09c2a27a38b0f704730891c65db87e68b8ea6273
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "gdbsupport/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "gdbsupport/array-view.h"
86 #include "gdbsupport/gdb_optional.h"
87
88 /* Prototypes for local functions. */
89
90 static void map_breakpoint_numbers (const char *,
91 gdb::function_view<void (breakpoint *)>);
92
93 static void breakpoint_re_set_default (struct breakpoint *);
94
95 static void
96 create_sals_from_location_default (const struct event_location *location,
97 struct linespec_result *canonical,
98 enum bptype type_wanted);
99
100 static void create_breakpoints_sal_default (struct gdbarch *,
101 struct linespec_result *,
102 gdb::unique_xmalloc_ptr<char>,
103 gdb::unique_xmalloc_ptr<char>,
104 enum bptype,
105 enum bpdisp, int, int,
106 int,
107 const struct breakpoint_ops *,
108 int, int, int, unsigned);
109
110 static std::vector<symtab_and_line> decode_location_default
111 (struct breakpoint *b, const struct event_location *location,
112 struct program_space *search_pspace);
113
114 static int can_use_hardware_watchpoint
115 (const std::vector<value_ref_ptr> &vals);
116
117 static void mention (struct breakpoint *);
118
119 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
120 enum bptype,
121 const struct breakpoint_ops *);
122 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
123 const struct symtab_and_line *);
124
125 /* This function is used in gdbtk sources and thus can not be made
126 static. */
127 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
128 struct symtab_and_line,
129 enum bptype,
130 const struct breakpoint_ops *);
131
132 static struct breakpoint *
133 momentary_breakpoint_from_master (struct breakpoint *orig,
134 enum bptype type,
135 const struct breakpoint_ops *ops,
136 int loc_enabled);
137
138 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
139
140 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
141 CORE_ADDR bpaddr,
142 enum bptype bptype);
143
144 static void describe_other_breakpoints (struct gdbarch *,
145 struct program_space *, CORE_ADDR,
146 struct obj_section *, int);
147
148 static int watchpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static int is_hardware_watchpoint (const struct breakpoint *bpt);
221
222 static void insert_breakpoint_locations (void);
223
224 static void trace_pass_command (const char *, int);
225
226 static void set_tracepoint_count (int num);
227
228 static int is_masked_watchpoint (const struct breakpoint *b);
229
230 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
231
232 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
233 otherwise. */
234
235 static int strace_marker_p (struct breakpoint *b);
236
237 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
238 that are implemented on top of software or hardware breakpoints
239 (user breakpoints, internal and momentary breakpoints, etc.). */
240 static struct breakpoint_ops bkpt_base_breakpoint_ops;
241
242 /* Internal breakpoints class type. */
243 static struct breakpoint_ops internal_breakpoint_ops;
244
245 /* Momentary breakpoints class type. */
246 static struct breakpoint_ops momentary_breakpoint_ops;
247
248 /* The breakpoint_ops structure to be used in regular user created
249 breakpoints. */
250 struct breakpoint_ops bkpt_breakpoint_ops;
251
252 /* Breakpoints set on probes. */
253 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
254
255 /* Dynamic printf class type. */
256 struct breakpoint_ops dprintf_breakpoint_ops;
257
258 /* The style in which to perform a dynamic printf. This is a user
259 option because different output options have different tradeoffs;
260 if GDB does the printing, there is better error handling if there
261 is a problem with any of the arguments, but using an inferior
262 function lets you have special-purpose printers and sending of
263 output to the same place as compiled-in print functions. */
264
265 static const char dprintf_style_gdb[] = "gdb";
266 static const char dprintf_style_call[] = "call";
267 static const char dprintf_style_agent[] = "agent";
268 static const char *const dprintf_style_enums[] = {
269 dprintf_style_gdb,
270 dprintf_style_call,
271 dprintf_style_agent,
272 NULL
273 };
274 static const char *dprintf_style = dprintf_style_gdb;
275
276 /* The function to use for dynamic printf if the preferred style is to
277 call into the inferior. The value is simply a string that is
278 copied into the command, so it can be anything that GDB can
279 evaluate to a callable address, not necessarily a function name. */
280
281 static char *dprintf_function;
282
283 /* The channel to use for dynamic printf if the preferred style is to
284 call into the inferior; if a nonempty string, it will be passed to
285 the call as the first argument, with the format string as the
286 second. As with the dprintf function, this can be anything that
287 GDB knows how to evaluate, so in addition to common choices like
288 "stderr", this could be an app-specific expression like
289 "mystreams[curlogger]". */
290
291 static char *dprintf_channel;
292
293 /* True if dprintf commands should continue to operate even if GDB
294 has disconnected. */
295 static int disconnected_dprintf = 1;
296
297 struct command_line *
298 breakpoint_commands (struct breakpoint *b)
299 {
300 return b->commands ? b->commands.get () : NULL;
301 }
302
303 /* Flag indicating that a command has proceeded the inferior past the
304 current breakpoint. */
305
306 static int breakpoint_proceeded;
307
308 const char *
309 bpdisp_text (enum bpdisp disp)
310 {
311 /* NOTE: the following values are a part of MI protocol and
312 represent values of 'disp' field returned when inferior stops at
313 a breakpoint. */
314 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
315
316 return bpdisps[(int) disp];
317 }
318
319 /* Prototypes for exported functions. */
320 /* If FALSE, gdb will not use hardware support for watchpoints, even
321 if such is available. */
322 static int can_use_hw_watchpoints;
323
324 static void
325 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c,
327 const char *value)
328 {
329 fprintf_filtered (file,
330 _("Debugger's willingness to use "
331 "watchpoint hardware is %s.\n"),
332 value);
333 }
334
335 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
336 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
337 for unrecognized breakpoint locations.
338 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
339 static enum auto_boolean pending_break_support;
340 static void
341 show_pending_break_support (struct ui_file *file, int from_tty,
342 struct cmd_list_element *c,
343 const char *value)
344 {
345 fprintf_filtered (file,
346 _("Debugger's behavior regarding "
347 "pending breakpoints is %s.\n"),
348 value);
349 }
350
351 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
352 set with "break" but falling in read-only memory.
353 If 0, gdb will warn about such breakpoints, but won't automatically
354 use hardware breakpoints. */
355 static int automatic_hardware_breakpoints;
356 static void
357 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c,
359 const char *value)
360 {
361 fprintf_filtered (file,
362 _("Automatic usage of hardware breakpoints is %s.\n"),
363 value);
364 }
365
366 /* If on, GDB keeps breakpoints inserted even if the inferior is
367 stopped, and immediately inserts any new breakpoints as soon as
368 they're created. If off (default), GDB keeps breakpoints off of
369 the target as long as possible. That is, it delays inserting
370 breakpoints until the next resume, and removes them again when the
371 target fully stops. This is a bit safer in case GDB crashes while
372 processing user input. */
373 static int always_inserted_mode = 0;
374
375 static void
376 show_always_inserted_mode (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
380 value);
381 }
382
383 /* See breakpoint.h. */
384
385 int
386 breakpoints_should_be_inserted_now (void)
387 {
388 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
389 {
390 /* If breakpoints are global, they should be inserted even if no
391 thread under gdb's control is running, or even if there are
392 no threads under GDB's control yet. */
393 return 1;
394 }
395 else if (target_has_execution)
396 {
397 if (always_inserted_mode)
398 {
399 /* The user wants breakpoints inserted even if all threads
400 are stopped. */
401 return 1;
402 }
403
404 if (threads_are_executing ())
405 return 1;
406
407 /* Don't remove breakpoints yet if, even though all threads are
408 stopped, we still have events to process. */
409 for (thread_info *tp : all_non_exited_threads ())
410 if (tp->resumed
411 && tp->suspend.waitstatus_pending_p)
412 return 1;
413 }
414 return 0;
415 }
416
417 static const char condition_evaluation_both[] = "host or target";
418
419 /* Modes for breakpoint condition evaluation. */
420 static const char condition_evaluation_auto[] = "auto";
421 static const char condition_evaluation_host[] = "host";
422 static const char condition_evaluation_target[] = "target";
423 static const char *const condition_evaluation_enums[] = {
424 condition_evaluation_auto,
425 condition_evaluation_host,
426 condition_evaluation_target,
427 NULL
428 };
429
430 /* Global that holds the current mode for breakpoint condition evaluation. */
431 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
432
433 /* Global that we use to display information to the user (gets its value from
434 condition_evaluation_mode_1. */
435 static const char *condition_evaluation_mode = condition_evaluation_auto;
436
437 /* Translate a condition evaluation mode MODE into either "host"
438 or "target". This is used mostly to translate from "auto" to the
439 real setting that is being used. It returns the translated
440 evaluation mode. */
441
442 static const char *
443 translate_condition_evaluation_mode (const char *mode)
444 {
445 if (mode == condition_evaluation_auto)
446 {
447 if (target_supports_evaluation_of_breakpoint_conditions ())
448 return condition_evaluation_target;
449 else
450 return condition_evaluation_host;
451 }
452 else
453 return mode;
454 }
455
456 /* Discovers what condition_evaluation_auto translates to. */
457
458 static const char *
459 breakpoint_condition_evaluation_mode (void)
460 {
461 return translate_condition_evaluation_mode (condition_evaluation_mode);
462 }
463
464 /* Return true if GDB should evaluate breakpoint conditions or false
465 otherwise. */
466
467 static int
468 gdb_evaluates_breakpoint_condition_p (void)
469 {
470 const char *mode = breakpoint_condition_evaluation_mode ();
471
472 return (mode == condition_evaluation_host);
473 }
474
475 /* Are we executing breakpoint commands? */
476 static int executing_breakpoint_commands;
477
478 /* Are overlay event breakpoints enabled? */
479 static int overlay_events_enabled;
480
481 /* See description in breakpoint.h. */
482 int target_exact_watchpoints = 0;
483
484 /* Walk the following statement or block through all breakpoints.
485 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
486 current breakpoint. */
487
488 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
489
490 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
491 for (B = breakpoint_chain; \
492 B ? (TMP=B->next, 1): 0; \
493 B = TMP)
494
495 /* Similar iterator for the low-level breakpoints. SAFE variant is
496 not provided so update_global_location_list must not be called
497 while executing the block of ALL_BP_LOCATIONS. */
498
499 #define ALL_BP_LOCATIONS(B,BP_TMP) \
500 for (BP_TMP = bp_locations; \
501 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
502 BP_TMP++)
503
504 /* Iterates through locations with address ADDRESS for the currently selected
505 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
506 to where the loop should start from.
507 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
508 appropriate location to start with. */
509
510 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
511 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
512 BP_LOCP_TMP = BP_LOCP_START; \
513 BP_LOCP_START \
514 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
515 && (*BP_LOCP_TMP)->address == ADDRESS); \
516 BP_LOCP_TMP++)
517
518 /* Iterator for tracepoints only. */
519
520 #define ALL_TRACEPOINTS(B) \
521 for (B = breakpoint_chain; B; B = B->next) \
522 if (is_tracepoint (B))
523
524 /* Chains of all breakpoints defined. */
525
526 struct breakpoint *breakpoint_chain;
527
528 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
529
530 static struct bp_location **bp_locations;
531
532 /* Number of elements of BP_LOCATIONS. */
533
534 static unsigned bp_locations_count;
535
536 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
537 ADDRESS for the current elements of BP_LOCATIONS which get a valid
538 result from bp_location_has_shadow. You can use it for roughly
539 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
540 an address you need to read. */
541
542 static CORE_ADDR bp_locations_placed_address_before_address_max;
543
544 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
545 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
546 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
547 You can use it for roughly limiting the subrange of BP_LOCATIONS to
548 scan for shadow bytes for an address you need to read. */
549
550 static CORE_ADDR bp_locations_shadow_len_after_address_max;
551
552 /* The locations that no longer correspond to any breakpoint, unlinked
553 from the bp_locations array, but for which a hit may still be
554 reported by a target. */
555 static std::vector<bp_location *> moribund_locations;
556
557 /* Number of last breakpoint made. */
558
559 static int breakpoint_count;
560
561 /* The value of `breakpoint_count' before the last command that
562 created breakpoints. If the last (break-like) command created more
563 than one breakpoint, then the difference between BREAKPOINT_COUNT
564 and PREV_BREAKPOINT_COUNT is more than one. */
565 static int prev_breakpoint_count;
566
567 /* Number of last tracepoint made. */
568
569 static int tracepoint_count;
570
571 static struct cmd_list_element *breakpoint_set_cmdlist;
572 static struct cmd_list_element *breakpoint_show_cmdlist;
573 struct cmd_list_element *save_cmdlist;
574
575 /* See declaration at breakpoint.h. */
576
577 struct breakpoint *
578 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
579 void *user_data)
580 {
581 struct breakpoint *b = NULL;
582
583 ALL_BREAKPOINTS (b)
584 {
585 if (func (b, user_data) != 0)
586 break;
587 }
588
589 return b;
590 }
591
592 /* Return whether a breakpoint is an active enabled breakpoint. */
593 static int
594 breakpoint_enabled (struct breakpoint *b)
595 {
596 return (b->enable_state == bp_enabled);
597 }
598
599 /* Set breakpoint count to NUM. */
600
601 static void
602 set_breakpoint_count (int num)
603 {
604 prev_breakpoint_count = breakpoint_count;
605 breakpoint_count = num;
606 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
607 }
608
609 /* Used by `start_rbreak_breakpoints' below, to record the current
610 breakpoint count before "rbreak" creates any breakpoint. */
611 static int rbreak_start_breakpoint_count;
612
613 /* Called at the start an "rbreak" command to record the first
614 breakpoint made. */
615
616 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
617 {
618 rbreak_start_breakpoint_count = breakpoint_count;
619 }
620
621 /* Called at the end of an "rbreak" command to record the last
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
625 {
626 prev_breakpoint_count = rbreak_start_breakpoint_count;
627 }
628
629 /* Used in run_command to zero the hit count when a new run starts. */
630
631 void
632 clear_breakpoint_hit_counts (void)
633 {
634 struct breakpoint *b;
635
636 ALL_BREAKPOINTS (b)
637 b->hit_count = 0;
638 }
639
640 \f
641 /* Return the breakpoint with the specified number, or NULL
642 if the number does not refer to an existing breakpoint. */
643
644 struct breakpoint *
645 get_breakpoint (int num)
646 {
647 struct breakpoint *b;
648
649 ALL_BREAKPOINTS (b)
650 if (b->number == num)
651 return b;
652
653 return NULL;
654 }
655
656 \f
657
658 /* Mark locations as "conditions have changed" in case the target supports
659 evaluating conditions on its side. */
660
661 static void
662 mark_breakpoint_modified (struct breakpoint *b)
663 {
664 struct bp_location *loc;
665
666 /* This is only meaningful if the target is
667 evaluating conditions and if the user has
668 opted for condition evaluation on the target's
669 side. */
670 if (gdb_evaluates_breakpoint_condition_p ()
671 || !target_supports_evaluation_of_breakpoint_conditions ())
672 return;
673
674 if (!is_breakpoint (b))
675 return;
676
677 for (loc = b->loc; loc; loc = loc->next)
678 loc->condition_changed = condition_modified;
679 }
680
681 /* Mark location as "conditions have changed" in case the target supports
682 evaluating conditions on its side. */
683
684 static void
685 mark_breakpoint_location_modified (struct bp_location *loc)
686 {
687 /* This is only meaningful if the target is
688 evaluating conditions and if the user has
689 opted for condition evaluation on the target's
690 side. */
691 if (gdb_evaluates_breakpoint_condition_p ()
692 || !target_supports_evaluation_of_breakpoint_conditions ())
693
694 return;
695
696 if (!is_breakpoint (loc->owner))
697 return;
698
699 loc->condition_changed = condition_modified;
700 }
701
702 /* Sets the condition-evaluation mode using the static global
703 condition_evaluation_mode. */
704
705 static void
706 set_condition_evaluation_mode (const char *args, int from_tty,
707 struct cmd_list_element *c)
708 {
709 const char *old_mode, *new_mode;
710
711 if ((condition_evaluation_mode_1 == condition_evaluation_target)
712 && !target_supports_evaluation_of_breakpoint_conditions ())
713 {
714 condition_evaluation_mode_1 = condition_evaluation_mode;
715 warning (_("Target does not support breakpoint condition evaluation.\n"
716 "Using host evaluation mode instead."));
717 return;
718 }
719
720 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
721 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
722
723 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
724 settings was "auto". */
725 condition_evaluation_mode = condition_evaluation_mode_1;
726
727 /* Only update the mode if the user picked a different one. */
728 if (new_mode != old_mode)
729 {
730 struct bp_location *loc, **loc_tmp;
731 /* If the user switched to a different evaluation mode, we
732 need to synch the changes with the target as follows:
733
734 "host" -> "target": Send all (valid) conditions to the target.
735 "target" -> "host": Remove all the conditions from the target.
736 */
737
738 if (new_mode == condition_evaluation_target)
739 {
740 /* Mark everything modified and synch conditions with the
741 target. */
742 ALL_BP_LOCATIONS (loc, loc_tmp)
743 mark_breakpoint_location_modified (loc);
744 }
745 else
746 {
747 /* Manually mark non-duplicate locations to synch conditions
748 with the target. We do this to remove all the conditions the
749 target knows about. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 if (is_breakpoint (loc->owner) && loc->inserted)
752 loc->needs_update = 1;
753 }
754
755 /* Do the update. */
756 update_global_location_list (UGLL_MAY_INSERT);
757 }
758
759 return;
760 }
761
762 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
763 what "auto" is translating to. */
764
765 static void
766 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 if (condition_evaluation_mode == condition_evaluation_auto)
770 fprintf_filtered (file,
771 _("Breakpoint condition evaluation "
772 "mode is %s (currently %s).\n"),
773 value,
774 breakpoint_condition_evaluation_mode ());
775 else
776 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
777 value);
778 }
779
780 /* A comparison function for bp_location AP and BP that is used by
781 bsearch. This comparison function only cares about addresses, unlike
782 the more general bp_locations_compare function. */
783
784 static int
785 bp_locations_compare_addrs (const void *ap, const void *bp)
786 {
787 const struct bp_location *a = *(const struct bp_location **) ap;
788 const struct bp_location *b = *(const struct bp_location **) bp;
789
790 if (a->address == b->address)
791 return 0;
792 else
793 return ((a->address > b->address) - (a->address < b->address));
794 }
795
796 /* Helper function to skip all bp_locations with addresses
797 less than ADDRESS. It returns the first bp_location that
798 is greater than or equal to ADDRESS. If none is found, just
799 return NULL. */
800
801 static struct bp_location **
802 get_first_locp_gte_addr (CORE_ADDR address)
803 {
804 struct bp_location dummy_loc;
805 struct bp_location *dummy_locp = &dummy_loc;
806 struct bp_location **locp_found = NULL;
807
808 /* Initialize the dummy location's address field. */
809 dummy_loc.address = address;
810
811 /* Find a close match to the first location at ADDRESS. */
812 locp_found = ((struct bp_location **)
813 bsearch (&dummy_locp, bp_locations, bp_locations_count,
814 sizeof (struct bp_location **),
815 bp_locations_compare_addrs));
816
817 /* Nothing was found, nothing left to do. */
818 if (locp_found == NULL)
819 return NULL;
820
821 /* We may have found a location that is at ADDRESS but is not the first in the
822 location's list. Go backwards (if possible) and locate the first one. */
823 while ((locp_found - 1) >= bp_locations
824 && (*(locp_found - 1))->address == address)
825 locp_found--;
826
827 return locp_found;
828 }
829
830 void
831 set_breakpoint_condition (struct breakpoint *b, const char *exp,
832 int from_tty)
833 {
834 xfree (b->cond_string);
835 b->cond_string = NULL;
836
837 if (is_watchpoint (b))
838 {
839 struct watchpoint *w = (struct watchpoint *) b;
840
841 w->cond_exp.reset ();
842 }
843 else
844 {
845 struct bp_location *loc;
846
847 for (loc = b->loc; loc; loc = loc->next)
848 {
849 loc->cond.reset ();
850
851 /* No need to free the condition agent expression
852 bytecode (if we have one). We will handle this
853 when we go through update_global_location_list. */
854 }
855 }
856
857 if (*exp == 0)
858 {
859 if (from_tty)
860 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
861 }
862 else
863 {
864 const char *arg = exp;
865
866 /* I don't know if it matters whether this is the string the user
867 typed in or the decompiled expression. */
868 b->cond_string = xstrdup (arg);
869 b->condition_not_parsed = 0;
870
871 if (is_watchpoint (b))
872 {
873 struct watchpoint *w = (struct watchpoint *) b;
874
875 innermost_block_tracker tracker;
876 arg = exp;
877 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
878 if (*arg)
879 error (_("Junk at end of expression"));
880 w->cond_exp_valid_block = tracker.block ();
881 }
882 else
883 {
884 struct bp_location *loc;
885
886 for (loc = b->loc; loc; loc = loc->next)
887 {
888 arg = exp;
889 loc->cond =
890 parse_exp_1 (&arg, loc->address,
891 block_for_pc (loc->address), 0);
892 if (*arg)
893 error (_("Junk at end of expression"));
894 }
895 }
896 }
897 mark_breakpoint_modified (b);
898
899 gdb::observers::breakpoint_modified.notify (b);
900 }
901
902 /* Completion for the "condition" command. */
903
904 static void
905 condition_completer (struct cmd_list_element *cmd,
906 completion_tracker &tracker,
907 const char *text, const char *word)
908 {
909 const char *space;
910
911 text = skip_spaces (text);
912 space = skip_to_space (text);
913 if (*space == '\0')
914 {
915 int len;
916 struct breakpoint *b;
917
918 if (text[0] == '$')
919 {
920 /* We don't support completion of history indices. */
921 if (!isdigit (text[1]))
922 complete_internalvar (tracker, &text[1]);
923 return;
924 }
925
926 /* We're completing the breakpoint number. */
927 len = strlen (text);
928
929 ALL_BREAKPOINTS (b)
930 {
931 char number[50];
932
933 xsnprintf (number, sizeof (number), "%d", b->number);
934
935 if (strncmp (number, text, len) == 0)
936 tracker.add_completion (make_unique_xstrdup (number));
937 }
938
939 return;
940 }
941
942 /* We're completing the expression part. */
943 text = skip_spaces (space);
944 expression_completer (cmd, tracker, text, word);
945 }
946
947 /* condition N EXP -- set break condition of breakpoint N to EXP. */
948
949 static void
950 condition_command (const char *arg, int from_tty)
951 {
952 struct breakpoint *b;
953 const char *p;
954 int bnum;
955
956 if (arg == 0)
957 error_no_arg (_("breakpoint number"));
958
959 p = arg;
960 bnum = get_number (&p);
961 if (bnum == 0)
962 error (_("Bad breakpoint argument: '%s'"), arg);
963
964 ALL_BREAKPOINTS (b)
965 if (b->number == bnum)
966 {
967 /* Check if this breakpoint has a "stop" method implemented in an
968 extension language. This method and conditions entered into GDB
969 from the CLI are mutually exclusive. */
970 const struct extension_language_defn *extlang
971 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
972
973 if (extlang != NULL)
974 {
975 error (_("Only one stop condition allowed. There is currently"
976 " a %s stop condition defined for this breakpoint."),
977 ext_lang_capitalized_name (extlang));
978 }
979 set_breakpoint_condition (b, p, from_tty);
980
981 if (is_breakpoint (b))
982 update_global_location_list (UGLL_MAY_INSERT);
983
984 return;
985 }
986
987 error (_("No breakpoint number %d."), bnum);
988 }
989
990 /* Check that COMMAND do not contain commands that are suitable
991 only for tracepoints and not suitable for ordinary breakpoints.
992 Throw if any such commands is found. */
993
994 static void
995 check_no_tracepoint_commands (struct command_line *commands)
996 {
997 struct command_line *c;
998
999 for (c = commands; c; c = c->next)
1000 {
1001 if (c->control_type == while_stepping_control)
1002 error (_("The 'while-stepping' command can "
1003 "only be used for tracepoints"));
1004
1005 check_no_tracepoint_commands (c->body_list_0.get ());
1006 check_no_tracepoint_commands (c->body_list_1.get ());
1007
1008 /* Not that command parsing removes leading whitespace and comment
1009 lines and also empty lines. So, we only need to check for
1010 command directly. */
1011 if (strstr (c->line, "collect ") == c->line)
1012 error (_("The 'collect' command can only be used for tracepoints"));
1013
1014 if (strstr (c->line, "teval ") == c->line)
1015 error (_("The 'teval' command can only be used for tracepoints"));
1016 }
1017 }
1018
1019 struct longjmp_breakpoint : public breakpoint
1020 {
1021 ~longjmp_breakpoint () override;
1022 };
1023
1024 /* Encapsulate tests for different types of tracepoints. */
1025
1026 static bool
1027 is_tracepoint_type (bptype type)
1028 {
1029 return (type == bp_tracepoint
1030 || type == bp_fast_tracepoint
1031 || type == bp_static_tracepoint);
1032 }
1033
1034 static bool
1035 is_longjmp_type (bptype type)
1036 {
1037 return type == bp_longjmp || type == bp_exception;
1038 }
1039
1040 int
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 \f
1497
1498 /* Return true if BPT is either a software breakpoint or a hardware
1499 breakpoint. */
1500
1501 int
1502 is_breakpoint (const struct breakpoint *bpt)
1503 {
1504 return (bpt->type == bp_breakpoint
1505 || bpt->type == bp_hardware_breakpoint
1506 || bpt->type == bp_dprintf);
1507 }
1508
1509 /* Return true if BPT is of any hardware watchpoint kind. */
1510
1511 static int
1512 is_hardware_watchpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_hardware_watchpoint
1515 || bpt->type == bp_read_watchpoint
1516 || bpt->type == bp_access_watchpoint);
1517 }
1518
1519 /* Return true if BPT is of any watchpoint kind, hardware or
1520 software. */
1521
1522 int
1523 is_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (is_hardware_watchpoint (bpt)
1526 || bpt->type == bp_watchpoint);
1527 }
1528
1529 /* Returns true if the current thread and its running state are safe
1530 to evaluate or update watchpoint B. Watchpoints on local
1531 expressions need to be evaluated in the context of the thread that
1532 was current when the watchpoint was created, and, that thread needs
1533 to be stopped to be able to select the correct frame context.
1534 Watchpoints on global expressions can be evaluated on any thread,
1535 and in any state. It is presently left to the target allowing
1536 memory accesses when threads are running. */
1537
1538 static int
1539 watchpoint_in_thread_scope (struct watchpoint *b)
1540 {
1541 return (b->pspace == current_program_space
1542 && (b->watchpoint_thread == null_ptid
1543 || (inferior_ptid == b->watchpoint_thread
1544 && !inferior_thread ()->executing)));
1545 }
1546
1547 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1548 associated bp_watchpoint_scope breakpoint. */
1549
1550 static void
1551 watchpoint_del_at_next_stop (struct watchpoint *w)
1552 {
1553 if (w->related_breakpoint != w)
1554 {
1555 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1556 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1557 w->related_breakpoint->disposition = disp_del_at_next_stop;
1558 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1559 w->related_breakpoint = w;
1560 }
1561 w->disposition = disp_del_at_next_stop;
1562 }
1563
1564 /* Extract a bitfield value from value VAL using the bit parameters contained in
1565 watchpoint W. */
1566
1567 static struct value *
1568 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1569 {
1570 struct value *bit_val;
1571
1572 if (val == NULL)
1573 return NULL;
1574
1575 bit_val = allocate_value (value_type (val));
1576
1577 unpack_value_bitfield (bit_val,
1578 w->val_bitpos,
1579 w->val_bitsize,
1580 value_contents_for_printing (val),
1581 value_offset (val),
1582 val);
1583
1584 return bit_val;
1585 }
1586
1587 /* Allocate a dummy location and add it to B, which must be a software
1588 watchpoint. This is required because even if a software watchpoint
1589 is not watching any memory, bpstat_stop_status requires a location
1590 to be able to report stops. */
1591
1592 static void
1593 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1594 struct program_space *pspace)
1595 {
1596 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1597
1598 b->loc = allocate_bp_location (b);
1599 b->loc->pspace = pspace;
1600 b->loc->address = -1;
1601 b->loc->length = -1;
1602 }
1603
1604 /* Returns true if B is a software watchpoint that is not watching any
1605 memory (e.g., "watch $pc"). */
1606
1607 static int
1608 is_no_memory_software_watchpoint (struct breakpoint *b)
1609 {
1610 return (b->type == bp_watchpoint
1611 && b->loc != NULL
1612 && b->loc->next == NULL
1613 && b->loc->address == -1
1614 && b->loc->length == -1);
1615 }
1616
1617 /* Assuming that B is a watchpoint:
1618 - Reparse watchpoint expression, if REPARSE is non-zero
1619 - Evaluate expression and store the result in B->val
1620 - Evaluate the condition if there is one, and store the result
1621 in b->loc->cond.
1622 - Update the list of values that must be watched in B->loc.
1623
1624 If the watchpoint disposition is disp_del_at_next_stop, then do
1625 nothing. If this is local watchpoint that is out of scope, delete
1626 it.
1627
1628 Even with `set breakpoint always-inserted on' the watchpoints are
1629 removed + inserted on each stop here. Normal breakpoints must
1630 never be removed because they might be missed by a running thread
1631 when debugging in non-stop mode. On the other hand, hardware
1632 watchpoints (is_hardware_watchpoint; processed here) are specific
1633 to each LWP since they are stored in each LWP's hardware debug
1634 registers. Therefore, such LWP must be stopped first in order to
1635 be able to modify its hardware watchpoints.
1636
1637 Hardware watchpoints must be reset exactly once after being
1638 presented to the user. It cannot be done sooner, because it would
1639 reset the data used to present the watchpoint hit to the user. And
1640 it must not be done later because it could display the same single
1641 watchpoint hit during multiple GDB stops. Note that the latter is
1642 relevant only to the hardware watchpoint types bp_read_watchpoint
1643 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1644 not user-visible - its hit is suppressed if the memory content has
1645 not changed.
1646
1647 The following constraints influence the location where we can reset
1648 hardware watchpoints:
1649
1650 * target_stopped_by_watchpoint and target_stopped_data_address are
1651 called several times when GDB stops.
1652
1653 [linux]
1654 * Multiple hardware watchpoints can be hit at the same time,
1655 causing GDB to stop. GDB only presents one hardware watchpoint
1656 hit at a time as the reason for stopping, and all the other hits
1657 are presented later, one after the other, each time the user
1658 requests the execution to be resumed. Execution is not resumed
1659 for the threads still having pending hit event stored in
1660 LWP_INFO->STATUS. While the watchpoint is already removed from
1661 the inferior on the first stop the thread hit event is kept being
1662 reported from its cached value by linux_nat_stopped_data_address
1663 until the real thread resume happens after the watchpoint gets
1664 presented and thus its LWP_INFO->STATUS gets reset.
1665
1666 Therefore the hardware watchpoint hit can get safely reset on the
1667 watchpoint removal from inferior. */
1668
1669 static void
1670 update_watchpoint (struct watchpoint *b, int reparse)
1671 {
1672 int within_current_scope;
1673 struct frame_id saved_frame_id;
1674 int frame_saved;
1675
1676 /* If this is a local watchpoint, we only want to check if the
1677 watchpoint frame is in scope if the current thread is the thread
1678 that was used to create the watchpoint. */
1679 if (!watchpoint_in_thread_scope (b))
1680 return;
1681
1682 if (b->disposition == disp_del_at_next_stop)
1683 return;
1684
1685 frame_saved = 0;
1686
1687 /* Determine if the watchpoint is within scope. */
1688 if (b->exp_valid_block == NULL)
1689 within_current_scope = 1;
1690 else
1691 {
1692 struct frame_info *fi = get_current_frame ();
1693 struct gdbarch *frame_arch = get_frame_arch (fi);
1694 CORE_ADDR frame_pc = get_frame_pc (fi);
1695
1696 /* If we're at a point where the stack has been destroyed
1697 (e.g. in a function epilogue), unwinding may not work
1698 properly. Do not attempt to recreate locations at this
1699 point. See similar comments in watchpoint_check. */
1700 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1701 return;
1702
1703 /* Save the current frame's ID so we can restore it after
1704 evaluating the watchpoint expression on its own frame. */
1705 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1706 took a frame parameter, so that we didn't have to change the
1707 selected frame. */
1708 frame_saved = 1;
1709 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1710
1711 fi = frame_find_by_id (b->watchpoint_frame);
1712 within_current_scope = (fi != NULL);
1713 if (within_current_scope)
1714 select_frame (fi);
1715 }
1716
1717 /* We don't free locations. They are stored in the bp_location array
1718 and update_global_location_list will eventually delete them and
1719 remove breakpoints if needed. */
1720 b->loc = NULL;
1721
1722 if (within_current_scope && reparse)
1723 {
1724 const char *s;
1725
1726 b->exp.reset ();
1727 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1728 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1729 /* If the meaning of expression itself changed, the old value is
1730 no longer relevant. We don't want to report a watchpoint hit
1731 to the user when the old value and the new value may actually
1732 be completely different objects. */
1733 b->val = NULL;
1734 b->val_valid = 0;
1735
1736 /* Note that unlike with breakpoints, the watchpoint's condition
1737 expression is stored in the breakpoint object, not in the
1738 locations (re)created below. */
1739 if (b->cond_string != NULL)
1740 {
1741 b->cond_exp.reset ();
1742
1743 s = b->cond_string;
1744 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1745 }
1746 }
1747
1748 /* If we failed to parse the expression, for example because
1749 it refers to a global variable in a not-yet-loaded shared library,
1750 don't try to insert watchpoint. We don't automatically delete
1751 such watchpoint, though, since failure to parse expression
1752 is different from out-of-scope watchpoint. */
1753 if (!target_has_execution)
1754 {
1755 /* Without execution, memory can't change. No use to try and
1756 set watchpoint locations. The watchpoint will be reset when
1757 the target gains execution, through breakpoint_re_set. */
1758 if (!can_use_hw_watchpoints)
1759 {
1760 if (b->ops->works_in_software_mode (b))
1761 b->type = bp_watchpoint;
1762 else
1763 error (_("Can't set read/access watchpoint when "
1764 "hardware watchpoints are disabled."));
1765 }
1766 }
1767 else if (within_current_scope && b->exp)
1768 {
1769 int pc = 0;
1770 std::vector<value_ref_ptr> val_chain;
1771 struct value *v, *result;
1772 struct program_space *frame_pspace;
1773
1774 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1775
1776 /* Avoid setting b->val if it's already set. The meaning of
1777 b->val is 'the last value' user saw, and we should update
1778 it only if we reported that last value to user. As it
1779 happens, the code that reports it updates b->val directly.
1780 We don't keep track of the memory value for masked
1781 watchpoints. */
1782 if (!b->val_valid && !is_masked_watchpoint (b))
1783 {
1784 if (b->val_bitsize != 0)
1785 v = extract_bitfield_from_watchpoint_value (b, v);
1786 b->val = release_value (v);
1787 b->val_valid = 1;
1788 }
1789
1790 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1791
1792 /* Look at each value on the value chain. */
1793 gdb_assert (!val_chain.empty ());
1794 for (const value_ref_ptr &iter : val_chain)
1795 {
1796 v = iter.get ();
1797
1798 /* If it's a memory location, and GDB actually needed
1799 its contents to evaluate the expression, then we
1800 must watch it. If the first value returned is
1801 still lazy, that means an error occurred reading it;
1802 watch it anyway in case it becomes readable. */
1803 if (VALUE_LVAL (v) == lval_memory
1804 && (v == val_chain[0] || ! value_lazy (v)))
1805 {
1806 struct type *vtype = check_typedef (value_type (v));
1807
1808 /* We only watch structs and arrays if user asked
1809 for it explicitly, never if they just happen to
1810 appear in the middle of some value chain. */
1811 if (v == result
1812 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1813 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1814 {
1815 CORE_ADDR addr;
1816 enum target_hw_bp_type type;
1817 struct bp_location *loc, **tmp;
1818 int bitpos = 0, bitsize = 0;
1819
1820 if (value_bitsize (v) != 0)
1821 {
1822 /* Extract the bit parameters out from the bitfield
1823 sub-expression. */
1824 bitpos = value_bitpos (v);
1825 bitsize = value_bitsize (v);
1826 }
1827 else if (v == result && b->val_bitsize != 0)
1828 {
1829 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1830 lvalue whose bit parameters are saved in the fields
1831 VAL_BITPOS and VAL_BITSIZE. */
1832 bitpos = b->val_bitpos;
1833 bitsize = b->val_bitsize;
1834 }
1835
1836 addr = value_address (v);
1837 if (bitsize != 0)
1838 {
1839 /* Skip the bytes that don't contain the bitfield. */
1840 addr += bitpos / 8;
1841 }
1842
1843 type = hw_write;
1844 if (b->type == bp_read_watchpoint)
1845 type = hw_read;
1846 else if (b->type == bp_access_watchpoint)
1847 type = hw_access;
1848
1849 loc = allocate_bp_location (b);
1850 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1851 ;
1852 *tmp = loc;
1853 loc->gdbarch = get_type_arch (value_type (v));
1854
1855 loc->pspace = frame_pspace;
1856 loc->address = address_significant (loc->gdbarch, addr);
1857
1858 if (bitsize != 0)
1859 {
1860 /* Just cover the bytes that make up the bitfield. */
1861 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1862 }
1863 else
1864 loc->length = TYPE_LENGTH (value_type (v));
1865
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (b);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->ops->works_in_software_mode (b);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->type = type;
1939 }
1940 }
1941 else if (!b->ops->works_in_software_mode (b))
1942 {
1943 if (!can_use_hw_watchpoints)
1944 error (_("Can't set read/access watchpoint when "
1945 "hardware watchpoints are disabled."));
1946 else
1947 error (_("Expression cannot be implemented with "
1948 "read/access watchpoint."));
1949 }
1950 else
1951 b->type = bp_watchpoint;
1952
1953 loc_type = (b->type == bp_watchpoint? bp_loc_other
1954 : bp_loc_hardware_watchpoint);
1955 for (bl = b->loc; bl; bl = bl->next)
1956 bl->loc_type = loc_type;
1957 }
1958
1959 /* If a software watchpoint is not watching any memory, then the
1960 above left it without any location set up. But,
1961 bpstat_stop_status requires a location to be able to report
1962 stops, so make sure there's at least a dummy one. */
1963 if (b->type == bp_watchpoint && b->loc == NULL)
1964 software_watchpoint_add_no_memory_location (b, frame_pspace);
1965 }
1966 else if (!within_current_scope)
1967 {
1968 printf_filtered (_("\
1969 Watchpoint %d deleted because the program has left the block\n\
1970 in which its expression is valid.\n"),
1971 b->number);
1972 watchpoint_del_at_next_stop (b);
1973 }
1974
1975 /* Restore the selected frame. */
1976 if (frame_saved)
1977 select_frame (frame_find_by_id (saved_frame_id));
1978 }
1979
1980
1981 /* Returns 1 iff breakpoint location should be
1982 inserted in the inferior. We don't differentiate the type of BL's owner
1983 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1984 breakpoint_ops is not defined, because in insert_bp_location,
1985 tracepoint's insert_location will not be called. */
1986 static int
1987 should_be_inserted (struct bp_location *bl)
1988 {
1989 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1990 return 0;
1991
1992 if (bl->owner->disposition == disp_del_at_next_stop)
1993 return 0;
1994
1995 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1996 return 0;
1997
1998 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1999 return 0;
2000
2001 /* This is set for example, when we're attached to the parent of a
2002 vfork, and have detached from the child. The child is running
2003 free, and we expect it to do an exec or exit, at which point the
2004 OS makes the parent schedulable again (and the target reports
2005 that the vfork is done). Until the child is done with the shared
2006 memory region, do not insert breakpoints in the parent, otherwise
2007 the child could still trip on the parent's breakpoints. Since
2008 the parent is blocked anyway, it won't miss any breakpoint. */
2009 if (bl->pspace->breakpoints_not_allowed)
2010 return 0;
2011
2012 /* Don't insert a breakpoint if we're trying to step past its
2013 location, except if the breakpoint is a single-step breakpoint,
2014 and the breakpoint's thread is the thread which is stepping past
2015 a breakpoint. */
2016 if ((bl->loc_type == bp_loc_software_breakpoint
2017 || bl->loc_type == bp_loc_hardware_breakpoint)
2018 && stepping_past_instruction_at (bl->pspace->aspace,
2019 bl->address)
2020 /* The single-step breakpoint may be inserted at the location
2021 we're trying to step if the instruction branches to itself.
2022 However, the instruction won't be executed at all and it may
2023 break the semantics of the instruction, for example, the
2024 instruction is a conditional branch or updates some flags.
2025 We can't fix it unless GDB is able to emulate the instruction
2026 or switch to displaced stepping. */
2027 && !(bl->owner->type == bp_single_step
2028 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2029 {
2030 if (debug_infrun)
2031 {
2032 fprintf_unfiltered (gdb_stdlog,
2033 "infrun: skipping breakpoint: "
2034 "stepping past insn at: %s\n",
2035 paddress (bl->gdbarch, bl->address));
2036 }
2037 return 0;
2038 }
2039
2040 /* Don't insert watchpoints if we're trying to step past the
2041 instruction that triggered one. */
2042 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2043 && stepping_past_nonsteppable_watchpoint ())
2044 {
2045 if (debug_infrun)
2046 {
2047 fprintf_unfiltered (gdb_stdlog,
2048 "infrun: stepping past non-steppable watchpoint. "
2049 "skipping watchpoint at %s:%d\n",
2050 paddress (bl->gdbarch, bl->address),
2051 bl->length);
2052 }
2053 return 0;
2054 }
2055
2056 return 1;
2057 }
2058
2059 /* Same as should_be_inserted but does the check assuming
2060 that the location is not duplicated. */
2061
2062 static int
2063 unduplicated_should_be_inserted (struct bp_location *bl)
2064 {
2065 int result;
2066 const int save_duplicate = bl->duplicate;
2067
2068 bl->duplicate = 0;
2069 result = should_be_inserted (bl);
2070 bl->duplicate = save_duplicate;
2071 return result;
2072 }
2073
2074 /* Parses a conditional described by an expression COND into an
2075 agent expression bytecode suitable for evaluation
2076 by the bytecode interpreter. Return NULL if there was
2077 any error during parsing. */
2078
2079 static agent_expr_up
2080 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2081 {
2082 if (cond == NULL)
2083 return NULL;
2084
2085 agent_expr_up aexpr;
2086
2087 /* We don't want to stop processing, so catch any errors
2088 that may show up. */
2089 try
2090 {
2091 aexpr = gen_eval_for_expr (scope, cond);
2092 }
2093
2094 catch (const gdb_exception_error &ex)
2095 {
2096 /* If we got here, it means the condition could not be parsed to a valid
2097 bytecode expression and thus can't be evaluated on the target's side.
2098 It's no use iterating through the conditions. */
2099 }
2100
2101 /* We have a valid agent expression. */
2102 return aexpr;
2103 }
2104
2105 /* Based on location BL, create a list of breakpoint conditions to be
2106 passed on to the target. If we have duplicated locations with different
2107 conditions, we will add such conditions to the list. The idea is that the
2108 target will evaluate the list of conditions and will only notify GDB when
2109 one of them is true. */
2110
2111 static void
2112 build_target_condition_list (struct bp_location *bl)
2113 {
2114 struct bp_location **locp = NULL, **loc2p;
2115 int null_condition_or_parse_error = 0;
2116 int modified = bl->needs_update;
2117 struct bp_location *loc;
2118
2119 /* Release conditions left over from a previous insert. */
2120 bl->target_info.conditions.clear ();
2121
2122 /* This is only meaningful if the target is
2123 evaluating conditions and if the user has
2124 opted for condition evaluation on the target's
2125 side. */
2126 if (gdb_evaluates_breakpoint_condition_p ()
2127 || !target_supports_evaluation_of_breakpoint_conditions ())
2128 return;
2129
2130 /* Do a first pass to check for locations with no assigned
2131 conditions or conditions that fail to parse to a valid agent expression
2132 bytecode. If any of these happen, then it's no use to send conditions
2133 to the target since this location will always trigger and generate a
2134 response back to GDB. */
2135 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2136 {
2137 loc = (*loc2p);
2138 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2139 {
2140 if (modified)
2141 {
2142 /* Re-parse the conditions since something changed. In that
2143 case we already freed the condition bytecodes (see
2144 force_breakpoint_reinsertion). We just
2145 need to parse the condition to bytecodes again. */
2146 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2147 loc->cond.get ());
2148 }
2149
2150 /* If we have a NULL bytecode expression, it means something
2151 went wrong or we have a null condition expression. */
2152 if (!loc->cond_bytecode)
2153 {
2154 null_condition_or_parse_error = 1;
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* If any of these happened, it means we will have to evaluate the conditions
2161 for the location's address on gdb's side. It is no use keeping bytecodes
2162 for all the other duplicate locations, thus we free all of them here.
2163
2164 This is so we have a finer control over which locations' conditions are
2165 being evaluated by GDB or the remote stub. */
2166 if (null_condition_or_parse_error)
2167 {
2168 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2169 {
2170 loc = (*loc2p);
2171 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2172 {
2173 /* Only go as far as the first NULL bytecode is
2174 located. */
2175 if (!loc->cond_bytecode)
2176 return;
2177
2178 loc->cond_bytecode.reset ();
2179 }
2180 }
2181 }
2182
2183 /* No NULL conditions or failed bytecode generation. Build a condition list
2184 for this location's address. */
2185 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2186 {
2187 loc = (*loc2p);
2188 if (loc->cond
2189 && is_breakpoint (loc->owner)
2190 && loc->pspace->num == bl->pspace->num
2191 && loc->owner->enable_state == bp_enabled
2192 && loc->enabled)
2193 {
2194 /* Add the condition to the vector. This will be used later
2195 to send the conditions to the target. */
2196 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2197 }
2198 }
2199
2200 return;
2201 }
2202
2203 /* Parses a command described by string CMD into an agent expression
2204 bytecode suitable for evaluation by the bytecode interpreter.
2205 Return NULL if there was any error during parsing. */
2206
2207 static agent_expr_up
2208 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2209 {
2210 const char *cmdrest;
2211 const char *format_start, *format_end;
2212 struct gdbarch *gdbarch = get_current_arch ();
2213
2214 if (cmd == NULL)
2215 return NULL;
2216
2217 cmdrest = cmd;
2218
2219 if (*cmdrest == ',')
2220 ++cmdrest;
2221 cmdrest = skip_spaces (cmdrest);
2222
2223 if (*cmdrest++ != '"')
2224 error (_("No format string following the location"));
2225
2226 format_start = cmdrest;
2227
2228 format_pieces fpieces (&cmdrest);
2229
2230 format_end = cmdrest;
2231
2232 if (*cmdrest++ != '"')
2233 error (_("Bad format string, non-terminated '\"'."));
2234
2235 cmdrest = skip_spaces (cmdrest);
2236
2237 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2238 error (_("Invalid argument syntax"));
2239
2240 if (*cmdrest == ',')
2241 cmdrest++;
2242 cmdrest = skip_spaces (cmdrest);
2243
2244 /* For each argument, make an expression. */
2245
2246 std::vector<struct expression *> argvec;
2247 while (*cmdrest != '\0')
2248 {
2249 const char *cmd1;
2250
2251 cmd1 = cmdrest;
2252 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2253 argvec.push_back (expr.release ());
2254 cmdrest = cmd1;
2255 if (*cmdrest == ',')
2256 ++cmdrest;
2257 }
2258
2259 agent_expr_up aexpr;
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 try
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 argvec.size (), argvec.data ());
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 /* If we got here, it means the command could not be parsed to a valid
2272 bytecode expression and thus can't be evaluated on the target's side.
2273 It's no use iterating through the other commands. */
2274 }
2275
2276 /* We have a valid agent expression, return it. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint commands to be
2281 passed on to the target. If we have duplicated locations with
2282 different commands, we will add any such to the list. */
2283
2284 static void
2285 build_target_command_list (struct bp_location *bl)
2286 {
2287 struct bp_location **locp = NULL, **loc2p;
2288 int null_command_or_parse_error = 0;
2289 int modified = bl->needs_update;
2290 struct bp_location *loc;
2291
2292 /* Clear commands left over from a previous insert. */
2293 bl->target_info.tcommands.clear ();
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* For now, limit to agent-style dprintf breakpoints. */
2299 if (dprintf_style != dprintf_style_agent)
2300 return;
2301
2302 /* For now, if we have any duplicate location that isn't a dprintf,
2303 don't install the target-side commands, as that would make the
2304 breakpoint not be reported to the core, and we'd lose
2305 control. */
2306 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2307 {
2308 loc = (*loc2p);
2309 if (is_breakpoint (loc->owner)
2310 && loc->pspace->num == bl->pspace->num
2311 && loc->owner->type != bp_dprintf)
2312 return;
2313 }
2314
2315 /* Do a first pass to check for locations with no assigned
2316 conditions or conditions that fail to parse to a valid agent expression
2317 bytecode. If any of these happen, then it's no use to send conditions
2318 to the target since this location will always trigger and generate a
2319 response back to GDB. */
2320 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2321 {
2322 loc = (*loc2p);
2323 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2324 {
2325 if (modified)
2326 {
2327 /* Re-parse the commands since something changed. In that
2328 case we already freed the command bytecodes (see
2329 force_breakpoint_reinsertion). We just
2330 need to parse the command to bytecodes again. */
2331 loc->cmd_bytecode
2332 = parse_cmd_to_aexpr (bl->address,
2333 loc->owner->extra_string);
2334 }
2335
2336 /* If we have a NULL bytecode expression, it means something
2337 went wrong or we have a null command expression. */
2338 if (!loc->cmd_bytecode)
2339 {
2340 null_command_or_parse_error = 1;
2341 break;
2342 }
2343 }
2344 }
2345
2346 /* If anything failed, then we're not doing target-side commands,
2347 and so clean up. */
2348 if (null_command_or_parse_error)
2349 {
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (is_breakpoint (loc->owner)
2354 && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (loc->cmd_bytecode == NULL)
2359 return;
2360
2361 loc->cmd_bytecode.reset ();
2362 }
2363 }
2364 }
2365
2366 /* No NULL commands or failed bytecode generation. Build a command list
2367 for this location's address. */
2368 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2369 {
2370 loc = (*loc2p);
2371 if (loc->owner->extra_string
2372 && is_breakpoint (loc->owner)
2373 && loc->pspace->num == bl->pspace->num
2374 && loc->owner->enable_state == bp_enabled
2375 && loc->enabled)
2376 {
2377 /* Add the command to the vector. This will be used later
2378 to send the commands to the target. */
2379 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2380 }
2381 }
2382
2383 bl->target_info.persist = 0;
2384 /* Maybe flag this location as persistent. */
2385 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2386 bl->target_info.persist = 1;
2387 }
2388
2389 /* Return the kind of breakpoint on address *ADDR. Get the kind
2390 of breakpoint according to ADDR except single-step breakpoint.
2391 Get the kind of single-step breakpoint according to the current
2392 registers state. */
2393
2394 static int
2395 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2396 {
2397 if (bl->owner->type == bp_single_step)
2398 {
2399 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2400 struct regcache *regcache;
2401
2402 regcache = get_thread_regcache (thr);
2403
2404 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2405 regcache, addr);
2406 }
2407 else
2408 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2409 }
2410
2411 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2412 location. Any error messages are printed to TMP_ERROR_STREAM; and
2413 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2414 Returns 0 for success, 1 if the bp_location type is not supported or
2415 -1 for failure.
2416
2417 NOTE drow/2003-09-09: This routine could be broken down to an
2418 object-style method for each breakpoint or catchpoint type. */
2419 static int
2420 insert_bp_location (struct bp_location *bl,
2421 struct ui_file *tmp_error_stream,
2422 int *disabled_breaks,
2423 int *hw_breakpoint_error,
2424 int *hw_bp_error_explained_already)
2425 {
2426 gdb_exception bp_excpt;
2427
2428 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2429 return 0;
2430
2431 /* Note we don't initialize bl->target_info, as that wipes out
2432 the breakpoint location's shadow_contents if the breakpoint
2433 is still inserted at that location. This in turn breaks
2434 target_read_memory which depends on these buffers when
2435 a memory read is requested at the breakpoint location:
2436 Once the target_info has been wiped, we fail to see that
2437 we have a breakpoint inserted at that address and thus
2438 read the breakpoint instead of returning the data saved in
2439 the breakpoint location's shadow contents. */
2440 bl->target_info.reqstd_address = bl->address;
2441 bl->target_info.placed_address_space = bl->pspace->aspace;
2442 bl->target_info.length = bl->length;
2443
2444 /* When working with target-side conditions, we must pass all the conditions
2445 for the same breakpoint address down to the target since GDB will not
2446 insert those locations. With a list of breakpoint conditions, the target
2447 can decide when to stop and notify GDB. */
2448
2449 if (is_breakpoint (bl->owner))
2450 {
2451 build_target_condition_list (bl);
2452 build_target_command_list (bl);
2453 /* Reset the modification marker. */
2454 bl->needs_update = 0;
2455 }
2456
2457 if (bl->loc_type == bp_loc_software_breakpoint
2458 || bl->loc_type == bp_loc_hardware_breakpoint)
2459 {
2460 if (bl->owner->type != bp_hardware_breakpoint)
2461 {
2462 /* If the explicitly specified breakpoint type
2463 is not hardware breakpoint, check the memory map to see
2464 if the breakpoint address is in read only memory or not.
2465
2466 Two important cases are:
2467 - location type is not hardware breakpoint, memory
2468 is readonly. We change the type of the location to
2469 hardware breakpoint.
2470 - location type is hardware breakpoint, memory is
2471 read-write. This means we've previously made the
2472 location hardware one, but then the memory map changed,
2473 so we undo.
2474
2475 When breakpoints are removed, remove_breakpoints will use
2476 location types we've just set here, the only possible
2477 problem is that memory map has changed during running
2478 program, but it's not going to work anyway with current
2479 gdb. */
2480 struct mem_region *mr
2481 = lookup_mem_region (bl->target_info.reqstd_address);
2482
2483 if (mr)
2484 {
2485 if (automatic_hardware_breakpoints)
2486 {
2487 enum bp_loc_type new_type;
2488
2489 if (mr->attrib.mode != MEM_RW)
2490 new_type = bp_loc_hardware_breakpoint;
2491 else
2492 new_type = bp_loc_software_breakpoint;
2493
2494 if (new_type != bl->loc_type)
2495 {
2496 static int said = 0;
2497
2498 bl->loc_type = new_type;
2499 if (!said)
2500 {
2501 fprintf_filtered (gdb_stdout,
2502 _("Note: automatically using "
2503 "hardware breakpoints for "
2504 "read-only addresses.\n"));
2505 said = 1;
2506 }
2507 }
2508 }
2509 else if (bl->loc_type == bp_loc_software_breakpoint
2510 && mr->attrib.mode != MEM_RW)
2511 {
2512 fprintf_unfiltered (tmp_error_stream,
2513 _("Cannot insert breakpoint %d.\n"
2514 "Cannot set software breakpoint "
2515 "at read-only address %s\n"),
2516 bl->owner->number,
2517 paddress (bl->gdbarch, bl->address));
2518 return 1;
2519 }
2520 }
2521 }
2522
2523 /* First check to see if we have to handle an overlay. */
2524 if (overlay_debugging == ovly_off
2525 || bl->section == NULL
2526 || !(section_is_overlay (bl->section)))
2527 {
2528 /* No overlay handling: just set the breakpoint. */
2529 try
2530 {
2531 int val;
2532
2533 val = bl->owner->ops->insert_location (bl);
2534 if (val)
2535 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2536 }
2537 catch (gdb_exception &e)
2538 {
2539 bp_excpt = std::move (e);
2540 }
2541 }
2542 else
2543 {
2544 /* This breakpoint is in an overlay section.
2545 Shall we set a breakpoint at the LMA? */
2546 if (!overlay_events_enabled)
2547 {
2548 /* Yes -- overlay event support is not active,
2549 so we must try to set a breakpoint at the LMA.
2550 This will not work for a hardware breakpoint. */
2551 if (bl->loc_type == bp_loc_hardware_breakpoint)
2552 warning (_("hardware breakpoint %d not supported in overlay!"),
2553 bl->owner->number);
2554 else
2555 {
2556 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2557 bl->section);
2558 /* Set a software (trap) breakpoint at the LMA. */
2559 bl->overlay_target_info = bl->target_info;
2560 bl->overlay_target_info.reqstd_address = addr;
2561
2562 /* No overlay handling: just set the breakpoint. */
2563 try
2564 {
2565 int val;
2566
2567 bl->overlay_target_info.kind
2568 = breakpoint_kind (bl, &addr);
2569 bl->overlay_target_info.placed_address = addr;
2570 val = target_insert_breakpoint (bl->gdbarch,
2571 &bl->overlay_target_info);
2572 if (val)
2573 bp_excpt
2574 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2575 }
2576 catch (gdb_exception &e)
2577 {
2578 bp_excpt = std::move (e);
2579 }
2580
2581 if (bp_excpt.reason != 0)
2582 fprintf_unfiltered (tmp_error_stream,
2583 "Overlay breakpoint %d "
2584 "failed: in ROM?\n",
2585 bl->owner->number);
2586 }
2587 }
2588 /* Shall we set a breakpoint at the VMA? */
2589 if (section_is_mapped (bl->section))
2590 {
2591 /* Yes. This overlay section is mapped into memory. */
2592 try
2593 {
2594 int val;
2595
2596 val = bl->owner->ops->insert_location (bl);
2597 if (val)
2598 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2599 }
2600 catch (gdb_exception &e)
2601 {
2602 bp_excpt = std::move (e);
2603 }
2604 }
2605 else
2606 {
2607 /* No. This breakpoint will not be inserted.
2608 No error, but do not mark the bp as 'inserted'. */
2609 return 0;
2610 }
2611 }
2612
2613 if (bp_excpt.reason != 0)
2614 {
2615 /* Can't set the breakpoint. */
2616
2617 /* In some cases, we might not be able to insert a
2618 breakpoint in a shared library that has already been
2619 removed, but we have not yet processed the shlib unload
2620 event. Unfortunately, some targets that implement
2621 breakpoint insertion themselves can't tell why the
2622 breakpoint insertion failed (e.g., the remote target
2623 doesn't define error codes), so we must treat generic
2624 errors as memory errors. */
2625 if (bp_excpt.reason == RETURN_ERROR
2626 && (bp_excpt.error == GENERIC_ERROR
2627 || bp_excpt.error == MEMORY_ERROR)
2628 && bl->loc_type == bp_loc_software_breakpoint
2629 && (solib_name_from_address (bl->pspace, bl->address)
2630 || shared_objfile_contains_address_p (bl->pspace,
2631 bl->address)))
2632 {
2633 /* See also: disable_breakpoints_in_shlibs. */
2634 bl->shlib_disabled = 1;
2635 gdb::observers::breakpoint_modified.notify (bl->owner);
2636 if (!*disabled_breaks)
2637 {
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert breakpoint %d.\n",
2640 bl->owner->number);
2641 fprintf_unfiltered (tmp_error_stream,
2642 "Temporarily disabling shared "
2643 "library breakpoints:\n");
2644 }
2645 *disabled_breaks = 1;
2646 fprintf_unfiltered (tmp_error_stream,
2647 "breakpoint #%d\n", bl->owner->number);
2648 return 0;
2649 }
2650 else
2651 {
2652 if (bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 *hw_breakpoint_error = 1;
2655 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Cannot insert hardware breakpoint %d%s",
2658 bl->owner->number,
2659 bp_excpt.message ? ":" : ".\n");
2660 if (bp_excpt.message != NULL)
2661 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2662 bp_excpt.what ());
2663 }
2664 else
2665 {
2666 if (bp_excpt.message == NULL)
2667 {
2668 std::string message
2669 = memory_error_message (TARGET_XFER_E_IO,
2670 bl->gdbarch, bl->address);
2671
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert breakpoint %d.\n"
2674 "%s\n",
2675 bl->owner->number, message.c_str ());
2676 }
2677 else
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert breakpoint %d: %s\n",
2681 bl->owner->number,
2682 bp_excpt.what ());
2683 }
2684 }
2685 return 1;
2686
2687 }
2688 }
2689 else
2690 bl->inserted = 1;
2691
2692 return 0;
2693 }
2694
2695 else if (bl->loc_type == bp_loc_hardware_watchpoint
2696 /* NOTE drow/2003-09-08: This state only exists for removing
2697 watchpoints. It's not clear that it's necessary... */
2698 && bl->owner->disposition != disp_del_at_next_stop)
2699 {
2700 int val;
2701
2702 gdb_assert (bl->owner->ops != NULL
2703 && bl->owner->ops->insert_location != NULL);
2704
2705 val = bl->owner->ops->insert_location (bl);
2706
2707 /* If trying to set a read-watchpoint, and it turns out it's not
2708 supported, try emulating one with an access watchpoint. */
2709 if (val == 1 && bl->watchpoint_type == hw_read)
2710 {
2711 struct bp_location *loc, **loc_temp;
2712
2713 /* But don't try to insert it, if there's already another
2714 hw_access location that would be considered a duplicate
2715 of this one. */
2716 ALL_BP_LOCATIONS (loc, loc_temp)
2717 if (loc != bl
2718 && loc->watchpoint_type == hw_access
2719 && watchpoint_locations_match (bl, loc))
2720 {
2721 bl->duplicate = 1;
2722 bl->inserted = 1;
2723 bl->target_info = loc->target_info;
2724 bl->watchpoint_type = hw_access;
2725 val = 0;
2726 break;
2727 }
2728
2729 if (val == 1)
2730 {
2731 bl->watchpoint_type = hw_access;
2732 val = bl->owner->ops->insert_location (bl);
2733
2734 if (val)
2735 /* Back to the original value. */
2736 bl->watchpoint_type = hw_read;
2737 }
2738 }
2739
2740 bl->inserted = (val == 0);
2741 }
2742
2743 else if (bl->owner->type == bp_catchpoint)
2744 {
2745 int val;
2746
2747 gdb_assert (bl->owner->ops != NULL
2748 && bl->owner->ops->insert_location != NULL);
2749
2750 val = bl->owner->ops->insert_location (bl);
2751 if (val)
2752 {
2753 bl->owner->enable_state = bp_disabled;
2754
2755 if (val == 1)
2756 warning (_("\
2757 Error inserting catchpoint %d: Your system does not support this type\n\
2758 of catchpoint."), bl->owner->number);
2759 else
2760 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2761 }
2762
2763 bl->inserted = (val == 0);
2764
2765 /* We've already printed an error message if there was a problem
2766 inserting this catchpoint, and we've disabled the catchpoint,
2767 so just return success. */
2768 return 0;
2769 }
2770
2771 return 0;
2772 }
2773
2774 /* This function is called when program space PSPACE is about to be
2775 deleted. It takes care of updating breakpoints to not reference
2776 PSPACE anymore. */
2777
2778 void
2779 breakpoint_program_space_exit (struct program_space *pspace)
2780 {
2781 struct breakpoint *b, *b_temp;
2782 struct bp_location *loc, **loc_temp;
2783
2784 /* Remove any breakpoint that was set through this program space. */
2785 ALL_BREAKPOINTS_SAFE (b, b_temp)
2786 {
2787 if (b->pspace == pspace)
2788 delete_breakpoint (b);
2789 }
2790
2791 /* Breakpoints set through other program spaces could have locations
2792 bound to PSPACE as well. Remove those. */
2793 ALL_BP_LOCATIONS (loc, loc_temp)
2794 {
2795 struct bp_location *tmp;
2796
2797 if (loc->pspace == pspace)
2798 {
2799 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2800 if (loc->owner->loc == loc)
2801 loc->owner->loc = loc->next;
2802 else
2803 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2804 if (tmp->next == loc)
2805 {
2806 tmp->next = loc->next;
2807 break;
2808 }
2809 }
2810 }
2811
2812 /* Now update the global location list to permanently delete the
2813 removed locations above. */
2814 update_global_location_list (UGLL_DONT_INSERT);
2815 }
2816
2817 /* Make sure all breakpoints are inserted in inferior.
2818 Throws exception on any error.
2819 A breakpoint that is already inserted won't be inserted
2820 again, so calling this function twice is safe. */
2821 void
2822 insert_breakpoints (void)
2823 {
2824 struct breakpoint *bpt;
2825
2826 ALL_BREAKPOINTS (bpt)
2827 if (is_hardware_watchpoint (bpt))
2828 {
2829 struct watchpoint *w = (struct watchpoint *) bpt;
2830
2831 update_watchpoint (w, 0 /* don't reparse. */);
2832 }
2833
2834 /* Updating watchpoints creates new locations, so update the global
2835 location list. Explicitly tell ugll to insert locations and
2836 ignore breakpoints_always_inserted_mode. */
2837 update_global_location_list (UGLL_INSERT);
2838 }
2839
2840 /* Invoke CALLBACK for each of bp_location. */
2841
2842 void
2843 iterate_over_bp_locations (walk_bp_location_callback callback)
2844 {
2845 struct bp_location *loc, **loc_tmp;
2846
2847 ALL_BP_LOCATIONS (loc, loc_tmp)
2848 {
2849 callback (loc, NULL);
2850 }
2851 }
2852
2853 /* This is used when we need to synch breakpoint conditions between GDB and the
2854 target. It is the case with deleting and disabling of breakpoints when using
2855 always-inserted mode. */
2856
2857 static void
2858 update_inserted_breakpoint_locations (void)
2859 {
2860 struct bp_location *bl, **blp_tmp;
2861 int error_flag = 0;
2862 int val = 0;
2863 int disabled_breaks = 0;
2864 int hw_breakpoint_error = 0;
2865 int hw_bp_details_reported = 0;
2866
2867 string_file tmp_error_stream;
2868
2869 /* Explicitly mark the warning -- this will only be printed if
2870 there was an error. */
2871 tmp_error_stream.puts ("Warning:\n");
2872
2873 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2874
2875 ALL_BP_LOCATIONS (bl, blp_tmp)
2876 {
2877 /* We only want to update software breakpoints and hardware
2878 breakpoints. */
2879 if (!is_breakpoint (bl->owner))
2880 continue;
2881
2882 /* We only want to update locations that are already inserted
2883 and need updating. This is to avoid unwanted insertion during
2884 deletion of breakpoints. */
2885 if (!bl->inserted || !bl->needs_update)
2886 continue;
2887
2888 switch_to_program_space_and_thread (bl->pspace);
2889
2890 /* For targets that support global breakpoints, there's no need
2891 to select an inferior to insert breakpoint to. In fact, even
2892 if we aren't attached to any process yet, we should still
2893 insert breakpoints. */
2894 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2895 && inferior_ptid == null_ptid)
2896 continue;
2897
2898 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2899 &hw_breakpoint_error, &hw_bp_details_reported);
2900 if (val)
2901 error_flag = val;
2902 }
2903
2904 if (error_flag)
2905 {
2906 target_terminal::ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909 }
2910
2911 /* Used when starting or continuing the program. */
2912
2913 static void
2914 insert_breakpoint_locations (void)
2915 {
2916 struct breakpoint *bpt;
2917 struct bp_location *bl, **blp_tmp;
2918 int error_flag = 0;
2919 int val = 0;
2920 int disabled_breaks = 0;
2921 int hw_breakpoint_error = 0;
2922 int hw_bp_error_explained_already = 0;
2923
2924 string_file tmp_error_stream;
2925
2926 /* Explicitly mark the warning -- this will only be printed if
2927 there was an error. */
2928 tmp_error_stream.puts ("Warning:\n");
2929
2930 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2931
2932 ALL_BP_LOCATIONS (bl, blp_tmp)
2933 {
2934 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2935 continue;
2936
2937 /* There is no point inserting thread-specific breakpoints if
2938 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2939 has BL->OWNER always non-NULL. */
2940 if (bl->owner->thread != -1
2941 && !valid_global_thread_id (bl->owner->thread))
2942 continue;
2943
2944 switch_to_program_space_and_thread (bl->pspace);
2945
2946 /* For targets that support global breakpoints, there's no need
2947 to select an inferior to insert breakpoint to. In fact, even
2948 if we aren't attached to any process yet, we should still
2949 insert breakpoints. */
2950 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2951 && inferior_ptid == null_ptid)
2952 continue;
2953
2954 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2955 &hw_breakpoint_error, &hw_bp_error_explained_already);
2956 if (val)
2957 error_flag = val;
2958 }
2959
2960 /* If we failed to insert all locations of a watchpoint, remove
2961 them, as half-inserted watchpoint is of limited use. */
2962 ALL_BREAKPOINTS (bpt)
2963 {
2964 int some_failed = 0;
2965 struct bp_location *loc;
2966
2967 if (!is_hardware_watchpoint (bpt))
2968 continue;
2969
2970 if (!breakpoint_enabled (bpt))
2971 continue;
2972
2973 if (bpt->disposition == disp_del_at_next_stop)
2974 continue;
2975
2976 for (loc = bpt->loc; loc; loc = loc->next)
2977 if (!loc->inserted && should_be_inserted (loc))
2978 {
2979 some_failed = 1;
2980 break;
2981 }
2982 if (some_failed)
2983 {
2984 for (loc = bpt->loc; loc; loc = loc->next)
2985 if (loc->inserted)
2986 remove_breakpoint (loc);
2987
2988 hw_breakpoint_error = 1;
2989 tmp_error_stream.printf ("Could not insert "
2990 "hardware watchpoint %d.\n",
2991 bpt->number);
2992 error_flag = -1;
2993 }
2994 }
2995
2996 if (error_flag)
2997 {
2998 /* If a hardware breakpoint or watchpoint was inserted, add a
2999 message about possibly exhausted resources. */
3000 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3001 {
3002 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3003 You may have requested too many hardware breakpoints/watchpoints.\n");
3004 }
3005 target_terminal::ours_for_output ();
3006 error_stream (tmp_error_stream);
3007 }
3008 }
3009
3010 /* Used when the program stops.
3011 Returns zero if successful, or non-zero if there was a problem
3012 removing a breakpoint location. */
3013
3014 int
3015 remove_breakpoints (void)
3016 {
3017 struct bp_location *bl, **blp_tmp;
3018 int val = 0;
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->inserted && !is_tracepoint (bl->owner))
3023 val |= remove_breakpoint (bl);
3024 }
3025 return val;
3026 }
3027
3028 /* When a thread exits, remove breakpoints that are related to
3029 that thread. */
3030
3031 static void
3032 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3033 {
3034 struct breakpoint *b, *b_tmp;
3035
3036 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3037 {
3038 if (b->thread == tp->global_num && user_breakpoint_p (b))
3039 {
3040 b->disposition = disp_del_at_next_stop;
3041
3042 printf_filtered (_("\
3043 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3044 b->number, print_thread_id (tp));
3045
3046 /* Hide it from the user. */
3047 b->number = 0;
3048 }
3049 }
3050 }
3051
3052 /* See breakpoint.h. */
3053
3054 void
3055 remove_breakpoints_inf (inferior *inf)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int val;
3059
3060 ALL_BP_LOCATIONS (bl, blp_tmp)
3061 {
3062 if (bl->pspace != inf->pspace)
3063 continue;
3064
3065 if (bl->inserted && !bl->target_info.persist)
3066 {
3067 val = remove_breakpoint (bl);
3068 if (val != 0)
3069 return;
3070 }
3071 }
3072 }
3073
3074 static int internal_breakpoint_number = -1;
3075
3076 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3077 If INTERNAL is non-zero, the breakpoint number will be populated
3078 from internal_breakpoint_number and that variable decremented.
3079 Otherwise the breakpoint number will be populated from
3080 breakpoint_count and that value incremented. Internal breakpoints
3081 do not set the internal var bpnum. */
3082 static void
3083 set_breakpoint_number (int internal, struct breakpoint *b)
3084 {
3085 if (internal)
3086 b->number = internal_breakpoint_number--;
3087 else
3088 {
3089 set_breakpoint_count (breakpoint_count + 1);
3090 b->number = breakpoint_count;
3091 }
3092 }
3093
3094 static struct breakpoint *
3095 create_internal_breakpoint (struct gdbarch *gdbarch,
3096 CORE_ADDR address, enum bptype type,
3097 const struct breakpoint_ops *ops)
3098 {
3099 symtab_and_line sal;
3100 sal.pc = address;
3101 sal.section = find_pc_overlay (sal.pc);
3102 sal.pspace = current_program_space;
3103
3104 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3105 b->number = internal_breakpoint_number--;
3106 b->disposition = disp_donttouch;
3107
3108 return b;
3109 }
3110
3111 static const char *const longjmp_names[] =
3112 {
3113 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3114 };
3115 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3116
3117 /* Per-objfile data private to breakpoint.c. */
3118 struct breakpoint_objfile_data
3119 {
3120 /* Minimal symbol for "_ovly_debug_event" (if any). */
3121 struct bound_minimal_symbol overlay_msym {};
3122
3123 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3124 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3125
3126 /* True if we have looked for longjmp probes. */
3127 int longjmp_searched = 0;
3128
3129 /* SystemTap probe points for longjmp (if any). These are non-owning
3130 references. */
3131 std::vector<probe *> longjmp_probes;
3132
3133 /* Minimal symbol for "std::terminate()" (if any). */
3134 struct bound_minimal_symbol terminate_msym {};
3135
3136 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3137 struct bound_minimal_symbol exception_msym {};
3138
3139 /* True if we have looked for exception probes. */
3140 int exception_searched = 0;
3141
3142 /* SystemTap probe points for unwinding (if any). These are non-owning
3143 references. */
3144 std::vector<probe *> exception_probes;
3145 };
3146
3147 static const struct objfile_key<breakpoint_objfile_data>
3148 breakpoint_objfile_key;
3149
3150 /* Minimal symbol not found sentinel. */
3151 static struct minimal_symbol msym_not_found;
3152
3153 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3154
3155 static int
3156 msym_not_found_p (const struct minimal_symbol *msym)
3157 {
3158 return msym == &msym_not_found;
3159 }
3160
3161 /* Return per-objfile data needed by breakpoint.c.
3162 Allocate the data if necessary. */
3163
3164 static struct breakpoint_objfile_data *
3165 get_breakpoint_objfile_data (struct objfile *objfile)
3166 {
3167 struct breakpoint_objfile_data *bp_objfile_data;
3168
3169 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3170 if (bp_objfile_data == NULL)
3171 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3172 return bp_objfile_data;
3173 }
3174
3175 static void
3176 create_overlay_event_breakpoint (void)
3177 {
3178 const char *const func_name = "_ovly_debug_event";
3179
3180 for (objfile *objfile : current_program_space->objfiles ())
3181 {
3182 struct breakpoint *b;
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184 CORE_ADDR addr;
3185 struct explicit_location explicit_loc;
3186
3187 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3188
3189 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3190 continue;
3191
3192 if (bp_objfile_data->overlay_msym.minsym == NULL)
3193 {
3194 struct bound_minimal_symbol m;
3195
3196 m = lookup_minimal_symbol_text (func_name, objfile);
3197 if (m.minsym == NULL)
3198 {
3199 /* Avoid future lookups in this objfile. */
3200 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3201 continue;
3202 }
3203 bp_objfile_data->overlay_msym = m;
3204 }
3205
3206 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3207 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3208 bp_overlay_event,
3209 &internal_breakpoint_ops);
3210 initialize_explicit_location (&explicit_loc);
3211 explicit_loc.function_name = ASTRDUP (func_name);
3212 b->location = new_explicit_location (&explicit_loc);
3213
3214 if (overlay_debugging == ovly_auto)
3215 {
3216 b->enable_state = bp_enabled;
3217 overlay_events_enabled = 1;
3218 }
3219 else
3220 {
3221 b->enable_state = bp_disabled;
3222 overlay_events_enabled = 0;
3223 }
3224 }
3225 }
3226
3227 static void
3228 create_longjmp_master_breakpoint (void)
3229 {
3230 struct program_space *pspace;
3231
3232 scoped_restore_current_program_space restore_pspace;
3233
3234 ALL_PSPACES (pspace)
3235 {
3236 set_current_program_space (pspace);
3237
3238 for (objfile *objfile : current_program_space->objfiles ())
3239 {
3240 int i;
3241 struct gdbarch *gdbarch;
3242 struct breakpoint_objfile_data *bp_objfile_data;
3243
3244 gdbarch = get_objfile_arch (objfile);
3245
3246 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3247
3248 if (!bp_objfile_data->longjmp_searched)
3249 {
3250 std::vector<probe *> ret
3251 = find_probes_in_objfile (objfile, "libc", "longjmp");
3252
3253 if (!ret.empty ())
3254 {
3255 /* We are only interested in checking one element. */
3256 probe *p = ret[0];
3257
3258 if (!p->can_evaluate_arguments ())
3259 {
3260 /* We cannot use the probe interface here, because it does
3261 not know how to evaluate arguments. */
3262 ret.clear ();
3263 }
3264 }
3265 bp_objfile_data->longjmp_probes = ret;
3266 bp_objfile_data->longjmp_searched = 1;
3267 }
3268
3269 if (!bp_objfile_data->longjmp_probes.empty ())
3270 {
3271 for (probe *p : bp_objfile_data->longjmp_probes)
3272 {
3273 struct breakpoint *b;
3274
3275 b = create_internal_breakpoint (gdbarch,
3276 p->get_relocated_address (objfile),
3277 bp_longjmp_master,
3278 &internal_breakpoint_ops);
3279 b->location = new_probe_location ("-probe-stap libc:longjmp");
3280 b->enable_state = bp_disabled;
3281 }
3282
3283 continue;
3284 }
3285
3286 if (!gdbarch_get_longjmp_target_p (gdbarch))
3287 continue;
3288
3289 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3290 {
3291 struct breakpoint *b;
3292 const char *func_name;
3293 CORE_ADDR addr;
3294 struct explicit_location explicit_loc;
3295
3296 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3297 continue;
3298
3299 func_name = longjmp_names[i];
3300 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3301 {
3302 struct bound_minimal_symbol m;
3303
3304 m = lookup_minimal_symbol_text (func_name, objfile);
3305 if (m.minsym == NULL)
3306 {
3307 /* Prevent future lookups in this objfile. */
3308 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3309 continue;
3310 }
3311 bp_objfile_data->longjmp_msym[i] = m;
3312 }
3313
3314 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3315 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3316 &internal_breakpoint_ops);
3317 initialize_explicit_location (&explicit_loc);
3318 explicit_loc.function_name = ASTRDUP (func_name);
3319 b->location = new_explicit_location (&explicit_loc);
3320 b->enable_state = bp_disabled;
3321 }
3322 }
3323 }
3324 }
3325
3326 /* Create a master std::terminate breakpoint. */
3327 static void
3328 create_std_terminate_master_breakpoint (void)
3329 {
3330 struct program_space *pspace;
3331 const char *const func_name = "std::terminate()";
3332
3333 scoped_restore_current_program_space restore_pspace;
3334
3335 ALL_PSPACES (pspace)
3336 {
3337 CORE_ADDR addr;
3338
3339 set_current_program_space (pspace);
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 struct breakpoint *b;
3344 struct breakpoint_objfile_data *bp_objfile_data;
3345 struct explicit_location explicit_loc;
3346
3347 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3348
3349 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3350 continue;
3351
3352 if (bp_objfile_data->terminate_msym.minsym == NULL)
3353 {
3354 struct bound_minimal_symbol m;
3355
3356 m = lookup_minimal_symbol (func_name, NULL, objfile);
3357 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3358 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3359 {
3360 /* Prevent future lookups in this objfile. */
3361 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3362 continue;
3363 }
3364 bp_objfile_data->terminate_msym = m;
3365 }
3366
3367 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3368 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3369 bp_std_terminate_master,
3370 &internal_breakpoint_ops);
3371 initialize_explicit_location (&explicit_loc);
3372 explicit_loc.function_name = ASTRDUP (func_name);
3373 b->location = new_explicit_location (&explicit_loc);
3374 b->enable_state = bp_disabled;
3375 }
3376 }
3377 }
3378
3379 /* Install a master breakpoint on the unwinder's debug hook. */
3380
3381 static void
3382 create_exception_master_breakpoint (void)
3383 {
3384 const char *const func_name = "_Unwind_DebugHook";
3385
3386 for (objfile *objfile : current_program_space->objfiles ())
3387 {
3388 struct breakpoint *b;
3389 struct gdbarch *gdbarch;
3390 struct breakpoint_objfile_data *bp_objfile_data;
3391 CORE_ADDR addr;
3392 struct explicit_location explicit_loc;
3393
3394 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3395
3396 /* We prefer the SystemTap probe point if it exists. */
3397 if (!bp_objfile_data->exception_searched)
3398 {
3399 std::vector<probe *> ret
3400 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3401
3402 if (!ret.empty ())
3403 {
3404 /* We are only interested in checking one element. */
3405 probe *p = ret[0];
3406
3407 if (!p->can_evaluate_arguments ())
3408 {
3409 /* We cannot use the probe interface here, because it does
3410 not know how to evaluate arguments. */
3411 ret.clear ();
3412 }
3413 }
3414 bp_objfile_data->exception_probes = ret;
3415 bp_objfile_data->exception_searched = 1;
3416 }
3417
3418 if (!bp_objfile_data->exception_probes.empty ())
3419 {
3420 gdbarch = get_objfile_arch (objfile);
3421
3422 for (probe *p : bp_objfile_data->exception_probes)
3423 {
3424 b = create_internal_breakpoint (gdbarch,
3425 p->get_relocated_address (objfile),
3426 bp_exception_master,
3427 &internal_breakpoint_ops);
3428 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3429 b->enable_state = bp_disabled;
3430 }
3431
3432 continue;
3433 }
3434
3435 /* Otherwise, try the hook function. */
3436
3437 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3438 continue;
3439
3440 gdbarch = get_objfile_arch (objfile);
3441
3442 if (bp_objfile_data->exception_msym.minsym == NULL)
3443 {
3444 struct bound_minimal_symbol debug_hook;
3445
3446 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3447 if (debug_hook.minsym == NULL)
3448 {
3449 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3450 continue;
3451 }
3452
3453 bp_objfile_data->exception_msym = debug_hook;
3454 }
3455
3456 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3457 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3458 current_top_target ());
3459 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3460 &internal_breakpoint_ops);
3461 initialize_explicit_location (&explicit_loc);
3462 explicit_loc.function_name = ASTRDUP (func_name);
3463 b->location = new_explicit_location (&explicit_loc);
3464 b->enable_state = bp_disabled;
3465 }
3466 }
3467
3468 /* Does B have a location spec? */
3469
3470 static int
3471 breakpoint_event_location_empty_p (const struct breakpoint *b)
3472 {
3473 return b->location != NULL && event_location_empty_p (b->location.get ());
3474 }
3475
3476 void
3477 update_breakpoints_after_exec (void)
3478 {
3479 struct breakpoint *b, *b_tmp;
3480 struct bp_location *bploc, **bplocp_tmp;
3481
3482 /* We're about to delete breakpoints from GDB's lists. If the
3483 INSERTED flag is true, GDB will try to lift the breakpoints by
3484 writing the breakpoints' "shadow contents" back into memory. The
3485 "shadow contents" are NOT valid after an exec, so GDB should not
3486 do that. Instead, the target is responsible from marking
3487 breakpoints out as soon as it detects an exec. We don't do that
3488 here instead, because there may be other attempts to delete
3489 breakpoints after detecting an exec and before reaching here. */
3490 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3491 if (bploc->pspace == current_program_space)
3492 gdb_assert (!bploc->inserted);
3493
3494 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3495 {
3496 if (b->pspace != current_program_space)
3497 continue;
3498
3499 /* Solib breakpoints must be explicitly reset after an exec(). */
3500 if (b->type == bp_shlib_event)
3501 {
3502 delete_breakpoint (b);
3503 continue;
3504 }
3505
3506 /* JIT breakpoints must be explicitly reset after an exec(). */
3507 if (b->type == bp_jit_event)
3508 {
3509 delete_breakpoint (b);
3510 continue;
3511 }
3512
3513 /* Thread event breakpoints must be set anew after an exec(),
3514 as must overlay event and longjmp master breakpoints. */
3515 if (b->type == bp_thread_event || b->type == bp_overlay_event
3516 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3517 || b->type == bp_exception_master)
3518 {
3519 delete_breakpoint (b);
3520 continue;
3521 }
3522
3523 /* Step-resume breakpoints are meaningless after an exec(). */
3524 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3525 {
3526 delete_breakpoint (b);
3527 continue;
3528 }
3529
3530 /* Just like single-step breakpoints. */
3531 if (b->type == bp_single_step)
3532 {
3533 delete_breakpoint (b);
3534 continue;
3535 }
3536
3537 /* Longjmp and longjmp-resume breakpoints are also meaningless
3538 after an exec. */
3539 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3540 || b->type == bp_longjmp_call_dummy
3541 || b->type == bp_exception || b->type == bp_exception_resume)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 if (b->type == bp_catchpoint)
3548 {
3549 /* For now, none of the bp_catchpoint breakpoints need to
3550 do anything at this point. In the future, if some of
3551 the catchpoints need to something, we will need to add
3552 a new method, and call this method from here. */
3553 continue;
3554 }
3555
3556 /* bp_finish is a special case. The only way we ought to be able
3557 to see one of these when an exec() has happened, is if the user
3558 caught a vfork, and then said "finish". Ordinarily a finish just
3559 carries them to the call-site of the current callee, by setting
3560 a temporary bp there and resuming. But in this case, the finish
3561 will carry them entirely through the vfork & exec.
3562
3563 We don't want to allow a bp_finish to remain inserted now. But
3564 we can't safely delete it, 'cause finish_command has a handle to
3565 the bp on a bpstat, and will later want to delete it. There's a
3566 chance (and I've seen it happen) that if we delete the bp_finish
3567 here, that its storage will get reused by the time finish_command
3568 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3569 We really must allow finish_command to delete a bp_finish.
3570
3571 In the absence of a general solution for the "how do we know
3572 it's safe to delete something others may have handles to?"
3573 problem, what we'll do here is just uninsert the bp_finish, and
3574 let finish_command delete it.
3575
3576 (We know the bp_finish is "doomed" in the sense that it's
3577 momentary, and will be deleted as soon as finish_command sees
3578 the inferior stopped. So it doesn't matter that the bp's
3579 address is probably bogus in the new a.out, unlike e.g., the
3580 solib breakpoints.) */
3581
3582 if (b->type == bp_finish)
3583 {
3584 continue;
3585 }
3586
3587 /* Without a symbolic address, we have little hope of the
3588 pre-exec() address meaning the same thing in the post-exec()
3589 a.out. */
3590 if (breakpoint_event_location_empty_p (b))
3591 {
3592 delete_breakpoint (b);
3593 continue;
3594 }
3595 }
3596 }
3597
3598 int
3599 detach_breakpoints (ptid_t ptid)
3600 {
3601 struct bp_location *bl, **blp_tmp;
3602 int val = 0;
3603 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3604 struct inferior *inf = current_inferior ();
3605
3606 if (ptid.pid () == inferior_ptid.pid ())
3607 error (_("Cannot detach breakpoints of inferior_ptid"));
3608
3609 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3610 inferior_ptid = ptid;
3611 ALL_BP_LOCATIONS (bl, blp_tmp)
3612 {
3613 if (bl->pspace != inf->pspace)
3614 continue;
3615
3616 /* This function must physically remove breakpoints locations
3617 from the specified ptid, without modifying the breakpoint
3618 package's state. Locations of type bp_loc_other are only
3619 maintained at GDB side. So, there is no need to remove
3620 these bp_loc_other locations. Moreover, removing these
3621 would modify the breakpoint package's state. */
3622 if (bl->loc_type == bp_loc_other)
3623 continue;
3624
3625 if (bl->inserted)
3626 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3627 }
3628
3629 return val;
3630 }
3631
3632 /* Remove the breakpoint location BL from the current address space.
3633 Note that this is used to detach breakpoints from a child fork.
3634 When we get here, the child isn't in the inferior list, and neither
3635 do we have objects to represent its address space --- we should
3636 *not* look at bl->pspace->aspace here. */
3637
3638 static int
3639 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3640 {
3641 int val;
3642
3643 /* BL is never in moribund_locations by our callers. */
3644 gdb_assert (bl->owner != NULL);
3645
3646 /* The type of none suggests that owner is actually deleted.
3647 This should not ever happen. */
3648 gdb_assert (bl->owner->type != bp_none);
3649
3650 if (bl->loc_type == bp_loc_software_breakpoint
3651 || bl->loc_type == bp_loc_hardware_breakpoint)
3652 {
3653 /* "Normal" instruction breakpoint: either the standard
3654 trap-instruction bp (bp_breakpoint), or a
3655 bp_hardware_breakpoint. */
3656
3657 /* First check to see if we have to handle an overlay. */
3658 if (overlay_debugging == ovly_off
3659 || bl->section == NULL
3660 || !(section_is_overlay (bl->section)))
3661 {
3662 /* No overlay handling: just remove the breakpoint. */
3663
3664 /* If we're trying to uninsert a memory breakpoint that we
3665 know is set in a dynamic object that is marked
3666 shlib_disabled, then either the dynamic object was
3667 removed with "remove-symbol-file" or with
3668 "nosharedlibrary". In the former case, we don't know
3669 whether another dynamic object might have loaded over the
3670 breakpoint's address -- the user might well let us know
3671 about it next with add-symbol-file (the whole point of
3672 add-symbol-file is letting the user manually maintain a
3673 list of dynamically loaded objects). If we have the
3674 breakpoint's shadow memory, that is, this is a software
3675 breakpoint managed by GDB, check whether the breakpoint
3676 is still inserted in memory, to avoid overwriting wrong
3677 code with stale saved shadow contents. Note that HW
3678 breakpoints don't have shadow memory, as they're
3679 implemented using a mechanism that is not dependent on
3680 being able to modify the target's memory, and as such
3681 they should always be removed. */
3682 if (bl->shlib_disabled
3683 && bl->target_info.shadow_len != 0
3684 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3685 val = 0;
3686 else
3687 val = bl->owner->ops->remove_location (bl, reason);
3688 }
3689 else
3690 {
3691 /* This breakpoint is in an overlay section.
3692 Did we set a breakpoint at the LMA? */
3693 if (!overlay_events_enabled)
3694 {
3695 /* Yes -- overlay event support is not active, so we
3696 should have set a breakpoint at the LMA. Remove it.
3697 */
3698 /* Ignore any failures: if the LMA is in ROM, we will
3699 have already warned when we failed to insert it. */
3700 if (bl->loc_type == bp_loc_hardware_breakpoint)
3701 target_remove_hw_breakpoint (bl->gdbarch,
3702 &bl->overlay_target_info);
3703 else
3704 target_remove_breakpoint (bl->gdbarch,
3705 &bl->overlay_target_info,
3706 reason);
3707 }
3708 /* Did we set a breakpoint at the VMA?
3709 If so, we will have marked the breakpoint 'inserted'. */
3710 if (bl->inserted)
3711 {
3712 /* Yes -- remove it. Previously we did not bother to
3713 remove the breakpoint if the section had been
3714 unmapped, but let's not rely on that being safe. We
3715 don't know what the overlay manager might do. */
3716
3717 /* However, we should remove *software* breakpoints only
3718 if the section is still mapped, or else we overwrite
3719 wrong code with the saved shadow contents. */
3720 if (bl->loc_type == bp_loc_hardware_breakpoint
3721 || section_is_mapped (bl->section))
3722 val = bl->owner->ops->remove_location (bl, reason);
3723 else
3724 val = 0;
3725 }
3726 else
3727 {
3728 /* No -- not inserted, so no need to remove. No error. */
3729 val = 0;
3730 }
3731 }
3732
3733 /* In some cases, we might not be able to remove a breakpoint in
3734 a shared library that has already been removed, but we have
3735 not yet processed the shlib unload event. Similarly for an
3736 unloaded add-symbol-file object - the user might not yet have
3737 had the chance to remove-symbol-file it. shlib_disabled will
3738 be set if the library/object has already been removed, but
3739 the breakpoint hasn't been uninserted yet, e.g., after
3740 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3741 always-inserted mode. */
3742 if (val
3743 && (bl->loc_type == bp_loc_software_breakpoint
3744 && (bl->shlib_disabled
3745 || solib_name_from_address (bl->pspace, bl->address)
3746 || shared_objfile_contains_address_p (bl->pspace,
3747 bl->address))))
3748 val = 0;
3749
3750 if (val)
3751 return val;
3752 bl->inserted = (reason == DETACH_BREAKPOINT);
3753 }
3754 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3755 {
3756 gdb_assert (bl->owner->ops != NULL
3757 && bl->owner->ops->remove_location != NULL);
3758
3759 bl->inserted = (reason == DETACH_BREAKPOINT);
3760 bl->owner->ops->remove_location (bl, reason);
3761
3762 /* Failure to remove any of the hardware watchpoints comes here. */
3763 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3764 warning (_("Could not remove hardware watchpoint %d."),
3765 bl->owner->number);
3766 }
3767 else if (bl->owner->type == bp_catchpoint
3768 && breakpoint_enabled (bl->owner)
3769 && !bl->duplicate)
3770 {
3771 gdb_assert (bl->owner->ops != NULL
3772 && bl->owner->ops->remove_location != NULL);
3773
3774 val = bl->owner->ops->remove_location (bl, reason);
3775 if (val)
3776 return val;
3777
3778 bl->inserted = (reason == DETACH_BREAKPOINT);
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int
3785 remove_breakpoint (struct bp_location *bl)
3786 {
3787 /* BL is never in moribund_locations by our callers. */
3788 gdb_assert (bl->owner != NULL);
3789
3790 /* The type of none suggests that owner is actually deleted.
3791 This should not ever happen. */
3792 gdb_assert (bl->owner->type != bp_none);
3793
3794 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3795
3796 switch_to_program_space_and_thread (bl->pspace);
3797
3798 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3799 }
3800
3801 /* Clear the "inserted" flag in all breakpoints. */
3802
3803 void
3804 mark_breakpoints_out (void)
3805 {
3806 struct bp_location *bl, **blp_tmp;
3807
3808 ALL_BP_LOCATIONS (bl, blp_tmp)
3809 if (bl->pspace == current_program_space)
3810 bl->inserted = 0;
3811 }
3812
3813 /* Clear the "inserted" flag in all breakpoints and delete any
3814 breakpoints which should go away between runs of the program.
3815
3816 Plus other such housekeeping that has to be done for breakpoints
3817 between runs.
3818
3819 Note: this function gets called at the end of a run (by
3820 generic_mourn_inferior) and when a run begins (by
3821 init_wait_for_inferior). */
3822
3823
3824
3825 void
3826 breakpoint_init_inferior (enum inf_context context)
3827 {
3828 struct breakpoint *b, *b_tmp;
3829 struct program_space *pspace = current_program_space;
3830
3831 /* If breakpoint locations are shared across processes, then there's
3832 nothing to do. */
3833 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3834 return;
3835
3836 mark_breakpoints_out ();
3837
3838 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3839 {
3840 if (b->loc && b->loc->pspace != pspace)
3841 continue;
3842
3843 switch (b->type)
3844 {
3845 case bp_call_dummy:
3846 case bp_longjmp_call_dummy:
3847
3848 /* If the call dummy breakpoint is at the entry point it will
3849 cause problems when the inferior is rerun, so we better get
3850 rid of it. */
3851
3852 case bp_watchpoint_scope:
3853
3854 /* Also get rid of scope breakpoints. */
3855
3856 case bp_shlib_event:
3857
3858 /* Also remove solib event breakpoints. Their addresses may
3859 have changed since the last time we ran the program.
3860 Actually we may now be debugging against different target;
3861 and so the solib backend that installed this breakpoint may
3862 not be used in by the target. E.g.,
3863
3864 (gdb) file prog-linux
3865 (gdb) run # native linux target
3866 ...
3867 (gdb) kill
3868 (gdb) file prog-win.exe
3869 (gdb) tar rem :9999 # remote Windows gdbserver.
3870 */
3871
3872 case bp_step_resume:
3873
3874 /* Also remove step-resume breakpoints. */
3875
3876 case bp_single_step:
3877
3878 /* Also remove single-step breakpoints. */
3879
3880 delete_breakpoint (b);
3881 break;
3882
3883 case bp_watchpoint:
3884 case bp_hardware_watchpoint:
3885 case bp_read_watchpoint:
3886 case bp_access_watchpoint:
3887 {
3888 struct watchpoint *w = (struct watchpoint *) b;
3889
3890 /* Likewise for watchpoints on local expressions. */
3891 if (w->exp_valid_block != NULL)
3892 delete_breakpoint (b);
3893 else
3894 {
3895 /* Get rid of existing locations, which are no longer
3896 valid. New ones will be created in
3897 update_watchpoint, when the inferior is restarted.
3898 The next update_global_location_list call will
3899 garbage collect them. */
3900 b->loc = NULL;
3901
3902 if (context == inf_starting)
3903 {
3904 /* Reset val field to force reread of starting value in
3905 insert_breakpoints. */
3906 w->val.reset (nullptr);
3907 w->val_valid = 0;
3908 }
3909 }
3910 }
3911 break;
3912 default:
3913 break;
3914 }
3915 }
3916
3917 /* Get rid of the moribund locations. */
3918 for (bp_location *bl : moribund_locations)
3919 decref_bp_location (&bl);
3920 moribund_locations.clear ();
3921 }
3922
3923 /* These functions concern about actual breakpoints inserted in the
3924 target --- to e.g. check if we need to do decr_pc adjustment or if
3925 we need to hop over the bkpt --- so we check for address space
3926 match, not program space. */
3927
3928 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3929 exists at PC. It returns ordinary_breakpoint_here if it's an
3930 ordinary breakpoint, or permanent_breakpoint_here if it's a
3931 permanent breakpoint.
3932 - When continuing from a location with an ordinary breakpoint, we
3933 actually single step once before calling insert_breakpoints.
3934 - When continuing from a location with a permanent breakpoint, we
3935 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3936 the target, to advance the PC past the breakpoint. */
3937
3938 enum breakpoint_here
3939 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3940 {
3941 struct bp_location *bl, **blp_tmp;
3942 int any_breakpoint_here = 0;
3943
3944 ALL_BP_LOCATIONS (bl, blp_tmp)
3945 {
3946 if (bl->loc_type != bp_loc_software_breakpoint
3947 && bl->loc_type != bp_loc_hardware_breakpoint)
3948 continue;
3949
3950 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3951 if ((breakpoint_enabled (bl->owner)
3952 || bl->permanent)
3953 && breakpoint_location_address_match (bl, aspace, pc))
3954 {
3955 if (overlay_debugging
3956 && section_is_overlay (bl->section)
3957 && !section_is_mapped (bl->section))
3958 continue; /* unmapped overlay -- can't be a match */
3959 else if (bl->permanent)
3960 return permanent_breakpoint_here;
3961 else
3962 any_breakpoint_here = 1;
3963 }
3964 }
3965
3966 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3967 }
3968
3969 /* See breakpoint.h. */
3970
3971 int
3972 breakpoint_in_range_p (const address_space *aspace,
3973 CORE_ADDR addr, ULONGEST len)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976
3977 ALL_BP_LOCATIONS (bl, blp_tmp)
3978 {
3979 if (bl->loc_type != bp_loc_software_breakpoint
3980 && bl->loc_type != bp_loc_hardware_breakpoint)
3981 continue;
3982
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_range_overlap (bl, aspace,
3986 addr, len))
3987 {
3988 if (overlay_debugging
3989 && section_is_overlay (bl->section)
3990 && !section_is_mapped (bl->section))
3991 {
3992 /* Unmapped overlay -- can't be a match. */
3993 continue;
3994 }
3995
3996 return 1;
3997 }
3998 }
3999
4000 return 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4007 {
4008 for (bp_location *loc : moribund_locations)
4009 if (breakpoint_location_address_match (loc, aspace, pc))
4010 return 1;
4011
4012 return 0;
4013 }
4014
4015 /* Returns non-zero iff BL is inserted at PC, in address space
4016 ASPACE. */
4017
4018 static int
4019 bp_location_inserted_here_p (struct bp_location *bl,
4020 const address_space *aspace, CORE_ADDR pc)
4021 {
4022 if (bl->inserted
4023 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4024 aspace, pc))
4025 {
4026 if (overlay_debugging
4027 && section_is_overlay (bl->section)
4028 && !section_is_mapped (bl->section))
4029 return 0; /* unmapped overlay -- can't be a match */
4030 else
4031 return 1;
4032 }
4033 return 0;
4034 }
4035
4036 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4037
4038 int
4039 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4040 {
4041 struct bp_location **blp, **blp_tmp = NULL;
4042
4043 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4044 {
4045 struct bp_location *bl = *blp;
4046
4047 if (bl->loc_type != bp_loc_software_breakpoint
4048 && bl->loc_type != bp_loc_hardware_breakpoint)
4049 continue;
4050
4051 if (bp_location_inserted_here_p (bl, aspace, pc))
4052 return 1;
4053 }
4054 return 0;
4055 }
4056
4057 /* This function returns non-zero iff there is a software breakpoint
4058 inserted at PC. */
4059
4060 int
4061 software_breakpoint_inserted_here_p (const address_space *aspace,
4062 CORE_ADDR pc)
4063 {
4064 struct bp_location **blp, **blp_tmp = NULL;
4065
4066 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4067 {
4068 struct bp_location *bl = *blp;
4069
4070 if (bl->loc_type != bp_loc_software_breakpoint)
4071 continue;
4072
4073 if (bp_location_inserted_here_p (bl, aspace, pc))
4074 return 1;
4075 }
4076
4077 return 0;
4078 }
4079
4080 /* See breakpoint.h. */
4081
4082 int
4083 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4084 CORE_ADDR pc)
4085 {
4086 struct bp_location **blp, **blp_tmp = NULL;
4087
4088 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4089 {
4090 struct bp_location *bl = *blp;
4091
4092 if (bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098
4099 return 0;
4100 }
4101
4102 int
4103 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4104 CORE_ADDR addr, ULONGEST len)
4105 {
4106 struct breakpoint *bpt;
4107
4108 ALL_BREAKPOINTS (bpt)
4109 {
4110 struct bp_location *loc;
4111
4112 if (bpt->type != bp_hardware_watchpoint
4113 && bpt->type != bp_access_watchpoint)
4114 continue;
4115
4116 if (!breakpoint_enabled (bpt))
4117 continue;
4118
4119 for (loc = bpt->loc; loc; loc = loc->next)
4120 if (loc->pspace->aspace == aspace && loc->inserted)
4121 {
4122 CORE_ADDR l, h;
4123
4124 /* Check for intersection. */
4125 l = std::max<CORE_ADDR> (loc->address, addr);
4126 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4127 if (l < h)
4128 return 1;
4129 }
4130 }
4131 return 0;
4132 }
4133 \f
4134
4135 /* bpstat stuff. External routines' interfaces are documented
4136 in breakpoint.h. */
4137
4138 int
4139 is_catchpoint (struct breakpoint *ep)
4140 {
4141 return (ep->type == bp_catchpoint);
4142 }
4143
4144 /* Frees any storage that is part of a bpstat. Does not walk the
4145 'next' chain. */
4146
4147 bpstats::~bpstats ()
4148 {
4149 if (bp_location_at != NULL)
4150 decref_bp_location (&bp_location_at);
4151 }
4152
4153 /* Clear a bpstat so that it says we are not at any breakpoint.
4154 Also free any storage that is part of a bpstat. */
4155
4156 void
4157 bpstat_clear (bpstat *bsp)
4158 {
4159 bpstat p;
4160 bpstat q;
4161
4162 if (bsp == 0)
4163 return;
4164 p = *bsp;
4165 while (p != NULL)
4166 {
4167 q = p->next;
4168 delete p;
4169 p = q;
4170 }
4171 *bsp = NULL;
4172 }
4173
4174 bpstats::bpstats (const bpstats &other)
4175 : next (NULL),
4176 bp_location_at (other.bp_location_at),
4177 breakpoint_at (other.breakpoint_at),
4178 commands (other.commands),
4179 print (other.print),
4180 stop (other.stop),
4181 print_it (other.print_it)
4182 {
4183 if (other.old_val != NULL)
4184 old_val = release_value (value_copy (other.old_val.get ()));
4185 incref_bp_location (bp_location_at);
4186 }
4187
4188 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4189 is part of the bpstat is copied as well. */
4190
4191 bpstat
4192 bpstat_copy (bpstat bs)
4193 {
4194 bpstat p = NULL;
4195 bpstat tmp;
4196 bpstat retval = NULL;
4197
4198 if (bs == NULL)
4199 return bs;
4200
4201 for (; bs != NULL; bs = bs->next)
4202 {
4203 tmp = new bpstats (*bs);
4204
4205 if (p == NULL)
4206 /* This is the first thing in the chain. */
4207 retval = tmp;
4208 else
4209 p->next = tmp;
4210 p = tmp;
4211 }
4212 p->next = NULL;
4213 return retval;
4214 }
4215
4216 /* Find the bpstat associated with this breakpoint. */
4217
4218 bpstat
4219 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4220 {
4221 if (bsp == NULL)
4222 return NULL;
4223
4224 for (; bsp != NULL; bsp = bsp->next)
4225 {
4226 if (bsp->breakpoint_at == breakpoint)
4227 return bsp;
4228 }
4229 return NULL;
4230 }
4231
4232 /* See breakpoint.h. */
4233
4234 bool
4235 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4236 {
4237 for (; bsp != NULL; bsp = bsp->next)
4238 {
4239 if (bsp->breakpoint_at == NULL)
4240 {
4241 /* A moribund location can never explain a signal other than
4242 GDB_SIGNAL_TRAP. */
4243 if (sig == GDB_SIGNAL_TRAP)
4244 return true;
4245 }
4246 else
4247 {
4248 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4249 sig))
4250 return true;
4251 }
4252 }
4253
4254 return false;
4255 }
4256
4257 /* Put in *NUM the breakpoint number of the first breakpoint we are
4258 stopped at. *BSP upon return is a bpstat which points to the
4259 remaining breakpoints stopped at (but which is not guaranteed to be
4260 good for anything but further calls to bpstat_num).
4261
4262 Return 0 if passed a bpstat which does not indicate any breakpoints.
4263 Return -1 if stopped at a breakpoint that has been deleted since
4264 we set it.
4265 Return 1 otherwise. */
4266
4267 int
4268 bpstat_num (bpstat *bsp, int *num)
4269 {
4270 struct breakpoint *b;
4271
4272 if ((*bsp) == NULL)
4273 return 0; /* No more breakpoint values */
4274
4275 /* We assume we'll never have several bpstats that correspond to a
4276 single breakpoint -- otherwise, this function might return the
4277 same number more than once and this will look ugly. */
4278 b = (*bsp)->breakpoint_at;
4279 *bsp = (*bsp)->next;
4280 if (b == NULL)
4281 return -1; /* breakpoint that's been deleted since */
4282
4283 *num = b->number; /* We have its number */
4284 return 1;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 void
4290 bpstat_clear_actions (void)
4291 {
4292 bpstat bs;
4293
4294 if (inferior_ptid == null_ptid)
4295 return;
4296
4297 thread_info *tp = inferior_thread ();
4298 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4299 {
4300 bs->commands = NULL;
4301 bs->old_val.reset (nullptr);
4302 }
4303 }
4304
4305 /* Called when a command is about to proceed the inferior. */
4306
4307 static void
4308 breakpoint_about_to_proceed (void)
4309 {
4310 if (inferior_ptid != null_ptid)
4311 {
4312 struct thread_info *tp = inferior_thread ();
4313
4314 /* Allow inferior function calls in breakpoint commands to not
4315 interrupt the command list. When the call finishes
4316 successfully, the inferior will be standing at the same
4317 breakpoint as if nothing happened. */
4318 if (tp->control.in_infcall)
4319 return;
4320 }
4321
4322 breakpoint_proceeded = 1;
4323 }
4324
4325 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4326 or its equivalent. */
4327
4328 static int
4329 command_line_is_silent (struct command_line *cmd)
4330 {
4331 return cmd && (strcmp ("silent", cmd->line) == 0);
4332 }
4333
4334 /* Execute all the commands associated with all the breakpoints at
4335 this location. Any of these commands could cause the process to
4336 proceed beyond this point, etc. We look out for such changes by
4337 checking the global "breakpoint_proceeded" after each command.
4338
4339 Returns true if a breakpoint command resumed the inferior. In that
4340 case, it is the caller's responsibility to recall it again with the
4341 bpstat of the current thread. */
4342
4343 static int
4344 bpstat_do_actions_1 (bpstat *bsp)
4345 {
4346 bpstat bs;
4347 int again = 0;
4348
4349 /* Avoid endless recursion if a `source' command is contained
4350 in bs->commands. */
4351 if (executing_breakpoint_commands)
4352 return 0;
4353
4354 scoped_restore save_executing
4355 = make_scoped_restore (&executing_breakpoint_commands, 1);
4356
4357 scoped_restore preventer = prevent_dont_repeat ();
4358
4359 /* This pointer will iterate over the list of bpstat's. */
4360 bs = *bsp;
4361
4362 breakpoint_proceeded = 0;
4363 for (; bs != NULL; bs = bs->next)
4364 {
4365 struct command_line *cmd = NULL;
4366
4367 /* Take ownership of the BSP's command tree, if it has one.
4368
4369 The command tree could legitimately contain commands like
4370 'step' and 'next', which call clear_proceed_status, which
4371 frees stop_bpstat's command tree. To make sure this doesn't
4372 free the tree we're executing out from under us, we need to
4373 take ownership of the tree ourselves. Since a given bpstat's
4374 commands are only executed once, we don't need to copy it; we
4375 can clear the pointer in the bpstat, and make sure we free
4376 the tree when we're done. */
4377 counted_command_line ccmd = bs->commands;
4378 bs->commands = NULL;
4379 if (ccmd != NULL)
4380 cmd = ccmd.get ();
4381 if (command_line_is_silent (cmd))
4382 {
4383 /* The action has been already done by bpstat_stop_status. */
4384 cmd = cmd->next;
4385 }
4386
4387 while (cmd != NULL)
4388 {
4389 execute_control_command (cmd);
4390
4391 if (breakpoint_proceeded)
4392 break;
4393 else
4394 cmd = cmd->next;
4395 }
4396
4397 if (breakpoint_proceeded)
4398 {
4399 if (current_ui->async)
4400 /* If we are in async mode, then the target might be still
4401 running, not stopped at any breakpoint, so nothing for
4402 us to do here -- just return to the event loop. */
4403 ;
4404 else
4405 /* In sync mode, when execute_control_command returns
4406 we're already standing on the next breakpoint.
4407 Breakpoint commands for that stop were not run, since
4408 execute_command does not run breakpoint commands --
4409 only command_line_handler does, but that one is not
4410 involved in execution of breakpoint commands. So, we
4411 can now execute breakpoint commands. It should be
4412 noted that making execute_command do bpstat actions is
4413 not an option -- in this case we'll have recursive
4414 invocation of bpstat for each breakpoint with a
4415 command, and can easily blow up GDB stack. Instead, we
4416 return true, which will trigger the caller to recall us
4417 with the new stop_bpstat. */
4418 again = 1;
4419 break;
4420 }
4421 }
4422 return again;
4423 }
4424
4425 /* Helper for bpstat_do_actions. Get the current thread, if there's
4426 one, is alive and has execution. Return NULL otherwise. */
4427
4428 static thread_info *
4429 get_bpstat_thread ()
4430 {
4431 if (inferior_ptid == null_ptid || !target_has_execution)
4432 return NULL;
4433
4434 thread_info *tp = inferior_thread ();
4435 if (tp->state == THREAD_EXITED || tp->executing)
4436 return NULL;
4437 return tp;
4438 }
4439
4440 void
4441 bpstat_do_actions (void)
4442 {
4443 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4444 thread_info *tp;
4445
4446 /* Do any commands attached to breakpoint we are stopped at. */
4447 while ((tp = get_bpstat_thread ()) != NULL)
4448 {
4449 /* Since in sync mode, bpstat_do_actions may resume the
4450 inferior, and only return when it is stopped at the next
4451 breakpoint, we keep doing breakpoint actions until it returns
4452 false to indicate the inferior was not resumed. */
4453 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4454 break;
4455 }
4456
4457 cleanup_if_error.release ();
4458 }
4459
4460 /* Print out the (old or new) value associated with a watchpoint. */
4461
4462 static void
4463 watchpoint_value_print (struct value *val, struct ui_file *stream)
4464 {
4465 if (val == NULL)
4466 fprintf_unfiltered (stream, _("<unreadable>"));
4467 else
4468 {
4469 struct value_print_options opts;
4470 get_user_print_options (&opts);
4471 value_print (val, stream, &opts);
4472 }
4473 }
4474
4475 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4476 debugging multiple threads. */
4477
4478 void
4479 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4480 {
4481 if (uiout->is_mi_like_p ())
4482 return;
4483
4484 uiout->text ("\n");
4485
4486 if (show_thread_that_caused_stop ())
4487 {
4488 const char *name;
4489 struct thread_info *thr = inferior_thread ();
4490
4491 uiout->text ("Thread ");
4492 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4493
4494 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4495 if (name != NULL)
4496 {
4497 uiout->text (" \"");
4498 uiout->field_fmt ("name", "%s", name);
4499 uiout->text ("\"");
4500 }
4501
4502 uiout->text (" hit ");
4503 }
4504 }
4505
4506 /* Generic routine for printing messages indicating why we
4507 stopped. The behavior of this function depends on the value
4508 'print_it' in the bpstat structure. Under some circumstances we
4509 may decide not to print anything here and delegate the task to
4510 normal_stop(). */
4511
4512 static enum print_stop_action
4513 print_bp_stop_message (bpstat bs)
4514 {
4515 switch (bs->print_it)
4516 {
4517 case print_it_noop:
4518 /* Nothing should be printed for this bpstat entry. */
4519 return PRINT_UNKNOWN;
4520 break;
4521
4522 case print_it_done:
4523 /* We still want to print the frame, but we already printed the
4524 relevant messages. */
4525 return PRINT_SRC_AND_LOC;
4526 break;
4527
4528 case print_it_normal:
4529 {
4530 struct breakpoint *b = bs->breakpoint_at;
4531
4532 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4533 which has since been deleted. */
4534 if (b == NULL)
4535 return PRINT_UNKNOWN;
4536
4537 /* Normal case. Call the breakpoint's print_it method. */
4538 return b->ops->print_it (bs);
4539 }
4540 break;
4541
4542 default:
4543 internal_error (__FILE__, __LINE__,
4544 _("print_bp_stop_message: unrecognized enum value"));
4545 break;
4546 }
4547 }
4548
4549 /* A helper function that prints a shared library stopped event. */
4550
4551 static void
4552 print_solib_event (int is_catchpoint)
4553 {
4554 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4555 bool any_added = !current_program_space->added_solibs.empty ();
4556
4557 if (!is_catchpoint)
4558 {
4559 if (any_added || any_deleted)
4560 current_uiout->text (_("Stopped due to shared library event:\n"));
4561 else
4562 current_uiout->text (_("Stopped due to shared library event (no "
4563 "libraries added or removed)\n"));
4564 }
4565
4566 if (current_uiout->is_mi_like_p ())
4567 current_uiout->field_string ("reason",
4568 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4569
4570 if (any_deleted)
4571 {
4572 current_uiout->text (_(" Inferior unloaded "));
4573 ui_out_emit_list list_emitter (current_uiout, "removed");
4574 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4575 {
4576 const std::string &name = current_program_space->deleted_solibs[ix];
4577
4578 if (ix > 0)
4579 current_uiout->text (" ");
4580 current_uiout->field_string ("library", name);
4581 current_uiout->text ("\n");
4582 }
4583 }
4584
4585 if (any_added)
4586 {
4587 current_uiout->text (_(" Inferior loaded "));
4588 ui_out_emit_list list_emitter (current_uiout, "added");
4589 bool first = true;
4590 for (so_list *iter : current_program_space->added_solibs)
4591 {
4592 if (!first)
4593 current_uiout->text (" ");
4594 first = false;
4595 current_uiout->field_string ("library", iter->so_name);
4596 current_uiout->text ("\n");
4597 }
4598 }
4599 }
4600
4601 /* Print a message indicating what happened. This is called from
4602 normal_stop(). The input to this routine is the head of the bpstat
4603 list - a list of the eventpoints that caused this stop. KIND is
4604 the target_waitkind for the stopping event. This
4605 routine calls the generic print routine for printing a message
4606 about reasons for stopping. This will print (for example) the
4607 "Breakpoint n," part of the output. The return value of this
4608 routine is one of:
4609
4610 PRINT_UNKNOWN: Means we printed nothing.
4611 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4612 code to print the location. An example is
4613 "Breakpoint 1, " which should be followed by
4614 the location.
4615 PRINT_SRC_ONLY: Means we printed something, but there is no need
4616 to also print the location part of the message.
4617 An example is the catch/throw messages, which
4618 don't require a location appended to the end.
4619 PRINT_NOTHING: We have done some printing and we don't need any
4620 further info to be printed. */
4621
4622 enum print_stop_action
4623 bpstat_print (bpstat bs, int kind)
4624 {
4625 enum print_stop_action val;
4626
4627 /* Maybe another breakpoint in the chain caused us to stop.
4628 (Currently all watchpoints go on the bpstat whether hit or not.
4629 That probably could (should) be changed, provided care is taken
4630 with respect to bpstat_explains_signal). */
4631 for (; bs; bs = bs->next)
4632 {
4633 val = print_bp_stop_message (bs);
4634 if (val == PRINT_SRC_ONLY
4635 || val == PRINT_SRC_AND_LOC
4636 || val == PRINT_NOTHING)
4637 return val;
4638 }
4639
4640 /* If we had hit a shared library event breakpoint,
4641 print_bp_stop_message would print out this message. If we hit an
4642 OS-level shared library event, do the same thing. */
4643 if (kind == TARGET_WAITKIND_LOADED)
4644 {
4645 print_solib_event (0);
4646 return PRINT_NOTHING;
4647 }
4648
4649 /* We reached the end of the chain, or we got a null BS to start
4650 with and nothing was printed. */
4651 return PRINT_UNKNOWN;
4652 }
4653
4654 /* Evaluate the boolean expression EXP and return the result. */
4655
4656 static bool
4657 breakpoint_cond_eval (expression *exp)
4658 {
4659 struct value *mark = value_mark ();
4660 bool res = value_true (evaluate_expression (exp));
4661
4662 value_free_to_mark (mark);
4663 return res;
4664 }
4665
4666 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4667
4668 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4669 : next (NULL),
4670 bp_location_at (bl),
4671 breakpoint_at (bl->owner),
4672 commands (NULL),
4673 print (0),
4674 stop (0),
4675 print_it (print_it_normal)
4676 {
4677 incref_bp_location (bl);
4678 **bs_link_pointer = this;
4679 *bs_link_pointer = &next;
4680 }
4681
4682 bpstats::bpstats ()
4683 : next (NULL),
4684 bp_location_at (NULL),
4685 breakpoint_at (NULL),
4686 commands (NULL),
4687 print (0),
4688 stop (0),
4689 print_it (print_it_normal)
4690 {
4691 }
4692 \f
4693 /* The target has stopped with waitstatus WS. Check if any hardware
4694 watchpoints have triggered, according to the target. */
4695
4696 int
4697 watchpoints_triggered (struct target_waitstatus *ws)
4698 {
4699 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4700 CORE_ADDR addr;
4701 struct breakpoint *b;
4702
4703 if (!stopped_by_watchpoint)
4704 {
4705 /* We were not stopped by a watchpoint. Mark all watchpoints
4706 as not triggered. */
4707 ALL_BREAKPOINTS (b)
4708 if (is_hardware_watchpoint (b))
4709 {
4710 struct watchpoint *w = (struct watchpoint *) b;
4711
4712 w->watchpoint_triggered = watch_triggered_no;
4713 }
4714
4715 return 0;
4716 }
4717
4718 if (!target_stopped_data_address (current_top_target (), &addr))
4719 {
4720 /* We were stopped by a watchpoint, but we don't know where.
4721 Mark all watchpoints as unknown. */
4722 ALL_BREAKPOINTS (b)
4723 if (is_hardware_watchpoint (b))
4724 {
4725 struct watchpoint *w = (struct watchpoint *) b;
4726
4727 w->watchpoint_triggered = watch_triggered_unknown;
4728 }
4729
4730 return 1;
4731 }
4732
4733 /* The target could report the data address. Mark watchpoints
4734 affected by this data address as triggered, and all others as not
4735 triggered. */
4736
4737 ALL_BREAKPOINTS (b)
4738 if (is_hardware_watchpoint (b))
4739 {
4740 struct watchpoint *w = (struct watchpoint *) b;
4741 struct bp_location *loc;
4742
4743 w->watchpoint_triggered = watch_triggered_no;
4744 for (loc = b->loc; loc; loc = loc->next)
4745 {
4746 if (is_masked_watchpoint (b))
4747 {
4748 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4749 CORE_ADDR start = loc->address & w->hw_wp_mask;
4750
4751 if (newaddr == start)
4752 {
4753 w->watchpoint_triggered = watch_triggered_yes;
4754 break;
4755 }
4756 }
4757 /* Exact match not required. Within range is sufficient. */
4758 else if (target_watchpoint_addr_within_range (current_top_target (),
4759 addr, loc->address,
4760 loc->length))
4761 {
4762 w->watchpoint_triggered = watch_triggered_yes;
4763 break;
4764 }
4765 }
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Possible return values for watchpoint_check. */
4772 enum wp_check_result
4773 {
4774 /* The watchpoint has been deleted. */
4775 WP_DELETED = 1,
4776
4777 /* The value has changed. */
4778 WP_VALUE_CHANGED = 2,
4779
4780 /* The value has not changed. */
4781 WP_VALUE_NOT_CHANGED = 3,
4782
4783 /* Ignore this watchpoint, no matter if the value changed or not. */
4784 WP_IGNORE = 4,
4785 };
4786
4787 #define BP_TEMPFLAG 1
4788 #define BP_HARDWAREFLAG 2
4789
4790 /* Evaluate watchpoint condition expression and check if its value
4791 changed. */
4792
4793 static wp_check_result
4794 watchpoint_check (bpstat bs)
4795 {
4796 struct watchpoint *b;
4797 struct frame_info *fr;
4798 int within_current_scope;
4799
4800 /* BS is built from an existing struct breakpoint. */
4801 gdb_assert (bs->breakpoint_at != NULL);
4802 b = (struct watchpoint *) bs->breakpoint_at;
4803
4804 /* If this is a local watchpoint, we only want to check if the
4805 watchpoint frame is in scope if the current thread is the thread
4806 that was used to create the watchpoint. */
4807 if (!watchpoint_in_thread_scope (b))
4808 return WP_IGNORE;
4809
4810 if (b->exp_valid_block == NULL)
4811 within_current_scope = 1;
4812 else
4813 {
4814 struct frame_info *frame = get_current_frame ();
4815 struct gdbarch *frame_arch = get_frame_arch (frame);
4816 CORE_ADDR frame_pc = get_frame_pc (frame);
4817
4818 /* stack_frame_destroyed_p() returns a non-zero value if we're
4819 still in the function but the stack frame has already been
4820 invalidated. Since we can't rely on the values of local
4821 variables after the stack has been destroyed, we are treating
4822 the watchpoint in that state as `not changed' without further
4823 checking. Don't mark watchpoints as changed if the current
4824 frame is in an epilogue - even if they are in some other
4825 frame, our view of the stack is likely to be wrong and
4826 frame_find_by_id could error out. */
4827 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4828 return WP_IGNORE;
4829
4830 fr = frame_find_by_id (b->watchpoint_frame);
4831 within_current_scope = (fr != NULL);
4832
4833 /* If we've gotten confused in the unwinder, we might have
4834 returned a frame that can't describe this variable. */
4835 if (within_current_scope)
4836 {
4837 struct symbol *function;
4838
4839 function = get_frame_function (fr);
4840 if (function == NULL
4841 || !contained_in (b->exp_valid_block,
4842 SYMBOL_BLOCK_VALUE (function)))
4843 within_current_scope = 0;
4844 }
4845
4846 if (within_current_scope)
4847 /* If we end up stopping, the current frame will get selected
4848 in normal_stop. So this call to select_frame won't affect
4849 the user. */
4850 select_frame (fr);
4851 }
4852
4853 if (within_current_scope)
4854 {
4855 /* We use value_{,free_to_}mark because it could be a *long*
4856 time before we return to the command level and call
4857 free_all_values. We can't call free_all_values because we
4858 might be in the middle of evaluating a function call. */
4859
4860 int pc = 0;
4861 struct value *mark;
4862 struct value *new_val;
4863
4864 if (is_masked_watchpoint (b))
4865 /* Since we don't know the exact trigger address (from
4866 stopped_data_address), just tell the user we've triggered
4867 a mask watchpoint. */
4868 return WP_VALUE_CHANGED;
4869
4870 mark = value_mark ();
4871 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4872
4873 if (b->val_bitsize != 0)
4874 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4875
4876 /* We use value_equal_contents instead of value_equal because
4877 the latter coerces an array to a pointer, thus comparing just
4878 the address of the array instead of its contents. This is
4879 not what we want. */
4880 if ((b->val != NULL) != (new_val != NULL)
4881 || (b->val != NULL && !value_equal_contents (b->val.get (),
4882 new_val)))
4883 {
4884 bs->old_val = b->val;
4885 b->val = release_value (new_val);
4886 b->val_valid = 1;
4887 if (new_val != NULL)
4888 value_free_to_mark (mark);
4889 return WP_VALUE_CHANGED;
4890 }
4891 else
4892 {
4893 /* Nothing changed. */
4894 value_free_to_mark (mark);
4895 return WP_VALUE_NOT_CHANGED;
4896 }
4897 }
4898 else
4899 {
4900 /* This seems like the only logical thing to do because
4901 if we temporarily ignored the watchpoint, then when
4902 we reenter the block in which it is valid it contains
4903 garbage (in the case of a function, it may have two
4904 garbage values, one before and one after the prologue).
4905 So we can't even detect the first assignment to it and
4906 watch after that (since the garbage may or may not equal
4907 the first value assigned). */
4908 /* We print all the stop information in
4909 breakpoint_ops->print_it, but in this case, by the time we
4910 call breakpoint_ops->print_it this bp will be deleted
4911 already. So we have no choice but print the information
4912 here. */
4913
4914 SWITCH_THRU_ALL_UIS ()
4915 {
4916 struct ui_out *uiout = current_uiout;
4917
4918 if (uiout->is_mi_like_p ())
4919 uiout->field_string
4920 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4921 uiout->text ("\nWatchpoint ");
4922 uiout->field_int ("wpnum", b->number);
4923 uiout->text (" deleted because the program has left the block in\n"
4924 "which its expression is valid.\n");
4925 }
4926
4927 /* Make sure the watchpoint's commands aren't executed. */
4928 b->commands = NULL;
4929 watchpoint_del_at_next_stop (b);
4930
4931 return WP_DELETED;
4932 }
4933 }
4934
4935 /* Return true if it looks like target has stopped due to hitting
4936 breakpoint location BL. This function does not check if we should
4937 stop, only if BL explains the stop. */
4938
4939 static int
4940 bpstat_check_location (const struct bp_location *bl,
4941 const address_space *aspace, CORE_ADDR bp_addr,
4942 const struct target_waitstatus *ws)
4943 {
4944 struct breakpoint *b = bl->owner;
4945
4946 /* BL is from an existing breakpoint. */
4947 gdb_assert (b != NULL);
4948
4949 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4950 }
4951
4952 /* Determine if the watched values have actually changed, and we
4953 should stop. If not, set BS->stop to 0. */
4954
4955 static void
4956 bpstat_check_watchpoint (bpstat bs)
4957 {
4958 const struct bp_location *bl;
4959 struct watchpoint *b;
4960
4961 /* BS is built for existing struct breakpoint. */
4962 bl = bs->bp_location_at;
4963 gdb_assert (bl != NULL);
4964 b = (struct watchpoint *) bs->breakpoint_at;
4965 gdb_assert (b != NULL);
4966
4967 {
4968 int must_check_value = 0;
4969
4970 if (b->type == bp_watchpoint)
4971 /* For a software watchpoint, we must always check the
4972 watched value. */
4973 must_check_value = 1;
4974 else if (b->watchpoint_triggered == watch_triggered_yes)
4975 /* We have a hardware watchpoint (read, write, or access)
4976 and the target earlier reported an address watched by
4977 this watchpoint. */
4978 must_check_value = 1;
4979 else if (b->watchpoint_triggered == watch_triggered_unknown
4980 && b->type == bp_hardware_watchpoint)
4981 /* We were stopped by a hardware watchpoint, but the target could
4982 not report the data address. We must check the watchpoint's
4983 value. Access and read watchpoints are out of luck; without
4984 a data address, we can't figure it out. */
4985 must_check_value = 1;
4986
4987 if (must_check_value)
4988 {
4989 wp_check_result e;
4990
4991 try
4992 {
4993 e = watchpoint_check (bs);
4994 }
4995 catch (const gdb_exception &ex)
4996 {
4997 exception_fprintf (gdb_stderr, ex,
4998 "Error evaluating expression "
4999 "for watchpoint %d\n",
5000 b->number);
5001
5002 SWITCH_THRU_ALL_UIS ()
5003 {
5004 printf_filtered (_("Watchpoint %d deleted.\n"),
5005 b->number);
5006 }
5007 watchpoint_del_at_next_stop (b);
5008 e = WP_DELETED;
5009 }
5010
5011 switch (e)
5012 {
5013 case WP_DELETED:
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 /* Stop. */
5017 break;
5018 case WP_IGNORE:
5019 bs->print_it = print_it_noop;
5020 bs->stop = 0;
5021 break;
5022 case WP_VALUE_CHANGED:
5023 if (b->type == bp_read_watchpoint)
5024 {
5025 /* There are two cases to consider here:
5026
5027 1. We're watching the triggered memory for reads.
5028 In that case, trust the target, and always report
5029 the watchpoint hit to the user. Even though
5030 reads don't cause value changes, the value may
5031 have changed since the last time it was read, and
5032 since we're not trapping writes, we will not see
5033 those, and as such we should ignore our notion of
5034 old value.
5035
5036 2. We're watching the triggered memory for both
5037 reads and writes. There are two ways this may
5038 happen:
5039
5040 2.1. This is a target that can't break on data
5041 reads only, but can break on accesses (reads or
5042 writes), such as e.g., x86. We detect this case
5043 at the time we try to insert read watchpoints.
5044
5045 2.2. Otherwise, the target supports read
5046 watchpoints, but, the user set an access or write
5047 watchpoint watching the same memory as this read
5048 watchpoint.
5049
5050 If we're watching memory writes as well as reads,
5051 ignore watchpoint hits when we find that the
5052 value hasn't changed, as reads don't cause
5053 changes. This still gives false positives when
5054 the program writes the same value to memory as
5055 what there was already in memory (we will confuse
5056 it for a read), but it's much better than
5057 nothing. */
5058
5059 int other_write_watchpoint = 0;
5060
5061 if (bl->watchpoint_type == hw_read)
5062 {
5063 struct breakpoint *other_b;
5064
5065 ALL_BREAKPOINTS (other_b)
5066 if (other_b->type == bp_hardware_watchpoint
5067 || other_b->type == bp_access_watchpoint)
5068 {
5069 struct watchpoint *other_w =
5070 (struct watchpoint *) other_b;
5071
5072 if (other_w->watchpoint_triggered
5073 == watch_triggered_yes)
5074 {
5075 other_write_watchpoint = 1;
5076 break;
5077 }
5078 }
5079 }
5080
5081 if (other_write_watchpoint
5082 || bl->watchpoint_type == hw_access)
5083 {
5084 /* We're watching the same memory for writes,
5085 and the value changed since the last time we
5086 updated it, so this trap must be for a write.
5087 Ignore it. */
5088 bs->print_it = print_it_noop;
5089 bs->stop = 0;
5090 }
5091 }
5092 break;
5093 case WP_VALUE_NOT_CHANGED:
5094 if (b->type == bp_hardware_watchpoint
5095 || b->type == bp_watchpoint)
5096 {
5097 /* Don't stop: write watchpoints shouldn't fire if
5098 the value hasn't changed. */
5099 bs->print_it = print_it_noop;
5100 bs->stop = 0;
5101 }
5102 /* Stop. */
5103 break;
5104 default:
5105 /* Can't happen. */
5106 break;
5107 }
5108 }
5109 else /* must_check_value == 0 */
5110 {
5111 /* This is a case where some watchpoint(s) triggered, but
5112 not at the address of this watchpoint, or else no
5113 watchpoint triggered after all. So don't print
5114 anything for this watchpoint. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 }
5120
5121 /* For breakpoints that are currently marked as telling gdb to stop,
5122 check conditions (condition proper, frame, thread and ignore count)
5123 of breakpoint referred to by BS. If we should not stop for this
5124 breakpoint, set BS->stop to 0. */
5125
5126 static void
5127 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5128 {
5129 const struct bp_location *bl;
5130 struct breakpoint *b;
5131 /* Assume stop. */
5132 bool condition_result = true;
5133 struct expression *cond;
5134
5135 gdb_assert (bs->stop);
5136
5137 /* BS is built for existing struct breakpoint. */
5138 bl = bs->bp_location_at;
5139 gdb_assert (bl != NULL);
5140 b = bs->breakpoint_at;
5141 gdb_assert (b != NULL);
5142
5143 /* Even if the target evaluated the condition on its end and notified GDB, we
5144 need to do so again since GDB does not know if we stopped due to a
5145 breakpoint or a single step breakpoint. */
5146
5147 if (frame_id_p (b->frame_id)
5148 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5149 {
5150 bs->stop = 0;
5151 return;
5152 }
5153
5154 /* If this is a thread/task-specific breakpoint, don't waste cpu
5155 evaluating the condition if this isn't the specified
5156 thread/task. */
5157 if ((b->thread != -1 && b->thread != thread->global_num)
5158 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5159 {
5160 bs->stop = 0;
5161 return;
5162 }
5163
5164 /* Evaluate extension language breakpoints that have a "stop" method
5165 implemented. */
5166 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5167
5168 if (is_watchpoint (b))
5169 {
5170 struct watchpoint *w = (struct watchpoint *) b;
5171
5172 cond = w->cond_exp.get ();
5173 }
5174 else
5175 cond = bl->cond.get ();
5176
5177 if (cond && b->disposition != disp_del_at_next_stop)
5178 {
5179 int within_current_scope = 1;
5180 struct watchpoint * w;
5181
5182 /* We use value_mark and value_free_to_mark because it could
5183 be a long time before we return to the command level and
5184 call free_all_values. We can't call free_all_values
5185 because we might be in the middle of evaluating a
5186 function call. */
5187 struct value *mark = value_mark ();
5188
5189 if (is_watchpoint (b))
5190 w = (struct watchpoint *) b;
5191 else
5192 w = NULL;
5193
5194 /* Need to select the frame, with all that implies so that
5195 the conditions will have the right context. Because we
5196 use the frame, we will not see an inlined function's
5197 variables when we arrive at a breakpoint at the start
5198 of the inlined function; the current frame will be the
5199 call site. */
5200 if (w == NULL || w->cond_exp_valid_block == NULL)
5201 select_frame (get_current_frame ());
5202 else
5203 {
5204 struct frame_info *frame;
5205
5206 /* For local watchpoint expressions, which particular
5207 instance of a local is being watched matters, so we
5208 keep track of the frame to evaluate the expression
5209 in. To evaluate the condition however, it doesn't
5210 really matter which instantiation of the function
5211 where the condition makes sense triggers the
5212 watchpoint. This allows an expression like "watch
5213 global if q > 10" set in `func', catch writes to
5214 global on all threads that call `func', or catch
5215 writes on all recursive calls of `func' by a single
5216 thread. We simply always evaluate the condition in
5217 the innermost frame that's executing where it makes
5218 sense to evaluate the condition. It seems
5219 intuitive. */
5220 frame = block_innermost_frame (w->cond_exp_valid_block);
5221 if (frame != NULL)
5222 select_frame (frame);
5223 else
5224 within_current_scope = 0;
5225 }
5226 if (within_current_scope)
5227 {
5228 try
5229 {
5230 condition_result = breakpoint_cond_eval (cond);
5231 }
5232 catch (const gdb_exception &ex)
5233 {
5234 exception_fprintf (gdb_stderr, ex,
5235 "Error in testing breakpoint condition:\n");
5236 }
5237 }
5238 else
5239 {
5240 warning (_("Watchpoint condition cannot be tested "
5241 "in the current scope"));
5242 /* If we failed to set the right context for this
5243 watchpoint, unconditionally report it. */
5244 }
5245 /* FIXME-someday, should give breakpoint #. */
5246 value_free_to_mark (mark);
5247 }
5248
5249 if (cond && !condition_result)
5250 {
5251 bs->stop = 0;
5252 }
5253 else if (b->ignore_count > 0)
5254 {
5255 b->ignore_count--;
5256 bs->stop = 0;
5257 /* Increase the hit count even though we don't stop. */
5258 ++(b->hit_count);
5259 gdb::observers::breakpoint_modified.notify (b);
5260 }
5261 }
5262
5263 /* Returns true if we need to track moribund locations of LOC's type
5264 on the current target. */
5265
5266 static int
5267 need_moribund_for_location_type (struct bp_location *loc)
5268 {
5269 return ((loc->loc_type == bp_loc_software_breakpoint
5270 && !target_supports_stopped_by_sw_breakpoint ())
5271 || (loc->loc_type == bp_loc_hardware_breakpoint
5272 && !target_supports_stopped_by_hw_breakpoint ()));
5273 }
5274
5275 /* See breakpoint.h. */
5276
5277 bpstat
5278 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5279 const struct target_waitstatus *ws)
5280 {
5281 struct breakpoint *b;
5282 bpstat bs_head = NULL, *bs_link = &bs_head;
5283
5284 ALL_BREAKPOINTS (b)
5285 {
5286 if (!breakpoint_enabled (b))
5287 continue;
5288
5289 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5290 {
5291 /* For hardware watchpoints, we look only at the first
5292 location. The watchpoint_check function will work on the
5293 entire expression, not the individual locations. For
5294 read watchpoints, the watchpoints_triggered function has
5295 checked all locations already. */
5296 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5297 break;
5298
5299 if (!bl->enabled || bl->shlib_disabled)
5300 continue;
5301
5302 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5303 continue;
5304
5305 /* Come here if it's a watchpoint, or if the break address
5306 matches. */
5307
5308 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5309 explain stop. */
5310
5311 /* Assume we stop. Should we find a watchpoint that is not
5312 actually triggered, or if the condition of the breakpoint
5313 evaluates as false, we'll reset 'stop' to 0. */
5314 bs->stop = 1;
5315 bs->print = 1;
5316
5317 /* If this is a scope breakpoint, mark the associated
5318 watchpoint as triggered so that we will handle the
5319 out-of-scope event. We'll get to the watchpoint next
5320 iteration. */
5321 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5322 {
5323 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5324
5325 w->watchpoint_triggered = watch_triggered_yes;
5326 }
5327 }
5328 }
5329
5330 /* Check if a moribund breakpoint explains the stop. */
5331 if (!target_supports_stopped_by_sw_breakpoint ()
5332 || !target_supports_stopped_by_hw_breakpoint ())
5333 {
5334 for (bp_location *loc : moribund_locations)
5335 {
5336 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5337 && need_moribund_for_location_type (loc))
5338 {
5339 bpstat bs = new bpstats (loc, &bs_link);
5340 /* For hits of moribund locations, we should just proceed. */
5341 bs->stop = 0;
5342 bs->print = 0;
5343 bs->print_it = print_it_noop;
5344 }
5345 }
5346 }
5347
5348 return bs_head;
5349 }
5350
5351 /* See breakpoint.h. */
5352
5353 bpstat
5354 bpstat_stop_status (const address_space *aspace,
5355 CORE_ADDR bp_addr, thread_info *thread,
5356 const struct target_waitstatus *ws,
5357 bpstat stop_chain)
5358 {
5359 struct breakpoint *b = NULL;
5360 /* First item of allocated bpstat's. */
5361 bpstat bs_head = stop_chain;
5362 bpstat bs;
5363 int need_remove_insert;
5364 int removed_any;
5365
5366 /* First, build the bpstat chain with locations that explain a
5367 target stop, while being careful to not set the target running,
5368 as that may invalidate locations (in particular watchpoint
5369 locations are recreated). Resuming will happen here with
5370 breakpoint conditions or watchpoint expressions that include
5371 inferior function calls. */
5372 if (bs_head == NULL)
5373 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5374
5375 /* A bit of special processing for shlib breakpoints. We need to
5376 process solib loading here, so that the lists of loaded and
5377 unloaded libraries are correct before we handle "catch load" and
5378 "catch unload". */
5379 for (bs = bs_head; bs != NULL; bs = bs->next)
5380 {
5381 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5382 {
5383 handle_solib_event ();
5384 break;
5385 }
5386 }
5387
5388 /* Now go through the locations that caused the target to stop, and
5389 check whether we're interested in reporting this stop to higher
5390 layers, or whether we should resume the target transparently. */
5391
5392 removed_any = 0;
5393
5394 for (bs = bs_head; bs != NULL; bs = bs->next)
5395 {
5396 if (!bs->stop)
5397 continue;
5398
5399 b = bs->breakpoint_at;
5400 b->ops->check_status (bs);
5401 if (bs->stop)
5402 {
5403 bpstat_check_breakpoint_conditions (bs, thread);
5404
5405 if (bs->stop)
5406 {
5407 ++(b->hit_count);
5408 gdb::observers::breakpoint_modified.notify (b);
5409
5410 /* We will stop here. */
5411 if (b->disposition == disp_disable)
5412 {
5413 --(b->enable_count);
5414 if (b->enable_count <= 0)
5415 b->enable_state = bp_disabled;
5416 removed_any = 1;
5417 }
5418 if (b->silent)
5419 bs->print = 0;
5420 bs->commands = b->commands;
5421 if (command_line_is_silent (bs->commands
5422 ? bs->commands.get () : NULL))
5423 bs->print = 0;
5424
5425 b->ops->after_condition_true (bs);
5426 }
5427
5428 }
5429
5430 /* Print nothing for this entry if we don't stop or don't
5431 print. */
5432 if (!bs->stop || !bs->print)
5433 bs->print_it = print_it_noop;
5434 }
5435
5436 /* If we aren't stopping, the value of some hardware watchpoint may
5437 not have changed, but the intermediate memory locations we are
5438 watching may have. Don't bother if we're stopping; this will get
5439 done later. */
5440 need_remove_insert = 0;
5441 if (! bpstat_causes_stop (bs_head))
5442 for (bs = bs_head; bs != NULL; bs = bs->next)
5443 if (!bs->stop
5444 && bs->breakpoint_at
5445 && is_hardware_watchpoint (bs->breakpoint_at))
5446 {
5447 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5448
5449 update_watchpoint (w, 0 /* don't reparse. */);
5450 need_remove_insert = 1;
5451 }
5452
5453 if (need_remove_insert)
5454 update_global_location_list (UGLL_MAY_INSERT);
5455 else if (removed_any)
5456 update_global_location_list (UGLL_DONT_INSERT);
5457
5458 return bs_head;
5459 }
5460
5461 static void
5462 handle_jit_event (void)
5463 {
5464 struct frame_info *frame;
5465 struct gdbarch *gdbarch;
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5469
5470 /* Switch terminal for any messages produced by
5471 breakpoint_re_set. */
5472 target_terminal::ours_for_output ();
5473
5474 frame = get_current_frame ();
5475 gdbarch = get_frame_arch (frame);
5476
5477 jit_event_handler (gdbarch);
5478
5479 target_terminal::inferior ();
5480 }
5481
5482 /* Prepare WHAT final decision for infrun. */
5483
5484 /* Decide what infrun needs to do with this bpstat. */
5485
5486 struct bpstat_what
5487 bpstat_what (bpstat bs_head)
5488 {
5489 struct bpstat_what retval;
5490 bpstat bs;
5491
5492 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5493 retval.call_dummy = STOP_NONE;
5494 retval.is_longjmp = false;
5495
5496 for (bs = bs_head; bs != NULL; bs = bs->next)
5497 {
5498 /* Extract this BS's action. After processing each BS, we check
5499 if its action overrides all we've seem so far. */
5500 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5501 enum bptype bptype;
5502
5503 if (bs->breakpoint_at == NULL)
5504 {
5505 /* I suspect this can happen if it was a momentary
5506 breakpoint which has since been deleted. */
5507 bptype = bp_none;
5508 }
5509 else
5510 bptype = bs->breakpoint_at->type;
5511
5512 switch (bptype)
5513 {
5514 case bp_none:
5515 break;
5516 case bp_breakpoint:
5517 case bp_hardware_breakpoint:
5518 case bp_single_step:
5519 case bp_until:
5520 case bp_finish:
5521 case bp_shlib_event:
5522 if (bs->stop)
5523 {
5524 if (bs->print)
5525 this_action = BPSTAT_WHAT_STOP_NOISY;
5526 else
5527 this_action = BPSTAT_WHAT_STOP_SILENT;
5528 }
5529 else
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 break;
5532 case bp_watchpoint:
5533 case bp_hardware_watchpoint:
5534 case bp_read_watchpoint:
5535 case bp_access_watchpoint:
5536 if (bs->stop)
5537 {
5538 if (bs->print)
5539 this_action = BPSTAT_WHAT_STOP_NOISY;
5540 else
5541 this_action = BPSTAT_WHAT_STOP_SILENT;
5542 }
5543 else
5544 {
5545 /* There was a watchpoint, but we're not stopping.
5546 This requires no further action. */
5547 }
5548 break;
5549 case bp_longjmp:
5550 case bp_longjmp_call_dummy:
5551 case bp_exception:
5552 if (bs->stop)
5553 {
5554 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5555 retval.is_longjmp = bptype != bp_exception;
5556 }
5557 else
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 break;
5560 case bp_longjmp_resume:
5561 case bp_exception_resume:
5562 if (bs->stop)
5563 {
5564 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5565 retval.is_longjmp = bptype == bp_longjmp_resume;
5566 }
5567 else
5568 this_action = BPSTAT_WHAT_SINGLE;
5569 break;
5570 case bp_step_resume:
5571 if (bs->stop)
5572 this_action = BPSTAT_WHAT_STEP_RESUME;
5573 else
5574 {
5575 /* It is for the wrong frame. */
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 }
5578 break;
5579 case bp_hp_step_resume:
5580 if (bs->stop)
5581 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5582 else
5583 {
5584 /* It is for the wrong frame. */
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 }
5587 break;
5588 case bp_watchpoint_scope:
5589 case bp_thread_event:
5590 case bp_overlay_event:
5591 case bp_longjmp_master:
5592 case bp_std_terminate_master:
5593 case bp_exception_master:
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_catchpoint:
5597 if (bs->stop)
5598 {
5599 if (bs->print)
5600 this_action = BPSTAT_WHAT_STOP_NOISY;
5601 else
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 }
5604 else
5605 {
5606 /* Some catchpoints are implemented with breakpoints.
5607 For those, we need to step over the breakpoint. */
5608 if (bs->bp_location_at->loc_type != bp_loc_other)
5609 this_action = BPSTAT_WHAT_SINGLE;
5610 }
5611 break;
5612 case bp_jit_event:
5613 this_action = BPSTAT_WHAT_SINGLE;
5614 break;
5615 case bp_call_dummy:
5616 /* Make sure the action is stop (silent or noisy),
5617 so infrun.c pops the dummy frame. */
5618 retval.call_dummy = STOP_STACK_DUMMY;
5619 this_action = BPSTAT_WHAT_STOP_SILENT;
5620 break;
5621 case bp_std_terminate:
5622 /* Make sure the action is stop (silent or noisy),
5623 so infrun.c pops the dummy frame. */
5624 retval.call_dummy = STOP_STD_TERMINATE;
5625 this_action = BPSTAT_WHAT_STOP_SILENT;
5626 break;
5627 case bp_tracepoint:
5628 case bp_fast_tracepoint:
5629 case bp_static_tracepoint:
5630 /* Tracepoint hits should not be reported back to GDB, and
5631 if one got through somehow, it should have been filtered
5632 out already. */
5633 internal_error (__FILE__, __LINE__,
5634 _("bpstat_what: tracepoint encountered"));
5635 break;
5636 case bp_gnu_ifunc_resolver:
5637 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5638 this_action = BPSTAT_WHAT_SINGLE;
5639 break;
5640 case bp_gnu_ifunc_resolver_return:
5641 /* The breakpoint will be removed, execution will restart from the
5642 PC of the former breakpoint. */
5643 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5644 break;
5645
5646 case bp_dprintf:
5647 if (bs->stop)
5648 this_action = BPSTAT_WHAT_STOP_SILENT;
5649 else
5650 this_action = BPSTAT_WHAT_SINGLE;
5651 break;
5652
5653 default:
5654 internal_error (__FILE__, __LINE__,
5655 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5656 }
5657
5658 retval.main_action = std::max (retval.main_action, this_action);
5659 }
5660
5661 return retval;
5662 }
5663
5664 void
5665 bpstat_run_callbacks (bpstat bs_head)
5666 {
5667 bpstat bs;
5668
5669 for (bs = bs_head; bs != NULL; bs = bs->next)
5670 {
5671 struct breakpoint *b = bs->breakpoint_at;
5672
5673 if (b == NULL)
5674 continue;
5675 switch (b->type)
5676 {
5677 case bp_jit_event:
5678 handle_jit_event ();
5679 break;
5680 case bp_gnu_ifunc_resolver:
5681 gnu_ifunc_resolver_stop (b);
5682 break;
5683 case bp_gnu_ifunc_resolver_return:
5684 gnu_ifunc_resolver_return_stop (b);
5685 break;
5686 }
5687 }
5688 }
5689
5690 /* See breakpoint.h. */
5691
5692 bool
5693 bpstat_should_step ()
5694 {
5695 struct breakpoint *b;
5696
5697 ALL_BREAKPOINTS (b)
5698 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5699 return true;
5700 return false;
5701 }
5702
5703 /* See breakpoint.h. */
5704
5705 bool
5706 bpstat_causes_stop (bpstat bs)
5707 {
5708 for (; bs != NULL; bs = bs->next)
5709 if (bs->stop)
5710 return true;
5711
5712 return false;
5713 }
5714
5715 \f
5716
5717 /* Compute a string of spaces suitable to indent the next line
5718 so it starts at the position corresponding to the table column
5719 named COL_NAME in the currently active table of UIOUT. */
5720
5721 static char *
5722 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5723 {
5724 static char wrap_indent[80];
5725 int i, total_width, width, align;
5726 const char *text;
5727
5728 total_width = 0;
5729 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5730 {
5731 if (strcmp (text, col_name) == 0)
5732 {
5733 gdb_assert (total_width < sizeof wrap_indent);
5734 memset (wrap_indent, ' ', total_width);
5735 wrap_indent[total_width] = 0;
5736
5737 return wrap_indent;
5738 }
5739
5740 total_width += width + 1;
5741 }
5742
5743 return NULL;
5744 }
5745
5746 /* Determine if the locations of this breakpoint will have their conditions
5747 evaluated by the target, host or a mix of both. Returns the following:
5748
5749 "host": Host evals condition.
5750 "host or target": Host or Target evals condition.
5751 "target": Target evals condition.
5752 */
5753
5754 static const char *
5755 bp_condition_evaluator (struct breakpoint *b)
5756 {
5757 struct bp_location *bl;
5758 char host_evals = 0;
5759 char target_evals = 0;
5760
5761 if (!b)
5762 return NULL;
5763
5764 if (!is_breakpoint (b))
5765 return NULL;
5766
5767 if (gdb_evaluates_breakpoint_condition_p ()
5768 || !target_supports_evaluation_of_breakpoint_conditions ())
5769 return condition_evaluation_host;
5770
5771 for (bl = b->loc; bl; bl = bl->next)
5772 {
5773 if (bl->cond_bytecode)
5774 target_evals++;
5775 else
5776 host_evals++;
5777 }
5778
5779 if (host_evals && target_evals)
5780 return condition_evaluation_both;
5781 else if (target_evals)
5782 return condition_evaluation_target;
5783 else
5784 return condition_evaluation_host;
5785 }
5786
5787 /* Determine the breakpoint location's condition evaluator. This is
5788 similar to bp_condition_evaluator, but for locations. */
5789
5790 static const char *
5791 bp_location_condition_evaluator (struct bp_location *bl)
5792 {
5793 if (bl && !is_breakpoint (bl->owner))
5794 return NULL;
5795
5796 if (gdb_evaluates_breakpoint_condition_p ()
5797 || !target_supports_evaluation_of_breakpoint_conditions ())
5798 return condition_evaluation_host;
5799
5800 if (bl && bl->cond_bytecode)
5801 return condition_evaluation_target;
5802 else
5803 return condition_evaluation_host;
5804 }
5805
5806 /* Print the LOC location out of the list of B->LOC locations. */
5807
5808 static void
5809 print_breakpoint_location (struct breakpoint *b,
5810 struct bp_location *loc)
5811 {
5812 struct ui_out *uiout = current_uiout;
5813
5814 scoped_restore_current_program_space restore_pspace;
5815
5816 if (loc != NULL && loc->shlib_disabled)
5817 loc = NULL;
5818
5819 if (loc != NULL)
5820 set_current_program_space (loc->pspace);
5821
5822 if (b->display_canonical)
5823 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5824 else if (loc && loc->symtab)
5825 {
5826 const struct symbol *sym = loc->symbol;
5827
5828 if (sym)
5829 {
5830 uiout->text ("in ");
5831 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5832 ui_out_style_kind::FUNCTION);
5833 uiout->text (" ");
5834 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5835 uiout->text ("at ");
5836 }
5837 uiout->field_string ("file",
5838 symtab_to_filename_for_display (loc->symtab),
5839 ui_out_style_kind::FILE);
5840 uiout->text (":");
5841
5842 if (uiout->is_mi_like_p ())
5843 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5844
5845 uiout->field_int ("line", loc->line_number);
5846 }
5847 else if (loc)
5848 {
5849 string_file stb;
5850
5851 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5852 demangle, "");
5853 uiout->field_stream ("at", stb);
5854 }
5855 else
5856 {
5857 uiout->field_string ("pending",
5858 event_location_to_string (b->location.get ()));
5859 /* If extra_string is available, it could be holding a condition
5860 or dprintf arguments. In either case, make sure it is printed,
5861 too, but only for non-MI streams. */
5862 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5863 {
5864 if (b->type == bp_dprintf)
5865 uiout->text (",");
5866 else
5867 uiout->text (" ");
5868 uiout->text (b->extra_string);
5869 }
5870 }
5871
5872 if (loc && is_breakpoint (b)
5873 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5874 && bp_condition_evaluator (b) == condition_evaluation_both)
5875 {
5876 uiout->text (" (");
5877 uiout->field_string ("evaluated-by",
5878 bp_location_condition_evaluator (loc));
5879 uiout->text (")");
5880 }
5881 }
5882
5883 static const char *
5884 bptype_string (enum bptype type)
5885 {
5886 struct ep_type_description
5887 {
5888 enum bptype type;
5889 const char *description;
5890 };
5891 static struct ep_type_description bptypes[] =
5892 {
5893 {bp_none, "?deleted?"},
5894 {bp_breakpoint, "breakpoint"},
5895 {bp_hardware_breakpoint, "hw breakpoint"},
5896 {bp_single_step, "sw single-step"},
5897 {bp_until, "until"},
5898 {bp_finish, "finish"},
5899 {bp_watchpoint, "watchpoint"},
5900 {bp_hardware_watchpoint, "hw watchpoint"},
5901 {bp_read_watchpoint, "read watchpoint"},
5902 {bp_access_watchpoint, "acc watchpoint"},
5903 {bp_longjmp, "longjmp"},
5904 {bp_longjmp_resume, "longjmp resume"},
5905 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5906 {bp_exception, "exception"},
5907 {bp_exception_resume, "exception resume"},
5908 {bp_step_resume, "step resume"},
5909 {bp_hp_step_resume, "high-priority step resume"},
5910 {bp_watchpoint_scope, "watchpoint scope"},
5911 {bp_call_dummy, "call dummy"},
5912 {bp_std_terminate, "std::terminate"},
5913 {bp_shlib_event, "shlib events"},
5914 {bp_thread_event, "thread events"},
5915 {bp_overlay_event, "overlay events"},
5916 {bp_longjmp_master, "longjmp master"},
5917 {bp_std_terminate_master, "std::terminate master"},
5918 {bp_exception_master, "exception master"},
5919 {bp_catchpoint, "catchpoint"},
5920 {bp_tracepoint, "tracepoint"},
5921 {bp_fast_tracepoint, "fast tracepoint"},
5922 {bp_static_tracepoint, "static tracepoint"},
5923 {bp_dprintf, "dprintf"},
5924 {bp_jit_event, "jit events"},
5925 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5926 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5927 };
5928
5929 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5930 || ((int) type != bptypes[(int) type].type))
5931 internal_error (__FILE__, __LINE__,
5932 _("bptypes table does not describe type #%d."),
5933 (int) type);
5934
5935 return bptypes[(int) type].description;
5936 }
5937
5938 /* For MI, output a field named 'thread-groups' with a list as the value.
5939 For CLI, prefix the list with the string 'inf'. */
5940
5941 static void
5942 output_thread_groups (struct ui_out *uiout,
5943 const char *field_name,
5944 const std::vector<int> &inf_nums,
5945 int mi_only)
5946 {
5947 int is_mi = uiout->is_mi_like_p ();
5948
5949 /* For backward compatibility, don't display inferiors in CLI unless
5950 there are several. Always display them for MI. */
5951 if (!is_mi && mi_only)
5952 return;
5953
5954 ui_out_emit_list list_emitter (uiout, field_name);
5955
5956 for (size_t i = 0; i < inf_nums.size (); i++)
5957 {
5958 if (is_mi)
5959 {
5960 char mi_group[10];
5961
5962 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5963 uiout->field_string (NULL, mi_group);
5964 }
5965 else
5966 {
5967 if (i == 0)
5968 uiout->text (" inf ");
5969 else
5970 uiout->text (", ");
5971
5972 uiout->text (plongest (inf_nums[i]));
5973 }
5974 }
5975 }
5976
5977 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5978 instead of going via breakpoint_ops::print_one. This makes "maint
5979 info breakpoints" show the software breakpoint locations of
5980 catchpoints, which are considered internal implementation
5981 detail. */
5982
5983 static void
5984 print_one_breakpoint_location (struct breakpoint *b,
5985 struct bp_location *loc,
5986 int loc_number,
5987 struct bp_location **last_loc,
5988 int allflag, bool raw_loc)
5989 {
5990 struct command_line *l;
5991 static char bpenables[] = "nynny";
5992
5993 struct ui_out *uiout = current_uiout;
5994 int header_of_multiple = 0;
5995 int part_of_multiple = (loc != NULL);
5996 struct value_print_options opts;
5997
5998 get_user_print_options (&opts);
5999
6000 gdb_assert (!loc || loc_number != 0);
6001 /* See comment in print_one_breakpoint concerning treatment of
6002 breakpoints with single disabled location. */
6003 if (loc == NULL
6004 && (b->loc != NULL
6005 && (b->loc->next != NULL || !b->loc->enabled)))
6006 header_of_multiple = 1;
6007 if (loc == NULL)
6008 loc = b->loc;
6009
6010 annotate_record ();
6011
6012 /* 1 */
6013 annotate_field (0);
6014 if (part_of_multiple)
6015 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6016 else
6017 uiout->field_int ("number", b->number);
6018
6019 /* 2 */
6020 annotate_field (1);
6021 if (part_of_multiple)
6022 uiout->field_skip ("type");
6023 else
6024 uiout->field_string ("type", bptype_string (b->type));
6025
6026 /* 3 */
6027 annotate_field (2);
6028 if (part_of_multiple)
6029 uiout->field_skip ("disp");
6030 else
6031 uiout->field_string ("disp", bpdisp_text (b->disposition));
6032
6033 /* 4 */
6034 annotate_field (3);
6035 if (part_of_multiple)
6036 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6037 else
6038 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6039
6040 /* 5 and 6 */
6041 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6042 b->ops->print_one (b, last_loc);
6043 else
6044 {
6045 if (is_watchpoint (b))
6046 {
6047 struct watchpoint *w = (struct watchpoint *) b;
6048
6049 /* Field 4, the address, is omitted (which makes the columns
6050 not line up too nicely with the headers, but the effect
6051 is relatively readable). */
6052 if (opts.addressprint)
6053 uiout->field_skip ("addr");
6054 annotate_field (5);
6055 uiout->field_string ("what", w->exp_string);
6056 }
6057 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6058 || is_ada_exception_catchpoint (b))
6059 {
6060 if (opts.addressprint)
6061 {
6062 annotate_field (4);
6063 if (header_of_multiple)
6064 uiout->field_string ("addr", "<MULTIPLE>");
6065 else if (b->loc == NULL || loc->shlib_disabled)
6066 uiout->field_string ("addr", "<PENDING>");
6067 else
6068 uiout->field_core_addr ("addr",
6069 loc->gdbarch, loc->address);
6070 }
6071 annotate_field (5);
6072 if (!header_of_multiple)
6073 print_breakpoint_location (b, loc);
6074 if (b->loc)
6075 *last_loc = b->loc;
6076 }
6077 }
6078
6079 if (loc != NULL && !header_of_multiple)
6080 {
6081 std::vector<int> inf_nums;
6082 int mi_only = 1;
6083
6084 for (inferior *inf : all_inferiors ())
6085 {
6086 if (inf->pspace == loc->pspace)
6087 inf_nums.push_back (inf->num);
6088 }
6089
6090 /* For backward compatibility, don't display inferiors in CLI unless
6091 there are several. Always display for MI. */
6092 if (allflag
6093 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6094 && (number_of_program_spaces () > 1
6095 || number_of_inferiors () > 1)
6096 /* LOC is for existing B, it cannot be in
6097 moribund_locations and thus having NULL OWNER. */
6098 && loc->owner->type != bp_catchpoint))
6099 mi_only = 0;
6100 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6101 }
6102
6103 if (!part_of_multiple)
6104 {
6105 if (b->thread != -1)
6106 {
6107 /* FIXME: This seems to be redundant and lost here; see the
6108 "stop only in" line a little further down. */
6109 uiout->text (" thread ");
6110 uiout->field_int ("thread", b->thread);
6111 }
6112 else if (b->task != 0)
6113 {
6114 uiout->text (" task ");
6115 uiout->field_int ("task", b->task);
6116 }
6117 }
6118
6119 uiout->text ("\n");
6120
6121 if (!part_of_multiple)
6122 b->ops->print_one_detail (b, uiout);
6123
6124 if (part_of_multiple && frame_id_p (b->frame_id))
6125 {
6126 annotate_field (6);
6127 uiout->text ("\tstop only in stack frame at ");
6128 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6129 the frame ID. */
6130 uiout->field_core_addr ("frame",
6131 b->gdbarch, b->frame_id.stack_addr);
6132 uiout->text ("\n");
6133 }
6134
6135 if (!part_of_multiple && b->cond_string)
6136 {
6137 annotate_field (7);
6138 if (is_tracepoint (b))
6139 uiout->text ("\ttrace only if ");
6140 else
6141 uiout->text ("\tstop only if ");
6142 uiout->field_string ("cond", b->cond_string);
6143
6144 /* Print whether the target is doing the breakpoint's condition
6145 evaluation. If GDB is doing the evaluation, don't print anything. */
6146 if (is_breakpoint (b)
6147 && breakpoint_condition_evaluation_mode ()
6148 == condition_evaluation_target)
6149 {
6150 uiout->text (" (");
6151 uiout->field_string ("evaluated-by",
6152 bp_condition_evaluator (b));
6153 uiout->text (" evals)");
6154 }
6155 uiout->text ("\n");
6156 }
6157
6158 if (!part_of_multiple && b->thread != -1)
6159 {
6160 /* FIXME should make an annotation for this. */
6161 uiout->text ("\tstop only in thread ");
6162 if (uiout->is_mi_like_p ())
6163 uiout->field_int ("thread", b->thread);
6164 else
6165 {
6166 struct thread_info *thr = find_thread_global_id (b->thread);
6167
6168 uiout->field_string ("thread", print_thread_id (thr));
6169 }
6170 uiout->text ("\n");
6171 }
6172
6173 if (!part_of_multiple)
6174 {
6175 if (b->hit_count)
6176 {
6177 /* FIXME should make an annotation for this. */
6178 if (is_catchpoint (b))
6179 uiout->text ("\tcatchpoint");
6180 else if (is_tracepoint (b))
6181 uiout->text ("\ttracepoint");
6182 else
6183 uiout->text ("\tbreakpoint");
6184 uiout->text (" already hit ");
6185 uiout->field_int ("times", b->hit_count);
6186 if (b->hit_count == 1)
6187 uiout->text (" time\n");
6188 else
6189 uiout->text (" times\n");
6190 }
6191 else
6192 {
6193 /* Output the count also if it is zero, but only if this is mi. */
6194 if (uiout->is_mi_like_p ())
6195 uiout->field_int ("times", b->hit_count);
6196 }
6197 }
6198
6199 if (!part_of_multiple && b->ignore_count)
6200 {
6201 annotate_field (8);
6202 uiout->text ("\tignore next ");
6203 uiout->field_int ("ignore", b->ignore_count);
6204 uiout->text (" hits\n");
6205 }
6206
6207 /* Note that an enable count of 1 corresponds to "enable once"
6208 behavior, which is reported by the combination of enablement and
6209 disposition, so we don't need to mention it here. */
6210 if (!part_of_multiple && b->enable_count > 1)
6211 {
6212 annotate_field (8);
6213 uiout->text ("\tdisable after ");
6214 /* Tweak the wording to clarify that ignore and enable counts
6215 are distinct, and have additive effect. */
6216 if (b->ignore_count)
6217 uiout->text ("additional ");
6218 else
6219 uiout->text ("next ");
6220 uiout->field_int ("enable", b->enable_count);
6221 uiout->text (" hits\n");
6222 }
6223
6224 if (!part_of_multiple && is_tracepoint (b))
6225 {
6226 struct tracepoint *tp = (struct tracepoint *) b;
6227
6228 if (tp->traceframe_usage)
6229 {
6230 uiout->text ("\ttrace buffer usage ");
6231 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6232 uiout->text (" bytes\n");
6233 }
6234 }
6235
6236 l = b->commands ? b->commands.get () : NULL;
6237 if (!part_of_multiple && l)
6238 {
6239 annotate_field (9);
6240 ui_out_emit_tuple tuple_emitter (uiout, "script");
6241 print_command_lines (uiout, l, 4);
6242 }
6243
6244 if (is_tracepoint (b))
6245 {
6246 struct tracepoint *t = (struct tracepoint *) b;
6247
6248 if (!part_of_multiple && t->pass_count)
6249 {
6250 annotate_field (10);
6251 uiout->text ("\tpass count ");
6252 uiout->field_int ("pass", t->pass_count);
6253 uiout->text (" \n");
6254 }
6255
6256 /* Don't display it when tracepoint or tracepoint location is
6257 pending. */
6258 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6259 {
6260 annotate_field (11);
6261
6262 if (uiout->is_mi_like_p ())
6263 uiout->field_string ("installed",
6264 loc->inserted ? "y" : "n");
6265 else
6266 {
6267 if (loc->inserted)
6268 uiout->text ("\t");
6269 else
6270 uiout->text ("\tnot ");
6271 uiout->text ("installed on target\n");
6272 }
6273 }
6274 }
6275
6276 if (uiout->is_mi_like_p () && !part_of_multiple)
6277 {
6278 if (is_watchpoint (b))
6279 {
6280 struct watchpoint *w = (struct watchpoint *) b;
6281
6282 uiout->field_string ("original-location", w->exp_string);
6283 }
6284 else if (b->location != NULL
6285 && event_location_to_string (b->location.get ()) != NULL)
6286 uiout->field_string ("original-location",
6287 event_location_to_string (b->location.get ()));
6288 }
6289 }
6290
6291 /* See breakpoint.h. */
6292
6293 bool fix_multi_location_breakpoint_output_globally = false;
6294
6295 static void
6296 print_one_breakpoint (struct breakpoint *b,
6297 struct bp_location **last_loc,
6298 int allflag)
6299 {
6300 struct ui_out *uiout = current_uiout;
6301 bool use_fixed_output
6302 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6303 || fix_multi_location_breakpoint_output_globally);
6304
6305 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6306 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6307
6308 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6309 are outside. */
6310 if (!use_fixed_output)
6311 bkpt_tuple_emitter.reset ();
6312
6313 /* If this breakpoint has custom print function,
6314 it's already printed. Otherwise, print individual
6315 locations, if any. */
6316 if (b->ops == NULL
6317 || b->ops->print_one == NULL
6318 || allflag)
6319 {
6320 /* If breakpoint has a single location that is disabled, we
6321 print it as if it had several locations, since otherwise it's
6322 hard to represent "breakpoint enabled, location disabled"
6323 situation.
6324
6325 Note that while hardware watchpoints have several locations
6326 internally, that's not a property exposed to users.
6327
6328 Likewise, while catchpoints may be implemented with
6329 breakpoints (e.g., catch throw), that's not a property
6330 exposed to users. We do however display the internal
6331 breakpoint locations with "maint info breakpoints". */
6332 if (!is_hardware_watchpoint (b)
6333 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6334 || is_ada_exception_catchpoint (b))
6335 && (allflag
6336 || (b->loc && (b->loc->next || !b->loc->enabled))))
6337 {
6338 gdb::optional<ui_out_emit_list> locations_list;
6339
6340 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6341 MI record. For later versions, place breakpoint locations in a
6342 list. */
6343 if (uiout->is_mi_like_p () && use_fixed_output)
6344 locations_list.emplace (uiout, "locations");
6345
6346 int n = 1;
6347 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6348 {
6349 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6350 print_one_breakpoint_location (b, loc, n, last_loc,
6351 allflag, allflag);
6352 }
6353 }
6354 }
6355 }
6356
6357 static int
6358 breakpoint_address_bits (struct breakpoint *b)
6359 {
6360 int print_address_bits = 0;
6361 struct bp_location *loc;
6362
6363 /* Software watchpoints that aren't watching memory don't have an
6364 address to print. */
6365 if (is_no_memory_software_watchpoint (b))
6366 return 0;
6367
6368 for (loc = b->loc; loc; loc = loc->next)
6369 {
6370 int addr_bit;
6371
6372 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6373 if (addr_bit > print_address_bits)
6374 print_address_bits = addr_bit;
6375 }
6376
6377 return print_address_bits;
6378 }
6379
6380 /* See breakpoint.h. */
6381
6382 void
6383 print_breakpoint (breakpoint *b)
6384 {
6385 struct bp_location *dummy_loc = NULL;
6386 print_one_breakpoint (b, &dummy_loc, 0);
6387 }
6388
6389 /* Return true if this breakpoint was set by the user, false if it is
6390 internal or momentary. */
6391
6392 int
6393 user_breakpoint_p (struct breakpoint *b)
6394 {
6395 return b->number > 0;
6396 }
6397
6398 /* See breakpoint.h. */
6399
6400 int
6401 pending_breakpoint_p (struct breakpoint *b)
6402 {
6403 return b->loc == NULL;
6404 }
6405
6406 /* Print information on breakpoints (including watchpoints and tracepoints).
6407
6408 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6409 understood by number_or_range_parser. Only breakpoints included in this
6410 list are then printed.
6411
6412 If SHOW_INTERNAL is true, print internal breakpoints.
6413
6414 If FILTER is non-NULL, call it on each breakpoint and only include the
6415 ones for which it returns true.
6416
6417 Return the total number of breakpoints listed. */
6418
6419 static int
6420 breakpoint_1 (const char *bp_num_list, bool show_internal,
6421 int (*filter) (const struct breakpoint *))
6422 {
6423 struct breakpoint *b;
6424 struct bp_location *last_loc = NULL;
6425 int nr_printable_breakpoints;
6426 struct value_print_options opts;
6427 int print_address_bits = 0;
6428 int print_type_col_width = 14;
6429 struct ui_out *uiout = current_uiout;
6430
6431 get_user_print_options (&opts);
6432
6433 /* Compute the number of rows in the table, as well as the size
6434 required for address fields. */
6435 nr_printable_breakpoints = 0;
6436 ALL_BREAKPOINTS (b)
6437 {
6438 /* If we have a filter, only list the breakpoints it accepts. */
6439 if (filter && !filter (b))
6440 continue;
6441
6442 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6443 accept. Skip the others. */
6444 if (bp_num_list != NULL && *bp_num_list != '\0')
6445 {
6446 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6447 continue;
6448 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6449 continue;
6450 }
6451
6452 if (show_internal || user_breakpoint_p (b))
6453 {
6454 int addr_bit, type_len;
6455
6456 addr_bit = breakpoint_address_bits (b);
6457 if (addr_bit > print_address_bits)
6458 print_address_bits = addr_bit;
6459
6460 type_len = strlen (bptype_string (b->type));
6461 if (type_len > print_type_col_width)
6462 print_type_col_width = type_len;
6463
6464 nr_printable_breakpoints++;
6465 }
6466 }
6467
6468 {
6469 ui_out_emit_table table_emitter (uiout,
6470 opts.addressprint ? 6 : 5,
6471 nr_printable_breakpoints,
6472 "BreakpointTable");
6473
6474 if (nr_printable_breakpoints > 0)
6475 annotate_breakpoints_headers ();
6476 if (nr_printable_breakpoints > 0)
6477 annotate_field (0);
6478 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6479 if (nr_printable_breakpoints > 0)
6480 annotate_field (1);
6481 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6482 if (nr_printable_breakpoints > 0)
6483 annotate_field (2);
6484 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6485 if (nr_printable_breakpoints > 0)
6486 annotate_field (3);
6487 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6488 if (opts.addressprint)
6489 {
6490 if (nr_printable_breakpoints > 0)
6491 annotate_field (4);
6492 if (print_address_bits <= 32)
6493 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6494 else
6495 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6496 }
6497 if (nr_printable_breakpoints > 0)
6498 annotate_field (5);
6499 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6500 uiout->table_body ();
6501 if (nr_printable_breakpoints > 0)
6502 annotate_breakpoints_table ();
6503
6504 ALL_BREAKPOINTS (b)
6505 {
6506 QUIT;
6507 /* If we have a filter, only list the breakpoints it accepts. */
6508 if (filter && !filter (b))
6509 continue;
6510
6511 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6512 accept. Skip the others. */
6513
6514 if (bp_num_list != NULL && *bp_num_list != '\0')
6515 {
6516 if (show_internal) /* maintenance info breakpoint */
6517 {
6518 if (parse_and_eval_long (bp_num_list) != b->number)
6519 continue;
6520 }
6521 else /* all others */
6522 {
6523 if (!number_is_in_list (bp_num_list, b->number))
6524 continue;
6525 }
6526 }
6527 /* We only print out user settable breakpoints unless the
6528 show_internal is set. */
6529 if (show_internal || user_breakpoint_p (b))
6530 print_one_breakpoint (b, &last_loc, show_internal);
6531 }
6532 }
6533
6534 if (nr_printable_breakpoints == 0)
6535 {
6536 /* If there's a filter, let the caller decide how to report
6537 empty list. */
6538 if (!filter)
6539 {
6540 if (bp_num_list == NULL || *bp_num_list == '\0')
6541 uiout->message ("No breakpoints or watchpoints.\n");
6542 else
6543 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6544 bp_num_list);
6545 }
6546 }
6547 else
6548 {
6549 if (last_loc && !server_command)
6550 set_next_address (last_loc->gdbarch, last_loc->address);
6551 }
6552
6553 /* FIXME? Should this be moved up so that it is only called when
6554 there have been breakpoints? */
6555 annotate_breakpoints_table_end ();
6556
6557 return nr_printable_breakpoints;
6558 }
6559
6560 /* Display the value of default-collect in a way that is generally
6561 compatible with the breakpoint list. */
6562
6563 static void
6564 default_collect_info (void)
6565 {
6566 struct ui_out *uiout = current_uiout;
6567
6568 /* If it has no value (which is frequently the case), say nothing; a
6569 message like "No default-collect." gets in user's face when it's
6570 not wanted. */
6571 if (!*default_collect)
6572 return;
6573
6574 /* The following phrase lines up nicely with per-tracepoint collect
6575 actions. */
6576 uiout->text ("default collect ");
6577 uiout->field_string ("default-collect", default_collect);
6578 uiout->text (" \n");
6579 }
6580
6581 static void
6582 info_breakpoints_command (const char *args, int from_tty)
6583 {
6584 breakpoint_1 (args, false, NULL);
6585
6586 default_collect_info ();
6587 }
6588
6589 static void
6590 info_watchpoints_command (const char *args, int from_tty)
6591 {
6592 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6593 struct ui_out *uiout = current_uiout;
6594
6595 if (num_printed == 0)
6596 {
6597 if (args == NULL || *args == '\0')
6598 uiout->message ("No watchpoints.\n");
6599 else
6600 uiout->message ("No watchpoint matching '%s'.\n", args);
6601 }
6602 }
6603
6604 static void
6605 maintenance_info_breakpoints (const char *args, int from_tty)
6606 {
6607 breakpoint_1 (args, true, NULL);
6608
6609 default_collect_info ();
6610 }
6611
6612 static int
6613 breakpoint_has_pc (struct breakpoint *b,
6614 struct program_space *pspace,
6615 CORE_ADDR pc, struct obj_section *section)
6616 {
6617 struct bp_location *bl = b->loc;
6618
6619 for (; bl; bl = bl->next)
6620 {
6621 if (bl->pspace == pspace
6622 && bl->address == pc
6623 && (!overlay_debugging || bl->section == section))
6624 return 1;
6625 }
6626 return 0;
6627 }
6628
6629 /* Print a message describing any user-breakpoints set at PC. This
6630 concerns with logical breakpoints, so we match program spaces, not
6631 address spaces. */
6632
6633 static void
6634 describe_other_breakpoints (struct gdbarch *gdbarch,
6635 struct program_space *pspace, CORE_ADDR pc,
6636 struct obj_section *section, int thread)
6637 {
6638 int others = 0;
6639 struct breakpoint *b;
6640
6641 ALL_BREAKPOINTS (b)
6642 others += (user_breakpoint_p (b)
6643 && breakpoint_has_pc (b, pspace, pc, section));
6644 if (others > 0)
6645 {
6646 if (others == 1)
6647 printf_filtered (_("Note: breakpoint "));
6648 else /* if (others == ???) */
6649 printf_filtered (_("Note: breakpoints "));
6650 ALL_BREAKPOINTS (b)
6651 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6652 {
6653 others--;
6654 printf_filtered ("%d", b->number);
6655 if (b->thread == -1 && thread != -1)
6656 printf_filtered (" (all threads)");
6657 else if (b->thread != -1)
6658 printf_filtered (" (thread %d)", b->thread);
6659 printf_filtered ("%s%s ",
6660 ((b->enable_state == bp_disabled
6661 || b->enable_state == bp_call_disabled)
6662 ? " (disabled)"
6663 : ""),
6664 (others > 1) ? ","
6665 : ((others == 1) ? " and" : ""));
6666 }
6667 printf_filtered (_("also set at pc "));
6668 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6669 printf_filtered (".\n");
6670 }
6671 }
6672 \f
6673
6674 /* Return true iff it is meaningful to use the address member of LOC.
6675 For some breakpoint types, the locations' address members are
6676 irrelevant and it makes no sense to attempt to compare them to
6677 other addresses (or use them for any other purpose either).
6678
6679 More specifically, software watchpoints and catchpoints that are
6680 not backed by breakpoints always have a zero valued location
6681 address and we don't want to mark breakpoints of any of these types
6682 to be a duplicate of an actual breakpoint location at address
6683 zero. */
6684
6685 static bool
6686 bl_address_is_meaningful (bp_location *loc)
6687 {
6688 return loc->loc_type != bp_loc_other;
6689 }
6690
6691 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6692 true if LOC1 and LOC2 represent the same watchpoint location. */
6693
6694 static int
6695 watchpoint_locations_match (struct bp_location *loc1,
6696 struct bp_location *loc2)
6697 {
6698 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6699 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6700
6701 /* Both of them must exist. */
6702 gdb_assert (w1 != NULL);
6703 gdb_assert (w2 != NULL);
6704
6705 /* If the target can evaluate the condition expression in hardware,
6706 then we we need to insert both watchpoints even if they are at
6707 the same place. Otherwise the watchpoint will only trigger when
6708 the condition of whichever watchpoint was inserted evaluates to
6709 true, not giving a chance for GDB to check the condition of the
6710 other watchpoint. */
6711 if ((w1->cond_exp
6712 && target_can_accel_watchpoint_condition (loc1->address,
6713 loc1->length,
6714 loc1->watchpoint_type,
6715 w1->cond_exp.get ()))
6716 || (w2->cond_exp
6717 && target_can_accel_watchpoint_condition (loc2->address,
6718 loc2->length,
6719 loc2->watchpoint_type,
6720 w2->cond_exp.get ())))
6721 return 0;
6722
6723 /* Note that this checks the owner's type, not the location's. In
6724 case the target does not support read watchpoints, but does
6725 support access watchpoints, we'll have bp_read_watchpoint
6726 watchpoints with hw_access locations. Those should be considered
6727 duplicates of hw_read locations. The hw_read locations will
6728 become hw_access locations later. */
6729 return (loc1->owner->type == loc2->owner->type
6730 && loc1->pspace->aspace == loc2->pspace->aspace
6731 && loc1->address == loc2->address
6732 && loc1->length == loc2->length);
6733 }
6734
6735 /* See breakpoint.h. */
6736
6737 int
6738 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6739 const address_space *aspace2, CORE_ADDR addr2)
6740 {
6741 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6742 || aspace1 == aspace2)
6743 && addr1 == addr2);
6744 }
6745
6746 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6747 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6748 matches ASPACE2. On targets that have global breakpoints, the address
6749 space doesn't really matter. */
6750
6751 static int
6752 breakpoint_address_match_range (const address_space *aspace1,
6753 CORE_ADDR addr1,
6754 int len1, const address_space *aspace2,
6755 CORE_ADDR addr2)
6756 {
6757 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6758 || aspace1 == aspace2)
6759 && addr2 >= addr1 && addr2 < addr1 + len1);
6760 }
6761
6762 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6763 a ranged breakpoint. In most targets, a match happens only if ASPACE
6764 matches the breakpoint's address space. On targets that have global
6765 breakpoints, the address space doesn't really matter. */
6766
6767 static int
6768 breakpoint_location_address_match (struct bp_location *bl,
6769 const address_space *aspace,
6770 CORE_ADDR addr)
6771 {
6772 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6773 aspace, addr)
6774 || (bl->length
6775 && breakpoint_address_match_range (bl->pspace->aspace,
6776 bl->address, bl->length,
6777 aspace, addr)));
6778 }
6779
6780 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6781 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6782 match happens only if ASPACE matches the breakpoint's address
6783 space. On targets that have global breakpoints, the address space
6784 doesn't really matter. */
6785
6786 static int
6787 breakpoint_location_address_range_overlap (struct bp_location *bl,
6788 const address_space *aspace,
6789 CORE_ADDR addr, int len)
6790 {
6791 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6792 || bl->pspace->aspace == aspace)
6793 {
6794 int bl_len = bl->length != 0 ? bl->length : 1;
6795
6796 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6797 return 1;
6798 }
6799 return 0;
6800 }
6801
6802 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6803 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6804 true, otherwise returns false. */
6805
6806 static int
6807 tracepoint_locations_match (struct bp_location *loc1,
6808 struct bp_location *loc2)
6809 {
6810 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6811 /* Since tracepoint locations are never duplicated with others', tracepoint
6812 locations at the same address of different tracepoints are regarded as
6813 different locations. */
6814 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6815 else
6816 return 0;
6817 }
6818
6819 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6820 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6821 the same location. */
6822
6823 static int
6824 breakpoint_locations_match (struct bp_location *loc1,
6825 struct bp_location *loc2)
6826 {
6827 int hw_point1, hw_point2;
6828
6829 /* Both of them must not be in moribund_locations. */
6830 gdb_assert (loc1->owner != NULL);
6831 gdb_assert (loc2->owner != NULL);
6832
6833 hw_point1 = is_hardware_watchpoint (loc1->owner);
6834 hw_point2 = is_hardware_watchpoint (loc2->owner);
6835
6836 if (hw_point1 != hw_point2)
6837 return 0;
6838 else if (hw_point1)
6839 return watchpoint_locations_match (loc1, loc2);
6840 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6841 return tracepoint_locations_match (loc1, loc2);
6842 else
6843 /* We compare bp_location.length in order to cover ranged breakpoints. */
6844 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6845 loc2->pspace->aspace, loc2->address)
6846 && loc1->length == loc2->length);
6847 }
6848
6849 static void
6850 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6851 int bnum, int have_bnum)
6852 {
6853 /* The longest string possibly returned by hex_string_custom
6854 is 50 chars. These must be at least that big for safety. */
6855 char astr1[64];
6856 char astr2[64];
6857
6858 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6859 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6860 if (have_bnum)
6861 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6862 bnum, astr1, astr2);
6863 else
6864 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6865 }
6866
6867 /* Adjust a breakpoint's address to account for architectural
6868 constraints on breakpoint placement. Return the adjusted address.
6869 Note: Very few targets require this kind of adjustment. For most
6870 targets, this function is simply the identity function. */
6871
6872 static CORE_ADDR
6873 adjust_breakpoint_address (struct gdbarch *gdbarch,
6874 CORE_ADDR bpaddr, enum bptype bptype)
6875 {
6876 if (bptype == bp_watchpoint
6877 || bptype == bp_hardware_watchpoint
6878 || bptype == bp_read_watchpoint
6879 || bptype == bp_access_watchpoint
6880 || bptype == bp_catchpoint)
6881 {
6882 /* Watchpoints and the various bp_catch_* eventpoints should not
6883 have their addresses modified. */
6884 return bpaddr;
6885 }
6886 else if (bptype == bp_single_step)
6887 {
6888 /* Single-step breakpoints should not have their addresses
6889 modified. If there's any architectural constrain that
6890 applies to this address, then it should have already been
6891 taken into account when the breakpoint was created in the
6892 first place. If we didn't do this, stepping through e.g.,
6893 Thumb-2 IT blocks would break. */
6894 return bpaddr;
6895 }
6896 else
6897 {
6898 CORE_ADDR adjusted_bpaddr = bpaddr;
6899
6900 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6901 {
6902 /* Some targets have architectural constraints on the placement
6903 of breakpoint instructions. Obtain the adjusted address. */
6904 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6905 }
6906
6907 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6908
6909 /* An adjusted breakpoint address can significantly alter
6910 a user's expectations. Print a warning if an adjustment
6911 is required. */
6912 if (adjusted_bpaddr != bpaddr)
6913 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6914
6915 return adjusted_bpaddr;
6916 }
6917 }
6918
6919 static bp_loc_type
6920 bp_location_from_bp_type (bptype type)
6921 {
6922 switch (type)
6923 {
6924 case bp_breakpoint:
6925 case bp_single_step:
6926 case bp_until:
6927 case bp_finish:
6928 case bp_longjmp:
6929 case bp_longjmp_resume:
6930 case bp_longjmp_call_dummy:
6931 case bp_exception:
6932 case bp_exception_resume:
6933 case bp_step_resume:
6934 case bp_hp_step_resume:
6935 case bp_watchpoint_scope:
6936 case bp_call_dummy:
6937 case bp_std_terminate:
6938 case bp_shlib_event:
6939 case bp_thread_event:
6940 case bp_overlay_event:
6941 case bp_jit_event:
6942 case bp_longjmp_master:
6943 case bp_std_terminate_master:
6944 case bp_exception_master:
6945 case bp_gnu_ifunc_resolver:
6946 case bp_gnu_ifunc_resolver_return:
6947 case bp_dprintf:
6948 return bp_loc_software_breakpoint;
6949 case bp_hardware_breakpoint:
6950 return bp_loc_hardware_breakpoint;
6951 case bp_hardware_watchpoint:
6952 case bp_read_watchpoint:
6953 case bp_access_watchpoint:
6954 return bp_loc_hardware_watchpoint;
6955 case bp_watchpoint:
6956 case bp_catchpoint:
6957 case bp_tracepoint:
6958 case bp_fast_tracepoint:
6959 case bp_static_tracepoint:
6960 return bp_loc_other;
6961 default:
6962 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6963 }
6964 }
6965
6966 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6967 {
6968 this->owner = owner;
6969 this->cond_bytecode = NULL;
6970 this->shlib_disabled = 0;
6971 this->enabled = 1;
6972
6973 this->loc_type = type;
6974
6975 if (this->loc_type == bp_loc_software_breakpoint
6976 || this->loc_type == bp_loc_hardware_breakpoint)
6977 mark_breakpoint_location_modified (this);
6978
6979 this->refc = 1;
6980 }
6981
6982 bp_location::bp_location (breakpoint *owner)
6983 : bp_location::bp_location (owner,
6984 bp_location_from_bp_type (owner->type))
6985 {
6986 }
6987
6988 /* Allocate a struct bp_location. */
6989
6990 static struct bp_location *
6991 allocate_bp_location (struct breakpoint *bpt)
6992 {
6993 return bpt->ops->allocate_location (bpt);
6994 }
6995
6996 static void
6997 free_bp_location (struct bp_location *loc)
6998 {
6999 delete loc;
7000 }
7001
7002 /* Increment reference count. */
7003
7004 static void
7005 incref_bp_location (struct bp_location *bl)
7006 {
7007 ++bl->refc;
7008 }
7009
7010 /* Decrement reference count. If the reference count reaches 0,
7011 destroy the bp_location. Sets *BLP to NULL. */
7012
7013 static void
7014 decref_bp_location (struct bp_location **blp)
7015 {
7016 gdb_assert ((*blp)->refc > 0);
7017
7018 if (--(*blp)->refc == 0)
7019 free_bp_location (*blp);
7020 *blp = NULL;
7021 }
7022
7023 /* Add breakpoint B at the end of the global breakpoint chain. */
7024
7025 static breakpoint *
7026 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7027 {
7028 struct breakpoint *b1;
7029 struct breakpoint *result = b.get ();
7030
7031 /* Add this breakpoint to the end of the chain so that a list of
7032 breakpoints will come out in order of increasing numbers. */
7033
7034 b1 = breakpoint_chain;
7035 if (b1 == 0)
7036 breakpoint_chain = b.release ();
7037 else
7038 {
7039 while (b1->next)
7040 b1 = b1->next;
7041 b1->next = b.release ();
7042 }
7043
7044 return result;
7045 }
7046
7047 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7048
7049 static void
7050 init_raw_breakpoint_without_location (struct breakpoint *b,
7051 struct gdbarch *gdbarch,
7052 enum bptype bptype,
7053 const struct breakpoint_ops *ops)
7054 {
7055 gdb_assert (ops != NULL);
7056
7057 b->ops = ops;
7058 b->type = bptype;
7059 b->gdbarch = gdbarch;
7060 b->language = current_language->la_language;
7061 b->input_radix = input_radix;
7062 b->related_breakpoint = b;
7063 }
7064
7065 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7066 that has type BPTYPE and has no locations as yet. */
7067
7068 static struct breakpoint *
7069 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7070 enum bptype bptype,
7071 const struct breakpoint_ops *ops)
7072 {
7073 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7074
7075 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7076 return add_to_breakpoint_chain (std::move (b));
7077 }
7078
7079 /* Initialize loc->function_name. */
7080
7081 static void
7082 set_breakpoint_location_function (struct bp_location *loc)
7083 {
7084 gdb_assert (loc->owner != NULL);
7085
7086 if (loc->owner->type == bp_breakpoint
7087 || loc->owner->type == bp_hardware_breakpoint
7088 || is_tracepoint (loc->owner))
7089 {
7090 const char *function_name;
7091
7092 if (loc->msymbol != NULL
7093 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7094 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7095 {
7096 struct breakpoint *b = loc->owner;
7097
7098 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7099
7100 if (b->type == bp_breakpoint && b->loc == loc
7101 && loc->next == NULL && b->related_breakpoint == b)
7102 {
7103 /* Create only the whole new breakpoint of this type but do not
7104 mess more complicated breakpoints with multiple locations. */
7105 b->type = bp_gnu_ifunc_resolver;
7106 /* Remember the resolver's address for use by the return
7107 breakpoint. */
7108 loc->related_address = loc->address;
7109 }
7110 }
7111 else
7112 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7113
7114 if (function_name)
7115 loc->function_name = xstrdup (function_name);
7116 }
7117 }
7118
7119 /* Attempt to determine architecture of location identified by SAL. */
7120 struct gdbarch *
7121 get_sal_arch (struct symtab_and_line sal)
7122 {
7123 if (sal.section)
7124 return get_objfile_arch (sal.section->objfile);
7125 if (sal.symtab)
7126 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7127
7128 return NULL;
7129 }
7130
7131 /* Low level routine for partially initializing a breakpoint of type
7132 BPTYPE. The newly created breakpoint's address, section, source
7133 file name, and line number are provided by SAL.
7134
7135 It is expected that the caller will complete the initialization of
7136 the newly created breakpoint struct as well as output any status
7137 information regarding the creation of a new breakpoint. */
7138
7139 static void
7140 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7141 struct symtab_and_line sal, enum bptype bptype,
7142 const struct breakpoint_ops *ops)
7143 {
7144 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7145
7146 add_location_to_breakpoint (b, &sal);
7147
7148 if (bptype != bp_catchpoint)
7149 gdb_assert (sal.pspace != NULL);
7150
7151 /* Store the program space that was used to set the breakpoint,
7152 except for ordinary breakpoints, which are independent of the
7153 program space. */
7154 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7155 b->pspace = sal.pspace;
7156 }
7157
7158 /* set_raw_breakpoint is a low level routine for allocating and
7159 partially initializing a breakpoint of type BPTYPE. The newly
7160 created breakpoint's address, section, source file name, and line
7161 number are provided by SAL. The newly created and partially
7162 initialized breakpoint is added to the breakpoint chain and
7163 is also returned as the value of this function.
7164
7165 It is expected that the caller will complete the initialization of
7166 the newly created breakpoint struct as well as output any status
7167 information regarding the creation of a new breakpoint. In
7168 particular, set_raw_breakpoint does NOT set the breakpoint
7169 number! Care should be taken to not allow an error to occur
7170 prior to completing the initialization of the breakpoint. If this
7171 should happen, a bogus breakpoint will be left on the chain. */
7172
7173 struct breakpoint *
7174 set_raw_breakpoint (struct gdbarch *gdbarch,
7175 struct symtab_and_line sal, enum bptype bptype,
7176 const struct breakpoint_ops *ops)
7177 {
7178 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7179
7180 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7181 return add_to_breakpoint_chain (std::move (b));
7182 }
7183
7184 /* Call this routine when stepping and nexting to enable a breakpoint
7185 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7186 initiated the operation. */
7187
7188 void
7189 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7190 {
7191 struct breakpoint *b, *b_tmp;
7192 int thread = tp->global_num;
7193
7194 /* To avoid having to rescan all objfile symbols at every step,
7195 we maintain a list of continually-inserted but always disabled
7196 longjmp "master" breakpoints. Here, we simply create momentary
7197 clones of those and enable them for the requested thread. */
7198 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7199 if (b->pspace == current_program_space
7200 && (b->type == bp_longjmp_master
7201 || b->type == bp_exception_master))
7202 {
7203 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7204 struct breakpoint *clone;
7205
7206 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7207 after their removal. */
7208 clone = momentary_breakpoint_from_master (b, type,
7209 &momentary_breakpoint_ops, 1);
7210 clone->thread = thread;
7211 }
7212
7213 tp->initiating_frame = frame;
7214 }
7215
7216 /* Delete all longjmp breakpoints from THREAD. */
7217 void
7218 delete_longjmp_breakpoint (int thread)
7219 {
7220 struct breakpoint *b, *b_tmp;
7221
7222 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7223 if (b->type == bp_longjmp || b->type == bp_exception)
7224 {
7225 if (b->thread == thread)
7226 delete_breakpoint (b);
7227 }
7228 }
7229
7230 void
7231 delete_longjmp_breakpoint_at_next_stop (int thread)
7232 {
7233 struct breakpoint *b, *b_tmp;
7234
7235 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7236 if (b->type == bp_longjmp || b->type == bp_exception)
7237 {
7238 if (b->thread == thread)
7239 b->disposition = disp_del_at_next_stop;
7240 }
7241 }
7242
7243 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7244 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7245 pointer to any of them. Return NULL if this system cannot place longjmp
7246 breakpoints. */
7247
7248 struct breakpoint *
7249 set_longjmp_breakpoint_for_call_dummy (void)
7250 {
7251 struct breakpoint *b, *retval = NULL;
7252
7253 ALL_BREAKPOINTS (b)
7254 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7255 {
7256 struct breakpoint *new_b;
7257
7258 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7259 &momentary_breakpoint_ops,
7260 1);
7261 new_b->thread = inferior_thread ()->global_num;
7262
7263 /* Link NEW_B into the chain of RETVAL breakpoints. */
7264
7265 gdb_assert (new_b->related_breakpoint == new_b);
7266 if (retval == NULL)
7267 retval = new_b;
7268 new_b->related_breakpoint = retval;
7269 while (retval->related_breakpoint != new_b->related_breakpoint)
7270 retval = retval->related_breakpoint;
7271 retval->related_breakpoint = new_b;
7272 }
7273
7274 return retval;
7275 }
7276
7277 /* Verify all existing dummy frames and their associated breakpoints for
7278 TP. Remove those which can no longer be found in the current frame
7279 stack.
7280
7281 You should call this function only at places where it is safe to currently
7282 unwind the whole stack. Failed stack unwind would discard live dummy
7283 frames. */
7284
7285 void
7286 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7287 {
7288 struct breakpoint *b, *b_tmp;
7289
7290 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7291 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7292 {
7293 struct breakpoint *dummy_b = b->related_breakpoint;
7294
7295 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7296 dummy_b = dummy_b->related_breakpoint;
7297 if (dummy_b->type != bp_call_dummy
7298 || frame_find_by_id (dummy_b->frame_id) != NULL)
7299 continue;
7300
7301 dummy_frame_discard (dummy_b->frame_id, tp);
7302
7303 while (b->related_breakpoint != b)
7304 {
7305 if (b_tmp == b->related_breakpoint)
7306 b_tmp = b->related_breakpoint->next;
7307 delete_breakpoint (b->related_breakpoint);
7308 }
7309 delete_breakpoint (b);
7310 }
7311 }
7312
7313 void
7314 enable_overlay_breakpoints (void)
7315 {
7316 struct breakpoint *b;
7317
7318 ALL_BREAKPOINTS (b)
7319 if (b->type == bp_overlay_event)
7320 {
7321 b->enable_state = bp_enabled;
7322 update_global_location_list (UGLL_MAY_INSERT);
7323 overlay_events_enabled = 1;
7324 }
7325 }
7326
7327 void
7328 disable_overlay_breakpoints (void)
7329 {
7330 struct breakpoint *b;
7331
7332 ALL_BREAKPOINTS (b)
7333 if (b->type == bp_overlay_event)
7334 {
7335 b->enable_state = bp_disabled;
7336 update_global_location_list (UGLL_DONT_INSERT);
7337 overlay_events_enabled = 0;
7338 }
7339 }
7340
7341 /* Set an active std::terminate breakpoint for each std::terminate
7342 master breakpoint. */
7343 void
7344 set_std_terminate_breakpoint (void)
7345 {
7346 struct breakpoint *b, *b_tmp;
7347
7348 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7349 if (b->pspace == current_program_space
7350 && b->type == bp_std_terminate_master)
7351 {
7352 momentary_breakpoint_from_master (b, bp_std_terminate,
7353 &momentary_breakpoint_ops, 1);
7354 }
7355 }
7356
7357 /* Delete all the std::terminate breakpoints. */
7358 void
7359 delete_std_terminate_breakpoint (void)
7360 {
7361 struct breakpoint *b, *b_tmp;
7362
7363 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7364 if (b->type == bp_std_terminate)
7365 delete_breakpoint (b);
7366 }
7367
7368 struct breakpoint *
7369 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7370 {
7371 struct breakpoint *b;
7372
7373 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7374 &internal_breakpoint_ops);
7375
7376 b->enable_state = bp_enabled;
7377 /* location has to be used or breakpoint_re_set will delete me. */
7378 b->location = new_address_location (b->loc->address, NULL, 0);
7379
7380 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7381
7382 return b;
7383 }
7384
7385 struct lang_and_radix
7386 {
7387 enum language lang;
7388 int radix;
7389 };
7390
7391 /* Create a breakpoint for JIT code registration and unregistration. */
7392
7393 struct breakpoint *
7394 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7395 {
7396 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7397 &internal_breakpoint_ops);
7398 }
7399
7400 /* Remove JIT code registration and unregistration breakpoint(s). */
7401
7402 void
7403 remove_jit_event_breakpoints (void)
7404 {
7405 struct breakpoint *b, *b_tmp;
7406
7407 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7408 if (b->type == bp_jit_event
7409 && b->loc->pspace == current_program_space)
7410 delete_breakpoint (b);
7411 }
7412
7413 void
7414 remove_solib_event_breakpoints (void)
7415 {
7416 struct breakpoint *b, *b_tmp;
7417
7418 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7419 if (b->type == bp_shlib_event
7420 && b->loc->pspace == current_program_space)
7421 delete_breakpoint (b);
7422 }
7423
7424 /* See breakpoint.h. */
7425
7426 void
7427 remove_solib_event_breakpoints_at_next_stop (void)
7428 {
7429 struct breakpoint *b, *b_tmp;
7430
7431 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7432 if (b->type == bp_shlib_event
7433 && b->loc->pspace == current_program_space)
7434 b->disposition = disp_del_at_next_stop;
7435 }
7436
7437 /* Helper for create_solib_event_breakpoint /
7438 create_and_insert_solib_event_breakpoint. Allows specifying which
7439 INSERT_MODE to pass through to update_global_location_list. */
7440
7441 static struct breakpoint *
7442 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7443 enum ugll_insert_mode insert_mode)
7444 {
7445 struct breakpoint *b;
7446
7447 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7448 &internal_breakpoint_ops);
7449 update_global_location_list_nothrow (insert_mode);
7450 return b;
7451 }
7452
7453 struct breakpoint *
7454 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7455 {
7456 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7457 }
7458
7459 /* See breakpoint.h. */
7460
7461 struct breakpoint *
7462 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7463 {
7464 struct breakpoint *b;
7465
7466 /* Explicitly tell update_global_location_list to insert
7467 locations. */
7468 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7469 if (!b->loc->inserted)
7470 {
7471 delete_breakpoint (b);
7472 return NULL;
7473 }
7474 return b;
7475 }
7476
7477 /* Disable any breakpoints that are on code in shared libraries. Only
7478 apply to enabled breakpoints, disabled ones can just stay disabled. */
7479
7480 void
7481 disable_breakpoints_in_shlibs (void)
7482 {
7483 struct bp_location *loc, **locp_tmp;
7484
7485 ALL_BP_LOCATIONS (loc, locp_tmp)
7486 {
7487 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7488 struct breakpoint *b = loc->owner;
7489
7490 /* We apply the check to all breakpoints, including disabled for
7491 those with loc->duplicate set. This is so that when breakpoint
7492 becomes enabled, or the duplicate is removed, gdb will try to
7493 insert all breakpoints. If we don't set shlib_disabled here,
7494 we'll try to insert those breakpoints and fail. */
7495 if (((b->type == bp_breakpoint)
7496 || (b->type == bp_jit_event)
7497 || (b->type == bp_hardware_breakpoint)
7498 || (is_tracepoint (b)))
7499 && loc->pspace == current_program_space
7500 && !loc->shlib_disabled
7501 && solib_name_from_address (loc->pspace, loc->address)
7502 )
7503 {
7504 loc->shlib_disabled = 1;
7505 }
7506 }
7507 }
7508
7509 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7510 notification of unloaded_shlib. Only apply to enabled breakpoints,
7511 disabled ones can just stay disabled. */
7512
7513 static void
7514 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7515 {
7516 struct bp_location *loc, **locp_tmp;
7517 int disabled_shlib_breaks = 0;
7518
7519 ALL_BP_LOCATIONS (loc, locp_tmp)
7520 {
7521 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7522 struct breakpoint *b = loc->owner;
7523
7524 if (solib->pspace == loc->pspace
7525 && !loc->shlib_disabled
7526 && (((b->type == bp_breakpoint
7527 || b->type == bp_jit_event
7528 || b->type == bp_hardware_breakpoint)
7529 && (loc->loc_type == bp_loc_hardware_breakpoint
7530 || loc->loc_type == bp_loc_software_breakpoint))
7531 || is_tracepoint (b))
7532 && solib_contains_address_p (solib, loc->address))
7533 {
7534 loc->shlib_disabled = 1;
7535 /* At this point, we cannot rely on remove_breakpoint
7536 succeeding so we must mark the breakpoint as not inserted
7537 to prevent future errors occurring in remove_breakpoints. */
7538 loc->inserted = 0;
7539
7540 /* This may cause duplicate notifications for the same breakpoint. */
7541 gdb::observers::breakpoint_modified.notify (b);
7542
7543 if (!disabled_shlib_breaks)
7544 {
7545 target_terminal::ours_for_output ();
7546 warning (_("Temporarily disabling breakpoints "
7547 "for unloaded shared library \"%s\""),
7548 solib->so_name);
7549 }
7550 disabled_shlib_breaks = 1;
7551 }
7552 }
7553 }
7554
7555 /* Disable any breakpoints and tracepoints in OBJFILE upon
7556 notification of free_objfile. Only apply to enabled breakpoints,
7557 disabled ones can just stay disabled. */
7558
7559 static void
7560 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7561 {
7562 struct breakpoint *b;
7563
7564 if (objfile == NULL)
7565 return;
7566
7567 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7568 managed by the user with add-symbol-file/remove-symbol-file.
7569 Similarly to how breakpoints in shared libraries are handled in
7570 response to "nosharedlibrary", mark breakpoints in such modules
7571 shlib_disabled so they end up uninserted on the next global
7572 location list update. Shared libraries not loaded by the user
7573 aren't handled here -- they're already handled in
7574 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7575 solib_unloaded observer. We skip objfiles that are not
7576 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7577 main objfile). */
7578 if ((objfile->flags & OBJF_SHARED) == 0
7579 || (objfile->flags & OBJF_USERLOADED) == 0)
7580 return;
7581
7582 ALL_BREAKPOINTS (b)
7583 {
7584 struct bp_location *loc;
7585 int bp_modified = 0;
7586
7587 if (!is_breakpoint (b) && !is_tracepoint (b))
7588 continue;
7589
7590 for (loc = b->loc; loc != NULL; loc = loc->next)
7591 {
7592 CORE_ADDR loc_addr = loc->address;
7593
7594 if (loc->loc_type != bp_loc_hardware_breakpoint
7595 && loc->loc_type != bp_loc_software_breakpoint)
7596 continue;
7597
7598 if (loc->shlib_disabled != 0)
7599 continue;
7600
7601 if (objfile->pspace != loc->pspace)
7602 continue;
7603
7604 if (loc->loc_type != bp_loc_hardware_breakpoint
7605 && loc->loc_type != bp_loc_software_breakpoint)
7606 continue;
7607
7608 if (is_addr_in_objfile (loc_addr, objfile))
7609 {
7610 loc->shlib_disabled = 1;
7611 /* At this point, we don't know whether the object was
7612 unmapped from the inferior or not, so leave the
7613 inserted flag alone. We'll handle failure to
7614 uninsert quietly, in case the object was indeed
7615 unmapped. */
7616
7617 mark_breakpoint_location_modified (loc);
7618
7619 bp_modified = 1;
7620 }
7621 }
7622
7623 if (bp_modified)
7624 gdb::observers::breakpoint_modified.notify (b);
7625 }
7626 }
7627
7628 /* FORK & VFORK catchpoints. */
7629
7630 /* An instance of this type is used to represent a fork or vfork
7631 catchpoint. A breakpoint is really of this type iff its ops pointer points
7632 to CATCH_FORK_BREAKPOINT_OPS. */
7633
7634 struct fork_catchpoint : public breakpoint
7635 {
7636 /* Process id of a child process whose forking triggered this
7637 catchpoint. This field is only valid immediately after this
7638 catchpoint has triggered. */
7639 ptid_t forked_inferior_pid;
7640 };
7641
7642 /* Implement the "insert" breakpoint_ops method for fork
7643 catchpoints. */
7644
7645 static int
7646 insert_catch_fork (struct bp_location *bl)
7647 {
7648 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7649 }
7650
7651 /* Implement the "remove" breakpoint_ops method for fork
7652 catchpoints. */
7653
7654 static int
7655 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7656 {
7657 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7658 }
7659
7660 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7661 catchpoints. */
7662
7663 static int
7664 breakpoint_hit_catch_fork (const struct bp_location *bl,
7665 const address_space *aspace, CORE_ADDR bp_addr,
7666 const struct target_waitstatus *ws)
7667 {
7668 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7669
7670 if (ws->kind != TARGET_WAITKIND_FORKED)
7671 return 0;
7672
7673 c->forked_inferior_pid = ws->value.related_pid;
7674 return 1;
7675 }
7676
7677 /* Implement the "print_it" breakpoint_ops method for fork
7678 catchpoints. */
7679
7680 static enum print_stop_action
7681 print_it_catch_fork (bpstat bs)
7682 {
7683 struct ui_out *uiout = current_uiout;
7684 struct breakpoint *b = bs->breakpoint_at;
7685 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7686
7687 annotate_catchpoint (b->number);
7688 maybe_print_thread_hit_breakpoint (uiout);
7689 if (b->disposition == disp_del)
7690 uiout->text ("Temporary catchpoint ");
7691 else
7692 uiout->text ("Catchpoint ");
7693 if (uiout->is_mi_like_p ())
7694 {
7695 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7696 uiout->field_string ("disp", bpdisp_text (b->disposition));
7697 }
7698 uiout->field_int ("bkptno", b->number);
7699 uiout->text (" (forked process ");
7700 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7701 uiout->text ("), ");
7702 return PRINT_SRC_AND_LOC;
7703 }
7704
7705 /* Implement the "print_one" breakpoint_ops method for fork
7706 catchpoints. */
7707
7708 static void
7709 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7710 {
7711 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7712 struct value_print_options opts;
7713 struct ui_out *uiout = current_uiout;
7714
7715 get_user_print_options (&opts);
7716
7717 /* Field 4, the address, is omitted (which makes the columns not
7718 line up too nicely with the headers, but the effect is relatively
7719 readable). */
7720 if (opts.addressprint)
7721 uiout->field_skip ("addr");
7722 annotate_field (5);
7723 uiout->text ("fork");
7724 if (c->forked_inferior_pid != null_ptid)
7725 {
7726 uiout->text (", process ");
7727 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7728 uiout->spaces (1);
7729 }
7730
7731 if (uiout->is_mi_like_p ())
7732 uiout->field_string ("catch-type", "fork");
7733 }
7734
7735 /* Implement the "print_mention" breakpoint_ops method for fork
7736 catchpoints. */
7737
7738 static void
7739 print_mention_catch_fork (struct breakpoint *b)
7740 {
7741 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7742 }
7743
7744 /* Implement the "print_recreate" breakpoint_ops method for fork
7745 catchpoints. */
7746
7747 static void
7748 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7749 {
7750 fprintf_unfiltered (fp, "catch fork");
7751 print_recreate_thread (b, fp);
7752 }
7753
7754 /* The breakpoint_ops structure to be used in fork catchpoints. */
7755
7756 static struct breakpoint_ops catch_fork_breakpoint_ops;
7757
7758 /* Implement the "insert" breakpoint_ops method for vfork
7759 catchpoints. */
7760
7761 static int
7762 insert_catch_vfork (struct bp_location *bl)
7763 {
7764 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7765 }
7766
7767 /* Implement the "remove" breakpoint_ops method for vfork
7768 catchpoints. */
7769
7770 static int
7771 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7772 {
7773 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7774 }
7775
7776 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7777 catchpoints. */
7778
7779 static int
7780 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7781 const address_space *aspace, CORE_ADDR bp_addr,
7782 const struct target_waitstatus *ws)
7783 {
7784 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7785
7786 if (ws->kind != TARGET_WAITKIND_VFORKED)
7787 return 0;
7788
7789 c->forked_inferior_pid = ws->value.related_pid;
7790 return 1;
7791 }
7792
7793 /* Implement the "print_it" breakpoint_ops method for vfork
7794 catchpoints. */
7795
7796 static enum print_stop_action
7797 print_it_catch_vfork (bpstat bs)
7798 {
7799 struct ui_out *uiout = current_uiout;
7800 struct breakpoint *b = bs->breakpoint_at;
7801 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7802
7803 annotate_catchpoint (b->number);
7804 maybe_print_thread_hit_breakpoint (uiout);
7805 if (b->disposition == disp_del)
7806 uiout->text ("Temporary catchpoint ");
7807 else
7808 uiout->text ("Catchpoint ");
7809 if (uiout->is_mi_like_p ())
7810 {
7811 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7812 uiout->field_string ("disp", bpdisp_text (b->disposition));
7813 }
7814 uiout->field_int ("bkptno", b->number);
7815 uiout->text (" (vforked process ");
7816 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7817 uiout->text ("), ");
7818 return PRINT_SRC_AND_LOC;
7819 }
7820
7821 /* Implement the "print_one" breakpoint_ops method for vfork
7822 catchpoints. */
7823
7824 static void
7825 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7826 {
7827 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7828 struct value_print_options opts;
7829 struct ui_out *uiout = current_uiout;
7830
7831 get_user_print_options (&opts);
7832 /* Field 4, the address, is omitted (which makes the columns not
7833 line up too nicely with the headers, but the effect is relatively
7834 readable). */
7835 if (opts.addressprint)
7836 uiout->field_skip ("addr");
7837 annotate_field (5);
7838 uiout->text ("vfork");
7839 if (c->forked_inferior_pid != null_ptid)
7840 {
7841 uiout->text (", process ");
7842 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7843 uiout->spaces (1);
7844 }
7845
7846 if (uiout->is_mi_like_p ())
7847 uiout->field_string ("catch-type", "vfork");
7848 }
7849
7850 /* Implement the "print_mention" breakpoint_ops method for vfork
7851 catchpoints. */
7852
7853 static void
7854 print_mention_catch_vfork (struct breakpoint *b)
7855 {
7856 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7857 }
7858
7859 /* Implement the "print_recreate" breakpoint_ops method for vfork
7860 catchpoints. */
7861
7862 static void
7863 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7864 {
7865 fprintf_unfiltered (fp, "catch vfork");
7866 print_recreate_thread (b, fp);
7867 }
7868
7869 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7870
7871 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7872
7873 /* An instance of this type is used to represent an solib catchpoint.
7874 A breakpoint is really of this type iff its ops pointer points to
7875 CATCH_SOLIB_BREAKPOINT_OPS. */
7876
7877 struct solib_catchpoint : public breakpoint
7878 {
7879 ~solib_catchpoint () override;
7880
7881 /* True for "catch load", false for "catch unload". */
7882 unsigned char is_load;
7883
7884 /* Regular expression to match, if any. COMPILED is only valid when
7885 REGEX is non-NULL. */
7886 char *regex;
7887 std::unique_ptr<compiled_regex> compiled;
7888 };
7889
7890 solib_catchpoint::~solib_catchpoint ()
7891 {
7892 xfree (this->regex);
7893 }
7894
7895 static int
7896 insert_catch_solib (struct bp_location *ignore)
7897 {
7898 return 0;
7899 }
7900
7901 static int
7902 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7903 {
7904 return 0;
7905 }
7906
7907 static int
7908 breakpoint_hit_catch_solib (const struct bp_location *bl,
7909 const address_space *aspace,
7910 CORE_ADDR bp_addr,
7911 const struct target_waitstatus *ws)
7912 {
7913 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7914 struct breakpoint *other;
7915
7916 if (ws->kind == TARGET_WAITKIND_LOADED)
7917 return 1;
7918
7919 ALL_BREAKPOINTS (other)
7920 {
7921 struct bp_location *other_bl;
7922
7923 if (other == bl->owner)
7924 continue;
7925
7926 if (other->type != bp_shlib_event)
7927 continue;
7928
7929 if (self->pspace != NULL && other->pspace != self->pspace)
7930 continue;
7931
7932 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7933 {
7934 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7935 return 1;
7936 }
7937 }
7938
7939 return 0;
7940 }
7941
7942 static void
7943 check_status_catch_solib (struct bpstats *bs)
7944 {
7945 struct solib_catchpoint *self
7946 = (struct solib_catchpoint *) bs->breakpoint_at;
7947
7948 if (self->is_load)
7949 {
7950 for (so_list *iter : current_program_space->added_solibs)
7951 {
7952 if (!self->regex
7953 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7954 return;
7955 }
7956 }
7957 else
7958 {
7959 for (const std::string &iter : current_program_space->deleted_solibs)
7960 {
7961 if (!self->regex
7962 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7963 return;
7964 }
7965 }
7966
7967 bs->stop = 0;
7968 bs->print_it = print_it_noop;
7969 }
7970
7971 static enum print_stop_action
7972 print_it_catch_solib (bpstat bs)
7973 {
7974 struct breakpoint *b = bs->breakpoint_at;
7975 struct ui_out *uiout = current_uiout;
7976
7977 annotate_catchpoint (b->number);
7978 maybe_print_thread_hit_breakpoint (uiout);
7979 if (b->disposition == disp_del)
7980 uiout->text ("Temporary catchpoint ");
7981 else
7982 uiout->text ("Catchpoint ");
7983 uiout->field_int ("bkptno", b->number);
7984 uiout->text ("\n");
7985 if (uiout->is_mi_like_p ())
7986 uiout->field_string ("disp", bpdisp_text (b->disposition));
7987 print_solib_event (1);
7988 return PRINT_SRC_AND_LOC;
7989 }
7990
7991 static void
7992 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7993 {
7994 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7995 struct value_print_options opts;
7996 struct ui_out *uiout = current_uiout;
7997
7998 get_user_print_options (&opts);
7999 /* Field 4, the address, is omitted (which makes the columns not
8000 line up too nicely with the headers, but the effect is relatively
8001 readable). */
8002 if (opts.addressprint)
8003 {
8004 annotate_field (4);
8005 uiout->field_skip ("addr");
8006 }
8007
8008 std::string msg;
8009 annotate_field (5);
8010 if (self->is_load)
8011 {
8012 if (self->regex)
8013 msg = string_printf (_("load of library matching %s"), self->regex);
8014 else
8015 msg = _("load of library");
8016 }
8017 else
8018 {
8019 if (self->regex)
8020 msg = string_printf (_("unload of library matching %s"), self->regex);
8021 else
8022 msg = _("unload of library");
8023 }
8024 uiout->field_string ("what", msg);
8025
8026 if (uiout->is_mi_like_p ())
8027 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8028 }
8029
8030 static void
8031 print_mention_catch_solib (struct breakpoint *b)
8032 {
8033 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8034
8035 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8036 self->is_load ? "load" : "unload");
8037 }
8038
8039 static void
8040 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8041 {
8042 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8043
8044 fprintf_unfiltered (fp, "%s %s",
8045 b->disposition == disp_del ? "tcatch" : "catch",
8046 self->is_load ? "load" : "unload");
8047 if (self->regex)
8048 fprintf_unfiltered (fp, " %s", self->regex);
8049 fprintf_unfiltered (fp, "\n");
8050 }
8051
8052 static struct breakpoint_ops catch_solib_breakpoint_ops;
8053
8054 /* Shared helper function (MI and CLI) for creating and installing
8055 a shared object event catchpoint. If IS_LOAD is non-zero then
8056 the events to be caught are load events, otherwise they are
8057 unload events. If IS_TEMP is non-zero the catchpoint is a
8058 temporary one. If ENABLED is non-zero the catchpoint is
8059 created in an enabled state. */
8060
8061 void
8062 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8063 {
8064 struct gdbarch *gdbarch = get_current_arch ();
8065
8066 if (!arg)
8067 arg = "";
8068 arg = skip_spaces (arg);
8069
8070 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8071
8072 if (*arg != '\0')
8073 {
8074 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8075 _("Invalid regexp")));
8076 c->regex = xstrdup (arg);
8077 }
8078
8079 c->is_load = is_load;
8080 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8081 &catch_solib_breakpoint_ops);
8082
8083 c->enable_state = enabled ? bp_enabled : bp_disabled;
8084
8085 install_breakpoint (0, std::move (c), 1);
8086 }
8087
8088 /* A helper function that does all the work for "catch load" and
8089 "catch unload". */
8090
8091 static void
8092 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8093 struct cmd_list_element *command)
8094 {
8095 int tempflag;
8096 const int enabled = 1;
8097
8098 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8099
8100 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8101 }
8102
8103 static void
8104 catch_load_command_1 (const char *arg, int from_tty,
8105 struct cmd_list_element *command)
8106 {
8107 catch_load_or_unload (arg, from_tty, 1, command);
8108 }
8109
8110 static void
8111 catch_unload_command_1 (const char *arg, int from_tty,
8112 struct cmd_list_element *command)
8113 {
8114 catch_load_or_unload (arg, from_tty, 0, command);
8115 }
8116
8117 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8118 is non-zero, then make the breakpoint temporary. If COND_STRING is
8119 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8120 the breakpoint_ops structure associated to the catchpoint. */
8121
8122 void
8123 init_catchpoint (struct breakpoint *b,
8124 struct gdbarch *gdbarch, int tempflag,
8125 const char *cond_string,
8126 const struct breakpoint_ops *ops)
8127 {
8128 symtab_and_line sal;
8129 sal.pspace = current_program_space;
8130
8131 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8132
8133 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8134 b->disposition = tempflag ? disp_del : disp_donttouch;
8135 }
8136
8137 void
8138 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8139 {
8140 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8141 set_breakpoint_number (internal, b);
8142 if (is_tracepoint (b))
8143 set_tracepoint_count (breakpoint_count);
8144 if (!internal)
8145 mention (b);
8146 gdb::observers::breakpoint_created.notify (b);
8147
8148 if (update_gll)
8149 update_global_location_list (UGLL_MAY_INSERT);
8150 }
8151
8152 static void
8153 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8154 int tempflag, const char *cond_string,
8155 const struct breakpoint_ops *ops)
8156 {
8157 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8158
8159 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8160
8161 c->forked_inferior_pid = null_ptid;
8162
8163 install_breakpoint (0, std::move (c), 1);
8164 }
8165
8166 /* Exec catchpoints. */
8167
8168 /* An instance of this type is used to represent an exec catchpoint.
8169 A breakpoint is really of this type iff its ops pointer points to
8170 CATCH_EXEC_BREAKPOINT_OPS. */
8171
8172 struct exec_catchpoint : public breakpoint
8173 {
8174 ~exec_catchpoint () override;
8175
8176 /* Filename of a program whose exec triggered this catchpoint.
8177 This field is only valid immediately after this catchpoint has
8178 triggered. */
8179 char *exec_pathname;
8180 };
8181
8182 /* Exec catchpoint destructor. */
8183
8184 exec_catchpoint::~exec_catchpoint ()
8185 {
8186 xfree (this->exec_pathname);
8187 }
8188
8189 static int
8190 insert_catch_exec (struct bp_location *bl)
8191 {
8192 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8193 }
8194
8195 static int
8196 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8197 {
8198 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8199 }
8200
8201 static int
8202 breakpoint_hit_catch_exec (const struct bp_location *bl,
8203 const address_space *aspace, CORE_ADDR bp_addr,
8204 const struct target_waitstatus *ws)
8205 {
8206 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8207
8208 if (ws->kind != TARGET_WAITKIND_EXECD)
8209 return 0;
8210
8211 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8212 return 1;
8213 }
8214
8215 static enum print_stop_action
8216 print_it_catch_exec (bpstat bs)
8217 {
8218 struct ui_out *uiout = current_uiout;
8219 struct breakpoint *b = bs->breakpoint_at;
8220 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8221
8222 annotate_catchpoint (b->number);
8223 maybe_print_thread_hit_breakpoint (uiout);
8224 if (b->disposition == disp_del)
8225 uiout->text ("Temporary catchpoint ");
8226 else
8227 uiout->text ("Catchpoint ");
8228 if (uiout->is_mi_like_p ())
8229 {
8230 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8231 uiout->field_string ("disp", bpdisp_text (b->disposition));
8232 }
8233 uiout->field_int ("bkptno", b->number);
8234 uiout->text (" (exec'd ");
8235 uiout->field_string ("new-exec", c->exec_pathname);
8236 uiout->text ("), ");
8237
8238 return PRINT_SRC_AND_LOC;
8239 }
8240
8241 static void
8242 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8243 {
8244 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8245 struct value_print_options opts;
8246 struct ui_out *uiout = current_uiout;
8247
8248 get_user_print_options (&opts);
8249
8250 /* Field 4, the address, is omitted (which makes the columns
8251 not line up too nicely with the headers, but the effect
8252 is relatively readable). */
8253 if (opts.addressprint)
8254 uiout->field_skip ("addr");
8255 annotate_field (5);
8256 uiout->text ("exec");
8257 if (c->exec_pathname != NULL)
8258 {
8259 uiout->text (", program \"");
8260 uiout->field_string ("what", c->exec_pathname);
8261 uiout->text ("\" ");
8262 }
8263
8264 if (uiout->is_mi_like_p ())
8265 uiout->field_string ("catch-type", "exec");
8266 }
8267
8268 static void
8269 print_mention_catch_exec (struct breakpoint *b)
8270 {
8271 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8272 }
8273
8274 /* Implement the "print_recreate" breakpoint_ops method for exec
8275 catchpoints. */
8276
8277 static void
8278 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8279 {
8280 fprintf_unfiltered (fp, "catch exec");
8281 print_recreate_thread (b, fp);
8282 }
8283
8284 static struct breakpoint_ops catch_exec_breakpoint_ops;
8285
8286 static int
8287 hw_breakpoint_used_count (void)
8288 {
8289 int i = 0;
8290 struct breakpoint *b;
8291 struct bp_location *bl;
8292
8293 ALL_BREAKPOINTS (b)
8294 {
8295 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8296 for (bl = b->loc; bl; bl = bl->next)
8297 {
8298 /* Special types of hardware breakpoints may use more than
8299 one register. */
8300 i += b->ops->resources_needed (bl);
8301 }
8302 }
8303
8304 return i;
8305 }
8306
8307 /* Returns the resources B would use if it were a hardware
8308 watchpoint. */
8309
8310 static int
8311 hw_watchpoint_use_count (struct breakpoint *b)
8312 {
8313 int i = 0;
8314 struct bp_location *bl;
8315
8316 if (!breakpoint_enabled (b))
8317 return 0;
8318
8319 for (bl = b->loc; bl; bl = bl->next)
8320 {
8321 /* Special types of hardware watchpoints may use more than
8322 one register. */
8323 i += b->ops->resources_needed (bl);
8324 }
8325
8326 return i;
8327 }
8328
8329 /* Returns the sum the used resources of all hardware watchpoints of
8330 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8331 the sum of the used resources of all hardware watchpoints of other
8332 types _not_ TYPE. */
8333
8334 static int
8335 hw_watchpoint_used_count_others (struct breakpoint *except,
8336 enum bptype type, int *other_type_used)
8337 {
8338 int i = 0;
8339 struct breakpoint *b;
8340
8341 *other_type_used = 0;
8342 ALL_BREAKPOINTS (b)
8343 {
8344 if (b == except)
8345 continue;
8346 if (!breakpoint_enabled (b))
8347 continue;
8348
8349 if (b->type == type)
8350 i += hw_watchpoint_use_count (b);
8351 else if (is_hardware_watchpoint (b))
8352 *other_type_used = 1;
8353 }
8354
8355 return i;
8356 }
8357
8358 void
8359 disable_watchpoints_before_interactive_call_start (void)
8360 {
8361 struct breakpoint *b;
8362
8363 ALL_BREAKPOINTS (b)
8364 {
8365 if (is_watchpoint (b) && breakpoint_enabled (b))
8366 {
8367 b->enable_state = bp_call_disabled;
8368 update_global_location_list (UGLL_DONT_INSERT);
8369 }
8370 }
8371 }
8372
8373 void
8374 enable_watchpoints_after_interactive_call_stop (void)
8375 {
8376 struct breakpoint *b;
8377
8378 ALL_BREAKPOINTS (b)
8379 {
8380 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8381 {
8382 b->enable_state = bp_enabled;
8383 update_global_location_list (UGLL_MAY_INSERT);
8384 }
8385 }
8386 }
8387
8388 void
8389 disable_breakpoints_before_startup (void)
8390 {
8391 current_program_space->executing_startup = 1;
8392 update_global_location_list (UGLL_DONT_INSERT);
8393 }
8394
8395 void
8396 enable_breakpoints_after_startup (void)
8397 {
8398 current_program_space->executing_startup = 0;
8399 breakpoint_re_set ();
8400 }
8401
8402 /* Create a new single-step breakpoint for thread THREAD, with no
8403 locations. */
8404
8405 static struct breakpoint *
8406 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8407 {
8408 std::unique_ptr<breakpoint> b (new breakpoint ());
8409
8410 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8411 &momentary_breakpoint_ops);
8412
8413 b->disposition = disp_donttouch;
8414 b->frame_id = null_frame_id;
8415
8416 b->thread = thread;
8417 gdb_assert (b->thread != 0);
8418
8419 return add_to_breakpoint_chain (std::move (b));
8420 }
8421
8422 /* Set a momentary breakpoint of type TYPE at address specified by
8423 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8424 frame. */
8425
8426 breakpoint_up
8427 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8428 struct frame_id frame_id, enum bptype type)
8429 {
8430 struct breakpoint *b;
8431
8432 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8433 tail-called one. */
8434 gdb_assert (!frame_id_artificial_p (frame_id));
8435
8436 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8437 b->enable_state = bp_enabled;
8438 b->disposition = disp_donttouch;
8439 b->frame_id = frame_id;
8440
8441 b->thread = inferior_thread ()->global_num;
8442
8443 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8444
8445 return breakpoint_up (b);
8446 }
8447
8448 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8449 The new breakpoint will have type TYPE, use OPS as its
8450 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8451
8452 static struct breakpoint *
8453 momentary_breakpoint_from_master (struct breakpoint *orig,
8454 enum bptype type,
8455 const struct breakpoint_ops *ops,
8456 int loc_enabled)
8457 {
8458 struct breakpoint *copy;
8459
8460 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8461 copy->loc = allocate_bp_location (copy);
8462 set_breakpoint_location_function (copy->loc);
8463
8464 copy->loc->gdbarch = orig->loc->gdbarch;
8465 copy->loc->requested_address = orig->loc->requested_address;
8466 copy->loc->address = orig->loc->address;
8467 copy->loc->section = orig->loc->section;
8468 copy->loc->pspace = orig->loc->pspace;
8469 copy->loc->probe = orig->loc->probe;
8470 copy->loc->line_number = orig->loc->line_number;
8471 copy->loc->symtab = orig->loc->symtab;
8472 copy->loc->enabled = loc_enabled;
8473 copy->frame_id = orig->frame_id;
8474 copy->thread = orig->thread;
8475 copy->pspace = orig->pspace;
8476
8477 copy->enable_state = bp_enabled;
8478 copy->disposition = disp_donttouch;
8479 copy->number = internal_breakpoint_number--;
8480
8481 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8482 return copy;
8483 }
8484
8485 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8486 ORIG is NULL. */
8487
8488 struct breakpoint *
8489 clone_momentary_breakpoint (struct breakpoint *orig)
8490 {
8491 /* If there's nothing to clone, then return nothing. */
8492 if (orig == NULL)
8493 return NULL;
8494
8495 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8496 }
8497
8498 breakpoint_up
8499 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8500 enum bptype type)
8501 {
8502 struct symtab_and_line sal;
8503
8504 sal = find_pc_line (pc, 0);
8505 sal.pc = pc;
8506 sal.section = find_pc_overlay (pc);
8507 sal.explicit_pc = 1;
8508
8509 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8510 }
8511 \f
8512
8513 /* Tell the user we have just set a breakpoint B. */
8514
8515 static void
8516 mention (struct breakpoint *b)
8517 {
8518 b->ops->print_mention (b);
8519 current_uiout->text ("\n");
8520 }
8521 \f
8522
8523 static int bp_loc_is_permanent (struct bp_location *loc);
8524
8525 static struct bp_location *
8526 add_location_to_breakpoint (struct breakpoint *b,
8527 const struct symtab_and_line *sal)
8528 {
8529 struct bp_location *loc, **tmp;
8530 CORE_ADDR adjusted_address;
8531 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8532
8533 if (loc_gdbarch == NULL)
8534 loc_gdbarch = b->gdbarch;
8535
8536 /* Adjust the breakpoint's address prior to allocating a location.
8537 Once we call allocate_bp_location(), that mostly uninitialized
8538 location will be placed on the location chain. Adjustment of the
8539 breakpoint may cause target_read_memory() to be called and we do
8540 not want its scan of the location chain to find a breakpoint and
8541 location that's only been partially initialized. */
8542 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8543 sal->pc, b->type);
8544
8545 /* Sort the locations by their ADDRESS. */
8546 loc = allocate_bp_location (b);
8547 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8548 tmp = &((*tmp)->next))
8549 ;
8550 loc->next = *tmp;
8551 *tmp = loc;
8552
8553 loc->requested_address = sal->pc;
8554 loc->address = adjusted_address;
8555 loc->pspace = sal->pspace;
8556 loc->probe.prob = sal->prob;
8557 loc->probe.objfile = sal->objfile;
8558 gdb_assert (loc->pspace != NULL);
8559 loc->section = sal->section;
8560 loc->gdbarch = loc_gdbarch;
8561 loc->line_number = sal->line;
8562 loc->symtab = sal->symtab;
8563 loc->symbol = sal->symbol;
8564 loc->msymbol = sal->msymbol;
8565 loc->objfile = sal->objfile;
8566
8567 set_breakpoint_location_function (loc);
8568
8569 /* While by definition, permanent breakpoints are already present in the
8570 code, we don't mark the location as inserted. Normally one would expect
8571 that GDB could rely on that breakpoint instruction to stop the program,
8572 thus removing the need to insert its own breakpoint, except that executing
8573 the breakpoint instruction can kill the target instead of reporting a
8574 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8575 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8576 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8577 breakpoint be inserted normally results in QEMU knowing about the GDB
8578 breakpoint, and thus trap before the breakpoint instruction is executed.
8579 (If GDB later needs to continue execution past the permanent breakpoint,
8580 it manually increments the PC, thus avoiding executing the breakpoint
8581 instruction.) */
8582 if (bp_loc_is_permanent (loc))
8583 loc->permanent = 1;
8584
8585 return loc;
8586 }
8587 \f
8588
8589 /* See breakpoint.h. */
8590
8591 int
8592 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8593 {
8594 int len;
8595 CORE_ADDR addr;
8596 const gdb_byte *bpoint;
8597 gdb_byte *target_mem;
8598
8599 addr = address;
8600 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8601
8602 /* Software breakpoints unsupported? */
8603 if (bpoint == NULL)
8604 return 0;
8605
8606 target_mem = (gdb_byte *) alloca (len);
8607
8608 /* Enable the automatic memory restoration from breakpoints while
8609 we read the memory. Otherwise we could say about our temporary
8610 breakpoints they are permanent. */
8611 scoped_restore restore_memory
8612 = make_scoped_restore_show_memory_breakpoints (0);
8613
8614 if (target_read_memory (address, target_mem, len) == 0
8615 && memcmp (target_mem, bpoint, len) == 0)
8616 return 1;
8617
8618 return 0;
8619 }
8620
8621 /* Return 1 if LOC is pointing to a permanent breakpoint,
8622 return 0 otherwise. */
8623
8624 static int
8625 bp_loc_is_permanent (struct bp_location *loc)
8626 {
8627 gdb_assert (loc != NULL);
8628
8629 /* If we have a non-breakpoint-backed catchpoint or a software
8630 watchpoint, just return 0. We should not attempt to read from
8631 the addresses the locations of these breakpoint types point to.
8632 program_breakpoint_here_p, below, will attempt to read
8633 memory. */
8634 if (!bl_address_is_meaningful (loc))
8635 return 0;
8636
8637 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8638 switch_to_program_space_and_thread (loc->pspace);
8639 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8640 }
8641
8642 /* Build a command list for the dprintf corresponding to the current
8643 settings of the dprintf style options. */
8644
8645 static void
8646 update_dprintf_command_list (struct breakpoint *b)
8647 {
8648 char *dprintf_args = b->extra_string;
8649 char *printf_line = NULL;
8650
8651 if (!dprintf_args)
8652 return;
8653
8654 dprintf_args = skip_spaces (dprintf_args);
8655
8656 /* Allow a comma, as it may have terminated a location, but don't
8657 insist on it. */
8658 if (*dprintf_args == ',')
8659 ++dprintf_args;
8660 dprintf_args = skip_spaces (dprintf_args);
8661
8662 if (*dprintf_args != '"')
8663 error (_("Bad format string, missing '\"'."));
8664
8665 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8666 printf_line = xstrprintf ("printf %s", dprintf_args);
8667 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8668 {
8669 if (!dprintf_function)
8670 error (_("No function supplied for dprintf call"));
8671
8672 if (dprintf_channel && strlen (dprintf_channel) > 0)
8673 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8674 dprintf_function,
8675 dprintf_channel,
8676 dprintf_args);
8677 else
8678 printf_line = xstrprintf ("call (void) %s (%s)",
8679 dprintf_function,
8680 dprintf_args);
8681 }
8682 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8683 {
8684 if (target_can_run_breakpoint_commands ())
8685 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8686 else
8687 {
8688 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8689 printf_line = xstrprintf ("printf %s", dprintf_args);
8690 }
8691 }
8692 else
8693 internal_error (__FILE__, __LINE__,
8694 _("Invalid dprintf style."));
8695
8696 gdb_assert (printf_line != NULL);
8697
8698 /* Manufacture a printf sequence. */
8699 struct command_line *printf_cmd_line
8700 = new struct command_line (simple_control, printf_line);
8701 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8702 command_lines_deleter ()));
8703 }
8704
8705 /* Update all dprintf commands, making their command lists reflect
8706 current style settings. */
8707
8708 static void
8709 update_dprintf_commands (const char *args, int from_tty,
8710 struct cmd_list_element *c)
8711 {
8712 struct breakpoint *b;
8713
8714 ALL_BREAKPOINTS (b)
8715 {
8716 if (b->type == bp_dprintf)
8717 update_dprintf_command_list (b);
8718 }
8719 }
8720
8721 /* Create a breakpoint with SAL as location. Use LOCATION
8722 as a description of the location, and COND_STRING
8723 as condition expression. If LOCATION is NULL then create an
8724 "address location" from the address in the SAL. */
8725
8726 static void
8727 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8728 gdb::array_view<const symtab_and_line> sals,
8729 event_location_up &&location,
8730 gdb::unique_xmalloc_ptr<char> filter,
8731 gdb::unique_xmalloc_ptr<char> cond_string,
8732 gdb::unique_xmalloc_ptr<char> extra_string,
8733 enum bptype type, enum bpdisp disposition,
8734 int thread, int task, int ignore_count,
8735 const struct breakpoint_ops *ops, int from_tty,
8736 int enabled, int internal, unsigned flags,
8737 int display_canonical)
8738 {
8739 int i;
8740
8741 if (type == bp_hardware_breakpoint)
8742 {
8743 int target_resources_ok;
8744
8745 i = hw_breakpoint_used_count ();
8746 target_resources_ok =
8747 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8748 i + 1, 0);
8749 if (target_resources_ok == 0)
8750 error (_("No hardware breakpoint support in the target."));
8751 else if (target_resources_ok < 0)
8752 error (_("Hardware breakpoints used exceeds limit."));
8753 }
8754
8755 gdb_assert (!sals.empty ());
8756
8757 for (const auto &sal : sals)
8758 {
8759 struct bp_location *loc;
8760
8761 if (from_tty)
8762 {
8763 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8764 if (!loc_gdbarch)
8765 loc_gdbarch = gdbarch;
8766
8767 describe_other_breakpoints (loc_gdbarch,
8768 sal.pspace, sal.pc, sal.section, thread);
8769 }
8770
8771 if (&sal == &sals[0])
8772 {
8773 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8774 b->thread = thread;
8775 b->task = task;
8776
8777 b->cond_string = cond_string.release ();
8778 b->extra_string = extra_string.release ();
8779 b->ignore_count = ignore_count;
8780 b->enable_state = enabled ? bp_enabled : bp_disabled;
8781 b->disposition = disposition;
8782
8783 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8784 b->loc->inserted = 1;
8785
8786 if (type == bp_static_tracepoint)
8787 {
8788 struct tracepoint *t = (struct tracepoint *) b;
8789 struct static_tracepoint_marker marker;
8790
8791 if (strace_marker_p (b))
8792 {
8793 /* We already know the marker exists, otherwise, we
8794 wouldn't see a sal for it. */
8795 const char *p
8796 = &event_location_to_string (b->location.get ())[3];
8797 const char *endp;
8798
8799 p = skip_spaces (p);
8800
8801 endp = skip_to_space (p);
8802
8803 t->static_trace_marker_id.assign (p, endp - p);
8804
8805 printf_filtered (_("Probed static tracepoint "
8806 "marker \"%s\"\n"),
8807 t->static_trace_marker_id.c_str ());
8808 }
8809 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8810 {
8811 t->static_trace_marker_id = std::move (marker.str_id);
8812
8813 printf_filtered (_("Probed static tracepoint "
8814 "marker \"%s\"\n"),
8815 t->static_trace_marker_id.c_str ());
8816 }
8817 else
8818 warning (_("Couldn't determine the static "
8819 "tracepoint marker to probe"));
8820 }
8821
8822 loc = b->loc;
8823 }
8824 else
8825 {
8826 loc = add_location_to_breakpoint (b, &sal);
8827 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8828 loc->inserted = 1;
8829 }
8830
8831 if (b->cond_string)
8832 {
8833 const char *arg = b->cond_string;
8834
8835 loc->cond = parse_exp_1 (&arg, loc->address,
8836 block_for_pc (loc->address), 0);
8837 if (*arg)
8838 error (_("Garbage '%s' follows condition"), arg);
8839 }
8840
8841 /* Dynamic printf requires and uses additional arguments on the
8842 command line, otherwise it's an error. */
8843 if (type == bp_dprintf)
8844 {
8845 if (b->extra_string)
8846 update_dprintf_command_list (b);
8847 else
8848 error (_("Format string required"));
8849 }
8850 else if (b->extra_string)
8851 error (_("Garbage '%s' at end of command"), b->extra_string);
8852 }
8853
8854 b->display_canonical = display_canonical;
8855 if (location != NULL)
8856 b->location = std::move (location);
8857 else
8858 b->location = new_address_location (b->loc->address, NULL, 0);
8859 b->filter = filter.release ();
8860 }
8861
8862 static void
8863 create_breakpoint_sal (struct gdbarch *gdbarch,
8864 gdb::array_view<const symtab_and_line> sals,
8865 event_location_up &&location,
8866 gdb::unique_xmalloc_ptr<char> filter,
8867 gdb::unique_xmalloc_ptr<char> cond_string,
8868 gdb::unique_xmalloc_ptr<char> extra_string,
8869 enum bptype type, enum bpdisp disposition,
8870 int thread, int task, int ignore_count,
8871 const struct breakpoint_ops *ops, int from_tty,
8872 int enabled, int internal, unsigned flags,
8873 int display_canonical)
8874 {
8875 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8876
8877 init_breakpoint_sal (b.get (), gdbarch,
8878 sals, std::move (location),
8879 std::move (filter),
8880 std::move (cond_string),
8881 std::move (extra_string),
8882 type, disposition,
8883 thread, task, ignore_count,
8884 ops, from_tty,
8885 enabled, internal, flags,
8886 display_canonical);
8887
8888 install_breakpoint (internal, std::move (b), 0);
8889 }
8890
8891 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8892 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8893 value. COND_STRING, if not NULL, specified the condition to be
8894 used for all breakpoints. Essentially the only case where
8895 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8896 function. In that case, it's still not possible to specify
8897 separate conditions for different overloaded functions, so
8898 we take just a single condition string.
8899
8900 NOTE: If the function succeeds, the caller is expected to cleanup
8901 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8902 array contents). If the function fails (error() is called), the
8903 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8904 COND and SALS arrays and each of those arrays contents. */
8905
8906 static void
8907 create_breakpoints_sal (struct gdbarch *gdbarch,
8908 struct linespec_result *canonical,
8909 gdb::unique_xmalloc_ptr<char> cond_string,
8910 gdb::unique_xmalloc_ptr<char> extra_string,
8911 enum bptype type, enum bpdisp disposition,
8912 int thread, int task, int ignore_count,
8913 const struct breakpoint_ops *ops, int from_tty,
8914 int enabled, int internal, unsigned flags)
8915 {
8916 if (canonical->pre_expanded)
8917 gdb_assert (canonical->lsals.size () == 1);
8918
8919 for (const auto &lsal : canonical->lsals)
8920 {
8921 /* Note that 'location' can be NULL in the case of a plain
8922 'break', without arguments. */
8923 event_location_up location
8924 = (canonical->location != NULL
8925 ? copy_event_location (canonical->location.get ()) : NULL);
8926 gdb::unique_xmalloc_ptr<char> filter_string
8927 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8928
8929 create_breakpoint_sal (gdbarch, lsal.sals,
8930 std::move (location),
8931 std::move (filter_string),
8932 std::move (cond_string),
8933 std::move (extra_string),
8934 type, disposition,
8935 thread, task, ignore_count, ops,
8936 from_tty, enabled, internal, flags,
8937 canonical->special_display);
8938 }
8939 }
8940
8941 /* Parse LOCATION which is assumed to be a SAL specification possibly
8942 followed by conditionals. On return, SALS contains an array of SAL
8943 addresses found. LOCATION points to the end of the SAL (for
8944 linespec locations).
8945
8946 The array and the line spec strings are allocated on the heap, it is
8947 the caller's responsibility to free them. */
8948
8949 static void
8950 parse_breakpoint_sals (const struct event_location *location,
8951 struct linespec_result *canonical)
8952 {
8953 struct symtab_and_line cursal;
8954
8955 if (event_location_type (location) == LINESPEC_LOCATION)
8956 {
8957 const char *spec = get_linespec_location (location)->spec_string;
8958
8959 if (spec == NULL)
8960 {
8961 /* The last displayed codepoint, if it's valid, is our default
8962 breakpoint address. */
8963 if (last_displayed_sal_is_valid ())
8964 {
8965 /* Set sal's pspace, pc, symtab, and line to the values
8966 corresponding to the last call to print_frame_info.
8967 Be sure to reinitialize LINE with NOTCURRENT == 0
8968 as the breakpoint line number is inappropriate otherwise.
8969 find_pc_line would adjust PC, re-set it back. */
8970 symtab_and_line sal = get_last_displayed_sal ();
8971 CORE_ADDR pc = sal.pc;
8972
8973 sal = find_pc_line (pc, 0);
8974
8975 /* "break" without arguments is equivalent to "break *PC"
8976 where PC is the last displayed codepoint's address. So
8977 make sure to set sal.explicit_pc to prevent GDB from
8978 trying to expand the list of sals to include all other
8979 instances with the same symtab and line. */
8980 sal.pc = pc;
8981 sal.explicit_pc = 1;
8982
8983 struct linespec_sals lsal;
8984 lsal.sals = {sal};
8985 lsal.canonical = NULL;
8986
8987 canonical->lsals.push_back (std::move (lsal));
8988 return;
8989 }
8990 else
8991 error (_("No default breakpoint address now."));
8992 }
8993 }
8994
8995 /* Force almost all breakpoints to be in terms of the
8996 current_source_symtab (which is decode_line_1's default).
8997 This should produce the results we want almost all of the
8998 time while leaving default_breakpoint_* alone.
8999
9000 ObjC: However, don't match an Objective-C method name which
9001 may have a '+' or '-' succeeded by a '['. */
9002 cursal = get_current_source_symtab_and_line ();
9003 if (last_displayed_sal_is_valid ())
9004 {
9005 const char *spec = NULL;
9006
9007 if (event_location_type (location) == LINESPEC_LOCATION)
9008 spec = get_linespec_location (location)->spec_string;
9009
9010 if (!cursal.symtab
9011 || (spec != NULL
9012 && strchr ("+-", spec[0]) != NULL
9013 && spec[1] != '['))
9014 {
9015 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9016 get_last_displayed_symtab (),
9017 get_last_displayed_line (),
9018 canonical, NULL, NULL);
9019 return;
9020 }
9021 }
9022
9023 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9024 cursal.symtab, cursal.line, canonical, NULL, NULL);
9025 }
9026
9027
9028 /* Convert each SAL into a real PC. Verify that the PC can be
9029 inserted as a breakpoint. If it can't throw an error. */
9030
9031 static void
9032 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9033 {
9034 for (auto &sal : sals)
9035 resolve_sal_pc (&sal);
9036 }
9037
9038 /* Fast tracepoints may have restrictions on valid locations. For
9039 instance, a fast tracepoint using a jump instead of a trap will
9040 likely have to overwrite more bytes than a trap would, and so can
9041 only be placed where the instruction is longer than the jump, or a
9042 multi-instruction sequence does not have a jump into the middle of
9043 it, etc. */
9044
9045 static void
9046 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9047 gdb::array_view<const symtab_and_line> sals)
9048 {
9049 for (const auto &sal : sals)
9050 {
9051 struct gdbarch *sarch;
9052
9053 sarch = get_sal_arch (sal);
9054 /* We fall back to GDBARCH if there is no architecture
9055 associated with SAL. */
9056 if (sarch == NULL)
9057 sarch = gdbarch;
9058 std::string msg;
9059 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9060 error (_("May not have a fast tracepoint at %s%s"),
9061 paddress (sarch, sal.pc), msg.c_str ());
9062 }
9063 }
9064
9065 /* Given TOK, a string specification of condition and thread, as
9066 accepted by the 'break' command, extract the condition
9067 string and thread number and set *COND_STRING and *THREAD.
9068 PC identifies the context at which the condition should be parsed.
9069 If no condition is found, *COND_STRING is set to NULL.
9070 If no thread is found, *THREAD is set to -1. */
9071
9072 static void
9073 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9074 char **cond_string, int *thread, int *task,
9075 char **rest)
9076 {
9077 *cond_string = NULL;
9078 *thread = -1;
9079 *task = 0;
9080 *rest = NULL;
9081
9082 while (tok && *tok)
9083 {
9084 const char *end_tok;
9085 int toklen;
9086 const char *cond_start = NULL;
9087 const char *cond_end = NULL;
9088
9089 tok = skip_spaces (tok);
9090
9091 if ((*tok == '"' || *tok == ',') && rest)
9092 {
9093 *rest = savestring (tok, strlen (tok));
9094 return;
9095 }
9096
9097 end_tok = skip_to_space (tok);
9098
9099 toklen = end_tok - tok;
9100
9101 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9102 {
9103 tok = cond_start = end_tok + 1;
9104 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9105 cond_end = tok;
9106 *cond_string = savestring (cond_start, cond_end - cond_start);
9107 }
9108 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9109 {
9110 const char *tmptok;
9111 struct thread_info *thr;
9112
9113 tok = end_tok + 1;
9114 thr = parse_thread_id (tok, &tmptok);
9115 if (tok == tmptok)
9116 error (_("Junk after thread keyword."));
9117 *thread = thr->global_num;
9118 tok = tmptok;
9119 }
9120 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9121 {
9122 char *tmptok;
9123
9124 tok = end_tok + 1;
9125 *task = strtol (tok, &tmptok, 0);
9126 if (tok == tmptok)
9127 error (_("Junk after task keyword."));
9128 if (!valid_task_id (*task))
9129 error (_("Unknown task %d."), *task);
9130 tok = tmptok;
9131 }
9132 else if (rest)
9133 {
9134 *rest = savestring (tok, strlen (tok));
9135 return;
9136 }
9137 else
9138 error (_("Junk at end of arguments."));
9139 }
9140 }
9141
9142 /* Decode a static tracepoint marker spec. */
9143
9144 static std::vector<symtab_and_line>
9145 decode_static_tracepoint_spec (const char **arg_p)
9146 {
9147 const char *p = &(*arg_p)[3];
9148 const char *endp;
9149
9150 p = skip_spaces (p);
9151
9152 endp = skip_to_space (p);
9153
9154 std::string marker_str (p, endp - p);
9155
9156 std::vector<static_tracepoint_marker> markers
9157 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9158 if (markers.empty ())
9159 error (_("No known static tracepoint marker named %s"),
9160 marker_str.c_str ());
9161
9162 std::vector<symtab_and_line> sals;
9163 sals.reserve (markers.size ());
9164
9165 for (const static_tracepoint_marker &marker : markers)
9166 {
9167 symtab_and_line sal = find_pc_line (marker.address, 0);
9168 sal.pc = marker.address;
9169 sals.push_back (sal);
9170 }
9171
9172 *arg_p = endp;
9173 return sals;
9174 }
9175
9176 /* See breakpoint.h. */
9177
9178 int
9179 create_breakpoint (struct gdbarch *gdbarch,
9180 const struct event_location *location,
9181 const char *cond_string,
9182 int thread, const char *extra_string,
9183 int parse_extra,
9184 int tempflag, enum bptype type_wanted,
9185 int ignore_count,
9186 enum auto_boolean pending_break_support,
9187 const struct breakpoint_ops *ops,
9188 int from_tty, int enabled, int internal,
9189 unsigned flags)
9190 {
9191 struct linespec_result canonical;
9192 int pending = 0;
9193 int task = 0;
9194 int prev_bkpt_count = breakpoint_count;
9195
9196 gdb_assert (ops != NULL);
9197
9198 /* If extra_string isn't useful, set it to NULL. */
9199 if (extra_string != NULL && *extra_string == '\0')
9200 extra_string = NULL;
9201
9202 try
9203 {
9204 ops->create_sals_from_location (location, &canonical, type_wanted);
9205 }
9206 catch (const gdb_exception_error &e)
9207 {
9208 /* If caller is interested in rc value from parse, set
9209 value. */
9210 if (e.error == NOT_FOUND_ERROR)
9211 {
9212 /* If pending breakpoint support is turned off, throw
9213 error. */
9214
9215 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9216 throw;
9217
9218 exception_print (gdb_stderr, e);
9219
9220 /* If pending breakpoint support is auto query and the user
9221 selects no, then simply return the error code. */
9222 if (pending_break_support == AUTO_BOOLEAN_AUTO
9223 && !nquery (_("Make %s pending on future shared library load? "),
9224 bptype_string (type_wanted)))
9225 return 0;
9226
9227 /* At this point, either the user was queried about setting
9228 a pending breakpoint and selected yes, or pending
9229 breakpoint behavior is on and thus a pending breakpoint
9230 is defaulted on behalf of the user. */
9231 pending = 1;
9232 }
9233 else
9234 throw;
9235 }
9236
9237 if (!pending && canonical.lsals.empty ())
9238 return 0;
9239
9240 /* Resolve all line numbers to PC's and verify that the addresses
9241 are ok for the target. */
9242 if (!pending)
9243 {
9244 for (auto &lsal : canonical.lsals)
9245 breakpoint_sals_to_pc (lsal.sals);
9246 }
9247
9248 /* Fast tracepoints may have additional restrictions on location. */
9249 if (!pending && type_wanted == bp_fast_tracepoint)
9250 {
9251 for (const auto &lsal : canonical.lsals)
9252 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9253 }
9254
9255 /* Verify that condition can be parsed, before setting any
9256 breakpoints. Allocate a separate condition expression for each
9257 breakpoint. */
9258 if (!pending)
9259 {
9260 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9261 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9262
9263 if (parse_extra)
9264 {
9265 char *rest;
9266 char *cond;
9267
9268 const linespec_sals &lsal = canonical.lsals[0];
9269
9270 /* Here we only parse 'arg' to separate condition
9271 from thread number, so parsing in context of first
9272 sal is OK. When setting the breakpoint we'll
9273 re-parse it in context of each sal. */
9274
9275 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9276 &cond, &thread, &task, &rest);
9277 cond_string_copy.reset (cond);
9278 extra_string_copy.reset (rest);
9279 }
9280 else
9281 {
9282 if (type_wanted != bp_dprintf
9283 && extra_string != NULL && *extra_string != '\0')
9284 error (_("Garbage '%s' at end of location"), extra_string);
9285
9286 /* Create a private copy of condition string. */
9287 if (cond_string)
9288 cond_string_copy.reset (xstrdup (cond_string));
9289 /* Create a private copy of any extra string. */
9290 if (extra_string)
9291 extra_string_copy.reset (xstrdup (extra_string));
9292 }
9293
9294 ops->create_breakpoints_sal (gdbarch, &canonical,
9295 std::move (cond_string_copy),
9296 std::move (extra_string_copy),
9297 type_wanted,
9298 tempflag ? disp_del : disp_donttouch,
9299 thread, task, ignore_count, ops,
9300 from_tty, enabled, internal, flags);
9301 }
9302 else
9303 {
9304 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9305
9306 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9307 b->location = copy_event_location (location);
9308
9309 if (parse_extra)
9310 b->cond_string = NULL;
9311 else
9312 {
9313 /* Create a private copy of condition string. */
9314 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9315 b->thread = thread;
9316 }
9317
9318 /* Create a private copy of any extra string. */
9319 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9320 b->ignore_count = ignore_count;
9321 b->disposition = tempflag ? disp_del : disp_donttouch;
9322 b->condition_not_parsed = 1;
9323 b->enable_state = enabled ? bp_enabled : bp_disabled;
9324 if ((type_wanted != bp_breakpoint
9325 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9326 b->pspace = current_program_space;
9327
9328 install_breakpoint (internal, std::move (b), 0);
9329 }
9330
9331 if (canonical.lsals.size () > 1)
9332 {
9333 warning (_("Multiple breakpoints were set.\nUse the "
9334 "\"delete\" command to delete unwanted breakpoints."));
9335 prev_breakpoint_count = prev_bkpt_count;
9336 }
9337
9338 update_global_location_list (UGLL_MAY_INSERT);
9339
9340 return 1;
9341 }
9342
9343 /* Set a breakpoint.
9344 ARG is a string describing breakpoint address,
9345 condition, and thread.
9346 FLAG specifies if a breakpoint is hardware on,
9347 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9348 and BP_TEMPFLAG. */
9349
9350 static void
9351 break_command_1 (const char *arg, int flag, int from_tty)
9352 {
9353 int tempflag = flag & BP_TEMPFLAG;
9354 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9355 ? bp_hardware_breakpoint
9356 : bp_breakpoint);
9357 struct breakpoint_ops *ops;
9358
9359 event_location_up location = string_to_event_location (&arg, current_language);
9360
9361 /* Matching breakpoints on probes. */
9362 if (location != NULL
9363 && event_location_type (location.get ()) == PROBE_LOCATION)
9364 ops = &bkpt_probe_breakpoint_ops;
9365 else
9366 ops = &bkpt_breakpoint_ops;
9367
9368 create_breakpoint (get_current_arch (),
9369 location.get (),
9370 NULL, 0, arg, 1 /* parse arg */,
9371 tempflag, type_wanted,
9372 0 /* Ignore count */,
9373 pending_break_support,
9374 ops,
9375 from_tty,
9376 1 /* enabled */,
9377 0 /* internal */,
9378 0);
9379 }
9380
9381 /* Helper function for break_command_1 and disassemble_command. */
9382
9383 void
9384 resolve_sal_pc (struct symtab_and_line *sal)
9385 {
9386 CORE_ADDR pc;
9387
9388 if (sal->pc == 0 && sal->symtab != NULL)
9389 {
9390 if (!find_line_pc (sal->symtab, sal->line, &pc))
9391 error (_("No line %d in file \"%s\"."),
9392 sal->line, symtab_to_filename_for_display (sal->symtab));
9393 sal->pc = pc;
9394
9395 /* If this SAL corresponds to a breakpoint inserted using a line
9396 number, then skip the function prologue if necessary. */
9397 if (sal->explicit_line)
9398 skip_prologue_sal (sal);
9399 }
9400
9401 if (sal->section == 0 && sal->symtab != NULL)
9402 {
9403 const struct blockvector *bv;
9404 const struct block *b;
9405 struct symbol *sym;
9406
9407 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9408 SYMTAB_COMPUNIT (sal->symtab));
9409 if (bv != NULL)
9410 {
9411 sym = block_linkage_function (b);
9412 if (sym != NULL)
9413 {
9414 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9415 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9416 sym);
9417 }
9418 else
9419 {
9420 /* It really is worthwhile to have the section, so we'll
9421 just have to look harder. This case can be executed
9422 if we have line numbers but no functions (as can
9423 happen in assembly source). */
9424
9425 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9426 switch_to_program_space_and_thread (sal->pspace);
9427
9428 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9429 if (msym.minsym)
9430 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9431 }
9432 }
9433 }
9434 }
9435
9436 void
9437 break_command (const char *arg, int from_tty)
9438 {
9439 break_command_1 (arg, 0, from_tty);
9440 }
9441
9442 void
9443 tbreak_command (const char *arg, int from_tty)
9444 {
9445 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9446 }
9447
9448 static void
9449 hbreak_command (const char *arg, int from_tty)
9450 {
9451 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9452 }
9453
9454 static void
9455 thbreak_command (const char *arg, int from_tty)
9456 {
9457 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9458 }
9459
9460 static void
9461 stop_command (const char *arg, int from_tty)
9462 {
9463 printf_filtered (_("Specify the type of breakpoint to set.\n\
9464 Usage: stop in <function | address>\n\
9465 stop at <line>\n"));
9466 }
9467
9468 static void
9469 stopin_command (const char *arg, int from_tty)
9470 {
9471 int badInput = 0;
9472
9473 if (arg == NULL)
9474 badInput = 1;
9475 else if (*arg != '*')
9476 {
9477 const char *argptr = arg;
9478 int hasColon = 0;
9479
9480 /* Look for a ':'. If this is a line number specification, then
9481 say it is bad, otherwise, it should be an address or
9482 function/method name. */
9483 while (*argptr && !hasColon)
9484 {
9485 hasColon = (*argptr == ':');
9486 argptr++;
9487 }
9488
9489 if (hasColon)
9490 badInput = (*argptr != ':'); /* Not a class::method */
9491 else
9492 badInput = isdigit (*arg); /* a simple line number */
9493 }
9494
9495 if (badInput)
9496 printf_filtered (_("Usage: stop in <function | address>\n"));
9497 else
9498 break_command_1 (arg, 0, from_tty);
9499 }
9500
9501 static void
9502 stopat_command (const char *arg, int from_tty)
9503 {
9504 int badInput = 0;
9505
9506 if (arg == NULL || *arg == '*') /* no line number */
9507 badInput = 1;
9508 else
9509 {
9510 const char *argptr = arg;
9511 int hasColon = 0;
9512
9513 /* Look for a ':'. If there is a '::' then get out, otherwise
9514 it is probably a line number. */
9515 while (*argptr && !hasColon)
9516 {
9517 hasColon = (*argptr == ':');
9518 argptr++;
9519 }
9520
9521 if (hasColon)
9522 badInput = (*argptr == ':'); /* we have class::method */
9523 else
9524 badInput = !isdigit (*arg); /* not a line number */
9525 }
9526
9527 if (badInput)
9528 printf_filtered (_("Usage: stop at LINE\n"));
9529 else
9530 break_command_1 (arg, 0, from_tty);
9531 }
9532
9533 /* The dynamic printf command is mostly like a regular breakpoint, but
9534 with a prewired command list consisting of a single output command,
9535 built from extra arguments supplied on the dprintf command
9536 line. */
9537
9538 static void
9539 dprintf_command (const char *arg, int from_tty)
9540 {
9541 event_location_up location = string_to_event_location (&arg, current_language);
9542
9543 /* If non-NULL, ARG should have been advanced past the location;
9544 the next character must be ','. */
9545 if (arg != NULL)
9546 {
9547 if (arg[0] != ',' || arg[1] == '\0')
9548 error (_("Format string required"));
9549 else
9550 {
9551 /* Skip the comma. */
9552 ++arg;
9553 }
9554 }
9555
9556 create_breakpoint (get_current_arch (),
9557 location.get (),
9558 NULL, 0, arg, 1 /* parse arg */,
9559 0, bp_dprintf,
9560 0 /* Ignore count */,
9561 pending_break_support,
9562 &dprintf_breakpoint_ops,
9563 from_tty,
9564 1 /* enabled */,
9565 0 /* internal */,
9566 0);
9567 }
9568
9569 static void
9570 agent_printf_command (const char *arg, int from_tty)
9571 {
9572 error (_("May only run agent-printf on the target"));
9573 }
9574
9575 /* Implement the "breakpoint_hit" breakpoint_ops method for
9576 ranged breakpoints. */
9577
9578 static int
9579 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9580 const address_space *aspace,
9581 CORE_ADDR bp_addr,
9582 const struct target_waitstatus *ws)
9583 {
9584 if (ws->kind != TARGET_WAITKIND_STOPPED
9585 || ws->value.sig != GDB_SIGNAL_TRAP)
9586 return 0;
9587
9588 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9589 bl->length, aspace, bp_addr);
9590 }
9591
9592 /* Implement the "resources_needed" breakpoint_ops method for
9593 ranged breakpoints. */
9594
9595 static int
9596 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9597 {
9598 return target_ranged_break_num_registers ();
9599 }
9600
9601 /* Implement the "print_it" breakpoint_ops method for
9602 ranged breakpoints. */
9603
9604 static enum print_stop_action
9605 print_it_ranged_breakpoint (bpstat bs)
9606 {
9607 struct breakpoint *b = bs->breakpoint_at;
9608 struct bp_location *bl = b->loc;
9609 struct ui_out *uiout = current_uiout;
9610
9611 gdb_assert (b->type == bp_hardware_breakpoint);
9612
9613 /* Ranged breakpoints have only one location. */
9614 gdb_assert (bl && bl->next == NULL);
9615
9616 annotate_breakpoint (b->number);
9617
9618 maybe_print_thread_hit_breakpoint (uiout);
9619
9620 if (b->disposition == disp_del)
9621 uiout->text ("Temporary ranged breakpoint ");
9622 else
9623 uiout->text ("Ranged breakpoint ");
9624 if (uiout->is_mi_like_p ())
9625 {
9626 uiout->field_string ("reason",
9627 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9628 uiout->field_string ("disp", bpdisp_text (b->disposition));
9629 }
9630 uiout->field_int ("bkptno", b->number);
9631 uiout->text (", ");
9632
9633 return PRINT_SRC_AND_LOC;
9634 }
9635
9636 /* Implement the "print_one" breakpoint_ops method for
9637 ranged breakpoints. */
9638
9639 static void
9640 print_one_ranged_breakpoint (struct breakpoint *b,
9641 struct bp_location **last_loc)
9642 {
9643 struct bp_location *bl = b->loc;
9644 struct value_print_options opts;
9645 struct ui_out *uiout = current_uiout;
9646
9647 /* Ranged breakpoints have only one location. */
9648 gdb_assert (bl && bl->next == NULL);
9649
9650 get_user_print_options (&opts);
9651
9652 if (opts.addressprint)
9653 /* We don't print the address range here, it will be printed later
9654 by print_one_detail_ranged_breakpoint. */
9655 uiout->field_skip ("addr");
9656 annotate_field (5);
9657 print_breakpoint_location (b, bl);
9658 *last_loc = bl;
9659 }
9660
9661 /* Implement the "print_one_detail" breakpoint_ops method for
9662 ranged breakpoints. */
9663
9664 static void
9665 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9666 struct ui_out *uiout)
9667 {
9668 CORE_ADDR address_start, address_end;
9669 struct bp_location *bl = b->loc;
9670 string_file stb;
9671
9672 gdb_assert (bl);
9673
9674 address_start = bl->address;
9675 address_end = address_start + bl->length - 1;
9676
9677 uiout->text ("\taddress range: ");
9678 stb.printf ("[%s, %s]",
9679 print_core_address (bl->gdbarch, address_start),
9680 print_core_address (bl->gdbarch, address_end));
9681 uiout->field_stream ("addr", stb);
9682 uiout->text ("\n");
9683 }
9684
9685 /* Implement the "print_mention" breakpoint_ops method for
9686 ranged breakpoints. */
9687
9688 static void
9689 print_mention_ranged_breakpoint (struct breakpoint *b)
9690 {
9691 struct bp_location *bl = b->loc;
9692 struct ui_out *uiout = current_uiout;
9693
9694 gdb_assert (bl);
9695 gdb_assert (b->type == bp_hardware_breakpoint);
9696
9697 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9698 b->number, paddress (bl->gdbarch, bl->address),
9699 paddress (bl->gdbarch, bl->address + bl->length - 1));
9700 }
9701
9702 /* Implement the "print_recreate" breakpoint_ops method for
9703 ranged breakpoints. */
9704
9705 static void
9706 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9707 {
9708 fprintf_unfiltered (fp, "break-range %s, %s",
9709 event_location_to_string (b->location.get ()),
9710 event_location_to_string (b->location_range_end.get ()));
9711 print_recreate_thread (b, fp);
9712 }
9713
9714 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9715
9716 static struct breakpoint_ops ranged_breakpoint_ops;
9717
9718 /* Find the address where the end of the breakpoint range should be
9719 placed, given the SAL of the end of the range. This is so that if
9720 the user provides a line number, the end of the range is set to the
9721 last instruction of the given line. */
9722
9723 static CORE_ADDR
9724 find_breakpoint_range_end (struct symtab_and_line sal)
9725 {
9726 CORE_ADDR end;
9727
9728 /* If the user provided a PC value, use it. Otherwise,
9729 find the address of the end of the given location. */
9730 if (sal.explicit_pc)
9731 end = sal.pc;
9732 else
9733 {
9734 int ret;
9735 CORE_ADDR start;
9736
9737 ret = find_line_pc_range (sal, &start, &end);
9738 if (!ret)
9739 error (_("Could not find location of the end of the range."));
9740
9741 /* find_line_pc_range returns the start of the next line. */
9742 end--;
9743 }
9744
9745 return end;
9746 }
9747
9748 /* Implement the "break-range" CLI command. */
9749
9750 static void
9751 break_range_command (const char *arg, int from_tty)
9752 {
9753 const char *arg_start;
9754 struct linespec_result canonical_start, canonical_end;
9755 int bp_count, can_use_bp, length;
9756 CORE_ADDR end;
9757 struct breakpoint *b;
9758
9759 /* We don't support software ranged breakpoints. */
9760 if (target_ranged_break_num_registers () < 0)
9761 error (_("This target does not support hardware ranged breakpoints."));
9762
9763 bp_count = hw_breakpoint_used_count ();
9764 bp_count += target_ranged_break_num_registers ();
9765 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9766 bp_count, 0);
9767 if (can_use_bp < 0)
9768 error (_("Hardware breakpoints used exceeds limit."));
9769
9770 arg = skip_spaces (arg);
9771 if (arg == NULL || arg[0] == '\0')
9772 error(_("No address range specified."));
9773
9774 arg_start = arg;
9775 event_location_up start_location = string_to_event_location (&arg,
9776 current_language);
9777 parse_breakpoint_sals (start_location.get (), &canonical_start);
9778
9779 if (arg[0] != ',')
9780 error (_("Too few arguments."));
9781 else if (canonical_start.lsals.empty ())
9782 error (_("Could not find location of the beginning of the range."));
9783
9784 const linespec_sals &lsal_start = canonical_start.lsals[0];
9785
9786 if (canonical_start.lsals.size () > 1
9787 || lsal_start.sals.size () != 1)
9788 error (_("Cannot create a ranged breakpoint with multiple locations."));
9789
9790 const symtab_and_line &sal_start = lsal_start.sals[0];
9791 std::string addr_string_start (arg_start, arg - arg_start);
9792
9793 arg++; /* Skip the comma. */
9794 arg = skip_spaces (arg);
9795
9796 /* Parse the end location. */
9797
9798 arg_start = arg;
9799
9800 /* We call decode_line_full directly here instead of using
9801 parse_breakpoint_sals because we need to specify the start location's
9802 symtab and line as the default symtab and line for the end of the
9803 range. This makes it possible to have ranges like "foo.c:27, +14",
9804 where +14 means 14 lines from the start location. */
9805 event_location_up end_location = string_to_event_location (&arg,
9806 current_language);
9807 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9808 sal_start.symtab, sal_start.line,
9809 &canonical_end, NULL, NULL);
9810
9811 if (canonical_end.lsals.empty ())
9812 error (_("Could not find location of the end of the range."));
9813
9814 const linespec_sals &lsal_end = canonical_end.lsals[0];
9815 if (canonical_end.lsals.size () > 1
9816 || lsal_end.sals.size () != 1)
9817 error (_("Cannot create a ranged breakpoint with multiple locations."));
9818
9819 const symtab_and_line &sal_end = lsal_end.sals[0];
9820
9821 end = find_breakpoint_range_end (sal_end);
9822 if (sal_start.pc > end)
9823 error (_("Invalid address range, end precedes start."));
9824
9825 length = end - sal_start.pc + 1;
9826 if (length < 0)
9827 /* Length overflowed. */
9828 error (_("Address range too large."));
9829 else if (length == 1)
9830 {
9831 /* This range is simple enough to be handled by
9832 the `hbreak' command. */
9833 hbreak_command (&addr_string_start[0], 1);
9834
9835 return;
9836 }
9837
9838 /* Now set up the breakpoint. */
9839 b = set_raw_breakpoint (get_current_arch (), sal_start,
9840 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9841 set_breakpoint_count (breakpoint_count + 1);
9842 b->number = breakpoint_count;
9843 b->disposition = disp_donttouch;
9844 b->location = std::move (start_location);
9845 b->location_range_end = std::move (end_location);
9846 b->loc->length = length;
9847
9848 mention (b);
9849 gdb::observers::breakpoint_created.notify (b);
9850 update_global_location_list (UGLL_MAY_INSERT);
9851 }
9852
9853 /* Return non-zero if EXP is verified as constant. Returned zero
9854 means EXP is variable. Also the constant detection may fail for
9855 some constant expressions and in such case still falsely return
9856 zero. */
9857
9858 static int
9859 watchpoint_exp_is_const (const struct expression *exp)
9860 {
9861 int i = exp->nelts;
9862
9863 while (i > 0)
9864 {
9865 int oplenp, argsp;
9866
9867 /* We are only interested in the descriptor of each element. */
9868 operator_length (exp, i, &oplenp, &argsp);
9869 i -= oplenp;
9870
9871 switch (exp->elts[i].opcode)
9872 {
9873 case BINOP_ADD:
9874 case BINOP_SUB:
9875 case BINOP_MUL:
9876 case BINOP_DIV:
9877 case BINOP_REM:
9878 case BINOP_MOD:
9879 case BINOP_LSH:
9880 case BINOP_RSH:
9881 case BINOP_LOGICAL_AND:
9882 case BINOP_LOGICAL_OR:
9883 case BINOP_BITWISE_AND:
9884 case BINOP_BITWISE_IOR:
9885 case BINOP_BITWISE_XOR:
9886 case BINOP_EQUAL:
9887 case BINOP_NOTEQUAL:
9888 case BINOP_LESS:
9889 case BINOP_GTR:
9890 case BINOP_LEQ:
9891 case BINOP_GEQ:
9892 case BINOP_REPEAT:
9893 case BINOP_COMMA:
9894 case BINOP_EXP:
9895 case BINOP_MIN:
9896 case BINOP_MAX:
9897 case BINOP_INTDIV:
9898 case BINOP_CONCAT:
9899 case TERNOP_COND:
9900 case TERNOP_SLICE:
9901
9902 case OP_LONG:
9903 case OP_FLOAT:
9904 case OP_LAST:
9905 case OP_COMPLEX:
9906 case OP_STRING:
9907 case OP_ARRAY:
9908 case OP_TYPE:
9909 case OP_TYPEOF:
9910 case OP_DECLTYPE:
9911 case OP_TYPEID:
9912 case OP_NAME:
9913 case OP_OBJC_NSSTRING:
9914
9915 case UNOP_NEG:
9916 case UNOP_LOGICAL_NOT:
9917 case UNOP_COMPLEMENT:
9918 case UNOP_ADDR:
9919 case UNOP_HIGH:
9920 case UNOP_CAST:
9921
9922 case UNOP_CAST_TYPE:
9923 case UNOP_REINTERPRET_CAST:
9924 case UNOP_DYNAMIC_CAST:
9925 /* Unary, binary and ternary operators: We have to check
9926 their operands. If they are constant, then so is the
9927 result of that operation. For instance, if A and B are
9928 determined to be constants, then so is "A + B".
9929
9930 UNOP_IND is one exception to the rule above, because the
9931 value of *ADDR is not necessarily a constant, even when
9932 ADDR is. */
9933 break;
9934
9935 case OP_VAR_VALUE:
9936 /* Check whether the associated symbol is a constant.
9937
9938 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9939 possible that a buggy compiler could mark a variable as
9940 constant even when it is not, and TYPE_CONST would return
9941 true in this case, while SYMBOL_CLASS wouldn't.
9942
9943 We also have to check for function symbols because they
9944 are always constant. */
9945 {
9946 struct symbol *s = exp->elts[i + 2].symbol;
9947
9948 if (SYMBOL_CLASS (s) != LOC_BLOCK
9949 && SYMBOL_CLASS (s) != LOC_CONST
9950 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9951 return 0;
9952 break;
9953 }
9954
9955 /* The default action is to return 0 because we are using
9956 the optimistic approach here: If we don't know something,
9957 then it is not a constant. */
9958 default:
9959 return 0;
9960 }
9961 }
9962
9963 return 1;
9964 }
9965
9966 /* Watchpoint destructor. */
9967
9968 watchpoint::~watchpoint ()
9969 {
9970 xfree (this->exp_string);
9971 xfree (this->exp_string_reparse);
9972 }
9973
9974 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9975
9976 static void
9977 re_set_watchpoint (struct breakpoint *b)
9978 {
9979 struct watchpoint *w = (struct watchpoint *) b;
9980
9981 /* Watchpoint can be either on expression using entirely global
9982 variables, or it can be on local variables.
9983
9984 Watchpoints of the first kind are never auto-deleted, and even
9985 persist across program restarts. Since they can use variables
9986 from shared libraries, we need to reparse expression as libraries
9987 are loaded and unloaded.
9988
9989 Watchpoints on local variables can also change meaning as result
9990 of solib event. For example, if a watchpoint uses both a local
9991 and a global variables in expression, it's a local watchpoint,
9992 but unloading of a shared library will make the expression
9993 invalid. This is not a very common use case, but we still
9994 re-evaluate expression, to avoid surprises to the user.
9995
9996 Note that for local watchpoints, we re-evaluate it only if
9997 watchpoints frame id is still valid. If it's not, it means the
9998 watchpoint is out of scope and will be deleted soon. In fact,
9999 I'm not sure we'll ever be called in this case.
10000
10001 If a local watchpoint's frame id is still valid, then
10002 w->exp_valid_block is likewise valid, and we can safely use it.
10003
10004 Don't do anything about disabled watchpoints, since they will be
10005 reevaluated again when enabled. */
10006 update_watchpoint (w, 1 /* reparse */);
10007 }
10008
10009 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10010
10011 static int
10012 insert_watchpoint (struct bp_location *bl)
10013 {
10014 struct watchpoint *w = (struct watchpoint *) bl->owner;
10015 int length = w->exact ? 1 : bl->length;
10016
10017 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10018 w->cond_exp.get ());
10019 }
10020
10021 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10022
10023 static int
10024 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10025 {
10026 struct watchpoint *w = (struct watchpoint *) bl->owner;
10027 int length = w->exact ? 1 : bl->length;
10028
10029 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10030 w->cond_exp.get ());
10031 }
10032
10033 static int
10034 breakpoint_hit_watchpoint (const struct bp_location *bl,
10035 const address_space *aspace, CORE_ADDR bp_addr,
10036 const struct target_waitstatus *ws)
10037 {
10038 struct breakpoint *b = bl->owner;
10039 struct watchpoint *w = (struct watchpoint *) b;
10040
10041 /* Continuable hardware watchpoints are treated as non-existent if the
10042 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10043 some data address). Otherwise gdb won't stop on a break instruction
10044 in the code (not from a breakpoint) when a hardware watchpoint has
10045 been defined. Also skip watchpoints which we know did not trigger
10046 (did not match the data address). */
10047 if (is_hardware_watchpoint (b)
10048 && w->watchpoint_triggered == watch_triggered_no)
10049 return 0;
10050
10051 return 1;
10052 }
10053
10054 static void
10055 check_status_watchpoint (bpstat bs)
10056 {
10057 gdb_assert (is_watchpoint (bs->breakpoint_at));
10058
10059 bpstat_check_watchpoint (bs);
10060 }
10061
10062 /* Implement the "resources_needed" breakpoint_ops method for
10063 hardware watchpoints. */
10064
10065 static int
10066 resources_needed_watchpoint (const struct bp_location *bl)
10067 {
10068 struct watchpoint *w = (struct watchpoint *) bl->owner;
10069 int length = w->exact? 1 : bl->length;
10070
10071 return target_region_ok_for_hw_watchpoint (bl->address, length);
10072 }
10073
10074 /* Implement the "works_in_software_mode" breakpoint_ops method for
10075 hardware watchpoints. */
10076
10077 static int
10078 works_in_software_mode_watchpoint (const struct breakpoint *b)
10079 {
10080 /* Read and access watchpoints only work with hardware support. */
10081 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10082 }
10083
10084 static enum print_stop_action
10085 print_it_watchpoint (bpstat bs)
10086 {
10087 struct breakpoint *b;
10088 enum print_stop_action result;
10089 struct watchpoint *w;
10090 struct ui_out *uiout = current_uiout;
10091
10092 gdb_assert (bs->bp_location_at != NULL);
10093
10094 b = bs->breakpoint_at;
10095 w = (struct watchpoint *) b;
10096
10097 annotate_watchpoint (b->number);
10098 maybe_print_thread_hit_breakpoint (uiout);
10099
10100 string_file stb;
10101
10102 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10103 switch (b->type)
10104 {
10105 case bp_watchpoint:
10106 case bp_hardware_watchpoint:
10107 if (uiout->is_mi_like_p ())
10108 uiout->field_string
10109 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10110 mention (b);
10111 tuple_emitter.emplace (uiout, "value");
10112 uiout->text ("\nOld value = ");
10113 watchpoint_value_print (bs->old_val.get (), &stb);
10114 uiout->field_stream ("old", stb);
10115 uiout->text ("\nNew value = ");
10116 watchpoint_value_print (w->val.get (), &stb);
10117 uiout->field_stream ("new", stb);
10118 uiout->text ("\n");
10119 /* More than one watchpoint may have been triggered. */
10120 result = PRINT_UNKNOWN;
10121 break;
10122
10123 case bp_read_watchpoint:
10124 if (uiout->is_mi_like_p ())
10125 uiout->field_string
10126 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10127 mention (b);
10128 tuple_emitter.emplace (uiout, "value");
10129 uiout->text ("\nValue = ");
10130 watchpoint_value_print (w->val.get (), &stb);
10131 uiout->field_stream ("value", stb);
10132 uiout->text ("\n");
10133 result = PRINT_UNKNOWN;
10134 break;
10135
10136 case bp_access_watchpoint:
10137 if (bs->old_val != NULL)
10138 {
10139 if (uiout->is_mi_like_p ())
10140 uiout->field_string
10141 ("reason",
10142 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10143 mention (b);
10144 tuple_emitter.emplace (uiout, "value");
10145 uiout->text ("\nOld value = ");
10146 watchpoint_value_print (bs->old_val.get (), &stb);
10147 uiout->field_stream ("old", stb);
10148 uiout->text ("\nNew value = ");
10149 }
10150 else
10151 {
10152 mention (b);
10153 if (uiout->is_mi_like_p ())
10154 uiout->field_string
10155 ("reason",
10156 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10157 tuple_emitter.emplace (uiout, "value");
10158 uiout->text ("\nValue = ");
10159 }
10160 watchpoint_value_print (w->val.get (), &stb);
10161 uiout->field_stream ("new", stb);
10162 uiout->text ("\n");
10163 result = PRINT_UNKNOWN;
10164 break;
10165 default:
10166 result = PRINT_UNKNOWN;
10167 }
10168
10169 return result;
10170 }
10171
10172 /* Implement the "print_mention" breakpoint_ops method for hardware
10173 watchpoints. */
10174
10175 static void
10176 print_mention_watchpoint (struct breakpoint *b)
10177 {
10178 struct watchpoint *w = (struct watchpoint *) b;
10179 struct ui_out *uiout = current_uiout;
10180 const char *tuple_name;
10181
10182 switch (b->type)
10183 {
10184 case bp_watchpoint:
10185 uiout->text ("Watchpoint ");
10186 tuple_name = "wpt";
10187 break;
10188 case bp_hardware_watchpoint:
10189 uiout->text ("Hardware watchpoint ");
10190 tuple_name = "wpt";
10191 break;
10192 case bp_read_watchpoint:
10193 uiout->text ("Hardware read watchpoint ");
10194 tuple_name = "hw-rwpt";
10195 break;
10196 case bp_access_watchpoint:
10197 uiout->text ("Hardware access (read/write) watchpoint ");
10198 tuple_name = "hw-awpt";
10199 break;
10200 default:
10201 internal_error (__FILE__, __LINE__,
10202 _("Invalid hardware watchpoint type."));
10203 }
10204
10205 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10206 uiout->field_int ("number", b->number);
10207 uiout->text (": ");
10208 uiout->field_string ("exp", w->exp_string);
10209 }
10210
10211 /* Implement the "print_recreate" breakpoint_ops method for
10212 watchpoints. */
10213
10214 static void
10215 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10216 {
10217 struct watchpoint *w = (struct watchpoint *) b;
10218
10219 switch (b->type)
10220 {
10221 case bp_watchpoint:
10222 case bp_hardware_watchpoint:
10223 fprintf_unfiltered (fp, "watch");
10224 break;
10225 case bp_read_watchpoint:
10226 fprintf_unfiltered (fp, "rwatch");
10227 break;
10228 case bp_access_watchpoint:
10229 fprintf_unfiltered (fp, "awatch");
10230 break;
10231 default:
10232 internal_error (__FILE__, __LINE__,
10233 _("Invalid watchpoint type."));
10234 }
10235
10236 fprintf_unfiltered (fp, " %s", w->exp_string);
10237 print_recreate_thread (b, fp);
10238 }
10239
10240 /* Implement the "explains_signal" breakpoint_ops method for
10241 watchpoints. */
10242
10243 static int
10244 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10245 {
10246 /* A software watchpoint cannot cause a signal other than
10247 GDB_SIGNAL_TRAP. */
10248 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10249 return 0;
10250
10251 return 1;
10252 }
10253
10254 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10255
10256 static struct breakpoint_ops watchpoint_breakpoint_ops;
10257
10258 /* Implement the "insert" breakpoint_ops method for
10259 masked hardware watchpoints. */
10260
10261 static int
10262 insert_masked_watchpoint (struct bp_location *bl)
10263 {
10264 struct watchpoint *w = (struct watchpoint *) bl->owner;
10265
10266 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10267 bl->watchpoint_type);
10268 }
10269
10270 /* Implement the "remove" breakpoint_ops method for
10271 masked hardware watchpoints. */
10272
10273 static int
10274 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10275 {
10276 struct watchpoint *w = (struct watchpoint *) bl->owner;
10277
10278 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10279 bl->watchpoint_type);
10280 }
10281
10282 /* Implement the "resources_needed" breakpoint_ops method for
10283 masked hardware watchpoints. */
10284
10285 static int
10286 resources_needed_masked_watchpoint (const struct bp_location *bl)
10287 {
10288 struct watchpoint *w = (struct watchpoint *) bl->owner;
10289
10290 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10291 }
10292
10293 /* Implement the "works_in_software_mode" breakpoint_ops method for
10294 masked hardware watchpoints. */
10295
10296 static int
10297 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10298 {
10299 return 0;
10300 }
10301
10302 /* Implement the "print_it" breakpoint_ops method for
10303 masked hardware watchpoints. */
10304
10305 static enum print_stop_action
10306 print_it_masked_watchpoint (bpstat bs)
10307 {
10308 struct breakpoint *b = bs->breakpoint_at;
10309 struct ui_out *uiout = current_uiout;
10310
10311 /* Masked watchpoints have only one location. */
10312 gdb_assert (b->loc && b->loc->next == NULL);
10313
10314 annotate_watchpoint (b->number);
10315 maybe_print_thread_hit_breakpoint (uiout);
10316
10317 switch (b->type)
10318 {
10319 case bp_hardware_watchpoint:
10320 if (uiout->is_mi_like_p ())
10321 uiout->field_string
10322 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10323 break;
10324
10325 case bp_read_watchpoint:
10326 if (uiout->is_mi_like_p ())
10327 uiout->field_string
10328 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10329 break;
10330
10331 case bp_access_watchpoint:
10332 if (uiout->is_mi_like_p ())
10333 uiout->field_string
10334 ("reason",
10335 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10336 break;
10337 default:
10338 internal_error (__FILE__, __LINE__,
10339 _("Invalid hardware watchpoint type."));
10340 }
10341
10342 mention (b);
10343 uiout->text (_("\n\
10344 Check the underlying instruction at PC for the memory\n\
10345 address and value which triggered this watchpoint.\n"));
10346 uiout->text ("\n");
10347
10348 /* More than one watchpoint may have been triggered. */
10349 return PRINT_UNKNOWN;
10350 }
10351
10352 /* Implement the "print_one_detail" breakpoint_ops method for
10353 masked hardware watchpoints. */
10354
10355 static void
10356 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10357 struct ui_out *uiout)
10358 {
10359 struct watchpoint *w = (struct watchpoint *) b;
10360
10361 /* Masked watchpoints have only one location. */
10362 gdb_assert (b->loc && b->loc->next == NULL);
10363
10364 uiout->text ("\tmask ");
10365 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10366 uiout->text ("\n");
10367 }
10368
10369 /* Implement the "print_mention" breakpoint_ops method for
10370 masked hardware watchpoints. */
10371
10372 static void
10373 print_mention_masked_watchpoint (struct breakpoint *b)
10374 {
10375 struct watchpoint *w = (struct watchpoint *) b;
10376 struct ui_out *uiout = current_uiout;
10377 const char *tuple_name;
10378
10379 switch (b->type)
10380 {
10381 case bp_hardware_watchpoint:
10382 uiout->text ("Masked hardware watchpoint ");
10383 tuple_name = "wpt";
10384 break;
10385 case bp_read_watchpoint:
10386 uiout->text ("Masked hardware read watchpoint ");
10387 tuple_name = "hw-rwpt";
10388 break;
10389 case bp_access_watchpoint:
10390 uiout->text ("Masked hardware access (read/write) watchpoint ");
10391 tuple_name = "hw-awpt";
10392 break;
10393 default:
10394 internal_error (__FILE__, __LINE__,
10395 _("Invalid hardware watchpoint type."));
10396 }
10397
10398 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10399 uiout->field_int ("number", b->number);
10400 uiout->text (": ");
10401 uiout->field_string ("exp", w->exp_string);
10402 }
10403
10404 /* Implement the "print_recreate" breakpoint_ops method for
10405 masked hardware watchpoints. */
10406
10407 static void
10408 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10409 {
10410 struct watchpoint *w = (struct watchpoint *) b;
10411 char tmp[40];
10412
10413 switch (b->type)
10414 {
10415 case bp_hardware_watchpoint:
10416 fprintf_unfiltered (fp, "watch");
10417 break;
10418 case bp_read_watchpoint:
10419 fprintf_unfiltered (fp, "rwatch");
10420 break;
10421 case bp_access_watchpoint:
10422 fprintf_unfiltered (fp, "awatch");
10423 break;
10424 default:
10425 internal_error (__FILE__, __LINE__,
10426 _("Invalid hardware watchpoint type."));
10427 }
10428
10429 sprintf_vma (tmp, w->hw_wp_mask);
10430 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10431 print_recreate_thread (b, fp);
10432 }
10433
10434 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10435
10436 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10437
10438 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10439
10440 static int
10441 is_masked_watchpoint (const struct breakpoint *b)
10442 {
10443 return b->ops == &masked_watchpoint_breakpoint_ops;
10444 }
10445
10446 /* accessflag: hw_write: watch write,
10447 hw_read: watch read,
10448 hw_access: watch access (read or write) */
10449 static void
10450 watch_command_1 (const char *arg, int accessflag, int from_tty,
10451 int just_location, int internal)
10452 {
10453 struct breakpoint *scope_breakpoint = NULL;
10454 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10455 struct value *result;
10456 int saved_bitpos = 0, saved_bitsize = 0;
10457 const char *exp_start = NULL;
10458 const char *exp_end = NULL;
10459 const char *tok, *end_tok;
10460 int toklen = -1;
10461 const char *cond_start = NULL;
10462 const char *cond_end = NULL;
10463 enum bptype bp_type;
10464 int thread = -1;
10465 int pc = 0;
10466 /* Flag to indicate whether we are going to use masks for
10467 the hardware watchpoint. */
10468 int use_mask = 0;
10469 CORE_ADDR mask = 0;
10470
10471 /* Make sure that we actually have parameters to parse. */
10472 if (arg != NULL && arg[0] != '\0')
10473 {
10474 const char *value_start;
10475
10476 exp_end = arg + strlen (arg);
10477
10478 /* Look for "parameter value" pairs at the end
10479 of the arguments string. */
10480 for (tok = exp_end - 1; tok > arg; tok--)
10481 {
10482 /* Skip whitespace at the end of the argument list. */
10483 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10484 tok--;
10485
10486 /* Find the beginning of the last token.
10487 This is the value of the parameter. */
10488 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10489 tok--;
10490 value_start = tok + 1;
10491
10492 /* Skip whitespace. */
10493 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10494 tok--;
10495
10496 end_tok = tok;
10497
10498 /* Find the beginning of the second to last token.
10499 This is the parameter itself. */
10500 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10501 tok--;
10502 tok++;
10503 toklen = end_tok - tok + 1;
10504
10505 if (toklen == 6 && startswith (tok, "thread"))
10506 {
10507 struct thread_info *thr;
10508 /* At this point we've found a "thread" token, which means
10509 the user is trying to set a watchpoint that triggers
10510 only in a specific thread. */
10511 const char *endp;
10512
10513 if (thread != -1)
10514 error(_("You can specify only one thread."));
10515
10516 /* Extract the thread ID from the next token. */
10517 thr = parse_thread_id (value_start, &endp);
10518
10519 /* Check if the user provided a valid thread ID. */
10520 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10521 invalid_thread_id_error (value_start);
10522
10523 thread = thr->global_num;
10524 }
10525 else if (toklen == 4 && startswith (tok, "mask"))
10526 {
10527 /* We've found a "mask" token, which means the user wants to
10528 create a hardware watchpoint that is going to have the mask
10529 facility. */
10530 struct value *mask_value, *mark;
10531
10532 if (use_mask)
10533 error(_("You can specify only one mask."));
10534
10535 use_mask = just_location = 1;
10536
10537 mark = value_mark ();
10538 mask_value = parse_to_comma_and_eval (&value_start);
10539 mask = value_as_address (mask_value);
10540 value_free_to_mark (mark);
10541 }
10542 else
10543 /* We didn't recognize what we found. We should stop here. */
10544 break;
10545
10546 /* Truncate the string and get rid of the "parameter value" pair before
10547 the arguments string is parsed by the parse_exp_1 function. */
10548 exp_end = tok;
10549 }
10550 }
10551 else
10552 exp_end = arg;
10553
10554 /* Parse the rest of the arguments. From here on out, everything
10555 is in terms of a newly allocated string instead of the original
10556 ARG. */
10557 std::string expression (arg, exp_end - arg);
10558 exp_start = arg = expression.c_str ();
10559 innermost_block_tracker tracker;
10560 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10561 exp_end = arg;
10562 /* Remove trailing whitespace from the expression before saving it.
10563 This makes the eventual display of the expression string a bit
10564 prettier. */
10565 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10566 --exp_end;
10567
10568 /* Checking if the expression is not constant. */
10569 if (watchpoint_exp_is_const (exp.get ()))
10570 {
10571 int len;
10572
10573 len = exp_end - exp_start;
10574 while (len > 0 && isspace (exp_start[len - 1]))
10575 len--;
10576 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10577 }
10578
10579 exp_valid_block = tracker.block ();
10580 struct value *mark = value_mark ();
10581 struct value *val_as_value = nullptr;
10582 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10583 just_location);
10584
10585 if (val_as_value != NULL && just_location)
10586 {
10587 saved_bitpos = value_bitpos (val_as_value);
10588 saved_bitsize = value_bitsize (val_as_value);
10589 }
10590
10591 value_ref_ptr val;
10592 if (just_location)
10593 {
10594 int ret;
10595
10596 exp_valid_block = NULL;
10597 val = release_value (value_addr (result));
10598 value_free_to_mark (mark);
10599
10600 if (use_mask)
10601 {
10602 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10603 mask);
10604 if (ret == -1)
10605 error (_("This target does not support masked watchpoints."));
10606 else if (ret == -2)
10607 error (_("Invalid mask or memory region."));
10608 }
10609 }
10610 else if (val_as_value != NULL)
10611 val = release_value (val_as_value);
10612
10613 tok = skip_spaces (arg);
10614 end_tok = skip_to_space (tok);
10615
10616 toklen = end_tok - tok;
10617 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10618 {
10619 tok = cond_start = end_tok + 1;
10620 innermost_block_tracker if_tracker;
10621 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10622
10623 /* The watchpoint expression may not be local, but the condition
10624 may still be. E.g.: `watch global if local > 0'. */
10625 cond_exp_valid_block = if_tracker.block ();
10626
10627 cond_end = tok;
10628 }
10629 if (*tok)
10630 error (_("Junk at end of command."));
10631
10632 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10633
10634 /* Save this because create_internal_breakpoint below invalidates
10635 'wp_frame'. */
10636 frame_id watchpoint_frame = get_frame_id (wp_frame);
10637
10638 /* If the expression is "local", then set up a "watchpoint scope"
10639 breakpoint at the point where we've left the scope of the watchpoint
10640 expression. Create the scope breakpoint before the watchpoint, so
10641 that we will encounter it first in bpstat_stop_status. */
10642 if (exp_valid_block != NULL && wp_frame != NULL)
10643 {
10644 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10645
10646 if (frame_id_p (caller_frame_id))
10647 {
10648 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10649 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10650
10651 scope_breakpoint
10652 = create_internal_breakpoint (caller_arch, caller_pc,
10653 bp_watchpoint_scope,
10654 &momentary_breakpoint_ops);
10655
10656 /* create_internal_breakpoint could invalidate WP_FRAME. */
10657 wp_frame = NULL;
10658
10659 scope_breakpoint->enable_state = bp_enabled;
10660
10661 /* Automatically delete the breakpoint when it hits. */
10662 scope_breakpoint->disposition = disp_del;
10663
10664 /* Only break in the proper frame (help with recursion). */
10665 scope_breakpoint->frame_id = caller_frame_id;
10666
10667 /* Set the address at which we will stop. */
10668 scope_breakpoint->loc->gdbarch = caller_arch;
10669 scope_breakpoint->loc->requested_address = caller_pc;
10670 scope_breakpoint->loc->address
10671 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10672 scope_breakpoint->loc->requested_address,
10673 scope_breakpoint->type);
10674 }
10675 }
10676
10677 /* Now set up the breakpoint. We create all watchpoints as hardware
10678 watchpoints here even if hardware watchpoints are turned off, a call
10679 to update_watchpoint later in this function will cause the type to
10680 drop back to bp_watchpoint (software watchpoint) if required. */
10681
10682 if (accessflag == hw_read)
10683 bp_type = bp_read_watchpoint;
10684 else if (accessflag == hw_access)
10685 bp_type = bp_access_watchpoint;
10686 else
10687 bp_type = bp_hardware_watchpoint;
10688
10689 std::unique_ptr<watchpoint> w (new watchpoint ());
10690
10691 if (use_mask)
10692 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10693 &masked_watchpoint_breakpoint_ops);
10694 else
10695 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10696 &watchpoint_breakpoint_ops);
10697 w->thread = thread;
10698 w->disposition = disp_donttouch;
10699 w->pspace = current_program_space;
10700 w->exp = std::move (exp);
10701 w->exp_valid_block = exp_valid_block;
10702 w->cond_exp_valid_block = cond_exp_valid_block;
10703 if (just_location)
10704 {
10705 struct type *t = value_type (val.get ());
10706 CORE_ADDR addr = value_as_address (val.get ());
10707
10708 w->exp_string_reparse
10709 = current_language->la_watch_location_expression (t, addr).release ();
10710
10711 w->exp_string = xstrprintf ("-location %.*s",
10712 (int) (exp_end - exp_start), exp_start);
10713 }
10714 else
10715 w->exp_string = savestring (exp_start, exp_end - exp_start);
10716
10717 if (use_mask)
10718 {
10719 w->hw_wp_mask = mask;
10720 }
10721 else
10722 {
10723 w->val = val;
10724 w->val_bitpos = saved_bitpos;
10725 w->val_bitsize = saved_bitsize;
10726 w->val_valid = 1;
10727 }
10728
10729 if (cond_start)
10730 w->cond_string = savestring (cond_start, cond_end - cond_start);
10731 else
10732 w->cond_string = 0;
10733
10734 if (frame_id_p (watchpoint_frame))
10735 {
10736 w->watchpoint_frame = watchpoint_frame;
10737 w->watchpoint_thread = inferior_ptid;
10738 }
10739 else
10740 {
10741 w->watchpoint_frame = null_frame_id;
10742 w->watchpoint_thread = null_ptid;
10743 }
10744
10745 if (scope_breakpoint != NULL)
10746 {
10747 /* The scope breakpoint is related to the watchpoint. We will
10748 need to act on them together. */
10749 w->related_breakpoint = scope_breakpoint;
10750 scope_breakpoint->related_breakpoint = w.get ();
10751 }
10752
10753 if (!just_location)
10754 value_free_to_mark (mark);
10755
10756 /* Finally update the new watchpoint. This creates the locations
10757 that should be inserted. */
10758 update_watchpoint (w.get (), 1);
10759
10760 install_breakpoint (internal, std::move (w), 1);
10761 }
10762
10763 /* Return count of debug registers needed to watch the given expression.
10764 If the watchpoint cannot be handled in hardware return zero. */
10765
10766 static int
10767 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10768 {
10769 int found_memory_cnt = 0;
10770
10771 /* Did the user specifically forbid us to use hardware watchpoints? */
10772 if (!can_use_hw_watchpoints)
10773 return 0;
10774
10775 gdb_assert (!vals.empty ());
10776 struct value *head = vals[0].get ();
10777
10778 /* Make sure that the value of the expression depends only upon
10779 memory contents, and values computed from them within GDB. If we
10780 find any register references or function calls, we can't use a
10781 hardware watchpoint.
10782
10783 The idea here is that evaluating an expression generates a series
10784 of values, one holding the value of every subexpression. (The
10785 expression a*b+c has five subexpressions: a, b, a*b, c, and
10786 a*b+c.) GDB's values hold almost enough information to establish
10787 the criteria given above --- they identify memory lvalues,
10788 register lvalues, computed values, etcetera. So we can evaluate
10789 the expression, and then scan the chain of values that leaves
10790 behind to decide whether we can detect any possible change to the
10791 expression's final value using only hardware watchpoints.
10792
10793 However, I don't think that the values returned by inferior
10794 function calls are special in any way. So this function may not
10795 notice that an expression involving an inferior function call
10796 can't be watched with hardware watchpoints. FIXME. */
10797 for (const value_ref_ptr &iter : vals)
10798 {
10799 struct value *v = iter.get ();
10800
10801 if (VALUE_LVAL (v) == lval_memory)
10802 {
10803 if (v != head && value_lazy (v))
10804 /* A lazy memory lvalue in the chain is one that GDB never
10805 needed to fetch; we either just used its address (e.g.,
10806 `a' in `a.b') or we never needed it at all (e.g., `a'
10807 in `a,b'). This doesn't apply to HEAD; if that is
10808 lazy then it was not readable, but watch it anyway. */
10809 ;
10810 else
10811 {
10812 /* Ahh, memory we actually used! Check if we can cover
10813 it with hardware watchpoints. */
10814 struct type *vtype = check_typedef (value_type (v));
10815
10816 /* We only watch structs and arrays if user asked for it
10817 explicitly, never if they just happen to appear in a
10818 middle of some value chain. */
10819 if (v == head
10820 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10821 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10822 {
10823 CORE_ADDR vaddr = value_address (v);
10824 int len;
10825 int num_regs;
10826
10827 len = (target_exact_watchpoints
10828 && is_scalar_type_recursive (vtype))?
10829 1 : TYPE_LENGTH (value_type (v));
10830
10831 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10832 if (!num_regs)
10833 return 0;
10834 else
10835 found_memory_cnt += num_regs;
10836 }
10837 }
10838 }
10839 else if (VALUE_LVAL (v) != not_lval
10840 && deprecated_value_modifiable (v) == 0)
10841 return 0; /* These are values from the history (e.g., $1). */
10842 else if (VALUE_LVAL (v) == lval_register)
10843 return 0; /* Cannot watch a register with a HW watchpoint. */
10844 }
10845
10846 /* The expression itself looks suitable for using a hardware
10847 watchpoint, but give the target machine a chance to reject it. */
10848 return found_memory_cnt;
10849 }
10850
10851 void
10852 watch_command_wrapper (const char *arg, int from_tty, int internal)
10853 {
10854 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10855 }
10856
10857 /* A helper function that looks for the "-location" argument and then
10858 calls watch_command_1. */
10859
10860 static void
10861 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10862 {
10863 int just_location = 0;
10864
10865 if (arg
10866 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10867 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10868 just_location = 1;
10869
10870 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10871 }
10872
10873 static void
10874 watch_command (const char *arg, int from_tty)
10875 {
10876 watch_maybe_just_location (arg, hw_write, from_tty);
10877 }
10878
10879 void
10880 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10881 {
10882 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10883 }
10884
10885 static void
10886 rwatch_command (const char *arg, int from_tty)
10887 {
10888 watch_maybe_just_location (arg, hw_read, from_tty);
10889 }
10890
10891 void
10892 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10893 {
10894 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10895 }
10896
10897 static void
10898 awatch_command (const char *arg, int from_tty)
10899 {
10900 watch_maybe_just_location (arg, hw_access, from_tty);
10901 }
10902 \f
10903
10904 /* Data for the FSM that manages the until(location)/advance commands
10905 in infcmd.c. Here because it uses the mechanisms of
10906 breakpoints. */
10907
10908 struct until_break_fsm : public thread_fsm
10909 {
10910 /* The thread that was current when the command was executed. */
10911 int thread;
10912
10913 /* The breakpoint set at the destination location. */
10914 breakpoint_up location_breakpoint;
10915
10916 /* Breakpoint set at the return address in the caller frame. May be
10917 NULL. */
10918 breakpoint_up caller_breakpoint;
10919
10920 until_break_fsm (struct interp *cmd_interp, int thread,
10921 breakpoint_up &&location_breakpoint,
10922 breakpoint_up &&caller_breakpoint)
10923 : thread_fsm (cmd_interp),
10924 thread (thread),
10925 location_breakpoint (std::move (location_breakpoint)),
10926 caller_breakpoint (std::move (caller_breakpoint))
10927 {
10928 }
10929
10930 void clean_up (struct thread_info *thread) override;
10931 bool should_stop (struct thread_info *thread) override;
10932 enum async_reply_reason do_async_reply_reason () override;
10933 };
10934
10935 /* Implementation of the 'should_stop' FSM method for the
10936 until(location)/advance commands. */
10937
10938 bool
10939 until_break_fsm::should_stop (struct thread_info *tp)
10940 {
10941 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10942 location_breakpoint.get ()) != NULL
10943 || (caller_breakpoint != NULL
10944 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10945 caller_breakpoint.get ()) != NULL))
10946 set_finished ();
10947
10948 return true;
10949 }
10950
10951 /* Implementation of the 'clean_up' FSM method for the
10952 until(location)/advance commands. */
10953
10954 void
10955 until_break_fsm::clean_up (struct thread_info *)
10956 {
10957 /* Clean up our temporary breakpoints. */
10958 location_breakpoint.reset ();
10959 caller_breakpoint.reset ();
10960 delete_longjmp_breakpoint (thread);
10961 }
10962
10963 /* Implementation of the 'async_reply_reason' FSM method for the
10964 until(location)/advance commands. */
10965
10966 enum async_reply_reason
10967 until_break_fsm::do_async_reply_reason ()
10968 {
10969 return EXEC_ASYNC_LOCATION_REACHED;
10970 }
10971
10972 void
10973 until_break_command (const char *arg, int from_tty, int anywhere)
10974 {
10975 struct frame_info *frame;
10976 struct gdbarch *frame_gdbarch;
10977 struct frame_id stack_frame_id;
10978 struct frame_id caller_frame_id;
10979 int thread;
10980 struct thread_info *tp;
10981
10982 clear_proceed_status (0);
10983
10984 /* Set a breakpoint where the user wants it and at return from
10985 this function. */
10986
10987 event_location_up location = string_to_event_location (&arg, current_language);
10988
10989 std::vector<symtab_and_line> sals
10990 = (last_displayed_sal_is_valid ()
10991 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10992 get_last_displayed_symtab (),
10993 get_last_displayed_line ())
10994 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
10995 NULL, NULL, 0));
10996
10997 if (sals.size () != 1)
10998 error (_("Couldn't get information on specified line."));
10999
11000 symtab_and_line &sal = sals[0];
11001
11002 if (*arg)
11003 error (_("Junk at end of arguments."));
11004
11005 resolve_sal_pc (&sal);
11006
11007 tp = inferior_thread ();
11008 thread = tp->global_num;
11009
11010 /* Note linespec handling above invalidates the frame chain.
11011 Installing a breakpoint also invalidates the frame chain (as it
11012 may need to switch threads), so do any frame handling before
11013 that. */
11014
11015 frame = get_selected_frame (NULL);
11016 frame_gdbarch = get_frame_arch (frame);
11017 stack_frame_id = get_stack_frame_id (frame);
11018 caller_frame_id = frame_unwind_caller_id (frame);
11019
11020 /* Keep within the current frame, or in frames called by the current
11021 one. */
11022
11023 breakpoint_up caller_breakpoint;
11024
11025 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11026
11027 if (frame_id_p (caller_frame_id))
11028 {
11029 struct symtab_and_line sal2;
11030 struct gdbarch *caller_gdbarch;
11031
11032 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11033 sal2.pc = frame_unwind_caller_pc (frame);
11034 caller_gdbarch = frame_unwind_caller_arch (frame);
11035 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11036 sal2,
11037 caller_frame_id,
11038 bp_until);
11039
11040 set_longjmp_breakpoint (tp, caller_frame_id);
11041 lj_deleter.emplace (thread);
11042 }
11043
11044 /* set_momentary_breakpoint could invalidate FRAME. */
11045 frame = NULL;
11046
11047 breakpoint_up location_breakpoint;
11048 if (anywhere)
11049 /* If the user told us to continue until a specified location,
11050 we don't specify a frame at which we need to stop. */
11051 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11052 null_frame_id, bp_until);
11053 else
11054 /* Otherwise, specify the selected frame, because we want to stop
11055 only at the very same frame. */
11056 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11057 stack_frame_id, bp_until);
11058
11059 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11060 std::move (location_breakpoint),
11061 std::move (caller_breakpoint));
11062
11063 if (lj_deleter)
11064 lj_deleter->release ();
11065
11066 proceed (-1, GDB_SIGNAL_DEFAULT);
11067 }
11068
11069 /* This function attempts to parse an optional "if <cond>" clause
11070 from the arg string. If one is not found, it returns NULL.
11071
11072 Else, it returns a pointer to the condition string. (It does not
11073 attempt to evaluate the string against a particular block.) And,
11074 it updates arg to point to the first character following the parsed
11075 if clause in the arg string. */
11076
11077 const char *
11078 ep_parse_optional_if_clause (const char **arg)
11079 {
11080 const char *cond_string;
11081
11082 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11083 return NULL;
11084
11085 /* Skip the "if" keyword. */
11086 (*arg) += 2;
11087
11088 /* Skip any extra leading whitespace, and record the start of the
11089 condition string. */
11090 *arg = skip_spaces (*arg);
11091 cond_string = *arg;
11092
11093 /* Assume that the condition occupies the remainder of the arg
11094 string. */
11095 (*arg) += strlen (cond_string);
11096
11097 return cond_string;
11098 }
11099
11100 /* Commands to deal with catching events, such as signals, exceptions,
11101 process start/exit, etc. */
11102
11103 typedef enum
11104 {
11105 catch_fork_temporary, catch_vfork_temporary,
11106 catch_fork_permanent, catch_vfork_permanent
11107 }
11108 catch_fork_kind;
11109
11110 static void
11111 catch_fork_command_1 (const char *arg, int from_tty,
11112 struct cmd_list_element *command)
11113 {
11114 struct gdbarch *gdbarch = get_current_arch ();
11115 const char *cond_string = NULL;
11116 catch_fork_kind fork_kind;
11117 int tempflag;
11118
11119 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11120 tempflag = (fork_kind == catch_fork_temporary
11121 || fork_kind == catch_vfork_temporary);
11122
11123 if (!arg)
11124 arg = "";
11125 arg = skip_spaces (arg);
11126
11127 /* The allowed syntax is:
11128 catch [v]fork
11129 catch [v]fork if <cond>
11130
11131 First, check if there's an if clause. */
11132 cond_string = ep_parse_optional_if_clause (&arg);
11133
11134 if ((*arg != '\0') && !isspace (*arg))
11135 error (_("Junk at end of arguments."));
11136
11137 /* If this target supports it, create a fork or vfork catchpoint
11138 and enable reporting of such events. */
11139 switch (fork_kind)
11140 {
11141 case catch_fork_temporary:
11142 case catch_fork_permanent:
11143 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11144 &catch_fork_breakpoint_ops);
11145 break;
11146 case catch_vfork_temporary:
11147 case catch_vfork_permanent:
11148 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11149 &catch_vfork_breakpoint_ops);
11150 break;
11151 default:
11152 error (_("unsupported or unknown fork kind; cannot catch it"));
11153 break;
11154 }
11155 }
11156
11157 static void
11158 catch_exec_command_1 (const char *arg, int from_tty,
11159 struct cmd_list_element *command)
11160 {
11161 struct gdbarch *gdbarch = get_current_arch ();
11162 int tempflag;
11163 const char *cond_string = NULL;
11164
11165 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11166
11167 if (!arg)
11168 arg = "";
11169 arg = skip_spaces (arg);
11170
11171 /* The allowed syntax is:
11172 catch exec
11173 catch exec if <cond>
11174
11175 First, check if there's an if clause. */
11176 cond_string = ep_parse_optional_if_clause (&arg);
11177
11178 if ((*arg != '\0') && !isspace (*arg))
11179 error (_("Junk at end of arguments."));
11180
11181 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11182 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11183 &catch_exec_breakpoint_ops);
11184 c->exec_pathname = NULL;
11185
11186 install_breakpoint (0, std::move (c), 1);
11187 }
11188
11189 void
11190 init_ada_exception_breakpoint (struct breakpoint *b,
11191 struct gdbarch *gdbarch,
11192 struct symtab_and_line sal,
11193 const char *addr_string,
11194 const struct breakpoint_ops *ops,
11195 int tempflag,
11196 int enabled,
11197 int from_tty)
11198 {
11199 if (from_tty)
11200 {
11201 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11202 if (!loc_gdbarch)
11203 loc_gdbarch = gdbarch;
11204
11205 describe_other_breakpoints (loc_gdbarch,
11206 sal.pspace, sal.pc, sal.section, -1);
11207 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11208 version for exception catchpoints, because two catchpoints
11209 used for different exception names will use the same address.
11210 In this case, a "breakpoint ... also set at..." warning is
11211 unproductive. Besides, the warning phrasing is also a bit
11212 inappropriate, we should use the word catchpoint, and tell
11213 the user what type of catchpoint it is. The above is good
11214 enough for now, though. */
11215 }
11216
11217 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11218
11219 b->enable_state = enabled ? bp_enabled : bp_disabled;
11220 b->disposition = tempflag ? disp_del : disp_donttouch;
11221 b->location = string_to_event_location (&addr_string,
11222 language_def (language_ada));
11223 b->language = language_ada;
11224 }
11225
11226 static void
11227 catch_command (const char *arg, int from_tty)
11228 {
11229 error (_("Catch requires an event name."));
11230 }
11231 \f
11232
11233 static void
11234 tcatch_command (const char *arg, int from_tty)
11235 {
11236 error (_("Catch requires an event name."));
11237 }
11238
11239 /* Compare two breakpoints and return a strcmp-like result. */
11240
11241 static int
11242 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11243 {
11244 uintptr_t ua = (uintptr_t) a;
11245 uintptr_t ub = (uintptr_t) b;
11246
11247 if (a->number < b->number)
11248 return -1;
11249 else if (a->number > b->number)
11250 return 1;
11251
11252 /* Now sort by address, in case we see, e..g, two breakpoints with
11253 the number 0. */
11254 if (ua < ub)
11255 return -1;
11256 return ua > ub ? 1 : 0;
11257 }
11258
11259 /* Delete breakpoints by address or line. */
11260
11261 static void
11262 clear_command (const char *arg, int from_tty)
11263 {
11264 struct breakpoint *b;
11265 int default_match;
11266
11267 std::vector<symtab_and_line> decoded_sals;
11268 symtab_and_line last_sal;
11269 gdb::array_view<symtab_and_line> sals;
11270 if (arg)
11271 {
11272 decoded_sals
11273 = decode_line_with_current_source (arg,
11274 (DECODE_LINE_FUNFIRSTLINE
11275 | DECODE_LINE_LIST_MODE));
11276 default_match = 0;
11277 sals = decoded_sals;
11278 }
11279 else
11280 {
11281 /* Set sal's line, symtab, pc, and pspace to the values
11282 corresponding to the last call to print_frame_info. If the
11283 codepoint is not valid, this will set all the fields to 0. */
11284 last_sal = get_last_displayed_sal ();
11285 if (last_sal.symtab == 0)
11286 error (_("No source file specified."));
11287
11288 default_match = 1;
11289 sals = last_sal;
11290 }
11291
11292 /* We don't call resolve_sal_pc here. That's not as bad as it
11293 seems, because all existing breakpoints typically have both
11294 file/line and pc set. So, if clear is given file/line, we can
11295 match this to existing breakpoint without obtaining pc at all.
11296
11297 We only support clearing given the address explicitly
11298 present in breakpoint table. Say, we've set breakpoint
11299 at file:line. There were several PC values for that file:line,
11300 due to optimization, all in one block.
11301
11302 We've picked one PC value. If "clear" is issued with another
11303 PC corresponding to the same file:line, the breakpoint won't
11304 be cleared. We probably can still clear the breakpoint, but
11305 since the other PC value is never presented to user, user
11306 can only find it by guessing, and it does not seem important
11307 to support that. */
11308
11309 /* For each line spec given, delete bps which correspond to it. Do
11310 it in two passes, solely to preserve the current behavior that
11311 from_tty is forced true if we delete more than one
11312 breakpoint. */
11313
11314 std::vector<struct breakpoint *> found;
11315 for (const auto &sal : sals)
11316 {
11317 const char *sal_fullname;
11318
11319 /* If exact pc given, clear bpts at that pc.
11320 If line given (pc == 0), clear all bpts on specified line.
11321 If defaulting, clear all bpts on default line
11322 or at default pc.
11323
11324 defaulting sal.pc != 0 tests to do
11325
11326 0 1 pc
11327 1 1 pc _and_ line
11328 0 0 line
11329 1 0 <can't happen> */
11330
11331 sal_fullname = (sal.symtab == NULL
11332 ? NULL : symtab_to_fullname (sal.symtab));
11333
11334 /* Find all matching breakpoints and add them to 'found'. */
11335 ALL_BREAKPOINTS (b)
11336 {
11337 int match = 0;
11338 /* Are we going to delete b? */
11339 if (b->type != bp_none && !is_watchpoint (b))
11340 {
11341 struct bp_location *loc = b->loc;
11342 for (; loc; loc = loc->next)
11343 {
11344 /* If the user specified file:line, don't allow a PC
11345 match. This matches historical gdb behavior. */
11346 int pc_match = (!sal.explicit_line
11347 && sal.pc
11348 && (loc->pspace == sal.pspace)
11349 && (loc->address == sal.pc)
11350 && (!section_is_overlay (loc->section)
11351 || loc->section == sal.section));
11352 int line_match = 0;
11353
11354 if ((default_match || sal.explicit_line)
11355 && loc->symtab != NULL
11356 && sal_fullname != NULL
11357 && sal.pspace == loc->pspace
11358 && loc->line_number == sal.line
11359 && filename_cmp (symtab_to_fullname (loc->symtab),
11360 sal_fullname) == 0)
11361 line_match = 1;
11362
11363 if (pc_match || line_match)
11364 {
11365 match = 1;
11366 break;
11367 }
11368 }
11369 }
11370
11371 if (match)
11372 found.push_back (b);
11373 }
11374 }
11375
11376 /* Now go thru the 'found' chain and delete them. */
11377 if (found.empty ())
11378 {
11379 if (arg)
11380 error (_("No breakpoint at %s."), arg);
11381 else
11382 error (_("No breakpoint at this line."));
11383 }
11384
11385 /* Remove duplicates from the vec. */
11386 std::sort (found.begin (), found.end (),
11387 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11388 {
11389 return compare_breakpoints (bp_a, bp_b) < 0;
11390 });
11391 found.erase (std::unique (found.begin (), found.end (),
11392 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11393 {
11394 return compare_breakpoints (bp_a, bp_b) == 0;
11395 }),
11396 found.end ());
11397
11398 if (found.size () > 1)
11399 from_tty = 1; /* Always report if deleted more than one. */
11400 if (from_tty)
11401 {
11402 if (found.size () == 1)
11403 printf_unfiltered (_("Deleted breakpoint "));
11404 else
11405 printf_unfiltered (_("Deleted breakpoints "));
11406 }
11407
11408 for (breakpoint *iter : found)
11409 {
11410 if (from_tty)
11411 printf_unfiltered ("%d ", iter->number);
11412 delete_breakpoint (iter);
11413 }
11414 if (from_tty)
11415 putchar_unfiltered ('\n');
11416 }
11417 \f
11418 /* Delete breakpoint in BS if they are `delete' breakpoints and
11419 all breakpoints that are marked for deletion, whether hit or not.
11420 This is called after any breakpoint is hit, or after errors. */
11421
11422 void
11423 breakpoint_auto_delete (bpstat bs)
11424 {
11425 struct breakpoint *b, *b_tmp;
11426
11427 for (; bs; bs = bs->next)
11428 if (bs->breakpoint_at
11429 && bs->breakpoint_at->disposition == disp_del
11430 && bs->stop)
11431 delete_breakpoint (bs->breakpoint_at);
11432
11433 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11434 {
11435 if (b->disposition == disp_del_at_next_stop)
11436 delete_breakpoint (b);
11437 }
11438 }
11439
11440 /* A comparison function for bp_location AP and BP being interfaced to
11441 qsort. Sort elements primarily by their ADDRESS (no matter what
11442 bl_address_is_meaningful says), secondarily by ordering first
11443 permanent elements and terciarily just ensuring the array is sorted
11444 stable way despite qsort being an unstable algorithm. */
11445
11446 static int
11447 bp_locations_compare (const void *ap, const void *bp)
11448 {
11449 const struct bp_location *a = *(const struct bp_location **) ap;
11450 const struct bp_location *b = *(const struct bp_location **) bp;
11451
11452 if (a->address != b->address)
11453 return (a->address > b->address) - (a->address < b->address);
11454
11455 /* Sort locations at the same address by their pspace number, keeping
11456 locations of the same inferior (in a multi-inferior environment)
11457 grouped. */
11458
11459 if (a->pspace->num != b->pspace->num)
11460 return ((a->pspace->num > b->pspace->num)
11461 - (a->pspace->num < b->pspace->num));
11462
11463 /* Sort permanent breakpoints first. */
11464 if (a->permanent != b->permanent)
11465 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11466
11467 /* Make the internal GDB representation stable across GDB runs
11468 where A and B memory inside GDB can differ. Breakpoint locations of
11469 the same type at the same address can be sorted in arbitrary order. */
11470
11471 if (a->owner->number != b->owner->number)
11472 return ((a->owner->number > b->owner->number)
11473 - (a->owner->number < b->owner->number));
11474
11475 return (a > b) - (a < b);
11476 }
11477
11478 /* Set bp_locations_placed_address_before_address_max and
11479 bp_locations_shadow_len_after_address_max according to the current
11480 content of the bp_locations array. */
11481
11482 static void
11483 bp_locations_target_extensions_update (void)
11484 {
11485 struct bp_location *bl, **blp_tmp;
11486
11487 bp_locations_placed_address_before_address_max = 0;
11488 bp_locations_shadow_len_after_address_max = 0;
11489
11490 ALL_BP_LOCATIONS (bl, blp_tmp)
11491 {
11492 CORE_ADDR start, end, addr;
11493
11494 if (!bp_location_has_shadow (bl))
11495 continue;
11496
11497 start = bl->target_info.placed_address;
11498 end = start + bl->target_info.shadow_len;
11499
11500 gdb_assert (bl->address >= start);
11501 addr = bl->address - start;
11502 if (addr > bp_locations_placed_address_before_address_max)
11503 bp_locations_placed_address_before_address_max = addr;
11504
11505 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11506
11507 gdb_assert (bl->address < end);
11508 addr = end - bl->address;
11509 if (addr > bp_locations_shadow_len_after_address_max)
11510 bp_locations_shadow_len_after_address_max = addr;
11511 }
11512 }
11513
11514 /* Download tracepoint locations if they haven't been. */
11515
11516 static void
11517 download_tracepoint_locations (void)
11518 {
11519 struct breakpoint *b;
11520 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11521
11522 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11523
11524 ALL_TRACEPOINTS (b)
11525 {
11526 struct bp_location *bl;
11527 struct tracepoint *t;
11528 int bp_location_downloaded = 0;
11529
11530 if ((b->type == bp_fast_tracepoint
11531 ? !may_insert_fast_tracepoints
11532 : !may_insert_tracepoints))
11533 continue;
11534
11535 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11536 {
11537 if (target_can_download_tracepoint ())
11538 can_download_tracepoint = TRIBOOL_TRUE;
11539 else
11540 can_download_tracepoint = TRIBOOL_FALSE;
11541 }
11542
11543 if (can_download_tracepoint == TRIBOOL_FALSE)
11544 break;
11545
11546 for (bl = b->loc; bl; bl = bl->next)
11547 {
11548 /* In tracepoint, locations are _never_ duplicated, so
11549 should_be_inserted is equivalent to
11550 unduplicated_should_be_inserted. */
11551 if (!should_be_inserted (bl) || bl->inserted)
11552 continue;
11553
11554 switch_to_program_space_and_thread (bl->pspace);
11555
11556 target_download_tracepoint (bl);
11557
11558 bl->inserted = 1;
11559 bp_location_downloaded = 1;
11560 }
11561 t = (struct tracepoint *) b;
11562 t->number_on_target = b->number;
11563 if (bp_location_downloaded)
11564 gdb::observers::breakpoint_modified.notify (b);
11565 }
11566 }
11567
11568 /* Swap the insertion/duplication state between two locations. */
11569
11570 static void
11571 swap_insertion (struct bp_location *left, struct bp_location *right)
11572 {
11573 const int left_inserted = left->inserted;
11574 const int left_duplicate = left->duplicate;
11575 const int left_needs_update = left->needs_update;
11576 const struct bp_target_info left_target_info = left->target_info;
11577
11578 /* Locations of tracepoints can never be duplicated. */
11579 if (is_tracepoint (left->owner))
11580 gdb_assert (!left->duplicate);
11581 if (is_tracepoint (right->owner))
11582 gdb_assert (!right->duplicate);
11583
11584 left->inserted = right->inserted;
11585 left->duplicate = right->duplicate;
11586 left->needs_update = right->needs_update;
11587 left->target_info = right->target_info;
11588 right->inserted = left_inserted;
11589 right->duplicate = left_duplicate;
11590 right->needs_update = left_needs_update;
11591 right->target_info = left_target_info;
11592 }
11593
11594 /* Force the re-insertion of the locations at ADDRESS. This is called
11595 once a new/deleted/modified duplicate location is found and we are evaluating
11596 conditions on the target's side. Such conditions need to be updated on
11597 the target. */
11598
11599 static void
11600 force_breakpoint_reinsertion (struct bp_location *bl)
11601 {
11602 struct bp_location **locp = NULL, **loc2p;
11603 struct bp_location *loc;
11604 CORE_ADDR address = 0;
11605 int pspace_num;
11606
11607 address = bl->address;
11608 pspace_num = bl->pspace->num;
11609
11610 /* This is only meaningful if the target is
11611 evaluating conditions and if the user has
11612 opted for condition evaluation on the target's
11613 side. */
11614 if (gdb_evaluates_breakpoint_condition_p ()
11615 || !target_supports_evaluation_of_breakpoint_conditions ())
11616 return;
11617
11618 /* Flag all breakpoint locations with this address and
11619 the same program space as the location
11620 as "its condition has changed". We need to
11621 update the conditions on the target's side. */
11622 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11623 {
11624 loc = *loc2p;
11625
11626 if (!is_breakpoint (loc->owner)
11627 || pspace_num != loc->pspace->num)
11628 continue;
11629
11630 /* Flag the location appropriately. We use a different state to
11631 let everyone know that we already updated the set of locations
11632 with addr bl->address and program space bl->pspace. This is so
11633 we don't have to keep calling these functions just to mark locations
11634 that have already been marked. */
11635 loc->condition_changed = condition_updated;
11636
11637 /* Free the agent expression bytecode as well. We will compute
11638 it later on. */
11639 loc->cond_bytecode.reset ();
11640 }
11641 }
11642 /* Called whether new breakpoints are created, or existing breakpoints
11643 deleted, to update the global location list and recompute which
11644 locations are duplicate of which.
11645
11646 The INSERT_MODE flag determines whether locations may not, may, or
11647 shall be inserted now. See 'enum ugll_insert_mode' for more
11648 info. */
11649
11650 static void
11651 update_global_location_list (enum ugll_insert_mode insert_mode)
11652 {
11653 struct breakpoint *b;
11654 struct bp_location **locp, *loc;
11655 /* Last breakpoint location address that was marked for update. */
11656 CORE_ADDR last_addr = 0;
11657 /* Last breakpoint location program space that was marked for update. */
11658 int last_pspace_num = -1;
11659
11660 /* Used in the duplicates detection below. When iterating over all
11661 bp_locations, points to the first bp_location of a given address.
11662 Breakpoints and watchpoints of different types are never
11663 duplicates of each other. Keep one pointer for each type of
11664 breakpoint/watchpoint, so we only need to loop over all locations
11665 once. */
11666 struct bp_location *bp_loc_first; /* breakpoint */
11667 struct bp_location *wp_loc_first; /* hardware watchpoint */
11668 struct bp_location *awp_loc_first; /* access watchpoint */
11669 struct bp_location *rwp_loc_first; /* read watchpoint */
11670
11671 /* Saved former bp_locations array which we compare against the newly
11672 built bp_locations from the current state of ALL_BREAKPOINTS. */
11673 struct bp_location **old_locp;
11674 unsigned old_locations_count;
11675 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11676
11677 old_locations_count = bp_locations_count;
11678 bp_locations = NULL;
11679 bp_locations_count = 0;
11680
11681 ALL_BREAKPOINTS (b)
11682 for (loc = b->loc; loc; loc = loc->next)
11683 bp_locations_count++;
11684
11685 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11686 locp = bp_locations;
11687 ALL_BREAKPOINTS (b)
11688 for (loc = b->loc; loc; loc = loc->next)
11689 *locp++ = loc;
11690 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11691 bp_locations_compare);
11692
11693 bp_locations_target_extensions_update ();
11694
11695 /* Identify bp_location instances that are no longer present in the
11696 new list, and therefore should be freed. Note that it's not
11697 necessary that those locations should be removed from inferior --
11698 if there's another location at the same address (previously
11699 marked as duplicate), we don't need to remove/insert the
11700 location.
11701
11702 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11703 and former bp_location array state respectively. */
11704
11705 locp = bp_locations;
11706 for (old_locp = old_locations.get ();
11707 old_locp < old_locations.get () + old_locations_count;
11708 old_locp++)
11709 {
11710 struct bp_location *old_loc = *old_locp;
11711 struct bp_location **loc2p;
11712
11713 /* Tells if 'old_loc' is found among the new locations. If
11714 not, we have to free it. */
11715 int found_object = 0;
11716 /* Tells if the location should remain inserted in the target. */
11717 int keep_in_target = 0;
11718 int removed = 0;
11719
11720 /* Skip LOCP entries which will definitely never be needed.
11721 Stop either at or being the one matching OLD_LOC. */
11722 while (locp < bp_locations + bp_locations_count
11723 && (*locp)->address < old_loc->address)
11724 locp++;
11725
11726 for (loc2p = locp;
11727 (loc2p < bp_locations + bp_locations_count
11728 && (*loc2p)->address == old_loc->address);
11729 loc2p++)
11730 {
11731 /* Check if this is a new/duplicated location or a duplicated
11732 location that had its condition modified. If so, we want to send
11733 its condition to the target if evaluation of conditions is taking
11734 place there. */
11735 if ((*loc2p)->condition_changed == condition_modified
11736 && (last_addr != old_loc->address
11737 || last_pspace_num != old_loc->pspace->num))
11738 {
11739 force_breakpoint_reinsertion (*loc2p);
11740 last_pspace_num = old_loc->pspace->num;
11741 }
11742
11743 if (*loc2p == old_loc)
11744 found_object = 1;
11745 }
11746
11747 /* We have already handled this address, update it so that we don't
11748 have to go through updates again. */
11749 last_addr = old_loc->address;
11750
11751 /* Target-side condition evaluation: Handle deleted locations. */
11752 if (!found_object)
11753 force_breakpoint_reinsertion (old_loc);
11754
11755 /* If this location is no longer present, and inserted, look if
11756 there's maybe a new location at the same address. If so,
11757 mark that one inserted, and don't remove this one. This is
11758 needed so that we don't have a time window where a breakpoint
11759 at certain location is not inserted. */
11760
11761 if (old_loc->inserted)
11762 {
11763 /* If the location is inserted now, we might have to remove
11764 it. */
11765
11766 if (found_object && should_be_inserted (old_loc))
11767 {
11768 /* The location is still present in the location list,
11769 and still should be inserted. Don't do anything. */
11770 keep_in_target = 1;
11771 }
11772 else
11773 {
11774 /* This location still exists, but it won't be kept in the
11775 target since it may have been disabled. We proceed to
11776 remove its target-side condition. */
11777
11778 /* The location is either no longer present, or got
11779 disabled. See if there's another location at the
11780 same address, in which case we don't need to remove
11781 this one from the target. */
11782
11783 /* OLD_LOC comes from existing struct breakpoint. */
11784 if (bl_address_is_meaningful (old_loc))
11785 {
11786 for (loc2p = locp;
11787 (loc2p < bp_locations + bp_locations_count
11788 && (*loc2p)->address == old_loc->address);
11789 loc2p++)
11790 {
11791 struct bp_location *loc2 = *loc2p;
11792
11793 if (breakpoint_locations_match (loc2, old_loc))
11794 {
11795 /* Read watchpoint locations are switched to
11796 access watchpoints, if the former are not
11797 supported, but the latter are. */
11798 if (is_hardware_watchpoint (old_loc->owner))
11799 {
11800 gdb_assert (is_hardware_watchpoint (loc2->owner));
11801 loc2->watchpoint_type = old_loc->watchpoint_type;
11802 }
11803
11804 /* loc2 is a duplicated location. We need to check
11805 if it should be inserted in case it will be
11806 unduplicated. */
11807 if (loc2 != old_loc
11808 && unduplicated_should_be_inserted (loc2))
11809 {
11810 swap_insertion (old_loc, loc2);
11811 keep_in_target = 1;
11812 break;
11813 }
11814 }
11815 }
11816 }
11817 }
11818
11819 if (!keep_in_target)
11820 {
11821 if (remove_breakpoint (old_loc))
11822 {
11823 /* This is just about all we can do. We could keep
11824 this location on the global list, and try to
11825 remove it next time, but there's no particular
11826 reason why we will succeed next time.
11827
11828 Note that at this point, old_loc->owner is still
11829 valid, as delete_breakpoint frees the breakpoint
11830 only after calling us. */
11831 printf_filtered (_("warning: Error removing "
11832 "breakpoint %d\n"),
11833 old_loc->owner->number);
11834 }
11835 removed = 1;
11836 }
11837 }
11838
11839 if (!found_object)
11840 {
11841 if (removed && target_is_non_stop_p ()
11842 && need_moribund_for_location_type (old_loc))
11843 {
11844 /* This location was removed from the target. In
11845 non-stop mode, a race condition is possible where
11846 we've removed a breakpoint, but stop events for that
11847 breakpoint are already queued and will arrive later.
11848 We apply an heuristic to be able to distinguish such
11849 SIGTRAPs from other random SIGTRAPs: we keep this
11850 breakpoint location for a bit, and will retire it
11851 after we see some number of events. The theory here
11852 is that reporting of events should, "on the average",
11853 be fair, so after a while we'll see events from all
11854 threads that have anything of interest, and no longer
11855 need to keep this breakpoint location around. We
11856 don't hold locations forever so to reduce chances of
11857 mistaking a non-breakpoint SIGTRAP for a breakpoint
11858 SIGTRAP.
11859
11860 The heuristic failing can be disastrous on
11861 decr_pc_after_break targets.
11862
11863 On decr_pc_after_break targets, like e.g., x86-linux,
11864 if we fail to recognize a late breakpoint SIGTRAP,
11865 because events_till_retirement has reached 0 too
11866 soon, we'll fail to do the PC adjustment, and report
11867 a random SIGTRAP to the user. When the user resumes
11868 the inferior, it will most likely immediately crash
11869 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11870 corrupted, because of being resumed e.g., in the
11871 middle of a multi-byte instruction, or skipped a
11872 one-byte instruction. This was actually seen happen
11873 on native x86-linux, and should be less rare on
11874 targets that do not support new thread events, like
11875 remote, due to the heuristic depending on
11876 thread_count.
11877
11878 Mistaking a random SIGTRAP for a breakpoint trap
11879 causes similar symptoms (PC adjustment applied when
11880 it shouldn't), but then again, playing with SIGTRAPs
11881 behind the debugger's back is asking for trouble.
11882
11883 Since hardware watchpoint traps are always
11884 distinguishable from other traps, so we don't need to
11885 apply keep hardware watchpoint moribund locations
11886 around. We simply always ignore hardware watchpoint
11887 traps we can no longer explain. */
11888
11889 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11890 old_loc->owner = NULL;
11891
11892 moribund_locations.push_back (old_loc);
11893 }
11894 else
11895 {
11896 old_loc->owner = NULL;
11897 decref_bp_location (&old_loc);
11898 }
11899 }
11900 }
11901
11902 /* Rescan breakpoints at the same address and section, marking the
11903 first one as "first" and any others as "duplicates". This is so
11904 that the bpt instruction is only inserted once. If we have a
11905 permanent breakpoint at the same place as BPT, make that one the
11906 official one, and the rest as duplicates. Permanent breakpoints
11907 are sorted first for the same address.
11908
11909 Do the same for hardware watchpoints, but also considering the
11910 watchpoint's type (regular/access/read) and length. */
11911
11912 bp_loc_first = NULL;
11913 wp_loc_first = NULL;
11914 awp_loc_first = NULL;
11915 rwp_loc_first = NULL;
11916 ALL_BP_LOCATIONS (loc, locp)
11917 {
11918 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11919 non-NULL. */
11920 struct bp_location **loc_first_p;
11921 b = loc->owner;
11922
11923 if (!unduplicated_should_be_inserted (loc)
11924 || !bl_address_is_meaningful (loc)
11925 /* Don't detect duplicate for tracepoint locations because they are
11926 never duplicated. See the comments in field `duplicate' of
11927 `struct bp_location'. */
11928 || is_tracepoint (b))
11929 {
11930 /* Clear the condition modification flag. */
11931 loc->condition_changed = condition_unchanged;
11932 continue;
11933 }
11934
11935 if (b->type == bp_hardware_watchpoint)
11936 loc_first_p = &wp_loc_first;
11937 else if (b->type == bp_read_watchpoint)
11938 loc_first_p = &rwp_loc_first;
11939 else if (b->type == bp_access_watchpoint)
11940 loc_first_p = &awp_loc_first;
11941 else
11942 loc_first_p = &bp_loc_first;
11943
11944 if (*loc_first_p == NULL
11945 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11946 || !breakpoint_locations_match (loc, *loc_first_p))
11947 {
11948 *loc_first_p = loc;
11949 loc->duplicate = 0;
11950
11951 if (is_breakpoint (loc->owner) && loc->condition_changed)
11952 {
11953 loc->needs_update = 1;
11954 /* Clear the condition modification flag. */
11955 loc->condition_changed = condition_unchanged;
11956 }
11957 continue;
11958 }
11959
11960
11961 /* This and the above ensure the invariant that the first location
11962 is not duplicated, and is the inserted one.
11963 All following are marked as duplicated, and are not inserted. */
11964 if (loc->inserted)
11965 swap_insertion (loc, *loc_first_p);
11966 loc->duplicate = 1;
11967
11968 /* Clear the condition modification flag. */
11969 loc->condition_changed = condition_unchanged;
11970 }
11971
11972 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11973 {
11974 if (insert_mode != UGLL_DONT_INSERT)
11975 insert_breakpoint_locations ();
11976 else
11977 {
11978 /* Even though the caller told us to not insert new
11979 locations, we may still need to update conditions on the
11980 target's side of breakpoints that were already inserted
11981 if the target is evaluating breakpoint conditions. We
11982 only update conditions for locations that are marked
11983 "needs_update". */
11984 update_inserted_breakpoint_locations ();
11985 }
11986 }
11987
11988 if (insert_mode != UGLL_DONT_INSERT)
11989 download_tracepoint_locations ();
11990 }
11991
11992 void
11993 breakpoint_retire_moribund (void)
11994 {
11995 for (int ix = 0; ix < moribund_locations.size (); ++ix)
11996 {
11997 struct bp_location *loc = moribund_locations[ix];
11998 if (--(loc->events_till_retirement) == 0)
11999 {
12000 decref_bp_location (&loc);
12001 unordered_remove (moribund_locations, ix);
12002 --ix;
12003 }
12004 }
12005 }
12006
12007 static void
12008 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12009 {
12010
12011 try
12012 {
12013 update_global_location_list (insert_mode);
12014 }
12015 catch (const gdb_exception_error &e)
12016 {
12017 }
12018 }
12019
12020 /* Clear BKP from a BPS. */
12021
12022 static void
12023 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12024 {
12025 bpstat bs;
12026
12027 for (bs = bps; bs; bs = bs->next)
12028 if (bs->breakpoint_at == bpt)
12029 {
12030 bs->breakpoint_at = NULL;
12031 bs->old_val = NULL;
12032 /* bs->commands will be freed later. */
12033 }
12034 }
12035
12036 /* Callback for iterate_over_threads. */
12037 static int
12038 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12039 {
12040 struct breakpoint *bpt = (struct breakpoint *) data;
12041
12042 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12043 return 0;
12044 }
12045
12046 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12047 callbacks. */
12048
12049 static void
12050 say_where (struct breakpoint *b)
12051 {
12052 struct value_print_options opts;
12053
12054 get_user_print_options (&opts);
12055
12056 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12057 single string. */
12058 if (b->loc == NULL)
12059 {
12060 /* For pending locations, the output differs slightly based
12061 on b->extra_string. If this is non-NULL, it contains either
12062 a condition or dprintf arguments. */
12063 if (b->extra_string == NULL)
12064 {
12065 printf_filtered (_(" (%s) pending."),
12066 event_location_to_string (b->location.get ()));
12067 }
12068 else if (b->type == bp_dprintf)
12069 {
12070 printf_filtered (_(" (%s,%s) pending."),
12071 event_location_to_string (b->location.get ()),
12072 b->extra_string);
12073 }
12074 else
12075 {
12076 printf_filtered (_(" (%s %s) pending."),
12077 event_location_to_string (b->location.get ()),
12078 b->extra_string);
12079 }
12080 }
12081 else
12082 {
12083 if (opts.addressprint || b->loc->symtab == NULL)
12084 {
12085 printf_filtered (" at ");
12086 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12087 address_style.style (),
12088 gdb_stdout);
12089 }
12090 if (b->loc->symtab != NULL)
12091 {
12092 /* If there is a single location, we can print the location
12093 more nicely. */
12094 if (b->loc->next == NULL)
12095 {
12096 puts_filtered (": file ");
12097 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12098 file_name_style.style (),
12099 gdb_stdout);
12100 printf_filtered (", line %d.",
12101 b->loc->line_number);
12102 }
12103 else
12104 /* This is not ideal, but each location may have a
12105 different file name, and this at least reflects the
12106 real situation somewhat. */
12107 printf_filtered (": %s.",
12108 event_location_to_string (b->location.get ()));
12109 }
12110
12111 if (b->loc->next)
12112 {
12113 struct bp_location *loc = b->loc;
12114 int n = 0;
12115 for (; loc; loc = loc->next)
12116 ++n;
12117 printf_filtered (" (%d locations)", n);
12118 }
12119 }
12120 }
12121
12122 bp_location::~bp_location ()
12123 {
12124 xfree (function_name);
12125 }
12126
12127 /* Destructor for the breakpoint base class. */
12128
12129 breakpoint::~breakpoint ()
12130 {
12131 xfree (this->cond_string);
12132 xfree (this->extra_string);
12133 xfree (this->filter);
12134 }
12135
12136 static struct bp_location *
12137 base_breakpoint_allocate_location (struct breakpoint *self)
12138 {
12139 return new bp_location (self);
12140 }
12141
12142 static void
12143 base_breakpoint_re_set (struct breakpoint *b)
12144 {
12145 /* Nothing to re-set. */
12146 }
12147
12148 #define internal_error_pure_virtual_called() \
12149 gdb_assert_not_reached ("pure virtual function called")
12150
12151 static int
12152 base_breakpoint_insert_location (struct bp_location *bl)
12153 {
12154 internal_error_pure_virtual_called ();
12155 }
12156
12157 static int
12158 base_breakpoint_remove_location (struct bp_location *bl,
12159 enum remove_bp_reason reason)
12160 {
12161 internal_error_pure_virtual_called ();
12162 }
12163
12164 static int
12165 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12166 const address_space *aspace,
12167 CORE_ADDR bp_addr,
12168 const struct target_waitstatus *ws)
12169 {
12170 internal_error_pure_virtual_called ();
12171 }
12172
12173 static void
12174 base_breakpoint_check_status (bpstat bs)
12175 {
12176 /* Always stop. */
12177 }
12178
12179 /* A "works_in_software_mode" breakpoint_ops method that just internal
12180 errors. */
12181
12182 static int
12183 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12184 {
12185 internal_error_pure_virtual_called ();
12186 }
12187
12188 /* A "resources_needed" breakpoint_ops method that just internal
12189 errors. */
12190
12191 static int
12192 base_breakpoint_resources_needed (const struct bp_location *bl)
12193 {
12194 internal_error_pure_virtual_called ();
12195 }
12196
12197 static enum print_stop_action
12198 base_breakpoint_print_it (bpstat bs)
12199 {
12200 internal_error_pure_virtual_called ();
12201 }
12202
12203 static void
12204 base_breakpoint_print_one_detail (const struct breakpoint *self,
12205 struct ui_out *uiout)
12206 {
12207 /* nothing */
12208 }
12209
12210 static void
12211 base_breakpoint_print_mention (struct breakpoint *b)
12212 {
12213 internal_error_pure_virtual_called ();
12214 }
12215
12216 static void
12217 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12218 {
12219 internal_error_pure_virtual_called ();
12220 }
12221
12222 static void
12223 base_breakpoint_create_sals_from_location
12224 (const struct event_location *location,
12225 struct linespec_result *canonical,
12226 enum bptype type_wanted)
12227 {
12228 internal_error_pure_virtual_called ();
12229 }
12230
12231 static void
12232 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12233 struct linespec_result *c,
12234 gdb::unique_xmalloc_ptr<char> cond_string,
12235 gdb::unique_xmalloc_ptr<char> extra_string,
12236 enum bptype type_wanted,
12237 enum bpdisp disposition,
12238 int thread,
12239 int task, int ignore_count,
12240 const struct breakpoint_ops *o,
12241 int from_tty, int enabled,
12242 int internal, unsigned flags)
12243 {
12244 internal_error_pure_virtual_called ();
12245 }
12246
12247 static std::vector<symtab_and_line>
12248 base_breakpoint_decode_location (struct breakpoint *b,
12249 const struct event_location *location,
12250 struct program_space *search_pspace)
12251 {
12252 internal_error_pure_virtual_called ();
12253 }
12254
12255 /* The default 'explains_signal' method. */
12256
12257 static int
12258 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12259 {
12260 return 1;
12261 }
12262
12263 /* The default "after_condition_true" method. */
12264
12265 static void
12266 base_breakpoint_after_condition_true (struct bpstats *bs)
12267 {
12268 /* Nothing to do. */
12269 }
12270
12271 struct breakpoint_ops base_breakpoint_ops =
12272 {
12273 base_breakpoint_allocate_location,
12274 base_breakpoint_re_set,
12275 base_breakpoint_insert_location,
12276 base_breakpoint_remove_location,
12277 base_breakpoint_breakpoint_hit,
12278 base_breakpoint_check_status,
12279 base_breakpoint_resources_needed,
12280 base_breakpoint_works_in_software_mode,
12281 base_breakpoint_print_it,
12282 NULL,
12283 base_breakpoint_print_one_detail,
12284 base_breakpoint_print_mention,
12285 base_breakpoint_print_recreate,
12286 base_breakpoint_create_sals_from_location,
12287 base_breakpoint_create_breakpoints_sal,
12288 base_breakpoint_decode_location,
12289 base_breakpoint_explains_signal,
12290 base_breakpoint_after_condition_true,
12291 };
12292
12293 /* Default breakpoint_ops methods. */
12294
12295 static void
12296 bkpt_re_set (struct breakpoint *b)
12297 {
12298 /* FIXME: is this still reachable? */
12299 if (breakpoint_event_location_empty_p (b))
12300 {
12301 /* Anything without a location can't be re-set. */
12302 delete_breakpoint (b);
12303 return;
12304 }
12305
12306 breakpoint_re_set_default (b);
12307 }
12308
12309 static int
12310 bkpt_insert_location (struct bp_location *bl)
12311 {
12312 CORE_ADDR addr = bl->target_info.reqstd_address;
12313
12314 bl->target_info.kind = breakpoint_kind (bl, &addr);
12315 bl->target_info.placed_address = addr;
12316
12317 if (bl->loc_type == bp_loc_hardware_breakpoint)
12318 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12319 else
12320 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12321 }
12322
12323 static int
12324 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12325 {
12326 if (bl->loc_type == bp_loc_hardware_breakpoint)
12327 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12328 else
12329 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12330 }
12331
12332 static int
12333 bkpt_breakpoint_hit (const struct bp_location *bl,
12334 const address_space *aspace, CORE_ADDR bp_addr,
12335 const struct target_waitstatus *ws)
12336 {
12337 if (ws->kind != TARGET_WAITKIND_STOPPED
12338 || ws->value.sig != GDB_SIGNAL_TRAP)
12339 return 0;
12340
12341 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12342 aspace, bp_addr))
12343 return 0;
12344
12345 if (overlay_debugging /* unmapped overlay section */
12346 && section_is_overlay (bl->section)
12347 && !section_is_mapped (bl->section))
12348 return 0;
12349
12350 return 1;
12351 }
12352
12353 static int
12354 dprintf_breakpoint_hit (const struct bp_location *bl,
12355 const address_space *aspace, CORE_ADDR bp_addr,
12356 const struct target_waitstatus *ws)
12357 {
12358 if (dprintf_style == dprintf_style_agent
12359 && target_can_run_breakpoint_commands ())
12360 {
12361 /* An agent-style dprintf never causes a stop. If we see a trap
12362 for this address it must be for a breakpoint that happens to
12363 be set at the same address. */
12364 return 0;
12365 }
12366
12367 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12368 }
12369
12370 static int
12371 bkpt_resources_needed (const struct bp_location *bl)
12372 {
12373 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12374
12375 return 1;
12376 }
12377
12378 static enum print_stop_action
12379 bkpt_print_it (bpstat bs)
12380 {
12381 struct breakpoint *b;
12382 const struct bp_location *bl;
12383 int bp_temp;
12384 struct ui_out *uiout = current_uiout;
12385
12386 gdb_assert (bs->bp_location_at != NULL);
12387
12388 bl = bs->bp_location_at;
12389 b = bs->breakpoint_at;
12390
12391 bp_temp = b->disposition == disp_del;
12392 if (bl->address != bl->requested_address)
12393 breakpoint_adjustment_warning (bl->requested_address,
12394 bl->address,
12395 b->number, 1);
12396 annotate_breakpoint (b->number);
12397 maybe_print_thread_hit_breakpoint (uiout);
12398
12399 if (bp_temp)
12400 uiout->text ("Temporary breakpoint ");
12401 else
12402 uiout->text ("Breakpoint ");
12403 if (uiout->is_mi_like_p ())
12404 {
12405 uiout->field_string ("reason",
12406 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12407 uiout->field_string ("disp", bpdisp_text (b->disposition));
12408 }
12409 uiout->field_int ("bkptno", b->number);
12410 uiout->text (", ");
12411
12412 return PRINT_SRC_AND_LOC;
12413 }
12414
12415 static void
12416 bkpt_print_mention (struct breakpoint *b)
12417 {
12418 if (current_uiout->is_mi_like_p ())
12419 return;
12420
12421 switch (b->type)
12422 {
12423 case bp_breakpoint:
12424 case bp_gnu_ifunc_resolver:
12425 if (b->disposition == disp_del)
12426 printf_filtered (_("Temporary breakpoint"));
12427 else
12428 printf_filtered (_("Breakpoint"));
12429 printf_filtered (_(" %d"), b->number);
12430 if (b->type == bp_gnu_ifunc_resolver)
12431 printf_filtered (_(" at gnu-indirect-function resolver"));
12432 break;
12433 case bp_hardware_breakpoint:
12434 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12435 break;
12436 case bp_dprintf:
12437 printf_filtered (_("Dprintf %d"), b->number);
12438 break;
12439 }
12440
12441 say_where (b);
12442 }
12443
12444 static void
12445 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12446 {
12447 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12448 fprintf_unfiltered (fp, "tbreak");
12449 else if (tp->type == bp_breakpoint)
12450 fprintf_unfiltered (fp, "break");
12451 else if (tp->type == bp_hardware_breakpoint
12452 && tp->disposition == disp_del)
12453 fprintf_unfiltered (fp, "thbreak");
12454 else if (tp->type == bp_hardware_breakpoint)
12455 fprintf_unfiltered (fp, "hbreak");
12456 else
12457 internal_error (__FILE__, __LINE__,
12458 _("unhandled breakpoint type %d"), (int) tp->type);
12459
12460 fprintf_unfiltered (fp, " %s",
12461 event_location_to_string (tp->location.get ()));
12462
12463 /* Print out extra_string if this breakpoint is pending. It might
12464 contain, for example, conditions that were set by the user. */
12465 if (tp->loc == NULL && tp->extra_string != NULL)
12466 fprintf_unfiltered (fp, " %s", tp->extra_string);
12467
12468 print_recreate_thread (tp, fp);
12469 }
12470
12471 static void
12472 bkpt_create_sals_from_location (const struct event_location *location,
12473 struct linespec_result *canonical,
12474 enum bptype type_wanted)
12475 {
12476 create_sals_from_location_default (location, canonical, type_wanted);
12477 }
12478
12479 static void
12480 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12481 struct linespec_result *canonical,
12482 gdb::unique_xmalloc_ptr<char> cond_string,
12483 gdb::unique_xmalloc_ptr<char> extra_string,
12484 enum bptype type_wanted,
12485 enum bpdisp disposition,
12486 int thread,
12487 int task, int ignore_count,
12488 const struct breakpoint_ops *ops,
12489 int from_tty, int enabled,
12490 int internal, unsigned flags)
12491 {
12492 create_breakpoints_sal_default (gdbarch, canonical,
12493 std::move (cond_string),
12494 std::move (extra_string),
12495 type_wanted,
12496 disposition, thread, task,
12497 ignore_count, ops, from_tty,
12498 enabled, internal, flags);
12499 }
12500
12501 static std::vector<symtab_and_line>
12502 bkpt_decode_location (struct breakpoint *b,
12503 const struct event_location *location,
12504 struct program_space *search_pspace)
12505 {
12506 return decode_location_default (b, location, search_pspace);
12507 }
12508
12509 /* Virtual table for internal breakpoints. */
12510
12511 static void
12512 internal_bkpt_re_set (struct breakpoint *b)
12513 {
12514 switch (b->type)
12515 {
12516 /* Delete overlay event and longjmp master breakpoints; they
12517 will be reset later by breakpoint_re_set. */
12518 case bp_overlay_event:
12519 case bp_longjmp_master:
12520 case bp_std_terminate_master:
12521 case bp_exception_master:
12522 delete_breakpoint (b);
12523 break;
12524
12525 /* This breakpoint is special, it's set up when the inferior
12526 starts and we really don't want to touch it. */
12527 case bp_shlib_event:
12528
12529 /* Like bp_shlib_event, this breakpoint type is special. Once
12530 it is set up, we do not want to touch it. */
12531 case bp_thread_event:
12532 break;
12533 }
12534 }
12535
12536 static void
12537 internal_bkpt_check_status (bpstat bs)
12538 {
12539 if (bs->breakpoint_at->type == bp_shlib_event)
12540 {
12541 /* If requested, stop when the dynamic linker notifies GDB of
12542 events. This allows the user to get control and place
12543 breakpoints in initializer routines for dynamically loaded
12544 objects (among other things). */
12545 bs->stop = stop_on_solib_events;
12546 bs->print = stop_on_solib_events;
12547 }
12548 else
12549 bs->stop = 0;
12550 }
12551
12552 static enum print_stop_action
12553 internal_bkpt_print_it (bpstat bs)
12554 {
12555 struct breakpoint *b;
12556
12557 b = bs->breakpoint_at;
12558
12559 switch (b->type)
12560 {
12561 case bp_shlib_event:
12562 /* Did we stop because the user set the stop_on_solib_events
12563 variable? (If so, we report this as a generic, "Stopped due
12564 to shlib event" message.) */
12565 print_solib_event (0);
12566 break;
12567
12568 case bp_thread_event:
12569 /* Not sure how we will get here.
12570 GDB should not stop for these breakpoints. */
12571 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12572 break;
12573
12574 case bp_overlay_event:
12575 /* By analogy with the thread event, GDB should not stop for these. */
12576 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12577 break;
12578
12579 case bp_longjmp_master:
12580 /* These should never be enabled. */
12581 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12582 break;
12583
12584 case bp_std_terminate_master:
12585 /* These should never be enabled. */
12586 printf_filtered (_("std::terminate Master Breakpoint: "
12587 "gdb should not stop!\n"));
12588 break;
12589
12590 case bp_exception_master:
12591 /* These should never be enabled. */
12592 printf_filtered (_("Exception Master Breakpoint: "
12593 "gdb should not stop!\n"));
12594 break;
12595 }
12596
12597 return PRINT_NOTHING;
12598 }
12599
12600 static void
12601 internal_bkpt_print_mention (struct breakpoint *b)
12602 {
12603 /* Nothing to mention. These breakpoints are internal. */
12604 }
12605
12606 /* Virtual table for momentary breakpoints */
12607
12608 static void
12609 momentary_bkpt_re_set (struct breakpoint *b)
12610 {
12611 /* Keep temporary breakpoints, which can be encountered when we step
12612 over a dlopen call and solib_add is resetting the breakpoints.
12613 Otherwise these should have been blown away via the cleanup chain
12614 or by breakpoint_init_inferior when we rerun the executable. */
12615 }
12616
12617 static void
12618 momentary_bkpt_check_status (bpstat bs)
12619 {
12620 /* Nothing. The point of these breakpoints is causing a stop. */
12621 }
12622
12623 static enum print_stop_action
12624 momentary_bkpt_print_it (bpstat bs)
12625 {
12626 return PRINT_UNKNOWN;
12627 }
12628
12629 static void
12630 momentary_bkpt_print_mention (struct breakpoint *b)
12631 {
12632 /* Nothing to mention. These breakpoints are internal. */
12633 }
12634
12635 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12636
12637 It gets cleared already on the removal of the first one of such placed
12638 breakpoints. This is OK as they get all removed altogether. */
12639
12640 longjmp_breakpoint::~longjmp_breakpoint ()
12641 {
12642 thread_info *tp = find_thread_global_id (this->thread);
12643
12644 if (tp != NULL)
12645 tp->initiating_frame = null_frame_id;
12646 }
12647
12648 /* Specific methods for probe breakpoints. */
12649
12650 static int
12651 bkpt_probe_insert_location (struct bp_location *bl)
12652 {
12653 int v = bkpt_insert_location (bl);
12654
12655 if (v == 0)
12656 {
12657 /* The insertion was successful, now let's set the probe's semaphore
12658 if needed. */
12659 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12660 }
12661
12662 return v;
12663 }
12664
12665 static int
12666 bkpt_probe_remove_location (struct bp_location *bl,
12667 enum remove_bp_reason reason)
12668 {
12669 /* Let's clear the semaphore before removing the location. */
12670 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12671
12672 return bkpt_remove_location (bl, reason);
12673 }
12674
12675 static void
12676 bkpt_probe_create_sals_from_location (const struct event_location *location,
12677 struct linespec_result *canonical,
12678 enum bptype type_wanted)
12679 {
12680 struct linespec_sals lsal;
12681
12682 lsal.sals = parse_probes (location, NULL, canonical);
12683 lsal.canonical
12684 = xstrdup (event_location_to_string (canonical->location.get ()));
12685 canonical->lsals.push_back (std::move (lsal));
12686 }
12687
12688 static std::vector<symtab_and_line>
12689 bkpt_probe_decode_location (struct breakpoint *b,
12690 const struct event_location *location,
12691 struct program_space *search_pspace)
12692 {
12693 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12694 if (sals.empty ())
12695 error (_("probe not found"));
12696 return sals;
12697 }
12698
12699 /* The breakpoint_ops structure to be used in tracepoints. */
12700
12701 static void
12702 tracepoint_re_set (struct breakpoint *b)
12703 {
12704 breakpoint_re_set_default (b);
12705 }
12706
12707 static int
12708 tracepoint_breakpoint_hit (const struct bp_location *bl,
12709 const address_space *aspace, CORE_ADDR bp_addr,
12710 const struct target_waitstatus *ws)
12711 {
12712 /* By definition, the inferior does not report stops at
12713 tracepoints. */
12714 return 0;
12715 }
12716
12717 static void
12718 tracepoint_print_one_detail (const struct breakpoint *self,
12719 struct ui_out *uiout)
12720 {
12721 struct tracepoint *tp = (struct tracepoint *) self;
12722 if (!tp->static_trace_marker_id.empty ())
12723 {
12724 gdb_assert (self->type == bp_static_tracepoint);
12725
12726 uiout->text ("\tmarker id is ");
12727 uiout->field_string ("static-tracepoint-marker-string-id",
12728 tp->static_trace_marker_id);
12729 uiout->text ("\n");
12730 }
12731 }
12732
12733 static void
12734 tracepoint_print_mention (struct breakpoint *b)
12735 {
12736 if (current_uiout->is_mi_like_p ())
12737 return;
12738
12739 switch (b->type)
12740 {
12741 case bp_tracepoint:
12742 printf_filtered (_("Tracepoint"));
12743 printf_filtered (_(" %d"), b->number);
12744 break;
12745 case bp_fast_tracepoint:
12746 printf_filtered (_("Fast tracepoint"));
12747 printf_filtered (_(" %d"), b->number);
12748 break;
12749 case bp_static_tracepoint:
12750 printf_filtered (_("Static tracepoint"));
12751 printf_filtered (_(" %d"), b->number);
12752 break;
12753 default:
12754 internal_error (__FILE__, __LINE__,
12755 _("unhandled tracepoint type %d"), (int) b->type);
12756 }
12757
12758 say_where (b);
12759 }
12760
12761 static void
12762 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12763 {
12764 struct tracepoint *tp = (struct tracepoint *) self;
12765
12766 if (self->type == bp_fast_tracepoint)
12767 fprintf_unfiltered (fp, "ftrace");
12768 else if (self->type == bp_static_tracepoint)
12769 fprintf_unfiltered (fp, "strace");
12770 else if (self->type == bp_tracepoint)
12771 fprintf_unfiltered (fp, "trace");
12772 else
12773 internal_error (__FILE__, __LINE__,
12774 _("unhandled tracepoint type %d"), (int) self->type);
12775
12776 fprintf_unfiltered (fp, " %s",
12777 event_location_to_string (self->location.get ()));
12778 print_recreate_thread (self, fp);
12779
12780 if (tp->pass_count)
12781 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12782 }
12783
12784 static void
12785 tracepoint_create_sals_from_location (const struct event_location *location,
12786 struct linespec_result *canonical,
12787 enum bptype type_wanted)
12788 {
12789 create_sals_from_location_default (location, canonical, type_wanted);
12790 }
12791
12792 static void
12793 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12794 struct linespec_result *canonical,
12795 gdb::unique_xmalloc_ptr<char> cond_string,
12796 gdb::unique_xmalloc_ptr<char> extra_string,
12797 enum bptype type_wanted,
12798 enum bpdisp disposition,
12799 int thread,
12800 int task, int ignore_count,
12801 const struct breakpoint_ops *ops,
12802 int from_tty, int enabled,
12803 int internal, unsigned flags)
12804 {
12805 create_breakpoints_sal_default (gdbarch, canonical,
12806 std::move (cond_string),
12807 std::move (extra_string),
12808 type_wanted,
12809 disposition, thread, task,
12810 ignore_count, ops, from_tty,
12811 enabled, internal, flags);
12812 }
12813
12814 static std::vector<symtab_and_line>
12815 tracepoint_decode_location (struct breakpoint *b,
12816 const struct event_location *location,
12817 struct program_space *search_pspace)
12818 {
12819 return decode_location_default (b, location, search_pspace);
12820 }
12821
12822 struct breakpoint_ops tracepoint_breakpoint_ops;
12823
12824 /* The breakpoint_ops structure to be use on tracepoints placed in a
12825 static probe. */
12826
12827 static void
12828 tracepoint_probe_create_sals_from_location
12829 (const struct event_location *location,
12830 struct linespec_result *canonical,
12831 enum bptype type_wanted)
12832 {
12833 /* We use the same method for breakpoint on probes. */
12834 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12835 }
12836
12837 static std::vector<symtab_and_line>
12838 tracepoint_probe_decode_location (struct breakpoint *b,
12839 const struct event_location *location,
12840 struct program_space *search_pspace)
12841 {
12842 /* We use the same method for breakpoint on probes. */
12843 return bkpt_probe_decode_location (b, location, search_pspace);
12844 }
12845
12846 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12847
12848 /* Dprintf breakpoint_ops methods. */
12849
12850 static void
12851 dprintf_re_set (struct breakpoint *b)
12852 {
12853 breakpoint_re_set_default (b);
12854
12855 /* extra_string should never be non-NULL for dprintf. */
12856 gdb_assert (b->extra_string != NULL);
12857
12858 /* 1 - connect to target 1, that can run breakpoint commands.
12859 2 - create a dprintf, which resolves fine.
12860 3 - disconnect from target 1
12861 4 - connect to target 2, that can NOT run breakpoint commands.
12862
12863 After steps #3/#4, you'll want the dprintf command list to
12864 be updated, because target 1 and 2 may well return different
12865 answers for target_can_run_breakpoint_commands().
12866 Given absence of finer grained resetting, we get to do
12867 it all the time. */
12868 if (b->extra_string != NULL)
12869 update_dprintf_command_list (b);
12870 }
12871
12872 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12873
12874 static void
12875 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12876 {
12877 fprintf_unfiltered (fp, "dprintf %s,%s",
12878 event_location_to_string (tp->location.get ()),
12879 tp->extra_string);
12880 print_recreate_thread (tp, fp);
12881 }
12882
12883 /* Implement the "after_condition_true" breakpoint_ops method for
12884 dprintf.
12885
12886 dprintf's are implemented with regular commands in their command
12887 list, but we run the commands here instead of before presenting the
12888 stop to the user, as dprintf's don't actually cause a stop. This
12889 also makes it so that the commands of multiple dprintfs at the same
12890 address are all handled. */
12891
12892 static void
12893 dprintf_after_condition_true (struct bpstats *bs)
12894 {
12895 struct bpstats tmp_bs;
12896 struct bpstats *tmp_bs_p = &tmp_bs;
12897
12898 /* dprintf's never cause a stop. This wasn't set in the
12899 check_status hook instead because that would make the dprintf's
12900 condition not be evaluated. */
12901 bs->stop = 0;
12902
12903 /* Run the command list here. Take ownership of it instead of
12904 copying. We never want these commands to run later in
12905 bpstat_do_actions, if a breakpoint that causes a stop happens to
12906 be set at same address as this dprintf, or even if running the
12907 commands here throws. */
12908 tmp_bs.commands = bs->commands;
12909 bs->commands = NULL;
12910
12911 bpstat_do_actions_1 (&tmp_bs_p);
12912
12913 /* 'tmp_bs.commands' will usually be NULL by now, but
12914 bpstat_do_actions_1 may return early without processing the whole
12915 list. */
12916 }
12917
12918 /* The breakpoint_ops structure to be used on static tracepoints with
12919 markers (`-m'). */
12920
12921 static void
12922 strace_marker_create_sals_from_location (const struct event_location *location,
12923 struct linespec_result *canonical,
12924 enum bptype type_wanted)
12925 {
12926 struct linespec_sals lsal;
12927 const char *arg_start, *arg;
12928
12929 arg = arg_start = get_linespec_location (location)->spec_string;
12930 lsal.sals = decode_static_tracepoint_spec (&arg);
12931
12932 std::string str (arg_start, arg - arg_start);
12933 const char *ptr = str.c_str ();
12934 canonical->location
12935 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12936
12937 lsal.canonical
12938 = xstrdup (event_location_to_string (canonical->location.get ()));
12939 canonical->lsals.push_back (std::move (lsal));
12940 }
12941
12942 static void
12943 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12944 struct linespec_result *canonical,
12945 gdb::unique_xmalloc_ptr<char> cond_string,
12946 gdb::unique_xmalloc_ptr<char> extra_string,
12947 enum bptype type_wanted,
12948 enum bpdisp disposition,
12949 int thread,
12950 int task, int ignore_count,
12951 const struct breakpoint_ops *ops,
12952 int from_tty, int enabled,
12953 int internal, unsigned flags)
12954 {
12955 const linespec_sals &lsal = canonical->lsals[0];
12956
12957 /* If the user is creating a static tracepoint by marker id
12958 (strace -m MARKER_ID), then store the sals index, so that
12959 breakpoint_re_set can try to match up which of the newly
12960 found markers corresponds to this one, and, don't try to
12961 expand multiple locations for each sal, given than SALS
12962 already should contain all sals for MARKER_ID. */
12963
12964 for (size_t i = 0; i < lsal.sals.size (); i++)
12965 {
12966 event_location_up location
12967 = copy_event_location (canonical->location.get ());
12968
12969 std::unique_ptr<tracepoint> tp (new tracepoint ());
12970 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12971 std::move (location), NULL,
12972 std::move (cond_string),
12973 std::move (extra_string),
12974 type_wanted, disposition,
12975 thread, task, ignore_count, ops,
12976 from_tty, enabled, internal, flags,
12977 canonical->special_display);
12978 /* Given that its possible to have multiple markers with
12979 the same string id, if the user is creating a static
12980 tracepoint by marker id ("strace -m MARKER_ID"), then
12981 store the sals index, so that breakpoint_re_set can
12982 try to match up which of the newly found markers
12983 corresponds to this one */
12984 tp->static_trace_marker_id_idx = i;
12985
12986 install_breakpoint (internal, std::move (tp), 0);
12987 }
12988 }
12989
12990 static std::vector<symtab_and_line>
12991 strace_marker_decode_location (struct breakpoint *b,
12992 const struct event_location *location,
12993 struct program_space *search_pspace)
12994 {
12995 struct tracepoint *tp = (struct tracepoint *) b;
12996 const char *s = get_linespec_location (location)->spec_string;
12997
12998 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
12999 if (sals.size () > tp->static_trace_marker_id_idx)
13000 {
13001 sals[0] = sals[tp->static_trace_marker_id_idx];
13002 sals.resize (1);
13003 return sals;
13004 }
13005 else
13006 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13007 }
13008
13009 static struct breakpoint_ops strace_marker_breakpoint_ops;
13010
13011 static int
13012 strace_marker_p (struct breakpoint *b)
13013 {
13014 return b->ops == &strace_marker_breakpoint_ops;
13015 }
13016
13017 /* Delete a breakpoint and clean up all traces of it in the data
13018 structures. */
13019
13020 void
13021 delete_breakpoint (struct breakpoint *bpt)
13022 {
13023 struct breakpoint *b;
13024
13025 gdb_assert (bpt != NULL);
13026
13027 /* Has this bp already been deleted? This can happen because
13028 multiple lists can hold pointers to bp's. bpstat lists are
13029 especial culprits.
13030
13031 One example of this happening is a watchpoint's scope bp. When
13032 the scope bp triggers, we notice that the watchpoint is out of
13033 scope, and delete it. We also delete its scope bp. But the
13034 scope bp is marked "auto-deleting", and is already on a bpstat.
13035 That bpstat is then checked for auto-deleting bp's, which are
13036 deleted.
13037
13038 A real solution to this problem might involve reference counts in
13039 bp's, and/or giving them pointers back to their referencing
13040 bpstat's, and teaching delete_breakpoint to only free a bp's
13041 storage when no more references were extent. A cheaper bandaid
13042 was chosen. */
13043 if (bpt->type == bp_none)
13044 return;
13045
13046 /* At least avoid this stale reference until the reference counting
13047 of breakpoints gets resolved. */
13048 if (bpt->related_breakpoint != bpt)
13049 {
13050 struct breakpoint *related;
13051 struct watchpoint *w;
13052
13053 if (bpt->type == bp_watchpoint_scope)
13054 w = (struct watchpoint *) bpt->related_breakpoint;
13055 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13056 w = (struct watchpoint *) bpt;
13057 else
13058 w = NULL;
13059 if (w != NULL)
13060 watchpoint_del_at_next_stop (w);
13061
13062 /* Unlink bpt from the bpt->related_breakpoint ring. */
13063 for (related = bpt; related->related_breakpoint != bpt;
13064 related = related->related_breakpoint);
13065 related->related_breakpoint = bpt->related_breakpoint;
13066 bpt->related_breakpoint = bpt;
13067 }
13068
13069 /* watch_command_1 creates a watchpoint but only sets its number if
13070 update_watchpoint succeeds in creating its bp_locations. If there's
13071 a problem in that process, we'll be asked to delete the half-created
13072 watchpoint. In that case, don't announce the deletion. */
13073 if (bpt->number)
13074 gdb::observers::breakpoint_deleted.notify (bpt);
13075
13076 if (breakpoint_chain == bpt)
13077 breakpoint_chain = bpt->next;
13078
13079 ALL_BREAKPOINTS (b)
13080 if (b->next == bpt)
13081 {
13082 b->next = bpt->next;
13083 break;
13084 }
13085
13086 /* Be sure no bpstat's are pointing at the breakpoint after it's
13087 been freed. */
13088 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13089 in all threads for now. Note that we cannot just remove bpstats
13090 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13091 commands are associated with the bpstat; if we remove it here,
13092 then the later call to bpstat_do_actions (&stop_bpstat); in
13093 event-top.c won't do anything, and temporary breakpoints with
13094 commands won't work. */
13095
13096 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13097
13098 /* Now that breakpoint is removed from breakpoint list, update the
13099 global location list. This will remove locations that used to
13100 belong to this breakpoint. Do this before freeing the breakpoint
13101 itself, since remove_breakpoint looks at location's owner. It
13102 might be better design to have location completely
13103 self-contained, but it's not the case now. */
13104 update_global_location_list (UGLL_DONT_INSERT);
13105
13106 /* On the chance that someone will soon try again to delete this
13107 same bp, we mark it as deleted before freeing its storage. */
13108 bpt->type = bp_none;
13109 delete bpt;
13110 }
13111
13112 /* Iterator function to call a user-provided callback function once
13113 for each of B and its related breakpoints. */
13114
13115 static void
13116 iterate_over_related_breakpoints (struct breakpoint *b,
13117 gdb::function_view<void (breakpoint *)> function)
13118 {
13119 struct breakpoint *related;
13120
13121 related = b;
13122 do
13123 {
13124 struct breakpoint *next;
13125
13126 /* FUNCTION may delete RELATED. */
13127 next = related->related_breakpoint;
13128
13129 if (next == related)
13130 {
13131 /* RELATED is the last ring entry. */
13132 function (related);
13133
13134 /* FUNCTION may have deleted it, so we'd never reach back to
13135 B. There's nothing left to do anyway, so just break
13136 out. */
13137 break;
13138 }
13139 else
13140 function (related);
13141
13142 related = next;
13143 }
13144 while (related != b);
13145 }
13146
13147 static void
13148 delete_command (const char *arg, int from_tty)
13149 {
13150 struct breakpoint *b, *b_tmp;
13151
13152 dont_repeat ();
13153
13154 if (arg == 0)
13155 {
13156 int breaks_to_delete = 0;
13157
13158 /* Delete all breakpoints if no argument. Do not delete
13159 internal breakpoints, these have to be deleted with an
13160 explicit breakpoint number argument. */
13161 ALL_BREAKPOINTS (b)
13162 if (user_breakpoint_p (b))
13163 {
13164 breaks_to_delete = 1;
13165 break;
13166 }
13167
13168 /* Ask user only if there are some breakpoints to delete. */
13169 if (!from_tty
13170 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13171 {
13172 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13173 if (user_breakpoint_p (b))
13174 delete_breakpoint (b);
13175 }
13176 }
13177 else
13178 map_breakpoint_numbers
13179 (arg, [&] (breakpoint *br)
13180 {
13181 iterate_over_related_breakpoints (br, delete_breakpoint);
13182 });
13183 }
13184
13185 /* Return true if all locations of B bound to PSPACE are pending. If
13186 PSPACE is NULL, all locations of all program spaces are
13187 considered. */
13188
13189 static int
13190 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13191 {
13192 struct bp_location *loc;
13193
13194 for (loc = b->loc; loc != NULL; loc = loc->next)
13195 if ((pspace == NULL
13196 || loc->pspace == pspace)
13197 && !loc->shlib_disabled
13198 && !loc->pspace->executing_startup)
13199 return 0;
13200 return 1;
13201 }
13202
13203 /* Subroutine of update_breakpoint_locations to simplify it.
13204 Return non-zero if multiple fns in list LOC have the same name.
13205 Null names are ignored. */
13206
13207 static int
13208 ambiguous_names_p (struct bp_location *loc)
13209 {
13210 struct bp_location *l;
13211 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13212 xcalloc, xfree);
13213
13214 for (l = loc; l != NULL; l = l->next)
13215 {
13216 const char **slot;
13217 const char *name = l->function_name;
13218
13219 /* Allow for some names to be NULL, ignore them. */
13220 if (name == NULL)
13221 continue;
13222
13223 slot = (const char **) htab_find_slot (htab, (const void *) name,
13224 INSERT);
13225 /* NOTE: We can assume slot != NULL here because xcalloc never
13226 returns NULL. */
13227 if (*slot != NULL)
13228 {
13229 htab_delete (htab);
13230 return 1;
13231 }
13232 *slot = name;
13233 }
13234
13235 htab_delete (htab);
13236 return 0;
13237 }
13238
13239 /* When symbols change, it probably means the sources changed as well,
13240 and it might mean the static tracepoint markers are no longer at
13241 the same address or line numbers they used to be at last we
13242 checked. Losing your static tracepoints whenever you rebuild is
13243 undesirable. This function tries to resync/rematch gdb static
13244 tracepoints with the markers on the target, for static tracepoints
13245 that have not been set by marker id. Static tracepoint that have
13246 been set by marker id are reset by marker id in breakpoint_re_set.
13247 The heuristic is:
13248
13249 1) For a tracepoint set at a specific address, look for a marker at
13250 the old PC. If one is found there, assume to be the same marker.
13251 If the name / string id of the marker found is different from the
13252 previous known name, assume that means the user renamed the marker
13253 in the sources, and output a warning.
13254
13255 2) For a tracepoint set at a given line number, look for a marker
13256 at the new address of the old line number. If one is found there,
13257 assume to be the same marker. If the name / string id of the
13258 marker found is different from the previous known name, assume that
13259 means the user renamed the marker in the sources, and output a
13260 warning.
13261
13262 3) If a marker is no longer found at the same address or line, it
13263 may mean the marker no longer exists. But it may also just mean
13264 the code changed a bit. Maybe the user added a few lines of code
13265 that made the marker move up or down (in line number terms). Ask
13266 the target for info about the marker with the string id as we knew
13267 it. If found, update line number and address in the matching
13268 static tracepoint. This will get confused if there's more than one
13269 marker with the same ID (possible in UST, although unadvised
13270 precisely because it confuses tools). */
13271
13272 static struct symtab_and_line
13273 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13274 {
13275 struct tracepoint *tp = (struct tracepoint *) b;
13276 struct static_tracepoint_marker marker;
13277 CORE_ADDR pc;
13278
13279 pc = sal.pc;
13280 if (sal.line)
13281 find_line_pc (sal.symtab, sal.line, &pc);
13282
13283 if (target_static_tracepoint_marker_at (pc, &marker))
13284 {
13285 if (tp->static_trace_marker_id != marker.str_id)
13286 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13287 b->number, tp->static_trace_marker_id.c_str (),
13288 marker.str_id.c_str ());
13289
13290 tp->static_trace_marker_id = std::move (marker.str_id);
13291
13292 return sal;
13293 }
13294
13295 /* Old marker wasn't found on target at lineno. Try looking it up
13296 by string ID. */
13297 if (!sal.explicit_pc
13298 && sal.line != 0
13299 && sal.symtab != NULL
13300 && !tp->static_trace_marker_id.empty ())
13301 {
13302 std::vector<static_tracepoint_marker> markers
13303 = target_static_tracepoint_markers_by_strid
13304 (tp->static_trace_marker_id.c_str ());
13305
13306 if (!markers.empty ())
13307 {
13308 struct symbol *sym;
13309 struct static_tracepoint_marker *tpmarker;
13310 struct ui_out *uiout = current_uiout;
13311 struct explicit_location explicit_loc;
13312
13313 tpmarker = &markers[0];
13314
13315 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13316
13317 warning (_("marker for static tracepoint %d (%s) not "
13318 "found at previous line number"),
13319 b->number, tp->static_trace_marker_id.c_str ());
13320
13321 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13322 sym = find_pc_sect_function (tpmarker->address, NULL);
13323 uiout->text ("Now in ");
13324 if (sym)
13325 {
13326 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13327 ui_out_style_kind::FUNCTION);
13328 uiout->text (" at ");
13329 }
13330 uiout->field_string ("file",
13331 symtab_to_filename_for_display (sal2.symtab),
13332 ui_out_style_kind::FILE);
13333 uiout->text (":");
13334
13335 if (uiout->is_mi_like_p ())
13336 {
13337 const char *fullname = symtab_to_fullname (sal2.symtab);
13338
13339 uiout->field_string ("fullname", fullname);
13340 }
13341
13342 uiout->field_int ("line", sal2.line);
13343 uiout->text ("\n");
13344
13345 b->loc->line_number = sal2.line;
13346 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13347
13348 b->location.reset (NULL);
13349 initialize_explicit_location (&explicit_loc);
13350 explicit_loc.source_filename
13351 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13352 explicit_loc.line_offset.offset = b->loc->line_number;
13353 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13354 b->location = new_explicit_location (&explicit_loc);
13355
13356 /* Might be nice to check if function changed, and warn if
13357 so. */
13358 }
13359 }
13360 return sal;
13361 }
13362
13363 /* Returns 1 iff locations A and B are sufficiently same that
13364 we don't need to report breakpoint as changed. */
13365
13366 static int
13367 locations_are_equal (struct bp_location *a, struct bp_location *b)
13368 {
13369 while (a && b)
13370 {
13371 if (a->address != b->address)
13372 return 0;
13373
13374 if (a->shlib_disabled != b->shlib_disabled)
13375 return 0;
13376
13377 if (a->enabled != b->enabled)
13378 return 0;
13379
13380 a = a->next;
13381 b = b->next;
13382 }
13383
13384 if ((a == NULL) != (b == NULL))
13385 return 0;
13386
13387 return 1;
13388 }
13389
13390 /* Split all locations of B that are bound to PSPACE out of B's
13391 location list to a separate list and return that list's head. If
13392 PSPACE is NULL, hoist out all locations of B. */
13393
13394 static struct bp_location *
13395 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13396 {
13397 struct bp_location head;
13398 struct bp_location *i = b->loc;
13399 struct bp_location **i_link = &b->loc;
13400 struct bp_location *hoisted = &head;
13401
13402 if (pspace == NULL)
13403 {
13404 i = b->loc;
13405 b->loc = NULL;
13406 return i;
13407 }
13408
13409 head.next = NULL;
13410
13411 while (i != NULL)
13412 {
13413 if (i->pspace == pspace)
13414 {
13415 *i_link = i->next;
13416 i->next = NULL;
13417 hoisted->next = i;
13418 hoisted = i;
13419 }
13420 else
13421 i_link = &i->next;
13422 i = *i_link;
13423 }
13424
13425 return head.next;
13426 }
13427
13428 /* Create new breakpoint locations for B (a hardware or software
13429 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13430 zero, then B is a ranged breakpoint. Only recreates locations for
13431 FILTER_PSPACE. Locations of other program spaces are left
13432 untouched. */
13433
13434 void
13435 update_breakpoint_locations (struct breakpoint *b,
13436 struct program_space *filter_pspace,
13437 gdb::array_view<const symtab_and_line> sals,
13438 gdb::array_view<const symtab_and_line> sals_end)
13439 {
13440 struct bp_location *existing_locations;
13441
13442 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13443 {
13444 /* Ranged breakpoints have only one start location and one end
13445 location. */
13446 b->enable_state = bp_disabled;
13447 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13448 "multiple locations found\n"),
13449 b->number);
13450 return;
13451 }
13452
13453 /* If there's no new locations, and all existing locations are
13454 pending, don't do anything. This optimizes the common case where
13455 all locations are in the same shared library, that was unloaded.
13456 We'd like to retain the location, so that when the library is
13457 loaded again, we don't loose the enabled/disabled status of the
13458 individual locations. */
13459 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13460 return;
13461
13462 existing_locations = hoist_existing_locations (b, filter_pspace);
13463
13464 for (const auto &sal : sals)
13465 {
13466 struct bp_location *new_loc;
13467
13468 switch_to_program_space_and_thread (sal.pspace);
13469
13470 new_loc = add_location_to_breakpoint (b, &sal);
13471
13472 /* Reparse conditions, they might contain references to the
13473 old symtab. */
13474 if (b->cond_string != NULL)
13475 {
13476 const char *s;
13477
13478 s = b->cond_string;
13479 try
13480 {
13481 new_loc->cond = parse_exp_1 (&s, sal.pc,
13482 block_for_pc (sal.pc),
13483 0);
13484 }
13485 catch (const gdb_exception_error &e)
13486 {
13487 warning (_("failed to reevaluate condition "
13488 "for breakpoint %d: %s"),
13489 b->number, e.what ());
13490 new_loc->enabled = 0;
13491 }
13492 }
13493
13494 if (!sals_end.empty ())
13495 {
13496 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13497
13498 new_loc->length = end - sals[0].pc + 1;
13499 }
13500 }
13501
13502 /* If possible, carry over 'disable' status from existing
13503 breakpoints. */
13504 {
13505 struct bp_location *e = existing_locations;
13506 /* If there are multiple breakpoints with the same function name,
13507 e.g. for inline functions, comparing function names won't work.
13508 Instead compare pc addresses; this is just a heuristic as things
13509 may have moved, but in practice it gives the correct answer
13510 often enough until a better solution is found. */
13511 int have_ambiguous_names = ambiguous_names_p (b->loc);
13512
13513 for (; e; e = e->next)
13514 {
13515 if (!e->enabled && e->function_name)
13516 {
13517 struct bp_location *l = b->loc;
13518 if (have_ambiguous_names)
13519 {
13520 for (; l; l = l->next)
13521 if (breakpoint_locations_match (e, l))
13522 {
13523 l->enabled = 0;
13524 break;
13525 }
13526 }
13527 else
13528 {
13529 for (; l; l = l->next)
13530 if (l->function_name
13531 && strcmp (e->function_name, l->function_name) == 0)
13532 {
13533 l->enabled = 0;
13534 break;
13535 }
13536 }
13537 }
13538 }
13539 }
13540
13541 if (!locations_are_equal (existing_locations, b->loc))
13542 gdb::observers::breakpoint_modified.notify (b);
13543 }
13544
13545 /* Find the SaL locations corresponding to the given LOCATION.
13546 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13547
13548 static std::vector<symtab_and_line>
13549 location_to_sals (struct breakpoint *b, struct event_location *location,
13550 struct program_space *search_pspace, int *found)
13551 {
13552 struct gdb_exception exception;
13553
13554 gdb_assert (b->ops != NULL);
13555
13556 std::vector<symtab_and_line> sals;
13557
13558 try
13559 {
13560 sals = b->ops->decode_location (b, location, search_pspace);
13561 }
13562 catch (gdb_exception_error &e)
13563 {
13564 int not_found_and_ok = 0;
13565
13566 /* For pending breakpoints, it's expected that parsing will
13567 fail until the right shared library is loaded. User has
13568 already told to create pending breakpoints and don't need
13569 extra messages. If breakpoint is in bp_shlib_disabled
13570 state, then user already saw the message about that
13571 breakpoint being disabled, and don't want to see more
13572 errors. */
13573 if (e.error == NOT_FOUND_ERROR
13574 && (b->condition_not_parsed
13575 || (b->loc != NULL
13576 && search_pspace != NULL
13577 && b->loc->pspace != search_pspace)
13578 || (b->loc && b->loc->shlib_disabled)
13579 || (b->loc && b->loc->pspace->executing_startup)
13580 || b->enable_state == bp_disabled))
13581 not_found_and_ok = 1;
13582
13583 if (!not_found_and_ok)
13584 {
13585 /* We surely don't want to warn about the same breakpoint
13586 10 times. One solution, implemented here, is disable
13587 the breakpoint on error. Another solution would be to
13588 have separate 'warning emitted' flag. Since this
13589 happens only when a binary has changed, I don't know
13590 which approach is better. */
13591 b->enable_state = bp_disabled;
13592 throw;
13593 }
13594
13595 exception = std::move (e);
13596 }
13597
13598 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13599 {
13600 for (auto &sal : sals)
13601 resolve_sal_pc (&sal);
13602 if (b->condition_not_parsed && b->extra_string != NULL)
13603 {
13604 char *cond_string, *extra_string;
13605 int thread, task;
13606
13607 find_condition_and_thread (b->extra_string, sals[0].pc,
13608 &cond_string, &thread, &task,
13609 &extra_string);
13610 gdb_assert (b->cond_string == NULL);
13611 if (cond_string)
13612 b->cond_string = cond_string;
13613 b->thread = thread;
13614 b->task = task;
13615 if (extra_string)
13616 {
13617 xfree (b->extra_string);
13618 b->extra_string = extra_string;
13619 }
13620 b->condition_not_parsed = 0;
13621 }
13622
13623 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13624 sals[0] = update_static_tracepoint (b, sals[0]);
13625
13626 *found = 1;
13627 }
13628 else
13629 *found = 0;
13630
13631 return sals;
13632 }
13633
13634 /* The default re_set method, for typical hardware or software
13635 breakpoints. Reevaluate the breakpoint and recreate its
13636 locations. */
13637
13638 static void
13639 breakpoint_re_set_default (struct breakpoint *b)
13640 {
13641 struct program_space *filter_pspace = current_program_space;
13642 std::vector<symtab_and_line> expanded, expanded_end;
13643
13644 int found;
13645 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13646 filter_pspace, &found);
13647 if (found)
13648 expanded = std::move (sals);
13649
13650 if (b->location_range_end != NULL)
13651 {
13652 std::vector<symtab_and_line> sals_end
13653 = location_to_sals (b, b->location_range_end.get (),
13654 filter_pspace, &found);
13655 if (found)
13656 expanded_end = std::move (sals_end);
13657 }
13658
13659 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13660 }
13661
13662 /* Default method for creating SALs from an address string. It basically
13663 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13664
13665 static void
13666 create_sals_from_location_default (const struct event_location *location,
13667 struct linespec_result *canonical,
13668 enum bptype type_wanted)
13669 {
13670 parse_breakpoint_sals (location, canonical);
13671 }
13672
13673 /* Call create_breakpoints_sal for the given arguments. This is the default
13674 function for the `create_breakpoints_sal' method of
13675 breakpoint_ops. */
13676
13677 static void
13678 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13679 struct linespec_result *canonical,
13680 gdb::unique_xmalloc_ptr<char> cond_string,
13681 gdb::unique_xmalloc_ptr<char> extra_string,
13682 enum bptype type_wanted,
13683 enum bpdisp disposition,
13684 int thread,
13685 int task, int ignore_count,
13686 const struct breakpoint_ops *ops,
13687 int from_tty, int enabled,
13688 int internal, unsigned flags)
13689 {
13690 create_breakpoints_sal (gdbarch, canonical,
13691 std::move (cond_string),
13692 std::move (extra_string),
13693 type_wanted, disposition,
13694 thread, task, ignore_count, ops, from_tty,
13695 enabled, internal, flags);
13696 }
13697
13698 /* Decode the line represented by S by calling decode_line_full. This is the
13699 default function for the `decode_location' method of breakpoint_ops. */
13700
13701 static std::vector<symtab_and_line>
13702 decode_location_default (struct breakpoint *b,
13703 const struct event_location *location,
13704 struct program_space *search_pspace)
13705 {
13706 struct linespec_result canonical;
13707
13708 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13709 NULL, 0, &canonical, multiple_symbols_all,
13710 b->filter);
13711
13712 /* We should get 0 or 1 resulting SALs. */
13713 gdb_assert (canonical.lsals.size () < 2);
13714
13715 if (!canonical.lsals.empty ())
13716 {
13717 const linespec_sals &lsal = canonical.lsals[0];
13718 return std::move (lsal.sals);
13719 }
13720 return {};
13721 }
13722
13723 /* Reset a breakpoint. */
13724
13725 static void
13726 breakpoint_re_set_one (breakpoint *b)
13727 {
13728 input_radix = b->input_radix;
13729 set_language (b->language);
13730
13731 b->ops->re_set (b);
13732 }
13733
13734 /* Re-set breakpoint locations for the current program space.
13735 Locations bound to other program spaces are left untouched. */
13736
13737 void
13738 breakpoint_re_set (void)
13739 {
13740 struct breakpoint *b, *b_tmp;
13741
13742 {
13743 scoped_restore_current_language save_language;
13744 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13745 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13746
13747 /* breakpoint_re_set_one sets the current_language to the language
13748 of the breakpoint it is resetting (see prepare_re_set_context)
13749 before re-evaluating the breakpoint's location. This change can
13750 unfortunately get undone by accident if the language_mode is set
13751 to auto, and we either switch frames, or more likely in this context,
13752 we select the current frame.
13753
13754 We prevent this by temporarily turning the language_mode to
13755 language_mode_manual. We restore it once all breakpoints
13756 have been reset. */
13757 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13758 language_mode = language_mode_manual;
13759
13760 /* Note: we must not try to insert locations until after all
13761 breakpoints have been re-set. Otherwise, e.g., when re-setting
13762 breakpoint 1, we'd insert the locations of breakpoint 2, which
13763 hadn't been re-set yet, and thus may have stale locations. */
13764
13765 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13766 {
13767 try
13768 {
13769 breakpoint_re_set_one (b);
13770 }
13771 catch (const gdb_exception &ex)
13772 {
13773 exception_fprintf (gdb_stderr, ex,
13774 "Error in re-setting breakpoint %d: ",
13775 b->number);
13776 }
13777 }
13778
13779 jit_breakpoint_re_set ();
13780 }
13781
13782 create_overlay_event_breakpoint ();
13783 create_longjmp_master_breakpoint ();
13784 create_std_terminate_master_breakpoint ();
13785 create_exception_master_breakpoint ();
13786
13787 /* Now we can insert. */
13788 update_global_location_list (UGLL_MAY_INSERT);
13789 }
13790 \f
13791 /* Reset the thread number of this breakpoint:
13792
13793 - If the breakpoint is for all threads, leave it as-is.
13794 - Else, reset it to the current thread for inferior_ptid. */
13795 void
13796 breakpoint_re_set_thread (struct breakpoint *b)
13797 {
13798 if (b->thread != -1)
13799 {
13800 b->thread = inferior_thread ()->global_num;
13801
13802 /* We're being called after following a fork. The new fork is
13803 selected as current, and unless this was a vfork will have a
13804 different program space from the original thread. Reset that
13805 as well. */
13806 b->loc->pspace = current_program_space;
13807 }
13808 }
13809
13810 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13811 If from_tty is nonzero, it prints a message to that effect,
13812 which ends with a period (no newline). */
13813
13814 void
13815 set_ignore_count (int bptnum, int count, int from_tty)
13816 {
13817 struct breakpoint *b;
13818
13819 if (count < 0)
13820 count = 0;
13821
13822 ALL_BREAKPOINTS (b)
13823 if (b->number == bptnum)
13824 {
13825 if (is_tracepoint (b))
13826 {
13827 if (from_tty && count != 0)
13828 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13829 bptnum);
13830 return;
13831 }
13832
13833 b->ignore_count = count;
13834 if (from_tty)
13835 {
13836 if (count == 0)
13837 printf_filtered (_("Will stop next time "
13838 "breakpoint %d is reached."),
13839 bptnum);
13840 else if (count == 1)
13841 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13842 bptnum);
13843 else
13844 printf_filtered (_("Will ignore next %d "
13845 "crossings of breakpoint %d."),
13846 count, bptnum);
13847 }
13848 gdb::observers::breakpoint_modified.notify (b);
13849 return;
13850 }
13851
13852 error (_("No breakpoint number %d."), bptnum);
13853 }
13854
13855 /* Command to set ignore-count of breakpoint N to COUNT. */
13856
13857 static void
13858 ignore_command (const char *args, int from_tty)
13859 {
13860 const char *p = args;
13861 int num;
13862
13863 if (p == 0)
13864 error_no_arg (_("a breakpoint number"));
13865
13866 num = get_number (&p);
13867 if (num == 0)
13868 error (_("bad breakpoint number: '%s'"), args);
13869 if (*p == 0)
13870 error (_("Second argument (specified ignore-count) is missing."));
13871
13872 set_ignore_count (num,
13873 longest_to_int (value_as_long (parse_and_eval (p))),
13874 from_tty);
13875 if (from_tty)
13876 printf_filtered ("\n");
13877 }
13878 \f
13879
13880 /* Call FUNCTION on each of the breakpoints with numbers in the range
13881 defined by BP_NUM_RANGE (an inclusive range). */
13882
13883 static void
13884 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13885 gdb::function_view<void (breakpoint *)> function)
13886 {
13887 if (bp_num_range.first == 0)
13888 {
13889 warning (_("bad breakpoint number at or near '%d'"),
13890 bp_num_range.first);
13891 }
13892 else
13893 {
13894 struct breakpoint *b, *tmp;
13895
13896 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13897 {
13898 bool match = false;
13899
13900 ALL_BREAKPOINTS_SAFE (b, tmp)
13901 if (b->number == i)
13902 {
13903 match = true;
13904 function (b);
13905 break;
13906 }
13907 if (!match)
13908 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13909 }
13910 }
13911 }
13912
13913 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13914 ARGS. */
13915
13916 static void
13917 map_breakpoint_numbers (const char *args,
13918 gdb::function_view<void (breakpoint *)> function)
13919 {
13920 if (args == NULL || *args == '\0')
13921 error_no_arg (_("one or more breakpoint numbers"));
13922
13923 number_or_range_parser parser (args);
13924
13925 while (!parser.finished ())
13926 {
13927 int num = parser.get_number ();
13928 map_breakpoint_number_range (std::make_pair (num, num), function);
13929 }
13930 }
13931
13932 /* Return the breakpoint location structure corresponding to the
13933 BP_NUM and LOC_NUM values. */
13934
13935 static struct bp_location *
13936 find_location_by_number (int bp_num, int loc_num)
13937 {
13938 struct breakpoint *b;
13939
13940 ALL_BREAKPOINTS (b)
13941 if (b->number == bp_num)
13942 {
13943 break;
13944 }
13945
13946 if (!b || b->number != bp_num)
13947 error (_("Bad breakpoint number '%d'"), bp_num);
13948
13949 if (loc_num == 0)
13950 error (_("Bad breakpoint location number '%d'"), loc_num);
13951
13952 int n = 0;
13953 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13954 if (++n == loc_num)
13955 return loc;
13956
13957 error (_("Bad breakpoint location number '%d'"), loc_num);
13958 }
13959
13960 /* Modes of operation for extract_bp_num. */
13961 enum class extract_bp_kind
13962 {
13963 /* Extracting a breakpoint number. */
13964 bp,
13965
13966 /* Extracting a location number. */
13967 loc,
13968 };
13969
13970 /* Extract a breakpoint or location number (as determined by KIND)
13971 from the string starting at START. TRAILER is a character which
13972 can be found after the number. If you don't want a trailer, use
13973 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13974 string. This always returns a positive integer. */
13975
13976 static int
13977 extract_bp_num (extract_bp_kind kind, const char *start,
13978 int trailer, const char **end_out = NULL)
13979 {
13980 const char *end = start;
13981 int num = get_number_trailer (&end, trailer);
13982 if (num < 0)
13983 error (kind == extract_bp_kind::bp
13984 ? _("Negative breakpoint number '%.*s'")
13985 : _("Negative breakpoint location number '%.*s'"),
13986 int (end - start), start);
13987 if (num == 0)
13988 error (kind == extract_bp_kind::bp
13989 ? _("Bad breakpoint number '%.*s'")
13990 : _("Bad breakpoint location number '%.*s'"),
13991 int (end - start), start);
13992
13993 if (end_out != NULL)
13994 *end_out = end;
13995 return num;
13996 }
13997
13998 /* Extract a breakpoint or location range (as determined by KIND) in
13999 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14000 representing the (inclusive) range. The returned pair's elements
14001 are always positive integers. */
14002
14003 static std::pair<int, int>
14004 extract_bp_or_bp_range (extract_bp_kind kind,
14005 const std::string &arg,
14006 std::string::size_type arg_offset)
14007 {
14008 std::pair<int, int> range;
14009 const char *bp_loc = &arg[arg_offset];
14010 std::string::size_type dash = arg.find ('-', arg_offset);
14011 if (dash != std::string::npos)
14012 {
14013 /* bp_loc is a range (x-z). */
14014 if (arg.length () == dash + 1)
14015 error (kind == extract_bp_kind::bp
14016 ? _("Bad breakpoint number at or near: '%s'")
14017 : _("Bad breakpoint location number at or near: '%s'"),
14018 bp_loc);
14019
14020 const char *end;
14021 const char *start_first = bp_loc;
14022 const char *start_second = &arg[dash + 1];
14023 range.first = extract_bp_num (kind, start_first, '-');
14024 range.second = extract_bp_num (kind, start_second, '\0', &end);
14025
14026 if (range.first > range.second)
14027 error (kind == extract_bp_kind::bp
14028 ? _("Inverted breakpoint range at '%.*s'")
14029 : _("Inverted breakpoint location range at '%.*s'"),
14030 int (end - start_first), start_first);
14031 }
14032 else
14033 {
14034 /* bp_loc is a single value. */
14035 range.first = extract_bp_num (kind, bp_loc, '\0');
14036 range.second = range.first;
14037 }
14038 return range;
14039 }
14040
14041 /* Extract the breakpoint/location range specified by ARG. Returns
14042 the breakpoint range in BP_NUM_RANGE, and the location range in
14043 BP_LOC_RANGE.
14044
14045 ARG may be in any of the following forms:
14046
14047 x where 'x' is a breakpoint number.
14048 x-y where 'x' and 'y' specify a breakpoint numbers range.
14049 x.y where 'x' is a breakpoint number and 'y' a location number.
14050 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14051 location number range.
14052 */
14053
14054 static void
14055 extract_bp_number_and_location (const std::string &arg,
14056 std::pair<int, int> &bp_num_range,
14057 std::pair<int, int> &bp_loc_range)
14058 {
14059 std::string::size_type dot = arg.find ('.');
14060
14061 if (dot != std::string::npos)
14062 {
14063 /* Handle 'x.y' and 'x.y-z' cases. */
14064
14065 if (arg.length () == dot + 1 || dot == 0)
14066 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14067
14068 bp_num_range.first
14069 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14070 bp_num_range.second = bp_num_range.first;
14071
14072 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14073 arg, dot + 1);
14074 }
14075 else
14076 {
14077 /* Handle x and x-y cases. */
14078
14079 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14080 bp_loc_range.first = 0;
14081 bp_loc_range.second = 0;
14082 }
14083 }
14084
14085 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14086 specifies whether to enable or disable. */
14087
14088 static void
14089 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14090 {
14091 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14092 if (loc != NULL)
14093 {
14094 if (loc->enabled != enable)
14095 {
14096 loc->enabled = enable;
14097 mark_breakpoint_location_modified (loc);
14098 }
14099 if (target_supports_enable_disable_tracepoint ()
14100 && current_trace_status ()->running && loc->owner
14101 && is_tracepoint (loc->owner))
14102 target_disable_tracepoint (loc);
14103 }
14104 update_global_location_list (UGLL_DONT_INSERT);
14105
14106 gdb::observers::breakpoint_modified.notify (loc->owner);
14107 }
14108
14109 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14110 number of the breakpoint, and BP_LOC_RANGE specifies the
14111 (inclusive) range of location numbers of that breakpoint to
14112 enable/disable. ENABLE specifies whether to enable or disable the
14113 location. */
14114
14115 static void
14116 enable_disable_breakpoint_location_range (int bp_num,
14117 std::pair<int, int> &bp_loc_range,
14118 bool enable)
14119 {
14120 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14121 enable_disable_bp_num_loc (bp_num, i, enable);
14122 }
14123
14124 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14125 If from_tty is nonzero, it prints a message to that effect,
14126 which ends with a period (no newline). */
14127
14128 void
14129 disable_breakpoint (struct breakpoint *bpt)
14130 {
14131 /* Never disable a watchpoint scope breakpoint; we want to
14132 hit them when we leave scope so we can delete both the
14133 watchpoint and its scope breakpoint at that time. */
14134 if (bpt->type == bp_watchpoint_scope)
14135 return;
14136
14137 bpt->enable_state = bp_disabled;
14138
14139 /* Mark breakpoint locations modified. */
14140 mark_breakpoint_modified (bpt);
14141
14142 if (target_supports_enable_disable_tracepoint ()
14143 && current_trace_status ()->running && is_tracepoint (bpt))
14144 {
14145 struct bp_location *location;
14146
14147 for (location = bpt->loc; location; location = location->next)
14148 target_disable_tracepoint (location);
14149 }
14150
14151 update_global_location_list (UGLL_DONT_INSERT);
14152
14153 gdb::observers::breakpoint_modified.notify (bpt);
14154 }
14155
14156 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14157 specified in ARGS. ARGS may be in any of the formats handled by
14158 extract_bp_number_and_location. ENABLE specifies whether to enable
14159 or disable the breakpoints/locations. */
14160
14161 static void
14162 enable_disable_command (const char *args, int from_tty, bool enable)
14163 {
14164 if (args == 0)
14165 {
14166 struct breakpoint *bpt;
14167
14168 ALL_BREAKPOINTS (bpt)
14169 if (user_breakpoint_p (bpt))
14170 {
14171 if (enable)
14172 enable_breakpoint (bpt);
14173 else
14174 disable_breakpoint (bpt);
14175 }
14176 }
14177 else
14178 {
14179 std::string num = extract_arg (&args);
14180
14181 while (!num.empty ())
14182 {
14183 std::pair<int, int> bp_num_range, bp_loc_range;
14184
14185 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14186
14187 if (bp_loc_range.first == bp_loc_range.second
14188 && bp_loc_range.first == 0)
14189 {
14190 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14191 map_breakpoint_number_range (bp_num_range,
14192 enable
14193 ? enable_breakpoint
14194 : disable_breakpoint);
14195 }
14196 else
14197 {
14198 /* Handle breakpoint ids with formats 'x.y' or
14199 'x.y-z'. */
14200 enable_disable_breakpoint_location_range
14201 (bp_num_range.first, bp_loc_range, enable);
14202 }
14203 num = extract_arg (&args);
14204 }
14205 }
14206 }
14207
14208 /* The disable command disables the specified breakpoints/locations
14209 (or all defined breakpoints) so they're no longer effective in
14210 stopping the inferior. ARGS may be in any of the forms defined in
14211 extract_bp_number_and_location. */
14212
14213 static void
14214 disable_command (const char *args, int from_tty)
14215 {
14216 enable_disable_command (args, from_tty, false);
14217 }
14218
14219 static void
14220 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14221 int count)
14222 {
14223 int target_resources_ok;
14224
14225 if (bpt->type == bp_hardware_breakpoint)
14226 {
14227 int i;
14228 i = hw_breakpoint_used_count ();
14229 target_resources_ok =
14230 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14231 i + 1, 0);
14232 if (target_resources_ok == 0)
14233 error (_("No hardware breakpoint support in the target."));
14234 else if (target_resources_ok < 0)
14235 error (_("Hardware breakpoints used exceeds limit."));
14236 }
14237
14238 if (is_watchpoint (bpt))
14239 {
14240 /* Initialize it just to avoid a GCC false warning. */
14241 enum enable_state orig_enable_state = bp_disabled;
14242
14243 try
14244 {
14245 struct watchpoint *w = (struct watchpoint *) bpt;
14246
14247 orig_enable_state = bpt->enable_state;
14248 bpt->enable_state = bp_enabled;
14249 update_watchpoint (w, 1 /* reparse */);
14250 }
14251 catch (const gdb_exception &e)
14252 {
14253 bpt->enable_state = orig_enable_state;
14254 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14255 bpt->number);
14256 return;
14257 }
14258 }
14259
14260 bpt->enable_state = bp_enabled;
14261
14262 /* Mark breakpoint locations modified. */
14263 mark_breakpoint_modified (bpt);
14264
14265 if (target_supports_enable_disable_tracepoint ()
14266 && current_trace_status ()->running && is_tracepoint (bpt))
14267 {
14268 struct bp_location *location;
14269
14270 for (location = bpt->loc; location; location = location->next)
14271 target_enable_tracepoint (location);
14272 }
14273
14274 bpt->disposition = disposition;
14275 bpt->enable_count = count;
14276 update_global_location_list (UGLL_MAY_INSERT);
14277
14278 gdb::observers::breakpoint_modified.notify (bpt);
14279 }
14280
14281
14282 void
14283 enable_breakpoint (struct breakpoint *bpt)
14284 {
14285 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14286 }
14287
14288 /* The enable command enables the specified breakpoints/locations (or
14289 all defined breakpoints) so they once again become (or continue to
14290 be) effective in stopping the inferior. ARGS may be in any of the
14291 forms defined in extract_bp_number_and_location. */
14292
14293 static void
14294 enable_command (const char *args, int from_tty)
14295 {
14296 enable_disable_command (args, from_tty, true);
14297 }
14298
14299 static void
14300 enable_once_command (const char *args, int from_tty)
14301 {
14302 map_breakpoint_numbers
14303 (args, [&] (breakpoint *b)
14304 {
14305 iterate_over_related_breakpoints
14306 (b, [&] (breakpoint *bpt)
14307 {
14308 enable_breakpoint_disp (bpt, disp_disable, 1);
14309 });
14310 });
14311 }
14312
14313 static void
14314 enable_count_command (const char *args, int from_tty)
14315 {
14316 int count;
14317
14318 if (args == NULL)
14319 error_no_arg (_("hit count"));
14320
14321 count = get_number (&args);
14322
14323 map_breakpoint_numbers
14324 (args, [&] (breakpoint *b)
14325 {
14326 iterate_over_related_breakpoints
14327 (b, [&] (breakpoint *bpt)
14328 {
14329 enable_breakpoint_disp (bpt, disp_disable, count);
14330 });
14331 });
14332 }
14333
14334 static void
14335 enable_delete_command (const char *args, int from_tty)
14336 {
14337 map_breakpoint_numbers
14338 (args, [&] (breakpoint *b)
14339 {
14340 iterate_over_related_breakpoints
14341 (b, [&] (breakpoint *bpt)
14342 {
14343 enable_breakpoint_disp (bpt, disp_del, 1);
14344 });
14345 });
14346 }
14347 \f
14348 static void
14349 set_breakpoint_cmd (const char *args, int from_tty)
14350 {
14351 }
14352
14353 static void
14354 show_breakpoint_cmd (const char *args, int from_tty)
14355 {
14356 }
14357
14358 /* Invalidate last known value of any hardware watchpoint if
14359 the memory which that value represents has been written to by
14360 GDB itself. */
14361
14362 static void
14363 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14364 CORE_ADDR addr, ssize_t len,
14365 const bfd_byte *data)
14366 {
14367 struct breakpoint *bp;
14368
14369 ALL_BREAKPOINTS (bp)
14370 if (bp->enable_state == bp_enabled
14371 && bp->type == bp_hardware_watchpoint)
14372 {
14373 struct watchpoint *wp = (struct watchpoint *) bp;
14374
14375 if (wp->val_valid && wp->val != nullptr)
14376 {
14377 struct bp_location *loc;
14378
14379 for (loc = bp->loc; loc != NULL; loc = loc->next)
14380 if (loc->loc_type == bp_loc_hardware_watchpoint
14381 && loc->address + loc->length > addr
14382 && addr + len > loc->address)
14383 {
14384 wp->val = NULL;
14385 wp->val_valid = 0;
14386 }
14387 }
14388 }
14389 }
14390
14391 /* Create and insert a breakpoint for software single step. */
14392
14393 void
14394 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14395 const address_space *aspace,
14396 CORE_ADDR next_pc)
14397 {
14398 struct thread_info *tp = inferior_thread ();
14399 struct symtab_and_line sal;
14400 CORE_ADDR pc = next_pc;
14401
14402 if (tp->control.single_step_breakpoints == NULL)
14403 {
14404 tp->control.single_step_breakpoints
14405 = new_single_step_breakpoint (tp->global_num, gdbarch);
14406 }
14407
14408 sal = find_pc_line (pc, 0);
14409 sal.pc = pc;
14410 sal.section = find_pc_overlay (pc);
14411 sal.explicit_pc = 1;
14412 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14413
14414 update_global_location_list (UGLL_INSERT);
14415 }
14416
14417 /* Insert single step breakpoints according to the current state. */
14418
14419 int
14420 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14421 {
14422 struct regcache *regcache = get_current_regcache ();
14423 std::vector<CORE_ADDR> next_pcs;
14424
14425 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14426
14427 if (!next_pcs.empty ())
14428 {
14429 struct frame_info *frame = get_current_frame ();
14430 const address_space *aspace = get_frame_address_space (frame);
14431
14432 for (CORE_ADDR pc : next_pcs)
14433 insert_single_step_breakpoint (gdbarch, aspace, pc);
14434
14435 return 1;
14436 }
14437 else
14438 return 0;
14439 }
14440
14441 /* See breakpoint.h. */
14442
14443 int
14444 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14445 const address_space *aspace,
14446 CORE_ADDR pc)
14447 {
14448 struct bp_location *loc;
14449
14450 for (loc = bp->loc; loc != NULL; loc = loc->next)
14451 if (loc->inserted
14452 && breakpoint_location_address_match (loc, aspace, pc))
14453 return 1;
14454
14455 return 0;
14456 }
14457
14458 /* Check whether a software single-step breakpoint is inserted at
14459 PC. */
14460
14461 int
14462 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14463 CORE_ADDR pc)
14464 {
14465 struct breakpoint *bpt;
14466
14467 ALL_BREAKPOINTS (bpt)
14468 {
14469 if (bpt->type == bp_single_step
14470 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14471 return 1;
14472 }
14473 return 0;
14474 }
14475
14476 /* Tracepoint-specific operations. */
14477
14478 /* Set tracepoint count to NUM. */
14479 static void
14480 set_tracepoint_count (int num)
14481 {
14482 tracepoint_count = num;
14483 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14484 }
14485
14486 static void
14487 trace_command (const char *arg, int from_tty)
14488 {
14489 struct breakpoint_ops *ops;
14490
14491 event_location_up location = string_to_event_location (&arg,
14492 current_language);
14493 if (location != NULL
14494 && event_location_type (location.get ()) == PROBE_LOCATION)
14495 ops = &tracepoint_probe_breakpoint_ops;
14496 else
14497 ops = &tracepoint_breakpoint_ops;
14498
14499 create_breakpoint (get_current_arch (),
14500 location.get (),
14501 NULL, 0, arg, 1 /* parse arg */,
14502 0 /* tempflag */,
14503 bp_tracepoint /* type_wanted */,
14504 0 /* Ignore count */,
14505 pending_break_support,
14506 ops,
14507 from_tty,
14508 1 /* enabled */,
14509 0 /* internal */, 0);
14510 }
14511
14512 static void
14513 ftrace_command (const char *arg, int from_tty)
14514 {
14515 event_location_up location = string_to_event_location (&arg,
14516 current_language);
14517 create_breakpoint (get_current_arch (),
14518 location.get (),
14519 NULL, 0, arg, 1 /* parse arg */,
14520 0 /* tempflag */,
14521 bp_fast_tracepoint /* type_wanted */,
14522 0 /* Ignore count */,
14523 pending_break_support,
14524 &tracepoint_breakpoint_ops,
14525 from_tty,
14526 1 /* enabled */,
14527 0 /* internal */, 0);
14528 }
14529
14530 /* strace command implementation. Creates a static tracepoint. */
14531
14532 static void
14533 strace_command (const char *arg, int from_tty)
14534 {
14535 struct breakpoint_ops *ops;
14536 event_location_up location;
14537
14538 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14539 or with a normal static tracepoint. */
14540 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14541 {
14542 ops = &strace_marker_breakpoint_ops;
14543 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14544 }
14545 else
14546 {
14547 ops = &tracepoint_breakpoint_ops;
14548 location = string_to_event_location (&arg, current_language);
14549 }
14550
14551 create_breakpoint (get_current_arch (),
14552 location.get (),
14553 NULL, 0, arg, 1 /* parse arg */,
14554 0 /* tempflag */,
14555 bp_static_tracepoint /* type_wanted */,
14556 0 /* Ignore count */,
14557 pending_break_support,
14558 ops,
14559 from_tty,
14560 1 /* enabled */,
14561 0 /* internal */, 0);
14562 }
14563
14564 /* Set up a fake reader function that gets command lines from a linked
14565 list that was acquired during tracepoint uploading. */
14566
14567 static struct uploaded_tp *this_utp;
14568 static int next_cmd;
14569
14570 static char *
14571 read_uploaded_action (void)
14572 {
14573 char *rslt = nullptr;
14574
14575 if (next_cmd < this_utp->cmd_strings.size ())
14576 {
14577 rslt = this_utp->cmd_strings[next_cmd].get ();
14578 next_cmd++;
14579 }
14580
14581 return rslt;
14582 }
14583
14584 /* Given information about a tracepoint as recorded on a target (which
14585 can be either a live system or a trace file), attempt to create an
14586 equivalent GDB tracepoint. This is not a reliable process, since
14587 the target does not necessarily have all the information used when
14588 the tracepoint was originally defined. */
14589
14590 struct tracepoint *
14591 create_tracepoint_from_upload (struct uploaded_tp *utp)
14592 {
14593 const char *addr_str;
14594 char small_buf[100];
14595 struct tracepoint *tp;
14596
14597 if (utp->at_string)
14598 addr_str = utp->at_string.get ();
14599 else
14600 {
14601 /* In the absence of a source location, fall back to raw
14602 address. Since there is no way to confirm that the address
14603 means the same thing as when the trace was started, warn the
14604 user. */
14605 warning (_("Uploaded tracepoint %d has no "
14606 "source location, using raw address"),
14607 utp->number);
14608 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14609 addr_str = small_buf;
14610 }
14611
14612 /* There's not much we can do with a sequence of bytecodes. */
14613 if (utp->cond && !utp->cond_string)
14614 warning (_("Uploaded tracepoint %d condition "
14615 "has no source form, ignoring it"),
14616 utp->number);
14617
14618 event_location_up location = string_to_event_location (&addr_str,
14619 current_language);
14620 if (!create_breakpoint (get_current_arch (),
14621 location.get (),
14622 utp->cond_string.get (), -1, addr_str,
14623 0 /* parse cond/thread */,
14624 0 /* tempflag */,
14625 utp->type /* type_wanted */,
14626 0 /* Ignore count */,
14627 pending_break_support,
14628 &tracepoint_breakpoint_ops,
14629 0 /* from_tty */,
14630 utp->enabled /* enabled */,
14631 0 /* internal */,
14632 CREATE_BREAKPOINT_FLAGS_INSERTED))
14633 return NULL;
14634
14635 /* Get the tracepoint we just created. */
14636 tp = get_tracepoint (tracepoint_count);
14637 gdb_assert (tp != NULL);
14638
14639 if (utp->pass > 0)
14640 {
14641 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14642 tp->number);
14643
14644 trace_pass_command (small_buf, 0);
14645 }
14646
14647 /* If we have uploaded versions of the original commands, set up a
14648 special-purpose "reader" function and call the usual command line
14649 reader, then pass the result to the breakpoint command-setting
14650 function. */
14651 if (!utp->cmd_strings.empty ())
14652 {
14653 counted_command_line cmd_list;
14654
14655 this_utp = utp;
14656 next_cmd = 0;
14657
14658 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14659
14660 breakpoint_set_commands (tp, std::move (cmd_list));
14661 }
14662 else if (!utp->actions.empty ()
14663 || !utp->step_actions.empty ())
14664 warning (_("Uploaded tracepoint %d actions "
14665 "have no source form, ignoring them"),
14666 utp->number);
14667
14668 /* Copy any status information that might be available. */
14669 tp->hit_count = utp->hit_count;
14670 tp->traceframe_usage = utp->traceframe_usage;
14671
14672 return tp;
14673 }
14674
14675 /* Print information on tracepoint number TPNUM_EXP, or all if
14676 omitted. */
14677
14678 static void
14679 info_tracepoints_command (const char *args, int from_tty)
14680 {
14681 struct ui_out *uiout = current_uiout;
14682 int num_printed;
14683
14684 num_printed = breakpoint_1 (args, false, is_tracepoint);
14685
14686 if (num_printed == 0)
14687 {
14688 if (args == NULL || *args == '\0')
14689 uiout->message ("No tracepoints.\n");
14690 else
14691 uiout->message ("No tracepoint matching '%s'.\n", args);
14692 }
14693
14694 default_collect_info ();
14695 }
14696
14697 /* The 'enable trace' command enables tracepoints.
14698 Not supported by all targets. */
14699 static void
14700 enable_trace_command (const char *args, int from_tty)
14701 {
14702 enable_command (args, from_tty);
14703 }
14704
14705 /* The 'disable trace' command disables tracepoints.
14706 Not supported by all targets. */
14707 static void
14708 disable_trace_command (const char *args, int from_tty)
14709 {
14710 disable_command (args, from_tty);
14711 }
14712
14713 /* Remove a tracepoint (or all if no argument). */
14714 static void
14715 delete_trace_command (const char *arg, int from_tty)
14716 {
14717 struct breakpoint *b, *b_tmp;
14718
14719 dont_repeat ();
14720
14721 if (arg == 0)
14722 {
14723 int breaks_to_delete = 0;
14724
14725 /* Delete all breakpoints if no argument.
14726 Do not delete internal or call-dummy breakpoints, these
14727 have to be deleted with an explicit breakpoint number
14728 argument. */
14729 ALL_TRACEPOINTS (b)
14730 if (is_tracepoint (b) && user_breakpoint_p (b))
14731 {
14732 breaks_to_delete = 1;
14733 break;
14734 }
14735
14736 /* Ask user only if there are some breakpoints to delete. */
14737 if (!from_tty
14738 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14739 {
14740 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14741 if (is_tracepoint (b) && user_breakpoint_p (b))
14742 delete_breakpoint (b);
14743 }
14744 }
14745 else
14746 map_breakpoint_numbers
14747 (arg, [&] (breakpoint *br)
14748 {
14749 iterate_over_related_breakpoints (br, delete_breakpoint);
14750 });
14751 }
14752
14753 /* Helper function for trace_pass_command. */
14754
14755 static void
14756 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14757 {
14758 tp->pass_count = count;
14759 gdb::observers::breakpoint_modified.notify (tp);
14760 if (from_tty)
14761 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14762 tp->number, count);
14763 }
14764
14765 /* Set passcount for tracepoint.
14766
14767 First command argument is passcount, second is tracepoint number.
14768 If tracepoint number omitted, apply to most recently defined.
14769 Also accepts special argument "all". */
14770
14771 static void
14772 trace_pass_command (const char *args, int from_tty)
14773 {
14774 struct tracepoint *t1;
14775 ULONGEST count;
14776
14777 if (args == 0 || *args == 0)
14778 error (_("passcount command requires an "
14779 "argument (count + optional TP num)"));
14780
14781 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14782
14783 args = skip_spaces (args);
14784 if (*args && strncasecmp (args, "all", 3) == 0)
14785 {
14786 struct breakpoint *b;
14787
14788 args += 3; /* Skip special argument "all". */
14789 if (*args)
14790 error (_("Junk at end of arguments."));
14791
14792 ALL_TRACEPOINTS (b)
14793 {
14794 t1 = (struct tracepoint *) b;
14795 trace_pass_set_count (t1, count, from_tty);
14796 }
14797 }
14798 else if (*args == '\0')
14799 {
14800 t1 = get_tracepoint_by_number (&args, NULL);
14801 if (t1)
14802 trace_pass_set_count (t1, count, from_tty);
14803 }
14804 else
14805 {
14806 number_or_range_parser parser (args);
14807 while (!parser.finished ())
14808 {
14809 t1 = get_tracepoint_by_number (&args, &parser);
14810 if (t1)
14811 trace_pass_set_count (t1, count, from_tty);
14812 }
14813 }
14814 }
14815
14816 struct tracepoint *
14817 get_tracepoint (int num)
14818 {
14819 struct breakpoint *t;
14820
14821 ALL_TRACEPOINTS (t)
14822 if (t->number == num)
14823 return (struct tracepoint *) t;
14824
14825 return NULL;
14826 }
14827
14828 /* Find the tracepoint with the given target-side number (which may be
14829 different from the tracepoint number after disconnecting and
14830 reconnecting). */
14831
14832 struct tracepoint *
14833 get_tracepoint_by_number_on_target (int num)
14834 {
14835 struct breakpoint *b;
14836
14837 ALL_TRACEPOINTS (b)
14838 {
14839 struct tracepoint *t = (struct tracepoint *) b;
14840
14841 if (t->number_on_target == num)
14842 return t;
14843 }
14844
14845 return NULL;
14846 }
14847
14848 /* Utility: parse a tracepoint number and look it up in the list.
14849 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14850 If the argument is missing, the most recent tracepoint
14851 (tracepoint_count) is returned. */
14852
14853 struct tracepoint *
14854 get_tracepoint_by_number (const char **arg,
14855 number_or_range_parser *parser)
14856 {
14857 struct breakpoint *t;
14858 int tpnum;
14859 const char *instring = arg == NULL ? NULL : *arg;
14860
14861 if (parser != NULL)
14862 {
14863 gdb_assert (!parser->finished ());
14864 tpnum = parser->get_number ();
14865 }
14866 else if (arg == NULL || *arg == NULL || ! **arg)
14867 tpnum = tracepoint_count;
14868 else
14869 tpnum = get_number (arg);
14870
14871 if (tpnum <= 0)
14872 {
14873 if (instring && *instring)
14874 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14875 instring);
14876 else
14877 printf_filtered (_("No previous tracepoint\n"));
14878 return NULL;
14879 }
14880
14881 ALL_TRACEPOINTS (t)
14882 if (t->number == tpnum)
14883 {
14884 return (struct tracepoint *) t;
14885 }
14886
14887 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14888 return NULL;
14889 }
14890
14891 void
14892 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14893 {
14894 if (b->thread != -1)
14895 fprintf_unfiltered (fp, " thread %d", b->thread);
14896
14897 if (b->task != 0)
14898 fprintf_unfiltered (fp, " task %d", b->task);
14899
14900 fprintf_unfiltered (fp, "\n");
14901 }
14902
14903 /* Save information on user settable breakpoints (watchpoints, etc) to
14904 a new script file named FILENAME. If FILTER is non-NULL, call it
14905 on each breakpoint and only include the ones for which it returns
14906 non-zero. */
14907
14908 static void
14909 save_breakpoints (const char *filename, int from_tty,
14910 int (*filter) (const struct breakpoint *))
14911 {
14912 struct breakpoint *tp;
14913 int any = 0;
14914 int extra_trace_bits = 0;
14915
14916 if (filename == 0 || *filename == 0)
14917 error (_("Argument required (file name in which to save)"));
14918
14919 /* See if we have anything to save. */
14920 ALL_BREAKPOINTS (tp)
14921 {
14922 /* Skip internal and momentary breakpoints. */
14923 if (!user_breakpoint_p (tp))
14924 continue;
14925
14926 /* If we have a filter, only save the breakpoints it accepts. */
14927 if (filter && !filter (tp))
14928 continue;
14929
14930 any = 1;
14931
14932 if (is_tracepoint (tp))
14933 {
14934 extra_trace_bits = 1;
14935
14936 /* We can stop searching. */
14937 break;
14938 }
14939 }
14940
14941 if (!any)
14942 {
14943 warning (_("Nothing to save."));
14944 return;
14945 }
14946
14947 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14948
14949 stdio_file fp;
14950
14951 if (!fp.open (expanded_filename.get (), "w"))
14952 error (_("Unable to open file '%s' for saving (%s)"),
14953 expanded_filename.get (), safe_strerror (errno));
14954
14955 if (extra_trace_bits)
14956 save_trace_state_variables (&fp);
14957
14958 ALL_BREAKPOINTS (tp)
14959 {
14960 /* Skip internal and momentary breakpoints. */
14961 if (!user_breakpoint_p (tp))
14962 continue;
14963
14964 /* If we have a filter, only save the breakpoints it accepts. */
14965 if (filter && !filter (tp))
14966 continue;
14967
14968 tp->ops->print_recreate (tp, &fp);
14969
14970 /* Note, we can't rely on tp->number for anything, as we can't
14971 assume the recreated breakpoint numbers will match. Use $bpnum
14972 instead. */
14973
14974 if (tp->cond_string)
14975 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14976
14977 if (tp->ignore_count)
14978 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14979
14980 if (tp->type != bp_dprintf && tp->commands)
14981 {
14982 fp.puts (" commands\n");
14983
14984 current_uiout->redirect (&fp);
14985 try
14986 {
14987 print_command_lines (current_uiout, tp->commands.get (), 2);
14988 }
14989 catch (const gdb_exception &ex)
14990 {
14991 current_uiout->redirect (NULL);
14992 throw;
14993 }
14994
14995 current_uiout->redirect (NULL);
14996 fp.puts (" end\n");
14997 }
14998
14999 if (tp->enable_state == bp_disabled)
15000 fp.puts ("disable $bpnum\n");
15001
15002 /* If this is a multi-location breakpoint, check if the locations
15003 should be individually disabled. Watchpoint locations are
15004 special, and not user visible. */
15005 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15006 {
15007 struct bp_location *loc;
15008 int n = 1;
15009
15010 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15011 if (!loc->enabled)
15012 fp.printf ("disable $bpnum.%d\n", n);
15013 }
15014 }
15015
15016 if (extra_trace_bits && *default_collect)
15017 fp.printf ("set default-collect %s\n", default_collect);
15018
15019 if (from_tty)
15020 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15021 }
15022
15023 /* The `save breakpoints' command. */
15024
15025 static void
15026 save_breakpoints_command (const char *args, int from_tty)
15027 {
15028 save_breakpoints (args, from_tty, NULL);
15029 }
15030
15031 /* The `save tracepoints' command. */
15032
15033 static void
15034 save_tracepoints_command (const char *args, int from_tty)
15035 {
15036 save_breakpoints (args, from_tty, is_tracepoint);
15037 }
15038
15039 /* Create a vector of all tracepoints. */
15040
15041 std::vector<breakpoint *>
15042 all_tracepoints (void)
15043 {
15044 std::vector<breakpoint *> tp_vec;
15045 struct breakpoint *tp;
15046
15047 ALL_TRACEPOINTS (tp)
15048 {
15049 tp_vec.push_back (tp);
15050 }
15051
15052 return tp_vec;
15053 }
15054
15055 \f
15056 /* This help string is used to consolidate all the help string for specifying
15057 locations used by several commands. */
15058
15059 #define LOCATION_HELP_STRING \
15060 "Linespecs are colon-separated lists of location parameters, such as\n\
15061 source filename, function name, label name, and line number.\n\
15062 Example: To specify the start of a label named \"the_top\" in the\n\
15063 function \"fact\" in the file \"factorial.c\", use\n\
15064 \"factorial.c:fact:the_top\".\n\
15065 \n\
15066 Address locations begin with \"*\" and specify an exact address in the\n\
15067 program. Example: To specify the fourth byte past the start function\n\
15068 \"main\", use \"*main + 4\".\n\
15069 \n\
15070 Explicit locations are similar to linespecs but use an option/argument\n\
15071 syntax to specify location parameters.\n\
15072 Example: To specify the start of the label named \"the_top\" in the\n\
15073 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15074 -function fact -label the_top\".\n\
15075 \n\
15076 By default, a specified function is matched against the program's\n\
15077 functions in all scopes. For C++, this means in all namespaces and\n\
15078 classes. For Ada, this means in all packages. E.g., in C++,\n\
15079 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15080 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15081 specified name as a complete fully-qualified name instead."
15082
15083 /* This help string is used for the break, hbreak, tbreak and thbreak
15084 commands. It is defined as a macro to prevent duplication.
15085 COMMAND should be a string constant containing the name of the
15086 command. */
15087
15088 #define BREAK_ARGS_HELP(command) \
15089 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15090 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15091 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15092 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15093 `-probe-dtrace' (for a DTrace probe).\n\
15094 LOCATION may be a linespec, address, or explicit location as described\n\
15095 below.\n\
15096 \n\
15097 With no LOCATION, uses current execution address of the selected\n\
15098 stack frame. This is useful for breaking on return to a stack frame.\n\
15099 \n\
15100 THREADNUM is the number from \"info threads\".\n\
15101 CONDITION is a boolean expression.\n\
15102 \n" LOCATION_HELP_STRING "\n\n\
15103 Multiple breakpoints at one place are permitted, and useful if their\n\
15104 conditions are different.\n\
15105 \n\
15106 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15107
15108 /* List of subcommands for "catch". */
15109 static struct cmd_list_element *catch_cmdlist;
15110
15111 /* List of subcommands for "tcatch". */
15112 static struct cmd_list_element *tcatch_cmdlist;
15113
15114 void
15115 add_catch_command (const char *name, const char *docstring,
15116 cmd_const_sfunc_ftype *sfunc,
15117 completer_ftype *completer,
15118 void *user_data_catch,
15119 void *user_data_tcatch)
15120 {
15121 struct cmd_list_element *command;
15122
15123 command = add_cmd (name, class_breakpoint, docstring,
15124 &catch_cmdlist);
15125 set_cmd_sfunc (command, sfunc);
15126 set_cmd_context (command, user_data_catch);
15127 set_cmd_completer (command, completer);
15128
15129 command = add_cmd (name, class_breakpoint, docstring,
15130 &tcatch_cmdlist);
15131 set_cmd_sfunc (command, sfunc);
15132 set_cmd_context (command, user_data_tcatch);
15133 set_cmd_completer (command, completer);
15134 }
15135
15136 static void
15137 save_command (const char *arg, int from_tty)
15138 {
15139 printf_unfiltered (_("\"save\" must be followed by "
15140 "the name of a save subcommand.\n"));
15141 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15142 }
15143
15144 struct breakpoint *
15145 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15146 void *data)
15147 {
15148 struct breakpoint *b, *b_tmp;
15149
15150 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15151 {
15152 if ((*callback) (b, data))
15153 return b;
15154 }
15155
15156 return NULL;
15157 }
15158
15159 /* Zero if any of the breakpoint's locations could be a location where
15160 functions have been inlined, nonzero otherwise. */
15161
15162 static int
15163 is_non_inline_function (struct breakpoint *b)
15164 {
15165 /* The shared library event breakpoint is set on the address of a
15166 non-inline function. */
15167 if (b->type == bp_shlib_event)
15168 return 1;
15169
15170 return 0;
15171 }
15172
15173 /* Nonzero if the specified PC cannot be a location where functions
15174 have been inlined. */
15175
15176 int
15177 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15178 const struct target_waitstatus *ws)
15179 {
15180 struct breakpoint *b;
15181 struct bp_location *bl;
15182
15183 ALL_BREAKPOINTS (b)
15184 {
15185 if (!is_non_inline_function (b))
15186 continue;
15187
15188 for (bl = b->loc; bl != NULL; bl = bl->next)
15189 {
15190 if (!bl->shlib_disabled
15191 && bpstat_check_location (bl, aspace, pc, ws))
15192 return 1;
15193 }
15194 }
15195
15196 return 0;
15197 }
15198
15199 /* Remove any references to OBJFILE which is going to be freed. */
15200
15201 void
15202 breakpoint_free_objfile (struct objfile *objfile)
15203 {
15204 struct bp_location **locp, *loc;
15205
15206 ALL_BP_LOCATIONS (loc, locp)
15207 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15208 loc->symtab = NULL;
15209 }
15210
15211 void
15212 initialize_breakpoint_ops (void)
15213 {
15214 static int initialized = 0;
15215
15216 struct breakpoint_ops *ops;
15217
15218 if (initialized)
15219 return;
15220 initialized = 1;
15221
15222 /* The breakpoint_ops structure to be inherit by all kinds of
15223 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15224 internal and momentary breakpoints, etc.). */
15225 ops = &bkpt_base_breakpoint_ops;
15226 *ops = base_breakpoint_ops;
15227 ops->re_set = bkpt_re_set;
15228 ops->insert_location = bkpt_insert_location;
15229 ops->remove_location = bkpt_remove_location;
15230 ops->breakpoint_hit = bkpt_breakpoint_hit;
15231 ops->create_sals_from_location = bkpt_create_sals_from_location;
15232 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15233 ops->decode_location = bkpt_decode_location;
15234
15235 /* The breakpoint_ops structure to be used in regular breakpoints. */
15236 ops = &bkpt_breakpoint_ops;
15237 *ops = bkpt_base_breakpoint_ops;
15238 ops->re_set = bkpt_re_set;
15239 ops->resources_needed = bkpt_resources_needed;
15240 ops->print_it = bkpt_print_it;
15241 ops->print_mention = bkpt_print_mention;
15242 ops->print_recreate = bkpt_print_recreate;
15243
15244 /* Ranged breakpoints. */
15245 ops = &ranged_breakpoint_ops;
15246 *ops = bkpt_breakpoint_ops;
15247 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15248 ops->resources_needed = resources_needed_ranged_breakpoint;
15249 ops->print_it = print_it_ranged_breakpoint;
15250 ops->print_one = print_one_ranged_breakpoint;
15251 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15252 ops->print_mention = print_mention_ranged_breakpoint;
15253 ops->print_recreate = print_recreate_ranged_breakpoint;
15254
15255 /* Internal breakpoints. */
15256 ops = &internal_breakpoint_ops;
15257 *ops = bkpt_base_breakpoint_ops;
15258 ops->re_set = internal_bkpt_re_set;
15259 ops->check_status = internal_bkpt_check_status;
15260 ops->print_it = internal_bkpt_print_it;
15261 ops->print_mention = internal_bkpt_print_mention;
15262
15263 /* Momentary breakpoints. */
15264 ops = &momentary_breakpoint_ops;
15265 *ops = bkpt_base_breakpoint_ops;
15266 ops->re_set = momentary_bkpt_re_set;
15267 ops->check_status = momentary_bkpt_check_status;
15268 ops->print_it = momentary_bkpt_print_it;
15269 ops->print_mention = momentary_bkpt_print_mention;
15270
15271 /* Probe breakpoints. */
15272 ops = &bkpt_probe_breakpoint_ops;
15273 *ops = bkpt_breakpoint_ops;
15274 ops->insert_location = bkpt_probe_insert_location;
15275 ops->remove_location = bkpt_probe_remove_location;
15276 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15277 ops->decode_location = bkpt_probe_decode_location;
15278
15279 /* Watchpoints. */
15280 ops = &watchpoint_breakpoint_ops;
15281 *ops = base_breakpoint_ops;
15282 ops->re_set = re_set_watchpoint;
15283 ops->insert_location = insert_watchpoint;
15284 ops->remove_location = remove_watchpoint;
15285 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15286 ops->check_status = check_status_watchpoint;
15287 ops->resources_needed = resources_needed_watchpoint;
15288 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15289 ops->print_it = print_it_watchpoint;
15290 ops->print_mention = print_mention_watchpoint;
15291 ops->print_recreate = print_recreate_watchpoint;
15292 ops->explains_signal = explains_signal_watchpoint;
15293
15294 /* Masked watchpoints. */
15295 ops = &masked_watchpoint_breakpoint_ops;
15296 *ops = watchpoint_breakpoint_ops;
15297 ops->insert_location = insert_masked_watchpoint;
15298 ops->remove_location = remove_masked_watchpoint;
15299 ops->resources_needed = resources_needed_masked_watchpoint;
15300 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15301 ops->print_it = print_it_masked_watchpoint;
15302 ops->print_one_detail = print_one_detail_masked_watchpoint;
15303 ops->print_mention = print_mention_masked_watchpoint;
15304 ops->print_recreate = print_recreate_masked_watchpoint;
15305
15306 /* Tracepoints. */
15307 ops = &tracepoint_breakpoint_ops;
15308 *ops = base_breakpoint_ops;
15309 ops->re_set = tracepoint_re_set;
15310 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15311 ops->print_one_detail = tracepoint_print_one_detail;
15312 ops->print_mention = tracepoint_print_mention;
15313 ops->print_recreate = tracepoint_print_recreate;
15314 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15315 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15316 ops->decode_location = tracepoint_decode_location;
15317
15318 /* Probe tracepoints. */
15319 ops = &tracepoint_probe_breakpoint_ops;
15320 *ops = tracepoint_breakpoint_ops;
15321 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15322 ops->decode_location = tracepoint_probe_decode_location;
15323
15324 /* Static tracepoints with marker (`-m'). */
15325 ops = &strace_marker_breakpoint_ops;
15326 *ops = tracepoint_breakpoint_ops;
15327 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15328 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15329 ops->decode_location = strace_marker_decode_location;
15330
15331 /* Fork catchpoints. */
15332 ops = &catch_fork_breakpoint_ops;
15333 *ops = base_breakpoint_ops;
15334 ops->insert_location = insert_catch_fork;
15335 ops->remove_location = remove_catch_fork;
15336 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15337 ops->print_it = print_it_catch_fork;
15338 ops->print_one = print_one_catch_fork;
15339 ops->print_mention = print_mention_catch_fork;
15340 ops->print_recreate = print_recreate_catch_fork;
15341
15342 /* Vfork catchpoints. */
15343 ops = &catch_vfork_breakpoint_ops;
15344 *ops = base_breakpoint_ops;
15345 ops->insert_location = insert_catch_vfork;
15346 ops->remove_location = remove_catch_vfork;
15347 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15348 ops->print_it = print_it_catch_vfork;
15349 ops->print_one = print_one_catch_vfork;
15350 ops->print_mention = print_mention_catch_vfork;
15351 ops->print_recreate = print_recreate_catch_vfork;
15352
15353 /* Exec catchpoints. */
15354 ops = &catch_exec_breakpoint_ops;
15355 *ops = base_breakpoint_ops;
15356 ops->insert_location = insert_catch_exec;
15357 ops->remove_location = remove_catch_exec;
15358 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15359 ops->print_it = print_it_catch_exec;
15360 ops->print_one = print_one_catch_exec;
15361 ops->print_mention = print_mention_catch_exec;
15362 ops->print_recreate = print_recreate_catch_exec;
15363
15364 /* Solib-related catchpoints. */
15365 ops = &catch_solib_breakpoint_ops;
15366 *ops = base_breakpoint_ops;
15367 ops->insert_location = insert_catch_solib;
15368 ops->remove_location = remove_catch_solib;
15369 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15370 ops->check_status = check_status_catch_solib;
15371 ops->print_it = print_it_catch_solib;
15372 ops->print_one = print_one_catch_solib;
15373 ops->print_mention = print_mention_catch_solib;
15374 ops->print_recreate = print_recreate_catch_solib;
15375
15376 ops = &dprintf_breakpoint_ops;
15377 *ops = bkpt_base_breakpoint_ops;
15378 ops->re_set = dprintf_re_set;
15379 ops->resources_needed = bkpt_resources_needed;
15380 ops->print_it = bkpt_print_it;
15381 ops->print_mention = bkpt_print_mention;
15382 ops->print_recreate = dprintf_print_recreate;
15383 ops->after_condition_true = dprintf_after_condition_true;
15384 ops->breakpoint_hit = dprintf_breakpoint_hit;
15385 }
15386
15387 /* Chain containing all defined "enable breakpoint" subcommands. */
15388
15389 static struct cmd_list_element *enablebreaklist = NULL;
15390
15391 /* See breakpoint.h. */
15392
15393 cmd_list_element *commands_cmd_element = nullptr;
15394
15395 void
15396 _initialize_breakpoint (void)
15397 {
15398 struct cmd_list_element *c;
15399
15400 initialize_breakpoint_ops ();
15401
15402 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15403 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15404 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15405
15406 breakpoint_chain = 0;
15407 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15408 before a breakpoint is set. */
15409 breakpoint_count = 0;
15410
15411 tracepoint_count = 0;
15412
15413 add_com ("ignore", class_breakpoint, ignore_command, _("\
15414 Set ignore-count of breakpoint number N to COUNT.\n\
15415 Usage is `ignore N COUNT'."));
15416
15417 commands_cmd_element = add_com ("commands", class_breakpoint,
15418 commands_command, _("\
15419 Set commands to be executed when the given breakpoints are hit.\n\
15420 Give a space-separated breakpoint list as argument after \"commands\".\n\
15421 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15422 (e.g. `5-7').\n\
15423 With no argument, the targeted breakpoint is the last one set.\n\
15424 The commands themselves follow starting on the next line.\n\
15425 Type a line containing \"end\" to indicate the end of them.\n\
15426 Give \"silent\" as the first line to make the breakpoint silent;\n\
15427 then no output is printed when it is hit, except what the commands print."));
15428
15429 c = add_com ("condition", class_breakpoint, condition_command, _("\
15430 Specify breakpoint number N to break only if COND is true.\n\
15431 Usage is `condition N COND', where N is an integer and COND is an\n\
15432 expression to be evaluated whenever breakpoint N is reached."));
15433 set_cmd_completer (c, condition_completer);
15434
15435 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15436 Set a temporary breakpoint.\n\
15437 Like \"break\" except the breakpoint is only temporary,\n\
15438 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15439 by using \"enable delete\" on the breakpoint number.\n\
15440 \n"
15441 BREAK_ARGS_HELP ("tbreak")));
15442 set_cmd_completer (c, location_completer);
15443
15444 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15445 Set a hardware assisted breakpoint.\n\
15446 Like \"break\" except the breakpoint requires hardware support,\n\
15447 some target hardware may not have this support.\n\
15448 \n"
15449 BREAK_ARGS_HELP ("hbreak")));
15450 set_cmd_completer (c, location_completer);
15451
15452 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15453 Set a temporary hardware assisted breakpoint.\n\
15454 Like \"hbreak\" except the breakpoint is only temporary,\n\
15455 so it will be deleted when hit.\n\
15456 \n"
15457 BREAK_ARGS_HELP ("thbreak")));
15458 set_cmd_completer (c, location_completer);
15459
15460 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15461 Enable some breakpoints.\n\
15462 Give breakpoint numbers (separated by spaces) as arguments.\n\
15463 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15464 This is used to cancel the effect of the \"disable\" command.\n\
15465 With a subcommand you can enable temporarily."),
15466 &enablelist, "enable ", 1, &cmdlist);
15467
15468 add_com_alias ("en", "enable", class_breakpoint, 1);
15469
15470 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15471 Enable some breakpoints.\n\
15472 Give breakpoint numbers (separated by spaces) as arguments.\n\
15473 This is used to cancel the effect of the \"disable\" command.\n\
15474 May be abbreviated to simply \"enable\"."),
15475 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15476
15477 add_cmd ("once", no_class, enable_once_command, _("\
15478 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15479 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15480 &enablebreaklist);
15481
15482 add_cmd ("delete", no_class, enable_delete_command, _("\
15483 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15484 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15485 &enablebreaklist);
15486
15487 add_cmd ("count", no_class, enable_count_command, _("\
15488 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15489 If a breakpoint is hit while enabled in this fashion,\n\
15490 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15491 &enablebreaklist);
15492
15493 add_cmd ("delete", no_class, enable_delete_command, _("\
15494 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15495 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15496 &enablelist);
15497
15498 add_cmd ("once", no_class, enable_once_command, _("\
15499 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15500 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15501 &enablelist);
15502
15503 add_cmd ("count", no_class, enable_count_command, _("\
15504 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15505 If a breakpoint is hit while enabled in this fashion,\n\
15506 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15507 &enablelist);
15508
15509 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15510 Disable some breakpoints.\n\
15511 Arguments are breakpoint numbers with spaces in between.\n\
15512 To disable all breakpoints, give no argument.\n\
15513 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15514 &disablelist, "disable ", 1, &cmdlist);
15515 add_com_alias ("dis", "disable", class_breakpoint, 1);
15516 add_com_alias ("disa", "disable", class_breakpoint, 1);
15517
15518 add_cmd ("breakpoints", class_alias, disable_command, _("\
15519 Disable some breakpoints.\n\
15520 Arguments are breakpoint numbers with spaces in between.\n\
15521 To disable all breakpoints, give no argument.\n\
15522 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15523 This command may be abbreviated \"disable\"."),
15524 &disablelist);
15525
15526 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15527 Delete some breakpoints or auto-display expressions.\n\
15528 Arguments are breakpoint numbers with spaces in between.\n\
15529 To delete all breakpoints, give no argument.\n\
15530 \n\
15531 Also a prefix command for deletion of other GDB objects.\n\
15532 The \"unset\" command is also an alias for \"delete\"."),
15533 &deletelist, "delete ", 1, &cmdlist);
15534 add_com_alias ("d", "delete", class_breakpoint, 1);
15535 add_com_alias ("del", "delete", class_breakpoint, 1);
15536
15537 add_cmd ("breakpoints", class_alias, delete_command, _("\
15538 Delete some breakpoints or auto-display expressions.\n\
15539 Arguments are breakpoint numbers with spaces in between.\n\
15540 To delete all breakpoints, give no argument.\n\
15541 This command may be abbreviated \"delete\"."),
15542 &deletelist);
15543
15544 add_com ("clear", class_breakpoint, clear_command, _("\
15545 Clear breakpoint at specified location.\n\
15546 Argument may be a linespec, explicit, or address location as described below.\n\
15547 \n\
15548 With no argument, clears all breakpoints in the line that the selected frame\n\
15549 is executing in.\n"
15550 "\n" LOCATION_HELP_STRING "\n\n\
15551 See also the \"delete\" command which clears breakpoints by number."));
15552 add_com_alias ("cl", "clear", class_breakpoint, 1);
15553
15554 c = add_com ("break", class_breakpoint, break_command, _("\
15555 Set breakpoint at specified location.\n"
15556 BREAK_ARGS_HELP ("break")));
15557 set_cmd_completer (c, location_completer);
15558
15559 add_com_alias ("b", "break", class_run, 1);
15560 add_com_alias ("br", "break", class_run, 1);
15561 add_com_alias ("bre", "break", class_run, 1);
15562 add_com_alias ("brea", "break", class_run, 1);
15563
15564 if (dbx_commands)
15565 {
15566 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15567 Break in function/address or break at a line in the current file."),
15568 &stoplist, "stop ", 1, &cmdlist);
15569 add_cmd ("in", class_breakpoint, stopin_command,
15570 _("Break in function or address."), &stoplist);
15571 add_cmd ("at", class_breakpoint, stopat_command,
15572 _("Break at a line in the current file."), &stoplist);
15573 add_com ("status", class_info, info_breakpoints_command, _("\
15574 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15575 The \"Type\" column indicates one of:\n\
15576 \tbreakpoint - normal breakpoint\n\
15577 \twatchpoint - watchpoint\n\
15578 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15579 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15580 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15581 address and file/line number respectively.\n\
15582 \n\
15583 Convenience variable \"$_\" and default examine address for \"x\"\n\
15584 are set to the address of the last breakpoint listed unless the command\n\
15585 is prefixed with \"server \".\n\n\
15586 Convenience variable \"$bpnum\" contains the number of the last\n\
15587 breakpoint set."));
15588 }
15589
15590 add_info ("breakpoints", info_breakpoints_command, _("\
15591 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15592 The \"Type\" column indicates one of:\n\
15593 \tbreakpoint - normal breakpoint\n\
15594 \twatchpoint - watchpoint\n\
15595 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15596 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15597 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15598 address and file/line number respectively.\n\
15599 \n\
15600 Convenience variable \"$_\" and default examine address for \"x\"\n\
15601 are set to the address of the last breakpoint listed unless the command\n\
15602 is prefixed with \"server \".\n\n\
15603 Convenience variable \"$bpnum\" contains the number of the last\n\
15604 breakpoint set."));
15605
15606 add_info_alias ("b", "breakpoints", 1);
15607
15608 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15609 Status of all breakpoints, or breakpoint number NUMBER.\n\
15610 The \"Type\" column indicates one of:\n\
15611 \tbreakpoint - normal breakpoint\n\
15612 \twatchpoint - watchpoint\n\
15613 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15614 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15615 \tuntil - internal breakpoint used by the \"until\" command\n\
15616 \tfinish - internal breakpoint used by the \"finish\" command\n\
15617 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15618 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15619 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15620 address and file/line number respectively.\n\
15621 \n\
15622 Convenience variable \"$_\" and default examine address for \"x\"\n\
15623 are set to the address of the last breakpoint listed unless the command\n\
15624 is prefixed with \"server \".\n\n\
15625 Convenience variable \"$bpnum\" contains the number of the last\n\
15626 breakpoint set."),
15627 &maintenanceinfolist);
15628
15629 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15630 Set catchpoints to catch events."),
15631 &catch_cmdlist, "catch ",
15632 0/*allow-unknown*/, &cmdlist);
15633
15634 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15635 Set temporary catchpoints to catch events."),
15636 &tcatch_cmdlist, "tcatch ",
15637 0/*allow-unknown*/, &cmdlist);
15638
15639 add_catch_command ("fork", _("Catch calls to fork."),
15640 catch_fork_command_1,
15641 NULL,
15642 (void *) (uintptr_t) catch_fork_permanent,
15643 (void *) (uintptr_t) catch_fork_temporary);
15644 add_catch_command ("vfork", _("Catch calls to vfork."),
15645 catch_fork_command_1,
15646 NULL,
15647 (void *) (uintptr_t) catch_vfork_permanent,
15648 (void *) (uintptr_t) catch_vfork_temporary);
15649 add_catch_command ("exec", _("Catch calls to exec."),
15650 catch_exec_command_1,
15651 NULL,
15652 CATCH_PERMANENT,
15653 CATCH_TEMPORARY);
15654 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15655 Usage: catch load [REGEX]\n\
15656 If REGEX is given, only stop for libraries matching the regular expression."),
15657 catch_load_command_1,
15658 NULL,
15659 CATCH_PERMANENT,
15660 CATCH_TEMPORARY);
15661 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15662 Usage: catch unload [REGEX]\n\
15663 If REGEX is given, only stop for libraries matching the regular expression."),
15664 catch_unload_command_1,
15665 NULL,
15666 CATCH_PERMANENT,
15667 CATCH_TEMPORARY);
15668
15669 c = add_com ("watch", class_breakpoint, watch_command, _("\
15670 Set a watchpoint for an expression.\n\
15671 Usage: watch [-l|-location] EXPRESSION\n\
15672 A watchpoint stops execution of your program whenever the value of\n\
15673 an expression changes.\n\
15674 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15675 the memory to which it refers."));
15676 set_cmd_completer (c, expression_completer);
15677
15678 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15679 Set a read watchpoint for an expression.\n\
15680 Usage: rwatch [-l|-location] EXPRESSION\n\
15681 A watchpoint stops execution of your program whenever the value of\n\
15682 an expression is read.\n\
15683 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15684 the memory to which it refers."));
15685 set_cmd_completer (c, expression_completer);
15686
15687 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15688 Set a watchpoint for an expression.\n\
15689 Usage: awatch [-l|-location] EXPRESSION\n\
15690 A watchpoint stops execution of your program whenever the value of\n\
15691 an expression is either read or written.\n\
15692 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15693 the memory to which it refers."));
15694 set_cmd_completer (c, expression_completer);
15695
15696 add_info ("watchpoints", info_watchpoints_command, _("\
15697 Status of specified watchpoints (all watchpoints if no argument)."));
15698
15699 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15700 respond to changes - contrary to the description. */
15701 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15702 &can_use_hw_watchpoints, _("\
15703 Set debugger's willingness to use watchpoint hardware."), _("\
15704 Show debugger's willingness to use watchpoint hardware."), _("\
15705 If zero, gdb will not use hardware for new watchpoints, even if\n\
15706 such is available. (However, any hardware watchpoints that were\n\
15707 created before setting this to nonzero, will continue to use watchpoint\n\
15708 hardware.)"),
15709 NULL,
15710 show_can_use_hw_watchpoints,
15711 &setlist, &showlist);
15712
15713 can_use_hw_watchpoints = 1;
15714
15715 /* Tracepoint manipulation commands. */
15716
15717 c = add_com ("trace", class_breakpoint, trace_command, _("\
15718 Set a tracepoint at specified location.\n\
15719 \n"
15720 BREAK_ARGS_HELP ("trace") "\n\
15721 Do \"help tracepoints\" for info on other tracepoint commands."));
15722 set_cmd_completer (c, location_completer);
15723
15724 add_com_alias ("tp", "trace", class_alias, 0);
15725 add_com_alias ("tr", "trace", class_alias, 1);
15726 add_com_alias ("tra", "trace", class_alias, 1);
15727 add_com_alias ("trac", "trace", class_alias, 1);
15728
15729 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15730 Set a fast tracepoint at specified location.\n\
15731 \n"
15732 BREAK_ARGS_HELP ("ftrace") "\n\
15733 Do \"help tracepoints\" for info on other tracepoint commands."));
15734 set_cmd_completer (c, location_completer);
15735
15736 c = add_com ("strace", class_breakpoint, strace_command, _("\
15737 Set a static tracepoint at location or marker.\n\
15738 \n\
15739 strace [LOCATION] [if CONDITION]\n\
15740 LOCATION may be a linespec, explicit, or address location (described below) \n\
15741 or -m MARKER_ID.\n\n\
15742 If a marker id is specified, probe the marker with that name. With\n\
15743 no LOCATION, uses current execution address of the selected stack frame.\n\
15744 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15745 This collects arbitrary user data passed in the probe point call to the\n\
15746 tracing library. You can inspect it when analyzing the trace buffer,\n\
15747 by printing the $_sdata variable like any other convenience variable.\n\
15748 \n\
15749 CONDITION is a boolean expression.\n\
15750 \n" LOCATION_HELP_STRING "\n\n\
15751 Multiple tracepoints at one place are permitted, and useful if their\n\
15752 conditions are different.\n\
15753 \n\
15754 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15755 Do \"help tracepoints\" for info on other tracepoint commands."));
15756 set_cmd_completer (c, location_completer);
15757
15758 add_info ("tracepoints", info_tracepoints_command, _("\
15759 Status of specified tracepoints (all tracepoints if no argument).\n\
15760 Convenience variable \"$tpnum\" contains the number of the\n\
15761 last tracepoint set."));
15762
15763 add_info_alias ("tp", "tracepoints", 1);
15764
15765 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15766 Delete specified tracepoints.\n\
15767 Arguments are tracepoint numbers, separated by spaces.\n\
15768 No argument means delete all tracepoints."),
15769 &deletelist);
15770 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15771
15772 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15773 Disable specified tracepoints.\n\
15774 Arguments are tracepoint numbers, separated by spaces.\n\
15775 No argument means disable all tracepoints."),
15776 &disablelist);
15777 deprecate_cmd (c, "disable");
15778
15779 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15780 Enable specified tracepoints.\n\
15781 Arguments are tracepoint numbers, separated by spaces.\n\
15782 No argument means enable all tracepoints."),
15783 &enablelist);
15784 deprecate_cmd (c, "enable");
15785
15786 add_com ("passcount", class_trace, trace_pass_command, _("\
15787 Set the passcount for a tracepoint.\n\
15788 The trace will end when the tracepoint has been passed 'count' times.\n\
15789 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15790 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15791
15792 add_prefix_cmd ("save", class_breakpoint, save_command,
15793 _("Save breakpoint definitions as a script."),
15794 &save_cmdlist, "save ",
15795 0/*allow-unknown*/, &cmdlist);
15796
15797 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15798 Save current breakpoint definitions as a script.\n\
15799 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15800 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15801 session to restore them."),
15802 &save_cmdlist);
15803 set_cmd_completer (c, filename_completer);
15804
15805 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15806 Save current tracepoint definitions as a script.\n\
15807 Use the 'source' command in another debug session to restore them."),
15808 &save_cmdlist);
15809 set_cmd_completer (c, filename_completer);
15810
15811 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15812 deprecate_cmd (c, "save tracepoints");
15813
15814 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15815 Breakpoint specific settings\n\
15816 Configure various breakpoint-specific variables such as\n\
15817 pending breakpoint behavior"),
15818 &breakpoint_set_cmdlist, "set breakpoint ",
15819 0/*allow-unknown*/, &setlist);
15820 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15821 Breakpoint specific settings\n\
15822 Configure various breakpoint-specific variables such as\n\
15823 pending breakpoint behavior"),
15824 &breakpoint_show_cmdlist, "show breakpoint ",
15825 0/*allow-unknown*/, &showlist);
15826
15827 add_setshow_auto_boolean_cmd ("pending", no_class,
15828 &pending_break_support, _("\
15829 Set debugger's behavior regarding pending breakpoints."), _("\
15830 Show debugger's behavior regarding pending breakpoints."), _("\
15831 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15832 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15833 an error. If auto, an unrecognized breakpoint location results in a\n\
15834 user-query to see if a pending breakpoint should be created."),
15835 NULL,
15836 show_pending_break_support,
15837 &breakpoint_set_cmdlist,
15838 &breakpoint_show_cmdlist);
15839
15840 pending_break_support = AUTO_BOOLEAN_AUTO;
15841
15842 add_setshow_boolean_cmd ("auto-hw", no_class,
15843 &automatic_hardware_breakpoints, _("\
15844 Set automatic usage of hardware breakpoints."), _("\
15845 Show automatic usage of hardware breakpoints."), _("\
15846 If set, the debugger will automatically use hardware breakpoints for\n\
15847 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15848 a warning will be emitted for such breakpoints."),
15849 NULL,
15850 show_automatic_hardware_breakpoints,
15851 &breakpoint_set_cmdlist,
15852 &breakpoint_show_cmdlist);
15853
15854 add_setshow_boolean_cmd ("always-inserted", class_support,
15855 &always_inserted_mode, _("\
15856 Set mode for inserting breakpoints."), _("\
15857 Show mode for inserting breakpoints."), _("\
15858 When this mode is on, breakpoints are inserted immediately as soon as\n\
15859 they're created, kept inserted even when execution stops, and removed\n\
15860 only when the user deletes them. When this mode is off (the default),\n\
15861 breakpoints are inserted only when execution continues, and removed\n\
15862 when execution stops."),
15863 NULL,
15864 &show_always_inserted_mode,
15865 &breakpoint_set_cmdlist,
15866 &breakpoint_show_cmdlist);
15867
15868 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15869 condition_evaluation_enums,
15870 &condition_evaluation_mode_1, _("\
15871 Set mode of breakpoint condition evaluation."), _("\
15872 Show mode of breakpoint condition evaluation."), _("\
15873 When this is set to \"host\", breakpoint conditions will be\n\
15874 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15875 breakpoint conditions will be downloaded to the target (if the target\n\
15876 supports such feature) and conditions will be evaluated on the target's side.\n\
15877 If this is set to \"auto\" (default), this will be automatically set to\n\
15878 \"target\" if it supports condition evaluation, otherwise it will\n\
15879 be set to \"gdb\""),
15880 &set_condition_evaluation_mode,
15881 &show_condition_evaluation_mode,
15882 &breakpoint_set_cmdlist,
15883 &breakpoint_show_cmdlist);
15884
15885 add_com ("break-range", class_breakpoint, break_range_command, _("\
15886 Set a breakpoint for an address range.\n\
15887 break-range START-LOCATION, END-LOCATION\n\
15888 where START-LOCATION and END-LOCATION can be one of the following:\n\
15889 LINENUM, for that line in the current file,\n\
15890 FILE:LINENUM, for that line in that file,\n\
15891 +OFFSET, for that number of lines after the current line\n\
15892 or the start of the range\n\
15893 FUNCTION, for the first line in that function,\n\
15894 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15895 *ADDRESS, for the instruction at that address.\n\
15896 \n\
15897 The breakpoint will stop execution of the inferior whenever it executes\n\
15898 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15899 range (including START-LOCATION and END-LOCATION)."));
15900
15901 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15902 Set a dynamic printf at specified location.\n\
15903 dprintf location,format string,arg1,arg2,...\n\
15904 location may be a linespec, explicit, or address location.\n"
15905 "\n" LOCATION_HELP_STRING));
15906 set_cmd_completer (c, location_completer);
15907
15908 add_setshow_enum_cmd ("dprintf-style", class_support,
15909 dprintf_style_enums, &dprintf_style, _("\
15910 Set the style of usage for dynamic printf."), _("\
15911 Show the style of usage for dynamic printf."), _("\
15912 This setting chooses how GDB will do a dynamic printf.\n\
15913 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15914 console, as with the \"printf\" command.\n\
15915 If the value is \"call\", the print is done by calling a function in your\n\
15916 program; by default printf(), but you can choose a different function or\n\
15917 output stream by setting dprintf-function and dprintf-channel."),
15918 update_dprintf_commands, NULL,
15919 &setlist, &showlist);
15920
15921 dprintf_function = xstrdup ("printf");
15922 add_setshow_string_cmd ("dprintf-function", class_support,
15923 &dprintf_function, _("\
15924 Set the function to use for dynamic printf"), _("\
15925 Show the function to use for dynamic printf"), NULL,
15926 update_dprintf_commands, NULL,
15927 &setlist, &showlist);
15928
15929 dprintf_channel = xstrdup ("");
15930 add_setshow_string_cmd ("dprintf-channel", class_support,
15931 &dprintf_channel, _("\
15932 Set the channel to use for dynamic printf"), _("\
15933 Show the channel to use for dynamic printf"), NULL,
15934 update_dprintf_commands, NULL,
15935 &setlist, &showlist);
15936
15937 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15938 &disconnected_dprintf, _("\
15939 Set whether dprintf continues after GDB disconnects."), _("\
15940 Show whether dprintf continues after GDB disconnects."), _("\
15941 Use this to let dprintf commands continue to hit and produce output\n\
15942 even if GDB disconnects or detaches from the target."),
15943 NULL,
15944 NULL,
15945 &setlist, &showlist);
15946
15947 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15948 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
15949 (target agent only) This is useful for formatted output in user-defined commands."));
15950
15951 automatic_hardware_breakpoints = 1;
15952
15953 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15954 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15955 }
This page took 0.466443 seconds and 3 git commands to generate.