Use gdb::unique_xmalloc_ptr when calling tilde_expand
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (const char *,
106 void (*) (struct breakpoint *,
107 void *),
108 void *);
109
110 static void ignore_command (char *, int);
111
112 static int breakpoint_re_set_one (void *);
113
114 static void breakpoint_re_set_default (struct breakpoint *);
115
116 static void
117 create_sals_from_location_default (const struct event_location *location,
118 struct linespec_result *canonical,
119 enum bptype type_wanted);
120
121 static void create_breakpoints_sal_default (struct gdbarch *,
122 struct linespec_result *,
123 gdb::unique_xmalloc_ptr<char>,
124 gdb::unique_xmalloc_ptr<char>,
125 enum bptype,
126 enum bpdisp, int, int,
127 int,
128 const struct breakpoint_ops *,
129 int, int, int, unsigned);
130
131 static void decode_location_default (struct breakpoint *b,
132 const struct event_location *location,
133 struct program_space *search_pspace,
134 struct symtabs_and_lines *sals);
135
136 static void clear_command (char *, int);
137
138 static void catch_command (char *, int);
139
140 static int can_use_hardware_watchpoint (struct value *);
141
142 static void break_command_1 (char *, int, int);
143
144 static void mention (struct breakpoint *);
145
146 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
147 enum bptype,
148 const struct breakpoint_ops *);
149 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
150 const struct symtab_and_line *);
151
152 /* This function is used in gdbtk sources and thus can not be made
153 static. */
154 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
155 struct symtab_and_line,
156 enum bptype,
157 const struct breakpoint_ops *);
158
159 static struct breakpoint *
160 momentary_breakpoint_from_master (struct breakpoint *orig,
161 enum bptype type,
162 const struct breakpoint_ops *ops,
163 int loc_enabled);
164
165 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
166
167 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
168 CORE_ADDR bpaddr,
169 enum bptype bptype);
170
171 static void describe_other_breakpoints (struct gdbarch *,
172 struct program_space *, CORE_ADDR,
173 struct obj_section *, int);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static int breakpoint_location_address_range_overlap (struct bp_location *,
183 struct address_space *,
184 CORE_ADDR, int);
185
186 static void breakpoints_info (char *, int);
187
188 static void watchpoints_info (char *, int);
189
190 static int breakpoint_1 (char *, int,
191 int (*) (const struct breakpoint *));
192
193 static int breakpoint_cond_eval (void *);
194
195 static void cleanup_executing_breakpoints (void *);
196
197 static void commands_command (char *, int);
198
199 static void condition_command (char *, int);
200
201 static int remove_breakpoint (struct bp_location *);
202 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
203
204 static enum print_stop_action print_bp_stop_message (bpstat bs);
205
206 static int watchpoint_check (void *);
207
208 static void maintenance_info_breakpoints (char *, int);
209
210 static int hw_breakpoint_used_count (void);
211
212 static int hw_watchpoint_use_count (struct breakpoint *);
213
214 static int hw_watchpoint_used_count_others (struct breakpoint *except,
215 enum bptype type,
216 int *other_type_used);
217
218 static void hbreak_command (char *, int);
219
220 static void thbreak_command (char *, int);
221
222 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
223 int count);
224
225 static void stop_command (char *arg, int from_tty);
226
227 static void stopin_command (char *arg, int from_tty);
228
229 static void stopat_command (char *arg, int from_tty);
230
231 static void tcatch_command (char *arg, int from_tty);
232
233 static void free_bp_location (struct bp_location *loc);
234 static void incref_bp_location (struct bp_location *loc);
235 static void decref_bp_location (struct bp_location **loc);
236
237 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
238
239 /* update_global_location_list's modes of operation wrt to whether to
240 insert locations now. */
241 enum ugll_insert_mode
242 {
243 /* Don't insert any breakpoint locations into the inferior, only
244 remove already-inserted locations that no longer should be
245 inserted. Functions that delete a breakpoint or breakpoints
246 should specify this mode, so that deleting a breakpoint doesn't
247 have the side effect of inserting the locations of other
248 breakpoints that are marked not-inserted, but should_be_inserted
249 returns true on them.
250
251 This behavior is useful is situations close to tear-down -- e.g.,
252 after an exec, while the target still has execution, but
253 breakpoint shadows of the previous executable image should *NOT*
254 be restored to the new image; or before detaching, where the
255 target still has execution and wants to delete breakpoints from
256 GDB's lists, and all breakpoints had already been removed from
257 the inferior. */
258 UGLL_DONT_INSERT,
259
260 /* May insert breakpoints iff breakpoints_should_be_inserted_now
261 claims breakpoints should be inserted now. */
262 UGLL_MAY_INSERT,
263
264 /* Insert locations now, irrespective of
265 breakpoints_should_be_inserted_now. E.g., say all threads are
266 stopped right now, and the user did "continue". We need to
267 insert breakpoints _before_ resuming the target, but
268 UGLL_MAY_INSERT wouldn't insert them, because
269 breakpoints_should_be_inserted_now returns false at that point,
270 as no thread is running yet. */
271 UGLL_INSERT
272 };
273
274 static void update_global_location_list (enum ugll_insert_mode);
275
276 static void update_global_location_list_nothrow (enum ugll_insert_mode);
277
278 static int is_hardware_watchpoint (const struct breakpoint *bpt);
279
280 static void insert_breakpoint_locations (void);
281
282 static void tracepoints_info (char *, int);
283
284 static void delete_trace_command (char *, int);
285
286 static void enable_trace_command (char *, int);
287
288 static void disable_trace_command (char *, int);
289
290 static void trace_pass_command (char *, int);
291
292 static void set_tracepoint_count (int num);
293
294 static int is_masked_watchpoint (const struct breakpoint *b);
295
296 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
297
298 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
299 otherwise. */
300
301 static int strace_marker_p (struct breakpoint *b);
302
303 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
304 that are implemented on top of software or hardware breakpoints
305 (user breakpoints, internal and momentary breakpoints, etc.). */
306 static struct breakpoint_ops bkpt_base_breakpoint_ops;
307
308 /* Internal breakpoints class type. */
309 static struct breakpoint_ops internal_breakpoint_ops;
310
311 /* Momentary breakpoints class type. */
312 static struct breakpoint_ops momentary_breakpoint_ops;
313
314 /* The breakpoint_ops structure to be used in regular user created
315 breakpoints. */
316 struct breakpoint_ops bkpt_breakpoint_ops;
317
318 /* Breakpoints set on probes. */
319 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
320
321 /* Dynamic printf class type. */
322 struct breakpoint_ops dprintf_breakpoint_ops;
323
324 /* The style in which to perform a dynamic printf. This is a user
325 option because different output options have different tradeoffs;
326 if GDB does the printing, there is better error handling if there
327 is a problem with any of the arguments, but using an inferior
328 function lets you have special-purpose printers and sending of
329 output to the same place as compiled-in print functions. */
330
331 static const char dprintf_style_gdb[] = "gdb";
332 static const char dprintf_style_call[] = "call";
333 static const char dprintf_style_agent[] = "agent";
334 static const char *const dprintf_style_enums[] = {
335 dprintf_style_gdb,
336 dprintf_style_call,
337 dprintf_style_agent,
338 NULL
339 };
340 static const char *dprintf_style = dprintf_style_gdb;
341
342 /* The function to use for dynamic printf if the preferred style is to
343 call into the inferior. The value is simply a string that is
344 copied into the command, so it can be anything that GDB can
345 evaluate to a callable address, not necessarily a function name. */
346
347 static char *dprintf_function;
348
349 /* The channel to use for dynamic printf if the preferred style is to
350 call into the inferior; if a nonempty string, it will be passed to
351 the call as the first argument, with the format string as the
352 second. As with the dprintf function, this can be anything that
353 GDB knows how to evaluate, so in addition to common choices like
354 "stderr", this could be an app-specific expression like
355 "mystreams[curlogger]". */
356
357 static char *dprintf_channel;
358
359 /* True if dprintf commands should continue to operate even if GDB
360 has disconnected. */
361 static int disconnected_dprintf = 1;
362
363 /* A reference-counted struct command_line. This lets multiple
364 breakpoints share a single command list. */
365 struct counted_command_line
366 {
367 /* The reference count. */
368 int refc;
369
370 /* The command list. */
371 struct command_line *commands;
372 };
373
374 struct command_line *
375 breakpoint_commands (struct breakpoint *b)
376 {
377 return b->commands ? b->commands->commands : NULL;
378 }
379
380 /* Flag indicating that a command has proceeded the inferior past the
381 current breakpoint. */
382
383 static int breakpoint_proceeded;
384
385 const char *
386 bpdisp_text (enum bpdisp disp)
387 {
388 /* NOTE: the following values are a part of MI protocol and
389 represent values of 'disp' field returned when inferior stops at
390 a breakpoint. */
391 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
392
393 return bpdisps[(int) disp];
394 }
395
396 /* Prototypes for exported functions. */
397 /* If FALSE, gdb will not use hardware support for watchpoints, even
398 if such is available. */
399 static int can_use_hw_watchpoints;
400
401 static void
402 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's willingness to use "
408 "watchpoint hardware is %s.\n"),
409 value);
410 }
411
412 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
413 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
414 for unrecognized breakpoint locations.
415 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
416 static enum auto_boolean pending_break_support;
417 static void
418 show_pending_break_support (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's behavior regarding "
424 "pending breakpoints is %s.\n"),
425 value);
426 }
427
428 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
429 set with "break" but falling in read-only memory.
430 If 0, gdb will warn about such breakpoints, but won't automatically
431 use hardware breakpoints. */
432 static int automatic_hardware_breakpoints;
433 static void
434 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Automatic usage of hardware breakpoints is %s.\n"),
440 value);
441 }
442
443 /* If on, GDB keeps breakpoints inserted even if the inferior is
444 stopped, and immediately inserts any new breakpoints as soon as
445 they're created. If off (default), GDB keeps breakpoints off of
446 the target as long as possible. That is, it delays inserting
447 breakpoints until the next resume, and removes them again when the
448 target fully stops. This is a bit safer in case GDB crashes while
449 processing user input. */
450 static int always_inserted_mode = 0;
451
452 static void
453 show_always_inserted_mode (struct ui_file *file, int from_tty,
454 struct cmd_list_element *c, const char *value)
455 {
456 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
457 value);
458 }
459
460 /* See breakpoint.h. */
461
462 int
463 breakpoints_should_be_inserted_now (void)
464 {
465 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
466 {
467 /* If breakpoints are global, they should be inserted even if no
468 thread under gdb's control is running, or even if there are
469 no threads under GDB's control yet. */
470 return 1;
471 }
472 else if (target_has_execution)
473 {
474 struct thread_info *tp;
475
476 if (always_inserted_mode)
477 {
478 /* The user wants breakpoints inserted even if all threads
479 are stopped. */
480 return 1;
481 }
482
483 if (threads_are_executing ())
484 return 1;
485
486 /* Don't remove breakpoints yet if, even though all threads are
487 stopped, we still have events to process. */
488 ALL_NON_EXITED_THREADS (tp)
489 if (tp->resumed
490 && tp->suspend.waitstatus_pending_p)
491 return 1;
492 }
493 return 0;
494 }
495
496 static const char condition_evaluation_both[] = "host or target";
497
498 /* Modes for breakpoint condition evaluation. */
499 static const char condition_evaluation_auto[] = "auto";
500 static const char condition_evaluation_host[] = "host";
501 static const char condition_evaluation_target[] = "target";
502 static const char *const condition_evaluation_enums[] = {
503 condition_evaluation_auto,
504 condition_evaluation_host,
505 condition_evaluation_target,
506 NULL
507 };
508
509 /* Global that holds the current mode for breakpoint condition evaluation. */
510 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
511
512 /* Global that we use to display information to the user (gets its value from
513 condition_evaluation_mode_1. */
514 static const char *condition_evaluation_mode = condition_evaluation_auto;
515
516 /* Translate a condition evaluation mode MODE into either "host"
517 or "target". This is used mostly to translate from "auto" to the
518 real setting that is being used. It returns the translated
519 evaluation mode. */
520
521 static const char *
522 translate_condition_evaluation_mode (const char *mode)
523 {
524 if (mode == condition_evaluation_auto)
525 {
526 if (target_supports_evaluation_of_breakpoint_conditions ())
527 return condition_evaluation_target;
528 else
529 return condition_evaluation_host;
530 }
531 else
532 return mode;
533 }
534
535 /* Discovers what condition_evaluation_auto translates to. */
536
537 static const char *
538 breakpoint_condition_evaluation_mode (void)
539 {
540 return translate_condition_evaluation_mode (condition_evaluation_mode);
541 }
542
543 /* Return true if GDB should evaluate breakpoint conditions or false
544 otherwise. */
545
546 static int
547 gdb_evaluates_breakpoint_condition_p (void)
548 {
549 const char *mode = breakpoint_condition_evaluation_mode ();
550
551 return (mode == condition_evaluation_host);
552 }
553
554 void _initialize_breakpoint (void);
555
556 /* Are we executing breakpoint commands? */
557 static int executing_breakpoint_commands;
558
559 /* Are overlay event breakpoints enabled? */
560 static int overlay_events_enabled;
561
562 /* See description in breakpoint.h. */
563 int target_exact_watchpoints = 0;
564
565 /* Walk the following statement or block through all breakpoints.
566 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
567 current breakpoint. */
568
569 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
570
571 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
572 for (B = breakpoint_chain; \
573 B ? (TMP=B->next, 1): 0; \
574 B = TMP)
575
576 /* Similar iterator for the low-level breakpoints. SAFE variant is
577 not provided so update_global_location_list must not be called
578 while executing the block of ALL_BP_LOCATIONS. */
579
580 #define ALL_BP_LOCATIONS(B,BP_TMP) \
581 for (BP_TMP = bp_locations; \
582 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
583 BP_TMP++)
584
585 /* Iterates through locations with address ADDRESS for the currently selected
586 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
587 to where the loop should start from.
588 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
589 appropriate location to start with. */
590
591 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
592 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
593 BP_LOCP_TMP = BP_LOCP_START; \
594 BP_LOCP_START \
595 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
596 && (*BP_LOCP_TMP)->address == ADDRESS); \
597 BP_LOCP_TMP++)
598
599 /* Iterator for tracepoints only. */
600
601 #define ALL_TRACEPOINTS(B) \
602 for (B = breakpoint_chain; B; B = B->next) \
603 if (is_tracepoint (B))
604
605 /* Chains of all breakpoints defined. */
606
607 struct breakpoint *breakpoint_chain;
608
609 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
610
611 static struct bp_location **bp_locations;
612
613 /* Number of elements of BP_LOCATIONS. */
614
615 static unsigned bp_locations_count;
616
617 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
618 ADDRESS for the current elements of BP_LOCATIONS which get a valid
619 result from bp_location_has_shadow. You can use it for roughly
620 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
621 an address you need to read. */
622
623 static CORE_ADDR bp_locations_placed_address_before_address_max;
624
625 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
626 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
627 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
628 You can use it for roughly limiting the subrange of BP_LOCATIONS to
629 scan for shadow bytes for an address you need to read. */
630
631 static CORE_ADDR bp_locations_shadow_len_after_address_max;
632
633 /* The locations that no longer correspond to any breakpoint, unlinked
634 from the bp_locations array, but for which a hit may still be
635 reported by a target. */
636 VEC(bp_location_p) *moribund_locations = NULL;
637
638 /* Number of last breakpoint made. */
639
640 static int breakpoint_count;
641
642 /* The value of `breakpoint_count' before the last command that
643 created breakpoints. If the last (break-like) command created more
644 than one breakpoint, then the difference between BREAKPOINT_COUNT
645 and PREV_BREAKPOINT_COUNT is more than one. */
646 static int prev_breakpoint_count;
647
648 /* Number of last tracepoint made. */
649
650 static int tracepoint_count;
651
652 static struct cmd_list_element *breakpoint_set_cmdlist;
653 static struct cmd_list_element *breakpoint_show_cmdlist;
654 struct cmd_list_element *save_cmdlist;
655
656 /* See declaration at breakpoint.h. */
657
658 struct breakpoint *
659 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
660 void *user_data)
661 {
662 struct breakpoint *b = NULL;
663
664 ALL_BREAKPOINTS (b)
665 {
666 if (func (b, user_data) != 0)
667 break;
668 }
669
670 return b;
671 }
672
673 /* Return whether a breakpoint is an active enabled breakpoint. */
674 static int
675 breakpoint_enabled (struct breakpoint *b)
676 {
677 return (b->enable_state == bp_enabled);
678 }
679
680 /* Set breakpoint count to NUM. */
681
682 static void
683 set_breakpoint_count (int num)
684 {
685 prev_breakpoint_count = breakpoint_count;
686 breakpoint_count = num;
687 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
688 }
689
690 /* Used by `start_rbreak_breakpoints' below, to record the current
691 breakpoint count before "rbreak" creates any breakpoint. */
692 static int rbreak_start_breakpoint_count;
693
694 /* Called at the start an "rbreak" command to record the first
695 breakpoint made. */
696
697 void
698 start_rbreak_breakpoints (void)
699 {
700 rbreak_start_breakpoint_count = breakpoint_count;
701 }
702
703 /* Called at the end of an "rbreak" command to record the last
704 breakpoint made. */
705
706 void
707 end_rbreak_breakpoints (void)
708 {
709 prev_breakpoint_count = rbreak_start_breakpoint_count;
710 }
711
712 /* Used in run_command to zero the hit count when a new run starts. */
713
714 void
715 clear_breakpoint_hit_counts (void)
716 {
717 struct breakpoint *b;
718
719 ALL_BREAKPOINTS (b)
720 b->hit_count = 0;
721 }
722
723 /* Allocate a new counted_command_line with reference count of 1.
724 The new structure owns COMMANDS. */
725
726 static struct counted_command_line *
727 alloc_counted_command_line (struct command_line *commands)
728 {
729 struct counted_command_line *result = XNEW (struct counted_command_line);
730
731 result->refc = 1;
732 result->commands = commands;
733
734 return result;
735 }
736
737 /* Increment reference count. This does nothing if CMD is NULL. */
738
739 static void
740 incref_counted_command_line (struct counted_command_line *cmd)
741 {
742 if (cmd)
743 ++cmd->refc;
744 }
745
746 /* Decrement reference count. If the reference count reaches 0,
747 destroy the counted_command_line. Sets *CMDP to NULL. This does
748 nothing if *CMDP is NULL. */
749
750 static void
751 decref_counted_command_line (struct counted_command_line **cmdp)
752 {
753 if (*cmdp)
754 {
755 if (--(*cmdp)->refc == 0)
756 {
757 free_command_lines (&(*cmdp)->commands);
758 xfree (*cmdp);
759 }
760 *cmdp = NULL;
761 }
762 }
763
764 /* A cleanup function that calls decref_counted_command_line. */
765
766 static void
767 do_cleanup_counted_command_line (void *arg)
768 {
769 decref_counted_command_line ((struct counted_command_line **) arg);
770 }
771
772 /* Create a cleanup that calls decref_counted_command_line on the
773 argument. */
774
775 static struct cleanup *
776 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
777 {
778 return make_cleanup (do_cleanup_counted_command_line, cmdp);
779 }
780
781 \f
782 /* Return the breakpoint with the specified number, or NULL
783 if the number does not refer to an existing breakpoint. */
784
785 struct breakpoint *
786 get_breakpoint (int num)
787 {
788 struct breakpoint *b;
789
790 ALL_BREAKPOINTS (b)
791 if (b->number == num)
792 return b;
793
794 return NULL;
795 }
796
797 \f
798
799 /* Mark locations as "conditions have changed" in case the target supports
800 evaluating conditions on its side. */
801
802 static void
803 mark_breakpoint_modified (struct breakpoint *b)
804 {
805 struct bp_location *loc;
806
807 /* This is only meaningful if the target is
808 evaluating conditions and if the user has
809 opted for condition evaluation on the target's
810 side. */
811 if (gdb_evaluates_breakpoint_condition_p ()
812 || !target_supports_evaluation_of_breakpoint_conditions ())
813 return;
814
815 if (!is_breakpoint (b))
816 return;
817
818 for (loc = b->loc; loc; loc = loc->next)
819 loc->condition_changed = condition_modified;
820 }
821
822 /* Mark location as "conditions have changed" in case the target supports
823 evaluating conditions on its side. */
824
825 static void
826 mark_breakpoint_location_modified (struct bp_location *loc)
827 {
828 /* This is only meaningful if the target is
829 evaluating conditions and if the user has
830 opted for condition evaluation on the target's
831 side. */
832 if (gdb_evaluates_breakpoint_condition_p ()
833 || !target_supports_evaluation_of_breakpoint_conditions ())
834
835 return;
836
837 if (!is_breakpoint (loc->owner))
838 return;
839
840 loc->condition_changed = condition_modified;
841 }
842
843 /* Sets the condition-evaluation mode using the static global
844 condition_evaluation_mode. */
845
846 static void
847 set_condition_evaluation_mode (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 const char *old_mode, *new_mode;
851
852 if ((condition_evaluation_mode_1 == condition_evaluation_target)
853 && !target_supports_evaluation_of_breakpoint_conditions ())
854 {
855 condition_evaluation_mode_1 = condition_evaluation_mode;
856 warning (_("Target does not support breakpoint condition evaluation.\n"
857 "Using host evaluation mode instead."));
858 return;
859 }
860
861 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
862 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
863
864 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
865 settings was "auto". */
866 condition_evaluation_mode = condition_evaluation_mode_1;
867
868 /* Only update the mode if the user picked a different one. */
869 if (new_mode != old_mode)
870 {
871 struct bp_location *loc, **loc_tmp;
872 /* If the user switched to a different evaluation mode, we
873 need to synch the changes with the target as follows:
874
875 "host" -> "target": Send all (valid) conditions to the target.
876 "target" -> "host": Remove all the conditions from the target.
877 */
878
879 if (new_mode == condition_evaluation_target)
880 {
881 /* Mark everything modified and synch conditions with the
882 target. */
883 ALL_BP_LOCATIONS (loc, loc_tmp)
884 mark_breakpoint_location_modified (loc);
885 }
886 else
887 {
888 /* Manually mark non-duplicate locations to synch conditions
889 with the target. We do this to remove all the conditions the
890 target knows about. */
891 ALL_BP_LOCATIONS (loc, loc_tmp)
892 if (is_breakpoint (loc->owner) && loc->inserted)
893 loc->needs_update = 1;
894 }
895
896 /* Do the update. */
897 update_global_location_list (UGLL_MAY_INSERT);
898 }
899
900 return;
901 }
902
903 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
904 what "auto" is translating to. */
905
906 static void
907 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c, const char *value)
909 {
910 if (condition_evaluation_mode == condition_evaluation_auto)
911 fprintf_filtered (file,
912 _("Breakpoint condition evaluation "
913 "mode is %s (currently %s).\n"),
914 value,
915 breakpoint_condition_evaluation_mode ());
916 else
917 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
918 value);
919 }
920
921 /* A comparison function for bp_location AP and BP that is used by
922 bsearch. This comparison function only cares about addresses, unlike
923 the more general bp_locations_compare function. */
924
925 static int
926 bp_locations_compare_addrs (const void *ap, const void *bp)
927 {
928 const struct bp_location *a = *(const struct bp_location **) ap;
929 const struct bp_location *b = *(const struct bp_location **) bp;
930
931 if (a->address == b->address)
932 return 0;
933 else
934 return ((a->address > b->address) - (a->address < b->address));
935 }
936
937 /* Helper function to skip all bp_locations with addresses
938 less than ADDRESS. It returns the first bp_location that
939 is greater than or equal to ADDRESS. If none is found, just
940 return NULL. */
941
942 static struct bp_location **
943 get_first_locp_gte_addr (CORE_ADDR address)
944 {
945 struct bp_location dummy_loc;
946 struct bp_location *dummy_locp = &dummy_loc;
947 struct bp_location **locp_found = NULL;
948
949 /* Initialize the dummy location's address field. */
950 dummy_loc.address = address;
951
952 /* Find a close match to the first location at ADDRESS. */
953 locp_found = ((struct bp_location **)
954 bsearch (&dummy_locp, bp_locations, bp_locations_count,
955 sizeof (struct bp_location **),
956 bp_locations_compare_addrs));
957
958 /* Nothing was found, nothing left to do. */
959 if (locp_found == NULL)
960 return NULL;
961
962 /* We may have found a location that is at ADDRESS but is not the first in the
963 location's list. Go backwards (if possible) and locate the first one. */
964 while ((locp_found - 1) >= bp_locations
965 && (*(locp_found - 1))->address == address)
966 locp_found--;
967
968 return locp_found;
969 }
970
971 void
972 set_breakpoint_condition (struct breakpoint *b, const char *exp,
973 int from_tty)
974 {
975 xfree (b->cond_string);
976 b->cond_string = NULL;
977
978 if (is_watchpoint (b))
979 {
980 struct watchpoint *w = (struct watchpoint *) b;
981
982 w->cond_exp.reset ();
983 }
984 else
985 {
986 struct bp_location *loc;
987
988 for (loc = b->loc; loc; loc = loc->next)
989 {
990 loc->cond.reset ();
991
992 /* No need to free the condition agent expression
993 bytecode (if we have one). We will handle this
994 when we go through update_global_location_list. */
995 }
996 }
997
998 if (*exp == 0)
999 {
1000 if (from_tty)
1001 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1002 }
1003 else
1004 {
1005 const char *arg = exp;
1006
1007 /* I don't know if it matters whether this is the string the user
1008 typed in or the decompiled expression. */
1009 b->cond_string = xstrdup (arg);
1010 b->condition_not_parsed = 0;
1011
1012 if (is_watchpoint (b))
1013 {
1014 struct watchpoint *w = (struct watchpoint *) b;
1015
1016 innermost_block = NULL;
1017 arg = exp;
1018 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1019 if (*arg)
1020 error (_("Junk at end of expression"));
1021 w->cond_exp_valid_block = innermost_block;
1022 }
1023 else
1024 {
1025 struct bp_location *loc;
1026
1027 for (loc = b->loc; loc; loc = loc->next)
1028 {
1029 arg = exp;
1030 loc->cond =
1031 parse_exp_1 (&arg, loc->address,
1032 block_for_pc (loc->address), 0);
1033 if (*arg)
1034 error (_("Junk at end of expression"));
1035 }
1036 }
1037 }
1038 mark_breakpoint_modified (b);
1039
1040 observer_notify_breakpoint_modified (b);
1041 }
1042
1043 /* Completion for the "condition" command. */
1044
1045 static void
1046 condition_completer (struct cmd_list_element *cmd,
1047 completion_tracker &tracker,
1048 const char *text, const char *word)
1049 {
1050 const char *space;
1051
1052 text = skip_spaces_const (text);
1053 space = skip_to_space_const (text);
1054 if (*space == '\0')
1055 {
1056 int len;
1057 struct breakpoint *b;
1058 VEC (char_ptr) *result = NULL;
1059
1060 if (text[0] == '$')
1061 {
1062 /* We don't support completion of history indices. */
1063 if (!isdigit (text[1]))
1064 complete_internalvar (tracker, &text[1]);
1065 return;
1066 }
1067
1068 /* We're completing the breakpoint number. */
1069 len = strlen (text);
1070
1071 ALL_BREAKPOINTS (b)
1072 {
1073 char number[50];
1074
1075 xsnprintf (number, sizeof (number), "%d", b->number);
1076
1077 if (strncmp (number, text, len) == 0)
1078 {
1079 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
1080 tracker.add_completion (std::move (copy));
1081 }
1082 }
1083
1084 return;
1085 }
1086
1087 /* We're completing the expression part. */
1088 text = skip_spaces_const (space);
1089 expression_completer (cmd, tracker, text, word);
1090 }
1091
1092 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1093
1094 static void
1095 condition_command (char *arg, int from_tty)
1096 {
1097 struct breakpoint *b;
1098 char *p;
1099 int bnum;
1100
1101 if (arg == 0)
1102 error_no_arg (_("breakpoint number"));
1103
1104 p = arg;
1105 bnum = get_number (&p);
1106 if (bnum == 0)
1107 error (_("Bad breakpoint argument: '%s'"), arg);
1108
1109 ALL_BREAKPOINTS (b)
1110 if (b->number == bnum)
1111 {
1112 /* Check if this breakpoint has a "stop" method implemented in an
1113 extension language. This method and conditions entered into GDB
1114 from the CLI are mutually exclusive. */
1115 const struct extension_language_defn *extlang
1116 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1117
1118 if (extlang != NULL)
1119 {
1120 error (_("Only one stop condition allowed. There is currently"
1121 " a %s stop condition defined for this breakpoint."),
1122 ext_lang_capitalized_name (extlang));
1123 }
1124 set_breakpoint_condition (b, p, from_tty);
1125
1126 if (is_breakpoint (b))
1127 update_global_location_list (UGLL_MAY_INSERT);
1128
1129 return;
1130 }
1131
1132 error (_("No breakpoint number %d."), bnum);
1133 }
1134
1135 /* Check that COMMAND do not contain commands that are suitable
1136 only for tracepoints and not suitable for ordinary breakpoints.
1137 Throw if any such commands is found. */
1138
1139 static void
1140 check_no_tracepoint_commands (struct command_line *commands)
1141 {
1142 struct command_line *c;
1143
1144 for (c = commands; c; c = c->next)
1145 {
1146 int i;
1147
1148 if (c->control_type == while_stepping_control)
1149 error (_("The 'while-stepping' command can "
1150 "only be used for tracepoints"));
1151
1152 for (i = 0; i < c->body_count; ++i)
1153 check_no_tracepoint_commands ((c->body_list)[i]);
1154
1155 /* Not that command parsing removes leading whitespace and comment
1156 lines and also empty lines. So, we only need to check for
1157 command directly. */
1158 if (strstr (c->line, "collect ") == c->line)
1159 error (_("The 'collect' command can only be used for tracepoints"));
1160
1161 if (strstr (c->line, "teval ") == c->line)
1162 error (_("The 'teval' command can only be used for tracepoints"));
1163 }
1164 }
1165
1166 struct longjmp_breakpoint : public breakpoint
1167 {
1168 ~longjmp_breakpoint () override;
1169 };
1170
1171 /* Encapsulate tests for different types of tracepoints. */
1172
1173 static bool
1174 is_tracepoint_type (bptype type)
1175 {
1176 return (type == bp_tracepoint
1177 || type == bp_fast_tracepoint
1178 || type == bp_static_tracepoint);
1179 }
1180
1181 static bool
1182 is_longjmp_type (bptype type)
1183 {
1184 return type == bp_longjmp || type == bp_exception;
1185 }
1186
1187 int
1188 is_tracepoint (const struct breakpoint *b)
1189 {
1190 return is_tracepoint_type (b->type);
1191 }
1192
1193 /* Factory function to create an appropriate instance of breakpoint given
1194 TYPE. */
1195
1196 static std::unique_ptr<breakpoint>
1197 new_breakpoint_from_type (bptype type)
1198 {
1199 breakpoint *b;
1200
1201 if (is_tracepoint_type (type))
1202 b = new tracepoint ();
1203 else if (is_longjmp_type (type))
1204 b = new longjmp_breakpoint ();
1205 else
1206 b = new breakpoint ();
1207
1208 return std::unique_ptr<breakpoint> (b);
1209 }
1210
1211 /* A helper function that validates that COMMANDS are valid for a
1212 breakpoint. This function will throw an exception if a problem is
1213 found. */
1214
1215 static void
1216 validate_commands_for_breakpoint (struct breakpoint *b,
1217 struct command_line *commands)
1218 {
1219 if (is_tracepoint (b))
1220 {
1221 struct tracepoint *t = (struct tracepoint *) b;
1222 struct command_line *c;
1223 struct command_line *while_stepping = 0;
1224
1225 /* Reset the while-stepping step count. The previous commands
1226 might have included a while-stepping action, while the new
1227 ones might not. */
1228 t->step_count = 0;
1229
1230 /* We need to verify that each top-level element of commands is
1231 valid for tracepoints, that there's at most one
1232 while-stepping element, and that the while-stepping's body
1233 has valid tracing commands excluding nested while-stepping.
1234 We also need to validate the tracepoint action line in the
1235 context of the tracepoint --- validate_actionline actually
1236 has side effects, like setting the tracepoint's
1237 while-stepping STEP_COUNT, in addition to checking if the
1238 collect/teval actions parse and make sense in the
1239 tracepoint's context. */
1240 for (c = commands; c; c = c->next)
1241 {
1242 if (c->control_type == while_stepping_control)
1243 {
1244 if (b->type == bp_fast_tracepoint)
1245 error (_("The 'while-stepping' command "
1246 "cannot be used for fast tracepoint"));
1247 else if (b->type == bp_static_tracepoint)
1248 error (_("The 'while-stepping' command "
1249 "cannot be used for static tracepoint"));
1250
1251 if (while_stepping)
1252 error (_("The 'while-stepping' command "
1253 "can be used only once"));
1254 else
1255 while_stepping = c;
1256 }
1257
1258 validate_actionline (c->line, b);
1259 }
1260 if (while_stepping)
1261 {
1262 struct command_line *c2;
1263
1264 gdb_assert (while_stepping->body_count == 1);
1265 c2 = while_stepping->body_list[0];
1266 for (; c2; c2 = c2->next)
1267 {
1268 if (c2->control_type == while_stepping_control)
1269 error (_("The 'while-stepping' command cannot be nested"));
1270 }
1271 }
1272 }
1273 else
1274 {
1275 check_no_tracepoint_commands (commands);
1276 }
1277 }
1278
1279 /* Return a vector of all the static tracepoints set at ADDR. The
1280 caller is responsible for releasing the vector. */
1281
1282 VEC(breakpoint_p) *
1283 static_tracepoints_here (CORE_ADDR addr)
1284 {
1285 struct breakpoint *b;
1286 VEC(breakpoint_p) *found = 0;
1287 struct bp_location *loc;
1288
1289 ALL_BREAKPOINTS (b)
1290 if (b->type == bp_static_tracepoint)
1291 {
1292 for (loc = b->loc; loc; loc = loc->next)
1293 if (loc->address == addr)
1294 VEC_safe_push(breakpoint_p, found, b);
1295 }
1296
1297 return found;
1298 }
1299
1300 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1301 validate that only allowed commands are included. */
1302
1303 void
1304 breakpoint_set_commands (struct breakpoint *b,
1305 command_line_up &&commands)
1306 {
1307 validate_commands_for_breakpoint (b, commands.get ());
1308
1309 decref_counted_command_line (&b->commands);
1310 b->commands = alloc_counted_command_line (commands.release ());
1311 observer_notify_breakpoint_modified (b);
1312 }
1313
1314 /* Set the internal `silent' flag on the breakpoint. Note that this
1315 is not the same as the "silent" that may appear in the breakpoint's
1316 commands. */
1317
1318 void
1319 breakpoint_set_silent (struct breakpoint *b, int silent)
1320 {
1321 int old_silent = b->silent;
1322
1323 b->silent = silent;
1324 if (old_silent != silent)
1325 observer_notify_breakpoint_modified (b);
1326 }
1327
1328 /* Set the thread for this breakpoint. If THREAD is -1, make the
1329 breakpoint work for any thread. */
1330
1331 void
1332 breakpoint_set_thread (struct breakpoint *b, int thread)
1333 {
1334 int old_thread = b->thread;
1335
1336 b->thread = thread;
1337 if (old_thread != thread)
1338 observer_notify_breakpoint_modified (b);
1339 }
1340
1341 /* Set the task for this breakpoint. If TASK is 0, make the
1342 breakpoint work for any task. */
1343
1344 void
1345 breakpoint_set_task (struct breakpoint *b, int task)
1346 {
1347 int old_task = b->task;
1348
1349 b->task = task;
1350 if (old_task != task)
1351 observer_notify_breakpoint_modified (b);
1352 }
1353
1354 void
1355 check_tracepoint_command (char *line, void *closure)
1356 {
1357 struct breakpoint *b = (struct breakpoint *) closure;
1358
1359 validate_actionline (line, b);
1360 }
1361
1362 /* A structure used to pass information through
1363 map_breakpoint_numbers. */
1364
1365 struct commands_info
1366 {
1367 /* True if the command was typed at a tty. */
1368 int from_tty;
1369
1370 /* The breakpoint range spec. */
1371 const char *arg;
1372
1373 /* Non-NULL if the body of the commands are being read from this
1374 already-parsed command. */
1375 struct command_line *control;
1376
1377 /* The command lines read from the user, or NULL if they have not
1378 yet been read. */
1379 struct counted_command_line *cmd;
1380 };
1381
1382 /* A callback for map_breakpoint_numbers that sets the commands for
1383 commands_command. */
1384
1385 static void
1386 do_map_commands_command (struct breakpoint *b, void *data)
1387 {
1388 struct commands_info *info = (struct commands_info *) data;
1389
1390 if (info->cmd == NULL)
1391 {
1392 command_line_up l;
1393
1394 if (info->control != NULL)
1395 l = copy_command_lines (info->control->body_list[0]);
1396 else
1397 {
1398 struct cleanup *old_chain;
1399 char *str;
1400
1401 str = xstrprintf (_("Type commands for breakpoint(s) "
1402 "%s, one per line."),
1403 info->arg);
1404
1405 old_chain = make_cleanup (xfree, str);
1406
1407 l = read_command_lines (str,
1408 info->from_tty, 1,
1409 (is_tracepoint (b)
1410 ? check_tracepoint_command : 0),
1411 b);
1412
1413 do_cleanups (old_chain);
1414 }
1415
1416 info->cmd = alloc_counted_command_line (l.release ());
1417 }
1418
1419 /* If a breakpoint was on the list more than once, we don't need to
1420 do anything. */
1421 if (b->commands != info->cmd)
1422 {
1423 validate_commands_for_breakpoint (b, info->cmd->commands);
1424 incref_counted_command_line (info->cmd);
1425 decref_counted_command_line (&b->commands);
1426 b->commands = info->cmd;
1427 observer_notify_breakpoint_modified (b);
1428 }
1429 }
1430
1431 static void
1432 commands_command_1 (const char *arg, int from_tty,
1433 struct command_line *control)
1434 {
1435 struct cleanup *cleanups;
1436 struct commands_info info;
1437
1438 info.from_tty = from_tty;
1439 info.control = control;
1440 info.cmd = NULL;
1441 /* If we read command lines from the user, then `info' will hold an
1442 extra reference to the commands that we must clean up. */
1443 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1444
1445 std::string new_arg;
1446
1447 if (arg == NULL || !*arg)
1448 {
1449 if (breakpoint_count - prev_breakpoint_count > 1)
1450 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1451 breakpoint_count);
1452 else if (breakpoint_count > 0)
1453 new_arg = string_printf ("%d", breakpoint_count);
1454 }
1455 else
1456 new_arg = arg;
1457
1458 info.arg = new_arg.c_str ();
1459
1460 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1461
1462 if (info.cmd == NULL)
1463 error (_("No breakpoints specified."));
1464
1465 do_cleanups (cleanups);
1466 }
1467
1468 static void
1469 commands_command (char *arg, int from_tty)
1470 {
1471 commands_command_1 (arg, from_tty, NULL);
1472 }
1473
1474 /* Like commands_command, but instead of reading the commands from
1475 input stream, takes them from an already parsed command structure.
1476
1477 This is used by cli-script.c to DTRT with breakpoint commands
1478 that are part of if and while bodies. */
1479 enum command_control_type
1480 commands_from_control_command (const char *arg, struct command_line *cmd)
1481 {
1482 commands_command_1 (arg, 0, cmd);
1483 return simple_control;
1484 }
1485
1486 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1487
1488 static int
1489 bp_location_has_shadow (struct bp_location *bl)
1490 {
1491 if (bl->loc_type != bp_loc_software_breakpoint)
1492 return 0;
1493 if (!bl->inserted)
1494 return 0;
1495 if (bl->target_info.shadow_len == 0)
1496 /* BL isn't valid, or doesn't shadow memory. */
1497 return 0;
1498 return 1;
1499 }
1500
1501 /* Update BUF, which is LEN bytes read from the target address
1502 MEMADDR, by replacing a memory breakpoint with its shadowed
1503 contents.
1504
1505 If READBUF is not NULL, this buffer must not overlap with the of
1506 the breakpoint location's shadow_contents buffer. Otherwise, a
1507 failed assertion internal error will be raised. */
1508
1509 static void
1510 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1511 const gdb_byte *writebuf_org,
1512 ULONGEST memaddr, LONGEST len,
1513 struct bp_target_info *target_info,
1514 struct gdbarch *gdbarch)
1515 {
1516 /* Now do full processing of the found relevant range of elements. */
1517 CORE_ADDR bp_addr = 0;
1518 int bp_size = 0;
1519 int bptoffset = 0;
1520
1521 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1522 current_program_space->aspace, 0))
1523 {
1524 /* The breakpoint is inserted in a different address space. */
1525 return;
1526 }
1527
1528 /* Addresses and length of the part of the breakpoint that
1529 we need to copy. */
1530 bp_addr = target_info->placed_address;
1531 bp_size = target_info->shadow_len;
1532
1533 if (bp_addr + bp_size <= memaddr)
1534 {
1535 /* The breakpoint is entirely before the chunk of memory we are
1536 reading. */
1537 return;
1538 }
1539
1540 if (bp_addr >= memaddr + len)
1541 {
1542 /* The breakpoint is entirely after the chunk of memory we are
1543 reading. */
1544 return;
1545 }
1546
1547 /* Offset within shadow_contents. */
1548 if (bp_addr < memaddr)
1549 {
1550 /* Only copy the second part of the breakpoint. */
1551 bp_size -= memaddr - bp_addr;
1552 bptoffset = memaddr - bp_addr;
1553 bp_addr = memaddr;
1554 }
1555
1556 if (bp_addr + bp_size > memaddr + len)
1557 {
1558 /* Only copy the first part of the breakpoint. */
1559 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1560 }
1561
1562 if (readbuf != NULL)
1563 {
1564 /* Verify that the readbuf buffer does not overlap with the
1565 shadow_contents buffer. */
1566 gdb_assert (target_info->shadow_contents >= readbuf + len
1567 || readbuf >= (target_info->shadow_contents
1568 + target_info->shadow_len));
1569
1570 /* Update the read buffer with this inserted breakpoint's
1571 shadow. */
1572 memcpy (readbuf + bp_addr - memaddr,
1573 target_info->shadow_contents + bptoffset, bp_size);
1574 }
1575 else
1576 {
1577 const unsigned char *bp;
1578 CORE_ADDR addr = target_info->reqstd_address;
1579 int placed_size;
1580
1581 /* Update the shadow with what we want to write to memory. */
1582 memcpy (target_info->shadow_contents + bptoffset,
1583 writebuf_org + bp_addr - memaddr, bp_size);
1584
1585 /* Determine appropriate breakpoint contents and size for this
1586 address. */
1587 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1588
1589 /* Update the final write buffer with this inserted
1590 breakpoint's INSN. */
1591 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1592 }
1593 }
1594
1595 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1596 by replacing any memory breakpoints with their shadowed contents.
1597
1598 If READBUF is not NULL, this buffer must not overlap with any of
1599 the breakpoint location's shadow_contents buffers. Otherwise,
1600 a failed assertion internal error will be raised.
1601
1602 The range of shadowed area by each bp_location is:
1603 bl->address - bp_locations_placed_address_before_address_max
1604 up to bl->address + bp_locations_shadow_len_after_address_max
1605 The range we were requested to resolve shadows for is:
1606 memaddr ... memaddr + len
1607 Thus the safe cutoff boundaries for performance optimization are
1608 memaddr + len <= (bl->address
1609 - bp_locations_placed_address_before_address_max)
1610 and:
1611 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1612
1613 void
1614 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1615 const gdb_byte *writebuf_org,
1616 ULONGEST memaddr, LONGEST len)
1617 {
1618 /* Left boundary, right boundary and median element of our binary
1619 search. */
1620 unsigned bc_l, bc_r, bc;
1621
1622 /* Find BC_L which is a leftmost element which may affect BUF
1623 content. It is safe to report lower value but a failure to
1624 report higher one. */
1625
1626 bc_l = 0;
1627 bc_r = bp_locations_count;
1628 while (bc_l + 1 < bc_r)
1629 {
1630 struct bp_location *bl;
1631
1632 bc = (bc_l + bc_r) / 2;
1633 bl = bp_locations[bc];
1634
1635 /* Check first BL->ADDRESS will not overflow due to the added
1636 constant. Then advance the left boundary only if we are sure
1637 the BC element can in no way affect the BUF content (MEMADDR
1638 to MEMADDR + LEN range).
1639
1640 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1641 offset so that we cannot miss a breakpoint with its shadow
1642 range tail still reaching MEMADDR. */
1643
1644 if ((bl->address + bp_locations_shadow_len_after_address_max
1645 >= bl->address)
1646 && (bl->address + bp_locations_shadow_len_after_address_max
1647 <= memaddr))
1648 bc_l = bc;
1649 else
1650 bc_r = bc;
1651 }
1652
1653 /* Due to the binary search above, we need to make sure we pick the
1654 first location that's at BC_L's address. E.g., if there are
1655 multiple locations at the same address, BC_L may end up pointing
1656 at a duplicate location, and miss the "master"/"inserted"
1657 location. Say, given locations L1, L2 and L3 at addresses A and
1658 B:
1659
1660 L1@A, L2@A, L3@B, ...
1661
1662 BC_L could end up pointing at location L2, while the "master"
1663 location could be L1. Since the `loc->inserted' flag is only set
1664 on "master" locations, we'd forget to restore the shadow of L1
1665 and L2. */
1666 while (bc_l > 0
1667 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1668 bc_l--;
1669
1670 /* Now do full processing of the found relevant range of elements. */
1671
1672 for (bc = bc_l; bc < bp_locations_count; bc++)
1673 {
1674 struct bp_location *bl = bp_locations[bc];
1675
1676 /* bp_location array has BL->OWNER always non-NULL. */
1677 if (bl->owner->type == bp_none)
1678 warning (_("reading through apparently deleted breakpoint #%d?"),
1679 bl->owner->number);
1680
1681 /* Performance optimization: any further element can no longer affect BUF
1682 content. */
1683
1684 if (bl->address >= bp_locations_placed_address_before_address_max
1685 && memaddr + len <= (bl->address
1686 - bp_locations_placed_address_before_address_max))
1687 break;
1688
1689 if (!bp_location_has_shadow (bl))
1690 continue;
1691
1692 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1693 memaddr, len, &bl->target_info, bl->gdbarch);
1694 }
1695 }
1696
1697 \f
1698
1699 /* Return true if BPT is either a software breakpoint or a hardware
1700 breakpoint. */
1701
1702 int
1703 is_breakpoint (const struct breakpoint *bpt)
1704 {
1705 return (bpt->type == bp_breakpoint
1706 || bpt->type == bp_hardware_breakpoint
1707 || bpt->type == bp_dprintf);
1708 }
1709
1710 /* Return true if BPT is of any hardware watchpoint kind. */
1711
1712 static int
1713 is_hardware_watchpoint (const struct breakpoint *bpt)
1714 {
1715 return (bpt->type == bp_hardware_watchpoint
1716 || bpt->type == bp_read_watchpoint
1717 || bpt->type == bp_access_watchpoint);
1718 }
1719
1720 /* Return true if BPT is of any watchpoint kind, hardware or
1721 software. */
1722
1723 int
1724 is_watchpoint (const struct breakpoint *bpt)
1725 {
1726 return (is_hardware_watchpoint (bpt)
1727 || bpt->type == bp_watchpoint);
1728 }
1729
1730 /* Returns true if the current thread and its running state are safe
1731 to evaluate or update watchpoint B. Watchpoints on local
1732 expressions need to be evaluated in the context of the thread that
1733 was current when the watchpoint was created, and, that thread needs
1734 to be stopped to be able to select the correct frame context.
1735 Watchpoints on global expressions can be evaluated on any thread,
1736 and in any state. It is presently left to the target allowing
1737 memory accesses when threads are running. */
1738
1739 static int
1740 watchpoint_in_thread_scope (struct watchpoint *b)
1741 {
1742 return (b->pspace == current_program_space
1743 && (ptid_equal (b->watchpoint_thread, null_ptid)
1744 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1745 && !is_executing (inferior_ptid))));
1746 }
1747
1748 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1749 associated bp_watchpoint_scope breakpoint. */
1750
1751 static void
1752 watchpoint_del_at_next_stop (struct watchpoint *w)
1753 {
1754 if (w->related_breakpoint != w)
1755 {
1756 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1757 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1758 w->related_breakpoint->disposition = disp_del_at_next_stop;
1759 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1760 w->related_breakpoint = w;
1761 }
1762 w->disposition = disp_del_at_next_stop;
1763 }
1764
1765 /* Extract a bitfield value from value VAL using the bit parameters contained in
1766 watchpoint W. */
1767
1768 static struct value *
1769 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1770 {
1771 struct value *bit_val;
1772
1773 if (val == NULL)
1774 return NULL;
1775
1776 bit_val = allocate_value (value_type (val));
1777
1778 unpack_value_bitfield (bit_val,
1779 w->val_bitpos,
1780 w->val_bitsize,
1781 value_contents_for_printing (val),
1782 value_offset (val),
1783 val);
1784
1785 return bit_val;
1786 }
1787
1788 /* Allocate a dummy location and add it to B, which must be a software
1789 watchpoint. This is required because even if a software watchpoint
1790 is not watching any memory, bpstat_stop_status requires a location
1791 to be able to report stops. */
1792
1793 static void
1794 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1795 struct program_space *pspace)
1796 {
1797 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1798
1799 b->loc = allocate_bp_location (b);
1800 b->loc->pspace = pspace;
1801 b->loc->address = -1;
1802 b->loc->length = -1;
1803 }
1804
1805 /* Returns true if B is a software watchpoint that is not watching any
1806 memory (e.g., "watch $pc"). */
1807
1808 static int
1809 is_no_memory_software_watchpoint (struct breakpoint *b)
1810 {
1811 return (b->type == bp_watchpoint
1812 && b->loc != NULL
1813 && b->loc->next == NULL
1814 && b->loc->address == -1
1815 && b->loc->length == -1);
1816 }
1817
1818 /* Assuming that B is a watchpoint:
1819 - Reparse watchpoint expression, if REPARSE is non-zero
1820 - Evaluate expression and store the result in B->val
1821 - Evaluate the condition if there is one, and store the result
1822 in b->loc->cond.
1823 - Update the list of values that must be watched in B->loc.
1824
1825 If the watchpoint disposition is disp_del_at_next_stop, then do
1826 nothing. If this is local watchpoint that is out of scope, delete
1827 it.
1828
1829 Even with `set breakpoint always-inserted on' the watchpoints are
1830 removed + inserted on each stop here. Normal breakpoints must
1831 never be removed because they might be missed by a running thread
1832 when debugging in non-stop mode. On the other hand, hardware
1833 watchpoints (is_hardware_watchpoint; processed here) are specific
1834 to each LWP since they are stored in each LWP's hardware debug
1835 registers. Therefore, such LWP must be stopped first in order to
1836 be able to modify its hardware watchpoints.
1837
1838 Hardware watchpoints must be reset exactly once after being
1839 presented to the user. It cannot be done sooner, because it would
1840 reset the data used to present the watchpoint hit to the user. And
1841 it must not be done later because it could display the same single
1842 watchpoint hit during multiple GDB stops. Note that the latter is
1843 relevant only to the hardware watchpoint types bp_read_watchpoint
1844 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1845 not user-visible - its hit is suppressed if the memory content has
1846 not changed.
1847
1848 The following constraints influence the location where we can reset
1849 hardware watchpoints:
1850
1851 * target_stopped_by_watchpoint and target_stopped_data_address are
1852 called several times when GDB stops.
1853
1854 [linux]
1855 * Multiple hardware watchpoints can be hit at the same time,
1856 causing GDB to stop. GDB only presents one hardware watchpoint
1857 hit at a time as the reason for stopping, and all the other hits
1858 are presented later, one after the other, each time the user
1859 requests the execution to be resumed. Execution is not resumed
1860 for the threads still having pending hit event stored in
1861 LWP_INFO->STATUS. While the watchpoint is already removed from
1862 the inferior on the first stop the thread hit event is kept being
1863 reported from its cached value by linux_nat_stopped_data_address
1864 until the real thread resume happens after the watchpoint gets
1865 presented and thus its LWP_INFO->STATUS gets reset.
1866
1867 Therefore the hardware watchpoint hit can get safely reset on the
1868 watchpoint removal from inferior. */
1869
1870 static void
1871 update_watchpoint (struct watchpoint *b, int reparse)
1872 {
1873 int within_current_scope;
1874 struct frame_id saved_frame_id;
1875 int frame_saved;
1876
1877 /* If this is a local watchpoint, we only want to check if the
1878 watchpoint frame is in scope if the current thread is the thread
1879 that was used to create the watchpoint. */
1880 if (!watchpoint_in_thread_scope (b))
1881 return;
1882
1883 if (b->disposition == disp_del_at_next_stop)
1884 return;
1885
1886 frame_saved = 0;
1887
1888 /* Determine if the watchpoint is within scope. */
1889 if (b->exp_valid_block == NULL)
1890 within_current_scope = 1;
1891 else
1892 {
1893 struct frame_info *fi = get_current_frame ();
1894 struct gdbarch *frame_arch = get_frame_arch (fi);
1895 CORE_ADDR frame_pc = get_frame_pc (fi);
1896
1897 /* If we're at a point where the stack has been destroyed
1898 (e.g. in a function epilogue), unwinding may not work
1899 properly. Do not attempt to recreate locations at this
1900 point. See similar comments in watchpoint_check. */
1901 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1902 return;
1903
1904 /* Save the current frame's ID so we can restore it after
1905 evaluating the watchpoint expression on its own frame. */
1906 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1907 took a frame parameter, so that we didn't have to change the
1908 selected frame. */
1909 frame_saved = 1;
1910 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1911
1912 fi = frame_find_by_id (b->watchpoint_frame);
1913 within_current_scope = (fi != NULL);
1914 if (within_current_scope)
1915 select_frame (fi);
1916 }
1917
1918 /* We don't free locations. They are stored in the bp_location array
1919 and update_global_location_list will eventually delete them and
1920 remove breakpoints if needed. */
1921 b->loc = NULL;
1922
1923 if (within_current_scope && reparse)
1924 {
1925 const char *s;
1926
1927 b->exp.reset ();
1928 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1929 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1930 /* If the meaning of expression itself changed, the old value is
1931 no longer relevant. We don't want to report a watchpoint hit
1932 to the user when the old value and the new value may actually
1933 be completely different objects. */
1934 value_free (b->val);
1935 b->val = NULL;
1936 b->val_valid = 0;
1937
1938 /* Note that unlike with breakpoints, the watchpoint's condition
1939 expression is stored in the breakpoint object, not in the
1940 locations (re)created below. */
1941 if (b->cond_string != NULL)
1942 {
1943 b->cond_exp.reset ();
1944
1945 s = b->cond_string;
1946 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1947 }
1948 }
1949
1950 /* If we failed to parse the expression, for example because
1951 it refers to a global variable in a not-yet-loaded shared library,
1952 don't try to insert watchpoint. We don't automatically delete
1953 such watchpoint, though, since failure to parse expression
1954 is different from out-of-scope watchpoint. */
1955 if (!target_has_execution)
1956 {
1957 /* Without execution, memory can't change. No use to try and
1958 set watchpoint locations. The watchpoint will be reset when
1959 the target gains execution, through breakpoint_re_set. */
1960 if (!can_use_hw_watchpoints)
1961 {
1962 if (b->ops->works_in_software_mode (b))
1963 b->type = bp_watchpoint;
1964 else
1965 error (_("Can't set read/access watchpoint when "
1966 "hardware watchpoints are disabled."));
1967 }
1968 }
1969 else if (within_current_scope && b->exp)
1970 {
1971 int pc = 0;
1972 struct value *val_chain, *v, *result, *next;
1973 struct program_space *frame_pspace;
1974
1975 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1976
1977 /* Avoid setting b->val if it's already set. The meaning of
1978 b->val is 'the last value' user saw, and we should update
1979 it only if we reported that last value to user. As it
1980 happens, the code that reports it updates b->val directly.
1981 We don't keep track of the memory value for masked
1982 watchpoints. */
1983 if (!b->val_valid && !is_masked_watchpoint (b))
1984 {
1985 if (b->val_bitsize != 0)
1986 {
1987 v = extract_bitfield_from_watchpoint_value (b, v);
1988 if (v != NULL)
1989 release_value (v);
1990 }
1991 b->val = v;
1992 b->val_valid = 1;
1993 }
1994
1995 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1996
1997 /* Look at each value on the value chain. */
1998 for (v = val_chain; v; v = value_next (v))
1999 {
2000 /* If it's a memory location, and GDB actually needed
2001 its contents to evaluate the expression, then we
2002 must watch it. If the first value returned is
2003 still lazy, that means an error occurred reading it;
2004 watch it anyway in case it becomes readable. */
2005 if (VALUE_LVAL (v) == lval_memory
2006 && (v == val_chain || ! value_lazy (v)))
2007 {
2008 struct type *vtype = check_typedef (value_type (v));
2009
2010 /* We only watch structs and arrays if user asked
2011 for it explicitly, never if they just happen to
2012 appear in the middle of some value chain. */
2013 if (v == result
2014 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
2015 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
2016 {
2017 CORE_ADDR addr;
2018 enum target_hw_bp_type type;
2019 struct bp_location *loc, **tmp;
2020 int bitpos = 0, bitsize = 0;
2021
2022 if (value_bitsize (v) != 0)
2023 {
2024 /* Extract the bit parameters out from the bitfield
2025 sub-expression. */
2026 bitpos = value_bitpos (v);
2027 bitsize = value_bitsize (v);
2028 }
2029 else if (v == result && b->val_bitsize != 0)
2030 {
2031 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2032 lvalue whose bit parameters are saved in the fields
2033 VAL_BITPOS and VAL_BITSIZE. */
2034 bitpos = b->val_bitpos;
2035 bitsize = b->val_bitsize;
2036 }
2037
2038 addr = value_address (v);
2039 if (bitsize != 0)
2040 {
2041 /* Skip the bytes that don't contain the bitfield. */
2042 addr += bitpos / 8;
2043 }
2044
2045 type = hw_write;
2046 if (b->type == bp_read_watchpoint)
2047 type = hw_read;
2048 else if (b->type == bp_access_watchpoint)
2049 type = hw_access;
2050
2051 loc = allocate_bp_location (b);
2052 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
2053 ;
2054 *tmp = loc;
2055 loc->gdbarch = get_type_arch (value_type (v));
2056
2057 loc->pspace = frame_pspace;
2058 loc->address = addr;
2059
2060 if (bitsize != 0)
2061 {
2062 /* Just cover the bytes that make up the bitfield. */
2063 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2064 }
2065 else
2066 loc->length = TYPE_LENGTH (value_type (v));
2067
2068 loc->watchpoint_type = type;
2069 }
2070 }
2071 }
2072
2073 /* Change the type of breakpoint between hardware assisted or
2074 an ordinary watchpoint depending on the hardware support
2075 and free hardware slots. REPARSE is set when the inferior
2076 is started. */
2077 if (reparse)
2078 {
2079 int reg_cnt;
2080 enum bp_loc_type loc_type;
2081 struct bp_location *bl;
2082
2083 reg_cnt = can_use_hardware_watchpoint (val_chain);
2084
2085 if (reg_cnt)
2086 {
2087 int i, target_resources_ok, other_type_used;
2088 enum bptype type;
2089
2090 /* Use an exact watchpoint when there's only one memory region to be
2091 watched, and only one debug register is needed to watch it. */
2092 b->exact = target_exact_watchpoints && reg_cnt == 1;
2093
2094 /* We need to determine how many resources are already
2095 used for all other hardware watchpoints plus this one
2096 to see if we still have enough resources to also fit
2097 this watchpoint in as well. */
2098
2099 /* If this is a software watchpoint, we try to turn it
2100 to a hardware one -- count resources as if B was of
2101 hardware watchpoint type. */
2102 type = b->type;
2103 if (type == bp_watchpoint)
2104 type = bp_hardware_watchpoint;
2105
2106 /* This watchpoint may or may not have been placed on
2107 the list yet at this point (it won't be in the list
2108 if we're trying to create it for the first time,
2109 through watch_command), so always account for it
2110 manually. */
2111
2112 /* Count resources used by all watchpoints except B. */
2113 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2114
2115 /* Add in the resources needed for B. */
2116 i += hw_watchpoint_use_count (b);
2117
2118 target_resources_ok
2119 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2120 if (target_resources_ok <= 0)
2121 {
2122 int sw_mode = b->ops->works_in_software_mode (b);
2123
2124 if (target_resources_ok == 0 && !sw_mode)
2125 error (_("Target does not support this type of "
2126 "hardware watchpoint."));
2127 else if (target_resources_ok < 0 && !sw_mode)
2128 error (_("There are not enough available hardware "
2129 "resources for this watchpoint."));
2130
2131 /* Downgrade to software watchpoint. */
2132 b->type = bp_watchpoint;
2133 }
2134 else
2135 {
2136 /* If this was a software watchpoint, we've just
2137 found we have enough resources to turn it to a
2138 hardware watchpoint. Otherwise, this is a
2139 nop. */
2140 b->type = type;
2141 }
2142 }
2143 else if (!b->ops->works_in_software_mode (b))
2144 {
2145 if (!can_use_hw_watchpoints)
2146 error (_("Can't set read/access watchpoint when "
2147 "hardware watchpoints are disabled."));
2148 else
2149 error (_("Expression cannot be implemented with "
2150 "read/access watchpoint."));
2151 }
2152 else
2153 b->type = bp_watchpoint;
2154
2155 loc_type = (b->type == bp_watchpoint? bp_loc_other
2156 : bp_loc_hardware_watchpoint);
2157 for (bl = b->loc; bl; bl = bl->next)
2158 bl->loc_type = loc_type;
2159 }
2160
2161 for (v = val_chain; v; v = next)
2162 {
2163 next = value_next (v);
2164 if (v != b->val)
2165 value_free (v);
2166 }
2167
2168 /* If a software watchpoint is not watching any memory, then the
2169 above left it without any location set up. But,
2170 bpstat_stop_status requires a location to be able to report
2171 stops, so make sure there's at least a dummy one. */
2172 if (b->type == bp_watchpoint && b->loc == NULL)
2173 software_watchpoint_add_no_memory_location (b, frame_pspace);
2174 }
2175 else if (!within_current_scope)
2176 {
2177 printf_filtered (_("\
2178 Watchpoint %d deleted because the program has left the block\n\
2179 in which its expression is valid.\n"),
2180 b->number);
2181 watchpoint_del_at_next_stop (b);
2182 }
2183
2184 /* Restore the selected frame. */
2185 if (frame_saved)
2186 select_frame (frame_find_by_id (saved_frame_id));
2187 }
2188
2189
2190 /* Returns 1 iff breakpoint location should be
2191 inserted in the inferior. We don't differentiate the type of BL's owner
2192 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2193 breakpoint_ops is not defined, because in insert_bp_location,
2194 tracepoint's insert_location will not be called. */
2195 static int
2196 should_be_inserted (struct bp_location *bl)
2197 {
2198 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2199 return 0;
2200
2201 if (bl->owner->disposition == disp_del_at_next_stop)
2202 return 0;
2203
2204 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2205 return 0;
2206
2207 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2208 return 0;
2209
2210 /* This is set for example, when we're attached to the parent of a
2211 vfork, and have detached from the child. The child is running
2212 free, and we expect it to do an exec or exit, at which point the
2213 OS makes the parent schedulable again (and the target reports
2214 that the vfork is done). Until the child is done with the shared
2215 memory region, do not insert breakpoints in the parent, otherwise
2216 the child could still trip on the parent's breakpoints. Since
2217 the parent is blocked anyway, it won't miss any breakpoint. */
2218 if (bl->pspace->breakpoints_not_allowed)
2219 return 0;
2220
2221 /* Don't insert a breakpoint if we're trying to step past its
2222 location, except if the breakpoint is a single-step breakpoint,
2223 and the breakpoint's thread is the thread which is stepping past
2224 a breakpoint. */
2225 if ((bl->loc_type == bp_loc_software_breakpoint
2226 || bl->loc_type == bp_loc_hardware_breakpoint)
2227 && stepping_past_instruction_at (bl->pspace->aspace,
2228 bl->address)
2229 /* The single-step breakpoint may be inserted at the location
2230 we're trying to step if the instruction branches to itself.
2231 However, the instruction won't be executed at all and it may
2232 break the semantics of the instruction, for example, the
2233 instruction is a conditional branch or updates some flags.
2234 We can't fix it unless GDB is able to emulate the instruction
2235 or switch to displaced stepping. */
2236 && !(bl->owner->type == bp_single_step
2237 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2238 {
2239 if (debug_infrun)
2240 {
2241 fprintf_unfiltered (gdb_stdlog,
2242 "infrun: skipping breakpoint: "
2243 "stepping past insn at: %s\n",
2244 paddress (bl->gdbarch, bl->address));
2245 }
2246 return 0;
2247 }
2248
2249 /* Don't insert watchpoints if we're trying to step past the
2250 instruction that triggered one. */
2251 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2252 && stepping_past_nonsteppable_watchpoint ())
2253 {
2254 if (debug_infrun)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "infrun: stepping past non-steppable watchpoint. "
2258 "skipping watchpoint at %s:%d\n",
2259 paddress (bl->gdbarch, bl->address),
2260 bl->length);
2261 }
2262 return 0;
2263 }
2264
2265 return 1;
2266 }
2267
2268 /* Same as should_be_inserted but does the check assuming
2269 that the location is not duplicated. */
2270
2271 static int
2272 unduplicated_should_be_inserted (struct bp_location *bl)
2273 {
2274 int result;
2275 const int save_duplicate = bl->duplicate;
2276
2277 bl->duplicate = 0;
2278 result = should_be_inserted (bl);
2279 bl->duplicate = save_duplicate;
2280 return result;
2281 }
2282
2283 /* Parses a conditional described by an expression COND into an
2284 agent expression bytecode suitable for evaluation
2285 by the bytecode interpreter. Return NULL if there was
2286 any error during parsing. */
2287
2288 static agent_expr_up
2289 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2290 {
2291 if (cond == NULL)
2292 return NULL;
2293
2294 agent_expr_up aexpr;
2295
2296 /* We don't want to stop processing, so catch any errors
2297 that may show up. */
2298 TRY
2299 {
2300 aexpr = gen_eval_for_expr (scope, cond);
2301 }
2302
2303 CATCH (ex, RETURN_MASK_ERROR)
2304 {
2305 /* If we got here, it means the condition could not be parsed to a valid
2306 bytecode expression and thus can't be evaluated on the target's side.
2307 It's no use iterating through the conditions. */
2308 }
2309 END_CATCH
2310
2311 /* We have a valid agent expression. */
2312 return aexpr;
2313 }
2314
2315 /* Based on location BL, create a list of breakpoint conditions to be
2316 passed on to the target. If we have duplicated locations with different
2317 conditions, we will add such conditions to the list. The idea is that the
2318 target will evaluate the list of conditions and will only notify GDB when
2319 one of them is true. */
2320
2321 static void
2322 build_target_condition_list (struct bp_location *bl)
2323 {
2324 struct bp_location **locp = NULL, **loc2p;
2325 int null_condition_or_parse_error = 0;
2326 int modified = bl->needs_update;
2327 struct bp_location *loc;
2328
2329 /* Release conditions left over from a previous insert. */
2330 bl->target_info.conditions.clear ();
2331
2332 /* This is only meaningful if the target is
2333 evaluating conditions and if the user has
2334 opted for condition evaluation on the target's
2335 side. */
2336 if (gdb_evaluates_breakpoint_condition_p ()
2337 || !target_supports_evaluation_of_breakpoint_conditions ())
2338 return;
2339
2340 /* Do a first pass to check for locations with no assigned
2341 conditions or conditions that fail to parse to a valid agent expression
2342 bytecode. If any of these happen, then it's no use to send conditions
2343 to the target since this location will always trigger and generate a
2344 response back to GDB. */
2345 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2346 {
2347 loc = (*loc2p);
2348 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2349 {
2350 if (modified)
2351 {
2352 /* Re-parse the conditions since something changed. In that
2353 case we already freed the condition bytecodes (see
2354 force_breakpoint_reinsertion). We just
2355 need to parse the condition to bytecodes again. */
2356 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2357 loc->cond.get ());
2358 }
2359
2360 /* If we have a NULL bytecode expression, it means something
2361 went wrong or we have a null condition expression. */
2362 if (!loc->cond_bytecode)
2363 {
2364 null_condition_or_parse_error = 1;
2365 break;
2366 }
2367 }
2368 }
2369
2370 /* If any of these happened, it means we will have to evaluate the conditions
2371 for the location's address on gdb's side. It is no use keeping bytecodes
2372 for all the other duplicate locations, thus we free all of them here.
2373
2374 This is so we have a finer control over which locations' conditions are
2375 being evaluated by GDB or the remote stub. */
2376 if (null_condition_or_parse_error)
2377 {
2378 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2379 {
2380 loc = (*loc2p);
2381 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2382 {
2383 /* Only go as far as the first NULL bytecode is
2384 located. */
2385 if (!loc->cond_bytecode)
2386 return;
2387
2388 loc->cond_bytecode.reset ();
2389 }
2390 }
2391 }
2392
2393 /* No NULL conditions or failed bytecode generation. Build a condition list
2394 for this location's address. */
2395 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2396 {
2397 loc = (*loc2p);
2398 if (loc->cond
2399 && is_breakpoint (loc->owner)
2400 && loc->pspace->num == bl->pspace->num
2401 && loc->owner->enable_state == bp_enabled
2402 && loc->enabled)
2403 {
2404 /* Add the condition to the vector. This will be used later
2405 to send the conditions to the target. */
2406 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2407 }
2408 }
2409
2410 return;
2411 }
2412
2413 /* Parses a command described by string CMD into an agent expression
2414 bytecode suitable for evaluation by the bytecode interpreter.
2415 Return NULL if there was any error during parsing. */
2416
2417 static agent_expr_up
2418 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2419 {
2420 struct cleanup *old_cleanups = 0;
2421 struct expression **argvec;
2422 const char *cmdrest;
2423 const char *format_start, *format_end;
2424 struct format_piece *fpieces;
2425 int nargs;
2426 struct gdbarch *gdbarch = get_current_arch ();
2427
2428 if (cmd == NULL)
2429 return NULL;
2430
2431 cmdrest = cmd;
2432
2433 if (*cmdrest == ',')
2434 ++cmdrest;
2435 cmdrest = skip_spaces_const (cmdrest);
2436
2437 if (*cmdrest++ != '"')
2438 error (_("No format string following the location"));
2439
2440 format_start = cmdrest;
2441
2442 fpieces = parse_format_string (&cmdrest);
2443
2444 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2445
2446 format_end = cmdrest;
2447
2448 if (*cmdrest++ != '"')
2449 error (_("Bad format string, non-terminated '\"'."));
2450
2451 cmdrest = skip_spaces_const (cmdrest);
2452
2453 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2454 error (_("Invalid argument syntax"));
2455
2456 if (*cmdrest == ',')
2457 cmdrest++;
2458 cmdrest = skip_spaces_const (cmdrest);
2459
2460 /* For each argument, make an expression. */
2461
2462 argvec = (struct expression **) alloca (strlen (cmd)
2463 * sizeof (struct expression *));
2464
2465 nargs = 0;
2466 while (*cmdrest != '\0')
2467 {
2468 const char *cmd1;
2469
2470 cmd1 = cmdrest;
2471 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2472 argvec[nargs++] = expr.release ();
2473 cmdrest = cmd1;
2474 if (*cmdrest == ',')
2475 ++cmdrest;
2476 }
2477
2478 agent_expr_up aexpr;
2479
2480 /* We don't want to stop processing, so catch any errors
2481 that may show up. */
2482 TRY
2483 {
2484 aexpr = gen_printf (scope, gdbarch, 0, 0,
2485 format_start, format_end - format_start,
2486 fpieces, nargs, argvec);
2487 }
2488 CATCH (ex, RETURN_MASK_ERROR)
2489 {
2490 /* If we got here, it means the command could not be parsed to a valid
2491 bytecode expression and thus can't be evaluated on the target's side.
2492 It's no use iterating through the other commands. */
2493 }
2494 END_CATCH
2495
2496 do_cleanups (old_cleanups);
2497
2498 /* We have a valid agent expression, return it. */
2499 return aexpr;
2500 }
2501
2502 /* Based on location BL, create a list of breakpoint commands to be
2503 passed on to the target. If we have duplicated locations with
2504 different commands, we will add any such to the list. */
2505
2506 static void
2507 build_target_command_list (struct bp_location *bl)
2508 {
2509 struct bp_location **locp = NULL, **loc2p;
2510 int null_command_or_parse_error = 0;
2511 int modified = bl->needs_update;
2512 struct bp_location *loc;
2513
2514 /* Clear commands left over from a previous insert. */
2515 bl->target_info.tcommands.clear ();
2516
2517 if (!target_can_run_breakpoint_commands ())
2518 return;
2519
2520 /* For now, limit to agent-style dprintf breakpoints. */
2521 if (dprintf_style != dprintf_style_agent)
2522 return;
2523
2524 /* For now, if we have any duplicate location that isn't a dprintf,
2525 don't install the target-side commands, as that would make the
2526 breakpoint not be reported to the core, and we'd lose
2527 control. */
2528 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2529 {
2530 loc = (*loc2p);
2531 if (is_breakpoint (loc->owner)
2532 && loc->pspace->num == bl->pspace->num
2533 && loc->owner->type != bp_dprintf)
2534 return;
2535 }
2536
2537 /* Do a first pass to check for locations with no assigned
2538 conditions or conditions that fail to parse to a valid agent expression
2539 bytecode. If any of these happen, then it's no use to send conditions
2540 to the target since this location will always trigger and generate a
2541 response back to GDB. */
2542 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2543 {
2544 loc = (*loc2p);
2545 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2546 {
2547 if (modified)
2548 {
2549 /* Re-parse the commands since something changed. In that
2550 case we already freed the command bytecodes (see
2551 force_breakpoint_reinsertion). We just
2552 need to parse the command to bytecodes again. */
2553 loc->cmd_bytecode
2554 = parse_cmd_to_aexpr (bl->address,
2555 loc->owner->extra_string);
2556 }
2557
2558 /* If we have a NULL bytecode expression, it means something
2559 went wrong or we have a null command expression. */
2560 if (!loc->cmd_bytecode)
2561 {
2562 null_command_or_parse_error = 1;
2563 break;
2564 }
2565 }
2566 }
2567
2568 /* If anything failed, then we're not doing target-side commands,
2569 and so clean up. */
2570 if (null_command_or_parse_error)
2571 {
2572 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2573 {
2574 loc = (*loc2p);
2575 if (is_breakpoint (loc->owner)
2576 && loc->pspace->num == bl->pspace->num)
2577 {
2578 /* Only go as far as the first NULL bytecode is
2579 located. */
2580 if (loc->cmd_bytecode == NULL)
2581 return;
2582
2583 loc->cmd_bytecode.reset ();
2584 }
2585 }
2586 }
2587
2588 /* No NULL commands or failed bytecode generation. Build a command list
2589 for this location's address. */
2590 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2591 {
2592 loc = (*loc2p);
2593 if (loc->owner->extra_string
2594 && is_breakpoint (loc->owner)
2595 && loc->pspace->num == bl->pspace->num
2596 && loc->owner->enable_state == bp_enabled
2597 && loc->enabled)
2598 {
2599 /* Add the command to the vector. This will be used later
2600 to send the commands to the target. */
2601 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2602 }
2603 }
2604
2605 bl->target_info.persist = 0;
2606 /* Maybe flag this location as persistent. */
2607 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2608 bl->target_info.persist = 1;
2609 }
2610
2611 /* Return the kind of breakpoint on address *ADDR. Get the kind
2612 of breakpoint according to ADDR except single-step breakpoint.
2613 Get the kind of single-step breakpoint according to the current
2614 registers state. */
2615
2616 static int
2617 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2618 {
2619 if (bl->owner->type == bp_single_step)
2620 {
2621 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2622 struct regcache *regcache;
2623
2624 regcache = get_thread_regcache (thr->ptid);
2625
2626 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2627 regcache, addr);
2628 }
2629 else
2630 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2631 }
2632
2633 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2634 location. Any error messages are printed to TMP_ERROR_STREAM; and
2635 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2636 Returns 0 for success, 1 if the bp_location type is not supported or
2637 -1 for failure.
2638
2639 NOTE drow/2003-09-09: This routine could be broken down to an
2640 object-style method for each breakpoint or catchpoint type. */
2641 static int
2642 insert_bp_location (struct bp_location *bl,
2643 struct ui_file *tmp_error_stream,
2644 int *disabled_breaks,
2645 int *hw_breakpoint_error,
2646 int *hw_bp_error_explained_already)
2647 {
2648 enum errors bp_err = GDB_NO_ERROR;
2649 const char *bp_err_message = NULL;
2650
2651 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2652 return 0;
2653
2654 /* Note we don't initialize bl->target_info, as that wipes out
2655 the breakpoint location's shadow_contents if the breakpoint
2656 is still inserted at that location. This in turn breaks
2657 target_read_memory which depends on these buffers when
2658 a memory read is requested at the breakpoint location:
2659 Once the target_info has been wiped, we fail to see that
2660 we have a breakpoint inserted at that address and thus
2661 read the breakpoint instead of returning the data saved in
2662 the breakpoint location's shadow contents. */
2663 bl->target_info.reqstd_address = bl->address;
2664 bl->target_info.placed_address_space = bl->pspace->aspace;
2665 bl->target_info.length = bl->length;
2666
2667 /* When working with target-side conditions, we must pass all the conditions
2668 for the same breakpoint address down to the target since GDB will not
2669 insert those locations. With a list of breakpoint conditions, the target
2670 can decide when to stop and notify GDB. */
2671
2672 if (is_breakpoint (bl->owner))
2673 {
2674 build_target_condition_list (bl);
2675 build_target_command_list (bl);
2676 /* Reset the modification marker. */
2677 bl->needs_update = 0;
2678 }
2679
2680 if (bl->loc_type == bp_loc_software_breakpoint
2681 || bl->loc_type == bp_loc_hardware_breakpoint)
2682 {
2683 if (bl->owner->type != bp_hardware_breakpoint)
2684 {
2685 /* If the explicitly specified breakpoint type
2686 is not hardware breakpoint, check the memory map to see
2687 if the breakpoint address is in read only memory or not.
2688
2689 Two important cases are:
2690 - location type is not hardware breakpoint, memory
2691 is readonly. We change the type of the location to
2692 hardware breakpoint.
2693 - location type is hardware breakpoint, memory is
2694 read-write. This means we've previously made the
2695 location hardware one, but then the memory map changed,
2696 so we undo.
2697
2698 When breakpoints are removed, remove_breakpoints will use
2699 location types we've just set here, the only possible
2700 problem is that memory map has changed during running
2701 program, but it's not going to work anyway with current
2702 gdb. */
2703 struct mem_region *mr
2704 = lookup_mem_region (bl->target_info.reqstd_address);
2705
2706 if (mr)
2707 {
2708 if (automatic_hardware_breakpoints)
2709 {
2710 enum bp_loc_type new_type;
2711
2712 if (mr->attrib.mode != MEM_RW)
2713 new_type = bp_loc_hardware_breakpoint;
2714 else
2715 new_type = bp_loc_software_breakpoint;
2716
2717 if (new_type != bl->loc_type)
2718 {
2719 static int said = 0;
2720
2721 bl->loc_type = new_type;
2722 if (!said)
2723 {
2724 fprintf_filtered (gdb_stdout,
2725 _("Note: automatically using "
2726 "hardware breakpoints for "
2727 "read-only addresses.\n"));
2728 said = 1;
2729 }
2730 }
2731 }
2732 else if (bl->loc_type == bp_loc_software_breakpoint
2733 && mr->attrib.mode != MEM_RW)
2734 {
2735 fprintf_unfiltered (tmp_error_stream,
2736 _("Cannot insert breakpoint %d.\n"
2737 "Cannot set software breakpoint "
2738 "at read-only address %s\n"),
2739 bl->owner->number,
2740 paddress (bl->gdbarch, bl->address));
2741 return 1;
2742 }
2743 }
2744 }
2745
2746 /* First check to see if we have to handle an overlay. */
2747 if (overlay_debugging == ovly_off
2748 || bl->section == NULL
2749 || !(section_is_overlay (bl->section)))
2750 {
2751 /* No overlay handling: just set the breakpoint. */
2752 TRY
2753 {
2754 int val;
2755
2756 val = bl->owner->ops->insert_location (bl);
2757 if (val)
2758 bp_err = GENERIC_ERROR;
2759 }
2760 CATCH (e, RETURN_MASK_ALL)
2761 {
2762 bp_err = e.error;
2763 bp_err_message = e.message;
2764 }
2765 END_CATCH
2766 }
2767 else
2768 {
2769 /* This breakpoint is in an overlay section.
2770 Shall we set a breakpoint at the LMA? */
2771 if (!overlay_events_enabled)
2772 {
2773 /* Yes -- overlay event support is not active,
2774 so we must try to set a breakpoint at the LMA.
2775 This will not work for a hardware breakpoint. */
2776 if (bl->loc_type == bp_loc_hardware_breakpoint)
2777 warning (_("hardware breakpoint %d not supported in overlay!"),
2778 bl->owner->number);
2779 else
2780 {
2781 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2782 bl->section);
2783 /* Set a software (trap) breakpoint at the LMA. */
2784 bl->overlay_target_info = bl->target_info;
2785 bl->overlay_target_info.reqstd_address = addr;
2786
2787 /* No overlay handling: just set the breakpoint. */
2788 TRY
2789 {
2790 int val;
2791
2792 bl->overlay_target_info.kind
2793 = breakpoint_kind (bl, &addr);
2794 bl->overlay_target_info.placed_address = addr;
2795 val = target_insert_breakpoint (bl->gdbarch,
2796 &bl->overlay_target_info);
2797 if (val)
2798 bp_err = GENERIC_ERROR;
2799 }
2800 CATCH (e, RETURN_MASK_ALL)
2801 {
2802 bp_err = e.error;
2803 bp_err_message = e.message;
2804 }
2805 END_CATCH
2806
2807 if (bp_err != GDB_NO_ERROR)
2808 fprintf_unfiltered (tmp_error_stream,
2809 "Overlay breakpoint %d "
2810 "failed: in ROM?\n",
2811 bl->owner->number);
2812 }
2813 }
2814 /* Shall we set a breakpoint at the VMA? */
2815 if (section_is_mapped (bl->section))
2816 {
2817 /* Yes. This overlay section is mapped into memory. */
2818 TRY
2819 {
2820 int val;
2821
2822 val = bl->owner->ops->insert_location (bl);
2823 if (val)
2824 bp_err = GENERIC_ERROR;
2825 }
2826 CATCH (e, RETURN_MASK_ALL)
2827 {
2828 bp_err = e.error;
2829 bp_err_message = e.message;
2830 }
2831 END_CATCH
2832 }
2833 else
2834 {
2835 /* No. This breakpoint will not be inserted.
2836 No error, but do not mark the bp as 'inserted'. */
2837 return 0;
2838 }
2839 }
2840
2841 if (bp_err != GDB_NO_ERROR)
2842 {
2843 /* Can't set the breakpoint. */
2844
2845 /* In some cases, we might not be able to insert a
2846 breakpoint in a shared library that has already been
2847 removed, but we have not yet processed the shlib unload
2848 event. Unfortunately, some targets that implement
2849 breakpoint insertion themselves can't tell why the
2850 breakpoint insertion failed (e.g., the remote target
2851 doesn't define error codes), so we must treat generic
2852 errors as memory errors. */
2853 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2854 && bl->loc_type == bp_loc_software_breakpoint
2855 && (solib_name_from_address (bl->pspace, bl->address)
2856 || shared_objfile_contains_address_p (bl->pspace,
2857 bl->address)))
2858 {
2859 /* See also: disable_breakpoints_in_shlibs. */
2860 bl->shlib_disabled = 1;
2861 observer_notify_breakpoint_modified (bl->owner);
2862 if (!*disabled_breaks)
2863 {
2864 fprintf_unfiltered (tmp_error_stream,
2865 "Cannot insert breakpoint %d.\n",
2866 bl->owner->number);
2867 fprintf_unfiltered (tmp_error_stream,
2868 "Temporarily disabling shared "
2869 "library breakpoints:\n");
2870 }
2871 *disabled_breaks = 1;
2872 fprintf_unfiltered (tmp_error_stream,
2873 "breakpoint #%d\n", bl->owner->number);
2874 return 0;
2875 }
2876 else
2877 {
2878 if (bl->loc_type == bp_loc_hardware_breakpoint)
2879 {
2880 *hw_breakpoint_error = 1;
2881 *hw_bp_error_explained_already = bp_err_message != NULL;
2882 fprintf_unfiltered (tmp_error_stream,
2883 "Cannot insert hardware breakpoint %d%s",
2884 bl->owner->number, bp_err_message ? ":" : ".\n");
2885 if (bp_err_message != NULL)
2886 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2887 }
2888 else
2889 {
2890 if (bp_err_message == NULL)
2891 {
2892 char *message
2893 = memory_error_message (TARGET_XFER_E_IO,
2894 bl->gdbarch, bl->address);
2895 struct cleanup *old_chain = make_cleanup (xfree, message);
2896
2897 fprintf_unfiltered (tmp_error_stream,
2898 "Cannot insert breakpoint %d.\n"
2899 "%s\n",
2900 bl->owner->number, message);
2901 do_cleanups (old_chain);
2902 }
2903 else
2904 {
2905 fprintf_unfiltered (tmp_error_stream,
2906 "Cannot insert breakpoint %d: %s\n",
2907 bl->owner->number,
2908 bp_err_message);
2909 }
2910 }
2911 return 1;
2912
2913 }
2914 }
2915 else
2916 bl->inserted = 1;
2917
2918 return 0;
2919 }
2920
2921 else if (bl->loc_type == bp_loc_hardware_watchpoint
2922 /* NOTE drow/2003-09-08: This state only exists for removing
2923 watchpoints. It's not clear that it's necessary... */
2924 && bl->owner->disposition != disp_del_at_next_stop)
2925 {
2926 int val;
2927
2928 gdb_assert (bl->owner->ops != NULL
2929 && bl->owner->ops->insert_location != NULL);
2930
2931 val = bl->owner->ops->insert_location (bl);
2932
2933 /* If trying to set a read-watchpoint, and it turns out it's not
2934 supported, try emulating one with an access watchpoint. */
2935 if (val == 1 && bl->watchpoint_type == hw_read)
2936 {
2937 struct bp_location *loc, **loc_temp;
2938
2939 /* But don't try to insert it, if there's already another
2940 hw_access location that would be considered a duplicate
2941 of this one. */
2942 ALL_BP_LOCATIONS (loc, loc_temp)
2943 if (loc != bl
2944 && loc->watchpoint_type == hw_access
2945 && watchpoint_locations_match (bl, loc))
2946 {
2947 bl->duplicate = 1;
2948 bl->inserted = 1;
2949 bl->target_info = loc->target_info;
2950 bl->watchpoint_type = hw_access;
2951 val = 0;
2952 break;
2953 }
2954
2955 if (val == 1)
2956 {
2957 bl->watchpoint_type = hw_access;
2958 val = bl->owner->ops->insert_location (bl);
2959
2960 if (val)
2961 /* Back to the original value. */
2962 bl->watchpoint_type = hw_read;
2963 }
2964 }
2965
2966 bl->inserted = (val == 0);
2967 }
2968
2969 else if (bl->owner->type == bp_catchpoint)
2970 {
2971 int val;
2972
2973 gdb_assert (bl->owner->ops != NULL
2974 && bl->owner->ops->insert_location != NULL);
2975
2976 val = bl->owner->ops->insert_location (bl);
2977 if (val)
2978 {
2979 bl->owner->enable_state = bp_disabled;
2980
2981 if (val == 1)
2982 warning (_("\
2983 Error inserting catchpoint %d: Your system does not support this type\n\
2984 of catchpoint."), bl->owner->number);
2985 else
2986 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2987 }
2988
2989 bl->inserted = (val == 0);
2990
2991 /* We've already printed an error message if there was a problem
2992 inserting this catchpoint, and we've disabled the catchpoint,
2993 so just return success. */
2994 return 0;
2995 }
2996
2997 return 0;
2998 }
2999
3000 /* This function is called when program space PSPACE is about to be
3001 deleted. It takes care of updating breakpoints to not reference
3002 PSPACE anymore. */
3003
3004 void
3005 breakpoint_program_space_exit (struct program_space *pspace)
3006 {
3007 struct breakpoint *b, *b_temp;
3008 struct bp_location *loc, **loc_temp;
3009
3010 /* Remove any breakpoint that was set through this program space. */
3011 ALL_BREAKPOINTS_SAFE (b, b_temp)
3012 {
3013 if (b->pspace == pspace)
3014 delete_breakpoint (b);
3015 }
3016
3017 /* Breakpoints set through other program spaces could have locations
3018 bound to PSPACE as well. Remove those. */
3019 ALL_BP_LOCATIONS (loc, loc_temp)
3020 {
3021 struct bp_location *tmp;
3022
3023 if (loc->pspace == pspace)
3024 {
3025 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
3026 if (loc->owner->loc == loc)
3027 loc->owner->loc = loc->next;
3028 else
3029 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3030 if (tmp->next == loc)
3031 {
3032 tmp->next = loc->next;
3033 break;
3034 }
3035 }
3036 }
3037
3038 /* Now update the global location list to permanently delete the
3039 removed locations above. */
3040 update_global_location_list (UGLL_DONT_INSERT);
3041 }
3042
3043 /* Make sure all breakpoints are inserted in inferior.
3044 Throws exception on any error.
3045 A breakpoint that is already inserted won't be inserted
3046 again, so calling this function twice is safe. */
3047 void
3048 insert_breakpoints (void)
3049 {
3050 struct breakpoint *bpt;
3051
3052 ALL_BREAKPOINTS (bpt)
3053 if (is_hardware_watchpoint (bpt))
3054 {
3055 struct watchpoint *w = (struct watchpoint *) bpt;
3056
3057 update_watchpoint (w, 0 /* don't reparse. */);
3058 }
3059
3060 /* Updating watchpoints creates new locations, so update the global
3061 location list. Explicitly tell ugll to insert locations and
3062 ignore breakpoints_always_inserted_mode. */
3063 update_global_location_list (UGLL_INSERT);
3064 }
3065
3066 /* Invoke CALLBACK for each of bp_location. */
3067
3068 void
3069 iterate_over_bp_locations (walk_bp_location_callback callback)
3070 {
3071 struct bp_location *loc, **loc_tmp;
3072
3073 ALL_BP_LOCATIONS (loc, loc_tmp)
3074 {
3075 callback (loc, NULL);
3076 }
3077 }
3078
3079 /* This is used when we need to synch breakpoint conditions between GDB and the
3080 target. It is the case with deleting and disabling of breakpoints when using
3081 always-inserted mode. */
3082
3083 static void
3084 update_inserted_breakpoint_locations (void)
3085 {
3086 struct bp_location *bl, **blp_tmp;
3087 int error_flag = 0;
3088 int val = 0;
3089 int disabled_breaks = 0;
3090 int hw_breakpoint_error = 0;
3091 int hw_bp_details_reported = 0;
3092
3093 string_file tmp_error_stream;
3094
3095 /* Explicitly mark the warning -- this will only be printed if
3096 there was an error. */
3097 tmp_error_stream.puts ("Warning:\n");
3098
3099 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3100
3101 ALL_BP_LOCATIONS (bl, blp_tmp)
3102 {
3103 /* We only want to update software breakpoints and hardware
3104 breakpoints. */
3105 if (!is_breakpoint (bl->owner))
3106 continue;
3107
3108 /* We only want to update locations that are already inserted
3109 and need updating. This is to avoid unwanted insertion during
3110 deletion of breakpoints. */
3111 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3112 continue;
3113
3114 switch_to_program_space_and_thread (bl->pspace);
3115
3116 /* For targets that support global breakpoints, there's no need
3117 to select an inferior to insert breakpoint to. In fact, even
3118 if we aren't attached to any process yet, we should still
3119 insert breakpoints. */
3120 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3121 && ptid_equal (inferior_ptid, null_ptid))
3122 continue;
3123
3124 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3125 &hw_breakpoint_error, &hw_bp_details_reported);
3126 if (val)
3127 error_flag = val;
3128 }
3129
3130 if (error_flag)
3131 {
3132 target_terminal_ours_for_output ();
3133 error_stream (tmp_error_stream);
3134 }
3135 }
3136
3137 /* Used when starting or continuing the program. */
3138
3139 static void
3140 insert_breakpoint_locations (void)
3141 {
3142 struct breakpoint *bpt;
3143 struct bp_location *bl, **blp_tmp;
3144 int error_flag = 0;
3145 int val = 0;
3146 int disabled_breaks = 0;
3147 int hw_breakpoint_error = 0;
3148 int hw_bp_error_explained_already = 0;
3149
3150 string_file tmp_error_stream;
3151
3152 /* Explicitly mark the warning -- this will only be printed if
3153 there was an error. */
3154 tmp_error_stream.puts ("Warning:\n");
3155
3156 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3157
3158 ALL_BP_LOCATIONS (bl, blp_tmp)
3159 {
3160 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3161 continue;
3162
3163 /* There is no point inserting thread-specific breakpoints if
3164 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3165 has BL->OWNER always non-NULL. */
3166 if (bl->owner->thread != -1
3167 && !valid_global_thread_id (bl->owner->thread))
3168 continue;
3169
3170 switch_to_program_space_and_thread (bl->pspace);
3171
3172 /* For targets that support global breakpoints, there's no need
3173 to select an inferior to insert breakpoint to. In fact, even
3174 if we aren't attached to any process yet, we should still
3175 insert breakpoints. */
3176 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3177 && ptid_equal (inferior_ptid, null_ptid))
3178 continue;
3179
3180 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3181 &hw_breakpoint_error, &hw_bp_error_explained_already);
3182 if (val)
3183 error_flag = val;
3184 }
3185
3186 /* If we failed to insert all locations of a watchpoint, remove
3187 them, as half-inserted watchpoint is of limited use. */
3188 ALL_BREAKPOINTS (bpt)
3189 {
3190 int some_failed = 0;
3191 struct bp_location *loc;
3192
3193 if (!is_hardware_watchpoint (bpt))
3194 continue;
3195
3196 if (!breakpoint_enabled (bpt))
3197 continue;
3198
3199 if (bpt->disposition == disp_del_at_next_stop)
3200 continue;
3201
3202 for (loc = bpt->loc; loc; loc = loc->next)
3203 if (!loc->inserted && should_be_inserted (loc))
3204 {
3205 some_failed = 1;
3206 break;
3207 }
3208 if (some_failed)
3209 {
3210 for (loc = bpt->loc; loc; loc = loc->next)
3211 if (loc->inserted)
3212 remove_breakpoint (loc);
3213
3214 hw_breakpoint_error = 1;
3215 tmp_error_stream.printf ("Could not insert "
3216 "hardware watchpoint %d.\n",
3217 bpt->number);
3218 error_flag = -1;
3219 }
3220 }
3221
3222 if (error_flag)
3223 {
3224 /* If a hardware breakpoint or watchpoint was inserted, add a
3225 message about possibly exhausted resources. */
3226 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3227 {
3228 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3229 You may have requested too many hardware breakpoints/watchpoints.\n");
3230 }
3231 target_terminal_ours_for_output ();
3232 error_stream (tmp_error_stream);
3233 }
3234 }
3235
3236 /* Used when the program stops.
3237 Returns zero if successful, or non-zero if there was a problem
3238 removing a breakpoint location. */
3239
3240 int
3241 remove_breakpoints (void)
3242 {
3243 struct bp_location *bl, **blp_tmp;
3244 int val = 0;
3245
3246 ALL_BP_LOCATIONS (bl, blp_tmp)
3247 {
3248 if (bl->inserted && !is_tracepoint (bl->owner))
3249 val |= remove_breakpoint (bl);
3250 }
3251 return val;
3252 }
3253
3254 /* When a thread exits, remove breakpoints that are related to
3255 that thread. */
3256
3257 static void
3258 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3259 {
3260 struct breakpoint *b, *b_tmp;
3261
3262 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3263 {
3264 if (b->thread == tp->global_num && user_breakpoint_p (b))
3265 {
3266 b->disposition = disp_del_at_next_stop;
3267
3268 printf_filtered (_("\
3269 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3270 b->number, print_thread_id (tp));
3271
3272 /* Hide it from the user. */
3273 b->number = 0;
3274 }
3275 }
3276 }
3277
3278 /* Remove breakpoints of process PID. */
3279
3280 int
3281 remove_breakpoints_pid (int pid)
3282 {
3283 struct bp_location *bl, **blp_tmp;
3284 int val;
3285 struct inferior *inf = find_inferior_pid (pid);
3286
3287 ALL_BP_LOCATIONS (bl, blp_tmp)
3288 {
3289 if (bl->pspace != inf->pspace)
3290 continue;
3291
3292 if (bl->inserted && !bl->target_info.persist)
3293 {
3294 val = remove_breakpoint (bl);
3295 if (val != 0)
3296 return val;
3297 }
3298 }
3299 return 0;
3300 }
3301
3302 int
3303 reattach_breakpoints (int pid)
3304 {
3305 struct cleanup *old_chain;
3306 struct bp_location *bl, **blp_tmp;
3307 int val;
3308 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3309 struct inferior *inf;
3310 struct thread_info *tp;
3311
3312 tp = any_live_thread_of_process (pid);
3313 if (tp == NULL)
3314 return 1;
3315
3316 inf = find_inferior_pid (pid);
3317 old_chain = save_inferior_ptid ();
3318
3319 inferior_ptid = tp->ptid;
3320
3321 string_file tmp_error_stream;
3322
3323 ALL_BP_LOCATIONS (bl, blp_tmp)
3324 {
3325 if (bl->pspace != inf->pspace)
3326 continue;
3327
3328 if (bl->inserted)
3329 {
3330 bl->inserted = 0;
3331 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3332 if (val != 0)
3333 {
3334 do_cleanups (old_chain);
3335 return val;
3336 }
3337 }
3338 }
3339 do_cleanups (old_chain);
3340 return 0;
3341 }
3342
3343 static int internal_breakpoint_number = -1;
3344
3345 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3346 If INTERNAL is non-zero, the breakpoint number will be populated
3347 from internal_breakpoint_number and that variable decremented.
3348 Otherwise the breakpoint number will be populated from
3349 breakpoint_count and that value incremented. Internal breakpoints
3350 do not set the internal var bpnum. */
3351 static void
3352 set_breakpoint_number (int internal, struct breakpoint *b)
3353 {
3354 if (internal)
3355 b->number = internal_breakpoint_number--;
3356 else
3357 {
3358 set_breakpoint_count (breakpoint_count + 1);
3359 b->number = breakpoint_count;
3360 }
3361 }
3362
3363 static struct breakpoint *
3364 create_internal_breakpoint (struct gdbarch *gdbarch,
3365 CORE_ADDR address, enum bptype type,
3366 const struct breakpoint_ops *ops)
3367 {
3368 struct symtab_and_line sal;
3369 struct breakpoint *b;
3370
3371 init_sal (&sal); /* Initialize to zeroes. */
3372
3373 sal.pc = address;
3374 sal.section = find_pc_overlay (sal.pc);
3375 sal.pspace = current_program_space;
3376
3377 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3378 b->number = internal_breakpoint_number--;
3379 b->disposition = disp_donttouch;
3380
3381 return b;
3382 }
3383
3384 static const char *const longjmp_names[] =
3385 {
3386 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3387 };
3388 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3389
3390 /* Per-objfile data private to breakpoint.c. */
3391 struct breakpoint_objfile_data
3392 {
3393 /* Minimal symbol for "_ovly_debug_event" (if any). */
3394 struct bound_minimal_symbol overlay_msym;
3395
3396 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3397 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3398
3399 /* True if we have looked for longjmp probes. */
3400 int longjmp_searched;
3401
3402 /* SystemTap probe points for longjmp (if any). */
3403 VEC (probe_p) *longjmp_probes;
3404
3405 /* Minimal symbol for "std::terminate()" (if any). */
3406 struct bound_minimal_symbol terminate_msym;
3407
3408 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3409 struct bound_minimal_symbol exception_msym;
3410
3411 /* True if we have looked for exception probes. */
3412 int exception_searched;
3413
3414 /* SystemTap probe points for unwinding (if any). */
3415 VEC (probe_p) *exception_probes;
3416 };
3417
3418 static const struct objfile_data *breakpoint_objfile_key;
3419
3420 /* Minimal symbol not found sentinel. */
3421 static struct minimal_symbol msym_not_found;
3422
3423 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3424
3425 static int
3426 msym_not_found_p (const struct minimal_symbol *msym)
3427 {
3428 return msym == &msym_not_found;
3429 }
3430
3431 /* Return per-objfile data needed by breakpoint.c.
3432 Allocate the data if necessary. */
3433
3434 static struct breakpoint_objfile_data *
3435 get_breakpoint_objfile_data (struct objfile *objfile)
3436 {
3437 struct breakpoint_objfile_data *bp_objfile_data;
3438
3439 bp_objfile_data = ((struct breakpoint_objfile_data *)
3440 objfile_data (objfile, breakpoint_objfile_key));
3441 if (bp_objfile_data == NULL)
3442 {
3443 bp_objfile_data =
3444 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3445
3446 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3447 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3448 }
3449 return bp_objfile_data;
3450 }
3451
3452 static void
3453 free_breakpoint_probes (struct objfile *obj, void *data)
3454 {
3455 struct breakpoint_objfile_data *bp_objfile_data
3456 = (struct breakpoint_objfile_data *) data;
3457
3458 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3459 VEC_free (probe_p, bp_objfile_data->exception_probes);
3460 }
3461
3462 static void
3463 create_overlay_event_breakpoint (void)
3464 {
3465 struct objfile *objfile;
3466 const char *const func_name = "_ovly_debug_event";
3467
3468 ALL_OBJFILES (objfile)
3469 {
3470 struct breakpoint *b;
3471 struct breakpoint_objfile_data *bp_objfile_data;
3472 CORE_ADDR addr;
3473 struct explicit_location explicit_loc;
3474
3475 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3476
3477 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3478 continue;
3479
3480 if (bp_objfile_data->overlay_msym.minsym == NULL)
3481 {
3482 struct bound_minimal_symbol m;
3483
3484 m = lookup_minimal_symbol_text (func_name, objfile);
3485 if (m.minsym == NULL)
3486 {
3487 /* Avoid future lookups in this objfile. */
3488 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491 bp_objfile_data->overlay_msym = m;
3492 }
3493
3494 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3495 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3496 bp_overlay_event,
3497 &internal_breakpoint_ops);
3498 initialize_explicit_location (&explicit_loc);
3499 explicit_loc.function_name = ASTRDUP (func_name);
3500 b->location = new_explicit_location (&explicit_loc);
3501
3502 if (overlay_debugging == ovly_auto)
3503 {
3504 b->enable_state = bp_enabled;
3505 overlay_events_enabled = 1;
3506 }
3507 else
3508 {
3509 b->enable_state = bp_disabled;
3510 overlay_events_enabled = 0;
3511 }
3512 }
3513 }
3514
3515 static void
3516 create_longjmp_master_breakpoint (void)
3517 {
3518 struct program_space *pspace;
3519
3520 scoped_restore_current_program_space restore_pspace;
3521
3522 ALL_PSPACES (pspace)
3523 {
3524 struct objfile *objfile;
3525
3526 set_current_program_space (pspace);
3527
3528 ALL_OBJFILES (objfile)
3529 {
3530 int i;
3531 struct gdbarch *gdbarch;
3532 struct breakpoint_objfile_data *bp_objfile_data;
3533
3534 gdbarch = get_objfile_arch (objfile);
3535
3536 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3537
3538 if (!bp_objfile_data->longjmp_searched)
3539 {
3540 VEC (probe_p) *ret;
3541
3542 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3543 if (ret != NULL)
3544 {
3545 /* We are only interested in checking one element. */
3546 struct probe *p = VEC_index (probe_p, ret, 0);
3547
3548 if (!can_evaluate_probe_arguments (p))
3549 {
3550 /* We cannot use the probe interface here, because it does
3551 not know how to evaluate arguments. */
3552 VEC_free (probe_p, ret);
3553 ret = NULL;
3554 }
3555 }
3556 bp_objfile_data->longjmp_probes = ret;
3557 bp_objfile_data->longjmp_searched = 1;
3558 }
3559
3560 if (bp_objfile_data->longjmp_probes != NULL)
3561 {
3562 int i;
3563 struct probe *probe;
3564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3565
3566 for (i = 0;
3567 VEC_iterate (probe_p,
3568 bp_objfile_data->longjmp_probes,
3569 i, probe);
3570 ++i)
3571 {
3572 struct breakpoint *b;
3573
3574 b = create_internal_breakpoint (gdbarch,
3575 get_probe_address (probe,
3576 objfile),
3577 bp_longjmp_master,
3578 &internal_breakpoint_ops);
3579 b->location = new_probe_location ("-probe-stap libc:longjmp");
3580 b->enable_state = bp_disabled;
3581 }
3582
3583 continue;
3584 }
3585
3586 if (!gdbarch_get_longjmp_target_p (gdbarch))
3587 continue;
3588
3589 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3590 {
3591 struct breakpoint *b;
3592 const char *func_name;
3593 CORE_ADDR addr;
3594 struct explicit_location explicit_loc;
3595
3596 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3597 continue;
3598
3599 func_name = longjmp_names[i];
3600 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3601 {
3602 struct bound_minimal_symbol m;
3603
3604 m = lookup_minimal_symbol_text (func_name, objfile);
3605 if (m.minsym == NULL)
3606 {
3607 /* Prevent future lookups in this objfile. */
3608 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3609 continue;
3610 }
3611 bp_objfile_data->longjmp_msym[i] = m;
3612 }
3613
3614 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3615 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3616 &internal_breakpoint_ops);
3617 initialize_explicit_location (&explicit_loc);
3618 explicit_loc.function_name = ASTRDUP (func_name);
3619 b->location = new_explicit_location (&explicit_loc);
3620 b->enable_state = bp_disabled;
3621 }
3622 }
3623 }
3624 }
3625
3626 /* Create a master std::terminate breakpoint. */
3627 static void
3628 create_std_terminate_master_breakpoint (void)
3629 {
3630 struct program_space *pspace;
3631 const char *const func_name = "std::terminate()";
3632
3633 scoped_restore_current_program_space restore_pspace;
3634
3635 ALL_PSPACES (pspace)
3636 {
3637 struct objfile *objfile;
3638 CORE_ADDR addr;
3639
3640 set_current_program_space (pspace);
3641
3642 ALL_OBJFILES (objfile)
3643 {
3644 struct breakpoint *b;
3645 struct breakpoint_objfile_data *bp_objfile_data;
3646 struct explicit_location explicit_loc;
3647
3648 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3649
3650 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3651 continue;
3652
3653 if (bp_objfile_data->terminate_msym.minsym == NULL)
3654 {
3655 struct bound_minimal_symbol m;
3656
3657 m = lookup_minimal_symbol (func_name, NULL, objfile);
3658 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3659 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3660 {
3661 /* Prevent future lookups in this objfile. */
3662 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3663 continue;
3664 }
3665 bp_objfile_data->terminate_msym = m;
3666 }
3667
3668 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3669 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3670 bp_std_terminate_master,
3671 &internal_breakpoint_ops);
3672 initialize_explicit_location (&explicit_loc);
3673 explicit_loc.function_name = ASTRDUP (func_name);
3674 b->location = new_explicit_location (&explicit_loc);
3675 b->enable_state = bp_disabled;
3676 }
3677 }
3678 }
3679
3680 /* Install a master breakpoint on the unwinder's debug hook. */
3681
3682 static void
3683 create_exception_master_breakpoint (void)
3684 {
3685 struct objfile *objfile;
3686 const char *const func_name = "_Unwind_DebugHook";
3687
3688 ALL_OBJFILES (objfile)
3689 {
3690 struct breakpoint *b;
3691 struct gdbarch *gdbarch;
3692 struct breakpoint_objfile_data *bp_objfile_data;
3693 CORE_ADDR addr;
3694 struct explicit_location explicit_loc;
3695
3696 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3697
3698 /* We prefer the SystemTap probe point if it exists. */
3699 if (!bp_objfile_data->exception_searched)
3700 {
3701 VEC (probe_p) *ret;
3702
3703 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3704
3705 if (ret != NULL)
3706 {
3707 /* We are only interested in checking one element. */
3708 struct probe *p = VEC_index (probe_p, ret, 0);
3709
3710 if (!can_evaluate_probe_arguments (p))
3711 {
3712 /* We cannot use the probe interface here, because it does
3713 not know how to evaluate arguments. */
3714 VEC_free (probe_p, ret);
3715 ret = NULL;
3716 }
3717 }
3718 bp_objfile_data->exception_probes = ret;
3719 bp_objfile_data->exception_searched = 1;
3720 }
3721
3722 if (bp_objfile_data->exception_probes != NULL)
3723 {
3724 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3725 int i;
3726 struct probe *probe;
3727
3728 for (i = 0;
3729 VEC_iterate (probe_p,
3730 bp_objfile_data->exception_probes,
3731 i, probe);
3732 ++i)
3733 {
3734 struct breakpoint *b;
3735
3736 b = create_internal_breakpoint (gdbarch,
3737 get_probe_address (probe,
3738 objfile),
3739 bp_exception_master,
3740 &internal_breakpoint_ops);
3741 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3742 b->enable_state = bp_disabled;
3743 }
3744
3745 continue;
3746 }
3747
3748 /* Otherwise, try the hook function. */
3749
3750 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3751 continue;
3752
3753 gdbarch = get_objfile_arch (objfile);
3754
3755 if (bp_objfile_data->exception_msym.minsym == NULL)
3756 {
3757 struct bound_minimal_symbol debug_hook;
3758
3759 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3760 if (debug_hook.minsym == NULL)
3761 {
3762 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3763 continue;
3764 }
3765
3766 bp_objfile_data->exception_msym = debug_hook;
3767 }
3768
3769 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3770 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3771 &current_target);
3772 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3773 &internal_breakpoint_ops);
3774 initialize_explicit_location (&explicit_loc);
3775 explicit_loc.function_name = ASTRDUP (func_name);
3776 b->location = new_explicit_location (&explicit_loc);
3777 b->enable_state = bp_disabled;
3778 }
3779 }
3780
3781 /* Does B have a location spec? */
3782
3783 static int
3784 breakpoint_event_location_empty_p (const struct breakpoint *b)
3785 {
3786 return b->location != NULL && event_location_empty_p (b->location.get ());
3787 }
3788
3789 void
3790 update_breakpoints_after_exec (void)
3791 {
3792 struct breakpoint *b, *b_tmp;
3793 struct bp_location *bploc, **bplocp_tmp;
3794
3795 /* We're about to delete breakpoints from GDB's lists. If the
3796 INSERTED flag is true, GDB will try to lift the breakpoints by
3797 writing the breakpoints' "shadow contents" back into memory. The
3798 "shadow contents" are NOT valid after an exec, so GDB should not
3799 do that. Instead, the target is responsible from marking
3800 breakpoints out as soon as it detects an exec. We don't do that
3801 here instead, because there may be other attempts to delete
3802 breakpoints after detecting an exec and before reaching here. */
3803 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3804 if (bploc->pspace == current_program_space)
3805 gdb_assert (!bploc->inserted);
3806
3807 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3808 {
3809 if (b->pspace != current_program_space)
3810 continue;
3811
3812 /* Solib breakpoints must be explicitly reset after an exec(). */
3813 if (b->type == bp_shlib_event)
3814 {
3815 delete_breakpoint (b);
3816 continue;
3817 }
3818
3819 /* JIT breakpoints must be explicitly reset after an exec(). */
3820 if (b->type == bp_jit_event)
3821 {
3822 delete_breakpoint (b);
3823 continue;
3824 }
3825
3826 /* Thread event breakpoints must be set anew after an exec(),
3827 as must overlay event and longjmp master breakpoints. */
3828 if (b->type == bp_thread_event || b->type == bp_overlay_event
3829 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3830 || b->type == bp_exception_master)
3831 {
3832 delete_breakpoint (b);
3833 continue;
3834 }
3835
3836 /* Step-resume breakpoints are meaningless after an exec(). */
3837 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3838 {
3839 delete_breakpoint (b);
3840 continue;
3841 }
3842
3843 /* Just like single-step breakpoints. */
3844 if (b->type == bp_single_step)
3845 {
3846 delete_breakpoint (b);
3847 continue;
3848 }
3849
3850 /* Longjmp and longjmp-resume breakpoints are also meaningless
3851 after an exec. */
3852 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3853 || b->type == bp_longjmp_call_dummy
3854 || b->type == bp_exception || b->type == bp_exception_resume)
3855 {
3856 delete_breakpoint (b);
3857 continue;
3858 }
3859
3860 if (b->type == bp_catchpoint)
3861 {
3862 /* For now, none of the bp_catchpoint breakpoints need to
3863 do anything at this point. In the future, if some of
3864 the catchpoints need to something, we will need to add
3865 a new method, and call this method from here. */
3866 continue;
3867 }
3868
3869 /* bp_finish is a special case. The only way we ought to be able
3870 to see one of these when an exec() has happened, is if the user
3871 caught a vfork, and then said "finish". Ordinarily a finish just
3872 carries them to the call-site of the current callee, by setting
3873 a temporary bp there and resuming. But in this case, the finish
3874 will carry them entirely through the vfork & exec.
3875
3876 We don't want to allow a bp_finish to remain inserted now. But
3877 we can't safely delete it, 'cause finish_command has a handle to
3878 the bp on a bpstat, and will later want to delete it. There's a
3879 chance (and I've seen it happen) that if we delete the bp_finish
3880 here, that its storage will get reused by the time finish_command
3881 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3882 We really must allow finish_command to delete a bp_finish.
3883
3884 In the absence of a general solution for the "how do we know
3885 it's safe to delete something others may have handles to?"
3886 problem, what we'll do here is just uninsert the bp_finish, and
3887 let finish_command delete it.
3888
3889 (We know the bp_finish is "doomed" in the sense that it's
3890 momentary, and will be deleted as soon as finish_command sees
3891 the inferior stopped. So it doesn't matter that the bp's
3892 address is probably bogus in the new a.out, unlike e.g., the
3893 solib breakpoints.) */
3894
3895 if (b->type == bp_finish)
3896 {
3897 continue;
3898 }
3899
3900 /* Without a symbolic address, we have little hope of the
3901 pre-exec() address meaning the same thing in the post-exec()
3902 a.out. */
3903 if (breakpoint_event_location_empty_p (b))
3904 {
3905 delete_breakpoint (b);
3906 continue;
3907 }
3908 }
3909 }
3910
3911 int
3912 detach_breakpoints (ptid_t ptid)
3913 {
3914 struct bp_location *bl, **blp_tmp;
3915 int val = 0;
3916 struct cleanup *old_chain = save_inferior_ptid ();
3917 struct inferior *inf = current_inferior ();
3918
3919 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3920 error (_("Cannot detach breakpoints of inferior_ptid"));
3921
3922 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3923 inferior_ptid = ptid;
3924 ALL_BP_LOCATIONS (bl, blp_tmp)
3925 {
3926 if (bl->pspace != inf->pspace)
3927 continue;
3928
3929 /* This function must physically remove breakpoints locations
3930 from the specified ptid, without modifying the breakpoint
3931 package's state. Locations of type bp_loc_other are only
3932 maintained at GDB side. So, there is no need to remove
3933 these bp_loc_other locations. Moreover, removing these
3934 would modify the breakpoint package's state. */
3935 if (bl->loc_type == bp_loc_other)
3936 continue;
3937
3938 if (bl->inserted)
3939 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3940 }
3941
3942 do_cleanups (old_chain);
3943 return val;
3944 }
3945
3946 /* Remove the breakpoint location BL from the current address space.
3947 Note that this is used to detach breakpoints from a child fork.
3948 When we get here, the child isn't in the inferior list, and neither
3949 do we have objects to represent its address space --- we should
3950 *not* look at bl->pspace->aspace here. */
3951
3952 static int
3953 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3954 {
3955 int val;
3956
3957 /* BL is never in moribund_locations by our callers. */
3958 gdb_assert (bl->owner != NULL);
3959
3960 /* The type of none suggests that owner is actually deleted.
3961 This should not ever happen. */
3962 gdb_assert (bl->owner->type != bp_none);
3963
3964 if (bl->loc_type == bp_loc_software_breakpoint
3965 || bl->loc_type == bp_loc_hardware_breakpoint)
3966 {
3967 /* "Normal" instruction breakpoint: either the standard
3968 trap-instruction bp (bp_breakpoint), or a
3969 bp_hardware_breakpoint. */
3970
3971 /* First check to see if we have to handle an overlay. */
3972 if (overlay_debugging == ovly_off
3973 || bl->section == NULL
3974 || !(section_is_overlay (bl->section)))
3975 {
3976 /* No overlay handling: just remove the breakpoint. */
3977
3978 /* If we're trying to uninsert a memory breakpoint that we
3979 know is set in a dynamic object that is marked
3980 shlib_disabled, then either the dynamic object was
3981 removed with "remove-symbol-file" or with
3982 "nosharedlibrary". In the former case, we don't know
3983 whether another dynamic object might have loaded over the
3984 breakpoint's address -- the user might well let us know
3985 about it next with add-symbol-file (the whole point of
3986 add-symbol-file is letting the user manually maintain a
3987 list of dynamically loaded objects). If we have the
3988 breakpoint's shadow memory, that is, this is a software
3989 breakpoint managed by GDB, check whether the breakpoint
3990 is still inserted in memory, to avoid overwriting wrong
3991 code with stale saved shadow contents. Note that HW
3992 breakpoints don't have shadow memory, as they're
3993 implemented using a mechanism that is not dependent on
3994 being able to modify the target's memory, and as such
3995 they should always be removed. */
3996 if (bl->shlib_disabled
3997 && bl->target_info.shadow_len != 0
3998 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3999 val = 0;
4000 else
4001 val = bl->owner->ops->remove_location (bl, reason);
4002 }
4003 else
4004 {
4005 /* This breakpoint is in an overlay section.
4006 Did we set a breakpoint at the LMA? */
4007 if (!overlay_events_enabled)
4008 {
4009 /* Yes -- overlay event support is not active, so we
4010 should have set a breakpoint at the LMA. Remove it.
4011 */
4012 /* Ignore any failures: if the LMA is in ROM, we will
4013 have already warned when we failed to insert it. */
4014 if (bl->loc_type == bp_loc_hardware_breakpoint)
4015 target_remove_hw_breakpoint (bl->gdbarch,
4016 &bl->overlay_target_info);
4017 else
4018 target_remove_breakpoint (bl->gdbarch,
4019 &bl->overlay_target_info,
4020 reason);
4021 }
4022 /* Did we set a breakpoint at the VMA?
4023 If so, we will have marked the breakpoint 'inserted'. */
4024 if (bl->inserted)
4025 {
4026 /* Yes -- remove it. Previously we did not bother to
4027 remove the breakpoint if the section had been
4028 unmapped, but let's not rely on that being safe. We
4029 don't know what the overlay manager might do. */
4030
4031 /* However, we should remove *software* breakpoints only
4032 if the section is still mapped, or else we overwrite
4033 wrong code with the saved shadow contents. */
4034 if (bl->loc_type == bp_loc_hardware_breakpoint
4035 || section_is_mapped (bl->section))
4036 val = bl->owner->ops->remove_location (bl, reason);
4037 else
4038 val = 0;
4039 }
4040 else
4041 {
4042 /* No -- not inserted, so no need to remove. No error. */
4043 val = 0;
4044 }
4045 }
4046
4047 /* In some cases, we might not be able to remove a breakpoint in
4048 a shared library that has already been removed, but we have
4049 not yet processed the shlib unload event. Similarly for an
4050 unloaded add-symbol-file object - the user might not yet have
4051 had the chance to remove-symbol-file it. shlib_disabled will
4052 be set if the library/object has already been removed, but
4053 the breakpoint hasn't been uninserted yet, e.g., after
4054 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4055 always-inserted mode. */
4056 if (val
4057 && (bl->loc_type == bp_loc_software_breakpoint
4058 && (bl->shlib_disabled
4059 || solib_name_from_address (bl->pspace, bl->address)
4060 || shared_objfile_contains_address_p (bl->pspace,
4061 bl->address))))
4062 val = 0;
4063
4064 if (val)
4065 return val;
4066 bl->inserted = (reason == DETACH_BREAKPOINT);
4067 }
4068 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4069 {
4070 gdb_assert (bl->owner->ops != NULL
4071 && bl->owner->ops->remove_location != NULL);
4072
4073 bl->inserted = (reason == DETACH_BREAKPOINT);
4074 bl->owner->ops->remove_location (bl, reason);
4075
4076 /* Failure to remove any of the hardware watchpoints comes here. */
4077 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4078 warning (_("Could not remove hardware watchpoint %d."),
4079 bl->owner->number);
4080 }
4081 else if (bl->owner->type == bp_catchpoint
4082 && breakpoint_enabled (bl->owner)
4083 && !bl->duplicate)
4084 {
4085 gdb_assert (bl->owner->ops != NULL
4086 && bl->owner->ops->remove_location != NULL);
4087
4088 val = bl->owner->ops->remove_location (bl, reason);
4089 if (val)
4090 return val;
4091
4092 bl->inserted = (reason == DETACH_BREAKPOINT);
4093 }
4094
4095 return 0;
4096 }
4097
4098 static int
4099 remove_breakpoint (struct bp_location *bl)
4100 {
4101 /* BL is never in moribund_locations by our callers. */
4102 gdb_assert (bl->owner != NULL);
4103
4104 /* The type of none suggests that owner is actually deleted.
4105 This should not ever happen. */
4106 gdb_assert (bl->owner->type != bp_none);
4107
4108 scoped_restore_current_pspace_and_thread restore_pspace_thread;
4109
4110 switch_to_program_space_and_thread (bl->pspace);
4111
4112 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4113 }
4114
4115 /* Clear the "inserted" flag in all breakpoints. */
4116
4117 void
4118 mark_breakpoints_out (void)
4119 {
4120 struct bp_location *bl, **blp_tmp;
4121
4122 ALL_BP_LOCATIONS (bl, blp_tmp)
4123 if (bl->pspace == current_program_space)
4124 bl->inserted = 0;
4125 }
4126
4127 /* Clear the "inserted" flag in all breakpoints and delete any
4128 breakpoints which should go away between runs of the program.
4129
4130 Plus other such housekeeping that has to be done for breakpoints
4131 between runs.
4132
4133 Note: this function gets called at the end of a run (by
4134 generic_mourn_inferior) and when a run begins (by
4135 init_wait_for_inferior). */
4136
4137
4138
4139 void
4140 breakpoint_init_inferior (enum inf_context context)
4141 {
4142 struct breakpoint *b, *b_tmp;
4143 struct bp_location *bl;
4144 int ix;
4145 struct program_space *pspace = current_program_space;
4146
4147 /* If breakpoint locations are shared across processes, then there's
4148 nothing to do. */
4149 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4150 return;
4151
4152 mark_breakpoints_out ();
4153
4154 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4155 {
4156 if (b->loc && b->loc->pspace != pspace)
4157 continue;
4158
4159 switch (b->type)
4160 {
4161 case bp_call_dummy:
4162 case bp_longjmp_call_dummy:
4163
4164 /* If the call dummy breakpoint is at the entry point it will
4165 cause problems when the inferior is rerun, so we better get
4166 rid of it. */
4167
4168 case bp_watchpoint_scope:
4169
4170 /* Also get rid of scope breakpoints. */
4171
4172 case bp_shlib_event:
4173
4174 /* Also remove solib event breakpoints. Their addresses may
4175 have changed since the last time we ran the program.
4176 Actually we may now be debugging against different target;
4177 and so the solib backend that installed this breakpoint may
4178 not be used in by the target. E.g.,
4179
4180 (gdb) file prog-linux
4181 (gdb) run # native linux target
4182 ...
4183 (gdb) kill
4184 (gdb) file prog-win.exe
4185 (gdb) tar rem :9999 # remote Windows gdbserver.
4186 */
4187
4188 case bp_step_resume:
4189
4190 /* Also remove step-resume breakpoints. */
4191
4192 case bp_single_step:
4193
4194 /* Also remove single-step breakpoints. */
4195
4196 delete_breakpoint (b);
4197 break;
4198
4199 case bp_watchpoint:
4200 case bp_hardware_watchpoint:
4201 case bp_read_watchpoint:
4202 case bp_access_watchpoint:
4203 {
4204 struct watchpoint *w = (struct watchpoint *) b;
4205
4206 /* Likewise for watchpoints on local expressions. */
4207 if (w->exp_valid_block != NULL)
4208 delete_breakpoint (b);
4209 else
4210 {
4211 /* Get rid of existing locations, which are no longer
4212 valid. New ones will be created in
4213 update_watchpoint, when the inferior is restarted.
4214 The next update_global_location_list call will
4215 garbage collect them. */
4216 b->loc = NULL;
4217
4218 if (context == inf_starting)
4219 {
4220 /* Reset val field to force reread of starting value in
4221 insert_breakpoints. */
4222 if (w->val)
4223 value_free (w->val);
4224 w->val = NULL;
4225 w->val_valid = 0;
4226 }
4227 }
4228 }
4229 break;
4230 default:
4231 break;
4232 }
4233 }
4234
4235 /* Get rid of the moribund locations. */
4236 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4237 decref_bp_location (&bl);
4238 VEC_free (bp_location_p, moribund_locations);
4239 }
4240
4241 /* These functions concern about actual breakpoints inserted in the
4242 target --- to e.g. check if we need to do decr_pc adjustment or if
4243 we need to hop over the bkpt --- so we check for address space
4244 match, not program space. */
4245
4246 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4247 exists at PC. It returns ordinary_breakpoint_here if it's an
4248 ordinary breakpoint, or permanent_breakpoint_here if it's a
4249 permanent breakpoint.
4250 - When continuing from a location with an ordinary breakpoint, we
4251 actually single step once before calling insert_breakpoints.
4252 - When continuing from a location with a permanent breakpoint, we
4253 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4254 the target, to advance the PC past the breakpoint. */
4255
4256 enum breakpoint_here
4257 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4258 {
4259 struct bp_location *bl, **blp_tmp;
4260 int any_breakpoint_here = 0;
4261
4262 ALL_BP_LOCATIONS (bl, blp_tmp)
4263 {
4264 if (bl->loc_type != bp_loc_software_breakpoint
4265 && bl->loc_type != bp_loc_hardware_breakpoint)
4266 continue;
4267
4268 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4269 if ((breakpoint_enabled (bl->owner)
4270 || bl->permanent)
4271 && breakpoint_location_address_match (bl, aspace, pc))
4272 {
4273 if (overlay_debugging
4274 && section_is_overlay (bl->section)
4275 && !section_is_mapped (bl->section))
4276 continue; /* unmapped overlay -- can't be a match */
4277 else if (bl->permanent)
4278 return permanent_breakpoint_here;
4279 else
4280 any_breakpoint_here = 1;
4281 }
4282 }
4283
4284 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 int
4290 breakpoint_in_range_p (struct address_space *aspace,
4291 CORE_ADDR addr, ULONGEST len)
4292 {
4293 struct bp_location *bl, **blp_tmp;
4294
4295 ALL_BP_LOCATIONS (bl, blp_tmp)
4296 {
4297 if (bl->loc_type != bp_loc_software_breakpoint
4298 && bl->loc_type != bp_loc_hardware_breakpoint)
4299 continue;
4300
4301 if ((breakpoint_enabled (bl->owner)
4302 || bl->permanent)
4303 && breakpoint_location_address_range_overlap (bl, aspace,
4304 addr, len))
4305 {
4306 if (overlay_debugging
4307 && section_is_overlay (bl->section)
4308 && !section_is_mapped (bl->section))
4309 {
4310 /* Unmapped overlay -- can't be a match. */
4311 continue;
4312 }
4313
4314 return 1;
4315 }
4316 }
4317
4318 return 0;
4319 }
4320
4321 /* Return true if there's a moribund breakpoint at PC. */
4322
4323 int
4324 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4325 {
4326 struct bp_location *loc;
4327 int ix;
4328
4329 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4330 if (breakpoint_location_address_match (loc, aspace, pc))
4331 return 1;
4332
4333 return 0;
4334 }
4335
4336 /* Returns non-zero iff BL is inserted at PC, in address space
4337 ASPACE. */
4338
4339 static int
4340 bp_location_inserted_here_p (struct bp_location *bl,
4341 struct address_space *aspace, CORE_ADDR pc)
4342 {
4343 if (bl->inserted
4344 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4345 aspace, pc))
4346 {
4347 if (overlay_debugging
4348 && section_is_overlay (bl->section)
4349 && !section_is_mapped (bl->section))
4350 return 0; /* unmapped overlay -- can't be a match */
4351 else
4352 return 1;
4353 }
4354 return 0;
4355 }
4356
4357 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4358
4359 int
4360 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4361 {
4362 struct bp_location **blp, **blp_tmp = NULL;
4363
4364 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4365 {
4366 struct bp_location *bl = *blp;
4367
4368 if (bl->loc_type != bp_loc_software_breakpoint
4369 && bl->loc_type != bp_loc_hardware_breakpoint)
4370 continue;
4371
4372 if (bp_location_inserted_here_p (bl, aspace, pc))
4373 return 1;
4374 }
4375 return 0;
4376 }
4377
4378 /* This function returns non-zero iff there is a software breakpoint
4379 inserted at PC. */
4380
4381 int
4382 software_breakpoint_inserted_here_p (struct address_space *aspace,
4383 CORE_ADDR pc)
4384 {
4385 struct bp_location **blp, **blp_tmp = NULL;
4386
4387 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4388 {
4389 struct bp_location *bl = *blp;
4390
4391 if (bl->loc_type != bp_loc_software_breakpoint)
4392 continue;
4393
4394 if (bp_location_inserted_here_p (bl, aspace, pc))
4395 return 1;
4396 }
4397
4398 return 0;
4399 }
4400
4401 /* See breakpoint.h. */
4402
4403 int
4404 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4405 CORE_ADDR pc)
4406 {
4407 struct bp_location **blp, **blp_tmp = NULL;
4408
4409 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4410 {
4411 struct bp_location *bl = *blp;
4412
4413 if (bl->loc_type != bp_loc_hardware_breakpoint)
4414 continue;
4415
4416 if (bp_location_inserted_here_p (bl, aspace, pc))
4417 return 1;
4418 }
4419
4420 return 0;
4421 }
4422
4423 int
4424 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4425 CORE_ADDR addr, ULONGEST len)
4426 {
4427 struct breakpoint *bpt;
4428
4429 ALL_BREAKPOINTS (bpt)
4430 {
4431 struct bp_location *loc;
4432
4433 if (bpt->type != bp_hardware_watchpoint
4434 && bpt->type != bp_access_watchpoint)
4435 continue;
4436
4437 if (!breakpoint_enabled (bpt))
4438 continue;
4439
4440 for (loc = bpt->loc; loc; loc = loc->next)
4441 if (loc->pspace->aspace == aspace && loc->inserted)
4442 {
4443 CORE_ADDR l, h;
4444
4445 /* Check for intersection. */
4446 l = std::max<CORE_ADDR> (loc->address, addr);
4447 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4448 if (l < h)
4449 return 1;
4450 }
4451 }
4452 return 0;
4453 }
4454 \f
4455
4456 /* bpstat stuff. External routines' interfaces are documented
4457 in breakpoint.h. */
4458
4459 int
4460 is_catchpoint (struct breakpoint *ep)
4461 {
4462 return (ep->type == bp_catchpoint);
4463 }
4464
4465 /* Frees any storage that is part of a bpstat. Does not walk the
4466 'next' chain. */
4467
4468 static void
4469 bpstat_free (bpstat bs)
4470 {
4471 if (bs->old_val != NULL)
4472 value_free (bs->old_val);
4473 decref_counted_command_line (&bs->commands);
4474 decref_bp_location (&bs->bp_location_at);
4475 xfree (bs);
4476 }
4477
4478 /* Clear a bpstat so that it says we are not at any breakpoint.
4479 Also free any storage that is part of a bpstat. */
4480
4481 void
4482 bpstat_clear (bpstat *bsp)
4483 {
4484 bpstat p;
4485 bpstat q;
4486
4487 if (bsp == 0)
4488 return;
4489 p = *bsp;
4490 while (p != NULL)
4491 {
4492 q = p->next;
4493 bpstat_free (p);
4494 p = q;
4495 }
4496 *bsp = NULL;
4497 }
4498
4499 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4500 is part of the bpstat is copied as well. */
4501
4502 bpstat
4503 bpstat_copy (bpstat bs)
4504 {
4505 bpstat p = NULL;
4506 bpstat tmp;
4507 bpstat retval = NULL;
4508
4509 if (bs == NULL)
4510 return bs;
4511
4512 for (; bs != NULL; bs = bs->next)
4513 {
4514 tmp = (bpstat) xmalloc (sizeof (*tmp));
4515 memcpy (tmp, bs, sizeof (*tmp));
4516 incref_counted_command_line (tmp->commands);
4517 incref_bp_location (tmp->bp_location_at);
4518 if (bs->old_val != NULL)
4519 {
4520 tmp->old_val = value_copy (bs->old_val);
4521 release_value (tmp->old_val);
4522 }
4523
4524 if (p == NULL)
4525 /* This is the first thing in the chain. */
4526 retval = tmp;
4527 else
4528 p->next = tmp;
4529 p = tmp;
4530 }
4531 p->next = NULL;
4532 return retval;
4533 }
4534
4535 /* Find the bpstat associated with this breakpoint. */
4536
4537 bpstat
4538 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4539 {
4540 if (bsp == NULL)
4541 return NULL;
4542
4543 for (; bsp != NULL; bsp = bsp->next)
4544 {
4545 if (bsp->breakpoint_at == breakpoint)
4546 return bsp;
4547 }
4548 return NULL;
4549 }
4550
4551 /* See breakpoint.h. */
4552
4553 int
4554 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4555 {
4556 for (; bsp != NULL; bsp = bsp->next)
4557 {
4558 if (bsp->breakpoint_at == NULL)
4559 {
4560 /* A moribund location can never explain a signal other than
4561 GDB_SIGNAL_TRAP. */
4562 if (sig == GDB_SIGNAL_TRAP)
4563 return 1;
4564 }
4565 else
4566 {
4567 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4568 sig))
4569 return 1;
4570 }
4571 }
4572
4573 return 0;
4574 }
4575
4576 /* Put in *NUM the breakpoint number of the first breakpoint we are
4577 stopped at. *BSP upon return is a bpstat which points to the
4578 remaining breakpoints stopped at (but which is not guaranteed to be
4579 good for anything but further calls to bpstat_num).
4580
4581 Return 0 if passed a bpstat which does not indicate any breakpoints.
4582 Return -1 if stopped at a breakpoint that has been deleted since
4583 we set it.
4584 Return 1 otherwise. */
4585
4586 int
4587 bpstat_num (bpstat *bsp, int *num)
4588 {
4589 struct breakpoint *b;
4590
4591 if ((*bsp) == NULL)
4592 return 0; /* No more breakpoint values */
4593
4594 /* We assume we'll never have several bpstats that correspond to a
4595 single breakpoint -- otherwise, this function might return the
4596 same number more than once and this will look ugly. */
4597 b = (*bsp)->breakpoint_at;
4598 *bsp = (*bsp)->next;
4599 if (b == NULL)
4600 return -1; /* breakpoint that's been deleted since */
4601
4602 *num = b->number; /* We have its number */
4603 return 1;
4604 }
4605
4606 /* See breakpoint.h. */
4607
4608 void
4609 bpstat_clear_actions (void)
4610 {
4611 struct thread_info *tp;
4612 bpstat bs;
4613
4614 if (ptid_equal (inferior_ptid, null_ptid))
4615 return;
4616
4617 tp = find_thread_ptid (inferior_ptid);
4618 if (tp == NULL)
4619 return;
4620
4621 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4622 {
4623 decref_counted_command_line (&bs->commands);
4624
4625 if (bs->old_val != NULL)
4626 {
4627 value_free (bs->old_val);
4628 bs->old_val = NULL;
4629 }
4630 }
4631 }
4632
4633 /* Called when a command is about to proceed the inferior. */
4634
4635 static void
4636 breakpoint_about_to_proceed (void)
4637 {
4638 if (!ptid_equal (inferior_ptid, null_ptid))
4639 {
4640 struct thread_info *tp = inferior_thread ();
4641
4642 /* Allow inferior function calls in breakpoint commands to not
4643 interrupt the command list. When the call finishes
4644 successfully, the inferior will be standing at the same
4645 breakpoint as if nothing happened. */
4646 if (tp->control.in_infcall)
4647 return;
4648 }
4649
4650 breakpoint_proceeded = 1;
4651 }
4652
4653 /* Stub for cleaning up our state if we error-out of a breakpoint
4654 command. */
4655 static void
4656 cleanup_executing_breakpoints (void *ignore)
4657 {
4658 executing_breakpoint_commands = 0;
4659 }
4660
4661 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4662 or its equivalent. */
4663
4664 static int
4665 command_line_is_silent (struct command_line *cmd)
4666 {
4667 return cmd && (strcmp ("silent", cmd->line) == 0);
4668 }
4669
4670 /* Execute all the commands associated with all the breakpoints at
4671 this location. Any of these commands could cause the process to
4672 proceed beyond this point, etc. We look out for such changes by
4673 checking the global "breakpoint_proceeded" after each command.
4674
4675 Returns true if a breakpoint command resumed the inferior. In that
4676 case, it is the caller's responsibility to recall it again with the
4677 bpstat of the current thread. */
4678
4679 static int
4680 bpstat_do_actions_1 (bpstat *bsp)
4681 {
4682 bpstat bs;
4683 struct cleanup *old_chain;
4684 int again = 0;
4685
4686 /* Avoid endless recursion if a `source' command is contained
4687 in bs->commands. */
4688 if (executing_breakpoint_commands)
4689 return 0;
4690
4691 executing_breakpoint_commands = 1;
4692 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4693
4694 scoped_restore preventer = prevent_dont_repeat ();
4695
4696 /* This pointer will iterate over the list of bpstat's. */
4697 bs = *bsp;
4698
4699 breakpoint_proceeded = 0;
4700 for (; bs != NULL; bs = bs->next)
4701 {
4702 struct counted_command_line *ccmd;
4703 struct command_line *cmd;
4704 struct cleanup *this_cmd_tree_chain;
4705
4706 /* Take ownership of the BSP's command tree, if it has one.
4707
4708 The command tree could legitimately contain commands like
4709 'step' and 'next', which call clear_proceed_status, which
4710 frees stop_bpstat's command tree. To make sure this doesn't
4711 free the tree we're executing out from under us, we need to
4712 take ownership of the tree ourselves. Since a given bpstat's
4713 commands are only executed once, we don't need to copy it; we
4714 can clear the pointer in the bpstat, and make sure we free
4715 the tree when we're done. */
4716 ccmd = bs->commands;
4717 bs->commands = NULL;
4718 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4719 cmd = ccmd ? ccmd->commands : NULL;
4720 if (command_line_is_silent (cmd))
4721 {
4722 /* The action has been already done by bpstat_stop_status. */
4723 cmd = cmd->next;
4724 }
4725
4726 while (cmd != NULL)
4727 {
4728 execute_control_command (cmd);
4729
4730 if (breakpoint_proceeded)
4731 break;
4732 else
4733 cmd = cmd->next;
4734 }
4735
4736 /* We can free this command tree now. */
4737 do_cleanups (this_cmd_tree_chain);
4738
4739 if (breakpoint_proceeded)
4740 {
4741 if (current_ui->async)
4742 /* If we are in async mode, then the target might be still
4743 running, not stopped at any breakpoint, so nothing for
4744 us to do here -- just return to the event loop. */
4745 ;
4746 else
4747 /* In sync mode, when execute_control_command returns
4748 we're already standing on the next breakpoint.
4749 Breakpoint commands for that stop were not run, since
4750 execute_command does not run breakpoint commands --
4751 only command_line_handler does, but that one is not
4752 involved in execution of breakpoint commands. So, we
4753 can now execute breakpoint commands. It should be
4754 noted that making execute_command do bpstat actions is
4755 not an option -- in this case we'll have recursive
4756 invocation of bpstat for each breakpoint with a
4757 command, and can easily blow up GDB stack. Instead, we
4758 return true, which will trigger the caller to recall us
4759 with the new stop_bpstat. */
4760 again = 1;
4761 break;
4762 }
4763 }
4764 do_cleanups (old_chain);
4765 return again;
4766 }
4767
4768 void
4769 bpstat_do_actions (void)
4770 {
4771 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4772
4773 /* Do any commands attached to breakpoint we are stopped at. */
4774 while (!ptid_equal (inferior_ptid, null_ptid)
4775 && target_has_execution
4776 && !is_exited (inferior_ptid)
4777 && !is_executing (inferior_ptid))
4778 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4779 and only return when it is stopped at the next breakpoint, we
4780 keep doing breakpoint actions until it returns false to
4781 indicate the inferior was not resumed. */
4782 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4783 break;
4784
4785 discard_cleanups (cleanup_if_error);
4786 }
4787
4788 /* Print out the (old or new) value associated with a watchpoint. */
4789
4790 static void
4791 watchpoint_value_print (struct value *val, struct ui_file *stream)
4792 {
4793 if (val == NULL)
4794 fprintf_unfiltered (stream, _("<unreadable>"));
4795 else
4796 {
4797 struct value_print_options opts;
4798 get_user_print_options (&opts);
4799 value_print (val, stream, &opts);
4800 }
4801 }
4802
4803 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4804 debugging multiple threads. */
4805
4806 void
4807 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4808 {
4809 if (uiout->is_mi_like_p ())
4810 return;
4811
4812 uiout->text ("\n");
4813
4814 if (show_thread_that_caused_stop ())
4815 {
4816 const char *name;
4817 struct thread_info *thr = inferior_thread ();
4818
4819 uiout->text ("Thread ");
4820 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4821
4822 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4823 if (name != NULL)
4824 {
4825 uiout->text (" \"");
4826 uiout->field_fmt ("name", "%s", name);
4827 uiout->text ("\"");
4828 }
4829
4830 uiout->text (" hit ");
4831 }
4832 }
4833
4834 /* Generic routine for printing messages indicating why we
4835 stopped. The behavior of this function depends on the value
4836 'print_it' in the bpstat structure. Under some circumstances we
4837 may decide not to print anything here and delegate the task to
4838 normal_stop(). */
4839
4840 static enum print_stop_action
4841 print_bp_stop_message (bpstat bs)
4842 {
4843 switch (bs->print_it)
4844 {
4845 case print_it_noop:
4846 /* Nothing should be printed for this bpstat entry. */
4847 return PRINT_UNKNOWN;
4848 break;
4849
4850 case print_it_done:
4851 /* We still want to print the frame, but we already printed the
4852 relevant messages. */
4853 return PRINT_SRC_AND_LOC;
4854 break;
4855
4856 case print_it_normal:
4857 {
4858 struct breakpoint *b = bs->breakpoint_at;
4859
4860 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4861 which has since been deleted. */
4862 if (b == NULL)
4863 return PRINT_UNKNOWN;
4864
4865 /* Normal case. Call the breakpoint's print_it method. */
4866 return b->ops->print_it (bs);
4867 }
4868 break;
4869
4870 default:
4871 internal_error (__FILE__, __LINE__,
4872 _("print_bp_stop_message: unrecognized enum value"));
4873 break;
4874 }
4875 }
4876
4877 /* A helper function that prints a shared library stopped event. */
4878
4879 static void
4880 print_solib_event (int is_catchpoint)
4881 {
4882 int any_deleted
4883 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4884 int any_added
4885 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4886
4887 if (!is_catchpoint)
4888 {
4889 if (any_added || any_deleted)
4890 current_uiout->text (_("Stopped due to shared library event:\n"));
4891 else
4892 current_uiout->text (_("Stopped due to shared library event (no "
4893 "libraries added or removed)\n"));
4894 }
4895
4896 if (current_uiout->is_mi_like_p ())
4897 current_uiout->field_string ("reason",
4898 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4899
4900 if (any_deleted)
4901 {
4902 char *name;
4903 int ix;
4904
4905 current_uiout->text (_(" Inferior unloaded "));
4906 ui_out_emit_list list_emitter (current_uiout, "removed");
4907 for (ix = 0;
4908 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4909 ix, name);
4910 ++ix)
4911 {
4912 if (ix > 0)
4913 current_uiout->text (" ");
4914 current_uiout->field_string ("library", name);
4915 current_uiout->text ("\n");
4916 }
4917 }
4918
4919 if (any_added)
4920 {
4921 struct so_list *iter;
4922 int ix;
4923
4924 current_uiout->text (_(" Inferior loaded "));
4925 ui_out_emit_list list_emitter (current_uiout, "added");
4926 for (ix = 0;
4927 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4928 ix, iter);
4929 ++ix)
4930 {
4931 if (ix > 0)
4932 current_uiout->text (" ");
4933 current_uiout->field_string ("library", iter->so_name);
4934 current_uiout->text ("\n");
4935 }
4936 }
4937 }
4938
4939 /* Print a message indicating what happened. This is called from
4940 normal_stop(). The input to this routine is the head of the bpstat
4941 list - a list of the eventpoints that caused this stop. KIND is
4942 the target_waitkind for the stopping event. This
4943 routine calls the generic print routine for printing a message
4944 about reasons for stopping. This will print (for example) the
4945 "Breakpoint n," part of the output. The return value of this
4946 routine is one of:
4947
4948 PRINT_UNKNOWN: Means we printed nothing.
4949 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4950 code to print the location. An example is
4951 "Breakpoint 1, " which should be followed by
4952 the location.
4953 PRINT_SRC_ONLY: Means we printed something, but there is no need
4954 to also print the location part of the message.
4955 An example is the catch/throw messages, which
4956 don't require a location appended to the end.
4957 PRINT_NOTHING: We have done some printing and we don't need any
4958 further info to be printed. */
4959
4960 enum print_stop_action
4961 bpstat_print (bpstat bs, int kind)
4962 {
4963 enum print_stop_action val;
4964
4965 /* Maybe another breakpoint in the chain caused us to stop.
4966 (Currently all watchpoints go on the bpstat whether hit or not.
4967 That probably could (should) be changed, provided care is taken
4968 with respect to bpstat_explains_signal). */
4969 for (; bs; bs = bs->next)
4970 {
4971 val = print_bp_stop_message (bs);
4972 if (val == PRINT_SRC_ONLY
4973 || val == PRINT_SRC_AND_LOC
4974 || val == PRINT_NOTHING)
4975 return val;
4976 }
4977
4978 /* If we had hit a shared library event breakpoint,
4979 print_bp_stop_message would print out this message. If we hit an
4980 OS-level shared library event, do the same thing. */
4981 if (kind == TARGET_WAITKIND_LOADED)
4982 {
4983 print_solib_event (0);
4984 return PRINT_NOTHING;
4985 }
4986
4987 /* We reached the end of the chain, or we got a null BS to start
4988 with and nothing was printed. */
4989 return PRINT_UNKNOWN;
4990 }
4991
4992 /* Evaluate the expression EXP and return 1 if value is zero.
4993 This returns the inverse of the condition because it is called
4994 from catch_errors which returns 0 if an exception happened, and if an
4995 exception happens we want execution to stop.
4996 The argument is a "struct expression *" that has been cast to a
4997 "void *" to make it pass through catch_errors. */
4998
4999 static int
5000 breakpoint_cond_eval (void *exp)
5001 {
5002 struct value *mark = value_mark ();
5003 int i = !value_true (evaluate_expression ((struct expression *) exp));
5004
5005 value_free_to_mark (mark);
5006 return i;
5007 }
5008
5009 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5010
5011 static bpstat
5012 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5013 {
5014 bpstat bs;
5015
5016 bs = (bpstat) xmalloc (sizeof (*bs));
5017 bs->next = NULL;
5018 **bs_link_pointer = bs;
5019 *bs_link_pointer = &bs->next;
5020 bs->breakpoint_at = bl->owner;
5021 bs->bp_location_at = bl;
5022 incref_bp_location (bl);
5023 /* If the condition is false, etc., don't do the commands. */
5024 bs->commands = NULL;
5025 bs->old_val = NULL;
5026 bs->print_it = print_it_normal;
5027 return bs;
5028 }
5029 \f
5030 /* The target has stopped with waitstatus WS. Check if any hardware
5031 watchpoints have triggered, according to the target. */
5032
5033 int
5034 watchpoints_triggered (struct target_waitstatus *ws)
5035 {
5036 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5037 CORE_ADDR addr;
5038 struct breakpoint *b;
5039
5040 if (!stopped_by_watchpoint)
5041 {
5042 /* We were not stopped by a watchpoint. Mark all watchpoints
5043 as not triggered. */
5044 ALL_BREAKPOINTS (b)
5045 if (is_hardware_watchpoint (b))
5046 {
5047 struct watchpoint *w = (struct watchpoint *) b;
5048
5049 w->watchpoint_triggered = watch_triggered_no;
5050 }
5051
5052 return 0;
5053 }
5054
5055 if (!target_stopped_data_address (&current_target, &addr))
5056 {
5057 /* We were stopped by a watchpoint, but we don't know where.
5058 Mark all watchpoints as unknown. */
5059 ALL_BREAKPOINTS (b)
5060 if (is_hardware_watchpoint (b))
5061 {
5062 struct watchpoint *w = (struct watchpoint *) b;
5063
5064 w->watchpoint_triggered = watch_triggered_unknown;
5065 }
5066
5067 return 1;
5068 }
5069
5070 /* The target could report the data address. Mark watchpoints
5071 affected by this data address as triggered, and all others as not
5072 triggered. */
5073
5074 ALL_BREAKPOINTS (b)
5075 if (is_hardware_watchpoint (b))
5076 {
5077 struct watchpoint *w = (struct watchpoint *) b;
5078 struct bp_location *loc;
5079
5080 w->watchpoint_triggered = watch_triggered_no;
5081 for (loc = b->loc; loc; loc = loc->next)
5082 {
5083 if (is_masked_watchpoint (b))
5084 {
5085 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5086 CORE_ADDR start = loc->address & w->hw_wp_mask;
5087
5088 if (newaddr == start)
5089 {
5090 w->watchpoint_triggered = watch_triggered_yes;
5091 break;
5092 }
5093 }
5094 /* Exact match not required. Within range is sufficient. */
5095 else if (target_watchpoint_addr_within_range (&current_target,
5096 addr, loc->address,
5097 loc->length))
5098 {
5099 w->watchpoint_triggered = watch_triggered_yes;
5100 break;
5101 }
5102 }
5103 }
5104
5105 return 1;
5106 }
5107
5108 /* Possible return values for watchpoint_check (this can't be an enum
5109 because of check_errors). */
5110 /* The watchpoint has been deleted. */
5111 #define WP_DELETED 1
5112 /* The value has changed. */
5113 #define WP_VALUE_CHANGED 2
5114 /* The value has not changed. */
5115 #define WP_VALUE_NOT_CHANGED 3
5116 /* Ignore this watchpoint, no matter if the value changed or not. */
5117 #define WP_IGNORE 4
5118
5119 #define BP_TEMPFLAG 1
5120 #define BP_HARDWAREFLAG 2
5121
5122 /* Evaluate watchpoint condition expression and check if its value
5123 changed.
5124
5125 P should be a pointer to struct bpstat, but is defined as a void *
5126 in order for this function to be usable with catch_errors. */
5127
5128 static int
5129 watchpoint_check (void *p)
5130 {
5131 bpstat bs = (bpstat) p;
5132 struct watchpoint *b;
5133 struct frame_info *fr;
5134 int within_current_scope;
5135
5136 /* BS is built from an existing struct breakpoint. */
5137 gdb_assert (bs->breakpoint_at != NULL);
5138 b = (struct watchpoint *) bs->breakpoint_at;
5139
5140 /* If this is a local watchpoint, we only want to check if the
5141 watchpoint frame is in scope if the current thread is the thread
5142 that was used to create the watchpoint. */
5143 if (!watchpoint_in_thread_scope (b))
5144 return WP_IGNORE;
5145
5146 if (b->exp_valid_block == NULL)
5147 within_current_scope = 1;
5148 else
5149 {
5150 struct frame_info *frame = get_current_frame ();
5151 struct gdbarch *frame_arch = get_frame_arch (frame);
5152 CORE_ADDR frame_pc = get_frame_pc (frame);
5153
5154 /* stack_frame_destroyed_p() returns a non-zero value if we're
5155 still in the function but the stack frame has already been
5156 invalidated. Since we can't rely on the values of local
5157 variables after the stack has been destroyed, we are treating
5158 the watchpoint in that state as `not changed' without further
5159 checking. Don't mark watchpoints as changed if the current
5160 frame is in an epilogue - even if they are in some other
5161 frame, our view of the stack is likely to be wrong and
5162 frame_find_by_id could error out. */
5163 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5164 return WP_IGNORE;
5165
5166 fr = frame_find_by_id (b->watchpoint_frame);
5167 within_current_scope = (fr != NULL);
5168
5169 /* If we've gotten confused in the unwinder, we might have
5170 returned a frame that can't describe this variable. */
5171 if (within_current_scope)
5172 {
5173 struct symbol *function;
5174
5175 function = get_frame_function (fr);
5176 if (function == NULL
5177 || !contained_in (b->exp_valid_block,
5178 SYMBOL_BLOCK_VALUE (function)))
5179 within_current_scope = 0;
5180 }
5181
5182 if (within_current_scope)
5183 /* If we end up stopping, the current frame will get selected
5184 in normal_stop. So this call to select_frame won't affect
5185 the user. */
5186 select_frame (fr);
5187 }
5188
5189 if (within_current_scope)
5190 {
5191 /* We use value_{,free_to_}mark because it could be a *long*
5192 time before we return to the command level and call
5193 free_all_values. We can't call free_all_values because we
5194 might be in the middle of evaluating a function call. */
5195
5196 int pc = 0;
5197 struct value *mark;
5198 struct value *new_val;
5199
5200 if (is_masked_watchpoint (b))
5201 /* Since we don't know the exact trigger address (from
5202 stopped_data_address), just tell the user we've triggered
5203 a mask watchpoint. */
5204 return WP_VALUE_CHANGED;
5205
5206 mark = value_mark ();
5207 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5208
5209 if (b->val_bitsize != 0)
5210 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5211
5212 /* We use value_equal_contents instead of value_equal because
5213 the latter coerces an array to a pointer, thus comparing just
5214 the address of the array instead of its contents. This is
5215 not what we want. */
5216 if ((b->val != NULL) != (new_val != NULL)
5217 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5218 {
5219 if (new_val != NULL)
5220 {
5221 release_value (new_val);
5222 value_free_to_mark (mark);
5223 }
5224 bs->old_val = b->val;
5225 b->val = new_val;
5226 b->val_valid = 1;
5227 return WP_VALUE_CHANGED;
5228 }
5229 else
5230 {
5231 /* Nothing changed. */
5232 value_free_to_mark (mark);
5233 return WP_VALUE_NOT_CHANGED;
5234 }
5235 }
5236 else
5237 {
5238 /* This seems like the only logical thing to do because
5239 if we temporarily ignored the watchpoint, then when
5240 we reenter the block in which it is valid it contains
5241 garbage (in the case of a function, it may have two
5242 garbage values, one before and one after the prologue).
5243 So we can't even detect the first assignment to it and
5244 watch after that (since the garbage may or may not equal
5245 the first value assigned). */
5246 /* We print all the stop information in
5247 breakpoint_ops->print_it, but in this case, by the time we
5248 call breakpoint_ops->print_it this bp will be deleted
5249 already. So we have no choice but print the information
5250 here. */
5251
5252 SWITCH_THRU_ALL_UIS ()
5253 {
5254 struct ui_out *uiout = current_uiout;
5255
5256 if (uiout->is_mi_like_p ())
5257 uiout->field_string
5258 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5259 uiout->text ("\nWatchpoint ");
5260 uiout->field_int ("wpnum", b->number);
5261 uiout->text (" deleted because the program has left the block in\n"
5262 "which its expression is valid.\n");
5263 }
5264
5265 /* Make sure the watchpoint's commands aren't executed. */
5266 decref_counted_command_line (&b->commands);
5267 watchpoint_del_at_next_stop (b);
5268
5269 return WP_DELETED;
5270 }
5271 }
5272
5273 /* Return true if it looks like target has stopped due to hitting
5274 breakpoint location BL. This function does not check if we should
5275 stop, only if BL explains the stop. */
5276
5277 static int
5278 bpstat_check_location (const struct bp_location *bl,
5279 struct address_space *aspace, CORE_ADDR bp_addr,
5280 const struct target_waitstatus *ws)
5281 {
5282 struct breakpoint *b = bl->owner;
5283
5284 /* BL is from an existing breakpoint. */
5285 gdb_assert (b != NULL);
5286
5287 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5288 }
5289
5290 /* Determine if the watched values have actually changed, and we
5291 should stop. If not, set BS->stop to 0. */
5292
5293 static void
5294 bpstat_check_watchpoint (bpstat bs)
5295 {
5296 const struct bp_location *bl;
5297 struct watchpoint *b;
5298
5299 /* BS is built for existing struct breakpoint. */
5300 bl = bs->bp_location_at;
5301 gdb_assert (bl != NULL);
5302 b = (struct watchpoint *) bs->breakpoint_at;
5303 gdb_assert (b != NULL);
5304
5305 {
5306 int must_check_value = 0;
5307
5308 if (b->type == bp_watchpoint)
5309 /* For a software watchpoint, we must always check the
5310 watched value. */
5311 must_check_value = 1;
5312 else if (b->watchpoint_triggered == watch_triggered_yes)
5313 /* We have a hardware watchpoint (read, write, or access)
5314 and the target earlier reported an address watched by
5315 this watchpoint. */
5316 must_check_value = 1;
5317 else if (b->watchpoint_triggered == watch_triggered_unknown
5318 && b->type == bp_hardware_watchpoint)
5319 /* We were stopped by a hardware watchpoint, but the target could
5320 not report the data address. We must check the watchpoint's
5321 value. Access and read watchpoints are out of luck; without
5322 a data address, we can't figure it out. */
5323 must_check_value = 1;
5324
5325 if (must_check_value)
5326 {
5327 char *message
5328 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5329 b->number);
5330 struct cleanup *cleanups = make_cleanup (xfree, message);
5331 int e = catch_errors (watchpoint_check, bs, message,
5332 RETURN_MASK_ALL);
5333 do_cleanups (cleanups);
5334 switch (e)
5335 {
5336 case WP_DELETED:
5337 /* We've already printed what needs to be printed. */
5338 bs->print_it = print_it_done;
5339 /* Stop. */
5340 break;
5341 case WP_IGNORE:
5342 bs->print_it = print_it_noop;
5343 bs->stop = 0;
5344 break;
5345 case WP_VALUE_CHANGED:
5346 if (b->type == bp_read_watchpoint)
5347 {
5348 /* There are two cases to consider here:
5349
5350 1. We're watching the triggered memory for reads.
5351 In that case, trust the target, and always report
5352 the watchpoint hit to the user. Even though
5353 reads don't cause value changes, the value may
5354 have changed since the last time it was read, and
5355 since we're not trapping writes, we will not see
5356 those, and as such we should ignore our notion of
5357 old value.
5358
5359 2. We're watching the triggered memory for both
5360 reads and writes. There are two ways this may
5361 happen:
5362
5363 2.1. This is a target that can't break on data
5364 reads only, but can break on accesses (reads or
5365 writes), such as e.g., x86. We detect this case
5366 at the time we try to insert read watchpoints.
5367
5368 2.2. Otherwise, the target supports read
5369 watchpoints, but, the user set an access or write
5370 watchpoint watching the same memory as this read
5371 watchpoint.
5372
5373 If we're watching memory writes as well as reads,
5374 ignore watchpoint hits when we find that the
5375 value hasn't changed, as reads don't cause
5376 changes. This still gives false positives when
5377 the program writes the same value to memory as
5378 what there was already in memory (we will confuse
5379 it for a read), but it's much better than
5380 nothing. */
5381
5382 int other_write_watchpoint = 0;
5383
5384 if (bl->watchpoint_type == hw_read)
5385 {
5386 struct breakpoint *other_b;
5387
5388 ALL_BREAKPOINTS (other_b)
5389 if (other_b->type == bp_hardware_watchpoint
5390 || other_b->type == bp_access_watchpoint)
5391 {
5392 struct watchpoint *other_w =
5393 (struct watchpoint *) other_b;
5394
5395 if (other_w->watchpoint_triggered
5396 == watch_triggered_yes)
5397 {
5398 other_write_watchpoint = 1;
5399 break;
5400 }
5401 }
5402 }
5403
5404 if (other_write_watchpoint
5405 || bl->watchpoint_type == hw_access)
5406 {
5407 /* We're watching the same memory for writes,
5408 and the value changed since the last time we
5409 updated it, so this trap must be for a write.
5410 Ignore it. */
5411 bs->print_it = print_it_noop;
5412 bs->stop = 0;
5413 }
5414 }
5415 break;
5416 case WP_VALUE_NOT_CHANGED:
5417 if (b->type == bp_hardware_watchpoint
5418 || b->type == bp_watchpoint)
5419 {
5420 /* Don't stop: write watchpoints shouldn't fire if
5421 the value hasn't changed. */
5422 bs->print_it = print_it_noop;
5423 bs->stop = 0;
5424 }
5425 /* Stop. */
5426 break;
5427 default:
5428 /* Can't happen. */
5429 case 0:
5430 /* Error from catch_errors. */
5431 {
5432 SWITCH_THRU_ALL_UIS ()
5433 {
5434 printf_filtered (_("Watchpoint %d deleted.\n"),
5435 b->number);
5436 }
5437 watchpoint_del_at_next_stop (b);
5438 /* We've already printed what needs to be printed. */
5439 bs->print_it = print_it_done;
5440 }
5441 break;
5442 }
5443 }
5444 else /* must_check_value == 0 */
5445 {
5446 /* This is a case where some watchpoint(s) triggered, but
5447 not at the address of this watchpoint, or else no
5448 watchpoint triggered after all. So don't print
5449 anything for this watchpoint. */
5450 bs->print_it = print_it_noop;
5451 bs->stop = 0;
5452 }
5453 }
5454 }
5455
5456 /* For breakpoints that are currently marked as telling gdb to stop,
5457 check conditions (condition proper, frame, thread and ignore count)
5458 of breakpoint referred to by BS. If we should not stop for this
5459 breakpoint, set BS->stop to 0. */
5460
5461 static void
5462 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5463 {
5464 const struct bp_location *bl;
5465 struct breakpoint *b;
5466 int value_is_zero = 0;
5467 struct expression *cond;
5468
5469 gdb_assert (bs->stop);
5470
5471 /* BS is built for existing struct breakpoint. */
5472 bl = bs->bp_location_at;
5473 gdb_assert (bl != NULL);
5474 b = bs->breakpoint_at;
5475 gdb_assert (b != NULL);
5476
5477 /* Even if the target evaluated the condition on its end and notified GDB, we
5478 need to do so again since GDB does not know if we stopped due to a
5479 breakpoint or a single step breakpoint. */
5480
5481 if (frame_id_p (b->frame_id)
5482 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5483 {
5484 bs->stop = 0;
5485 return;
5486 }
5487
5488 /* If this is a thread/task-specific breakpoint, don't waste cpu
5489 evaluating the condition if this isn't the specified
5490 thread/task. */
5491 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5492 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5493
5494 {
5495 bs->stop = 0;
5496 return;
5497 }
5498
5499 /* Evaluate extension language breakpoints that have a "stop" method
5500 implemented. */
5501 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5502
5503 if (is_watchpoint (b))
5504 {
5505 struct watchpoint *w = (struct watchpoint *) b;
5506
5507 cond = w->cond_exp.get ();
5508 }
5509 else
5510 cond = bl->cond.get ();
5511
5512 if (cond && b->disposition != disp_del_at_next_stop)
5513 {
5514 int within_current_scope = 1;
5515 struct watchpoint * w;
5516
5517 /* We use value_mark and value_free_to_mark because it could
5518 be a long time before we return to the command level and
5519 call free_all_values. We can't call free_all_values
5520 because we might be in the middle of evaluating a
5521 function call. */
5522 struct value *mark = value_mark ();
5523
5524 if (is_watchpoint (b))
5525 w = (struct watchpoint *) b;
5526 else
5527 w = NULL;
5528
5529 /* Need to select the frame, with all that implies so that
5530 the conditions will have the right context. Because we
5531 use the frame, we will not see an inlined function's
5532 variables when we arrive at a breakpoint at the start
5533 of the inlined function; the current frame will be the
5534 call site. */
5535 if (w == NULL || w->cond_exp_valid_block == NULL)
5536 select_frame (get_current_frame ());
5537 else
5538 {
5539 struct frame_info *frame;
5540
5541 /* For local watchpoint expressions, which particular
5542 instance of a local is being watched matters, so we
5543 keep track of the frame to evaluate the expression
5544 in. To evaluate the condition however, it doesn't
5545 really matter which instantiation of the function
5546 where the condition makes sense triggers the
5547 watchpoint. This allows an expression like "watch
5548 global if q > 10" set in `func', catch writes to
5549 global on all threads that call `func', or catch
5550 writes on all recursive calls of `func' by a single
5551 thread. We simply always evaluate the condition in
5552 the innermost frame that's executing where it makes
5553 sense to evaluate the condition. It seems
5554 intuitive. */
5555 frame = block_innermost_frame (w->cond_exp_valid_block);
5556 if (frame != NULL)
5557 select_frame (frame);
5558 else
5559 within_current_scope = 0;
5560 }
5561 if (within_current_scope)
5562 value_is_zero
5563 = catch_errors (breakpoint_cond_eval, cond,
5564 "Error in testing breakpoint condition:\n",
5565 RETURN_MASK_ALL);
5566 else
5567 {
5568 warning (_("Watchpoint condition cannot be tested "
5569 "in the current scope"));
5570 /* If we failed to set the right context for this
5571 watchpoint, unconditionally report it. */
5572 value_is_zero = 0;
5573 }
5574 /* FIXME-someday, should give breakpoint #. */
5575 value_free_to_mark (mark);
5576 }
5577
5578 if (cond && value_is_zero)
5579 {
5580 bs->stop = 0;
5581 }
5582 else if (b->ignore_count > 0)
5583 {
5584 b->ignore_count--;
5585 bs->stop = 0;
5586 /* Increase the hit count even though we don't stop. */
5587 ++(b->hit_count);
5588 observer_notify_breakpoint_modified (b);
5589 }
5590 }
5591
5592 /* Returns true if we need to track moribund locations of LOC's type
5593 on the current target. */
5594
5595 static int
5596 need_moribund_for_location_type (struct bp_location *loc)
5597 {
5598 return ((loc->loc_type == bp_loc_software_breakpoint
5599 && !target_supports_stopped_by_sw_breakpoint ())
5600 || (loc->loc_type == bp_loc_hardware_breakpoint
5601 && !target_supports_stopped_by_hw_breakpoint ()));
5602 }
5603
5604
5605 /* Get a bpstat associated with having just stopped at address
5606 BP_ADDR in thread PTID.
5607
5608 Determine whether we stopped at a breakpoint, etc, or whether we
5609 don't understand this stop. Result is a chain of bpstat's such
5610 that:
5611
5612 if we don't understand the stop, the result is a null pointer.
5613
5614 if we understand why we stopped, the result is not null.
5615
5616 Each element of the chain refers to a particular breakpoint or
5617 watchpoint at which we have stopped. (We may have stopped for
5618 several reasons concurrently.)
5619
5620 Each element of the chain has valid next, breakpoint_at,
5621 commands, FIXME??? fields. */
5622
5623 bpstat
5624 bpstat_stop_status (struct address_space *aspace,
5625 CORE_ADDR bp_addr, ptid_t ptid,
5626 const struct target_waitstatus *ws)
5627 {
5628 struct breakpoint *b = NULL;
5629 struct bp_location *bl;
5630 struct bp_location *loc;
5631 /* First item of allocated bpstat's. */
5632 bpstat bs_head = NULL, *bs_link = &bs_head;
5633 /* Pointer to the last thing in the chain currently. */
5634 bpstat bs;
5635 int ix;
5636 int need_remove_insert;
5637 int removed_any;
5638
5639 /* First, build the bpstat chain with locations that explain a
5640 target stop, while being careful to not set the target running,
5641 as that may invalidate locations (in particular watchpoint
5642 locations are recreated). Resuming will happen here with
5643 breakpoint conditions or watchpoint expressions that include
5644 inferior function calls. */
5645
5646 ALL_BREAKPOINTS (b)
5647 {
5648 if (!breakpoint_enabled (b))
5649 continue;
5650
5651 for (bl = b->loc; bl != NULL; bl = bl->next)
5652 {
5653 /* For hardware watchpoints, we look only at the first
5654 location. The watchpoint_check function will work on the
5655 entire expression, not the individual locations. For
5656 read watchpoints, the watchpoints_triggered function has
5657 checked all locations already. */
5658 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5659 break;
5660
5661 if (!bl->enabled || bl->shlib_disabled)
5662 continue;
5663
5664 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5665 continue;
5666
5667 /* Come here if it's a watchpoint, or if the break address
5668 matches. */
5669
5670 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5671 explain stop. */
5672
5673 /* Assume we stop. Should we find a watchpoint that is not
5674 actually triggered, or if the condition of the breakpoint
5675 evaluates as false, we'll reset 'stop' to 0. */
5676 bs->stop = 1;
5677 bs->print = 1;
5678
5679 /* If this is a scope breakpoint, mark the associated
5680 watchpoint as triggered so that we will handle the
5681 out-of-scope event. We'll get to the watchpoint next
5682 iteration. */
5683 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5684 {
5685 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5686
5687 w->watchpoint_triggered = watch_triggered_yes;
5688 }
5689 }
5690 }
5691
5692 /* Check if a moribund breakpoint explains the stop. */
5693 if (!target_supports_stopped_by_sw_breakpoint ()
5694 || !target_supports_stopped_by_hw_breakpoint ())
5695 {
5696 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5697 {
5698 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5699 && need_moribund_for_location_type (loc))
5700 {
5701 bs = bpstat_alloc (loc, &bs_link);
5702 /* For hits of moribund locations, we should just proceed. */
5703 bs->stop = 0;
5704 bs->print = 0;
5705 bs->print_it = print_it_noop;
5706 }
5707 }
5708 }
5709
5710 /* A bit of special processing for shlib breakpoints. We need to
5711 process solib loading here, so that the lists of loaded and
5712 unloaded libraries are correct before we handle "catch load" and
5713 "catch unload". */
5714 for (bs = bs_head; bs != NULL; bs = bs->next)
5715 {
5716 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5717 {
5718 handle_solib_event ();
5719 break;
5720 }
5721 }
5722
5723 /* Now go through the locations that caused the target to stop, and
5724 check whether we're interested in reporting this stop to higher
5725 layers, or whether we should resume the target transparently. */
5726
5727 removed_any = 0;
5728
5729 for (bs = bs_head; bs != NULL; bs = bs->next)
5730 {
5731 if (!bs->stop)
5732 continue;
5733
5734 b = bs->breakpoint_at;
5735 b->ops->check_status (bs);
5736 if (bs->stop)
5737 {
5738 bpstat_check_breakpoint_conditions (bs, ptid);
5739
5740 if (bs->stop)
5741 {
5742 ++(b->hit_count);
5743 observer_notify_breakpoint_modified (b);
5744
5745 /* We will stop here. */
5746 if (b->disposition == disp_disable)
5747 {
5748 --(b->enable_count);
5749 if (b->enable_count <= 0)
5750 b->enable_state = bp_disabled;
5751 removed_any = 1;
5752 }
5753 if (b->silent)
5754 bs->print = 0;
5755 bs->commands = b->commands;
5756 incref_counted_command_line (bs->commands);
5757 if (command_line_is_silent (bs->commands
5758 ? bs->commands->commands : NULL))
5759 bs->print = 0;
5760
5761 b->ops->after_condition_true (bs);
5762 }
5763
5764 }
5765
5766 /* Print nothing for this entry if we don't stop or don't
5767 print. */
5768 if (!bs->stop || !bs->print)
5769 bs->print_it = print_it_noop;
5770 }
5771
5772 /* If we aren't stopping, the value of some hardware watchpoint may
5773 not have changed, but the intermediate memory locations we are
5774 watching may have. Don't bother if we're stopping; this will get
5775 done later. */
5776 need_remove_insert = 0;
5777 if (! bpstat_causes_stop (bs_head))
5778 for (bs = bs_head; bs != NULL; bs = bs->next)
5779 if (!bs->stop
5780 && bs->breakpoint_at
5781 && is_hardware_watchpoint (bs->breakpoint_at))
5782 {
5783 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5784
5785 update_watchpoint (w, 0 /* don't reparse. */);
5786 need_remove_insert = 1;
5787 }
5788
5789 if (need_remove_insert)
5790 update_global_location_list (UGLL_MAY_INSERT);
5791 else if (removed_any)
5792 update_global_location_list (UGLL_DONT_INSERT);
5793
5794 return bs_head;
5795 }
5796
5797 static void
5798 handle_jit_event (void)
5799 {
5800 struct frame_info *frame;
5801 struct gdbarch *gdbarch;
5802
5803 if (debug_infrun)
5804 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5805
5806 /* Switch terminal for any messages produced by
5807 breakpoint_re_set. */
5808 target_terminal_ours_for_output ();
5809
5810 frame = get_current_frame ();
5811 gdbarch = get_frame_arch (frame);
5812
5813 jit_event_handler (gdbarch);
5814
5815 target_terminal_inferior ();
5816 }
5817
5818 /* Prepare WHAT final decision for infrun. */
5819
5820 /* Decide what infrun needs to do with this bpstat. */
5821
5822 struct bpstat_what
5823 bpstat_what (bpstat bs_head)
5824 {
5825 struct bpstat_what retval;
5826 bpstat bs;
5827
5828 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5829 retval.call_dummy = STOP_NONE;
5830 retval.is_longjmp = 0;
5831
5832 for (bs = bs_head; bs != NULL; bs = bs->next)
5833 {
5834 /* Extract this BS's action. After processing each BS, we check
5835 if its action overrides all we've seem so far. */
5836 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5837 enum bptype bptype;
5838
5839 if (bs->breakpoint_at == NULL)
5840 {
5841 /* I suspect this can happen if it was a momentary
5842 breakpoint which has since been deleted. */
5843 bptype = bp_none;
5844 }
5845 else
5846 bptype = bs->breakpoint_at->type;
5847
5848 switch (bptype)
5849 {
5850 case bp_none:
5851 break;
5852 case bp_breakpoint:
5853 case bp_hardware_breakpoint:
5854 case bp_single_step:
5855 case bp_until:
5856 case bp_finish:
5857 case bp_shlib_event:
5858 if (bs->stop)
5859 {
5860 if (bs->print)
5861 this_action = BPSTAT_WHAT_STOP_NOISY;
5862 else
5863 this_action = BPSTAT_WHAT_STOP_SILENT;
5864 }
5865 else
5866 this_action = BPSTAT_WHAT_SINGLE;
5867 break;
5868 case bp_watchpoint:
5869 case bp_hardware_watchpoint:
5870 case bp_read_watchpoint:
5871 case bp_access_watchpoint:
5872 if (bs->stop)
5873 {
5874 if (bs->print)
5875 this_action = BPSTAT_WHAT_STOP_NOISY;
5876 else
5877 this_action = BPSTAT_WHAT_STOP_SILENT;
5878 }
5879 else
5880 {
5881 /* There was a watchpoint, but we're not stopping.
5882 This requires no further action. */
5883 }
5884 break;
5885 case bp_longjmp:
5886 case bp_longjmp_call_dummy:
5887 case bp_exception:
5888 if (bs->stop)
5889 {
5890 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5891 retval.is_longjmp = bptype != bp_exception;
5892 }
5893 else
5894 this_action = BPSTAT_WHAT_SINGLE;
5895 break;
5896 case bp_longjmp_resume:
5897 case bp_exception_resume:
5898 if (bs->stop)
5899 {
5900 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5901 retval.is_longjmp = bptype == bp_longjmp_resume;
5902 }
5903 else
5904 this_action = BPSTAT_WHAT_SINGLE;
5905 break;
5906 case bp_step_resume:
5907 if (bs->stop)
5908 this_action = BPSTAT_WHAT_STEP_RESUME;
5909 else
5910 {
5911 /* It is for the wrong frame. */
5912 this_action = BPSTAT_WHAT_SINGLE;
5913 }
5914 break;
5915 case bp_hp_step_resume:
5916 if (bs->stop)
5917 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5918 else
5919 {
5920 /* It is for the wrong frame. */
5921 this_action = BPSTAT_WHAT_SINGLE;
5922 }
5923 break;
5924 case bp_watchpoint_scope:
5925 case bp_thread_event:
5926 case bp_overlay_event:
5927 case bp_longjmp_master:
5928 case bp_std_terminate_master:
5929 case bp_exception_master:
5930 this_action = BPSTAT_WHAT_SINGLE;
5931 break;
5932 case bp_catchpoint:
5933 if (bs->stop)
5934 {
5935 if (bs->print)
5936 this_action = BPSTAT_WHAT_STOP_NOISY;
5937 else
5938 this_action = BPSTAT_WHAT_STOP_SILENT;
5939 }
5940 else
5941 {
5942 /* There was a catchpoint, but we're not stopping.
5943 This requires no further action. */
5944 }
5945 break;
5946 case bp_jit_event:
5947 this_action = BPSTAT_WHAT_SINGLE;
5948 break;
5949 case bp_call_dummy:
5950 /* Make sure the action is stop (silent or noisy),
5951 so infrun.c pops the dummy frame. */
5952 retval.call_dummy = STOP_STACK_DUMMY;
5953 this_action = BPSTAT_WHAT_STOP_SILENT;
5954 break;
5955 case bp_std_terminate:
5956 /* Make sure the action is stop (silent or noisy),
5957 so infrun.c pops the dummy frame. */
5958 retval.call_dummy = STOP_STD_TERMINATE;
5959 this_action = BPSTAT_WHAT_STOP_SILENT;
5960 break;
5961 case bp_tracepoint:
5962 case bp_fast_tracepoint:
5963 case bp_static_tracepoint:
5964 /* Tracepoint hits should not be reported back to GDB, and
5965 if one got through somehow, it should have been filtered
5966 out already. */
5967 internal_error (__FILE__, __LINE__,
5968 _("bpstat_what: tracepoint encountered"));
5969 break;
5970 case bp_gnu_ifunc_resolver:
5971 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5972 this_action = BPSTAT_WHAT_SINGLE;
5973 break;
5974 case bp_gnu_ifunc_resolver_return:
5975 /* The breakpoint will be removed, execution will restart from the
5976 PC of the former breakpoint. */
5977 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5978 break;
5979
5980 case bp_dprintf:
5981 if (bs->stop)
5982 this_action = BPSTAT_WHAT_STOP_SILENT;
5983 else
5984 this_action = BPSTAT_WHAT_SINGLE;
5985 break;
5986
5987 default:
5988 internal_error (__FILE__, __LINE__,
5989 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5990 }
5991
5992 retval.main_action = std::max (retval.main_action, this_action);
5993 }
5994
5995 return retval;
5996 }
5997
5998 void
5999 bpstat_run_callbacks (bpstat bs_head)
6000 {
6001 bpstat bs;
6002
6003 for (bs = bs_head; bs != NULL; bs = bs->next)
6004 {
6005 struct breakpoint *b = bs->breakpoint_at;
6006
6007 if (b == NULL)
6008 continue;
6009 switch (b->type)
6010 {
6011 case bp_jit_event:
6012 handle_jit_event ();
6013 break;
6014 case bp_gnu_ifunc_resolver:
6015 gnu_ifunc_resolver_stop (b);
6016 break;
6017 case bp_gnu_ifunc_resolver_return:
6018 gnu_ifunc_resolver_return_stop (b);
6019 break;
6020 }
6021 }
6022 }
6023
6024 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6025 without hardware support). This isn't related to a specific bpstat,
6026 just to things like whether watchpoints are set. */
6027
6028 int
6029 bpstat_should_step (void)
6030 {
6031 struct breakpoint *b;
6032
6033 ALL_BREAKPOINTS (b)
6034 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6035 return 1;
6036 return 0;
6037 }
6038
6039 int
6040 bpstat_causes_stop (bpstat bs)
6041 {
6042 for (; bs != NULL; bs = bs->next)
6043 if (bs->stop)
6044 return 1;
6045
6046 return 0;
6047 }
6048
6049 \f
6050
6051 /* Compute a string of spaces suitable to indent the next line
6052 so it starts at the position corresponding to the table column
6053 named COL_NAME in the currently active table of UIOUT. */
6054
6055 static char *
6056 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6057 {
6058 static char wrap_indent[80];
6059 int i, total_width, width, align;
6060 const char *text;
6061
6062 total_width = 0;
6063 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6064 {
6065 if (strcmp (text, col_name) == 0)
6066 {
6067 gdb_assert (total_width < sizeof wrap_indent);
6068 memset (wrap_indent, ' ', total_width);
6069 wrap_indent[total_width] = 0;
6070
6071 return wrap_indent;
6072 }
6073
6074 total_width += width + 1;
6075 }
6076
6077 return NULL;
6078 }
6079
6080 /* Determine if the locations of this breakpoint will have their conditions
6081 evaluated by the target, host or a mix of both. Returns the following:
6082
6083 "host": Host evals condition.
6084 "host or target": Host or Target evals condition.
6085 "target": Target evals condition.
6086 */
6087
6088 static const char *
6089 bp_condition_evaluator (struct breakpoint *b)
6090 {
6091 struct bp_location *bl;
6092 char host_evals = 0;
6093 char target_evals = 0;
6094
6095 if (!b)
6096 return NULL;
6097
6098 if (!is_breakpoint (b))
6099 return NULL;
6100
6101 if (gdb_evaluates_breakpoint_condition_p ()
6102 || !target_supports_evaluation_of_breakpoint_conditions ())
6103 return condition_evaluation_host;
6104
6105 for (bl = b->loc; bl; bl = bl->next)
6106 {
6107 if (bl->cond_bytecode)
6108 target_evals++;
6109 else
6110 host_evals++;
6111 }
6112
6113 if (host_evals && target_evals)
6114 return condition_evaluation_both;
6115 else if (target_evals)
6116 return condition_evaluation_target;
6117 else
6118 return condition_evaluation_host;
6119 }
6120
6121 /* Determine the breakpoint location's condition evaluator. This is
6122 similar to bp_condition_evaluator, but for locations. */
6123
6124 static const char *
6125 bp_location_condition_evaluator (struct bp_location *bl)
6126 {
6127 if (bl && !is_breakpoint (bl->owner))
6128 return NULL;
6129
6130 if (gdb_evaluates_breakpoint_condition_p ()
6131 || !target_supports_evaluation_of_breakpoint_conditions ())
6132 return condition_evaluation_host;
6133
6134 if (bl && bl->cond_bytecode)
6135 return condition_evaluation_target;
6136 else
6137 return condition_evaluation_host;
6138 }
6139
6140 /* Print the LOC location out of the list of B->LOC locations. */
6141
6142 static void
6143 print_breakpoint_location (struct breakpoint *b,
6144 struct bp_location *loc)
6145 {
6146 struct ui_out *uiout = current_uiout;
6147
6148 scoped_restore_current_program_space restore_pspace;
6149
6150 if (loc != NULL && loc->shlib_disabled)
6151 loc = NULL;
6152
6153 if (loc != NULL)
6154 set_current_program_space (loc->pspace);
6155
6156 if (b->display_canonical)
6157 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6158 else if (loc && loc->symtab)
6159 {
6160 struct symbol *sym
6161 = find_pc_sect_function (loc->address, loc->section);
6162 if (sym)
6163 {
6164 uiout->text ("in ");
6165 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6166 uiout->text (" ");
6167 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6168 uiout->text ("at ");
6169 }
6170 uiout->field_string ("file",
6171 symtab_to_filename_for_display (loc->symtab));
6172 uiout->text (":");
6173
6174 if (uiout->is_mi_like_p ())
6175 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6176
6177 uiout->field_int ("line", loc->line_number);
6178 }
6179 else if (loc)
6180 {
6181 string_file stb;
6182
6183 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6184 demangle, "");
6185 uiout->field_stream ("at", stb);
6186 }
6187 else
6188 {
6189 uiout->field_string ("pending",
6190 event_location_to_string (b->location.get ()));
6191 /* If extra_string is available, it could be holding a condition
6192 or dprintf arguments. In either case, make sure it is printed,
6193 too, but only for non-MI streams. */
6194 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6195 {
6196 if (b->type == bp_dprintf)
6197 uiout->text (",");
6198 else
6199 uiout->text (" ");
6200 uiout->text (b->extra_string);
6201 }
6202 }
6203
6204 if (loc && is_breakpoint (b)
6205 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6206 && bp_condition_evaluator (b) == condition_evaluation_both)
6207 {
6208 uiout->text (" (");
6209 uiout->field_string ("evaluated-by",
6210 bp_location_condition_evaluator (loc));
6211 uiout->text (")");
6212 }
6213 }
6214
6215 static const char *
6216 bptype_string (enum bptype type)
6217 {
6218 struct ep_type_description
6219 {
6220 enum bptype type;
6221 const char *description;
6222 };
6223 static struct ep_type_description bptypes[] =
6224 {
6225 {bp_none, "?deleted?"},
6226 {bp_breakpoint, "breakpoint"},
6227 {bp_hardware_breakpoint, "hw breakpoint"},
6228 {bp_single_step, "sw single-step"},
6229 {bp_until, "until"},
6230 {bp_finish, "finish"},
6231 {bp_watchpoint, "watchpoint"},
6232 {bp_hardware_watchpoint, "hw watchpoint"},
6233 {bp_read_watchpoint, "read watchpoint"},
6234 {bp_access_watchpoint, "acc watchpoint"},
6235 {bp_longjmp, "longjmp"},
6236 {bp_longjmp_resume, "longjmp resume"},
6237 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6238 {bp_exception, "exception"},
6239 {bp_exception_resume, "exception resume"},
6240 {bp_step_resume, "step resume"},
6241 {bp_hp_step_resume, "high-priority step resume"},
6242 {bp_watchpoint_scope, "watchpoint scope"},
6243 {bp_call_dummy, "call dummy"},
6244 {bp_std_terminate, "std::terminate"},
6245 {bp_shlib_event, "shlib events"},
6246 {bp_thread_event, "thread events"},
6247 {bp_overlay_event, "overlay events"},
6248 {bp_longjmp_master, "longjmp master"},
6249 {bp_std_terminate_master, "std::terminate master"},
6250 {bp_exception_master, "exception master"},
6251 {bp_catchpoint, "catchpoint"},
6252 {bp_tracepoint, "tracepoint"},
6253 {bp_fast_tracepoint, "fast tracepoint"},
6254 {bp_static_tracepoint, "static tracepoint"},
6255 {bp_dprintf, "dprintf"},
6256 {bp_jit_event, "jit events"},
6257 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6258 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6259 };
6260
6261 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6262 || ((int) type != bptypes[(int) type].type))
6263 internal_error (__FILE__, __LINE__,
6264 _("bptypes table does not describe type #%d."),
6265 (int) type);
6266
6267 return bptypes[(int) type].description;
6268 }
6269
6270 /* For MI, output a field named 'thread-groups' with a list as the value.
6271 For CLI, prefix the list with the string 'inf'. */
6272
6273 static void
6274 output_thread_groups (struct ui_out *uiout,
6275 const char *field_name,
6276 VEC(int) *inf_num,
6277 int mi_only)
6278 {
6279 int is_mi = uiout->is_mi_like_p ();
6280 int inf;
6281 int i;
6282
6283 /* For backward compatibility, don't display inferiors in CLI unless
6284 there are several. Always display them for MI. */
6285 if (!is_mi && mi_only)
6286 return;
6287
6288 ui_out_emit_list list_emitter (uiout, field_name);
6289
6290 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6291 {
6292 if (is_mi)
6293 {
6294 char mi_group[10];
6295
6296 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6297 uiout->field_string (NULL, mi_group);
6298 }
6299 else
6300 {
6301 if (i == 0)
6302 uiout->text (" inf ");
6303 else
6304 uiout->text (", ");
6305
6306 uiout->text (plongest (inf));
6307 }
6308 }
6309 }
6310
6311 /* Print B to gdb_stdout. */
6312
6313 static void
6314 print_one_breakpoint_location (struct breakpoint *b,
6315 struct bp_location *loc,
6316 int loc_number,
6317 struct bp_location **last_loc,
6318 int allflag)
6319 {
6320 struct command_line *l;
6321 static char bpenables[] = "nynny";
6322
6323 struct ui_out *uiout = current_uiout;
6324 int header_of_multiple = 0;
6325 int part_of_multiple = (loc != NULL);
6326 struct value_print_options opts;
6327
6328 get_user_print_options (&opts);
6329
6330 gdb_assert (!loc || loc_number != 0);
6331 /* See comment in print_one_breakpoint concerning treatment of
6332 breakpoints with single disabled location. */
6333 if (loc == NULL
6334 && (b->loc != NULL
6335 && (b->loc->next != NULL || !b->loc->enabled)))
6336 header_of_multiple = 1;
6337 if (loc == NULL)
6338 loc = b->loc;
6339
6340 annotate_record ();
6341
6342 /* 1 */
6343 annotate_field (0);
6344 if (part_of_multiple)
6345 {
6346 char *formatted;
6347 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6348 uiout->field_string ("number", formatted);
6349 xfree (formatted);
6350 }
6351 else
6352 {
6353 uiout->field_int ("number", b->number);
6354 }
6355
6356 /* 2 */
6357 annotate_field (1);
6358 if (part_of_multiple)
6359 uiout->field_skip ("type");
6360 else
6361 uiout->field_string ("type", bptype_string (b->type));
6362
6363 /* 3 */
6364 annotate_field (2);
6365 if (part_of_multiple)
6366 uiout->field_skip ("disp");
6367 else
6368 uiout->field_string ("disp", bpdisp_text (b->disposition));
6369
6370
6371 /* 4 */
6372 annotate_field (3);
6373 if (part_of_multiple)
6374 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6375 else
6376 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6377 uiout->spaces (2);
6378
6379
6380 /* 5 and 6 */
6381 if (b->ops != NULL && b->ops->print_one != NULL)
6382 {
6383 /* Although the print_one can possibly print all locations,
6384 calling it here is not likely to get any nice result. So,
6385 make sure there's just one location. */
6386 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6387 b->ops->print_one (b, last_loc);
6388 }
6389 else
6390 switch (b->type)
6391 {
6392 case bp_none:
6393 internal_error (__FILE__, __LINE__,
6394 _("print_one_breakpoint: bp_none encountered\n"));
6395 break;
6396
6397 case bp_watchpoint:
6398 case bp_hardware_watchpoint:
6399 case bp_read_watchpoint:
6400 case bp_access_watchpoint:
6401 {
6402 struct watchpoint *w = (struct watchpoint *) b;
6403
6404 /* Field 4, the address, is omitted (which makes the columns
6405 not line up too nicely with the headers, but the effect
6406 is relatively readable). */
6407 if (opts.addressprint)
6408 uiout->field_skip ("addr");
6409 annotate_field (5);
6410 uiout->field_string ("what", w->exp_string);
6411 }
6412 break;
6413
6414 case bp_breakpoint:
6415 case bp_hardware_breakpoint:
6416 case bp_single_step:
6417 case bp_until:
6418 case bp_finish:
6419 case bp_longjmp:
6420 case bp_longjmp_resume:
6421 case bp_longjmp_call_dummy:
6422 case bp_exception:
6423 case bp_exception_resume:
6424 case bp_step_resume:
6425 case bp_hp_step_resume:
6426 case bp_watchpoint_scope:
6427 case bp_call_dummy:
6428 case bp_std_terminate:
6429 case bp_shlib_event:
6430 case bp_thread_event:
6431 case bp_overlay_event:
6432 case bp_longjmp_master:
6433 case bp_std_terminate_master:
6434 case bp_exception_master:
6435 case bp_tracepoint:
6436 case bp_fast_tracepoint:
6437 case bp_static_tracepoint:
6438 case bp_dprintf:
6439 case bp_jit_event:
6440 case bp_gnu_ifunc_resolver:
6441 case bp_gnu_ifunc_resolver_return:
6442 if (opts.addressprint)
6443 {
6444 annotate_field (4);
6445 if (header_of_multiple)
6446 uiout->field_string ("addr", "<MULTIPLE>");
6447 else if (b->loc == NULL || loc->shlib_disabled)
6448 uiout->field_string ("addr", "<PENDING>");
6449 else
6450 uiout->field_core_addr ("addr",
6451 loc->gdbarch, loc->address);
6452 }
6453 annotate_field (5);
6454 if (!header_of_multiple)
6455 print_breakpoint_location (b, loc);
6456 if (b->loc)
6457 *last_loc = b->loc;
6458 break;
6459 }
6460
6461
6462 if (loc != NULL && !header_of_multiple)
6463 {
6464 struct inferior *inf;
6465 VEC(int) *inf_num = NULL;
6466 int mi_only = 1;
6467
6468 ALL_INFERIORS (inf)
6469 {
6470 if (inf->pspace == loc->pspace)
6471 VEC_safe_push (int, inf_num, inf->num);
6472 }
6473
6474 /* For backward compatibility, don't display inferiors in CLI unless
6475 there are several. Always display for MI. */
6476 if (allflag
6477 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6478 && (number_of_program_spaces () > 1
6479 || number_of_inferiors () > 1)
6480 /* LOC is for existing B, it cannot be in
6481 moribund_locations and thus having NULL OWNER. */
6482 && loc->owner->type != bp_catchpoint))
6483 mi_only = 0;
6484 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6485 VEC_free (int, inf_num);
6486 }
6487
6488 if (!part_of_multiple)
6489 {
6490 if (b->thread != -1)
6491 {
6492 /* FIXME: This seems to be redundant and lost here; see the
6493 "stop only in" line a little further down. */
6494 uiout->text (" thread ");
6495 uiout->field_int ("thread", b->thread);
6496 }
6497 else if (b->task != 0)
6498 {
6499 uiout->text (" task ");
6500 uiout->field_int ("task", b->task);
6501 }
6502 }
6503
6504 uiout->text ("\n");
6505
6506 if (!part_of_multiple)
6507 b->ops->print_one_detail (b, uiout);
6508
6509 if (part_of_multiple && frame_id_p (b->frame_id))
6510 {
6511 annotate_field (6);
6512 uiout->text ("\tstop only in stack frame at ");
6513 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6514 the frame ID. */
6515 uiout->field_core_addr ("frame",
6516 b->gdbarch, b->frame_id.stack_addr);
6517 uiout->text ("\n");
6518 }
6519
6520 if (!part_of_multiple && b->cond_string)
6521 {
6522 annotate_field (7);
6523 if (is_tracepoint (b))
6524 uiout->text ("\ttrace only if ");
6525 else
6526 uiout->text ("\tstop only if ");
6527 uiout->field_string ("cond", b->cond_string);
6528
6529 /* Print whether the target is doing the breakpoint's condition
6530 evaluation. If GDB is doing the evaluation, don't print anything. */
6531 if (is_breakpoint (b)
6532 && breakpoint_condition_evaluation_mode ()
6533 == condition_evaluation_target)
6534 {
6535 uiout->text (" (");
6536 uiout->field_string ("evaluated-by",
6537 bp_condition_evaluator (b));
6538 uiout->text (" evals)");
6539 }
6540 uiout->text ("\n");
6541 }
6542
6543 if (!part_of_multiple && b->thread != -1)
6544 {
6545 /* FIXME should make an annotation for this. */
6546 uiout->text ("\tstop only in thread ");
6547 if (uiout->is_mi_like_p ())
6548 uiout->field_int ("thread", b->thread);
6549 else
6550 {
6551 struct thread_info *thr = find_thread_global_id (b->thread);
6552
6553 uiout->field_string ("thread", print_thread_id (thr));
6554 }
6555 uiout->text ("\n");
6556 }
6557
6558 if (!part_of_multiple)
6559 {
6560 if (b->hit_count)
6561 {
6562 /* FIXME should make an annotation for this. */
6563 if (is_catchpoint (b))
6564 uiout->text ("\tcatchpoint");
6565 else if (is_tracepoint (b))
6566 uiout->text ("\ttracepoint");
6567 else
6568 uiout->text ("\tbreakpoint");
6569 uiout->text (" already hit ");
6570 uiout->field_int ("times", b->hit_count);
6571 if (b->hit_count == 1)
6572 uiout->text (" time\n");
6573 else
6574 uiout->text (" times\n");
6575 }
6576 else
6577 {
6578 /* Output the count also if it is zero, but only if this is mi. */
6579 if (uiout->is_mi_like_p ())
6580 uiout->field_int ("times", b->hit_count);
6581 }
6582 }
6583
6584 if (!part_of_multiple && b->ignore_count)
6585 {
6586 annotate_field (8);
6587 uiout->text ("\tignore next ");
6588 uiout->field_int ("ignore", b->ignore_count);
6589 uiout->text (" hits\n");
6590 }
6591
6592 /* Note that an enable count of 1 corresponds to "enable once"
6593 behavior, which is reported by the combination of enablement and
6594 disposition, so we don't need to mention it here. */
6595 if (!part_of_multiple && b->enable_count > 1)
6596 {
6597 annotate_field (8);
6598 uiout->text ("\tdisable after ");
6599 /* Tweak the wording to clarify that ignore and enable counts
6600 are distinct, and have additive effect. */
6601 if (b->ignore_count)
6602 uiout->text ("additional ");
6603 else
6604 uiout->text ("next ");
6605 uiout->field_int ("enable", b->enable_count);
6606 uiout->text (" hits\n");
6607 }
6608
6609 if (!part_of_multiple && is_tracepoint (b))
6610 {
6611 struct tracepoint *tp = (struct tracepoint *) b;
6612
6613 if (tp->traceframe_usage)
6614 {
6615 uiout->text ("\ttrace buffer usage ");
6616 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6617 uiout->text (" bytes\n");
6618 }
6619 }
6620
6621 l = b->commands ? b->commands->commands : NULL;
6622 if (!part_of_multiple && l)
6623 {
6624 annotate_field (9);
6625 ui_out_emit_tuple tuple_emitter (uiout, "script");
6626 print_command_lines (uiout, l, 4);
6627 }
6628
6629 if (is_tracepoint (b))
6630 {
6631 struct tracepoint *t = (struct tracepoint *) b;
6632
6633 if (!part_of_multiple && t->pass_count)
6634 {
6635 annotate_field (10);
6636 uiout->text ("\tpass count ");
6637 uiout->field_int ("pass", t->pass_count);
6638 uiout->text (" \n");
6639 }
6640
6641 /* Don't display it when tracepoint or tracepoint location is
6642 pending. */
6643 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6644 {
6645 annotate_field (11);
6646
6647 if (uiout->is_mi_like_p ())
6648 uiout->field_string ("installed",
6649 loc->inserted ? "y" : "n");
6650 else
6651 {
6652 if (loc->inserted)
6653 uiout->text ("\t");
6654 else
6655 uiout->text ("\tnot ");
6656 uiout->text ("installed on target\n");
6657 }
6658 }
6659 }
6660
6661 if (uiout->is_mi_like_p () && !part_of_multiple)
6662 {
6663 if (is_watchpoint (b))
6664 {
6665 struct watchpoint *w = (struct watchpoint *) b;
6666
6667 uiout->field_string ("original-location", w->exp_string);
6668 }
6669 else if (b->location != NULL
6670 && event_location_to_string (b->location.get ()) != NULL)
6671 uiout->field_string ("original-location",
6672 event_location_to_string (b->location.get ()));
6673 }
6674 }
6675
6676 static void
6677 print_one_breakpoint (struct breakpoint *b,
6678 struct bp_location **last_loc,
6679 int allflag)
6680 {
6681 struct ui_out *uiout = current_uiout;
6682
6683 {
6684 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6685
6686 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6687 }
6688
6689 /* If this breakpoint has custom print function,
6690 it's already printed. Otherwise, print individual
6691 locations, if any. */
6692 if (b->ops == NULL || b->ops->print_one == NULL)
6693 {
6694 /* If breakpoint has a single location that is disabled, we
6695 print it as if it had several locations, since otherwise it's
6696 hard to represent "breakpoint enabled, location disabled"
6697 situation.
6698
6699 Note that while hardware watchpoints have several locations
6700 internally, that's not a property exposed to user. */
6701 if (b->loc
6702 && !is_hardware_watchpoint (b)
6703 && (b->loc->next || !b->loc->enabled))
6704 {
6705 struct bp_location *loc;
6706 int n = 1;
6707
6708 for (loc = b->loc; loc; loc = loc->next, ++n)
6709 {
6710 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6711 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6712 }
6713 }
6714 }
6715 }
6716
6717 static int
6718 breakpoint_address_bits (struct breakpoint *b)
6719 {
6720 int print_address_bits = 0;
6721 struct bp_location *loc;
6722
6723 /* Software watchpoints that aren't watching memory don't have an
6724 address to print. */
6725 if (is_no_memory_software_watchpoint (b))
6726 return 0;
6727
6728 for (loc = b->loc; loc; loc = loc->next)
6729 {
6730 int addr_bit;
6731
6732 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6733 if (addr_bit > print_address_bits)
6734 print_address_bits = addr_bit;
6735 }
6736
6737 return print_address_bits;
6738 }
6739
6740 struct captured_breakpoint_query_args
6741 {
6742 int bnum;
6743 };
6744
6745 static int
6746 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6747 {
6748 struct captured_breakpoint_query_args *args
6749 = (struct captured_breakpoint_query_args *) data;
6750 struct breakpoint *b;
6751 struct bp_location *dummy_loc = NULL;
6752
6753 ALL_BREAKPOINTS (b)
6754 {
6755 if (args->bnum == b->number)
6756 {
6757 print_one_breakpoint (b, &dummy_loc, 0);
6758 return GDB_RC_OK;
6759 }
6760 }
6761 return GDB_RC_NONE;
6762 }
6763
6764 enum gdb_rc
6765 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6766 char **error_message)
6767 {
6768 struct captured_breakpoint_query_args args;
6769
6770 args.bnum = bnum;
6771 /* For the moment we don't trust print_one_breakpoint() to not throw
6772 an error. */
6773 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6774 error_message, RETURN_MASK_ALL) < 0)
6775 return GDB_RC_FAIL;
6776 else
6777 return GDB_RC_OK;
6778 }
6779
6780 /* Return true if this breakpoint was set by the user, false if it is
6781 internal or momentary. */
6782
6783 int
6784 user_breakpoint_p (struct breakpoint *b)
6785 {
6786 return b->number > 0;
6787 }
6788
6789 /* See breakpoint.h. */
6790
6791 int
6792 pending_breakpoint_p (struct breakpoint *b)
6793 {
6794 return b->loc == NULL;
6795 }
6796
6797 /* Print information on user settable breakpoint (watchpoint, etc)
6798 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6799 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6800 FILTER is non-NULL, call it on each breakpoint and only include the
6801 ones for which it returns non-zero. Return the total number of
6802 breakpoints listed. */
6803
6804 static int
6805 breakpoint_1 (char *args, int allflag,
6806 int (*filter) (const struct breakpoint *))
6807 {
6808 struct breakpoint *b;
6809 struct bp_location *last_loc = NULL;
6810 int nr_printable_breakpoints;
6811 struct value_print_options opts;
6812 int print_address_bits = 0;
6813 int print_type_col_width = 14;
6814 struct ui_out *uiout = current_uiout;
6815
6816 get_user_print_options (&opts);
6817
6818 /* Compute the number of rows in the table, as well as the size
6819 required for address fields. */
6820 nr_printable_breakpoints = 0;
6821 ALL_BREAKPOINTS (b)
6822 {
6823 /* If we have a filter, only list the breakpoints it accepts. */
6824 if (filter && !filter (b))
6825 continue;
6826
6827 /* If we have an "args" string, it is a list of breakpoints to
6828 accept. Skip the others. */
6829 if (args != NULL && *args != '\0')
6830 {
6831 if (allflag && parse_and_eval_long (args) != b->number)
6832 continue;
6833 if (!allflag && !number_is_in_list (args, b->number))
6834 continue;
6835 }
6836
6837 if (allflag || user_breakpoint_p (b))
6838 {
6839 int addr_bit, type_len;
6840
6841 addr_bit = breakpoint_address_bits (b);
6842 if (addr_bit > print_address_bits)
6843 print_address_bits = addr_bit;
6844
6845 type_len = strlen (bptype_string (b->type));
6846 if (type_len > print_type_col_width)
6847 print_type_col_width = type_len;
6848
6849 nr_printable_breakpoints++;
6850 }
6851 }
6852
6853 {
6854 ui_out_emit_table table_emitter (uiout,
6855 opts.addressprint ? 6 : 5,
6856 nr_printable_breakpoints,
6857 "BreakpointTable");
6858
6859 if (nr_printable_breakpoints > 0)
6860 annotate_breakpoints_headers ();
6861 if (nr_printable_breakpoints > 0)
6862 annotate_field (0);
6863 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6864 if (nr_printable_breakpoints > 0)
6865 annotate_field (1);
6866 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6867 if (nr_printable_breakpoints > 0)
6868 annotate_field (2);
6869 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6870 if (nr_printable_breakpoints > 0)
6871 annotate_field (3);
6872 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6873 if (opts.addressprint)
6874 {
6875 if (nr_printable_breakpoints > 0)
6876 annotate_field (4);
6877 if (print_address_bits <= 32)
6878 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6879 else
6880 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6881 }
6882 if (nr_printable_breakpoints > 0)
6883 annotate_field (5);
6884 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6885 uiout->table_body ();
6886 if (nr_printable_breakpoints > 0)
6887 annotate_breakpoints_table ();
6888
6889 ALL_BREAKPOINTS (b)
6890 {
6891 QUIT;
6892 /* If we have a filter, only list the breakpoints it accepts. */
6893 if (filter && !filter (b))
6894 continue;
6895
6896 /* If we have an "args" string, it is a list of breakpoints to
6897 accept. Skip the others. */
6898
6899 if (args != NULL && *args != '\0')
6900 {
6901 if (allflag) /* maintenance info breakpoint */
6902 {
6903 if (parse_and_eval_long (args) != b->number)
6904 continue;
6905 }
6906 else /* all others */
6907 {
6908 if (!number_is_in_list (args, b->number))
6909 continue;
6910 }
6911 }
6912 /* We only print out user settable breakpoints unless the
6913 allflag is set. */
6914 if (allflag || user_breakpoint_p (b))
6915 print_one_breakpoint (b, &last_loc, allflag);
6916 }
6917 }
6918
6919 if (nr_printable_breakpoints == 0)
6920 {
6921 /* If there's a filter, let the caller decide how to report
6922 empty list. */
6923 if (!filter)
6924 {
6925 if (args == NULL || *args == '\0')
6926 uiout->message ("No breakpoints or watchpoints.\n");
6927 else
6928 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6929 args);
6930 }
6931 }
6932 else
6933 {
6934 if (last_loc && !server_command)
6935 set_next_address (last_loc->gdbarch, last_loc->address);
6936 }
6937
6938 /* FIXME? Should this be moved up so that it is only called when
6939 there have been breakpoints? */
6940 annotate_breakpoints_table_end ();
6941
6942 return nr_printable_breakpoints;
6943 }
6944
6945 /* Display the value of default-collect in a way that is generally
6946 compatible with the breakpoint list. */
6947
6948 static void
6949 default_collect_info (void)
6950 {
6951 struct ui_out *uiout = current_uiout;
6952
6953 /* If it has no value (which is frequently the case), say nothing; a
6954 message like "No default-collect." gets in user's face when it's
6955 not wanted. */
6956 if (!*default_collect)
6957 return;
6958
6959 /* The following phrase lines up nicely with per-tracepoint collect
6960 actions. */
6961 uiout->text ("default collect ");
6962 uiout->field_string ("default-collect", default_collect);
6963 uiout->text (" \n");
6964 }
6965
6966 static void
6967 breakpoints_info (char *args, int from_tty)
6968 {
6969 breakpoint_1 (args, 0, NULL);
6970
6971 default_collect_info ();
6972 }
6973
6974 static void
6975 watchpoints_info (char *args, int from_tty)
6976 {
6977 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6978 struct ui_out *uiout = current_uiout;
6979
6980 if (num_printed == 0)
6981 {
6982 if (args == NULL || *args == '\0')
6983 uiout->message ("No watchpoints.\n");
6984 else
6985 uiout->message ("No watchpoint matching '%s'.\n", args);
6986 }
6987 }
6988
6989 static void
6990 maintenance_info_breakpoints (char *args, int from_tty)
6991 {
6992 breakpoint_1 (args, 1, NULL);
6993
6994 default_collect_info ();
6995 }
6996
6997 static int
6998 breakpoint_has_pc (struct breakpoint *b,
6999 struct program_space *pspace,
7000 CORE_ADDR pc, struct obj_section *section)
7001 {
7002 struct bp_location *bl = b->loc;
7003
7004 for (; bl; bl = bl->next)
7005 {
7006 if (bl->pspace == pspace
7007 && bl->address == pc
7008 && (!overlay_debugging || bl->section == section))
7009 return 1;
7010 }
7011 return 0;
7012 }
7013
7014 /* Print a message describing any user-breakpoints set at PC. This
7015 concerns with logical breakpoints, so we match program spaces, not
7016 address spaces. */
7017
7018 static void
7019 describe_other_breakpoints (struct gdbarch *gdbarch,
7020 struct program_space *pspace, CORE_ADDR pc,
7021 struct obj_section *section, int thread)
7022 {
7023 int others = 0;
7024 struct breakpoint *b;
7025
7026 ALL_BREAKPOINTS (b)
7027 others += (user_breakpoint_p (b)
7028 && breakpoint_has_pc (b, pspace, pc, section));
7029 if (others > 0)
7030 {
7031 if (others == 1)
7032 printf_filtered (_("Note: breakpoint "));
7033 else /* if (others == ???) */
7034 printf_filtered (_("Note: breakpoints "));
7035 ALL_BREAKPOINTS (b)
7036 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7037 {
7038 others--;
7039 printf_filtered ("%d", b->number);
7040 if (b->thread == -1 && thread != -1)
7041 printf_filtered (" (all threads)");
7042 else if (b->thread != -1)
7043 printf_filtered (" (thread %d)", b->thread);
7044 printf_filtered ("%s%s ",
7045 ((b->enable_state == bp_disabled
7046 || b->enable_state == bp_call_disabled)
7047 ? " (disabled)"
7048 : ""),
7049 (others > 1) ? ","
7050 : ((others == 1) ? " and" : ""));
7051 }
7052 printf_filtered (_("also set at pc "));
7053 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7054 printf_filtered (".\n");
7055 }
7056 }
7057 \f
7058
7059 /* Return true iff it is meaningful to use the address member of
7060 BPT locations. For some breakpoint types, the locations' address members
7061 are irrelevant and it makes no sense to attempt to compare them to other
7062 addresses (or use them for any other purpose either).
7063
7064 More specifically, each of the following breakpoint types will
7065 always have a zero valued location address and we don't want to mark
7066 breakpoints of any of these types to be a duplicate of an actual
7067 breakpoint location at address zero:
7068
7069 bp_watchpoint
7070 bp_catchpoint
7071
7072 */
7073
7074 static int
7075 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7076 {
7077 enum bptype type = bpt->type;
7078
7079 return (type != bp_watchpoint && type != bp_catchpoint);
7080 }
7081
7082 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7083 true if LOC1 and LOC2 represent the same watchpoint location. */
7084
7085 static int
7086 watchpoint_locations_match (struct bp_location *loc1,
7087 struct bp_location *loc2)
7088 {
7089 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7090 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7091
7092 /* Both of them must exist. */
7093 gdb_assert (w1 != NULL);
7094 gdb_assert (w2 != NULL);
7095
7096 /* If the target can evaluate the condition expression in hardware,
7097 then we we need to insert both watchpoints even if they are at
7098 the same place. Otherwise the watchpoint will only trigger when
7099 the condition of whichever watchpoint was inserted evaluates to
7100 true, not giving a chance for GDB to check the condition of the
7101 other watchpoint. */
7102 if ((w1->cond_exp
7103 && target_can_accel_watchpoint_condition (loc1->address,
7104 loc1->length,
7105 loc1->watchpoint_type,
7106 w1->cond_exp.get ()))
7107 || (w2->cond_exp
7108 && target_can_accel_watchpoint_condition (loc2->address,
7109 loc2->length,
7110 loc2->watchpoint_type,
7111 w2->cond_exp.get ())))
7112 return 0;
7113
7114 /* Note that this checks the owner's type, not the location's. In
7115 case the target does not support read watchpoints, but does
7116 support access watchpoints, we'll have bp_read_watchpoint
7117 watchpoints with hw_access locations. Those should be considered
7118 duplicates of hw_read locations. The hw_read locations will
7119 become hw_access locations later. */
7120 return (loc1->owner->type == loc2->owner->type
7121 && loc1->pspace->aspace == loc2->pspace->aspace
7122 && loc1->address == loc2->address
7123 && loc1->length == loc2->length);
7124 }
7125
7126 /* See breakpoint.h. */
7127
7128 int
7129 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7130 struct address_space *aspace2, CORE_ADDR addr2)
7131 {
7132 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7133 || aspace1 == aspace2)
7134 && addr1 == addr2);
7135 }
7136
7137 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7138 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7139 matches ASPACE2. On targets that have global breakpoints, the address
7140 space doesn't really matter. */
7141
7142 static int
7143 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7144 int len1, struct address_space *aspace2,
7145 CORE_ADDR addr2)
7146 {
7147 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7148 || aspace1 == aspace2)
7149 && addr2 >= addr1 && addr2 < addr1 + len1);
7150 }
7151
7152 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7153 a ranged breakpoint. In most targets, a match happens only if ASPACE
7154 matches the breakpoint's address space. On targets that have global
7155 breakpoints, the address space doesn't really matter. */
7156
7157 static int
7158 breakpoint_location_address_match (struct bp_location *bl,
7159 struct address_space *aspace,
7160 CORE_ADDR addr)
7161 {
7162 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7163 aspace, addr)
7164 || (bl->length
7165 && breakpoint_address_match_range (bl->pspace->aspace,
7166 bl->address, bl->length,
7167 aspace, addr)));
7168 }
7169
7170 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7171 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7172 match happens only if ASPACE matches the breakpoint's address
7173 space. On targets that have global breakpoints, the address space
7174 doesn't really matter. */
7175
7176 static int
7177 breakpoint_location_address_range_overlap (struct bp_location *bl,
7178 struct address_space *aspace,
7179 CORE_ADDR addr, int len)
7180 {
7181 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7182 || bl->pspace->aspace == aspace)
7183 {
7184 int bl_len = bl->length != 0 ? bl->length : 1;
7185
7186 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7187 return 1;
7188 }
7189 return 0;
7190 }
7191
7192 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7193 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7194 true, otherwise returns false. */
7195
7196 static int
7197 tracepoint_locations_match (struct bp_location *loc1,
7198 struct bp_location *loc2)
7199 {
7200 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7201 /* Since tracepoint locations are never duplicated with others', tracepoint
7202 locations at the same address of different tracepoints are regarded as
7203 different locations. */
7204 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7205 else
7206 return 0;
7207 }
7208
7209 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7210 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7211 represent the same location. */
7212
7213 static int
7214 breakpoint_locations_match (struct bp_location *loc1,
7215 struct bp_location *loc2)
7216 {
7217 int hw_point1, hw_point2;
7218
7219 /* Both of them must not be in moribund_locations. */
7220 gdb_assert (loc1->owner != NULL);
7221 gdb_assert (loc2->owner != NULL);
7222
7223 hw_point1 = is_hardware_watchpoint (loc1->owner);
7224 hw_point2 = is_hardware_watchpoint (loc2->owner);
7225
7226 if (hw_point1 != hw_point2)
7227 return 0;
7228 else if (hw_point1)
7229 return watchpoint_locations_match (loc1, loc2);
7230 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7231 return tracepoint_locations_match (loc1, loc2);
7232 else
7233 /* We compare bp_location.length in order to cover ranged breakpoints. */
7234 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7235 loc2->pspace->aspace, loc2->address)
7236 && loc1->length == loc2->length);
7237 }
7238
7239 static void
7240 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7241 int bnum, int have_bnum)
7242 {
7243 /* The longest string possibly returned by hex_string_custom
7244 is 50 chars. These must be at least that big for safety. */
7245 char astr1[64];
7246 char astr2[64];
7247
7248 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7249 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7250 if (have_bnum)
7251 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7252 bnum, astr1, astr2);
7253 else
7254 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7255 }
7256
7257 /* Adjust a breakpoint's address to account for architectural
7258 constraints on breakpoint placement. Return the adjusted address.
7259 Note: Very few targets require this kind of adjustment. For most
7260 targets, this function is simply the identity function. */
7261
7262 static CORE_ADDR
7263 adjust_breakpoint_address (struct gdbarch *gdbarch,
7264 CORE_ADDR bpaddr, enum bptype bptype)
7265 {
7266 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7267 {
7268 /* Very few targets need any kind of breakpoint adjustment. */
7269 return bpaddr;
7270 }
7271 else if (bptype == bp_watchpoint
7272 || bptype == bp_hardware_watchpoint
7273 || bptype == bp_read_watchpoint
7274 || bptype == bp_access_watchpoint
7275 || bptype == bp_catchpoint)
7276 {
7277 /* Watchpoints and the various bp_catch_* eventpoints should not
7278 have their addresses modified. */
7279 return bpaddr;
7280 }
7281 else if (bptype == bp_single_step)
7282 {
7283 /* Single-step breakpoints should not have their addresses
7284 modified. If there's any architectural constrain that
7285 applies to this address, then it should have already been
7286 taken into account when the breakpoint was created in the
7287 first place. If we didn't do this, stepping through e.g.,
7288 Thumb-2 IT blocks would break. */
7289 return bpaddr;
7290 }
7291 else
7292 {
7293 CORE_ADDR adjusted_bpaddr;
7294
7295 /* Some targets have architectural constraints on the placement
7296 of breakpoint instructions. Obtain the adjusted address. */
7297 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7298
7299 /* An adjusted breakpoint address can significantly alter
7300 a user's expectations. Print a warning if an adjustment
7301 is required. */
7302 if (adjusted_bpaddr != bpaddr)
7303 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7304
7305 return adjusted_bpaddr;
7306 }
7307 }
7308
7309 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7310 {
7311 bp_location *loc = this;
7312
7313 gdb_assert (ops != NULL);
7314
7315 loc->ops = ops;
7316 loc->owner = owner;
7317 loc->cond_bytecode = NULL;
7318 loc->shlib_disabled = 0;
7319 loc->enabled = 1;
7320
7321 switch (owner->type)
7322 {
7323 case bp_breakpoint:
7324 case bp_single_step:
7325 case bp_until:
7326 case bp_finish:
7327 case bp_longjmp:
7328 case bp_longjmp_resume:
7329 case bp_longjmp_call_dummy:
7330 case bp_exception:
7331 case bp_exception_resume:
7332 case bp_step_resume:
7333 case bp_hp_step_resume:
7334 case bp_watchpoint_scope:
7335 case bp_call_dummy:
7336 case bp_std_terminate:
7337 case bp_shlib_event:
7338 case bp_thread_event:
7339 case bp_overlay_event:
7340 case bp_jit_event:
7341 case bp_longjmp_master:
7342 case bp_std_terminate_master:
7343 case bp_exception_master:
7344 case bp_gnu_ifunc_resolver:
7345 case bp_gnu_ifunc_resolver_return:
7346 case bp_dprintf:
7347 loc->loc_type = bp_loc_software_breakpoint;
7348 mark_breakpoint_location_modified (loc);
7349 break;
7350 case bp_hardware_breakpoint:
7351 loc->loc_type = bp_loc_hardware_breakpoint;
7352 mark_breakpoint_location_modified (loc);
7353 break;
7354 case bp_hardware_watchpoint:
7355 case bp_read_watchpoint:
7356 case bp_access_watchpoint:
7357 loc->loc_type = bp_loc_hardware_watchpoint;
7358 break;
7359 case bp_watchpoint:
7360 case bp_catchpoint:
7361 case bp_tracepoint:
7362 case bp_fast_tracepoint:
7363 case bp_static_tracepoint:
7364 loc->loc_type = bp_loc_other;
7365 break;
7366 default:
7367 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7368 }
7369
7370 loc->refc = 1;
7371 }
7372
7373 /* Allocate a struct bp_location. */
7374
7375 static struct bp_location *
7376 allocate_bp_location (struct breakpoint *bpt)
7377 {
7378 return bpt->ops->allocate_location (bpt);
7379 }
7380
7381 static void
7382 free_bp_location (struct bp_location *loc)
7383 {
7384 loc->ops->dtor (loc);
7385 delete loc;
7386 }
7387
7388 /* Increment reference count. */
7389
7390 static void
7391 incref_bp_location (struct bp_location *bl)
7392 {
7393 ++bl->refc;
7394 }
7395
7396 /* Decrement reference count. If the reference count reaches 0,
7397 destroy the bp_location. Sets *BLP to NULL. */
7398
7399 static void
7400 decref_bp_location (struct bp_location **blp)
7401 {
7402 gdb_assert ((*blp)->refc > 0);
7403
7404 if (--(*blp)->refc == 0)
7405 free_bp_location (*blp);
7406 *blp = NULL;
7407 }
7408
7409 /* Add breakpoint B at the end of the global breakpoint chain. */
7410
7411 static void
7412 add_to_breakpoint_chain (struct breakpoint *b)
7413 {
7414 struct breakpoint *b1;
7415
7416 /* Add this breakpoint to the end of the chain so that a list of
7417 breakpoints will come out in order of increasing numbers. */
7418
7419 b1 = breakpoint_chain;
7420 if (b1 == 0)
7421 breakpoint_chain = b;
7422 else
7423 {
7424 while (b1->next)
7425 b1 = b1->next;
7426 b1->next = b;
7427 }
7428 }
7429
7430 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7431
7432 static void
7433 init_raw_breakpoint_without_location (struct breakpoint *b,
7434 struct gdbarch *gdbarch,
7435 enum bptype bptype,
7436 const struct breakpoint_ops *ops)
7437 {
7438 gdb_assert (ops != NULL);
7439
7440 b->ops = ops;
7441 b->type = bptype;
7442 b->gdbarch = gdbarch;
7443 b->language = current_language->la_language;
7444 b->input_radix = input_radix;
7445 b->related_breakpoint = b;
7446 }
7447
7448 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7449 that has type BPTYPE and has no locations as yet. */
7450
7451 static struct breakpoint *
7452 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7453 enum bptype bptype,
7454 const struct breakpoint_ops *ops)
7455 {
7456 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7457
7458 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7459 add_to_breakpoint_chain (b.get ());
7460
7461 return b.release ();
7462 }
7463
7464 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7465 resolutions should be made as the user specified the location explicitly
7466 enough. */
7467
7468 static void
7469 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7470 {
7471 gdb_assert (loc->owner != NULL);
7472
7473 if (loc->owner->type == bp_breakpoint
7474 || loc->owner->type == bp_hardware_breakpoint
7475 || is_tracepoint (loc->owner))
7476 {
7477 int is_gnu_ifunc;
7478 const char *function_name;
7479 CORE_ADDR func_addr;
7480
7481 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7482 &func_addr, NULL, &is_gnu_ifunc);
7483
7484 if (is_gnu_ifunc && !explicit_loc)
7485 {
7486 struct breakpoint *b = loc->owner;
7487
7488 gdb_assert (loc->pspace == current_program_space);
7489 if (gnu_ifunc_resolve_name (function_name,
7490 &loc->requested_address))
7491 {
7492 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7493 loc->address = adjust_breakpoint_address (loc->gdbarch,
7494 loc->requested_address,
7495 b->type);
7496 }
7497 else if (b->type == bp_breakpoint && b->loc == loc
7498 && loc->next == NULL && b->related_breakpoint == b)
7499 {
7500 /* Create only the whole new breakpoint of this type but do not
7501 mess more complicated breakpoints with multiple locations. */
7502 b->type = bp_gnu_ifunc_resolver;
7503 /* Remember the resolver's address for use by the return
7504 breakpoint. */
7505 loc->related_address = func_addr;
7506 }
7507 }
7508
7509 if (function_name)
7510 loc->function_name = xstrdup (function_name);
7511 }
7512 }
7513
7514 /* Attempt to determine architecture of location identified by SAL. */
7515 struct gdbarch *
7516 get_sal_arch (struct symtab_and_line sal)
7517 {
7518 if (sal.section)
7519 return get_objfile_arch (sal.section->objfile);
7520 if (sal.symtab)
7521 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7522
7523 return NULL;
7524 }
7525
7526 /* Low level routine for partially initializing a breakpoint of type
7527 BPTYPE. The newly created breakpoint's address, section, source
7528 file name, and line number are provided by SAL.
7529
7530 It is expected that the caller will complete the initialization of
7531 the newly created breakpoint struct as well as output any status
7532 information regarding the creation of a new breakpoint. */
7533
7534 static void
7535 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7536 struct symtab_and_line sal, enum bptype bptype,
7537 const struct breakpoint_ops *ops)
7538 {
7539 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7540
7541 add_location_to_breakpoint (b, &sal);
7542
7543 if (bptype != bp_catchpoint)
7544 gdb_assert (sal.pspace != NULL);
7545
7546 /* Store the program space that was used to set the breakpoint,
7547 except for ordinary breakpoints, which are independent of the
7548 program space. */
7549 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7550 b->pspace = sal.pspace;
7551 }
7552
7553 /* set_raw_breakpoint is a low level routine for allocating and
7554 partially initializing a breakpoint of type BPTYPE. The newly
7555 created breakpoint's address, section, source file name, and line
7556 number are provided by SAL. The newly created and partially
7557 initialized breakpoint is added to the breakpoint chain and
7558 is also returned as the value of this function.
7559
7560 It is expected that the caller will complete the initialization of
7561 the newly created breakpoint struct as well as output any status
7562 information regarding the creation of a new breakpoint. In
7563 particular, set_raw_breakpoint does NOT set the breakpoint
7564 number! Care should be taken to not allow an error to occur
7565 prior to completing the initialization of the breakpoint. If this
7566 should happen, a bogus breakpoint will be left on the chain. */
7567
7568 struct breakpoint *
7569 set_raw_breakpoint (struct gdbarch *gdbarch,
7570 struct symtab_and_line sal, enum bptype bptype,
7571 const struct breakpoint_ops *ops)
7572 {
7573 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7574
7575 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7576 add_to_breakpoint_chain (b.get ());
7577
7578 return b.release ();
7579 }
7580
7581 /* Call this routine when stepping and nexting to enable a breakpoint
7582 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7583 initiated the operation. */
7584
7585 void
7586 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7587 {
7588 struct breakpoint *b, *b_tmp;
7589 int thread = tp->global_num;
7590
7591 /* To avoid having to rescan all objfile symbols at every step,
7592 we maintain a list of continually-inserted but always disabled
7593 longjmp "master" breakpoints. Here, we simply create momentary
7594 clones of those and enable them for the requested thread. */
7595 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7596 if (b->pspace == current_program_space
7597 && (b->type == bp_longjmp_master
7598 || b->type == bp_exception_master))
7599 {
7600 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7601 struct breakpoint *clone;
7602
7603 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7604 after their removal. */
7605 clone = momentary_breakpoint_from_master (b, type,
7606 &momentary_breakpoint_ops, 1);
7607 clone->thread = thread;
7608 }
7609
7610 tp->initiating_frame = frame;
7611 }
7612
7613 /* Delete all longjmp breakpoints from THREAD. */
7614 void
7615 delete_longjmp_breakpoint (int thread)
7616 {
7617 struct breakpoint *b, *b_tmp;
7618
7619 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7620 if (b->type == bp_longjmp || b->type == bp_exception)
7621 {
7622 if (b->thread == thread)
7623 delete_breakpoint (b);
7624 }
7625 }
7626
7627 void
7628 delete_longjmp_breakpoint_at_next_stop (int thread)
7629 {
7630 struct breakpoint *b, *b_tmp;
7631
7632 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7633 if (b->type == bp_longjmp || b->type == bp_exception)
7634 {
7635 if (b->thread == thread)
7636 b->disposition = disp_del_at_next_stop;
7637 }
7638 }
7639
7640 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7641 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7642 pointer to any of them. Return NULL if this system cannot place longjmp
7643 breakpoints. */
7644
7645 struct breakpoint *
7646 set_longjmp_breakpoint_for_call_dummy (void)
7647 {
7648 struct breakpoint *b, *retval = NULL;
7649
7650 ALL_BREAKPOINTS (b)
7651 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7652 {
7653 struct breakpoint *new_b;
7654
7655 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7656 &momentary_breakpoint_ops,
7657 1);
7658 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7659
7660 /* Link NEW_B into the chain of RETVAL breakpoints. */
7661
7662 gdb_assert (new_b->related_breakpoint == new_b);
7663 if (retval == NULL)
7664 retval = new_b;
7665 new_b->related_breakpoint = retval;
7666 while (retval->related_breakpoint != new_b->related_breakpoint)
7667 retval = retval->related_breakpoint;
7668 retval->related_breakpoint = new_b;
7669 }
7670
7671 return retval;
7672 }
7673
7674 /* Verify all existing dummy frames and their associated breakpoints for
7675 TP. Remove those which can no longer be found in the current frame
7676 stack.
7677
7678 You should call this function only at places where it is safe to currently
7679 unwind the whole stack. Failed stack unwind would discard live dummy
7680 frames. */
7681
7682 void
7683 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7684 {
7685 struct breakpoint *b, *b_tmp;
7686
7687 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7688 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7689 {
7690 struct breakpoint *dummy_b = b->related_breakpoint;
7691
7692 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7693 dummy_b = dummy_b->related_breakpoint;
7694 if (dummy_b->type != bp_call_dummy
7695 || frame_find_by_id (dummy_b->frame_id) != NULL)
7696 continue;
7697
7698 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7699
7700 while (b->related_breakpoint != b)
7701 {
7702 if (b_tmp == b->related_breakpoint)
7703 b_tmp = b->related_breakpoint->next;
7704 delete_breakpoint (b->related_breakpoint);
7705 }
7706 delete_breakpoint (b);
7707 }
7708 }
7709
7710 void
7711 enable_overlay_breakpoints (void)
7712 {
7713 struct breakpoint *b;
7714
7715 ALL_BREAKPOINTS (b)
7716 if (b->type == bp_overlay_event)
7717 {
7718 b->enable_state = bp_enabled;
7719 update_global_location_list (UGLL_MAY_INSERT);
7720 overlay_events_enabled = 1;
7721 }
7722 }
7723
7724 void
7725 disable_overlay_breakpoints (void)
7726 {
7727 struct breakpoint *b;
7728
7729 ALL_BREAKPOINTS (b)
7730 if (b->type == bp_overlay_event)
7731 {
7732 b->enable_state = bp_disabled;
7733 update_global_location_list (UGLL_DONT_INSERT);
7734 overlay_events_enabled = 0;
7735 }
7736 }
7737
7738 /* Set an active std::terminate breakpoint for each std::terminate
7739 master breakpoint. */
7740 void
7741 set_std_terminate_breakpoint (void)
7742 {
7743 struct breakpoint *b, *b_tmp;
7744
7745 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7746 if (b->pspace == current_program_space
7747 && b->type == bp_std_terminate_master)
7748 {
7749 momentary_breakpoint_from_master (b, bp_std_terminate,
7750 &momentary_breakpoint_ops, 1);
7751 }
7752 }
7753
7754 /* Delete all the std::terminate breakpoints. */
7755 void
7756 delete_std_terminate_breakpoint (void)
7757 {
7758 struct breakpoint *b, *b_tmp;
7759
7760 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7761 if (b->type == bp_std_terminate)
7762 delete_breakpoint (b);
7763 }
7764
7765 struct breakpoint *
7766 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7767 {
7768 struct breakpoint *b;
7769
7770 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7771 &internal_breakpoint_ops);
7772
7773 b->enable_state = bp_enabled;
7774 /* location has to be used or breakpoint_re_set will delete me. */
7775 b->location = new_address_location (b->loc->address, NULL, 0);
7776
7777 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7778
7779 return b;
7780 }
7781
7782 struct lang_and_radix
7783 {
7784 enum language lang;
7785 int radix;
7786 };
7787
7788 /* Create a breakpoint for JIT code registration and unregistration. */
7789
7790 struct breakpoint *
7791 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7792 {
7793 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7794 &internal_breakpoint_ops);
7795 }
7796
7797 /* Remove JIT code registration and unregistration breakpoint(s). */
7798
7799 void
7800 remove_jit_event_breakpoints (void)
7801 {
7802 struct breakpoint *b, *b_tmp;
7803
7804 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7805 if (b->type == bp_jit_event
7806 && b->loc->pspace == current_program_space)
7807 delete_breakpoint (b);
7808 }
7809
7810 void
7811 remove_solib_event_breakpoints (void)
7812 {
7813 struct breakpoint *b, *b_tmp;
7814
7815 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7816 if (b->type == bp_shlib_event
7817 && b->loc->pspace == current_program_space)
7818 delete_breakpoint (b);
7819 }
7820
7821 /* See breakpoint.h. */
7822
7823 void
7824 remove_solib_event_breakpoints_at_next_stop (void)
7825 {
7826 struct breakpoint *b, *b_tmp;
7827
7828 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7829 if (b->type == bp_shlib_event
7830 && b->loc->pspace == current_program_space)
7831 b->disposition = disp_del_at_next_stop;
7832 }
7833
7834 /* Helper for create_solib_event_breakpoint /
7835 create_and_insert_solib_event_breakpoint. Allows specifying which
7836 INSERT_MODE to pass through to update_global_location_list. */
7837
7838 static struct breakpoint *
7839 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7840 enum ugll_insert_mode insert_mode)
7841 {
7842 struct breakpoint *b;
7843
7844 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7845 &internal_breakpoint_ops);
7846 update_global_location_list_nothrow (insert_mode);
7847 return b;
7848 }
7849
7850 struct breakpoint *
7851 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7852 {
7853 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7854 }
7855
7856 /* See breakpoint.h. */
7857
7858 struct breakpoint *
7859 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7860 {
7861 struct breakpoint *b;
7862
7863 /* Explicitly tell update_global_location_list to insert
7864 locations. */
7865 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7866 if (!b->loc->inserted)
7867 {
7868 delete_breakpoint (b);
7869 return NULL;
7870 }
7871 return b;
7872 }
7873
7874 /* Disable any breakpoints that are on code in shared libraries. Only
7875 apply to enabled breakpoints, disabled ones can just stay disabled. */
7876
7877 void
7878 disable_breakpoints_in_shlibs (void)
7879 {
7880 struct bp_location *loc, **locp_tmp;
7881
7882 ALL_BP_LOCATIONS (loc, locp_tmp)
7883 {
7884 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7885 struct breakpoint *b = loc->owner;
7886
7887 /* We apply the check to all breakpoints, including disabled for
7888 those with loc->duplicate set. This is so that when breakpoint
7889 becomes enabled, or the duplicate is removed, gdb will try to
7890 insert all breakpoints. If we don't set shlib_disabled here,
7891 we'll try to insert those breakpoints and fail. */
7892 if (((b->type == bp_breakpoint)
7893 || (b->type == bp_jit_event)
7894 || (b->type == bp_hardware_breakpoint)
7895 || (is_tracepoint (b)))
7896 && loc->pspace == current_program_space
7897 && !loc->shlib_disabled
7898 && solib_name_from_address (loc->pspace, loc->address)
7899 )
7900 {
7901 loc->shlib_disabled = 1;
7902 }
7903 }
7904 }
7905
7906 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7907 notification of unloaded_shlib. Only apply to enabled breakpoints,
7908 disabled ones can just stay disabled. */
7909
7910 static void
7911 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7912 {
7913 struct bp_location *loc, **locp_tmp;
7914 int disabled_shlib_breaks = 0;
7915
7916 ALL_BP_LOCATIONS (loc, locp_tmp)
7917 {
7918 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7919 struct breakpoint *b = loc->owner;
7920
7921 if (solib->pspace == loc->pspace
7922 && !loc->shlib_disabled
7923 && (((b->type == bp_breakpoint
7924 || b->type == bp_jit_event
7925 || b->type == bp_hardware_breakpoint)
7926 && (loc->loc_type == bp_loc_hardware_breakpoint
7927 || loc->loc_type == bp_loc_software_breakpoint))
7928 || is_tracepoint (b))
7929 && solib_contains_address_p (solib, loc->address))
7930 {
7931 loc->shlib_disabled = 1;
7932 /* At this point, we cannot rely on remove_breakpoint
7933 succeeding so we must mark the breakpoint as not inserted
7934 to prevent future errors occurring in remove_breakpoints. */
7935 loc->inserted = 0;
7936
7937 /* This may cause duplicate notifications for the same breakpoint. */
7938 observer_notify_breakpoint_modified (b);
7939
7940 if (!disabled_shlib_breaks)
7941 {
7942 target_terminal_ours_for_output ();
7943 warning (_("Temporarily disabling breakpoints "
7944 "for unloaded shared library \"%s\""),
7945 solib->so_name);
7946 }
7947 disabled_shlib_breaks = 1;
7948 }
7949 }
7950 }
7951
7952 /* Disable any breakpoints and tracepoints in OBJFILE upon
7953 notification of free_objfile. Only apply to enabled breakpoints,
7954 disabled ones can just stay disabled. */
7955
7956 static void
7957 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7958 {
7959 struct breakpoint *b;
7960
7961 if (objfile == NULL)
7962 return;
7963
7964 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7965 managed by the user with add-symbol-file/remove-symbol-file.
7966 Similarly to how breakpoints in shared libraries are handled in
7967 response to "nosharedlibrary", mark breakpoints in such modules
7968 shlib_disabled so they end up uninserted on the next global
7969 location list update. Shared libraries not loaded by the user
7970 aren't handled here -- they're already handled in
7971 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7972 solib_unloaded observer. We skip objfiles that are not
7973 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7974 main objfile). */
7975 if ((objfile->flags & OBJF_SHARED) == 0
7976 || (objfile->flags & OBJF_USERLOADED) == 0)
7977 return;
7978
7979 ALL_BREAKPOINTS (b)
7980 {
7981 struct bp_location *loc;
7982 int bp_modified = 0;
7983
7984 if (!is_breakpoint (b) && !is_tracepoint (b))
7985 continue;
7986
7987 for (loc = b->loc; loc != NULL; loc = loc->next)
7988 {
7989 CORE_ADDR loc_addr = loc->address;
7990
7991 if (loc->loc_type != bp_loc_hardware_breakpoint
7992 && loc->loc_type != bp_loc_software_breakpoint)
7993 continue;
7994
7995 if (loc->shlib_disabled != 0)
7996 continue;
7997
7998 if (objfile->pspace != loc->pspace)
7999 continue;
8000
8001 if (loc->loc_type != bp_loc_hardware_breakpoint
8002 && loc->loc_type != bp_loc_software_breakpoint)
8003 continue;
8004
8005 if (is_addr_in_objfile (loc_addr, objfile))
8006 {
8007 loc->shlib_disabled = 1;
8008 /* At this point, we don't know whether the object was
8009 unmapped from the inferior or not, so leave the
8010 inserted flag alone. We'll handle failure to
8011 uninsert quietly, in case the object was indeed
8012 unmapped. */
8013
8014 mark_breakpoint_location_modified (loc);
8015
8016 bp_modified = 1;
8017 }
8018 }
8019
8020 if (bp_modified)
8021 observer_notify_breakpoint_modified (b);
8022 }
8023 }
8024
8025 /* FORK & VFORK catchpoints. */
8026
8027 /* An instance of this type is used to represent a fork or vfork
8028 catchpoint. A breakpoint is really of this type iff its ops pointer points
8029 to CATCH_FORK_BREAKPOINT_OPS. */
8030
8031 struct fork_catchpoint : public breakpoint
8032 {
8033 /* Process id of a child process whose forking triggered this
8034 catchpoint. This field is only valid immediately after this
8035 catchpoint has triggered. */
8036 ptid_t forked_inferior_pid;
8037 };
8038
8039 /* Implement the "insert" breakpoint_ops method for fork
8040 catchpoints. */
8041
8042 static int
8043 insert_catch_fork (struct bp_location *bl)
8044 {
8045 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8046 }
8047
8048 /* Implement the "remove" breakpoint_ops method for fork
8049 catchpoints. */
8050
8051 static int
8052 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8053 {
8054 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8055 }
8056
8057 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8058 catchpoints. */
8059
8060 static int
8061 breakpoint_hit_catch_fork (const struct bp_location *bl,
8062 struct address_space *aspace, CORE_ADDR bp_addr,
8063 const struct target_waitstatus *ws)
8064 {
8065 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8066
8067 if (ws->kind != TARGET_WAITKIND_FORKED)
8068 return 0;
8069
8070 c->forked_inferior_pid = ws->value.related_pid;
8071 return 1;
8072 }
8073
8074 /* Implement the "print_it" breakpoint_ops method for fork
8075 catchpoints. */
8076
8077 static enum print_stop_action
8078 print_it_catch_fork (bpstat bs)
8079 {
8080 struct ui_out *uiout = current_uiout;
8081 struct breakpoint *b = bs->breakpoint_at;
8082 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8083
8084 annotate_catchpoint (b->number);
8085 maybe_print_thread_hit_breakpoint (uiout);
8086 if (b->disposition == disp_del)
8087 uiout->text ("Temporary catchpoint ");
8088 else
8089 uiout->text ("Catchpoint ");
8090 if (uiout->is_mi_like_p ())
8091 {
8092 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8093 uiout->field_string ("disp", bpdisp_text (b->disposition));
8094 }
8095 uiout->field_int ("bkptno", b->number);
8096 uiout->text (" (forked process ");
8097 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8098 uiout->text ("), ");
8099 return PRINT_SRC_AND_LOC;
8100 }
8101
8102 /* Implement the "print_one" breakpoint_ops method for fork
8103 catchpoints. */
8104
8105 static void
8106 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8107 {
8108 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8109 struct value_print_options opts;
8110 struct ui_out *uiout = current_uiout;
8111
8112 get_user_print_options (&opts);
8113
8114 /* Field 4, the address, is omitted (which makes the columns not
8115 line up too nicely with the headers, but the effect is relatively
8116 readable). */
8117 if (opts.addressprint)
8118 uiout->field_skip ("addr");
8119 annotate_field (5);
8120 uiout->text ("fork");
8121 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8122 {
8123 uiout->text (", process ");
8124 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8125 uiout->spaces (1);
8126 }
8127
8128 if (uiout->is_mi_like_p ())
8129 uiout->field_string ("catch-type", "fork");
8130 }
8131
8132 /* Implement the "print_mention" breakpoint_ops method for fork
8133 catchpoints. */
8134
8135 static void
8136 print_mention_catch_fork (struct breakpoint *b)
8137 {
8138 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8139 }
8140
8141 /* Implement the "print_recreate" breakpoint_ops method for fork
8142 catchpoints. */
8143
8144 static void
8145 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8146 {
8147 fprintf_unfiltered (fp, "catch fork");
8148 print_recreate_thread (b, fp);
8149 }
8150
8151 /* The breakpoint_ops structure to be used in fork catchpoints. */
8152
8153 static struct breakpoint_ops catch_fork_breakpoint_ops;
8154
8155 /* Implement the "insert" breakpoint_ops method for vfork
8156 catchpoints. */
8157
8158 static int
8159 insert_catch_vfork (struct bp_location *bl)
8160 {
8161 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8162 }
8163
8164 /* Implement the "remove" breakpoint_ops method for vfork
8165 catchpoints. */
8166
8167 static int
8168 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8169 {
8170 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8171 }
8172
8173 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8174 catchpoints. */
8175
8176 static int
8177 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8178 struct address_space *aspace, CORE_ADDR bp_addr,
8179 const struct target_waitstatus *ws)
8180 {
8181 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8182
8183 if (ws->kind != TARGET_WAITKIND_VFORKED)
8184 return 0;
8185
8186 c->forked_inferior_pid = ws->value.related_pid;
8187 return 1;
8188 }
8189
8190 /* Implement the "print_it" breakpoint_ops method for vfork
8191 catchpoints. */
8192
8193 static enum print_stop_action
8194 print_it_catch_vfork (bpstat bs)
8195 {
8196 struct ui_out *uiout = current_uiout;
8197 struct breakpoint *b = bs->breakpoint_at;
8198 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8199
8200 annotate_catchpoint (b->number);
8201 maybe_print_thread_hit_breakpoint (uiout);
8202 if (b->disposition == disp_del)
8203 uiout->text ("Temporary catchpoint ");
8204 else
8205 uiout->text ("Catchpoint ");
8206 if (uiout->is_mi_like_p ())
8207 {
8208 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8209 uiout->field_string ("disp", bpdisp_text (b->disposition));
8210 }
8211 uiout->field_int ("bkptno", b->number);
8212 uiout->text (" (vforked process ");
8213 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8214 uiout->text ("), ");
8215 return PRINT_SRC_AND_LOC;
8216 }
8217
8218 /* Implement the "print_one" breakpoint_ops method for vfork
8219 catchpoints. */
8220
8221 static void
8222 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8223 {
8224 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8225 struct value_print_options opts;
8226 struct ui_out *uiout = current_uiout;
8227
8228 get_user_print_options (&opts);
8229 /* Field 4, the address, is omitted (which makes the columns not
8230 line up too nicely with the headers, but the effect is relatively
8231 readable). */
8232 if (opts.addressprint)
8233 uiout->field_skip ("addr");
8234 annotate_field (5);
8235 uiout->text ("vfork");
8236 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8237 {
8238 uiout->text (", process ");
8239 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8240 uiout->spaces (1);
8241 }
8242
8243 if (uiout->is_mi_like_p ())
8244 uiout->field_string ("catch-type", "vfork");
8245 }
8246
8247 /* Implement the "print_mention" breakpoint_ops method for vfork
8248 catchpoints. */
8249
8250 static void
8251 print_mention_catch_vfork (struct breakpoint *b)
8252 {
8253 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8254 }
8255
8256 /* Implement the "print_recreate" breakpoint_ops method for vfork
8257 catchpoints. */
8258
8259 static void
8260 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8261 {
8262 fprintf_unfiltered (fp, "catch vfork");
8263 print_recreate_thread (b, fp);
8264 }
8265
8266 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8267
8268 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8269
8270 /* An instance of this type is used to represent an solib catchpoint.
8271 A breakpoint is really of this type iff its ops pointer points to
8272 CATCH_SOLIB_BREAKPOINT_OPS. */
8273
8274 struct solib_catchpoint : public breakpoint
8275 {
8276 ~solib_catchpoint () override;
8277
8278 /* True for "catch load", false for "catch unload". */
8279 unsigned char is_load;
8280
8281 /* Regular expression to match, if any. COMPILED is only valid when
8282 REGEX is non-NULL. */
8283 char *regex;
8284 std::unique_ptr<compiled_regex> compiled;
8285 };
8286
8287 solib_catchpoint::~solib_catchpoint ()
8288 {
8289 xfree (this->regex);
8290 }
8291
8292 static int
8293 insert_catch_solib (struct bp_location *ignore)
8294 {
8295 return 0;
8296 }
8297
8298 static int
8299 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8300 {
8301 return 0;
8302 }
8303
8304 static int
8305 breakpoint_hit_catch_solib (const struct bp_location *bl,
8306 struct address_space *aspace,
8307 CORE_ADDR bp_addr,
8308 const struct target_waitstatus *ws)
8309 {
8310 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8311 struct breakpoint *other;
8312
8313 if (ws->kind == TARGET_WAITKIND_LOADED)
8314 return 1;
8315
8316 ALL_BREAKPOINTS (other)
8317 {
8318 struct bp_location *other_bl;
8319
8320 if (other == bl->owner)
8321 continue;
8322
8323 if (other->type != bp_shlib_event)
8324 continue;
8325
8326 if (self->pspace != NULL && other->pspace != self->pspace)
8327 continue;
8328
8329 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8330 {
8331 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8332 return 1;
8333 }
8334 }
8335
8336 return 0;
8337 }
8338
8339 static void
8340 check_status_catch_solib (struct bpstats *bs)
8341 {
8342 struct solib_catchpoint *self
8343 = (struct solib_catchpoint *) bs->breakpoint_at;
8344 int ix;
8345
8346 if (self->is_load)
8347 {
8348 struct so_list *iter;
8349
8350 for (ix = 0;
8351 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8352 ix, iter);
8353 ++ix)
8354 {
8355 if (!self->regex
8356 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8357 return;
8358 }
8359 }
8360 else
8361 {
8362 char *iter;
8363
8364 for (ix = 0;
8365 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8366 ix, iter);
8367 ++ix)
8368 {
8369 if (!self->regex
8370 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8371 return;
8372 }
8373 }
8374
8375 bs->stop = 0;
8376 bs->print_it = print_it_noop;
8377 }
8378
8379 static enum print_stop_action
8380 print_it_catch_solib (bpstat bs)
8381 {
8382 struct breakpoint *b = bs->breakpoint_at;
8383 struct ui_out *uiout = current_uiout;
8384
8385 annotate_catchpoint (b->number);
8386 maybe_print_thread_hit_breakpoint (uiout);
8387 if (b->disposition == disp_del)
8388 uiout->text ("Temporary catchpoint ");
8389 else
8390 uiout->text ("Catchpoint ");
8391 uiout->field_int ("bkptno", b->number);
8392 uiout->text ("\n");
8393 if (uiout->is_mi_like_p ())
8394 uiout->field_string ("disp", bpdisp_text (b->disposition));
8395 print_solib_event (1);
8396 return PRINT_SRC_AND_LOC;
8397 }
8398
8399 static void
8400 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8401 {
8402 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8403 struct value_print_options opts;
8404 struct ui_out *uiout = current_uiout;
8405 char *msg;
8406
8407 get_user_print_options (&opts);
8408 /* Field 4, the address, is omitted (which makes the columns not
8409 line up too nicely with the headers, but the effect is relatively
8410 readable). */
8411 if (opts.addressprint)
8412 {
8413 annotate_field (4);
8414 uiout->field_skip ("addr");
8415 }
8416
8417 annotate_field (5);
8418 if (self->is_load)
8419 {
8420 if (self->regex)
8421 msg = xstrprintf (_("load of library matching %s"), self->regex);
8422 else
8423 msg = xstrdup (_("load of library"));
8424 }
8425 else
8426 {
8427 if (self->regex)
8428 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8429 else
8430 msg = xstrdup (_("unload of library"));
8431 }
8432 uiout->field_string ("what", msg);
8433 xfree (msg);
8434
8435 if (uiout->is_mi_like_p ())
8436 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8437 }
8438
8439 static void
8440 print_mention_catch_solib (struct breakpoint *b)
8441 {
8442 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8443
8444 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8445 self->is_load ? "load" : "unload");
8446 }
8447
8448 static void
8449 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8450 {
8451 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8452
8453 fprintf_unfiltered (fp, "%s %s",
8454 b->disposition == disp_del ? "tcatch" : "catch",
8455 self->is_load ? "load" : "unload");
8456 if (self->regex)
8457 fprintf_unfiltered (fp, " %s", self->regex);
8458 fprintf_unfiltered (fp, "\n");
8459 }
8460
8461 static struct breakpoint_ops catch_solib_breakpoint_ops;
8462
8463 /* Shared helper function (MI and CLI) for creating and installing
8464 a shared object event catchpoint. If IS_LOAD is non-zero then
8465 the events to be caught are load events, otherwise they are
8466 unload events. If IS_TEMP is non-zero the catchpoint is a
8467 temporary one. If ENABLED is non-zero the catchpoint is
8468 created in an enabled state. */
8469
8470 void
8471 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8472 {
8473 struct solib_catchpoint *c;
8474 struct gdbarch *gdbarch = get_current_arch ();
8475 struct cleanup *cleanup;
8476
8477 if (!arg)
8478 arg = "";
8479 arg = skip_spaces_const (arg);
8480
8481 c = new solib_catchpoint ();
8482 cleanup = make_cleanup (xfree, c);
8483
8484 if (*arg != '\0')
8485 {
8486 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8487 _("Invalid regexp")));
8488 c->regex = xstrdup (arg);
8489 }
8490
8491 c->is_load = is_load;
8492 init_catchpoint (c, gdbarch, is_temp, NULL,
8493 &catch_solib_breakpoint_ops);
8494
8495 c->enable_state = enabled ? bp_enabled : bp_disabled;
8496
8497 discard_cleanups (cleanup);
8498 install_breakpoint (0, c, 1);
8499 }
8500
8501 /* A helper function that does all the work for "catch load" and
8502 "catch unload". */
8503
8504 static void
8505 catch_load_or_unload (char *arg, int from_tty, int is_load,
8506 struct cmd_list_element *command)
8507 {
8508 int tempflag;
8509 const int enabled = 1;
8510
8511 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8512
8513 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8514 }
8515
8516 static void
8517 catch_load_command_1 (char *arg, int from_tty,
8518 struct cmd_list_element *command)
8519 {
8520 catch_load_or_unload (arg, from_tty, 1, command);
8521 }
8522
8523 static void
8524 catch_unload_command_1 (char *arg, int from_tty,
8525 struct cmd_list_element *command)
8526 {
8527 catch_load_or_unload (arg, from_tty, 0, command);
8528 }
8529
8530 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8531 is non-zero, then make the breakpoint temporary. If COND_STRING is
8532 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8533 the breakpoint_ops structure associated to the catchpoint. */
8534
8535 void
8536 init_catchpoint (struct breakpoint *b,
8537 struct gdbarch *gdbarch, int tempflag,
8538 const char *cond_string,
8539 const struct breakpoint_ops *ops)
8540 {
8541 struct symtab_and_line sal;
8542
8543 init_sal (&sal);
8544 sal.pspace = current_program_space;
8545
8546 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8547
8548 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8549 b->disposition = tempflag ? disp_del : disp_donttouch;
8550 }
8551
8552 void
8553 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8554 {
8555 add_to_breakpoint_chain (b);
8556 set_breakpoint_number (internal, b);
8557 if (is_tracepoint (b))
8558 set_tracepoint_count (breakpoint_count);
8559 if (!internal)
8560 mention (b);
8561 observer_notify_breakpoint_created (b);
8562
8563 if (update_gll)
8564 update_global_location_list (UGLL_MAY_INSERT);
8565 }
8566
8567 static void
8568 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8569 int tempflag, const char *cond_string,
8570 const struct breakpoint_ops *ops)
8571 {
8572 struct fork_catchpoint *c = new fork_catchpoint ();
8573
8574 init_catchpoint (c, gdbarch, tempflag, cond_string, ops);
8575
8576 c->forked_inferior_pid = null_ptid;
8577
8578 install_breakpoint (0, c, 1);
8579 }
8580
8581 /* Exec catchpoints. */
8582
8583 /* An instance of this type is used to represent an exec catchpoint.
8584 A breakpoint is really of this type iff its ops pointer points to
8585 CATCH_EXEC_BREAKPOINT_OPS. */
8586
8587 struct exec_catchpoint : public breakpoint
8588 {
8589 ~exec_catchpoint () override;
8590
8591 /* Filename of a program whose exec triggered this catchpoint.
8592 This field is only valid immediately after this catchpoint has
8593 triggered. */
8594 char *exec_pathname;
8595 };
8596
8597 /* Exec catchpoint destructor. */
8598
8599 exec_catchpoint::~exec_catchpoint ()
8600 {
8601 xfree (this->exec_pathname);
8602 }
8603
8604 static int
8605 insert_catch_exec (struct bp_location *bl)
8606 {
8607 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8608 }
8609
8610 static int
8611 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8612 {
8613 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8614 }
8615
8616 static int
8617 breakpoint_hit_catch_exec (const struct bp_location *bl,
8618 struct address_space *aspace, CORE_ADDR bp_addr,
8619 const struct target_waitstatus *ws)
8620 {
8621 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8622
8623 if (ws->kind != TARGET_WAITKIND_EXECD)
8624 return 0;
8625
8626 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8627 return 1;
8628 }
8629
8630 static enum print_stop_action
8631 print_it_catch_exec (bpstat bs)
8632 {
8633 struct ui_out *uiout = current_uiout;
8634 struct breakpoint *b = bs->breakpoint_at;
8635 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8636
8637 annotate_catchpoint (b->number);
8638 maybe_print_thread_hit_breakpoint (uiout);
8639 if (b->disposition == disp_del)
8640 uiout->text ("Temporary catchpoint ");
8641 else
8642 uiout->text ("Catchpoint ");
8643 if (uiout->is_mi_like_p ())
8644 {
8645 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8646 uiout->field_string ("disp", bpdisp_text (b->disposition));
8647 }
8648 uiout->field_int ("bkptno", b->number);
8649 uiout->text (" (exec'd ");
8650 uiout->field_string ("new-exec", c->exec_pathname);
8651 uiout->text ("), ");
8652
8653 return PRINT_SRC_AND_LOC;
8654 }
8655
8656 static void
8657 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8658 {
8659 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8660 struct value_print_options opts;
8661 struct ui_out *uiout = current_uiout;
8662
8663 get_user_print_options (&opts);
8664
8665 /* Field 4, the address, is omitted (which makes the columns
8666 not line up too nicely with the headers, but the effect
8667 is relatively readable). */
8668 if (opts.addressprint)
8669 uiout->field_skip ("addr");
8670 annotate_field (5);
8671 uiout->text ("exec");
8672 if (c->exec_pathname != NULL)
8673 {
8674 uiout->text (", program \"");
8675 uiout->field_string ("what", c->exec_pathname);
8676 uiout->text ("\" ");
8677 }
8678
8679 if (uiout->is_mi_like_p ())
8680 uiout->field_string ("catch-type", "exec");
8681 }
8682
8683 static void
8684 print_mention_catch_exec (struct breakpoint *b)
8685 {
8686 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8687 }
8688
8689 /* Implement the "print_recreate" breakpoint_ops method for exec
8690 catchpoints. */
8691
8692 static void
8693 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8694 {
8695 fprintf_unfiltered (fp, "catch exec");
8696 print_recreate_thread (b, fp);
8697 }
8698
8699 static struct breakpoint_ops catch_exec_breakpoint_ops;
8700
8701 static int
8702 hw_breakpoint_used_count (void)
8703 {
8704 int i = 0;
8705 struct breakpoint *b;
8706 struct bp_location *bl;
8707
8708 ALL_BREAKPOINTS (b)
8709 {
8710 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8711 for (bl = b->loc; bl; bl = bl->next)
8712 {
8713 /* Special types of hardware breakpoints may use more than
8714 one register. */
8715 i += b->ops->resources_needed (bl);
8716 }
8717 }
8718
8719 return i;
8720 }
8721
8722 /* Returns the resources B would use if it were a hardware
8723 watchpoint. */
8724
8725 static int
8726 hw_watchpoint_use_count (struct breakpoint *b)
8727 {
8728 int i = 0;
8729 struct bp_location *bl;
8730
8731 if (!breakpoint_enabled (b))
8732 return 0;
8733
8734 for (bl = b->loc; bl; bl = bl->next)
8735 {
8736 /* Special types of hardware watchpoints may use more than
8737 one register. */
8738 i += b->ops->resources_needed (bl);
8739 }
8740
8741 return i;
8742 }
8743
8744 /* Returns the sum the used resources of all hardware watchpoints of
8745 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8746 the sum of the used resources of all hardware watchpoints of other
8747 types _not_ TYPE. */
8748
8749 static int
8750 hw_watchpoint_used_count_others (struct breakpoint *except,
8751 enum bptype type, int *other_type_used)
8752 {
8753 int i = 0;
8754 struct breakpoint *b;
8755
8756 *other_type_used = 0;
8757 ALL_BREAKPOINTS (b)
8758 {
8759 if (b == except)
8760 continue;
8761 if (!breakpoint_enabled (b))
8762 continue;
8763
8764 if (b->type == type)
8765 i += hw_watchpoint_use_count (b);
8766 else if (is_hardware_watchpoint (b))
8767 *other_type_used = 1;
8768 }
8769
8770 return i;
8771 }
8772
8773 void
8774 disable_watchpoints_before_interactive_call_start (void)
8775 {
8776 struct breakpoint *b;
8777
8778 ALL_BREAKPOINTS (b)
8779 {
8780 if (is_watchpoint (b) && breakpoint_enabled (b))
8781 {
8782 b->enable_state = bp_call_disabled;
8783 update_global_location_list (UGLL_DONT_INSERT);
8784 }
8785 }
8786 }
8787
8788 void
8789 enable_watchpoints_after_interactive_call_stop (void)
8790 {
8791 struct breakpoint *b;
8792
8793 ALL_BREAKPOINTS (b)
8794 {
8795 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8796 {
8797 b->enable_state = bp_enabled;
8798 update_global_location_list (UGLL_MAY_INSERT);
8799 }
8800 }
8801 }
8802
8803 void
8804 disable_breakpoints_before_startup (void)
8805 {
8806 current_program_space->executing_startup = 1;
8807 update_global_location_list (UGLL_DONT_INSERT);
8808 }
8809
8810 void
8811 enable_breakpoints_after_startup (void)
8812 {
8813 current_program_space->executing_startup = 0;
8814 breakpoint_re_set ();
8815 }
8816
8817 /* Create a new single-step breakpoint for thread THREAD, with no
8818 locations. */
8819
8820 static struct breakpoint *
8821 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8822 {
8823 struct breakpoint *b = new breakpoint ();
8824
8825 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8826 &momentary_breakpoint_ops);
8827
8828 b->disposition = disp_donttouch;
8829 b->frame_id = null_frame_id;
8830
8831 b->thread = thread;
8832 gdb_assert (b->thread != 0);
8833
8834 add_to_breakpoint_chain (b);
8835
8836 return b;
8837 }
8838
8839 /* Set a momentary breakpoint of type TYPE at address specified by
8840 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8841 frame. */
8842
8843 struct breakpoint *
8844 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8845 struct frame_id frame_id, enum bptype type)
8846 {
8847 struct breakpoint *b;
8848
8849 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8850 tail-called one. */
8851 gdb_assert (!frame_id_artificial_p (frame_id));
8852
8853 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8854 b->enable_state = bp_enabled;
8855 b->disposition = disp_donttouch;
8856 b->frame_id = frame_id;
8857
8858 /* If we're debugging a multi-threaded program, then we want
8859 momentary breakpoints to be active in only a single thread of
8860 control. */
8861 if (in_thread_list (inferior_ptid))
8862 b->thread = ptid_to_global_thread_id (inferior_ptid);
8863
8864 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8865
8866 return b;
8867 }
8868
8869 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8870 The new breakpoint will have type TYPE, use OPS as its
8871 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8872
8873 static struct breakpoint *
8874 momentary_breakpoint_from_master (struct breakpoint *orig,
8875 enum bptype type,
8876 const struct breakpoint_ops *ops,
8877 int loc_enabled)
8878 {
8879 struct breakpoint *copy;
8880
8881 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8882 copy->loc = allocate_bp_location (copy);
8883 set_breakpoint_location_function (copy->loc, 1);
8884
8885 copy->loc->gdbarch = orig->loc->gdbarch;
8886 copy->loc->requested_address = orig->loc->requested_address;
8887 copy->loc->address = orig->loc->address;
8888 copy->loc->section = orig->loc->section;
8889 copy->loc->pspace = orig->loc->pspace;
8890 copy->loc->probe = orig->loc->probe;
8891 copy->loc->line_number = orig->loc->line_number;
8892 copy->loc->symtab = orig->loc->symtab;
8893 copy->loc->enabled = loc_enabled;
8894 copy->frame_id = orig->frame_id;
8895 copy->thread = orig->thread;
8896 copy->pspace = orig->pspace;
8897
8898 copy->enable_state = bp_enabled;
8899 copy->disposition = disp_donttouch;
8900 copy->number = internal_breakpoint_number--;
8901
8902 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8903 return copy;
8904 }
8905
8906 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8907 ORIG is NULL. */
8908
8909 struct breakpoint *
8910 clone_momentary_breakpoint (struct breakpoint *orig)
8911 {
8912 /* If there's nothing to clone, then return nothing. */
8913 if (orig == NULL)
8914 return NULL;
8915
8916 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8917 }
8918
8919 struct breakpoint *
8920 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8921 enum bptype type)
8922 {
8923 struct symtab_and_line sal;
8924
8925 sal = find_pc_line (pc, 0);
8926 sal.pc = pc;
8927 sal.section = find_pc_overlay (pc);
8928 sal.explicit_pc = 1;
8929
8930 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8931 }
8932 \f
8933
8934 /* Tell the user we have just set a breakpoint B. */
8935
8936 static void
8937 mention (struct breakpoint *b)
8938 {
8939 b->ops->print_mention (b);
8940 if (current_uiout->is_mi_like_p ())
8941 return;
8942 printf_filtered ("\n");
8943 }
8944 \f
8945
8946 static int bp_loc_is_permanent (struct bp_location *loc);
8947
8948 static struct bp_location *
8949 add_location_to_breakpoint (struct breakpoint *b,
8950 const struct symtab_and_line *sal)
8951 {
8952 struct bp_location *loc, **tmp;
8953 CORE_ADDR adjusted_address;
8954 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8955
8956 if (loc_gdbarch == NULL)
8957 loc_gdbarch = b->gdbarch;
8958
8959 /* Adjust the breakpoint's address prior to allocating a location.
8960 Once we call allocate_bp_location(), that mostly uninitialized
8961 location will be placed on the location chain. Adjustment of the
8962 breakpoint may cause target_read_memory() to be called and we do
8963 not want its scan of the location chain to find a breakpoint and
8964 location that's only been partially initialized. */
8965 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8966 sal->pc, b->type);
8967
8968 /* Sort the locations by their ADDRESS. */
8969 loc = allocate_bp_location (b);
8970 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8971 tmp = &((*tmp)->next))
8972 ;
8973 loc->next = *tmp;
8974 *tmp = loc;
8975
8976 loc->requested_address = sal->pc;
8977 loc->address = adjusted_address;
8978 loc->pspace = sal->pspace;
8979 loc->probe.probe = sal->probe;
8980 loc->probe.objfile = sal->objfile;
8981 gdb_assert (loc->pspace != NULL);
8982 loc->section = sal->section;
8983 loc->gdbarch = loc_gdbarch;
8984 loc->line_number = sal->line;
8985 loc->symtab = sal->symtab;
8986
8987 set_breakpoint_location_function (loc,
8988 sal->explicit_pc || sal->explicit_line);
8989
8990 /* While by definition, permanent breakpoints are already present in the
8991 code, we don't mark the location as inserted. Normally one would expect
8992 that GDB could rely on that breakpoint instruction to stop the program,
8993 thus removing the need to insert its own breakpoint, except that executing
8994 the breakpoint instruction can kill the target instead of reporting a
8995 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8996 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8997 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8998 breakpoint be inserted normally results in QEMU knowing about the GDB
8999 breakpoint, and thus trap before the breakpoint instruction is executed.
9000 (If GDB later needs to continue execution past the permanent breakpoint,
9001 it manually increments the PC, thus avoiding executing the breakpoint
9002 instruction.) */
9003 if (bp_loc_is_permanent (loc))
9004 loc->permanent = 1;
9005
9006 return loc;
9007 }
9008 \f
9009
9010 /* See breakpoint.h. */
9011
9012 int
9013 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9014 {
9015 int len;
9016 CORE_ADDR addr;
9017 const gdb_byte *bpoint;
9018 gdb_byte *target_mem;
9019 struct cleanup *cleanup;
9020 int retval = 0;
9021
9022 addr = address;
9023 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9024
9025 /* Software breakpoints unsupported? */
9026 if (bpoint == NULL)
9027 return 0;
9028
9029 target_mem = (gdb_byte *) alloca (len);
9030
9031 /* Enable the automatic memory restoration from breakpoints while
9032 we read the memory. Otherwise we could say about our temporary
9033 breakpoints they are permanent. */
9034 cleanup = make_show_memory_breakpoints_cleanup (0);
9035
9036 if (target_read_memory (address, target_mem, len) == 0
9037 && memcmp (target_mem, bpoint, len) == 0)
9038 retval = 1;
9039
9040 do_cleanups (cleanup);
9041
9042 return retval;
9043 }
9044
9045 /* Return 1 if LOC is pointing to a permanent breakpoint,
9046 return 0 otherwise. */
9047
9048 static int
9049 bp_loc_is_permanent (struct bp_location *loc)
9050 {
9051 gdb_assert (loc != NULL);
9052
9053 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9054 attempt to read from the addresses the locations of these breakpoint types
9055 point to. program_breakpoint_here_p, below, will attempt to read
9056 memory. */
9057 if (!breakpoint_address_is_meaningful (loc->owner))
9058 return 0;
9059
9060 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9061 switch_to_program_space_and_thread (loc->pspace);
9062 return program_breakpoint_here_p (loc->gdbarch, loc->address);
9063 }
9064
9065 /* Build a command list for the dprintf corresponding to the current
9066 settings of the dprintf style options. */
9067
9068 static void
9069 update_dprintf_command_list (struct breakpoint *b)
9070 {
9071 char *dprintf_args = b->extra_string;
9072 char *printf_line = NULL;
9073
9074 if (!dprintf_args)
9075 return;
9076
9077 dprintf_args = skip_spaces (dprintf_args);
9078
9079 /* Allow a comma, as it may have terminated a location, but don't
9080 insist on it. */
9081 if (*dprintf_args == ',')
9082 ++dprintf_args;
9083 dprintf_args = skip_spaces (dprintf_args);
9084
9085 if (*dprintf_args != '"')
9086 error (_("Bad format string, missing '\"'."));
9087
9088 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9089 printf_line = xstrprintf ("printf %s", dprintf_args);
9090 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9091 {
9092 if (!dprintf_function)
9093 error (_("No function supplied for dprintf call"));
9094
9095 if (dprintf_channel && strlen (dprintf_channel) > 0)
9096 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9097 dprintf_function,
9098 dprintf_channel,
9099 dprintf_args);
9100 else
9101 printf_line = xstrprintf ("call (void) %s (%s)",
9102 dprintf_function,
9103 dprintf_args);
9104 }
9105 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9106 {
9107 if (target_can_run_breakpoint_commands ())
9108 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9109 else
9110 {
9111 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9112 printf_line = xstrprintf ("printf %s", dprintf_args);
9113 }
9114 }
9115 else
9116 internal_error (__FILE__, __LINE__,
9117 _("Invalid dprintf style."));
9118
9119 gdb_assert (printf_line != NULL);
9120 /* Manufacture a printf sequence. */
9121 {
9122 struct command_line *printf_cmd_line = XNEW (struct command_line);
9123
9124 printf_cmd_line->control_type = simple_control;
9125 printf_cmd_line->body_count = 0;
9126 printf_cmd_line->body_list = NULL;
9127 printf_cmd_line->next = NULL;
9128 printf_cmd_line->line = printf_line;
9129
9130 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
9131 }
9132 }
9133
9134 /* Update all dprintf commands, making their command lists reflect
9135 current style settings. */
9136
9137 static void
9138 update_dprintf_commands (char *args, int from_tty,
9139 struct cmd_list_element *c)
9140 {
9141 struct breakpoint *b;
9142
9143 ALL_BREAKPOINTS (b)
9144 {
9145 if (b->type == bp_dprintf)
9146 update_dprintf_command_list (b);
9147 }
9148 }
9149
9150 /* Create a breakpoint with SAL as location. Use LOCATION
9151 as a description of the location, and COND_STRING
9152 as condition expression. If LOCATION is NULL then create an
9153 "address location" from the address in the SAL. */
9154
9155 static void
9156 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9157 struct symtabs_and_lines sals,
9158 event_location_up &&location,
9159 gdb::unique_xmalloc_ptr<char> filter,
9160 gdb::unique_xmalloc_ptr<char> cond_string,
9161 gdb::unique_xmalloc_ptr<char> extra_string,
9162 enum bptype type, enum bpdisp disposition,
9163 int thread, int task, int ignore_count,
9164 const struct breakpoint_ops *ops, int from_tty,
9165 int enabled, int internal, unsigned flags,
9166 int display_canonical)
9167 {
9168 int i;
9169
9170 if (type == bp_hardware_breakpoint)
9171 {
9172 int target_resources_ok;
9173
9174 i = hw_breakpoint_used_count ();
9175 target_resources_ok =
9176 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9177 i + 1, 0);
9178 if (target_resources_ok == 0)
9179 error (_("No hardware breakpoint support in the target."));
9180 else if (target_resources_ok < 0)
9181 error (_("Hardware breakpoints used exceeds limit."));
9182 }
9183
9184 gdb_assert (sals.nelts > 0);
9185
9186 for (i = 0; i < sals.nelts; ++i)
9187 {
9188 struct symtab_and_line sal = sals.sals[i];
9189 struct bp_location *loc;
9190
9191 if (from_tty)
9192 {
9193 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9194 if (!loc_gdbarch)
9195 loc_gdbarch = gdbarch;
9196
9197 describe_other_breakpoints (loc_gdbarch,
9198 sal.pspace, sal.pc, sal.section, thread);
9199 }
9200
9201 if (i == 0)
9202 {
9203 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9204 b->thread = thread;
9205 b->task = task;
9206
9207 b->cond_string = cond_string.release ();
9208 b->extra_string = extra_string.release ();
9209 b->ignore_count = ignore_count;
9210 b->enable_state = enabled ? bp_enabled : bp_disabled;
9211 b->disposition = disposition;
9212
9213 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9214 b->loc->inserted = 1;
9215
9216 if (type == bp_static_tracepoint)
9217 {
9218 struct tracepoint *t = (struct tracepoint *) b;
9219 struct static_tracepoint_marker marker;
9220
9221 if (strace_marker_p (b))
9222 {
9223 /* We already know the marker exists, otherwise, we
9224 wouldn't see a sal for it. */
9225 const char *p
9226 = &event_location_to_string (b->location.get ())[3];
9227 const char *endp;
9228 char *marker_str;
9229
9230 p = skip_spaces_const (p);
9231
9232 endp = skip_to_space_const (p);
9233
9234 marker_str = savestring (p, endp - p);
9235 t->static_trace_marker_id = marker_str;
9236
9237 printf_filtered (_("Probed static tracepoint "
9238 "marker \"%s\"\n"),
9239 t->static_trace_marker_id);
9240 }
9241 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9242 {
9243 t->static_trace_marker_id = xstrdup (marker.str_id);
9244 release_static_tracepoint_marker (&marker);
9245
9246 printf_filtered (_("Probed static tracepoint "
9247 "marker \"%s\"\n"),
9248 t->static_trace_marker_id);
9249 }
9250 else
9251 warning (_("Couldn't determine the static "
9252 "tracepoint marker to probe"));
9253 }
9254
9255 loc = b->loc;
9256 }
9257 else
9258 {
9259 loc = add_location_to_breakpoint (b, &sal);
9260 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9261 loc->inserted = 1;
9262 }
9263
9264 if (b->cond_string)
9265 {
9266 const char *arg = b->cond_string;
9267
9268 loc->cond = parse_exp_1 (&arg, loc->address,
9269 block_for_pc (loc->address), 0);
9270 if (*arg)
9271 error (_("Garbage '%s' follows condition"), arg);
9272 }
9273
9274 /* Dynamic printf requires and uses additional arguments on the
9275 command line, otherwise it's an error. */
9276 if (type == bp_dprintf)
9277 {
9278 if (b->extra_string)
9279 update_dprintf_command_list (b);
9280 else
9281 error (_("Format string required"));
9282 }
9283 else if (b->extra_string)
9284 error (_("Garbage '%s' at end of command"), b->extra_string);
9285 }
9286
9287 b->display_canonical = display_canonical;
9288 if (location != NULL)
9289 b->location = std::move (location);
9290 else
9291 b->location = new_address_location (b->loc->address, NULL, 0);
9292 b->filter = filter.release ();
9293 }
9294
9295 static void
9296 create_breakpoint_sal (struct gdbarch *gdbarch,
9297 struct symtabs_and_lines sals,
9298 event_location_up &&location,
9299 gdb::unique_xmalloc_ptr<char> filter,
9300 gdb::unique_xmalloc_ptr<char> cond_string,
9301 gdb::unique_xmalloc_ptr<char> extra_string,
9302 enum bptype type, enum bpdisp disposition,
9303 int thread, int task, int ignore_count,
9304 const struct breakpoint_ops *ops, int from_tty,
9305 int enabled, int internal, unsigned flags,
9306 int display_canonical)
9307 {
9308 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9309
9310 init_breakpoint_sal (b.get (), gdbarch,
9311 sals, std::move (location),
9312 std::move (filter),
9313 std::move (cond_string),
9314 std::move (extra_string),
9315 type, disposition,
9316 thread, task, ignore_count,
9317 ops, from_tty,
9318 enabled, internal, flags,
9319 display_canonical);
9320
9321 install_breakpoint (internal, b.release (), 0);
9322 }
9323
9324 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9325 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9326 value. COND_STRING, if not NULL, specified the condition to be
9327 used for all breakpoints. Essentially the only case where
9328 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9329 function. In that case, it's still not possible to specify
9330 separate conditions for different overloaded functions, so
9331 we take just a single condition string.
9332
9333 NOTE: If the function succeeds, the caller is expected to cleanup
9334 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9335 array contents). If the function fails (error() is called), the
9336 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9337 COND and SALS arrays and each of those arrays contents. */
9338
9339 static void
9340 create_breakpoints_sal (struct gdbarch *gdbarch,
9341 struct linespec_result *canonical,
9342 gdb::unique_xmalloc_ptr<char> cond_string,
9343 gdb::unique_xmalloc_ptr<char> extra_string,
9344 enum bptype type, enum bpdisp disposition,
9345 int thread, int task, int ignore_count,
9346 const struct breakpoint_ops *ops, int from_tty,
9347 int enabled, int internal, unsigned flags)
9348 {
9349 int i;
9350 struct linespec_sals *lsal;
9351
9352 if (canonical->pre_expanded)
9353 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9354
9355 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9356 {
9357 /* Note that 'location' can be NULL in the case of a plain
9358 'break', without arguments. */
9359 event_location_up location
9360 = (canonical->location != NULL
9361 ? copy_event_location (canonical->location.get ()) : NULL);
9362 gdb::unique_xmalloc_ptr<char> filter_string
9363 (lsal->canonical != NULL ? xstrdup (lsal->canonical) : NULL);
9364
9365 create_breakpoint_sal (gdbarch, lsal->sals,
9366 std::move (location),
9367 std::move (filter_string),
9368 std::move (cond_string),
9369 std::move (extra_string),
9370 type, disposition,
9371 thread, task, ignore_count, ops,
9372 from_tty, enabled, internal, flags,
9373 canonical->special_display);
9374 }
9375 }
9376
9377 /* Parse LOCATION which is assumed to be a SAL specification possibly
9378 followed by conditionals. On return, SALS contains an array of SAL
9379 addresses found. LOCATION points to the end of the SAL (for
9380 linespec locations).
9381
9382 The array and the line spec strings are allocated on the heap, it is
9383 the caller's responsibility to free them. */
9384
9385 static void
9386 parse_breakpoint_sals (const struct event_location *location,
9387 struct linespec_result *canonical)
9388 {
9389 struct symtab_and_line cursal;
9390
9391 if (event_location_type (location) == LINESPEC_LOCATION)
9392 {
9393 const char *address = get_linespec_location (location);
9394
9395 if (address == NULL)
9396 {
9397 /* The last displayed codepoint, if it's valid, is our default
9398 breakpoint address. */
9399 if (last_displayed_sal_is_valid ())
9400 {
9401 struct linespec_sals lsal;
9402 struct symtab_and_line sal;
9403 CORE_ADDR pc;
9404
9405 init_sal (&sal); /* Initialize to zeroes. */
9406 lsal.sals.sals = XNEW (struct symtab_and_line);
9407
9408 /* Set sal's pspace, pc, symtab, and line to the values
9409 corresponding to the last call to print_frame_info.
9410 Be sure to reinitialize LINE with NOTCURRENT == 0
9411 as the breakpoint line number is inappropriate otherwise.
9412 find_pc_line would adjust PC, re-set it back. */
9413 get_last_displayed_sal (&sal);
9414 pc = sal.pc;
9415 sal = find_pc_line (pc, 0);
9416
9417 /* "break" without arguments is equivalent to "break *PC"
9418 where PC is the last displayed codepoint's address. So
9419 make sure to set sal.explicit_pc to prevent GDB from
9420 trying to expand the list of sals to include all other
9421 instances with the same symtab and line. */
9422 sal.pc = pc;
9423 sal.explicit_pc = 1;
9424
9425 lsal.sals.sals[0] = sal;
9426 lsal.sals.nelts = 1;
9427 lsal.canonical = NULL;
9428
9429 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9430 return;
9431 }
9432 else
9433 error (_("No default breakpoint address now."));
9434 }
9435 }
9436
9437 /* Force almost all breakpoints to be in terms of the
9438 current_source_symtab (which is decode_line_1's default).
9439 This should produce the results we want almost all of the
9440 time while leaving default_breakpoint_* alone.
9441
9442 ObjC: However, don't match an Objective-C method name which
9443 may have a '+' or '-' succeeded by a '['. */
9444 cursal = get_current_source_symtab_and_line ();
9445 if (last_displayed_sal_is_valid ())
9446 {
9447 const char *address = NULL;
9448
9449 if (event_location_type (location) == LINESPEC_LOCATION)
9450 address = get_linespec_location (location);
9451
9452 if (!cursal.symtab
9453 || (address != NULL
9454 && strchr ("+-", address[0]) != NULL
9455 && address[1] != '['))
9456 {
9457 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9458 get_last_displayed_symtab (),
9459 get_last_displayed_line (),
9460 canonical, NULL, NULL);
9461 return;
9462 }
9463 }
9464
9465 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9466 cursal.symtab, cursal.line, canonical, NULL, NULL);
9467 }
9468
9469
9470 /* Convert each SAL into a real PC. Verify that the PC can be
9471 inserted as a breakpoint. If it can't throw an error. */
9472
9473 static void
9474 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9475 {
9476 int i;
9477
9478 for (i = 0; i < sals->nelts; i++)
9479 resolve_sal_pc (&sals->sals[i]);
9480 }
9481
9482 /* Fast tracepoints may have restrictions on valid locations. For
9483 instance, a fast tracepoint using a jump instead of a trap will
9484 likely have to overwrite more bytes than a trap would, and so can
9485 only be placed where the instruction is longer than the jump, or a
9486 multi-instruction sequence does not have a jump into the middle of
9487 it, etc. */
9488
9489 static void
9490 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9491 struct symtabs_and_lines *sals)
9492 {
9493 int i, rslt;
9494 struct symtab_and_line *sal;
9495 char *msg;
9496 struct cleanup *old_chain;
9497
9498 for (i = 0; i < sals->nelts; i++)
9499 {
9500 struct gdbarch *sarch;
9501
9502 sal = &sals->sals[i];
9503
9504 sarch = get_sal_arch (*sal);
9505 /* We fall back to GDBARCH if there is no architecture
9506 associated with SAL. */
9507 if (sarch == NULL)
9508 sarch = gdbarch;
9509 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9510 old_chain = make_cleanup (xfree, msg);
9511
9512 if (!rslt)
9513 error (_("May not have a fast tracepoint at %s%s"),
9514 paddress (sarch, sal->pc), (msg ? msg : ""));
9515
9516 do_cleanups (old_chain);
9517 }
9518 }
9519
9520 /* Given TOK, a string specification of condition and thread, as
9521 accepted by the 'break' command, extract the condition
9522 string and thread number and set *COND_STRING and *THREAD.
9523 PC identifies the context at which the condition should be parsed.
9524 If no condition is found, *COND_STRING is set to NULL.
9525 If no thread is found, *THREAD is set to -1. */
9526
9527 static void
9528 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9529 char **cond_string, int *thread, int *task,
9530 char **rest)
9531 {
9532 *cond_string = NULL;
9533 *thread = -1;
9534 *task = 0;
9535 *rest = NULL;
9536
9537 while (tok && *tok)
9538 {
9539 const char *end_tok;
9540 int toklen;
9541 const char *cond_start = NULL;
9542 const char *cond_end = NULL;
9543
9544 tok = skip_spaces_const (tok);
9545
9546 if ((*tok == '"' || *tok == ',') && rest)
9547 {
9548 *rest = savestring (tok, strlen (tok));
9549 return;
9550 }
9551
9552 end_tok = skip_to_space_const (tok);
9553
9554 toklen = end_tok - tok;
9555
9556 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9557 {
9558 tok = cond_start = end_tok + 1;
9559 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9560 cond_end = tok;
9561 *cond_string = savestring (cond_start, cond_end - cond_start);
9562 }
9563 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9564 {
9565 const char *tmptok;
9566 struct thread_info *thr;
9567
9568 tok = end_tok + 1;
9569 thr = parse_thread_id (tok, &tmptok);
9570 if (tok == tmptok)
9571 error (_("Junk after thread keyword."));
9572 *thread = thr->global_num;
9573 tok = tmptok;
9574 }
9575 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9576 {
9577 char *tmptok;
9578
9579 tok = end_tok + 1;
9580 *task = strtol (tok, &tmptok, 0);
9581 if (tok == tmptok)
9582 error (_("Junk after task keyword."));
9583 if (!valid_task_id (*task))
9584 error (_("Unknown task %d."), *task);
9585 tok = tmptok;
9586 }
9587 else if (rest)
9588 {
9589 *rest = savestring (tok, strlen (tok));
9590 return;
9591 }
9592 else
9593 error (_("Junk at end of arguments."));
9594 }
9595 }
9596
9597 /* Decode a static tracepoint marker spec. */
9598
9599 static struct symtabs_and_lines
9600 decode_static_tracepoint_spec (const char **arg_p)
9601 {
9602 VEC(static_tracepoint_marker_p) *markers = NULL;
9603 struct symtabs_and_lines sals;
9604 struct cleanup *old_chain;
9605 const char *p = &(*arg_p)[3];
9606 const char *endp;
9607 char *marker_str;
9608 int i;
9609
9610 p = skip_spaces_const (p);
9611
9612 endp = skip_to_space_const (p);
9613
9614 marker_str = savestring (p, endp - p);
9615 old_chain = make_cleanup (xfree, marker_str);
9616
9617 markers = target_static_tracepoint_markers_by_strid (marker_str);
9618 if (VEC_empty(static_tracepoint_marker_p, markers))
9619 error (_("No known static tracepoint marker named %s"), marker_str);
9620
9621 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9622 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9623
9624 for (i = 0; i < sals.nelts; i++)
9625 {
9626 struct static_tracepoint_marker *marker;
9627
9628 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9629
9630 init_sal (&sals.sals[i]);
9631
9632 sals.sals[i] = find_pc_line (marker->address, 0);
9633 sals.sals[i].pc = marker->address;
9634
9635 release_static_tracepoint_marker (marker);
9636 }
9637
9638 do_cleanups (old_chain);
9639
9640 *arg_p = endp;
9641 return sals;
9642 }
9643
9644 /* See breakpoint.h. */
9645
9646 int
9647 create_breakpoint (struct gdbarch *gdbarch,
9648 const struct event_location *location,
9649 const char *cond_string,
9650 int thread, const char *extra_string,
9651 int parse_extra,
9652 int tempflag, enum bptype type_wanted,
9653 int ignore_count,
9654 enum auto_boolean pending_break_support,
9655 const struct breakpoint_ops *ops,
9656 int from_tty, int enabled, int internal,
9657 unsigned flags)
9658 {
9659 struct linespec_result canonical;
9660 struct cleanup *bkpt_chain = NULL;
9661 int pending = 0;
9662 int task = 0;
9663 int prev_bkpt_count = breakpoint_count;
9664
9665 gdb_assert (ops != NULL);
9666
9667 /* If extra_string isn't useful, set it to NULL. */
9668 if (extra_string != NULL && *extra_string == '\0')
9669 extra_string = NULL;
9670
9671 TRY
9672 {
9673 ops->create_sals_from_location (location, &canonical, type_wanted);
9674 }
9675 CATCH (e, RETURN_MASK_ERROR)
9676 {
9677 /* If caller is interested in rc value from parse, set
9678 value. */
9679 if (e.error == NOT_FOUND_ERROR)
9680 {
9681 /* If pending breakpoint support is turned off, throw
9682 error. */
9683
9684 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9685 throw_exception (e);
9686
9687 exception_print (gdb_stderr, e);
9688
9689 /* If pending breakpoint support is auto query and the user
9690 selects no, then simply return the error code. */
9691 if (pending_break_support == AUTO_BOOLEAN_AUTO
9692 && !nquery (_("Make %s pending on future shared library load? "),
9693 bptype_string (type_wanted)))
9694 return 0;
9695
9696 /* At this point, either the user was queried about setting
9697 a pending breakpoint and selected yes, or pending
9698 breakpoint behavior is on and thus a pending breakpoint
9699 is defaulted on behalf of the user. */
9700 pending = 1;
9701 }
9702 else
9703 throw_exception (e);
9704 }
9705 END_CATCH
9706
9707 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9708 return 0;
9709
9710 /* ----------------------------- SNIP -----------------------------
9711 Anything added to the cleanup chain beyond this point is assumed
9712 to be part of a breakpoint. If the breakpoint create succeeds
9713 then the memory is not reclaimed. */
9714 bkpt_chain = make_cleanup (null_cleanup, 0);
9715
9716 /* Resolve all line numbers to PC's and verify that the addresses
9717 are ok for the target. */
9718 if (!pending)
9719 {
9720 int ix;
9721 struct linespec_sals *iter;
9722
9723 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9724 breakpoint_sals_to_pc (&iter->sals);
9725 }
9726
9727 /* Fast tracepoints may have additional restrictions on location. */
9728 if (!pending && type_wanted == bp_fast_tracepoint)
9729 {
9730 int ix;
9731 struct linespec_sals *iter;
9732
9733 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9734 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9735 }
9736
9737 /* Verify that condition can be parsed, before setting any
9738 breakpoints. Allocate a separate condition expression for each
9739 breakpoint. */
9740 if (!pending)
9741 {
9742 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9743 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9744
9745 if (parse_extra)
9746 {
9747 char *rest;
9748 char *cond;
9749 struct linespec_sals *lsal;
9750
9751 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9752
9753 /* Here we only parse 'arg' to separate condition
9754 from thread number, so parsing in context of first
9755 sal is OK. When setting the breakpoint we'll
9756 re-parse it in context of each sal. */
9757
9758 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9759 &cond, &thread, &task, &rest);
9760 cond_string_copy.reset (cond);
9761 extra_string_copy.reset (rest);
9762 }
9763 else
9764 {
9765 if (type_wanted != bp_dprintf
9766 && extra_string != NULL && *extra_string != '\0')
9767 error (_("Garbage '%s' at end of location"), extra_string);
9768
9769 /* Create a private copy of condition string. */
9770 if (cond_string)
9771 cond_string_copy.reset (xstrdup (cond_string));
9772 /* Create a private copy of any extra string. */
9773 if (extra_string)
9774 extra_string_copy.reset (xstrdup (extra_string));
9775 }
9776
9777 ops->create_breakpoints_sal (gdbarch, &canonical,
9778 std::move (cond_string_copy),
9779 std::move (extra_string_copy),
9780 type_wanted,
9781 tempflag ? disp_del : disp_donttouch,
9782 thread, task, ignore_count, ops,
9783 from_tty, enabled, internal, flags);
9784 }
9785 else
9786 {
9787 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9788
9789 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9790 b->location = copy_event_location (location);
9791
9792 if (parse_extra)
9793 b->cond_string = NULL;
9794 else
9795 {
9796 /* Create a private copy of condition string. */
9797 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9798 b->thread = thread;
9799 }
9800
9801 /* Create a private copy of any extra string. */
9802 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9803 b->ignore_count = ignore_count;
9804 b->disposition = tempflag ? disp_del : disp_donttouch;
9805 b->condition_not_parsed = 1;
9806 b->enable_state = enabled ? bp_enabled : bp_disabled;
9807 if ((type_wanted != bp_breakpoint
9808 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9809 b->pspace = current_program_space;
9810
9811 install_breakpoint (internal, b.release (), 0);
9812 }
9813
9814 if (VEC_length (linespec_sals, canonical.sals) > 1)
9815 {
9816 warning (_("Multiple breakpoints were set.\nUse the "
9817 "\"delete\" command to delete unwanted breakpoints."));
9818 prev_breakpoint_count = prev_bkpt_count;
9819 }
9820
9821 /* That's it. Discard the cleanups for data inserted into the
9822 breakpoint. */
9823 discard_cleanups (bkpt_chain);
9824
9825 /* error call may happen here - have BKPT_CHAIN already discarded. */
9826 update_global_location_list (UGLL_MAY_INSERT);
9827
9828 return 1;
9829 }
9830
9831 /* Set a breakpoint.
9832 ARG is a string describing breakpoint address,
9833 condition, and thread.
9834 FLAG specifies if a breakpoint is hardware on,
9835 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9836 and BP_TEMPFLAG. */
9837
9838 static void
9839 break_command_1 (char *arg, int flag, int from_tty)
9840 {
9841 int tempflag = flag & BP_TEMPFLAG;
9842 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9843 ? bp_hardware_breakpoint
9844 : bp_breakpoint);
9845 struct breakpoint_ops *ops;
9846
9847 event_location_up location = string_to_event_location (&arg, current_language);
9848
9849 /* Matching breakpoints on probes. */
9850 if (location != NULL
9851 && event_location_type (location.get ()) == PROBE_LOCATION)
9852 ops = &bkpt_probe_breakpoint_ops;
9853 else
9854 ops = &bkpt_breakpoint_ops;
9855
9856 create_breakpoint (get_current_arch (),
9857 location.get (),
9858 NULL, 0, arg, 1 /* parse arg */,
9859 tempflag, type_wanted,
9860 0 /* Ignore count */,
9861 pending_break_support,
9862 ops,
9863 from_tty,
9864 1 /* enabled */,
9865 0 /* internal */,
9866 0);
9867 }
9868
9869 /* Helper function for break_command_1 and disassemble_command. */
9870
9871 void
9872 resolve_sal_pc (struct symtab_and_line *sal)
9873 {
9874 CORE_ADDR pc;
9875
9876 if (sal->pc == 0 && sal->symtab != NULL)
9877 {
9878 if (!find_line_pc (sal->symtab, sal->line, &pc))
9879 error (_("No line %d in file \"%s\"."),
9880 sal->line, symtab_to_filename_for_display (sal->symtab));
9881 sal->pc = pc;
9882
9883 /* If this SAL corresponds to a breakpoint inserted using a line
9884 number, then skip the function prologue if necessary. */
9885 if (sal->explicit_line)
9886 skip_prologue_sal (sal);
9887 }
9888
9889 if (sal->section == 0 && sal->symtab != NULL)
9890 {
9891 const struct blockvector *bv;
9892 const struct block *b;
9893 struct symbol *sym;
9894
9895 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9896 SYMTAB_COMPUNIT (sal->symtab));
9897 if (bv != NULL)
9898 {
9899 sym = block_linkage_function (b);
9900 if (sym != NULL)
9901 {
9902 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9903 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9904 sym);
9905 }
9906 else
9907 {
9908 /* It really is worthwhile to have the section, so we'll
9909 just have to look harder. This case can be executed
9910 if we have line numbers but no functions (as can
9911 happen in assembly source). */
9912
9913 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9914 switch_to_program_space_and_thread (sal->pspace);
9915
9916 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9917 if (msym.minsym)
9918 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9919 }
9920 }
9921 }
9922 }
9923
9924 void
9925 break_command (char *arg, int from_tty)
9926 {
9927 break_command_1 (arg, 0, from_tty);
9928 }
9929
9930 void
9931 tbreak_command (char *arg, int from_tty)
9932 {
9933 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9934 }
9935
9936 static void
9937 hbreak_command (char *arg, int from_tty)
9938 {
9939 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9940 }
9941
9942 static void
9943 thbreak_command (char *arg, int from_tty)
9944 {
9945 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9946 }
9947
9948 static void
9949 stop_command (char *arg, int from_tty)
9950 {
9951 printf_filtered (_("Specify the type of breakpoint to set.\n\
9952 Usage: stop in <function | address>\n\
9953 stop at <line>\n"));
9954 }
9955
9956 static void
9957 stopin_command (char *arg, int from_tty)
9958 {
9959 int badInput = 0;
9960
9961 if (arg == (char *) NULL)
9962 badInput = 1;
9963 else if (*arg != '*')
9964 {
9965 char *argptr = arg;
9966 int hasColon = 0;
9967
9968 /* Look for a ':'. If this is a line number specification, then
9969 say it is bad, otherwise, it should be an address or
9970 function/method name. */
9971 while (*argptr && !hasColon)
9972 {
9973 hasColon = (*argptr == ':');
9974 argptr++;
9975 }
9976
9977 if (hasColon)
9978 badInput = (*argptr != ':'); /* Not a class::method */
9979 else
9980 badInput = isdigit (*arg); /* a simple line number */
9981 }
9982
9983 if (badInput)
9984 printf_filtered (_("Usage: stop in <function | address>\n"));
9985 else
9986 break_command_1 (arg, 0, from_tty);
9987 }
9988
9989 static void
9990 stopat_command (char *arg, int from_tty)
9991 {
9992 int badInput = 0;
9993
9994 if (arg == (char *) NULL || *arg == '*') /* no line number */
9995 badInput = 1;
9996 else
9997 {
9998 char *argptr = arg;
9999 int hasColon = 0;
10000
10001 /* Look for a ':'. If there is a '::' then get out, otherwise
10002 it is probably a line number. */
10003 while (*argptr && !hasColon)
10004 {
10005 hasColon = (*argptr == ':');
10006 argptr++;
10007 }
10008
10009 if (hasColon)
10010 badInput = (*argptr == ':'); /* we have class::method */
10011 else
10012 badInput = !isdigit (*arg); /* not a line number */
10013 }
10014
10015 if (badInput)
10016 printf_filtered (_("Usage: stop at <line>\n"));
10017 else
10018 break_command_1 (arg, 0, from_tty);
10019 }
10020
10021 /* The dynamic printf command is mostly like a regular breakpoint, but
10022 with a prewired command list consisting of a single output command,
10023 built from extra arguments supplied on the dprintf command
10024 line. */
10025
10026 static void
10027 dprintf_command (char *arg, int from_tty)
10028 {
10029 event_location_up location = string_to_event_location (&arg, current_language);
10030
10031 /* If non-NULL, ARG should have been advanced past the location;
10032 the next character must be ','. */
10033 if (arg != NULL)
10034 {
10035 if (arg[0] != ',' || arg[1] == '\0')
10036 error (_("Format string required"));
10037 else
10038 {
10039 /* Skip the comma. */
10040 ++arg;
10041 }
10042 }
10043
10044 create_breakpoint (get_current_arch (),
10045 location.get (),
10046 NULL, 0, arg, 1 /* parse arg */,
10047 0, bp_dprintf,
10048 0 /* Ignore count */,
10049 pending_break_support,
10050 &dprintf_breakpoint_ops,
10051 from_tty,
10052 1 /* enabled */,
10053 0 /* internal */,
10054 0);
10055 }
10056
10057 static void
10058 agent_printf_command (char *arg, int from_tty)
10059 {
10060 error (_("May only run agent-printf on the target"));
10061 }
10062
10063 /* Implement the "breakpoint_hit" breakpoint_ops method for
10064 ranged breakpoints. */
10065
10066 static int
10067 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10068 struct address_space *aspace,
10069 CORE_ADDR bp_addr,
10070 const struct target_waitstatus *ws)
10071 {
10072 if (ws->kind != TARGET_WAITKIND_STOPPED
10073 || ws->value.sig != GDB_SIGNAL_TRAP)
10074 return 0;
10075
10076 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10077 bl->length, aspace, bp_addr);
10078 }
10079
10080 /* Implement the "resources_needed" breakpoint_ops method for
10081 ranged breakpoints. */
10082
10083 static int
10084 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10085 {
10086 return target_ranged_break_num_registers ();
10087 }
10088
10089 /* Implement the "print_it" breakpoint_ops method for
10090 ranged breakpoints. */
10091
10092 static enum print_stop_action
10093 print_it_ranged_breakpoint (bpstat bs)
10094 {
10095 struct breakpoint *b = bs->breakpoint_at;
10096 struct bp_location *bl = b->loc;
10097 struct ui_out *uiout = current_uiout;
10098
10099 gdb_assert (b->type == bp_hardware_breakpoint);
10100
10101 /* Ranged breakpoints have only one location. */
10102 gdb_assert (bl && bl->next == NULL);
10103
10104 annotate_breakpoint (b->number);
10105
10106 maybe_print_thread_hit_breakpoint (uiout);
10107
10108 if (b->disposition == disp_del)
10109 uiout->text ("Temporary ranged breakpoint ");
10110 else
10111 uiout->text ("Ranged breakpoint ");
10112 if (uiout->is_mi_like_p ())
10113 {
10114 uiout->field_string ("reason",
10115 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10116 uiout->field_string ("disp", bpdisp_text (b->disposition));
10117 }
10118 uiout->field_int ("bkptno", b->number);
10119 uiout->text (", ");
10120
10121 return PRINT_SRC_AND_LOC;
10122 }
10123
10124 /* Implement the "print_one" breakpoint_ops method for
10125 ranged breakpoints. */
10126
10127 static void
10128 print_one_ranged_breakpoint (struct breakpoint *b,
10129 struct bp_location **last_loc)
10130 {
10131 struct bp_location *bl = b->loc;
10132 struct value_print_options opts;
10133 struct ui_out *uiout = current_uiout;
10134
10135 /* Ranged breakpoints have only one location. */
10136 gdb_assert (bl && bl->next == NULL);
10137
10138 get_user_print_options (&opts);
10139
10140 if (opts.addressprint)
10141 /* We don't print the address range here, it will be printed later
10142 by print_one_detail_ranged_breakpoint. */
10143 uiout->field_skip ("addr");
10144 annotate_field (5);
10145 print_breakpoint_location (b, bl);
10146 *last_loc = bl;
10147 }
10148
10149 /* Implement the "print_one_detail" breakpoint_ops method for
10150 ranged breakpoints. */
10151
10152 static void
10153 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10154 struct ui_out *uiout)
10155 {
10156 CORE_ADDR address_start, address_end;
10157 struct bp_location *bl = b->loc;
10158 string_file stb;
10159
10160 gdb_assert (bl);
10161
10162 address_start = bl->address;
10163 address_end = address_start + bl->length - 1;
10164
10165 uiout->text ("\taddress range: ");
10166 stb.printf ("[%s, %s]",
10167 print_core_address (bl->gdbarch, address_start),
10168 print_core_address (bl->gdbarch, address_end));
10169 uiout->field_stream ("addr", stb);
10170 uiout->text ("\n");
10171 }
10172
10173 /* Implement the "print_mention" breakpoint_ops method for
10174 ranged breakpoints. */
10175
10176 static void
10177 print_mention_ranged_breakpoint (struct breakpoint *b)
10178 {
10179 struct bp_location *bl = b->loc;
10180 struct ui_out *uiout = current_uiout;
10181
10182 gdb_assert (bl);
10183 gdb_assert (b->type == bp_hardware_breakpoint);
10184
10185 if (uiout->is_mi_like_p ())
10186 return;
10187
10188 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10189 b->number, paddress (bl->gdbarch, bl->address),
10190 paddress (bl->gdbarch, bl->address + bl->length - 1));
10191 }
10192
10193 /* Implement the "print_recreate" breakpoint_ops method for
10194 ranged breakpoints. */
10195
10196 static void
10197 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10198 {
10199 fprintf_unfiltered (fp, "break-range %s, %s",
10200 event_location_to_string (b->location.get ()),
10201 event_location_to_string (b->location_range_end.get ()));
10202 print_recreate_thread (b, fp);
10203 }
10204
10205 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10206
10207 static struct breakpoint_ops ranged_breakpoint_ops;
10208
10209 /* Find the address where the end of the breakpoint range should be
10210 placed, given the SAL of the end of the range. This is so that if
10211 the user provides a line number, the end of the range is set to the
10212 last instruction of the given line. */
10213
10214 static CORE_ADDR
10215 find_breakpoint_range_end (struct symtab_and_line sal)
10216 {
10217 CORE_ADDR end;
10218
10219 /* If the user provided a PC value, use it. Otherwise,
10220 find the address of the end of the given location. */
10221 if (sal.explicit_pc)
10222 end = sal.pc;
10223 else
10224 {
10225 int ret;
10226 CORE_ADDR start;
10227
10228 ret = find_line_pc_range (sal, &start, &end);
10229 if (!ret)
10230 error (_("Could not find location of the end of the range."));
10231
10232 /* find_line_pc_range returns the start of the next line. */
10233 end--;
10234 }
10235
10236 return end;
10237 }
10238
10239 /* Implement the "break-range" CLI command. */
10240
10241 static void
10242 break_range_command (char *arg, int from_tty)
10243 {
10244 char *arg_start, *addr_string_start;
10245 struct linespec_result canonical_start, canonical_end;
10246 int bp_count, can_use_bp, length;
10247 CORE_ADDR end;
10248 struct breakpoint *b;
10249 struct symtab_and_line sal_start, sal_end;
10250 struct cleanup *cleanup_bkpt;
10251 struct linespec_sals *lsal_start, *lsal_end;
10252
10253 /* We don't support software ranged breakpoints. */
10254 if (target_ranged_break_num_registers () < 0)
10255 error (_("This target does not support hardware ranged breakpoints."));
10256
10257 bp_count = hw_breakpoint_used_count ();
10258 bp_count += target_ranged_break_num_registers ();
10259 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10260 bp_count, 0);
10261 if (can_use_bp < 0)
10262 error (_("Hardware breakpoints used exceeds limit."));
10263
10264 arg = skip_spaces (arg);
10265 if (arg == NULL || arg[0] == '\0')
10266 error(_("No address range specified."));
10267
10268 arg_start = arg;
10269 event_location_up start_location = string_to_event_location (&arg,
10270 current_language);
10271 parse_breakpoint_sals (start_location.get (), &canonical_start);
10272
10273 if (arg[0] != ',')
10274 error (_("Too few arguments."));
10275 else if (VEC_empty (linespec_sals, canonical_start.sals))
10276 error (_("Could not find location of the beginning of the range."));
10277
10278 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10279
10280 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10281 || lsal_start->sals.nelts != 1)
10282 error (_("Cannot create a ranged breakpoint with multiple locations."));
10283
10284 sal_start = lsal_start->sals.sals[0];
10285 addr_string_start = savestring (arg_start, arg - arg_start);
10286 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10287
10288 arg++; /* Skip the comma. */
10289 arg = skip_spaces (arg);
10290
10291 /* Parse the end location. */
10292
10293 arg_start = arg;
10294
10295 /* We call decode_line_full directly here instead of using
10296 parse_breakpoint_sals because we need to specify the start location's
10297 symtab and line as the default symtab and line for the end of the
10298 range. This makes it possible to have ranges like "foo.c:27, +14",
10299 where +14 means 14 lines from the start location. */
10300 event_location_up end_location = string_to_event_location (&arg,
10301 current_language);
10302 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10303 sal_start.symtab, sal_start.line,
10304 &canonical_end, NULL, NULL);
10305
10306 if (VEC_empty (linespec_sals, canonical_end.sals))
10307 error (_("Could not find location of the end of the range."));
10308
10309 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10310 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10311 || lsal_end->sals.nelts != 1)
10312 error (_("Cannot create a ranged breakpoint with multiple locations."));
10313
10314 sal_end = lsal_end->sals.sals[0];
10315
10316 end = find_breakpoint_range_end (sal_end);
10317 if (sal_start.pc > end)
10318 error (_("Invalid address range, end precedes start."));
10319
10320 length = end - sal_start.pc + 1;
10321 if (length < 0)
10322 /* Length overflowed. */
10323 error (_("Address range too large."));
10324 else if (length == 1)
10325 {
10326 /* This range is simple enough to be handled by
10327 the `hbreak' command. */
10328 hbreak_command (addr_string_start, 1);
10329
10330 do_cleanups (cleanup_bkpt);
10331
10332 return;
10333 }
10334
10335 /* Now set up the breakpoint. */
10336 b = set_raw_breakpoint (get_current_arch (), sal_start,
10337 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10338 set_breakpoint_count (breakpoint_count + 1);
10339 b->number = breakpoint_count;
10340 b->disposition = disp_donttouch;
10341 b->location = std::move (start_location);
10342 b->location_range_end = std::move (end_location);
10343 b->loc->length = length;
10344
10345 do_cleanups (cleanup_bkpt);
10346
10347 mention (b);
10348 observer_notify_breakpoint_created (b);
10349 update_global_location_list (UGLL_MAY_INSERT);
10350 }
10351
10352 /* Return non-zero if EXP is verified as constant. Returned zero
10353 means EXP is variable. Also the constant detection may fail for
10354 some constant expressions and in such case still falsely return
10355 zero. */
10356
10357 static int
10358 watchpoint_exp_is_const (const struct expression *exp)
10359 {
10360 int i = exp->nelts;
10361
10362 while (i > 0)
10363 {
10364 int oplenp, argsp;
10365
10366 /* We are only interested in the descriptor of each element. */
10367 operator_length (exp, i, &oplenp, &argsp);
10368 i -= oplenp;
10369
10370 switch (exp->elts[i].opcode)
10371 {
10372 case BINOP_ADD:
10373 case BINOP_SUB:
10374 case BINOP_MUL:
10375 case BINOP_DIV:
10376 case BINOP_REM:
10377 case BINOP_MOD:
10378 case BINOP_LSH:
10379 case BINOP_RSH:
10380 case BINOP_LOGICAL_AND:
10381 case BINOP_LOGICAL_OR:
10382 case BINOP_BITWISE_AND:
10383 case BINOP_BITWISE_IOR:
10384 case BINOP_BITWISE_XOR:
10385 case BINOP_EQUAL:
10386 case BINOP_NOTEQUAL:
10387 case BINOP_LESS:
10388 case BINOP_GTR:
10389 case BINOP_LEQ:
10390 case BINOP_GEQ:
10391 case BINOP_REPEAT:
10392 case BINOP_COMMA:
10393 case BINOP_EXP:
10394 case BINOP_MIN:
10395 case BINOP_MAX:
10396 case BINOP_INTDIV:
10397 case BINOP_CONCAT:
10398 case TERNOP_COND:
10399 case TERNOP_SLICE:
10400
10401 case OP_LONG:
10402 case OP_DOUBLE:
10403 case OP_DECFLOAT:
10404 case OP_LAST:
10405 case OP_COMPLEX:
10406 case OP_STRING:
10407 case OP_ARRAY:
10408 case OP_TYPE:
10409 case OP_TYPEOF:
10410 case OP_DECLTYPE:
10411 case OP_TYPEID:
10412 case OP_NAME:
10413 case OP_OBJC_NSSTRING:
10414
10415 case UNOP_NEG:
10416 case UNOP_LOGICAL_NOT:
10417 case UNOP_COMPLEMENT:
10418 case UNOP_ADDR:
10419 case UNOP_HIGH:
10420 case UNOP_CAST:
10421
10422 case UNOP_CAST_TYPE:
10423 case UNOP_REINTERPRET_CAST:
10424 case UNOP_DYNAMIC_CAST:
10425 /* Unary, binary and ternary operators: We have to check
10426 their operands. If they are constant, then so is the
10427 result of that operation. For instance, if A and B are
10428 determined to be constants, then so is "A + B".
10429
10430 UNOP_IND is one exception to the rule above, because the
10431 value of *ADDR is not necessarily a constant, even when
10432 ADDR is. */
10433 break;
10434
10435 case OP_VAR_VALUE:
10436 /* Check whether the associated symbol is a constant.
10437
10438 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10439 possible that a buggy compiler could mark a variable as
10440 constant even when it is not, and TYPE_CONST would return
10441 true in this case, while SYMBOL_CLASS wouldn't.
10442
10443 We also have to check for function symbols because they
10444 are always constant. */
10445 {
10446 struct symbol *s = exp->elts[i + 2].symbol;
10447
10448 if (SYMBOL_CLASS (s) != LOC_BLOCK
10449 && SYMBOL_CLASS (s) != LOC_CONST
10450 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10451 return 0;
10452 break;
10453 }
10454
10455 /* The default action is to return 0 because we are using
10456 the optimistic approach here: If we don't know something,
10457 then it is not a constant. */
10458 default:
10459 return 0;
10460 }
10461 }
10462
10463 return 1;
10464 }
10465
10466 /* Watchpoint destructor. */
10467
10468 watchpoint::~watchpoint ()
10469 {
10470 xfree (this->exp_string);
10471 xfree (this->exp_string_reparse);
10472 value_free (this->val);
10473 }
10474
10475 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10476
10477 static void
10478 re_set_watchpoint (struct breakpoint *b)
10479 {
10480 struct watchpoint *w = (struct watchpoint *) b;
10481
10482 /* Watchpoint can be either on expression using entirely global
10483 variables, or it can be on local variables.
10484
10485 Watchpoints of the first kind are never auto-deleted, and even
10486 persist across program restarts. Since they can use variables
10487 from shared libraries, we need to reparse expression as libraries
10488 are loaded and unloaded.
10489
10490 Watchpoints on local variables can also change meaning as result
10491 of solib event. For example, if a watchpoint uses both a local
10492 and a global variables in expression, it's a local watchpoint,
10493 but unloading of a shared library will make the expression
10494 invalid. This is not a very common use case, but we still
10495 re-evaluate expression, to avoid surprises to the user.
10496
10497 Note that for local watchpoints, we re-evaluate it only if
10498 watchpoints frame id is still valid. If it's not, it means the
10499 watchpoint is out of scope and will be deleted soon. In fact,
10500 I'm not sure we'll ever be called in this case.
10501
10502 If a local watchpoint's frame id is still valid, then
10503 w->exp_valid_block is likewise valid, and we can safely use it.
10504
10505 Don't do anything about disabled watchpoints, since they will be
10506 reevaluated again when enabled. */
10507 update_watchpoint (w, 1 /* reparse */);
10508 }
10509
10510 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10511
10512 static int
10513 insert_watchpoint (struct bp_location *bl)
10514 {
10515 struct watchpoint *w = (struct watchpoint *) bl->owner;
10516 int length = w->exact ? 1 : bl->length;
10517
10518 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10519 w->cond_exp.get ());
10520 }
10521
10522 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10523
10524 static int
10525 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10526 {
10527 struct watchpoint *w = (struct watchpoint *) bl->owner;
10528 int length = w->exact ? 1 : bl->length;
10529
10530 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10531 w->cond_exp.get ());
10532 }
10533
10534 static int
10535 breakpoint_hit_watchpoint (const struct bp_location *bl,
10536 struct address_space *aspace, CORE_ADDR bp_addr,
10537 const struct target_waitstatus *ws)
10538 {
10539 struct breakpoint *b = bl->owner;
10540 struct watchpoint *w = (struct watchpoint *) b;
10541
10542 /* Continuable hardware watchpoints are treated as non-existent if the
10543 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10544 some data address). Otherwise gdb won't stop on a break instruction
10545 in the code (not from a breakpoint) when a hardware watchpoint has
10546 been defined. Also skip watchpoints which we know did not trigger
10547 (did not match the data address). */
10548 if (is_hardware_watchpoint (b)
10549 && w->watchpoint_triggered == watch_triggered_no)
10550 return 0;
10551
10552 return 1;
10553 }
10554
10555 static void
10556 check_status_watchpoint (bpstat bs)
10557 {
10558 gdb_assert (is_watchpoint (bs->breakpoint_at));
10559
10560 bpstat_check_watchpoint (bs);
10561 }
10562
10563 /* Implement the "resources_needed" breakpoint_ops method for
10564 hardware watchpoints. */
10565
10566 static int
10567 resources_needed_watchpoint (const struct bp_location *bl)
10568 {
10569 struct watchpoint *w = (struct watchpoint *) bl->owner;
10570 int length = w->exact? 1 : bl->length;
10571
10572 return target_region_ok_for_hw_watchpoint (bl->address, length);
10573 }
10574
10575 /* Implement the "works_in_software_mode" breakpoint_ops method for
10576 hardware watchpoints. */
10577
10578 static int
10579 works_in_software_mode_watchpoint (const struct breakpoint *b)
10580 {
10581 /* Read and access watchpoints only work with hardware support. */
10582 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10583 }
10584
10585 static enum print_stop_action
10586 print_it_watchpoint (bpstat bs)
10587 {
10588 struct cleanup *old_chain;
10589 struct breakpoint *b;
10590 enum print_stop_action result;
10591 struct watchpoint *w;
10592 struct ui_out *uiout = current_uiout;
10593
10594 gdb_assert (bs->bp_location_at != NULL);
10595
10596 b = bs->breakpoint_at;
10597 w = (struct watchpoint *) b;
10598
10599 old_chain = make_cleanup (null_cleanup, NULL);
10600
10601 annotate_watchpoint (b->number);
10602 maybe_print_thread_hit_breakpoint (uiout);
10603
10604 string_file stb;
10605
10606 switch (b->type)
10607 {
10608 case bp_watchpoint:
10609 case bp_hardware_watchpoint:
10610 if (uiout->is_mi_like_p ())
10611 uiout->field_string
10612 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10613 mention (b);
10614 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10615 uiout->text ("\nOld value = ");
10616 watchpoint_value_print (bs->old_val, &stb);
10617 uiout->field_stream ("old", stb);
10618 uiout->text ("\nNew value = ");
10619 watchpoint_value_print (w->val, &stb);
10620 uiout->field_stream ("new", stb);
10621 uiout->text ("\n");
10622 /* More than one watchpoint may have been triggered. */
10623 result = PRINT_UNKNOWN;
10624 break;
10625
10626 case bp_read_watchpoint:
10627 if (uiout->is_mi_like_p ())
10628 uiout->field_string
10629 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10630 mention (b);
10631 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10632 uiout->text ("\nValue = ");
10633 watchpoint_value_print (w->val, &stb);
10634 uiout->field_stream ("value", stb);
10635 uiout->text ("\n");
10636 result = PRINT_UNKNOWN;
10637 break;
10638
10639 case bp_access_watchpoint:
10640 if (bs->old_val != NULL)
10641 {
10642 if (uiout->is_mi_like_p ())
10643 uiout->field_string
10644 ("reason",
10645 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10646 mention (b);
10647 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10648 uiout->text ("\nOld value = ");
10649 watchpoint_value_print (bs->old_val, &stb);
10650 uiout->field_stream ("old", stb);
10651 uiout->text ("\nNew value = ");
10652 }
10653 else
10654 {
10655 mention (b);
10656 if (uiout->is_mi_like_p ())
10657 uiout->field_string
10658 ("reason",
10659 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10660 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10661 uiout->text ("\nValue = ");
10662 }
10663 watchpoint_value_print (w->val, &stb);
10664 uiout->field_stream ("new", stb);
10665 uiout->text ("\n");
10666 result = PRINT_UNKNOWN;
10667 break;
10668 default:
10669 result = PRINT_UNKNOWN;
10670 }
10671
10672 do_cleanups (old_chain);
10673 return result;
10674 }
10675
10676 /* Implement the "print_mention" breakpoint_ops method for hardware
10677 watchpoints. */
10678
10679 static void
10680 print_mention_watchpoint (struct breakpoint *b)
10681 {
10682 struct watchpoint *w = (struct watchpoint *) b;
10683 struct ui_out *uiout = current_uiout;
10684 const char *tuple_name;
10685
10686 switch (b->type)
10687 {
10688 case bp_watchpoint:
10689 uiout->text ("Watchpoint ");
10690 tuple_name = "wpt";
10691 break;
10692 case bp_hardware_watchpoint:
10693 uiout->text ("Hardware watchpoint ");
10694 tuple_name = "wpt";
10695 break;
10696 case bp_read_watchpoint:
10697 uiout->text ("Hardware read watchpoint ");
10698 tuple_name = "hw-rwpt";
10699 break;
10700 case bp_access_watchpoint:
10701 uiout->text ("Hardware access (read/write) watchpoint ");
10702 tuple_name = "hw-awpt";
10703 break;
10704 default:
10705 internal_error (__FILE__, __LINE__,
10706 _("Invalid hardware watchpoint type."));
10707 }
10708
10709 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10710 uiout->field_int ("number", b->number);
10711 uiout->text (": ");
10712 uiout->field_string ("exp", w->exp_string);
10713 }
10714
10715 /* Implement the "print_recreate" breakpoint_ops method for
10716 watchpoints. */
10717
10718 static void
10719 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10720 {
10721 struct watchpoint *w = (struct watchpoint *) b;
10722
10723 switch (b->type)
10724 {
10725 case bp_watchpoint:
10726 case bp_hardware_watchpoint:
10727 fprintf_unfiltered (fp, "watch");
10728 break;
10729 case bp_read_watchpoint:
10730 fprintf_unfiltered (fp, "rwatch");
10731 break;
10732 case bp_access_watchpoint:
10733 fprintf_unfiltered (fp, "awatch");
10734 break;
10735 default:
10736 internal_error (__FILE__, __LINE__,
10737 _("Invalid watchpoint type."));
10738 }
10739
10740 fprintf_unfiltered (fp, " %s", w->exp_string);
10741 print_recreate_thread (b, fp);
10742 }
10743
10744 /* Implement the "explains_signal" breakpoint_ops method for
10745 watchpoints. */
10746
10747 static int
10748 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10749 {
10750 /* A software watchpoint cannot cause a signal other than
10751 GDB_SIGNAL_TRAP. */
10752 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10753 return 0;
10754
10755 return 1;
10756 }
10757
10758 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10759
10760 static struct breakpoint_ops watchpoint_breakpoint_ops;
10761
10762 /* Implement the "insert" breakpoint_ops method for
10763 masked hardware watchpoints. */
10764
10765 static int
10766 insert_masked_watchpoint (struct bp_location *bl)
10767 {
10768 struct watchpoint *w = (struct watchpoint *) bl->owner;
10769
10770 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10771 bl->watchpoint_type);
10772 }
10773
10774 /* Implement the "remove" breakpoint_ops method for
10775 masked hardware watchpoints. */
10776
10777 static int
10778 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10779 {
10780 struct watchpoint *w = (struct watchpoint *) bl->owner;
10781
10782 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10783 bl->watchpoint_type);
10784 }
10785
10786 /* Implement the "resources_needed" breakpoint_ops method for
10787 masked hardware watchpoints. */
10788
10789 static int
10790 resources_needed_masked_watchpoint (const struct bp_location *bl)
10791 {
10792 struct watchpoint *w = (struct watchpoint *) bl->owner;
10793
10794 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10795 }
10796
10797 /* Implement the "works_in_software_mode" breakpoint_ops method for
10798 masked hardware watchpoints. */
10799
10800 static int
10801 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10802 {
10803 return 0;
10804 }
10805
10806 /* Implement the "print_it" breakpoint_ops method for
10807 masked hardware watchpoints. */
10808
10809 static enum print_stop_action
10810 print_it_masked_watchpoint (bpstat bs)
10811 {
10812 struct breakpoint *b = bs->breakpoint_at;
10813 struct ui_out *uiout = current_uiout;
10814
10815 /* Masked watchpoints have only one location. */
10816 gdb_assert (b->loc && b->loc->next == NULL);
10817
10818 annotate_watchpoint (b->number);
10819 maybe_print_thread_hit_breakpoint (uiout);
10820
10821 switch (b->type)
10822 {
10823 case bp_hardware_watchpoint:
10824 if (uiout->is_mi_like_p ())
10825 uiout->field_string
10826 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10827 break;
10828
10829 case bp_read_watchpoint:
10830 if (uiout->is_mi_like_p ())
10831 uiout->field_string
10832 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10833 break;
10834
10835 case bp_access_watchpoint:
10836 if (uiout->is_mi_like_p ())
10837 uiout->field_string
10838 ("reason",
10839 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10840 break;
10841 default:
10842 internal_error (__FILE__, __LINE__,
10843 _("Invalid hardware watchpoint type."));
10844 }
10845
10846 mention (b);
10847 uiout->text (_("\n\
10848 Check the underlying instruction at PC for the memory\n\
10849 address and value which triggered this watchpoint.\n"));
10850 uiout->text ("\n");
10851
10852 /* More than one watchpoint may have been triggered. */
10853 return PRINT_UNKNOWN;
10854 }
10855
10856 /* Implement the "print_one_detail" breakpoint_ops method for
10857 masked hardware watchpoints. */
10858
10859 static void
10860 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10861 struct ui_out *uiout)
10862 {
10863 struct watchpoint *w = (struct watchpoint *) b;
10864
10865 /* Masked watchpoints have only one location. */
10866 gdb_assert (b->loc && b->loc->next == NULL);
10867
10868 uiout->text ("\tmask ");
10869 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10870 uiout->text ("\n");
10871 }
10872
10873 /* Implement the "print_mention" breakpoint_ops method for
10874 masked hardware watchpoints. */
10875
10876 static void
10877 print_mention_masked_watchpoint (struct breakpoint *b)
10878 {
10879 struct watchpoint *w = (struct watchpoint *) b;
10880 struct ui_out *uiout = current_uiout;
10881 const char *tuple_name;
10882
10883 switch (b->type)
10884 {
10885 case bp_hardware_watchpoint:
10886 uiout->text ("Masked hardware watchpoint ");
10887 tuple_name = "wpt";
10888 break;
10889 case bp_read_watchpoint:
10890 uiout->text ("Masked hardware read watchpoint ");
10891 tuple_name = "hw-rwpt";
10892 break;
10893 case bp_access_watchpoint:
10894 uiout->text ("Masked hardware access (read/write) watchpoint ");
10895 tuple_name = "hw-awpt";
10896 break;
10897 default:
10898 internal_error (__FILE__, __LINE__,
10899 _("Invalid hardware watchpoint type."));
10900 }
10901
10902 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10903 uiout->field_int ("number", b->number);
10904 uiout->text (": ");
10905 uiout->field_string ("exp", w->exp_string);
10906 }
10907
10908 /* Implement the "print_recreate" breakpoint_ops method for
10909 masked hardware watchpoints. */
10910
10911 static void
10912 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10913 {
10914 struct watchpoint *w = (struct watchpoint *) b;
10915 char tmp[40];
10916
10917 switch (b->type)
10918 {
10919 case bp_hardware_watchpoint:
10920 fprintf_unfiltered (fp, "watch");
10921 break;
10922 case bp_read_watchpoint:
10923 fprintf_unfiltered (fp, "rwatch");
10924 break;
10925 case bp_access_watchpoint:
10926 fprintf_unfiltered (fp, "awatch");
10927 break;
10928 default:
10929 internal_error (__FILE__, __LINE__,
10930 _("Invalid hardware watchpoint type."));
10931 }
10932
10933 sprintf_vma (tmp, w->hw_wp_mask);
10934 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10935 print_recreate_thread (b, fp);
10936 }
10937
10938 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10939
10940 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10941
10942 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10943
10944 static int
10945 is_masked_watchpoint (const struct breakpoint *b)
10946 {
10947 return b->ops == &masked_watchpoint_breakpoint_ops;
10948 }
10949
10950 /* accessflag: hw_write: watch write,
10951 hw_read: watch read,
10952 hw_access: watch access (read or write) */
10953 static void
10954 watch_command_1 (const char *arg, int accessflag, int from_tty,
10955 int just_location, int internal)
10956 {
10957 struct breakpoint *scope_breakpoint = NULL;
10958 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10959 struct value *val, *mark, *result;
10960 int saved_bitpos = 0, saved_bitsize = 0;
10961 const char *exp_start = NULL;
10962 const char *exp_end = NULL;
10963 const char *tok, *end_tok;
10964 int toklen = -1;
10965 const char *cond_start = NULL;
10966 const char *cond_end = NULL;
10967 enum bptype bp_type;
10968 int thread = -1;
10969 int pc = 0;
10970 /* Flag to indicate whether we are going to use masks for
10971 the hardware watchpoint. */
10972 int use_mask = 0;
10973 CORE_ADDR mask = 0;
10974 struct watchpoint *w;
10975 char *expression;
10976 struct cleanup *back_to;
10977
10978 /* Make sure that we actually have parameters to parse. */
10979 if (arg != NULL && arg[0] != '\0')
10980 {
10981 const char *value_start;
10982
10983 exp_end = arg + strlen (arg);
10984
10985 /* Look for "parameter value" pairs at the end
10986 of the arguments string. */
10987 for (tok = exp_end - 1; tok > arg; tok--)
10988 {
10989 /* Skip whitespace at the end of the argument list. */
10990 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10991 tok--;
10992
10993 /* Find the beginning of the last token.
10994 This is the value of the parameter. */
10995 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10996 tok--;
10997 value_start = tok + 1;
10998
10999 /* Skip whitespace. */
11000 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11001 tok--;
11002
11003 end_tok = tok;
11004
11005 /* Find the beginning of the second to last token.
11006 This is the parameter itself. */
11007 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11008 tok--;
11009 tok++;
11010 toklen = end_tok - tok + 1;
11011
11012 if (toklen == 6 && startswith (tok, "thread"))
11013 {
11014 struct thread_info *thr;
11015 /* At this point we've found a "thread" token, which means
11016 the user is trying to set a watchpoint that triggers
11017 only in a specific thread. */
11018 const char *endp;
11019
11020 if (thread != -1)
11021 error(_("You can specify only one thread."));
11022
11023 /* Extract the thread ID from the next token. */
11024 thr = parse_thread_id (value_start, &endp);
11025
11026 /* Check if the user provided a valid thread ID. */
11027 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11028 invalid_thread_id_error (value_start);
11029
11030 thread = thr->global_num;
11031 }
11032 else if (toklen == 4 && startswith (tok, "mask"))
11033 {
11034 /* We've found a "mask" token, which means the user wants to
11035 create a hardware watchpoint that is going to have the mask
11036 facility. */
11037 struct value *mask_value, *mark;
11038
11039 if (use_mask)
11040 error(_("You can specify only one mask."));
11041
11042 use_mask = just_location = 1;
11043
11044 mark = value_mark ();
11045 mask_value = parse_to_comma_and_eval (&value_start);
11046 mask = value_as_address (mask_value);
11047 value_free_to_mark (mark);
11048 }
11049 else
11050 /* We didn't recognize what we found. We should stop here. */
11051 break;
11052
11053 /* Truncate the string and get rid of the "parameter value" pair before
11054 the arguments string is parsed by the parse_exp_1 function. */
11055 exp_end = tok;
11056 }
11057 }
11058 else
11059 exp_end = arg;
11060
11061 /* Parse the rest of the arguments. From here on out, everything
11062 is in terms of a newly allocated string instead of the original
11063 ARG. */
11064 innermost_block = NULL;
11065 expression = savestring (arg, exp_end - arg);
11066 back_to = make_cleanup (xfree, expression);
11067 exp_start = arg = expression;
11068 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11069 exp_end = arg;
11070 /* Remove trailing whitespace from the expression before saving it.
11071 This makes the eventual display of the expression string a bit
11072 prettier. */
11073 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11074 --exp_end;
11075
11076 /* Checking if the expression is not constant. */
11077 if (watchpoint_exp_is_const (exp.get ()))
11078 {
11079 int len;
11080
11081 len = exp_end - exp_start;
11082 while (len > 0 && isspace (exp_start[len - 1]))
11083 len--;
11084 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11085 }
11086
11087 exp_valid_block = innermost_block;
11088 mark = value_mark ();
11089 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11090
11091 if (val != NULL && just_location)
11092 {
11093 saved_bitpos = value_bitpos (val);
11094 saved_bitsize = value_bitsize (val);
11095 }
11096
11097 if (just_location)
11098 {
11099 int ret;
11100
11101 exp_valid_block = NULL;
11102 val = value_addr (result);
11103 release_value (val);
11104 value_free_to_mark (mark);
11105
11106 if (use_mask)
11107 {
11108 ret = target_masked_watch_num_registers (value_as_address (val),
11109 mask);
11110 if (ret == -1)
11111 error (_("This target does not support masked watchpoints."));
11112 else if (ret == -2)
11113 error (_("Invalid mask or memory region."));
11114 }
11115 }
11116 else if (val != NULL)
11117 release_value (val);
11118
11119 tok = skip_spaces_const (arg);
11120 end_tok = skip_to_space_const (tok);
11121
11122 toklen = end_tok - tok;
11123 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11124 {
11125 innermost_block = NULL;
11126 tok = cond_start = end_tok + 1;
11127 parse_exp_1 (&tok, 0, 0, 0);
11128
11129 /* The watchpoint expression may not be local, but the condition
11130 may still be. E.g.: `watch global if local > 0'. */
11131 cond_exp_valid_block = innermost_block;
11132
11133 cond_end = tok;
11134 }
11135 if (*tok)
11136 error (_("Junk at end of command."));
11137
11138 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
11139
11140 /* Save this because create_internal_breakpoint below invalidates
11141 'wp_frame'. */
11142 frame_id watchpoint_frame = get_frame_id (wp_frame);
11143
11144 /* If the expression is "local", then set up a "watchpoint scope"
11145 breakpoint at the point where we've left the scope of the watchpoint
11146 expression. Create the scope breakpoint before the watchpoint, so
11147 that we will encounter it first in bpstat_stop_status. */
11148 if (exp_valid_block != NULL && wp_frame != NULL)
11149 {
11150 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
11151
11152 if (frame_id_p (caller_frame_id))
11153 {
11154 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
11155 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
11156
11157 scope_breakpoint
11158 = create_internal_breakpoint (caller_arch, caller_pc,
11159 bp_watchpoint_scope,
11160 &momentary_breakpoint_ops);
11161
11162 /* create_internal_breakpoint could invalidate WP_FRAME. */
11163 wp_frame = NULL;
11164
11165 scope_breakpoint->enable_state = bp_enabled;
11166
11167 /* Automatically delete the breakpoint when it hits. */
11168 scope_breakpoint->disposition = disp_del;
11169
11170 /* Only break in the proper frame (help with recursion). */
11171 scope_breakpoint->frame_id = caller_frame_id;
11172
11173 /* Set the address at which we will stop. */
11174 scope_breakpoint->loc->gdbarch = caller_arch;
11175 scope_breakpoint->loc->requested_address = caller_pc;
11176 scope_breakpoint->loc->address
11177 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11178 scope_breakpoint->loc->requested_address,
11179 scope_breakpoint->type);
11180 }
11181 }
11182
11183 /* Now set up the breakpoint. We create all watchpoints as hardware
11184 watchpoints here even if hardware watchpoints are turned off, a call
11185 to update_watchpoint later in this function will cause the type to
11186 drop back to bp_watchpoint (software watchpoint) if required. */
11187
11188 if (accessflag == hw_read)
11189 bp_type = bp_read_watchpoint;
11190 else if (accessflag == hw_access)
11191 bp_type = bp_access_watchpoint;
11192 else
11193 bp_type = bp_hardware_watchpoint;
11194
11195 w = new watchpoint ();
11196
11197 if (use_mask)
11198 init_raw_breakpoint_without_location (w, NULL, bp_type,
11199 &masked_watchpoint_breakpoint_ops);
11200 else
11201 init_raw_breakpoint_without_location (w, NULL, bp_type,
11202 &watchpoint_breakpoint_ops);
11203 w->thread = thread;
11204 w->disposition = disp_donttouch;
11205 w->pspace = current_program_space;
11206 w->exp = std::move (exp);
11207 w->exp_valid_block = exp_valid_block;
11208 w->cond_exp_valid_block = cond_exp_valid_block;
11209 if (just_location)
11210 {
11211 struct type *t = value_type (val);
11212 CORE_ADDR addr = value_as_address (val);
11213
11214 w->exp_string_reparse
11215 = current_language->la_watch_location_expression (t, addr).release ();
11216
11217 w->exp_string = xstrprintf ("-location %.*s",
11218 (int) (exp_end - exp_start), exp_start);
11219 }
11220 else
11221 w->exp_string = savestring (exp_start, exp_end - exp_start);
11222
11223 if (use_mask)
11224 {
11225 w->hw_wp_mask = mask;
11226 }
11227 else
11228 {
11229 w->val = val;
11230 w->val_bitpos = saved_bitpos;
11231 w->val_bitsize = saved_bitsize;
11232 w->val_valid = 1;
11233 }
11234
11235 if (cond_start)
11236 w->cond_string = savestring (cond_start, cond_end - cond_start);
11237 else
11238 w->cond_string = 0;
11239
11240 if (frame_id_p (watchpoint_frame))
11241 {
11242 w->watchpoint_frame = watchpoint_frame;
11243 w->watchpoint_thread = inferior_ptid;
11244 }
11245 else
11246 {
11247 w->watchpoint_frame = null_frame_id;
11248 w->watchpoint_thread = null_ptid;
11249 }
11250
11251 if (scope_breakpoint != NULL)
11252 {
11253 /* The scope breakpoint is related to the watchpoint. We will
11254 need to act on them together. */
11255 w->related_breakpoint = scope_breakpoint;
11256 scope_breakpoint->related_breakpoint = w;
11257 }
11258
11259 if (!just_location)
11260 value_free_to_mark (mark);
11261
11262 TRY
11263 {
11264 /* Finally update the new watchpoint. This creates the locations
11265 that should be inserted. */
11266 update_watchpoint (w, 1);
11267 }
11268 CATCH (e, RETURN_MASK_ALL)
11269 {
11270 delete_breakpoint (w);
11271 throw_exception (e);
11272 }
11273 END_CATCH
11274
11275 install_breakpoint (internal, w, 1);
11276 do_cleanups (back_to);
11277 }
11278
11279 /* Return count of debug registers needed to watch the given expression.
11280 If the watchpoint cannot be handled in hardware return zero. */
11281
11282 static int
11283 can_use_hardware_watchpoint (struct value *v)
11284 {
11285 int found_memory_cnt = 0;
11286 struct value *head = v;
11287
11288 /* Did the user specifically forbid us to use hardware watchpoints? */
11289 if (!can_use_hw_watchpoints)
11290 return 0;
11291
11292 /* Make sure that the value of the expression depends only upon
11293 memory contents, and values computed from them within GDB. If we
11294 find any register references or function calls, we can't use a
11295 hardware watchpoint.
11296
11297 The idea here is that evaluating an expression generates a series
11298 of values, one holding the value of every subexpression. (The
11299 expression a*b+c has five subexpressions: a, b, a*b, c, and
11300 a*b+c.) GDB's values hold almost enough information to establish
11301 the criteria given above --- they identify memory lvalues,
11302 register lvalues, computed values, etcetera. So we can evaluate
11303 the expression, and then scan the chain of values that leaves
11304 behind to decide whether we can detect any possible change to the
11305 expression's final value using only hardware watchpoints.
11306
11307 However, I don't think that the values returned by inferior
11308 function calls are special in any way. So this function may not
11309 notice that an expression involving an inferior function call
11310 can't be watched with hardware watchpoints. FIXME. */
11311 for (; v; v = value_next (v))
11312 {
11313 if (VALUE_LVAL (v) == lval_memory)
11314 {
11315 if (v != head && value_lazy (v))
11316 /* A lazy memory lvalue in the chain is one that GDB never
11317 needed to fetch; we either just used its address (e.g.,
11318 `a' in `a.b') or we never needed it at all (e.g., `a'
11319 in `a,b'). This doesn't apply to HEAD; if that is
11320 lazy then it was not readable, but watch it anyway. */
11321 ;
11322 else
11323 {
11324 /* Ahh, memory we actually used! Check if we can cover
11325 it with hardware watchpoints. */
11326 struct type *vtype = check_typedef (value_type (v));
11327
11328 /* We only watch structs and arrays if user asked for it
11329 explicitly, never if they just happen to appear in a
11330 middle of some value chain. */
11331 if (v == head
11332 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11333 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11334 {
11335 CORE_ADDR vaddr = value_address (v);
11336 int len;
11337 int num_regs;
11338
11339 len = (target_exact_watchpoints
11340 && is_scalar_type_recursive (vtype))?
11341 1 : TYPE_LENGTH (value_type (v));
11342
11343 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11344 if (!num_regs)
11345 return 0;
11346 else
11347 found_memory_cnt += num_regs;
11348 }
11349 }
11350 }
11351 else if (VALUE_LVAL (v) != not_lval
11352 && deprecated_value_modifiable (v) == 0)
11353 return 0; /* These are values from the history (e.g., $1). */
11354 else if (VALUE_LVAL (v) == lval_register)
11355 return 0; /* Cannot watch a register with a HW watchpoint. */
11356 }
11357
11358 /* The expression itself looks suitable for using a hardware
11359 watchpoint, but give the target machine a chance to reject it. */
11360 return found_memory_cnt;
11361 }
11362
11363 void
11364 watch_command_wrapper (char *arg, int from_tty, int internal)
11365 {
11366 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11367 }
11368
11369 /* A helper function that looks for the "-location" argument and then
11370 calls watch_command_1. */
11371
11372 static void
11373 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11374 {
11375 int just_location = 0;
11376
11377 if (arg
11378 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11379 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11380 {
11381 arg = skip_spaces (arg);
11382 just_location = 1;
11383 }
11384
11385 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11386 }
11387
11388 static void
11389 watch_command (char *arg, int from_tty)
11390 {
11391 watch_maybe_just_location (arg, hw_write, from_tty);
11392 }
11393
11394 void
11395 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11396 {
11397 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11398 }
11399
11400 static void
11401 rwatch_command (char *arg, int from_tty)
11402 {
11403 watch_maybe_just_location (arg, hw_read, from_tty);
11404 }
11405
11406 void
11407 awatch_command_wrapper (char *arg, int from_tty, int internal)
11408 {
11409 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11410 }
11411
11412 static void
11413 awatch_command (char *arg, int from_tty)
11414 {
11415 watch_maybe_just_location (arg, hw_access, from_tty);
11416 }
11417 \f
11418
11419 /* Data for the FSM that manages the until(location)/advance commands
11420 in infcmd.c. Here because it uses the mechanisms of
11421 breakpoints. */
11422
11423 struct until_break_fsm
11424 {
11425 /* The base class. */
11426 struct thread_fsm thread_fsm;
11427
11428 /* The thread that as current when the command was executed. */
11429 int thread;
11430
11431 /* The breakpoint set at the destination location. */
11432 struct breakpoint *location_breakpoint;
11433
11434 /* Breakpoint set at the return address in the caller frame. May be
11435 NULL. */
11436 struct breakpoint *caller_breakpoint;
11437 };
11438
11439 static void until_break_fsm_clean_up (struct thread_fsm *self,
11440 struct thread_info *thread);
11441 static int until_break_fsm_should_stop (struct thread_fsm *self,
11442 struct thread_info *thread);
11443 static enum async_reply_reason
11444 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11445
11446 /* until_break_fsm's vtable. */
11447
11448 static struct thread_fsm_ops until_break_fsm_ops =
11449 {
11450 NULL, /* dtor */
11451 until_break_fsm_clean_up,
11452 until_break_fsm_should_stop,
11453 NULL, /* return_value */
11454 until_break_fsm_async_reply_reason,
11455 };
11456
11457 /* Allocate a new until_break_command_fsm. */
11458
11459 static struct until_break_fsm *
11460 new_until_break_fsm (struct interp *cmd_interp, int thread,
11461 struct breakpoint *location_breakpoint,
11462 struct breakpoint *caller_breakpoint)
11463 {
11464 struct until_break_fsm *sm;
11465
11466 sm = XCNEW (struct until_break_fsm);
11467 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11468
11469 sm->thread = thread;
11470 sm->location_breakpoint = location_breakpoint;
11471 sm->caller_breakpoint = caller_breakpoint;
11472
11473 return sm;
11474 }
11475
11476 /* Implementation of the 'should_stop' FSM method for the
11477 until(location)/advance commands. */
11478
11479 static int
11480 until_break_fsm_should_stop (struct thread_fsm *self,
11481 struct thread_info *tp)
11482 {
11483 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11484
11485 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11486 sm->location_breakpoint) != NULL
11487 || (sm->caller_breakpoint != NULL
11488 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11489 sm->caller_breakpoint) != NULL))
11490 thread_fsm_set_finished (self);
11491
11492 return 1;
11493 }
11494
11495 /* Implementation of the 'clean_up' FSM method for the
11496 until(location)/advance commands. */
11497
11498 static void
11499 until_break_fsm_clean_up (struct thread_fsm *self,
11500 struct thread_info *thread)
11501 {
11502 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11503
11504 /* Clean up our temporary breakpoints. */
11505 if (sm->location_breakpoint != NULL)
11506 {
11507 delete_breakpoint (sm->location_breakpoint);
11508 sm->location_breakpoint = NULL;
11509 }
11510 if (sm->caller_breakpoint != NULL)
11511 {
11512 delete_breakpoint (sm->caller_breakpoint);
11513 sm->caller_breakpoint = NULL;
11514 }
11515 delete_longjmp_breakpoint (sm->thread);
11516 }
11517
11518 /* Implementation of the 'async_reply_reason' FSM method for the
11519 until(location)/advance commands. */
11520
11521 static enum async_reply_reason
11522 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11523 {
11524 return EXEC_ASYNC_LOCATION_REACHED;
11525 }
11526
11527 void
11528 until_break_command (char *arg, int from_tty, int anywhere)
11529 {
11530 struct symtabs_and_lines sals;
11531 struct symtab_and_line sal;
11532 struct frame_info *frame;
11533 struct gdbarch *frame_gdbarch;
11534 struct frame_id stack_frame_id;
11535 struct frame_id caller_frame_id;
11536 struct breakpoint *location_breakpoint;
11537 struct breakpoint *caller_breakpoint = NULL;
11538 struct cleanup *old_chain;
11539 int thread;
11540 struct thread_info *tp;
11541 struct until_break_fsm *sm;
11542
11543 clear_proceed_status (0);
11544
11545 /* Set a breakpoint where the user wants it and at return from
11546 this function. */
11547
11548 event_location_up location = string_to_event_location (&arg, current_language);
11549
11550 if (last_displayed_sal_is_valid ())
11551 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11552 get_last_displayed_symtab (),
11553 get_last_displayed_line ());
11554 else
11555 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11556 NULL, (struct symtab *) NULL, 0);
11557
11558 if (sals.nelts != 1)
11559 error (_("Couldn't get information on specified line."));
11560
11561 sal = sals.sals[0];
11562 xfree (sals.sals); /* malloc'd, so freed. */
11563
11564 if (*arg)
11565 error (_("Junk at end of arguments."));
11566
11567 resolve_sal_pc (&sal);
11568
11569 tp = inferior_thread ();
11570 thread = tp->global_num;
11571
11572 old_chain = make_cleanup (null_cleanup, NULL);
11573
11574 /* Note linespec handling above invalidates the frame chain.
11575 Installing a breakpoint also invalidates the frame chain (as it
11576 may need to switch threads), so do any frame handling before
11577 that. */
11578
11579 frame = get_selected_frame (NULL);
11580 frame_gdbarch = get_frame_arch (frame);
11581 stack_frame_id = get_stack_frame_id (frame);
11582 caller_frame_id = frame_unwind_caller_id (frame);
11583
11584 /* Keep within the current frame, or in frames called by the current
11585 one. */
11586
11587 if (frame_id_p (caller_frame_id))
11588 {
11589 struct symtab_and_line sal2;
11590 struct gdbarch *caller_gdbarch;
11591
11592 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11593 sal2.pc = frame_unwind_caller_pc (frame);
11594 caller_gdbarch = frame_unwind_caller_arch (frame);
11595 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11596 sal2,
11597 caller_frame_id,
11598 bp_until);
11599 make_cleanup_delete_breakpoint (caller_breakpoint);
11600
11601 set_longjmp_breakpoint (tp, caller_frame_id);
11602 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11603 }
11604
11605 /* set_momentary_breakpoint could invalidate FRAME. */
11606 frame = NULL;
11607
11608 if (anywhere)
11609 /* If the user told us to continue until a specified location,
11610 we don't specify a frame at which we need to stop. */
11611 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11612 null_frame_id, bp_until);
11613 else
11614 /* Otherwise, specify the selected frame, because we want to stop
11615 only at the very same frame. */
11616 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11617 stack_frame_id, bp_until);
11618 make_cleanup_delete_breakpoint (location_breakpoint);
11619
11620 sm = new_until_break_fsm (command_interp (), tp->global_num,
11621 location_breakpoint, caller_breakpoint);
11622 tp->thread_fsm = &sm->thread_fsm;
11623
11624 discard_cleanups (old_chain);
11625
11626 proceed (-1, GDB_SIGNAL_DEFAULT);
11627 }
11628
11629 /* This function attempts to parse an optional "if <cond>" clause
11630 from the arg string. If one is not found, it returns NULL.
11631
11632 Else, it returns a pointer to the condition string. (It does not
11633 attempt to evaluate the string against a particular block.) And,
11634 it updates arg to point to the first character following the parsed
11635 if clause in the arg string. */
11636
11637 const char *
11638 ep_parse_optional_if_clause (const char **arg)
11639 {
11640 const char *cond_string;
11641
11642 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11643 return NULL;
11644
11645 /* Skip the "if" keyword. */
11646 (*arg) += 2;
11647
11648 /* Skip any extra leading whitespace, and record the start of the
11649 condition string. */
11650 *arg = skip_spaces_const (*arg);
11651 cond_string = *arg;
11652
11653 /* Assume that the condition occupies the remainder of the arg
11654 string. */
11655 (*arg) += strlen (cond_string);
11656
11657 return cond_string;
11658 }
11659
11660 /* Commands to deal with catching events, such as signals, exceptions,
11661 process start/exit, etc. */
11662
11663 typedef enum
11664 {
11665 catch_fork_temporary, catch_vfork_temporary,
11666 catch_fork_permanent, catch_vfork_permanent
11667 }
11668 catch_fork_kind;
11669
11670 static void
11671 catch_fork_command_1 (char *arg_entry, int from_tty,
11672 struct cmd_list_element *command)
11673 {
11674 const char *arg = arg_entry;
11675 struct gdbarch *gdbarch = get_current_arch ();
11676 const char *cond_string = NULL;
11677 catch_fork_kind fork_kind;
11678 int tempflag;
11679
11680 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11681 tempflag = (fork_kind == catch_fork_temporary
11682 || fork_kind == catch_vfork_temporary);
11683
11684 if (!arg)
11685 arg = "";
11686 arg = skip_spaces_const (arg);
11687
11688 /* The allowed syntax is:
11689 catch [v]fork
11690 catch [v]fork if <cond>
11691
11692 First, check if there's an if clause. */
11693 cond_string = ep_parse_optional_if_clause (&arg);
11694
11695 if ((*arg != '\0') && !isspace (*arg))
11696 error (_("Junk at end of arguments."));
11697
11698 /* If this target supports it, create a fork or vfork catchpoint
11699 and enable reporting of such events. */
11700 switch (fork_kind)
11701 {
11702 case catch_fork_temporary:
11703 case catch_fork_permanent:
11704 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11705 &catch_fork_breakpoint_ops);
11706 break;
11707 case catch_vfork_temporary:
11708 case catch_vfork_permanent:
11709 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11710 &catch_vfork_breakpoint_ops);
11711 break;
11712 default:
11713 error (_("unsupported or unknown fork kind; cannot catch it"));
11714 break;
11715 }
11716 }
11717
11718 static void
11719 catch_exec_command_1 (char *arg_entry, int from_tty,
11720 struct cmd_list_element *command)
11721 {
11722 const char *arg = arg_entry;
11723 struct exec_catchpoint *c;
11724 struct gdbarch *gdbarch = get_current_arch ();
11725 int tempflag;
11726 const char *cond_string = NULL;
11727
11728 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11729
11730 if (!arg)
11731 arg = "";
11732 arg = skip_spaces_const (arg);
11733
11734 /* The allowed syntax is:
11735 catch exec
11736 catch exec if <cond>
11737
11738 First, check if there's an if clause. */
11739 cond_string = ep_parse_optional_if_clause (&arg);
11740
11741 if ((*arg != '\0') && !isspace (*arg))
11742 error (_("Junk at end of arguments."));
11743
11744 c = new exec_catchpoint ();
11745 init_catchpoint (c, gdbarch, tempflag, cond_string,
11746 &catch_exec_breakpoint_ops);
11747 c->exec_pathname = NULL;
11748
11749 install_breakpoint (0, c, 1);
11750 }
11751
11752 void
11753 init_ada_exception_breakpoint (struct breakpoint *b,
11754 struct gdbarch *gdbarch,
11755 struct symtab_and_line sal,
11756 char *addr_string,
11757 const struct breakpoint_ops *ops,
11758 int tempflag,
11759 int enabled,
11760 int from_tty)
11761 {
11762 if (from_tty)
11763 {
11764 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11765 if (!loc_gdbarch)
11766 loc_gdbarch = gdbarch;
11767
11768 describe_other_breakpoints (loc_gdbarch,
11769 sal.pspace, sal.pc, sal.section, -1);
11770 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11771 version for exception catchpoints, because two catchpoints
11772 used for different exception names will use the same address.
11773 In this case, a "breakpoint ... also set at..." warning is
11774 unproductive. Besides, the warning phrasing is also a bit
11775 inappropriate, we should use the word catchpoint, and tell
11776 the user what type of catchpoint it is. The above is good
11777 enough for now, though. */
11778 }
11779
11780 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11781
11782 b->enable_state = enabled ? bp_enabled : bp_disabled;
11783 b->disposition = tempflag ? disp_del : disp_donttouch;
11784 b->location = string_to_event_location (&addr_string,
11785 language_def (language_ada));
11786 b->language = language_ada;
11787 }
11788
11789 static void
11790 catch_command (char *arg, int from_tty)
11791 {
11792 error (_("Catch requires an event name."));
11793 }
11794 \f
11795
11796 static void
11797 tcatch_command (char *arg, int from_tty)
11798 {
11799 error (_("Catch requires an event name."));
11800 }
11801
11802 /* A qsort comparison function that sorts breakpoints in order. */
11803
11804 static int
11805 compare_breakpoints (const void *a, const void *b)
11806 {
11807 const breakpoint_p *ba = (const breakpoint_p *) a;
11808 uintptr_t ua = (uintptr_t) *ba;
11809 const breakpoint_p *bb = (const breakpoint_p *) b;
11810 uintptr_t ub = (uintptr_t) *bb;
11811
11812 if ((*ba)->number < (*bb)->number)
11813 return -1;
11814 else if ((*ba)->number > (*bb)->number)
11815 return 1;
11816
11817 /* Now sort by address, in case we see, e..g, two breakpoints with
11818 the number 0. */
11819 if (ua < ub)
11820 return -1;
11821 return ua > ub ? 1 : 0;
11822 }
11823
11824 /* Delete breakpoints by address or line. */
11825
11826 static void
11827 clear_command (char *arg, int from_tty)
11828 {
11829 struct breakpoint *b, *prev;
11830 VEC(breakpoint_p) *found = 0;
11831 int ix;
11832 int default_match;
11833 struct symtabs_and_lines sals;
11834 struct symtab_and_line sal;
11835 int i;
11836 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11837
11838 if (arg)
11839 {
11840 sals = decode_line_with_current_source (arg,
11841 (DECODE_LINE_FUNFIRSTLINE
11842 | DECODE_LINE_LIST_MODE));
11843 make_cleanup (xfree, sals.sals);
11844 default_match = 0;
11845 }
11846 else
11847 {
11848 sals.sals = XNEW (struct symtab_and_line);
11849 make_cleanup (xfree, sals.sals);
11850 init_sal (&sal); /* Initialize to zeroes. */
11851
11852 /* Set sal's line, symtab, pc, and pspace to the values
11853 corresponding to the last call to print_frame_info. If the
11854 codepoint is not valid, this will set all the fields to 0. */
11855 get_last_displayed_sal (&sal);
11856 if (sal.symtab == 0)
11857 error (_("No source file specified."));
11858
11859 sals.sals[0] = sal;
11860 sals.nelts = 1;
11861
11862 default_match = 1;
11863 }
11864
11865 /* We don't call resolve_sal_pc here. That's not as bad as it
11866 seems, because all existing breakpoints typically have both
11867 file/line and pc set. So, if clear is given file/line, we can
11868 match this to existing breakpoint without obtaining pc at all.
11869
11870 We only support clearing given the address explicitly
11871 present in breakpoint table. Say, we've set breakpoint
11872 at file:line. There were several PC values for that file:line,
11873 due to optimization, all in one block.
11874
11875 We've picked one PC value. If "clear" is issued with another
11876 PC corresponding to the same file:line, the breakpoint won't
11877 be cleared. We probably can still clear the breakpoint, but
11878 since the other PC value is never presented to user, user
11879 can only find it by guessing, and it does not seem important
11880 to support that. */
11881
11882 /* For each line spec given, delete bps which correspond to it. Do
11883 it in two passes, solely to preserve the current behavior that
11884 from_tty is forced true if we delete more than one
11885 breakpoint. */
11886
11887 found = NULL;
11888 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11889 for (i = 0; i < sals.nelts; i++)
11890 {
11891 const char *sal_fullname;
11892
11893 /* If exact pc given, clear bpts at that pc.
11894 If line given (pc == 0), clear all bpts on specified line.
11895 If defaulting, clear all bpts on default line
11896 or at default pc.
11897
11898 defaulting sal.pc != 0 tests to do
11899
11900 0 1 pc
11901 1 1 pc _and_ line
11902 0 0 line
11903 1 0 <can't happen> */
11904
11905 sal = sals.sals[i];
11906 sal_fullname = (sal.symtab == NULL
11907 ? NULL : symtab_to_fullname (sal.symtab));
11908
11909 /* Find all matching breakpoints and add them to 'found'. */
11910 ALL_BREAKPOINTS (b)
11911 {
11912 int match = 0;
11913 /* Are we going to delete b? */
11914 if (b->type != bp_none && !is_watchpoint (b))
11915 {
11916 struct bp_location *loc = b->loc;
11917 for (; loc; loc = loc->next)
11918 {
11919 /* If the user specified file:line, don't allow a PC
11920 match. This matches historical gdb behavior. */
11921 int pc_match = (!sal.explicit_line
11922 && sal.pc
11923 && (loc->pspace == sal.pspace)
11924 && (loc->address == sal.pc)
11925 && (!section_is_overlay (loc->section)
11926 || loc->section == sal.section));
11927 int line_match = 0;
11928
11929 if ((default_match || sal.explicit_line)
11930 && loc->symtab != NULL
11931 && sal_fullname != NULL
11932 && sal.pspace == loc->pspace
11933 && loc->line_number == sal.line
11934 && filename_cmp (symtab_to_fullname (loc->symtab),
11935 sal_fullname) == 0)
11936 line_match = 1;
11937
11938 if (pc_match || line_match)
11939 {
11940 match = 1;
11941 break;
11942 }
11943 }
11944 }
11945
11946 if (match)
11947 VEC_safe_push(breakpoint_p, found, b);
11948 }
11949 }
11950
11951 /* Now go thru the 'found' chain and delete them. */
11952 if (VEC_empty(breakpoint_p, found))
11953 {
11954 if (arg)
11955 error (_("No breakpoint at %s."), arg);
11956 else
11957 error (_("No breakpoint at this line."));
11958 }
11959
11960 /* Remove duplicates from the vec. */
11961 qsort (VEC_address (breakpoint_p, found),
11962 VEC_length (breakpoint_p, found),
11963 sizeof (breakpoint_p),
11964 compare_breakpoints);
11965 prev = VEC_index (breakpoint_p, found, 0);
11966 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11967 {
11968 if (b == prev)
11969 {
11970 VEC_ordered_remove (breakpoint_p, found, ix);
11971 --ix;
11972 }
11973 }
11974
11975 if (VEC_length(breakpoint_p, found) > 1)
11976 from_tty = 1; /* Always report if deleted more than one. */
11977 if (from_tty)
11978 {
11979 if (VEC_length(breakpoint_p, found) == 1)
11980 printf_unfiltered (_("Deleted breakpoint "));
11981 else
11982 printf_unfiltered (_("Deleted breakpoints "));
11983 }
11984
11985 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11986 {
11987 if (from_tty)
11988 printf_unfiltered ("%d ", b->number);
11989 delete_breakpoint (b);
11990 }
11991 if (from_tty)
11992 putchar_unfiltered ('\n');
11993
11994 do_cleanups (cleanups);
11995 }
11996 \f
11997 /* Delete breakpoint in BS if they are `delete' breakpoints and
11998 all breakpoints that are marked for deletion, whether hit or not.
11999 This is called after any breakpoint is hit, or after errors. */
12000
12001 void
12002 breakpoint_auto_delete (bpstat bs)
12003 {
12004 struct breakpoint *b, *b_tmp;
12005
12006 for (; bs; bs = bs->next)
12007 if (bs->breakpoint_at
12008 && bs->breakpoint_at->disposition == disp_del
12009 && bs->stop)
12010 delete_breakpoint (bs->breakpoint_at);
12011
12012 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12013 {
12014 if (b->disposition == disp_del_at_next_stop)
12015 delete_breakpoint (b);
12016 }
12017 }
12018
12019 /* A comparison function for bp_location AP and BP being interfaced to
12020 qsort. Sort elements primarily by their ADDRESS (no matter what
12021 does breakpoint_address_is_meaningful say for its OWNER),
12022 secondarily by ordering first permanent elements and
12023 terciarily just ensuring the array is sorted stable way despite
12024 qsort being an unstable algorithm. */
12025
12026 static int
12027 bp_locations_compare (const void *ap, const void *bp)
12028 {
12029 const struct bp_location *a = *(const struct bp_location **) ap;
12030 const struct bp_location *b = *(const struct bp_location **) bp;
12031
12032 if (a->address != b->address)
12033 return (a->address > b->address) - (a->address < b->address);
12034
12035 /* Sort locations at the same address by their pspace number, keeping
12036 locations of the same inferior (in a multi-inferior environment)
12037 grouped. */
12038
12039 if (a->pspace->num != b->pspace->num)
12040 return ((a->pspace->num > b->pspace->num)
12041 - (a->pspace->num < b->pspace->num));
12042
12043 /* Sort permanent breakpoints first. */
12044 if (a->permanent != b->permanent)
12045 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12046
12047 /* Make the internal GDB representation stable across GDB runs
12048 where A and B memory inside GDB can differ. Breakpoint locations of
12049 the same type at the same address can be sorted in arbitrary order. */
12050
12051 if (a->owner->number != b->owner->number)
12052 return ((a->owner->number > b->owner->number)
12053 - (a->owner->number < b->owner->number));
12054
12055 return (a > b) - (a < b);
12056 }
12057
12058 /* Set bp_locations_placed_address_before_address_max and
12059 bp_locations_shadow_len_after_address_max according to the current
12060 content of the bp_locations array. */
12061
12062 static void
12063 bp_locations_target_extensions_update (void)
12064 {
12065 struct bp_location *bl, **blp_tmp;
12066
12067 bp_locations_placed_address_before_address_max = 0;
12068 bp_locations_shadow_len_after_address_max = 0;
12069
12070 ALL_BP_LOCATIONS (bl, blp_tmp)
12071 {
12072 CORE_ADDR start, end, addr;
12073
12074 if (!bp_location_has_shadow (bl))
12075 continue;
12076
12077 start = bl->target_info.placed_address;
12078 end = start + bl->target_info.shadow_len;
12079
12080 gdb_assert (bl->address >= start);
12081 addr = bl->address - start;
12082 if (addr > bp_locations_placed_address_before_address_max)
12083 bp_locations_placed_address_before_address_max = addr;
12084
12085 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12086
12087 gdb_assert (bl->address < end);
12088 addr = end - bl->address;
12089 if (addr > bp_locations_shadow_len_after_address_max)
12090 bp_locations_shadow_len_after_address_max = addr;
12091 }
12092 }
12093
12094 /* Download tracepoint locations if they haven't been. */
12095
12096 static void
12097 download_tracepoint_locations (void)
12098 {
12099 struct breakpoint *b;
12100 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12101
12102 scoped_restore_current_pspace_and_thread restore_pspace_thread;
12103
12104 ALL_TRACEPOINTS (b)
12105 {
12106 struct bp_location *bl;
12107 struct tracepoint *t;
12108 int bp_location_downloaded = 0;
12109
12110 if ((b->type == bp_fast_tracepoint
12111 ? !may_insert_fast_tracepoints
12112 : !may_insert_tracepoints))
12113 continue;
12114
12115 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12116 {
12117 if (target_can_download_tracepoint ())
12118 can_download_tracepoint = TRIBOOL_TRUE;
12119 else
12120 can_download_tracepoint = TRIBOOL_FALSE;
12121 }
12122
12123 if (can_download_tracepoint == TRIBOOL_FALSE)
12124 break;
12125
12126 for (bl = b->loc; bl; bl = bl->next)
12127 {
12128 /* In tracepoint, locations are _never_ duplicated, so
12129 should_be_inserted is equivalent to
12130 unduplicated_should_be_inserted. */
12131 if (!should_be_inserted (bl) || bl->inserted)
12132 continue;
12133
12134 switch_to_program_space_and_thread (bl->pspace);
12135
12136 target_download_tracepoint (bl);
12137
12138 bl->inserted = 1;
12139 bp_location_downloaded = 1;
12140 }
12141 t = (struct tracepoint *) b;
12142 t->number_on_target = b->number;
12143 if (bp_location_downloaded)
12144 observer_notify_breakpoint_modified (b);
12145 }
12146 }
12147
12148 /* Swap the insertion/duplication state between two locations. */
12149
12150 static void
12151 swap_insertion (struct bp_location *left, struct bp_location *right)
12152 {
12153 const int left_inserted = left->inserted;
12154 const int left_duplicate = left->duplicate;
12155 const int left_needs_update = left->needs_update;
12156 const struct bp_target_info left_target_info = left->target_info;
12157
12158 /* Locations of tracepoints can never be duplicated. */
12159 if (is_tracepoint (left->owner))
12160 gdb_assert (!left->duplicate);
12161 if (is_tracepoint (right->owner))
12162 gdb_assert (!right->duplicate);
12163
12164 left->inserted = right->inserted;
12165 left->duplicate = right->duplicate;
12166 left->needs_update = right->needs_update;
12167 left->target_info = right->target_info;
12168 right->inserted = left_inserted;
12169 right->duplicate = left_duplicate;
12170 right->needs_update = left_needs_update;
12171 right->target_info = left_target_info;
12172 }
12173
12174 /* Force the re-insertion of the locations at ADDRESS. This is called
12175 once a new/deleted/modified duplicate location is found and we are evaluating
12176 conditions on the target's side. Such conditions need to be updated on
12177 the target. */
12178
12179 static void
12180 force_breakpoint_reinsertion (struct bp_location *bl)
12181 {
12182 struct bp_location **locp = NULL, **loc2p;
12183 struct bp_location *loc;
12184 CORE_ADDR address = 0;
12185 int pspace_num;
12186
12187 address = bl->address;
12188 pspace_num = bl->pspace->num;
12189
12190 /* This is only meaningful if the target is
12191 evaluating conditions and if the user has
12192 opted for condition evaluation on the target's
12193 side. */
12194 if (gdb_evaluates_breakpoint_condition_p ()
12195 || !target_supports_evaluation_of_breakpoint_conditions ())
12196 return;
12197
12198 /* Flag all breakpoint locations with this address and
12199 the same program space as the location
12200 as "its condition has changed". We need to
12201 update the conditions on the target's side. */
12202 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12203 {
12204 loc = *loc2p;
12205
12206 if (!is_breakpoint (loc->owner)
12207 || pspace_num != loc->pspace->num)
12208 continue;
12209
12210 /* Flag the location appropriately. We use a different state to
12211 let everyone know that we already updated the set of locations
12212 with addr bl->address and program space bl->pspace. This is so
12213 we don't have to keep calling these functions just to mark locations
12214 that have already been marked. */
12215 loc->condition_changed = condition_updated;
12216
12217 /* Free the agent expression bytecode as well. We will compute
12218 it later on. */
12219 loc->cond_bytecode.reset ();
12220 }
12221 }
12222 /* Called whether new breakpoints are created, or existing breakpoints
12223 deleted, to update the global location list and recompute which
12224 locations are duplicate of which.
12225
12226 The INSERT_MODE flag determines whether locations may not, may, or
12227 shall be inserted now. See 'enum ugll_insert_mode' for more
12228 info. */
12229
12230 static void
12231 update_global_location_list (enum ugll_insert_mode insert_mode)
12232 {
12233 struct breakpoint *b;
12234 struct bp_location **locp, *loc;
12235 struct cleanup *cleanups;
12236 /* Last breakpoint location address that was marked for update. */
12237 CORE_ADDR last_addr = 0;
12238 /* Last breakpoint location program space that was marked for update. */
12239 int last_pspace_num = -1;
12240
12241 /* Used in the duplicates detection below. When iterating over all
12242 bp_locations, points to the first bp_location of a given address.
12243 Breakpoints and watchpoints of different types are never
12244 duplicates of each other. Keep one pointer for each type of
12245 breakpoint/watchpoint, so we only need to loop over all locations
12246 once. */
12247 struct bp_location *bp_loc_first; /* breakpoint */
12248 struct bp_location *wp_loc_first; /* hardware watchpoint */
12249 struct bp_location *awp_loc_first; /* access watchpoint */
12250 struct bp_location *rwp_loc_first; /* read watchpoint */
12251
12252 /* Saved former bp_locations array which we compare against the newly
12253 built bp_locations from the current state of ALL_BREAKPOINTS. */
12254 struct bp_location **old_locations, **old_locp;
12255 unsigned old_locations_count;
12256
12257 old_locations = bp_locations;
12258 old_locations_count = bp_locations_count;
12259 bp_locations = NULL;
12260 bp_locations_count = 0;
12261 cleanups = make_cleanup (xfree, old_locations);
12262
12263 ALL_BREAKPOINTS (b)
12264 for (loc = b->loc; loc; loc = loc->next)
12265 bp_locations_count++;
12266
12267 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12268 locp = bp_locations;
12269 ALL_BREAKPOINTS (b)
12270 for (loc = b->loc; loc; loc = loc->next)
12271 *locp++ = loc;
12272 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12273 bp_locations_compare);
12274
12275 bp_locations_target_extensions_update ();
12276
12277 /* Identify bp_location instances that are no longer present in the
12278 new list, and therefore should be freed. Note that it's not
12279 necessary that those locations should be removed from inferior --
12280 if there's another location at the same address (previously
12281 marked as duplicate), we don't need to remove/insert the
12282 location.
12283
12284 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12285 and former bp_location array state respectively. */
12286
12287 locp = bp_locations;
12288 for (old_locp = old_locations;
12289 old_locp < old_locations + old_locations_count;
12290 old_locp++)
12291 {
12292 struct bp_location *old_loc = *old_locp;
12293 struct bp_location **loc2p;
12294
12295 /* Tells if 'old_loc' is found among the new locations. If
12296 not, we have to free it. */
12297 int found_object = 0;
12298 /* Tells if the location should remain inserted in the target. */
12299 int keep_in_target = 0;
12300 int removed = 0;
12301
12302 /* Skip LOCP entries which will definitely never be needed.
12303 Stop either at or being the one matching OLD_LOC. */
12304 while (locp < bp_locations + bp_locations_count
12305 && (*locp)->address < old_loc->address)
12306 locp++;
12307
12308 for (loc2p = locp;
12309 (loc2p < bp_locations + bp_locations_count
12310 && (*loc2p)->address == old_loc->address);
12311 loc2p++)
12312 {
12313 /* Check if this is a new/duplicated location or a duplicated
12314 location that had its condition modified. If so, we want to send
12315 its condition to the target if evaluation of conditions is taking
12316 place there. */
12317 if ((*loc2p)->condition_changed == condition_modified
12318 && (last_addr != old_loc->address
12319 || last_pspace_num != old_loc->pspace->num))
12320 {
12321 force_breakpoint_reinsertion (*loc2p);
12322 last_pspace_num = old_loc->pspace->num;
12323 }
12324
12325 if (*loc2p == old_loc)
12326 found_object = 1;
12327 }
12328
12329 /* We have already handled this address, update it so that we don't
12330 have to go through updates again. */
12331 last_addr = old_loc->address;
12332
12333 /* Target-side condition evaluation: Handle deleted locations. */
12334 if (!found_object)
12335 force_breakpoint_reinsertion (old_loc);
12336
12337 /* If this location is no longer present, and inserted, look if
12338 there's maybe a new location at the same address. If so,
12339 mark that one inserted, and don't remove this one. This is
12340 needed so that we don't have a time window where a breakpoint
12341 at certain location is not inserted. */
12342
12343 if (old_loc->inserted)
12344 {
12345 /* If the location is inserted now, we might have to remove
12346 it. */
12347
12348 if (found_object && should_be_inserted (old_loc))
12349 {
12350 /* The location is still present in the location list,
12351 and still should be inserted. Don't do anything. */
12352 keep_in_target = 1;
12353 }
12354 else
12355 {
12356 /* This location still exists, but it won't be kept in the
12357 target since it may have been disabled. We proceed to
12358 remove its target-side condition. */
12359
12360 /* The location is either no longer present, or got
12361 disabled. See if there's another location at the
12362 same address, in which case we don't need to remove
12363 this one from the target. */
12364
12365 /* OLD_LOC comes from existing struct breakpoint. */
12366 if (breakpoint_address_is_meaningful (old_loc->owner))
12367 {
12368 for (loc2p = locp;
12369 (loc2p < bp_locations + bp_locations_count
12370 && (*loc2p)->address == old_loc->address);
12371 loc2p++)
12372 {
12373 struct bp_location *loc2 = *loc2p;
12374
12375 if (breakpoint_locations_match (loc2, old_loc))
12376 {
12377 /* Read watchpoint locations are switched to
12378 access watchpoints, if the former are not
12379 supported, but the latter are. */
12380 if (is_hardware_watchpoint (old_loc->owner))
12381 {
12382 gdb_assert (is_hardware_watchpoint (loc2->owner));
12383 loc2->watchpoint_type = old_loc->watchpoint_type;
12384 }
12385
12386 /* loc2 is a duplicated location. We need to check
12387 if it should be inserted in case it will be
12388 unduplicated. */
12389 if (loc2 != old_loc
12390 && unduplicated_should_be_inserted (loc2))
12391 {
12392 swap_insertion (old_loc, loc2);
12393 keep_in_target = 1;
12394 break;
12395 }
12396 }
12397 }
12398 }
12399 }
12400
12401 if (!keep_in_target)
12402 {
12403 if (remove_breakpoint (old_loc))
12404 {
12405 /* This is just about all we can do. We could keep
12406 this location on the global list, and try to
12407 remove it next time, but there's no particular
12408 reason why we will succeed next time.
12409
12410 Note that at this point, old_loc->owner is still
12411 valid, as delete_breakpoint frees the breakpoint
12412 only after calling us. */
12413 printf_filtered (_("warning: Error removing "
12414 "breakpoint %d\n"),
12415 old_loc->owner->number);
12416 }
12417 removed = 1;
12418 }
12419 }
12420
12421 if (!found_object)
12422 {
12423 if (removed && target_is_non_stop_p ()
12424 && need_moribund_for_location_type (old_loc))
12425 {
12426 /* This location was removed from the target. In
12427 non-stop mode, a race condition is possible where
12428 we've removed a breakpoint, but stop events for that
12429 breakpoint are already queued and will arrive later.
12430 We apply an heuristic to be able to distinguish such
12431 SIGTRAPs from other random SIGTRAPs: we keep this
12432 breakpoint location for a bit, and will retire it
12433 after we see some number of events. The theory here
12434 is that reporting of events should, "on the average",
12435 be fair, so after a while we'll see events from all
12436 threads that have anything of interest, and no longer
12437 need to keep this breakpoint location around. We
12438 don't hold locations forever so to reduce chances of
12439 mistaking a non-breakpoint SIGTRAP for a breakpoint
12440 SIGTRAP.
12441
12442 The heuristic failing can be disastrous on
12443 decr_pc_after_break targets.
12444
12445 On decr_pc_after_break targets, like e.g., x86-linux,
12446 if we fail to recognize a late breakpoint SIGTRAP,
12447 because events_till_retirement has reached 0 too
12448 soon, we'll fail to do the PC adjustment, and report
12449 a random SIGTRAP to the user. When the user resumes
12450 the inferior, it will most likely immediately crash
12451 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12452 corrupted, because of being resumed e.g., in the
12453 middle of a multi-byte instruction, or skipped a
12454 one-byte instruction. This was actually seen happen
12455 on native x86-linux, and should be less rare on
12456 targets that do not support new thread events, like
12457 remote, due to the heuristic depending on
12458 thread_count.
12459
12460 Mistaking a random SIGTRAP for a breakpoint trap
12461 causes similar symptoms (PC adjustment applied when
12462 it shouldn't), but then again, playing with SIGTRAPs
12463 behind the debugger's back is asking for trouble.
12464
12465 Since hardware watchpoint traps are always
12466 distinguishable from other traps, so we don't need to
12467 apply keep hardware watchpoint moribund locations
12468 around. We simply always ignore hardware watchpoint
12469 traps we can no longer explain. */
12470
12471 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12472 old_loc->owner = NULL;
12473
12474 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12475 }
12476 else
12477 {
12478 old_loc->owner = NULL;
12479 decref_bp_location (&old_loc);
12480 }
12481 }
12482 }
12483
12484 /* Rescan breakpoints at the same address and section, marking the
12485 first one as "first" and any others as "duplicates". This is so
12486 that the bpt instruction is only inserted once. If we have a
12487 permanent breakpoint at the same place as BPT, make that one the
12488 official one, and the rest as duplicates. Permanent breakpoints
12489 are sorted first for the same address.
12490
12491 Do the same for hardware watchpoints, but also considering the
12492 watchpoint's type (regular/access/read) and length. */
12493
12494 bp_loc_first = NULL;
12495 wp_loc_first = NULL;
12496 awp_loc_first = NULL;
12497 rwp_loc_first = NULL;
12498 ALL_BP_LOCATIONS (loc, locp)
12499 {
12500 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12501 non-NULL. */
12502 struct bp_location **loc_first_p;
12503 b = loc->owner;
12504
12505 if (!unduplicated_should_be_inserted (loc)
12506 || !breakpoint_address_is_meaningful (b)
12507 /* Don't detect duplicate for tracepoint locations because they are
12508 never duplicated. See the comments in field `duplicate' of
12509 `struct bp_location'. */
12510 || is_tracepoint (b))
12511 {
12512 /* Clear the condition modification flag. */
12513 loc->condition_changed = condition_unchanged;
12514 continue;
12515 }
12516
12517 if (b->type == bp_hardware_watchpoint)
12518 loc_first_p = &wp_loc_first;
12519 else if (b->type == bp_read_watchpoint)
12520 loc_first_p = &rwp_loc_first;
12521 else if (b->type == bp_access_watchpoint)
12522 loc_first_p = &awp_loc_first;
12523 else
12524 loc_first_p = &bp_loc_first;
12525
12526 if (*loc_first_p == NULL
12527 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12528 || !breakpoint_locations_match (loc, *loc_first_p))
12529 {
12530 *loc_first_p = loc;
12531 loc->duplicate = 0;
12532
12533 if (is_breakpoint (loc->owner) && loc->condition_changed)
12534 {
12535 loc->needs_update = 1;
12536 /* Clear the condition modification flag. */
12537 loc->condition_changed = condition_unchanged;
12538 }
12539 continue;
12540 }
12541
12542
12543 /* This and the above ensure the invariant that the first location
12544 is not duplicated, and is the inserted one.
12545 All following are marked as duplicated, and are not inserted. */
12546 if (loc->inserted)
12547 swap_insertion (loc, *loc_first_p);
12548 loc->duplicate = 1;
12549
12550 /* Clear the condition modification flag. */
12551 loc->condition_changed = condition_unchanged;
12552 }
12553
12554 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12555 {
12556 if (insert_mode != UGLL_DONT_INSERT)
12557 insert_breakpoint_locations ();
12558 else
12559 {
12560 /* Even though the caller told us to not insert new
12561 locations, we may still need to update conditions on the
12562 target's side of breakpoints that were already inserted
12563 if the target is evaluating breakpoint conditions. We
12564 only update conditions for locations that are marked
12565 "needs_update". */
12566 update_inserted_breakpoint_locations ();
12567 }
12568 }
12569
12570 if (insert_mode != UGLL_DONT_INSERT)
12571 download_tracepoint_locations ();
12572
12573 do_cleanups (cleanups);
12574 }
12575
12576 void
12577 breakpoint_retire_moribund (void)
12578 {
12579 struct bp_location *loc;
12580 int ix;
12581
12582 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12583 if (--(loc->events_till_retirement) == 0)
12584 {
12585 decref_bp_location (&loc);
12586 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12587 --ix;
12588 }
12589 }
12590
12591 static void
12592 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12593 {
12594
12595 TRY
12596 {
12597 update_global_location_list (insert_mode);
12598 }
12599 CATCH (e, RETURN_MASK_ERROR)
12600 {
12601 }
12602 END_CATCH
12603 }
12604
12605 /* Clear BKP from a BPS. */
12606
12607 static void
12608 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12609 {
12610 bpstat bs;
12611
12612 for (bs = bps; bs; bs = bs->next)
12613 if (bs->breakpoint_at == bpt)
12614 {
12615 bs->breakpoint_at = NULL;
12616 bs->old_val = NULL;
12617 /* bs->commands will be freed later. */
12618 }
12619 }
12620
12621 /* Callback for iterate_over_threads. */
12622 static int
12623 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12624 {
12625 struct breakpoint *bpt = (struct breakpoint *) data;
12626
12627 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12628 return 0;
12629 }
12630
12631 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12632 callbacks. */
12633
12634 static void
12635 say_where (struct breakpoint *b)
12636 {
12637 struct value_print_options opts;
12638
12639 get_user_print_options (&opts);
12640
12641 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12642 single string. */
12643 if (b->loc == NULL)
12644 {
12645 /* For pending locations, the output differs slightly based
12646 on b->extra_string. If this is non-NULL, it contains either
12647 a condition or dprintf arguments. */
12648 if (b->extra_string == NULL)
12649 {
12650 printf_filtered (_(" (%s) pending."),
12651 event_location_to_string (b->location.get ()));
12652 }
12653 else if (b->type == bp_dprintf)
12654 {
12655 printf_filtered (_(" (%s,%s) pending."),
12656 event_location_to_string (b->location.get ()),
12657 b->extra_string);
12658 }
12659 else
12660 {
12661 printf_filtered (_(" (%s %s) pending."),
12662 event_location_to_string (b->location.get ()),
12663 b->extra_string);
12664 }
12665 }
12666 else
12667 {
12668 if (opts.addressprint || b->loc->symtab == NULL)
12669 {
12670 printf_filtered (" at ");
12671 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12672 gdb_stdout);
12673 }
12674 if (b->loc->symtab != NULL)
12675 {
12676 /* If there is a single location, we can print the location
12677 more nicely. */
12678 if (b->loc->next == NULL)
12679 printf_filtered (": file %s, line %d.",
12680 symtab_to_filename_for_display (b->loc->symtab),
12681 b->loc->line_number);
12682 else
12683 /* This is not ideal, but each location may have a
12684 different file name, and this at least reflects the
12685 real situation somewhat. */
12686 printf_filtered (": %s.",
12687 event_location_to_string (b->location.get ()));
12688 }
12689
12690 if (b->loc->next)
12691 {
12692 struct bp_location *loc = b->loc;
12693 int n = 0;
12694 for (; loc; loc = loc->next)
12695 ++n;
12696 printf_filtered (" (%d locations)", n);
12697 }
12698 }
12699 }
12700
12701 /* Default bp_location_ops methods. */
12702
12703 static void
12704 bp_location_dtor (struct bp_location *self)
12705 {
12706 xfree (self->function_name);
12707 }
12708
12709 static const struct bp_location_ops bp_location_ops =
12710 {
12711 bp_location_dtor
12712 };
12713
12714 /* Destructor for the breakpoint base class. */
12715
12716 breakpoint::~breakpoint ()
12717 {
12718 decref_counted_command_line (&this->commands);
12719 xfree (this->cond_string);
12720 xfree (this->extra_string);
12721 xfree (this->filter);
12722 }
12723
12724 static struct bp_location *
12725 base_breakpoint_allocate_location (struct breakpoint *self)
12726 {
12727 return new bp_location (&bp_location_ops, self);
12728 }
12729
12730 static void
12731 base_breakpoint_re_set (struct breakpoint *b)
12732 {
12733 /* Nothing to re-set. */
12734 }
12735
12736 #define internal_error_pure_virtual_called() \
12737 gdb_assert_not_reached ("pure virtual function called")
12738
12739 static int
12740 base_breakpoint_insert_location (struct bp_location *bl)
12741 {
12742 internal_error_pure_virtual_called ();
12743 }
12744
12745 static int
12746 base_breakpoint_remove_location (struct bp_location *bl,
12747 enum remove_bp_reason reason)
12748 {
12749 internal_error_pure_virtual_called ();
12750 }
12751
12752 static int
12753 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12754 struct address_space *aspace,
12755 CORE_ADDR bp_addr,
12756 const struct target_waitstatus *ws)
12757 {
12758 internal_error_pure_virtual_called ();
12759 }
12760
12761 static void
12762 base_breakpoint_check_status (bpstat bs)
12763 {
12764 /* Always stop. */
12765 }
12766
12767 /* A "works_in_software_mode" breakpoint_ops method that just internal
12768 errors. */
12769
12770 static int
12771 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12772 {
12773 internal_error_pure_virtual_called ();
12774 }
12775
12776 /* A "resources_needed" breakpoint_ops method that just internal
12777 errors. */
12778
12779 static int
12780 base_breakpoint_resources_needed (const struct bp_location *bl)
12781 {
12782 internal_error_pure_virtual_called ();
12783 }
12784
12785 static enum print_stop_action
12786 base_breakpoint_print_it (bpstat bs)
12787 {
12788 internal_error_pure_virtual_called ();
12789 }
12790
12791 static void
12792 base_breakpoint_print_one_detail (const struct breakpoint *self,
12793 struct ui_out *uiout)
12794 {
12795 /* nothing */
12796 }
12797
12798 static void
12799 base_breakpoint_print_mention (struct breakpoint *b)
12800 {
12801 internal_error_pure_virtual_called ();
12802 }
12803
12804 static void
12805 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12806 {
12807 internal_error_pure_virtual_called ();
12808 }
12809
12810 static void
12811 base_breakpoint_create_sals_from_location
12812 (const struct event_location *location,
12813 struct linespec_result *canonical,
12814 enum bptype type_wanted)
12815 {
12816 internal_error_pure_virtual_called ();
12817 }
12818
12819 static void
12820 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12821 struct linespec_result *c,
12822 gdb::unique_xmalloc_ptr<char> cond_string,
12823 gdb::unique_xmalloc_ptr<char> extra_string,
12824 enum bptype type_wanted,
12825 enum bpdisp disposition,
12826 int thread,
12827 int task, int ignore_count,
12828 const struct breakpoint_ops *o,
12829 int from_tty, int enabled,
12830 int internal, unsigned flags)
12831 {
12832 internal_error_pure_virtual_called ();
12833 }
12834
12835 static void
12836 base_breakpoint_decode_location (struct breakpoint *b,
12837 const struct event_location *location,
12838 struct program_space *search_pspace,
12839 struct symtabs_and_lines *sals)
12840 {
12841 internal_error_pure_virtual_called ();
12842 }
12843
12844 /* The default 'explains_signal' method. */
12845
12846 static int
12847 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12848 {
12849 return 1;
12850 }
12851
12852 /* The default "after_condition_true" method. */
12853
12854 static void
12855 base_breakpoint_after_condition_true (struct bpstats *bs)
12856 {
12857 /* Nothing to do. */
12858 }
12859
12860 struct breakpoint_ops base_breakpoint_ops =
12861 {
12862 base_breakpoint_allocate_location,
12863 base_breakpoint_re_set,
12864 base_breakpoint_insert_location,
12865 base_breakpoint_remove_location,
12866 base_breakpoint_breakpoint_hit,
12867 base_breakpoint_check_status,
12868 base_breakpoint_resources_needed,
12869 base_breakpoint_works_in_software_mode,
12870 base_breakpoint_print_it,
12871 NULL,
12872 base_breakpoint_print_one_detail,
12873 base_breakpoint_print_mention,
12874 base_breakpoint_print_recreate,
12875 base_breakpoint_create_sals_from_location,
12876 base_breakpoint_create_breakpoints_sal,
12877 base_breakpoint_decode_location,
12878 base_breakpoint_explains_signal,
12879 base_breakpoint_after_condition_true,
12880 };
12881
12882 /* Default breakpoint_ops methods. */
12883
12884 static void
12885 bkpt_re_set (struct breakpoint *b)
12886 {
12887 /* FIXME: is this still reachable? */
12888 if (breakpoint_event_location_empty_p (b))
12889 {
12890 /* Anything without a location can't be re-set. */
12891 delete_breakpoint (b);
12892 return;
12893 }
12894
12895 breakpoint_re_set_default (b);
12896 }
12897
12898 static int
12899 bkpt_insert_location (struct bp_location *bl)
12900 {
12901 CORE_ADDR addr = bl->target_info.reqstd_address;
12902
12903 bl->target_info.kind = breakpoint_kind (bl, &addr);
12904 bl->target_info.placed_address = addr;
12905
12906 if (bl->loc_type == bp_loc_hardware_breakpoint)
12907 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12908 else
12909 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12910 }
12911
12912 static int
12913 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12914 {
12915 if (bl->loc_type == bp_loc_hardware_breakpoint)
12916 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12917 else
12918 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12919 }
12920
12921 static int
12922 bkpt_breakpoint_hit (const struct bp_location *bl,
12923 struct address_space *aspace, CORE_ADDR bp_addr,
12924 const struct target_waitstatus *ws)
12925 {
12926 if (ws->kind != TARGET_WAITKIND_STOPPED
12927 || ws->value.sig != GDB_SIGNAL_TRAP)
12928 return 0;
12929
12930 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12931 aspace, bp_addr))
12932 return 0;
12933
12934 if (overlay_debugging /* unmapped overlay section */
12935 && section_is_overlay (bl->section)
12936 && !section_is_mapped (bl->section))
12937 return 0;
12938
12939 return 1;
12940 }
12941
12942 static int
12943 dprintf_breakpoint_hit (const struct bp_location *bl,
12944 struct address_space *aspace, CORE_ADDR bp_addr,
12945 const struct target_waitstatus *ws)
12946 {
12947 if (dprintf_style == dprintf_style_agent
12948 && target_can_run_breakpoint_commands ())
12949 {
12950 /* An agent-style dprintf never causes a stop. If we see a trap
12951 for this address it must be for a breakpoint that happens to
12952 be set at the same address. */
12953 return 0;
12954 }
12955
12956 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12957 }
12958
12959 static int
12960 bkpt_resources_needed (const struct bp_location *bl)
12961 {
12962 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12963
12964 return 1;
12965 }
12966
12967 static enum print_stop_action
12968 bkpt_print_it (bpstat bs)
12969 {
12970 struct breakpoint *b;
12971 const struct bp_location *bl;
12972 int bp_temp;
12973 struct ui_out *uiout = current_uiout;
12974
12975 gdb_assert (bs->bp_location_at != NULL);
12976
12977 bl = bs->bp_location_at;
12978 b = bs->breakpoint_at;
12979
12980 bp_temp = b->disposition == disp_del;
12981 if (bl->address != bl->requested_address)
12982 breakpoint_adjustment_warning (bl->requested_address,
12983 bl->address,
12984 b->number, 1);
12985 annotate_breakpoint (b->number);
12986 maybe_print_thread_hit_breakpoint (uiout);
12987
12988 if (bp_temp)
12989 uiout->text ("Temporary breakpoint ");
12990 else
12991 uiout->text ("Breakpoint ");
12992 if (uiout->is_mi_like_p ())
12993 {
12994 uiout->field_string ("reason",
12995 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12996 uiout->field_string ("disp", bpdisp_text (b->disposition));
12997 }
12998 uiout->field_int ("bkptno", b->number);
12999 uiout->text (", ");
13000
13001 return PRINT_SRC_AND_LOC;
13002 }
13003
13004 static void
13005 bkpt_print_mention (struct breakpoint *b)
13006 {
13007 if (current_uiout->is_mi_like_p ())
13008 return;
13009
13010 switch (b->type)
13011 {
13012 case bp_breakpoint:
13013 case bp_gnu_ifunc_resolver:
13014 if (b->disposition == disp_del)
13015 printf_filtered (_("Temporary breakpoint"));
13016 else
13017 printf_filtered (_("Breakpoint"));
13018 printf_filtered (_(" %d"), b->number);
13019 if (b->type == bp_gnu_ifunc_resolver)
13020 printf_filtered (_(" at gnu-indirect-function resolver"));
13021 break;
13022 case bp_hardware_breakpoint:
13023 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13024 break;
13025 case bp_dprintf:
13026 printf_filtered (_("Dprintf %d"), b->number);
13027 break;
13028 }
13029
13030 say_where (b);
13031 }
13032
13033 static void
13034 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13035 {
13036 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13037 fprintf_unfiltered (fp, "tbreak");
13038 else if (tp->type == bp_breakpoint)
13039 fprintf_unfiltered (fp, "break");
13040 else if (tp->type == bp_hardware_breakpoint
13041 && tp->disposition == disp_del)
13042 fprintf_unfiltered (fp, "thbreak");
13043 else if (tp->type == bp_hardware_breakpoint)
13044 fprintf_unfiltered (fp, "hbreak");
13045 else
13046 internal_error (__FILE__, __LINE__,
13047 _("unhandled breakpoint type %d"), (int) tp->type);
13048
13049 fprintf_unfiltered (fp, " %s",
13050 event_location_to_string (tp->location.get ()));
13051
13052 /* Print out extra_string if this breakpoint is pending. It might
13053 contain, for example, conditions that were set by the user. */
13054 if (tp->loc == NULL && tp->extra_string != NULL)
13055 fprintf_unfiltered (fp, " %s", tp->extra_string);
13056
13057 print_recreate_thread (tp, fp);
13058 }
13059
13060 static void
13061 bkpt_create_sals_from_location (const struct event_location *location,
13062 struct linespec_result *canonical,
13063 enum bptype type_wanted)
13064 {
13065 create_sals_from_location_default (location, canonical, type_wanted);
13066 }
13067
13068 static void
13069 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13070 struct linespec_result *canonical,
13071 gdb::unique_xmalloc_ptr<char> cond_string,
13072 gdb::unique_xmalloc_ptr<char> extra_string,
13073 enum bptype type_wanted,
13074 enum bpdisp disposition,
13075 int thread,
13076 int task, int ignore_count,
13077 const struct breakpoint_ops *ops,
13078 int from_tty, int enabled,
13079 int internal, unsigned flags)
13080 {
13081 create_breakpoints_sal_default (gdbarch, canonical,
13082 std::move (cond_string),
13083 std::move (extra_string),
13084 type_wanted,
13085 disposition, thread, task,
13086 ignore_count, ops, from_tty,
13087 enabled, internal, flags);
13088 }
13089
13090 static void
13091 bkpt_decode_location (struct breakpoint *b,
13092 const struct event_location *location,
13093 struct program_space *search_pspace,
13094 struct symtabs_and_lines *sals)
13095 {
13096 decode_location_default (b, location, search_pspace, sals);
13097 }
13098
13099 /* Virtual table for internal breakpoints. */
13100
13101 static void
13102 internal_bkpt_re_set (struct breakpoint *b)
13103 {
13104 switch (b->type)
13105 {
13106 /* Delete overlay event and longjmp master breakpoints; they
13107 will be reset later by breakpoint_re_set. */
13108 case bp_overlay_event:
13109 case bp_longjmp_master:
13110 case bp_std_terminate_master:
13111 case bp_exception_master:
13112 delete_breakpoint (b);
13113 break;
13114
13115 /* This breakpoint is special, it's set up when the inferior
13116 starts and we really don't want to touch it. */
13117 case bp_shlib_event:
13118
13119 /* Like bp_shlib_event, this breakpoint type is special. Once
13120 it is set up, we do not want to touch it. */
13121 case bp_thread_event:
13122 break;
13123 }
13124 }
13125
13126 static void
13127 internal_bkpt_check_status (bpstat bs)
13128 {
13129 if (bs->breakpoint_at->type == bp_shlib_event)
13130 {
13131 /* If requested, stop when the dynamic linker notifies GDB of
13132 events. This allows the user to get control and place
13133 breakpoints in initializer routines for dynamically loaded
13134 objects (among other things). */
13135 bs->stop = stop_on_solib_events;
13136 bs->print = stop_on_solib_events;
13137 }
13138 else
13139 bs->stop = 0;
13140 }
13141
13142 static enum print_stop_action
13143 internal_bkpt_print_it (bpstat bs)
13144 {
13145 struct breakpoint *b;
13146
13147 b = bs->breakpoint_at;
13148
13149 switch (b->type)
13150 {
13151 case bp_shlib_event:
13152 /* Did we stop because the user set the stop_on_solib_events
13153 variable? (If so, we report this as a generic, "Stopped due
13154 to shlib event" message.) */
13155 print_solib_event (0);
13156 break;
13157
13158 case bp_thread_event:
13159 /* Not sure how we will get here.
13160 GDB should not stop for these breakpoints. */
13161 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13162 break;
13163
13164 case bp_overlay_event:
13165 /* By analogy with the thread event, GDB should not stop for these. */
13166 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13167 break;
13168
13169 case bp_longjmp_master:
13170 /* These should never be enabled. */
13171 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13172 break;
13173
13174 case bp_std_terminate_master:
13175 /* These should never be enabled. */
13176 printf_filtered (_("std::terminate Master Breakpoint: "
13177 "gdb should not stop!\n"));
13178 break;
13179
13180 case bp_exception_master:
13181 /* These should never be enabled. */
13182 printf_filtered (_("Exception Master Breakpoint: "
13183 "gdb should not stop!\n"));
13184 break;
13185 }
13186
13187 return PRINT_NOTHING;
13188 }
13189
13190 static void
13191 internal_bkpt_print_mention (struct breakpoint *b)
13192 {
13193 /* Nothing to mention. These breakpoints are internal. */
13194 }
13195
13196 /* Virtual table for momentary breakpoints */
13197
13198 static void
13199 momentary_bkpt_re_set (struct breakpoint *b)
13200 {
13201 /* Keep temporary breakpoints, which can be encountered when we step
13202 over a dlopen call and solib_add is resetting the breakpoints.
13203 Otherwise these should have been blown away via the cleanup chain
13204 or by breakpoint_init_inferior when we rerun the executable. */
13205 }
13206
13207 static void
13208 momentary_bkpt_check_status (bpstat bs)
13209 {
13210 /* Nothing. The point of these breakpoints is causing a stop. */
13211 }
13212
13213 static enum print_stop_action
13214 momentary_bkpt_print_it (bpstat bs)
13215 {
13216 return PRINT_UNKNOWN;
13217 }
13218
13219 static void
13220 momentary_bkpt_print_mention (struct breakpoint *b)
13221 {
13222 /* Nothing to mention. These breakpoints are internal. */
13223 }
13224
13225 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13226
13227 It gets cleared already on the removal of the first one of such placed
13228 breakpoints. This is OK as they get all removed altogether. */
13229
13230 longjmp_breakpoint::~longjmp_breakpoint ()
13231 {
13232 thread_info *tp = find_thread_global_id (this->thread);
13233
13234 if (tp != NULL)
13235 tp->initiating_frame = null_frame_id;
13236 }
13237
13238 /* Specific methods for probe breakpoints. */
13239
13240 static int
13241 bkpt_probe_insert_location (struct bp_location *bl)
13242 {
13243 int v = bkpt_insert_location (bl);
13244
13245 if (v == 0)
13246 {
13247 /* The insertion was successful, now let's set the probe's semaphore
13248 if needed. */
13249 if (bl->probe.probe->pops->set_semaphore != NULL)
13250 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13251 bl->probe.objfile,
13252 bl->gdbarch);
13253 }
13254
13255 return v;
13256 }
13257
13258 static int
13259 bkpt_probe_remove_location (struct bp_location *bl,
13260 enum remove_bp_reason reason)
13261 {
13262 /* Let's clear the semaphore before removing the location. */
13263 if (bl->probe.probe->pops->clear_semaphore != NULL)
13264 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13265 bl->probe.objfile,
13266 bl->gdbarch);
13267
13268 return bkpt_remove_location (bl, reason);
13269 }
13270
13271 static void
13272 bkpt_probe_create_sals_from_location (const struct event_location *location,
13273 struct linespec_result *canonical,
13274 enum bptype type_wanted)
13275 {
13276 struct linespec_sals lsal;
13277
13278 lsal.sals = parse_probes (location, NULL, canonical);
13279 lsal.canonical
13280 = xstrdup (event_location_to_string (canonical->location.get ()));
13281 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13282 }
13283
13284 static void
13285 bkpt_probe_decode_location (struct breakpoint *b,
13286 const struct event_location *location,
13287 struct program_space *search_pspace,
13288 struct symtabs_and_lines *sals)
13289 {
13290 *sals = parse_probes (location, search_pspace, NULL);
13291 if (!sals->sals)
13292 error (_("probe not found"));
13293 }
13294
13295 /* The breakpoint_ops structure to be used in tracepoints. */
13296
13297 static void
13298 tracepoint_re_set (struct breakpoint *b)
13299 {
13300 breakpoint_re_set_default (b);
13301 }
13302
13303 static int
13304 tracepoint_breakpoint_hit (const struct bp_location *bl,
13305 struct address_space *aspace, CORE_ADDR bp_addr,
13306 const struct target_waitstatus *ws)
13307 {
13308 /* By definition, the inferior does not report stops at
13309 tracepoints. */
13310 return 0;
13311 }
13312
13313 static void
13314 tracepoint_print_one_detail (const struct breakpoint *self,
13315 struct ui_out *uiout)
13316 {
13317 struct tracepoint *tp = (struct tracepoint *) self;
13318 if (tp->static_trace_marker_id)
13319 {
13320 gdb_assert (self->type == bp_static_tracepoint);
13321
13322 uiout->text ("\tmarker id is ");
13323 uiout->field_string ("static-tracepoint-marker-string-id",
13324 tp->static_trace_marker_id);
13325 uiout->text ("\n");
13326 }
13327 }
13328
13329 static void
13330 tracepoint_print_mention (struct breakpoint *b)
13331 {
13332 if (current_uiout->is_mi_like_p ())
13333 return;
13334
13335 switch (b->type)
13336 {
13337 case bp_tracepoint:
13338 printf_filtered (_("Tracepoint"));
13339 printf_filtered (_(" %d"), b->number);
13340 break;
13341 case bp_fast_tracepoint:
13342 printf_filtered (_("Fast tracepoint"));
13343 printf_filtered (_(" %d"), b->number);
13344 break;
13345 case bp_static_tracepoint:
13346 printf_filtered (_("Static tracepoint"));
13347 printf_filtered (_(" %d"), b->number);
13348 break;
13349 default:
13350 internal_error (__FILE__, __LINE__,
13351 _("unhandled tracepoint type %d"), (int) b->type);
13352 }
13353
13354 say_where (b);
13355 }
13356
13357 static void
13358 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13359 {
13360 struct tracepoint *tp = (struct tracepoint *) self;
13361
13362 if (self->type == bp_fast_tracepoint)
13363 fprintf_unfiltered (fp, "ftrace");
13364 else if (self->type == bp_static_tracepoint)
13365 fprintf_unfiltered (fp, "strace");
13366 else if (self->type == bp_tracepoint)
13367 fprintf_unfiltered (fp, "trace");
13368 else
13369 internal_error (__FILE__, __LINE__,
13370 _("unhandled tracepoint type %d"), (int) self->type);
13371
13372 fprintf_unfiltered (fp, " %s",
13373 event_location_to_string (self->location.get ()));
13374 print_recreate_thread (self, fp);
13375
13376 if (tp->pass_count)
13377 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13378 }
13379
13380 static void
13381 tracepoint_create_sals_from_location (const struct event_location *location,
13382 struct linespec_result *canonical,
13383 enum bptype type_wanted)
13384 {
13385 create_sals_from_location_default (location, canonical, type_wanted);
13386 }
13387
13388 static void
13389 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13390 struct linespec_result *canonical,
13391 gdb::unique_xmalloc_ptr<char> cond_string,
13392 gdb::unique_xmalloc_ptr<char> extra_string,
13393 enum bptype type_wanted,
13394 enum bpdisp disposition,
13395 int thread,
13396 int task, int ignore_count,
13397 const struct breakpoint_ops *ops,
13398 int from_tty, int enabled,
13399 int internal, unsigned flags)
13400 {
13401 create_breakpoints_sal_default (gdbarch, canonical,
13402 std::move (cond_string),
13403 std::move (extra_string),
13404 type_wanted,
13405 disposition, thread, task,
13406 ignore_count, ops, from_tty,
13407 enabled, internal, flags);
13408 }
13409
13410 static void
13411 tracepoint_decode_location (struct breakpoint *b,
13412 const struct event_location *location,
13413 struct program_space *search_pspace,
13414 struct symtabs_and_lines *sals)
13415 {
13416 decode_location_default (b, location, search_pspace, sals);
13417 }
13418
13419 struct breakpoint_ops tracepoint_breakpoint_ops;
13420
13421 /* The breakpoint_ops structure to be use on tracepoints placed in a
13422 static probe. */
13423
13424 static void
13425 tracepoint_probe_create_sals_from_location
13426 (const struct event_location *location,
13427 struct linespec_result *canonical,
13428 enum bptype type_wanted)
13429 {
13430 /* We use the same method for breakpoint on probes. */
13431 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13432 }
13433
13434 static void
13435 tracepoint_probe_decode_location (struct breakpoint *b,
13436 const struct event_location *location,
13437 struct program_space *search_pspace,
13438 struct symtabs_and_lines *sals)
13439 {
13440 /* We use the same method for breakpoint on probes. */
13441 bkpt_probe_decode_location (b, location, search_pspace, sals);
13442 }
13443
13444 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13445
13446 /* Dprintf breakpoint_ops methods. */
13447
13448 static void
13449 dprintf_re_set (struct breakpoint *b)
13450 {
13451 breakpoint_re_set_default (b);
13452
13453 /* extra_string should never be non-NULL for dprintf. */
13454 gdb_assert (b->extra_string != NULL);
13455
13456 /* 1 - connect to target 1, that can run breakpoint commands.
13457 2 - create a dprintf, which resolves fine.
13458 3 - disconnect from target 1
13459 4 - connect to target 2, that can NOT run breakpoint commands.
13460
13461 After steps #3/#4, you'll want the dprintf command list to
13462 be updated, because target 1 and 2 may well return different
13463 answers for target_can_run_breakpoint_commands().
13464 Given absence of finer grained resetting, we get to do
13465 it all the time. */
13466 if (b->extra_string != NULL)
13467 update_dprintf_command_list (b);
13468 }
13469
13470 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13471
13472 static void
13473 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13474 {
13475 fprintf_unfiltered (fp, "dprintf %s,%s",
13476 event_location_to_string (tp->location.get ()),
13477 tp->extra_string);
13478 print_recreate_thread (tp, fp);
13479 }
13480
13481 /* Implement the "after_condition_true" breakpoint_ops method for
13482 dprintf.
13483
13484 dprintf's are implemented with regular commands in their command
13485 list, but we run the commands here instead of before presenting the
13486 stop to the user, as dprintf's don't actually cause a stop. This
13487 also makes it so that the commands of multiple dprintfs at the same
13488 address are all handled. */
13489
13490 static void
13491 dprintf_after_condition_true (struct bpstats *bs)
13492 {
13493 struct cleanup *old_chain;
13494 struct bpstats tmp_bs = { NULL };
13495 struct bpstats *tmp_bs_p = &tmp_bs;
13496
13497 /* dprintf's never cause a stop. This wasn't set in the
13498 check_status hook instead because that would make the dprintf's
13499 condition not be evaluated. */
13500 bs->stop = 0;
13501
13502 /* Run the command list here. Take ownership of it instead of
13503 copying. We never want these commands to run later in
13504 bpstat_do_actions, if a breakpoint that causes a stop happens to
13505 be set at same address as this dprintf, or even if running the
13506 commands here throws. */
13507 tmp_bs.commands = bs->commands;
13508 bs->commands = NULL;
13509 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13510
13511 bpstat_do_actions_1 (&tmp_bs_p);
13512
13513 /* 'tmp_bs.commands' will usually be NULL by now, but
13514 bpstat_do_actions_1 may return early without processing the whole
13515 list. */
13516 do_cleanups (old_chain);
13517 }
13518
13519 /* The breakpoint_ops structure to be used on static tracepoints with
13520 markers (`-m'). */
13521
13522 static void
13523 strace_marker_create_sals_from_location (const struct event_location *location,
13524 struct linespec_result *canonical,
13525 enum bptype type_wanted)
13526 {
13527 struct linespec_sals lsal;
13528 const char *arg_start, *arg;
13529 char *str;
13530 struct cleanup *cleanup;
13531
13532 arg = arg_start = get_linespec_location (location);
13533 lsal.sals = decode_static_tracepoint_spec (&arg);
13534
13535 str = savestring (arg_start, arg - arg_start);
13536 cleanup = make_cleanup (xfree, str);
13537 canonical->location = new_linespec_location (&str);
13538 do_cleanups (cleanup);
13539
13540 lsal.canonical
13541 = xstrdup (event_location_to_string (canonical->location.get ()));
13542 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13543 }
13544
13545 static void
13546 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13547 struct linespec_result *canonical,
13548 gdb::unique_xmalloc_ptr<char> cond_string,
13549 gdb::unique_xmalloc_ptr<char> extra_string,
13550 enum bptype type_wanted,
13551 enum bpdisp disposition,
13552 int thread,
13553 int task, int ignore_count,
13554 const struct breakpoint_ops *ops,
13555 int from_tty, int enabled,
13556 int internal, unsigned flags)
13557 {
13558 int i;
13559 struct linespec_sals *lsal = VEC_index (linespec_sals,
13560 canonical->sals, 0);
13561
13562 /* If the user is creating a static tracepoint by marker id
13563 (strace -m MARKER_ID), then store the sals index, so that
13564 breakpoint_re_set can try to match up which of the newly
13565 found markers corresponds to this one, and, don't try to
13566 expand multiple locations for each sal, given than SALS
13567 already should contain all sals for MARKER_ID. */
13568
13569 for (i = 0; i < lsal->sals.nelts; ++i)
13570 {
13571 struct symtabs_and_lines expanded;
13572 struct tracepoint *tp;
13573 event_location_up location;
13574
13575 expanded.nelts = 1;
13576 expanded.sals = &lsal->sals.sals[i];
13577
13578 location = copy_event_location (canonical->location.get ());
13579
13580 tp = new tracepoint ();
13581 init_breakpoint_sal (tp, gdbarch, expanded,
13582 std::move (location), NULL,
13583 std::move (cond_string),
13584 std::move (extra_string),
13585 type_wanted, disposition,
13586 thread, task, ignore_count, ops,
13587 from_tty, enabled, internal, flags,
13588 canonical->special_display);
13589 /* Given that its possible to have multiple markers with
13590 the same string id, if the user is creating a static
13591 tracepoint by marker id ("strace -m MARKER_ID"), then
13592 store the sals index, so that breakpoint_re_set can
13593 try to match up which of the newly found markers
13594 corresponds to this one */
13595 tp->static_trace_marker_id_idx = i;
13596
13597 install_breakpoint (internal, tp, 0);
13598 }
13599 }
13600
13601 static void
13602 strace_marker_decode_location (struct breakpoint *b,
13603 const struct event_location *location,
13604 struct program_space *search_pspace,
13605 struct symtabs_and_lines *sals)
13606 {
13607 struct tracepoint *tp = (struct tracepoint *) b;
13608 const char *s = get_linespec_location (location);
13609
13610 *sals = decode_static_tracepoint_spec (&s);
13611 if (sals->nelts > tp->static_trace_marker_id_idx)
13612 {
13613 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13614 sals->nelts = 1;
13615 }
13616 else
13617 error (_("marker %s not found"), tp->static_trace_marker_id);
13618 }
13619
13620 static struct breakpoint_ops strace_marker_breakpoint_ops;
13621
13622 static int
13623 strace_marker_p (struct breakpoint *b)
13624 {
13625 return b->ops == &strace_marker_breakpoint_ops;
13626 }
13627
13628 /* Delete a breakpoint and clean up all traces of it in the data
13629 structures. */
13630
13631 void
13632 delete_breakpoint (struct breakpoint *bpt)
13633 {
13634 struct breakpoint *b;
13635
13636 gdb_assert (bpt != NULL);
13637
13638 /* Has this bp already been deleted? This can happen because
13639 multiple lists can hold pointers to bp's. bpstat lists are
13640 especial culprits.
13641
13642 One example of this happening is a watchpoint's scope bp. When
13643 the scope bp triggers, we notice that the watchpoint is out of
13644 scope, and delete it. We also delete its scope bp. But the
13645 scope bp is marked "auto-deleting", and is already on a bpstat.
13646 That bpstat is then checked for auto-deleting bp's, which are
13647 deleted.
13648
13649 A real solution to this problem might involve reference counts in
13650 bp's, and/or giving them pointers back to their referencing
13651 bpstat's, and teaching delete_breakpoint to only free a bp's
13652 storage when no more references were extent. A cheaper bandaid
13653 was chosen. */
13654 if (bpt->type == bp_none)
13655 return;
13656
13657 /* At least avoid this stale reference until the reference counting
13658 of breakpoints gets resolved. */
13659 if (bpt->related_breakpoint != bpt)
13660 {
13661 struct breakpoint *related;
13662 struct watchpoint *w;
13663
13664 if (bpt->type == bp_watchpoint_scope)
13665 w = (struct watchpoint *) bpt->related_breakpoint;
13666 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13667 w = (struct watchpoint *) bpt;
13668 else
13669 w = NULL;
13670 if (w != NULL)
13671 watchpoint_del_at_next_stop (w);
13672
13673 /* Unlink bpt from the bpt->related_breakpoint ring. */
13674 for (related = bpt; related->related_breakpoint != bpt;
13675 related = related->related_breakpoint);
13676 related->related_breakpoint = bpt->related_breakpoint;
13677 bpt->related_breakpoint = bpt;
13678 }
13679
13680 /* watch_command_1 creates a watchpoint but only sets its number if
13681 update_watchpoint succeeds in creating its bp_locations. If there's
13682 a problem in that process, we'll be asked to delete the half-created
13683 watchpoint. In that case, don't announce the deletion. */
13684 if (bpt->number)
13685 observer_notify_breakpoint_deleted (bpt);
13686
13687 if (breakpoint_chain == bpt)
13688 breakpoint_chain = bpt->next;
13689
13690 ALL_BREAKPOINTS (b)
13691 if (b->next == bpt)
13692 {
13693 b->next = bpt->next;
13694 break;
13695 }
13696
13697 /* Be sure no bpstat's are pointing at the breakpoint after it's
13698 been freed. */
13699 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13700 in all threads for now. Note that we cannot just remove bpstats
13701 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13702 commands are associated with the bpstat; if we remove it here,
13703 then the later call to bpstat_do_actions (&stop_bpstat); in
13704 event-top.c won't do anything, and temporary breakpoints with
13705 commands won't work. */
13706
13707 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13708
13709 /* Now that breakpoint is removed from breakpoint list, update the
13710 global location list. This will remove locations that used to
13711 belong to this breakpoint. Do this before freeing the breakpoint
13712 itself, since remove_breakpoint looks at location's owner. It
13713 might be better design to have location completely
13714 self-contained, but it's not the case now. */
13715 update_global_location_list (UGLL_DONT_INSERT);
13716
13717 /* On the chance that someone will soon try again to delete this
13718 same bp, we mark it as deleted before freeing its storage. */
13719 bpt->type = bp_none;
13720 delete bpt;
13721 }
13722
13723 static void
13724 do_delete_breakpoint_cleanup (void *b)
13725 {
13726 delete_breakpoint ((struct breakpoint *) b);
13727 }
13728
13729 struct cleanup *
13730 make_cleanup_delete_breakpoint (struct breakpoint *b)
13731 {
13732 return make_cleanup (do_delete_breakpoint_cleanup, b);
13733 }
13734
13735 /* Iterator function to call a user-provided callback function once
13736 for each of B and its related breakpoints. */
13737
13738 static void
13739 iterate_over_related_breakpoints (struct breakpoint *b,
13740 void (*function) (struct breakpoint *,
13741 void *),
13742 void *data)
13743 {
13744 struct breakpoint *related;
13745
13746 related = b;
13747 do
13748 {
13749 struct breakpoint *next;
13750
13751 /* FUNCTION may delete RELATED. */
13752 next = related->related_breakpoint;
13753
13754 if (next == related)
13755 {
13756 /* RELATED is the last ring entry. */
13757 function (related, data);
13758
13759 /* FUNCTION may have deleted it, so we'd never reach back to
13760 B. There's nothing left to do anyway, so just break
13761 out. */
13762 break;
13763 }
13764 else
13765 function (related, data);
13766
13767 related = next;
13768 }
13769 while (related != b);
13770 }
13771
13772 static void
13773 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13774 {
13775 delete_breakpoint (b);
13776 }
13777
13778 /* A callback for map_breakpoint_numbers that calls
13779 delete_breakpoint. */
13780
13781 static void
13782 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13783 {
13784 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13785 }
13786
13787 void
13788 delete_command (char *arg, int from_tty)
13789 {
13790 struct breakpoint *b, *b_tmp;
13791
13792 dont_repeat ();
13793
13794 if (arg == 0)
13795 {
13796 int breaks_to_delete = 0;
13797
13798 /* Delete all breakpoints if no argument. Do not delete
13799 internal breakpoints, these have to be deleted with an
13800 explicit breakpoint number argument. */
13801 ALL_BREAKPOINTS (b)
13802 if (user_breakpoint_p (b))
13803 {
13804 breaks_to_delete = 1;
13805 break;
13806 }
13807
13808 /* Ask user only if there are some breakpoints to delete. */
13809 if (!from_tty
13810 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13811 {
13812 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13813 if (user_breakpoint_p (b))
13814 delete_breakpoint (b);
13815 }
13816 }
13817 else
13818 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13819 }
13820
13821 /* Return true if all locations of B bound to PSPACE are pending. If
13822 PSPACE is NULL, all locations of all program spaces are
13823 considered. */
13824
13825 static int
13826 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13827 {
13828 struct bp_location *loc;
13829
13830 for (loc = b->loc; loc != NULL; loc = loc->next)
13831 if ((pspace == NULL
13832 || loc->pspace == pspace)
13833 && !loc->shlib_disabled
13834 && !loc->pspace->executing_startup)
13835 return 0;
13836 return 1;
13837 }
13838
13839 /* Subroutine of update_breakpoint_locations to simplify it.
13840 Return non-zero if multiple fns in list LOC have the same name.
13841 Null names are ignored. */
13842
13843 static int
13844 ambiguous_names_p (struct bp_location *loc)
13845 {
13846 struct bp_location *l;
13847 htab_t htab = htab_create_alloc (13, htab_hash_string,
13848 (int (*) (const void *,
13849 const void *)) streq,
13850 NULL, xcalloc, xfree);
13851
13852 for (l = loc; l != NULL; l = l->next)
13853 {
13854 const char **slot;
13855 const char *name = l->function_name;
13856
13857 /* Allow for some names to be NULL, ignore them. */
13858 if (name == NULL)
13859 continue;
13860
13861 slot = (const char **) htab_find_slot (htab, (const void *) name,
13862 INSERT);
13863 /* NOTE: We can assume slot != NULL here because xcalloc never
13864 returns NULL. */
13865 if (*slot != NULL)
13866 {
13867 htab_delete (htab);
13868 return 1;
13869 }
13870 *slot = name;
13871 }
13872
13873 htab_delete (htab);
13874 return 0;
13875 }
13876
13877 /* When symbols change, it probably means the sources changed as well,
13878 and it might mean the static tracepoint markers are no longer at
13879 the same address or line numbers they used to be at last we
13880 checked. Losing your static tracepoints whenever you rebuild is
13881 undesirable. This function tries to resync/rematch gdb static
13882 tracepoints with the markers on the target, for static tracepoints
13883 that have not been set by marker id. Static tracepoint that have
13884 been set by marker id are reset by marker id in breakpoint_re_set.
13885 The heuristic is:
13886
13887 1) For a tracepoint set at a specific address, look for a marker at
13888 the old PC. If one is found there, assume to be the same marker.
13889 If the name / string id of the marker found is different from the
13890 previous known name, assume that means the user renamed the marker
13891 in the sources, and output a warning.
13892
13893 2) For a tracepoint set at a given line number, look for a marker
13894 at the new address of the old line number. If one is found there,
13895 assume to be the same marker. If the name / string id of the
13896 marker found is different from the previous known name, assume that
13897 means the user renamed the marker in the sources, and output a
13898 warning.
13899
13900 3) If a marker is no longer found at the same address or line, it
13901 may mean the marker no longer exists. But it may also just mean
13902 the code changed a bit. Maybe the user added a few lines of code
13903 that made the marker move up or down (in line number terms). Ask
13904 the target for info about the marker with the string id as we knew
13905 it. If found, update line number and address in the matching
13906 static tracepoint. This will get confused if there's more than one
13907 marker with the same ID (possible in UST, although unadvised
13908 precisely because it confuses tools). */
13909
13910 static struct symtab_and_line
13911 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13912 {
13913 struct tracepoint *tp = (struct tracepoint *) b;
13914 struct static_tracepoint_marker marker;
13915 CORE_ADDR pc;
13916
13917 pc = sal.pc;
13918 if (sal.line)
13919 find_line_pc (sal.symtab, sal.line, &pc);
13920
13921 if (target_static_tracepoint_marker_at (pc, &marker))
13922 {
13923 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13924 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13925 b->number,
13926 tp->static_trace_marker_id, marker.str_id);
13927
13928 xfree (tp->static_trace_marker_id);
13929 tp->static_trace_marker_id = xstrdup (marker.str_id);
13930 release_static_tracepoint_marker (&marker);
13931
13932 return sal;
13933 }
13934
13935 /* Old marker wasn't found on target at lineno. Try looking it up
13936 by string ID. */
13937 if (!sal.explicit_pc
13938 && sal.line != 0
13939 && sal.symtab != NULL
13940 && tp->static_trace_marker_id != NULL)
13941 {
13942 VEC(static_tracepoint_marker_p) *markers;
13943
13944 markers
13945 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13946
13947 if (!VEC_empty(static_tracepoint_marker_p, markers))
13948 {
13949 struct symtab_and_line sal2;
13950 struct symbol *sym;
13951 struct static_tracepoint_marker *tpmarker;
13952 struct ui_out *uiout = current_uiout;
13953 struct explicit_location explicit_loc;
13954
13955 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13956
13957 xfree (tp->static_trace_marker_id);
13958 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13959
13960 warning (_("marker for static tracepoint %d (%s) not "
13961 "found at previous line number"),
13962 b->number, tp->static_trace_marker_id);
13963
13964 init_sal (&sal2);
13965
13966 sal2.pc = tpmarker->address;
13967
13968 sal2 = find_pc_line (tpmarker->address, 0);
13969 sym = find_pc_sect_function (tpmarker->address, NULL);
13970 uiout->text ("Now in ");
13971 if (sym)
13972 {
13973 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13974 uiout->text (" at ");
13975 }
13976 uiout->field_string ("file",
13977 symtab_to_filename_for_display (sal2.symtab));
13978 uiout->text (":");
13979
13980 if (uiout->is_mi_like_p ())
13981 {
13982 const char *fullname = symtab_to_fullname (sal2.symtab);
13983
13984 uiout->field_string ("fullname", fullname);
13985 }
13986
13987 uiout->field_int ("line", sal2.line);
13988 uiout->text ("\n");
13989
13990 b->loc->line_number = sal2.line;
13991 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13992
13993 b->location.reset (NULL);
13994 initialize_explicit_location (&explicit_loc);
13995 explicit_loc.source_filename
13996 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13997 explicit_loc.line_offset.offset = b->loc->line_number;
13998 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13999 b->location = new_explicit_location (&explicit_loc);
14000
14001 /* Might be nice to check if function changed, and warn if
14002 so. */
14003
14004 release_static_tracepoint_marker (tpmarker);
14005 }
14006 }
14007 return sal;
14008 }
14009
14010 /* Returns 1 iff locations A and B are sufficiently same that
14011 we don't need to report breakpoint as changed. */
14012
14013 static int
14014 locations_are_equal (struct bp_location *a, struct bp_location *b)
14015 {
14016 while (a && b)
14017 {
14018 if (a->address != b->address)
14019 return 0;
14020
14021 if (a->shlib_disabled != b->shlib_disabled)
14022 return 0;
14023
14024 if (a->enabled != b->enabled)
14025 return 0;
14026
14027 a = a->next;
14028 b = b->next;
14029 }
14030
14031 if ((a == NULL) != (b == NULL))
14032 return 0;
14033
14034 return 1;
14035 }
14036
14037 /* Split all locations of B that are bound to PSPACE out of B's
14038 location list to a separate list and return that list's head. If
14039 PSPACE is NULL, hoist out all locations of B. */
14040
14041 static struct bp_location *
14042 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14043 {
14044 struct bp_location head;
14045 struct bp_location *i = b->loc;
14046 struct bp_location **i_link = &b->loc;
14047 struct bp_location *hoisted = &head;
14048
14049 if (pspace == NULL)
14050 {
14051 i = b->loc;
14052 b->loc = NULL;
14053 return i;
14054 }
14055
14056 head.next = NULL;
14057
14058 while (i != NULL)
14059 {
14060 if (i->pspace == pspace)
14061 {
14062 *i_link = i->next;
14063 i->next = NULL;
14064 hoisted->next = i;
14065 hoisted = i;
14066 }
14067 else
14068 i_link = &i->next;
14069 i = *i_link;
14070 }
14071
14072 return head.next;
14073 }
14074
14075 /* Create new breakpoint locations for B (a hardware or software
14076 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14077 zero, then B is a ranged breakpoint. Only recreates locations for
14078 FILTER_PSPACE. Locations of other program spaces are left
14079 untouched. */
14080
14081 void
14082 update_breakpoint_locations (struct breakpoint *b,
14083 struct program_space *filter_pspace,
14084 struct symtabs_and_lines sals,
14085 struct symtabs_and_lines sals_end)
14086 {
14087 int i;
14088 struct bp_location *existing_locations;
14089
14090 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14091 {
14092 /* Ranged breakpoints have only one start location and one end
14093 location. */
14094 b->enable_state = bp_disabled;
14095 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14096 "multiple locations found\n"),
14097 b->number);
14098 return;
14099 }
14100
14101 /* If there's no new locations, and all existing locations are
14102 pending, don't do anything. This optimizes the common case where
14103 all locations are in the same shared library, that was unloaded.
14104 We'd like to retain the location, so that when the library is
14105 loaded again, we don't loose the enabled/disabled status of the
14106 individual locations. */
14107 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14108 return;
14109
14110 existing_locations = hoist_existing_locations (b, filter_pspace);
14111
14112 for (i = 0; i < sals.nelts; ++i)
14113 {
14114 struct bp_location *new_loc;
14115
14116 switch_to_program_space_and_thread (sals.sals[i].pspace);
14117
14118 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14119
14120 /* Reparse conditions, they might contain references to the
14121 old symtab. */
14122 if (b->cond_string != NULL)
14123 {
14124 const char *s;
14125
14126 s = b->cond_string;
14127 TRY
14128 {
14129 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14130 block_for_pc (sals.sals[i].pc),
14131 0);
14132 }
14133 CATCH (e, RETURN_MASK_ERROR)
14134 {
14135 warning (_("failed to reevaluate condition "
14136 "for breakpoint %d: %s"),
14137 b->number, e.message);
14138 new_loc->enabled = 0;
14139 }
14140 END_CATCH
14141 }
14142
14143 if (sals_end.nelts)
14144 {
14145 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14146
14147 new_loc->length = end - sals.sals[0].pc + 1;
14148 }
14149 }
14150
14151 /* If possible, carry over 'disable' status from existing
14152 breakpoints. */
14153 {
14154 struct bp_location *e = existing_locations;
14155 /* If there are multiple breakpoints with the same function name,
14156 e.g. for inline functions, comparing function names won't work.
14157 Instead compare pc addresses; this is just a heuristic as things
14158 may have moved, but in practice it gives the correct answer
14159 often enough until a better solution is found. */
14160 int have_ambiguous_names = ambiguous_names_p (b->loc);
14161
14162 for (; e; e = e->next)
14163 {
14164 if (!e->enabled && e->function_name)
14165 {
14166 struct bp_location *l = b->loc;
14167 if (have_ambiguous_names)
14168 {
14169 for (; l; l = l->next)
14170 if (breakpoint_locations_match (e, l))
14171 {
14172 l->enabled = 0;
14173 break;
14174 }
14175 }
14176 else
14177 {
14178 for (; l; l = l->next)
14179 if (l->function_name
14180 && strcmp (e->function_name, l->function_name) == 0)
14181 {
14182 l->enabled = 0;
14183 break;
14184 }
14185 }
14186 }
14187 }
14188 }
14189
14190 if (!locations_are_equal (existing_locations, b->loc))
14191 observer_notify_breakpoint_modified (b);
14192 }
14193
14194 /* Find the SaL locations corresponding to the given LOCATION.
14195 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14196
14197 static struct symtabs_and_lines
14198 location_to_sals (struct breakpoint *b, struct event_location *location,
14199 struct program_space *search_pspace, int *found)
14200 {
14201 struct symtabs_and_lines sals = {0};
14202 struct gdb_exception exception = exception_none;
14203
14204 gdb_assert (b->ops != NULL);
14205
14206 TRY
14207 {
14208 b->ops->decode_location (b, location, search_pspace, &sals);
14209 }
14210 CATCH (e, RETURN_MASK_ERROR)
14211 {
14212 int not_found_and_ok = 0;
14213
14214 exception = e;
14215
14216 /* For pending breakpoints, it's expected that parsing will
14217 fail until the right shared library is loaded. User has
14218 already told to create pending breakpoints and don't need
14219 extra messages. If breakpoint is in bp_shlib_disabled
14220 state, then user already saw the message about that
14221 breakpoint being disabled, and don't want to see more
14222 errors. */
14223 if (e.error == NOT_FOUND_ERROR
14224 && (b->condition_not_parsed
14225 || (b->loc != NULL
14226 && search_pspace != NULL
14227 && b->loc->pspace != search_pspace)
14228 || (b->loc && b->loc->shlib_disabled)
14229 || (b->loc && b->loc->pspace->executing_startup)
14230 || b->enable_state == bp_disabled))
14231 not_found_and_ok = 1;
14232
14233 if (!not_found_and_ok)
14234 {
14235 /* We surely don't want to warn about the same breakpoint
14236 10 times. One solution, implemented here, is disable
14237 the breakpoint on error. Another solution would be to
14238 have separate 'warning emitted' flag. Since this
14239 happens only when a binary has changed, I don't know
14240 which approach is better. */
14241 b->enable_state = bp_disabled;
14242 throw_exception (e);
14243 }
14244 }
14245 END_CATCH
14246
14247 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14248 {
14249 int i;
14250
14251 for (i = 0; i < sals.nelts; ++i)
14252 resolve_sal_pc (&sals.sals[i]);
14253 if (b->condition_not_parsed && b->extra_string != NULL)
14254 {
14255 char *cond_string, *extra_string;
14256 int thread, task;
14257
14258 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14259 &cond_string, &thread, &task,
14260 &extra_string);
14261 gdb_assert (b->cond_string == NULL);
14262 if (cond_string)
14263 b->cond_string = cond_string;
14264 b->thread = thread;
14265 b->task = task;
14266 if (extra_string)
14267 {
14268 xfree (b->extra_string);
14269 b->extra_string = extra_string;
14270 }
14271 b->condition_not_parsed = 0;
14272 }
14273
14274 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14275 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14276
14277 *found = 1;
14278 }
14279 else
14280 *found = 0;
14281
14282 return sals;
14283 }
14284
14285 /* The default re_set method, for typical hardware or software
14286 breakpoints. Reevaluate the breakpoint and recreate its
14287 locations. */
14288
14289 static void
14290 breakpoint_re_set_default (struct breakpoint *b)
14291 {
14292 int found;
14293 struct symtabs_and_lines sals, sals_end;
14294 struct symtabs_and_lines expanded = {0};
14295 struct symtabs_and_lines expanded_end = {0};
14296 struct program_space *filter_pspace = current_program_space;
14297
14298 sals = location_to_sals (b, b->location.get (), filter_pspace, &found);
14299 if (found)
14300 {
14301 make_cleanup (xfree, sals.sals);
14302 expanded = sals;
14303 }
14304
14305 if (b->location_range_end != NULL)
14306 {
14307 sals_end = location_to_sals (b, b->location_range_end.get (),
14308 filter_pspace, &found);
14309 if (found)
14310 {
14311 make_cleanup (xfree, sals_end.sals);
14312 expanded_end = sals_end;
14313 }
14314 }
14315
14316 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14317 }
14318
14319 /* Default method for creating SALs from an address string. It basically
14320 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14321
14322 static void
14323 create_sals_from_location_default (const struct event_location *location,
14324 struct linespec_result *canonical,
14325 enum bptype type_wanted)
14326 {
14327 parse_breakpoint_sals (location, canonical);
14328 }
14329
14330 /* Call create_breakpoints_sal for the given arguments. This is the default
14331 function for the `create_breakpoints_sal' method of
14332 breakpoint_ops. */
14333
14334 static void
14335 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14336 struct linespec_result *canonical,
14337 gdb::unique_xmalloc_ptr<char> cond_string,
14338 gdb::unique_xmalloc_ptr<char> extra_string,
14339 enum bptype type_wanted,
14340 enum bpdisp disposition,
14341 int thread,
14342 int task, int ignore_count,
14343 const struct breakpoint_ops *ops,
14344 int from_tty, int enabled,
14345 int internal, unsigned flags)
14346 {
14347 create_breakpoints_sal (gdbarch, canonical,
14348 std::move (cond_string),
14349 std::move (extra_string),
14350 type_wanted, disposition,
14351 thread, task, ignore_count, ops, from_tty,
14352 enabled, internal, flags);
14353 }
14354
14355 /* Decode the line represented by S by calling decode_line_full. This is the
14356 default function for the `decode_location' method of breakpoint_ops. */
14357
14358 static void
14359 decode_location_default (struct breakpoint *b,
14360 const struct event_location *location,
14361 struct program_space *search_pspace,
14362 struct symtabs_and_lines *sals)
14363 {
14364 struct linespec_result canonical;
14365
14366 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14367 (struct symtab *) NULL, 0,
14368 &canonical, multiple_symbols_all,
14369 b->filter);
14370
14371 /* We should get 0 or 1 resulting SALs. */
14372 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14373
14374 if (VEC_length (linespec_sals, canonical.sals) > 0)
14375 {
14376 struct linespec_sals *lsal;
14377
14378 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14379 *sals = lsal->sals;
14380 /* Arrange it so the destructor does not free the
14381 contents. */
14382 lsal->sals.sals = NULL;
14383 }
14384 }
14385
14386 /* Prepare the global context for a re-set of breakpoint B. */
14387
14388 static struct cleanup *
14389 prepare_re_set_context (struct breakpoint *b)
14390 {
14391 input_radix = b->input_radix;
14392 set_language (b->language);
14393
14394 return make_cleanup (null_cleanup, NULL);
14395 }
14396
14397 /* Reset a breakpoint given it's struct breakpoint * BINT.
14398 The value we return ends up being the return value from catch_errors.
14399 Unused in this case. */
14400
14401 static int
14402 breakpoint_re_set_one (void *bint)
14403 {
14404 /* Get past catch_errs. */
14405 struct breakpoint *b = (struct breakpoint *) bint;
14406 struct cleanup *cleanups;
14407
14408 cleanups = prepare_re_set_context (b);
14409 b->ops->re_set (b);
14410 do_cleanups (cleanups);
14411 return 0;
14412 }
14413
14414 /* Re-set breakpoint locations for the current program space.
14415 Locations bound to other program spaces are left untouched. */
14416
14417 void
14418 breakpoint_re_set (void)
14419 {
14420 struct breakpoint *b, *b_tmp;
14421 enum language save_language;
14422 int save_input_radix;
14423
14424 save_language = current_language->la_language;
14425 save_input_radix = input_radix;
14426
14427 {
14428 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14429
14430 /* Note: we must not try to insert locations until after all
14431 breakpoints have been re-set. Otherwise, e.g., when re-setting
14432 breakpoint 1, we'd insert the locations of breakpoint 2, which
14433 hadn't been re-set yet, and thus may have stale locations. */
14434
14435 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14436 {
14437 /* Format possible error msg. */
14438 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14439 b->number);
14440 struct cleanup *cleanups = make_cleanup (xfree, message);
14441 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14442 do_cleanups (cleanups);
14443 }
14444 set_language (save_language);
14445 input_radix = save_input_radix;
14446
14447 jit_breakpoint_re_set ();
14448 }
14449
14450 create_overlay_event_breakpoint ();
14451 create_longjmp_master_breakpoint ();
14452 create_std_terminate_master_breakpoint ();
14453 create_exception_master_breakpoint ();
14454
14455 /* Now we can insert. */
14456 update_global_location_list (UGLL_MAY_INSERT);
14457 }
14458 \f
14459 /* Reset the thread number of this breakpoint:
14460
14461 - If the breakpoint is for all threads, leave it as-is.
14462 - Else, reset it to the current thread for inferior_ptid. */
14463 void
14464 breakpoint_re_set_thread (struct breakpoint *b)
14465 {
14466 if (b->thread != -1)
14467 {
14468 if (in_thread_list (inferior_ptid))
14469 b->thread = ptid_to_global_thread_id (inferior_ptid);
14470
14471 /* We're being called after following a fork. The new fork is
14472 selected as current, and unless this was a vfork will have a
14473 different program space from the original thread. Reset that
14474 as well. */
14475 b->loc->pspace = current_program_space;
14476 }
14477 }
14478
14479 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14480 If from_tty is nonzero, it prints a message to that effect,
14481 which ends with a period (no newline). */
14482
14483 void
14484 set_ignore_count (int bptnum, int count, int from_tty)
14485 {
14486 struct breakpoint *b;
14487
14488 if (count < 0)
14489 count = 0;
14490
14491 ALL_BREAKPOINTS (b)
14492 if (b->number == bptnum)
14493 {
14494 if (is_tracepoint (b))
14495 {
14496 if (from_tty && count != 0)
14497 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14498 bptnum);
14499 return;
14500 }
14501
14502 b->ignore_count = count;
14503 if (from_tty)
14504 {
14505 if (count == 0)
14506 printf_filtered (_("Will stop next time "
14507 "breakpoint %d is reached."),
14508 bptnum);
14509 else if (count == 1)
14510 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14511 bptnum);
14512 else
14513 printf_filtered (_("Will ignore next %d "
14514 "crossings of breakpoint %d."),
14515 count, bptnum);
14516 }
14517 observer_notify_breakpoint_modified (b);
14518 return;
14519 }
14520
14521 error (_("No breakpoint number %d."), bptnum);
14522 }
14523
14524 /* Command to set ignore-count of breakpoint N to COUNT. */
14525
14526 static void
14527 ignore_command (char *args, int from_tty)
14528 {
14529 char *p = args;
14530 int num;
14531
14532 if (p == 0)
14533 error_no_arg (_("a breakpoint number"));
14534
14535 num = get_number (&p);
14536 if (num == 0)
14537 error (_("bad breakpoint number: '%s'"), args);
14538 if (*p == 0)
14539 error (_("Second argument (specified ignore-count) is missing."));
14540
14541 set_ignore_count (num,
14542 longest_to_int (value_as_long (parse_and_eval (p))),
14543 from_tty);
14544 if (from_tty)
14545 printf_filtered ("\n");
14546 }
14547 \f
14548 /* Call FUNCTION on each of the breakpoints
14549 whose numbers are given in ARGS. */
14550
14551 static void
14552 map_breakpoint_numbers (const char *args,
14553 void (*function) (struct breakpoint *,
14554 void *),
14555 void *data)
14556 {
14557 int num;
14558 struct breakpoint *b, *tmp;
14559
14560 if (args == 0 || *args == '\0')
14561 error_no_arg (_("one or more breakpoint numbers"));
14562
14563 number_or_range_parser parser (args);
14564
14565 while (!parser.finished ())
14566 {
14567 const char *p = parser.cur_tok ();
14568 bool match = false;
14569
14570 num = parser.get_number ();
14571 if (num == 0)
14572 {
14573 warning (_("bad breakpoint number at or near '%s'"), p);
14574 }
14575 else
14576 {
14577 ALL_BREAKPOINTS_SAFE (b, tmp)
14578 if (b->number == num)
14579 {
14580 match = true;
14581 function (b, data);
14582 break;
14583 }
14584 if (!match)
14585 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14586 }
14587 }
14588 }
14589
14590 static struct bp_location *
14591 find_location_by_number (char *number)
14592 {
14593 char *dot = strchr (number, '.');
14594 char *p1;
14595 int bp_num;
14596 int loc_num;
14597 struct breakpoint *b;
14598 struct bp_location *loc;
14599
14600 *dot = '\0';
14601
14602 p1 = number;
14603 bp_num = get_number (&p1);
14604 if (bp_num == 0)
14605 error (_("Bad breakpoint number '%s'"), number);
14606
14607 ALL_BREAKPOINTS (b)
14608 if (b->number == bp_num)
14609 {
14610 break;
14611 }
14612
14613 if (!b || b->number != bp_num)
14614 error (_("Bad breakpoint number '%s'"), number);
14615
14616 p1 = dot+1;
14617 loc_num = get_number (&p1);
14618 if (loc_num == 0)
14619 error (_("Bad breakpoint location number '%s'"), number);
14620
14621 --loc_num;
14622 loc = b->loc;
14623 for (;loc_num && loc; --loc_num, loc = loc->next)
14624 ;
14625 if (!loc)
14626 error (_("Bad breakpoint location number '%s'"), dot+1);
14627
14628 return loc;
14629 }
14630
14631
14632 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14633 If from_tty is nonzero, it prints a message to that effect,
14634 which ends with a period (no newline). */
14635
14636 void
14637 disable_breakpoint (struct breakpoint *bpt)
14638 {
14639 /* Never disable a watchpoint scope breakpoint; we want to
14640 hit them when we leave scope so we can delete both the
14641 watchpoint and its scope breakpoint at that time. */
14642 if (bpt->type == bp_watchpoint_scope)
14643 return;
14644
14645 bpt->enable_state = bp_disabled;
14646
14647 /* Mark breakpoint locations modified. */
14648 mark_breakpoint_modified (bpt);
14649
14650 if (target_supports_enable_disable_tracepoint ()
14651 && current_trace_status ()->running && is_tracepoint (bpt))
14652 {
14653 struct bp_location *location;
14654
14655 for (location = bpt->loc; location; location = location->next)
14656 target_disable_tracepoint (location);
14657 }
14658
14659 update_global_location_list (UGLL_DONT_INSERT);
14660
14661 observer_notify_breakpoint_modified (bpt);
14662 }
14663
14664 /* A callback for iterate_over_related_breakpoints. */
14665
14666 static void
14667 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14668 {
14669 disable_breakpoint (b);
14670 }
14671
14672 /* A callback for map_breakpoint_numbers that calls
14673 disable_breakpoint. */
14674
14675 static void
14676 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14677 {
14678 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14679 }
14680
14681 static void
14682 disable_command (char *args, int from_tty)
14683 {
14684 if (args == 0)
14685 {
14686 struct breakpoint *bpt;
14687
14688 ALL_BREAKPOINTS (bpt)
14689 if (user_breakpoint_p (bpt))
14690 disable_breakpoint (bpt);
14691 }
14692 else
14693 {
14694 char *num = extract_arg (&args);
14695
14696 while (num)
14697 {
14698 if (strchr (num, '.'))
14699 {
14700 struct bp_location *loc = find_location_by_number (num);
14701
14702 if (loc)
14703 {
14704 if (loc->enabled)
14705 {
14706 loc->enabled = 0;
14707 mark_breakpoint_location_modified (loc);
14708 }
14709 if (target_supports_enable_disable_tracepoint ()
14710 && current_trace_status ()->running && loc->owner
14711 && is_tracepoint (loc->owner))
14712 target_disable_tracepoint (loc);
14713 }
14714 update_global_location_list (UGLL_DONT_INSERT);
14715 }
14716 else
14717 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14718 num = extract_arg (&args);
14719 }
14720 }
14721 }
14722
14723 static void
14724 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14725 int count)
14726 {
14727 int target_resources_ok;
14728
14729 if (bpt->type == bp_hardware_breakpoint)
14730 {
14731 int i;
14732 i = hw_breakpoint_used_count ();
14733 target_resources_ok =
14734 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14735 i + 1, 0);
14736 if (target_resources_ok == 0)
14737 error (_("No hardware breakpoint support in the target."));
14738 else if (target_resources_ok < 0)
14739 error (_("Hardware breakpoints used exceeds limit."));
14740 }
14741
14742 if (is_watchpoint (bpt))
14743 {
14744 /* Initialize it just to avoid a GCC false warning. */
14745 enum enable_state orig_enable_state = bp_disabled;
14746
14747 TRY
14748 {
14749 struct watchpoint *w = (struct watchpoint *) bpt;
14750
14751 orig_enable_state = bpt->enable_state;
14752 bpt->enable_state = bp_enabled;
14753 update_watchpoint (w, 1 /* reparse */);
14754 }
14755 CATCH (e, RETURN_MASK_ALL)
14756 {
14757 bpt->enable_state = orig_enable_state;
14758 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14759 bpt->number);
14760 return;
14761 }
14762 END_CATCH
14763 }
14764
14765 bpt->enable_state = bp_enabled;
14766
14767 /* Mark breakpoint locations modified. */
14768 mark_breakpoint_modified (bpt);
14769
14770 if (target_supports_enable_disable_tracepoint ()
14771 && current_trace_status ()->running && is_tracepoint (bpt))
14772 {
14773 struct bp_location *location;
14774
14775 for (location = bpt->loc; location; location = location->next)
14776 target_enable_tracepoint (location);
14777 }
14778
14779 bpt->disposition = disposition;
14780 bpt->enable_count = count;
14781 update_global_location_list (UGLL_MAY_INSERT);
14782
14783 observer_notify_breakpoint_modified (bpt);
14784 }
14785
14786
14787 void
14788 enable_breakpoint (struct breakpoint *bpt)
14789 {
14790 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14791 }
14792
14793 static void
14794 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14795 {
14796 enable_breakpoint (bpt);
14797 }
14798
14799 /* A callback for map_breakpoint_numbers that calls
14800 enable_breakpoint. */
14801
14802 static void
14803 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14804 {
14805 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14806 }
14807
14808 /* The enable command enables the specified breakpoints (or all defined
14809 breakpoints) so they once again become (or continue to be) effective
14810 in stopping the inferior. */
14811
14812 static void
14813 enable_command (char *args, int from_tty)
14814 {
14815 if (args == 0)
14816 {
14817 struct breakpoint *bpt;
14818
14819 ALL_BREAKPOINTS (bpt)
14820 if (user_breakpoint_p (bpt))
14821 enable_breakpoint (bpt);
14822 }
14823 else
14824 {
14825 char *num = extract_arg (&args);
14826
14827 while (num)
14828 {
14829 if (strchr (num, '.'))
14830 {
14831 struct bp_location *loc = find_location_by_number (num);
14832
14833 if (loc)
14834 {
14835 if (!loc->enabled)
14836 {
14837 loc->enabled = 1;
14838 mark_breakpoint_location_modified (loc);
14839 }
14840 if (target_supports_enable_disable_tracepoint ()
14841 && current_trace_status ()->running && loc->owner
14842 && is_tracepoint (loc->owner))
14843 target_enable_tracepoint (loc);
14844 }
14845 update_global_location_list (UGLL_MAY_INSERT);
14846 }
14847 else
14848 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14849 num = extract_arg (&args);
14850 }
14851 }
14852 }
14853
14854 /* This struct packages up disposition data for application to multiple
14855 breakpoints. */
14856
14857 struct disp_data
14858 {
14859 enum bpdisp disp;
14860 int count;
14861 };
14862
14863 static void
14864 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14865 {
14866 struct disp_data disp_data = *(struct disp_data *) arg;
14867
14868 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14869 }
14870
14871 static void
14872 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14873 {
14874 struct disp_data disp = { disp_disable, 1 };
14875
14876 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14877 }
14878
14879 static void
14880 enable_once_command (char *args, int from_tty)
14881 {
14882 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14883 }
14884
14885 static void
14886 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14887 {
14888 struct disp_data disp = { disp_disable, *(int *) countptr };
14889
14890 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14891 }
14892
14893 static void
14894 enable_count_command (char *args, int from_tty)
14895 {
14896 int count;
14897
14898 if (args == NULL)
14899 error_no_arg (_("hit count"));
14900
14901 count = get_number (&args);
14902
14903 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14904 }
14905
14906 static void
14907 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14908 {
14909 struct disp_data disp = { disp_del, 1 };
14910
14911 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14912 }
14913
14914 static void
14915 enable_delete_command (char *args, int from_tty)
14916 {
14917 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14918 }
14919 \f
14920 static void
14921 set_breakpoint_cmd (char *args, int from_tty)
14922 {
14923 }
14924
14925 static void
14926 show_breakpoint_cmd (char *args, int from_tty)
14927 {
14928 }
14929
14930 /* Invalidate last known value of any hardware watchpoint if
14931 the memory which that value represents has been written to by
14932 GDB itself. */
14933
14934 static void
14935 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14936 CORE_ADDR addr, ssize_t len,
14937 const bfd_byte *data)
14938 {
14939 struct breakpoint *bp;
14940
14941 ALL_BREAKPOINTS (bp)
14942 if (bp->enable_state == bp_enabled
14943 && bp->type == bp_hardware_watchpoint)
14944 {
14945 struct watchpoint *wp = (struct watchpoint *) bp;
14946
14947 if (wp->val_valid && wp->val)
14948 {
14949 struct bp_location *loc;
14950
14951 for (loc = bp->loc; loc != NULL; loc = loc->next)
14952 if (loc->loc_type == bp_loc_hardware_watchpoint
14953 && loc->address + loc->length > addr
14954 && addr + len > loc->address)
14955 {
14956 value_free (wp->val);
14957 wp->val = NULL;
14958 wp->val_valid = 0;
14959 }
14960 }
14961 }
14962 }
14963
14964 /* Create and insert a breakpoint for software single step. */
14965
14966 void
14967 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14968 struct address_space *aspace,
14969 CORE_ADDR next_pc)
14970 {
14971 struct thread_info *tp = inferior_thread ();
14972 struct symtab_and_line sal;
14973 CORE_ADDR pc = next_pc;
14974
14975 if (tp->control.single_step_breakpoints == NULL)
14976 {
14977 tp->control.single_step_breakpoints
14978 = new_single_step_breakpoint (tp->global_num, gdbarch);
14979 }
14980
14981 sal = find_pc_line (pc, 0);
14982 sal.pc = pc;
14983 sal.section = find_pc_overlay (pc);
14984 sal.explicit_pc = 1;
14985 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14986
14987 update_global_location_list (UGLL_INSERT);
14988 }
14989
14990 /* Insert single step breakpoints according to the current state. */
14991
14992 int
14993 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14994 {
14995 struct regcache *regcache = get_current_regcache ();
14996 std::vector<CORE_ADDR> next_pcs;
14997
14998 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14999
15000 if (!next_pcs.empty ())
15001 {
15002 struct frame_info *frame = get_current_frame ();
15003 struct address_space *aspace = get_frame_address_space (frame);
15004
15005 for (CORE_ADDR pc : next_pcs)
15006 insert_single_step_breakpoint (gdbarch, aspace, pc);
15007
15008 return 1;
15009 }
15010 else
15011 return 0;
15012 }
15013
15014 /* See breakpoint.h. */
15015
15016 int
15017 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15018 struct address_space *aspace,
15019 CORE_ADDR pc)
15020 {
15021 struct bp_location *loc;
15022
15023 for (loc = bp->loc; loc != NULL; loc = loc->next)
15024 if (loc->inserted
15025 && breakpoint_location_address_match (loc, aspace, pc))
15026 return 1;
15027
15028 return 0;
15029 }
15030
15031 /* Check whether a software single-step breakpoint is inserted at
15032 PC. */
15033
15034 int
15035 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15036 CORE_ADDR pc)
15037 {
15038 struct breakpoint *bpt;
15039
15040 ALL_BREAKPOINTS (bpt)
15041 {
15042 if (bpt->type == bp_single_step
15043 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15044 return 1;
15045 }
15046 return 0;
15047 }
15048
15049 /* Tracepoint-specific operations. */
15050
15051 /* Set tracepoint count to NUM. */
15052 static void
15053 set_tracepoint_count (int num)
15054 {
15055 tracepoint_count = num;
15056 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15057 }
15058
15059 static void
15060 trace_command (char *arg, int from_tty)
15061 {
15062 struct breakpoint_ops *ops;
15063
15064 event_location_up location = string_to_event_location (&arg,
15065 current_language);
15066 if (location != NULL
15067 && event_location_type (location.get ()) == PROBE_LOCATION)
15068 ops = &tracepoint_probe_breakpoint_ops;
15069 else
15070 ops = &tracepoint_breakpoint_ops;
15071
15072 create_breakpoint (get_current_arch (),
15073 location.get (),
15074 NULL, 0, arg, 1 /* parse arg */,
15075 0 /* tempflag */,
15076 bp_tracepoint /* type_wanted */,
15077 0 /* Ignore count */,
15078 pending_break_support,
15079 ops,
15080 from_tty,
15081 1 /* enabled */,
15082 0 /* internal */, 0);
15083 }
15084
15085 static void
15086 ftrace_command (char *arg, int from_tty)
15087 {
15088 event_location_up location = string_to_event_location (&arg,
15089 current_language);
15090 create_breakpoint (get_current_arch (),
15091 location.get (),
15092 NULL, 0, arg, 1 /* parse arg */,
15093 0 /* tempflag */,
15094 bp_fast_tracepoint /* type_wanted */,
15095 0 /* Ignore count */,
15096 pending_break_support,
15097 &tracepoint_breakpoint_ops,
15098 from_tty,
15099 1 /* enabled */,
15100 0 /* internal */, 0);
15101 }
15102
15103 /* strace command implementation. Creates a static tracepoint. */
15104
15105 static void
15106 strace_command (char *arg, int from_tty)
15107 {
15108 struct breakpoint_ops *ops;
15109 event_location_up location;
15110 struct cleanup *back_to;
15111
15112 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15113 or with a normal static tracepoint. */
15114 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15115 {
15116 ops = &strace_marker_breakpoint_ops;
15117 location = new_linespec_location (&arg);
15118 }
15119 else
15120 {
15121 ops = &tracepoint_breakpoint_ops;
15122 location = string_to_event_location (&arg, current_language);
15123 }
15124
15125 create_breakpoint (get_current_arch (),
15126 location.get (),
15127 NULL, 0, arg, 1 /* parse arg */,
15128 0 /* tempflag */,
15129 bp_static_tracepoint /* type_wanted */,
15130 0 /* Ignore count */,
15131 pending_break_support,
15132 ops,
15133 from_tty,
15134 1 /* enabled */,
15135 0 /* internal */, 0);
15136 }
15137
15138 /* Set up a fake reader function that gets command lines from a linked
15139 list that was acquired during tracepoint uploading. */
15140
15141 static struct uploaded_tp *this_utp;
15142 static int next_cmd;
15143
15144 static char *
15145 read_uploaded_action (void)
15146 {
15147 char *rslt;
15148
15149 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15150
15151 next_cmd++;
15152
15153 return rslt;
15154 }
15155
15156 /* Given information about a tracepoint as recorded on a target (which
15157 can be either a live system or a trace file), attempt to create an
15158 equivalent GDB tracepoint. This is not a reliable process, since
15159 the target does not necessarily have all the information used when
15160 the tracepoint was originally defined. */
15161
15162 struct tracepoint *
15163 create_tracepoint_from_upload (struct uploaded_tp *utp)
15164 {
15165 char *addr_str, small_buf[100];
15166 struct tracepoint *tp;
15167
15168 if (utp->at_string)
15169 addr_str = utp->at_string;
15170 else
15171 {
15172 /* In the absence of a source location, fall back to raw
15173 address. Since there is no way to confirm that the address
15174 means the same thing as when the trace was started, warn the
15175 user. */
15176 warning (_("Uploaded tracepoint %d has no "
15177 "source location, using raw address"),
15178 utp->number);
15179 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15180 addr_str = small_buf;
15181 }
15182
15183 /* There's not much we can do with a sequence of bytecodes. */
15184 if (utp->cond && !utp->cond_string)
15185 warning (_("Uploaded tracepoint %d condition "
15186 "has no source form, ignoring it"),
15187 utp->number);
15188
15189 event_location_up location = string_to_event_location (&addr_str,
15190 current_language);
15191 if (!create_breakpoint (get_current_arch (),
15192 location.get (),
15193 utp->cond_string, -1, addr_str,
15194 0 /* parse cond/thread */,
15195 0 /* tempflag */,
15196 utp->type /* type_wanted */,
15197 0 /* Ignore count */,
15198 pending_break_support,
15199 &tracepoint_breakpoint_ops,
15200 0 /* from_tty */,
15201 utp->enabled /* enabled */,
15202 0 /* internal */,
15203 CREATE_BREAKPOINT_FLAGS_INSERTED))
15204 return NULL;
15205
15206 /* Get the tracepoint we just created. */
15207 tp = get_tracepoint (tracepoint_count);
15208 gdb_assert (tp != NULL);
15209
15210 if (utp->pass > 0)
15211 {
15212 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15213 tp->number);
15214
15215 trace_pass_command (small_buf, 0);
15216 }
15217
15218 /* If we have uploaded versions of the original commands, set up a
15219 special-purpose "reader" function and call the usual command line
15220 reader, then pass the result to the breakpoint command-setting
15221 function. */
15222 if (!VEC_empty (char_ptr, utp->cmd_strings))
15223 {
15224 command_line_up cmd_list;
15225
15226 this_utp = utp;
15227 next_cmd = 0;
15228
15229 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15230
15231 breakpoint_set_commands (tp, std::move (cmd_list));
15232 }
15233 else if (!VEC_empty (char_ptr, utp->actions)
15234 || !VEC_empty (char_ptr, utp->step_actions))
15235 warning (_("Uploaded tracepoint %d actions "
15236 "have no source form, ignoring them"),
15237 utp->number);
15238
15239 /* Copy any status information that might be available. */
15240 tp->hit_count = utp->hit_count;
15241 tp->traceframe_usage = utp->traceframe_usage;
15242
15243 return tp;
15244 }
15245
15246 /* Print information on tracepoint number TPNUM_EXP, or all if
15247 omitted. */
15248
15249 static void
15250 tracepoints_info (char *args, int from_tty)
15251 {
15252 struct ui_out *uiout = current_uiout;
15253 int num_printed;
15254
15255 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15256
15257 if (num_printed == 0)
15258 {
15259 if (args == NULL || *args == '\0')
15260 uiout->message ("No tracepoints.\n");
15261 else
15262 uiout->message ("No tracepoint matching '%s'.\n", args);
15263 }
15264
15265 default_collect_info ();
15266 }
15267
15268 /* The 'enable trace' command enables tracepoints.
15269 Not supported by all targets. */
15270 static void
15271 enable_trace_command (char *args, int from_tty)
15272 {
15273 enable_command (args, from_tty);
15274 }
15275
15276 /* The 'disable trace' command disables tracepoints.
15277 Not supported by all targets. */
15278 static void
15279 disable_trace_command (char *args, int from_tty)
15280 {
15281 disable_command (args, from_tty);
15282 }
15283
15284 /* Remove a tracepoint (or all if no argument). */
15285 static void
15286 delete_trace_command (char *arg, int from_tty)
15287 {
15288 struct breakpoint *b, *b_tmp;
15289
15290 dont_repeat ();
15291
15292 if (arg == 0)
15293 {
15294 int breaks_to_delete = 0;
15295
15296 /* Delete all breakpoints if no argument.
15297 Do not delete internal or call-dummy breakpoints, these
15298 have to be deleted with an explicit breakpoint number
15299 argument. */
15300 ALL_TRACEPOINTS (b)
15301 if (is_tracepoint (b) && user_breakpoint_p (b))
15302 {
15303 breaks_to_delete = 1;
15304 break;
15305 }
15306
15307 /* Ask user only if there are some breakpoints to delete. */
15308 if (!from_tty
15309 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15310 {
15311 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15312 if (is_tracepoint (b) && user_breakpoint_p (b))
15313 delete_breakpoint (b);
15314 }
15315 }
15316 else
15317 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15318 }
15319
15320 /* Helper function for trace_pass_command. */
15321
15322 static void
15323 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15324 {
15325 tp->pass_count = count;
15326 observer_notify_breakpoint_modified (tp);
15327 if (from_tty)
15328 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15329 tp->number, count);
15330 }
15331
15332 /* Set passcount for tracepoint.
15333
15334 First command argument is passcount, second is tracepoint number.
15335 If tracepoint number omitted, apply to most recently defined.
15336 Also accepts special argument "all". */
15337
15338 static void
15339 trace_pass_command (char *args, int from_tty)
15340 {
15341 struct tracepoint *t1;
15342 unsigned int count;
15343
15344 if (args == 0 || *args == 0)
15345 error (_("passcount command requires an "
15346 "argument (count + optional TP num)"));
15347
15348 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15349
15350 args = skip_spaces (args);
15351 if (*args && strncasecmp (args, "all", 3) == 0)
15352 {
15353 struct breakpoint *b;
15354
15355 args += 3; /* Skip special argument "all". */
15356 if (*args)
15357 error (_("Junk at end of arguments."));
15358
15359 ALL_TRACEPOINTS (b)
15360 {
15361 t1 = (struct tracepoint *) b;
15362 trace_pass_set_count (t1, count, from_tty);
15363 }
15364 }
15365 else if (*args == '\0')
15366 {
15367 t1 = get_tracepoint_by_number (&args, NULL);
15368 if (t1)
15369 trace_pass_set_count (t1, count, from_tty);
15370 }
15371 else
15372 {
15373 number_or_range_parser parser (args);
15374 while (!parser.finished ())
15375 {
15376 t1 = get_tracepoint_by_number (&args, &parser);
15377 if (t1)
15378 trace_pass_set_count (t1, count, from_tty);
15379 }
15380 }
15381 }
15382
15383 struct tracepoint *
15384 get_tracepoint (int num)
15385 {
15386 struct breakpoint *t;
15387
15388 ALL_TRACEPOINTS (t)
15389 if (t->number == num)
15390 return (struct tracepoint *) t;
15391
15392 return NULL;
15393 }
15394
15395 /* Find the tracepoint with the given target-side number (which may be
15396 different from the tracepoint number after disconnecting and
15397 reconnecting). */
15398
15399 struct tracepoint *
15400 get_tracepoint_by_number_on_target (int num)
15401 {
15402 struct breakpoint *b;
15403
15404 ALL_TRACEPOINTS (b)
15405 {
15406 struct tracepoint *t = (struct tracepoint *) b;
15407
15408 if (t->number_on_target == num)
15409 return t;
15410 }
15411
15412 return NULL;
15413 }
15414
15415 /* Utility: parse a tracepoint number and look it up in the list.
15416 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15417 If the argument is missing, the most recent tracepoint
15418 (tracepoint_count) is returned. */
15419
15420 struct tracepoint *
15421 get_tracepoint_by_number (char **arg,
15422 number_or_range_parser *parser)
15423 {
15424 struct breakpoint *t;
15425 int tpnum;
15426 char *instring = arg == NULL ? NULL : *arg;
15427
15428 if (parser != NULL)
15429 {
15430 gdb_assert (!parser->finished ());
15431 tpnum = parser->get_number ();
15432 }
15433 else if (arg == NULL || *arg == NULL || ! **arg)
15434 tpnum = tracepoint_count;
15435 else
15436 tpnum = get_number (arg);
15437
15438 if (tpnum <= 0)
15439 {
15440 if (instring && *instring)
15441 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15442 instring);
15443 else
15444 printf_filtered (_("No previous tracepoint\n"));
15445 return NULL;
15446 }
15447
15448 ALL_TRACEPOINTS (t)
15449 if (t->number == tpnum)
15450 {
15451 return (struct tracepoint *) t;
15452 }
15453
15454 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15455 return NULL;
15456 }
15457
15458 void
15459 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15460 {
15461 if (b->thread != -1)
15462 fprintf_unfiltered (fp, " thread %d", b->thread);
15463
15464 if (b->task != 0)
15465 fprintf_unfiltered (fp, " task %d", b->task);
15466
15467 fprintf_unfiltered (fp, "\n");
15468 }
15469
15470 /* Save information on user settable breakpoints (watchpoints, etc) to
15471 a new script file named FILENAME. If FILTER is non-NULL, call it
15472 on each breakpoint and only include the ones for which it returns
15473 non-zero. */
15474
15475 static void
15476 save_breakpoints (char *filename, int from_tty,
15477 int (*filter) (const struct breakpoint *))
15478 {
15479 struct breakpoint *tp;
15480 int any = 0;
15481 int extra_trace_bits = 0;
15482
15483 if (filename == 0 || *filename == 0)
15484 error (_("Argument required (file name in which to save)"));
15485
15486 /* See if we have anything to save. */
15487 ALL_BREAKPOINTS (tp)
15488 {
15489 /* Skip internal and momentary breakpoints. */
15490 if (!user_breakpoint_p (tp))
15491 continue;
15492
15493 /* If we have a filter, only save the breakpoints it accepts. */
15494 if (filter && !filter (tp))
15495 continue;
15496
15497 any = 1;
15498
15499 if (is_tracepoint (tp))
15500 {
15501 extra_trace_bits = 1;
15502
15503 /* We can stop searching. */
15504 break;
15505 }
15506 }
15507
15508 if (!any)
15509 {
15510 warning (_("Nothing to save."));
15511 return;
15512 }
15513
15514 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15515
15516 stdio_file fp;
15517
15518 if (!fp.open (expanded_filename.get (), "w"))
15519 error (_("Unable to open file '%s' for saving (%s)"),
15520 expanded_filename.get (), safe_strerror (errno));
15521
15522 if (extra_trace_bits)
15523 save_trace_state_variables (&fp);
15524
15525 ALL_BREAKPOINTS (tp)
15526 {
15527 /* Skip internal and momentary breakpoints. */
15528 if (!user_breakpoint_p (tp))
15529 continue;
15530
15531 /* If we have a filter, only save the breakpoints it accepts. */
15532 if (filter && !filter (tp))
15533 continue;
15534
15535 tp->ops->print_recreate (tp, &fp);
15536
15537 /* Note, we can't rely on tp->number for anything, as we can't
15538 assume the recreated breakpoint numbers will match. Use $bpnum
15539 instead. */
15540
15541 if (tp->cond_string)
15542 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15543
15544 if (tp->ignore_count)
15545 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15546
15547 if (tp->type != bp_dprintf && tp->commands)
15548 {
15549 fp.puts (" commands\n");
15550
15551 current_uiout->redirect (&fp);
15552 TRY
15553 {
15554 print_command_lines (current_uiout, tp->commands->commands, 2);
15555 }
15556 CATCH (ex, RETURN_MASK_ALL)
15557 {
15558 current_uiout->redirect (NULL);
15559 throw_exception (ex);
15560 }
15561 END_CATCH
15562
15563 current_uiout->redirect (NULL);
15564 fp.puts (" end\n");
15565 }
15566
15567 if (tp->enable_state == bp_disabled)
15568 fp.puts ("disable $bpnum\n");
15569
15570 /* If this is a multi-location breakpoint, check if the locations
15571 should be individually disabled. Watchpoint locations are
15572 special, and not user visible. */
15573 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15574 {
15575 struct bp_location *loc;
15576 int n = 1;
15577
15578 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15579 if (!loc->enabled)
15580 fp.printf ("disable $bpnum.%d\n", n);
15581 }
15582 }
15583
15584 if (extra_trace_bits && *default_collect)
15585 fp.printf ("set default-collect %s\n", default_collect);
15586
15587 if (from_tty)
15588 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15589 }
15590
15591 /* The `save breakpoints' command. */
15592
15593 static void
15594 save_breakpoints_command (char *args, int from_tty)
15595 {
15596 save_breakpoints (args, from_tty, NULL);
15597 }
15598
15599 /* The `save tracepoints' command. */
15600
15601 static void
15602 save_tracepoints_command (char *args, int from_tty)
15603 {
15604 save_breakpoints (args, from_tty, is_tracepoint);
15605 }
15606
15607 /* Create a vector of all tracepoints. */
15608
15609 VEC(breakpoint_p) *
15610 all_tracepoints (void)
15611 {
15612 VEC(breakpoint_p) *tp_vec = 0;
15613 struct breakpoint *tp;
15614
15615 ALL_TRACEPOINTS (tp)
15616 {
15617 VEC_safe_push (breakpoint_p, tp_vec, tp);
15618 }
15619
15620 return tp_vec;
15621 }
15622
15623 \f
15624 /* This help string is used to consolidate all the help string for specifying
15625 locations used by several commands. */
15626
15627 #define LOCATION_HELP_STRING \
15628 "Linespecs are colon-separated lists of location parameters, such as\n\
15629 source filename, function name, label name, and line number.\n\
15630 Example: To specify the start of a label named \"the_top\" in the\n\
15631 function \"fact\" in the file \"factorial.c\", use\n\
15632 \"factorial.c:fact:the_top\".\n\
15633 \n\
15634 Address locations begin with \"*\" and specify an exact address in the\n\
15635 program. Example: To specify the fourth byte past the start function\n\
15636 \"main\", use \"*main + 4\".\n\
15637 \n\
15638 Explicit locations are similar to linespecs but use an option/argument\n\
15639 syntax to specify location parameters.\n\
15640 Example: To specify the start of the label named \"the_top\" in the\n\
15641 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15642 -function fact -label the_top\".\n"
15643
15644 /* This help string is used for the break, hbreak, tbreak and thbreak
15645 commands. It is defined as a macro to prevent duplication.
15646 COMMAND should be a string constant containing the name of the
15647 command. */
15648
15649 #define BREAK_ARGS_HELP(command) \
15650 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15651 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15652 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15653 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15654 `-probe-dtrace' (for a DTrace probe).\n\
15655 LOCATION may be a linespec, address, or explicit location as described\n\
15656 below.\n\
15657 \n\
15658 With no LOCATION, uses current execution address of the selected\n\
15659 stack frame. This is useful for breaking on return to a stack frame.\n\
15660 \n\
15661 THREADNUM is the number from \"info threads\".\n\
15662 CONDITION is a boolean expression.\n\
15663 \n" LOCATION_HELP_STRING "\n\
15664 Multiple breakpoints at one place are permitted, and useful if their\n\
15665 conditions are different.\n\
15666 \n\
15667 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15668
15669 /* List of subcommands for "catch". */
15670 static struct cmd_list_element *catch_cmdlist;
15671
15672 /* List of subcommands for "tcatch". */
15673 static struct cmd_list_element *tcatch_cmdlist;
15674
15675 void
15676 add_catch_command (const char *name, const char *docstring,
15677 cmd_sfunc_ftype *sfunc,
15678 completer_ftype *completer,
15679 void *user_data_catch,
15680 void *user_data_tcatch)
15681 {
15682 struct cmd_list_element *command;
15683
15684 command = add_cmd (name, class_breakpoint, NULL, docstring,
15685 &catch_cmdlist);
15686 set_cmd_sfunc (command, sfunc);
15687 set_cmd_context (command, user_data_catch);
15688 set_cmd_completer (command, completer);
15689
15690 command = add_cmd (name, class_breakpoint, NULL, docstring,
15691 &tcatch_cmdlist);
15692 set_cmd_sfunc (command, sfunc);
15693 set_cmd_context (command, user_data_tcatch);
15694 set_cmd_completer (command, completer);
15695 }
15696
15697 static void
15698 save_command (char *arg, int from_tty)
15699 {
15700 printf_unfiltered (_("\"save\" must be followed by "
15701 "the name of a save subcommand.\n"));
15702 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15703 }
15704
15705 struct breakpoint *
15706 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15707 void *data)
15708 {
15709 struct breakpoint *b, *b_tmp;
15710
15711 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15712 {
15713 if ((*callback) (b, data))
15714 return b;
15715 }
15716
15717 return NULL;
15718 }
15719
15720 /* Zero if any of the breakpoint's locations could be a location where
15721 functions have been inlined, nonzero otherwise. */
15722
15723 static int
15724 is_non_inline_function (struct breakpoint *b)
15725 {
15726 /* The shared library event breakpoint is set on the address of a
15727 non-inline function. */
15728 if (b->type == bp_shlib_event)
15729 return 1;
15730
15731 return 0;
15732 }
15733
15734 /* Nonzero if the specified PC cannot be a location where functions
15735 have been inlined. */
15736
15737 int
15738 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15739 const struct target_waitstatus *ws)
15740 {
15741 struct breakpoint *b;
15742 struct bp_location *bl;
15743
15744 ALL_BREAKPOINTS (b)
15745 {
15746 if (!is_non_inline_function (b))
15747 continue;
15748
15749 for (bl = b->loc; bl != NULL; bl = bl->next)
15750 {
15751 if (!bl->shlib_disabled
15752 && bpstat_check_location (bl, aspace, pc, ws))
15753 return 1;
15754 }
15755 }
15756
15757 return 0;
15758 }
15759
15760 /* Remove any references to OBJFILE which is going to be freed. */
15761
15762 void
15763 breakpoint_free_objfile (struct objfile *objfile)
15764 {
15765 struct bp_location **locp, *loc;
15766
15767 ALL_BP_LOCATIONS (loc, locp)
15768 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15769 loc->symtab = NULL;
15770 }
15771
15772 void
15773 initialize_breakpoint_ops (void)
15774 {
15775 static int initialized = 0;
15776
15777 struct breakpoint_ops *ops;
15778
15779 if (initialized)
15780 return;
15781 initialized = 1;
15782
15783 /* The breakpoint_ops structure to be inherit by all kinds of
15784 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15785 internal and momentary breakpoints, etc.). */
15786 ops = &bkpt_base_breakpoint_ops;
15787 *ops = base_breakpoint_ops;
15788 ops->re_set = bkpt_re_set;
15789 ops->insert_location = bkpt_insert_location;
15790 ops->remove_location = bkpt_remove_location;
15791 ops->breakpoint_hit = bkpt_breakpoint_hit;
15792 ops->create_sals_from_location = bkpt_create_sals_from_location;
15793 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15794 ops->decode_location = bkpt_decode_location;
15795
15796 /* The breakpoint_ops structure to be used in regular breakpoints. */
15797 ops = &bkpt_breakpoint_ops;
15798 *ops = bkpt_base_breakpoint_ops;
15799 ops->re_set = bkpt_re_set;
15800 ops->resources_needed = bkpt_resources_needed;
15801 ops->print_it = bkpt_print_it;
15802 ops->print_mention = bkpt_print_mention;
15803 ops->print_recreate = bkpt_print_recreate;
15804
15805 /* Ranged breakpoints. */
15806 ops = &ranged_breakpoint_ops;
15807 *ops = bkpt_breakpoint_ops;
15808 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15809 ops->resources_needed = resources_needed_ranged_breakpoint;
15810 ops->print_it = print_it_ranged_breakpoint;
15811 ops->print_one = print_one_ranged_breakpoint;
15812 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15813 ops->print_mention = print_mention_ranged_breakpoint;
15814 ops->print_recreate = print_recreate_ranged_breakpoint;
15815
15816 /* Internal breakpoints. */
15817 ops = &internal_breakpoint_ops;
15818 *ops = bkpt_base_breakpoint_ops;
15819 ops->re_set = internal_bkpt_re_set;
15820 ops->check_status = internal_bkpt_check_status;
15821 ops->print_it = internal_bkpt_print_it;
15822 ops->print_mention = internal_bkpt_print_mention;
15823
15824 /* Momentary breakpoints. */
15825 ops = &momentary_breakpoint_ops;
15826 *ops = bkpt_base_breakpoint_ops;
15827 ops->re_set = momentary_bkpt_re_set;
15828 ops->check_status = momentary_bkpt_check_status;
15829 ops->print_it = momentary_bkpt_print_it;
15830 ops->print_mention = momentary_bkpt_print_mention;
15831
15832 /* Probe breakpoints. */
15833 ops = &bkpt_probe_breakpoint_ops;
15834 *ops = bkpt_breakpoint_ops;
15835 ops->insert_location = bkpt_probe_insert_location;
15836 ops->remove_location = bkpt_probe_remove_location;
15837 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15838 ops->decode_location = bkpt_probe_decode_location;
15839
15840 /* Watchpoints. */
15841 ops = &watchpoint_breakpoint_ops;
15842 *ops = base_breakpoint_ops;
15843 ops->re_set = re_set_watchpoint;
15844 ops->insert_location = insert_watchpoint;
15845 ops->remove_location = remove_watchpoint;
15846 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15847 ops->check_status = check_status_watchpoint;
15848 ops->resources_needed = resources_needed_watchpoint;
15849 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15850 ops->print_it = print_it_watchpoint;
15851 ops->print_mention = print_mention_watchpoint;
15852 ops->print_recreate = print_recreate_watchpoint;
15853 ops->explains_signal = explains_signal_watchpoint;
15854
15855 /* Masked watchpoints. */
15856 ops = &masked_watchpoint_breakpoint_ops;
15857 *ops = watchpoint_breakpoint_ops;
15858 ops->insert_location = insert_masked_watchpoint;
15859 ops->remove_location = remove_masked_watchpoint;
15860 ops->resources_needed = resources_needed_masked_watchpoint;
15861 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15862 ops->print_it = print_it_masked_watchpoint;
15863 ops->print_one_detail = print_one_detail_masked_watchpoint;
15864 ops->print_mention = print_mention_masked_watchpoint;
15865 ops->print_recreate = print_recreate_masked_watchpoint;
15866
15867 /* Tracepoints. */
15868 ops = &tracepoint_breakpoint_ops;
15869 *ops = base_breakpoint_ops;
15870 ops->re_set = tracepoint_re_set;
15871 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15872 ops->print_one_detail = tracepoint_print_one_detail;
15873 ops->print_mention = tracepoint_print_mention;
15874 ops->print_recreate = tracepoint_print_recreate;
15875 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15876 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15877 ops->decode_location = tracepoint_decode_location;
15878
15879 /* Probe tracepoints. */
15880 ops = &tracepoint_probe_breakpoint_ops;
15881 *ops = tracepoint_breakpoint_ops;
15882 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15883 ops->decode_location = tracepoint_probe_decode_location;
15884
15885 /* Static tracepoints with marker (`-m'). */
15886 ops = &strace_marker_breakpoint_ops;
15887 *ops = tracepoint_breakpoint_ops;
15888 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15889 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15890 ops->decode_location = strace_marker_decode_location;
15891
15892 /* Fork catchpoints. */
15893 ops = &catch_fork_breakpoint_ops;
15894 *ops = base_breakpoint_ops;
15895 ops->insert_location = insert_catch_fork;
15896 ops->remove_location = remove_catch_fork;
15897 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15898 ops->print_it = print_it_catch_fork;
15899 ops->print_one = print_one_catch_fork;
15900 ops->print_mention = print_mention_catch_fork;
15901 ops->print_recreate = print_recreate_catch_fork;
15902
15903 /* Vfork catchpoints. */
15904 ops = &catch_vfork_breakpoint_ops;
15905 *ops = base_breakpoint_ops;
15906 ops->insert_location = insert_catch_vfork;
15907 ops->remove_location = remove_catch_vfork;
15908 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15909 ops->print_it = print_it_catch_vfork;
15910 ops->print_one = print_one_catch_vfork;
15911 ops->print_mention = print_mention_catch_vfork;
15912 ops->print_recreate = print_recreate_catch_vfork;
15913
15914 /* Exec catchpoints. */
15915 ops = &catch_exec_breakpoint_ops;
15916 *ops = base_breakpoint_ops;
15917 ops->insert_location = insert_catch_exec;
15918 ops->remove_location = remove_catch_exec;
15919 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15920 ops->print_it = print_it_catch_exec;
15921 ops->print_one = print_one_catch_exec;
15922 ops->print_mention = print_mention_catch_exec;
15923 ops->print_recreate = print_recreate_catch_exec;
15924
15925 /* Solib-related catchpoints. */
15926 ops = &catch_solib_breakpoint_ops;
15927 *ops = base_breakpoint_ops;
15928 ops->insert_location = insert_catch_solib;
15929 ops->remove_location = remove_catch_solib;
15930 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15931 ops->check_status = check_status_catch_solib;
15932 ops->print_it = print_it_catch_solib;
15933 ops->print_one = print_one_catch_solib;
15934 ops->print_mention = print_mention_catch_solib;
15935 ops->print_recreate = print_recreate_catch_solib;
15936
15937 ops = &dprintf_breakpoint_ops;
15938 *ops = bkpt_base_breakpoint_ops;
15939 ops->re_set = dprintf_re_set;
15940 ops->resources_needed = bkpt_resources_needed;
15941 ops->print_it = bkpt_print_it;
15942 ops->print_mention = bkpt_print_mention;
15943 ops->print_recreate = dprintf_print_recreate;
15944 ops->after_condition_true = dprintf_after_condition_true;
15945 ops->breakpoint_hit = dprintf_breakpoint_hit;
15946 }
15947
15948 /* Chain containing all defined "enable breakpoint" subcommands. */
15949
15950 static struct cmd_list_element *enablebreaklist = NULL;
15951
15952 void
15953 _initialize_breakpoint (void)
15954 {
15955 struct cmd_list_element *c;
15956
15957 initialize_breakpoint_ops ();
15958
15959 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15960 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15961 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15962
15963 breakpoint_objfile_key
15964 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15965
15966 breakpoint_chain = 0;
15967 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15968 before a breakpoint is set. */
15969 breakpoint_count = 0;
15970
15971 tracepoint_count = 0;
15972
15973 add_com ("ignore", class_breakpoint, ignore_command, _("\
15974 Set ignore-count of breakpoint number N to COUNT.\n\
15975 Usage is `ignore N COUNT'."));
15976
15977 add_com ("commands", class_breakpoint, commands_command, _("\
15978 Set commands to be executed when the given breakpoints are hit.\n\
15979 Give a space-separated breakpoint list as argument after \"commands\".\n\
15980 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15981 (e.g. `5-7').\n\
15982 With no argument, the targeted breakpoint is the last one set.\n\
15983 The commands themselves follow starting on the next line.\n\
15984 Type a line containing \"end\" to indicate the end of them.\n\
15985 Give \"silent\" as the first line to make the breakpoint silent;\n\
15986 then no output is printed when it is hit, except what the commands print."));
15987
15988 c = add_com ("condition", class_breakpoint, condition_command, _("\
15989 Specify breakpoint number N to break only if COND is true.\n\
15990 Usage is `condition N COND', where N is an integer and COND is an\n\
15991 expression to be evaluated whenever breakpoint N is reached."));
15992 set_cmd_completer (c, condition_completer);
15993
15994 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15995 Set a temporary breakpoint.\n\
15996 Like \"break\" except the breakpoint is only temporary,\n\
15997 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15998 by using \"enable delete\" on the breakpoint number.\n\
15999 \n"
16000 BREAK_ARGS_HELP ("tbreak")));
16001 set_cmd_completer (c, location_completer);
16002
16003 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16004 Set a hardware assisted breakpoint.\n\
16005 Like \"break\" except the breakpoint requires hardware support,\n\
16006 some target hardware may not have this support.\n\
16007 \n"
16008 BREAK_ARGS_HELP ("hbreak")));
16009 set_cmd_completer (c, location_completer);
16010
16011 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16012 Set a temporary hardware assisted breakpoint.\n\
16013 Like \"hbreak\" except the breakpoint is only temporary,\n\
16014 so it will be deleted when hit.\n\
16015 \n"
16016 BREAK_ARGS_HELP ("thbreak")));
16017 set_cmd_completer (c, location_completer);
16018
16019 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16020 Enable some breakpoints.\n\
16021 Give breakpoint numbers (separated by spaces) as arguments.\n\
16022 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16023 This is used to cancel the effect of the \"disable\" command.\n\
16024 With a subcommand you can enable temporarily."),
16025 &enablelist, "enable ", 1, &cmdlist);
16026
16027 add_com_alias ("en", "enable", class_breakpoint, 1);
16028
16029 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16030 Enable some breakpoints.\n\
16031 Give breakpoint numbers (separated by spaces) as arguments.\n\
16032 This is used to cancel the effect of the \"disable\" command.\n\
16033 May be abbreviated to simply \"enable\".\n"),
16034 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16035
16036 add_cmd ("once", no_class, enable_once_command, _("\
16037 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16038 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16039 &enablebreaklist);
16040
16041 add_cmd ("delete", no_class, enable_delete_command, _("\
16042 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16043 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16044 &enablebreaklist);
16045
16046 add_cmd ("count", no_class, enable_count_command, _("\
16047 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16048 If a breakpoint is hit while enabled in this fashion,\n\
16049 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16050 &enablebreaklist);
16051
16052 add_cmd ("delete", no_class, enable_delete_command, _("\
16053 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16054 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16055 &enablelist);
16056
16057 add_cmd ("once", no_class, enable_once_command, _("\
16058 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16059 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16060 &enablelist);
16061
16062 add_cmd ("count", no_class, enable_count_command, _("\
16063 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16064 If a breakpoint is hit while enabled in this fashion,\n\
16065 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16066 &enablelist);
16067
16068 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16069 Disable some breakpoints.\n\
16070 Arguments are breakpoint numbers with spaces in between.\n\
16071 To disable all breakpoints, give no argument.\n\
16072 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16073 &disablelist, "disable ", 1, &cmdlist);
16074 add_com_alias ("dis", "disable", class_breakpoint, 1);
16075 add_com_alias ("disa", "disable", class_breakpoint, 1);
16076
16077 add_cmd ("breakpoints", class_alias, disable_command, _("\
16078 Disable some breakpoints.\n\
16079 Arguments are breakpoint numbers with spaces in between.\n\
16080 To disable all breakpoints, give no argument.\n\
16081 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16082 This command may be abbreviated \"disable\"."),
16083 &disablelist);
16084
16085 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16086 Delete some breakpoints or auto-display expressions.\n\
16087 Arguments are breakpoint numbers with spaces in between.\n\
16088 To delete all breakpoints, give no argument.\n\
16089 \n\
16090 Also a prefix command for deletion of other GDB objects.\n\
16091 The \"unset\" command is also an alias for \"delete\"."),
16092 &deletelist, "delete ", 1, &cmdlist);
16093 add_com_alias ("d", "delete", class_breakpoint, 1);
16094 add_com_alias ("del", "delete", class_breakpoint, 1);
16095
16096 add_cmd ("breakpoints", class_alias, delete_command, _("\
16097 Delete some breakpoints or auto-display expressions.\n\
16098 Arguments are breakpoint numbers with spaces in between.\n\
16099 To delete all breakpoints, give no argument.\n\
16100 This command may be abbreviated \"delete\"."),
16101 &deletelist);
16102
16103 add_com ("clear", class_breakpoint, clear_command, _("\
16104 Clear breakpoint at specified location.\n\
16105 Argument may be a linespec, explicit, or address location as described below.\n\
16106 \n\
16107 With no argument, clears all breakpoints in the line that the selected frame\n\
16108 is executing in.\n"
16109 "\n" LOCATION_HELP_STRING "\n\
16110 See also the \"delete\" command which clears breakpoints by number."));
16111 add_com_alias ("cl", "clear", class_breakpoint, 1);
16112
16113 c = add_com ("break", class_breakpoint, break_command, _("\
16114 Set breakpoint at specified location.\n"
16115 BREAK_ARGS_HELP ("break")));
16116 set_cmd_completer (c, location_completer);
16117
16118 add_com_alias ("b", "break", class_run, 1);
16119 add_com_alias ("br", "break", class_run, 1);
16120 add_com_alias ("bre", "break", class_run, 1);
16121 add_com_alias ("brea", "break", class_run, 1);
16122
16123 if (dbx_commands)
16124 {
16125 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16126 Break in function/address or break at a line in the current file."),
16127 &stoplist, "stop ", 1, &cmdlist);
16128 add_cmd ("in", class_breakpoint, stopin_command,
16129 _("Break in function or address."), &stoplist);
16130 add_cmd ("at", class_breakpoint, stopat_command,
16131 _("Break at a line in the current file."), &stoplist);
16132 add_com ("status", class_info, breakpoints_info, _("\
16133 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16134 The \"Type\" column indicates one of:\n\
16135 \tbreakpoint - normal breakpoint\n\
16136 \twatchpoint - watchpoint\n\
16137 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16138 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16139 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16140 address and file/line number respectively.\n\
16141 \n\
16142 Convenience variable \"$_\" and default examine address for \"x\"\n\
16143 are set to the address of the last breakpoint listed unless the command\n\
16144 is prefixed with \"server \".\n\n\
16145 Convenience variable \"$bpnum\" contains the number of the last\n\
16146 breakpoint set."));
16147 }
16148
16149 add_info ("breakpoints", breakpoints_info, _("\
16150 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16151 The \"Type\" column indicates one of:\n\
16152 \tbreakpoint - normal breakpoint\n\
16153 \twatchpoint - watchpoint\n\
16154 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16155 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16156 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16157 address and file/line number respectively.\n\
16158 \n\
16159 Convenience variable \"$_\" and default examine address for \"x\"\n\
16160 are set to the address of the last breakpoint listed unless the command\n\
16161 is prefixed with \"server \".\n\n\
16162 Convenience variable \"$bpnum\" contains the number of the last\n\
16163 breakpoint set."));
16164
16165 add_info_alias ("b", "breakpoints", 1);
16166
16167 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16168 Status of all breakpoints, or breakpoint number NUMBER.\n\
16169 The \"Type\" column indicates one of:\n\
16170 \tbreakpoint - normal breakpoint\n\
16171 \twatchpoint - watchpoint\n\
16172 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16173 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16174 \tuntil - internal breakpoint used by the \"until\" command\n\
16175 \tfinish - internal breakpoint used by the \"finish\" command\n\
16176 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16177 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16178 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16179 address and file/line number respectively.\n\
16180 \n\
16181 Convenience variable \"$_\" and default examine address for \"x\"\n\
16182 are set to the address of the last breakpoint listed unless the command\n\
16183 is prefixed with \"server \".\n\n\
16184 Convenience variable \"$bpnum\" contains the number of the last\n\
16185 breakpoint set."),
16186 &maintenanceinfolist);
16187
16188 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16189 Set catchpoints to catch events."),
16190 &catch_cmdlist, "catch ",
16191 0/*allow-unknown*/, &cmdlist);
16192
16193 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16194 Set temporary catchpoints to catch events."),
16195 &tcatch_cmdlist, "tcatch ",
16196 0/*allow-unknown*/, &cmdlist);
16197
16198 add_catch_command ("fork", _("Catch calls to fork."),
16199 catch_fork_command_1,
16200 NULL,
16201 (void *) (uintptr_t) catch_fork_permanent,
16202 (void *) (uintptr_t) catch_fork_temporary);
16203 add_catch_command ("vfork", _("Catch calls to vfork."),
16204 catch_fork_command_1,
16205 NULL,
16206 (void *) (uintptr_t) catch_vfork_permanent,
16207 (void *) (uintptr_t) catch_vfork_temporary);
16208 add_catch_command ("exec", _("Catch calls to exec."),
16209 catch_exec_command_1,
16210 NULL,
16211 CATCH_PERMANENT,
16212 CATCH_TEMPORARY);
16213 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16214 Usage: catch load [REGEX]\n\
16215 If REGEX is given, only stop for libraries matching the regular expression."),
16216 catch_load_command_1,
16217 NULL,
16218 CATCH_PERMANENT,
16219 CATCH_TEMPORARY);
16220 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16221 Usage: catch unload [REGEX]\n\
16222 If REGEX is given, only stop for libraries matching the regular expression."),
16223 catch_unload_command_1,
16224 NULL,
16225 CATCH_PERMANENT,
16226 CATCH_TEMPORARY);
16227
16228 c = add_com ("watch", class_breakpoint, watch_command, _("\
16229 Set a watchpoint for an expression.\n\
16230 Usage: watch [-l|-location] EXPRESSION\n\
16231 A watchpoint stops execution of your program whenever the value of\n\
16232 an expression changes.\n\
16233 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16234 the memory to which it refers."));
16235 set_cmd_completer (c, expression_completer);
16236
16237 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16238 Set a read watchpoint for an expression.\n\
16239 Usage: rwatch [-l|-location] EXPRESSION\n\
16240 A watchpoint stops execution of your program whenever the value of\n\
16241 an expression is read.\n\
16242 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16243 the memory to which it refers."));
16244 set_cmd_completer (c, expression_completer);
16245
16246 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16247 Set a watchpoint for an expression.\n\
16248 Usage: awatch [-l|-location] EXPRESSION\n\
16249 A watchpoint stops execution of your program whenever the value of\n\
16250 an expression is either read or written.\n\
16251 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16252 the memory to which it refers."));
16253 set_cmd_completer (c, expression_completer);
16254
16255 add_info ("watchpoints", watchpoints_info, _("\
16256 Status of specified watchpoints (all watchpoints if no argument)."));
16257
16258 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16259 respond to changes - contrary to the description. */
16260 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16261 &can_use_hw_watchpoints, _("\
16262 Set debugger's willingness to use watchpoint hardware."), _("\
16263 Show debugger's willingness to use watchpoint hardware."), _("\
16264 If zero, gdb will not use hardware for new watchpoints, even if\n\
16265 such is available. (However, any hardware watchpoints that were\n\
16266 created before setting this to nonzero, will continue to use watchpoint\n\
16267 hardware.)"),
16268 NULL,
16269 show_can_use_hw_watchpoints,
16270 &setlist, &showlist);
16271
16272 can_use_hw_watchpoints = 1;
16273
16274 /* Tracepoint manipulation commands. */
16275
16276 c = add_com ("trace", class_breakpoint, trace_command, _("\
16277 Set a tracepoint at specified location.\n\
16278 \n"
16279 BREAK_ARGS_HELP ("trace") "\n\
16280 Do \"help tracepoints\" for info on other tracepoint commands."));
16281 set_cmd_completer (c, location_completer);
16282
16283 add_com_alias ("tp", "trace", class_alias, 0);
16284 add_com_alias ("tr", "trace", class_alias, 1);
16285 add_com_alias ("tra", "trace", class_alias, 1);
16286 add_com_alias ("trac", "trace", class_alias, 1);
16287
16288 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16289 Set a fast tracepoint at specified location.\n\
16290 \n"
16291 BREAK_ARGS_HELP ("ftrace") "\n\
16292 Do \"help tracepoints\" for info on other tracepoint commands."));
16293 set_cmd_completer (c, location_completer);
16294
16295 c = add_com ("strace", class_breakpoint, strace_command, _("\
16296 Set a static tracepoint at location or marker.\n\
16297 \n\
16298 strace [LOCATION] [if CONDITION]\n\
16299 LOCATION may be a linespec, explicit, or address location (described below) \n\
16300 or -m MARKER_ID.\n\n\
16301 If a marker id is specified, probe the marker with that name. With\n\
16302 no LOCATION, uses current execution address of the selected stack frame.\n\
16303 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16304 This collects arbitrary user data passed in the probe point call to the\n\
16305 tracing library. You can inspect it when analyzing the trace buffer,\n\
16306 by printing the $_sdata variable like any other convenience variable.\n\
16307 \n\
16308 CONDITION is a boolean expression.\n\
16309 \n" LOCATION_HELP_STRING "\n\
16310 Multiple tracepoints at one place are permitted, and useful if their\n\
16311 conditions are different.\n\
16312 \n\
16313 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16314 Do \"help tracepoints\" for info on other tracepoint commands."));
16315 set_cmd_completer (c, location_completer);
16316
16317 add_info ("tracepoints", tracepoints_info, _("\
16318 Status of specified tracepoints (all tracepoints if no argument).\n\
16319 Convenience variable \"$tpnum\" contains the number of the\n\
16320 last tracepoint set."));
16321
16322 add_info_alias ("tp", "tracepoints", 1);
16323
16324 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16325 Delete specified tracepoints.\n\
16326 Arguments are tracepoint numbers, separated by spaces.\n\
16327 No argument means delete all tracepoints."),
16328 &deletelist);
16329 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16330
16331 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16332 Disable specified tracepoints.\n\
16333 Arguments are tracepoint numbers, separated by spaces.\n\
16334 No argument means disable all tracepoints."),
16335 &disablelist);
16336 deprecate_cmd (c, "disable");
16337
16338 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16339 Enable specified tracepoints.\n\
16340 Arguments are tracepoint numbers, separated by spaces.\n\
16341 No argument means enable all tracepoints."),
16342 &enablelist);
16343 deprecate_cmd (c, "enable");
16344
16345 add_com ("passcount", class_trace, trace_pass_command, _("\
16346 Set the passcount for a tracepoint.\n\
16347 The trace will end when the tracepoint has been passed 'count' times.\n\
16348 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16349 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16350
16351 add_prefix_cmd ("save", class_breakpoint, save_command,
16352 _("Save breakpoint definitions as a script."),
16353 &save_cmdlist, "save ",
16354 0/*allow-unknown*/, &cmdlist);
16355
16356 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16357 Save current breakpoint definitions as a script.\n\
16358 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16359 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16360 session to restore them."),
16361 &save_cmdlist);
16362 set_cmd_completer (c, filename_completer);
16363
16364 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16365 Save current tracepoint definitions as a script.\n\
16366 Use the 'source' command in another debug session to restore them."),
16367 &save_cmdlist);
16368 set_cmd_completer (c, filename_completer);
16369
16370 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16371 deprecate_cmd (c, "save tracepoints");
16372
16373 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16374 Breakpoint specific settings\n\
16375 Configure various breakpoint-specific variables such as\n\
16376 pending breakpoint behavior"),
16377 &breakpoint_set_cmdlist, "set breakpoint ",
16378 0/*allow-unknown*/, &setlist);
16379 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16380 Breakpoint specific settings\n\
16381 Configure various breakpoint-specific variables such as\n\
16382 pending breakpoint behavior"),
16383 &breakpoint_show_cmdlist, "show breakpoint ",
16384 0/*allow-unknown*/, &showlist);
16385
16386 add_setshow_auto_boolean_cmd ("pending", no_class,
16387 &pending_break_support, _("\
16388 Set debugger's behavior regarding pending breakpoints."), _("\
16389 Show debugger's behavior regarding pending breakpoints."), _("\
16390 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16391 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16392 an error. If auto, an unrecognized breakpoint location results in a\n\
16393 user-query to see if a pending breakpoint should be created."),
16394 NULL,
16395 show_pending_break_support,
16396 &breakpoint_set_cmdlist,
16397 &breakpoint_show_cmdlist);
16398
16399 pending_break_support = AUTO_BOOLEAN_AUTO;
16400
16401 add_setshow_boolean_cmd ("auto-hw", no_class,
16402 &automatic_hardware_breakpoints, _("\
16403 Set automatic usage of hardware breakpoints."), _("\
16404 Show automatic usage of hardware breakpoints."), _("\
16405 If set, the debugger will automatically use hardware breakpoints for\n\
16406 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16407 a warning will be emitted for such breakpoints."),
16408 NULL,
16409 show_automatic_hardware_breakpoints,
16410 &breakpoint_set_cmdlist,
16411 &breakpoint_show_cmdlist);
16412
16413 add_setshow_boolean_cmd ("always-inserted", class_support,
16414 &always_inserted_mode, _("\
16415 Set mode for inserting breakpoints."), _("\
16416 Show mode for inserting breakpoints."), _("\
16417 When this mode is on, breakpoints are inserted immediately as soon as\n\
16418 they're created, kept inserted even when execution stops, and removed\n\
16419 only when the user deletes them. When this mode is off (the default),\n\
16420 breakpoints are inserted only when execution continues, and removed\n\
16421 when execution stops."),
16422 NULL,
16423 &show_always_inserted_mode,
16424 &breakpoint_set_cmdlist,
16425 &breakpoint_show_cmdlist);
16426
16427 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16428 condition_evaluation_enums,
16429 &condition_evaluation_mode_1, _("\
16430 Set mode of breakpoint condition evaluation."), _("\
16431 Show mode of breakpoint condition evaluation."), _("\
16432 When this is set to \"host\", breakpoint conditions will be\n\
16433 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16434 breakpoint conditions will be downloaded to the target (if the target\n\
16435 supports such feature) and conditions will be evaluated on the target's side.\n\
16436 If this is set to \"auto\" (default), this will be automatically set to\n\
16437 \"target\" if it supports condition evaluation, otherwise it will\n\
16438 be set to \"gdb\""),
16439 &set_condition_evaluation_mode,
16440 &show_condition_evaluation_mode,
16441 &breakpoint_set_cmdlist,
16442 &breakpoint_show_cmdlist);
16443
16444 add_com ("break-range", class_breakpoint, break_range_command, _("\
16445 Set a breakpoint for an address range.\n\
16446 break-range START-LOCATION, END-LOCATION\n\
16447 where START-LOCATION and END-LOCATION can be one of the following:\n\
16448 LINENUM, for that line in the current file,\n\
16449 FILE:LINENUM, for that line in that file,\n\
16450 +OFFSET, for that number of lines after the current line\n\
16451 or the start of the range\n\
16452 FUNCTION, for the first line in that function,\n\
16453 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16454 *ADDRESS, for the instruction at that address.\n\
16455 \n\
16456 The breakpoint will stop execution of the inferior whenever it executes\n\
16457 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16458 range (including START-LOCATION and END-LOCATION)."));
16459
16460 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16461 Set a dynamic printf at specified location.\n\
16462 dprintf location,format string,arg1,arg2,...\n\
16463 location may be a linespec, explicit, or address location.\n"
16464 "\n" LOCATION_HELP_STRING));
16465 set_cmd_completer (c, location_completer);
16466
16467 add_setshow_enum_cmd ("dprintf-style", class_support,
16468 dprintf_style_enums, &dprintf_style, _("\
16469 Set the style of usage for dynamic printf."), _("\
16470 Show the style of usage for dynamic printf."), _("\
16471 This setting chooses how GDB will do a dynamic printf.\n\
16472 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16473 console, as with the \"printf\" command.\n\
16474 If the value is \"call\", the print is done by calling a function in your\n\
16475 program; by default printf(), but you can choose a different function or\n\
16476 output stream by setting dprintf-function and dprintf-channel."),
16477 update_dprintf_commands, NULL,
16478 &setlist, &showlist);
16479
16480 dprintf_function = xstrdup ("printf");
16481 add_setshow_string_cmd ("dprintf-function", class_support,
16482 &dprintf_function, _("\
16483 Set the function to use for dynamic printf"), _("\
16484 Show the function to use for dynamic printf"), NULL,
16485 update_dprintf_commands, NULL,
16486 &setlist, &showlist);
16487
16488 dprintf_channel = xstrdup ("");
16489 add_setshow_string_cmd ("dprintf-channel", class_support,
16490 &dprintf_channel, _("\
16491 Set the channel to use for dynamic printf"), _("\
16492 Show the channel to use for dynamic printf"), NULL,
16493 update_dprintf_commands, NULL,
16494 &setlist, &showlist);
16495
16496 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16497 &disconnected_dprintf, _("\
16498 Set whether dprintf continues after GDB disconnects."), _("\
16499 Show whether dprintf continues after GDB disconnects."), _("\
16500 Use this to let dprintf commands continue to hit and produce output\n\
16501 even if GDB disconnects or detaches from the target."),
16502 NULL,
16503 NULL,
16504 &setlist, &showlist);
16505
16506 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16507 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16508 (target agent only) This is useful for formatted output in user-defined commands."));
16509
16510 automatic_hardware_breakpoints = 1;
16511
16512 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16513 observer_attach_thread_exit (remove_threaded_breakpoints);
16514 }
This page took 0.781431 seconds and 4 git commands to generate.