"catch catch/throw/rethrow", breakpoint -> catchpoint
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "gdbsupport/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "gdbsupport/array-view.h"
86 #include "gdbsupport/gdb_optional.h"
87
88 /* Prototypes for local functions. */
89
90 static void map_breakpoint_numbers (const char *,
91 gdb::function_view<void (breakpoint *)>);
92
93 static void breakpoint_re_set_default (struct breakpoint *);
94
95 static void
96 create_sals_from_location_default (const struct event_location *location,
97 struct linespec_result *canonical,
98 enum bptype type_wanted);
99
100 static void create_breakpoints_sal_default (struct gdbarch *,
101 struct linespec_result *,
102 gdb::unique_xmalloc_ptr<char>,
103 gdb::unique_xmalloc_ptr<char>,
104 enum bptype,
105 enum bpdisp, int, int,
106 int,
107 const struct breakpoint_ops *,
108 int, int, int, unsigned);
109
110 static std::vector<symtab_and_line> decode_location_default
111 (struct breakpoint *b, const struct event_location *location,
112 struct program_space *search_pspace);
113
114 static int can_use_hardware_watchpoint
115 (const std::vector<value_ref_ptr> &vals);
116
117 static void mention (struct breakpoint *);
118
119 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
120 enum bptype,
121 const struct breakpoint_ops *);
122 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
123 const struct symtab_and_line *);
124
125 /* This function is used in gdbtk sources and thus can not be made
126 static. */
127 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
128 struct symtab_and_line,
129 enum bptype,
130 const struct breakpoint_ops *);
131
132 static struct breakpoint *
133 momentary_breakpoint_from_master (struct breakpoint *orig,
134 enum bptype type,
135 const struct breakpoint_ops *ops,
136 int loc_enabled);
137
138 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
139
140 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
141 CORE_ADDR bpaddr,
142 enum bptype bptype);
143
144 static void describe_other_breakpoints (struct gdbarch *,
145 struct program_space *, CORE_ADDR,
146 struct obj_section *, int);
147
148 static int watchpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static int is_hardware_watchpoint (const struct breakpoint *bpt);
221
222 static void insert_breakpoint_locations (void);
223
224 static void trace_pass_command (const char *, int);
225
226 static void set_tracepoint_count (int num);
227
228 static int is_masked_watchpoint (const struct breakpoint *b);
229
230 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
231
232 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
233 otherwise. */
234
235 static int strace_marker_p (struct breakpoint *b);
236
237 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
238 that are implemented on top of software or hardware breakpoints
239 (user breakpoints, internal and momentary breakpoints, etc.). */
240 static struct breakpoint_ops bkpt_base_breakpoint_ops;
241
242 /* Internal breakpoints class type. */
243 static struct breakpoint_ops internal_breakpoint_ops;
244
245 /* Momentary breakpoints class type. */
246 static struct breakpoint_ops momentary_breakpoint_ops;
247
248 /* The breakpoint_ops structure to be used in regular user created
249 breakpoints. */
250 struct breakpoint_ops bkpt_breakpoint_ops;
251
252 /* Breakpoints set on probes. */
253 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
254
255 /* Dynamic printf class type. */
256 struct breakpoint_ops dprintf_breakpoint_ops;
257
258 /* The style in which to perform a dynamic printf. This is a user
259 option because different output options have different tradeoffs;
260 if GDB does the printing, there is better error handling if there
261 is a problem with any of the arguments, but using an inferior
262 function lets you have special-purpose printers and sending of
263 output to the same place as compiled-in print functions. */
264
265 static const char dprintf_style_gdb[] = "gdb";
266 static const char dprintf_style_call[] = "call";
267 static const char dprintf_style_agent[] = "agent";
268 static const char *const dprintf_style_enums[] = {
269 dprintf_style_gdb,
270 dprintf_style_call,
271 dprintf_style_agent,
272 NULL
273 };
274 static const char *dprintf_style = dprintf_style_gdb;
275
276 /* The function to use for dynamic printf if the preferred style is to
277 call into the inferior. The value is simply a string that is
278 copied into the command, so it can be anything that GDB can
279 evaluate to a callable address, not necessarily a function name. */
280
281 static char *dprintf_function;
282
283 /* The channel to use for dynamic printf if the preferred style is to
284 call into the inferior; if a nonempty string, it will be passed to
285 the call as the first argument, with the format string as the
286 second. As with the dprintf function, this can be anything that
287 GDB knows how to evaluate, so in addition to common choices like
288 "stderr", this could be an app-specific expression like
289 "mystreams[curlogger]". */
290
291 static char *dprintf_channel;
292
293 /* True if dprintf commands should continue to operate even if GDB
294 has disconnected. */
295 static int disconnected_dprintf = 1;
296
297 struct command_line *
298 breakpoint_commands (struct breakpoint *b)
299 {
300 return b->commands ? b->commands.get () : NULL;
301 }
302
303 /* Flag indicating that a command has proceeded the inferior past the
304 current breakpoint. */
305
306 static int breakpoint_proceeded;
307
308 const char *
309 bpdisp_text (enum bpdisp disp)
310 {
311 /* NOTE: the following values are a part of MI protocol and
312 represent values of 'disp' field returned when inferior stops at
313 a breakpoint. */
314 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
315
316 return bpdisps[(int) disp];
317 }
318
319 /* Prototypes for exported functions. */
320 /* If FALSE, gdb will not use hardware support for watchpoints, even
321 if such is available. */
322 static int can_use_hw_watchpoints;
323
324 static void
325 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c,
327 const char *value)
328 {
329 fprintf_filtered (file,
330 _("Debugger's willingness to use "
331 "watchpoint hardware is %s.\n"),
332 value);
333 }
334
335 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
336 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
337 for unrecognized breakpoint locations.
338 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
339 static enum auto_boolean pending_break_support;
340 static void
341 show_pending_break_support (struct ui_file *file, int from_tty,
342 struct cmd_list_element *c,
343 const char *value)
344 {
345 fprintf_filtered (file,
346 _("Debugger's behavior regarding "
347 "pending breakpoints is %s.\n"),
348 value);
349 }
350
351 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
352 set with "break" but falling in read-only memory.
353 If 0, gdb will warn about such breakpoints, but won't automatically
354 use hardware breakpoints. */
355 static int automatic_hardware_breakpoints;
356 static void
357 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c,
359 const char *value)
360 {
361 fprintf_filtered (file,
362 _("Automatic usage of hardware breakpoints is %s.\n"),
363 value);
364 }
365
366 /* If on, GDB keeps breakpoints inserted even if the inferior is
367 stopped, and immediately inserts any new breakpoints as soon as
368 they're created. If off (default), GDB keeps breakpoints off of
369 the target as long as possible. That is, it delays inserting
370 breakpoints until the next resume, and removes them again when the
371 target fully stops. This is a bit safer in case GDB crashes while
372 processing user input. */
373 static int always_inserted_mode = 0;
374
375 static void
376 show_always_inserted_mode (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
380 value);
381 }
382
383 /* See breakpoint.h. */
384
385 int
386 breakpoints_should_be_inserted_now (void)
387 {
388 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
389 {
390 /* If breakpoints are global, they should be inserted even if no
391 thread under gdb's control is running, or even if there are
392 no threads under GDB's control yet. */
393 return 1;
394 }
395 else if (target_has_execution)
396 {
397 if (always_inserted_mode)
398 {
399 /* The user wants breakpoints inserted even if all threads
400 are stopped. */
401 return 1;
402 }
403
404 if (threads_are_executing ())
405 return 1;
406
407 /* Don't remove breakpoints yet if, even though all threads are
408 stopped, we still have events to process. */
409 for (thread_info *tp : all_non_exited_threads ())
410 if (tp->resumed
411 && tp->suspend.waitstatus_pending_p)
412 return 1;
413 }
414 return 0;
415 }
416
417 static const char condition_evaluation_both[] = "host or target";
418
419 /* Modes for breakpoint condition evaluation. */
420 static const char condition_evaluation_auto[] = "auto";
421 static const char condition_evaluation_host[] = "host";
422 static const char condition_evaluation_target[] = "target";
423 static const char *const condition_evaluation_enums[] = {
424 condition_evaluation_auto,
425 condition_evaluation_host,
426 condition_evaluation_target,
427 NULL
428 };
429
430 /* Global that holds the current mode for breakpoint condition evaluation. */
431 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
432
433 /* Global that we use to display information to the user (gets its value from
434 condition_evaluation_mode_1. */
435 static const char *condition_evaluation_mode = condition_evaluation_auto;
436
437 /* Translate a condition evaluation mode MODE into either "host"
438 or "target". This is used mostly to translate from "auto" to the
439 real setting that is being used. It returns the translated
440 evaluation mode. */
441
442 static const char *
443 translate_condition_evaluation_mode (const char *mode)
444 {
445 if (mode == condition_evaluation_auto)
446 {
447 if (target_supports_evaluation_of_breakpoint_conditions ())
448 return condition_evaluation_target;
449 else
450 return condition_evaluation_host;
451 }
452 else
453 return mode;
454 }
455
456 /* Discovers what condition_evaluation_auto translates to. */
457
458 static const char *
459 breakpoint_condition_evaluation_mode (void)
460 {
461 return translate_condition_evaluation_mode (condition_evaluation_mode);
462 }
463
464 /* Return true if GDB should evaluate breakpoint conditions or false
465 otherwise. */
466
467 static int
468 gdb_evaluates_breakpoint_condition_p (void)
469 {
470 const char *mode = breakpoint_condition_evaluation_mode ();
471
472 return (mode == condition_evaluation_host);
473 }
474
475 /* Are we executing breakpoint commands? */
476 static int executing_breakpoint_commands;
477
478 /* Are overlay event breakpoints enabled? */
479 static int overlay_events_enabled;
480
481 /* See description in breakpoint.h. */
482 int target_exact_watchpoints = 0;
483
484 /* Walk the following statement or block through all breakpoints.
485 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
486 current breakpoint. */
487
488 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
489
490 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
491 for (B = breakpoint_chain; \
492 B ? (TMP=B->next, 1): 0; \
493 B = TMP)
494
495 /* Similar iterator for the low-level breakpoints. SAFE variant is
496 not provided so update_global_location_list must not be called
497 while executing the block of ALL_BP_LOCATIONS. */
498
499 #define ALL_BP_LOCATIONS(B,BP_TMP) \
500 for (BP_TMP = bp_locations; \
501 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
502 BP_TMP++)
503
504 /* Iterates through locations with address ADDRESS for the currently selected
505 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
506 to where the loop should start from.
507 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
508 appropriate location to start with. */
509
510 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
511 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
512 BP_LOCP_TMP = BP_LOCP_START; \
513 BP_LOCP_START \
514 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
515 && (*BP_LOCP_TMP)->address == ADDRESS); \
516 BP_LOCP_TMP++)
517
518 /* Iterator for tracepoints only. */
519
520 #define ALL_TRACEPOINTS(B) \
521 for (B = breakpoint_chain; B; B = B->next) \
522 if (is_tracepoint (B))
523
524 /* Chains of all breakpoints defined. */
525
526 struct breakpoint *breakpoint_chain;
527
528 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
529
530 static struct bp_location **bp_locations;
531
532 /* Number of elements of BP_LOCATIONS. */
533
534 static unsigned bp_locations_count;
535
536 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
537 ADDRESS for the current elements of BP_LOCATIONS which get a valid
538 result from bp_location_has_shadow. You can use it for roughly
539 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
540 an address you need to read. */
541
542 static CORE_ADDR bp_locations_placed_address_before_address_max;
543
544 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
545 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
546 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
547 You can use it for roughly limiting the subrange of BP_LOCATIONS to
548 scan for shadow bytes for an address you need to read. */
549
550 static CORE_ADDR bp_locations_shadow_len_after_address_max;
551
552 /* The locations that no longer correspond to any breakpoint, unlinked
553 from the bp_locations array, but for which a hit may still be
554 reported by a target. */
555 static std::vector<bp_location *> moribund_locations;
556
557 /* Number of last breakpoint made. */
558
559 static int breakpoint_count;
560
561 /* The value of `breakpoint_count' before the last command that
562 created breakpoints. If the last (break-like) command created more
563 than one breakpoint, then the difference between BREAKPOINT_COUNT
564 and PREV_BREAKPOINT_COUNT is more than one. */
565 static int prev_breakpoint_count;
566
567 /* Number of last tracepoint made. */
568
569 static int tracepoint_count;
570
571 static struct cmd_list_element *breakpoint_set_cmdlist;
572 static struct cmd_list_element *breakpoint_show_cmdlist;
573 struct cmd_list_element *save_cmdlist;
574
575 /* See declaration at breakpoint.h. */
576
577 struct breakpoint *
578 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
579 void *user_data)
580 {
581 struct breakpoint *b = NULL;
582
583 ALL_BREAKPOINTS (b)
584 {
585 if (func (b, user_data) != 0)
586 break;
587 }
588
589 return b;
590 }
591
592 /* Return whether a breakpoint is an active enabled breakpoint. */
593 static int
594 breakpoint_enabled (struct breakpoint *b)
595 {
596 return (b->enable_state == bp_enabled);
597 }
598
599 /* Set breakpoint count to NUM. */
600
601 static void
602 set_breakpoint_count (int num)
603 {
604 prev_breakpoint_count = breakpoint_count;
605 breakpoint_count = num;
606 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
607 }
608
609 /* Used by `start_rbreak_breakpoints' below, to record the current
610 breakpoint count before "rbreak" creates any breakpoint. */
611 static int rbreak_start_breakpoint_count;
612
613 /* Called at the start an "rbreak" command to record the first
614 breakpoint made. */
615
616 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
617 {
618 rbreak_start_breakpoint_count = breakpoint_count;
619 }
620
621 /* Called at the end of an "rbreak" command to record the last
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
625 {
626 prev_breakpoint_count = rbreak_start_breakpoint_count;
627 }
628
629 /* Used in run_command to zero the hit count when a new run starts. */
630
631 void
632 clear_breakpoint_hit_counts (void)
633 {
634 struct breakpoint *b;
635
636 ALL_BREAKPOINTS (b)
637 b->hit_count = 0;
638 }
639
640 \f
641 /* Return the breakpoint with the specified number, or NULL
642 if the number does not refer to an existing breakpoint. */
643
644 struct breakpoint *
645 get_breakpoint (int num)
646 {
647 struct breakpoint *b;
648
649 ALL_BREAKPOINTS (b)
650 if (b->number == num)
651 return b;
652
653 return NULL;
654 }
655
656 \f
657
658 /* Mark locations as "conditions have changed" in case the target supports
659 evaluating conditions on its side. */
660
661 static void
662 mark_breakpoint_modified (struct breakpoint *b)
663 {
664 struct bp_location *loc;
665
666 /* This is only meaningful if the target is
667 evaluating conditions and if the user has
668 opted for condition evaluation on the target's
669 side. */
670 if (gdb_evaluates_breakpoint_condition_p ()
671 || !target_supports_evaluation_of_breakpoint_conditions ())
672 return;
673
674 if (!is_breakpoint (b))
675 return;
676
677 for (loc = b->loc; loc; loc = loc->next)
678 loc->condition_changed = condition_modified;
679 }
680
681 /* Mark location as "conditions have changed" in case the target supports
682 evaluating conditions on its side. */
683
684 static void
685 mark_breakpoint_location_modified (struct bp_location *loc)
686 {
687 /* This is only meaningful if the target is
688 evaluating conditions and if the user has
689 opted for condition evaluation on the target's
690 side. */
691 if (gdb_evaluates_breakpoint_condition_p ()
692 || !target_supports_evaluation_of_breakpoint_conditions ())
693
694 return;
695
696 if (!is_breakpoint (loc->owner))
697 return;
698
699 loc->condition_changed = condition_modified;
700 }
701
702 /* Sets the condition-evaluation mode using the static global
703 condition_evaluation_mode. */
704
705 static void
706 set_condition_evaluation_mode (const char *args, int from_tty,
707 struct cmd_list_element *c)
708 {
709 const char *old_mode, *new_mode;
710
711 if ((condition_evaluation_mode_1 == condition_evaluation_target)
712 && !target_supports_evaluation_of_breakpoint_conditions ())
713 {
714 condition_evaluation_mode_1 = condition_evaluation_mode;
715 warning (_("Target does not support breakpoint condition evaluation.\n"
716 "Using host evaluation mode instead."));
717 return;
718 }
719
720 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
721 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
722
723 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
724 settings was "auto". */
725 condition_evaluation_mode = condition_evaluation_mode_1;
726
727 /* Only update the mode if the user picked a different one. */
728 if (new_mode != old_mode)
729 {
730 struct bp_location *loc, **loc_tmp;
731 /* If the user switched to a different evaluation mode, we
732 need to synch the changes with the target as follows:
733
734 "host" -> "target": Send all (valid) conditions to the target.
735 "target" -> "host": Remove all the conditions from the target.
736 */
737
738 if (new_mode == condition_evaluation_target)
739 {
740 /* Mark everything modified and synch conditions with the
741 target. */
742 ALL_BP_LOCATIONS (loc, loc_tmp)
743 mark_breakpoint_location_modified (loc);
744 }
745 else
746 {
747 /* Manually mark non-duplicate locations to synch conditions
748 with the target. We do this to remove all the conditions the
749 target knows about. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 if (is_breakpoint (loc->owner) && loc->inserted)
752 loc->needs_update = 1;
753 }
754
755 /* Do the update. */
756 update_global_location_list (UGLL_MAY_INSERT);
757 }
758
759 return;
760 }
761
762 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
763 what "auto" is translating to. */
764
765 static void
766 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 if (condition_evaluation_mode == condition_evaluation_auto)
770 fprintf_filtered (file,
771 _("Breakpoint condition evaluation "
772 "mode is %s (currently %s).\n"),
773 value,
774 breakpoint_condition_evaluation_mode ());
775 else
776 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
777 value);
778 }
779
780 /* A comparison function for bp_location AP and BP that is used by
781 bsearch. This comparison function only cares about addresses, unlike
782 the more general bp_locations_compare function. */
783
784 static int
785 bp_locations_compare_addrs (const void *ap, const void *bp)
786 {
787 const struct bp_location *a = *(const struct bp_location **) ap;
788 const struct bp_location *b = *(const struct bp_location **) bp;
789
790 if (a->address == b->address)
791 return 0;
792 else
793 return ((a->address > b->address) - (a->address < b->address));
794 }
795
796 /* Helper function to skip all bp_locations with addresses
797 less than ADDRESS. It returns the first bp_location that
798 is greater than or equal to ADDRESS. If none is found, just
799 return NULL. */
800
801 static struct bp_location **
802 get_first_locp_gte_addr (CORE_ADDR address)
803 {
804 struct bp_location dummy_loc;
805 struct bp_location *dummy_locp = &dummy_loc;
806 struct bp_location **locp_found = NULL;
807
808 /* Initialize the dummy location's address field. */
809 dummy_loc.address = address;
810
811 /* Find a close match to the first location at ADDRESS. */
812 locp_found = ((struct bp_location **)
813 bsearch (&dummy_locp, bp_locations, bp_locations_count,
814 sizeof (struct bp_location **),
815 bp_locations_compare_addrs));
816
817 /* Nothing was found, nothing left to do. */
818 if (locp_found == NULL)
819 return NULL;
820
821 /* We may have found a location that is at ADDRESS but is not the first in the
822 location's list. Go backwards (if possible) and locate the first one. */
823 while ((locp_found - 1) >= bp_locations
824 && (*(locp_found - 1))->address == address)
825 locp_found--;
826
827 return locp_found;
828 }
829
830 void
831 set_breakpoint_condition (struct breakpoint *b, const char *exp,
832 int from_tty)
833 {
834 xfree (b->cond_string);
835 b->cond_string = NULL;
836
837 if (is_watchpoint (b))
838 {
839 struct watchpoint *w = (struct watchpoint *) b;
840
841 w->cond_exp.reset ();
842 }
843 else
844 {
845 struct bp_location *loc;
846
847 for (loc = b->loc; loc; loc = loc->next)
848 {
849 loc->cond.reset ();
850
851 /* No need to free the condition agent expression
852 bytecode (if we have one). We will handle this
853 when we go through update_global_location_list. */
854 }
855 }
856
857 if (*exp == 0)
858 {
859 if (from_tty)
860 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
861 }
862 else
863 {
864 const char *arg = exp;
865
866 /* I don't know if it matters whether this is the string the user
867 typed in or the decompiled expression. */
868 b->cond_string = xstrdup (arg);
869 b->condition_not_parsed = 0;
870
871 if (is_watchpoint (b))
872 {
873 struct watchpoint *w = (struct watchpoint *) b;
874
875 innermost_block_tracker tracker;
876 arg = exp;
877 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
878 if (*arg)
879 error (_("Junk at end of expression"));
880 w->cond_exp_valid_block = tracker.block ();
881 }
882 else
883 {
884 struct bp_location *loc;
885
886 for (loc = b->loc; loc; loc = loc->next)
887 {
888 arg = exp;
889 loc->cond =
890 parse_exp_1 (&arg, loc->address,
891 block_for_pc (loc->address), 0);
892 if (*arg)
893 error (_("Junk at end of expression"));
894 }
895 }
896 }
897 mark_breakpoint_modified (b);
898
899 gdb::observers::breakpoint_modified.notify (b);
900 }
901
902 /* Completion for the "condition" command. */
903
904 static void
905 condition_completer (struct cmd_list_element *cmd,
906 completion_tracker &tracker,
907 const char *text, const char *word)
908 {
909 const char *space;
910
911 text = skip_spaces (text);
912 space = skip_to_space (text);
913 if (*space == '\0')
914 {
915 int len;
916 struct breakpoint *b;
917
918 if (text[0] == '$')
919 {
920 /* We don't support completion of history indices. */
921 if (!isdigit (text[1]))
922 complete_internalvar (tracker, &text[1]);
923 return;
924 }
925
926 /* We're completing the breakpoint number. */
927 len = strlen (text);
928
929 ALL_BREAKPOINTS (b)
930 {
931 char number[50];
932
933 xsnprintf (number, sizeof (number), "%d", b->number);
934
935 if (strncmp (number, text, len) == 0)
936 tracker.add_completion (make_unique_xstrdup (number));
937 }
938
939 return;
940 }
941
942 /* We're completing the expression part. */
943 text = skip_spaces (space);
944 expression_completer (cmd, tracker, text, word);
945 }
946
947 /* condition N EXP -- set break condition of breakpoint N to EXP. */
948
949 static void
950 condition_command (const char *arg, int from_tty)
951 {
952 struct breakpoint *b;
953 const char *p;
954 int bnum;
955
956 if (arg == 0)
957 error_no_arg (_("breakpoint number"));
958
959 p = arg;
960 bnum = get_number (&p);
961 if (bnum == 0)
962 error (_("Bad breakpoint argument: '%s'"), arg);
963
964 ALL_BREAKPOINTS (b)
965 if (b->number == bnum)
966 {
967 /* Check if this breakpoint has a "stop" method implemented in an
968 extension language. This method and conditions entered into GDB
969 from the CLI are mutually exclusive. */
970 const struct extension_language_defn *extlang
971 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
972
973 if (extlang != NULL)
974 {
975 error (_("Only one stop condition allowed. There is currently"
976 " a %s stop condition defined for this breakpoint."),
977 ext_lang_capitalized_name (extlang));
978 }
979 set_breakpoint_condition (b, p, from_tty);
980
981 if (is_breakpoint (b))
982 update_global_location_list (UGLL_MAY_INSERT);
983
984 return;
985 }
986
987 error (_("No breakpoint number %d."), bnum);
988 }
989
990 /* Check that COMMAND do not contain commands that are suitable
991 only for tracepoints and not suitable for ordinary breakpoints.
992 Throw if any such commands is found. */
993
994 static void
995 check_no_tracepoint_commands (struct command_line *commands)
996 {
997 struct command_line *c;
998
999 for (c = commands; c; c = c->next)
1000 {
1001 if (c->control_type == while_stepping_control)
1002 error (_("The 'while-stepping' command can "
1003 "only be used for tracepoints"));
1004
1005 check_no_tracepoint_commands (c->body_list_0.get ());
1006 check_no_tracepoint_commands (c->body_list_1.get ());
1007
1008 /* Not that command parsing removes leading whitespace and comment
1009 lines and also empty lines. So, we only need to check for
1010 command directly. */
1011 if (strstr (c->line, "collect ") == c->line)
1012 error (_("The 'collect' command can only be used for tracepoints"));
1013
1014 if (strstr (c->line, "teval ") == c->line)
1015 error (_("The 'teval' command can only be used for tracepoints"));
1016 }
1017 }
1018
1019 struct longjmp_breakpoint : public breakpoint
1020 {
1021 ~longjmp_breakpoint () override;
1022 };
1023
1024 /* Encapsulate tests for different types of tracepoints. */
1025
1026 static bool
1027 is_tracepoint_type (bptype type)
1028 {
1029 return (type == bp_tracepoint
1030 || type == bp_fast_tracepoint
1031 || type == bp_static_tracepoint);
1032 }
1033
1034 static bool
1035 is_longjmp_type (bptype type)
1036 {
1037 return type == bp_longjmp || type == bp_exception;
1038 }
1039
1040 int
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 \f
1497
1498 /* Return true if BPT is either a software breakpoint or a hardware
1499 breakpoint. */
1500
1501 int
1502 is_breakpoint (const struct breakpoint *bpt)
1503 {
1504 return (bpt->type == bp_breakpoint
1505 || bpt->type == bp_hardware_breakpoint
1506 || bpt->type == bp_dprintf);
1507 }
1508
1509 /* Return true if BPT is of any hardware watchpoint kind. */
1510
1511 static int
1512 is_hardware_watchpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_hardware_watchpoint
1515 || bpt->type == bp_read_watchpoint
1516 || bpt->type == bp_access_watchpoint);
1517 }
1518
1519 /* Return true if BPT is of any watchpoint kind, hardware or
1520 software. */
1521
1522 int
1523 is_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (is_hardware_watchpoint (bpt)
1526 || bpt->type == bp_watchpoint);
1527 }
1528
1529 /* Returns true if the current thread and its running state are safe
1530 to evaluate or update watchpoint B. Watchpoints on local
1531 expressions need to be evaluated in the context of the thread that
1532 was current when the watchpoint was created, and, that thread needs
1533 to be stopped to be able to select the correct frame context.
1534 Watchpoints on global expressions can be evaluated on any thread,
1535 and in any state. It is presently left to the target allowing
1536 memory accesses when threads are running. */
1537
1538 static int
1539 watchpoint_in_thread_scope (struct watchpoint *b)
1540 {
1541 return (b->pspace == current_program_space
1542 && (b->watchpoint_thread == null_ptid
1543 || (inferior_ptid == b->watchpoint_thread
1544 && !inferior_thread ()->executing)));
1545 }
1546
1547 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1548 associated bp_watchpoint_scope breakpoint. */
1549
1550 static void
1551 watchpoint_del_at_next_stop (struct watchpoint *w)
1552 {
1553 if (w->related_breakpoint != w)
1554 {
1555 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1556 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1557 w->related_breakpoint->disposition = disp_del_at_next_stop;
1558 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1559 w->related_breakpoint = w;
1560 }
1561 w->disposition = disp_del_at_next_stop;
1562 }
1563
1564 /* Extract a bitfield value from value VAL using the bit parameters contained in
1565 watchpoint W. */
1566
1567 static struct value *
1568 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1569 {
1570 struct value *bit_val;
1571
1572 if (val == NULL)
1573 return NULL;
1574
1575 bit_val = allocate_value (value_type (val));
1576
1577 unpack_value_bitfield (bit_val,
1578 w->val_bitpos,
1579 w->val_bitsize,
1580 value_contents_for_printing (val),
1581 value_offset (val),
1582 val);
1583
1584 return bit_val;
1585 }
1586
1587 /* Allocate a dummy location and add it to B, which must be a software
1588 watchpoint. This is required because even if a software watchpoint
1589 is not watching any memory, bpstat_stop_status requires a location
1590 to be able to report stops. */
1591
1592 static void
1593 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1594 struct program_space *pspace)
1595 {
1596 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1597
1598 b->loc = allocate_bp_location (b);
1599 b->loc->pspace = pspace;
1600 b->loc->address = -1;
1601 b->loc->length = -1;
1602 }
1603
1604 /* Returns true if B is a software watchpoint that is not watching any
1605 memory (e.g., "watch $pc"). */
1606
1607 static int
1608 is_no_memory_software_watchpoint (struct breakpoint *b)
1609 {
1610 return (b->type == bp_watchpoint
1611 && b->loc != NULL
1612 && b->loc->next == NULL
1613 && b->loc->address == -1
1614 && b->loc->length == -1);
1615 }
1616
1617 /* Assuming that B is a watchpoint:
1618 - Reparse watchpoint expression, if REPARSE is non-zero
1619 - Evaluate expression and store the result in B->val
1620 - Evaluate the condition if there is one, and store the result
1621 in b->loc->cond.
1622 - Update the list of values that must be watched in B->loc.
1623
1624 If the watchpoint disposition is disp_del_at_next_stop, then do
1625 nothing. If this is local watchpoint that is out of scope, delete
1626 it.
1627
1628 Even with `set breakpoint always-inserted on' the watchpoints are
1629 removed + inserted on each stop here. Normal breakpoints must
1630 never be removed because they might be missed by a running thread
1631 when debugging in non-stop mode. On the other hand, hardware
1632 watchpoints (is_hardware_watchpoint; processed here) are specific
1633 to each LWP since they are stored in each LWP's hardware debug
1634 registers. Therefore, such LWP must be stopped first in order to
1635 be able to modify its hardware watchpoints.
1636
1637 Hardware watchpoints must be reset exactly once after being
1638 presented to the user. It cannot be done sooner, because it would
1639 reset the data used to present the watchpoint hit to the user. And
1640 it must not be done later because it could display the same single
1641 watchpoint hit during multiple GDB stops. Note that the latter is
1642 relevant only to the hardware watchpoint types bp_read_watchpoint
1643 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1644 not user-visible - its hit is suppressed if the memory content has
1645 not changed.
1646
1647 The following constraints influence the location where we can reset
1648 hardware watchpoints:
1649
1650 * target_stopped_by_watchpoint and target_stopped_data_address are
1651 called several times when GDB stops.
1652
1653 [linux]
1654 * Multiple hardware watchpoints can be hit at the same time,
1655 causing GDB to stop. GDB only presents one hardware watchpoint
1656 hit at a time as the reason for stopping, and all the other hits
1657 are presented later, one after the other, each time the user
1658 requests the execution to be resumed. Execution is not resumed
1659 for the threads still having pending hit event stored in
1660 LWP_INFO->STATUS. While the watchpoint is already removed from
1661 the inferior on the first stop the thread hit event is kept being
1662 reported from its cached value by linux_nat_stopped_data_address
1663 until the real thread resume happens after the watchpoint gets
1664 presented and thus its LWP_INFO->STATUS gets reset.
1665
1666 Therefore the hardware watchpoint hit can get safely reset on the
1667 watchpoint removal from inferior. */
1668
1669 static void
1670 update_watchpoint (struct watchpoint *b, int reparse)
1671 {
1672 int within_current_scope;
1673 struct frame_id saved_frame_id;
1674 int frame_saved;
1675
1676 /* If this is a local watchpoint, we only want to check if the
1677 watchpoint frame is in scope if the current thread is the thread
1678 that was used to create the watchpoint. */
1679 if (!watchpoint_in_thread_scope (b))
1680 return;
1681
1682 if (b->disposition == disp_del_at_next_stop)
1683 return;
1684
1685 frame_saved = 0;
1686
1687 /* Determine if the watchpoint is within scope. */
1688 if (b->exp_valid_block == NULL)
1689 within_current_scope = 1;
1690 else
1691 {
1692 struct frame_info *fi = get_current_frame ();
1693 struct gdbarch *frame_arch = get_frame_arch (fi);
1694 CORE_ADDR frame_pc = get_frame_pc (fi);
1695
1696 /* If we're at a point where the stack has been destroyed
1697 (e.g. in a function epilogue), unwinding may not work
1698 properly. Do not attempt to recreate locations at this
1699 point. See similar comments in watchpoint_check. */
1700 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1701 return;
1702
1703 /* Save the current frame's ID so we can restore it after
1704 evaluating the watchpoint expression on its own frame. */
1705 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1706 took a frame parameter, so that we didn't have to change the
1707 selected frame. */
1708 frame_saved = 1;
1709 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1710
1711 fi = frame_find_by_id (b->watchpoint_frame);
1712 within_current_scope = (fi != NULL);
1713 if (within_current_scope)
1714 select_frame (fi);
1715 }
1716
1717 /* We don't free locations. They are stored in the bp_location array
1718 and update_global_location_list will eventually delete them and
1719 remove breakpoints if needed. */
1720 b->loc = NULL;
1721
1722 if (within_current_scope && reparse)
1723 {
1724 const char *s;
1725
1726 b->exp.reset ();
1727 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1728 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1729 /* If the meaning of expression itself changed, the old value is
1730 no longer relevant. We don't want to report a watchpoint hit
1731 to the user when the old value and the new value may actually
1732 be completely different objects. */
1733 b->val = NULL;
1734 b->val_valid = 0;
1735
1736 /* Note that unlike with breakpoints, the watchpoint's condition
1737 expression is stored in the breakpoint object, not in the
1738 locations (re)created below. */
1739 if (b->cond_string != NULL)
1740 {
1741 b->cond_exp.reset ();
1742
1743 s = b->cond_string;
1744 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1745 }
1746 }
1747
1748 /* If we failed to parse the expression, for example because
1749 it refers to a global variable in a not-yet-loaded shared library,
1750 don't try to insert watchpoint. We don't automatically delete
1751 such watchpoint, though, since failure to parse expression
1752 is different from out-of-scope watchpoint. */
1753 if (!target_has_execution)
1754 {
1755 /* Without execution, memory can't change. No use to try and
1756 set watchpoint locations. The watchpoint will be reset when
1757 the target gains execution, through breakpoint_re_set. */
1758 if (!can_use_hw_watchpoints)
1759 {
1760 if (b->ops->works_in_software_mode (b))
1761 b->type = bp_watchpoint;
1762 else
1763 error (_("Can't set read/access watchpoint when "
1764 "hardware watchpoints are disabled."));
1765 }
1766 }
1767 else if (within_current_scope && b->exp)
1768 {
1769 int pc = 0;
1770 std::vector<value_ref_ptr> val_chain;
1771 struct value *v, *result;
1772 struct program_space *frame_pspace;
1773
1774 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1775
1776 /* Avoid setting b->val if it's already set. The meaning of
1777 b->val is 'the last value' user saw, and we should update
1778 it only if we reported that last value to user. As it
1779 happens, the code that reports it updates b->val directly.
1780 We don't keep track of the memory value for masked
1781 watchpoints. */
1782 if (!b->val_valid && !is_masked_watchpoint (b))
1783 {
1784 if (b->val_bitsize != 0)
1785 v = extract_bitfield_from_watchpoint_value (b, v);
1786 b->val = release_value (v);
1787 b->val_valid = 1;
1788 }
1789
1790 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1791
1792 /* Look at each value on the value chain. */
1793 gdb_assert (!val_chain.empty ());
1794 for (const value_ref_ptr &iter : val_chain)
1795 {
1796 v = iter.get ();
1797
1798 /* If it's a memory location, and GDB actually needed
1799 its contents to evaluate the expression, then we
1800 must watch it. If the first value returned is
1801 still lazy, that means an error occurred reading it;
1802 watch it anyway in case it becomes readable. */
1803 if (VALUE_LVAL (v) == lval_memory
1804 && (v == val_chain[0] || ! value_lazy (v)))
1805 {
1806 struct type *vtype = check_typedef (value_type (v));
1807
1808 /* We only watch structs and arrays if user asked
1809 for it explicitly, never if they just happen to
1810 appear in the middle of some value chain. */
1811 if (v == result
1812 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1813 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1814 {
1815 CORE_ADDR addr;
1816 enum target_hw_bp_type type;
1817 struct bp_location *loc, **tmp;
1818 int bitpos = 0, bitsize = 0;
1819
1820 if (value_bitsize (v) != 0)
1821 {
1822 /* Extract the bit parameters out from the bitfield
1823 sub-expression. */
1824 bitpos = value_bitpos (v);
1825 bitsize = value_bitsize (v);
1826 }
1827 else if (v == result && b->val_bitsize != 0)
1828 {
1829 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1830 lvalue whose bit parameters are saved in the fields
1831 VAL_BITPOS and VAL_BITSIZE. */
1832 bitpos = b->val_bitpos;
1833 bitsize = b->val_bitsize;
1834 }
1835
1836 addr = value_address (v);
1837 if (bitsize != 0)
1838 {
1839 /* Skip the bytes that don't contain the bitfield. */
1840 addr += bitpos / 8;
1841 }
1842
1843 type = hw_write;
1844 if (b->type == bp_read_watchpoint)
1845 type = hw_read;
1846 else if (b->type == bp_access_watchpoint)
1847 type = hw_access;
1848
1849 loc = allocate_bp_location (b);
1850 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1851 ;
1852 *tmp = loc;
1853 loc->gdbarch = get_type_arch (value_type (v));
1854
1855 loc->pspace = frame_pspace;
1856 loc->address = address_significant (loc->gdbarch, addr);
1857
1858 if (bitsize != 0)
1859 {
1860 /* Just cover the bytes that make up the bitfield. */
1861 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1862 }
1863 else
1864 loc->length = TYPE_LENGTH (value_type (v));
1865
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (b);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->ops->works_in_software_mode (b);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->type = type;
1939 }
1940 }
1941 else if (!b->ops->works_in_software_mode (b))
1942 {
1943 if (!can_use_hw_watchpoints)
1944 error (_("Can't set read/access watchpoint when "
1945 "hardware watchpoints are disabled."));
1946 else
1947 error (_("Expression cannot be implemented with "
1948 "read/access watchpoint."));
1949 }
1950 else
1951 b->type = bp_watchpoint;
1952
1953 loc_type = (b->type == bp_watchpoint? bp_loc_other
1954 : bp_loc_hardware_watchpoint);
1955 for (bl = b->loc; bl; bl = bl->next)
1956 bl->loc_type = loc_type;
1957 }
1958
1959 /* If a software watchpoint is not watching any memory, then the
1960 above left it without any location set up. But,
1961 bpstat_stop_status requires a location to be able to report
1962 stops, so make sure there's at least a dummy one. */
1963 if (b->type == bp_watchpoint && b->loc == NULL)
1964 software_watchpoint_add_no_memory_location (b, frame_pspace);
1965 }
1966 else if (!within_current_scope)
1967 {
1968 printf_filtered (_("\
1969 Watchpoint %d deleted because the program has left the block\n\
1970 in which its expression is valid.\n"),
1971 b->number);
1972 watchpoint_del_at_next_stop (b);
1973 }
1974
1975 /* Restore the selected frame. */
1976 if (frame_saved)
1977 select_frame (frame_find_by_id (saved_frame_id));
1978 }
1979
1980
1981 /* Returns 1 iff breakpoint location should be
1982 inserted in the inferior. We don't differentiate the type of BL's owner
1983 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1984 breakpoint_ops is not defined, because in insert_bp_location,
1985 tracepoint's insert_location will not be called. */
1986 static int
1987 should_be_inserted (struct bp_location *bl)
1988 {
1989 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1990 return 0;
1991
1992 if (bl->owner->disposition == disp_del_at_next_stop)
1993 return 0;
1994
1995 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1996 return 0;
1997
1998 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1999 return 0;
2000
2001 /* This is set for example, when we're attached to the parent of a
2002 vfork, and have detached from the child. The child is running
2003 free, and we expect it to do an exec or exit, at which point the
2004 OS makes the parent schedulable again (and the target reports
2005 that the vfork is done). Until the child is done with the shared
2006 memory region, do not insert breakpoints in the parent, otherwise
2007 the child could still trip on the parent's breakpoints. Since
2008 the parent is blocked anyway, it won't miss any breakpoint. */
2009 if (bl->pspace->breakpoints_not_allowed)
2010 return 0;
2011
2012 /* Don't insert a breakpoint if we're trying to step past its
2013 location, except if the breakpoint is a single-step breakpoint,
2014 and the breakpoint's thread is the thread which is stepping past
2015 a breakpoint. */
2016 if ((bl->loc_type == bp_loc_software_breakpoint
2017 || bl->loc_type == bp_loc_hardware_breakpoint)
2018 && stepping_past_instruction_at (bl->pspace->aspace,
2019 bl->address)
2020 /* The single-step breakpoint may be inserted at the location
2021 we're trying to step if the instruction branches to itself.
2022 However, the instruction won't be executed at all and it may
2023 break the semantics of the instruction, for example, the
2024 instruction is a conditional branch or updates some flags.
2025 We can't fix it unless GDB is able to emulate the instruction
2026 or switch to displaced stepping. */
2027 && !(bl->owner->type == bp_single_step
2028 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2029 {
2030 if (debug_infrun)
2031 {
2032 fprintf_unfiltered (gdb_stdlog,
2033 "infrun: skipping breakpoint: "
2034 "stepping past insn at: %s\n",
2035 paddress (bl->gdbarch, bl->address));
2036 }
2037 return 0;
2038 }
2039
2040 /* Don't insert watchpoints if we're trying to step past the
2041 instruction that triggered one. */
2042 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2043 && stepping_past_nonsteppable_watchpoint ())
2044 {
2045 if (debug_infrun)
2046 {
2047 fprintf_unfiltered (gdb_stdlog,
2048 "infrun: stepping past non-steppable watchpoint. "
2049 "skipping watchpoint at %s:%d\n",
2050 paddress (bl->gdbarch, bl->address),
2051 bl->length);
2052 }
2053 return 0;
2054 }
2055
2056 return 1;
2057 }
2058
2059 /* Same as should_be_inserted but does the check assuming
2060 that the location is not duplicated. */
2061
2062 static int
2063 unduplicated_should_be_inserted (struct bp_location *bl)
2064 {
2065 int result;
2066 const int save_duplicate = bl->duplicate;
2067
2068 bl->duplicate = 0;
2069 result = should_be_inserted (bl);
2070 bl->duplicate = save_duplicate;
2071 return result;
2072 }
2073
2074 /* Parses a conditional described by an expression COND into an
2075 agent expression bytecode suitable for evaluation
2076 by the bytecode interpreter. Return NULL if there was
2077 any error during parsing. */
2078
2079 static agent_expr_up
2080 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2081 {
2082 if (cond == NULL)
2083 return NULL;
2084
2085 agent_expr_up aexpr;
2086
2087 /* We don't want to stop processing, so catch any errors
2088 that may show up. */
2089 try
2090 {
2091 aexpr = gen_eval_for_expr (scope, cond);
2092 }
2093
2094 catch (const gdb_exception_error &ex)
2095 {
2096 /* If we got here, it means the condition could not be parsed to a valid
2097 bytecode expression and thus can't be evaluated on the target's side.
2098 It's no use iterating through the conditions. */
2099 }
2100
2101 /* We have a valid agent expression. */
2102 return aexpr;
2103 }
2104
2105 /* Based on location BL, create a list of breakpoint conditions to be
2106 passed on to the target. If we have duplicated locations with different
2107 conditions, we will add such conditions to the list. The idea is that the
2108 target will evaluate the list of conditions and will only notify GDB when
2109 one of them is true. */
2110
2111 static void
2112 build_target_condition_list (struct bp_location *bl)
2113 {
2114 struct bp_location **locp = NULL, **loc2p;
2115 int null_condition_or_parse_error = 0;
2116 int modified = bl->needs_update;
2117 struct bp_location *loc;
2118
2119 /* Release conditions left over from a previous insert. */
2120 bl->target_info.conditions.clear ();
2121
2122 /* This is only meaningful if the target is
2123 evaluating conditions and if the user has
2124 opted for condition evaluation on the target's
2125 side. */
2126 if (gdb_evaluates_breakpoint_condition_p ()
2127 || !target_supports_evaluation_of_breakpoint_conditions ())
2128 return;
2129
2130 /* Do a first pass to check for locations with no assigned
2131 conditions or conditions that fail to parse to a valid agent expression
2132 bytecode. If any of these happen, then it's no use to send conditions
2133 to the target since this location will always trigger and generate a
2134 response back to GDB. */
2135 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2136 {
2137 loc = (*loc2p);
2138 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2139 {
2140 if (modified)
2141 {
2142 /* Re-parse the conditions since something changed. In that
2143 case we already freed the condition bytecodes (see
2144 force_breakpoint_reinsertion). We just
2145 need to parse the condition to bytecodes again. */
2146 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2147 loc->cond.get ());
2148 }
2149
2150 /* If we have a NULL bytecode expression, it means something
2151 went wrong or we have a null condition expression. */
2152 if (!loc->cond_bytecode)
2153 {
2154 null_condition_or_parse_error = 1;
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* If any of these happened, it means we will have to evaluate the conditions
2161 for the location's address on gdb's side. It is no use keeping bytecodes
2162 for all the other duplicate locations, thus we free all of them here.
2163
2164 This is so we have a finer control over which locations' conditions are
2165 being evaluated by GDB or the remote stub. */
2166 if (null_condition_or_parse_error)
2167 {
2168 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2169 {
2170 loc = (*loc2p);
2171 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2172 {
2173 /* Only go as far as the first NULL bytecode is
2174 located. */
2175 if (!loc->cond_bytecode)
2176 return;
2177
2178 loc->cond_bytecode.reset ();
2179 }
2180 }
2181 }
2182
2183 /* No NULL conditions or failed bytecode generation. Build a condition list
2184 for this location's address. */
2185 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2186 {
2187 loc = (*loc2p);
2188 if (loc->cond
2189 && is_breakpoint (loc->owner)
2190 && loc->pspace->num == bl->pspace->num
2191 && loc->owner->enable_state == bp_enabled
2192 && loc->enabled)
2193 {
2194 /* Add the condition to the vector. This will be used later
2195 to send the conditions to the target. */
2196 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2197 }
2198 }
2199
2200 return;
2201 }
2202
2203 /* Parses a command described by string CMD into an agent expression
2204 bytecode suitable for evaluation by the bytecode interpreter.
2205 Return NULL if there was any error during parsing. */
2206
2207 static agent_expr_up
2208 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2209 {
2210 const char *cmdrest;
2211 const char *format_start, *format_end;
2212 struct gdbarch *gdbarch = get_current_arch ();
2213
2214 if (cmd == NULL)
2215 return NULL;
2216
2217 cmdrest = cmd;
2218
2219 if (*cmdrest == ',')
2220 ++cmdrest;
2221 cmdrest = skip_spaces (cmdrest);
2222
2223 if (*cmdrest++ != '"')
2224 error (_("No format string following the location"));
2225
2226 format_start = cmdrest;
2227
2228 format_pieces fpieces (&cmdrest);
2229
2230 format_end = cmdrest;
2231
2232 if (*cmdrest++ != '"')
2233 error (_("Bad format string, non-terminated '\"'."));
2234
2235 cmdrest = skip_spaces (cmdrest);
2236
2237 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2238 error (_("Invalid argument syntax"));
2239
2240 if (*cmdrest == ',')
2241 cmdrest++;
2242 cmdrest = skip_spaces (cmdrest);
2243
2244 /* For each argument, make an expression. */
2245
2246 std::vector<struct expression *> argvec;
2247 while (*cmdrest != '\0')
2248 {
2249 const char *cmd1;
2250
2251 cmd1 = cmdrest;
2252 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2253 argvec.push_back (expr.release ());
2254 cmdrest = cmd1;
2255 if (*cmdrest == ',')
2256 ++cmdrest;
2257 }
2258
2259 agent_expr_up aexpr;
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 try
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 argvec.size (), argvec.data ());
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 /* If we got here, it means the command could not be parsed to a valid
2272 bytecode expression and thus can't be evaluated on the target's side.
2273 It's no use iterating through the other commands. */
2274 }
2275
2276 /* We have a valid agent expression, return it. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint commands to be
2281 passed on to the target. If we have duplicated locations with
2282 different commands, we will add any such to the list. */
2283
2284 static void
2285 build_target_command_list (struct bp_location *bl)
2286 {
2287 struct bp_location **locp = NULL, **loc2p;
2288 int null_command_or_parse_error = 0;
2289 int modified = bl->needs_update;
2290 struct bp_location *loc;
2291
2292 /* Clear commands left over from a previous insert. */
2293 bl->target_info.tcommands.clear ();
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* For now, limit to agent-style dprintf breakpoints. */
2299 if (dprintf_style != dprintf_style_agent)
2300 return;
2301
2302 /* For now, if we have any duplicate location that isn't a dprintf,
2303 don't install the target-side commands, as that would make the
2304 breakpoint not be reported to the core, and we'd lose
2305 control. */
2306 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2307 {
2308 loc = (*loc2p);
2309 if (is_breakpoint (loc->owner)
2310 && loc->pspace->num == bl->pspace->num
2311 && loc->owner->type != bp_dprintf)
2312 return;
2313 }
2314
2315 /* Do a first pass to check for locations with no assigned
2316 conditions or conditions that fail to parse to a valid agent expression
2317 bytecode. If any of these happen, then it's no use to send conditions
2318 to the target since this location will always trigger and generate a
2319 response back to GDB. */
2320 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2321 {
2322 loc = (*loc2p);
2323 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2324 {
2325 if (modified)
2326 {
2327 /* Re-parse the commands since something changed. In that
2328 case we already freed the command bytecodes (see
2329 force_breakpoint_reinsertion). We just
2330 need to parse the command to bytecodes again. */
2331 loc->cmd_bytecode
2332 = parse_cmd_to_aexpr (bl->address,
2333 loc->owner->extra_string);
2334 }
2335
2336 /* If we have a NULL bytecode expression, it means something
2337 went wrong or we have a null command expression. */
2338 if (!loc->cmd_bytecode)
2339 {
2340 null_command_or_parse_error = 1;
2341 break;
2342 }
2343 }
2344 }
2345
2346 /* If anything failed, then we're not doing target-side commands,
2347 and so clean up. */
2348 if (null_command_or_parse_error)
2349 {
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (is_breakpoint (loc->owner)
2354 && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (loc->cmd_bytecode == NULL)
2359 return;
2360
2361 loc->cmd_bytecode.reset ();
2362 }
2363 }
2364 }
2365
2366 /* No NULL commands or failed bytecode generation. Build a command list
2367 for this location's address. */
2368 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2369 {
2370 loc = (*loc2p);
2371 if (loc->owner->extra_string
2372 && is_breakpoint (loc->owner)
2373 && loc->pspace->num == bl->pspace->num
2374 && loc->owner->enable_state == bp_enabled
2375 && loc->enabled)
2376 {
2377 /* Add the command to the vector. This will be used later
2378 to send the commands to the target. */
2379 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2380 }
2381 }
2382
2383 bl->target_info.persist = 0;
2384 /* Maybe flag this location as persistent. */
2385 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2386 bl->target_info.persist = 1;
2387 }
2388
2389 /* Return the kind of breakpoint on address *ADDR. Get the kind
2390 of breakpoint according to ADDR except single-step breakpoint.
2391 Get the kind of single-step breakpoint according to the current
2392 registers state. */
2393
2394 static int
2395 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2396 {
2397 if (bl->owner->type == bp_single_step)
2398 {
2399 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2400 struct regcache *regcache;
2401
2402 regcache = get_thread_regcache (thr);
2403
2404 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2405 regcache, addr);
2406 }
2407 else
2408 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2409 }
2410
2411 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2412 location. Any error messages are printed to TMP_ERROR_STREAM; and
2413 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2414 Returns 0 for success, 1 if the bp_location type is not supported or
2415 -1 for failure.
2416
2417 NOTE drow/2003-09-09: This routine could be broken down to an
2418 object-style method for each breakpoint or catchpoint type. */
2419 static int
2420 insert_bp_location (struct bp_location *bl,
2421 struct ui_file *tmp_error_stream,
2422 int *disabled_breaks,
2423 int *hw_breakpoint_error,
2424 int *hw_bp_error_explained_already)
2425 {
2426 gdb_exception bp_excpt;
2427
2428 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2429 return 0;
2430
2431 /* Note we don't initialize bl->target_info, as that wipes out
2432 the breakpoint location's shadow_contents if the breakpoint
2433 is still inserted at that location. This in turn breaks
2434 target_read_memory which depends on these buffers when
2435 a memory read is requested at the breakpoint location:
2436 Once the target_info has been wiped, we fail to see that
2437 we have a breakpoint inserted at that address and thus
2438 read the breakpoint instead of returning the data saved in
2439 the breakpoint location's shadow contents. */
2440 bl->target_info.reqstd_address = bl->address;
2441 bl->target_info.placed_address_space = bl->pspace->aspace;
2442 bl->target_info.length = bl->length;
2443
2444 /* When working with target-side conditions, we must pass all the conditions
2445 for the same breakpoint address down to the target since GDB will not
2446 insert those locations. With a list of breakpoint conditions, the target
2447 can decide when to stop and notify GDB. */
2448
2449 if (is_breakpoint (bl->owner))
2450 {
2451 build_target_condition_list (bl);
2452 build_target_command_list (bl);
2453 /* Reset the modification marker. */
2454 bl->needs_update = 0;
2455 }
2456
2457 if (bl->loc_type == bp_loc_software_breakpoint
2458 || bl->loc_type == bp_loc_hardware_breakpoint)
2459 {
2460 if (bl->owner->type != bp_hardware_breakpoint)
2461 {
2462 /* If the explicitly specified breakpoint type
2463 is not hardware breakpoint, check the memory map to see
2464 if the breakpoint address is in read only memory or not.
2465
2466 Two important cases are:
2467 - location type is not hardware breakpoint, memory
2468 is readonly. We change the type of the location to
2469 hardware breakpoint.
2470 - location type is hardware breakpoint, memory is
2471 read-write. This means we've previously made the
2472 location hardware one, but then the memory map changed,
2473 so we undo.
2474
2475 When breakpoints are removed, remove_breakpoints will use
2476 location types we've just set here, the only possible
2477 problem is that memory map has changed during running
2478 program, but it's not going to work anyway with current
2479 gdb. */
2480 struct mem_region *mr
2481 = lookup_mem_region (bl->target_info.reqstd_address);
2482
2483 if (mr)
2484 {
2485 if (automatic_hardware_breakpoints)
2486 {
2487 enum bp_loc_type new_type;
2488
2489 if (mr->attrib.mode != MEM_RW)
2490 new_type = bp_loc_hardware_breakpoint;
2491 else
2492 new_type = bp_loc_software_breakpoint;
2493
2494 if (new_type != bl->loc_type)
2495 {
2496 static int said = 0;
2497
2498 bl->loc_type = new_type;
2499 if (!said)
2500 {
2501 fprintf_filtered (gdb_stdout,
2502 _("Note: automatically using "
2503 "hardware breakpoints for "
2504 "read-only addresses.\n"));
2505 said = 1;
2506 }
2507 }
2508 }
2509 else if (bl->loc_type == bp_loc_software_breakpoint
2510 && mr->attrib.mode != MEM_RW)
2511 {
2512 fprintf_unfiltered (tmp_error_stream,
2513 _("Cannot insert breakpoint %d.\n"
2514 "Cannot set software breakpoint "
2515 "at read-only address %s\n"),
2516 bl->owner->number,
2517 paddress (bl->gdbarch, bl->address));
2518 return 1;
2519 }
2520 }
2521 }
2522
2523 /* First check to see if we have to handle an overlay. */
2524 if (overlay_debugging == ovly_off
2525 || bl->section == NULL
2526 || !(section_is_overlay (bl->section)))
2527 {
2528 /* No overlay handling: just set the breakpoint. */
2529 try
2530 {
2531 int val;
2532
2533 val = bl->owner->ops->insert_location (bl);
2534 if (val)
2535 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2536 }
2537 catch (gdb_exception &e)
2538 {
2539 bp_excpt = std::move (e);
2540 }
2541 }
2542 else
2543 {
2544 /* This breakpoint is in an overlay section.
2545 Shall we set a breakpoint at the LMA? */
2546 if (!overlay_events_enabled)
2547 {
2548 /* Yes -- overlay event support is not active,
2549 so we must try to set a breakpoint at the LMA.
2550 This will not work for a hardware breakpoint. */
2551 if (bl->loc_type == bp_loc_hardware_breakpoint)
2552 warning (_("hardware breakpoint %d not supported in overlay!"),
2553 bl->owner->number);
2554 else
2555 {
2556 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2557 bl->section);
2558 /* Set a software (trap) breakpoint at the LMA. */
2559 bl->overlay_target_info = bl->target_info;
2560 bl->overlay_target_info.reqstd_address = addr;
2561
2562 /* No overlay handling: just set the breakpoint. */
2563 try
2564 {
2565 int val;
2566
2567 bl->overlay_target_info.kind
2568 = breakpoint_kind (bl, &addr);
2569 bl->overlay_target_info.placed_address = addr;
2570 val = target_insert_breakpoint (bl->gdbarch,
2571 &bl->overlay_target_info);
2572 if (val)
2573 bp_excpt
2574 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2575 }
2576 catch (gdb_exception &e)
2577 {
2578 bp_excpt = std::move (e);
2579 }
2580
2581 if (bp_excpt.reason != 0)
2582 fprintf_unfiltered (tmp_error_stream,
2583 "Overlay breakpoint %d "
2584 "failed: in ROM?\n",
2585 bl->owner->number);
2586 }
2587 }
2588 /* Shall we set a breakpoint at the VMA? */
2589 if (section_is_mapped (bl->section))
2590 {
2591 /* Yes. This overlay section is mapped into memory. */
2592 try
2593 {
2594 int val;
2595
2596 val = bl->owner->ops->insert_location (bl);
2597 if (val)
2598 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2599 }
2600 catch (gdb_exception &e)
2601 {
2602 bp_excpt = std::move (e);
2603 }
2604 }
2605 else
2606 {
2607 /* No. This breakpoint will not be inserted.
2608 No error, but do not mark the bp as 'inserted'. */
2609 return 0;
2610 }
2611 }
2612
2613 if (bp_excpt.reason != 0)
2614 {
2615 /* Can't set the breakpoint. */
2616
2617 /* In some cases, we might not be able to insert a
2618 breakpoint in a shared library that has already been
2619 removed, but we have not yet processed the shlib unload
2620 event. Unfortunately, some targets that implement
2621 breakpoint insertion themselves can't tell why the
2622 breakpoint insertion failed (e.g., the remote target
2623 doesn't define error codes), so we must treat generic
2624 errors as memory errors. */
2625 if (bp_excpt.reason == RETURN_ERROR
2626 && (bp_excpt.error == GENERIC_ERROR
2627 || bp_excpt.error == MEMORY_ERROR)
2628 && bl->loc_type == bp_loc_software_breakpoint
2629 && (solib_name_from_address (bl->pspace, bl->address)
2630 || shared_objfile_contains_address_p (bl->pspace,
2631 bl->address)))
2632 {
2633 /* See also: disable_breakpoints_in_shlibs. */
2634 bl->shlib_disabled = 1;
2635 gdb::observers::breakpoint_modified.notify (bl->owner);
2636 if (!*disabled_breaks)
2637 {
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert breakpoint %d.\n",
2640 bl->owner->number);
2641 fprintf_unfiltered (tmp_error_stream,
2642 "Temporarily disabling shared "
2643 "library breakpoints:\n");
2644 }
2645 *disabled_breaks = 1;
2646 fprintf_unfiltered (tmp_error_stream,
2647 "breakpoint #%d\n", bl->owner->number);
2648 return 0;
2649 }
2650 else
2651 {
2652 if (bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 *hw_breakpoint_error = 1;
2655 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Cannot insert hardware breakpoint %d%s",
2658 bl->owner->number,
2659 bp_excpt.message ? ":" : ".\n");
2660 if (bp_excpt.message != NULL)
2661 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2662 bp_excpt.what ());
2663 }
2664 else
2665 {
2666 if (bp_excpt.message == NULL)
2667 {
2668 std::string message
2669 = memory_error_message (TARGET_XFER_E_IO,
2670 bl->gdbarch, bl->address);
2671
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert breakpoint %d.\n"
2674 "%s\n",
2675 bl->owner->number, message.c_str ());
2676 }
2677 else
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert breakpoint %d: %s\n",
2681 bl->owner->number,
2682 bp_excpt.what ());
2683 }
2684 }
2685 return 1;
2686
2687 }
2688 }
2689 else
2690 bl->inserted = 1;
2691
2692 return 0;
2693 }
2694
2695 else if (bl->loc_type == bp_loc_hardware_watchpoint
2696 /* NOTE drow/2003-09-08: This state only exists for removing
2697 watchpoints. It's not clear that it's necessary... */
2698 && bl->owner->disposition != disp_del_at_next_stop)
2699 {
2700 int val;
2701
2702 gdb_assert (bl->owner->ops != NULL
2703 && bl->owner->ops->insert_location != NULL);
2704
2705 val = bl->owner->ops->insert_location (bl);
2706
2707 /* If trying to set a read-watchpoint, and it turns out it's not
2708 supported, try emulating one with an access watchpoint. */
2709 if (val == 1 && bl->watchpoint_type == hw_read)
2710 {
2711 struct bp_location *loc, **loc_temp;
2712
2713 /* But don't try to insert it, if there's already another
2714 hw_access location that would be considered a duplicate
2715 of this one. */
2716 ALL_BP_LOCATIONS (loc, loc_temp)
2717 if (loc != bl
2718 && loc->watchpoint_type == hw_access
2719 && watchpoint_locations_match (bl, loc))
2720 {
2721 bl->duplicate = 1;
2722 bl->inserted = 1;
2723 bl->target_info = loc->target_info;
2724 bl->watchpoint_type = hw_access;
2725 val = 0;
2726 break;
2727 }
2728
2729 if (val == 1)
2730 {
2731 bl->watchpoint_type = hw_access;
2732 val = bl->owner->ops->insert_location (bl);
2733
2734 if (val)
2735 /* Back to the original value. */
2736 bl->watchpoint_type = hw_read;
2737 }
2738 }
2739
2740 bl->inserted = (val == 0);
2741 }
2742
2743 else if (bl->owner->type == bp_catchpoint)
2744 {
2745 int val;
2746
2747 gdb_assert (bl->owner->ops != NULL
2748 && bl->owner->ops->insert_location != NULL);
2749
2750 val = bl->owner->ops->insert_location (bl);
2751 if (val)
2752 {
2753 bl->owner->enable_state = bp_disabled;
2754
2755 if (val == 1)
2756 warning (_("\
2757 Error inserting catchpoint %d: Your system does not support this type\n\
2758 of catchpoint."), bl->owner->number);
2759 else
2760 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2761 }
2762
2763 bl->inserted = (val == 0);
2764
2765 /* We've already printed an error message if there was a problem
2766 inserting this catchpoint, and we've disabled the catchpoint,
2767 so just return success. */
2768 return 0;
2769 }
2770
2771 return 0;
2772 }
2773
2774 /* This function is called when program space PSPACE is about to be
2775 deleted. It takes care of updating breakpoints to not reference
2776 PSPACE anymore. */
2777
2778 void
2779 breakpoint_program_space_exit (struct program_space *pspace)
2780 {
2781 struct breakpoint *b, *b_temp;
2782 struct bp_location *loc, **loc_temp;
2783
2784 /* Remove any breakpoint that was set through this program space. */
2785 ALL_BREAKPOINTS_SAFE (b, b_temp)
2786 {
2787 if (b->pspace == pspace)
2788 delete_breakpoint (b);
2789 }
2790
2791 /* Breakpoints set through other program spaces could have locations
2792 bound to PSPACE as well. Remove those. */
2793 ALL_BP_LOCATIONS (loc, loc_temp)
2794 {
2795 struct bp_location *tmp;
2796
2797 if (loc->pspace == pspace)
2798 {
2799 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2800 if (loc->owner->loc == loc)
2801 loc->owner->loc = loc->next;
2802 else
2803 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2804 if (tmp->next == loc)
2805 {
2806 tmp->next = loc->next;
2807 break;
2808 }
2809 }
2810 }
2811
2812 /* Now update the global location list to permanently delete the
2813 removed locations above. */
2814 update_global_location_list (UGLL_DONT_INSERT);
2815 }
2816
2817 /* Make sure all breakpoints are inserted in inferior.
2818 Throws exception on any error.
2819 A breakpoint that is already inserted won't be inserted
2820 again, so calling this function twice is safe. */
2821 void
2822 insert_breakpoints (void)
2823 {
2824 struct breakpoint *bpt;
2825
2826 ALL_BREAKPOINTS (bpt)
2827 if (is_hardware_watchpoint (bpt))
2828 {
2829 struct watchpoint *w = (struct watchpoint *) bpt;
2830
2831 update_watchpoint (w, 0 /* don't reparse. */);
2832 }
2833
2834 /* Updating watchpoints creates new locations, so update the global
2835 location list. Explicitly tell ugll to insert locations and
2836 ignore breakpoints_always_inserted_mode. */
2837 update_global_location_list (UGLL_INSERT);
2838 }
2839
2840 /* Invoke CALLBACK for each of bp_location. */
2841
2842 void
2843 iterate_over_bp_locations (walk_bp_location_callback callback)
2844 {
2845 struct bp_location *loc, **loc_tmp;
2846
2847 ALL_BP_LOCATIONS (loc, loc_tmp)
2848 {
2849 callback (loc, NULL);
2850 }
2851 }
2852
2853 /* This is used when we need to synch breakpoint conditions between GDB and the
2854 target. It is the case with deleting and disabling of breakpoints when using
2855 always-inserted mode. */
2856
2857 static void
2858 update_inserted_breakpoint_locations (void)
2859 {
2860 struct bp_location *bl, **blp_tmp;
2861 int error_flag = 0;
2862 int val = 0;
2863 int disabled_breaks = 0;
2864 int hw_breakpoint_error = 0;
2865 int hw_bp_details_reported = 0;
2866
2867 string_file tmp_error_stream;
2868
2869 /* Explicitly mark the warning -- this will only be printed if
2870 there was an error. */
2871 tmp_error_stream.puts ("Warning:\n");
2872
2873 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2874
2875 ALL_BP_LOCATIONS (bl, blp_tmp)
2876 {
2877 /* We only want to update software breakpoints and hardware
2878 breakpoints. */
2879 if (!is_breakpoint (bl->owner))
2880 continue;
2881
2882 /* We only want to update locations that are already inserted
2883 and need updating. This is to avoid unwanted insertion during
2884 deletion of breakpoints. */
2885 if (!bl->inserted || !bl->needs_update)
2886 continue;
2887
2888 switch_to_program_space_and_thread (bl->pspace);
2889
2890 /* For targets that support global breakpoints, there's no need
2891 to select an inferior to insert breakpoint to. In fact, even
2892 if we aren't attached to any process yet, we should still
2893 insert breakpoints. */
2894 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2895 && inferior_ptid == null_ptid)
2896 continue;
2897
2898 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2899 &hw_breakpoint_error, &hw_bp_details_reported);
2900 if (val)
2901 error_flag = val;
2902 }
2903
2904 if (error_flag)
2905 {
2906 target_terminal::ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909 }
2910
2911 /* Used when starting or continuing the program. */
2912
2913 static void
2914 insert_breakpoint_locations (void)
2915 {
2916 struct breakpoint *bpt;
2917 struct bp_location *bl, **blp_tmp;
2918 int error_flag = 0;
2919 int val = 0;
2920 int disabled_breaks = 0;
2921 int hw_breakpoint_error = 0;
2922 int hw_bp_error_explained_already = 0;
2923
2924 string_file tmp_error_stream;
2925
2926 /* Explicitly mark the warning -- this will only be printed if
2927 there was an error. */
2928 tmp_error_stream.puts ("Warning:\n");
2929
2930 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2931
2932 ALL_BP_LOCATIONS (bl, blp_tmp)
2933 {
2934 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2935 continue;
2936
2937 /* There is no point inserting thread-specific breakpoints if
2938 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2939 has BL->OWNER always non-NULL. */
2940 if (bl->owner->thread != -1
2941 && !valid_global_thread_id (bl->owner->thread))
2942 continue;
2943
2944 switch_to_program_space_and_thread (bl->pspace);
2945
2946 /* For targets that support global breakpoints, there's no need
2947 to select an inferior to insert breakpoint to. In fact, even
2948 if we aren't attached to any process yet, we should still
2949 insert breakpoints. */
2950 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2951 && inferior_ptid == null_ptid)
2952 continue;
2953
2954 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2955 &hw_breakpoint_error, &hw_bp_error_explained_already);
2956 if (val)
2957 error_flag = val;
2958 }
2959
2960 /* If we failed to insert all locations of a watchpoint, remove
2961 them, as half-inserted watchpoint is of limited use. */
2962 ALL_BREAKPOINTS (bpt)
2963 {
2964 int some_failed = 0;
2965 struct bp_location *loc;
2966
2967 if (!is_hardware_watchpoint (bpt))
2968 continue;
2969
2970 if (!breakpoint_enabled (bpt))
2971 continue;
2972
2973 if (bpt->disposition == disp_del_at_next_stop)
2974 continue;
2975
2976 for (loc = bpt->loc; loc; loc = loc->next)
2977 if (!loc->inserted && should_be_inserted (loc))
2978 {
2979 some_failed = 1;
2980 break;
2981 }
2982 if (some_failed)
2983 {
2984 for (loc = bpt->loc; loc; loc = loc->next)
2985 if (loc->inserted)
2986 remove_breakpoint (loc);
2987
2988 hw_breakpoint_error = 1;
2989 tmp_error_stream.printf ("Could not insert "
2990 "hardware watchpoint %d.\n",
2991 bpt->number);
2992 error_flag = -1;
2993 }
2994 }
2995
2996 if (error_flag)
2997 {
2998 /* If a hardware breakpoint or watchpoint was inserted, add a
2999 message about possibly exhausted resources. */
3000 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3001 {
3002 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3003 You may have requested too many hardware breakpoints/watchpoints.\n");
3004 }
3005 target_terminal::ours_for_output ();
3006 error_stream (tmp_error_stream);
3007 }
3008 }
3009
3010 /* Used when the program stops.
3011 Returns zero if successful, or non-zero if there was a problem
3012 removing a breakpoint location. */
3013
3014 int
3015 remove_breakpoints (void)
3016 {
3017 struct bp_location *bl, **blp_tmp;
3018 int val = 0;
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->inserted && !is_tracepoint (bl->owner))
3023 val |= remove_breakpoint (bl);
3024 }
3025 return val;
3026 }
3027
3028 /* When a thread exits, remove breakpoints that are related to
3029 that thread. */
3030
3031 static void
3032 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3033 {
3034 struct breakpoint *b, *b_tmp;
3035
3036 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3037 {
3038 if (b->thread == tp->global_num && user_breakpoint_p (b))
3039 {
3040 b->disposition = disp_del_at_next_stop;
3041
3042 printf_filtered (_("\
3043 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3044 b->number, print_thread_id (tp));
3045
3046 /* Hide it from the user. */
3047 b->number = 0;
3048 }
3049 }
3050 }
3051
3052 /* See breakpoint.h. */
3053
3054 void
3055 remove_breakpoints_inf (inferior *inf)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int val;
3059
3060 ALL_BP_LOCATIONS (bl, blp_tmp)
3061 {
3062 if (bl->pspace != inf->pspace)
3063 continue;
3064
3065 if (bl->inserted && !bl->target_info.persist)
3066 {
3067 val = remove_breakpoint (bl);
3068 if (val != 0)
3069 return;
3070 }
3071 }
3072 }
3073
3074 static int internal_breakpoint_number = -1;
3075
3076 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3077 If INTERNAL is non-zero, the breakpoint number will be populated
3078 from internal_breakpoint_number and that variable decremented.
3079 Otherwise the breakpoint number will be populated from
3080 breakpoint_count and that value incremented. Internal breakpoints
3081 do not set the internal var bpnum. */
3082 static void
3083 set_breakpoint_number (int internal, struct breakpoint *b)
3084 {
3085 if (internal)
3086 b->number = internal_breakpoint_number--;
3087 else
3088 {
3089 set_breakpoint_count (breakpoint_count + 1);
3090 b->number = breakpoint_count;
3091 }
3092 }
3093
3094 static struct breakpoint *
3095 create_internal_breakpoint (struct gdbarch *gdbarch,
3096 CORE_ADDR address, enum bptype type,
3097 const struct breakpoint_ops *ops)
3098 {
3099 symtab_and_line sal;
3100 sal.pc = address;
3101 sal.section = find_pc_overlay (sal.pc);
3102 sal.pspace = current_program_space;
3103
3104 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3105 b->number = internal_breakpoint_number--;
3106 b->disposition = disp_donttouch;
3107
3108 return b;
3109 }
3110
3111 static const char *const longjmp_names[] =
3112 {
3113 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3114 };
3115 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3116
3117 /* Per-objfile data private to breakpoint.c. */
3118 struct breakpoint_objfile_data
3119 {
3120 /* Minimal symbol for "_ovly_debug_event" (if any). */
3121 struct bound_minimal_symbol overlay_msym {};
3122
3123 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3124 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3125
3126 /* True if we have looked for longjmp probes. */
3127 int longjmp_searched = 0;
3128
3129 /* SystemTap probe points for longjmp (if any). These are non-owning
3130 references. */
3131 std::vector<probe *> longjmp_probes;
3132
3133 /* Minimal symbol for "std::terminate()" (if any). */
3134 struct bound_minimal_symbol terminate_msym {};
3135
3136 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3137 struct bound_minimal_symbol exception_msym {};
3138
3139 /* True if we have looked for exception probes. */
3140 int exception_searched = 0;
3141
3142 /* SystemTap probe points for unwinding (if any). These are non-owning
3143 references. */
3144 std::vector<probe *> exception_probes;
3145 };
3146
3147 static const struct objfile_key<breakpoint_objfile_data>
3148 breakpoint_objfile_key;
3149
3150 /* Minimal symbol not found sentinel. */
3151 static struct minimal_symbol msym_not_found;
3152
3153 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3154
3155 static int
3156 msym_not_found_p (const struct minimal_symbol *msym)
3157 {
3158 return msym == &msym_not_found;
3159 }
3160
3161 /* Return per-objfile data needed by breakpoint.c.
3162 Allocate the data if necessary. */
3163
3164 static struct breakpoint_objfile_data *
3165 get_breakpoint_objfile_data (struct objfile *objfile)
3166 {
3167 struct breakpoint_objfile_data *bp_objfile_data;
3168
3169 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3170 if (bp_objfile_data == NULL)
3171 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3172 return bp_objfile_data;
3173 }
3174
3175 static void
3176 create_overlay_event_breakpoint (void)
3177 {
3178 const char *const func_name = "_ovly_debug_event";
3179
3180 for (objfile *objfile : current_program_space->objfiles ())
3181 {
3182 struct breakpoint *b;
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184 CORE_ADDR addr;
3185 struct explicit_location explicit_loc;
3186
3187 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3188
3189 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3190 continue;
3191
3192 if (bp_objfile_data->overlay_msym.minsym == NULL)
3193 {
3194 struct bound_minimal_symbol m;
3195
3196 m = lookup_minimal_symbol_text (func_name, objfile);
3197 if (m.minsym == NULL)
3198 {
3199 /* Avoid future lookups in this objfile. */
3200 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3201 continue;
3202 }
3203 bp_objfile_data->overlay_msym = m;
3204 }
3205
3206 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3207 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3208 bp_overlay_event,
3209 &internal_breakpoint_ops);
3210 initialize_explicit_location (&explicit_loc);
3211 explicit_loc.function_name = ASTRDUP (func_name);
3212 b->location = new_explicit_location (&explicit_loc);
3213
3214 if (overlay_debugging == ovly_auto)
3215 {
3216 b->enable_state = bp_enabled;
3217 overlay_events_enabled = 1;
3218 }
3219 else
3220 {
3221 b->enable_state = bp_disabled;
3222 overlay_events_enabled = 0;
3223 }
3224 }
3225 }
3226
3227 static void
3228 create_longjmp_master_breakpoint (void)
3229 {
3230 struct program_space *pspace;
3231
3232 scoped_restore_current_program_space restore_pspace;
3233
3234 ALL_PSPACES (pspace)
3235 {
3236 set_current_program_space (pspace);
3237
3238 for (objfile *objfile : current_program_space->objfiles ())
3239 {
3240 int i;
3241 struct gdbarch *gdbarch;
3242 struct breakpoint_objfile_data *bp_objfile_data;
3243
3244 gdbarch = get_objfile_arch (objfile);
3245
3246 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3247
3248 if (!bp_objfile_data->longjmp_searched)
3249 {
3250 std::vector<probe *> ret
3251 = find_probes_in_objfile (objfile, "libc", "longjmp");
3252
3253 if (!ret.empty ())
3254 {
3255 /* We are only interested in checking one element. */
3256 probe *p = ret[0];
3257
3258 if (!p->can_evaluate_arguments ())
3259 {
3260 /* We cannot use the probe interface here, because it does
3261 not know how to evaluate arguments. */
3262 ret.clear ();
3263 }
3264 }
3265 bp_objfile_data->longjmp_probes = ret;
3266 bp_objfile_data->longjmp_searched = 1;
3267 }
3268
3269 if (!bp_objfile_data->longjmp_probes.empty ())
3270 {
3271 for (probe *p : bp_objfile_data->longjmp_probes)
3272 {
3273 struct breakpoint *b;
3274
3275 b = create_internal_breakpoint (gdbarch,
3276 p->get_relocated_address (objfile),
3277 bp_longjmp_master,
3278 &internal_breakpoint_ops);
3279 b->location = new_probe_location ("-probe-stap libc:longjmp");
3280 b->enable_state = bp_disabled;
3281 }
3282
3283 continue;
3284 }
3285
3286 if (!gdbarch_get_longjmp_target_p (gdbarch))
3287 continue;
3288
3289 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3290 {
3291 struct breakpoint *b;
3292 const char *func_name;
3293 CORE_ADDR addr;
3294 struct explicit_location explicit_loc;
3295
3296 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3297 continue;
3298
3299 func_name = longjmp_names[i];
3300 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3301 {
3302 struct bound_minimal_symbol m;
3303
3304 m = lookup_minimal_symbol_text (func_name, objfile);
3305 if (m.minsym == NULL)
3306 {
3307 /* Prevent future lookups in this objfile. */
3308 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3309 continue;
3310 }
3311 bp_objfile_data->longjmp_msym[i] = m;
3312 }
3313
3314 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3315 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3316 &internal_breakpoint_ops);
3317 initialize_explicit_location (&explicit_loc);
3318 explicit_loc.function_name = ASTRDUP (func_name);
3319 b->location = new_explicit_location (&explicit_loc);
3320 b->enable_state = bp_disabled;
3321 }
3322 }
3323 }
3324 }
3325
3326 /* Create a master std::terminate breakpoint. */
3327 static void
3328 create_std_terminate_master_breakpoint (void)
3329 {
3330 struct program_space *pspace;
3331 const char *const func_name = "std::terminate()";
3332
3333 scoped_restore_current_program_space restore_pspace;
3334
3335 ALL_PSPACES (pspace)
3336 {
3337 CORE_ADDR addr;
3338
3339 set_current_program_space (pspace);
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 struct breakpoint *b;
3344 struct breakpoint_objfile_data *bp_objfile_data;
3345 struct explicit_location explicit_loc;
3346
3347 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3348
3349 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3350 continue;
3351
3352 if (bp_objfile_data->terminate_msym.minsym == NULL)
3353 {
3354 struct bound_minimal_symbol m;
3355
3356 m = lookup_minimal_symbol (func_name, NULL, objfile);
3357 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3358 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3359 {
3360 /* Prevent future lookups in this objfile. */
3361 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3362 continue;
3363 }
3364 bp_objfile_data->terminate_msym = m;
3365 }
3366
3367 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3368 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3369 bp_std_terminate_master,
3370 &internal_breakpoint_ops);
3371 initialize_explicit_location (&explicit_loc);
3372 explicit_loc.function_name = ASTRDUP (func_name);
3373 b->location = new_explicit_location (&explicit_loc);
3374 b->enable_state = bp_disabled;
3375 }
3376 }
3377 }
3378
3379 /* Install a master breakpoint on the unwinder's debug hook. */
3380
3381 static void
3382 create_exception_master_breakpoint (void)
3383 {
3384 const char *const func_name = "_Unwind_DebugHook";
3385
3386 for (objfile *objfile : current_program_space->objfiles ())
3387 {
3388 struct breakpoint *b;
3389 struct gdbarch *gdbarch;
3390 struct breakpoint_objfile_data *bp_objfile_data;
3391 CORE_ADDR addr;
3392 struct explicit_location explicit_loc;
3393
3394 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3395
3396 /* We prefer the SystemTap probe point if it exists. */
3397 if (!bp_objfile_data->exception_searched)
3398 {
3399 std::vector<probe *> ret
3400 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3401
3402 if (!ret.empty ())
3403 {
3404 /* We are only interested in checking one element. */
3405 probe *p = ret[0];
3406
3407 if (!p->can_evaluate_arguments ())
3408 {
3409 /* We cannot use the probe interface here, because it does
3410 not know how to evaluate arguments. */
3411 ret.clear ();
3412 }
3413 }
3414 bp_objfile_data->exception_probes = ret;
3415 bp_objfile_data->exception_searched = 1;
3416 }
3417
3418 if (!bp_objfile_data->exception_probes.empty ())
3419 {
3420 gdbarch = get_objfile_arch (objfile);
3421
3422 for (probe *p : bp_objfile_data->exception_probes)
3423 {
3424 b = create_internal_breakpoint (gdbarch,
3425 p->get_relocated_address (objfile),
3426 bp_exception_master,
3427 &internal_breakpoint_ops);
3428 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3429 b->enable_state = bp_disabled;
3430 }
3431
3432 continue;
3433 }
3434
3435 /* Otherwise, try the hook function. */
3436
3437 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3438 continue;
3439
3440 gdbarch = get_objfile_arch (objfile);
3441
3442 if (bp_objfile_data->exception_msym.minsym == NULL)
3443 {
3444 struct bound_minimal_symbol debug_hook;
3445
3446 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3447 if (debug_hook.minsym == NULL)
3448 {
3449 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3450 continue;
3451 }
3452
3453 bp_objfile_data->exception_msym = debug_hook;
3454 }
3455
3456 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3457 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3458 current_top_target ());
3459 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3460 &internal_breakpoint_ops);
3461 initialize_explicit_location (&explicit_loc);
3462 explicit_loc.function_name = ASTRDUP (func_name);
3463 b->location = new_explicit_location (&explicit_loc);
3464 b->enable_state = bp_disabled;
3465 }
3466 }
3467
3468 /* Does B have a location spec? */
3469
3470 static int
3471 breakpoint_event_location_empty_p (const struct breakpoint *b)
3472 {
3473 return b->location != NULL && event_location_empty_p (b->location.get ());
3474 }
3475
3476 void
3477 update_breakpoints_after_exec (void)
3478 {
3479 struct breakpoint *b, *b_tmp;
3480 struct bp_location *bploc, **bplocp_tmp;
3481
3482 /* We're about to delete breakpoints from GDB's lists. If the
3483 INSERTED flag is true, GDB will try to lift the breakpoints by
3484 writing the breakpoints' "shadow contents" back into memory. The
3485 "shadow contents" are NOT valid after an exec, so GDB should not
3486 do that. Instead, the target is responsible from marking
3487 breakpoints out as soon as it detects an exec. We don't do that
3488 here instead, because there may be other attempts to delete
3489 breakpoints after detecting an exec and before reaching here. */
3490 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3491 if (bploc->pspace == current_program_space)
3492 gdb_assert (!bploc->inserted);
3493
3494 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3495 {
3496 if (b->pspace != current_program_space)
3497 continue;
3498
3499 /* Solib breakpoints must be explicitly reset after an exec(). */
3500 if (b->type == bp_shlib_event)
3501 {
3502 delete_breakpoint (b);
3503 continue;
3504 }
3505
3506 /* JIT breakpoints must be explicitly reset after an exec(). */
3507 if (b->type == bp_jit_event)
3508 {
3509 delete_breakpoint (b);
3510 continue;
3511 }
3512
3513 /* Thread event breakpoints must be set anew after an exec(),
3514 as must overlay event and longjmp master breakpoints. */
3515 if (b->type == bp_thread_event || b->type == bp_overlay_event
3516 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3517 || b->type == bp_exception_master)
3518 {
3519 delete_breakpoint (b);
3520 continue;
3521 }
3522
3523 /* Step-resume breakpoints are meaningless after an exec(). */
3524 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3525 {
3526 delete_breakpoint (b);
3527 continue;
3528 }
3529
3530 /* Just like single-step breakpoints. */
3531 if (b->type == bp_single_step)
3532 {
3533 delete_breakpoint (b);
3534 continue;
3535 }
3536
3537 /* Longjmp and longjmp-resume breakpoints are also meaningless
3538 after an exec. */
3539 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3540 || b->type == bp_longjmp_call_dummy
3541 || b->type == bp_exception || b->type == bp_exception_resume)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 if (b->type == bp_catchpoint)
3548 {
3549 /* For now, none of the bp_catchpoint breakpoints need to
3550 do anything at this point. In the future, if some of
3551 the catchpoints need to something, we will need to add
3552 a new method, and call this method from here. */
3553 continue;
3554 }
3555
3556 /* bp_finish is a special case. The only way we ought to be able
3557 to see one of these when an exec() has happened, is if the user
3558 caught a vfork, and then said "finish". Ordinarily a finish just
3559 carries them to the call-site of the current callee, by setting
3560 a temporary bp there and resuming. But in this case, the finish
3561 will carry them entirely through the vfork & exec.
3562
3563 We don't want to allow a bp_finish to remain inserted now. But
3564 we can't safely delete it, 'cause finish_command has a handle to
3565 the bp on a bpstat, and will later want to delete it. There's a
3566 chance (and I've seen it happen) that if we delete the bp_finish
3567 here, that its storage will get reused by the time finish_command
3568 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3569 We really must allow finish_command to delete a bp_finish.
3570
3571 In the absence of a general solution for the "how do we know
3572 it's safe to delete something others may have handles to?"
3573 problem, what we'll do here is just uninsert the bp_finish, and
3574 let finish_command delete it.
3575
3576 (We know the bp_finish is "doomed" in the sense that it's
3577 momentary, and will be deleted as soon as finish_command sees
3578 the inferior stopped. So it doesn't matter that the bp's
3579 address is probably bogus in the new a.out, unlike e.g., the
3580 solib breakpoints.) */
3581
3582 if (b->type == bp_finish)
3583 {
3584 continue;
3585 }
3586
3587 /* Without a symbolic address, we have little hope of the
3588 pre-exec() address meaning the same thing in the post-exec()
3589 a.out. */
3590 if (breakpoint_event_location_empty_p (b))
3591 {
3592 delete_breakpoint (b);
3593 continue;
3594 }
3595 }
3596 }
3597
3598 int
3599 detach_breakpoints (ptid_t ptid)
3600 {
3601 struct bp_location *bl, **blp_tmp;
3602 int val = 0;
3603 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3604 struct inferior *inf = current_inferior ();
3605
3606 if (ptid.pid () == inferior_ptid.pid ())
3607 error (_("Cannot detach breakpoints of inferior_ptid"));
3608
3609 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3610 inferior_ptid = ptid;
3611 ALL_BP_LOCATIONS (bl, blp_tmp)
3612 {
3613 if (bl->pspace != inf->pspace)
3614 continue;
3615
3616 /* This function must physically remove breakpoints locations
3617 from the specified ptid, without modifying the breakpoint
3618 package's state. Locations of type bp_loc_other are only
3619 maintained at GDB side. So, there is no need to remove
3620 these bp_loc_other locations. Moreover, removing these
3621 would modify the breakpoint package's state. */
3622 if (bl->loc_type == bp_loc_other)
3623 continue;
3624
3625 if (bl->inserted)
3626 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3627 }
3628
3629 return val;
3630 }
3631
3632 /* Remove the breakpoint location BL from the current address space.
3633 Note that this is used to detach breakpoints from a child fork.
3634 When we get here, the child isn't in the inferior list, and neither
3635 do we have objects to represent its address space --- we should
3636 *not* look at bl->pspace->aspace here. */
3637
3638 static int
3639 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3640 {
3641 int val;
3642
3643 /* BL is never in moribund_locations by our callers. */
3644 gdb_assert (bl->owner != NULL);
3645
3646 /* The type of none suggests that owner is actually deleted.
3647 This should not ever happen. */
3648 gdb_assert (bl->owner->type != bp_none);
3649
3650 if (bl->loc_type == bp_loc_software_breakpoint
3651 || bl->loc_type == bp_loc_hardware_breakpoint)
3652 {
3653 /* "Normal" instruction breakpoint: either the standard
3654 trap-instruction bp (bp_breakpoint), or a
3655 bp_hardware_breakpoint. */
3656
3657 /* First check to see if we have to handle an overlay. */
3658 if (overlay_debugging == ovly_off
3659 || bl->section == NULL
3660 || !(section_is_overlay (bl->section)))
3661 {
3662 /* No overlay handling: just remove the breakpoint. */
3663
3664 /* If we're trying to uninsert a memory breakpoint that we
3665 know is set in a dynamic object that is marked
3666 shlib_disabled, then either the dynamic object was
3667 removed with "remove-symbol-file" or with
3668 "nosharedlibrary". In the former case, we don't know
3669 whether another dynamic object might have loaded over the
3670 breakpoint's address -- the user might well let us know
3671 about it next with add-symbol-file (the whole point of
3672 add-symbol-file is letting the user manually maintain a
3673 list of dynamically loaded objects). If we have the
3674 breakpoint's shadow memory, that is, this is a software
3675 breakpoint managed by GDB, check whether the breakpoint
3676 is still inserted in memory, to avoid overwriting wrong
3677 code with stale saved shadow contents. Note that HW
3678 breakpoints don't have shadow memory, as they're
3679 implemented using a mechanism that is not dependent on
3680 being able to modify the target's memory, and as such
3681 they should always be removed. */
3682 if (bl->shlib_disabled
3683 && bl->target_info.shadow_len != 0
3684 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3685 val = 0;
3686 else
3687 val = bl->owner->ops->remove_location (bl, reason);
3688 }
3689 else
3690 {
3691 /* This breakpoint is in an overlay section.
3692 Did we set a breakpoint at the LMA? */
3693 if (!overlay_events_enabled)
3694 {
3695 /* Yes -- overlay event support is not active, so we
3696 should have set a breakpoint at the LMA. Remove it.
3697 */
3698 /* Ignore any failures: if the LMA is in ROM, we will
3699 have already warned when we failed to insert it. */
3700 if (bl->loc_type == bp_loc_hardware_breakpoint)
3701 target_remove_hw_breakpoint (bl->gdbarch,
3702 &bl->overlay_target_info);
3703 else
3704 target_remove_breakpoint (bl->gdbarch,
3705 &bl->overlay_target_info,
3706 reason);
3707 }
3708 /* Did we set a breakpoint at the VMA?
3709 If so, we will have marked the breakpoint 'inserted'. */
3710 if (bl->inserted)
3711 {
3712 /* Yes -- remove it. Previously we did not bother to
3713 remove the breakpoint if the section had been
3714 unmapped, but let's not rely on that being safe. We
3715 don't know what the overlay manager might do. */
3716
3717 /* However, we should remove *software* breakpoints only
3718 if the section is still mapped, or else we overwrite
3719 wrong code with the saved shadow contents. */
3720 if (bl->loc_type == bp_loc_hardware_breakpoint
3721 || section_is_mapped (bl->section))
3722 val = bl->owner->ops->remove_location (bl, reason);
3723 else
3724 val = 0;
3725 }
3726 else
3727 {
3728 /* No -- not inserted, so no need to remove. No error. */
3729 val = 0;
3730 }
3731 }
3732
3733 /* In some cases, we might not be able to remove a breakpoint in
3734 a shared library that has already been removed, but we have
3735 not yet processed the shlib unload event. Similarly for an
3736 unloaded add-symbol-file object - the user might not yet have
3737 had the chance to remove-symbol-file it. shlib_disabled will
3738 be set if the library/object has already been removed, but
3739 the breakpoint hasn't been uninserted yet, e.g., after
3740 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3741 always-inserted mode. */
3742 if (val
3743 && (bl->loc_type == bp_loc_software_breakpoint
3744 && (bl->shlib_disabled
3745 || solib_name_from_address (bl->pspace, bl->address)
3746 || shared_objfile_contains_address_p (bl->pspace,
3747 bl->address))))
3748 val = 0;
3749
3750 if (val)
3751 return val;
3752 bl->inserted = (reason == DETACH_BREAKPOINT);
3753 }
3754 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3755 {
3756 gdb_assert (bl->owner->ops != NULL
3757 && bl->owner->ops->remove_location != NULL);
3758
3759 bl->inserted = (reason == DETACH_BREAKPOINT);
3760 bl->owner->ops->remove_location (bl, reason);
3761
3762 /* Failure to remove any of the hardware watchpoints comes here. */
3763 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3764 warning (_("Could not remove hardware watchpoint %d."),
3765 bl->owner->number);
3766 }
3767 else if (bl->owner->type == bp_catchpoint
3768 && breakpoint_enabled (bl->owner)
3769 && !bl->duplicate)
3770 {
3771 gdb_assert (bl->owner->ops != NULL
3772 && bl->owner->ops->remove_location != NULL);
3773
3774 val = bl->owner->ops->remove_location (bl, reason);
3775 if (val)
3776 return val;
3777
3778 bl->inserted = (reason == DETACH_BREAKPOINT);
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int
3785 remove_breakpoint (struct bp_location *bl)
3786 {
3787 /* BL is never in moribund_locations by our callers. */
3788 gdb_assert (bl->owner != NULL);
3789
3790 /* The type of none suggests that owner is actually deleted.
3791 This should not ever happen. */
3792 gdb_assert (bl->owner->type != bp_none);
3793
3794 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3795
3796 switch_to_program_space_and_thread (bl->pspace);
3797
3798 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3799 }
3800
3801 /* Clear the "inserted" flag in all breakpoints. */
3802
3803 void
3804 mark_breakpoints_out (void)
3805 {
3806 struct bp_location *bl, **blp_tmp;
3807
3808 ALL_BP_LOCATIONS (bl, blp_tmp)
3809 if (bl->pspace == current_program_space)
3810 bl->inserted = 0;
3811 }
3812
3813 /* Clear the "inserted" flag in all breakpoints and delete any
3814 breakpoints which should go away between runs of the program.
3815
3816 Plus other such housekeeping that has to be done for breakpoints
3817 between runs.
3818
3819 Note: this function gets called at the end of a run (by
3820 generic_mourn_inferior) and when a run begins (by
3821 init_wait_for_inferior). */
3822
3823
3824
3825 void
3826 breakpoint_init_inferior (enum inf_context context)
3827 {
3828 struct breakpoint *b, *b_tmp;
3829 struct program_space *pspace = current_program_space;
3830
3831 /* If breakpoint locations are shared across processes, then there's
3832 nothing to do. */
3833 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3834 return;
3835
3836 mark_breakpoints_out ();
3837
3838 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3839 {
3840 if (b->loc && b->loc->pspace != pspace)
3841 continue;
3842
3843 switch (b->type)
3844 {
3845 case bp_call_dummy:
3846 case bp_longjmp_call_dummy:
3847
3848 /* If the call dummy breakpoint is at the entry point it will
3849 cause problems when the inferior is rerun, so we better get
3850 rid of it. */
3851
3852 case bp_watchpoint_scope:
3853
3854 /* Also get rid of scope breakpoints. */
3855
3856 case bp_shlib_event:
3857
3858 /* Also remove solib event breakpoints. Their addresses may
3859 have changed since the last time we ran the program.
3860 Actually we may now be debugging against different target;
3861 and so the solib backend that installed this breakpoint may
3862 not be used in by the target. E.g.,
3863
3864 (gdb) file prog-linux
3865 (gdb) run # native linux target
3866 ...
3867 (gdb) kill
3868 (gdb) file prog-win.exe
3869 (gdb) tar rem :9999 # remote Windows gdbserver.
3870 */
3871
3872 case bp_step_resume:
3873
3874 /* Also remove step-resume breakpoints. */
3875
3876 case bp_single_step:
3877
3878 /* Also remove single-step breakpoints. */
3879
3880 delete_breakpoint (b);
3881 break;
3882
3883 case bp_watchpoint:
3884 case bp_hardware_watchpoint:
3885 case bp_read_watchpoint:
3886 case bp_access_watchpoint:
3887 {
3888 struct watchpoint *w = (struct watchpoint *) b;
3889
3890 /* Likewise for watchpoints on local expressions. */
3891 if (w->exp_valid_block != NULL)
3892 delete_breakpoint (b);
3893 else
3894 {
3895 /* Get rid of existing locations, which are no longer
3896 valid. New ones will be created in
3897 update_watchpoint, when the inferior is restarted.
3898 The next update_global_location_list call will
3899 garbage collect them. */
3900 b->loc = NULL;
3901
3902 if (context == inf_starting)
3903 {
3904 /* Reset val field to force reread of starting value in
3905 insert_breakpoints. */
3906 w->val.reset (nullptr);
3907 w->val_valid = 0;
3908 }
3909 }
3910 }
3911 break;
3912 default:
3913 break;
3914 }
3915 }
3916
3917 /* Get rid of the moribund locations. */
3918 for (bp_location *bl : moribund_locations)
3919 decref_bp_location (&bl);
3920 moribund_locations.clear ();
3921 }
3922
3923 /* These functions concern about actual breakpoints inserted in the
3924 target --- to e.g. check if we need to do decr_pc adjustment or if
3925 we need to hop over the bkpt --- so we check for address space
3926 match, not program space. */
3927
3928 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3929 exists at PC. It returns ordinary_breakpoint_here if it's an
3930 ordinary breakpoint, or permanent_breakpoint_here if it's a
3931 permanent breakpoint.
3932 - When continuing from a location with an ordinary breakpoint, we
3933 actually single step once before calling insert_breakpoints.
3934 - When continuing from a location with a permanent breakpoint, we
3935 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3936 the target, to advance the PC past the breakpoint. */
3937
3938 enum breakpoint_here
3939 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3940 {
3941 struct bp_location *bl, **blp_tmp;
3942 int any_breakpoint_here = 0;
3943
3944 ALL_BP_LOCATIONS (bl, blp_tmp)
3945 {
3946 if (bl->loc_type != bp_loc_software_breakpoint
3947 && bl->loc_type != bp_loc_hardware_breakpoint)
3948 continue;
3949
3950 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3951 if ((breakpoint_enabled (bl->owner)
3952 || bl->permanent)
3953 && breakpoint_location_address_match (bl, aspace, pc))
3954 {
3955 if (overlay_debugging
3956 && section_is_overlay (bl->section)
3957 && !section_is_mapped (bl->section))
3958 continue; /* unmapped overlay -- can't be a match */
3959 else if (bl->permanent)
3960 return permanent_breakpoint_here;
3961 else
3962 any_breakpoint_here = 1;
3963 }
3964 }
3965
3966 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3967 }
3968
3969 /* See breakpoint.h. */
3970
3971 int
3972 breakpoint_in_range_p (const address_space *aspace,
3973 CORE_ADDR addr, ULONGEST len)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976
3977 ALL_BP_LOCATIONS (bl, blp_tmp)
3978 {
3979 if (bl->loc_type != bp_loc_software_breakpoint
3980 && bl->loc_type != bp_loc_hardware_breakpoint)
3981 continue;
3982
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_range_overlap (bl, aspace,
3986 addr, len))
3987 {
3988 if (overlay_debugging
3989 && section_is_overlay (bl->section)
3990 && !section_is_mapped (bl->section))
3991 {
3992 /* Unmapped overlay -- can't be a match. */
3993 continue;
3994 }
3995
3996 return 1;
3997 }
3998 }
3999
4000 return 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4007 {
4008 for (bp_location *loc : moribund_locations)
4009 if (breakpoint_location_address_match (loc, aspace, pc))
4010 return 1;
4011
4012 return 0;
4013 }
4014
4015 /* Returns non-zero iff BL is inserted at PC, in address space
4016 ASPACE. */
4017
4018 static int
4019 bp_location_inserted_here_p (struct bp_location *bl,
4020 const address_space *aspace, CORE_ADDR pc)
4021 {
4022 if (bl->inserted
4023 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4024 aspace, pc))
4025 {
4026 if (overlay_debugging
4027 && section_is_overlay (bl->section)
4028 && !section_is_mapped (bl->section))
4029 return 0; /* unmapped overlay -- can't be a match */
4030 else
4031 return 1;
4032 }
4033 return 0;
4034 }
4035
4036 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4037
4038 int
4039 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4040 {
4041 struct bp_location **blp, **blp_tmp = NULL;
4042
4043 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4044 {
4045 struct bp_location *bl = *blp;
4046
4047 if (bl->loc_type != bp_loc_software_breakpoint
4048 && bl->loc_type != bp_loc_hardware_breakpoint)
4049 continue;
4050
4051 if (bp_location_inserted_here_p (bl, aspace, pc))
4052 return 1;
4053 }
4054 return 0;
4055 }
4056
4057 /* This function returns non-zero iff there is a software breakpoint
4058 inserted at PC. */
4059
4060 int
4061 software_breakpoint_inserted_here_p (const address_space *aspace,
4062 CORE_ADDR pc)
4063 {
4064 struct bp_location **blp, **blp_tmp = NULL;
4065
4066 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4067 {
4068 struct bp_location *bl = *blp;
4069
4070 if (bl->loc_type != bp_loc_software_breakpoint)
4071 continue;
4072
4073 if (bp_location_inserted_here_p (bl, aspace, pc))
4074 return 1;
4075 }
4076
4077 return 0;
4078 }
4079
4080 /* See breakpoint.h. */
4081
4082 int
4083 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4084 CORE_ADDR pc)
4085 {
4086 struct bp_location **blp, **blp_tmp = NULL;
4087
4088 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4089 {
4090 struct bp_location *bl = *blp;
4091
4092 if (bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098
4099 return 0;
4100 }
4101
4102 int
4103 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4104 CORE_ADDR addr, ULONGEST len)
4105 {
4106 struct breakpoint *bpt;
4107
4108 ALL_BREAKPOINTS (bpt)
4109 {
4110 struct bp_location *loc;
4111
4112 if (bpt->type != bp_hardware_watchpoint
4113 && bpt->type != bp_access_watchpoint)
4114 continue;
4115
4116 if (!breakpoint_enabled (bpt))
4117 continue;
4118
4119 for (loc = bpt->loc; loc; loc = loc->next)
4120 if (loc->pspace->aspace == aspace && loc->inserted)
4121 {
4122 CORE_ADDR l, h;
4123
4124 /* Check for intersection. */
4125 l = std::max<CORE_ADDR> (loc->address, addr);
4126 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4127 if (l < h)
4128 return 1;
4129 }
4130 }
4131 return 0;
4132 }
4133 \f
4134
4135 /* bpstat stuff. External routines' interfaces are documented
4136 in breakpoint.h. */
4137
4138 int
4139 is_catchpoint (struct breakpoint *ep)
4140 {
4141 return (ep->type == bp_catchpoint);
4142 }
4143
4144 /* Frees any storage that is part of a bpstat. Does not walk the
4145 'next' chain. */
4146
4147 bpstats::~bpstats ()
4148 {
4149 if (bp_location_at != NULL)
4150 decref_bp_location (&bp_location_at);
4151 }
4152
4153 /* Clear a bpstat so that it says we are not at any breakpoint.
4154 Also free any storage that is part of a bpstat. */
4155
4156 void
4157 bpstat_clear (bpstat *bsp)
4158 {
4159 bpstat p;
4160 bpstat q;
4161
4162 if (bsp == 0)
4163 return;
4164 p = *bsp;
4165 while (p != NULL)
4166 {
4167 q = p->next;
4168 delete p;
4169 p = q;
4170 }
4171 *bsp = NULL;
4172 }
4173
4174 bpstats::bpstats (const bpstats &other)
4175 : next (NULL),
4176 bp_location_at (other.bp_location_at),
4177 breakpoint_at (other.breakpoint_at),
4178 commands (other.commands),
4179 print (other.print),
4180 stop (other.stop),
4181 print_it (other.print_it)
4182 {
4183 if (other.old_val != NULL)
4184 old_val = release_value (value_copy (other.old_val.get ()));
4185 incref_bp_location (bp_location_at);
4186 }
4187
4188 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4189 is part of the bpstat is copied as well. */
4190
4191 bpstat
4192 bpstat_copy (bpstat bs)
4193 {
4194 bpstat p = NULL;
4195 bpstat tmp;
4196 bpstat retval = NULL;
4197
4198 if (bs == NULL)
4199 return bs;
4200
4201 for (; bs != NULL; bs = bs->next)
4202 {
4203 tmp = new bpstats (*bs);
4204
4205 if (p == NULL)
4206 /* This is the first thing in the chain. */
4207 retval = tmp;
4208 else
4209 p->next = tmp;
4210 p = tmp;
4211 }
4212 p->next = NULL;
4213 return retval;
4214 }
4215
4216 /* Find the bpstat associated with this breakpoint. */
4217
4218 bpstat
4219 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4220 {
4221 if (bsp == NULL)
4222 return NULL;
4223
4224 for (; bsp != NULL; bsp = bsp->next)
4225 {
4226 if (bsp->breakpoint_at == breakpoint)
4227 return bsp;
4228 }
4229 return NULL;
4230 }
4231
4232 /* See breakpoint.h. */
4233
4234 int
4235 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4236 {
4237 for (; bsp != NULL; bsp = bsp->next)
4238 {
4239 if (bsp->breakpoint_at == NULL)
4240 {
4241 /* A moribund location can never explain a signal other than
4242 GDB_SIGNAL_TRAP. */
4243 if (sig == GDB_SIGNAL_TRAP)
4244 return 1;
4245 }
4246 else
4247 {
4248 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4249 sig))
4250 return 1;
4251 }
4252 }
4253
4254 return 0;
4255 }
4256
4257 /* Put in *NUM the breakpoint number of the first breakpoint we are
4258 stopped at. *BSP upon return is a bpstat which points to the
4259 remaining breakpoints stopped at (but which is not guaranteed to be
4260 good for anything but further calls to bpstat_num).
4261
4262 Return 0 if passed a bpstat which does not indicate any breakpoints.
4263 Return -1 if stopped at a breakpoint that has been deleted since
4264 we set it.
4265 Return 1 otherwise. */
4266
4267 int
4268 bpstat_num (bpstat *bsp, int *num)
4269 {
4270 struct breakpoint *b;
4271
4272 if ((*bsp) == NULL)
4273 return 0; /* No more breakpoint values */
4274
4275 /* We assume we'll never have several bpstats that correspond to a
4276 single breakpoint -- otherwise, this function might return the
4277 same number more than once and this will look ugly. */
4278 b = (*bsp)->breakpoint_at;
4279 *bsp = (*bsp)->next;
4280 if (b == NULL)
4281 return -1; /* breakpoint that's been deleted since */
4282
4283 *num = b->number; /* We have its number */
4284 return 1;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 void
4290 bpstat_clear_actions (void)
4291 {
4292 bpstat bs;
4293
4294 if (inferior_ptid == null_ptid)
4295 return;
4296
4297 thread_info *tp = inferior_thread ();
4298 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4299 {
4300 bs->commands = NULL;
4301 bs->old_val.reset (nullptr);
4302 }
4303 }
4304
4305 /* Called when a command is about to proceed the inferior. */
4306
4307 static void
4308 breakpoint_about_to_proceed (void)
4309 {
4310 if (inferior_ptid != null_ptid)
4311 {
4312 struct thread_info *tp = inferior_thread ();
4313
4314 /* Allow inferior function calls in breakpoint commands to not
4315 interrupt the command list. When the call finishes
4316 successfully, the inferior will be standing at the same
4317 breakpoint as if nothing happened. */
4318 if (tp->control.in_infcall)
4319 return;
4320 }
4321
4322 breakpoint_proceeded = 1;
4323 }
4324
4325 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4326 or its equivalent. */
4327
4328 static int
4329 command_line_is_silent (struct command_line *cmd)
4330 {
4331 return cmd && (strcmp ("silent", cmd->line) == 0);
4332 }
4333
4334 /* Execute all the commands associated with all the breakpoints at
4335 this location. Any of these commands could cause the process to
4336 proceed beyond this point, etc. We look out for such changes by
4337 checking the global "breakpoint_proceeded" after each command.
4338
4339 Returns true if a breakpoint command resumed the inferior. In that
4340 case, it is the caller's responsibility to recall it again with the
4341 bpstat of the current thread. */
4342
4343 static int
4344 bpstat_do_actions_1 (bpstat *bsp)
4345 {
4346 bpstat bs;
4347 int again = 0;
4348
4349 /* Avoid endless recursion if a `source' command is contained
4350 in bs->commands. */
4351 if (executing_breakpoint_commands)
4352 return 0;
4353
4354 scoped_restore save_executing
4355 = make_scoped_restore (&executing_breakpoint_commands, 1);
4356
4357 scoped_restore preventer = prevent_dont_repeat ();
4358
4359 /* This pointer will iterate over the list of bpstat's. */
4360 bs = *bsp;
4361
4362 breakpoint_proceeded = 0;
4363 for (; bs != NULL; bs = bs->next)
4364 {
4365 struct command_line *cmd = NULL;
4366
4367 /* Take ownership of the BSP's command tree, if it has one.
4368
4369 The command tree could legitimately contain commands like
4370 'step' and 'next', which call clear_proceed_status, which
4371 frees stop_bpstat's command tree. To make sure this doesn't
4372 free the tree we're executing out from under us, we need to
4373 take ownership of the tree ourselves. Since a given bpstat's
4374 commands are only executed once, we don't need to copy it; we
4375 can clear the pointer in the bpstat, and make sure we free
4376 the tree when we're done. */
4377 counted_command_line ccmd = bs->commands;
4378 bs->commands = NULL;
4379 if (ccmd != NULL)
4380 cmd = ccmd.get ();
4381 if (command_line_is_silent (cmd))
4382 {
4383 /* The action has been already done by bpstat_stop_status. */
4384 cmd = cmd->next;
4385 }
4386
4387 while (cmd != NULL)
4388 {
4389 execute_control_command (cmd);
4390
4391 if (breakpoint_proceeded)
4392 break;
4393 else
4394 cmd = cmd->next;
4395 }
4396
4397 if (breakpoint_proceeded)
4398 {
4399 if (current_ui->async)
4400 /* If we are in async mode, then the target might be still
4401 running, not stopped at any breakpoint, so nothing for
4402 us to do here -- just return to the event loop. */
4403 ;
4404 else
4405 /* In sync mode, when execute_control_command returns
4406 we're already standing on the next breakpoint.
4407 Breakpoint commands for that stop were not run, since
4408 execute_command does not run breakpoint commands --
4409 only command_line_handler does, but that one is not
4410 involved in execution of breakpoint commands. So, we
4411 can now execute breakpoint commands. It should be
4412 noted that making execute_command do bpstat actions is
4413 not an option -- in this case we'll have recursive
4414 invocation of bpstat for each breakpoint with a
4415 command, and can easily blow up GDB stack. Instead, we
4416 return true, which will trigger the caller to recall us
4417 with the new stop_bpstat. */
4418 again = 1;
4419 break;
4420 }
4421 }
4422 return again;
4423 }
4424
4425 /* Helper for bpstat_do_actions. Get the current thread, if there's
4426 one, is alive and has execution. Return NULL otherwise. */
4427
4428 static thread_info *
4429 get_bpstat_thread ()
4430 {
4431 if (inferior_ptid == null_ptid || !target_has_execution)
4432 return NULL;
4433
4434 thread_info *tp = inferior_thread ();
4435 if (tp->state == THREAD_EXITED || tp->executing)
4436 return NULL;
4437 return tp;
4438 }
4439
4440 void
4441 bpstat_do_actions (void)
4442 {
4443 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4444 thread_info *tp;
4445
4446 /* Do any commands attached to breakpoint we are stopped at. */
4447 while ((tp = get_bpstat_thread ()) != NULL)
4448 {
4449 /* Since in sync mode, bpstat_do_actions may resume the
4450 inferior, and only return when it is stopped at the next
4451 breakpoint, we keep doing breakpoint actions until it returns
4452 false to indicate the inferior was not resumed. */
4453 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4454 break;
4455 }
4456
4457 cleanup_if_error.release ();
4458 }
4459
4460 /* Print out the (old or new) value associated with a watchpoint. */
4461
4462 static void
4463 watchpoint_value_print (struct value *val, struct ui_file *stream)
4464 {
4465 if (val == NULL)
4466 fprintf_unfiltered (stream, _("<unreadable>"));
4467 else
4468 {
4469 struct value_print_options opts;
4470 get_user_print_options (&opts);
4471 value_print (val, stream, &opts);
4472 }
4473 }
4474
4475 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4476 debugging multiple threads. */
4477
4478 void
4479 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4480 {
4481 if (uiout->is_mi_like_p ())
4482 return;
4483
4484 uiout->text ("\n");
4485
4486 if (show_thread_that_caused_stop ())
4487 {
4488 const char *name;
4489 struct thread_info *thr = inferior_thread ();
4490
4491 uiout->text ("Thread ");
4492 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4493
4494 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4495 if (name != NULL)
4496 {
4497 uiout->text (" \"");
4498 uiout->field_fmt ("name", "%s", name);
4499 uiout->text ("\"");
4500 }
4501
4502 uiout->text (" hit ");
4503 }
4504 }
4505
4506 /* Generic routine for printing messages indicating why we
4507 stopped. The behavior of this function depends on the value
4508 'print_it' in the bpstat structure. Under some circumstances we
4509 may decide not to print anything here and delegate the task to
4510 normal_stop(). */
4511
4512 static enum print_stop_action
4513 print_bp_stop_message (bpstat bs)
4514 {
4515 switch (bs->print_it)
4516 {
4517 case print_it_noop:
4518 /* Nothing should be printed for this bpstat entry. */
4519 return PRINT_UNKNOWN;
4520 break;
4521
4522 case print_it_done:
4523 /* We still want to print the frame, but we already printed the
4524 relevant messages. */
4525 return PRINT_SRC_AND_LOC;
4526 break;
4527
4528 case print_it_normal:
4529 {
4530 struct breakpoint *b = bs->breakpoint_at;
4531
4532 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4533 which has since been deleted. */
4534 if (b == NULL)
4535 return PRINT_UNKNOWN;
4536
4537 /* Normal case. Call the breakpoint's print_it method. */
4538 return b->ops->print_it (bs);
4539 }
4540 break;
4541
4542 default:
4543 internal_error (__FILE__, __LINE__,
4544 _("print_bp_stop_message: unrecognized enum value"));
4545 break;
4546 }
4547 }
4548
4549 /* A helper function that prints a shared library stopped event. */
4550
4551 static void
4552 print_solib_event (int is_catchpoint)
4553 {
4554 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4555 bool any_added = !current_program_space->added_solibs.empty ();
4556
4557 if (!is_catchpoint)
4558 {
4559 if (any_added || any_deleted)
4560 current_uiout->text (_("Stopped due to shared library event:\n"));
4561 else
4562 current_uiout->text (_("Stopped due to shared library event (no "
4563 "libraries added or removed)\n"));
4564 }
4565
4566 if (current_uiout->is_mi_like_p ())
4567 current_uiout->field_string ("reason",
4568 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4569
4570 if (any_deleted)
4571 {
4572 current_uiout->text (_(" Inferior unloaded "));
4573 ui_out_emit_list list_emitter (current_uiout, "removed");
4574 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4575 {
4576 const std::string &name = current_program_space->deleted_solibs[ix];
4577
4578 if (ix > 0)
4579 current_uiout->text (" ");
4580 current_uiout->field_string ("library", name);
4581 current_uiout->text ("\n");
4582 }
4583 }
4584
4585 if (any_added)
4586 {
4587 current_uiout->text (_(" Inferior loaded "));
4588 ui_out_emit_list list_emitter (current_uiout, "added");
4589 bool first = true;
4590 for (so_list *iter : current_program_space->added_solibs)
4591 {
4592 if (!first)
4593 current_uiout->text (" ");
4594 first = false;
4595 current_uiout->field_string ("library", iter->so_name);
4596 current_uiout->text ("\n");
4597 }
4598 }
4599 }
4600
4601 /* Print a message indicating what happened. This is called from
4602 normal_stop(). The input to this routine is the head of the bpstat
4603 list - a list of the eventpoints that caused this stop. KIND is
4604 the target_waitkind for the stopping event. This
4605 routine calls the generic print routine for printing a message
4606 about reasons for stopping. This will print (for example) the
4607 "Breakpoint n," part of the output. The return value of this
4608 routine is one of:
4609
4610 PRINT_UNKNOWN: Means we printed nothing.
4611 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4612 code to print the location. An example is
4613 "Breakpoint 1, " which should be followed by
4614 the location.
4615 PRINT_SRC_ONLY: Means we printed something, but there is no need
4616 to also print the location part of the message.
4617 An example is the catch/throw messages, which
4618 don't require a location appended to the end.
4619 PRINT_NOTHING: We have done some printing and we don't need any
4620 further info to be printed. */
4621
4622 enum print_stop_action
4623 bpstat_print (bpstat bs, int kind)
4624 {
4625 enum print_stop_action val;
4626
4627 /* Maybe another breakpoint in the chain caused us to stop.
4628 (Currently all watchpoints go on the bpstat whether hit or not.
4629 That probably could (should) be changed, provided care is taken
4630 with respect to bpstat_explains_signal). */
4631 for (; bs; bs = bs->next)
4632 {
4633 val = print_bp_stop_message (bs);
4634 if (val == PRINT_SRC_ONLY
4635 || val == PRINT_SRC_AND_LOC
4636 || val == PRINT_NOTHING)
4637 return val;
4638 }
4639
4640 /* If we had hit a shared library event breakpoint,
4641 print_bp_stop_message would print out this message. If we hit an
4642 OS-level shared library event, do the same thing. */
4643 if (kind == TARGET_WAITKIND_LOADED)
4644 {
4645 print_solib_event (0);
4646 return PRINT_NOTHING;
4647 }
4648
4649 /* We reached the end of the chain, or we got a null BS to start
4650 with and nothing was printed. */
4651 return PRINT_UNKNOWN;
4652 }
4653
4654 /* Evaluate the boolean expression EXP and return the result. */
4655
4656 static bool
4657 breakpoint_cond_eval (expression *exp)
4658 {
4659 struct value *mark = value_mark ();
4660 bool res = value_true (evaluate_expression (exp));
4661
4662 value_free_to_mark (mark);
4663 return res;
4664 }
4665
4666 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4667
4668 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4669 : next (NULL),
4670 bp_location_at (bl),
4671 breakpoint_at (bl->owner),
4672 commands (NULL),
4673 print (0),
4674 stop (0),
4675 print_it (print_it_normal)
4676 {
4677 incref_bp_location (bl);
4678 **bs_link_pointer = this;
4679 *bs_link_pointer = &next;
4680 }
4681
4682 bpstats::bpstats ()
4683 : next (NULL),
4684 bp_location_at (NULL),
4685 breakpoint_at (NULL),
4686 commands (NULL),
4687 print (0),
4688 stop (0),
4689 print_it (print_it_normal)
4690 {
4691 }
4692 \f
4693 /* The target has stopped with waitstatus WS. Check if any hardware
4694 watchpoints have triggered, according to the target. */
4695
4696 int
4697 watchpoints_triggered (struct target_waitstatus *ws)
4698 {
4699 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4700 CORE_ADDR addr;
4701 struct breakpoint *b;
4702
4703 if (!stopped_by_watchpoint)
4704 {
4705 /* We were not stopped by a watchpoint. Mark all watchpoints
4706 as not triggered. */
4707 ALL_BREAKPOINTS (b)
4708 if (is_hardware_watchpoint (b))
4709 {
4710 struct watchpoint *w = (struct watchpoint *) b;
4711
4712 w->watchpoint_triggered = watch_triggered_no;
4713 }
4714
4715 return 0;
4716 }
4717
4718 if (!target_stopped_data_address (current_top_target (), &addr))
4719 {
4720 /* We were stopped by a watchpoint, but we don't know where.
4721 Mark all watchpoints as unknown. */
4722 ALL_BREAKPOINTS (b)
4723 if (is_hardware_watchpoint (b))
4724 {
4725 struct watchpoint *w = (struct watchpoint *) b;
4726
4727 w->watchpoint_triggered = watch_triggered_unknown;
4728 }
4729
4730 return 1;
4731 }
4732
4733 /* The target could report the data address. Mark watchpoints
4734 affected by this data address as triggered, and all others as not
4735 triggered. */
4736
4737 ALL_BREAKPOINTS (b)
4738 if (is_hardware_watchpoint (b))
4739 {
4740 struct watchpoint *w = (struct watchpoint *) b;
4741 struct bp_location *loc;
4742
4743 w->watchpoint_triggered = watch_triggered_no;
4744 for (loc = b->loc; loc; loc = loc->next)
4745 {
4746 if (is_masked_watchpoint (b))
4747 {
4748 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4749 CORE_ADDR start = loc->address & w->hw_wp_mask;
4750
4751 if (newaddr == start)
4752 {
4753 w->watchpoint_triggered = watch_triggered_yes;
4754 break;
4755 }
4756 }
4757 /* Exact match not required. Within range is sufficient. */
4758 else if (target_watchpoint_addr_within_range (current_top_target (),
4759 addr, loc->address,
4760 loc->length))
4761 {
4762 w->watchpoint_triggered = watch_triggered_yes;
4763 break;
4764 }
4765 }
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Possible return values for watchpoint_check. */
4772 enum wp_check_result
4773 {
4774 /* The watchpoint has been deleted. */
4775 WP_DELETED = 1,
4776
4777 /* The value has changed. */
4778 WP_VALUE_CHANGED = 2,
4779
4780 /* The value has not changed. */
4781 WP_VALUE_NOT_CHANGED = 3,
4782
4783 /* Ignore this watchpoint, no matter if the value changed or not. */
4784 WP_IGNORE = 4,
4785 };
4786
4787 #define BP_TEMPFLAG 1
4788 #define BP_HARDWAREFLAG 2
4789
4790 /* Evaluate watchpoint condition expression and check if its value
4791 changed. */
4792
4793 static wp_check_result
4794 watchpoint_check (bpstat bs)
4795 {
4796 struct watchpoint *b;
4797 struct frame_info *fr;
4798 int within_current_scope;
4799
4800 /* BS is built from an existing struct breakpoint. */
4801 gdb_assert (bs->breakpoint_at != NULL);
4802 b = (struct watchpoint *) bs->breakpoint_at;
4803
4804 /* If this is a local watchpoint, we only want to check if the
4805 watchpoint frame is in scope if the current thread is the thread
4806 that was used to create the watchpoint. */
4807 if (!watchpoint_in_thread_scope (b))
4808 return WP_IGNORE;
4809
4810 if (b->exp_valid_block == NULL)
4811 within_current_scope = 1;
4812 else
4813 {
4814 struct frame_info *frame = get_current_frame ();
4815 struct gdbarch *frame_arch = get_frame_arch (frame);
4816 CORE_ADDR frame_pc = get_frame_pc (frame);
4817
4818 /* stack_frame_destroyed_p() returns a non-zero value if we're
4819 still in the function but the stack frame has already been
4820 invalidated. Since we can't rely on the values of local
4821 variables after the stack has been destroyed, we are treating
4822 the watchpoint in that state as `not changed' without further
4823 checking. Don't mark watchpoints as changed if the current
4824 frame is in an epilogue - even if they are in some other
4825 frame, our view of the stack is likely to be wrong and
4826 frame_find_by_id could error out. */
4827 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4828 return WP_IGNORE;
4829
4830 fr = frame_find_by_id (b->watchpoint_frame);
4831 within_current_scope = (fr != NULL);
4832
4833 /* If we've gotten confused in the unwinder, we might have
4834 returned a frame that can't describe this variable. */
4835 if (within_current_scope)
4836 {
4837 struct symbol *function;
4838
4839 function = get_frame_function (fr);
4840 if (function == NULL
4841 || !contained_in (b->exp_valid_block,
4842 SYMBOL_BLOCK_VALUE (function)))
4843 within_current_scope = 0;
4844 }
4845
4846 if (within_current_scope)
4847 /* If we end up stopping, the current frame will get selected
4848 in normal_stop. So this call to select_frame won't affect
4849 the user. */
4850 select_frame (fr);
4851 }
4852
4853 if (within_current_scope)
4854 {
4855 /* We use value_{,free_to_}mark because it could be a *long*
4856 time before we return to the command level and call
4857 free_all_values. We can't call free_all_values because we
4858 might be in the middle of evaluating a function call. */
4859
4860 int pc = 0;
4861 struct value *mark;
4862 struct value *new_val;
4863
4864 if (is_masked_watchpoint (b))
4865 /* Since we don't know the exact trigger address (from
4866 stopped_data_address), just tell the user we've triggered
4867 a mask watchpoint. */
4868 return WP_VALUE_CHANGED;
4869
4870 mark = value_mark ();
4871 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4872
4873 if (b->val_bitsize != 0)
4874 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4875
4876 /* We use value_equal_contents instead of value_equal because
4877 the latter coerces an array to a pointer, thus comparing just
4878 the address of the array instead of its contents. This is
4879 not what we want. */
4880 if ((b->val != NULL) != (new_val != NULL)
4881 || (b->val != NULL && !value_equal_contents (b->val.get (),
4882 new_val)))
4883 {
4884 bs->old_val = b->val;
4885 b->val = release_value (new_val);
4886 b->val_valid = 1;
4887 if (new_val != NULL)
4888 value_free_to_mark (mark);
4889 return WP_VALUE_CHANGED;
4890 }
4891 else
4892 {
4893 /* Nothing changed. */
4894 value_free_to_mark (mark);
4895 return WP_VALUE_NOT_CHANGED;
4896 }
4897 }
4898 else
4899 {
4900 /* This seems like the only logical thing to do because
4901 if we temporarily ignored the watchpoint, then when
4902 we reenter the block in which it is valid it contains
4903 garbage (in the case of a function, it may have two
4904 garbage values, one before and one after the prologue).
4905 So we can't even detect the first assignment to it and
4906 watch after that (since the garbage may or may not equal
4907 the first value assigned). */
4908 /* We print all the stop information in
4909 breakpoint_ops->print_it, but in this case, by the time we
4910 call breakpoint_ops->print_it this bp will be deleted
4911 already. So we have no choice but print the information
4912 here. */
4913
4914 SWITCH_THRU_ALL_UIS ()
4915 {
4916 struct ui_out *uiout = current_uiout;
4917
4918 if (uiout->is_mi_like_p ())
4919 uiout->field_string
4920 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4921 uiout->text ("\nWatchpoint ");
4922 uiout->field_int ("wpnum", b->number);
4923 uiout->text (" deleted because the program has left the block in\n"
4924 "which its expression is valid.\n");
4925 }
4926
4927 /* Make sure the watchpoint's commands aren't executed. */
4928 b->commands = NULL;
4929 watchpoint_del_at_next_stop (b);
4930
4931 return WP_DELETED;
4932 }
4933 }
4934
4935 /* Return true if it looks like target has stopped due to hitting
4936 breakpoint location BL. This function does not check if we should
4937 stop, only if BL explains the stop. */
4938
4939 static int
4940 bpstat_check_location (const struct bp_location *bl,
4941 const address_space *aspace, CORE_ADDR bp_addr,
4942 const struct target_waitstatus *ws)
4943 {
4944 struct breakpoint *b = bl->owner;
4945
4946 /* BL is from an existing breakpoint. */
4947 gdb_assert (b != NULL);
4948
4949 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4950 }
4951
4952 /* Determine if the watched values have actually changed, and we
4953 should stop. If not, set BS->stop to 0. */
4954
4955 static void
4956 bpstat_check_watchpoint (bpstat bs)
4957 {
4958 const struct bp_location *bl;
4959 struct watchpoint *b;
4960
4961 /* BS is built for existing struct breakpoint. */
4962 bl = bs->bp_location_at;
4963 gdb_assert (bl != NULL);
4964 b = (struct watchpoint *) bs->breakpoint_at;
4965 gdb_assert (b != NULL);
4966
4967 {
4968 int must_check_value = 0;
4969
4970 if (b->type == bp_watchpoint)
4971 /* For a software watchpoint, we must always check the
4972 watched value. */
4973 must_check_value = 1;
4974 else if (b->watchpoint_triggered == watch_triggered_yes)
4975 /* We have a hardware watchpoint (read, write, or access)
4976 and the target earlier reported an address watched by
4977 this watchpoint. */
4978 must_check_value = 1;
4979 else if (b->watchpoint_triggered == watch_triggered_unknown
4980 && b->type == bp_hardware_watchpoint)
4981 /* We were stopped by a hardware watchpoint, but the target could
4982 not report the data address. We must check the watchpoint's
4983 value. Access and read watchpoints are out of luck; without
4984 a data address, we can't figure it out. */
4985 must_check_value = 1;
4986
4987 if (must_check_value)
4988 {
4989 wp_check_result e;
4990
4991 try
4992 {
4993 e = watchpoint_check (bs);
4994 }
4995 catch (const gdb_exception &ex)
4996 {
4997 exception_fprintf (gdb_stderr, ex,
4998 "Error evaluating expression "
4999 "for watchpoint %d\n",
5000 b->number);
5001
5002 SWITCH_THRU_ALL_UIS ()
5003 {
5004 printf_filtered (_("Watchpoint %d deleted.\n"),
5005 b->number);
5006 }
5007 watchpoint_del_at_next_stop (b);
5008 e = WP_DELETED;
5009 }
5010
5011 switch (e)
5012 {
5013 case WP_DELETED:
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 /* Stop. */
5017 break;
5018 case WP_IGNORE:
5019 bs->print_it = print_it_noop;
5020 bs->stop = 0;
5021 break;
5022 case WP_VALUE_CHANGED:
5023 if (b->type == bp_read_watchpoint)
5024 {
5025 /* There are two cases to consider here:
5026
5027 1. We're watching the triggered memory for reads.
5028 In that case, trust the target, and always report
5029 the watchpoint hit to the user. Even though
5030 reads don't cause value changes, the value may
5031 have changed since the last time it was read, and
5032 since we're not trapping writes, we will not see
5033 those, and as such we should ignore our notion of
5034 old value.
5035
5036 2. We're watching the triggered memory for both
5037 reads and writes. There are two ways this may
5038 happen:
5039
5040 2.1. This is a target that can't break on data
5041 reads only, but can break on accesses (reads or
5042 writes), such as e.g., x86. We detect this case
5043 at the time we try to insert read watchpoints.
5044
5045 2.2. Otherwise, the target supports read
5046 watchpoints, but, the user set an access or write
5047 watchpoint watching the same memory as this read
5048 watchpoint.
5049
5050 If we're watching memory writes as well as reads,
5051 ignore watchpoint hits when we find that the
5052 value hasn't changed, as reads don't cause
5053 changes. This still gives false positives when
5054 the program writes the same value to memory as
5055 what there was already in memory (we will confuse
5056 it for a read), but it's much better than
5057 nothing. */
5058
5059 int other_write_watchpoint = 0;
5060
5061 if (bl->watchpoint_type == hw_read)
5062 {
5063 struct breakpoint *other_b;
5064
5065 ALL_BREAKPOINTS (other_b)
5066 if (other_b->type == bp_hardware_watchpoint
5067 || other_b->type == bp_access_watchpoint)
5068 {
5069 struct watchpoint *other_w =
5070 (struct watchpoint *) other_b;
5071
5072 if (other_w->watchpoint_triggered
5073 == watch_triggered_yes)
5074 {
5075 other_write_watchpoint = 1;
5076 break;
5077 }
5078 }
5079 }
5080
5081 if (other_write_watchpoint
5082 || bl->watchpoint_type == hw_access)
5083 {
5084 /* We're watching the same memory for writes,
5085 and the value changed since the last time we
5086 updated it, so this trap must be for a write.
5087 Ignore it. */
5088 bs->print_it = print_it_noop;
5089 bs->stop = 0;
5090 }
5091 }
5092 break;
5093 case WP_VALUE_NOT_CHANGED:
5094 if (b->type == bp_hardware_watchpoint
5095 || b->type == bp_watchpoint)
5096 {
5097 /* Don't stop: write watchpoints shouldn't fire if
5098 the value hasn't changed. */
5099 bs->print_it = print_it_noop;
5100 bs->stop = 0;
5101 }
5102 /* Stop. */
5103 break;
5104 default:
5105 /* Can't happen. */
5106 break;
5107 }
5108 }
5109 else /* must_check_value == 0 */
5110 {
5111 /* This is a case where some watchpoint(s) triggered, but
5112 not at the address of this watchpoint, or else no
5113 watchpoint triggered after all. So don't print
5114 anything for this watchpoint. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 }
5120
5121 /* For breakpoints that are currently marked as telling gdb to stop,
5122 check conditions (condition proper, frame, thread and ignore count)
5123 of breakpoint referred to by BS. If we should not stop for this
5124 breakpoint, set BS->stop to 0. */
5125
5126 static void
5127 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5128 {
5129 const struct bp_location *bl;
5130 struct breakpoint *b;
5131 /* Assume stop. */
5132 bool condition_result = true;
5133 struct expression *cond;
5134
5135 gdb_assert (bs->stop);
5136
5137 /* BS is built for existing struct breakpoint. */
5138 bl = bs->bp_location_at;
5139 gdb_assert (bl != NULL);
5140 b = bs->breakpoint_at;
5141 gdb_assert (b != NULL);
5142
5143 /* Even if the target evaluated the condition on its end and notified GDB, we
5144 need to do so again since GDB does not know if we stopped due to a
5145 breakpoint or a single step breakpoint. */
5146
5147 if (frame_id_p (b->frame_id)
5148 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5149 {
5150 bs->stop = 0;
5151 return;
5152 }
5153
5154 /* If this is a thread/task-specific breakpoint, don't waste cpu
5155 evaluating the condition if this isn't the specified
5156 thread/task. */
5157 if ((b->thread != -1 && b->thread != thread->global_num)
5158 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5159 {
5160 bs->stop = 0;
5161 return;
5162 }
5163
5164 /* Evaluate extension language breakpoints that have a "stop" method
5165 implemented. */
5166 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5167
5168 if (is_watchpoint (b))
5169 {
5170 struct watchpoint *w = (struct watchpoint *) b;
5171
5172 cond = w->cond_exp.get ();
5173 }
5174 else
5175 cond = bl->cond.get ();
5176
5177 if (cond && b->disposition != disp_del_at_next_stop)
5178 {
5179 int within_current_scope = 1;
5180 struct watchpoint * w;
5181
5182 /* We use value_mark and value_free_to_mark because it could
5183 be a long time before we return to the command level and
5184 call free_all_values. We can't call free_all_values
5185 because we might be in the middle of evaluating a
5186 function call. */
5187 struct value *mark = value_mark ();
5188
5189 if (is_watchpoint (b))
5190 w = (struct watchpoint *) b;
5191 else
5192 w = NULL;
5193
5194 /* Need to select the frame, with all that implies so that
5195 the conditions will have the right context. Because we
5196 use the frame, we will not see an inlined function's
5197 variables when we arrive at a breakpoint at the start
5198 of the inlined function; the current frame will be the
5199 call site. */
5200 if (w == NULL || w->cond_exp_valid_block == NULL)
5201 select_frame (get_current_frame ());
5202 else
5203 {
5204 struct frame_info *frame;
5205
5206 /* For local watchpoint expressions, which particular
5207 instance of a local is being watched matters, so we
5208 keep track of the frame to evaluate the expression
5209 in. To evaluate the condition however, it doesn't
5210 really matter which instantiation of the function
5211 where the condition makes sense triggers the
5212 watchpoint. This allows an expression like "watch
5213 global if q > 10" set in `func', catch writes to
5214 global on all threads that call `func', or catch
5215 writes on all recursive calls of `func' by a single
5216 thread. We simply always evaluate the condition in
5217 the innermost frame that's executing where it makes
5218 sense to evaluate the condition. It seems
5219 intuitive. */
5220 frame = block_innermost_frame (w->cond_exp_valid_block);
5221 if (frame != NULL)
5222 select_frame (frame);
5223 else
5224 within_current_scope = 0;
5225 }
5226 if (within_current_scope)
5227 {
5228 try
5229 {
5230 condition_result = breakpoint_cond_eval (cond);
5231 }
5232 catch (const gdb_exception &ex)
5233 {
5234 exception_fprintf (gdb_stderr, ex,
5235 "Error in testing breakpoint condition:\n");
5236 }
5237 }
5238 else
5239 {
5240 warning (_("Watchpoint condition cannot be tested "
5241 "in the current scope"));
5242 /* If we failed to set the right context for this
5243 watchpoint, unconditionally report it. */
5244 }
5245 /* FIXME-someday, should give breakpoint #. */
5246 value_free_to_mark (mark);
5247 }
5248
5249 if (cond && !condition_result)
5250 {
5251 bs->stop = 0;
5252 }
5253 else if (b->ignore_count > 0)
5254 {
5255 b->ignore_count--;
5256 bs->stop = 0;
5257 /* Increase the hit count even though we don't stop. */
5258 ++(b->hit_count);
5259 gdb::observers::breakpoint_modified.notify (b);
5260 }
5261 }
5262
5263 /* Returns true if we need to track moribund locations of LOC's type
5264 on the current target. */
5265
5266 static int
5267 need_moribund_for_location_type (struct bp_location *loc)
5268 {
5269 return ((loc->loc_type == bp_loc_software_breakpoint
5270 && !target_supports_stopped_by_sw_breakpoint ())
5271 || (loc->loc_type == bp_loc_hardware_breakpoint
5272 && !target_supports_stopped_by_hw_breakpoint ()));
5273 }
5274
5275 /* See breakpoint.h. */
5276
5277 bpstat
5278 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5279 const struct target_waitstatus *ws)
5280 {
5281 struct breakpoint *b;
5282 bpstat bs_head = NULL, *bs_link = &bs_head;
5283
5284 ALL_BREAKPOINTS (b)
5285 {
5286 if (!breakpoint_enabled (b))
5287 continue;
5288
5289 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5290 {
5291 /* For hardware watchpoints, we look only at the first
5292 location. The watchpoint_check function will work on the
5293 entire expression, not the individual locations. For
5294 read watchpoints, the watchpoints_triggered function has
5295 checked all locations already. */
5296 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5297 break;
5298
5299 if (!bl->enabled || bl->shlib_disabled)
5300 continue;
5301
5302 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5303 continue;
5304
5305 /* Come here if it's a watchpoint, or if the break address
5306 matches. */
5307
5308 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5309 explain stop. */
5310
5311 /* Assume we stop. Should we find a watchpoint that is not
5312 actually triggered, or if the condition of the breakpoint
5313 evaluates as false, we'll reset 'stop' to 0. */
5314 bs->stop = 1;
5315 bs->print = 1;
5316
5317 /* If this is a scope breakpoint, mark the associated
5318 watchpoint as triggered so that we will handle the
5319 out-of-scope event. We'll get to the watchpoint next
5320 iteration. */
5321 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5322 {
5323 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5324
5325 w->watchpoint_triggered = watch_triggered_yes;
5326 }
5327 }
5328 }
5329
5330 /* Check if a moribund breakpoint explains the stop. */
5331 if (!target_supports_stopped_by_sw_breakpoint ()
5332 || !target_supports_stopped_by_hw_breakpoint ())
5333 {
5334 for (bp_location *loc : moribund_locations)
5335 {
5336 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5337 && need_moribund_for_location_type (loc))
5338 {
5339 bpstat bs = new bpstats (loc, &bs_link);
5340 /* For hits of moribund locations, we should just proceed. */
5341 bs->stop = 0;
5342 bs->print = 0;
5343 bs->print_it = print_it_noop;
5344 }
5345 }
5346 }
5347
5348 return bs_head;
5349 }
5350
5351 /* See breakpoint.h. */
5352
5353 bpstat
5354 bpstat_stop_status (const address_space *aspace,
5355 CORE_ADDR bp_addr, thread_info *thread,
5356 const struct target_waitstatus *ws,
5357 bpstat stop_chain)
5358 {
5359 struct breakpoint *b = NULL;
5360 /* First item of allocated bpstat's. */
5361 bpstat bs_head = stop_chain;
5362 bpstat bs;
5363 int need_remove_insert;
5364 int removed_any;
5365
5366 /* First, build the bpstat chain with locations that explain a
5367 target stop, while being careful to not set the target running,
5368 as that may invalidate locations (in particular watchpoint
5369 locations are recreated). Resuming will happen here with
5370 breakpoint conditions or watchpoint expressions that include
5371 inferior function calls. */
5372 if (bs_head == NULL)
5373 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5374
5375 /* A bit of special processing for shlib breakpoints. We need to
5376 process solib loading here, so that the lists of loaded and
5377 unloaded libraries are correct before we handle "catch load" and
5378 "catch unload". */
5379 for (bs = bs_head; bs != NULL; bs = bs->next)
5380 {
5381 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5382 {
5383 handle_solib_event ();
5384 break;
5385 }
5386 }
5387
5388 /* Now go through the locations that caused the target to stop, and
5389 check whether we're interested in reporting this stop to higher
5390 layers, or whether we should resume the target transparently. */
5391
5392 removed_any = 0;
5393
5394 for (bs = bs_head; bs != NULL; bs = bs->next)
5395 {
5396 if (!bs->stop)
5397 continue;
5398
5399 b = bs->breakpoint_at;
5400 b->ops->check_status (bs);
5401 if (bs->stop)
5402 {
5403 bpstat_check_breakpoint_conditions (bs, thread);
5404
5405 if (bs->stop)
5406 {
5407 ++(b->hit_count);
5408 gdb::observers::breakpoint_modified.notify (b);
5409
5410 /* We will stop here. */
5411 if (b->disposition == disp_disable)
5412 {
5413 --(b->enable_count);
5414 if (b->enable_count <= 0)
5415 b->enable_state = bp_disabled;
5416 removed_any = 1;
5417 }
5418 if (b->silent)
5419 bs->print = 0;
5420 bs->commands = b->commands;
5421 if (command_line_is_silent (bs->commands
5422 ? bs->commands.get () : NULL))
5423 bs->print = 0;
5424
5425 b->ops->after_condition_true (bs);
5426 }
5427
5428 }
5429
5430 /* Print nothing for this entry if we don't stop or don't
5431 print. */
5432 if (!bs->stop || !bs->print)
5433 bs->print_it = print_it_noop;
5434 }
5435
5436 /* If we aren't stopping, the value of some hardware watchpoint may
5437 not have changed, but the intermediate memory locations we are
5438 watching may have. Don't bother if we're stopping; this will get
5439 done later. */
5440 need_remove_insert = 0;
5441 if (! bpstat_causes_stop (bs_head))
5442 for (bs = bs_head; bs != NULL; bs = bs->next)
5443 if (!bs->stop
5444 && bs->breakpoint_at
5445 && is_hardware_watchpoint (bs->breakpoint_at))
5446 {
5447 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5448
5449 update_watchpoint (w, 0 /* don't reparse. */);
5450 need_remove_insert = 1;
5451 }
5452
5453 if (need_remove_insert)
5454 update_global_location_list (UGLL_MAY_INSERT);
5455 else if (removed_any)
5456 update_global_location_list (UGLL_DONT_INSERT);
5457
5458 return bs_head;
5459 }
5460
5461 static void
5462 handle_jit_event (void)
5463 {
5464 struct frame_info *frame;
5465 struct gdbarch *gdbarch;
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5469
5470 /* Switch terminal for any messages produced by
5471 breakpoint_re_set. */
5472 target_terminal::ours_for_output ();
5473
5474 frame = get_current_frame ();
5475 gdbarch = get_frame_arch (frame);
5476
5477 jit_event_handler (gdbarch);
5478
5479 target_terminal::inferior ();
5480 }
5481
5482 /* Prepare WHAT final decision for infrun. */
5483
5484 /* Decide what infrun needs to do with this bpstat. */
5485
5486 struct bpstat_what
5487 bpstat_what (bpstat bs_head)
5488 {
5489 struct bpstat_what retval;
5490 bpstat bs;
5491
5492 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5493 retval.call_dummy = STOP_NONE;
5494 retval.is_longjmp = 0;
5495
5496 for (bs = bs_head; bs != NULL; bs = bs->next)
5497 {
5498 /* Extract this BS's action. After processing each BS, we check
5499 if its action overrides all we've seem so far. */
5500 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5501 enum bptype bptype;
5502
5503 if (bs->breakpoint_at == NULL)
5504 {
5505 /* I suspect this can happen if it was a momentary
5506 breakpoint which has since been deleted. */
5507 bptype = bp_none;
5508 }
5509 else
5510 bptype = bs->breakpoint_at->type;
5511
5512 switch (bptype)
5513 {
5514 case bp_none:
5515 break;
5516 case bp_breakpoint:
5517 case bp_hardware_breakpoint:
5518 case bp_single_step:
5519 case bp_until:
5520 case bp_finish:
5521 case bp_shlib_event:
5522 if (bs->stop)
5523 {
5524 if (bs->print)
5525 this_action = BPSTAT_WHAT_STOP_NOISY;
5526 else
5527 this_action = BPSTAT_WHAT_STOP_SILENT;
5528 }
5529 else
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 break;
5532 case bp_watchpoint:
5533 case bp_hardware_watchpoint:
5534 case bp_read_watchpoint:
5535 case bp_access_watchpoint:
5536 if (bs->stop)
5537 {
5538 if (bs->print)
5539 this_action = BPSTAT_WHAT_STOP_NOISY;
5540 else
5541 this_action = BPSTAT_WHAT_STOP_SILENT;
5542 }
5543 else
5544 {
5545 /* There was a watchpoint, but we're not stopping.
5546 This requires no further action. */
5547 }
5548 break;
5549 case bp_longjmp:
5550 case bp_longjmp_call_dummy:
5551 case bp_exception:
5552 if (bs->stop)
5553 {
5554 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5555 retval.is_longjmp = bptype != bp_exception;
5556 }
5557 else
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 break;
5560 case bp_longjmp_resume:
5561 case bp_exception_resume:
5562 if (bs->stop)
5563 {
5564 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5565 retval.is_longjmp = bptype == bp_longjmp_resume;
5566 }
5567 else
5568 this_action = BPSTAT_WHAT_SINGLE;
5569 break;
5570 case bp_step_resume:
5571 if (bs->stop)
5572 this_action = BPSTAT_WHAT_STEP_RESUME;
5573 else
5574 {
5575 /* It is for the wrong frame. */
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 }
5578 break;
5579 case bp_hp_step_resume:
5580 if (bs->stop)
5581 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5582 else
5583 {
5584 /* It is for the wrong frame. */
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 }
5587 break;
5588 case bp_watchpoint_scope:
5589 case bp_thread_event:
5590 case bp_overlay_event:
5591 case bp_longjmp_master:
5592 case bp_std_terminate_master:
5593 case bp_exception_master:
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_catchpoint:
5597 if (bs->stop)
5598 {
5599 if (bs->print)
5600 this_action = BPSTAT_WHAT_STOP_NOISY;
5601 else
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 }
5604 else
5605 {
5606 /* Some catchpoints are implemented with breakpoints.
5607 For those, we need to step over the breakpoint. */
5608 if (bs->bp_location_at->loc_type != bp_loc_other)
5609 this_action = BPSTAT_WHAT_SINGLE;
5610 }
5611 break;
5612 case bp_jit_event:
5613 this_action = BPSTAT_WHAT_SINGLE;
5614 break;
5615 case bp_call_dummy:
5616 /* Make sure the action is stop (silent or noisy),
5617 so infrun.c pops the dummy frame. */
5618 retval.call_dummy = STOP_STACK_DUMMY;
5619 this_action = BPSTAT_WHAT_STOP_SILENT;
5620 break;
5621 case bp_std_terminate:
5622 /* Make sure the action is stop (silent or noisy),
5623 so infrun.c pops the dummy frame. */
5624 retval.call_dummy = STOP_STD_TERMINATE;
5625 this_action = BPSTAT_WHAT_STOP_SILENT;
5626 break;
5627 case bp_tracepoint:
5628 case bp_fast_tracepoint:
5629 case bp_static_tracepoint:
5630 /* Tracepoint hits should not be reported back to GDB, and
5631 if one got through somehow, it should have been filtered
5632 out already. */
5633 internal_error (__FILE__, __LINE__,
5634 _("bpstat_what: tracepoint encountered"));
5635 break;
5636 case bp_gnu_ifunc_resolver:
5637 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5638 this_action = BPSTAT_WHAT_SINGLE;
5639 break;
5640 case bp_gnu_ifunc_resolver_return:
5641 /* The breakpoint will be removed, execution will restart from the
5642 PC of the former breakpoint. */
5643 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5644 break;
5645
5646 case bp_dprintf:
5647 if (bs->stop)
5648 this_action = BPSTAT_WHAT_STOP_SILENT;
5649 else
5650 this_action = BPSTAT_WHAT_SINGLE;
5651 break;
5652
5653 default:
5654 internal_error (__FILE__, __LINE__,
5655 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5656 }
5657
5658 retval.main_action = std::max (retval.main_action, this_action);
5659 }
5660
5661 return retval;
5662 }
5663
5664 void
5665 bpstat_run_callbacks (bpstat bs_head)
5666 {
5667 bpstat bs;
5668
5669 for (bs = bs_head; bs != NULL; bs = bs->next)
5670 {
5671 struct breakpoint *b = bs->breakpoint_at;
5672
5673 if (b == NULL)
5674 continue;
5675 switch (b->type)
5676 {
5677 case bp_jit_event:
5678 handle_jit_event ();
5679 break;
5680 case bp_gnu_ifunc_resolver:
5681 gnu_ifunc_resolver_stop (b);
5682 break;
5683 case bp_gnu_ifunc_resolver_return:
5684 gnu_ifunc_resolver_return_stop (b);
5685 break;
5686 }
5687 }
5688 }
5689
5690 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5691 without hardware support). This isn't related to a specific bpstat,
5692 just to things like whether watchpoints are set. */
5693
5694 int
5695 bpstat_should_step (void)
5696 {
5697 struct breakpoint *b;
5698
5699 ALL_BREAKPOINTS (b)
5700 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5701 return 1;
5702 return 0;
5703 }
5704
5705 int
5706 bpstat_causes_stop (bpstat bs)
5707 {
5708 for (; bs != NULL; bs = bs->next)
5709 if (bs->stop)
5710 return 1;
5711
5712 return 0;
5713 }
5714
5715 \f
5716
5717 /* Compute a string of spaces suitable to indent the next line
5718 so it starts at the position corresponding to the table column
5719 named COL_NAME in the currently active table of UIOUT. */
5720
5721 static char *
5722 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5723 {
5724 static char wrap_indent[80];
5725 int i, total_width, width, align;
5726 const char *text;
5727
5728 total_width = 0;
5729 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5730 {
5731 if (strcmp (text, col_name) == 0)
5732 {
5733 gdb_assert (total_width < sizeof wrap_indent);
5734 memset (wrap_indent, ' ', total_width);
5735 wrap_indent[total_width] = 0;
5736
5737 return wrap_indent;
5738 }
5739
5740 total_width += width + 1;
5741 }
5742
5743 return NULL;
5744 }
5745
5746 /* Determine if the locations of this breakpoint will have their conditions
5747 evaluated by the target, host or a mix of both. Returns the following:
5748
5749 "host": Host evals condition.
5750 "host or target": Host or Target evals condition.
5751 "target": Target evals condition.
5752 */
5753
5754 static const char *
5755 bp_condition_evaluator (struct breakpoint *b)
5756 {
5757 struct bp_location *bl;
5758 char host_evals = 0;
5759 char target_evals = 0;
5760
5761 if (!b)
5762 return NULL;
5763
5764 if (!is_breakpoint (b))
5765 return NULL;
5766
5767 if (gdb_evaluates_breakpoint_condition_p ()
5768 || !target_supports_evaluation_of_breakpoint_conditions ())
5769 return condition_evaluation_host;
5770
5771 for (bl = b->loc; bl; bl = bl->next)
5772 {
5773 if (bl->cond_bytecode)
5774 target_evals++;
5775 else
5776 host_evals++;
5777 }
5778
5779 if (host_evals && target_evals)
5780 return condition_evaluation_both;
5781 else if (target_evals)
5782 return condition_evaluation_target;
5783 else
5784 return condition_evaluation_host;
5785 }
5786
5787 /* Determine the breakpoint location's condition evaluator. This is
5788 similar to bp_condition_evaluator, but for locations. */
5789
5790 static const char *
5791 bp_location_condition_evaluator (struct bp_location *bl)
5792 {
5793 if (bl && !is_breakpoint (bl->owner))
5794 return NULL;
5795
5796 if (gdb_evaluates_breakpoint_condition_p ()
5797 || !target_supports_evaluation_of_breakpoint_conditions ())
5798 return condition_evaluation_host;
5799
5800 if (bl && bl->cond_bytecode)
5801 return condition_evaluation_target;
5802 else
5803 return condition_evaluation_host;
5804 }
5805
5806 /* Print the LOC location out of the list of B->LOC locations. */
5807
5808 static void
5809 print_breakpoint_location (struct breakpoint *b,
5810 struct bp_location *loc)
5811 {
5812 struct ui_out *uiout = current_uiout;
5813
5814 scoped_restore_current_program_space restore_pspace;
5815
5816 if (loc != NULL && loc->shlib_disabled)
5817 loc = NULL;
5818
5819 if (loc != NULL)
5820 set_current_program_space (loc->pspace);
5821
5822 if (b->display_canonical)
5823 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5824 else if (loc && loc->symtab)
5825 {
5826 const struct symbol *sym = loc->symbol;
5827
5828 if (sym)
5829 {
5830 uiout->text ("in ");
5831 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5832 ui_out_style_kind::FUNCTION);
5833 uiout->text (" ");
5834 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5835 uiout->text ("at ");
5836 }
5837 uiout->field_string ("file",
5838 symtab_to_filename_for_display (loc->symtab),
5839 ui_out_style_kind::FILE);
5840 uiout->text (":");
5841
5842 if (uiout->is_mi_like_p ())
5843 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5844
5845 uiout->field_int ("line", loc->line_number);
5846 }
5847 else if (loc)
5848 {
5849 string_file stb;
5850
5851 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5852 demangle, "");
5853 uiout->field_stream ("at", stb);
5854 }
5855 else
5856 {
5857 uiout->field_string ("pending",
5858 event_location_to_string (b->location.get ()));
5859 /* If extra_string is available, it could be holding a condition
5860 or dprintf arguments. In either case, make sure it is printed,
5861 too, but only for non-MI streams. */
5862 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5863 {
5864 if (b->type == bp_dprintf)
5865 uiout->text (",");
5866 else
5867 uiout->text (" ");
5868 uiout->text (b->extra_string);
5869 }
5870 }
5871
5872 if (loc && is_breakpoint (b)
5873 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5874 && bp_condition_evaluator (b) == condition_evaluation_both)
5875 {
5876 uiout->text (" (");
5877 uiout->field_string ("evaluated-by",
5878 bp_location_condition_evaluator (loc));
5879 uiout->text (")");
5880 }
5881 }
5882
5883 static const char *
5884 bptype_string (enum bptype type)
5885 {
5886 struct ep_type_description
5887 {
5888 enum bptype type;
5889 const char *description;
5890 };
5891 static struct ep_type_description bptypes[] =
5892 {
5893 {bp_none, "?deleted?"},
5894 {bp_breakpoint, "breakpoint"},
5895 {bp_hardware_breakpoint, "hw breakpoint"},
5896 {bp_single_step, "sw single-step"},
5897 {bp_until, "until"},
5898 {bp_finish, "finish"},
5899 {bp_watchpoint, "watchpoint"},
5900 {bp_hardware_watchpoint, "hw watchpoint"},
5901 {bp_read_watchpoint, "read watchpoint"},
5902 {bp_access_watchpoint, "acc watchpoint"},
5903 {bp_longjmp, "longjmp"},
5904 {bp_longjmp_resume, "longjmp resume"},
5905 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5906 {bp_exception, "exception"},
5907 {bp_exception_resume, "exception resume"},
5908 {bp_step_resume, "step resume"},
5909 {bp_hp_step_resume, "high-priority step resume"},
5910 {bp_watchpoint_scope, "watchpoint scope"},
5911 {bp_call_dummy, "call dummy"},
5912 {bp_std_terminate, "std::terminate"},
5913 {bp_shlib_event, "shlib events"},
5914 {bp_thread_event, "thread events"},
5915 {bp_overlay_event, "overlay events"},
5916 {bp_longjmp_master, "longjmp master"},
5917 {bp_std_terminate_master, "std::terminate master"},
5918 {bp_exception_master, "exception master"},
5919 {bp_catchpoint, "catchpoint"},
5920 {bp_tracepoint, "tracepoint"},
5921 {bp_fast_tracepoint, "fast tracepoint"},
5922 {bp_static_tracepoint, "static tracepoint"},
5923 {bp_dprintf, "dprintf"},
5924 {bp_jit_event, "jit events"},
5925 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5926 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5927 };
5928
5929 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5930 || ((int) type != bptypes[(int) type].type))
5931 internal_error (__FILE__, __LINE__,
5932 _("bptypes table does not describe type #%d."),
5933 (int) type);
5934
5935 return bptypes[(int) type].description;
5936 }
5937
5938 /* For MI, output a field named 'thread-groups' with a list as the value.
5939 For CLI, prefix the list with the string 'inf'. */
5940
5941 static void
5942 output_thread_groups (struct ui_out *uiout,
5943 const char *field_name,
5944 const std::vector<int> &inf_nums,
5945 int mi_only)
5946 {
5947 int is_mi = uiout->is_mi_like_p ();
5948
5949 /* For backward compatibility, don't display inferiors in CLI unless
5950 there are several. Always display them for MI. */
5951 if (!is_mi && mi_only)
5952 return;
5953
5954 ui_out_emit_list list_emitter (uiout, field_name);
5955
5956 for (size_t i = 0; i < inf_nums.size (); i++)
5957 {
5958 if (is_mi)
5959 {
5960 char mi_group[10];
5961
5962 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5963 uiout->field_string (NULL, mi_group);
5964 }
5965 else
5966 {
5967 if (i == 0)
5968 uiout->text (" inf ");
5969 else
5970 uiout->text (", ");
5971
5972 uiout->text (plongest (inf_nums[i]));
5973 }
5974 }
5975 }
5976
5977 /* Print B to gdb_stdout. */
5978
5979 static void
5980 print_one_breakpoint_location (struct breakpoint *b,
5981 struct bp_location *loc,
5982 int loc_number,
5983 struct bp_location **last_loc,
5984 int allflag)
5985 {
5986 struct command_line *l;
5987 static char bpenables[] = "nynny";
5988
5989 struct ui_out *uiout = current_uiout;
5990 int header_of_multiple = 0;
5991 int part_of_multiple = (loc != NULL);
5992 struct value_print_options opts;
5993
5994 get_user_print_options (&opts);
5995
5996 gdb_assert (!loc || loc_number != 0);
5997 /* See comment in print_one_breakpoint concerning treatment of
5998 breakpoints with single disabled location. */
5999 if (loc == NULL
6000 && (b->loc != NULL
6001 && (b->loc->next != NULL || !b->loc->enabled)))
6002 header_of_multiple = 1;
6003 if (loc == NULL)
6004 loc = b->loc;
6005
6006 annotate_record ();
6007
6008 /* 1 */
6009 annotate_field (0);
6010 if (part_of_multiple)
6011 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6012 else
6013 uiout->field_int ("number", b->number);
6014
6015 /* 2 */
6016 annotate_field (1);
6017 if (part_of_multiple)
6018 uiout->field_skip ("type");
6019 else
6020 uiout->field_string ("type", bptype_string (b->type));
6021
6022 /* 3 */
6023 annotate_field (2);
6024 if (part_of_multiple)
6025 uiout->field_skip ("disp");
6026 else
6027 uiout->field_string ("disp", bpdisp_text (b->disposition));
6028
6029 /* 4 */
6030 annotate_field (3);
6031 if (part_of_multiple)
6032 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6033 else
6034 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6035
6036 /* 5 and 6 */
6037 if (b->ops != NULL && b->ops->print_one != NULL)
6038 b->ops->print_one (b, last_loc);
6039 else
6040 switch (b->type)
6041 {
6042 case bp_none:
6043 internal_error (__FILE__, __LINE__,
6044 _("print_one_breakpoint: bp_none encountered\n"));
6045 break;
6046
6047 case bp_watchpoint:
6048 case bp_hardware_watchpoint:
6049 case bp_read_watchpoint:
6050 case bp_access_watchpoint:
6051 {
6052 struct watchpoint *w = (struct watchpoint *) b;
6053
6054 /* Field 4, the address, is omitted (which makes the columns
6055 not line up too nicely with the headers, but the effect
6056 is relatively readable). */
6057 if (opts.addressprint)
6058 uiout->field_skip ("addr");
6059 annotate_field (5);
6060 uiout->field_string ("what", w->exp_string);
6061 }
6062 break;
6063
6064 case bp_breakpoint:
6065 case bp_hardware_breakpoint:
6066 case bp_single_step:
6067 case bp_until:
6068 case bp_finish:
6069 case bp_longjmp:
6070 case bp_longjmp_resume:
6071 case bp_longjmp_call_dummy:
6072 case bp_exception:
6073 case bp_exception_resume:
6074 case bp_step_resume:
6075 case bp_hp_step_resume:
6076 case bp_watchpoint_scope:
6077 case bp_call_dummy:
6078 case bp_std_terminate:
6079 case bp_shlib_event:
6080 case bp_thread_event:
6081 case bp_overlay_event:
6082 case bp_longjmp_master:
6083 case bp_std_terminate_master:
6084 case bp_exception_master:
6085 case bp_tracepoint:
6086 case bp_fast_tracepoint:
6087 case bp_static_tracepoint:
6088 case bp_dprintf:
6089 case bp_jit_event:
6090 case bp_gnu_ifunc_resolver:
6091 case bp_gnu_ifunc_resolver_return:
6092 if (opts.addressprint)
6093 {
6094 annotate_field (4);
6095 if (header_of_multiple)
6096 uiout->field_string ("addr", "<MULTIPLE>");
6097 else if (b->loc == NULL || loc->shlib_disabled)
6098 uiout->field_string ("addr", "<PENDING>");
6099 else
6100 uiout->field_core_addr ("addr",
6101 loc->gdbarch, loc->address);
6102 }
6103 annotate_field (5);
6104 if (!header_of_multiple)
6105 print_breakpoint_location (b, loc);
6106 if (b->loc)
6107 *last_loc = b->loc;
6108 break;
6109 }
6110
6111
6112 if (loc != NULL && !header_of_multiple)
6113 {
6114 std::vector<int> inf_nums;
6115 int mi_only = 1;
6116
6117 for (inferior *inf : all_inferiors ())
6118 {
6119 if (inf->pspace == loc->pspace)
6120 inf_nums.push_back (inf->num);
6121 }
6122
6123 /* For backward compatibility, don't display inferiors in CLI unless
6124 there are several. Always display for MI. */
6125 if (allflag
6126 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6127 && (number_of_program_spaces () > 1
6128 || number_of_inferiors () > 1)
6129 /* LOC is for existing B, it cannot be in
6130 moribund_locations and thus having NULL OWNER. */
6131 && loc->owner->type != bp_catchpoint))
6132 mi_only = 0;
6133 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6134 }
6135
6136 if (!part_of_multiple)
6137 {
6138 if (b->thread != -1)
6139 {
6140 /* FIXME: This seems to be redundant and lost here; see the
6141 "stop only in" line a little further down. */
6142 uiout->text (" thread ");
6143 uiout->field_int ("thread", b->thread);
6144 }
6145 else if (b->task != 0)
6146 {
6147 uiout->text (" task ");
6148 uiout->field_int ("task", b->task);
6149 }
6150 }
6151
6152 uiout->text ("\n");
6153
6154 if (!part_of_multiple)
6155 b->ops->print_one_detail (b, uiout);
6156
6157 if (part_of_multiple && frame_id_p (b->frame_id))
6158 {
6159 annotate_field (6);
6160 uiout->text ("\tstop only in stack frame at ");
6161 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6162 the frame ID. */
6163 uiout->field_core_addr ("frame",
6164 b->gdbarch, b->frame_id.stack_addr);
6165 uiout->text ("\n");
6166 }
6167
6168 if (!part_of_multiple && b->cond_string)
6169 {
6170 annotate_field (7);
6171 if (is_tracepoint (b))
6172 uiout->text ("\ttrace only if ");
6173 else
6174 uiout->text ("\tstop only if ");
6175 uiout->field_string ("cond", b->cond_string);
6176
6177 /* Print whether the target is doing the breakpoint's condition
6178 evaluation. If GDB is doing the evaluation, don't print anything. */
6179 if (is_breakpoint (b)
6180 && breakpoint_condition_evaluation_mode ()
6181 == condition_evaluation_target)
6182 {
6183 uiout->text (" (");
6184 uiout->field_string ("evaluated-by",
6185 bp_condition_evaluator (b));
6186 uiout->text (" evals)");
6187 }
6188 uiout->text ("\n");
6189 }
6190
6191 if (!part_of_multiple && b->thread != -1)
6192 {
6193 /* FIXME should make an annotation for this. */
6194 uiout->text ("\tstop only in thread ");
6195 if (uiout->is_mi_like_p ())
6196 uiout->field_int ("thread", b->thread);
6197 else
6198 {
6199 struct thread_info *thr = find_thread_global_id (b->thread);
6200
6201 uiout->field_string ("thread", print_thread_id (thr));
6202 }
6203 uiout->text ("\n");
6204 }
6205
6206 if (!part_of_multiple)
6207 {
6208 if (b->hit_count)
6209 {
6210 /* FIXME should make an annotation for this. */
6211 if (is_catchpoint (b))
6212 uiout->text ("\tcatchpoint");
6213 else if (is_tracepoint (b))
6214 uiout->text ("\ttracepoint");
6215 else
6216 uiout->text ("\tbreakpoint");
6217 uiout->text (" already hit ");
6218 uiout->field_int ("times", b->hit_count);
6219 if (b->hit_count == 1)
6220 uiout->text (" time\n");
6221 else
6222 uiout->text (" times\n");
6223 }
6224 else
6225 {
6226 /* Output the count also if it is zero, but only if this is mi. */
6227 if (uiout->is_mi_like_p ())
6228 uiout->field_int ("times", b->hit_count);
6229 }
6230 }
6231
6232 if (!part_of_multiple && b->ignore_count)
6233 {
6234 annotate_field (8);
6235 uiout->text ("\tignore next ");
6236 uiout->field_int ("ignore", b->ignore_count);
6237 uiout->text (" hits\n");
6238 }
6239
6240 /* Note that an enable count of 1 corresponds to "enable once"
6241 behavior, which is reported by the combination of enablement and
6242 disposition, so we don't need to mention it here. */
6243 if (!part_of_multiple && b->enable_count > 1)
6244 {
6245 annotate_field (8);
6246 uiout->text ("\tdisable after ");
6247 /* Tweak the wording to clarify that ignore and enable counts
6248 are distinct, and have additive effect. */
6249 if (b->ignore_count)
6250 uiout->text ("additional ");
6251 else
6252 uiout->text ("next ");
6253 uiout->field_int ("enable", b->enable_count);
6254 uiout->text (" hits\n");
6255 }
6256
6257 if (!part_of_multiple && is_tracepoint (b))
6258 {
6259 struct tracepoint *tp = (struct tracepoint *) b;
6260
6261 if (tp->traceframe_usage)
6262 {
6263 uiout->text ("\ttrace buffer usage ");
6264 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6265 uiout->text (" bytes\n");
6266 }
6267 }
6268
6269 l = b->commands ? b->commands.get () : NULL;
6270 if (!part_of_multiple && l)
6271 {
6272 annotate_field (9);
6273 ui_out_emit_tuple tuple_emitter (uiout, "script");
6274 print_command_lines (uiout, l, 4);
6275 }
6276
6277 if (is_tracepoint (b))
6278 {
6279 struct tracepoint *t = (struct tracepoint *) b;
6280
6281 if (!part_of_multiple && t->pass_count)
6282 {
6283 annotate_field (10);
6284 uiout->text ("\tpass count ");
6285 uiout->field_int ("pass", t->pass_count);
6286 uiout->text (" \n");
6287 }
6288
6289 /* Don't display it when tracepoint or tracepoint location is
6290 pending. */
6291 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6292 {
6293 annotate_field (11);
6294
6295 if (uiout->is_mi_like_p ())
6296 uiout->field_string ("installed",
6297 loc->inserted ? "y" : "n");
6298 else
6299 {
6300 if (loc->inserted)
6301 uiout->text ("\t");
6302 else
6303 uiout->text ("\tnot ");
6304 uiout->text ("installed on target\n");
6305 }
6306 }
6307 }
6308
6309 if (uiout->is_mi_like_p () && !part_of_multiple)
6310 {
6311 if (is_watchpoint (b))
6312 {
6313 struct watchpoint *w = (struct watchpoint *) b;
6314
6315 uiout->field_string ("original-location", w->exp_string);
6316 }
6317 else if (b->location != NULL
6318 && event_location_to_string (b->location.get ()) != NULL)
6319 uiout->field_string ("original-location",
6320 event_location_to_string (b->location.get ()));
6321 }
6322 }
6323
6324 /* See breakpoint.h. */
6325
6326 bool fix_multi_location_breakpoint_output_globally = false;
6327
6328 static void
6329 print_one_breakpoint (struct breakpoint *b,
6330 struct bp_location **last_loc,
6331 int allflag)
6332 {
6333 struct ui_out *uiout = current_uiout;
6334 bool use_fixed_output
6335 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6336 || fix_multi_location_breakpoint_output_globally);
6337
6338 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6339 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6340
6341 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6342 are outside. */
6343 if (!use_fixed_output)
6344 bkpt_tuple_emitter.reset ();
6345
6346 /* If this breakpoint has custom print function,
6347 it's already printed. Otherwise, print individual
6348 locations, if any. */
6349 if (b->ops == NULL || b->ops->print_one == NULL)
6350 {
6351 /* If breakpoint has a single location that is disabled, we
6352 print it as if it had several locations, since otherwise it's
6353 hard to represent "breakpoint enabled, location disabled"
6354 situation.
6355
6356 Note that while hardware watchpoints have several locations
6357 internally, that's not a property exposed to user. */
6358 if (b->loc
6359 && !is_hardware_watchpoint (b)
6360 && (b->loc->next || !b->loc->enabled))
6361 {
6362 gdb::optional<ui_out_emit_list> locations_list;
6363
6364 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6365 MI record. For later versions, place breakpoint locations in a
6366 list. */
6367 if (uiout->is_mi_like_p () && use_fixed_output)
6368 locations_list.emplace (uiout, "locations");
6369
6370 int n = 1;
6371 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6372 {
6373 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6374 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6375 }
6376 }
6377 }
6378 }
6379
6380 static int
6381 breakpoint_address_bits (struct breakpoint *b)
6382 {
6383 int print_address_bits = 0;
6384 struct bp_location *loc;
6385
6386 /* Software watchpoints that aren't watching memory don't have an
6387 address to print. */
6388 if (is_no_memory_software_watchpoint (b))
6389 return 0;
6390
6391 for (loc = b->loc; loc; loc = loc->next)
6392 {
6393 int addr_bit;
6394
6395 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6396 if (addr_bit > print_address_bits)
6397 print_address_bits = addr_bit;
6398 }
6399
6400 return print_address_bits;
6401 }
6402
6403 /* See breakpoint.h. */
6404
6405 void
6406 print_breakpoint (breakpoint *b)
6407 {
6408 struct bp_location *dummy_loc = NULL;
6409 print_one_breakpoint (b, &dummy_loc, 0);
6410 }
6411
6412 /* Return true if this breakpoint was set by the user, false if it is
6413 internal or momentary. */
6414
6415 int
6416 user_breakpoint_p (struct breakpoint *b)
6417 {
6418 return b->number > 0;
6419 }
6420
6421 /* See breakpoint.h. */
6422
6423 int
6424 pending_breakpoint_p (struct breakpoint *b)
6425 {
6426 return b->loc == NULL;
6427 }
6428
6429 /* Print information on user settable breakpoint (watchpoint, etc)
6430 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6431 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6432 FILTER is non-NULL, call it on each breakpoint and only include the
6433 ones for which it returns non-zero. Return the total number of
6434 breakpoints listed. */
6435
6436 static int
6437 breakpoint_1 (const char *args, int allflag,
6438 int (*filter) (const struct breakpoint *))
6439 {
6440 struct breakpoint *b;
6441 struct bp_location *last_loc = NULL;
6442 int nr_printable_breakpoints;
6443 struct value_print_options opts;
6444 int print_address_bits = 0;
6445 int print_type_col_width = 14;
6446 struct ui_out *uiout = current_uiout;
6447
6448 get_user_print_options (&opts);
6449
6450 /* Compute the number of rows in the table, as well as the size
6451 required for address fields. */
6452 nr_printable_breakpoints = 0;
6453 ALL_BREAKPOINTS (b)
6454 {
6455 /* If we have a filter, only list the breakpoints it accepts. */
6456 if (filter && !filter (b))
6457 continue;
6458
6459 /* If we have an "args" string, it is a list of breakpoints to
6460 accept. Skip the others. */
6461 if (args != NULL && *args != '\0')
6462 {
6463 if (allflag && parse_and_eval_long (args) != b->number)
6464 continue;
6465 if (!allflag && !number_is_in_list (args, b->number))
6466 continue;
6467 }
6468
6469 if (allflag || user_breakpoint_p (b))
6470 {
6471 int addr_bit, type_len;
6472
6473 addr_bit = breakpoint_address_bits (b);
6474 if (addr_bit > print_address_bits)
6475 print_address_bits = addr_bit;
6476
6477 type_len = strlen (bptype_string (b->type));
6478 if (type_len > print_type_col_width)
6479 print_type_col_width = type_len;
6480
6481 nr_printable_breakpoints++;
6482 }
6483 }
6484
6485 {
6486 ui_out_emit_table table_emitter (uiout,
6487 opts.addressprint ? 6 : 5,
6488 nr_printable_breakpoints,
6489 "BreakpointTable");
6490
6491 if (nr_printable_breakpoints > 0)
6492 annotate_breakpoints_headers ();
6493 if (nr_printable_breakpoints > 0)
6494 annotate_field (0);
6495 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6496 if (nr_printable_breakpoints > 0)
6497 annotate_field (1);
6498 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6499 if (nr_printable_breakpoints > 0)
6500 annotate_field (2);
6501 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6502 if (nr_printable_breakpoints > 0)
6503 annotate_field (3);
6504 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6505 if (opts.addressprint)
6506 {
6507 if (nr_printable_breakpoints > 0)
6508 annotate_field (4);
6509 if (print_address_bits <= 32)
6510 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6511 else
6512 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6513 }
6514 if (nr_printable_breakpoints > 0)
6515 annotate_field (5);
6516 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6517 uiout->table_body ();
6518 if (nr_printable_breakpoints > 0)
6519 annotate_breakpoints_table ();
6520
6521 ALL_BREAKPOINTS (b)
6522 {
6523 QUIT;
6524 /* If we have a filter, only list the breakpoints it accepts. */
6525 if (filter && !filter (b))
6526 continue;
6527
6528 /* If we have an "args" string, it is a list of breakpoints to
6529 accept. Skip the others. */
6530
6531 if (args != NULL && *args != '\0')
6532 {
6533 if (allflag) /* maintenance info breakpoint */
6534 {
6535 if (parse_and_eval_long (args) != b->number)
6536 continue;
6537 }
6538 else /* all others */
6539 {
6540 if (!number_is_in_list (args, b->number))
6541 continue;
6542 }
6543 }
6544 /* We only print out user settable breakpoints unless the
6545 allflag is set. */
6546 if (allflag || user_breakpoint_p (b))
6547 print_one_breakpoint (b, &last_loc, allflag);
6548 }
6549 }
6550
6551 if (nr_printable_breakpoints == 0)
6552 {
6553 /* If there's a filter, let the caller decide how to report
6554 empty list. */
6555 if (!filter)
6556 {
6557 if (args == NULL || *args == '\0')
6558 uiout->message ("No breakpoints or watchpoints.\n");
6559 else
6560 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6561 args);
6562 }
6563 }
6564 else
6565 {
6566 if (last_loc && !server_command)
6567 set_next_address (last_loc->gdbarch, last_loc->address);
6568 }
6569
6570 /* FIXME? Should this be moved up so that it is only called when
6571 there have been breakpoints? */
6572 annotate_breakpoints_table_end ();
6573
6574 return nr_printable_breakpoints;
6575 }
6576
6577 /* Display the value of default-collect in a way that is generally
6578 compatible with the breakpoint list. */
6579
6580 static void
6581 default_collect_info (void)
6582 {
6583 struct ui_out *uiout = current_uiout;
6584
6585 /* If it has no value (which is frequently the case), say nothing; a
6586 message like "No default-collect." gets in user's face when it's
6587 not wanted. */
6588 if (!*default_collect)
6589 return;
6590
6591 /* The following phrase lines up nicely with per-tracepoint collect
6592 actions. */
6593 uiout->text ("default collect ");
6594 uiout->field_string ("default-collect", default_collect);
6595 uiout->text (" \n");
6596 }
6597
6598 static void
6599 info_breakpoints_command (const char *args, int from_tty)
6600 {
6601 breakpoint_1 (args, 0, NULL);
6602
6603 default_collect_info ();
6604 }
6605
6606 static void
6607 info_watchpoints_command (const char *args, int from_tty)
6608 {
6609 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6610 struct ui_out *uiout = current_uiout;
6611
6612 if (num_printed == 0)
6613 {
6614 if (args == NULL || *args == '\0')
6615 uiout->message ("No watchpoints.\n");
6616 else
6617 uiout->message ("No watchpoint matching '%s'.\n", args);
6618 }
6619 }
6620
6621 static void
6622 maintenance_info_breakpoints (const char *args, int from_tty)
6623 {
6624 breakpoint_1 (args, 1, NULL);
6625
6626 default_collect_info ();
6627 }
6628
6629 static int
6630 breakpoint_has_pc (struct breakpoint *b,
6631 struct program_space *pspace,
6632 CORE_ADDR pc, struct obj_section *section)
6633 {
6634 struct bp_location *bl = b->loc;
6635
6636 for (; bl; bl = bl->next)
6637 {
6638 if (bl->pspace == pspace
6639 && bl->address == pc
6640 && (!overlay_debugging || bl->section == section))
6641 return 1;
6642 }
6643 return 0;
6644 }
6645
6646 /* Print a message describing any user-breakpoints set at PC. This
6647 concerns with logical breakpoints, so we match program spaces, not
6648 address spaces. */
6649
6650 static void
6651 describe_other_breakpoints (struct gdbarch *gdbarch,
6652 struct program_space *pspace, CORE_ADDR pc,
6653 struct obj_section *section, int thread)
6654 {
6655 int others = 0;
6656 struct breakpoint *b;
6657
6658 ALL_BREAKPOINTS (b)
6659 others += (user_breakpoint_p (b)
6660 && breakpoint_has_pc (b, pspace, pc, section));
6661 if (others > 0)
6662 {
6663 if (others == 1)
6664 printf_filtered (_("Note: breakpoint "));
6665 else /* if (others == ???) */
6666 printf_filtered (_("Note: breakpoints "));
6667 ALL_BREAKPOINTS (b)
6668 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6669 {
6670 others--;
6671 printf_filtered ("%d", b->number);
6672 if (b->thread == -1 && thread != -1)
6673 printf_filtered (" (all threads)");
6674 else if (b->thread != -1)
6675 printf_filtered (" (thread %d)", b->thread);
6676 printf_filtered ("%s%s ",
6677 ((b->enable_state == bp_disabled
6678 || b->enable_state == bp_call_disabled)
6679 ? " (disabled)"
6680 : ""),
6681 (others > 1) ? ","
6682 : ((others == 1) ? " and" : ""));
6683 }
6684 printf_filtered (_("also set at pc "));
6685 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6686 printf_filtered (".\n");
6687 }
6688 }
6689 \f
6690
6691 /* Return true iff it is meaningful to use the address member of LOC.
6692 For some breakpoint types, the locations' address members are
6693 irrelevant and it makes no sense to attempt to compare them to
6694 other addresses (or use them for any other purpose either).
6695
6696 More specifically, software watchpoints and catchpoints that are
6697 not backed by breakpoints always have a zero valued location
6698 address and we don't want to mark breakpoints of any of these types
6699 to be a duplicate of an actual breakpoint location at address
6700 zero. */
6701
6702 static bool
6703 bl_address_is_meaningful (bp_location *loc)
6704 {
6705 return loc->loc_type != bp_loc_other;
6706 }
6707
6708 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6709 true if LOC1 and LOC2 represent the same watchpoint location. */
6710
6711 static int
6712 watchpoint_locations_match (struct bp_location *loc1,
6713 struct bp_location *loc2)
6714 {
6715 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6716 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6717
6718 /* Both of them must exist. */
6719 gdb_assert (w1 != NULL);
6720 gdb_assert (w2 != NULL);
6721
6722 /* If the target can evaluate the condition expression in hardware,
6723 then we we need to insert both watchpoints even if they are at
6724 the same place. Otherwise the watchpoint will only trigger when
6725 the condition of whichever watchpoint was inserted evaluates to
6726 true, not giving a chance for GDB to check the condition of the
6727 other watchpoint. */
6728 if ((w1->cond_exp
6729 && target_can_accel_watchpoint_condition (loc1->address,
6730 loc1->length,
6731 loc1->watchpoint_type,
6732 w1->cond_exp.get ()))
6733 || (w2->cond_exp
6734 && target_can_accel_watchpoint_condition (loc2->address,
6735 loc2->length,
6736 loc2->watchpoint_type,
6737 w2->cond_exp.get ())))
6738 return 0;
6739
6740 /* Note that this checks the owner's type, not the location's. In
6741 case the target does not support read watchpoints, but does
6742 support access watchpoints, we'll have bp_read_watchpoint
6743 watchpoints with hw_access locations. Those should be considered
6744 duplicates of hw_read locations. The hw_read locations will
6745 become hw_access locations later. */
6746 return (loc1->owner->type == loc2->owner->type
6747 && loc1->pspace->aspace == loc2->pspace->aspace
6748 && loc1->address == loc2->address
6749 && loc1->length == loc2->length);
6750 }
6751
6752 /* See breakpoint.h. */
6753
6754 int
6755 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6756 const address_space *aspace2, CORE_ADDR addr2)
6757 {
6758 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6759 || aspace1 == aspace2)
6760 && addr1 == addr2);
6761 }
6762
6763 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6764 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6765 matches ASPACE2. On targets that have global breakpoints, the address
6766 space doesn't really matter. */
6767
6768 static int
6769 breakpoint_address_match_range (const address_space *aspace1,
6770 CORE_ADDR addr1,
6771 int len1, const address_space *aspace2,
6772 CORE_ADDR addr2)
6773 {
6774 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6775 || aspace1 == aspace2)
6776 && addr2 >= addr1 && addr2 < addr1 + len1);
6777 }
6778
6779 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6780 a ranged breakpoint. In most targets, a match happens only if ASPACE
6781 matches the breakpoint's address space. On targets that have global
6782 breakpoints, the address space doesn't really matter. */
6783
6784 static int
6785 breakpoint_location_address_match (struct bp_location *bl,
6786 const address_space *aspace,
6787 CORE_ADDR addr)
6788 {
6789 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6790 aspace, addr)
6791 || (bl->length
6792 && breakpoint_address_match_range (bl->pspace->aspace,
6793 bl->address, bl->length,
6794 aspace, addr)));
6795 }
6796
6797 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6798 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6799 match happens only if ASPACE matches the breakpoint's address
6800 space. On targets that have global breakpoints, the address space
6801 doesn't really matter. */
6802
6803 static int
6804 breakpoint_location_address_range_overlap (struct bp_location *bl,
6805 const address_space *aspace,
6806 CORE_ADDR addr, int len)
6807 {
6808 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6809 || bl->pspace->aspace == aspace)
6810 {
6811 int bl_len = bl->length != 0 ? bl->length : 1;
6812
6813 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6814 return 1;
6815 }
6816 return 0;
6817 }
6818
6819 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6820 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6821 true, otherwise returns false. */
6822
6823 static int
6824 tracepoint_locations_match (struct bp_location *loc1,
6825 struct bp_location *loc2)
6826 {
6827 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6828 /* Since tracepoint locations are never duplicated with others', tracepoint
6829 locations at the same address of different tracepoints are regarded as
6830 different locations. */
6831 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6832 else
6833 return 0;
6834 }
6835
6836 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6837 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6838 the same location. */
6839
6840 static int
6841 breakpoint_locations_match (struct bp_location *loc1,
6842 struct bp_location *loc2)
6843 {
6844 int hw_point1, hw_point2;
6845
6846 /* Both of them must not be in moribund_locations. */
6847 gdb_assert (loc1->owner != NULL);
6848 gdb_assert (loc2->owner != NULL);
6849
6850 hw_point1 = is_hardware_watchpoint (loc1->owner);
6851 hw_point2 = is_hardware_watchpoint (loc2->owner);
6852
6853 if (hw_point1 != hw_point2)
6854 return 0;
6855 else if (hw_point1)
6856 return watchpoint_locations_match (loc1, loc2);
6857 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6858 return tracepoint_locations_match (loc1, loc2);
6859 else
6860 /* We compare bp_location.length in order to cover ranged breakpoints. */
6861 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6862 loc2->pspace->aspace, loc2->address)
6863 && loc1->length == loc2->length);
6864 }
6865
6866 static void
6867 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6868 int bnum, int have_bnum)
6869 {
6870 /* The longest string possibly returned by hex_string_custom
6871 is 50 chars. These must be at least that big for safety. */
6872 char astr1[64];
6873 char astr2[64];
6874
6875 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6876 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6877 if (have_bnum)
6878 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6879 bnum, astr1, astr2);
6880 else
6881 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6882 }
6883
6884 /* Adjust a breakpoint's address to account for architectural
6885 constraints on breakpoint placement. Return the adjusted address.
6886 Note: Very few targets require this kind of adjustment. For most
6887 targets, this function is simply the identity function. */
6888
6889 static CORE_ADDR
6890 adjust_breakpoint_address (struct gdbarch *gdbarch,
6891 CORE_ADDR bpaddr, enum bptype bptype)
6892 {
6893 if (bptype == bp_watchpoint
6894 || bptype == bp_hardware_watchpoint
6895 || bptype == bp_read_watchpoint
6896 || bptype == bp_access_watchpoint
6897 || bptype == bp_catchpoint)
6898 {
6899 /* Watchpoints and the various bp_catch_* eventpoints should not
6900 have their addresses modified. */
6901 return bpaddr;
6902 }
6903 else if (bptype == bp_single_step)
6904 {
6905 /* Single-step breakpoints should not have their addresses
6906 modified. If there's any architectural constrain that
6907 applies to this address, then it should have already been
6908 taken into account when the breakpoint was created in the
6909 first place. If we didn't do this, stepping through e.g.,
6910 Thumb-2 IT blocks would break. */
6911 return bpaddr;
6912 }
6913 else
6914 {
6915 CORE_ADDR adjusted_bpaddr = bpaddr;
6916
6917 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6918 {
6919 /* Some targets have architectural constraints on the placement
6920 of breakpoint instructions. Obtain the adjusted address. */
6921 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6922 }
6923
6924 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6925
6926 /* An adjusted breakpoint address can significantly alter
6927 a user's expectations. Print a warning if an adjustment
6928 is required. */
6929 if (adjusted_bpaddr != bpaddr)
6930 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6931
6932 return adjusted_bpaddr;
6933 }
6934 }
6935
6936 static bp_loc_type
6937 bp_location_from_bp_type (bptype type)
6938 {
6939 switch (type)
6940 {
6941 case bp_breakpoint:
6942 case bp_single_step:
6943 case bp_until:
6944 case bp_finish:
6945 case bp_longjmp:
6946 case bp_longjmp_resume:
6947 case bp_longjmp_call_dummy:
6948 case bp_exception:
6949 case bp_exception_resume:
6950 case bp_step_resume:
6951 case bp_hp_step_resume:
6952 case bp_watchpoint_scope:
6953 case bp_call_dummy:
6954 case bp_std_terminate:
6955 case bp_shlib_event:
6956 case bp_thread_event:
6957 case bp_overlay_event:
6958 case bp_jit_event:
6959 case bp_longjmp_master:
6960 case bp_std_terminate_master:
6961 case bp_exception_master:
6962 case bp_gnu_ifunc_resolver:
6963 case bp_gnu_ifunc_resolver_return:
6964 case bp_dprintf:
6965 return bp_loc_software_breakpoint;
6966 case bp_hardware_breakpoint:
6967 return bp_loc_hardware_breakpoint;
6968 case bp_hardware_watchpoint:
6969 case bp_read_watchpoint:
6970 case bp_access_watchpoint:
6971 return bp_loc_hardware_watchpoint;
6972 case bp_watchpoint:
6973 case bp_catchpoint:
6974 case bp_tracepoint:
6975 case bp_fast_tracepoint:
6976 case bp_static_tracepoint:
6977 return bp_loc_other;
6978 default:
6979 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6980 }
6981 }
6982
6983 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6984 {
6985 this->owner = owner;
6986 this->cond_bytecode = NULL;
6987 this->shlib_disabled = 0;
6988 this->enabled = 1;
6989
6990 this->loc_type = type;
6991
6992 if (this->loc_type == bp_loc_software_breakpoint
6993 || this->loc_type == bp_loc_hardware_breakpoint)
6994 mark_breakpoint_location_modified (this);
6995
6996 this->refc = 1;
6997 }
6998
6999 bp_location::bp_location (breakpoint *owner)
7000 : bp_location::bp_location (owner,
7001 bp_location_from_bp_type (owner->type))
7002 {
7003 }
7004
7005 /* Allocate a struct bp_location. */
7006
7007 static struct bp_location *
7008 allocate_bp_location (struct breakpoint *bpt)
7009 {
7010 return bpt->ops->allocate_location (bpt);
7011 }
7012
7013 static void
7014 free_bp_location (struct bp_location *loc)
7015 {
7016 delete loc;
7017 }
7018
7019 /* Increment reference count. */
7020
7021 static void
7022 incref_bp_location (struct bp_location *bl)
7023 {
7024 ++bl->refc;
7025 }
7026
7027 /* Decrement reference count. If the reference count reaches 0,
7028 destroy the bp_location. Sets *BLP to NULL. */
7029
7030 static void
7031 decref_bp_location (struct bp_location **blp)
7032 {
7033 gdb_assert ((*blp)->refc > 0);
7034
7035 if (--(*blp)->refc == 0)
7036 free_bp_location (*blp);
7037 *blp = NULL;
7038 }
7039
7040 /* Add breakpoint B at the end of the global breakpoint chain. */
7041
7042 static breakpoint *
7043 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7044 {
7045 struct breakpoint *b1;
7046 struct breakpoint *result = b.get ();
7047
7048 /* Add this breakpoint to the end of the chain so that a list of
7049 breakpoints will come out in order of increasing numbers. */
7050
7051 b1 = breakpoint_chain;
7052 if (b1 == 0)
7053 breakpoint_chain = b.release ();
7054 else
7055 {
7056 while (b1->next)
7057 b1 = b1->next;
7058 b1->next = b.release ();
7059 }
7060
7061 return result;
7062 }
7063
7064 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7065
7066 static void
7067 init_raw_breakpoint_without_location (struct breakpoint *b,
7068 struct gdbarch *gdbarch,
7069 enum bptype bptype,
7070 const struct breakpoint_ops *ops)
7071 {
7072 gdb_assert (ops != NULL);
7073
7074 b->ops = ops;
7075 b->type = bptype;
7076 b->gdbarch = gdbarch;
7077 b->language = current_language->la_language;
7078 b->input_radix = input_radix;
7079 b->related_breakpoint = b;
7080 }
7081
7082 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7083 that has type BPTYPE and has no locations as yet. */
7084
7085 static struct breakpoint *
7086 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7087 enum bptype bptype,
7088 const struct breakpoint_ops *ops)
7089 {
7090 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7091
7092 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7093 return add_to_breakpoint_chain (std::move (b));
7094 }
7095
7096 /* Initialize loc->function_name. */
7097
7098 static void
7099 set_breakpoint_location_function (struct bp_location *loc)
7100 {
7101 gdb_assert (loc->owner != NULL);
7102
7103 if (loc->owner->type == bp_breakpoint
7104 || loc->owner->type == bp_hardware_breakpoint
7105 || is_tracepoint (loc->owner))
7106 {
7107 const char *function_name;
7108
7109 if (loc->msymbol != NULL
7110 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7111 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7112 {
7113 struct breakpoint *b = loc->owner;
7114
7115 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7116
7117 if (b->type == bp_breakpoint && b->loc == loc
7118 && loc->next == NULL && b->related_breakpoint == b)
7119 {
7120 /* Create only the whole new breakpoint of this type but do not
7121 mess more complicated breakpoints with multiple locations. */
7122 b->type = bp_gnu_ifunc_resolver;
7123 /* Remember the resolver's address for use by the return
7124 breakpoint. */
7125 loc->related_address = loc->address;
7126 }
7127 }
7128 else
7129 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7130
7131 if (function_name)
7132 loc->function_name = xstrdup (function_name);
7133 }
7134 }
7135
7136 /* Attempt to determine architecture of location identified by SAL. */
7137 struct gdbarch *
7138 get_sal_arch (struct symtab_and_line sal)
7139 {
7140 if (sal.section)
7141 return get_objfile_arch (sal.section->objfile);
7142 if (sal.symtab)
7143 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7144
7145 return NULL;
7146 }
7147
7148 /* Low level routine for partially initializing a breakpoint of type
7149 BPTYPE. The newly created breakpoint's address, section, source
7150 file name, and line number are provided by SAL.
7151
7152 It is expected that the caller will complete the initialization of
7153 the newly created breakpoint struct as well as output any status
7154 information regarding the creation of a new breakpoint. */
7155
7156 static void
7157 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7158 struct symtab_and_line sal, enum bptype bptype,
7159 const struct breakpoint_ops *ops)
7160 {
7161 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7162
7163 add_location_to_breakpoint (b, &sal);
7164
7165 if (bptype != bp_catchpoint)
7166 gdb_assert (sal.pspace != NULL);
7167
7168 /* Store the program space that was used to set the breakpoint,
7169 except for ordinary breakpoints, which are independent of the
7170 program space. */
7171 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7172 b->pspace = sal.pspace;
7173 }
7174
7175 /* set_raw_breakpoint is a low level routine for allocating and
7176 partially initializing a breakpoint of type BPTYPE. The newly
7177 created breakpoint's address, section, source file name, and line
7178 number are provided by SAL. The newly created and partially
7179 initialized breakpoint is added to the breakpoint chain and
7180 is also returned as the value of this function.
7181
7182 It is expected that the caller will complete the initialization of
7183 the newly created breakpoint struct as well as output any status
7184 information regarding the creation of a new breakpoint. In
7185 particular, set_raw_breakpoint does NOT set the breakpoint
7186 number! Care should be taken to not allow an error to occur
7187 prior to completing the initialization of the breakpoint. If this
7188 should happen, a bogus breakpoint will be left on the chain. */
7189
7190 struct breakpoint *
7191 set_raw_breakpoint (struct gdbarch *gdbarch,
7192 struct symtab_and_line sal, enum bptype bptype,
7193 const struct breakpoint_ops *ops)
7194 {
7195 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7196
7197 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7198 return add_to_breakpoint_chain (std::move (b));
7199 }
7200
7201 /* Call this routine when stepping and nexting to enable a breakpoint
7202 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7203 initiated the operation. */
7204
7205 void
7206 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7207 {
7208 struct breakpoint *b, *b_tmp;
7209 int thread = tp->global_num;
7210
7211 /* To avoid having to rescan all objfile symbols at every step,
7212 we maintain a list of continually-inserted but always disabled
7213 longjmp "master" breakpoints. Here, we simply create momentary
7214 clones of those and enable them for the requested thread. */
7215 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7216 if (b->pspace == current_program_space
7217 && (b->type == bp_longjmp_master
7218 || b->type == bp_exception_master))
7219 {
7220 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7221 struct breakpoint *clone;
7222
7223 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7224 after their removal. */
7225 clone = momentary_breakpoint_from_master (b, type,
7226 &momentary_breakpoint_ops, 1);
7227 clone->thread = thread;
7228 }
7229
7230 tp->initiating_frame = frame;
7231 }
7232
7233 /* Delete all longjmp breakpoints from THREAD. */
7234 void
7235 delete_longjmp_breakpoint (int thread)
7236 {
7237 struct breakpoint *b, *b_tmp;
7238
7239 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7240 if (b->type == bp_longjmp || b->type == bp_exception)
7241 {
7242 if (b->thread == thread)
7243 delete_breakpoint (b);
7244 }
7245 }
7246
7247 void
7248 delete_longjmp_breakpoint_at_next_stop (int thread)
7249 {
7250 struct breakpoint *b, *b_tmp;
7251
7252 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7253 if (b->type == bp_longjmp || b->type == bp_exception)
7254 {
7255 if (b->thread == thread)
7256 b->disposition = disp_del_at_next_stop;
7257 }
7258 }
7259
7260 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7261 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7262 pointer to any of them. Return NULL if this system cannot place longjmp
7263 breakpoints. */
7264
7265 struct breakpoint *
7266 set_longjmp_breakpoint_for_call_dummy (void)
7267 {
7268 struct breakpoint *b, *retval = NULL;
7269
7270 ALL_BREAKPOINTS (b)
7271 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7272 {
7273 struct breakpoint *new_b;
7274
7275 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7276 &momentary_breakpoint_ops,
7277 1);
7278 new_b->thread = inferior_thread ()->global_num;
7279
7280 /* Link NEW_B into the chain of RETVAL breakpoints. */
7281
7282 gdb_assert (new_b->related_breakpoint == new_b);
7283 if (retval == NULL)
7284 retval = new_b;
7285 new_b->related_breakpoint = retval;
7286 while (retval->related_breakpoint != new_b->related_breakpoint)
7287 retval = retval->related_breakpoint;
7288 retval->related_breakpoint = new_b;
7289 }
7290
7291 return retval;
7292 }
7293
7294 /* Verify all existing dummy frames and their associated breakpoints for
7295 TP. Remove those which can no longer be found in the current frame
7296 stack.
7297
7298 You should call this function only at places where it is safe to currently
7299 unwind the whole stack. Failed stack unwind would discard live dummy
7300 frames. */
7301
7302 void
7303 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7304 {
7305 struct breakpoint *b, *b_tmp;
7306
7307 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7308 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7309 {
7310 struct breakpoint *dummy_b = b->related_breakpoint;
7311
7312 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7313 dummy_b = dummy_b->related_breakpoint;
7314 if (dummy_b->type != bp_call_dummy
7315 || frame_find_by_id (dummy_b->frame_id) != NULL)
7316 continue;
7317
7318 dummy_frame_discard (dummy_b->frame_id, tp);
7319
7320 while (b->related_breakpoint != b)
7321 {
7322 if (b_tmp == b->related_breakpoint)
7323 b_tmp = b->related_breakpoint->next;
7324 delete_breakpoint (b->related_breakpoint);
7325 }
7326 delete_breakpoint (b);
7327 }
7328 }
7329
7330 void
7331 enable_overlay_breakpoints (void)
7332 {
7333 struct breakpoint *b;
7334
7335 ALL_BREAKPOINTS (b)
7336 if (b->type == bp_overlay_event)
7337 {
7338 b->enable_state = bp_enabled;
7339 update_global_location_list (UGLL_MAY_INSERT);
7340 overlay_events_enabled = 1;
7341 }
7342 }
7343
7344 void
7345 disable_overlay_breakpoints (void)
7346 {
7347 struct breakpoint *b;
7348
7349 ALL_BREAKPOINTS (b)
7350 if (b->type == bp_overlay_event)
7351 {
7352 b->enable_state = bp_disabled;
7353 update_global_location_list (UGLL_DONT_INSERT);
7354 overlay_events_enabled = 0;
7355 }
7356 }
7357
7358 /* Set an active std::terminate breakpoint for each std::terminate
7359 master breakpoint. */
7360 void
7361 set_std_terminate_breakpoint (void)
7362 {
7363 struct breakpoint *b, *b_tmp;
7364
7365 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7366 if (b->pspace == current_program_space
7367 && b->type == bp_std_terminate_master)
7368 {
7369 momentary_breakpoint_from_master (b, bp_std_terminate,
7370 &momentary_breakpoint_ops, 1);
7371 }
7372 }
7373
7374 /* Delete all the std::terminate breakpoints. */
7375 void
7376 delete_std_terminate_breakpoint (void)
7377 {
7378 struct breakpoint *b, *b_tmp;
7379
7380 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7381 if (b->type == bp_std_terminate)
7382 delete_breakpoint (b);
7383 }
7384
7385 struct breakpoint *
7386 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7387 {
7388 struct breakpoint *b;
7389
7390 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7391 &internal_breakpoint_ops);
7392
7393 b->enable_state = bp_enabled;
7394 /* location has to be used or breakpoint_re_set will delete me. */
7395 b->location = new_address_location (b->loc->address, NULL, 0);
7396
7397 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7398
7399 return b;
7400 }
7401
7402 struct lang_and_radix
7403 {
7404 enum language lang;
7405 int radix;
7406 };
7407
7408 /* Create a breakpoint for JIT code registration and unregistration. */
7409
7410 struct breakpoint *
7411 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7412 {
7413 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7414 &internal_breakpoint_ops);
7415 }
7416
7417 /* Remove JIT code registration and unregistration breakpoint(s). */
7418
7419 void
7420 remove_jit_event_breakpoints (void)
7421 {
7422 struct breakpoint *b, *b_tmp;
7423
7424 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7425 if (b->type == bp_jit_event
7426 && b->loc->pspace == current_program_space)
7427 delete_breakpoint (b);
7428 }
7429
7430 void
7431 remove_solib_event_breakpoints (void)
7432 {
7433 struct breakpoint *b, *b_tmp;
7434
7435 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7436 if (b->type == bp_shlib_event
7437 && b->loc->pspace == current_program_space)
7438 delete_breakpoint (b);
7439 }
7440
7441 /* See breakpoint.h. */
7442
7443 void
7444 remove_solib_event_breakpoints_at_next_stop (void)
7445 {
7446 struct breakpoint *b, *b_tmp;
7447
7448 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7449 if (b->type == bp_shlib_event
7450 && b->loc->pspace == current_program_space)
7451 b->disposition = disp_del_at_next_stop;
7452 }
7453
7454 /* Helper for create_solib_event_breakpoint /
7455 create_and_insert_solib_event_breakpoint. Allows specifying which
7456 INSERT_MODE to pass through to update_global_location_list. */
7457
7458 static struct breakpoint *
7459 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7460 enum ugll_insert_mode insert_mode)
7461 {
7462 struct breakpoint *b;
7463
7464 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7465 &internal_breakpoint_ops);
7466 update_global_location_list_nothrow (insert_mode);
7467 return b;
7468 }
7469
7470 struct breakpoint *
7471 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7472 {
7473 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7474 }
7475
7476 /* See breakpoint.h. */
7477
7478 struct breakpoint *
7479 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7480 {
7481 struct breakpoint *b;
7482
7483 /* Explicitly tell update_global_location_list to insert
7484 locations. */
7485 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7486 if (!b->loc->inserted)
7487 {
7488 delete_breakpoint (b);
7489 return NULL;
7490 }
7491 return b;
7492 }
7493
7494 /* Disable any breakpoints that are on code in shared libraries. Only
7495 apply to enabled breakpoints, disabled ones can just stay disabled. */
7496
7497 void
7498 disable_breakpoints_in_shlibs (void)
7499 {
7500 struct bp_location *loc, **locp_tmp;
7501
7502 ALL_BP_LOCATIONS (loc, locp_tmp)
7503 {
7504 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7505 struct breakpoint *b = loc->owner;
7506
7507 /* We apply the check to all breakpoints, including disabled for
7508 those with loc->duplicate set. This is so that when breakpoint
7509 becomes enabled, or the duplicate is removed, gdb will try to
7510 insert all breakpoints. If we don't set shlib_disabled here,
7511 we'll try to insert those breakpoints and fail. */
7512 if (((b->type == bp_breakpoint)
7513 || (b->type == bp_jit_event)
7514 || (b->type == bp_hardware_breakpoint)
7515 || (is_tracepoint (b)))
7516 && loc->pspace == current_program_space
7517 && !loc->shlib_disabled
7518 && solib_name_from_address (loc->pspace, loc->address)
7519 )
7520 {
7521 loc->shlib_disabled = 1;
7522 }
7523 }
7524 }
7525
7526 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7527 notification of unloaded_shlib. Only apply to enabled breakpoints,
7528 disabled ones can just stay disabled. */
7529
7530 static void
7531 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7532 {
7533 struct bp_location *loc, **locp_tmp;
7534 int disabled_shlib_breaks = 0;
7535
7536 ALL_BP_LOCATIONS (loc, locp_tmp)
7537 {
7538 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7539 struct breakpoint *b = loc->owner;
7540
7541 if (solib->pspace == loc->pspace
7542 && !loc->shlib_disabled
7543 && (((b->type == bp_breakpoint
7544 || b->type == bp_jit_event
7545 || b->type == bp_hardware_breakpoint)
7546 && (loc->loc_type == bp_loc_hardware_breakpoint
7547 || loc->loc_type == bp_loc_software_breakpoint))
7548 || is_tracepoint (b))
7549 && solib_contains_address_p (solib, loc->address))
7550 {
7551 loc->shlib_disabled = 1;
7552 /* At this point, we cannot rely on remove_breakpoint
7553 succeeding so we must mark the breakpoint as not inserted
7554 to prevent future errors occurring in remove_breakpoints. */
7555 loc->inserted = 0;
7556
7557 /* This may cause duplicate notifications for the same breakpoint. */
7558 gdb::observers::breakpoint_modified.notify (b);
7559
7560 if (!disabled_shlib_breaks)
7561 {
7562 target_terminal::ours_for_output ();
7563 warning (_("Temporarily disabling breakpoints "
7564 "for unloaded shared library \"%s\""),
7565 solib->so_name);
7566 }
7567 disabled_shlib_breaks = 1;
7568 }
7569 }
7570 }
7571
7572 /* Disable any breakpoints and tracepoints in OBJFILE upon
7573 notification of free_objfile. Only apply to enabled breakpoints,
7574 disabled ones can just stay disabled. */
7575
7576 static void
7577 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7578 {
7579 struct breakpoint *b;
7580
7581 if (objfile == NULL)
7582 return;
7583
7584 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7585 managed by the user with add-symbol-file/remove-symbol-file.
7586 Similarly to how breakpoints in shared libraries are handled in
7587 response to "nosharedlibrary", mark breakpoints in such modules
7588 shlib_disabled so they end up uninserted on the next global
7589 location list update. Shared libraries not loaded by the user
7590 aren't handled here -- they're already handled in
7591 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7592 solib_unloaded observer. We skip objfiles that are not
7593 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7594 main objfile). */
7595 if ((objfile->flags & OBJF_SHARED) == 0
7596 || (objfile->flags & OBJF_USERLOADED) == 0)
7597 return;
7598
7599 ALL_BREAKPOINTS (b)
7600 {
7601 struct bp_location *loc;
7602 int bp_modified = 0;
7603
7604 if (!is_breakpoint (b) && !is_tracepoint (b))
7605 continue;
7606
7607 for (loc = b->loc; loc != NULL; loc = loc->next)
7608 {
7609 CORE_ADDR loc_addr = loc->address;
7610
7611 if (loc->loc_type != bp_loc_hardware_breakpoint
7612 && loc->loc_type != bp_loc_software_breakpoint)
7613 continue;
7614
7615 if (loc->shlib_disabled != 0)
7616 continue;
7617
7618 if (objfile->pspace != loc->pspace)
7619 continue;
7620
7621 if (loc->loc_type != bp_loc_hardware_breakpoint
7622 && loc->loc_type != bp_loc_software_breakpoint)
7623 continue;
7624
7625 if (is_addr_in_objfile (loc_addr, objfile))
7626 {
7627 loc->shlib_disabled = 1;
7628 /* At this point, we don't know whether the object was
7629 unmapped from the inferior or not, so leave the
7630 inserted flag alone. We'll handle failure to
7631 uninsert quietly, in case the object was indeed
7632 unmapped. */
7633
7634 mark_breakpoint_location_modified (loc);
7635
7636 bp_modified = 1;
7637 }
7638 }
7639
7640 if (bp_modified)
7641 gdb::observers::breakpoint_modified.notify (b);
7642 }
7643 }
7644
7645 /* FORK & VFORK catchpoints. */
7646
7647 /* An instance of this type is used to represent a fork or vfork
7648 catchpoint. A breakpoint is really of this type iff its ops pointer points
7649 to CATCH_FORK_BREAKPOINT_OPS. */
7650
7651 struct fork_catchpoint : public breakpoint
7652 {
7653 /* Process id of a child process whose forking triggered this
7654 catchpoint. This field is only valid immediately after this
7655 catchpoint has triggered. */
7656 ptid_t forked_inferior_pid;
7657 };
7658
7659 /* Implement the "insert" breakpoint_ops method for fork
7660 catchpoints. */
7661
7662 static int
7663 insert_catch_fork (struct bp_location *bl)
7664 {
7665 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7666 }
7667
7668 /* Implement the "remove" breakpoint_ops method for fork
7669 catchpoints. */
7670
7671 static int
7672 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7673 {
7674 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7675 }
7676
7677 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7678 catchpoints. */
7679
7680 static int
7681 breakpoint_hit_catch_fork (const struct bp_location *bl,
7682 const address_space *aspace, CORE_ADDR bp_addr,
7683 const struct target_waitstatus *ws)
7684 {
7685 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7686
7687 if (ws->kind != TARGET_WAITKIND_FORKED)
7688 return 0;
7689
7690 c->forked_inferior_pid = ws->value.related_pid;
7691 return 1;
7692 }
7693
7694 /* Implement the "print_it" breakpoint_ops method for fork
7695 catchpoints. */
7696
7697 static enum print_stop_action
7698 print_it_catch_fork (bpstat bs)
7699 {
7700 struct ui_out *uiout = current_uiout;
7701 struct breakpoint *b = bs->breakpoint_at;
7702 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7703
7704 annotate_catchpoint (b->number);
7705 maybe_print_thread_hit_breakpoint (uiout);
7706 if (b->disposition == disp_del)
7707 uiout->text ("Temporary catchpoint ");
7708 else
7709 uiout->text ("Catchpoint ");
7710 if (uiout->is_mi_like_p ())
7711 {
7712 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7713 uiout->field_string ("disp", bpdisp_text (b->disposition));
7714 }
7715 uiout->field_int ("bkptno", b->number);
7716 uiout->text (" (forked process ");
7717 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7718 uiout->text ("), ");
7719 return PRINT_SRC_AND_LOC;
7720 }
7721
7722 /* Implement the "print_one" breakpoint_ops method for fork
7723 catchpoints. */
7724
7725 static void
7726 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7727 {
7728 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7729 struct value_print_options opts;
7730 struct ui_out *uiout = current_uiout;
7731
7732 get_user_print_options (&opts);
7733
7734 /* Field 4, the address, is omitted (which makes the columns not
7735 line up too nicely with the headers, but the effect is relatively
7736 readable). */
7737 if (opts.addressprint)
7738 uiout->field_skip ("addr");
7739 annotate_field (5);
7740 uiout->text ("fork");
7741 if (c->forked_inferior_pid != null_ptid)
7742 {
7743 uiout->text (", process ");
7744 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7745 uiout->spaces (1);
7746 }
7747
7748 if (uiout->is_mi_like_p ())
7749 uiout->field_string ("catch-type", "fork");
7750 }
7751
7752 /* Implement the "print_mention" breakpoint_ops method for fork
7753 catchpoints. */
7754
7755 static void
7756 print_mention_catch_fork (struct breakpoint *b)
7757 {
7758 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7759 }
7760
7761 /* Implement the "print_recreate" breakpoint_ops method for fork
7762 catchpoints. */
7763
7764 static void
7765 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7766 {
7767 fprintf_unfiltered (fp, "catch fork");
7768 print_recreate_thread (b, fp);
7769 }
7770
7771 /* The breakpoint_ops structure to be used in fork catchpoints. */
7772
7773 static struct breakpoint_ops catch_fork_breakpoint_ops;
7774
7775 /* Implement the "insert" breakpoint_ops method for vfork
7776 catchpoints. */
7777
7778 static int
7779 insert_catch_vfork (struct bp_location *bl)
7780 {
7781 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7782 }
7783
7784 /* Implement the "remove" breakpoint_ops method for vfork
7785 catchpoints. */
7786
7787 static int
7788 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7789 {
7790 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7791 }
7792
7793 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7794 catchpoints. */
7795
7796 static int
7797 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7798 const address_space *aspace, CORE_ADDR bp_addr,
7799 const struct target_waitstatus *ws)
7800 {
7801 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7802
7803 if (ws->kind != TARGET_WAITKIND_VFORKED)
7804 return 0;
7805
7806 c->forked_inferior_pid = ws->value.related_pid;
7807 return 1;
7808 }
7809
7810 /* Implement the "print_it" breakpoint_ops method for vfork
7811 catchpoints. */
7812
7813 static enum print_stop_action
7814 print_it_catch_vfork (bpstat bs)
7815 {
7816 struct ui_out *uiout = current_uiout;
7817 struct breakpoint *b = bs->breakpoint_at;
7818 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7819
7820 annotate_catchpoint (b->number);
7821 maybe_print_thread_hit_breakpoint (uiout);
7822 if (b->disposition == disp_del)
7823 uiout->text ("Temporary catchpoint ");
7824 else
7825 uiout->text ("Catchpoint ");
7826 if (uiout->is_mi_like_p ())
7827 {
7828 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7829 uiout->field_string ("disp", bpdisp_text (b->disposition));
7830 }
7831 uiout->field_int ("bkptno", b->number);
7832 uiout->text (" (vforked process ");
7833 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7834 uiout->text ("), ");
7835 return PRINT_SRC_AND_LOC;
7836 }
7837
7838 /* Implement the "print_one" breakpoint_ops method for vfork
7839 catchpoints. */
7840
7841 static void
7842 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7843 {
7844 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7845 struct value_print_options opts;
7846 struct ui_out *uiout = current_uiout;
7847
7848 get_user_print_options (&opts);
7849 /* Field 4, the address, is omitted (which makes the columns not
7850 line up too nicely with the headers, but the effect is relatively
7851 readable). */
7852 if (opts.addressprint)
7853 uiout->field_skip ("addr");
7854 annotate_field (5);
7855 uiout->text ("vfork");
7856 if (c->forked_inferior_pid != null_ptid)
7857 {
7858 uiout->text (", process ");
7859 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7860 uiout->spaces (1);
7861 }
7862
7863 if (uiout->is_mi_like_p ())
7864 uiout->field_string ("catch-type", "vfork");
7865 }
7866
7867 /* Implement the "print_mention" breakpoint_ops method for vfork
7868 catchpoints. */
7869
7870 static void
7871 print_mention_catch_vfork (struct breakpoint *b)
7872 {
7873 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7874 }
7875
7876 /* Implement the "print_recreate" breakpoint_ops method for vfork
7877 catchpoints. */
7878
7879 static void
7880 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7881 {
7882 fprintf_unfiltered (fp, "catch vfork");
7883 print_recreate_thread (b, fp);
7884 }
7885
7886 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7887
7888 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7889
7890 /* An instance of this type is used to represent an solib catchpoint.
7891 A breakpoint is really of this type iff its ops pointer points to
7892 CATCH_SOLIB_BREAKPOINT_OPS. */
7893
7894 struct solib_catchpoint : public breakpoint
7895 {
7896 ~solib_catchpoint () override;
7897
7898 /* True for "catch load", false for "catch unload". */
7899 unsigned char is_load;
7900
7901 /* Regular expression to match, if any. COMPILED is only valid when
7902 REGEX is non-NULL. */
7903 char *regex;
7904 std::unique_ptr<compiled_regex> compiled;
7905 };
7906
7907 solib_catchpoint::~solib_catchpoint ()
7908 {
7909 xfree (this->regex);
7910 }
7911
7912 static int
7913 insert_catch_solib (struct bp_location *ignore)
7914 {
7915 return 0;
7916 }
7917
7918 static int
7919 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7920 {
7921 return 0;
7922 }
7923
7924 static int
7925 breakpoint_hit_catch_solib (const struct bp_location *bl,
7926 const address_space *aspace,
7927 CORE_ADDR bp_addr,
7928 const struct target_waitstatus *ws)
7929 {
7930 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7931 struct breakpoint *other;
7932
7933 if (ws->kind == TARGET_WAITKIND_LOADED)
7934 return 1;
7935
7936 ALL_BREAKPOINTS (other)
7937 {
7938 struct bp_location *other_bl;
7939
7940 if (other == bl->owner)
7941 continue;
7942
7943 if (other->type != bp_shlib_event)
7944 continue;
7945
7946 if (self->pspace != NULL && other->pspace != self->pspace)
7947 continue;
7948
7949 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7950 {
7951 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7952 return 1;
7953 }
7954 }
7955
7956 return 0;
7957 }
7958
7959 static void
7960 check_status_catch_solib (struct bpstats *bs)
7961 {
7962 struct solib_catchpoint *self
7963 = (struct solib_catchpoint *) bs->breakpoint_at;
7964
7965 if (self->is_load)
7966 {
7967 for (so_list *iter : current_program_space->added_solibs)
7968 {
7969 if (!self->regex
7970 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7971 return;
7972 }
7973 }
7974 else
7975 {
7976 for (const std::string &iter : current_program_space->deleted_solibs)
7977 {
7978 if (!self->regex
7979 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7980 return;
7981 }
7982 }
7983
7984 bs->stop = 0;
7985 bs->print_it = print_it_noop;
7986 }
7987
7988 static enum print_stop_action
7989 print_it_catch_solib (bpstat bs)
7990 {
7991 struct breakpoint *b = bs->breakpoint_at;
7992 struct ui_out *uiout = current_uiout;
7993
7994 annotate_catchpoint (b->number);
7995 maybe_print_thread_hit_breakpoint (uiout);
7996 if (b->disposition == disp_del)
7997 uiout->text ("Temporary catchpoint ");
7998 else
7999 uiout->text ("Catchpoint ");
8000 uiout->field_int ("bkptno", b->number);
8001 uiout->text ("\n");
8002 if (uiout->is_mi_like_p ())
8003 uiout->field_string ("disp", bpdisp_text (b->disposition));
8004 print_solib_event (1);
8005 return PRINT_SRC_AND_LOC;
8006 }
8007
8008 static void
8009 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8010 {
8011 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8012 struct value_print_options opts;
8013 struct ui_out *uiout = current_uiout;
8014
8015 get_user_print_options (&opts);
8016 /* Field 4, the address, is omitted (which makes the columns not
8017 line up too nicely with the headers, but the effect is relatively
8018 readable). */
8019 if (opts.addressprint)
8020 {
8021 annotate_field (4);
8022 uiout->field_skip ("addr");
8023 }
8024
8025 std::string msg;
8026 annotate_field (5);
8027 if (self->is_load)
8028 {
8029 if (self->regex)
8030 msg = string_printf (_("load of library matching %s"), self->regex);
8031 else
8032 msg = _("load of library");
8033 }
8034 else
8035 {
8036 if (self->regex)
8037 msg = string_printf (_("unload of library matching %s"), self->regex);
8038 else
8039 msg = _("unload of library");
8040 }
8041 uiout->field_string ("what", msg);
8042
8043 if (uiout->is_mi_like_p ())
8044 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8045 }
8046
8047 static void
8048 print_mention_catch_solib (struct breakpoint *b)
8049 {
8050 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8051
8052 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8053 self->is_load ? "load" : "unload");
8054 }
8055
8056 static void
8057 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8058 {
8059 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8060
8061 fprintf_unfiltered (fp, "%s %s",
8062 b->disposition == disp_del ? "tcatch" : "catch",
8063 self->is_load ? "load" : "unload");
8064 if (self->regex)
8065 fprintf_unfiltered (fp, " %s", self->regex);
8066 fprintf_unfiltered (fp, "\n");
8067 }
8068
8069 static struct breakpoint_ops catch_solib_breakpoint_ops;
8070
8071 /* Shared helper function (MI and CLI) for creating and installing
8072 a shared object event catchpoint. If IS_LOAD is non-zero then
8073 the events to be caught are load events, otherwise they are
8074 unload events. If IS_TEMP is non-zero the catchpoint is a
8075 temporary one. If ENABLED is non-zero the catchpoint is
8076 created in an enabled state. */
8077
8078 void
8079 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8080 {
8081 struct gdbarch *gdbarch = get_current_arch ();
8082
8083 if (!arg)
8084 arg = "";
8085 arg = skip_spaces (arg);
8086
8087 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8088
8089 if (*arg != '\0')
8090 {
8091 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8092 _("Invalid regexp")));
8093 c->regex = xstrdup (arg);
8094 }
8095
8096 c->is_load = is_load;
8097 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8098 &catch_solib_breakpoint_ops);
8099
8100 c->enable_state = enabled ? bp_enabled : bp_disabled;
8101
8102 install_breakpoint (0, std::move (c), 1);
8103 }
8104
8105 /* A helper function that does all the work for "catch load" and
8106 "catch unload". */
8107
8108 static void
8109 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8110 struct cmd_list_element *command)
8111 {
8112 int tempflag;
8113 const int enabled = 1;
8114
8115 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8116
8117 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8118 }
8119
8120 static void
8121 catch_load_command_1 (const char *arg, int from_tty,
8122 struct cmd_list_element *command)
8123 {
8124 catch_load_or_unload (arg, from_tty, 1, command);
8125 }
8126
8127 static void
8128 catch_unload_command_1 (const char *arg, int from_tty,
8129 struct cmd_list_element *command)
8130 {
8131 catch_load_or_unload (arg, from_tty, 0, command);
8132 }
8133
8134 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8135 is non-zero, then make the breakpoint temporary. If COND_STRING is
8136 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8137 the breakpoint_ops structure associated to the catchpoint. */
8138
8139 void
8140 init_catchpoint (struct breakpoint *b,
8141 struct gdbarch *gdbarch, int tempflag,
8142 const char *cond_string,
8143 const struct breakpoint_ops *ops)
8144 {
8145 symtab_and_line sal;
8146 sal.pspace = current_program_space;
8147
8148 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8149
8150 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8151 b->disposition = tempflag ? disp_del : disp_donttouch;
8152 }
8153
8154 void
8155 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8156 {
8157 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8158 set_breakpoint_number (internal, b);
8159 if (is_tracepoint (b))
8160 set_tracepoint_count (breakpoint_count);
8161 if (!internal)
8162 mention (b);
8163 gdb::observers::breakpoint_created.notify (b);
8164
8165 if (update_gll)
8166 update_global_location_list (UGLL_MAY_INSERT);
8167 }
8168
8169 static void
8170 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8171 int tempflag, const char *cond_string,
8172 const struct breakpoint_ops *ops)
8173 {
8174 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8175
8176 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8177
8178 c->forked_inferior_pid = null_ptid;
8179
8180 install_breakpoint (0, std::move (c), 1);
8181 }
8182
8183 /* Exec catchpoints. */
8184
8185 /* An instance of this type is used to represent an exec catchpoint.
8186 A breakpoint is really of this type iff its ops pointer points to
8187 CATCH_EXEC_BREAKPOINT_OPS. */
8188
8189 struct exec_catchpoint : public breakpoint
8190 {
8191 ~exec_catchpoint () override;
8192
8193 /* Filename of a program whose exec triggered this catchpoint.
8194 This field is only valid immediately after this catchpoint has
8195 triggered. */
8196 char *exec_pathname;
8197 };
8198
8199 /* Exec catchpoint destructor. */
8200
8201 exec_catchpoint::~exec_catchpoint ()
8202 {
8203 xfree (this->exec_pathname);
8204 }
8205
8206 static int
8207 insert_catch_exec (struct bp_location *bl)
8208 {
8209 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8210 }
8211
8212 static int
8213 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8214 {
8215 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8216 }
8217
8218 static int
8219 breakpoint_hit_catch_exec (const struct bp_location *bl,
8220 const address_space *aspace, CORE_ADDR bp_addr,
8221 const struct target_waitstatus *ws)
8222 {
8223 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8224
8225 if (ws->kind != TARGET_WAITKIND_EXECD)
8226 return 0;
8227
8228 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8229 return 1;
8230 }
8231
8232 static enum print_stop_action
8233 print_it_catch_exec (bpstat bs)
8234 {
8235 struct ui_out *uiout = current_uiout;
8236 struct breakpoint *b = bs->breakpoint_at;
8237 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8238
8239 annotate_catchpoint (b->number);
8240 maybe_print_thread_hit_breakpoint (uiout);
8241 if (b->disposition == disp_del)
8242 uiout->text ("Temporary catchpoint ");
8243 else
8244 uiout->text ("Catchpoint ");
8245 if (uiout->is_mi_like_p ())
8246 {
8247 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8248 uiout->field_string ("disp", bpdisp_text (b->disposition));
8249 }
8250 uiout->field_int ("bkptno", b->number);
8251 uiout->text (" (exec'd ");
8252 uiout->field_string ("new-exec", c->exec_pathname);
8253 uiout->text ("), ");
8254
8255 return PRINT_SRC_AND_LOC;
8256 }
8257
8258 static void
8259 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8260 {
8261 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8262 struct value_print_options opts;
8263 struct ui_out *uiout = current_uiout;
8264
8265 get_user_print_options (&opts);
8266
8267 /* Field 4, the address, is omitted (which makes the columns
8268 not line up too nicely with the headers, but the effect
8269 is relatively readable). */
8270 if (opts.addressprint)
8271 uiout->field_skip ("addr");
8272 annotate_field (5);
8273 uiout->text ("exec");
8274 if (c->exec_pathname != NULL)
8275 {
8276 uiout->text (", program \"");
8277 uiout->field_string ("what", c->exec_pathname);
8278 uiout->text ("\" ");
8279 }
8280
8281 if (uiout->is_mi_like_p ())
8282 uiout->field_string ("catch-type", "exec");
8283 }
8284
8285 static void
8286 print_mention_catch_exec (struct breakpoint *b)
8287 {
8288 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8289 }
8290
8291 /* Implement the "print_recreate" breakpoint_ops method for exec
8292 catchpoints. */
8293
8294 static void
8295 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8296 {
8297 fprintf_unfiltered (fp, "catch exec");
8298 print_recreate_thread (b, fp);
8299 }
8300
8301 static struct breakpoint_ops catch_exec_breakpoint_ops;
8302
8303 static int
8304 hw_breakpoint_used_count (void)
8305 {
8306 int i = 0;
8307 struct breakpoint *b;
8308 struct bp_location *bl;
8309
8310 ALL_BREAKPOINTS (b)
8311 {
8312 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8313 for (bl = b->loc; bl; bl = bl->next)
8314 {
8315 /* Special types of hardware breakpoints may use more than
8316 one register. */
8317 i += b->ops->resources_needed (bl);
8318 }
8319 }
8320
8321 return i;
8322 }
8323
8324 /* Returns the resources B would use if it were a hardware
8325 watchpoint. */
8326
8327 static int
8328 hw_watchpoint_use_count (struct breakpoint *b)
8329 {
8330 int i = 0;
8331 struct bp_location *bl;
8332
8333 if (!breakpoint_enabled (b))
8334 return 0;
8335
8336 for (bl = b->loc; bl; bl = bl->next)
8337 {
8338 /* Special types of hardware watchpoints may use more than
8339 one register. */
8340 i += b->ops->resources_needed (bl);
8341 }
8342
8343 return i;
8344 }
8345
8346 /* Returns the sum the used resources of all hardware watchpoints of
8347 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8348 the sum of the used resources of all hardware watchpoints of other
8349 types _not_ TYPE. */
8350
8351 static int
8352 hw_watchpoint_used_count_others (struct breakpoint *except,
8353 enum bptype type, int *other_type_used)
8354 {
8355 int i = 0;
8356 struct breakpoint *b;
8357
8358 *other_type_used = 0;
8359 ALL_BREAKPOINTS (b)
8360 {
8361 if (b == except)
8362 continue;
8363 if (!breakpoint_enabled (b))
8364 continue;
8365
8366 if (b->type == type)
8367 i += hw_watchpoint_use_count (b);
8368 else if (is_hardware_watchpoint (b))
8369 *other_type_used = 1;
8370 }
8371
8372 return i;
8373 }
8374
8375 void
8376 disable_watchpoints_before_interactive_call_start (void)
8377 {
8378 struct breakpoint *b;
8379
8380 ALL_BREAKPOINTS (b)
8381 {
8382 if (is_watchpoint (b) && breakpoint_enabled (b))
8383 {
8384 b->enable_state = bp_call_disabled;
8385 update_global_location_list (UGLL_DONT_INSERT);
8386 }
8387 }
8388 }
8389
8390 void
8391 enable_watchpoints_after_interactive_call_stop (void)
8392 {
8393 struct breakpoint *b;
8394
8395 ALL_BREAKPOINTS (b)
8396 {
8397 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8398 {
8399 b->enable_state = bp_enabled;
8400 update_global_location_list (UGLL_MAY_INSERT);
8401 }
8402 }
8403 }
8404
8405 void
8406 disable_breakpoints_before_startup (void)
8407 {
8408 current_program_space->executing_startup = 1;
8409 update_global_location_list (UGLL_DONT_INSERT);
8410 }
8411
8412 void
8413 enable_breakpoints_after_startup (void)
8414 {
8415 current_program_space->executing_startup = 0;
8416 breakpoint_re_set ();
8417 }
8418
8419 /* Create a new single-step breakpoint for thread THREAD, with no
8420 locations. */
8421
8422 static struct breakpoint *
8423 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8424 {
8425 std::unique_ptr<breakpoint> b (new breakpoint ());
8426
8427 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8428 &momentary_breakpoint_ops);
8429
8430 b->disposition = disp_donttouch;
8431 b->frame_id = null_frame_id;
8432
8433 b->thread = thread;
8434 gdb_assert (b->thread != 0);
8435
8436 return add_to_breakpoint_chain (std::move (b));
8437 }
8438
8439 /* Set a momentary breakpoint of type TYPE at address specified by
8440 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8441 frame. */
8442
8443 breakpoint_up
8444 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8445 struct frame_id frame_id, enum bptype type)
8446 {
8447 struct breakpoint *b;
8448
8449 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8450 tail-called one. */
8451 gdb_assert (!frame_id_artificial_p (frame_id));
8452
8453 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8454 b->enable_state = bp_enabled;
8455 b->disposition = disp_donttouch;
8456 b->frame_id = frame_id;
8457
8458 b->thread = inferior_thread ()->global_num;
8459
8460 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8461
8462 return breakpoint_up (b);
8463 }
8464
8465 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8466 The new breakpoint will have type TYPE, use OPS as its
8467 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8468
8469 static struct breakpoint *
8470 momentary_breakpoint_from_master (struct breakpoint *orig,
8471 enum bptype type,
8472 const struct breakpoint_ops *ops,
8473 int loc_enabled)
8474 {
8475 struct breakpoint *copy;
8476
8477 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8478 copy->loc = allocate_bp_location (copy);
8479 set_breakpoint_location_function (copy->loc);
8480
8481 copy->loc->gdbarch = orig->loc->gdbarch;
8482 copy->loc->requested_address = orig->loc->requested_address;
8483 copy->loc->address = orig->loc->address;
8484 copy->loc->section = orig->loc->section;
8485 copy->loc->pspace = orig->loc->pspace;
8486 copy->loc->probe = orig->loc->probe;
8487 copy->loc->line_number = orig->loc->line_number;
8488 copy->loc->symtab = orig->loc->symtab;
8489 copy->loc->enabled = loc_enabled;
8490 copy->frame_id = orig->frame_id;
8491 copy->thread = orig->thread;
8492 copy->pspace = orig->pspace;
8493
8494 copy->enable_state = bp_enabled;
8495 copy->disposition = disp_donttouch;
8496 copy->number = internal_breakpoint_number--;
8497
8498 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8499 return copy;
8500 }
8501
8502 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8503 ORIG is NULL. */
8504
8505 struct breakpoint *
8506 clone_momentary_breakpoint (struct breakpoint *orig)
8507 {
8508 /* If there's nothing to clone, then return nothing. */
8509 if (orig == NULL)
8510 return NULL;
8511
8512 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8513 }
8514
8515 breakpoint_up
8516 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8517 enum bptype type)
8518 {
8519 struct symtab_and_line sal;
8520
8521 sal = find_pc_line (pc, 0);
8522 sal.pc = pc;
8523 sal.section = find_pc_overlay (pc);
8524 sal.explicit_pc = 1;
8525
8526 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8527 }
8528 \f
8529
8530 /* Tell the user we have just set a breakpoint B. */
8531
8532 static void
8533 mention (struct breakpoint *b)
8534 {
8535 b->ops->print_mention (b);
8536 current_uiout->text ("\n");
8537 }
8538 \f
8539
8540 static int bp_loc_is_permanent (struct bp_location *loc);
8541
8542 static struct bp_location *
8543 add_location_to_breakpoint (struct breakpoint *b,
8544 const struct symtab_and_line *sal)
8545 {
8546 struct bp_location *loc, **tmp;
8547 CORE_ADDR adjusted_address;
8548 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8549
8550 if (loc_gdbarch == NULL)
8551 loc_gdbarch = b->gdbarch;
8552
8553 /* Adjust the breakpoint's address prior to allocating a location.
8554 Once we call allocate_bp_location(), that mostly uninitialized
8555 location will be placed on the location chain. Adjustment of the
8556 breakpoint may cause target_read_memory() to be called and we do
8557 not want its scan of the location chain to find a breakpoint and
8558 location that's only been partially initialized. */
8559 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8560 sal->pc, b->type);
8561
8562 /* Sort the locations by their ADDRESS. */
8563 loc = allocate_bp_location (b);
8564 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8565 tmp = &((*tmp)->next))
8566 ;
8567 loc->next = *tmp;
8568 *tmp = loc;
8569
8570 loc->requested_address = sal->pc;
8571 loc->address = adjusted_address;
8572 loc->pspace = sal->pspace;
8573 loc->probe.prob = sal->prob;
8574 loc->probe.objfile = sal->objfile;
8575 gdb_assert (loc->pspace != NULL);
8576 loc->section = sal->section;
8577 loc->gdbarch = loc_gdbarch;
8578 loc->line_number = sal->line;
8579 loc->symtab = sal->symtab;
8580 loc->symbol = sal->symbol;
8581 loc->msymbol = sal->msymbol;
8582 loc->objfile = sal->objfile;
8583
8584 set_breakpoint_location_function (loc);
8585
8586 /* While by definition, permanent breakpoints are already present in the
8587 code, we don't mark the location as inserted. Normally one would expect
8588 that GDB could rely on that breakpoint instruction to stop the program,
8589 thus removing the need to insert its own breakpoint, except that executing
8590 the breakpoint instruction can kill the target instead of reporting a
8591 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8592 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8593 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8594 breakpoint be inserted normally results in QEMU knowing about the GDB
8595 breakpoint, and thus trap before the breakpoint instruction is executed.
8596 (If GDB later needs to continue execution past the permanent breakpoint,
8597 it manually increments the PC, thus avoiding executing the breakpoint
8598 instruction.) */
8599 if (bp_loc_is_permanent (loc))
8600 loc->permanent = 1;
8601
8602 return loc;
8603 }
8604 \f
8605
8606 /* See breakpoint.h. */
8607
8608 int
8609 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8610 {
8611 int len;
8612 CORE_ADDR addr;
8613 const gdb_byte *bpoint;
8614 gdb_byte *target_mem;
8615
8616 addr = address;
8617 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8618
8619 /* Software breakpoints unsupported? */
8620 if (bpoint == NULL)
8621 return 0;
8622
8623 target_mem = (gdb_byte *) alloca (len);
8624
8625 /* Enable the automatic memory restoration from breakpoints while
8626 we read the memory. Otherwise we could say about our temporary
8627 breakpoints they are permanent. */
8628 scoped_restore restore_memory
8629 = make_scoped_restore_show_memory_breakpoints (0);
8630
8631 if (target_read_memory (address, target_mem, len) == 0
8632 && memcmp (target_mem, bpoint, len) == 0)
8633 return 1;
8634
8635 return 0;
8636 }
8637
8638 /* Return 1 if LOC is pointing to a permanent breakpoint,
8639 return 0 otherwise. */
8640
8641 static int
8642 bp_loc_is_permanent (struct bp_location *loc)
8643 {
8644 gdb_assert (loc != NULL);
8645
8646 /* If we have a non-breakpoint-backed catchpoint or a software
8647 watchpoint, just return 0. We should not attempt to read from
8648 the addresses the locations of these breakpoint types point to.
8649 program_breakpoint_here_p, below, will attempt to read
8650 memory. */
8651 if (!bl_address_is_meaningful (loc))
8652 return 0;
8653
8654 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8655 switch_to_program_space_and_thread (loc->pspace);
8656 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8657 }
8658
8659 /* Build a command list for the dprintf corresponding to the current
8660 settings of the dprintf style options. */
8661
8662 static void
8663 update_dprintf_command_list (struct breakpoint *b)
8664 {
8665 char *dprintf_args = b->extra_string;
8666 char *printf_line = NULL;
8667
8668 if (!dprintf_args)
8669 return;
8670
8671 dprintf_args = skip_spaces (dprintf_args);
8672
8673 /* Allow a comma, as it may have terminated a location, but don't
8674 insist on it. */
8675 if (*dprintf_args == ',')
8676 ++dprintf_args;
8677 dprintf_args = skip_spaces (dprintf_args);
8678
8679 if (*dprintf_args != '"')
8680 error (_("Bad format string, missing '\"'."));
8681
8682 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8683 printf_line = xstrprintf ("printf %s", dprintf_args);
8684 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8685 {
8686 if (!dprintf_function)
8687 error (_("No function supplied for dprintf call"));
8688
8689 if (dprintf_channel && strlen (dprintf_channel) > 0)
8690 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8691 dprintf_function,
8692 dprintf_channel,
8693 dprintf_args);
8694 else
8695 printf_line = xstrprintf ("call (void) %s (%s)",
8696 dprintf_function,
8697 dprintf_args);
8698 }
8699 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8700 {
8701 if (target_can_run_breakpoint_commands ())
8702 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8703 else
8704 {
8705 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8706 printf_line = xstrprintf ("printf %s", dprintf_args);
8707 }
8708 }
8709 else
8710 internal_error (__FILE__, __LINE__,
8711 _("Invalid dprintf style."));
8712
8713 gdb_assert (printf_line != NULL);
8714
8715 /* Manufacture a printf sequence. */
8716 struct command_line *printf_cmd_line
8717 = new struct command_line (simple_control, printf_line);
8718 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8719 command_lines_deleter ()));
8720 }
8721
8722 /* Update all dprintf commands, making their command lists reflect
8723 current style settings. */
8724
8725 static void
8726 update_dprintf_commands (const char *args, int from_tty,
8727 struct cmd_list_element *c)
8728 {
8729 struct breakpoint *b;
8730
8731 ALL_BREAKPOINTS (b)
8732 {
8733 if (b->type == bp_dprintf)
8734 update_dprintf_command_list (b);
8735 }
8736 }
8737
8738 /* Create a breakpoint with SAL as location. Use LOCATION
8739 as a description of the location, and COND_STRING
8740 as condition expression. If LOCATION is NULL then create an
8741 "address location" from the address in the SAL. */
8742
8743 static void
8744 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8745 gdb::array_view<const symtab_and_line> sals,
8746 event_location_up &&location,
8747 gdb::unique_xmalloc_ptr<char> filter,
8748 gdb::unique_xmalloc_ptr<char> cond_string,
8749 gdb::unique_xmalloc_ptr<char> extra_string,
8750 enum bptype type, enum bpdisp disposition,
8751 int thread, int task, int ignore_count,
8752 const struct breakpoint_ops *ops, int from_tty,
8753 int enabled, int internal, unsigned flags,
8754 int display_canonical)
8755 {
8756 int i;
8757
8758 if (type == bp_hardware_breakpoint)
8759 {
8760 int target_resources_ok;
8761
8762 i = hw_breakpoint_used_count ();
8763 target_resources_ok =
8764 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8765 i + 1, 0);
8766 if (target_resources_ok == 0)
8767 error (_("No hardware breakpoint support in the target."));
8768 else if (target_resources_ok < 0)
8769 error (_("Hardware breakpoints used exceeds limit."));
8770 }
8771
8772 gdb_assert (!sals.empty ());
8773
8774 for (const auto &sal : sals)
8775 {
8776 struct bp_location *loc;
8777
8778 if (from_tty)
8779 {
8780 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8781 if (!loc_gdbarch)
8782 loc_gdbarch = gdbarch;
8783
8784 describe_other_breakpoints (loc_gdbarch,
8785 sal.pspace, sal.pc, sal.section, thread);
8786 }
8787
8788 if (&sal == &sals[0])
8789 {
8790 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8791 b->thread = thread;
8792 b->task = task;
8793
8794 b->cond_string = cond_string.release ();
8795 b->extra_string = extra_string.release ();
8796 b->ignore_count = ignore_count;
8797 b->enable_state = enabled ? bp_enabled : bp_disabled;
8798 b->disposition = disposition;
8799
8800 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8801 b->loc->inserted = 1;
8802
8803 if (type == bp_static_tracepoint)
8804 {
8805 struct tracepoint *t = (struct tracepoint *) b;
8806 struct static_tracepoint_marker marker;
8807
8808 if (strace_marker_p (b))
8809 {
8810 /* We already know the marker exists, otherwise, we
8811 wouldn't see a sal for it. */
8812 const char *p
8813 = &event_location_to_string (b->location.get ())[3];
8814 const char *endp;
8815
8816 p = skip_spaces (p);
8817
8818 endp = skip_to_space (p);
8819
8820 t->static_trace_marker_id.assign (p, endp - p);
8821
8822 printf_filtered (_("Probed static tracepoint "
8823 "marker \"%s\"\n"),
8824 t->static_trace_marker_id.c_str ());
8825 }
8826 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8827 {
8828 t->static_trace_marker_id = std::move (marker.str_id);
8829
8830 printf_filtered (_("Probed static tracepoint "
8831 "marker \"%s\"\n"),
8832 t->static_trace_marker_id.c_str ());
8833 }
8834 else
8835 warning (_("Couldn't determine the static "
8836 "tracepoint marker to probe"));
8837 }
8838
8839 loc = b->loc;
8840 }
8841 else
8842 {
8843 loc = add_location_to_breakpoint (b, &sal);
8844 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8845 loc->inserted = 1;
8846 }
8847
8848 if (b->cond_string)
8849 {
8850 const char *arg = b->cond_string;
8851
8852 loc->cond = parse_exp_1 (&arg, loc->address,
8853 block_for_pc (loc->address), 0);
8854 if (*arg)
8855 error (_("Garbage '%s' follows condition"), arg);
8856 }
8857
8858 /* Dynamic printf requires and uses additional arguments on the
8859 command line, otherwise it's an error. */
8860 if (type == bp_dprintf)
8861 {
8862 if (b->extra_string)
8863 update_dprintf_command_list (b);
8864 else
8865 error (_("Format string required"));
8866 }
8867 else if (b->extra_string)
8868 error (_("Garbage '%s' at end of command"), b->extra_string);
8869 }
8870
8871 b->display_canonical = display_canonical;
8872 if (location != NULL)
8873 b->location = std::move (location);
8874 else
8875 b->location = new_address_location (b->loc->address, NULL, 0);
8876 b->filter = filter.release ();
8877 }
8878
8879 static void
8880 create_breakpoint_sal (struct gdbarch *gdbarch,
8881 gdb::array_view<const symtab_and_line> sals,
8882 event_location_up &&location,
8883 gdb::unique_xmalloc_ptr<char> filter,
8884 gdb::unique_xmalloc_ptr<char> cond_string,
8885 gdb::unique_xmalloc_ptr<char> extra_string,
8886 enum bptype type, enum bpdisp disposition,
8887 int thread, int task, int ignore_count,
8888 const struct breakpoint_ops *ops, int from_tty,
8889 int enabled, int internal, unsigned flags,
8890 int display_canonical)
8891 {
8892 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8893
8894 init_breakpoint_sal (b.get (), gdbarch,
8895 sals, std::move (location),
8896 std::move (filter),
8897 std::move (cond_string),
8898 std::move (extra_string),
8899 type, disposition,
8900 thread, task, ignore_count,
8901 ops, from_tty,
8902 enabled, internal, flags,
8903 display_canonical);
8904
8905 install_breakpoint (internal, std::move (b), 0);
8906 }
8907
8908 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8909 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8910 value. COND_STRING, if not NULL, specified the condition to be
8911 used for all breakpoints. Essentially the only case where
8912 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8913 function. In that case, it's still not possible to specify
8914 separate conditions for different overloaded functions, so
8915 we take just a single condition string.
8916
8917 NOTE: If the function succeeds, the caller is expected to cleanup
8918 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8919 array contents). If the function fails (error() is called), the
8920 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8921 COND and SALS arrays and each of those arrays contents. */
8922
8923 static void
8924 create_breakpoints_sal (struct gdbarch *gdbarch,
8925 struct linespec_result *canonical,
8926 gdb::unique_xmalloc_ptr<char> cond_string,
8927 gdb::unique_xmalloc_ptr<char> extra_string,
8928 enum bptype type, enum bpdisp disposition,
8929 int thread, int task, int ignore_count,
8930 const struct breakpoint_ops *ops, int from_tty,
8931 int enabled, int internal, unsigned flags)
8932 {
8933 if (canonical->pre_expanded)
8934 gdb_assert (canonical->lsals.size () == 1);
8935
8936 for (const auto &lsal : canonical->lsals)
8937 {
8938 /* Note that 'location' can be NULL in the case of a plain
8939 'break', without arguments. */
8940 event_location_up location
8941 = (canonical->location != NULL
8942 ? copy_event_location (canonical->location.get ()) : NULL);
8943 gdb::unique_xmalloc_ptr<char> filter_string
8944 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8945
8946 create_breakpoint_sal (gdbarch, lsal.sals,
8947 std::move (location),
8948 std::move (filter_string),
8949 std::move (cond_string),
8950 std::move (extra_string),
8951 type, disposition,
8952 thread, task, ignore_count, ops,
8953 from_tty, enabled, internal, flags,
8954 canonical->special_display);
8955 }
8956 }
8957
8958 /* Parse LOCATION which is assumed to be a SAL specification possibly
8959 followed by conditionals. On return, SALS contains an array of SAL
8960 addresses found. LOCATION points to the end of the SAL (for
8961 linespec locations).
8962
8963 The array and the line spec strings are allocated on the heap, it is
8964 the caller's responsibility to free them. */
8965
8966 static void
8967 parse_breakpoint_sals (const struct event_location *location,
8968 struct linespec_result *canonical)
8969 {
8970 struct symtab_and_line cursal;
8971
8972 if (event_location_type (location) == LINESPEC_LOCATION)
8973 {
8974 const char *spec = get_linespec_location (location)->spec_string;
8975
8976 if (spec == NULL)
8977 {
8978 /* The last displayed codepoint, if it's valid, is our default
8979 breakpoint address. */
8980 if (last_displayed_sal_is_valid ())
8981 {
8982 /* Set sal's pspace, pc, symtab, and line to the values
8983 corresponding to the last call to print_frame_info.
8984 Be sure to reinitialize LINE with NOTCURRENT == 0
8985 as the breakpoint line number is inappropriate otherwise.
8986 find_pc_line would adjust PC, re-set it back. */
8987 symtab_and_line sal = get_last_displayed_sal ();
8988 CORE_ADDR pc = sal.pc;
8989
8990 sal = find_pc_line (pc, 0);
8991
8992 /* "break" without arguments is equivalent to "break *PC"
8993 where PC is the last displayed codepoint's address. So
8994 make sure to set sal.explicit_pc to prevent GDB from
8995 trying to expand the list of sals to include all other
8996 instances with the same symtab and line. */
8997 sal.pc = pc;
8998 sal.explicit_pc = 1;
8999
9000 struct linespec_sals lsal;
9001 lsal.sals = {sal};
9002 lsal.canonical = NULL;
9003
9004 canonical->lsals.push_back (std::move (lsal));
9005 return;
9006 }
9007 else
9008 error (_("No default breakpoint address now."));
9009 }
9010 }
9011
9012 /* Force almost all breakpoints to be in terms of the
9013 current_source_symtab (which is decode_line_1's default).
9014 This should produce the results we want almost all of the
9015 time while leaving default_breakpoint_* alone.
9016
9017 ObjC: However, don't match an Objective-C method name which
9018 may have a '+' or '-' succeeded by a '['. */
9019 cursal = get_current_source_symtab_and_line ();
9020 if (last_displayed_sal_is_valid ())
9021 {
9022 const char *spec = NULL;
9023
9024 if (event_location_type (location) == LINESPEC_LOCATION)
9025 spec = get_linespec_location (location)->spec_string;
9026
9027 if (!cursal.symtab
9028 || (spec != NULL
9029 && strchr ("+-", spec[0]) != NULL
9030 && spec[1] != '['))
9031 {
9032 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9033 get_last_displayed_symtab (),
9034 get_last_displayed_line (),
9035 canonical, NULL, NULL);
9036 return;
9037 }
9038 }
9039
9040 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9041 cursal.symtab, cursal.line, canonical, NULL, NULL);
9042 }
9043
9044
9045 /* Convert each SAL into a real PC. Verify that the PC can be
9046 inserted as a breakpoint. If it can't throw an error. */
9047
9048 static void
9049 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9050 {
9051 for (auto &sal : sals)
9052 resolve_sal_pc (&sal);
9053 }
9054
9055 /* Fast tracepoints may have restrictions on valid locations. For
9056 instance, a fast tracepoint using a jump instead of a trap will
9057 likely have to overwrite more bytes than a trap would, and so can
9058 only be placed where the instruction is longer than the jump, or a
9059 multi-instruction sequence does not have a jump into the middle of
9060 it, etc. */
9061
9062 static void
9063 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9064 gdb::array_view<const symtab_and_line> sals)
9065 {
9066 for (const auto &sal : sals)
9067 {
9068 struct gdbarch *sarch;
9069
9070 sarch = get_sal_arch (sal);
9071 /* We fall back to GDBARCH if there is no architecture
9072 associated with SAL. */
9073 if (sarch == NULL)
9074 sarch = gdbarch;
9075 std::string msg;
9076 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9077 error (_("May not have a fast tracepoint at %s%s"),
9078 paddress (sarch, sal.pc), msg.c_str ());
9079 }
9080 }
9081
9082 /* Given TOK, a string specification of condition and thread, as
9083 accepted by the 'break' command, extract the condition
9084 string and thread number and set *COND_STRING and *THREAD.
9085 PC identifies the context at which the condition should be parsed.
9086 If no condition is found, *COND_STRING is set to NULL.
9087 If no thread is found, *THREAD is set to -1. */
9088
9089 static void
9090 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9091 char **cond_string, int *thread, int *task,
9092 char **rest)
9093 {
9094 *cond_string = NULL;
9095 *thread = -1;
9096 *task = 0;
9097 *rest = NULL;
9098
9099 while (tok && *tok)
9100 {
9101 const char *end_tok;
9102 int toklen;
9103 const char *cond_start = NULL;
9104 const char *cond_end = NULL;
9105
9106 tok = skip_spaces (tok);
9107
9108 if ((*tok == '"' || *tok == ',') && rest)
9109 {
9110 *rest = savestring (tok, strlen (tok));
9111 return;
9112 }
9113
9114 end_tok = skip_to_space (tok);
9115
9116 toklen = end_tok - tok;
9117
9118 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9119 {
9120 tok = cond_start = end_tok + 1;
9121 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9122 cond_end = tok;
9123 *cond_string = savestring (cond_start, cond_end - cond_start);
9124 }
9125 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9126 {
9127 const char *tmptok;
9128 struct thread_info *thr;
9129
9130 tok = end_tok + 1;
9131 thr = parse_thread_id (tok, &tmptok);
9132 if (tok == tmptok)
9133 error (_("Junk after thread keyword."));
9134 *thread = thr->global_num;
9135 tok = tmptok;
9136 }
9137 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9138 {
9139 char *tmptok;
9140
9141 tok = end_tok + 1;
9142 *task = strtol (tok, &tmptok, 0);
9143 if (tok == tmptok)
9144 error (_("Junk after task keyword."));
9145 if (!valid_task_id (*task))
9146 error (_("Unknown task %d."), *task);
9147 tok = tmptok;
9148 }
9149 else if (rest)
9150 {
9151 *rest = savestring (tok, strlen (tok));
9152 return;
9153 }
9154 else
9155 error (_("Junk at end of arguments."));
9156 }
9157 }
9158
9159 /* Decode a static tracepoint marker spec. */
9160
9161 static std::vector<symtab_and_line>
9162 decode_static_tracepoint_spec (const char **arg_p)
9163 {
9164 const char *p = &(*arg_p)[3];
9165 const char *endp;
9166
9167 p = skip_spaces (p);
9168
9169 endp = skip_to_space (p);
9170
9171 std::string marker_str (p, endp - p);
9172
9173 std::vector<static_tracepoint_marker> markers
9174 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9175 if (markers.empty ())
9176 error (_("No known static tracepoint marker named %s"),
9177 marker_str.c_str ());
9178
9179 std::vector<symtab_and_line> sals;
9180 sals.reserve (markers.size ());
9181
9182 for (const static_tracepoint_marker &marker : markers)
9183 {
9184 symtab_and_line sal = find_pc_line (marker.address, 0);
9185 sal.pc = marker.address;
9186 sals.push_back (sal);
9187 }
9188
9189 *arg_p = endp;
9190 return sals;
9191 }
9192
9193 /* See breakpoint.h. */
9194
9195 int
9196 create_breakpoint (struct gdbarch *gdbarch,
9197 const struct event_location *location,
9198 const char *cond_string,
9199 int thread, const char *extra_string,
9200 int parse_extra,
9201 int tempflag, enum bptype type_wanted,
9202 int ignore_count,
9203 enum auto_boolean pending_break_support,
9204 const struct breakpoint_ops *ops,
9205 int from_tty, int enabled, int internal,
9206 unsigned flags)
9207 {
9208 struct linespec_result canonical;
9209 int pending = 0;
9210 int task = 0;
9211 int prev_bkpt_count = breakpoint_count;
9212
9213 gdb_assert (ops != NULL);
9214
9215 /* If extra_string isn't useful, set it to NULL. */
9216 if (extra_string != NULL && *extra_string == '\0')
9217 extra_string = NULL;
9218
9219 try
9220 {
9221 ops->create_sals_from_location (location, &canonical, type_wanted);
9222 }
9223 catch (const gdb_exception_error &e)
9224 {
9225 /* If caller is interested in rc value from parse, set
9226 value. */
9227 if (e.error == NOT_FOUND_ERROR)
9228 {
9229 /* If pending breakpoint support is turned off, throw
9230 error. */
9231
9232 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9233 throw;
9234
9235 exception_print (gdb_stderr, e);
9236
9237 /* If pending breakpoint support is auto query and the user
9238 selects no, then simply return the error code. */
9239 if (pending_break_support == AUTO_BOOLEAN_AUTO
9240 && !nquery (_("Make %s pending on future shared library load? "),
9241 bptype_string (type_wanted)))
9242 return 0;
9243
9244 /* At this point, either the user was queried about setting
9245 a pending breakpoint and selected yes, or pending
9246 breakpoint behavior is on and thus a pending breakpoint
9247 is defaulted on behalf of the user. */
9248 pending = 1;
9249 }
9250 else
9251 throw;
9252 }
9253
9254 if (!pending && canonical.lsals.empty ())
9255 return 0;
9256
9257 /* Resolve all line numbers to PC's and verify that the addresses
9258 are ok for the target. */
9259 if (!pending)
9260 {
9261 for (auto &lsal : canonical.lsals)
9262 breakpoint_sals_to_pc (lsal.sals);
9263 }
9264
9265 /* Fast tracepoints may have additional restrictions on location. */
9266 if (!pending && type_wanted == bp_fast_tracepoint)
9267 {
9268 for (const auto &lsal : canonical.lsals)
9269 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9270 }
9271
9272 /* Verify that condition can be parsed, before setting any
9273 breakpoints. Allocate a separate condition expression for each
9274 breakpoint. */
9275 if (!pending)
9276 {
9277 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9278 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9279
9280 if (parse_extra)
9281 {
9282 char *rest;
9283 char *cond;
9284
9285 const linespec_sals &lsal = canonical.lsals[0];
9286
9287 /* Here we only parse 'arg' to separate condition
9288 from thread number, so parsing in context of first
9289 sal is OK. When setting the breakpoint we'll
9290 re-parse it in context of each sal. */
9291
9292 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9293 &cond, &thread, &task, &rest);
9294 cond_string_copy.reset (cond);
9295 extra_string_copy.reset (rest);
9296 }
9297 else
9298 {
9299 if (type_wanted != bp_dprintf
9300 && extra_string != NULL && *extra_string != '\0')
9301 error (_("Garbage '%s' at end of location"), extra_string);
9302
9303 /* Create a private copy of condition string. */
9304 if (cond_string)
9305 cond_string_copy.reset (xstrdup (cond_string));
9306 /* Create a private copy of any extra string. */
9307 if (extra_string)
9308 extra_string_copy.reset (xstrdup (extra_string));
9309 }
9310
9311 ops->create_breakpoints_sal (gdbarch, &canonical,
9312 std::move (cond_string_copy),
9313 std::move (extra_string_copy),
9314 type_wanted,
9315 tempflag ? disp_del : disp_donttouch,
9316 thread, task, ignore_count, ops,
9317 from_tty, enabled, internal, flags);
9318 }
9319 else
9320 {
9321 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9322
9323 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9324 b->location = copy_event_location (location);
9325
9326 if (parse_extra)
9327 b->cond_string = NULL;
9328 else
9329 {
9330 /* Create a private copy of condition string. */
9331 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9332 b->thread = thread;
9333 }
9334
9335 /* Create a private copy of any extra string. */
9336 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9337 b->ignore_count = ignore_count;
9338 b->disposition = tempflag ? disp_del : disp_donttouch;
9339 b->condition_not_parsed = 1;
9340 b->enable_state = enabled ? bp_enabled : bp_disabled;
9341 if ((type_wanted != bp_breakpoint
9342 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9343 b->pspace = current_program_space;
9344
9345 install_breakpoint (internal, std::move (b), 0);
9346 }
9347
9348 if (canonical.lsals.size () > 1)
9349 {
9350 warning (_("Multiple breakpoints were set.\nUse the "
9351 "\"delete\" command to delete unwanted breakpoints."));
9352 prev_breakpoint_count = prev_bkpt_count;
9353 }
9354
9355 update_global_location_list (UGLL_MAY_INSERT);
9356
9357 return 1;
9358 }
9359
9360 /* Set a breakpoint.
9361 ARG is a string describing breakpoint address,
9362 condition, and thread.
9363 FLAG specifies if a breakpoint is hardware on,
9364 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9365 and BP_TEMPFLAG. */
9366
9367 static void
9368 break_command_1 (const char *arg, int flag, int from_tty)
9369 {
9370 int tempflag = flag & BP_TEMPFLAG;
9371 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9372 ? bp_hardware_breakpoint
9373 : bp_breakpoint);
9374 struct breakpoint_ops *ops;
9375
9376 event_location_up location = string_to_event_location (&arg, current_language);
9377
9378 /* Matching breakpoints on probes. */
9379 if (location != NULL
9380 && event_location_type (location.get ()) == PROBE_LOCATION)
9381 ops = &bkpt_probe_breakpoint_ops;
9382 else
9383 ops = &bkpt_breakpoint_ops;
9384
9385 create_breakpoint (get_current_arch (),
9386 location.get (),
9387 NULL, 0, arg, 1 /* parse arg */,
9388 tempflag, type_wanted,
9389 0 /* Ignore count */,
9390 pending_break_support,
9391 ops,
9392 from_tty,
9393 1 /* enabled */,
9394 0 /* internal */,
9395 0);
9396 }
9397
9398 /* Helper function for break_command_1 and disassemble_command. */
9399
9400 void
9401 resolve_sal_pc (struct symtab_and_line *sal)
9402 {
9403 CORE_ADDR pc;
9404
9405 if (sal->pc == 0 && sal->symtab != NULL)
9406 {
9407 if (!find_line_pc (sal->symtab, sal->line, &pc))
9408 error (_("No line %d in file \"%s\"."),
9409 sal->line, symtab_to_filename_for_display (sal->symtab));
9410 sal->pc = pc;
9411
9412 /* If this SAL corresponds to a breakpoint inserted using a line
9413 number, then skip the function prologue if necessary. */
9414 if (sal->explicit_line)
9415 skip_prologue_sal (sal);
9416 }
9417
9418 if (sal->section == 0 && sal->symtab != NULL)
9419 {
9420 const struct blockvector *bv;
9421 const struct block *b;
9422 struct symbol *sym;
9423
9424 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9425 SYMTAB_COMPUNIT (sal->symtab));
9426 if (bv != NULL)
9427 {
9428 sym = block_linkage_function (b);
9429 if (sym != NULL)
9430 {
9431 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9432 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9433 sym);
9434 }
9435 else
9436 {
9437 /* It really is worthwhile to have the section, so we'll
9438 just have to look harder. This case can be executed
9439 if we have line numbers but no functions (as can
9440 happen in assembly source). */
9441
9442 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9443 switch_to_program_space_and_thread (sal->pspace);
9444
9445 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9446 if (msym.minsym)
9447 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9448 }
9449 }
9450 }
9451 }
9452
9453 void
9454 break_command (const char *arg, int from_tty)
9455 {
9456 break_command_1 (arg, 0, from_tty);
9457 }
9458
9459 void
9460 tbreak_command (const char *arg, int from_tty)
9461 {
9462 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9463 }
9464
9465 static void
9466 hbreak_command (const char *arg, int from_tty)
9467 {
9468 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9469 }
9470
9471 static void
9472 thbreak_command (const char *arg, int from_tty)
9473 {
9474 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9475 }
9476
9477 static void
9478 stop_command (const char *arg, int from_tty)
9479 {
9480 printf_filtered (_("Specify the type of breakpoint to set.\n\
9481 Usage: stop in <function | address>\n\
9482 stop at <line>\n"));
9483 }
9484
9485 static void
9486 stopin_command (const char *arg, int from_tty)
9487 {
9488 int badInput = 0;
9489
9490 if (arg == NULL)
9491 badInput = 1;
9492 else if (*arg != '*')
9493 {
9494 const char *argptr = arg;
9495 int hasColon = 0;
9496
9497 /* Look for a ':'. If this is a line number specification, then
9498 say it is bad, otherwise, it should be an address or
9499 function/method name. */
9500 while (*argptr && !hasColon)
9501 {
9502 hasColon = (*argptr == ':');
9503 argptr++;
9504 }
9505
9506 if (hasColon)
9507 badInput = (*argptr != ':'); /* Not a class::method */
9508 else
9509 badInput = isdigit (*arg); /* a simple line number */
9510 }
9511
9512 if (badInput)
9513 printf_filtered (_("Usage: stop in <function | address>\n"));
9514 else
9515 break_command_1 (arg, 0, from_tty);
9516 }
9517
9518 static void
9519 stopat_command (const char *arg, int from_tty)
9520 {
9521 int badInput = 0;
9522
9523 if (arg == NULL || *arg == '*') /* no line number */
9524 badInput = 1;
9525 else
9526 {
9527 const char *argptr = arg;
9528 int hasColon = 0;
9529
9530 /* Look for a ':'. If there is a '::' then get out, otherwise
9531 it is probably a line number. */
9532 while (*argptr && !hasColon)
9533 {
9534 hasColon = (*argptr == ':');
9535 argptr++;
9536 }
9537
9538 if (hasColon)
9539 badInput = (*argptr == ':'); /* we have class::method */
9540 else
9541 badInput = !isdigit (*arg); /* not a line number */
9542 }
9543
9544 if (badInput)
9545 printf_filtered (_("Usage: stop at LINE\n"));
9546 else
9547 break_command_1 (arg, 0, from_tty);
9548 }
9549
9550 /* The dynamic printf command is mostly like a regular breakpoint, but
9551 with a prewired command list consisting of a single output command,
9552 built from extra arguments supplied on the dprintf command
9553 line. */
9554
9555 static void
9556 dprintf_command (const char *arg, int from_tty)
9557 {
9558 event_location_up location = string_to_event_location (&arg, current_language);
9559
9560 /* If non-NULL, ARG should have been advanced past the location;
9561 the next character must be ','. */
9562 if (arg != NULL)
9563 {
9564 if (arg[0] != ',' || arg[1] == '\0')
9565 error (_("Format string required"));
9566 else
9567 {
9568 /* Skip the comma. */
9569 ++arg;
9570 }
9571 }
9572
9573 create_breakpoint (get_current_arch (),
9574 location.get (),
9575 NULL, 0, arg, 1 /* parse arg */,
9576 0, bp_dprintf,
9577 0 /* Ignore count */,
9578 pending_break_support,
9579 &dprintf_breakpoint_ops,
9580 from_tty,
9581 1 /* enabled */,
9582 0 /* internal */,
9583 0);
9584 }
9585
9586 static void
9587 agent_printf_command (const char *arg, int from_tty)
9588 {
9589 error (_("May only run agent-printf on the target"));
9590 }
9591
9592 /* Implement the "breakpoint_hit" breakpoint_ops method for
9593 ranged breakpoints. */
9594
9595 static int
9596 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9597 const address_space *aspace,
9598 CORE_ADDR bp_addr,
9599 const struct target_waitstatus *ws)
9600 {
9601 if (ws->kind != TARGET_WAITKIND_STOPPED
9602 || ws->value.sig != GDB_SIGNAL_TRAP)
9603 return 0;
9604
9605 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9606 bl->length, aspace, bp_addr);
9607 }
9608
9609 /* Implement the "resources_needed" breakpoint_ops method for
9610 ranged breakpoints. */
9611
9612 static int
9613 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9614 {
9615 return target_ranged_break_num_registers ();
9616 }
9617
9618 /* Implement the "print_it" breakpoint_ops method for
9619 ranged breakpoints. */
9620
9621 static enum print_stop_action
9622 print_it_ranged_breakpoint (bpstat bs)
9623 {
9624 struct breakpoint *b = bs->breakpoint_at;
9625 struct bp_location *bl = b->loc;
9626 struct ui_out *uiout = current_uiout;
9627
9628 gdb_assert (b->type == bp_hardware_breakpoint);
9629
9630 /* Ranged breakpoints have only one location. */
9631 gdb_assert (bl && bl->next == NULL);
9632
9633 annotate_breakpoint (b->number);
9634
9635 maybe_print_thread_hit_breakpoint (uiout);
9636
9637 if (b->disposition == disp_del)
9638 uiout->text ("Temporary ranged breakpoint ");
9639 else
9640 uiout->text ("Ranged breakpoint ");
9641 if (uiout->is_mi_like_p ())
9642 {
9643 uiout->field_string ("reason",
9644 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9645 uiout->field_string ("disp", bpdisp_text (b->disposition));
9646 }
9647 uiout->field_int ("bkptno", b->number);
9648 uiout->text (", ");
9649
9650 return PRINT_SRC_AND_LOC;
9651 }
9652
9653 /* Implement the "print_one" breakpoint_ops method for
9654 ranged breakpoints. */
9655
9656 static void
9657 print_one_ranged_breakpoint (struct breakpoint *b,
9658 struct bp_location **last_loc)
9659 {
9660 struct bp_location *bl = b->loc;
9661 struct value_print_options opts;
9662 struct ui_out *uiout = current_uiout;
9663
9664 /* Ranged breakpoints have only one location. */
9665 gdb_assert (bl && bl->next == NULL);
9666
9667 get_user_print_options (&opts);
9668
9669 if (opts.addressprint)
9670 /* We don't print the address range here, it will be printed later
9671 by print_one_detail_ranged_breakpoint. */
9672 uiout->field_skip ("addr");
9673 annotate_field (5);
9674 print_breakpoint_location (b, bl);
9675 *last_loc = bl;
9676 }
9677
9678 /* Implement the "print_one_detail" breakpoint_ops method for
9679 ranged breakpoints. */
9680
9681 static void
9682 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9683 struct ui_out *uiout)
9684 {
9685 CORE_ADDR address_start, address_end;
9686 struct bp_location *bl = b->loc;
9687 string_file stb;
9688
9689 gdb_assert (bl);
9690
9691 address_start = bl->address;
9692 address_end = address_start + bl->length - 1;
9693
9694 uiout->text ("\taddress range: ");
9695 stb.printf ("[%s, %s]",
9696 print_core_address (bl->gdbarch, address_start),
9697 print_core_address (bl->gdbarch, address_end));
9698 uiout->field_stream ("addr", stb);
9699 uiout->text ("\n");
9700 }
9701
9702 /* Implement the "print_mention" breakpoint_ops method for
9703 ranged breakpoints. */
9704
9705 static void
9706 print_mention_ranged_breakpoint (struct breakpoint *b)
9707 {
9708 struct bp_location *bl = b->loc;
9709 struct ui_out *uiout = current_uiout;
9710
9711 gdb_assert (bl);
9712 gdb_assert (b->type == bp_hardware_breakpoint);
9713
9714 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9715 b->number, paddress (bl->gdbarch, bl->address),
9716 paddress (bl->gdbarch, bl->address + bl->length - 1));
9717 }
9718
9719 /* Implement the "print_recreate" breakpoint_ops method for
9720 ranged breakpoints. */
9721
9722 static void
9723 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9724 {
9725 fprintf_unfiltered (fp, "break-range %s, %s",
9726 event_location_to_string (b->location.get ()),
9727 event_location_to_string (b->location_range_end.get ()));
9728 print_recreate_thread (b, fp);
9729 }
9730
9731 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9732
9733 static struct breakpoint_ops ranged_breakpoint_ops;
9734
9735 /* Find the address where the end of the breakpoint range should be
9736 placed, given the SAL of the end of the range. This is so that if
9737 the user provides a line number, the end of the range is set to the
9738 last instruction of the given line. */
9739
9740 static CORE_ADDR
9741 find_breakpoint_range_end (struct symtab_and_line sal)
9742 {
9743 CORE_ADDR end;
9744
9745 /* If the user provided a PC value, use it. Otherwise,
9746 find the address of the end of the given location. */
9747 if (sal.explicit_pc)
9748 end = sal.pc;
9749 else
9750 {
9751 int ret;
9752 CORE_ADDR start;
9753
9754 ret = find_line_pc_range (sal, &start, &end);
9755 if (!ret)
9756 error (_("Could not find location of the end of the range."));
9757
9758 /* find_line_pc_range returns the start of the next line. */
9759 end--;
9760 }
9761
9762 return end;
9763 }
9764
9765 /* Implement the "break-range" CLI command. */
9766
9767 static void
9768 break_range_command (const char *arg, int from_tty)
9769 {
9770 const char *arg_start;
9771 struct linespec_result canonical_start, canonical_end;
9772 int bp_count, can_use_bp, length;
9773 CORE_ADDR end;
9774 struct breakpoint *b;
9775
9776 /* We don't support software ranged breakpoints. */
9777 if (target_ranged_break_num_registers () < 0)
9778 error (_("This target does not support hardware ranged breakpoints."));
9779
9780 bp_count = hw_breakpoint_used_count ();
9781 bp_count += target_ranged_break_num_registers ();
9782 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9783 bp_count, 0);
9784 if (can_use_bp < 0)
9785 error (_("Hardware breakpoints used exceeds limit."));
9786
9787 arg = skip_spaces (arg);
9788 if (arg == NULL || arg[0] == '\0')
9789 error(_("No address range specified."));
9790
9791 arg_start = arg;
9792 event_location_up start_location = string_to_event_location (&arg,
9793 current_language);
9794 parse_breakpoint_sals (start_location.get (), &canonical_start);
9795
9796 if (arg[0] != ',')
9797 error (_("Too few arguments."));
9798 else if (canonical_start.lsals.empty ())
9799 error (_("Could not find location of the beginning of the range."));
9800
9801 const linespec_sals &lsal_start = canonical_start.lsals[0];
9802
9803 if (canonical_start.lsals.size () > 1
9804 || lsal_start.sals.size () != 1)
9805 error (_("Cannot create a ranged breakpoint with multiple locations."));
9806
9807 const symtab_and_line &sal_start = lsal_start.sals[0];
9808 std::string addr_string_start (arg_start, arg - arg_start);
9809
9810 arg++; /* Skip the comma. */
9811 arg = skip_spaces (arg);
9812
9813 /* Parse the end location. */
9814
9815 arg_start = arg;
9816
9817 /* We call decode_line_full directly here instead of using
9818 parse_breakpoint_sals because we need to specify the start location's
9819 symtab and line as the default symtab and line for the end of the
9820 range. This makes it possible to have ranges like "foo.c:27, +14",
9821 where +14 means 14 lines from the start location. */
9822 event_location_up end_location = string_to_event_location (&arg,
9823 current_language);
9824 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9825 sal_start.symtab, sal_start.line,
9826 &canonical_end, NULL, NULL);
9827
9828 if (canonical_end.lsals.empty ())
9829 error (_("Could not find location of the end of the range."));
9830
9831 const linespec_sals &lsal_end = canonical_end.lsals[0];
9832 if (canonical_end.lsals.size () > 1
9833 || lsal_end.sals.size () != 1)
9834 error (_("Cannot create a ranged breakpoint with multiple locations."));
9835
9836 const symtab_and_line &sal_end = lsal_end.sals[0];
9837
9838 end = find_breakpoint_range_end (sal_end);
9839 if (sal_start.pc > end)
9840 error (_("Invalid address range, end precedes start."));
9841
9842 length = end - sal_start.pc + 1;
9843 if (length < 0)
9844 /* Length overflowed. */
9845 error (_("Address range too large."));
9846 else if (length == 1)
9847 {
9848 /* This range is simple enough to be handled by
9849 the `hbreak' command. */
9850 hbreak_command (&addr_string_start[0], 1);
9851
9852 return;
9853 }
9854
9855 /* Now set up the breakpoint. */
9856 b = set_raw_breakpoint (get_current_arch (), sal_start,
9857 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9858 set_breakpoint_count (breakpoint_count + 1);
9859 b->number = breakpoint_count;
9860 b->disposition = disp_donttouch;
9861 b->location = std::move (start_location);
9862 b->location_range_end = std::move (end_location);
9863 b->loc->length = length;
9864
9865 mention (b);
9866 gdb::observers::breakpoint_created.notify (b);
9867 update_global_location_list (UGLL_MAY_INSERT);
9868 }
9869
9870 /* Return non-zero if EXP is verified as constant. Returned zero
9871 means EXP is variable. Also the constant detection may fail for
9872 some constant expressions and in such case still falsely return
9873 zero. */
9874
9875 static int
9876 watchpoint_exp_is_const (const struct expression *exp)
9877 {
9878 int i = exp->nelts;
9879
9880 while (i > 0)
9881 {
9882 int oplenp, argsp;
9883
9884 /* We are only interested in the descriptor of each element. */
9885 operator_length (exp, i, &oplenp, &argsp);
9886 i -= oplenp;
9887
9888 switch (exp->elts[i].opcode)
9889 {
9890 case BINOP_ADD:
9891 case BINOP_SUB:
9892 case BINOP_MUL:
9893 case BINOP_DIV:
9894 case BINOP_REM:
9895 case BINOP_MOD:
9896 case BINOP_LSH:
9897 case BINOP_RSH:
9898 case BINOP_LOGICAL_AND:
9899 case BINOP_LOGICAL_OR:
9900 case BINOP_BITWISE_AND:
9901 case BINOP_BITWISE_IOR:
9902 case BINOP_BITWISE_XOR:
9903 case BINOP_EQUAL:
9904 case BINOP_NOTEQUAL:
9905 case BINOP_LESS:
9906 case BINOP_GTR:
9907 case BINOP_LEQ:
9908 case BINOP_GEQ:
9909 case BINOP_REPEAT:
9910 case BINOP_COMMA:
9911 case BINOP_EXP:
9912 case BINOP_MIN:
9913 case BINOP_MAX:
9914 case BINOP_INTDIV:
9915 case BINOP_CONCAT:
9916 case TERNOP_COND:
9917 case TERNOP_SLICE:
9918
9919 case OP_LONG:
9920 case OP_FLOAT:
9921 case OP_LAST:
9922 case OP_COMPLEX:
9923 case OP_STRING:
9924 case OP_ARRAY:
9925 case OP_TYPE:
9926 case OP_TYPEOF:
9927 case OP_DECLTYPE:
9928 case OP_TYPEID:
9929 case OP_NAME:
9930 case OP_OBJC_NSSTRING:
9931
9932 case UNOP_NEG:
9933 case UNOP_LOGICAL_NOT:
9934 case UNOP_COMPLEMENT:
9935 case UNOP_ADDR:
9936 case UNOP_HIGH:
9937 case UNOP_CAST:
9938
9939 case UNOP_CAST_TYPE:
9940 case UNOP_REINTERPRET_CAST:
9941 case UNOP_DYNAMIC_CAST:
9942 /* Unary, binary and ternary operators: We have to check
9943 their operands. If they are constant, then so is the
9944 result of that operation. For instance, if A and B are
9945 determined to be constants, then so is "A + B".
9946
9947 UNOP_IND is one exception to the rule above, because the
9948 value of *ADDR is not necessarily a constant, even when
9949 ADDR is. */
9950 break;
9951
9952 case OP_VAR_VALUE:
9953 /* Check whether the associated symbol is a constant.
9954
9955 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9956 possible that a buggy compiler could mark a variable as
9957 constant even when it is not, and TYPE_CONST would return
9958 true in this case, while SYMBOL_CLASS wouldn't.
9959
9960 We also have to check for function symbols because they
9961 are always constant. */
9962 {
9963 struct symbol *s = exp->elts[i + 2].symbol;
9964
9965 if (SYMBOL_CLASS (s) != LOC_BLOCK
9966 && SYMBOL_CLASS (s) != LOC_CONST
9967 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9968 return 0;
9969 break;
9970 }
9971
9972 /* The default action is to return 0 because we are using
9973 the optimistic approach here: If we don't know something,
9974 then it is not a constant. */
9975 default:
9976 return 0;
9977 }
9978 }
9979
9980 return 1;
9981 }
9982
9983 /* Watchpoint destructor. */
9984
9985 watchpoint::~watchpoint ()
9986 {
9987 xfree (this->exp_string);
9988 xfree (this->exp_string_reparse);
9989 }
9990
9991 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9992
9993 static void
9994 re_set_watchpoint (struct breakpoint *b)
9995 {
9996 struct watchpoint *w = (struct watchpoint *) b;
9997
9998 /* Watchpoint can be either on expression using entirely global
9999 variables, or it can be on local variables.
10000
10001 Watchpoints of the first kind are never auto-deleted, and even
10002 persist across program restarts. Since they can use variables
10003 from shared libraries, we need to reparse expression as libraries
10004 are loaded and unloaded.
10005
10006 Watchpoints on local variables can also change meaning as result
10007 of solib event. For example, if a watchpoint uses both a local
10008 and a global variables in expression, it's a local watchpoint,
10009 but unloading of a shared library will make the expression
10010 invalid. This is not a very common use case, but we still
10011 re-evaluate expression, to avoid surprises to the user.
10012
10013 Note that for local watchpoints, we re-evaluate it only if
10014 watchpoints frame id is still valid. If it's not, it means the
10015 watchpoint is out of scope and will be deleted soon. In fact,
10016 I'm not sure we'll ever be called in this case.
10017
10018 If a local watchpoint's frame id is still valid, then
10019 w->exp_valid_block is likewise valid, and we can safely use it.
10020
10021 Don't do anything about disabled watchpoints, since they will be
10022 reevaluated again when enabled. */
10023 update_watchpoint (w, 1 /* reparse */);
10024 }
10025
10026 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10027
10028 static int
10029 insert_watchpoint (struct bp_location *bl)
10030 {
10031 struct watchpoint *w = (struct watchpoint *) bl->owner;
10032 int length = w->exact ? 1 : bl->length;
10033
10034 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10035 w->cond_exp.get ());
10036 }
10037
10038 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10039
10040 static int
10041 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10042 {
10043 struct watchpoint *w = (struct watchpoint *) bl->owner;
10044 int length = w->exact ? 1 : bl->length;
10045
10046 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10047 w->cond_exp.get ());
10048 }
10049
10050 static int
10051 breakpoint_hit_watchpoint (const struct bp_location *bl,
10052 const address_space *aspace, CORE_ADDR bp_addr,
10053 const struct target_waitstatus *ws)
10054 {
10055 struct breakpoint *b = bl->owner;
10056 struct watchpoint *w = (struct watchpoint *) b;
10057
10058 /* Continuable hardware watchpoints are treated as non-existent if the
10059 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10060 some data address). Otherwise gdb won't stop on a break instruction
10061 in the code (not from a breakpoint) when a hardware watchpoint has
10062 been defined. Also skip watchpoints which we know did not trigger
10063 (did not match the data address). */
10064 if (is_hardware_watchpoint (b)
10065 && w->watchpoint_triggered == watch_triggered_no)
10066 return 0;
10067
10068 return 1;
10069 }
10070
10071 static void
10072 check_status_watchpoint (bpstat bs)
10073 {
10074 gdb_assert (is_watchpoint (bs->breakpoint_at));
10075
10076 bpstat_check_watchpoint (bs);
10077 }
10078
10079 /* Implement the "resources_needed" breakpoint_ops method for
10080 hardware watchpoints. */
10081
10082 static int
10083 resources_needed_watchpoint (const struct bp_location *bl)
10084 {
10085 struct watchpoint *w = (struct watchpoint *) bl->owner;
10086 int length = w->exact? 1 : bl->length;
10087
10088 return target_region_ok_for_hw_watchpoint (bl->address, length);
10089 }
10090
10091 /* Implement the "works_in_software_mode" breakpoint_ops method for
10092 hardware watchpoints. */
10093
10094 static int
10095 works_in_software_mode_watchpoint (const struct breakpoint *b)
10096 {
10097 /* Read and access watchpoints only work with hardware support. */
10098 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10099 }
10100
10101 static enum print_stop_action
10102 print_it_watchpoint (bpstat bs)
10103 {
10104 struct breakpoint *b;
10105 enum print_stop_action result;
10106 struct watchpoint *w;
10107 struct ui_out *uiout = current_uiout;
10108
10109 gdb_assert (bs->bp_location_at != NULL);
10110
10111 b = bs->breakpoint_at;
10112 w = (struct watchpoint *) b;
10113
10114 annotate_watchpoint (b->number);
10115 maybe_print_thread_hit_breakpoint (uiout);
10116
10117 string_file stb;
10118
10119 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10120 switch (b->type)
10121 {
10122 case bp_watchpoint:
10123 case bp_hardware_watchpoint:
10124 if (uiout->is_mi_like_p ())
10125 uiout->field_string
10126 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10127 mention (b);
10128 tuple_emitter.emplace (uiout, "value");
10129 uiout->text ("\nOld value = ");
10130 watchpoint_value_print (bs->old_val.get (), &stb);
10131 uiout->field_stream ("old", stb);
10132 uiout->text ("\nNew value = ");
10133 watchpoint_value_print (w->val.get (), &stb);
10134 uiout->field_stream ("new", stb);
10135 uiout->text ("\n");
10136 /* More than one watchpoint may have been triggered. */
10137 result = PRINT_UNKNOWN;
10138 break;
10139
10140 case bp_read_watchpoint:
10141 if (uiout->is_mi_like_p ())
10142 uiout->field_string
10143 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10144 mention (b);
10145 tuple_emitter.emplace (uiout, "value");
10146 uiout->text ("\nValue = ");
10147 watchpoint_value_print (w->val.get (), &stb);
10148 uiout->field_stream ("value", stb);
10149 uiout->text ("\n");
10150 result = PRINT_UNKNOWN;
10151 break;
10152
10153 case bp_access_watchpoint:
10154 if (bs->old_val != NULL)
10155 {
10156 if (uiout->is_mi_like_p ())
10157 uiout->field_string
10158 ("reason",
10159 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10160 mention (b);
10161 tuple_emitter.emplace (uiout, "value");
10162 uiout->text ("\nOld value = ");
10163 watchpoint_value_print (bs->old_val.get (), &stb);
10164 uiout->field_stream ("old", stb);
10165 uiout->text ("\nNew value = ");
10166 }
10167 else
10168 {
10169 mention (b);
10170 if (uiout->is_mi_like_p ())
10171 uiout->field_string
10172 ("reason",
10173 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10174 tuple_emitter.emplace (uiout, "value");
10175 uiout->text ("\nValue = ");
10176 }
10177 watchpoint_value_print (w->val.get (), &stb);
10178 uiout->field_stream ("new", stb);
10179 uiout->text ("\n");
10180 result = PRINT_UNKNOWN;
10181 break;
10182 default:
10183 result = PRINT_UNKNOWN;
10184 }
10185
10186 return result;
10187 }
10188
10189 /* Implement the "print_mention" breakpoint_ops method for hardware
10190 watchpoints. */
10191
10192 static void
10193 print_mention_watchpoint (struct breakpoint *b)
10194 {
10195 struct watchpoint *w = (struct watchpoint *) b;
10196 struct ui_out *uiout = current_uiout;
10197 const char *tuple_name;
10198
10199 switch (b->type)
10200 {
10201 case bp_watchpoint:
10202 uiout->text ("Watchpoint ");
10203 tuple_name = "wpt";
10204 break;
10205 case bp_hardware_watchpoint:
10206 uiout->text ("Hardware watchpoint ");
10207 tuple_name = "wpt";
10208 break;
10209 case bp_read_watchpoint:
10210 uiout->text ("Hardware read watchpoint ");
10211 tuple_name = "hw-rwpt";
10212 break;
10213 case bp_access_watchpoint:
10214 uiout->text ("Hardware access (read/write) watchpoint ");
10215 tuple_name = "hw-awpt";
10216 break;
10217 default:
10218 internal_error (__FILE__, __LINE__,
10219 _("Invalid hardware watchpoint type."));
10220 }
10221
10222 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10223 uiout->field_int ("number", b->number);
10224 uiout->text (": ");
10225 uiout->field_string ("exp", w->exp_string);
10226 }
10227
10228 /* Implement the "print_recreate" breakpoint_ops method for
10229 watchpoints. */
10230
10231 static void
10232 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10233 {
10234 struct watchpoint *w = (struct watchpoint *) b;
10235
10236 switch (b->type)
10237 {
10238 case bp_watchpoint:
10239 case bp_hardware_watchpoint:
10240 fprintf_unfiltered (fp, "watch");
10241 break;
10242 case bp_read_watchpoint:
10243 fprintf_unfiltered (fp, "rwatch");
10244 break;
10245 case bp_access_watchpoint:
10246 fprintf_unfiltered (fp, "awatch");
10247 break;
10248 default:
10249 internal_error (__FILE__, __LINE__,
10250 _("Invalid watchpoint type."));
10251 }
10252
10253 fprintf_unfiltered (fp, " %s", w->exp_string);
10254 print_recreate_thread (b, fp);
10255 }
10256
10257 /* Implement the "explains_signal" breakpoint_ops method for
10258 watchpoints. */
10259
10260 static int
10261 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10262 {
10263 /* A software watchpoint cannot cause a signal other than
10264 GDB_SIGNAL_TRAP. */
10265 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10266 return 0;
10267
10268 return 1;
10269 }
10270
10271 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10272
10273 static struct breakpoint_ops watchpoint_breakpoint_ops;
10274
10275 /* Implement the "insert" breakpoint_ops method for
10276 masked hardware watchpoints. */
10277
10278 static int
10279 insert_masked_watchpoint (struct bp_location *bl)
10280 {
10281 struct watchpoint *w = (struct watchpoint *) bl->owner;
10282
10283 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10284 bl->watchpoint_type);
10285 }
10286
10287 /* Implement the "remove" breakpoint_ops method for
10288 masked hardware watchpoints. */
10289
10290 static int
10291 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10292 {
10293 struct watchpoint *w = (struct watchpoint *) bl->owner;
10294
10295 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10296 bl->watchpoint_type);
10297 }
10298
10299 /* Implement the "resources_needed" breakpoint_ops method for
10300 masked hardware watchpoints. */
10301
10302 static int
10303 resources_needed_masked_watchpoint (const struct bp_location *bl)
10304 {
10305 struct watchpoint *w = (struct watchpoint *) bl->owner;
10306
10307 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10308 }
10309
10310 /* Implement the "works_in_software_mode" breakpoint_ops method for
10311 masked hardware watchpoints. */
10312
10313 static int
10314 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10315 {
10316 return 0;
10317 }
10318
10319 /* Implement the "print_it" breakpoint_ops method for
10320 masked hardware watchpoints. */
10321
10322 static enum print_stop_action
10323 print_it_masked_watchpoint (bpstat bs)
10324 {
10325 struct breakpoint *b = bs->breakpoint_at;
10326 struct ui_out *uiout = current_uiout;
10327
10328 /* Masked watchpoints have only one location. */
10329 gdb_assert (b->loc && b->loc->next == NULL);
10330
10331 annotate_watchpoint (b->number);
10332 maybe_print_thread_hit_breakpoint (uiout);
10333
10334 switch (b->type)
10335 {
10336 case bp_hardware_watchpoint:
10337 if (uiout->is_mi_like_p ())
10338 uiout->field_string
10339 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10340 break;
10341
10342 case bp_read_watchpoint:
10343 if (uiout->is_mi_like_p ())
10344 uiout->field_string
10345 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10346 break;
10347
10348 case bp_access_watchpoint:
10349 if (uiout->is_mi_like_p ())
10350 uiout->field_string
10351 ("reason",
10352 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10353 break;
10354 default:
10355 internal_error (__FILE__, __LINE__,
10356 _("Invalid hardware watchpoint type."));
10357 }
10358
10359 mention (b);
10360 uiout->text (_("\n\
10361 Check the underlying instruction at PC for the memory\n\
10362 address and value which triggered this watchpoint.\n"));
10363 uiout->text ("\n");
10364
10365 /* More than one watchpoint may have been triggered. */
10366 return PRINT_UNKNOWN;
10367 }
10368
10369 /* Implement the "print_one_detail" breakpoint_ops method for
10370 masked hardware watchpoints. */
10371
10372 static void
10373 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10374 struct ui_out *uiout)
10375 {
10376 struct watchpoint *w = (struct watchpoint *) b;
10377
10378 /* Masked watchpoints have only one location. */
10379 gdb_assert (b->loc && b->loc->next == NULL);
10380
10381 uiout->text ("\tmask ");
10382 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10383 uiout->text ("\n");
10384 }
10385
10386 /* Implement the "print_mention" breakpoint_ops method for
10387 masked hardware watchpoints. */
10388
10389 static void
10390 print_mention_masked_watchpoint (struct breakpoint *b)
10391 {
10392 struct watchpoint *w = (struct watchpoint *) b;
10393 struct ui_out *uiout = current_uiout;
10394 const char *tuple_name;
10395
10396 switch (b->type)
10397 {
10398 case bp_hardware_watchpoint:
10399 uiout->text ("Masked hardware watchpoint ");
10400 tuple_name = "wpt";
10401 break;
10402 case bp_read_watchpoint:
10403 uiout->text ("Masked hardware read watchpoint ");
10404 tuple_name = "hw-rwpt";
10405 break;
10406 case bp_access_watchpoint:
10407 uiout->text ("Masked hardware access (read/write) watchpoint ");
10408 tuple_name = "hw-awpt";
10409 break;
10410 default:
10411 internal_error (__FILE__, __LINE__,
10412 _("Invalid hardware watchpoint type."));
10413 }
10414
10415 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10416 uiout->field_int ("number", b->number);
10417 uiout->text (": ");
10418 uiout->field_string ("exp", w->exp_string);
10419 }
10420
10421 /* Implement the "print_recreate" breakpoint_ops method for
10422 masked hardware watchpoints. */
10423
10424 static void
10425 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10426 {
10427 struct watchpoint *w = (struct watchpoint *) b;
10428 char tmp[40];
10429
10430 switch (b->type)
10431 {
10432 case bp_hardware_watchpoint:
10433 fprintf_unfiltered (fp, "watch");
10434 break;
10435 case bp_read_watchpoint:
10436 fprintf_unfiltered (fp, "rwatch");
10437 break;
10438 case bp_access_watchpoint:
10439 fprintf_unfiltered (fp, "awatch");
10440 break;
10441 default:
10442 internal_error (__FILE__, __LINE__,
10443 _("Invalid hardware watchpoint type."));
10444 }
10445
10446 sprintf_vma (tmp, w->hw_wp_mask);
10447 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10448 print_recreate_thread (b, fp);
10449 }
10450
10451 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10452
10453 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10454
10455 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10456
10457 static int
10458 is_masked_watchpoint (const struct breakpoint *b)
10459 {
10460 return b->ops == &masked_watchpoint_breakpoint_ops;
10461 }
10462
10463 /* accessflag: hw_write: watch write,
10464 hw_read: watch read,
10465 hw_access: watch access (read or write) */
10466 static void
10467 watch_command_1 (const char *arg, int accessflag, int from_tty,
10468 int just_location, int internal)
10469 {
10470 struct breakpoint *scope_breakpoint = NULL;
10471 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10472 struct value *result;
10473 int saved_bitpos = 0, saved_bitsize = 0;
10474 const char *exp_start = NULL;
10475 const char *exp_end = NULL;
10476 const char *tok, *end_tok;
10477 int toklen = -1;
10478 const char *cond_start = NULL;
10479 const char *cond_end = NULL;
10480 enum bptype bp_type;
10481 int thread = -1;
10482 int pc = 0;
10483 /* Flag to indicate whether we are going to use masks for
10484 the hardware watchpoint. */
10485 int use_mask = 0;
10486 CORE_ADDR mask = 0;
10487
10488 /* Make sure that we actually have parameters to parse. */
10489 if (arg != NULL && arg[0] != '\0')
10490 {
10491 const char *value_start;
10492
10493 exp_end = arg + strlen (arg);
10494
10495 /* Look for "parameter value" pairs at the end
10496 of the arguments string. */
10497 for (tok = exp_end - 1; tok > arg; tok--)
10498 {
10499 /* Skip whitespace at the end of the argument list. */
10500 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10501 tok--;
10502
10503 /* Find the beginning of the last token.
10504 This is the value of the parameter. */
10505 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10506 tok--;
10507 value_start = tok + 1;
10508
10509 /* Skip whitespace. */
10510 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10511 tok--;
10512
10513 end_tok = tok;
10514
10515 /* Find the beginning of the second to last token.
10516 This is the parameter itself. */
10517 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10518 tok--;
10519 tok++;
10520 toklen = end_tok - tok + 1;
10521
10522 if (toklen == 6 && startswith (tok, "thread"))
10523 {
10524 struct thread_info *thr;
10525 /* At this point we've found a "thread" token, which means
10526 the user is trying to set a watchpoint that triggers
10527 only in a specific thread. */
10528 const char *endp;
10529
10530 if (thread != -1)
10531 error(_("You can specify only one thread."));
10532
10533 /* Extract the thread ID from the next token. */
10534 thr = parse_thread_id (value_start, &endp);
10535
10536 /* Check if the user provided a valid thread ID. */
10537 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10538 invalid_thread_id_error (value_start);
10539
10540 thread = thr->global_num;
10541 }
10542 else if (toklen == 4 && startswith (tok, "mask"))
10543 {
10544 /* We've found a "mask" token, which means the user wants to
10545 create a hardware watchpoint that is going to have the mask
10546 facility. */
10547 struct value *mask_value, *mark;
10548
10549 if (use_mask)
10550 error(_("You can specify only one mask."));
10551
10552 use_mask = just_location = 1;
10553
10554 mark = value_mark ();
10555 mask_value = parse_to_comma_and_eval (&value_start);
10556 mask = value_as_address (mask_value);
10557 value_free_to_mark (mark);
10558 }
10559 else
10560 /* We didn't recognize what we found. We should stop here. */
10561 break;
10562
10563 /* Truncate the string and get rid of the "parameter value" pair before
10564 the arguments string is parsed by the parse_exp_1 function. */
10565 exp_end = tok;
10566 }
10567 }
10568 else
10569 exp_end = arg;
10570
10571 /* Parse the rest of the arguments. From here on out, everything
10572 is in terms of a newly allocated string instead of the original
10573 ARG. */
10574 std::string expression (arg, exp_end - arg);
10575 exp_start = arg = expression.c_str ();
10576 innermost_block_tracker tracker;
10577 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10578 exp_end = arg;
10579 /* Remove trailing whitespace from the expression before saving it.
10580 This makes the eventual display of the expression string a bit
10581 prettier. */
10582 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10583 --exp_end;
10584
10585 /* Checking if the expression is not constant. */
10586 if (watchpoint_exp_is_const (exp.get ()))
10587 {
10588 int len;
10589
10590 len = exp_end - exp_start;
10591 while (len > 0 && isspace (exp_start[len - 1]))
10592 len--;
10593 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10594 }
10595
10596 exp_valid_block = tracker.block ();
10597 struct value *mark = value_mark ();
10598 struct value *val_as_value = nullptr;
10599 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10600 just_location);
10601
10602 if (val_as_value != NULL && just_location)
10603 {
10604 saved_bitpos = value_bitpos (val_as_value);
10605 saved_bitsize = value_bitsize (val_as_value);
10606 }
10607
10608 value_ref_ptr val;
10609 if (just_location)
10610 {
10611 int ret;
10612
10613 exp_valid_block = NULL;
10614 val = release_value (value_addr (result));
10615 value_free_to_mark (mark);
10616
10617 if (use_mask)
10618 {
10619 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10620 mask);
10621 if (ret == -1)
10622 error (_("This target does not support masked watchpoints."));
10623 else if (ret == -2)
10624 error (_("Invalid mask or memory region."));
10625 }
10626 }
10627 else if (val_as_value != NULL)
10628 val = release_value (val_as_value);
10629
10630 tok = skip_spaces (arg);
10631 end_tok = skip_to_space (tok);
10632
10633 toklen = end_tok - tok;
10634 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10635 {
10636 tok = cond_start = end_tok + 1;
10637 innermost_block_tracker if_tracker;
10638 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10639
10640 /* The watchpoint expression may not be local, but the condition
10641 may still be. E.g.: `watch global if local > 0'. */
10642 cond_exp_valid_block = if_tracker.block ();
10643
10644 cond_end = tok;
10645 }
10646 if (*tok)
10647 error (_("Junk at end of command."));
10648
10649 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10650
10651 /* Save this because create_internal_breakpoint below invalidates
10652 'wp_frame'. */
10653 frame_id watchpoint_frame = get_frame_id (wp_frame);
10654
10655 /* If the expression is "local", then set up a "watchpoint scope"
10656 breakpoint at the point where we've left the scope of the watchpoint
10657 expression. Create the scope breakpoint before the watchpoint, so
10658 that we will encounter it first in bpstat_stop_status. */
10659 if (exp_valid_block != NULL && wp_frame != NULL)
10660 {
10661 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10662
10663 if (frame_id_p (caller_frame_id))
10664 {
10665 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10666 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10667
10668 scope_breakpoint
10669 = create_internal_breakpoint (caller_arch, caller_pc,
10670 bp_watchpoint_scope,
10671 &momentary_breakpoint_ops);
10672
10673 /* create_internal_breakpoint could invalidate WP_FRAME. */
10674 wp_frame = NULL;
10675
10676 scope_breakpoint->enable_state = bp_enabled;
10677
10678 /* Automatically delete the breakpoint when it hits. */
10679 scope_breakpoint->disposition = disp_del;
10680
10681 /* Only break in the proper frame (help with recursion). */
10682 scope_breakpoint->frame_id = caller_frame_id;
10683
10684 /* Set the address at which we will stop. */
10685 scope_breakpoint->loc->gdbarch = caller_arch;
10686 scope_breakpoint->loc->requested_address = caller_pc;
10687 scope_breakpoint->loc->address
10688 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10689 scope_breakpoint->loc->requested_address,
10690 scope_breakpoint->type);
10691 }
10692 }
10693
10694 /* Now set up the breakpoint. We create all watchpoints as hardware
10695 watchpoints here even if hardware watchpoints are turned off, a call
10696 to update_watchpoint later in this function will cause the type to
10697 drop back to bp_watchpoint (software watchpoint) if required. */
10698
10699 if (accessflag == hw_read)
10700 bp_type = bp_read_watchpoint;
10701 else if (accessflag == hw_access)
10702 bp_type = bp_access_watchpoint;
10703 else
10704 bp_type = bp_hardware_watchpoint;
10705
10706 std::unique_ptr<watchpoint> w (new watchpoint ());
10707
10708 if (use_mask)
10709 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10710 &masked_watchpoint_breakpoint_ops);
10711 else
10712 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10713 &watchpoint_breakpoint_ops);
10714 w->thread = thread;
10715 w->disposition = disp_donttouch;
10716 w->pspace = current_program_space;
10717 w->exp = std::move (exp);
10718 w->exp_valid_block = exp_valid_block;
10719 w->cond_exp_valid_block = cond_exp_valid_block;
10720 if (just_location)
10721 {
10722 struct type *t = value_type (val.get ());
10723 CORE_ADDR addr = value_as_address (val.get ());
10724
10725 w->exp_string_reparse
10726 = current_language->la_watch_location_expression (t, addr).release ();
10727
10728 w->exp_string = xstrprintf ("-location %.*s",
10729 (int) (exp_end - exp_start), exp_start);
10730 }
10731 else
10732 w->exp_string = savestring (exp_start, exp_end - exp_start);
10733
10734 if (use_mask)
10735 {
10736 w->hw_wp_mask = mask;
10737 }
10738 else
10739 {
10740 w->val = val;
10741 w->val_bitpos = saved_bitpos;
10742 w->val_bitsize = saved_bitsize;
10743 w->val_valid = 1;
10744 }
10745
10746 if (cond_start)
10747 w->cond_string = savestring (cond_start, cond_end - cond_start);
10748 else
10749 w->cond_string = 0;
10750
10751 if (frame_id_p (watchpoint_frame))
10752 {
10753 w->watchpoint_frame = watchpoint_frame;
10754 w->watchpoint_thread = inferior_ptid;
10755 }
10756 else
10757 {
10758 w->watchpoint_frame = null_frame_id;
10759 w->watchpoint_thread = null_ptid;
10760 }
10761
10762 if (scope_breakpoint != NULL)
10763 {
10764 /* The scope breakpoint is related to the watchpoint. We will
10765 need to act on them together. */
10766 w->related_breakpoint = scope_breakpoint;
10767 scope_breakpoint->related_breakpoint = w.get ();
10768 }
10769
10770 if (!just_location)
10771 value_free_to_mark (mark);
10772
10773 /* Finally update the new watchpoint. This creates the locations
10774 that should be inserted. */
10775 update_watchpoint (w.get (), 1);
10776
10777 install_breakpoint (internal, std::move (w), 1);
10778 }
10779
10780 /* Return count of debug registers needed to watch the given expression.
10781 If the watchpoint cannot be handled in hardware return zero. */
10782
10783 static int
10784 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10785 {
10786 int found_memory_cnt = 0;
10787
10788 /* Did the user specifically forbid us to use hardware watchpoints? */
10789 if (!can_use_hw_watchpoints)
10790 return 0;
10791
10792 gdb_assert (!vals.empty ());
10793 struct value *head = vals[0].get ();
10794
10795 /* Make sure that the value of the expression depends only upon
10796 memory contents, and values computed from them within GDB. If we
10797 find any register references or function calls, we can't use a
10798 hardware watchpoint.
10799
10800 The idea here is that evaluating an expression generates a series
10801 of values, one holding the value of every subexpression. (The
10802 expression a*b+c has five subexpressions: a, b, a*b, c, and
10803 a*b+c.) GDB's values hold almost enough information to establish
10804 the criteria given above --- they identify memory lvalues,
10805 register lvalues, computed values, etcetera. So we can evaluate
10806 the expression, and then scan the chain of values that leaves
10807 behind to decide whether we can detect any possible change to the
10808 expression's final value using only hardware watchpoints.
10809
10810 However, I don't think that the values returned by inferior
10811 function calls are special in any way. So this function may not
10812 notice that an expression involving an inferior function call
10813 can't be watched with hardware watchpoints. FIXME. */
10814 for (const value_ref_ptr &iter : vals)
10815 {
10816 struct value *v = iter.get ();
10817
10818 if (VALUE_LVAL (v) == lval_memory)
10819 {
10820 if (v != head && value_lazy (v))
10821 /* A lazy memory lvalue in the chain is one that GDB never
10822 needed to fetch; we either just used its address (e.g.,
10823 `a' in `a.b') or we never needed it at all (e.g., `a'
10824 in `a,b'). This doesn't apply to HEAD; if that is
10825 lazy then it was not readable, but watch it anyway. */
10826 ;
10827 else
10828 {
10829 /* Ahh, memory we actually used! Check if we can cover
10830 it with hardware watchpoints. */
10831 struct type *vtype = check_typedef (value_type (v));
10832
10833 /* We only watch structs and arrays if user asked for it
10834 explicitly, never if they just happen to appear in a
10835 middle of some value chain. */
10836 if (v == head
10837 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10838 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10839 {
10840 CORE_ADDR vaddr = value_address (v);
10841 int len;
10842 int num_regs;
10843
10844 len = (target_exact_watchpoints
10845 && is_scalar_type_recursive (vtype))?
10846 1 : TYPE_LENGTH (value_type (v));
10847
10848 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10849 if (!num_regs)
10850 return 0;
10851 else
10852 found_memory_cnt += num_regs;
10853 }
10854 }
10855 }
10856 else if (VALUE_LVAL (v) != not_lval
10857 && deprecated_value_modifiable (v) == 0)
10858 return 0; /* These are values from the history (e.g., $1). */
10859 else if (VALUE_LVAL (v) == lval_register)
10860 return 0; /* Cannot watch a register with a HW watchpoint. */
10861 }
10862
10863 /* The expression itself looks suitable for using a hardware
10864 watchpoint, but give the target machine a chance to reject it. */
10865 return found_memory_cnt;
10866 }
10867
10868 void
10869 watch_command_wrapper (const char *arg, int from_tty, int internal)
10870 {
10871 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10872 }
10873
10874 /* A helper function that looks for the "-location" argument and then
10875 calls watch_command_1. */
10876
10877 static void
10878 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10879 {
10880 int just_location = 0;
10881
10882 if (arg
10883 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10884 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10885 just_location = 1;
10886
10887 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10888 }
10889
10890 static void
10891 watch_command (const char *arg, int from_tty)
10892 {
10893 watch_maybe_just_location (arg, hw_write, from_tty);
10894 }
10895
10896 void
10897 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10898 {
10899 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10900 }
10901
10902 static void
10903 rwatch_command (const char *arg, int from_tty)
10904 {
10905 watch_maybe_just_location (arg, hw_read, from_tty);
10906 }
10907
10908 void
10909 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10910 {
10911 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10912 }
10913
10914 static void
10915 awatch_command (const char *arg, int from_tty)
10916 {
10917 watch_maybe_just_location (arg, hw_access, from_tty);
10918 }
10919 \f
10920
10921 /* Data for the FSM that manages the until(location)/advance commands
10922 in infcmd.c. Here because it uses the mechanisms of
10923 breakpoints. */
10924
10925 struct until_break_fsm : public thread_fsm
10926 {
10927 /* The thread that was current when the command was executed. */
10928 int thread;
10929
10930 /* The breakpoint set at the destination location. */
10931 breakpoint_up location_breakpoint;
10932
10933 /* Breakpoint set at the return address in the caller frame. May be
10934 NULL. */
10935 breakpoint_up caller_breakpoint;
10936
10937 until_break_fsm (struct interp *cmd_interp, int thread,
10938 breakpoint_up &&location_breakpoint,
10939 breakpoint_up &&caller_breakpoint)
10940 : thread_fsm (cmd_interp),
10941 thread (thread),
10942 location_breakpoint (std::move (location_breakpoint)),
10943 caller_breakpoint (std::move (caller_breakpoint))
10944 {
10945 }
10946
10947 void clean_up (struct thread_info *thread) override;
10948 bool should_stop (struct thread_info *thread) override;
10949 enum async_reply_reason do_async_reply_reason () override;
10950 };
10951
10952 /* Implementation of the 'should_stop' FSM method for the
10953 until(location)/advance commands. */
10954
10955 bool
10956 until_break_fsm::should_stop (struct thread_info *tp)
10957 {
10958 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10959 location_breakpoint.get ()) != NULL
10960 || (caller_breakpoint != NULL
10961 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10962 caller_breakpoint.get ()) != NULL))
10963 set_finished ();
10964
10965 return true;
10966 }
10967
10968 /* Implementation of the 'clean_up' FSM method for the
10969 until(location)/advance commands. */
10970
10971 void
10972 until_break_fsm::clean_up (struct thread_info *)
10973 {
10974 /* Clean up our temporary breakpoints. */
10975 location_breakpoint.reset ();
10976 caller_breakpoint.reset ();
10977 delete_longjmp_breakpoint (thread);
10978 }
10979
10980 /* Implementation of the 'async_reply_reason' FSM method for the
10981 until(location)/advance commands. */
10982
10983 enum async_reply_reason
10984 until_break_fsm::do_async_reply_reason ()
10985 {
10986 return EXEC_ASYNC_LOCATION_REACHED;
10987 }
10988
10989 void
10990 until_break_command (const char *arg, int from_tty, int anywhere)
10991 {
10992 struct frame_info *frame;
10993 struct gdbarch *frame_gdbarch;
10994 struct frame_id stack_frame_id;
10995 struct frame_id caller_frame_id;
10996 int thread;
10997 struct thread_info *tp;
10998
10999 clear_proceed_status (0);
11000
11001 /* Set a breakpoint where the user wants it and at return from
11002 this function. */
11003
11004 event_location_up location = string_to_event_location (&arg, current_language);
11005
11006 std::vector<symtab_and_line> sals
11007 = (last_displayed_sal_is_valid ()
11008 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11009 get_last_displayed_symtab (),
11010 get_last_displayed_line ())
11011 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11012 NULL, NULL, 0));
11013
11014 if (sals.size () != 1)
11015 error (_("Couldn't get information on specified line."));
11016
11017 symtab_and_line &sal = sals[0];
11018
11019 if (*arg)
11020 error (_("Junk at end of arguments."));
11021
11022 resolve_sal_pc (&sal);
11023
11024 tp = inferior_thread ();
11025 thread = tp->global_num;
11026
11027 /* Note linespec handling above invalidates the frame chain.
11028 Installing a breakpoint also invalidates the frame chain (as it
11029 may need to switch threads), so do any frame handling before
11030 that. */
11031
11032 frame = get_selected_frame (NULL);
11033 frame_gdbarch = get_frame_arch (frame);
11034 stack_frame_id = get_stack_frame_id (frame);
11035 caller_frame_id = frame_unwind_caller_id (frame);
11036
11037 /* Keep within the current frame, or in frames called by the current
11038 one. */
11039
11040 breakpoint_up caller_breakpoint;
11041
11042 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11043
11044 if (frame_id_p (caller_frame_id))
11045 {
11046 struct symtab_and_line sal2;
11047 struct gdbarch *caller_gdbarch;
11048
11049 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11050 sal2.pc = frame_unwind_caller_pc (frame);
11051 caller_gdbarch = frame_unwind_caller_arch (frame);
11052 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11053 sal2,
11054 caller_frame_id,
11055 bp_until);
11056
11057 set_longjmp_breakpoint (tp, caller_frame_id);
11058 lj_deleter.emplace (thread);
11059 }
11060
11061 /* set_momentary_breakpoint could invalidate FRAME. */
11062 frame = NULL;
11063
11064 breakpoint_up location_breakpoint;
11065 if (anywhere)
11066 /* If the user told us to continue until a specified location,
11067 we don't specify a frame at which we need to stop. */
11068 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11069 null_frame_id, bp_until);
11070 else
11071 /* Otherwise, specify the selected frame, because we want to stop
11072 only at the very same frame. */
11073 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11074 stack_frame_id, bp_until);
11075
11076 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11077 std::move (location_breakpoint),
11078 std::move (caller_breakpoint));
11079
11080 if (lj_deleter)
11081 lj_deleter->release ();
11082
11083 proceed (-1, GDB_SIGNAL_DEFAULT);
11084 }
11085
11086 /* This function attempts to parse an optional "if <cond>" clause
11087 from the arg string. If one is not found, it returns NULL.
11088
11089 Else, it returns a pointer to the condition string. (It does not
11090 attempt to evaluate the string against a particular block.) And,
11091 it updates arg to point to the first character following the parsed
11092 if clause in the arg string. */
11093
11094 const char *
11095 ep_parse_optional_if_clause (const char **arg)
11096 {
11097 const char *cond_string;
11098
11099 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11100 return NULL;
11101
11102 /* Skip the "if" keyword. */
11103 (*arg) += 2;
11104
11105 /* Skip any extra leading whitespace, and record the start of the
11106 condition string. */
11107 *arg = skip_spaces (*arg);
11108 cond_string = *arg;
11109
11110 /* Assume that the condition occupies the remainder of the arg
11111 string. */
11112 (*arg) += strlen (cond_string);
11113
11114 return cond_string;
11115 }
11116
11117 /* Commands to deal with catching events, such as signals, exceptions,
11118 process start/exit, etc. */
11119
11120 typedef enum
11121 {
11122 catch_fork_temporary, catch_vfork_temporary,
11123 catch_fork_permanent, catch_vfork_permanent
11124 }
11125 catch_fork_kind;
11126
11127 static void
11128 catch_fork_command_1 (const char *arg, int from_tty,
11129 struct cmd_list_element *command)
11130 {
11131 struct gdbarch *gdbarch = get_current_arch ();
11132 const char *cond_string = NULL;
11133 catch_fork_kind fork_kind;
11134 int tempflag;
11135
11136 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11137 tempflag = (fork_kind == catch_fork_temporary
11138 || fork_kind == catch_vfork_temporary);
11139
11140 if (!arg)
11141 arg = "";
11142 arg = skip_spaces (arg);
11143
11144 /* The allowed syntax is:
11145 catch [v]fork
11146 catch [v]fork if <cond>
11147
11148 First, check if there's an if clause. */
11149 cond_string = ep_parse_optional_if_clause (&arg);
11150
11151 if ((*arg != '\0') && !isspace (*arg))
11152 error (_("Junk at end of arguments."));
11153
11154 /* If this target supports it, create a fork or vfork catchpoint
11155 and enable reporting of such events. */
11156 switch (fork_kind)
11157 {
11158 case catch_fork_temporary:
11159 case catch_fork_permanent:
11160 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11161 &catch_fork_breakpoint_ops);
11162 break;
11163 case catch_vfork_temporary:
11164 case catch_vfork_permanent:
11165 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11166 &catch_vfork_breakpoint_ops);
11167 break;
11168 default:
11169 error (_("unsupported or unknown fork kind; cannot catch it"));
11170 break;
11171 }
11172 }
11173
11174 static void
11175 catch_exec_command_1 (const char *arg, int from_tty,
11176 struct cmd_list_element *command)
11177 {
11178 struct gdbarch *gdbarch = get_current_arch ();
11179 int tempflag;
11180 const char *cond_string = NULL;
11181
11182 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11183
11184 if (!arg)
11185 arg = "";
11186 arg = skip_spaces (arg);
11187
11188 /* The allowed syntax is:
11189 catch exec
11190 catch exec if <cond>
11191
11192 First, check if there's an if clause. */
11193 cond_string = ep_parse_optional_if_clause (&arg);
11194
11195 if ((*arg != '\0') && !isspace (*arg))
11196 error (_("Junk at end of arguments."));
11197
11198 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11199 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11200 &catch_exec_breakpoint_ops);
11201 c->exec_pathname = NULL;
11202
11203 install_breakpoint (0, std::move (c), 1);
11204 }
11205
11206 void
11207 init_ada_exception_breakpoint (struct breakpoint *b,
11208 struct gdbarch *gdbarch,
11209 struct symtab_and_line sal,
11210 const char *addr_string,
11211 const struct breakpoint_ops *ops,
11212 int tempflag,
11213 int enabled,
11214 int from_tty)
11215 {
11216 if (from_tty)
11217 {
11218 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11219 if (!loc_gdbarch)
11220 loc_gdbarch = gdbarch;
11221
11222 describe_other_breakpoints (loc_gdbarch,
11223 sal.pspace, sal.pc, sal.section, -1);
11224 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11225 version for exception catchpoints, because two catchpoints
11226 used for different exception names will use the same address.
11227 In this case, a "breakpoint ... also set at..." warning is
11228 unproductive. Besides, the warning phrasing is also a bit
11229 inappropriate, we should use the word catchpoint, and tell
11230 the user what type of catchpoint it is. The above is good
11231 enough for now, though. */
11232 }
11233
11234 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11235
11236 b->enable_state = enabled ? bp_enabled : bp_disabled;
11237 b->disposition = tempflag ? disp_del : disp_donttouch;
11238 b->location = string_to_event_location (&addr_string,
11239 language_def (language_ada));
11240 b->language = language_ada;
11241 }
11242
11243 static void
11244 catch_command (const char *arg, int from_tty)
11245 {
11246 error (_("Catch requires an event name."));
11247 }
11248 \f
11249
11250 static void
11251 tcatch_command (const char *arg, int from_tty)
11252 {
11253 error (_("Catch requires an event name."));
11254 }
11255
11256 /* Compare two breakpoints and return a strcmp-like result. */
11257
11258 static int
11259 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11260 {
11261 uintptr_t ua = (uintptr_t) a;
11262 uintptr_t ub = (uintptr_t) b;
11263
11264 if (a->number < b->number)
11265 return -1;
11266 else if (a->number > b->number)
11267 return 1;
11268
11269 /* Now sort by address, in case we see, e..g, two breakpoints with
11270 the number 0. */
11271 if (ua < ub)
11272 return -1;
11273 return ua > ub ? 1 : 0;
11274 }
11275
11276 /* Delete breakpoints by address or line. */
11277
11278 static void
11279 clear_command (const char *arg, int from_tty)
11280 {
11281 struct breakpoint *b;
11282 int default_match;
11283
11284 std::vector<symtab_and_line> decoded_sals;
11285 symtab_and_line last_sal;
11286 gdb::array_view<symtab_and_line> sals;
11287 if (arg)
11288 {
11289 decoded_sals
11290 = decode_line_with_current_source (arg,
11291 (DECODE_LINE_FUNFIRSTLINE
11292 | DECODE_LINE_LIST_MODE));
11293 default_match = 0;
11294 sals = decoded_sals;
11295 }
11296 else
11297 {
11298 /* Set sal's line, symtab, pc, and pspace to the values
11299 corresponding to the last call to print_frame_info. If the
11300 codepoint is not valid, this will set all the fields to 0. */
11301 last_sal = get_last_displayed_sal ();
11302 if (last_sal.symtab == 0)
11303 error (_("No source file specified."));
11304
11305 default_match = 1;
11306 sals = last_sal;
11307 }
11308
11309 /* We don't call resolve_sal_pc here. That's not as bad as it
11310 seems, because all existing breakpoints typically have both
11311 file/line and pc set. So, if clear is given file/line, we can
11312 match this to existing breakpoint without obtaining pc at all.
11313
11314 We only support clearing given the address explicitly
11315 present in breakpoint table. Say, we've set breakpoint
11316 at file:line. There were several PC values for that file:line,
11317 due to optimization, all in one block.
11318
11319 We've picked one PC value. If "clear" is issued with another
11320 PC corresponding to the same file:line, the breakpoint won't
11321 be cleared. We probably can still clear the breakpoint, but
11322 since the other PC value is never presented to user, user
11323 can only find it by guessing, and it does not seem important
11324 to support that. */
11325
11326 /* For each line spec given, delete bps which correspond to it. Do
11327 it in two passes, solely to preserve the current behavior that
11328 from_tty is forced true if we delete more than one
11329 breakpoint. */
11330
11331 std::vector<struct breakpoint *> found;
11332 for (const auto &sal : sals)
11333 {
11334 const char *sal_fullname;
11335
11336 /* If exact pc given, clear bpts at that pc.
11337 If line given (pc == 0), clear all bpts on specified line.
11338 If defaulting, clear all bpts on default line
11339 or at default pc.
11340
11341 defaulting sal.pc != 0 tests to do
11342
11343 0 1 pc
11344 1 1 pc _and_ line
11345 0 0 line
11346 1 0 <can't happen> */
11347
11348 sal_fullname = (sal.symtab == NULL
11349 ? NULL : symtab_to_fullname (sal.symtab));
11350
11351 /* Find all matching breakpoints and add them to 'found'. */
11352 ALL_BREAKPOINTS (b)
11353 {
11354 int match = 0;
11355 /* Are we going to delete b? */
11356 if (b->type != bp_none && !is_watchpoint (b))
11357 {
11358 struct bp_location *loc = b->loc;
11359 for (; loc; loc = loc->next)
11360 {
11361 /* If the user specified file:line, don't allow a PC
11362 match. This matches historical gdb behavior. */
11363 int pc_match = (!sal.explicit_line
11364 && sal.pc
11365 && (loc->pspace == sal.pspace)
11366 && (loc->address == sal.pc)
11367 && (!section_is_overlay (loc->section)
11368 || loc->section == sal.section));
11369 int line_match = 0;
11370
11371 if ((default_match || sal.explicit_line)
11372 && loc->symtab != NULL
11373 && sal_fullname != NULL
11374 && sal.pspace == loc->pspace
11375 && loc->line_number == sal.line
11376 && filename_cmp (symtab_to_fullname (loc->symtab),
11377 sal_fullname) == 0)
11378 line_match = 1;
11379
11380 if (pc_match || line_match)
11381 {
11382 match = 1;
11383 break;
11384 }
11385 }
11386 }
11387
11388 if (match)
11389 found.push_back (b);
11390 }
11391 }
11392
11393 /* Now go thru the 'found' chain and delete them. */
11394 if (found.empty ())
11395 {
11396 if (arg)
11397 error (_("No breakpoint at %s."), arg);
11398 else
11399 error (_("No breakpoint at this line."));
11400 }
11401
11402 /* Remove duplicates from the vec. */
11403 std::sort (found.begin (), found.end (),
11404 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11405 {
11406 return compare_breakpoints (bp_a, bp_b) < 0;
11407 });
11408 found.erase (std::unique (found.begin (), found.end (),
11409 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11410 {
11411 return compare_breakpoints (bp_a, bp_b) == 0;
11412 }),
11413 found.end ());
11414
11415 if (found.size () > 1)
11416 from_tty = 1; /* Always report if deleted more than one. */
11417 if (from_tty)
11418 {
11419 if (found.size () == 1)
11420 printf_unfiltered (_("Deleted breakpoint "));
11421 else
11422 printf_unfiltered (_("Deleted breakpoints "));
11423 }
11424
11425 for (breakpoint *iter : found)
11426 {
11427 if (from_tty)
11428 printf_unfiltered ("%d ", iter->number);
11429 delete_breakpoint (iter);
11430 }
11431 if (from_tty)
11432 putchar_unfiltered ('\n');
11433 }
11434 \f
11435 /* Delete breakpoint in BS if they are `delete' breakpoints and
11436 all breakpoints that are marked for deletion, whether hit or not.
11437 This is called after any breakpoint is hit, or after errors. */
11438
11439 void
11440 breakpoint_auto_delete (bpstat bs)
11441 {
11442 struct breakpoint *b, *b_tmp;
11443
11444 for (; bs; bs = bs->next)
11445 if (bs->breakpoint_at
11446 && bs->breakpoint_at->disposition == disp_del
11447 && bs->stop)
11448 delete_breakpoint (bs->breakpoint_at);
11449
11450 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11451 {
11452 if (b->disposition == disp_del_at_next_stop)
11453 delete_breakpoint (b);
11454 }
11455 }
11456
11457 /* A comparison function for bp_location AP and BP being interfaced to
11458 qsort. Sort elements primarily by their ADDRESS (no matter what
11459 bl_address_is_meaningful says), secondarily by ordering first
11460 permanent elements and terciarily just ensuring the array is sorted
11461 stable way despite qsort being an unstable algorithm. */
11462
11463 static int
11464 bp_locations_compare (const void *ap, const void *bp)
11465 {
11466 const struct bp_location *a = *(const struct bp_location **) ap;
11467 const struct bp_location *b = *(const struct bp_location **) bp;
11468
11469 if (a->address != b->address)
11470 return (a->address > b->address) - (a->address < b->address);
11471
11472 /* Sort locations at the same address by their pspace number, keeping
11473 locations of the same inferior (in a multi-inferior environment)
11474 grouped. */
11475
11476 if (a->pspace->num != b->pspace->num)
11477 return ((a->pspace->num > b->pspace->num)
11478 - (a->pspace->num < b->pspace->num));
11479
11480 /* Sort permanent breakpoints first. */
11481 if (a->permanent != b->permanent)
11482 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11483
11484 /* Make the internal GDB representation stable across GDB runs
11485 where A and B memory inside GDB can differ. Breakpoint locations of
11486 the same type at the same address can be sorted in arbitrary order. */
11487
11488 if (a->owner->number != b->owner->number)
11489 return ((a->owner->number > b->owner->number)
11490 - (a->owner->number < b->owner->number));
11491
11492 return (a > b) - (a < b);
11493 }
11494
11495 /* Set bp_locations_placed_address_before_address_max and
11496 bp_locations_shadow_len_after_address_max according to the current
11497 content of the bp_locations array. */
11498
11499 static void
11500 bp_locations_target_extensions_update (void)
11501 {
11502 struct bp_location *bl, **blp_tmp;
11503
11504 bp_locations_placed_address_before_address_max = 0;
11505 bp_locations_shadow_len_after_address_max = 0;
11506
11507 ALL_BP_LOCATIONS (bl, blp_tmp)
11508 {
11509 CORE_ADDR start, end, addr;
11510
11511 if (!bp_location_has_shadow (bl))
11512 continue;
11513
11514 start = bl->target_info.placed_address;
11515 end = start + bl->target_info.shadow_len;
11516
11517 gdb_assert (bl->address >= start);
11518 addr = bl->address - start;
11519 if (addr > bp_locations_placed_address_before_address_max)
11520 bp_locations_placed_address_before_address_max = addr;
11521
11522 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11523
11524 gdb_assert (bl->address < end);
11525 addr = end - bl->address;
11526 if (addr > bp_locations_shadow_len_after_address_max)
11527 bp_locations_shadow_len_after_address_max = addr;
11528 }
11529 }
11530
11531 /* Download tracepoint locations if they haven't been. */
11532
11533 static void
11534 download_tracepoint_locations (void)
11535 {
11536 struct breakpoint *b;
11537 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11538
11539 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11540
11541 ALL_TRACEPOINTS (b)
11542 {
11543 struct bp_location *bl;
11544 struct tracepoint *t;
11545 int bp_location_downloaded = 0;
11546
11547 if ((b->type == bp_fast_tracepoint
11548 ? !may_insert_fast_tracepoints
11549 : !may_insert_tracepoints))
11550 continue;
11551
11552 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11553 {
11554 if (target_can_download_tracepoint ())
11555 can_download_tracepoint = TRIBOOL_TRUE;
11556 else
11557 can_download_tracepoint = TRIBOOL_FALSE;
11558 }
11559
11560 if (can_download_tracepoint == TRIBOOL_FALSE)
11561 break;
11562
11563 for (bl = b->loc; bl; bl = bl->next)
11564 {
11565 /* In tracepoint, locations are _never_ duplicated, so
11566 should_be_inserted is equivalent to
11567 unduplicated_should_be_inserted. */
11568 if (!should_be_inserted (bl) || bl->inserted)
11569 continue;
11570
11571 switch_to_program_space_and_thread (bl->pspace);
11572
11573 target_download_tracepoint (bl);
11574
11575 bl->inserted = 1;
11576 bp_location_downloaded = 1;
11577 }
11578 t = (struct tracepoint *) b;
11579 t->number_on_target = b->number;
11580 if (bp_location_downloaded)
11581 gdb::observers::breakpoint_modified.notify (b);
11582 }
11583 }
11584
11585 /* Swap the insertion/duplication state between two locations. */
11586
11587 static void
11588 swap_insertion (struct bp_location *left, struct bp_location *right)
11589 {
11590 const int left_inserted = left->inserted;
11591 const int left_duplicate = left->duplicate;
11592 const int left_needs_update = left->needs_update;
11593 const struct bp_target_info left_target_info = left->target_info;
11594
11595 /* Locations of tracepoints can never be duplicated. */
11596 if (is_tracepoint (left->owner))
11597 gdb_assert (!left->duplicate);
11598 if (is_tracepoint (right->owner))
11599 gdb_assert (!right->duplicate);
11600
11601 left->inserted = right->inserted;
11602 left->duplicate = right->duplicate;
11603 left->needs_update = right->needs_update;
11604 left->target_info = right->target_info;
11605 right->inserted = left_inserted;
11606 right->duplicate = left_duplicate;
11607 right->needs_update = left_needs_update;
11608 right->target_info = left_target_info;
11609 }
11610
11611 /* Force the re-insertion of the locations at ADDRESS. This is called
11612 once a new/deleted/modified duplicate location is found and we are evaluating
11613 conditions on the target's side. Such conditions need to be updated on
11614 the target. */
11615
11616 static void
11617 force_breakpoint_reinsertion (struct bp_location *bl)
11618 {
11619 struct bp_location **locp = NULL, **loc2p;
11620 struct bp_location *loc;
11621 CORE_ADDR address = 0;
11622 int pspace_num;
11623
11624 address = bl->address;
11625 pspace_num = bl->pspace->num;
11626
11627 /* This is only meaningful if the target is
11628 evaluating conditions and if the user has
11629 opted for condition evaluation on the target's
11630 side. */
11631 if (gdb_evaluates_breakpoint_condition_p ()
11632 || !target_supports_evaluation_of_breakpoint_conditions ())
11633 return;
11634
11635 /* Flag all breakpoint locations with this address and
11636 the same program space as the location
11637 as "its condition has changed". We need to
11638 update the conditions on the target's side. */
11639 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11640 {
11641 loc = *loc2p;
11642
11643 if (!is_breakpoint (loc->owner)
11644 || pspace_num != loc->pspace->num)
11645 continue;
11646
11647 /* Flag the location appropriately. We use a different state to
11648 let everyone know that we already updated the set of locations
11649 with addr bl->address and program space bl->pspace. This is so
11650 we don't have to keep calling these functions just to mark locations
11651 that have already been marked. */
11652 loc->condition_changed = condition_updated;
11653
11654 /* Free the agent expression bytecode as well. We will compute
11655 it later on. */
11656 loc->cond_bytecode.reset ();
11657 }
11658 }
11659 /* Called whether new breakpoints are created, or existing breakpoints
11660 deleted, to update the global location list and recompute which
11661 locations are duplicate of which.
11662
11663 The INSERT_MODE flag determines whether locations may not, may, or
11664 shall be inserted now. See 'enum ugll_insert_mode' for more
11665 info. */
11666
11667 static void
11668 update_global_location_list (enum ugll_insert_mode insert_mode)
11669 {
11670 struct breakpoint *b;
11671 struct bp_location **locp, *loc;
11672 /* Last breakpoint location address that was marked for update. */
11673 CORE_ADDR last_addr = 0;
11674 /* Last breakpoint location program space that was marked for update. */
11675 int last_pspace_num = -1;
11676
11677 /* Used in the duplicates detection below. When iterating over all
11678 bp_locations, points to the first bp_location of a given address.
11679 Breakpoints and watchpoints of different types are never
11680 duplicates of each other. Keep one pointer for each type of
11681 breakpoint/watchpoint, so we only need to loop over all locations
11682 once. */
11683 struct bp_location *bp_loc_first; /* breakpoint */
11684 struct bp_location *wp_loc_first; /* hardware watchpoint */
11685 struct bp_location *awp_loc_first; /* access watchpoint */
11686 struct bp_location *rwp_loc_first; /* read watchpoint */
11687
11688 /* Saved former bp_locations array which we compare against the newly
11689 built bp_locations from the current state of ALL_BREAKPOINTS. */
11690 struct bp_location **old_locp;
11691 unsigned old_locations_count;
11692 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11693
11694 old_locations_count = bp_locations_count;
11695 bp_locations = NULL;
11696 bp_locations_count = 0;
11697
11698 ALL_BREAKPOINTS (b)
11699 for (loc = b->loc; loc; loc = loc->next)
11700 bp_locations_count++;
11701
11702 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11703 locp = bp_locations;
11704 ALL_BREAKPOINTS (b)
11705 for (loc = b->loc; loc; loc = loc->next)
11706 *locp++ = loc;
11707 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11708 bp_locations_compare);
11709
11710 bp_locations_target_extensions_update ();
11711
11712 /* Identify bp_location instances that are no longer present in the
11713 new list, and therefore should be freed. Note that it's not
11714 necessary that those locations should be removed from inferior --
11715 if there's another location at the same address (previously
11716 marked as duplicate), we don't need to remove/insert the
11717 location.
11718
11719 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11720 and former bp_location array state respectively. */
11721
11722 locp = bp_locations;
11723 for (old_locp = old_locations.get ();
11724 old_locp < old_locations.get () + old_locations_count;
11725 old_locp++)
11726 {
11727 struct bp_location *old_loc = *old_locp;
11728 struct bp_location **loc2p;
11729
11730 /* Tells if 'old_loc' is found among the new locations. If
11731 not, we have to free it. */
11732 int found_object = 0;
11733 /* Tells if the location should remain inserted in the target. */
11734 int keep_in_target = 0;
11735 int removed = 0;
11736
11737 /* Skip LOCP entries which will definitely never be needed.
11738 Stop either at or being the one matching OLD_LOC. */
11739 while (locp < bp_locations + bp_locations_count
11740 && (*locp)->address < old_loc->address)
11741 locp++;
11742
11743 for (loc2p = locp;
11744 (loc2p < bp_locations + bp_locations_count
11745 && (*loc2p)->address == old_loc->address);
11746 loc2p++)
11747 {
11748 /* Check if this is a new/duplicated location or a duplicated
11749 location that had its condition modified. If so, we want to send
11750 its condition to the target if evaluation of conditions is taking
11751 place there. */
11752 if ((*loc2p)->condition_changed == condition_modified
11753 && (last_addr != old_loc->address
11754 || last_pspace_num != old_loc->pspace->num))
11755 {
11756 force_breakpoint_reinsertion (*loc2p);
11757 last_pspace_num = old_loc->pspace->num;
11758 }
11759
11760 if (*loc2p == old_loc)
11761 found_object = 1;
11762 }
11763
11764 /* We have already handled this address, update it so that we don't
11765 have to go through updates again. */
11766 last_addr = old_loc->address;
11767
11768 /* Target-side condition evaluation: Handle deleted locations. */
11769 if (!found_object)
11770 force_breakpoint_reinsertion (old_loc);
11771
11772 /* If this location is no longer present, and inserted, look if
11773 there's maybe a new location at the same address. If so,
11774 mark that one inserted, and don't remove this one. This is
11775 needed so that we don't have a time window where a breakpoint
11776 at certain location is not inserted. */
11777
11778 if (old_loc->inserted)
11779 {
11780 /* If the location is inserted now, we might have to remove
11781 it. */
11782
11783 if (found_object && should_be_inserted (old_loc))
11784 {
11785 /* The location is still present in the location list,
11786 and still should be inserted. Don't do anything. */
11787 keep_in_target = 1;
11788 }
11789 else
11790 {
11791 /* This location still exists, but it won't be kept in the
11792 target since it may have been disabled. We proceed to
11793 remove its target-side condition. */
11794
11795 /* The location is either no longer present, or got
11796 disabled. See if there's another location at the
11797 same address, in which case we don't need to remove
11798 this one from the target. */
11799
11800 /* OLD_LOC comes from existing struct breakpoint. */
11801 if (bl_address_is_meaningful (old_loc))
11802 {
11803 for (loc2p = locp;
11804 (loc2p < bp_locations + bp_locations_count
11805 && (*loc2p)->address == old_loc->address);
11806 loc2p++)
11807 {
11808 struct bp_location *loc2 = *loc2p;
11809
11810 if (breakpoint_locations_match (loc2, old_loc))
11811 {
11812 /* Read watchpoint locations are switched to
11813 access watchpoints, if the former are not
11814 supported, but the latter are. */
11815 if (is_hardware_watchpoint (old_loc->owner))
11816 {
11817 gdb_assert (is_hardware_watchpoint (loc2->owner));
11818 loc2->watchpoint_type = old_loc->watchpoint_type;
11819 }
11820
11821 /* loc2 is a duplicated location. We need to check
11822 if it should be inserted in case it will be
11823 unduplicated. */
11824 if (loc2 != old_loc
11825 && unduplicated_should_be_inserted (loc2))
11826 {
11827 swap_insertion (old_loc, loc2);
11828 keep_in_target = 1;
11829 break;
11830 }
11831 }
11832 }
11833 }
11834 }
11835
11836 if (!keep_in_target)
11837 {
11838 if (remove_breakpoint (old_loc))
11839 {
11840 /* This is just about all we can do. We could keep
11841 this location on the global list, and try to
11842 remove it next time, but there's no particular
11843 reason why we will succeed next time.
11844
11845 Note that at this point, old_loc->owner is still
11846 valid, as delete_breakpoint frees the breakpoint
11847 only after calling us. */
11848 printf_filtered (_("warning: Error removing "
11849 "breakpoint %d\n"),
11850 old_loc->owner->number);
11851 }
11852 removed = 1;
11853 }
11854 }
11855
11856 if (!found_object)
11857 {
11858 if (removed && target_is_non_stop_p ()
11859 && need_moribund_for_location_type (old_loc))
11860 {
11861 /* This location was removed from the target. In
11862 non-stop mode, a race condition is possible where
11863 we've removed a breakpoint, but stop events for that
11864 breakpoint are already queued and will arrive later.
11865 We apply an heuristic to be able to distinguish such
11866 SIGTRAPs from other random SIGTRAPs: we keep this
11867 breakpoint location for a bit, and will retire it
11868 after we see some number of events. The theory here
11869 is that reporting of events should, "on the average",
11870 be fair, so after a while we'll see events from all
11871 threads that have anything of interest, and no longer
11872 need to keep this breakpoint location around. We
11873 don't hold locations forever so to reduce chances of
11874 mistaking a non-breakpoint SIGTRAP for a breakpoint
11875 SIGTRAP.
11876
11877 The heuristic failing can be disastrous on
11878 decr_pc_after_break targets.
11879
11880 On decr_pc_after_break targets, like e.g., x86-linux,
11881 if we fail to recognize a late breakpoint SIGTRAP,
11882 because events_till_retirement has reached 0 too
11883 soon, we'll fail to do the PC adjustment, and report
11884 a random SIGTRAP to the user. When the user resumes
11885 the inferior, it will most likely immediately crash
11886 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11887 corrupted, because of being resumed e.g., in the
11888 middle of a multi-byte instruction, or skipped a
11889 one-byte instruction. This was actually seen happen
11890 on native x86-linux, and should be less rare on
11891 targets that do not support new thread events, like
11892 remote, due to the heuristic depending on
11893 thread_count.
11894
11895 Mistaking a random SIGTRAP for a breakpoint trap
11896 causes similar symptoms (PC adjustment applied when
11897 it shouldn't), but then again, playing with SIGTRAPs
11898 behind the debugger's back is asking for trouble.
11899
11900 Since hardware watchpoint traps are always
11901 distinguishable from other traps, so we don't need to
11902 apply keep hardware watchpoint moribund locations
11903 around. We simply always ignore hardware watchpoint
11904 traps we can no longer explain. */
11905
11906 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11907 old_loc->owner = NULL;
11908
11909 moribund_locations.push_back (old_loc);
11910 }
11911 else
11912 {
11913 old_loc->owner = NULL;
11914 decref_bp_location (&old_loc);
11915 }
11916 }
11917 }
11918
11919 /* Rescan breakpoints at the same address and section, marking the
11920 first one as "first" and any others as "duplicates". This is so
11921 that the bpt instruction is only inserted once. If we have a
11922 permanent breakpoint at the same place as BPT, make that one the
11923 official one, and the rest as duplicates. Permanent breakpoints
11924 are sorted first for the same address.
11925
11926 Do the same for hardware watchpoints, but also considering the
11927 watchpoint's type (regular/access/read) and length. */
11928
11929 bp_loc_first = NULL;
11930 wp_loc_first = NULL;
11931 awp_loc_first = NULL;
11932 rwp_loc_first = NULL;
11933 ALL_BP_LOCATIONS (loc, locp)
11934 {
11935 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11936 non-NULL. */
11937 struct bp_location **loc_first_p;
11938 b = loc->owner;
11939
11940 if (!unduplicated_should_be_inserted (loc)
11941 || !bl_address_is_meaningful (loc)
11942 /* Don't detect duplicate for tracepoint locations because they are
11943 never duplicated. See the comments in field `duplicate' of
11944 `struct bp_location'. */
11945 || is_tracepoint (b))
11946 {
11947 /* Clear the condition modification flag. */
11948 loc->condition_changed = condition_unchanged;
11949 continue;
11950 }
11951
11952 if (b->type == bp_hardware_watchpoint)
11953 loc_first_p = &wp_loc_first;
11954 else if (b->type == bp_read_watchpoint)
11955 loc_first_p = &rwp_loc_first;
11956 else if (b->type == bp_access_watchpoint)
11957 loc_first_p = &awp_loc_first;
11958 else
11959 loc_first_p = &bp_loc_first;
11960
11961 if (*loc_first_p == NULL
11962 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11963 || !breakpoint_locations_match (loc, *loc_first_p))
11964 {
11965 *loc_first_p = loc;
11966 loc->duplicate = 0;
11967
11968 if (is_breakpoint (loc->owner) && loc->condition_changed)
11969 {
11970 loc->needs_update = 1;
11971 /* Clear the condition modification flag. */
11972 loc->condition_changed = condition_unchanged;
11973 }
11974 continue;
11975 }
11976
11977
11978 /* This and the above ensure the invariant that the first location
11979 is not duplicated, and is the inserted one.
11980 All following are marked as duplicated, and are not inserted. */
11981 if (loc->inserted)
11982 swap_insertion (loc, *loc_first_p);
11983 loc->duplicate = 1;
11984
11985 /* Clear the condition modification flag. */
11986 loc->condition_changed = condition_unchanged;
11987 }
11988
11989 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11990 {
11991 if (insert_mode != UGLL_DONT_INSERT)
11992 insert_breakpoint_locations ();
11993 else
11994 {
11995 /* Even though the caller told us to not insert new
11996 locations, we may still need to update conditions on the
11997 target's side of breakpoints that were already inserted
11998 if the target is evaluating breakpoint conditions. We
11999 only update conditions for locations that are marked
12000 "needs_update". */
12001 update_inserted_breakpoint_locations ();
12002 }
12003 }
12004
12005 if (insert_mode != UGLL_DONT_INSERT)
12006 download_tracepoint_locations ();
12007 }
12008
12009 void
12010 breakpoint_retire_moribund (void)
12011 {
12012 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12013 {
12014 struct bp_location *loc = moribund_locations[ix];
12015 if (--(loc->events_till_retirement) == 0)
12016 {
12017 decref_bp_location (&loc);
12018 unordered_remove (moribund_locations, ix);
12019 --ix;
12020 }
12021 }
12022 }
12023
12024 static void
12025 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12026 {
12027
12028 try
12029 {
12030 update_global_location_list (insert_mode);
12031 }
12032 catch (const gdb_exception_error &e)
12033 {
12034 }
12035 }
12036
12037 /* Clear BKP from a BPS. */
12038
12039 static void
12040 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12041 {
12042 bpstat bs;
12043
12044 for (bs = bps; bs; bs = bs->next)
12045 if (bs->breakpoint_at == bpt)
12046 {
12047 bs->breakpoint_at = NULL;
12048 bs->old_val = NULL;
12049 /* bs->commands will be freed later. */
12050 }
12051 }
12052
12053 /* Callback for iterate_over_threads. */
12054 static int
12055 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12056 {
12057 struct breakpoint *bpt = (struct breakpoint *) data;
12058
12059 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12060 return 0;
12061 }
12062
12063 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12064 callbacks. */
12065
12066 static void
12067 say_where (struct breakpoint *b)
12068 {
12069 struct value_print_options opts;
12070
12071 get_user_print_options (&opts);
12072
12073 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12074 single string. */
12075 if (b->loc == NULL)
12076 {
12077 /* For pending locations, the output differs slightly based
12078 on b->extra_string. If this is non-NULL, it contains either
12079 a condition or dprintf arguments. */
12080 if (b->extra_string == NULL)
12081 {
12082 printf_filtered (_(" (%s) pending."),
12083 event_location_to_string (b->location.get ()));
12084 }
12085 else if (b->type == bp_dprintf)
12086 {
12087 printf_filtered (_(" (%s,%s) pending."),
12088 event_location_to_string (b->location.get ()),
12089 b->extra_string);
12090 }
12091 else
12092 {
12093 printf_filtered (_(" (%s %s) pending."),
12094 event_location_to_string (b->location.get ()),
12095 b->extra_string);
12096 }
12097 }
12098 else
12099 {
12100 if (opts.addressprint || b->loc->symtab == NULL)
12101 {
12102 printf_filtered (" at ");
12103 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12104 address_style.style (),
12105 gdb_stdout);
12106 }
12107 if (b->loc->symtab != NULL)
12108 {
12109 /* If there is a single location, we can print the location
12110 more nicely. */
12111 if (b->loc->next == NULL)
12112 {
12113 puts_filtered (": file ");
12114 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12115 file_name_style.style (),
12116 gdb_stdout);
12117 printf_filtered (", line %d.",
12118 b->loc->line_number);
12119 }
12120 else
12121 /* This is not ideal, but each location may have a
12122 different file name, and this at least reflects the
12123 real situation somewhat. */
12124 printf_filtered (": %s.",
12125 event_location_to_string (b->location.get ()));
12126 }
12127
12128 if (b->loc->next)
12129 {
12130 struct bp_location *loc = b->loc;
12131 int n = 0;
12132 for (; loc; loc = loc->next)
12133 ++n;
12134 printf_filtered (" (%d locations)", n);
12135 }
12136 }
12137 }
12138
12139 bp_location::~bp_location ()
12140 {
12141 xfree (function_name);
12142 }
12143
12144 /* Destructor for the breakpoint base class. */
12145
12146 breakpoint::~breakpoint ()
12147 {
12148 xfree (this->cond_string);
12149 xfree (this->extra_string);
12150 xfree (this->filter);
12151 }
12152
12153 static struct bp_location *
12154 base_breakpoint_allocate_location (struct breakpoint *self)
12155 {
12156 return new bp_location (self);
12157 }
12158
12159 static void
12160 base_breakpoint_re_set (struct breakpoint *b)
12161 {
12162 /* Nothing to re-set. */
12163 }
12164
12165 #define internal_error_pure_virtual_called() \
12166 gdb_assert_not_reached ("pure virtual function called")
12167
12168 static int
12169 base_breakpoint_insert_location (struct bp_location *bl)
12170 {
12171 internal_error_pure_virtual_called ();
12172 }
12173
12174 static int
12175 base_breakpoint_remove_location (struct bp_location *bl,
12176 enum remove_bp_reason reason)
12177 {
12178 internal_error_pure_virtual_called ();
12179 }
12180
12181 static int
12182 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12183 const address_space *aspace,
12184 CORE_ADDR bp_addr,
12185 const struct target_waitstatus *ws)
12186 {
12187 internal_error_pure_virtual_called ();
12188 }
12189
12190 static void
12191 base_breakpoint_check_status (bpstat bs)
12192 {
12193 /* Always stop. */
12194 }
12195
12196 /* A "works_in_software_mode" breakpoint_ops method that just internal
12197 errors. */
12198
12199 static int
12200 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12201 {
12202 internal_error_pure_virtual_called ();
12203 }
12204
12205 /* A "resources_needed" breakpoint_ops method that just internal
12206 errors. */
12207
12208 static int
12209 base_breakpoint_resources_needed (const struct bp_location *bl)
12210 {
12211 internal_error_pure_virtual_called ();
12212 }
12213
12214 static enum print_stop_action
12215 base_breakpoint_print_it (bpstat bs)
12216 {
12217 internal_error_pure_virtual_called ();
12218 }
12219
12220 static void
12221 base_breakpoint_print_one_detail (const struct breakpoint *self,
12222 struct ui_out *uiout)
12223 {
12224 /* nothing */
12225 }
12226
12227 static void
12228 base_breakpoint_print_mention (struct breakpoint *b)
12229 {
12230 internal_error_pure_virtual_called ();
12231 }
12232
12233 static void
12234 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12235 {
12236 internal_error_pure_virtual_called ();
12237 }
12238
12239 static void
12240 base_breakpoint_create_sals_from_location
12241 (const struct event_location *location,
12242 struct linespec_result *canonical,
12243 enum bptype type_wanted)
12244 {
12245 internal_error_pure_virtual_called ();
12246 }
12247
12248 static void
12249 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12250 struct linespec_result *c,
12251 gdb::unique_xmalloc_ptr<char> cond_string,
12252 gdb::unique_xmalloc_ptr<char> extra_string,
12253 enum bptype type_wanted,
12254 enum bpdisp disposition,
12255 int thread,
12256 int task, int ignore_count,
12257 const struct breakpoint_ops *o,
12258 int from_tty, int enabled,
12259 int internal, unsigned flags)
12260 {
12261 internal_error_pure_virtual_called ();
12262 }
12263
12264 static std::vector<symtab_and_line>
12265 base_breakpoint_decode_location (struct breakpoint *b,
12266 const struct event_location *location,
12267 struct program_space *search_pspace)
12268 {
12269 internal_error_pure_virtual_called ();
12270 }
12271
12272 /* The default 'explains_signal' method. */
12273
12274 static int
12275 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12276 {
12277 return 1;
12278 }
12279
12280 /* The default "after_condition_true" method. */
12281
12282 static void
12283 base_breakpoint_after_condition_true (struct bpstats *bs)
12284 {
12285 /* Nothing to do. */
12286 }
12287
12288 struct breakpoint_ops base_breakpoint_ops =
12289 {
12290 base_breakpoint_allocate_location,
12291 base_breakpoint_re_set,
12292 base_breakpoint_insert_location,
12293 base_breakpoint_remove_location,
12294 base_breakpoint_breakpoint_hit,
12295 base_breakpoint_check_status,
12296 base_breakpoint_resources_needed,
12297 base_breakpoint_works_in_software_mode,
12298 base_breakpoint_print_it,
12299 NULL,
12300 base_breakpoint_print_one_detail,
12301 base_breakpoint_print_mention,
12302 base_breakpoint_print_recreate,
12303 base_breakpoint_create_sals_from_location,
12304 base_breakpoint_create_breakpoints_sal,
12305 base_breakpoint_decode_location,
12306 base_breakpoint_explains_signal,
12307 base_breakpoint_after_condition_true,
12308 };
12309
12310 /* Default breakpoint_ops methods. */
12311
12312 static void
12313 bkpt_re_set (struct breakpoint *b)
12314 {
12315 /* FIXME: is this still reachable? */
12316 if (breakpoint_event_location_empty_p (b))
12317 {
12318 /* Anything without a location can't be re-set. */
12319 delete_breakpoint (b);
12320 return;
12321 }
12322
12323 breakpoint_re_set_default (b);
12324 }
12325
12326 static int
12327 bkpt_insert_location (struct bp_location *bl)
12328 {
12329 CORE_ADDR addr = bl->target_info.reqstd_address;
12330
12331 bl->target_info.kind = breakpoint_kind (bl, &addr);
12332 bl->target_info.placed_address = addr;
12333
12334 if (bl->loc_type == bp_loc_hardware_breakpoint)
12335 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12336 else
12337 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12338 }
12339
12340 static int
12341 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12342 {
12343 if (bl->loc_type == bp_loc_hardware_breakpoint)
12344 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12345 else
12346 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12347 }
12348
12349 static int
12350 bkpt_breakpoint_hit (const struct bp_location *bl,
12351 const address_space *aspace, CORE_ADDR bp_addr,
12352 const struct target_waitstatus *ws)
12353 {
12354 if (ws->kind != TARGET_WAITKIND_STOPPED
12355 || ws->value.sig != GDB_SIGNAL_TRAP)
12356 return 0;
12357
12358 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12359 aspace, bp_addr))
12360 return 0;
12361
12362 if (overlay_debugging /* unmapped overlay section */
12363 && section_is_overlay (bl->section)
12364 && !section_is_mapped (bl->section))
12365 return 0;
12366
12367 return 1;
12368 }
12369
12370 static int
12371 dprintf_breakpoint_hit (const struct bp_location *bl,
12372 const address_space *aspace, CORE_ADDR bp_addr,
12373 const struct target_waitstatus *ws)
12374 {
12375 if (dprintf_style == dprintf_style_agent
12376 && target_can_run_breakpoint_commands ())
12377 {
12378 /* An agent-style dprintf never causes a stop. If we see a trap
12379 for this address it must be for a breakpoint that happens to
12380 be set at the same address. */
12381 return 0;
12382 }
12383
12384 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12385 }
12386
12387 static int
12388 bkpt_resources_needed (const struct bp_location *bl)
12389 {
12390 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12391
12392 return 1;
12393 }
12394
12395 static enum print_stop_action
12396 bkpt_print_it (bpstat bs)
12397 {
12398 struct breakpoint *b;
12399 const struct bp_location *bl;
12400 int bp_temp;
12401 struct ui_out *uiout = current_uiout;
12402
12403 gdb_assert (bs->bp_location_at != NULL);
12404
12405 bl = bs->bp_location_at;
12406 b = bs->breakpoint_at;
12407
12408 bp_temp = b->disposition == disp_del;
12409 if (bl->address != bl->requested_address)
12410 breakpoint_adjustment_warning (bl->requested_address,
12411 bl->address,
12412 b->number, 1);
12413 annotate_breakpoint (b->number);
12414 maybe_print_thread_hit_breakpoint (uiout);
12415
12416 if (bp_temp)
12417 uiout->text ("Temporary breakpoint ");
12418 else
12419 uiout->text ("Breakpoint ");
12420 if (uiout->is_mi_like_p ())
12421 {
12422 uiout->field_string ("reason",
12423 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12424 uiout->field_string ("disp", bpdisp_text (b->disposition));
12425 }
12426 uiout->field_int ("bkptno", b->number);
12427 uiout->text (", ");
12428
12429 return PRINT_SRC_AND_LOC;
12430 }
12431
12432 static void
12433 bkpt_print_mention (struct breakpoint *b)
12434 {
12435 if (current_uiout->is_mi_like_p ())
12436 return;
12437
12438 switch (b->type)
12439 {
12440 case bp_breakpoint:
12441 case bp_gnu_ifunc_resolver:
12442 if (b->disposition == disp_del)
12443 printf_filtered (_("Temporary breakpoint"));
12444 else
12445 printf_filtered (_("Breakpoint"));
12446 printf_filtered (_(" %d"), b->number);
12447 if (b->type == bp_gnu_ifunc_resolver)
12448 printf_filtered (_(" at gnu-indirect-function resolver"));
12449 break;
12450 case bp_hardware_breakpoint:
12451 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12452 break;
12453 case bp_dprintf:
12454 printf_filtered (_("Dprintf %d"), b->number);
12455 break;
12456 }
12457
12458 say_where (b);
12459 }
12460
12461 static void
12462 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12463 {
12464 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12465 fprintf_unfiltered (fp, "tbreak");
12466 else if (tp->type == bp_breakpoint)
12467 fprintf_unfiltered (fp, "break");
12468 else if (tp->type == bp_hardware_breakpoint
12469 && tp->disposition == disp_del)
12470 fprintf_unfiltered (fp, "thbreak");
12471 else if (tp->type == bp_hardware_breakpoint)
12472 fprintf_unfiltered (fp, "hbreak");
12473 else
12474 internal_error (__FILE__, __LINE__,
12475 _("unhandled breakpoint type %d"), (int) tp->type);
12476
12477 fprintf_unfiltered (fp, " %s",
12478 event_location_to_string (tp->location.get ()));
12479
12480 /* Print out extra_string if this breakpoint is pending. It might
12481 contain, for example, conditions that were set by the user. */
12482 if (tp->loc == NULL && tp->extra_string != NULL)
12483 fprintf_unfiltered (fp, " %s", tp->extra_string);
12484
12485 print_recreate_thread (tp, fp);
12486 }
12487
12488 static void
12489 bkpt_create_sals_from_location (const struct event_location *location,
12490 struct linespec_result *canonical,
12491 enum bptype type_wanted)
12492 {
12493 create_sals_from_location_default (location, canonical, type_wanted);
12494 }
12495
12496 static void
12497 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12498 struct linespec_result *canonical,
12499 gdb::unique_xmalloc_ptr<char> cond_string,
12500 gdb::unique_xmalloc_ptr<char> extra_string,
12501 enum bptype type_wanted,
12502 enum bpdisp disposition,
12503 int thread,
12504 int task, int ignore_count,
12505 const struct breakpoint_ops *ops,
12506 int from_tty, int enabled,
12507 int internal, unsigned flags)
12508 {
12509 create_breakpoints_sal_default (gdbarch, canonical,
12510 std::move (cond_string),
12511 std::move (extra_string),
12512 type_wanted,
12513 disposition, thread, task,
12514 ignore_count, ops, from_tty,
12515 enabled, internal, flags);
12516 }
12517
12518 static std::vector<symtab_and_line>
12519 bkpt_decode_location (struct breakpoint *b,
12520 const struct event_location *location,
12521 struct program_space *search_pspace)
12522 {
12523 return decode_location_default (b, location, search_pspace);
12524 }
12525
12526 /* Virtual table for internal breakpoints. */
12527
12528 static void
12529 internal_bkpt_re_set (struct breakpoint *b)
12530 {
12531 switch (b->type)
12532 {
12533 /* Delete overlay event and longjmp master breakpoints; they
12534 will be reset later by breakpoint_re_set. */
12535 case bp_overlay_event:
12536 case bp_longjmp_master:
12537 case bp_std_terminate_master:
12538 case bp_exception_master:
12539 delete_breakpoint (b);
12540 break;
12541
12542 /* This breakpoint is special, it's set up when the inferior
12543 starts and we really don't want to touch it. */
12544 case bp_shlib_event:
12545
12546 /* Like bp_shlib_event, this breakpoint type is special. Once
12547 it is set up, we do not want to touch it. */
12548 case bp_thread_event:
12549 break;
12550 }
12551 }
12552
12553 static void
12554 internal_bkpt_check_status (bpstat bs)
12555 {
12556 if (bs->breakpoint_at->type == bp_shlib_event)
12557 {
12558 /* If requested, stop when the dynamic linker notifies GDB of
12559 events. This allows the user to get control and place
12560 breakpoints in initializer routines for dynamically loaded
12561 objects (among other things). */
12562 bs->stop = stop_on_solib_events;
12563 bs->print = stop_on_solib_events;
12564 }
12565 else
12566 bs->stop = 0;
12567 }
12568
12569 static enum print_stop_action
12570 internal_bkpt_print_it (bpstat bs)
12571 {
12572 struct breakpoint *b;
12573
12574 b = bs->breakpoint_at;
12575
12576 switch (b->type)
12577 {
12578 case bp_shlib_event:
12579 /* Did we stop because the user set the stop_on_solib_events
12580 variable? (If so, we report this as a generic, "Stopped due
12581 to shlib event" message.) */
12582 print_solib_event (0);
12583 break;
12584
12585 case bp_thread_event:
12586 /* Not sure how we will get here.
12587 GDB should not stop for these breakpoints. */
12588 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12589 break;
12590
12591 case bp_overlay_event:
12592 /* By analogy with the thread event, GDB should not stop for these. */
12593 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12594 break;
12595
12596 case bp_longjmp_master:
12597 /* These should never be enabled. */
12598 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12599 break;
12600
12601 case bp_std_terminate_master:
12602 /* These should never be enabled. */
12603 printf_filtered (_("std::terminate Master Breakpoint: "
12604 "gdb should not stop!\n"));
12605 break;
12606
12607 case bp_exception_master:
12608 /* These should never be enabled. */
12609 printf_filtered (_("Exception Master Breakpoint: "
12610 "gdb should not stop!\n"));
12611 break;
12612 }
12613
12614 return PRINT_NOTHING;
12615 }
12616
12617 static void
12618 internal_bkpt_print_mention (struct breakpoint *b)
12619 {
12620 /* Nothing to mention. These breakpoints are internal. */
12621 }
12622
12623 /* Virtual table for momentary breakpoints */
12624
12625 static void
12626 momentary_bkpt_re_set (struct breakpoint *b)
12627 {
12628 /* Keep temporary breakpoints, which can be encountered when we step
12629 over a dlopen call and solib_add is resetting the breakpoints.
12630 Otherwise these should have been blown away via the cleanup chain
12631 or by breakpoint_init_inferior when we rerun the executable. */
12632 }
12633
12634 static void
12635 momentary_bkpt_check_status (bpstat bs)
12636 {
12637 /* Nothing. The point of these breakpoints is causing a stop. */
12638 }
12639
12640 static enum print_stop_action
12641 momentary_bkpt_print_it (bpstat bs)
12642 {
12643 return PRINT_UNKNOWN;
12644 }
12645
12646 static void
12647 momentary_bkpt_print_mention (struct breakpoint *b)
12648 {
12649 /* Nothing to mention. These breakpoints are internal. */
12650 }
12651
12652 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12653
12654 It gets cleared already on the removal of the first one of such placed
12655 breakpoints. This is OK as they get all removed altogether. */
12656
12657 longjmp_breakpoint::~longjmp_breakpoint ()
12658 {
12659 thread_info *tp = find_thread_global_id (this->thread);
12660
12661 if (tp != NULL)
12662 tp->initiating_frame = null_frame_id;
12663 }
12664
12665 /* Specific methods for probe breakpoints. */
12666
12667 static int
12668 bkpt_probe_insert_location (struct bp_location *bl)
12669 {
12670 int v = bkpt_insert_location (bl);
12671
12672 if (v == 0)
12673 {
12674 /* The insertion was successful, now let's set the probe's semaphore
12675 if needed. */
12676 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12677 }
12678
12679 return v;
12680 }
12681
12682 static int
12683 bkpt_probe_remove_location (struct bp_location *bl,
12684 enum remove_bp_reason reason)
12685 {
12686 /* Let's clear the semaphore before removing the location. */
12687 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12688
12689 return bkpt_remove_location (bl, reason);
12690 }
12691
12692 static void
12693 bkpt_probe_create_sals_from_location (const struct event_location *location,
12694 struct linespec_result *canonical,
12695 enum bptype type_wanted)
12696 {
12697 struct linespec_sals lsal;
12698
12699 lsal.sals = parse_probes (location, NULL, canonical);
12700 lsal.canonical
12701 = xstrdup (event_location_to_string (canonical->location.get ()));
12702 canonical->lsals.push_back (std::move (lsal));
12703 }
12704
12705 static std::vector<symtab_and_line>
12706 bkpt_probe_decode_location (struct breakpoint *b,
12707 const struct event_location *location,
12708 struct program_space *search_pspace)
12709 {
12710 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12711 if (sals.empty ())
12712 error (_("probe not found"));
12713 return sals;
12714 }
12715
12716 /* The breakpoint_ops structure to be used in tracepoints. */
12717
12718 static void
12719 tracepoint_re_set (struct breakpoint *b)
12720 {
12721 breakpoint_re_set_default (b);
12722 }
12723
12724 static int
12725 tracepoint_breakpoint_hit (const struct bp_location *bl,
12726 const address_space *aspace, CORE_ADDR bp_addr,
12727 const struct target_waitstatus *ws)
12728 {
12729 /* By definition, the inferior does not report stops at
12730 tracepoints. */
12731 return 0;
12732 }
12733
12734 static void
12735 tracepoint_print_one_detail (const struct breakpoint *self,
12736 struct ui_out *uiout)
12737 {
12738 struct tracepoint *tp = (struct tracepoint *) self;
12739 if (!tp->static_trace_marker_id.empty ())
12740 {
12741 gdb_assert (self->type == bp_static_tracepoint);
12742
12743 uiout->text ("\tmarker id is ");
12744 uiout->field_string ("static-tracepoint-marker-string-id",
12745 tp->static_trace_marker_id);
12746 uiout->text ("\n");
12747 }
12748 }
12749
12750 static void
12751 tracepoint_print_mention (struct breakpoint *b)
12752 {
12753 if (current_uiout->is_mi_like_p ())
12754 return;
12755
12756 switch (b->type)
12757 {
12758 case bp_tracepoint:
12759 printf_filtered (_("Tracepoint"));
12760 printf_filtered (_(" %d"), b->number);
12761 break;
12762 case bp_fast_tracepoint:
12763 printf_filtered (_("Fast tracepoint"));
12764 printf_filtered (_(" %d"), b->number);
12765 break;
12766 case bp_static_tracepoint:
12767 printf_filtered (_("Static tracepoint"));
12768 printf_filtered (_(" %d"), b->number);
12769 break;
12770 default:
12771 internal_error (__FILE__, __LINE__,
12772 _("unhandled tracepoint type %d"), (int) b->type);
12773 }
12774
12775 say_where (b);
12776 }
12777
12778 static void
12779 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12780 {
12781 struct tracepoint *tp = (struct tracepoint *) self;
12782
12783 if (self->type == bp_fast_tracepoint)
12784 fprintf_unfiltered (fp, "ftrace");
12785 else if (self->type == bp_static_tracepoint)
12786 fprintf_unfiltered (fp, "strace");
12787 else if (self->type == bp_tracepoint)
12788 fprintf_unfiltered (fp, "trace");
12789 else
12790 internal_error (__FILE__, __LINE__,
12791 _("unhandled tracepoint type %d"), (int) self->type);
12792
12793 fprintf_unfiltered (fp, " %s",
12794 event_location_to_string (self->location.get ()));
12795 print_recreate_thread (self, fp);
12796
12797 if (tp->pass_count)
12798 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12799 }
12800
12801 static void
12802 tracepoint_create_sals_from_location (const struct event_location *location,
12803 struct linespec_result *canonical,
12804 enum bptype type_wanted)
12805 {
12806 create_sals_from_location_default (location, canonical, type_wanted);
12807 }
12808
12809 static void
12810 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12811 struct linespec_result *canonical,
12812 gdb::unique_xmalloc_ptr<char> cond_string,
12813 gdb::unique_xmalloc_ptr<char> extra_string,
12814 enum bptype type_wanted,
12815 enum bpdisp disposition,
12816 int thread,
12817 int task, int ignore_count,
12818 const struct breakpoint_ops *ops,
12819 int from_tty, int enabled,
12820 int internal, unsigned flags)
12821 {
12822 create_breakpoints_sal_default (gdbarch, canonical,
12823 std::move (cond_string),
12824 std::move (extra_string),
12825 type_wanted,
12826 disposition, thread, task,
12827 ignore_count, ops, from_tty,
12828 enabled, internal, flags);
12829 }
12830
12831 static std::vector<symtab_and_line>
12832 tracepoint_decode_location (struct breakpoint *b,
12833 const struct event_location *location,
12834 struct program_space *search_pspace)
12835 {
12836 return decode_location_default (b, location, search_pspace);
12837 }
12838
12839 struct breakpoint_ops tracepoint_breakpoint_ops;
12840
12841 /* The breakpoint_ops structure to be use on tracepoints placed in a
12842 static probe. */
12843
12844 static void
12845 tracepoint_probe_create_sals_from_location
12846 (const struct event_location *location,
12847 struct linespec_result *canonical,
12848 enum bptype type_wanted)
12849 {
12850 /* We use the same method for breakpoint on probes. */
12851 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12852 }
12853
12854 static std::vector<symtab_and_line>
12855 tracepoint_probe_decode_location (struct breakpoint *b,
12856 const struct event_location *location,
12857 struct program_space *search_pspace)
12858 {
12859 /* We use the same method for breakpoint on probes. */
12860 return bkpt_probe_decode_location (b, location, search_pspace);
12861 }
12862
12863 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12864
12865 /* Dprintf breakpoint_ops methods. */
12866
12867 static void
12868 dprintf_re_set (struct breakpoint *b)
12869 {
12870 breakpoint_re_set_default (b);
12871
12872 /* extra_string should never be non-NULL for dprintf. */
12873 gdb_assert (b->extra_string != NULL);
12874
12875 /* 1 - connect to target 1, that can run breakpoint commands.
12876 2 - create a dprintf, which resolves fine.
12877 3 - disconnect from target 1
12878 4 - connect to target 2, that can NOT run breakpoint commands.
12879
12880 After steps #3/#4, you'll want the dprintf command list to
12881 be updated, because target 1 and 2 may well return different
12882 answers for target_can_run_breakpoint_commands().
12883 Given absence of finer grained resetting, we get to do
12884 it all the time. */
12885 if (b->extra_string != NULL)
12886 update_dprintf_command_list (b);
12887 }
12888
12889 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12890
12891 static void
12892 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12893 {
12894 fprintf_unfiltered (fp, "dprintf %s,%s",
12895 event_location_to_string (tp->location.get ()),
12896 tp->extra_string);
12897 print_recreate_thread (tp, fp);
12898 }
12899
12900 /* Implement the "after_condition_true" breakpoint_ops method for
12901 dprintf.
12902
12903 dprintf's are implemented with regular commands in their command
12904 list, but we run the commands here instead of before presenting the
12905 stop to the user, as dprintf's don't actually cause a stop. This
12906 also makes it so that the commands of multiple dprintfs at the same
12907 address are all handled. */
12908
12909 static void
12910 dprintf_after_condition_true (struct bpstats *bs)
12911 {
12912 struct bpstats tmp_bs;
12913 struct bpstats *tmp_bs_p = &tmp_bs;
12914
12915 /* dprintf's never cause a stop. This wasn't set in the
12916 check_status hook instead because that would make the dprintf's
12917 condition not be evaluated. */
12918 bs->stop = 0;
12919
12920 /* Run the command list here. Take ownership of it instead of
12921 copying. We never want these commands to run later in
12922 bpstat_do_actions, if a breakpoint that causes a stop happens to
12923 be set at same address as this dprintf, or even if running the
12924 commands here throws. */
12925 tmp_bs.commands = bs->commands;
12926 bs->commands = NULL;
12927
12928 bpstat_do_actions_1 (&tmp_bs_p);
12929
12930 /* 'tmp_bs.commands' will usually be NULL by now, but
12931 bpstat_do_actions_1 may return early without processing the whole
12932 list. */
12933 }
12934
12935 /* The breakpoint_ops structure to be used on static tracepoints with
12936 markers (`-m'). */
12937
12938 static void
12939 strace_marker_create_sals_from_location (const struct event_location *location,
12940 struct linespec_result *canonical,
12941 enum bptype type_wanted)
12942 {
12943 struct linespec_sals lsal;
12944 const char *arg_start, *arg;
12945
12946 arg = arg_start = get_linespec_location (location)->spec_string;
12947 lsal.sals = decode_static_tracepoint_spec (&arg);
12948
12949 std::string str (arg_start, arg - arg_start);
12950 const char *ptr = str.c_str ();
12951 canonical->location
12952 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12953
12954 lsal.canonical
12955 = xstrdup (event_location_to_string (canonical->location.get ()));
12956 canonical->lsals.push_back (std::move (lsal));
12957 }
12958
12959 static void
12960 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12961 struct linespec_result *canonical,
12962 gdb::unique_xmalloc_ptr<char> cond_string,
12963 gdb::unique_xmalloc_ptr<char> extra_string,
12964 enum bptype type_wanted,
12965 enum bpdisp disposition,
12966 int thread,
12967 int task, int ignore_count,
12968 const struct breakpoint_ops *ops,
12969 int from_tty, int enabled,
12970 int internal, unsigned flags)
12971 {
12972 const linespec_sals &lsal = canonical->lsals[0];
12973
12974 /* If the user is creating a static tracepoint by marker id
12975 (strace -m MARKER_ID), then store the sals index, so that
12976 breakpoint_re_set can try to match up which of the newly
12977 found markers corresponds to this one, and, don't try to
12978 expand multiple locations for each sal, given than SALS
12979 already should contain all sals for MARKER_ID. */
12980
12981 for (size_t i = 0; i < lsal.sals.size (); i++)
12982 {
12983 event_location_up location
12984 = copy_event_location (canonical->location.get ());
12985
12986 std::unique_ptr<tracepoint> tp (new tracepoint ());
12987 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12988 std::move (location), NULL,
12989 std::move (cond_string),
12990 std::move (extra_string),
12991 type_wanted, disposition,
12992 thread, task, ignore_count, ops,
12993 from_tty, enabled, internal, flags,
12994 canonical->special_display);
12995 /* Given that its possible to have multiple markers with
12996 the same string id, if the user is creating a static
12997 tracepoint by marker id ("strace -m MARKER_ID"), then
12998 store the sals index, so that breakpoint_re_set can
12999 try to match up which of the newly found markers
13000 corresponds to this one */
13001 tp->static_trace_marker_id_idx = i;
13002
13003 install_breakpoint (internal, std::move (tp), 0);
13004 }
13005 }
13006
13007 static std::vector<symtab_and_line>
13008 strace_marker_decode_location (struct breakpoint *b,
13009 const struct event_location *location,
13010 struct program_space *search_pspace)
13011 {
13012 struct tracepoint *tp = (struct tracepoint *) b;
13013 const char *s = get_linespec_location (location)->spec_string;
13014
13015 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13016 if (sals.size () > tp->static_trace_marker_id_idx)
13017 {
13018 sals[0] = sals[tp->static_trace_marker_id_idx];
13019 sals.resize (1);
13020 return sals;
13021 }
13022 else
13023 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13024 }
13025
13026 static struct breakpoint_ops strace_marker_breakpoint_ops;
13027
13028 static int
13029 strace_marker_p (struct breakpoint *b)
13030 {
13031 return b->ops == &strace_marker_breakpoint_ops;
13032 }
13033
13034 /* Delete a breakpoint and clean up all traces of it in the data
13035 structures. */
13036
13037 void
13038 delete_breakpoint (struct breakpoint *bpt)
13039 {
13040 struct breakpoint *b;
13041
13042 gdb_assert (bpt != NULL);
13043
13044 /* Has this bp already been deleted? This can happen because
13045 multiple lists can hold pointers to bp's. bpstat lists are
13046 especial culprits.
13047
13048 One example of this happening is a watchpoint's scope bp. When
13049 the scope bp triggers, we notice that the watchpoint is out of
13050 scope, and delete it. We also delete its scope bp. But the
13051 scope bp is marked "auto-deleting", and is already on a bpstat.
13052 That bpstat is then checked for auto-deleting bp's, which are
13053 deleted.
13054
13055 A real solution to this problem might involve reference counts in
13056 bp's, and/or giving them pointers back to their referencing
13057 bpstat's, and teaching delete_breakpoint to only free a bp's
13058 storage when no more references were extent. A cheaper bandaid
13059 was chosen. */
13060 if (bpt->type == bp_none)
13061 return;
13062
13063 /* At least avoid this stale reference until the reference counting
13064 of breakpoints gets resolved. */
13065 if (bpt->related_breakpoint != bpt)
13066 {
13067 struct breakpoint *related;
13068 struct watchpoint *w;
13069
13070 if (bpt->type == bp_watchpoint_scope)
13071 w = (struct watchpoint *) bpt->related_breakpoint;
13072 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13073 w = (struct watchpoint *) bpt;
13074 else
13075 w = NULL;
13076 if (w != NULL)
13077 watchpoint_del_at_next_stop (w);
13078
13079 /* Unlink bpt from the bpt->related_breakpoint ring. */
13080 for (related = bpt; related->related_breakpoint != bpt;
13081 related = related->related_breakpoint);
13082 related->related_breakpoint = bpt->related_breakpoint;
13083 bpt->related_breakpoint = bpt;
13084 }
13085
13086 /* watch_command_1 creates a watchpoint but only sets its number if
13087 update_watchpoint succeeds in creating its bp_locations. If there's
13088 a problem in that process, we'll be asked to delete the half-created
13089 watchpoint. In that case, don't announce the deletion. */
13090 if (bpt->number)
13091 gdb::observers::breakpoint_deleted.notify (bpt);
13092
13093 if (breakpoint_chain == bpt)
13094 breakpoint_chain = bpt->next;
13095
13096 ALL_BREAKPOINTS (b)
13097 if (b->next == bpt)
13098 {
13099 b->next = bpt->next;
13100 break;
13101 }
13102
13103 /* Be sure no bpstat's are pointing at the breakpoint after it's
13104 been freed. */
13105 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13106 in all threads for now. Note that we cannot just remove bpstats
13107 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13108 commands are associated with the bpstat; if we remove it here,
13109 then the later call to bpstat_do_actions (&stop_bpstat); in
13110 event-top.c won't do anything, and temporary breakpoints with
13111 commands won't work. */
13112
13113 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13114
13115 /* Now that breakpoint is removed from breakpoint list, update the
13116 global location list. This will remove locations that used to
13117 belong to this breakpoint. Do this before freeing the breakpoint
13118 itself, since remove_breakpoint looks at location's owner. It
13119 might be better design to have location completely
13120 self-contained, but it's not the case now. */
13121 update_global_location_list (UGLL_DONT_INSERT);
13122
13123 /* On the chance that someone will soon try again to delete this
13124 same bp, we mark it as deleted before freeing its storage. */
13125 bpt->type = bp_none;
13126 delete bpt;
13127 }
13128
13129 /* Iterator function to call a user-provided callback function once
13130 for each of B and its related breakpoints. */
13131
13132 static void
13133 iterate_over_related_breakpoints (struct breakpoint *b,
13134 gdb::function_view<void (breakpoint *)> function)
13135 {
13136 struct breakpoint *related;
13137
13138 related = b;
13139 do
13140 {
13141 struct breakpoint *next;
13142
13143 /* FUNCTION may delete RELATED. */
13144 next = related->related_breakpoint;
13145
13146 if (next == related)
13147 {
13148 /* RELATED is the last ring entry. */
13149 function (related);
13150
13151 /* FUNCTION may have deleted it, so we'd never reach back to
13152 B. There's nothing left to do anyway, so just break
13153 out. */
13154 break;
13155 }
13156 else
13157 function (related);
13158
13159 related = next;
13160 }
13161 while (related != b);
13162 }
13163
13164 static void
13165 delete_command (const char *arg, int from_tty)
13166 {
13167 struct breakpoint *b, *b_tmp;
13168
13169 dont_repeat ();
13170
13171 if (arg == 0)
13172 {
13173 int breaks_to_delete = 0;
13174
13175 /* Delete all breakpoints if no argument. Do not delete
13176 internal breakpoints, these have to be deleted with an
13177 explicit breakpoint number argument. */
13178 ALL_BREAKPOINTS (b)
13179 if (user_breakpoint_p (b))
13180 {
13181 breaks_to_delete = 1;
13182 break;
13183 }
13184
13185 /* Ask user only if there are some breakpoints to delete. */
13186 if (!from_tty
13187 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13188 {
13189 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13190 if (user_breakpoint_p (b))
13191 delete_breakpoint (b);
13192 }
13193 }
13194 else
13195 map_breakpoint_numbers
13196 (arg, [&] (breakpoint *br)
13197 {
13198 iterate_over_related_breakpoints (br, delete_breakpoint);
13199 });
13200 }
13201
13202 /* Return true if all locations of B bound to PSPACE are pending. If
13203 PSPACE is NULL, all locations of all program spaces are
13204 considered. */
13205
13206 static int
13207 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13208 {
13209 struct bp_location *loc;
13210
13211 for (loc = b->loc; loc != NULL; loc = loc->next)
13212 if ((pspace == NULL
13213 || loc->pspace == pspace)
13214 && !loc->shlib_disabled
13215 && !loc->pspace->executing_startup)
13216 return 0;
13217 return 1;
13218 }
13219
13220 /* Subroutine of update_breakpoint_locations to simplify it.
13221 Return non-zero if multiple fns in list LOC have the same name.
13222 Null names are ignored. */
13223
13224 static int
13225 ambiguous_names_p (struct bp_location *loc)
13226 {
13227 struct bp_location *l;
13228 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13229 xcalloc, xfree);
13230
13231 for (l = loc; l != NULL; l = l->next)
13232 {
13233 const char **slot;
13234 const char *name = l->function_name;
13235
13236 /* Allow for some names to be NULL, ignore them. */
13237 if (name == NULL)
13238 continue;
13239
13240 slot = (const char **) htab_find_slot (htab, (const void *) name,
13241 INSERT);
13242 /* NOTE: We can assume slot != NULL here because xcalloc never
13243 returns NULL. */
13244 if (*slot != NULL)
13245 {
13246 htab_delete (htab);
13247 return 1;
13248 }
13249 *slot = name;
13250 }
13251
13252 htab_delete (htab);
13253 return 0;
13254 }
13255
13256 /* When symbols change, it probably means the sources changed as well,
13257 and it might mean the static tracepoint markers are no longer at
13258 the same address or line numbers they used to be at last we
13259 checked. Losing your static tracepoints whenever you rebuild is
13260 undesirable. This function tries to resync/rematch gdb static
13261 tracepoints with the markers on the target, for static tracepoints
13262 that have not been set by marker id. Static tracepoint that have
13263 been set by marker id are reset by marker id in breakpoint_re_set.
13264 The heuristic is:
13265
13266 1) For a tracepoint set at a specific address, look for a marker at
13267 the old PC. If one is found there, assume to be the same marker.
13268 If the name / string id of the marker found is different from the
13269 previous known name, assume that means the user renamed the marker
13270 in the sources, and output a warning.
13271
13272 2) For a tracepoint set at a given line number, look for a marker
13273 at the new address of the old line number. If one is found there,
13274 assume to be the same marker. If the name / string id of the
13275 marker found is different from the previous known name, assume that
13276 means the user renamed the marker in the sources, and output a
13277 warning.
13278
13279 3) If a marker is no longer found at the same address or line, it
13280 may mean the marker no longer exists. But it may also just mean
13281 the code changed a bit. Maybe the user added a few lines of code
13282 that made the marker move up or down (in line number terms). Ask
13283 the target for info about the marker with the string id as we knew
13284 it. If found, update line number and address in the matching
13285 static tracepoint. This will get confused if there's more than one
13286 marker with the same ID (possible in UST, although unadvised
13287 precisely because it confuses tools). */
13288
13289 static struct symtab_and_line
13290 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13291 {
13292 struct tracepoint *tp = (struct tracepoint *) b;
13293 struct static_tracepoint_marker marker;
13294 CORE_ADDR pc;
13295
13296 pc = sal.pc;
13297 if (sal.line)
13298 find_line_pc (sal.symtab, sal.line, &pc);
13299
13300 if (target_static_tracepoint_marker_at (pc, &marker))
13301 {
13302 if (tp->static_trace_marker_id != marker.str_id)
13303 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13304 b->number, tp->static_trace_marker_id.c_str (),
13305 marker.str_id.c_str ());
13306
13307 tp->static_trace_marker_id = std::move (marker.str_id);
13308
13309 return sal;
13310 }
13311
13312 /* Old marker wasn't found on target at lineno. Try looking it up
13313 by string ID. */
13314 if (!sal.explicit_pc
13315 && sal.line != 0
13316 && sal.symtab != NULL
13317 && !tp->static_trace_marker_id.empty ())
13318 {
13319 std::vector<static_tracepoint_marker> markers
13320 = target_static_tracepoint_markers_by_strid
13321 (tp->static_trace_marker_id.c_str ());
13322
13323 if (!markers.empty ())
13324 {
13325 struct symbol *sym;
13326 struct static_tracepoint_marker *tpmarker;
13327 struct ui_out *uiout = current_uiout;
13328 struct explicit_location explicit_loc;
13329
13330 tpmarker = &markers[0];
13331
13332 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13333
13334 warning (_("marker for static tracepoint %d (%s) not "
13335 "found at previous line number"),
13336 b->number, tp->static_trace_marker_id.c_str ());
13337
13338 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13339 sym = find_pc_sect_function (tpmarker->address, NULL);
13340 uiout->text ("Now in ");
13341 if (sym)
13342 {
13343 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13344 ui_out_style_kind::FUNCTION);
13345 uiout->text (" at ");
13346 }
13347 uiout->field_string ("file",
13348 symtab_to_filename_for_display (sal2.symtab),
13349 ui_out_style_kind::FILE);
13350 uiout->text (":");
13351
13352 if (uiout->is_mi_like_p ())
13353 {
13354 const char *fullname = symtab_to_fullname (sal2.symtab);
13355
13356 uiout->field_string ("fullname", fullname);
13357 }
13358
13359 uiout->field_int ("line", sal2.line);
13360 uiout->text ("\n");
13361
13362 b->loc->line_number = sal2.line;
13363 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13364
13365 b->location.reset (NULL);
13366 initialize_explicit_location (&explicit_loc);
13367 explicit_loc.source_filename
13368 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13369 explicit_loc.line_offset.offset = b->loc->line_number;
13370 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13371 b->location = new_explicit_location (&explicit_loc);
13372
13373 /* Might be nice to check if function changed, and warn if
13374 so. */
13375 }
13376 }
13377 return sal;
13378 }
13379
13380 /* Returns 1 iff locations A and B are sufficiently same that
13381 we don't need to report breakpoint as changed. */
13382
13383 static int
13384 locations_are_equal (struct bp_location *a, struct bp_location *b)
13385 {
13386 while (a && b)
13387 {
13388 if (a->address != b->address)
13389 return 0;
13390
13391 if (a->shlib_disabled != b->shlib_disabled)
13392 return 0;
13393
13394 if (a->enabled != b->enabled)
13395 return 0;
13396
13397 a = a->next;
13398 b = b->next;
13399 }
13400
13401 if ((a == NULL) != (b == NULL))
13402 return 0;
13403
13404 return 1;
13405 }
13406
13407 /* Split all locations of B that are bound to PSPACE out of B's
13408 location list to a separate list and return that list's head. If
13409 PSPACE is NULL, hoist out all locations of B. */
13410
13411 static struct bp_location *
13412 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13413 {
13414 struct bp_location head;
13415 struct bp_location *i = b->loc;
13416 struct bp_location **i_link = &b->loc;
13417 struct bp_location *hoisted = &head;
13418
13419 if (pspace == NULL)
13420 {
13421 i = b->loc;
13422 b->loc = NULL;
13423 return i;
13424 }
13425
13426 head.next = NULL;
13427
13428 while (i != NULL)
13429 {
13430 if (i->pspace == pspace)
13431 {
13432 *i_link = i->next;
13433 i->next = NULL;
13434 hoisted->next = i;
13435 hoisted = i;
13436 }
13437 else
13438 i_link = &i->next;
13439 i = *i_link;
13440 }
13441
13442 return head.next;
13443 }
13444
13445 /* Create new breakpoint locations for B (a hardware or software
13446 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13447 zero, then B is a ranged breakpoint. Only recreates locations for
13448 FILTER_PSPACE. Locations of other program spaces are left
13449 untouched. */
13450
13451 void
13452 update_breakpoint_locations (struct breakpoint *b,
13453 struct program_space *filter_pspace,
13454 gdb::array_view<const symtab_and_line> sals,
13455 gdb::array_view<const symtab_and_line> sals_end)
13456 {
13457 struct bp_location *existing_locations;
13458
13459 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13460 {
13461 /* Ranged breakpoints have only one start location and one end
13462 location. */
13463 b->enable_state = bp_disabled;
13464 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13465 "multiple locations found\n"),
13466 b->number);
13467 return;
13468 }
13469
13470 /* If there's no new locations, and all existing locations are
13471 pending, don't do anything. This optimizes the common case where
13472 all locations are in the same shared library, that was unloaded.
13473 We'd like to retain the location, so that when the library is
13474 loaded again, we don't loose the enabled/disabled status of the
13475 individual locations. */
13476 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13477 return;
13478
13479 existing_locations = hoist_existing_locations (b, filter_pspace);
13480
13481 for (const auto &sal : sals)
13482 {
13483 struct bp_location *new_loc;
13484
13485 switch_to_program_space_and_thread (sal.pspace);
13486
13487 new_loc = add_location_to_breakpoint (b, &sal);
13488
13489 /* Reparse conditions, they might contain references to the
13490 old symtab. */
13491 if (b->cond_string != NULL)
13492 {
13493 const char *s;
13494
13495 s = b->cond_string;
13496 try
13497 {
13498 new_loc->cond = parse_exp_1 (&s, sal.pc,
13499 block_for_pc (sal.pc),
13500 0);
13501 }
13502 catch (const gdb_exception_error &e)
13503 {
13504 warning (_("failed to reevaluate condition "
13505 "for breakpoint %d: %s"),
13506 b->number, e.what ());
13507 new_loc->enabled = 0;
13508 }
13509 }
13510
13511 if (!sals_end.empty ())
13512 {
13513 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13514
13515 new_loc->length = end - sals[0].pc + 1;
13516 }
13517 }
13518
13519 /* If possible, carry over 'disable' status from existing
13520 breakpoints. */
13521 {
13522 struct bp_location *e = existing_locations;
13523 /* If there are multiple breakpoints with the same function name,
13524 e.g. for inline functions, comparing function names won't work.
13525 Instead compare pc addresses; this is just a heuristic as things
13526 may have moved, but in practice it gives the correct answer
13527 often enough until a better solution is found. */
13528 int have_ambiguous_names = ambiguous_names_p (b->loc);
13529
13530 for (; e; e = e->next)
13531 {
13532 if (!e->enabled && e->function_name)
13533 {
13534 struct bp_location *l = b->loc;
13535 if (have_ambiguous_names)
13536 {
13537 for (; l; l = l->next)
13538 if (breakpoint_locations_match (e, l))
13539 {
13540 l->enabled = 0;
13541 break;
13542 }
13543 }
13544 else
13545 {
13546 for (; l; l = l->next)
13547 if (l->function_name
13548 && strcmp (e->function_name, l->function_name) == 0)
13549 {
13550 l->enabled = 0;
13551 break;
13552 }
13553 }
13554 }
13555 }
13556 }
13557
13558 if (!locations_are_equal (existing_locations, b->loc))
13559 gdb::observers::breakpoint_modified.notify (b);
13560 }
13561
13562 /* Find the SaL locations corresponding to the given LOCATION.
13563 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13564
13565 static std::vector<symtab_and_line>
13566 location_to_sals (struct breakpoint *b, struct event_location *location,
13567 struct program_space *search_pspace, int *found)
13568 {
13569 struct gdb_exception exception;
13570
13571 gdb_assert (b->ops != NULL);
13572
13573 std::vector<symtab_and_line> sals;
13574
13575 try
13576 {
13577 sals = b->ops->decode_location (b, location, search_pspace);
13578 }
13579 catch (gdb_exception_error &e)
13580 {
13581 int not_found_and_ok = 0;
13582
13583 /* For pending breakpoints, it's expected that parsing will
13584 fail until the right shared library is loaded. User has
13585 already told to create pending breakpoints and don't need
13586 extra messages. If breakpoint is in bp_shlib_disabled
13587 state, then user already saw the message about that
13588 breakpoint being disabled, and don't want to see more
13589 errors. */
13590 if (e.error == NOT_FOUND_ERROR
13591 && (b->condition_not_parsed
13592 || (b->loc != NULL
13593 && search_pspace != NULL
13594 && b->loc->pspace != search_pspace)
13595 || (b->loc && b->loc->shlib_disabled)
13596 || (b->loc && b->loc->pspace->executing_startup)
13597 || b->enable_state == bp_disabled))
13598 not_found_and_ok = 1;
13599
13600 if (!not_found_and_ok)
13601 {
13602 /* We surely don't want to warn about the same breakpoint
13603 10 times. One solution, implemented here, is disable
13604 the breakpoint on error. Another solution would be to
13605 have separate 'warning emitted' flag. Since this
13606 happens only when a binary has changed, I don't know
13607 which approach is better. */
13608 b->enable_state = bp_disabled;
13609 throw;
13610 }
13611
13612 exception = std::move (e);
13613 }
13614
13615 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13616 {
13617 for (auto &sal : sals)
13618 resolve_sal_pc (&sal);
13619 if (b->condition_not_parsed && b->extra_string != NULL)
13620 {
13621 char *cond_string, *extra_string;
13622 int thread, task;
13623
13624 find_condition_and_thread (b->extra_string, sals[0].pc,
13625 &cond_string, &thread, &task,
13626 &extra_string);
13627 gdb_assert (b->cond_string == NULL);
13628 if (cond_string)
13629 b->cond_string = cond_string;
13630 b->thread = thread;
13631 b->task = task;
13632 if (extra_string)
13633 {
13634 xfree (b->extra_string);
13635 b->extra_string = extra_string;
13636 }
13637 b->condition_not_parsed = 0;
13638 }
13639
13640 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13641 sals[0] = update_static_tracepoint (b, sals[0]);
13642
13643 *found = 1;
13644 }
13645 else
13646 *found = 0;
13647
13648 return sals;
13649 }
13650
13651 /* The default re_set method, for typical hardware or software
13652 breakpoints. Reevaluate the breakpoint and recreate its
13653 locations. */
13654
13655 static void
13656 breakpoint_re_set_default (struct breakpoint *b)
13657 {
13658 struct program_space *filter_pspace = current_program_space;
13659 std::vector<symtab_and_line> expanded, expanded_end;
13660
13661 int found;
13662 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13663 filter_pspace, &found);
13664 if (found)
13665 expanded = std::move (sals);
13666
13667 if (b->location_range_end != NULL)
13668 {
13669 std::vector<symtab_and_line> sals_end
13670 = location_to_sals (b, b->location_range_end.get (),
13671 filter_pspace, &found);
13672 if (found)
13673 expanded_end = std::move (sals_end);
13674 }
13675
13676 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13677 }
13678
13679 /* Default method for creating SALs from an address string. It basically
13680 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13681
13682 static void
13683 create_sals_from_location_default (const struct event_location *location,
13684 struct linespec_result *canonical,
13685 enum bptype type_wanted)
13686 {
13687 parse_breakpoint_sals (location, canonical);
13688 }
13689
13690 /* Call create_breakpoints_sal for the given arguments. This is the default
13691 function for the `create_breakpoints_sal' method of
13692 breakpoint_ops. */
13693
13694 static void
13695 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13696 struct linespec_result *canonical,
13697 gdb::unique_xmalloc_ptr<char> cond_string,
13698 gdb::unique_xmalloc_ptr<char> extra_string,
13699 enum bptype type_wanted,
13700 enum bpdisp disposition,
13701 int thread,
13702 int task, int ignore_count,
13703 const struct breakpoint_ops *ops,
13704 int from_tty, int enabled,
13705 int internal, unsigned flags)
13706 {
13707 create_breakpoints_sal (gdbarch, canonical,
13708 std::move (cond_string),
13709 std::move (extra_string),
13710 type_wanted, disposition,
13711 thread, task, ignore_count, ops, from_tty,
13712 enabled, internal, flags);
13713 }
13714
13715 /* Decode the line represented by S by calling decode_line_full. This is the
13716 default function for the `decode_location' method of breakpoint_ops. */
13717
13718 static std::vector<symtab_and_line>
13719 decode_location_default (struct breakpoint *b,
13720 const struct event_location *location,
13721 struct program_space *search_pspace)
13722 {
13723 struct linespec_result canonical;
13724
13725 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13726 NULL, 0, &canonical, multiple_symbols_all,
13727 b->filter);
13728
13729 /* We should get 0 or 1 resulting SALs. */
13730 gdb_assert (canonical.lsals.size () < 2);
13731
13732 if (!canonical.lsals.empty ())
13733 {
13734 const linespec_sals &lsal = canonical.lsals[0];
13735 return std::move (lsal.sals);
13736 }
13737 return {};
13738 }
13739
13740 /* Reset a breakpoint. */
13741
13742 static void
13743 breakpoint_re_set_one (breakpoint *b)
13744 {
13745 input_radix = b->input_radix;
13746 set_language (b->language);
13747
13748 b->ops->re_set (b);
13749 }
13750
13751 /* Re-set breakpoint locations for the current program space.
13752 Locations bound to other program spaces are left untouched. */
13753
13754 void
13755 breakpoint_re_set (void)
13756 {
13757 struct breakpoint *b, *b_tmp;
13758
13759 {
13760 scoped_restore_current_language save_language;
13761 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13762 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13763
13764 /* breakpoint_re_set_one sets the current_language to the language
13765 of the breakpoint it is resetting (see prepare_re_set_context)
13766 before re-evaluating the breakpoint's location. This change can
13767 unfortunately get undone by accident if the language_mode is set
13768 to auto, and we either switch frames, or more likely in this context,
13769 we select the current frame.
13770
13771 We prevent this by temporarily turning the language_mode to
13772 language_mode_manual. We restore it once all breakpoints
13773 have been reset. */
13774 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13775 language_mode = language_mode_manual;
13776
13777 /* Note: we must not try to insert locations until after all
13778 breakpoints have been re-set. Otherwise, e.g., when re-setting
13779 breakpoint 1, we'd insert the locations of breakpoint 2, which
13780 hadn't been re-set yet, and thus may have stale locations. */
13781
13782 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13783 {
13784 try
13785 {
13786 breakpoint_re_set_one (b);
13787 }
13788 catch (const gdb_exception &ex)
13789 {
13790 exception_fprintf (gdb_stderr, ex,
13791 "Error in re-setting breakpoint %d: ",
13792 b->number);
13793 }
13794 }
13795
13796 jit_breakpoint_re_set ();
13797 }
13798
13799 create_overlay_event_breakpoint ();
13800 create_longjmp_master_breakpoint ();
13801 create_std_terminate_master_breakpoint ();
13802 create_exception_master_breakpoint ();
13803
13804 /* Now we can insert. */
13805 update_global_location_list (UGLL_MAY_INSERT);
13806 }
13807 \f
13808 /* Reset the thread number of this breakpoint:
13809
13810 - If the breakpoint is for all threads, leave it as-is.
13811 - Else, reset it to the current thread for inferior_ptid. */
13812 void
13813 breakpoint_re_set_thread (struct breakpoint *b)
13814 {
13815 if (b->thread != -1)
13816 {
13817 b->thread = inferior_thread ()->global_num;
13818
13819 /* We're being called after following a fork. The new fork is
13820 selected as current, and unless this was a vfork will have a
13821 different program space from the original thread. Reset that
13822 as well. */
13823 b->loc->pspace = current_program_space;
13824 }
13825 }
13826
13827 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13828 If from_tty is nonzero, it prints a message to that effect,
13829 which ends with a period (no newline). */
13830
13831 void
13832 set_ignore_count (int bptnum, int count, int from_tty)
13833 {
13834 struct breakpoint *b;
13835
13836 if (count < 0)
13837 count = 0;
13838
13839 ALL_BREAKPOINTS (b)
13840 if (b->number == bptnum)
13841 {
13842 if (is_tracepoint (b))
13843 {
13844 if (from_tty && count != 0)
13845 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13846 bptnum);
13847 return;
13848 }
13849
13850 b->ignore_count = count;
13851 if (from_tty)
13852 {
13853 if (count == 0)
13854 printf_filtered (_("Will stop next time "
13855 "breakpoint %d is reached."),
13856 bptnum);
13857 else if (count == 1)
13858 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13859 bptnum);
13860 else
13861 printf_filtered (_("Will ignore next %d "
13862 "crossings of breakpoint %d."),
13863 count, bptnum);
13864 }
13865 gdb::observers::breakpoint_modified.notify (b);
13866 return;
13867 }
13868
13869 error (_("No breakpoint number %d."), bptnum);
13870 }
13871
13872 /* Command to set ignore-count of breakpoint N to COUNT. */
13873
13874 static void
13875 ignore_command (const char *args, int from_tty)
13876 {
13877 const char *p = args;
13878 int num;
13879
13880 if (p == 0)
13881 error_no_arg (_("a breakpoint number"));
13882
13883 num = get_number (&p);
13884 if (num == 0)
13885 error (_("bad breakpoint number: '%s'"), args);
13886 if (*p == 0)
13887 error (_("Second argument (specified ignore-count) is missing."));
13888
13889 set_ignore_count (num,
13890 longest_to_int (value_as_long (parse_and_eval (p))),
13891 from_tty);
13892 if (from_tty)
13893 printf_filtered ("\n");
13894 }
13895 \f
13896
13897 /* Call FUNCTION on each of the breakpoints with numbers in the range
13898 defined by BP_NUM_RANGE (an inclusive range). */
13899
13900 static void
13901 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13902 gdb::function_view<void (breakpoint *)> function)
13903 {
13904 if (bp_num_range.first == 0)
13905 {
13906 warning (_("bad breakpoint number at or near '%d'"),
13907 bp_num_range.first);
13908 }
13909 else
13910 {
13911 struct breakpoint *b, *tmp;
13912
13913 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13914 {
13915 bool match = false;
13916
13917 ALL_BREAKPOINTS_SAFE (b, tmp)
13918 if (b->number == i)
13919 {
13920 match = true;
13921 function (b);
13922 break;
13923 }
13924 if (!match)
13925 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13926 }
13927 }
13928 }
13929
13930 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13931 ARGS. */
13932
13933 static void
13934 map_breakpoint_numbers (const char *args,
13935 gdb::function_view<void (breakpoint *)> function)
13936 {
13937 if (args == NULL || *args == '\0')
13938 error_no_arg (_("one or more breakpoint numbers"));
13939
13940 number_or_range_parser parser (args);
13941
13942 while (!parser.finished ())
13943 {
13944 int num = parser.get_number ();
13945 map_breakpoint_number_range (std::make_pair (num, num), function);
13946 }
13947 }
13948
13949 /* Return the breakpoint location structure corresponding to the
13950 BP_NUM and LOC_NUM values. */
13951
13952 static struct bp_location *
13953 find_location_by_number (int bp_num, int loc_num)
13954 {
13955 struct breakpoint *b;
13956
13957 ALL_BREAKPOINTS (b)
13958 if (b->number == bp_num)
13959 {
13960 break;
13961 }
13962
13963 if (!b || b->number != bp_num)
13964 error (_("Bad breakpoint number '%d'"), bp_num);
13965
13966 if (loc_num == 0)
13967 error (_("Bad breakpoint location number '%d'"), loc_num);
13968
13969 int n = 0;
13970 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13971 if (++n == loc_num)
13972 return loc;
13973
13974 error (_("Bad breakpoint location number '%d'"), loc_num);
13975 }
13976
13977 /* Modes of operation for extract_bp_num. */
13978 enum class extract_bp_kind
13979 {
13980 /* Extracting a breakpoint number. */
13981 bp,
13982
13983 /* Extracting a location number. */
13984 loc,
13985 };
13986
13987 /* Extract a breakpoint or location number (as determined by KIND)
13988 from the string starting at START. TRAILER is a character which
13989 can be found after the number. If you don't want a trailer, use
13990 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13991 string. This always returns a positive integer. */
13992
13993 static int
13994 extract_bp_num (extract_bp_kind kind, const char *start,
13995 int trailer, const char **end_out = NULL)
13996 {
13997 const char *end = start;
13998 int num = get_number_trailer (&end, trailer);
13999 if (num < 0)
14000 error (kind == extract_bp_kind::bp
14001 ? _("Negative breakpoint number '%.*s'")
14002 : _("Negative breakpoint location number '%.*s'"),
14003 int (end - start), start);
14004 if (num == 0)
14005 error (kind == extract_bp_kind::bp
14006 ? _("Bad breakpoint number '%.*s'")
14007 : _("Bad breakpoint location number '%.*s'"),
14008 int (end - start), start);
14009
14010 if (end_out != NULL)
14011 *end_out = end;
14012 return num;
14013 }
14014
14015 /* Extract a breakpoint or location range (as determined by KIND) in
14016 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14017 representing the (inclusive) range. The returned pair's elements
14018 are always positive integers. */
14019
14020 static std::pair<int, int>
14021 extract_bp_or_bp_range (extract_bp_kind kind,
14022 const std::string &arg,
14023 std::string::size_type arg_offset)
14024 {
14025 std::pair<int, int> range;
14026 const char *bp_loc = &arg[arg_offset];
14027 std::string::size_type dash = arg.find ('-', arg_offset);
14028 if (dash != std::string::npos)
14029 {
14030 /* bp_loc is a range (x-z). */
14031 if (arg.length () == dash + 1)
14032 error (kind == extract_bp_kind::bp
14033 ? _("Bad breakpoint number at or near: '%s'")
14034 : _("Bad breakpoint location number at or near: '%s'"),
14035 bp_loc);
14036
14037 const char *end;
14038 const char *start_first = bp_loc;
14039 const char *start_second = &arg[dash + 1];
14040 range.first = extract_bp_num (kind, start_first, '-');
14041 range.second = extract_bp_num (kind, start_second, '\0', &end);
14042
14043 if (range.first > range.second)
14044 error (kind == extract_bp_kind::bp
14045 ? _("Inverted breakpoint range at '%.*s'")
14046 : _("Inverted breakpoint location range at '%.*s'"),
14047 int (end - start_first), start_first);
14048 }
14049 else
14050 {
14051 /* bp_loc is a single value. */
14052 range.first = extract_bp_num (kind, bp_loc, '\0');
14053 range.second = range.first;
14054 }
14055 return range;
14056 }
14057
14058 /* Extract the breakpoint/location range specified by ARG. Returns
14059 the breakpoint range in BP_NUM_RANGE, and the location range in
14060 BP_LOC_RANGE.
14061
14062 ARG may be in any of the following forms:
14063
14064 x where 'x' is a breakpoint number.
14065 x-y where 'x' and 'y' specify a breakpoint numbers range.
14066 x.y where 'x' is a breakpoint number and 'y' a location number.
14067 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14068 location number range.
14069 */
14070
14071 static void
14072 extract_bp_number_and_location (const std::string &arg,
14073 std::pair<int, int> &bp_num_range,
14074 std::pair<int, int> &bp_loc_range)
14075 {
14076 std::string::size_type dot = arg.find ('.');
14077
14078 if (dot != std::string::npos)
14079 {
14080 /* Handle 'x.y' and 'x.y-z' cases. */
14081
14082 if (arg.length () == dot + 1 || dot == 0)
14083 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14084
14085 bp_num_range.first
14086 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14087 bp_num_range.second = bp_num_range.first;
14088
14089 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14090 arg, dot + 1);
14091 }
14092 else
14093 {
14094 /* Handle x and x-y cases. */
14095
14096 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14097 bp_loc_range.first = 0;
14098 bp_loc_range.second = 0;
14099 }
14100 }
14101
14102 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14103 specifies whether to enable or disable. */
14104
14105 static void
14106 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14107 {
14108 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14109 if (loc != NULL)
14110 {
14111 if (loc->enabled != enable)
14112 {
14113 loc->enabled = enable;
14114 mark_breakpoint_location_modified (loc);
14115 }
14116 if (target_supports_enable_disable_tracepoint ()
14117 && current_trace_status ()->running && loc->owner
14118 && is_tracepoint (loc->owner))
14119 target_disable_tracepoint (loc);
14120 }
14121 update_global_location_list (UGLL_DONT_INSERT);
14122
14123 gdb::observers::breakpoint_modified.notify (loc->owner);
14124 }
14125
14126 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14127 number of the breakpoint, and BP_LOC_RANGE specifies the
14128 (inclusive) range of location numbers of that breakpoint to
14129 enable/disable. ENABLE specifies whether to enable or disable the
14130 location. */
14131
14132 static void
14133 enable_disable_breakpoint_location_range (int bp_num,
14134 std::pair<int, int> &bp_loc_range,
14135 bool enable)
14136 {
14137 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14138 enable_disable_bp_num_loc (bp_num, i, enable);
14139 }
14140
14141 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14142 If from_tty is nonzero, it prints a message to that effect,
14143 which ends with a period (no newline). */
14144
14145 void
14146 disable_breakpoint (struct breakpoint *bpt)
14147 {
14148 /* Never disable a watchpoint scope breakpoint; we want to
14149 hit them when we leave scope so we can delete both the
14150 watchpoint and its scope breakpoint at that time. */
14151 if (bpt->type == bp_watchpoint_scope)
14152 return;
14153
14154 bpt->enable_state = bp_disabled;
14155
14156 /* Mark breakpoint locations modified. */
14157 mark_breakpoint_modified (bpt);
14158
14159 if (target_supports_enable_disable_tracepoint ()
14160 && current_trace_status ()->running && is_tracepoint (bpt))
14161 {
14162 struct bp_location *location;
14163
14164 for (location = bpt->loc; location; location = location->next)
14165 target_disable_tracepoint (location);
14166 }
14167
14168 update_global_location_list (UGLL_DONT_INSERT);
14169
14170 gdb::observers::breakpoint_modified.notify (bpt);
14171 }
14172
14173 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14174 specified in ARGS. ARGS may be in any of the formats handled by
14175 extract_bp_number_and_location. ENABLE specifies whether to enable
14176 or disable the breakpoints/locations. */
14177
14178 static void
14179 enable_disable_command (const char *args, int from_tty, bool enable)
14180 {
14181 if (args == 0)
14182 {
14183 struct breakpoint *bpt;
14184
14185 ALL_BREAKPOINTS (bpt)
14186 if (user_breakpoint_p (bpt))
14187 {
14188 if (enable)
14189 enable_breakpoint (bpt);
14190 else
14191 disable_breakpoint (bpt);
14192 }
14193 }
14194 else
14195 {
14196 std::string num = extract_arg (&args);
14197
14198 while (!num.empty ())
14199 {
14200 std::pair<int, int> bp_num_range, bp_loc_range;
14201
14202 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14203
14204 if (bp_loc_range.first == bp_loc_range.second
14205 && bp_loc_range.first == 0)
14206 {
14207 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14208 map_breakpoint_number_range (bp_num_range,
14209 enable
14210 ? enable_breakpoint
14211 : disable_breakpoint);
14212 }
14213 else
14214 {
14215 /* Handle breakpoint ids with formats 'x.y' or
14216 'x.y-z'. */
14217 enable_disable_breakpoint_location_range
14218 (bp_num_range.first, bp_loc_range, enable);
14219 }
14220 num = extract_arg (&args);
14221 }
14222 }
14223 }
14224
14225 /* The disable command disables the specified breakpoints/locations
14226 (or all defined breakpoints) so they're no longer effective in
14227 stopping the inferior. ARGS may be in any of the forms defined in
14228 extract_bp_number_and_location. */
14229
14230 static void
14231 disable_command (const char *args, int from_tty)
14232 {
14233 enable_disable_command (args, from_tty, false);
14234 }
14235
14236 static void
14237 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14238 int count)
14239 {
14240 int target_resources_ok;
14241
14242 if (bpt->type == bp_hardware_breakpoint)
14243 {
14244 int i;
14245 i = hw_breakpoint_used_count ();
14246 target_resources_ok =
14247 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14248 i + 1, 0);
14249 if (target_resources_ok == 0)
14250 error (_("No hardware breakpoint support in the target."));
14251 else if (target_resources_ok < 0)
14252 error (_("Hardware breakpoints used exceeds limit."));
14253 }
14254
14255 if (is_watchpoint (bpt))
14256 {
14257 /* Initialize it just to avoid a GCC false warning. */
14258 enum enable_state orig_enable_state = bp_disabled;
14259
14260 try
14261 {
14262 struct watchpoint *w = (struct watchpoint *) bpt;
14263
14264 orig_enable_state = bpt->enable_state;
14265 bpt->enable_state = bp_enabled;
14266 update_watchpoint (w, 1 /* reparse */);
14267 }
14268 catch (const gdb_exception &e)
14269 {
14270 bpt->enable_state = orig_enable_state;
14271 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14272 bpt->number);
14273 return;
14274 }
14275 }
14276
14277 bpt->enable_state = bp_enabled;
14278
14279 /* Mark breakpoint locations modified. */
14280 mark_breakpoint_modified (bpt);
14281
14282 if (target_supports_enable_disable_tracepoint ()
14283 && current_trace_status ()->running && is_tracepoint (bpt))
14284 {
14285 struct bp_location *location;
14286
14287 for (location = bpt->loc; location; location = location->next)
14288 target_enable_tracepoint (location);
14289 }
14290
14291 bpt->disposition = disposition;
14292 bpt->enable_count = count;
14293 update_global_location_list (UGLL_MAY_INSERT);
14294
14295 gdb::observers::breakpoint_modified.notify (bpt);
14296 }
14297
14298
14299 void
14300 enable_breakpoint (struct breakpoint *bpt)
14301 {
14302 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14303 }
14304
14305 /* The enable command enables the specified breakpoints/locations (or
14306 all defined breakpoints) so they once again become (or continue to
14307 be) effective in stopping the inferior. ARGS may be in any of the
14308 forms defined in extract_bp_number_and_location. */
14309
14310 static void
14311 enable_command (const char *args, int from_tty)
14312 {
14313 enable_disable_command (args, from_tty, true);
14314 }
14315
14316 static void
14317 enable_once_command (const char *args, int from_tty)
14318 {
14319 map_breakpoint_numbers
14320 (args, [&] (breakpoint *b)
14321 {
14322 iterate_over_related_breakpoints
14323 (b, [&] (breakpoint *bpt)
14324 {
14325 enable_breakpoint_disp (bpt, disp_disable, 1);
14326 });
14327 });
14328 }
14329
14330 static void
14331 enable_count_command (const char *args, int from_tty)
14332 {
14333 int count;
14334
14335 if (args == NULL)
14336 error_no_arg (_("hit count"));
14337
14338 count = get_number (&args);
14339
14340 map_breakpoint_numbers
14341 (args, [&] (breakpoint *b)
14342 {
14343 iterate_over_related_breakpoints
14344 (b, [&] (breakpoint *bpt)
14345 {
14346 enable_breakpoint_disp (bpt, disp_disable, count);
14347 });
14348 });
14349 }
14350
14351 static void
14352 enable_delete_command (const char *args, int from_tty)
14353 {
14354 map_breakpoint_numbers
14355 (args, [&] (breakpoint *b)
14356 {
14357 iterate_over_related_breakpoints
14358 (b, [&] (breakpoint *bpt)
14359 {
14360 enable_breakpoint_disp (bpt, disp_del, 1);
14361 });
14362 });
14363 }
14364 \f
14365 static void
14366 set_breakpoint_cmd (const char *args, int from_tty)
14367 {
14368 }
14369
14370 static void
14371 show_breakpoint_cmd (const char *args, int from_tty)
14372 {
14373 }
14374
14375 /* Invalidate last known value of any hardware watchpoint if
14376 the memory which that value represents has been written to by
14377 GDB itself. */
14378
14379 static void
14380 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14381 CORE_ADDR addr, ssize_t len,
14382 const bfd_byte *data)
14383 {
14384 struct breakpoint *bp;
14385
14386 ALL_BREAKPOINTS (bp)
14387 if (bp->enable_state == bp_enabled
14388 && bp->type == bp_hardware_watchpoint)
14389 {
14390 struct watchpoint *wp = (struct watchpoint *) bp;
14391
14392 if (wp->val_valid && wp->val != nullptr)
14393 {
14394 struct bp_location *loc;
14395
14396 for (loc = bp->loc; loc != NULL; loc = loc->next)
14397 if (loc->loc_type == bp_loc_hardware_watchpoint
14398 && loc->address + loc->length > addr
14399 && addr + len > loc->address)
14400 {
14401 wp->val = NULL;
14402 wp->val_valid = 0;
14403 }
14404 }
14405 }
14406 }
14407
14408 /* Create and insert a breakpoint for software single step. */
14409
14410 void
14411 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14412 const address_space *aspace,
14413 CORE_ADDR next_pc)
14414 {
14415 struct thread_info *tp = inferior_thread ();
14416 struct symtab_and_line sal;
14417 CORE_ADDR pc = next_pc;
14418
14419 if (tp->control.single_step_breakpoints == NULL)
14420 {
14421 tp->control.single_step_breakpoints
14422 = new_single_step_breakpoint (tp->global_num, gdbarch);
14423 }
14424
14425 sal = find_pc_line (pc, 0);
14426 sal.pc = pc;
14427 sal.section = find_pc_overlay (pc);
14428 sal.explicit_pc = 1;
14429 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14430
14431 update_global_location_list (UGLL_INSERT);
14432 }
14433
14434 /* Insert single step breakpoints according to the current state. */
14435
14436 int
14437 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14438 {
14439 struct regcache *regcache = get_current_regcache ();
14440 std::vector<CORE_ADDR> next_pcs;
14441
14442 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14443
14444 if (!next_pcs.empty ())
14445 {
14446 struct frame_info *frame = get_current_frame ();
14447 const address_space *aspace = get_frame_address_space (frame);
14448
14449 for (CORE_ADDR pc : next_pcs)
14450 insert_single_step_breakpoint (gdbarch, aspace, pc);
14451
14452 return 1;
14453 }
14454 else
14455 return 0;
14456 }
14457
14458 /* See breakpoint.h. */
14459
14460 int
14461 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14462 const address_space *aspace,
14463 CORE_ADDR pc)
14464 {
14465 struct bp_location *loc;
14466
14467 for (loc = bp->loc; loc != NULL; loc = loc->next)
14468 if (loc->inserted
14469 && breakpoint_location_address_match (loc, aspace, pc))
14470 return 1;
14471
14472 return 0;
14473 }
14474
14475 /* Check whether a software single-step breakpoint is inserted at
14476 PC. */
14477
14478 int
14479 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14480 CORE_ADDR pc)
14481 {
14482 struct breakpoint *bpt;
14483
14484 ALL_BREAKPOINTS (bpt)
14485 {
14486 if (bpt->type == bp_single_step
14487 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14488 return 1;
14489 }
14490 return 0;
14491 }
14492
14493 /* Tracepoint-specific operations. */
14494
14495 /* Set tracepoint count to NUM. */
14496 static void
14497 set_tracepoint_count (int num)
14498 {
14499 tracepoint_count = num;
14500 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14501 }
14502
14503 static void
14504 trace_command (const char *arg, int from_tty)
14505 {
14506 struct breakpoint_ops *ops;
14507
14508 event_location_up location = string_to_event_location (&arg,
14509 current_language);
14510 if (location != NULL
14511 && event_location_type (location.get ()) == PROBE_LOCATION)
14512 ops = &tracepoint_probe_breakpoint_ops;
14513 else
14514 ops = &tracepoint_breakpoint_ops;
14515
14516 create_breakpoint (get_current_arch (),
14517 location.get (),
14518 NULL, 0, arg, 1 /* parse arg */,
14519 0 /* tempflag */,
14520 bp_tracepoint /* type_wanted */,
14521 0 /* Ignore count */,
14522 pending_break_support,
14523 ops,
14524 from_tty,
14525 1 /* enabled */,
14526 0 /* internal */, 0);
14527 }
14528
14529 static void
14530 ftrace_command (const char *arg, int from_tty)
14531 {
14532 event_location_up location = string_to_event_location (&arg,
14533 current_language);
14534 create_breakpoint (get_current_arch (),
14535 location.get (),
14536 NULL, 0, arg, 1 /* parse arg */,
14537 0 /* tempflag */,
14538 bp_fast_tracepoint /* type_wanted */,
14539 0 /* Ignore count */,
14540 pending_break_support,
14541 &tracepoint_breakpoint_ops,
14542 from_tty,
14543 1 /* enabled */,
14544 0 /* internal */, 0);
14545 }
14546
14547 /* strace command implementation. Creates a static tracepoint. */
14548
14549 static void
14550 strace_command (const char *arg, int from_tty)
14551 {
14552 struct breakpoint_ops *ops;
14553 event_location_up location;
14554
14555 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14556 or with a normal static tracepoint. */
14557 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14558 {
14559 ops = &strace_marker_breakpoint_ops;
14560 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14561 }
14562 else
14563 {
14564 ops = &tracepoint_breakpoint_ops;
14565 location = string_to_event_location (&arg, current_language);
14566 }
14567
14568 create_breakpoint (get_current_arch (),
14569 location.get (),
14570 NULL, 0, arg, 1 /* parse arg */,
14571 0 /* tempflag */,
14572 bp_static_tracepoint /* type_wanted */,
14573 0 /* Ignore count */,
14574 pending_break_support,
14575 ops,
14576 from_tty,
14577 1 /* enabled */,
14578 0 /* internal */, 0);
14579 }
14580
14581 /* Set up a fake reader function that gets command lines from a linked
14582 list that was acquired during tracepoint uploading. */
14583
14584 static struct uploaded_tp *this_utp;
14585 static int next_cmd;
14586
14587 static char *
14588 read_uploaded_action (void)
14589 {
14590 char *rslt = nullptr;
14591
14592 if (next_cmd < this_utp->cmd_strings.size ())
14593 {
14594 rslt = this_utp->cmd_strings[next_cmd].get ();
14595 next_cmd++;
14596 }
14597
14598 return rslt;
14599 }
14600
14601 /* Given information about a tracepoint as recorded on a target (which
14602 can be either a live system or a trace file), attempt to create an
14603 equivalent GDB tracepoint. This is not a reliable process, since
14604 the target does not necessarily have all the information used when
14605 the tracepoint was originally defined. */
14606
14607 struct tracepoint *
14608 create_tracepoint_from_upload (struct uploaded_tp *utp)
14609 {
14610 const char *addr_str;
14611 char small_buf[100];
14612 struct tracepoint *tp;
14613
14614 if (utp->at_string)
14615 addr_str = utp->at_string.get ();
14616 else
14617 {
14618 /* In the absence of a source location, fall back to raw
14619 address. Since there is no way to confirm that the address
14620 means the same thing as when the trace was started, warn the
14621 user. */
14622 warning (_("Uploaded tracepoint %d has no "
14623 "source location, using raw address"),
14624 utp->number);
14625 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14626 addr_str = small_buf;
14627 }
14628
14629 /* There's not much we can do with a sequence of bytecodes. */
14630 if (utp->cond && !utp->cond_string)
14631 warning (_("Uploaded tracepoint %d condition "
14632 "has no source form, ignoring it"),
14633 utp->number);
14634
14635 event_location_up location = string_to_event_location (&addr_str,
14636 current_language);
14637 if (!create_breakpoint (get_current_arch (),
14638 location.get (),
14639 utp->cond_string.get (), -1, addr_str,
14640 0 /* parse cond/thread */,
14641 0 /* tempflag */,
14642 utp->type /* type_wanted */,
14643 0 /* Ignore count */,
14644 pending_break_support,
14645 &tracepoint_breakpoint_ops,
14646 0 /* from_tty */,
14647 utp->enabled /* enabled */,
14648 0 /* internal */,
14649 CREATE_BREAKPOINT_FLAGS_INSERTED))
14650 return NULL;
14651
14652 /* Get the tracepoint we just created. */
14653 tp = get_tracepoint (tracepoint_count);
14654 gdb_assert (tp != NULL);
14655
14656 if (utp->pass > 0)
14657 {
14658 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14659 tp->number);
14660
14661 trace_pass_command (small_buf, 0);
14662 }
14663
14664 /* If we have uploaded versions of the original commands, set up a
14665 special-purpose "reader" function and call the usual command line
14666 reader, then pass the result to the breakpoint command-setting
14667 function. */
14668 if (!utp->cmd_strings.empty ())
14669 {
14670 counted_command_line cmd_list;
14671
14672 this_utp = utp;
14673 next_cmd = 0;
14674
14675 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14676
14677 breakpoint_set_commands (tp, std::move (cmd_list));
14678 }
14679 else if (!utp->actions.empty ()
14680 || !utp->step_actions.empty ())
14681 warning (_("Uploaded tracepoint %d actions "
14682 "have no source form, ignoring them"),
14683 utp->number);
14684
14685 /* Copy any status information that might be available. */
14686 tp->hit_count = utp->hit_count;
14687 tp->traceframe_usage = utp->traceframe_usage;
14688
14689 return tp;
14690 }
14691
14692 /* Print information on tracepoint number TPNUM_EXP, or all if
14693 omitted. */
14694
14695 static void
14696 info_tracepoints_command (const char *args, int from_tty)
14697 {
14698 struct ui_out *uiout = current_uiout;
14699 int num_printed;
14700
14701 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14702
14703 if (num_printed == 0)
14704 {
14705 if (args == NULL || *args == '\0')
14706 uiout->message ("No tracepoints.\n");
14707 else
14708 uiout->message ("No tracepoint matching '%s'.\n", args);
14709 }
14710
14711 default_collect_info ();
14712 }
14713
14714 /* The 'enable trace' command enables tracepoints.
14715 Not supported by all targets. */
14716 static void
14717 enable_trace_command (const char *args, int from_tty)
14718 {
14719 enable_command (args, from_tty);
14720 }
14721
14722 /* The 'disable trace' command disables tracepoints.
14723 Not supported by all targets. */
14724 static void
14725 disable_trace_command (const char *args, int from_tty)
14726 {
14727 disable_command (args, from_tty);
14728 }
14729
14730 /* Remove a tracepoint (or all if no argument). */
14731 static void
14732 delete_trace_command (const char *arg, int from_tty)
14733 {
14734 struct breakpoint *b, *b_tmp;
14735
14736 dont_repeat ();
14737
14738 if (arg == 0)
14739 {
14740 int breaks_to_delete = 0;
14741
14742 /* Delete all breakpoints if no argument.
14743 Do not delete internal or call-dummy breakpoints, these
14744 have to be deleted with an explicit breakpoint number
14745 argument. */
14746 ALL_TRACEPOINTS (b)
14747 if (is_tracepoint (b) && user_breakpoint_p (b))
14748 {
14749 breaks_to_delete = 1;
14750 break;
14751 }
14752
14753 /* Ask user only if there are some breakpoints to delete. */
14754 if (!from_tty
14755 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14756 {
14757 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14758 if (is_tracepoint (b) && user_breakpoint_p (b))
14759 delete_breakpoint (b);
14760 }
14761 }
14762 else
14763 map_breakpoint_numbers
14764 (arg, [&] (breakpoint *br)
14765 {
14766 iterate_over_related_breakpoints (br, delete_breakpoint);
14767 });
14768 }
14769
14770 /* Helper function for trace_pass_command. */
14771
14772 static void
14773 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14774 {
14775 tp->pass_count = count;
14776 gdb::observers::breakpoint_modified.notify (tp);
14777 if (from_tty)
14778 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14779 tp->number, count);
14780 }
14781
14782 /* Set passcount for tracepoint.
14783
14784 First command argument is passcount, second is tracepoint number.
14785 If tracepoint number omitted, apply to most recently defined.
14786 Also accepts special argument "all". */
14787
14788 static void
14789 trace_pass_command (const char *args, int from_tty)
14790 {
14791 struct tracepoint *t1;
14792 ULONGEST count;
14793
14794 if (args == 0 || *args == 0)
14795 error (_("passcount command requires an "
14796 "argument (count + optional TP num)"));
14797
14798 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14799
14800 args = skip_spaces (args);
14801 if (*args && strncasecmp (args, "all", 3) == 0)
14802 {
14803 struct breakpoint *b;
14804
14805 args += 3; /* Skip special argument "all". */
14806 if (*args)
14807 error (_("Junk at end of arguments."));
14808
14809 ALL_TRACEPOINTS (b)
14810 {
14811 t1 = (struct tracepoint *) b;
14812 trace_pass_set_count (t1, count, from_tty);
14813 }
14814 }
14815 else if (*args == '\0')
14816 {
14817 t1 = get_tracepoint_by_number (&args, NULL);
14818 if (t1)
14819 trace_pass_set_count (t1, count, from_tty);
14820 }
14821 else
14822 {
14823 number_or_range_parser parser (args);
14824 while (!parser.finished ())
14825 {
14826 t1 = get_tracepoint_by_number (&args, &parser);
14827 if (t1)
14828 trace_pass_set_count (t1, count, from_tty);
14829 }
14830 }
14831 }
14832
14833 struct tracepoint *
14834 get_tracepoint (int num)
14835 {
14836 struct breakpoint *t;
14837
14838 ALL_TRACEPOINTS (t)
14839 if (t->number == num)
14840 return (struct tracepoint *) t;
14841
14842 return NULL;
14843 }
14844
14845 /* Find the tracepoint with the given target-side number (which may be
14846 different from the tracepoint number after disconnecting and
14847 reconnecting). */
14848
14849 struct tracepoint *
14850 get_tracepoint_by_number_on_target (int num)
14851 {
14852 struct breakpoint *b;
14853
14854 ALL_TRACEPOINTS (b)
14855 {
14856 struct tracepoint *t = (struct tracepoint *) b;
14857
14858 if (t->number_on_target == num)
14859 return t;
14860 }
14861
14862 return NULL;
14863 }
14864
14865 /* Utility: parse a tracepoint number and look it up in the list.
14866 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14867 If the argument is missing, the most recent tracepoint
14868 (tracepoint_count) is returned. */
14869
14870 struct tracepoint *
14871 get_tracepoint_by_number (const char **arg,
14872 number_or_range_parser *parser)
14873 {
14874 struct breakpoint *t;
14875 int tpnum;
14876 const char *instring = arg == NULL ? NULL : *arg;
14877
14878 if (parser != NULL)
14879 {
14880 gdb_assert (!parser->finished ());
14881 tpnum = parser->get_number ();
14882 }
14883 else if (arg == NULL || *arg == NULL || ! **arg)
14884 tpnum = tracepoint_count;
14885 else
14886 tpnum = get_number (arg);
14887
14888 if (tpnum <= 0)
14889 {
14890 if (instring && *instring)
14891 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14892 instring);
14893 else
14894 printf_filtered (_("No previous tracepoint\n"));
14895 return NULL;
14896 }
14897
14898 ALL_TRACEPOINTS (t)
14899 if (t->number == tpnum)
14900 {
14901 return (struct tracepoint *) t;
14902 }
14903
14904 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14905 return NULL;
14906 }
14907
14908 void
14909 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14910 {
14911 if (b->thread != -1)
14912 fprintf_unfiltered (fp, " thread %d", b->thread);
14913
14914 if (b->task != 0)
14915 fprintf_unfiltered (fp, " task %d", b->task);
14916
14917 fprintf_unfiltered (fp, "\n");
14918 }
14919
14920 /* Save information on user settable breakpoints (watchpoints, etc) to
14921 a new script file named FILENAME. If FILTER is non-NULL, call it
14922 on each breakpoint and only include the ones for which it returns
14923 non-zero. */
14924
14925 static void
14926 save_breakpoints (const char *filename, int from_tty,
14927 int (*filter) (const struct breakpoint *))
14928 {
14929 struct breakpoint *tp;
14930 int any = 0;
14931 int extra_trace_bits = 0;
14932
14933 if (filename == 0 || *filename == 0)
14934 error (_("Argument required (file name in which to save)"));
14935
14936 /* See if we have anything to save. */
14937 ALL_BREAKPOINTS (tp)
14938 {
14939 /* Skip internal and momentary breakpoints. */
14940 if (!user_breakpoint_p (tp))
14941 continue;
14942
14943 /* If we have a filter, only save the breakpoints it accepts. */
14944 if (filter && !filter (tp))
14945 continue;
14946
14947 any = 1;
14948
14949 if (is_tracepoint (tp))
14950 {
14951 extra_trace_bits = 1;
14952
14953 /* We can stop searching. */
14954 break;
14955 }
14956 }
14957
14958 if (!any)
14959 {
14960 warning (_("Nothing to save."));
14961 return;
14962 }
14963
14964 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14965
14966 stdio_file fp;
14967
14968 if (!fp.open (expanded_filename.get (), "w"))
14969 error (_("Unable to open file '%s' for saving (%s)"),
14970 expanded_filename.get (), safe_strerror (errno));
14971
14972 if (extra_trace_bits)
14973 save_trace_state_variables (&fp);
14974
14975 ALL_BREAKPOINTS (tp)
14976 {
14977 /* Skip internal and momentary breakpoints. */
14978 if (!user_breakpoint_p (tp))
14979 continue;
14980
14981 /* If we have a filter, only save the breakpoints it accepts. */
14982 if (filter && !filter (tp))
14983 continue;
14984
14985 tp->ops->print_recreate (tp, &fp);
14986
14987 /* Note, we can't rely on tp->number for anything, as we can't
14988 assume the recreated breakpoint numbers will match. Use $bpnum
14989 instead. */
14990
14991 if (tp->cond_string)
14992 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14993
14994 if (tp->ignore_count)
14995 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14996
14997 if (tp->type != bp_dprintf && tp->commands)
14998 {
14999 fp.puts (" commands\n");
15000
15001 current_uiout->redirect (&fp);
15002 try
15003 {
15004 print_command_lines (current_uiout, tp->commands.get (), 2);
15005 }
15006 catch (const gdb_exception &ex)
15007 {
15008 current_uiout->redirect (NULL);
15009 throw;
15010 }
15011
15012 current_uiout->redirect (NULL);
15013 fp.puts (" end\n");
15014 }
15015
15016 if (tp->enable_state == bp_disabled)
15017 fp.puts ("disable $bpnum\n");
15018
15019 /* If this is a multi-location breakpoint, check if the locations
15020 should be individually disabled. Watchpoint locations are
15021 special, and not user visible. */
15022 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15023 {
15024 struct bp_location *loc;
15025 int n = 1;
15026
15027 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15028 if (!loc->enabled)
15029 fp.printf ("disable $bpnum.%d\n", n);
15030 }
15031 }
15032
15033 if (extra_trace_bits && *default_collect)
15034 fp.printf ("set default-collect %s\n", default_collect);
15035
15036 if (from_tty)
15037 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15038 }
15039
15040 /* The `save breakpoints' command. */
15041
15042 static void
15043 save_breakpoints_command (const char *args, int from_tty)
15044 {
15045 save_breakpoints (args, from_tty, NULL);
15046 }
15047
15048 /* The `save tracepoints' command. */
15049
15050 static void
15051 save_tracepoints_command (const char *args, int from_tty)
15052 {
15053 save_breakpoints (args, from_tty, is_tracepoint);
15054 }
15055
15056 /* Create a vector of all tracepoints. */
15057
15058 std::vector<breakpoint *>
15059 all_tracepoints (void)
15060 {
15061 std::vector<breakpoint *> tp_vec;
15062 struct breakpoint *tp;
15063
15064 ALL_TRACEPOINTS (tp)
15065 {
15066 tp_vec.push_back (tp);
15067 }
15068
15069 return tp_vec;
15070 }
15071
15072 \f
15073 /* This help string is used to consolidate all the help string for specifying
15074 locations used by several commands. */
15075
15076 #define LOCATION_HELP_STRING \
15077 "Linespecs are colon-separated lists of location parameters, such as\n\
15078 source filename, function name, label name, and line number.\n\
15079 Example: To specify the start of a label named \"the_top\" in the\n\
15080 function \"fact\" in the file \"factorial.c\", use\n\
15081 \"factorial.c:fact:the_top\".\n\
15082 \n\
15083 Address locations begin with \"*\" and specify an exact address in the\n\
15084 program. Example: To specify the fourth byte past the start function\n\
15085 \"main\", use \"*main + 4\".\n\
15086 \n\
15087 Explicit locations are similar to linespecs but use an option/argument\n\
15088 syntax to specify location parameters.\n\
15089 Example: To specify the start of the label named \"the_top\" in the\n\
15090 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15091 -function fact -label the_top\".\n\
15092 \n\
15093 By default, a specified function is matched against the program's\n\
15094 functions in all scopes. For C++, this means in all namespaces and\n\
15095 classes. For Ada, this means in all packages. E.g., in C++,\n\
15096 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15097 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15098 specified name as a complete fully-qualified name instead."
15099
15100 /* This help string is used for the break, hbreak, tbreak and thbreak
15101 commands. It is defined as a macro to prevent duplication.
15102 COMMAND should be a string constant containing the name of the
15103 command. */
15104
15105 #define BREAK_ARGS_HELP(command) \
15106 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15107 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15108 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15109 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15110 `-probe-dtrace' (for a DTrace probe).\n\
15111 LOCATION may be a linespec, address, or explicit location as described\n\
15112 below.\n\
15113 \n\
15114 With no LOCATION, uses current execution address of the selected\n\
15115 stack frame. This is useful for breaking on return to a stack frame.\n\
15116 \n\
15117 THREADNUM is the number from \"info threads\".\n\
15118 CONDITION is a boolean expression.\n\
15119 \n" LOCATION_HELP_STRING "\n\n\
15120 Multiple breakpoints at one place are permitted, and useful if their\n\
15121 conditions are different.\n\
15122 \n\
15123 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15124
15125 /* List of subcommands for "catch". */
15126 static struct cmd_list_element *catch_cmdlist;
15127
15128 /* List of subcommands for "tcatch". */
15129 static struct cmd_list_element *tcatch_cmdlist;
15130
15131 void
15132 add_catch_command (const char *name, const char *docstring,
15133 cmd_const_sfunc_ftype *sfunc,
15134 completer_ftype *completer,
15135 void *user_data_catch,
15136 void *user_data_tcatch)
15137 {
15138 struct cmd_list_element *command;
15139
15140 command = add_cmd (name, class_breakpoint, docstring,
15141 &catch_cmdlist);
15142 set_cmd_sfunc (command, sfunc);
15143 set_cmd_context (command, user_data_catch);
15144 set_cmd_completer (command, completer);
15145
15146 command = add_cmd (name, class_breakpoint, docstring,
15147 &tcatch_cmdlist);
15148 set_cmd_sfunc (command, sfunc);
15149 set_cmd_context (command, user_data_tcatch);
15150 set_cmd_completer (command, completer);
15151 }
15152
15153 static void
15154 save_command (const char *arg, int from_tty)
15155 {
15156 printf_unfiltered (_("\"save\" must be followed by "
15157 "the name of a save subcommand.\n"));
15158 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15159 }
15160
15161 struct breakpoint *
15162 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15163 void *data)
15164 {
15165 struct breakpoint *b, *b_tmp;
15166
15167 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15168 {
15169 if ((*callback) (b, data))
15170 return b;
15171 }
15172
15173 return NULL;
15174 }
15175
15176 /* Zero if any of the breakpoint's locations could be a location where
15177 functions have been inlined, nonzero otherwise. */
15178
15179 static int
15180 is_non_inline_function (struct breakpoint *b)
15181 {
15182 /* The shared library event breakpoint is set on the address of a
15183 non-inline function. */
15184 if (b->type == bp_shlib_event)
15185 return 1;
15186
15187 return 0;
15188 }
15189
15190 /* Nonzero if the specified PC cannot be a location where functions
15191 have been inlined. */
15192
15193 int
15194 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15195 const struct target_waitstatus *ws)
15196 {
15197 struct breakpoint *b;
15198 struct bp_location *bl;
15199
15200 ALL_BREAKPOINTS (b)
15201 {
15202 if (!is_non_inline_function (b))
15203 continue;
15204
15205 for (bl = b->loc; bl != NULL; bl = bl->next)
15206 {
15207 if (!bl->shlib_disabled
15208 && bpstat_check_location (bl, aspace, pc, ws))
15209 return 1;
15210 }
15211 }
15212
15213 return 0;
15214 }
15215
15216 /* Remove any references to OBJFILE which is going to be freed. */
15217
15218 void
15219 breakpoint_free_objfile (struct objfile *objfile)
15220 {
15221 struct bp_location **locp, *loc;
15222
15223 ALL_BP_LOCATIONS (loc, locp)
15224 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15225 loc->symtab = NULL;
15226 }
15227
15228 void
15229 initialize_breakpoint_ops (void)
15230 {
15231 static int initialized = 0;
15232
15233 struct breakpoint_ops *ops;
15234
15235 if (initialized)
15236 return;
15237 initialized = 1;
15238
15239 /* The breakpoint_ops structure to be inherit by all kinds of
15240 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15241 internal and momentary breakpoints, etc.). */
15242 ops = &bkpt_base_breakpoint_ops;
15243 *ops = base_breakpoint_ops;
15244 ops->re_set = bkpt_re_set;
15245 ops->insert_location = bkpt_insert_location;
15246 ops->remove_location = bkpt_remove_location;
15247 ops->breakpoint_hit = bkpt_breakpoint_hit;
15248 ops->create_sals_from_location = bkpt_create_sals_from_location;
15249 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15250 ops->decode_location = bkpt_decode_location;
15251
15252 /* The breakpoint_ops structure to be used in regular breakpoints. */
15253 ops = &bkpt_breakpoint_ops;
15254 *ops = bkpt_base_breakpoint_ops;
15255 ops->re_set = bkpt_re_set;
15256 ops->resources_needed = bkpt_resources_needed;
15257 ops->print_it = bkpt_print_it;
15258 ops->print_mention = bkpt_print_mention;
15259 ops->print_recreate = bkpt_print_recreate;
15260
15261 /* Ranged breakpoints. */
15262 ops = &ranged_breakpoint_ops;
15263 *ops = bkpt_breakpoint_ops;
15264 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15265 ops->resources_needed = resources_needed_ranged_breakpoint;
15266 ops->print_it = print_it_ranged_breakpoint;
15267 ops->print_one = print_one_ranged_breakpoint;
15268 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15269 ops->print_mention = print_mention_ranged_breakpoint;
15270 ops->print_recreate = print_recreate_ranged_breakpoint;
15271
15272 /* Internal breakpoints. */
15273 ops = &internal_breakpoint_ops;
15274 *ops = bkpt_base_breakpoint_ops;
15275 ops->re_set = internal_bkpt_re_set;
15276 ops->check_status = internal_bkpt_check_status;
15277 ops->print_it = internal_bkpt_print_it;
15278 ops->print_mention = internal_bkpt_print_mention;
15279
15280 /* Momentary breakpoints. */
15281 ops = &momentary_breakpoint_ops;
15282 *ops = bkpt_base_breakpoint_ops;
15283 ops->re_set = momentary_bkpt_re_set;
15284 ops->check_status = momentary_bkpt_check_status;
15285 ops->print_it = momentary_bkpt_print_it;
15286 ops->print_mention = momentary_bkpt_print_mention;
15287
15288 /* Probe breakpoints. */
15289 ops = &bkpt_probe_breakpoint_ops;
15290 *ops = bkpt_breakpoint_ops;
15291 ops->insert_location = bkpt_probe_insert_location;
15292 ops->remove_location = bkpt_probe_remove_location;
15293 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15294 ops->decode_location = bkpt_probe_decode_location;
15295
15296 /* Watchpoints. */
15297 ops = &watchpoint_breakpoint_ops;
15298 *ops = base_breakpoint_ops;
15299 ops->re_set = re_set_watchpoint;
15300 ops->insert_location = insert_watchpoint;
15301 ops->remove_location = remove_watchpoint;
15302 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15303 ops->check_status = check_status_watchpoint;
15304 ops->resources_needed = resources_needed_watchpoint;
15305 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15306 ops->print_it = print_it_watchpoint;
15307 ops->print_mention = print_mention_watchpoint;
15308 ops->print_recreate = print_recreate_watchpoint;
15309 ops->explains_signal = explains_signal_watchpoint;
15310
15311 /* Masked watchpoints. */
15312 ops = &masked_watchpoint_breakpoint_ops;
15313 *ops = watchpoint_breakpoint_ops;
15314 ops->insert_location = insert_masked_watchpoint;
15315 ops->remove_location = remove_masked_watchpoint;
15316 ops->resources_needed = resources_needed_masked_watchpoint;
15317 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15318 ops->print_it = print_it_masked_watchpoint;
15319 ops->print_one_detail = print_one_detail_masked_watchpoint;
15320 ops->print_mention = print_mention_masked_watchpoint;
15321 ops->print_recreate = print_recreate_masked_watchpoint;
15322
15323 /* Tracepoints. */
15324 ops = &tracepoint_breakpoint_ops;
15325 *ops = base_breakpoint_ops;
15326 ops->re_set = tracepoint_re_set;
15327 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15328 ops->print_one_detail = tracepoint_print_one_detail;
15329 ops->print_mention = tracepoint_print_mention;
15330 ops->print_recreate = tracepoint_print_recreate;
15331 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15332 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15333 ops->decode_location = tracepoint_decode_location;
15334
15335 /* Probe tracepoints. */
15336 ops = &tracepoint_probe_breakpoint_ops;
15337 *ops = tracepoint_breakpoint_ops;
15338 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15339 ops->decode_location = tracepoint_probe_decode_location;
15340
15341 /* Static tracepoints with marker (`-m'). */
15342 ops = &strace_marker_breakpoint_ops;
15343 *ops = tracepoint_breakpoint_ops;
15344 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15345 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15346 ops->decode_location = strace_marker_decode_location;
15347
15348 /* Fork catchpoints. */
15349 ops = &catch_fork_breakpoint_ops;
15350 *ops = base_breakpoint_ops;
15351 ops->insert_location = insert_catch_fork;
15352 ops->remove_location = remove_catch_fork;
15353 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15354 ops->print_it = print_it_catch_fork;
15355 ops->print_one = print_one_catch_fork;
15356 ops->print_mention = print_mention_catch_fork;
15357 ops->print_recreate = print_recreate_catch_fork;
15358
15359 /* Vfork catchpoints. */
15360 ops = &catch_vfork_breakpoint_ops;
15361 *ops = base_breakpoint_ops;
15362 ops->insert_location = insert_catch_vfork;
15363 ops->remove_location = remove_catch_vfork;
15364 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15365 ops->print_it = print_it_catch_vfork;
15366 ops->print_one = print_one_catch_vfork;
15367 ops->print_mention = print_mention_catch_vfork;
15368 ops->print_recreate = print_recreate_catch_vfork;
15369
15370 /* Exec catchpoints. */
15371 ops = &catch_exec_breakpoint_ops;
15372 *ops = base_breakpoint_ops;
15373 ops->insert_location = insert_catch_exec;
15374 ops->remove_location = remove_catch_exec;
15375 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15376 ops->print_it = print_it_catch_exec;
15377 ops->print_one = print_one_catch_exec;
15378 ops->print_mention = print_mention_catch_exec;
15379 ops->print_recreate = print_recreate_catch_exec;
15380
15381 /* Solib-related catchpoints. */
15382 ops = &catch_solib_breakpoint_ops;
15383 *ops = base_breakpoint_ops;
15384 ops->insert_location = insert_catch_solib;
15385 ops->remove_location = remove_catch_solib;
15386 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15387 ops->check_status = check_status_catch_solib;
15388 ops->print_it = print_it_catch_solib;
15389 ops->print_one = print_one_catch_solib;
15390 ops->print_mention = print_mention_catch_solib;
15391 ops->print_recreate = print_recreate_catch_solib;
15392
15393 ops = &dprintf_breakpoint_ops;
15394 *ops = bkpt_base_breakpoint_ops;
15395 ops->re_set = dprintf_re_set;
15396 ops->resources_needed = bkpt_resources_needed;
15397 ops->print_it = bkpt_print_it;
15398 ops->print_mention = bkpt_print_mention;
15399 ops->print_recreate = dprintf_print_recreate;
15400 ops->after_condition_true = dprintf_after_condition_true;
15401 ops->breakpoint_hit = dprintf_breakpoint_hit;
15402 }
15403
15404 /* Chain containing all defined "enable breakpoint" subcommands. */
15405
15406 static struct cmd_list_element *enablebreaklist = NULL;
15407
15408 /* See breakpoint.h. */
15409
15410 cmd_list_element *commands_cmd_element = nullptr;
15411
15412 void
15413 _initialize_breakpoint (void)
15414 {
15415 struct cmd_list_element *c;
15416
15417 initialize_breakpoint_ops ();
15418
15419 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15420 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15421 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15422
15423 breakpoint_chain = 0;
15424 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15425 before a breakpoint is set. */
15426 breakpoint_count = 0;
15427
15428 tracepoint_count = 0;
15429
15430 add_com ("ignore", class_breakpoint, ignore_command, _("\
15431 Set ignore-count of breakpoint number N to COUNT.\n\
15432 Usage is `ignore N COUNT'."));
15433
15434 commands_cmd_element = add_com ("commands", class_breakpoint,
15435 commands_command, _("\
15436 Set commands to be executed when the given breakpoints are hit.\n\
15437 Give a space-separated breakpoint list as argument after \"commands\".\n\
15438 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15439 (e.g. `5-7').\n\
15440 With no argument, the targeted breakpoint is the last one set.\n\
15441 The commands themselves follow starting on the next line.\n\
15442 Type a line containing \"end\" to indicate the end of them.\n\
15443 Give \"silent\" as the first line to make the breakpoint silent;\n\
15444 then no output is printed when it is hit, except what the commands print."));
15445
15446 c = add_com ("condition", class_breakpoint, condition_command, _("\
15447 Specify breakpoint number N to break only if COND is true.\n\
15448 Usage is `condition N COND', where N is an integer and COND is an\n\
15449 expression to be evaluated whenever breakpoint N is reached."));
15450 set_cmd_completer (c, condition_completer);
15451
15452 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15453 Set a temporary breakpoint.\n\
15454 Like \"break\" except the breakpoint is only temporary,\n\
15455 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15456 by using \"enable delete\" on the breakpoint number.\n\
15457 \n"
15458 BREAK_ARGS_HELP ("tbreak")));
15459 set_cmd_completer (c, location_completer);
15460
15461 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15462 Set a hardware assisted breakpoint.\n\
15463 Like \"break\" except the breakpoint requires hardware support,\n\
15464 some target hardware may not have this support.\n\
15465 \n"
15466 BREAK_ARGS_HELP ("hbreak")));
15467 set_cmd_completer (c, location_completer);
15468
15469 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15470 Set a temporary hardware assisted breakpoint.\n\
15471 Like \"hbreak\" except the breakpoint is only temporary,\n\
15472 so it will be deleted when hit.\n\
15473 \n"
15474 BREAK_ARGS_HELP ("thbreak")));
15475 set_cmd_completer (c, location_completer);
15476
15477 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15478 Enable some breakpoints.\n\
15479 Give breakpoint numbers (separated by spaces) as arguments.\n\
15480 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15481 This is used to cancel the effect of the \"disable\" command.\n\
15482 With a subcommand you can enable temporarily."),
15483 &enablelist, "enable ", 1, &cmdlist);
15484
15485 add_com_alias ("en", "enable", class_breakpoint, 1);
15486
15487 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15488 Enable some breakpoints.\n\
15489 Give breakpoint numbers (separated by spaces) as arguments.\n\
15490 This is used to cancel the effect of the \"disable\" command.\n\
15491 May be abbreviated to simply \"enable\"."),
15492 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15493
15494 add_cmd ("once", no_class, enable_once_command, _("\
15495 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15496 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15497 &enablebreaklist);
15498
15499 add_cmd ("delete", no_class, enable_delete_command, _("\
15500 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15501 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15502 &enablebreaklist);
15503
15504 add_cmd ("count", no_class, enable_count_command, _("\
15505 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15506 If a breakpoint is hit while enabled in this fashion,\n\
15507 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15508 &enablebreaklist);
15509
15510 add_cmd ("delete", no_class, enable_delete_command, _("\
15511 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15512 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15513 &enablelist);
15514
15515 add_cmd ("once", no_class, enable_once_command, _("\
15516 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15517 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15518 &enablelist);
15519
15520 add_cmd ("count", no_class, enable_count_command, _("\
15521 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15522 If a breakpoint is hit while enabled in this fashion,\n\
15523 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15524 &enablelist);
15525
15526 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15527 Disable some breakpoints.\n\
15528 Arguments are breakpoint numbers with spaces in between.\n\
15529 To disable all breakpoints, give no argument.\n\
15530 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15531 &disablelist, "disable ", 1, &cmdlist);
15532 add_com_alias ("dis", "disable", class_breakpoint, 1);
15533 add_com_alias ("disa", "disable", class_breakpoint, 1);
15534
15535 add_cmd ("breakpoints", class_alias, disable_command, _("\
15536 Disable some breakpoints.\n\
15537 Arguments are breakpoint numbers with spaces in between.\n\
15538 To disable all breakpoints, give no argument.\n\
15539 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15540 This command may be abbreviated \"disable\"."),
15541 &disablelist);
15542
15543 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15544 Delete some breakpoints or auto-display expressions.\n\
15545 Arguments are breakpoint numbers with spaces in between.\n\
15546 To delete all breakpoints, give no argument.\n\
15547 \n\
15548 Also a prefix command for deletion of other GDB objects.\n\
15549 The \"unset\" command is also an alias for \"delete\"."),
15550 &deletelist, "delete ", 1, &cmdlist);
15551 add_com_alias ("d", "delete", class_breakpoint, 1);
15552 add_com_alias ("del", "delete", class_breakpoint, 1);
15553
15554 add_cmd ("breakpoints", class_alias, delete_command, _("\
15555 Delete some breakpoints or auto-display expressions.\n\
15556 Arguments are breakpoint numbers with spaces in between.\n\
15557 To delete all breakpoints, give no argument.\n\
15558 This command may be abbreviated \"delete\"."),
15559 &deletelist);
15560
15561 add_com ("clear", class_breakpoint, clear_command, _("\
15562 Clear breakpoint at specified location.\n\
15563 Argument may be a linespec, explicit, or address location as described below.\n\
15564 \n\
15565 With no argument, clears all breakpoints in the line that the selected frame\n\
15566 is executing in.\n"
15567 "\n" LOCATION_HELP_STRING "\n\n\
15568 See also the \"delete\" command which clears breakpoints by number."));
15569 add_com_alias ("cl", "clear", class_breakpoint, 1);
15570
15571 c = add_com ("break", class_breakpoint, break_command, _("\
15572 Set breakpoint at specified location.\n"
15573 BREAK_ARGS_HELP ("break")));
15574 set_cmd_completer (c, location_completer);
15575
15576 add_com_alias ("b", "break", class_run, 1);
15577 add_com_alias ("br", "break", class_run, 1);
15578 add_com_alias ("bre", "break", class_run, 1);
15579 add_com_alias ("brea", "break", class_run, 1);
15580
15581 if (dbx_commands)
15582 {
15583 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15584 Break in function/address or break at a line in the current file."),
15585 &stoplist, "stop ", 1, &cmdlist);
15586 add_cmd ("in", class_breakpoint, stopin_command,
15587 _("Break in function or address."), &stoplist);
15588 add_cmd ("at", class_breakpoint, stopat_command,
15589 _("Break at a line in the current file."), &stoplist);
15590 add_com ("status", class_info, info_breakpoints_command, _("\
15591 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15592 The \"Type\" column indicates one of:\n\
15593 \tbreakpoint - normal breakpoint\n\
15594 \twatchpoint - watchpoint\n\
15595 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15596 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15597 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15598 address and file/line number respectively.\n\
15599 \n\
15600 Convenience variable \"$_\" and default examine address for \"x\"\n\
15601 are set to the address of the last breakpoint listed unless the command\n\
15602 is prefixed with \"server \".\n\n\
15603 Convenience variable \"$bpnum\" contains the number of the last\n\
15604 breakpoint set."));
15605 }
15606
15607 add_info ("breakpoints", info_breakpoints_command, _("\
15608 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15609 The \"Type\" column indicates one of:\n\
15610 \tbreakpoint - normal breakpoint\n\
15611 \twatchpoint - watchpoint\n\
15612 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15613 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15614 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15615 address and file/line number respectively.\n\
15616 \n\
15617 Convenience variable \"$_\" and default examine address for \"x\"\n\
15618 are set to the address of the last breakpoint listed unless the command\n\
15619 is prefixed with \"server \".\n\n\
15620 Convenience variable \"$bpnum\" contains the number of the last\n\
15621 breakpoint set."));
15622
15623 add_info_alias ("b", "breakpoints", 1);
15624
15625 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15626 Status of all breakpoints, or breakpoint number NUMBER.\n\
15627 The \"Type\" column indicates one of:\n\
15628 \tbreakpoint - normal breakpoint\n\
15629 \twatchpoint - watchpoint\n\
15630 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15631 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15632 \tuntil - internal breakpoint used by the \"until\" command\n\
15633 \tfinish - internal breakpoint used by the \"finish\" command\n\
15634 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15635 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15636 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15637 address and file/line number respectively.\n\
15638 \n\
15639 Convenience variable \"$_\" and default examine address for \"x\"\n\
15640 are set to the address of the last breakpoint listed unless the command\n\
15641 is prefixed with \"server \".\n\n\
15642 Convenience variable \"$bpnum\" contains the number of the last\n\
15643 breakpoint set."),
15644 &maintenanceinfolist);
15645
15646 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15647 Set catchpoints to catch events."),
15648 &catch_cmdlist, "catch ",
15649 0/*allow-unknown*/, &cmdlist);
15650
15651 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15652 Set temporary catchpoints to catch events."),
15653 &tcatch_cmdlist, "tcatch ",
15654 0/*allow-unknown*/, &cmdlist);
15655
15656 add_catch_command ("fork", _("Catch calls to fork."),
15657 catch_fork_command_1,
15658 NULL,
15659 (void *) (uintptr_t) catch_fork_permanent,
15660 (void *) (uintptr_t) catch_fork_temporary);
15661 add_catch_command ("vfork", _("Catch calls to vfork."),
15662 catch_fork_command_1,
15663 NULL,
15664 (void *) (uintptr_t) catch_vfork_permanent,
15665 (void *) (uintptr_t) catch_vfork_temporary);
15666 add_catch_command ("exec", _("Catch calls to exec."),
15667 catch_exec_command_1,
15668 NULL,
15669 CATCH_PERMANENT,
15670 CATCH_TEMPORARY);
15671 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15672 Usage: catch load [REGEX]\n\
15673 If REGEX is given, only stop for libraries matching the regular expression."),
15674 catch_load_command_1,
15675 NULL,
15676 CATCH_PERMANENT,
15677 CATCH_TEMPORARY);
15678 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15679 Usage: catch unload [REGEX]\n\
15680 If REGEX is given, only stop for libraries matching the regular expression."),
15681 catch_unload_command_1,
15682 NULL,
15683 CATCH_PERMANENT,
15684 CATCH_TEMPORARY);
15685
15686 c = add_com ("watch", class_breakpoint, watch_command, _("\
15687 Set a watchpoint for an expression.\n\
15688 Usage: watch [-l|-location] EXPRESSION\n\
15689 A watchpoint stops execution of your program whenever the value of\n\
15690 an expression changes.\n\
15691 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15692 the memory to which it refers."));
15693 set_cmd_completer (c, expression_completer);
15694
15695 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15696 Set a read watchpoint for an expression.\n\
15697 Usage: rwatch [-l|-location] EXPRESSION\n\
15698 A watchpoint stops execution of your program whenever the value of\n\
15699 an expression is read.\n\
15700 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15701 the memory to which it refers."));
15702 set_cmd_completer (c, expression_completer);
15703
15704 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15705 Set a watchpoint for an expression.\n\
15706 Usage: awatch [-l|-location] EXPRESSION\n\
15707 A watchpoint stops execution of your program whenever the value of\n\
15708 an expression is either read or written.\n\
15709 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15710 the memory to which it refers."));
15711 set_cmd_completer (c, expression_completer);
15712
15713 add_info ("watchpoints", info_watchpoints_command, _("\
15714 Status of specified watchpoints (all watchpoints if no argument)."));
15715
15716 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15717 respond to changes - contrary to the description. */
15718 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15719 &can_use_hw_watchpoints, _("\
15720 Set debugger's willingness to use watchpoint hardware."), _("\
15721 Show debugger's willingness to use watchpoint hardware."), _("\
15722 If zero, gdb will not use hardware for new watchpoints, even if\n\
15723 such is available. (However, any hardware watchpoints that were\n\
15724 created before setting this to nonzero, will continue to use watchpoint\n\
15725 hardware.)"),
15726 NULL,
15727 show_can_use_hw_watchpoints,
15728 &setlist, &showlist);
15729
15730 can_use_hw_watchpoints = 1;
15731
15732 /* Tracepoint manipulation commands. */
15733
15734 c = add_com ("trace", class_breakpoint, trace_command, _("\
15735 Set a tracepoint at specified location.\n\
15736 \n"
15737 BREAK_ARGS_HELP ("trace") "\n\
15738 Do \"help tracepoints\" for info on other tracepoint commands."));
15739 set_cmd_completer (c, location_completer);
15740
15741 add_com_alias ("tp", "trace", class_alias, 0);
15742 add_com_alias ("tr", "trace", class_alias, 1);
15743 add_com_alias ("tra", "trace", class_alias, 1);
15744 add_com_alias ("trac", "trace", class_alias, 1);
15745
15746 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15747 Set a fast tracepoint at specified location.\n\
15748 \n"
15749 BREAK_ARGS_HELP ("ftrace") "\n\
15750 Do \"help tracepoints\" for info on other tracepoint commands."));
15751 set_cmd_completer (c, location_completer);
15752
15753 c = add_com ("strace", class_breakpoint, strace_command, _("\
15754 Set a static tracepoint at location or marker.\n\
15755 \n\
15756 strace [LOCATION] [if CONDITION]\n\
15757 LOCATION may be a linespec, explicit, or address location (described below) \n\
15758 or -m MARKER_ID.\n\n\
15759 If a marker id is specified, probe the marker with that name. With\n\
15760 no LOCATION, uses current execution address of the selected stack frame.\n\
15761 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15762 This collects arbitrary user data passed in the probe point call to the\n\
15763 tracing library. You can inspect it when analyzing the trace buffer,\n\
15764 by printing the $_sdata variable like any other convenience variable.\n\
15765 \n\
15766 CONDITION is a boolean expression.\n\
15767 \n" LOCATION_HELP_STRING "\n\n\
15768 Multiple tracepoints at one place are permitted, and useful if their\n\
15769 conditions are different.\n\
15770 \n\
15771 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15772 Do \"help tracepoints\" for info on other tracepoint commands."));
15773 set_cmd_completer (c, location_completer);
15774
15775 add_info ("tracepoints", info_tracepoints_command, _("\
15776 Status of specified tracepoints (all tracepoints if no argument).\n\
15777 Convenience variable \"$tpnum\" contains the number of the\n\
15778 last tracepoint set."));
15779
15780 add_info_alias ("tp", "tracepoints", 1);
15781
15782 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15783 Delete specified tracepoints.\n\
15784 Arguments are tracepoint numbers, separated by spaces.\n\
15785 No argument means delete all tracepoints."),
15786 &deletelist);
15787 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15788
15789 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15790 Disable specified tracepoints.\n\
15791 Arguments are tracepoint numbers, separated by spaces.\n\
15792 No argument means disable all tracepoints."),
15793 &disablelist);
15794 deprecate_cmd (c, "disable");
15795
15796 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15797 Enable specified tracepoints.\n\
15798 Arguments are tracepoint numbers, separated by spaces.\n\
15799 No argument means enable all tracepoints."),
15800 &enablelist);
15801 deprecate_cmd (c, "enable");
15802
15803 add_com ("passcount", class_trace, trace_pass_command, _("\
15804 Set the passcount for a tracepoint.\n\
15805 The trace will end when the tracepoint has been passed 'count' times.\n\
15806 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15807 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15808
15809 add_prefix_cmd ("save", class_breakpoint, save_command,
15810 _("Save breakpoint definitions as a script."),
15811 &save_cmdlist, "save ",
15812 0/*allow-unknown*/, &cmdlist);
15813
15814 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15815 Save current breakpoint definitions as a script.\n\
15816 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15817 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15818 session to restore them."),
15819 &save_cmdlist);
15820 set_cmd_completer (c, filename_completer);
15821
15822 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15823 Save current tracepoint definitions as a script.\n\
15824 Use the 'source' command in another debug session to restore them."),
15825 &save_cmdlist);
15826 set_cmd_completer (c, filename_completer);
15827
15828 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15829 deprecate_cmd (c, "save tracepoints");
15830
15831 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15832 Breakpoint specific settings\n\
15833 Configure various breakpoint-specific variables such as\n\
15834 pending breakpoint behavior"),
15835 &breakpoint_set_cmdlist, "set breakpoint ",
15836 0/*allow-unknown*/, &setlist);
15837 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15838 Breakpoint specific settings\n\
15839 Configure various breakpoint-specific variables such as\n\
15840 pending breakpoint behavior"),
15841 &breakpoint_show_cmdlist, "show breakpoint ",
15842 0/*allow-unknown*/, &showlist);
15843
15844 add_setshow_auto_boolean_cmd ("pending", no_class,
15845 &pending_break_support, _("\
15846 Set debugger's behavior regarding pending breakpoints."), _("\
15847 Show debugger's behavior regarding pending breakpoints."), _("\
15848 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15849 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15850 an error. If auto, an unrecognized breakpoint location results in a\n\
15851 user-query to see if a pending breakpoint should be created."),
15852 NULL,
15853 show_pending_break_support,
15854 &breakpoint_set_cmdlist,
15855 &breakpoint_show_cmdlist);
15856
15857 pending_break_support = AUTO_BOOLEAN_AUTO;
15858
15859 add_setshow_boolean_cmd ("auto-hw", no_class,
15860 &automatic_hardware_breakpoints, _("\
15861 Set automatic usage of hardware breakpoints."), _("\
15862 Show automatic usage of hardware breakpoints."), _("\
15863 If set, the debugger will automatically use hardware breakpoints for\n\
15864 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15865 a warning will be emitted for such breakpoints."),
15866 NULL,
15867 show_automatic_hardware_breakpoints,
15868 &breakpoint_set_cmdlist,
15869 &breakpoint_show_cmdlist);
15870
15871 add_setshow_boolean_cmd ("always-inserted", class_support,
15872 &always_inserted_mode, _("\
15873 Set mode for inserting breakpoints."), _("\
15874 Show mode for inserting breakpoints."), _("\
15875 When this mode is on, breakpoints are inserted immediately as soon as\n\
15876 they're created, kept inserted even when execution stops, and removed\n\
15877 only when the user deletes them. When this mode is off (the default),\n\
15878 breakpoints are inserted only when execution continues, and removed\n\
15879 when execution stops."),
15880 NULL,
15881 &show_always_inserted_mode,
15882 &breakpoint_set_cmdlist,
15883 &breakpoint_show_cmdlist);
15884
15885 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15886 condition_evaluation_enums,
15887 &condition_evaluation_mode_1, _("\
15888 Set mode of breakpoint condition evaluation."), _("\
15889 Show mode of breakpoint condition evaluation."), _("\
15890 When this is set to \"host\", breakpoint conditions will be\n\
15891 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15892 breakpoint conditions will be downloaded to the target (if the target\n\
15893 supports such feature) and conditions will be evaluated on the target's side.\n\
15894 If this is set to \"auto\" (default), this will be automatically set to\n\
15895 \"target\" if it supports condition evaluation, otherwise it will\n\
15896 be set to \"gdb\""),
15897 &set_condition_evaluation_mode,
15898 &show_condition_evaluation_mode,
15899 &breakpoint_set_cmdlist,
15900 &breakpoint_show_cmdlist);
15901
15902 add_com ("break-range", class_breakpoint, break_range_command, _("\
15903 Set a breakpoint for an address range.\n\
15904 break-range START-LOCATION, END-LOCATION\n\
15905 where START-LOCATION and END-LOCATION can be one of the following:\n\
15906 LINENUM, for that line in the current file,\n\
15907 FILE:LINENUM, for that line in that file,\n\
15908 +OFFSET, for that number of lines after the current line\n\
15909 or the start of the range\n\
15910 FUNCTION, for the first line in that function,\n\
15911 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15912 *ADDRESS, for the instruction at that address.\n\
15913 \n\
15914 The breakpoint will stop execution of the inferior whenever it executes\n\
15915 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15916 range (including START-LOCATION and END-LOCATION)."));
15917
15918 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15919 Set a dynamic printf at specified location.\n\
15920 dprintf location,format string,arg1,arg2,...\n\
15921 location may be a linespec, explicit, or address location.\n"
15922 "\n" LOCATION_HELP_STRING));
15923 set_cmd_completer (c, location_completer);
15924
15925 add_setshow_enum_cmd ("dprintf-style", class_support,
15926 dprintf_style_enums, &dprintf_style, _("\
15927 Set the style of usage for dynamic printf."), _("\
15928 Show the style of usage for dynamic printf."), _("\
15929 This setting chooses how GDB will do a dynamic printf.\n\
15930 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15931 console, as with the \"printf\" command.\n\
15932 If the value is \"call\", the print is done by calling a function in your\n\
15933 program; by default printf(), but you can choose a different function or\n\
15934 output stream by setting dprintf-function and dprintf-channel."),
15935 update_dprintf_commands, NULL,
15936 &setlist, &showlist);
15937
15938 dprintf_function = xstrdup ("printf");
15939 add_setshow_string_cmd ("dprintf-function", class_support,
15940 &dprintf_function, _("\
15941 Set the function to use for dynamic printf"), _("\
15942 Show the function to use for dynamic printf"), NULL,
15943 update_dprintf_commands, NULL,
15944 &setlist, &showlist);
15945
15946 dprintf_channel = xstrdup ("");
15947 add_setshow_string_cmd ("dprintf-channel", class_support,
15948 &dprintf_channel, _("\
15949 Set the channel to use for dynamic printf"), _("\
15950 Show the channel to use for dynamic printf"), NULL,
15951 update_dprintf_commands, NULL,
15952 &setlist, &showlist);
15953
15954 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15955 &disconnected_dprintf, _("\
15956 Set whether dprintf continues after GDB disconnects."), _("\
15957 Show whether dprintf continues after GDB disconnects."), _("\
15958 Use this to let dprintf commands continue to hit and produce output\n\
15959 even if GDB disconnects or detaches from the target."),
15960 NULL,
15961 NULL,
15962 &setlist, &showlist);
15963
15964 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15965 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
15966 (target agent only) This is useful for formatted output in user-defined commands."));
15967
15968 automatic_hardware_breakpoints = 1;
15969
15970 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15971 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15972 }
This page took 0.74964 seconds and 4 git commands to generate.