *b,
13606 const struct event_location *location,
13607 struct program_space *search_pspace,
13608 struct symtabs_and_lines *sals)
13609 {
13610 struct tracepoint *tp = (struct tracepoint *) b;
13611 const char *s = get_linespec_location (location);
13612
13613 *sals = decode_static_tracepoint_spec (&s);
13614 if (sals->nelts > tp->static_trace_marker_id_idx)
13615 {
13616 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13617 sals->nelts = 1;
13618 }
13619 else
13620 error (_("marker %s not found"), tp->static_trace_marker_id);
13621 }
13622
13623 static struct breakpoint_ops strace_marker_breakpoint_ops;
13624
13625 static int
13626 strace_marker_p (struct breakpoint *b)
13627 {
13628 return b->ops == &strace_marker_breakpoint_ops;
13629 }
13630
13631 /* Delete a breakpoint and clean up all traces of it in the data
13632 structures. */
13633
13634 void
13635 delete_breakpoint (struct breakpoint *bpt)
13636 {
13637 struct breakpoint *b;
13638
13639 gdb_assert (bpt != NULL);
13640
13641 /* Has this bp already been deleted? This can happen because
13642 multiple lists can hold pointers to bp's. bpstat lists are
13643 especial culprits.
13644
13645 One example of this happening is a watchpoint's scope bp. When
13646 the scope bp triggers, we notice that the watchpoint is out of
13647 scope, and delete it. We also delete its scope bp. But the
13648 scope bp is marked "auto-deleting", and is already on a bpstat.
13649 That bpstat is then checked for auto-deleting bp's, which are
13650 deleted.
13651
13652 A real solution to this problem might involve reference counts in
13653 bp's, and/or giving them pointers back to their referencing
13654 bpstat's, and teaching delete_breakpoint to only free a bp's
13655 storage when no more references were extent. A cheaper bandaid
13656 was chosen. */
13657 if (bpt->type == bp_none)
13658 return;
13659
13660 /* At least avoid this stale reference until the reference counting
13661 of breakpoints gets resolved. */
13662 if (bpt->related_breakpoint != bpt)
13663 {
13664 struct breakpoint *related;
13665 struct watchpoint *w;
13666
13667 if (bpt->type == bp_watchpoint_scope)
13668 w = (struct watchpoint *) bpt->related_breakpoint;
13669 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13670 w = (struct watchpoint *) bpt;
13671 else
13672 w = NULL;
13673 if (w != NULL)
13674 watchpoint_del_at_next_stop (w);
13675
13676 /* Unlink bpt from the bpt->related_breakpoint ring. */
13677 for (related = bpt; related->related_breakpoint != bpt;
13678 related = related->related_breakpoint);
13679 related->related_breakpoint = bpt->related_breakpoint;
13680 bpt->related_breakpoint = bpt;
13681 }
13682
13683 /* watch_command_1 creates a watchpoint but only sets its number if
13684 update_watchpoint succeeds in creating its bp_locations. If there's
13685 a problem in that process, we'll be asked to delete the half-created
13686 watchpoint. In that case, don't announce the deletion. */
13687 if (bpt->number)
13688 observer_notify_breakpoint_deleted (bpt);
13689
13690 if (breakpoint_chain == bpt)
13691 breakpoint_chain = bpt->next;
13692
13693 ALL_BREAKPOINTS (b)
13694 if (b->next == bpt)
13695 {
13696 b->next = bpt->next;
13697 break;
13698 }
13699
13700 /* Be sure no bpstat's are pointing at the breakpoint after it's
13701 been freed. */
13702 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13703 in all threads for now. Note that we cannot just remove bpstats
13704 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13705 commands are associated with the bpstat; if we remove it here,
13706 then the later call to bpstat_do_actions (&stop_bpstat); in
13707 event-top.c won't do anything, and temporary breakpoints with
13708 commands won't work. */
13709
13710 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13711
13712 /* Now that breakpoint is removed from breakpoint list, update the
13713 global location list. This will remove locations that used to
13714 belong to this breakpoint. Do this before freeing the breakpoint
13715 itself, since remove_breakpoint looks at location's owner. It
13716 might be better design to have location completely
13717 self-contained, but it's not the case now. */
13718 update_global_location_list (UGLL_DONT_INSERT);
13719
13720 /* On the chance that someone will soon try again to delete this
13721 same bp, we mark it as deleted before freeing its storage. */
13722 bpt->type = bp_none;
13723 delete bpt;
13724 }
13725
13726 static void
13727 do_delete_breakpoint_cleanup (void *b)
13728 {
13729 delete_breakpoint ((struct breakpoint *) b);
13730 }
13731
13732 struct cleanup *
13733 make_cleanup_delete_breakpoint (struct breakpoint *b)
13734 {
13735 return make_cleanup (do_delete_breakpoint_cleanup, b);
13736 }
13737
13738 /* Iterator function to call a user-provided callback function once
13739 for each of B and its related breakpoints. */
13740
13741 static void
13742 iterate_over_related_breakpoints (struct breakpoint *b,
13743 void (*function) (struct breakpoint *,
13744 void *),
13745 void *data)
13746 {
13747 struct breakpoint *related;
13748
13749 related = b;
13750 do
13751 {
13752 struct breakpoint *next;
13753
13754 /* FUNCTION may delete RELATED. */
13755 next = related->related_breakpoint;
13756
13757 if (next == related)
13758 {
13759 /* RELATED is the last ring entry. */
13760 function (related, data);
13761
13762 /* FUNCTION may have deleted it, so we'd never reach back to
13763 B. There's nothing left to do anyway, so just break
13764 out. */
13765 break;
13766 }
13767 else
13768 function (related, data);
13769
13770 related = next;
13771 }
13772 while (related != b);
13773 }
13774
13775 static void
13776 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13777 {
13778 delete_breakpoint (b);
13779 }
13780
13781 /* A callback for map_breakpoint_numbers that calls
13782 delete_breakpoint. */
13783
13784 static void
13785 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13786 {
13787 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13788 }
13789
13790 void
13791 delete_command (char *arg, int from_tty)
13792 {
13793 struct breakpoint *b, *b_tmp;
13794
13795 dont_repeat ();
13796
13797 if (arg == 0)
13798 {
13799 int breaks_to_delete = 0;
13800
13801 /* Delete all breakpoints if no argument. Do not delete
13802 internal breakpoints, these have to be deleted with an
13803 explicit breakpoint number argument. */
13804 ALL_BREAKPOINTS (b)
13805 if (user_breakpoint_p (b))
13806 {
13807 breaks_to_delete = 1;
13808 break;
13809 }
13810
13811 /* Ask user only if there are some breakpoints to delete. */
13812 if (!from_tty
13813 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13814 {
13815 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13816 if (user_breakpoint_p (b))
13817 delete_breakpoint (b);
13818 }
13819 }
13820 else
13821 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13822 }
13823
13824 /* Return true if all locations of B bound to PSPACE are pending. If
13825 PSPACE is NULL, all locations of all program spaces are
13826 considered. */
13827
13828 static int
13829 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13830 {
13831 struct bp_location *loc;
13832
13833 for (loc = b->loc; loc != NULL; loc = loc->next)
13834 if ((pspace == NULL
13835 || loc->pspace == pspace)
13836 && !loc->shlib_disabled
13837 && !loc->pspace->executing_startup)
13838 return 0;
13839 return 1;
13840 }
13841
13842 /* Subroutine of update_breakpoint_locations to simplify it.
13843 Return non-zero if multiple fns in list LOC have the same name.
13844 Null names are ignored. */
13845
13846 static int
13847 ambiguous_names_p (struct bp_location *loc)
13848 {
13849 struct bp_location *l;
13850 htab_t htab = htab_create_alloc (13, htab_hash_string,
13851 (int (*) (const void *,
13852 const void *)) streq,
13853 NULL, xcalloc, xfree);
13854
13855 for (l = loc; l != NULL; l = l->next)
13856 {
13857 const char **slot;
13858 const char *name = l->function_name;
13859
13860 /* Allow for some names to be NULL, ignore them. */
13861 if (name == NULL)
13862 continue;
13863
13864 slot = (const char **) htab_find_slot (htab, (const void *) name,
13865 INSERT);
13866 /* NOTE: We can assume slot != NULL here because xcalloc never
13867 returns NULL. */
13868 if (*slot != NULL)
13869 {
13870 htab_delete (htab);
13871 return 1;
13872 }
13873 *slot = name;
13874 }
13875
13876 htab_delete (htab);
13877 return 0;
13878 }
13879
13880 /* When symbols change, it probably means the sources changed as well,
13881 and it might mean the static tracepoint markers are no longer at
13882 the same address or line numbers they used to be at last we
13883 checked. Losing your static tracepoints whenever you rebuild is
13884 undesirable. This function tries to resync/rematch gdb static
13885 tracepoints with the markers on the target, for static tracepoints
13886 that have not been set by marker id. Static tracepoint that have
13887 been set by marker id are reset by marker id in breakpoint_re_set.
13888 The heuristic is:
13889
13890 1) For a tracepoint set at a specific address, look for a marker at
13891 the old PC. If one is found there, assume to be the same marker.
13892 If the name / string id of the marker found is different from the
13893 previous known name, assume that means the user renamed the marker
13894 in the sources, and output a warning.
13895
13896 2) For a tracepoint set at a given line number, look for a marker
13897 at the new address of the old line number. If one is found there,
13898 assume to be the same marker. If the name / string id of the
13899 marker found is different from the previous known name, assume that
13900 means the user renamed the marker in the sources, and output a
13901 warning.
13902
13903 3) If a marker is no longer found at the same address or line, it
13904 may mean the marker no longer exists. But it may also just mean
13905 the code changed a bit. Maybe the user added a few lines of code
13906 that made the marker move up or down (in line number terms). Ask
13907 the target for info about the marker with the string id as we knew
13908 it. If found, update line number and address in the matching
13909 static tracepoint. This will get confused if there's more than one
13910 marker with the same ID (possible in UST, although unadvised
13911 precisely because it confuses tools). */
13912
13913 static struct symtab_and_line
13914 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13915 {
13916 struct tracepoint *tp = (struct tracepoint *) b;
13917 struct static_tracepoint_marker marker;
13918 CORE_ADDR pc;
13919
13920 pc = sal.pc;
13921 if (sal.line)
13922 find_line_pc (sal.symtab, sal.line, &pc);
13923
13924 if (target_static_tracepoint_marker_at (pc, &marker))
13925 {
13926 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13927 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13928 b->number,
13929 tp->static_trace_marker_id, marker.str_id);
13930
13931 xfree (tp->static_trace_marker_id);
13932 tp->static_trace_marker_id = xstrdup (marker.str_id);
13933 release_static_tracepoint_marker (&marker);
13934
13935 return sal;
13936 }
13937
13938 /* Old marker wasn't found on target at lineno. Try looking it up
13939 by string ID. */
13940 if (!sal.explicit_pc
13941 && sal.line != 0
13942 && sal.symtab != NULL
13943 && tp->static_trace_marker_id != NULL)
13944 {
13945 VEC(static_tracepoint_marker_p) *markers;
13946
13947 markers
13948 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13949
13950 if (!VEC_empty(static_tracepoint_marker_p, markers))
13951 {
13952 struct symtab_and_line sal2;
13953 struct symbol *sym;
13954 struct static_tracepoint_marker *tpmarker;
13955 struct ui_out *uiout = current_uiout;
13956 struct explicit_location explicit_loc;
13957
13958 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13959
13960 xfree (tp->static_trace_marker_id);
13961 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13962
13963 warning (_("marker for static tracepoint %d (%s) not "
13964 "found at previous line number"),
13965 b->number, tp->static_trace_marker_id);
13966
13967 init_sal (&sal2);
13968
13969 sal2.pc = tpmarker->address;
13970
13971 sal2 = find_pc_line (tpmarker->address, 0);
13972 sym = find_pc_sect_function (tpmarker->address, NULL);
13973 uiout->text ("Now in ");
13974 if (sym)
13975 {
13976 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13977 uiout->text (" at ");
13978 }
13979 uiout->field_string ("file",
13980 symtab_to_filename_for_display (sal2.symtab));
13981 uiout->text (":");
13982
13983 if (uiout->is_mi_like_p ())
13984 {
13985 const char *fullname = symtab_to_fullname (sal2.symtab);
13986
13987 uiout->field_string ("fullname", fullname);
13988 }
13989
13990 uiout->field_int ("line", sal2.line);
13991 uiout->text ("\n");
13992
13993 b->loc->line_number = sal2.line;
13994 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13995
13996 b->location.reset (NULL);
13997 initialize_explicit_location (&explicit_loc);
13998 explicit_loc.source_filename
13999 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14000 explicit_loc.line_offset.offset = b->loc->line_number;
14001 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14002 b->location = new_explicit_location (&explicit_loc);
14003
14004 /* Might be nice to check if function changed, and warn if
14005 so. */
14006
14007 release_static_tracepoint_marker (tpmarker);
14008 }
14009 }
14010 return sal;
14011 }
14012
14013 /* Returns 1 iff locations A and B are sufficiently same that
14014 we don't need to report breakpoint as changed. */
14015
14016 static int
14017 locations_are_equal (struct bp_location *a, struct bp_location *b)
14018 {
14019 while (a && b)
14020 {
14021 if (a->address != b->address)
14022 return 0;
14023
14024 if (a->shlib_disabled != b->shlib_disabled)
14025 return 0;
14026
14027 if (a->enabled != b->enabled)
14028 return 0;
14029
14030 a = a->next;
14031 b = b->next;
14032 }
14033
14034 if ((a == NULL) != (b == NULL))
14035 return 0;
14036
14037 return 1;
14038 }
14039
14040 /* Split all locations of B that are bound to PSPACE out of B's
14041 location list to a separate list and return that list's head. If
14042 PSPACE is NULL, hoist out all locations of B. */
14043
14044 static struct bp_location *
14045 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14046 {
14047 struct bp_location head;
14048 struct bp_location *i = b->loc;
14049 struct bp_location **i_link = &b->loc;
14050 struct bp_location *hoisted = &head;
14051
14052 if (pspace == NULL)
14053 {
14054 i = b->loc;
14055 b->loc = NULL;
14056 return i;
14057 }
14058
14059 head.next = NULL;
14060
14061 while (i != NULL)
14062 {
14063 if (i->pspace == pspace)
14064 {
14065 *i_link = i->next;
14066 i->next = NULL;
14067 hoisted->next = i;
14068 hoisted = i;
14069 }
14070 else
14071 i_link = &i->next;
14072 i = *i_link;
14073 }
14074
14075 return head.next;
14076 }
14077
14078 /* Create new breakpoint locations for B (a hardware or software
14079 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14080 zero, then B is a ranged breakpoint. Only recreates locations for
14081 FILTER_PSPACE. Locations of other program spaces are left
14082 untouched. */
14083
14084 void
14085 update_breakpoint_locations (struct breakpoint *b,
14086 struct program_space *filter_pspace,
14087 struct symtabs_and_lines sals,
14088 struct symtabs_and_lines sals_end)
14089 {
14090 int i;
14091 struct bp_location *existing_locations;
14092
14093 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14094 {
14095 /* Ranged breakpoints have only one start location and one end
14096 location. */
14097 b->enable_state = bp_disabled;
14098 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14099 "multiple locations found\n"),
14100 b->number);
14101 return;
14102 }
14103
14104 /* If there's no new locations, and all existing locations are
14105 pending, don't do anything. This optimizes the common case where
14106 all locations are in the same shared library, that was unloaded.
14107 We'd like to retain the location, so that when the library is
14108 loaded again, we don't loose the enabled/disabled status of the
14109 individual locations. */
14110 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14111 return;
14112
14113 existing_locations = hoist_existing_locations (b, filter_pspace);
14114
14115 for (i = 0; i < sals.nelts; ++i)
14116 {
14117 struct bp_location *new_loc;
14118
14119 switch_to_program_space_and_thread (sals.sals[i].pspace);
14120
14121 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14122
14123 /* Reparse conditions, they might contain references to the
14124 old symtab. */
14125 if (b->cond_string != NULL)
14126 {
14127 const char *s;
14128
14129 s = b->cond_string;
14130 TRY
14131 {
14132 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14133 block_for_pc (sals.sals[i].pc),
14134 0);
14135 }
14136 CATCH (e, RETURN_MASK_ERROR)
14137 {
14138 warning (_("failed to reevaluate condition "
14139 "for breakpoint %d: %s"),
14140 b->number, e.message);
14141 new_loc->enabled = 0;
14142 }
14143 END_CATCH
14144 }
14145
14146 if (sals_end.nelts)
14147 {
14148 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14149
14150 new_loc->length = end - sals.sals[0].pc + 1;
14151 }
14152 }
14153
14154 /* If possible, carry over 'disable' status from existing
14155 breakpoints. */
14156 {
14157 struct bp_location *e = existing_locations;
14158 /* If there are multiple breakpoints with the same function name,
14159 e.g. for inline functions, comparing function names won't work.
14160 Instead compare pc addresses; this is just a heuristic as things
14161 may have moved, but in practice it gives the correct answer
14162 often enough until a better solution is found. */
14163 int have_ambiguous_names = ambiguous_names_p (b->loc);
14164
14165 for (; e; e = e->next)
14166 {
14167 if (!e->enabled && e->function_name)
14168 {
14169 struct bp_location *l = b->loc;
14170 if (have_ambiguous_names)
14171 {
14172 for (; l; l = l->next)
14173 if (breakpoint_locations_match (e, l))
14174 {
14175 l->enabled = 0;
14176 break;
14177 }
14178 }
14179 else
14180 {
14181 for (; l; l = l->next)
14182 if (l->function_name
14183 && strcmp (e->function_name, l->function_name) == 0)
14184 {
14185 l->enabled = 0;
14186 break;
14187 }
14188 }
14189 }
14190 }
14191 }
14192
14193 if (!locations_are_equal (existing_locations, b->loc))
14194 observer_notify_breakpoint_modified (b);
14195 }
14196
14197 /* Find the SaL locations corresponding to the given LOCATION.
14198 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14199
14200 static struct symtabs_and_lines
14201 location_to_sals (struct breakpoint *b, struct event_location *location,
14202 struct program_space *search_pspace, int *found)
14203 {
14204 struct symtabs_and_lines sals = {0};
14205 struct gdb_exception exception = exception_none;
14206
14207 gdb_assert (b->ops != NULL);
14208
14209 TRY
14210 {
14211 b->ops->decode_location (b, location, search_pspace, &sals);
14212 }
14213 CATCH (e, RETURN_MASK_ERROR)
14214 {
14215 int not_found_and_ok = 0;
14216
14217 exception = e;
14218
14219 /* For pending breakpoints, it's expected that parsing will
14220 fail until the right shared library is loaded. User has
14221 already told to create pending breakpoints and don't need
14222 extra messages. If breakpoint is in bp_shlib_disabled
14223 state, then user already saw the message about that
14224 breakpoint being disabled, and don't want to see more
14225 errors. */
14226 if (e.error == NOT_FOUND_ERROR
14227 && (b->condition_not_parsed
14228 || (b->loc != NULL
14229 && search_pspace != NULL
14230 && b->loc->pspace != search_pspace)
14231 || (b->loc && b->loc->shlib_disabled)
14232 || (b->loc && b->loc->pspace->executing_startup)
14233 || b->enable_state == bp_disabled))
14234 not_found_and_ok = 1;
14235
14236 if (!not_found_and_ok)
14237 {
14238 /* We surely don't want to warn about the same breakpoint
14239 10 times. One solution, implemented here, is disable
14240 the breakpoint on error. Another solution would be to
14241 have separate 'warning emitted' flag. Since this
14242 happens only when a binary has changed, I don't know
14243 which approach is better. */
14244 b->enable_state = bp_disabled;
14245 throw_exception (e);
14246 }
14247 }
14248 END_CATCH
14249
14250 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14251 {
14252 int i;
14253
14254 for (i = 0; i < sals.nelts; ++i)
14255 resolve_sal_pc (&sals.sals[i]);
14256 if (b->condition_not_parsed && b->extra_string != NULL)
14257 {
14258 char *cond_string, *extra_string;
14259 int thread, task;
14260
14261 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14262 &cond_string, &thread, &task,
14263 &extra_string);
14264 gdb_assert (b->cond_string == NULL);
14265 if (cond_string)
14266 b->cond_string = cond_string;
14267 b->thread = thread;
14268 b->task = task;
14269 if (extra_string)
14270 {
14271 xfree (b->extra_string);
14272 b->extra_string = extra_string;
14273 }
14274 b->condition_not_parsed = 0;
14275 }
14276
14277 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14278 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14279
14280 *found = 1;
14281 }
14282 else
14283 *found = 0;
14284
14285 return sals;
14286 }
14287
14288 /* The default re_set method, for typical hardware or software
14289 breakpoints. Reevaluate the breakpoint and recreate its
14290 locations. */
14291
14292 static void
14293 breakpoint_re_set_default (struct breakpoint *b)
14294 {
14295 int found;
14296 struct symtabs_and_lines sals, sals_end;
14297 struct symtabs_and_lines expanded = {0};
14298 struct symtabs_and_lines expanded_end = {0};
14299 struct program_space *filter_pspace = current_program_space;
14300
14301 sals = location_to_sals (b, b->location.get (), filter_pspace, &found);
14302 if (found)
14303 {
14304 make_cleanup (xfree, sals.sals);
14305 expanded = sals;
14306 }
14307
14308 if (b->location_range_end != NULL)
14309 {
14310 sals_end = location_to_sals (b, b->location_range_end.get (),
14311 filter_pspace, &found);
14312 if (found)
14313 {
14314 make_cleanup (xfree, sals_end.sals);
14315 expanded_end = sals_end;
14316 }
14317 }
14318
14319 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14320 }
14321
14322 /* Default method for creating SALs from an address string. It basically
14323 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14324
14325 static void
14326 create_sals_from_location_default (const struct event_location *location,
14327 struct linespec_result *canonical,
14328 enum bptype type_wanted)
14329 {
14330 parse_breakpoint_sals (location, canonical);
14331 }
14332
14333 /* Call create_breakpoints_sal for the given arguments. This is the default
14334 function for the `create_breakpoints_sal' method of
14335 breakpoint_ops. */
14336
14337 static void
14338 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14339 struct linespec_result *canonical,
14340 gdb::unique_xmalloc_ptr<char> cond_string,
14341 gdb::unique_xmalloc_ptr<char> extra_string,
14342 enum bptype type_wanted,
14343 enum bpdisp disposition,
14344 int thread,
14345 int task, int ignore_count,
14346 const struct breakpoint_ops *ops,
14347 int from_tty, int enabled,
14348 int internal, unsigned flags)
14349 {
14350 create_breakpoints_sal (gdbarch, canonical,
14351 std::move (cond_string),
14352 std::move (extra_string),
14353 type_wanted, disposition,
14354 thread, task, ignore_count, ops, from_tty,
14355 enabled, internal, flags);
14356 }
14357
14358 /* Decode the line represented by S by calling decode_line_full. This is the
14359 default function for the `decode_location' method of breakpoint_ops. */
14360
14361 static void
14362 decode_location_default (struct breakpoint *b,
14363 const struct event_location *location,
14364 struct program_space *search_pspace,
14365 struct symtabs_and_lines *sals)
14366 {
14367 struct linespec_result canonical;
14368
14369 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14370 (struct symtab *) NULL, 0,
14371 &canonical, multiple_symbols_all,
14372 b->filter);
14373
14374 /* We should get 0 or 1 resulting SALs. */
14375 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14376
14377 if (VEC_length (linespec_sals, canonical.sals) > 0)
14378 {
14379 struct linespec_sals *lsal;
14380
14381 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14382 *sals = lsal->sals;
14383 /* Arrange it so the destructor does not free the
14384 contents. */
14385 lsal->sals.sals = NULL;
14386 }
14387 }
14388
14389 /* Prepare the global context for a re-set of breakpoint B. */
14390
14391 static struct cleanup *
14392 prepare_re_set_context (struct breakpoint *b)
14393 {
14394 input_radix = b->input_radix;
14395 set_language (b->language);
14396
14397 return make_cleanup (null_cleanup, NULL);
14398 }
14399
14400 /* Reset a breakpoint given it's struct breakpoint * BINT.
14401 The value we return ends up being the return value from catch_errors.
14402 Unused in this case. */
14403
14404 static int
14405 breakpoint_re_set_one (void *bint)
14406 {
14407 /* Get past catch_errs. */
14408 struct breakpoint *b = (struct breakpoint *) bint;
14409 struct cleanup *cleanups;
14410
14411 cleanups = prepare_re_set_context (b);
14412 b->ops->re_set (b);
14413 do_cleanups (cleanups);
14414 return 0;
14415 }
14416
14417 /* Re-set breakpoint locations for the current program space.
14418 Locations bound to other program spaces are left untouched. */
14419
14420 void
14421 breakpoint_re_set (void)
14422 {
14423 struct breakpoint *b, *b_tmp;
14424 enum language save_language;
14425 int save_input_radix;
14426
14427 save_language = current_language->la_language;
14428 save_input_radix = input_radix;
14429
14430 {
14431 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14432
14433 /* Note: we must not try to insert locations until after all
14434 breakpoints have been re-set. Otherwise, e.g., when re-setting
14435 breakpoint 1, we'd insert the locations of breakpoint 2, which
14436 hadn't been re-set yet, and thus may have stale locations. */
14437
14438 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14439 {
14440 /* Format possible error msg. */
14441 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14442 b->number);
14443 struct cleanup *cleanups = make_cleanup (xfree, message);
14444 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14445 do_cleanups (cleanups);
14446 }
14447 set_language (save_language);
14448 input_radix = save_input_radix;
14449
14450 jit_breakpoint_re_set ();
14451 }
14452
14453 create_overlay_event_breakpoint ();
14454 create_longjmp_master_breakpoint ();
14455 create_std_terminate_master_breakpoint ();
14456 create_exception_master_breakpoint ();
14457
14458 /* Now we can insert. */
14459 update_global_location_list (UGLL_MAY_INSERT);
14460 }
14461 \f
14462 /* Reset the thread number of this breakpoint:
14463
14464 - If the breakpoint is for all threads, leave it as-is.
14465 - Else, reset it to the current thread for inferior_ptid. */
14466 void
14467 breakpoint_re_set_thread (struct breakpoint *b)
14468 {
14469 if (b->thread != -1)
14470 {
14471 if (in_thread_list (inferior_ptid))
14472 b->thread = ptid_to_global_thread_id (inferior_ptid);
14473
14474 /* We're being called after following a fork. The new fork is
14475 selected as current, and unless this was a vfork will have a
14476 different program space from the original thread. Reset that
14477 as well. */
14478 b->loc->pspace = current_program_space;
14479 }
14480 }
14481
14482 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14483 If from_tty is nonzero, it prints a message to that effect,
14484 which ends with a period (no newline). */
14485
14486 void
14487 set_ignore_count (int bptnum, int count, int from_tty)
14488 {
14489 struct breakpoint *b;
14490
14491 if (count < 0)
14492 count = 0;
14493
14494 ALL_BREAKPOINTS (b)
14495 if (b->number == bptnum)
14496 {
14497 if (is_tracepoint (b))
14498 {
14499 if (from_tty && count != 0)
14500 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14501 bptnum);
14502 return;
14503 }
14504
14505 b->ignore_count = count;
14506 if (from_tty)
14507 {
14508 if (count == 0)
14509 printf_filtered (_("Will stop next time "
14510 "breakpoint %d is reached."),
14511 bptnum);
14512 else if (count == 1)
14513 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14514 bptnum);
14515 else
14516 printf_filtered (_("Will ignore next %d "
14517 "crossings of breakpoint %d."),
14518 count, bptnum);
14519 }
14520 observer_notify_breakpoint_modified (b);
14521 return;
14522 }
14523
14524 error (_("No breakpoint number %d."), bptnum);
14525 }
14526
14527 /* Command to set ignore-count of breakpoint N to COUNT. */
14528
14529 static void
14530 ignore_command (char *args, int from_tty)
14531 {
14532 char *p = args;
14533 int num;
14534
14535 if (p == 0)
14536 error_no_arg (_("a breakpoint number"));
14537
14538 num = get_number (&p);
14539 if (num == 0)
14540 error (_("bad breakpoint number: '%s'"), args);
14541 if (*p == 0)
14542 error (_("Second argument (specified ignore-count) is missing."));
14543
14544 set_ignore_count (num,
14545 longest_to_int (value_as_long (parse_and_eval (p))),
14546 from_tty);
14547 if (from_tty)
14548 printf_filtered ("\n");
14549 }
14550 \f
14551 /* Call FUNCTION on each of the breakpoints
14552 whose numbers are given in ARGS. */
14553
14554 static void
14555 map_breakpoint_numbers (const char *args,
14556 void (*function) (struct breakpoint *,
14557 void *),
14558 void *data)
14559 {
14560 int num;
14561 struct breakpoint *b, *tmp;
14562
14563 if (args == 0 || *args == '\0')
14564 error_no_arg (_("one or more breakpoint numbers"));
14565
14566 number_or_range_parser parser (args);
14567
14568 while (!parser.finished ())
14569 {
14570 const char *p = parser.cur_tok ();
14571 bool match = false;
14572
14573 num = parser.get_number ();
14574 if (num == 0)
14575 {
14576 warning (_("bad breakpoint number at or near '%s'"), p);
14577 }
14578 else
14579 {
14580 ALL_BREAKPOINTS_SAFE (b, tmp)
14581 if (b->number == num)
14582 {
14583 match = true;
14584 function (b, data);
14585 break;
14586 }
14587 if (!match)
14588 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14589 }
14590 }
14591 }
14592
14593 static struct bp_location *
14594 find_location_by_number (char *number)
14595 {
14596 char *dot = strchr (number, '.');
14597 char *p1;
14598 int bp_num;
14599 int loc_num;
14600 struct breakpoint *b;
14601 struct bp_location *loc;
14602
14603 *dot = '\0';
14604
14605 p1 = number;
14606 bp_num = get_number (&p1);
14607 if (bp_num == 0)
14608 error (_("Bad breakpoint number '%s'"), number);
14609
14610 ALL_BREAKPOINTS (b)
14611 if (b->number == bp_num)
14612 {
14613 break;
14614 }
14615
14616 if (!b || b->number != bp_num)
14617 error (_("Bad breakpoint number '%s'"), number);
14618
14619 p1 = dot+1;
14620 loc_num = get_number (&p1);
14621 if (loc_num == 0)
14622 error (_("Bad breakpoint location number '%s'"), number);
14623
14624 --loc_num;
14625 loc = b->loc;
14626 for (;loc_num && loc; --loc_num, loc = loc->next)
14627 ;
14628 if (!loc)
14629 error (_("Bad breakpoint location number '%s'"), dot+1);
14630
14631 return loc;
14632 }
14633
14634
14635 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14636 If from_tty is nonzero, it prints a message to that effect,
14637 which ends with a period (no newline). */
14638
14639 void
14640 disable_breakpoint (struct breakpoint *bpt)
14641 {
14642 /* Never disable a watchpoint scope breakpoint; we want to
14643 hit them when we leave scope so we can delete both the
14644 watchpoint and its scope breakpoint at that time. */
14645 if (bpt->type == bp_watchpoint_scope)
14646 return;
14647
14648 bpt->enable_state = bp_disabled;
14649
14650 /* Mark breakpoint locations modified. */
14651 mark_breakpoint_modified (bpt);
14652
14653 if (target_supports_enable_disable_tracepoint ()
14654 && current_trace_status ()->running && is_tracepoint (bpt))
14655 {
14656 struct bp_location *location;
14657
14658 for (location = bpt->loc; location; location = location->next)
14659 target_disable_tracepoint (location);
14660 }
14661
14662 update_global_location_list (UGLL_DONT_INSERT);
14663
14664 observer_notify_breakpoint_modified (bpt);
14665 }
14666
14667 /* A callback for iterate_over_related_breakpoints. */
14668
14669 static void
14670 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14671 {
14672 disable_breakpoint (b);
14673 }
14674
14675 /* A callback for map_breakpoint_numbers that calls
14676 disable_breakpoint. */
14677
14678 static void
14679 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14680 {
14681 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14682 }
14683
14684 static void
14685 disable_command (char *args, int from_tty)
14686 {
14687 if (args == 0)
14688 {
14689 struct breakpoint *bpt;
14690
14691 ALL_BREAKPOINTS (bpt)
14692 if (user_breakpoint_p (bpt))
14693 disable_breakpoint (bpt);
14694 }
14695 else
14696 {
14697 char *num = extract_arg (&args);
14698
14699 while (num)
14700 {
14701 if (strchr (num, '.'))
14702 {
14703 struct bp_location *loc = find_location_by_number (num);
14704
14705 if (loc)
14706 {
14707 if (loc->enabled)
14708 {
14709 loc->enabled = 0;
14710 mark_breakpoint_location_modified (loc);
14711 }
14712 if (target_supports_enable_disable_tracepoint ()
14713 && current_trace_status ()->running && loc->owner
14714 && is_tracepoint (loc->owner))
14715 target_disable_tracepoint (loc);
14716 }
14717 update_global_location_list (UGLL_DONT_INSERT);
14718 }
14719 else
14720 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14721 num = extract_arg (&args);
14722 }
14723 }
14724 }
14725
14726 static void
14727 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14728 int count)
14729 {
14730 int target_resources_ok;
14731
14732 if (bpt->type == bp_hardware_breakpoint)
14733 {
14734 int i;
14735 i = hw_breakpoint_used_count ();
14736 target_resources_ok =
14737 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14738 i + 1, 0);
14739 if (target_resources_ok == 0)
14740 error (_("No hardware breakpoint support in the target."));
14741 else if (target_resources_ok < 0)
14742 error (_("Hardware breakpoints used exceeds limit."));
14743 }
14744
14745 if (is_watchpoint (bpt))
14746 {
14747 /* Initialize it just to avoid a GCC false warning. */
14748 enum enable_state orig_enable_state = bp_disabled;
14749
14750 TRY
14751 {
14752 struct watchpoint *w = (struct watchpoint *) bpt;
14753
14754 orig_enable_state = bpt->enable_state;
14755 bpt->enable_state = bp_enabled;
14756 update_watchpoint (w, 1 /* reparse */);
14757 }
14758 CATCH (e, RETURN_MASK_ALL)
14759 {
14760 bpt->enable_state = orig_enable_state;
14761 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14762 bpt->number);
14763 return;
14764 }
14765 END_CATCH
14766 }
14767
14768 bpt->enable_state = bp_enabled;
14769
14770 /* Mark breakpoint locations modified. */
14771 mark_breakpoint_modified (bpt);
14772
14773 if (target_supports_enable_disable_tracepoint ()
14774 && current_trace_status ()->running && is_tracepoint (bpt))
14775 {
14776 struct bp_location *location;
14777
14778 for (location = bpt->loc; location; location = location->next)
14779 target_enable_tracepoint (location);
14780 }
14781
14782 bpt->disposition = disposition;
14783 bpt->enable_count = count;
14784 update_global_location_list (UGLL_MAY_INSERT);
14785
14786 observer_notify_breakpoint_modified (bpt);
14787 }
14788
14789
14790 void
14791 enable_breakpoint (struct breakpoint *bpt)
14792 {
14793 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14794 }
14795
14796 static void
14797 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14798 {
14799 enable_breakpoint (bpt);
14800 }
14801
14802 /* A callback for map_breakpoint_numbers that calls
14803 enable_breakpoint. */
14804
14805 static void
14806 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14807 {
14808 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14809 }
14810
14811 /* The enable command enables the specified breakpoints (or all defined
14812 breakpoints) so they once again become (or continue to be) effective
14813 in stopping the inferior. */
14814
14815 static void
14816 enable_command (char *args, int from_tty)
14817 {
14818 if (args == 0)
14819 {
14820 struct breakpoint *bpt;
14821
14822 ALL_BREAKPOINTS (bpt)
14823 if (user_breakpoint_p (bpt))
14824 enable_breakpoint (bpt);
14825 }
14826 else
14827 {
14828 char *num = extract_arg (&args);
14829
14830 while (num)
14831 {
14832 if (strchr (num, '.'))
14833 {
14834 struct bp_location *loc = find_location_by_number (num);
14835
14836 if (loc)
14837 {
14838 if (!loc->enabled)
14839 {
14840 loc->enabled = 1;
14841 mark_breakpoint_location_modified (loc);
14842 }
14843 if (target_supports_enable_disable_tracepoint ()
14844 && current_trace_status ()->running && loc->owner
14845 && is_tracepoint (loc->owner))
14846 target_enable_tracepoint (loc);
14847 }
14848 update_global_location_list (UGLL_MAY_INSERT);
14849 }
14850 else
14851 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14852 num = extract_arg (&args);
14853 }
14854 }
14855 }
14856
14857 /* This struct packages up disposition data for application to multiple
14858 breakpoints. */
14859
14860 struct disp_data
14861 {
14862 enum bpdisp disp;
14863 int count;
14864 };
14865
14866 static void
14867 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14868 {
14869 struct disp_data disp_data = *(struct disp_data *) arg;
14870
14871 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14872 }
14873
14874 static void
14875 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14876 {
14877 struct disp_data disp = { disp_disable, 1 };
14878
14879 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14880 }
14881
14882 static void
14883 enable_once_command (char *args, int from_tty)
14884 {
14885 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14886 }
14887
14888 static void
14889 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14890 {
14891 struct disp_data disp = { disp_disable, *(int *) countptr };
14892
14893 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14894 }
14895
14896 static void
14897 enable_count_command (char *args, int from_tty)
14898 {
14899 int count;
14900
14901 if (args == NULL)
14902 error_no_arg (_("hit count"));
14903
14904 count = get_number (&args);
14905
14906 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14907 }
14908
14909 static void
14910 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14911 {
14912 struct disp_data disp = { disp_del, 1 };
14913
14914 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14915 }
14916
14917 static void
14918 enable_delete_command (char *args, int from_tty)
14919 {
14920 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14921 }
14922 \f
14923 static void
14924 set_breakpoint_cmd (char *args, int from_tty)
14925 {
14926 }
14927
14928 static void
14929 show_breakpoint_cmd (char *args, int from_tty)
14930 {
14931 }
14932
14933 /* Invalidate last known value of any hardware watchpoint if
14934 the memory which that value represents has been written to by
14935 GDB itself. */
14936
14937 static void
14938 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14939 CORE_ADDR addr, ssize_t len,
14940 const bfd_byte *data)
14941 {
14942 struct breakpoint *bp;
14943
14944 ALL_BREAKPOINTS (bp)
14945 if (bp->enable_state == bp_enabled
14946 && bp->type == bp_hardware_watchpoint)
14947 {
14948 struct watchpoint *wp = (struct watchpoint *) bp;
14949
14950 if (wp->val_valid && wp->val)
14951 {
14952 struct bp_location *loc;
14953
14954 for (loc = bp->loc; loc != NULL; loc = loc->next)
14955 if (loc->loc_type == bp_loc_hardware_watchpoint
14956 && loc->address + loc->length > addr
14957 && addr + len > loc->address)
14958 {
14959 value_free (wp->val);
14960 wp->val = NULL;
14961 wp->val_valid = 0;
14962 }
14963 }
14964 }
14965 }
14966
14967 /* Create and insert a breakpoint for software single step. */
14968
14969 void
14970 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14971 struct address_space *aspace,
14972 CORE_ADDR next_pc)
14973 {
14974 struct thread_info *tp = inferior_thread ();
14975 struct symtab_and_line sal;
14976 CORE_ADDR pc = next_pc;
14977
14978 if (tp->control.single_step_breakpoints == NULL)
14979 {
14980 tp->control.single_step_breakpoints
14981 = new_single_step_breakpoint (tp->global_num, gdbarch);
14982 }
14983
14984 sal = find_pc_line (pc, 0);
14985 sal.pc = pc;
14986 sal.section = find_pc_overlay (pc);
14987 sal.explicit_pc = 1;
14988 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14989
14990 update_global_location_list (UGLL_INSERT);
14991 }
14992
14993 /* Insert single step breakpoints according to the current state. */
14994
14995 int
14996 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14997 {
14998 struct regcache *regcache = get_current_regcache ();
14999 std::vector<CORE_ADDR> next_pcs;
15000
15001 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
15002
15003 if (!next_pcs.empty ())
15004 {
15005 struct frame_info *frame = get_current_frame ();
15006 struct address_space *aspace = get_frame_address_space (frame);
15007
15008 for (CORE_ADDR pc : next_pcs)
15009 insert_single_step_breakpoint (gdbarch, aspace, pc);
15010
15011 return 1;
15012 }
15013 else
15014 return 0;
15015 }
15016
15017 /* See breakpoint.h. */
15018
15019 int
15020 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15021 struct address_space *aspace,
15022 CORE_ADDR pc)
15023 {
15024 struct bp_location *loc;
15025
15026 for (loc = bp->loc; loc != NULL; loc = loc->next)
15027 if (loc->inserted
15028 && breakpoint_location_address_match (loc, aspace, pc))
15029 return 1;
15030
15031 return 0;
15032 }
15033
15034 /* Check whether a software single-step breakpoint is inserted at
15035 PC. */
15036
15037 int
15038 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15039 CORE_ADDR pc)
15040 {
15041 struct breakpoint *bpt;
15042
15043 ALL_BREAKPOINTS (bpt)
15044 {
15045 if (bpt->type == bp_single_step
15046 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15047 return 1;
15048 }
15049 return 0;
15050 }
15051
15052 /* Tracepoint-specific operations. */
15053
15054 /* Set tracepoint count to NUM. */
15055 static void
15056 set_tracepoint_count (int num)
15057 {
15058 tracepoint_count = num;
15059 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15060 }
15061
15062 static void
15063 trace_command (char *arg, int from_tty)
15064 {
15065 struct breakpoint_ops *ops;
15066
15067 event_location_up location = string_to_event_location (&arg,
15068 current_language);
15069 if (location != NULL
15070 && event_location_type (location.get ()) == PROBE_LOCATION)
15071 ops = &tracepoint_probe_breakpoint_ops;
15072 else
15073 ops = &tracepoint_breakpoint_ops;
15074
15075 create_breakpoint (get_current_arch (),
15076 location.get (),
15077 NULL, 0, arg, 1 /* parse arg */,
15078 0 /* tempflag */,
15079 bp_tracepoint /* type_wanted */,
15080 0 /* Ignore count */,
15081 pending_break_support,
15082 ops,
15083 from_tty,
15084 1 /* enabled */,
15085 0 /* internal */, 0);
15086 }
15087
15088 static void
15089 ftrace_command (char *arg, int from_tty)
15090 {
15091 event_location_up location = string_to_event_location (&arg,
15092 current_language);
15093 create_breakpoint (get_current_arch (),
15094 location.get (),
15095 NULL, 0, arg, 1 /* parse arg */,
15096 0 /* tempflag */,
15097 bp_fast_tracepoint /* type_wanted */,
15098 0 /* Ignore count */,
15099 pending_break_support,
15100 &tracepoint_breakpoint_ops,
15101 from_tty,
15102 1 /* enabled */,
15103 0 /* internal */, 0);
15104 }
15105
15106 /* strace command implementation. Creates a static tracepoint. */
15107
15108 static void
15109 strace_command (char *arg, int from_tty)
15110 {
15111 struct breakpoint_ops *ops;
15112 event_location_up location;
15113 struct cleanup *back_to;
15114
15115 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15116 or with a normal static tracepoint. */
15117 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15118 {
15119 ops = &strace_marker_breakpoint_ops;
15120 location = new_linespec_location (&arg);
15121 }
15122 else
15123 {
15124 ops = &tracepoint_breakpoint_ops;
15125 location = string_to_event_location (&arg, current_language);
15126 }
15127
15128 create_breakpoint (get_current_arch (),
15129 location.get (),
15130 NULL, 0, arg, 1 /* parse arg */,
15131 0 /* tempflag */,
15132 bp_static_tracepoint /* type_wanted */,
15133 0 /* Ignore count */,
15134 pending_break_support,
15135 ops,
15136 from_tty,
15137 1 /* enabled */,
15138 0 /* internal */, 0);
15139 }
15140
15141 /* Set up a fake reader function that gets command lines from a linked
15142 list that was acquired during tracepoint uploading. */
15143
15144 static struct uploaded_tp *this_utp;
15145 static int next_cmd;
15146
15147 static char *
15148 read_uploaded_action (void)
15149 {
15150 char *rslt;
15151
15152 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15153
15154 next_cmd++;
15155
15156 return rslt;
15157 }
15158
15159 /* Given information about a tracepoint as recorded on a target (which
15160 can be either a live system or a trace file), attempt to create an
15161 equivalent GDB tracepoint. This is not a reliable process, since
15162 the target does not necessarily have all the information used when
15163 the tracepoint was originally defined. */
15164
15165 struct tracepoint *
15166 create_tracepoint_from_upload (struct uploaded_tp *utp)
15167 {
15168 char *addr_str, small_buf[100];
15169 struct tracepoint *tp;
15170
15171 if (utp->at_string)
15172 addr_str = utp->at_string;
15173 else
15174 {
15175 /* In the absence of a source location, fall back to raw
15176 address. Since there is no way to confirm that the address
15177 means the same thing as when the trace was started, warn the
15178 user. */
15179 warning (_("Uploaded tracepoint %d has no "
15180 "source location, using raw address"),
15181 utp->number);
15182 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15183 addr_str = small_buf;
15184 }
15185
15186 /* There's not much we can do with a sequence of bytecodes. */
15187 if (utp->cond && !utp->cond_string)
15188 warning (_("Uploaded tracepoint %d condition "
15189 "has no source form, ignoring it"),
15190 utp->number);
15191
15192 event_location_up location = string_to_event_location (&addr_str,
15193 current_language);
15194 if (!create_breakpoint (get_current_arch (),
15195 location.get (),
15196 utp->cond_string, -1, addr_str,
15197 0 /* parse cond/thread */,
15198 0 /* tempflag */,
15199 utp->type /* type_wanted */,
15200 0 /* Ignore count */,
15201 pending_break_support,
15202 &tracepoint_breakpoint_ops,
15203 0 /* from_tty */,
15204 utp->enabled /* enabled */,
15205 0 /* internal */,
15206 CREATE_BREAKPOINT_FLAGS_INSERTED))
15207 return NULL;
15208
15209 /* Get the tracepoint we just created. */
15210 tp = get_tracepoint (tracepoint_count);
15211 gdb_assert (tp != NULL);
15212
15213 if (utp->pass > 0)
15214 {
15215 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15216 tp->number);
15217
15218 trace_pass_command (small_buf, 0);
15219 }
15220
15221 /* If we have uploaded versions of the original commands, set up a
15222 special-purpose "reader" function and call the usual command line
15223 reader, then pass the result to the breakpoint command-setting
15224 function. */
15225 if (!VEC_empty (char_ptr, utp->cmd_strings))
15226 {
15227 command_line_up cmd_list;
15228
15229 this_utp = utp;
15230 next_cmd = 0;
15231
15232 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15233
15234 breakpoint_set_commands (tp, std::move (cmd_list));
15235 }
15236 else if (!VEC_empty (char_ptr, utp->actions)
15237 || !VEC_empty (char_ptr, utp->step_actions))
15238 warning (_("Uploaded tracepoint %d actions "
15239 "have no source form, ignoring them"),
15240 utp->number);
15241
15242 /* Copy any status information that might be available. */
15243 tp->hit_count = utp->hit_count;
15244 tp->traceframe_usage = utp->traceframe_usage;
15245
15246 return tp;
15247 }
15248
15249 /* Print information on tracepoint number TPNUM_EXP, or all if
15250 omitted. */
15251
15252 static void
15253 tracepoints_info (char *args, int from_tty)
15254 {
15255 struct ui_out *uiout = current_uiout;
15256 int num_printed;
15257
15258 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15259
15260 if (num_printed == 0)
15261 {
15262 if (args == NULL || *args == '\0')
15263 uiout->message ("No tracepoints.\n");
15264 else
15265 uiout->message ("No tracepoint matching '%s'.\n", args);
15266 }
15267
15268 default_collect_info ();
15269 }
15270
15271 /* The 'enable trace' command enables tracepoints.
15272 Not supported by all targets. */
15273 static void
15274 enable_trace_command (char *args, int from_tty)
15275 {
15276 enable_command (args, from_tty);
15277 }
15278
15279 /* The 'disable trace' command disables tracepoints.
15280 Not supported by all targets. */
15281 static void
15282 disable_trace_command (char *args, int from_tty)
15283 {
15284 disable_command (args, from_tty);
15285 }
15286
15287 /* Remove a tracepoint (or all if no argument). */
15288 static void
15289 delete_trace_command (char *arg, int from_tty)
15290 {
15291 struct breakpoint *b, *b_tmp;
15292
15293 dont_repeat ();
15294
15295 if (arg == 0)
15296 {
15297 int breaks_to_delete = 0;
15298
15299 /* Delete all breakpoints if no argument.
15300 Do not delete internal or call-dummy breakpoints, these
15301 have to be deleted with an explicit breakpoint number
15302 argument. */
15303 ALL_TRACEPOINTS (b)
15304 if (is_tracepoint (b) && user_breakpoint_p (b))
15305 {
15306 breaks_to_delete = 1;
15307 break;
15308 }
15309
15310 /* Ask user only if there are some breakpoints to delete. */
15311 if (!from_tty
15312 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15313 {
15314 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15315 if (is_tracepoint (b) && user_breakpoint_p (b))
15316 delete_breakpoint (b);
15317 }
15318 }
15319 else
15320 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15321 }
15322
15323 /* Helper function for trace_pass_command. */
15324
15325 static void
15326 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15327 {
15328 tp->pass_count = count;
15329 observer_notify_breakpoint_modified (tp);
15330 if (from_tty)
15331 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15332 tp->number, count);
15333 }
15334
15335 /* Set passcount for tracepoint.
15336
15337 First command argument is passcount, second is tracepoint number.
15338 If tracepoint number omitted, apply to most recently defined.
15339 Also accepts special argument "all". */
15340
15341 static void
15342 trace_pass_command (char *args, int from_tty)
15343 {
15344 struct tracepoint *t1;
15345 unsigned int count;
15346
15347 if (args == 0 || *args == 0)
15348 error (_("passcount command requires an "
15349 "argument (count + optional TP num)"));
15350
15351 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15352
15353 args = skip_spaces (args);
15354 if (*args && strncasecmp (args, "all", 3) == 0)
15355 {
15356 struct breakpoint *b;
15357
15358 args += 3; /* Skip special argument "all". */
15359 if (*args)
15360 error (_("Junk at end of arguments."));
15361
15362 ALL_TRACEPOINTS (b)
15363 {
15364 t1 = (struct tracepoint *) b;
15365 trace_pass_set_count (t1, count, from_tty);
15366 }
15367 }
15368 else if (*args == '\0')
15369 {
15370 t1 = get_tracepoint_by_number (&args, NULL);
15371 if (t1)
15372 trace_pass_set_count (t1, count, from_tty);
15373 }
15374 else
15375 {
15376 number_or_range_parser parser (args);
15377 while (!parser.finished ())
15378 {
15379 t1 = get_tracepoint_by_number (&args, &parser);
15380 if (t1)
15381 trace_pass_set_count (t1, count, from_tty);
15382 }
15383 }
15384 }
15385
15386 struct tracepoint *
15387 get_tracepoint (int num)
15388 {
15389 struct breakpoint *t;
15390
15391 ALL_TRACEPOINTS (t)
15392 if (t->number == num)
15393 return (struct tracepoint *) t;
15394
15395 return NULL;
15396 }
15397
15398 /* Find the tracepoint with the given target-side number (which may be
15399 different from the tracepoint number after disconnecting and
15400 reconnecting). */
15401
15402 struct tracepoint *
15403 get_tracepoint_by_number_on_target (int num)
15404 {
15405 struct breakpoint *b;
15406
15407 ALL_TRACEPOINTS (b)
15408 {
15409 struct tracepoint *t = (struct tracepoint *) b;
15410
15411 if (t->number_on_target == num)
15412 return t;
15413 }
15414
15415 return NULL;
15416 }
15417
15418 /* Utility: parse a tracepoint number and look it up in the list.
15419 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15420 If the argument is missing, the most recent tracepoint
15421 (tracepoint_count) is returned. */
15422
15423 struct tracepoint *
15424 get_tracepoint_by_number (char **arg,
15425 number_or_range_parser *parser)
15426 {
15427 struct breakpoint *t;
15428 int tpnum;
15429 char *instring = arg == NULL ? NULL : *arg;
15430
15431 if (parser != NULL)
15432 {
15433 gdb_assert (!parser->finished ());
15434 tpnum = parser->get_number ();
15435 }
15436 else if (arg == NULL || *arg == NULL || ! **arg)
15437 tpnum = tracepoint_count;
15438 else
15439 tpnum = get_number (arg);
15440
15441 if (tpnum <= 0)
15442 {
15443 if (instring && *instring)
15444 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15445 instring);
15446 else
15447 printf_filtered (_("No previous tracepoint\n"));
15448 return NULL;
15449 }
15450
15451 ALL_TRACEPOINTS (t)
15452 if (t->number == tpnum)
15453 {
15454 return (struct tracepoint *) t;
15455 }
15456
15457 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15458 return NULL;
15459 }
15460
15461 void
15462 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15463 {
15464 if (b->thread != -1)
15465 fprintf_unfiltered (fp, " thread %d", b->thread);
15466
15467 if (b->task != 0)
15468 fprintf_unfiltered (fp, " task %d", b->task);
15469
15470 fprintf_unfiltered (fp, "\n");
15471 }
15472
15473 /* Save information on user settable breakpoints (watchpoints, etc) to
15474 a new script file named FILENAME. If FILTER is non-NULL, call it
15475 on each breakpoint and only include the ones for which it returns
15476 non-zero. */
15477
15478 static void
15479 save_breakpoints (char *filename, int from_tty,
15480 int (*filter) (const struct breakpoint *))
15481 {
15482 struct breakpoint *tp;
15483 int any = 0;
15484 struct cleanup *cleanup;
15485 int extra_trace_bits = 0;
15486
15487 if (filename == 0 || *filename == 0)
15488 error (_("Argument required (file name in which to save)"));
15489
15490 /* See if we have anything to save. */
15491 ALL_BREAKPOINTS (tp)
15492 {
15493 /* Skip internal and momentary breakpoints. */
15494 if (!user_breakpoint_p (tp))
15495 continue;
15496
15497 /* If we have a filter, only save the breakpoints it accepts. */
15498 if (filter && !filter (tp))
15499 continue;
15500
15501 any = 1;
15502
15503 if (is_tracepoint (tp))
15504 {
15505 extra_trace_bits = 1;
15506
15507 /* We can stop searching. */
15508 break;
15509 }
15510 }
15511
15512 if (!any)
15513 {
15514 warning (_("Nothing to save."));
15515 return;
15516 }
15517
15518 filename = tilde_expand (filename);
15519 cleanup = make_cleanup (xfree, filename);
15520
15521 stdio_file fp;
15522
15523 if (!fp.open (filename, "w"))
15524 error (_("Unable to open file '%s' for saving (%s)"),
15525 filename, safe_strerror (errno));
15526
15527 if (extra_trace_bits)
15528 save_trace_state_variables (&fp);
15529
15530 ALL_BREAKPOINTS (tp)
15531 {
15532 /* Skip internal and momentary breakpoints. */
15533 if (!user_breakpoint_p (tp))
15534 continue;
15535
15536 /* If we have a filter, only save the breakpoints it accepts. */
15537 if (filter && !filter (tp))
15538 continue;
15539
15540 tp->ops->print_recreate (tp, &fp);
15541
15542 /* Note, we can't rely on tp->number for anything, as we can't
15543 assume the recreated breakpoint numbers will match. Use $bpnum
15544 instead. */
15545
15546 if (tp->cond_string)
15547 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15548
15549 if (tp->ignore_count)
15550 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15551
15552 if (tp->type != bp_dprintf && tp->commands)
15553 {
15554 fp.puts (" commands\n");
15555
15556 current_uiout->redirect (&fp);
15557 TRY
15558 {
15559 print_command_lines (current_uiout, tp->commands->commands, 2);
15560 }
15561 CATCH (ex, RETURN_MASK_ALL)
15562 {
15563 current_uiout->redirect (NULL);
15564 throw_exception (ex);
15565 }
15566 END_CATCH
15567
15568 current_uiout->redirect (NULL);
15569 fp.puts (" end\n");
15570 }
15571
15572 if (tp->enable_state == bp_disabled)
15573 fp.puts ("disable $bpnum\n");
15574
15575 /* If this is a multi-location breakpoint, check if the locations
15576 should be individually disabled. Watchpoint locations are
15577 special, and not user visible. */
15578 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15579 {
15580 struct bp_location *loc;
15581 int n = 1;
15582
15583 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15584 if (!loc->enabled)
15585 fp.printf ("disable $bpnum.%d\n", n);
15586 }
15587 }
15588
15589 if (extra_trace_bits && *default_collect)
15590 fp.printf ("set default-collect %s\n", default_collect);
15591
15592 if (from_tty)
15593 printf_filtered (_("Saved to file '%s'.\n"), filename);
15594 do_cleanups (cleanup);
15595 }
15596
15597 /* The `save breakpoints' command. */
15598
15599 static void
15600 save_breakpoints_command (char *args, int from_tty)
15601 {
15602 save_breakpoints (args, from_tty, NULL);
15603 }
15604
15605 /* The `save tracepoints' command. */
15606
15607 static void
15608 save_tracepoints_command (char *args, int from_tty)
15609 {
15610 save_breakpoints (args, from_tty, is_tracepoint);
15611 }
15612
15613 /* Create a vector of all tracepoints. */
15614
15615 VEC(breakpoint_p) *
15616 all_tracepoints (void)
15617 {
15618 VEC(breakpoint_p) *tp_vec = 0;
15619 struct breakpoint *tp;
15620
15621 ALL_TRACEPOINTS (tp)
15622 {
15623 VEC_safe_push (breakpoint_p, tp_vec, tp);
15624 }
15625
15626 return tp_vec;
15627 }
15628
15629 \f
15630 /* This help string is used to consolidate all the help string for specifying
15631 locations used by several commands. */
15632
15633 #define LOCATION_HELP_STRING \
15634 "Linespecs are colon-separated lists of location parameters, such as\n\
15635 source filename, function name, label name, and line number.\n\
15636 Example: To specify the start of a label named \"the_top\" in the\n\
15637 function \"fact\" in the file \"factorial.c\", use\n\
15638 \"factorial.c:fact:the_top\".\n\
15639 \n\
15640 Address locations begin with \"*\" and specify an exact address in the\n\
15641 program. Example: To specify the fourth byte past the start function\n\
15642 \"main\", use \"*main + 4\".\n\
15643 \n\
15644 Explicit locations are similar to linespecs but use an option/argument\n\
15645 syntax to specify location parameters.\n\
15646 Example: To specify the start of the label named \"the_top\" in the\n\
15647 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15648 -function fact -label the_top\".\n"
15649
15650 /* This help string is used for the break, hbreak, tbreak and thbreak
15651 commands. It is defined as a macro to prevent duplication.
15652 COMMAND should be a string constant containing the name of the
15653 command. */
15654
15655 #define BREAK_ARGS_HELP(command) \
15656 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15657 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15658 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15659 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15660 `-probe-dtrace' (for a DTrace probe).\n\
15661 LOCATION may be a linespec, address, or explicit location as described\n\
15662 below.\n\
15663 \n\
15664 With no LOCATION, uses current execution address of the selected\n\
15665 stack frame. This is useful for breaking on return to a stack frame.\n\
15666 \n\
15667 THREADNUM is the number from \"info threads\".\n\
15668 CONDITION is a boolean expression.\n\
15669 \n" LOCATION_HELP_STRING "\n\
15670 Multiple breakpoints at one place are permitted, and useful if their\n\
15671 conditions are different.\n\
15672 \n\
15673 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15674
15675 /* List of subcommands for "catch". */
15676 static struct cmd_list_element *catch_cmdlist;
15677
15678 /* List of subcommands for "tcatch". */
15679 static struct cmd_list_element *tcatch_cmdlist;
15680
15681 void
15682 add_catch_command (const char *name, const char *docstring,
15683 cmd_sfunc_ftype *sfunc,
15684 completer_ftype *completer,
15685 void *user_data_catch,
15686 void *user_data_tcatch)
15687 {
15688 struct cmd_list_element *command;
15689
15690 command = add_cmd (name, class_breakpoint, NULL, docstring,
15691 &catch_cmdlist);
15692 set_cmd_sfunc (command, sfunc);
15693 set_cmd_context (command, user_data_catch);
15694 set_cmd_completer (command, completer);
15695
15696 command = add_cmd (name, class_breakpoint, NULL, docstring,
15697 &tcatch_cmdlist);
15698 set_cmd_sfunc (command, sfunc);
15699 set_cmd_context (command, user_data_tcatch);
15700 set_cmd_completer (command, completer);
15701 }
15702
15703 static void
15704 save_command (char *arg, int from_tty)
15705 {
15706 printf_unfiltered (_("\"save\" must be followed by "
15707 "the name of a save subcommand.\n"));
15708 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15709 }
15710
15711 struct breakpoint *
15712 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15713 void *data)
15714 {
15715 struct breakpoint *b, *b_tmp;
15716
15717 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15718 {
15719 if ((*callback) (b, data))
15720 return b;
15721 }
15722
15723 return NULL;
15724 }
15725
15726 /* Zero if any of the breakpoint's locations could be a location where
15727 functions have been inlined, nonzero otherwise. */
15728
15729 static int
15730 is_non_inline_function (struct breakpoint *b)
15731 {
15732 /* The shared library event breakpoint is set on the address of a
15733 non-inline function. */
15734 if (b->type == bp_shlib_event)
15735 return 1;
15736
15737 return 0;
15738 }
15739
15740 /* Nonzero if the specified PC cannot be a location where functions
15741 have been inlined. */
15742
15743 int
15744 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15745 const struct target_waitstatus *ws)
15746 {
15747 struct breakpoint *b;
15748 struct bp_location *bl;
15749
15750 ALL_BREAKPOINTS (b)
15751 {
15752 if (!is_non_inline_function (b))
15753 continue;
15754
15755 for (bl = b->loc; bl != NULL; bl = bl->next)
15756 {
15757 if (!bl->shlib_disabled
15758 && bpstat_check_location (bl, aspace, pc, ws))
15759 return 1;
15760 }
15761 }
15762
15763 return 0;
15764 }
15765
15766 /* Remove any references to OBJFILE which is going to be freed. */
15767
15768 void
15769 breakpoint_free_objfile (struct objfile *objfile)
15770 {
15771 struct bp_location **locp, *loc;
15772
15773 ALL_BP_LOCATIONS (loc, locp)
15774 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15775 loc->symtab = NULL;
15776 }
15777
15778 void
15779 initialize_breakpoint_ops (void)
15780 {
15781 static int initialized = 0;
15782
15783 struct breakpoint_ops *ops;
15784
15785 if (initialized)
15786 return;
15787 initialized = 1;
15788
15789 /* The breakpoint_ops structure to be inherit by all kinds of
15790 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15791 internal and momentary breakpoints, etc.). */
15792 ops = &bkpt_base_breakpoint_ops;
15793 *ops = base_breakpoint_ops;
15794 ops->re_set = bkpt_re_set;
15795 ops->insert_location = bkpt_insert_location;
15796 ops->remove_location = bkpt_remove_location;
15797 ops->breakpoint_hit = bkpt_breakpoint_hit;
15798 ops->create_sals_from_location = bkpt_create_sals_from_location;
15799 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15800 ops->decode_location = bkpt_decode_location;
15801
15802 /* The breakpoint_ops structure to be used in regular breakpoints. */
15803 ops = &bkpt_breakpoint_ops;
15804 *ops = bkpt_base_breakpoint_ops;
15805 ops->re_set = bkpt_re_set;
15806 ops->resources_needed = bkpt_resources_needed;
15807 ops->print_it = bkpt_print_it;
15808 ops->print_mention = bkpt_print_mention;
15809 ops->print_recreate = bkpt_print_recreate;
15810
15811 /* Ranged breakpoints. */
15812 ops = &ranged_breakpoint_ops;
15813 *ops = bkpt_breakpoint_ops;
15814 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15815 ops->resources_needed = resources_needed_ranged_breakpoint;
15816 ops->print_it = print_it_ranged_breakpoint;
15817 ops->print_one = print_one_ranged_breakpoint;
15818 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15819 ops->print_mention = print_mention_ranged_breakpoint;
15820 ops->print_recreate = print_recreate_ranged_breakpoint;
15821
15822 /* Internal breakpoints. */
15823 ops = &internal_breakpoint_ops;
15824 *ops = bkpt_base_breakpoint_ops;
15825 ops->re_set = internal_bkpt_re_set;
15826 ops->check_status = internal_bkpt_check_status;
15827 ops->print_it = internal_bkpt_print_it;
15828 ops->print_mention = internal_bkpt_print_mention;
15829
15830 /* Momentary breakpoints. */
15831 ops = &momentary_breakpoint_ops;
15832 *ops = bkpt_base_breakpoint_ops;
15833 ops->re_set = momentary_bkpt_re_set;
15834 ops->check_status = momentary_bkpt_check_status;
15835 ops->print_it = momentary_bkpt_print_it;
15836 ops->print_mention = momentary_bkpt_print_mention;
15837
15838 /* Probe breakpoints. */
15839 ops = &bkpt_probe_breakpoint_ops;
15840 *ops = bkpt_breakpoint_ops;
15841 ops->insert_location = bkpt_probe_insert_location;
15842 ops->remove_location = bkpt_probe_remove_location;
15843 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15844 ops->decode_location = bkpt_probe_decode_location;
15845
15846 /* Watchpoints. */
15847 ops = &watchpoint_breakpoint_ops;
15848 *ops = base_breakpoint_ops;
15849 ops->re_set = re_set_watchpoint;
15850 ops->insert_location = insert_watchpoint;
15851 ops->remove_location = remove_watchpoint;
15852 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15853 ops->check_status = check_status_watchpoint;
15854 ops->resources_needed = resources_needed_watchpoint;
15855 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15856 ops->print_it = print_it_watchpoint;
15857 ops->print_mention = print_mention_watchpoint;
15858 ops->print_recreate = print_recreate_watchpoint;
15859 ops->explains_signal = explains_signal_watchpoint;
15860
15861 /* Masked watchpoints. */
15862 ops = &masked_watchpoint_breakpoint_ops;
15863 *ops = watchpoint_breakpoint_ops;
15864 ops->insert_location = insert_masked_watchpoint;
15865 ops->remove_location = remove_masked_watchpoint;
15866 ops->resources_needed = resources_needed_masked_watchpoint;
15867 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15868 ops->print_it = print_it_masked_watchpoint;
15869 ops->print_one_detail = print_one_detail_masked_watchpoint;
15870 ops->print_mention = print_mention_masked_watchpoint;
15871 ops->print_recreate = print_recreate_masked_watchpoint;
15872
15873 /* Tracepoints. */
15874 ops = &tracepoint_breakpoint_ops;
15875 *ops = base_breakpoint_ops;
15876 ops->re_set = tracepoint_re_set;
15877 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15878 ops->print_one_detail = tracepoint_print_one_detail;
15879 ops->print_mention = tracepoint_print_mention;
15880 ops->print_recreate = tracepoint_print_recreate;
15881 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15882 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15883 ops->decode_location = tracepoint_decode_location;
15884
15885 /* Probe tracepoints. */
15886 ops = &tracepoint_probe_breakpoint_ops;
15887 *ops = tracepoint_breakpoint_ops;
15888 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15889 ops->decode_location = tracepoint_probe_decode_location;
15890
15891 /* Static tracepoints with marker (`-m'). */
15892 ops = &strace_marker_breakpoint_ops;
15893 *ops = tracepoint_breakpoint_ops;
15894 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15895 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15896 ops->decode_location = strace_marker_decode_location;
15897
15898 /* Fork catchpoints. */
15899 ops = &catch_fork_breakpoint_ops;
15900 *ops = base_breakpoint_ops;
15901 ops->insert_location = insert_catch_fork;
15902 ops->remove_location = remove_catch_fork;
15903 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15904 ops->print_it = print_it_catch_fork;
15905 ops->print_one = print_one_catch_fork;
15906 ops->print_mention = print_mention_catch_fork;
15907 ops->print_recreate = print_recreate_catch_fork;
15908
15909 /* Vfork catchpoints. */
15910 ops = &catch_vfork_breakpoint_ops;
15911 *ops = base_breakpoint_ops;
15912 ops->insert_location = insert_catch_vfork;
15913 ops->remove_location = remove_catch_vfork;
15914 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15915 ops->print_it = print_it_catch_vfork;
15916 ops->print_one = print_one_catch_vfork;
15917 ops->print_mention = print_mention_catch_vfork;
15918 ops->print_recreate = print_recreate_catch_vfork;
15919
15920 /* Exec catchpoints. */
15921 ops = &catch_exec_breakpoint_ops;
15922 *ops = base_breakpoint_ops;
15923 ops->insert_location = insert_catch_exec;
15924 ops->remove_location = remove_catch_exec;
15925 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15926 ops->print_it = print_it_catch_exec;
15927 ops->print_one = print_one_catch_exec;
15928 ops->print_mention = print_mention_catch_exec;
15929 ops->print_recreate = print_recreate_catch_exec;
15930
15931 /* Solib-related catchpoints. */
15932 ops = &catch_solib_breakpoint_ops;
15933 *ops = base_breakpoint_ops;
15934 ops->insert_location = insert_catch_solib;
15935 ops->remove_location = remove_catch_solib;
15936 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15937 ops->check_status = check_status_catch_solib;
15938 ops->print_it = print_it_catch_solib;
15939 ops->print_one = print_one_catch_solib;
15940 ops->print_mention = print_mention_catch_solib;
15941 ops->print_recreate = print_recreate_catch_solib;
15942
15943 ops = &dprintf_breakpoint_ops;
15944 *ops = bkpt_base_breakpoint_ops;
15945 ops->re_set = dprintf_re_set;
15946 ops->resources_needed = bkpt_resources_needed;
15947 ops->print_it = bkpt_print_it;
15948 ops->print_mention = bkpt_print_mention;
15949 ops->print_recreate = dprintf_print_recreate;
15950 ops->after_condition_true = dprintf_after_condition_true;
15951 ops->breakpoint_hit = dprintf_breakpoint_hit;
15952 }
15953
15954 /* Chain containing all defined "enable breakpoint" subcommands. */
15955
15956 static struct cmd_list_element *enablebreaklist = NULL;
15957
15958 void
15959 _initialize_breakpoint (void)
15960 {
15961 struct cmd_list_element *c;
15962
15963 initialize_breakpoint_ops ();
15964
15965 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15966 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15967 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15968
15969 breakpoint_objfile_key
15970 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15971
15972 breakpoint_chain = 0;
15973 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15974 before a breakpoint is set. */
15975 breakpoint_count = 0;
15976
15977 tracepoint_count = 0;
15978
15979 add_com ("ignore", class_breakpoint, ignore_command, _("\
15980 Set ignore-count of breakpoint number N to COUNT.\n\
15981 Usage is `ignore N COUNT'."));
15982
15983 add_com ("commands", class_breakpoint, commands_command, _("\
15984 Set commands to be executed when the given breakpoints are hit.\n\
15985 Give a space-separated breakpoint list as argument after \"commands\".\n\
15986 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15987 (e.g. `5-7').\n\
15988 With no argument, the targeted breakpoint is the last one set.\n\
15989 The commands themselves follow starting on the next line.\n\
15990 Type a line containing \"end\" to indicate the end of them.\n\
15991 Give \"silent\" as the first line to make the breakpoint silent;\n\
15992 then no output is printed when it is hit, except what the commands print."));
15993
15994 c = add_com ("condition", class_breakpoint, condition_command, _("\
15995 Specify breakpoint number N to break only if COND is true.\n\
15996 Usage is `condition N COND', where N is an integer and COND is an\n\
15997 expression to be evaluated whenever breakpoint N is reached."));
15998 set_cmd_completer (c, condition_completer);
15999
16000 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16001 Set a temporary breakpoint.\n\
16002 Like \"break\" except the breakpoint is only temporary,\n\
16003 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16004 by using \"enable delete\" on the breakpoint number.\n\
16005 \n"
16006 BREAK_ARGS_HELP ("tbreak")));
16007 set_cmd_completer (c, location_completer);
16008
16009 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16010 Set a hardware assisted breakpoint.\n\
16011 Like \"break\" except the breakpoint requires hardware support,\n\
16012 some target hardware may not have this support.\n\
16013 \n"
16014 BREAK_ARGS_HELP ("hbreak")));
16015 set_cmd_completer (c, location_completer);
16016
16017 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16018 Set a temporary hardware assisted breakpoint.\n\
16019 Like \"hbreak\" except the breakpoint is only temporary,\n\
16020 so it will be deleted when hit.\n\
16021 \n"
16022 BREAK_ARGS_HELP ("thbreak")));
16023 set_cmd_completer (c, location_completer);
16024
16025 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16026 Enable some breakpoints.\n\
16027 Give breakpoint numbers (separated by spaces) as arguments.\n\
16028 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16029 This is used to cancel the effect of the \"disable\" command.\n\
16030 With a subcommand you can enable temporarily."),
16031 &enablelist, "enable ", 1, &cmdlist);
16032
16033 add_com_alias ("en", "enable", class_breakpoint, 1);
16034
16035 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16036 Enable some breakpoints.\n\
16037 Give breakpoint numbers (separated by spaces) as arguments.\n\
16038 This is used to cancel the effect of the \"disable\" command.\n\
16039 May be abbreviated to simply \"enable\".\n"),
16040 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16041
16042 add_cmd ("once", no_class, enable_once_command, _("\
16043 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16044 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16045 &enablebreaklist);
16046
16047 add_cmd ("delete", no_class, enable_delete_command, _("\
16048 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16049 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16050 &enablebreaklist);
16051
16052 add_cmd ("count", no_class, enable_count_command, _("\
16053 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16054 If a breakpoint is hit while enabled in this fashion,\n\
16055 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16056 &enablebreaklist);
16057
16058 add_cmd ("delete", no_class, enable_delete_command, _("\
16059 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16060 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16061 &enablelist);
16062
16063 add_cmd ("once", no_class, enable_once_command, _("\
16064 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16065 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16066 &enablelist);
16067
16068 add_cmd ("count", no_class, enable_count_command, _("\
16069 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16070 If a breakpoint is hit while enabled in this fashion,\n\
16071 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16072 &enablelist);
16073
16074 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16075 Disable some breakpoints.\n\
16076 Arguments are breakpoint numbers with spaces in between.\n\
16077 To disable all breakpoints, give no argument.\n\
16078 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16079 &disablelist, "disable ", 1, &cmdlist);
16080 add_com_alias ("dis", "disable", class_breakpoint, 1);
16081 add_com_alias ("disa", "disable", class_breakpoint, 1);
16082
16083 add_cmd ("breakpoints", class_alias, disable_command, _("\
16084 Disable some breakpoints.\n\
16085 Arguments are breakpoint numbers with spaces in between.\n\
16086 To disable all breakpoints, give no argument.\n\
16087 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16088 This command may be abbreviated \"disable\"."),
16089 &disablelist);
16090
16091 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16092 Delete some breakpoints or auto-display expressions.\n\
16093 Arguments are breakpoint numbers with spaces in between.\n\
16094 To delete all breakpoints, give no argument.\n\
16095 \n\
16096 Also a prefix command for deletion of other GDB objects.\n\
16097 The \"unset\" command is also an alias for \"delete\"."),
16098 &deletelist, "delete ", 1, &cmdlist);
16099 add_com_alias ("d", "delete", class_breakpoint, 1);
16100 add_com_alias ("del", "delete", class_breakpoint, 1);
16101
16102 add_cmd ("breakpoints", class_alias, delete_command, _("\
16103 Delete some breakpoints or auto-display expressions.\n\
16104 Arguments are breakpoint numbers with spaces in between.\n\
16105 To delete all breakpoints, give no argument.\n\
16106 This command may be abbreviated \"delete\"."),
16107 &deletelist);
16108
16109 add_com ("clear", class_breakpoint, clear_command, _("\
16110 Clear breakpoint at specified location.\n\
16111 Argument may be a linespec, explicit, or address location as described below.\n\
16112 \n\
16113 With no argument, clears all breakpoints in the line that the selected frame\n\
16114 is executing in.\n"
16115 "\n" LOCATION_HELP_STRING "\n\
16116 See also the \"delete\" command which clears breakpoints by number."));
16117 add_com_alias ("cl", "clear", class_breakpoint, 1);
16118
16119 c = add_com ("break", class_breakpoint, break_command, _("\
16120 Set breakpoint at specified location.\n"
16121 BREAK_ARGS_HELP ("break")));
16122 set_cmd_completer (c, location_completer);
16123
16124 add_com_alias ("b", "break", class_run, 1);
16125 add_com_alias ("br", "break", class_run, 1);
16126 add_com_alias ("bre", "break", class_run, 1);
16127 add_com_alias ("brea", "break", class_run, 1);
16128
16129 if (dbx_commands)
16130 {
16131 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16132 Break in function/address or break at a line in the current file."),
16133 &stoplist, "stop ", 1, &cmdlist);
16134 add_cmd ("in", class_breakpoint, stopin_command,
16135 _("Break in function or address."), &stoplist);
16136 add_cmd ("at", class_breakpoint, stopat_command,
16137 _("Break at a line in the current file."), &stoplist);
16138 add_com ("status", class_info, breakpoints_info, _("\
16139 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16140 The \"Type\" column indicates one of:\n\
16141 \tbreakpoint - normal breakpoint\n\
16142 \twatchpoint - watchpoint\n\
16143 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16144 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16145 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16146 address and file/line number respectively.\n\
16147 \n\
16148 Convenience variable \"$_\" and default examine address for \"x\"\n\
16149 are set to the address of the last breakpoint listed unless the command\n\
16150 is prefixed with \"server \".\n\n\
16151 Convenience variable \"$bpnum\" contains the number of the last\n\
16152 breakpoint set."));
16153 }
16154
16155 add_info ("breakpoints", breakpoints_info, _("\
16156 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16157 The \"Type\" column indicates one of:\n\
16158 \tbreakpoint - normal breakpoint\n\
16159 \twatchpoint - watchpoint\n\
16160 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16161 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16162 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16163 address and file/line number respectively.\n\
16164 \n\
16165 Convenience variable \"$_\" and default examine address for \"x\"\n\
16166 are set to the address of the last breakpoint listed unless the command\n\
16167 is prefixed with \"server \".\n\n\
16168 Convenience variable \"$bpnum\" contains the number of the last\n\
16169 breakpoint set."));
16170
16171 add_info_alias ("b", "breakpoints", 1);
16172
16173 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16174 Status of all breakpoints, or breakpoint number NUMBER.\n\
16175 The \"Type\" column indicates one of:\n\
16176 \tbreakpoint - normal breakpoint\n\
16177 \twatchpoint - watchpoint\n\
16178 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16179 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16180 \tuntil - internal breakpoint used by the \"until\" command\n\
16181 \tfinish - internal breakpoint used by the \"finish\" command\n\
16182 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16183 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16184 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16185 address and file/line number respectively.\n\
16186 \n\
16187 Convenience variable \"$_\" and default examine address for \"x\"\n\
16188 are set to the address of the last breakpoint listed unless the command\n\
16189 is prefixed with \"server \".\n\n\
16190 Convenience variable \"$bpnum\" contains the number of the last\n\
16191 breakpoint set."),
16192 &maintenanceinfolist);
16193
16194 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16195 Set catchpoints to catch events."),
16196 &catch_cmdlist, "catch ",
16197 0/*allow-unknown*/, &cmdlist);
16198
16199 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16200 Set temporary catchpoints to catch events."),
16201 &tcatch_cmdlist, "tcatch ",
16202 0/*allow-unknown*/, &cmdlist);
16203
16204 add_catch_command ("fork", _("Catch calls to fork."),
16205 catch_fork_command_1,
16206 NULL,
16207 (void *) (uintptr_t) catch_fork_permanent,
16208 (void *) (uintptr_t) catch_fork_temporary);
16209 add_catch_command ("vfork", _("Catch calls to vfork."),
16210 catch_fork_command_1,
16211 NULL,
16212 (void *) (uintptr_t) catch_vfork_permanent,
16213 (void *) (uintptr_t) catch_vfork_temporary);
16214 add_catch_command ("exec", _("Catch calls to exec."),
16215 catch_exec_command_1,
16216 NULL,
16217 CATCH_PERMANENT,
16218 CATCH_TEMPORARY);
16219 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16220 Usage: catch load [REGEX]\n\
16221 If REGEX is given, only stop for libraries matching the regular expression."),
16222 catch_load_command_1,
16223 NULL,
16224 CATCH_PERMANENT,
16225 CATCH_TEMPORARY);
16226 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16227 Usage: catch unload [REGEX]\n\
16228 If REGEX is given, only stop for libraries matching the regular expression."),
16229 catch_unload_command_1,
16230 NULL,
16231 CATCH_PERMANENT,
16232 CATCH_TEMPORARY);
16233
16234 c = add_com ("watch", class_breakpoint, watch_command, _("\
16235 Set a watchpoint for an expression.\n\
16236 Usage: watch [-l|-location] EXPRESSION\n\
16237 A watchpoint stops execution of your program whenever the value of\n\
16238 an expression changes.\n\
16239 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16240 the memory to which it refers."));
16241 set_cmd_completer (c, expression_completer);
16242
16243 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16244 Set a read watchpoint for an expression.\n\
16245 Usage: rwatch [-l|-location] EXPRESSION\n\
16246 A watchpoint stops execution of your program whenever the value of\n\
16247 an expression is read.\n\
16248 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16249 the memory to which it refers."));
16250 set_cmd_completer (c, expression_completer);
16251
16252 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16253 Set a watchpoint for an expression.\n\
16254 Usage: awatch [-l|-location] EXPRESSION\n\
16255 A watchpoint stops execution of your program whenever the value of\n\
16256 an expression is either read or written.\n\
16257 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16258 the memory to which it refers."));
16259 set_cmd_completer (c, expression_completer);
16260
16261 add_info ("watchpoints", watchpoints_info, _("\
16262 Status of specified watchpoints (all watchpoints if no argument)."));
16263
16264 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16265 respond to changes - contrary to the description. */
16266 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16267 &can_use_hw_watchpoints, _("\
16268 Set debugger's willingness to use watchpoint hardware."), _("\
16269 Show debugger's willingness to use watchpoint hardware."), _("\
16270 If zero, gdb will not use hardware for new watchpoints, even if\n\
16271 such is available. (However, any hardware watchpoints that were\n\
16272 created before setting this to nonzero, will continue to use watchpoint\n\
16273 hardware.)"),
16274 NULL,
16275 show_can_use_hw_watchpoints,
16276 &setlist, &showlist);
16277
16278 can_use_hw_watchpoints = 1;
16279
16280 /* Tracepoint manipulation commands. */
16281
16282 c = add_com ("trace", class_breakpoint, trace_command, _("\
16283 Set a tracepoint at specified location.\n\
16284 \n"
16285 BREAK_ARGS_HELP ("trace") "\n\
16286 Do \"help tracepoints\" for info on other tracepoint commands."));
16287 set_cmd_completer (c, location_completer);
16288
16289 add_com_alias ("tp", "trace", class_alias, 0);
16290 add_com_alias ("tr", "trace", class_alias, 1);
16291 add_com_alias ("tra", "trace", class_alias, 1);
16292 add_com_alias ("trac", "trace", class_alias, 1);
16293
16294 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16295 Set a fast tracepoint at specified location.\n\
16296 \n"
16297 BREAK_ARGS_HELP ("ftrace") "\n\
16298 Do \"help tracepoints\" for info on other tracepoint commands."));
16299 set_cmd_completer (c, location_completer);
16300
16301 c = add_com ("strace", class_breakpoint, strace_command, _("\
16302 Set a static tracepoint at location or marker.\n\
16303 \n\
16304 strace [LOCATION] [if CONDITION]\n\
16305 LOCATION may be a linespec, explicit, or address location (described below) \n\
16306 or -m MARKER_ID.\n\n\
16307 If a marker id is specified, probe the marker with that name. With\n\
16308 no LOCATION, uses current execution address of the selected stack frame.\n\
16309 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16310 This collects arbitrary user data passed in the probe point call to the\n\
16311 tracing library. You can inspect it when analyzing the trace buffer,\n\
16312 by printing the $_sdata variable like any other convenience variable.\n\
16313 \n\
16314 CONDITION is a boolean expression.\n\
16315 \n" LOCATION_HELP_STRING "\n\
16316 Multiple tracepoints at one place are permitted, and useful if their\n\
16317 conditions are different.\n\
16318 \n\
16319 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16320 Do \"help tracepoints\" for info on other tracepoint commands."));
16321 set_cmd_completer (c, location_completer);
16322
16323 add_info ("tracepoints", tracepoints_info, _("\
16324 Status of specified tracepoints (all tracepoints if no argument).\n\
16325 Convenience variable \"$tpnum\" contains the number of the\n\
16326 last tracepoint set."));
16327
16328 add_info_alias ("tp", "tracepoints", 1);
16329
16330 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16331 Delete specified tracepoints.\n\
16332 Arguments are tracepoint numbers, separated by spaces.\n\
16333 No argument means delete all tracepoints."),
16334 &deletelist);
16335 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16336
16337 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16338 Disable specified tracepoints.\n\
16339 Arguments are tracepoint numbers, separated by spaces.\n\
16340 No argument means disable all tracepoints."),
16341 &disablelist);
16342 deprecate_cmd (c, "disable");
16343
16344 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16345 Enable specified tracepoints.\n\
16346 Arguments are tracepoint numbers, separated by spaces.\n\
16347 No argument means enable all tracepoints."),
16348 &enablelist);
16349 deprecate_cmd (c, "enable");
16350
16351 add_com ("passcount", class_trace, trace_pass_command, _("\
16352 Set the passcount for a tracepoint.\n\
16353 The trace will end when the tracepoint has been passed 'count' times.\n\
16354 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16355 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16356
16357 add_prefix_cmd ("save", class_breakpoint, save_command,
16358 _("Save breakpoint definitions as a script."),
16359 &save_cmdlist, "save ",
16360 0/*allow-unknown*/, &cmdlist);
16361
16362 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16363 Save current breakpoint definitions as a script.\n\
16364 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16365 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16366 session to restore them."),
16367 &save_cmdlist);
16368 set_cmd_completer (c, filename_completer);
16369
16370 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16371 Save current tracepoint definitions as a script.\n\
16372 Use the 'source' command in another debug session to restore them."),
16373 &save_cmdlist);
16374 set_cmd_completer (c, filename_completer);
16375
16376 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16377 deprecate_cmd (c, "save tracepoints");
16378
16379 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16380 Breakpoint specific settings\n\
16381 Configure various breakpoint-specific variables such as\n\
16382 pending breakpoint behavior"),
16383 &breakpoint_set_cmdlist, "set breakpoint ",
16384 0/*allow-unknown*/, &setlist);
16385 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16386 Breakpoint specific settings\n\
16387 Configure various breakpoint-specific variables such as\n\
16388 pending breakpoint behavior"),
16389 &breakpoint_show_cmdlist, "show breakpoint ",
16390 0/*allow-unknown*/, &showlist);
16391
16392 add_setshow_auto_boolean_cmd ("pending", no_class,
16393 &pending_break_support, _("\
16394 Set debugger's behavior regarding pending breakpoints."), _("\
16395 Show debugger's behavior regarding pending breakpoints."), _("\
16396 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16397 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16398 an error. If auto, an unrecognized breakpoint location results in a\n\
16399 user-query to see if a pending breakpoint should be created."),
16400 NULL,
16401 show_pending_break_support,
16402 &breakpoint_set_cmdlist,
16403 &breakpoint_show_cmdlist);
16404
16405 pending_break_support = AUTO_BOOLEAN_AUTO;
16406
16407 add_setshow_boolean_cmd ("auto-hw", no_class,
16408 &automatic_hardware_breakpoints, _("\
16409 Set automatic usage of hardware breakpoints."), _("\
16410 Show automatic usage of hardware breakpoints."), _("\
16411 If set, the debugger will automatically use hardware breakpoints for\n\
16412 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16413 a warning will be emitted for such breakpoints."),
16414 NULL,
16415 show_automatic_hardware_breakpoints,
16416 &breakpoint_set_cmdlist,
16417 &breakpoint_show_cmdlist);
16418
16419 add_setshow_boolean_cmd ("always-inserted", class_support,
16420 &always_inserted_mode, _("\
16421 Set mode for inserting breakpoints."), _("\
16422 Show mode for inserting breakpoints."), _("\
16423 When this mode is on, breakpoints are inserted immediately as soon as\n\
16424 they're created, kept inserted even when execution stops, and removed\n\
16425 only when the user deletes them. When this mode is off (the default),\n\
16426 breakpoints are inserted only when execution continues, and removed\n\
16427 when execution stops."),
16428 NULL,
16429 &show_always_inserted_mode,
16430 &breakpoint_set_cmdlist,
16431 &breakpoint_show_cmdlist);
16432
16433 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16434 condition_evaluation_enums,
16435 &condition_evaluation_mode_1, _("\
16436 Set mode of breakpoint condition evaluation."), _("\
16437 Show mode of breakpoint condition evaluation."), _("\
16438 When this is set to \"host\", breakpoint conditions will be\n\
16439 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16440 breakpoint conditions will be downloaded to the target (if the target\n\
16441 supports such feature) and conditions will be evaluated on the target's side.\n\
16442 If this is set to \"auto\" (default), this will be automatically set to\n\
16443 \"target\" if it supports condition evaluation, otherwise it will\n\
16444 be set to \"gdb\""),
16445 &set_condition_evaluation_mode,
16446 &show_condition_evaluation_mode,
16447 &breakpoint_set_cmdlist,
16448 &breakpoint_show_cmdlist);
16449
16450 add_com ("break-range", class_breakpoint, break_range_command, _("\
16451 Set a breakpoint for an address range.\n\
16452 break-range START-LOCATION, END-LOCATION\n\
16453 where START-LOCATION and END-LOCATION can be one of the following:\n\
16454 LINENUM, for that line in the current file,\n\
16455 FILE:LINENUM, for that line in that file,\n\
16456 +OFFSET, for that number of lines after the current line\n\
16457 or the start of the range\n\
16458 FUNCTION, for the first line in that function,\n\
16459 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16460 *ADDRESS, for the instruction at that address.\n\
16461 \n\
16462 The breakpoint will stop execution of the inferior whenever it executes\n\
16463 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16464 range (including START-LOCATION and END-LOCATION)."));
16465
16466 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16467 Set a dynamic printf at specified location.\n\
16468 dprintf location,format string,arg1,arg2,...\n\
16469 location may be a linespec, explicit, or address location.\n"
16470 "\n" LOCATION_HELP_STRING));
16471 set_cmd_completer (c, location_completer);
16472
16473 add_setshow_enum_cmd ("dprintf-style", class_support,
16474 dprintf_style_enums, &dprintf_style, _("\
16475 Set the style of usage for dynamic printf."), _("\
16476 Show the style of usage for dynamic printf."), _("\
16477 This setting chooses how GDB will do a dynamic printf.\n\
16478 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16479 console, as with the \"printf\" command.\n\
16480 If the value is \"call\", the print is done by calling a function in your\n\
16481 program; by default printf(), but you can choose a different function or\n\
16482 output stream by setting dprintf-function and dprintf-channel."),
16483 update_dprintf_commands, NULL,
16484 &setlist, &showlist);
16485
16486 dprintf_function = xstrdup ("printf");
16487 add_setshow_string_cmd ("dprintf-function", class_support,
16488 &dprintf_function, _("\
16489 Set the function to use for dynamic printf"), _("\
16490 Show the function to use for dynamic printf"), NULL,
16491 update_dprintf_commands, NULL,
16492 &setlist, &showlist);
16493
16494 dprintf_channel = xstrdup ("");
16495 add_setshow_string_cmd ("dprintf-channel", class_support,
16496 &dprintf_channel, _("\
16497 Set the channel to use for dynamic printf"), _("\
16498 Show the channel to use for dynamic printf"), NULL,
16499 update_dprintf_commands, NULL,
16500 &setlist, &showlist);
16501
16502 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16503 &disconnected_dprintf, _("\
16504 Set whether dprintf continues after GDB disconnects."), _("\
16505 Show whether dprintf continues after GDB disconnects."), _("\
16506 Use this to let dprintf commands continue to hit and produce output\n\
16507 even if GDB disconnects or detaches from the target."),
16508 NULL,
16509 NULL,
16510 &setlist, &showlist);
16511
16512 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16513 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16514 (target agent only) This is useful for formatted output in user-defined commands."));
16515
16516 automatic_hardware_breakpoints = 1;
16517
16518 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16519 observer_attach_thread_exit (remove_threaded_breakpoints);
16520 }
This page took 0.511388 seconds and 3 git commands to generate.