gdb: Remove unneeded parameter from set_breakpoint_location_function
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "common/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "common/array-view.h"
86 #include "common/gdb_optional.h"
87
88 /* Prototypes for local functions. */
89
90 static void map_breakpoint_numbers (const char *,
91 gdb::function_view<void (breakpoint *)>);
92
93 static void breakpoint_re_set_default (struct breakpoint *);
94
95 static void
96 create_sals_from_location_default (const struct event_location *location,
97 struct linespec_result *canonical,
98 enum bptype type_wanted);
99
100 static void create_breakpoints_sal_default (struct gdbarch *,
101 struct linespec_result *,
102 gdb::unique_xmalloc_ptr<char>,
103 gdb::unique_xmalloc_ptr<char>,
104 enum bptype,
105 enum bpdisp, int, int,
106 int,
107 const struct breakpoint_ops *,
108 int, int, int, unsigned);
109
110 static std::vector<symtab_and_line> decode_location_default
111 (struct breakpoint *b, const struct event_location *location,
112 struct program_space *search_pspace);
113
114 static int can_use_hardware_watchpoint
115 (const std::vector<value_ref_ptr> &vals);
116
117 static void mention (struct breakpoint *);
118
119 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
120 enum bptype,
121 const struct breakpoint_ops *);
122 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
123 const struct symtab_and_line *);
124
125 /* This function is used in gdbtk sources and thus can not be made
126 static. */
127 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
128 struct symtab_and_line,
129 enum bptype,
130 const struct breakpoint_ops *);
131
132 static struct breakpoint *
133 momentary_breakpoint_from_master (struct breakpoint *orig,
134 enum bptype type,
135 const struct breakpoint_ops *ops,
136 int loc_enabled);
137
138 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
139
140 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
141 CORE_ADDR bpaddr,
142 enum bptype bptype);
143
144 static void describe_other_breakpoints (struct gdbarch *,
145 struct program_space *, CORE_ADDR,
146 struct obj_section *, int);
147
148 static int watchpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static int is_hardware_watchpoint (const struct breakpoint *bpt);
221
222 static void insert_breakpoint_locations (void);
223
224 static void trace_pass_command (const char *, int);
225
226 static void set_tracepoint_count (int num);
227
228 static int is_masked_watchpoint (const struct breakpoint *b);
229
230 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
231
232 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
233 otherwise. */
234
235 static int strace_marker_p (struct breakpoint *b);
236
237 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
238 that are implemented on top of software or hardware breakpoints
239 (user breakpoints, internal and momentary breakpoints, etc.). */
240 static struct breakpoint_ops bkpt_base_breakpoint_ops;
241
242 /* Internal breakpoints class type. */
243 static struct breakpoint_ops internal_breakpoint_ops;
244
245 /* Momentary breakpoints class type. */
246 static struct breakpoint_ops momentary_breakpoint_ops;
247
248 /* The breakpoint_ops structure to be used in regular user created
249 breakpoints. */
250 struct breakpoint_ops bkpt_breakpoint_ops;
251
252 /* Breakpoints set on probes. */
253 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
254
255 /* Dynamic printf class type. */
256 struct breakpoint_ops dprintf_breakpoint_ops;
257
258 /* The style in which to perform a dynamic printf. This is a user
259 option because different output options have different tradeoffs;
260 if GDB does the printing, there is better error handling if there
261 is a problem with any of the arguments, but using an inferior
262 function lets you have special-purpose printers and sending of
263 output to the same place as compiled-in print functions. */
264
265 static const char dprintf_style_gdb[] = "gdb";
266 static const char dprintf_style_call[] = "call";
267 static const char dprintf_style_agent[] = "agent";
268 static const char *const dprintf_style_enums[] = {
269 dprintf_style_gdb,
270 dprintf_style_call,
271 dprintf_style_agent,
272 NULL
273 };
274 static const char *dprintf_style = dprintf_style_gdb;
275
276 /* The function to use for dynamic printf if the preferred style is to
277 call into the inferior. The value is simply a string that is
278 copied into the command, so it can be anything that GDB can
279 evaluate to a callable address, not necessarily a function name. */
280
281 static char *dprintf_function;
282
283 /* The channel to use for dynamic printf if the preferred style is to
284 call into the inferior; if a nonempty string, it will be passed to
285 the call as the first argument, with the format string as the
286 second. As with the dprintf function, this can be anything that
287 GDB knows how to evaluate, so in addition to common choices like
288 "stderr", this could be an app-specific expression like
289 "mystreams[curlogger]". */
290
291 static char *dprintf_channel;
292
293 /* True if dprintf commands should continue to operate even if GDB
294 has disconnected. */
295 static int disconnected_dprintf = 1;
296
297 struct command_line *
298 breakpoint_commands (struct breakpoint *b)
299 {
300 return b->commands ? b->commands.get () : NULL;
301 }
302
303 /* Flag indicating that a command has proceeded the inferior past the
304 current breakpoint. */
305
306 static int breakpoint_proceeded;
307
308 const char *
309 bpdisp_text (enum bpdisp disp)
310 {
311 /* NOTE: the following values are a part of MI protocol and
312 represent values of 'disp' field returned when inferior stops at
313 a breakpoint. */
314 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
315
316 return bpdisps[(int) disp];
317 }
318
319 /* Prototypes for exported functions. */
320 /* If FALSE, gdb will not use hardware support for watchpoints, even
321 if such is available. */
322 static int can_use_hw_watchpoints;
323
324 static void
325 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c,
327 const char *value)
328 {
329 fprintf_filtered (file,
330 _("Debugger's willingness to use "
331 "watchpoint hardware is %s.\n"),
332 value);
333 }
334
335 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
336 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
337 for unrecognized breakpoint locations.
338 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
339 static enum auto_boolean pending_break_support;
340 static void
341 show_pending_break_support (struct ui_file *file, int from_tty,
342 struct cmd_list_element *c,
343 const char *value)
344 {
345 fprintf_filtered (file,
346 _("Debugger's behavior regarding "
347 "pending breakpoints is %s.\n"),
348 value);
349 }
350
351 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
352 set with "break" but falling in read-only memory.
353 If 0, gdb will warn about such breakpoints, but won't automatically
354 use hardware breakpoints. */
355 static int automatic_hardware_breakpoints;
356 static void
357 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c,
359 const char *value)
360 {
361 fprintf_filtered (file,
362 _("Automatic usage of hardware breakpoints is %s.\n"),
363 value);
364 }
365
366 /* If on, GDB keeps breakpoints inserted even if the inferior is
367 stopped, and immediately inserts any new breakpoints as soon as
368 they're created. If off (default), GDB keeps breakpoints off of
369 the target as long as possible. That is, it delays inserting
370 breakpoints until the next resume, and removes them again when the
371 target fully stops. This is a bit safer in case GDB crashes while
372 processing user input. */
373 static int always_inserted_mode = 0;
374
375 static void
376 show_always_inserted_mode (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
380 value);
381 }
382
383 /* See breakpoint.h. */
384
385 int
386 breakpoints_should_be_inserted_now (void)
387 {
388 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
389 {
390 /* If breakpoints are global, they should be inserted even if no
391 thread under gdb's control is running, or even if there are
392 no threads under GDB's control yet. */
393 return 1;
394 }
395 else if (target_has_execution)
396 {
397 if (always_inserted_mode)
398 {
399 /* The user wants breakpoints inserted even if all threads
400 are stopped. */
401 return 1;
402 }
403
404 if (threads_are_executing ())
405 return 1;
406
407 /* Don't remove breakpoints yet if, even though all threads are
408 stopped, we still have events to process. */
409 for (thread_info *tp : all_non_exited_threads ())
410 if (tp->resumed
411 && tp->suspend.waitstatus_pending_p)
412 return 1;
413 }
414 return 0;
415 }
416
417 static const char condition_evaluation_both[] = "host or target";
418
419 /* Modes for breakpoint condition evaluation. */
420 static const char condition_evaluation_auto[] = "auto";
421 static const char condition_evaluation_host[] = "host";
422 static const char condition_evaluation_target[] = "target";
423 static const char *const condition_evaluation_enums[] = {
424 condition_evaluation_auto,
425 condition_evaluation_host,
426 condition_evaluation_target,
427 NULL
428 };
429
430 /* Global that holds the current mode for breakpoint condition evaluation. */
431 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
432
433 /* Global that we use to display information to the user (gets its value from
434 condition_evaluation_mode_1. */
435 static const char *condition_evaluation_mode = condition_evaluation_auto;
436
437 /* Translate a condition evaluation mode MODE into either "host"
438 or "target". This is used mostly to translate from "auto" to the
439 real setting that is being used. It returns the translated
440 evaluation mode. */
441
442 static const char *
443 translate_condition_evaluation_mode (const char *mode)
444 {
445 if (mode == condition_evaluation_auto)
446 {
447 if (target_supports_evaluation_of_breakpoint_conditions ())
448 return condition_evaluation_target;
449 else
450 return condition_evaluation_host;
451 }
452 else
453 return mode;
454 }
455
456 /* Discovers what condition_evaluation_auto translates to. */
457
458 static const char *
459 breakpoint_condition_evaluation_mode (void)
460 {
461 return translate_condition_evaluation_mode (condition_evaluation_mode);
462 }
463
464 /* Return true if GDB should evaluate breakpoint conditions or false
465 otherwise. */
466
467 static int
468 gdb_evaluates_breakpoint_condition_p (void)
469 {
470 const char *mode = breakpoint_condition_evaluation_mode ();
471
472 return (mode == condition_evaluation_host);
473 }
474
475 /* Are we executing breakpoint commands? */
476 static int executing_breakpoint_commands;
477
478 /* Are overlay event breakpoints enabled? */
479 static int overlay_events_enabled;
480
481 /* See description in breakpoint.h. */
482 int target_exact_watchpoints = 0;
483
484 /* Walk the following statement or block through all breakpoints.
485 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
486 current breakpoint. */
487
488 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
489
490 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
491 for (B = breakpoint_chain; \
492 B ? (TMP=B->next, 1): 0; \
493 B = TMP)
494
495 /* Similar iterator for the low-level breakpoints. SAFE variant is
496 not provided so update_global_location_list must not be called
497 while executing the block of ALL_BP_LOCATIONS. */
498
499 #define ALL_BP_LOCATIONS(B,BP_TMP) \
500 for (BP_TMP = bp_locations; \
501 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
502 BP_TMP++)
503
504 /* Iterates through locations with address ADDRESS for the currently selected
505 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
506 to where the loop should start from.
507 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
508 appropriate location to start with. */
509
510 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
511 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
512 BP_LOCP_TMP = BP_LOCP_START; \
513 BP_LOCP_START \
514 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
515 && (*BP_LOCP_TMP)->address == ADDRESS); \
516 BP_LOCP_TMP++)
517
518 /* Iterator for tracepoints only. */
519
520 #define ALL_TRACEPOINTS(B) \
521 for (B = breakpoint_chain; B; B = B->next) \
522 if (is_tracepoint (B))
523
524 /* Chains of all breakpoints defined. */
525
526 struct breakpoint *breakpoint_chain;
527
528 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
529
530 static struct bp_location **bp_locations;
531
532 /* Number of elements of BP_LOCATIONS. */
533
534 static unsigned bp_locations_count;
535
536 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
537 ADDRESS for the current elements of BP_LOCATIONS which get a valid
538 result from bp_location_has_shadow. You can use it for roughly
539 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
540 an address you need to read. */
541
542 static CORE_ADDR bp_locations_placed_address_before_address_max;
543
544 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
545 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
546 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
547 You can use it for roughly limiting the subrange of BP_LOCATIONS to
548 scan for shadow bytes for an address you need to read. */
549
550 static CORE_ADDR bp_locations_shadow_len_after_address_max;
551
552 /* The locations that no longer correspond to any breakpoint, unlinked
553 from the bp_locations array, but for which a hit may still be
554 reported by a target. */
555 static std::vector<bp_location *> moribund_locations;
556
557 /* Number of last breakpoint made. */
558
559 static int breakpoint_count;
560
561 /* The value of `breakpoint_count' before the last command that
562 created breakpoints. If the last (break-like) command created more
563 than one breakpoint, then the difference between BREAKPOINT_COUNT
564 and PREV_BREAKPOINT_COUNT is more than one. */
565 static int prev_breakpoint_count;
566
567 /* Number of last tracepoint made. */
568
569 static int tracepoint_count;
570
571 static struct cmd_list_element *breakpoint_set_cmdlist;
572 static struct cmd_list_element *breakpoint_show_cmdlist;
573 struct cmd_list_element *save_cmdlist;
574
575 /* See declaration at breakpoint.h. */
576
577 struct breakpoint *
578 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
579 void *user_data)
580 {
581 struct breakpoint *b = NULL;
582
583 ALL_BREAKPOINTS (b)
584 {
585 if (func (b, user_data) != 0)
586 break;
587 }
588
589 return b;
590 }
591
592 /* Return whether a breakpoint is an active enabled breakpoint. */
593 static int
594 breakpoint_enabled (struct breakpoint *b)
595 {
596 return (b->enable_state == bp_enabled);
597 }
598
599 /* Set breakpoint count to NUM. */
600
601 static void
602 set_breakpoint_count (int num)
603 {
604 prev_breakpoint_count = breakpoint_count;
605 breakpoint_count = num;
606 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
607 }
608
609 /* Used by `start_rbreak_breakpoints' below, to record the current
610 breakpoint count before "rbreak" creates any breakpoint. */
611 static int rbreak_start_breakpoint_count;
612
613 /* Called at the start an "rbreak" command to record the first
614 breakpoint made. */
615
616 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
617 {
618 rbreak_start_breakpoint_count = breakpoint_count;
619 }
620
621 /* Called at the end of an "rbreak" command to record the last
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
625 {
626 prev_breakpoint_count = rbreak_start_breakpoint_count;
627 }
628
629 /* Used in run_command to zero the hit count when a new run starts. */
630
631 void
632 clear_breakpoint_hit_counts (void)
633 {
634 struct breakpoint *b;
635
636 ALL_BREAKPOINTS (b)
637 b->hit_count = 0;
638 }
639
640 \f
641 /* Return the breakpoint with the specified number, or NULL
642 if the number does not refer to an existing breakpoint. */
643
644 struct breakpoint *
645 get_breakpoint (int num)
646 {
647 struct breakpoint *b;
648
649 ALL_BREAKPOINTS (b)
650 if (b->number == num)
651 return b;
652
653 return NULL;
654 }
655
656 \f
657
658 /* Mark locations as "conditions have changed" in case the target supports
659 evaluating conditions on its side. */
660
661 static void
662 mark_breakpoint_modified (struct breakpoint *b)
663 {
664 struct bp_location *loc;
665
666 /* This is only meaningful if the target is
667 evaluating conditions and if the user has
668 opted for condition evaluation on the target's
669 side. */
670 if (gdb_evaluates_breakpoint_condition_p ()
671 || !target_supports_evaluation_of_breakpoint_conditions ())
672 return;
673
674 if (!is_breakpoint (b))
675 return;
676
677 for (loc = b->loc; loc; loc = loc->next)
678 loc->condition_changed = condition_modified;
679 }
680
681 /* Mark location as "conditions have changed" in case the target supports
682 evaluating conditions on its side. */
683
684 static void
685 mark_breakpoint_location_modified (struct bp_location *loc)
686 {
687 /* This is only meaningful if the target is
688 evaluating conditions and if the user has
689 opted for condition evaluation on the target's
690 side. */
691 if (gdb_evaluates_breakpoint_condition_p ()
692 || !target_supports_evaluation_of_breakpoint_conditions ())
693
694 return;
695
696 if (!is_breakpoint (loc->owner))
697 return;
698
699 loc->condition_changed = condition_modified;
700 }
701
702 /* Sets the condition-evaluation mode using the static global
703 condition_evaluation_mode. */
704
705 static void
706 set_condition_evaluation_mode (const char *args, int from_tty,
707 struct cmd_list_element *c)
708 {
709 const char *old_mode, *new_mode;
710
711 if ((condition_evaluation_mode_1 == condition_evaluation_target)
712 && !target_supports_evaluation_of_breakpoint_conditions ())
713 {
714 condition_evaluation_mode_1 = condition_evaluation_mode;
715 warning (_("Target does not support breakpoint condition evaluation.\n"
716 "Using host evaluation mode instead."));
717 return;
718 }
719
720 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
721 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
722
723 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
724 settings was "auto". */
725 condition_evaluation_mode = condition_evaluation_mode_1;
726
727 /* Only update the mode if the user picked a different one. */
728 if (new_mode != old_mode)
729 {
730 struct bp_location *loc, **loc_tmp;
731 /* If the user switched to a different evaluation mode, we
732 need to synch the changes with the target as follows:
733
734 "host" -> "target": Send all (valid) conditions to the target.
735 "target" -> "host": Remove all the conditions from the target.
736 */
737
738 if (new_mode == condition_evaluation_target)
739 {
740 /* Mark everything modified and synch conditions with the
741 target. */
742 ALL_BP_LOCATIONS (loc, loc_tmp)
743 mark_breakpoint_location_modified (loc);
744 }
745 else
746 {
747 /* Manually mark non-duplicate locations to synch conditions
748 with the target. We do this to remove all the conditions the
749 target knows about. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 if (is_breakpoint (loc->owner) && loc->inserted)
752 loc->needs_update = 1;
753 }
754
755 /* Do the update. */
756 update_global_location_list (UGLL_MAY_INSERT);
757 }
758
759 return;
760 }
761
762 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
763 what "auto" is translating to. */
764
765 static void
766 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 if (condition_evaluation_mode == condition_evaluation_auto)
770 fprintf_filtered (file,
771 _("Breakpoint condition evaluation "
772 "mode is %s (currently %s).\n"),
773 value,
774 breakpoint_condition_evaluation_mode ());
775 else
776 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
777 value);
778 }
779
780 /* A comparison function for bp_location AP and BP that is used by
781 bsearch. This comparison function only cares about addresses, unlike
782 the more general bp_locations_compare function. */
783
784 static int
785 bp_locations_compare_addrs (const void *ap, const void *bp)
786 {
787 const struct bp_location *a = *(const struct bp_location **) ap;
788 const struct bp_location *b = *(const struct bp_location **) bp;
789
790 if (a->address == b->address)
791 return 0;
792 else
793 return ((a->address > b->address) - (a->address < b->address));
794 }
795
796 /* Helper function to skip all bp_locations with addresses
797 less than ADDRESS. It returns the first bp_location that
798 is greater than or equal to ADDRESS. If none is found, just
799 return NULL. */
800
801 static struct bp_location **
802 get_first_locp_gte_addr (CORE_ADDR address)
803 {
804 struct bp_location dummy_loc;
805 struct bp_location *dummy_locp = &dummy_loc;
806 struct bp_location **locp_found = NULL;
807
808 /* Initialize the dummy location's address field. */
809 dummy_loc.address = address;
810
811 /* Find a close match to the first location at ADDRESS. */
812 locp_found = ((struct bp_location **)
813 bsearch (&dummy_locp, bp_locations, bp_locations_count,
814 sizeof (struct bp_location **),
815 bp_locations_compare_addrs));
816
817 /* Nothing was found, nothing left to do. */
818 if (locp_found == NULL)
819 return NULL;
820
821 /* We may have found a location that is at ADDRESS but is not the first in the
822 location's list. Go backwards (if possible) and locate the first one. */
823 while ((locp_found - 1) >= bp_locations
824 && (*(locp_found - 1))->address == address)
825 locp_found--;
826
827 return locp_found;
828 }
829
830 void
831 set_breakpoint_condition (struct breakpoint *b, const char *exp,
832 int from_tty)
833 {
834 xfree (b->cond_string);
835 b->cond_string = NULL;
836
837 if (is_watchpoint (b))
838 {
839 struct watchpoint *w = (struct watchpoint *) b;
840
841 w->cond_exp.reset ();
842 }
843 else
844 {
845 struct bp_location *loc;
846
847 for (loc = b->loc; loc; loc = loc->next)
848 {
849 loc->cond.reset ();
850
851 /* No need to free the condition agent expression
852 bytecode (if we have one). We will handle this
853 when we go through update_global_location_list. */
854 }
855 }
856
857 if (*exp == 0)
858 {
859 if (from_tty)
860 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
861 }
862 else
863 {
864 const char *arg = exp;
865
866 /* I don't know if it matters whether this is the string the user
867 typed in or the decompiled expression. */
868 b->cond_string = xstrdup (arg);
869 b->condition_not_parsed = 0;
870
871 if (is_watchpoint (b))
872 {
873 struct watchpoint *w = (struct watchpoint *) b;
874
875 innermost_block_tracker tracker;
876 arg = exp;
877 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
878 if (*arg)
879 error (_("Junk at end of expression"));
880 w->cond_exp_valid_block = tracker.block ();
881 }
882 else
883 {
884 struct bp_location *loc;
885
886 for (loc = b->loc; loc; loc = loc->next)
887 {
888 arg = exp;
889 loc->cond =
890 parse_exp_1 (&arg, loc->address,
891 block_for_pc (loc->address), 0);
892 if (*arg)
893 error (_("Junk at end of expression"));
894 }
895 }
896 }
897 mark_breakpoint_modified (b);
898
899 gdb::observers::breakpoint_modified.notify (b);
900 }
901
902 /* Completion for the "condition" command. */
903
904 static void
905 condition_completer (struct cmd_list_element *cmd,
906 completion_tracker &tracker,
907 const char *text, const char *word)
908 {
909 const char *space;
910
911 text = skip_spaces (text);
912 space = skip_to_space (text);
913 if (*space == '\0')
914 {
915 int len;
916 struct breakpoint *b;
917
918 if (text[0] == '$')
919 {
920 /* We don't support completion of history indices. */
921 if (!isdigit (text[1]))
922 complete_internalvar (tracker, &text[1]);
923 return;
924 }
925
926 /* We're completing the breakpoint number. */
927 len = strlen (text);
928
929 ALL_BREAKPOINTS (b)
930 {
931 char number[50];
932
933 xsnprintf (number, sizeof (number), "%d", b->number);
934
935 if (strncmp (number, text, len) == 0)
936 tracker.add_completion (make_unique_xstrdup (number));
937 }
938
939 return;
940 }
941
942 /* We're completing the expression part. */
943 text = skip_spaces (space);
944 expression_completer (cmd, tracker, text, word);
945 }
946
947 /* condition N EXP -- set break condition of breakpoint N to EXP. */
948
949 static void
950 condition_command (const char *arg, int from_tty)
951 {
952 struct breakpoint *b;
953 const char *p;
954 int bnum;
955
956 if (arg == 0)
957 error_no_arg (_("breakpoint number"));
958
959 p = arg;
960 bnum = get_number (&p);
961 if (bnum == 0)
962 error (_("Bad breakpoint argument: '%s'"), arg);
963
964 ALL_BREAKPOINTS (b)
965 if (b->number == bnum)
966 {
967 /* Check if this breakpoint has a "stop" method implemented in an
968 extension language. This method and conditions entered into GDB
969 from the CLI are mutually exclusive. */
970 const struct extension_language_defn *extlang
971 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
972
973 if (extlang != NULL)
974 {
975 error (_("Only one stop condition allowed. There is currently"
976 " a %s stop condition defined for this breakpoint."),
977 ext_lang_capitalized_name (extlang));
978 }
979 set_breakpoint_condition (b, p, from_tty);
980
981 if (is_breakpoint (b))
982 update_global_location_list (UGLL_MAY_INSERT);
983
984 return;
985 }
986
987 error (_("No breakpoint number %d."), bnum);
988 }
989
990 /* Check that COMMAND do not contain commands that are suitable
991 only for tracepoints and not suitable for ordinary breakpoints.
992 Throw if any such commands is found. */
993
994 static void
995 check_no_tracepoint_commands (struct command_line *commands)
996 {
997 struct command_line *c;
998
999 for (c = commands; c; c = c->next)
1000 {
1001 if (c->control_type == while_stepping_control)
1002 error (_("The 'while-stepping' command can "
1003 "only be used for tracepoints"));
1004
1005 check_no_tracepoint_commands (c->body_list_0.get ());
1006 check_no_tracepoint_commands (c->body_list_1.get ());
1007
1008 /* Not that command parsing removes leading whitespace and comment
1009 lines and also empty lines. So, we only need to check for
1010 command directly. */
1011 if (strstr (c->line, "collect ") == c->line)
1012 error (_("The 'collect' command can only be used for tracepoints"));
1013
1014 if (strstr (c->line, "teval ") == c->line)
1015 error (_("The 'teval' command can only be used for tracepoints"));
1016 }
1017 }
1018
1019 struct longjmp_breakpoint : public breakpoint
1020 {
1021 ~longjmp_breakpoint () override;
1022 };
1023
1024 /* Encapsulate tests for different types of tracepoints. */
1025
1026 static bool
1027 is_tracepoint_type (bptype type)
1028 {
1029 return (type == bp_tracepoint
1030 || type == bp_fast_tracepoint
1031 || type == bp_static_tracepoint);
1032 }
1033
1034 static bool
1035 is_longjmp_type (bptype type)
1036 {
1037 return type == bp_longjmp || type == bp_exception;
1038 }
1039
1040 int
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 \f
1497
1498 /* Return true if BPT is either a software breakpoint or a hardware
1499 breakpoint. */
1500
1501 int
1502 is_breakpoint (const struct breakpoint *bpt)
1503 {
1504 return (bpt->type == bp_breakpoint
1505 || bpt->type == bp_hardware_breakpoint
1506 || bpt->type == bp_dprintf);
1507 }
1508
1509 /* Return true if BPT is of any hardware watchpoint kind. */
1510
1511 static int
1512 is_hardware_watchpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_hardware_watchpoint
1515 || bpt->type == bp_read_watchpoint
1516 || bpt->type == bp_access_watchpoint);
1517 }
1518
1519 /* Return true if BPT is of any watchpoint kind, hardware or
1520 software. */
1521
1522 int
1523 is_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (is_hardware_watchpoint (bpt)
1526 || bpt->type == bp_watchpoint);
1527 }
1528
1529 /* Returns true if the current thread and its running state are safe
1530 to evaluate or update watchpoint B. Watchpoints on local
1531 expressions need to be evaluated in the context of the thread that
1532 was current when the watchpoint was created, and, that thread needs
1533 to be stopped to be able to select the correct frame context.
1534 Watchpoints on global expressions can be evaluated on any thread,
1535 and in any state. It is presently left to the target allowing
1536 memory accesses when threads are running. */
1537
1538 static int
1539 watchpoint_in_thread_scope (struct watchpoint *b)
1540 {
1541 return (b->pspace == current_program_space
1542 && (b->watchpoint_thread == null_ptid
1543 || (inferior_ptid == b->watchpoint_thread
1544 && !inferior_thread ()->executing)));
1545 }
1546
1547 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1548 associated bp_watchpoint_scope breakpoint. */
1549
1550 static void
1551 watchpoint_del_at_next_stop (struct watchpoint *w)
1552 {
1553 if (w->related_breakpoint != w)
1554 {
1555 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1556 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1557 w->related_breakpoint->disposition = disp_del_at_next_stop;
1558 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1559 w->related_breakpoint = w;
1560 }
1561 w->disposition = disp_del_at_next_stop;
1562 }
1563
1564 /* Extract a bitfield value from value VAL using the bit parameters contained in
1565 watchpoint W. */
1566
1567 static struct value *
1568 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1569 {
1570 struct value *bit_val;
1571
1572 if (val == NULL)
1573 return NULL;
1574
1575 bit_val = allocate_value (value_type (val));
1576
1577 unpack_value_bitfield (bit_val,
1578 w->val_bitpos,
1579 w->val_bitsize,
1580 value_contents_for_printing (val),
1581 value_offset (val),
1582 val);
1583
1584 return bit_val;
1585 }
1586
1587 /* Allocate a dummy location and add it to B, which must be a software
1588 watchpoint. This is required because even if a software watchpoint
1589 is not watching any memory, bpstat_stop_status requires a location
1590 to be able to report stops. */
1591
1592 static void
1593 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1594 struct program_space *pspace)
1595 {
1596 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1597
1598 b->loc = allocate_bp_location (b);
1599 b->loc->pspace = pspace;
1600 b->loc->address = -1;
1601 b->loc->length = -1;
1602 }
1603
1604 /* Returns true if B is a software watchpoint that is not watching any
1605 memory (e.g., "watch $pc"). */
1606
1607 static int
1608 is_no_memory_software_watchpoint (struct breakpoint *b)
1609 {
1610 return (b->type == bp_watchpoint
1611 && b->loc != NULL
1612 && b->loc->next == NULL
1613 && b->loc->address == -1
1614 && b->loc->length == -1);
1615 }
1616
1617 /* Assuming that B is a watchpoint:
1618 - Reparse watchpoint expression, if REPARSE is non-zero
1619 - Evaluate expression and store the result in B->val
1620 - Evaluate the condition if there is one, and store the result
1621 in b->loc->cond.
1622 - Update the list of values that must be watched in B->loc.
1623
1624 If the watchpoint disposition is disp_del_at_next_stop, then do
1625 nothing. If this is local watchpoint that is out of scope, delete
1626 it.
1627
1628 Even with `set breakpoint always-inserted on' the watchpoints are
1629 removed + inserted on each stop here. Normal breakpoints must
1630 never be removed because they might be missed by a running thread
1631 when debugging in non-stop mode. On the other hand, hardware
1632 watchpoints (is_hardware_watchpoint; processed here) are specific
1633 to each LWP since they are stored in each LWP's hardware debug
1634 registers. Therefore, such LWP must be stopped first in order to
1635 be able to modify its hardware watchpoints.
1636
1637 Hardware watchpoints must be reset exactly once after being
1638 presented to the user. It cannot be done sooner, because it would
1639 reset the data used to present the watchpoint hit to the user. And
1640 it must not be done later because it could display the same single
1641 watchpoint hit during multiple GDB stops. Note that the latter is
1642 relevant only to the hardware watchpoint types bp_read_watchpoint
1643 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1644 not user-visible - its hit is suppressed if the memory content has
1645 not changed.
1646
1647 The following constraints influence the location where we can reset
1648 hardware watchpoints:
1649
1650 * target_stopped_by_watchpoint and target_stopped_data_address are
1651 called several times when GDB stops.
1652
1653 [linux]
1654 * Multiple hardware watchpoints can be hit at the same time,
1655 causing GDB to stop. GDB only presents one hardware watchpoint
1656 hit at a time as the reason for stopping, and all the other hits
1657 are presented later, one after the other, each time the user
1658 requests the execution to be resumed. Execution is not resumed
1659 for the threads still having pending hit event stored in
1660 LWP_INFO->STATUS. While the watchpoint is already removed from
1661 the inferior on the first stop the thread hit event is kept being
1662 reported from its cached value by linux_nat_stopped_data_address
1663 until the real thread resume happens after the watchpoint gets
1664 presented and thus its LWP_INFO->STATUS gets reset.
1665
1666 Therefore the hardware watchpoint hit can get safely reset on the
1667 watchpoint removal from inferior. */
1668
1669 static void
1670 update_watchpoint (struct watchpoint *b, int reparse)
1671 {
1672 int within_current_scope;
1673 struct frame_id saved_frame_id;
1674 int frame_saved;
1675
1676 /* If this is a local watchpoint, we only want to check if the
1677 watchpoint frame is in scope if the current thread is the thread
1678 that was used to create the watchpoint. */
1679 if (!watchpoint_in_thread_scope (b))
1680 return;
1681
1682 if (b->disposition == disp_del_at_next_stop)
1683 return;
1684
1685 frame_saved = 0;
1686
1687 /* Determine if the watchpoint is within scope. */
1688 if (b->exp_valid_block == NULL)
1689 within_current_scope = 1;
1690 else
1691 {
1692 struct frame_info *fi = get_current_frame ();
1693 struct gdbarch *frame_arch = get_frame_arch (fi);
1694 CORE_ADDR frame_pc = get_frame_pc (fi);
1695
1696 /* If we're at a point where the stack has been destroyed
1697 (e.g. in a function epilogue), unwinding may not work
1698 properly. Do not attempt to recreate locations at this
1699 point. See similar comments in watchpoint_check. */
1700 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1701 return;
1702
1703 /* Save the current frame's ID so we can restore it after
1704 evaluating the watchpoint expression on its own frame. */
1705 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1706 took a frame parameter, so that we didn't have to change the
1707 selected frame. */
1708 frame_saved = 1;
1709 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1710
1711 fi = frame_find_by_id (b->watchpoint_frame);
1712 within_current_scope = (fi != NULL);
1713 if (within_current_scope)
1714 select_frame (fi);
1715 }
1716
1717 /* We don't free locations. They are stored in the bp_location array
1718 and update_global_location_list will eventually delete them and
1719 remove breakpoints if needed. */
1720 b->loc = NULL;
1721
1722 if (within_current_scope && reparse)
1723 {
1724 const char *s;
1725
1726 b->exp.reset ();
1727 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1728 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1729 /* If the meaning of expression itself changed, the old value is
1730 no longer relevant. We don't want to report a watchpoint hit
1731 to the user when the old value and the new value may actually
1732 be completely different objects. */
1733 b->val = NULL;
1734 b->val_valid = 0;
1735
1736 /* Note that unlike with breakpoints, the watchpoint's condition
1737 expression is stored in the breakpoint object, not in the
1738 locations (re)created below. */
1739 if (b->cond_string != NULL)
1740 {
1741 b->cond_exp.reset ();
1742
1743 s = b->cond_string;
1744 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1745 }
1746 }
1747
1748 /* If we failed to parse the expression, for example because
1749 it refers to a global variable in a not-yet-loaded shared library,
1750 don't try to insert watchpoint. We don't automatically delete
1751 such watchpoint, though, since failure to parse expression
1752 is different from out-of-scope watchpoint. */
1753 if (!target_has_execution)
1754 {
1755 /* Without execution, memory can't change. No use to try and
1756 set watchpoint locations. The watchpoint will be reset when
1757 the target gains execution, through breakpoint_re_set. */
1758 if (!can_use_hw_watchpoints)
1759 {
1760 if (b->ops->works_in_software_mode (b))
1761 b->type = bp_watchpoint;
1762 else
1763 error (_("Can't set read/access watchpoint when "
1764 "hardware watchpoints are disabled."));
1765 }
1766 }
1767 else if (within_current_scope && b->exp)
1768 {
1769 int pc = 0;
1770 std::vector<value_ref_ptr> val_chain;
1771 struct value *v, *result;
1772 struct program_space *frame_pspace;
1773
1774 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1775
1776 /* Avoid setting b->val if it's already set. The meaning of
1777 b->val is 'the last value' user saw, and we should update
1778 it only if we reported that last value to user. As it
1779 happens, the code that reports it updates b->val directly.
1780 We don't keep track of the memory value for masked
1781 watchpoints. */
1782 if (!b->val_valid && !is_masked_watchpoint (b))
1783 {
1784 if (b->val_bitsize != 0)
1785 v = extract_bitfield_from_watchpoint_value (b, v);
1786 b->val = release_value (v);
1787 b->val_valid = 1;
1788 }
1789
1790 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1791
1792 /* Look at each value on the value chain. */
1793 gdb_assert (!val_chain.empty ());
1794 for (const value_ref_ptr &iter : val_chain)
1795 {
1796 v = iter.get ();
1797
1798 /* If it's a memory location, and GDB actually needed
1799 its contents to evaluate the expression, then we
1800 must watch it. If the first value returned is
1801 still lazy, that means an error occurred reading it;
1802 watch it anyway in case it becomes readable. */
1803 if (VALUE_LVAL (v) == lval_memory
1804 && (v == val_chain[0] || ! value_lazy (v)))
1805 {
1806 struct type *vtype = check_typedef (value_type (v));
1807
1808 /* We only watch structs and arrays if user asked
1809 for it explicitly, never if they just happen to
1810 appear in the middle of some value chain. */
1811 if (v == result
1812 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1813 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1814 {
1815 CORE_ADDR addr;
1816 enum target_hw_bp_type type;
1817 struct bp_location *loc, **tmp;
1818 int bitpos = 0, bitsize = 0;
1819
1820 if (value_bitsize (v) != 0)
1821 {
1822 /* Extract the bit parameters out from the bitfield
1823 sub-expression. */
1824 bitpos = value_bitpos (v);
1825 bitsize = value_bitsize (v);
1826 }
1827 else if (v == result && b->val_bitsize != 0)
1828 {
1829 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1830 lvalue whose bit parameters are saved in the fields
1831 VAL_BITPOS and VAL_BITSIZE. */
1832 bitpos = b->val_bitpos;
1833 bitsize = b->val_bitsize;
1834 }
1835
1836 addr = value_address (v);
1837 if (bitsize != 0)
1838 {
1839 /* Skip the bytes that don't contain the bitfield. */
1840 addr += bitpos / 8;
1841 }
1842
1843 type = hw_write;
1844 if (b->type == bp_read_watchpoint)
1845 type = hw_read;
1846 else if (b->type == bp_access_watchpoint)
1847 type = hw_access;
1848
1849 loc = allocate_bp_location (b);
1850 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1851 ;
1852 *tmp = loc;
1853 loc->gdbarch = get_type_arch (value_type (v));
1854
1855 loc->pspace = frame_pspace;
1856 loc->address = address_significant (loc->gdbarch, addr);
1857
1858 if (bitsize != 0)
1859 {
1860 /* Just cover the bytes that make up the bitfield. */
1861 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1862 }
1863 else
1864 loc->length = TYPE_LENGTH (value_type (v));
1865
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (b);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->ops->works_in_software_mode (b);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->type = type;
1939 }
1940 }
1941 else if (!b->ops->works_in_software_mode (b))
1942 {
1943 if (!can_use_hw_watchpoints)
1944 error (_("Can't set read/access watchpoint when "
1945 "hardware watchpoints are disabled."));
1946 else
1947 error (_("Expression cannot be implemented with "
1948 "read/access watchpoint."));
1949 }
1950 else
1951 b->type = bp_watchpoint;
1952
1953 loc_type = (b->type == bp_watchpoint? bp_loc_other
1954 : bp_loc_hardware_watchpoint);
1955 for (bl = b->loc; bl; bl = bl->next)
1956 bl->loc_type = loc_type;
1957 }
1958
1959 /* If a software watchpoint is not watching any memory, then the
1960 above left it without any location set up. But,
1961 bpstat_stop_status requires a location to be able to report
1962 stops, so make sure there's at least a dummy one. */
1963 if (b->type == bp_watchpoint && b->loc == NULL)
1964 software_watchpoint_add_no_memory_location (b, frame_pspace);
1965 }
1966 else if (!within_current_scope)
1967 {
1968 printf_filtered (_("\
1969 Watchpoint %d deleted because the program has left the block\n\
1970 in which its expression is valid.\n"),
1971 b->number);
1972 watchpoint_del_at_next_stop (b);
1973 }
1974
1975 /* Restore the selected frame. */
1976 if (frame_saved)
1977 select_frame (frame_find_by_id (saved_frame_id));
1978 }
1979
1980
1981 /* Returns 1 iff breakpoint location should be
1982 inserted in the inferior. We don't differentiate the type of BL's owner
1983 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1984 breakpoint_ops is not defined, because in insert_bp_location,
1985 tracepoint's insert_location will not be called. */
1986 static int
1987 should_be_inserted (struct bp_location *bl)
1988 {
1989 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1990 return 0;
1991
1992 if (bl->owner->disposition == disp_del_at_next_stop)
1993 return 0;
1994
1995 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1996 return 0;
1997
1998 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1999 return 0;
2000
2001 /* This is set for example, when we're attached to the parent of a
2002 vfork, and have detached from the child. The child is running
2003 free, and we expect it to do an exec or exit, at which point the
2004 OS makes the parent schedulable again (and the target reports
2005 that the vfork is done). Until the child is done with the shared
2006 memory region, do not insert breakpoints in the parent, otherwise
2007 the child could still trip on the parent's breakpoints. Since
2008 the parent is blocked anyway, it won't miss any breakpoint. */
2009 if (bl->pspace->breakpoints_not_allowed)
2010 return 0;
2011
2012 /* Don't insert a breakpoint if we're trying to step past its
2013 location, except if the breakpoint is a single-step breakpoint,
2014 and the breakpoint's thread is the thread which is stepping past
2015 a breakpoint. */
2016 if ((bl->loc_type == bp_loc_software_breakpoint
2017 || bl->loc_type == bp_loc_hardware_breakpoint)
2018 && stepping_past_instruction_at (bl->pspace->aspace,
2019 bl->address)
2020 /* The single-step breakpoint may be inserted at the location
2021 we're trying to step if the instruction branches to itself.
2022 However, the instruction won't be executed at all and it may
2023 break the semantics of the instruction, for example, the
2024 instruction is a conditional branch or updates some flags.
2025 We can't fix it unless GDB is able to emulate the instruction
2026 or switch to displaced stepping. */
2027 && !(bl->owner->type == bp_single_step
2028 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2029 {
2030 if (debug_infrun)
2031 {
2032 fprintf_unfiltered (gdb_stdlog,
2033 "infrun: skipping breakpoint: "
2034 "stepping past insn at: %s\n",
2035 paddress (bl->gdbarch, bl->address));
2036 }
2037 return 0;
2038 }
2039
2040 /* Don't insert watchpoints if we're trying to step past the
2041 instruction that triggered one. */
2042 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2043 && stepping_past_nonsteppable_watchpoint ())
2044 {
2045 if (debug_infrun)
2046 {
2047 fprintf_unfiltered (gdb_stdlog,
2048 "infrun: stepping past non-steppable watchpoint. "
2049 "skipping watchpoint at %s:%d\n",
2050 paddress (bl->gdbarch, bl->address),
2051 bl->length);
2052 }
2053 return 0;
2054 }
2055
2056 return 1;
2057 }
2058
2059 /* Same as should_be_inserted but does the check assuming
2060 that the location is not duplicated. */
2061
2062 static int
2063 unduplicated_should_be_inserted (struct bp_location *bl)
2064 {
2065 int result;
2066 const int save_duplicate = bl->duplicate;
2067
2068 bl->duplicate = 0;
2069 result = should_be_inserted (bl);
2070 bl->duplicate = save_duplicate;
2071 return result;
2072 }
2073
2074 /* Parses a conditional described by an expression COND into an
2075 agent expression bytecode suitable for evaluation
2076 by the bytecode interpreter. Return NULL if there was
2077 any error during parsing. */
2078
2079 static agent_expr_up
2080 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2081 {
2082 if (cond == NULL)
2083 return NULL;
2084
2085 agent_expr_up aexpr;
2086
2087 /* We don't want to stop processing, so catch any errors
2088 that may show up. */
2089 try
2090 {
2091 aexpr = gen_eval_for_expr (scope, cond);
2092 }
2093
2094 catch (const gdb_exception_error &ex)
2095 {
2096 /* If we got here, it means the condition could not be parsed to a valid
2097 bytecode expression and thus can't be evaluated on the target's side.
2098 It's no use iterating through the conditions. */
2099 }
2100
2101 /* We have a valid agent expression. */
2102 return aexpr;
2103 }
2104
2105 /* Based on location BL, create a list of breakpoint conditions to be
2106 passed on to the target. If we have duplicated locations with different
2107 conditions, we will add such conditions to the list. The idea is that the
2108 target will evaluate the list of conditions and will only notify GDB when
2109 one of them is true. */
2110
2111 static void
2112 build_target_condition_list (struct bp_location *bl)
2113 {
2114 struct bp_location **locp = NULL, **loc2p;
2115 int null_condition_or_parse_error = 0;
2116 int modified = bl->needs_update;
2117 struct bp_location *loc;
2118
2119 /* Release conditions left over from a previous insert. */
2120 bl->target_info.conditions.clear ();
2121
2122 /* This is only meaningful if the target is
2123 evaluating conditions and if the user has
2124 opted for condition evaluation on the target's
2125 side. */
2126 if (gdb_evaluates_breakpoint_condition_p ()
2127 || !target_supports_evaluation_of_breakpoint_conditions ())
2128 return;
2129
2130 /* Do a first pass to check for locations with no assigned
2131 conditions or conditions that fail to parse to a valid agent expression
2132 bytecode. If any of these happen, then it's no use to send conditions
2133 to the target since this location will always trigger and generate a
2134 response back to GDB. */
2135 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2136 {
2137 loc = (*loc2p);
2138 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2139 {
2140 if (modified)
2141 {
2142 /* Re-parse the conditions since something changed. In that
2143 case we already freed the condition bytecodes (see
2144 force_breakpoint_reinsertion). We just
2145 need to parse the condition to bytecodes again. */
2146 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2147 loc->cond.get ());
2148 }
2149
2150 /* If we have a NULL bytecode expression, it means something
2151 went wrong or we have a null condition expression. */
2152 if (!loc->cond_bytecode)
2153 {
2154 null_condition_or_parse_error = 1;
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* If any of these happened, it means we will have to evaluate the conditions
2161 for the location's address on gdb's side. It is no use keeping bytecodes
2162 for all the other duplicate locations, thus we free all of them here.
2163
2164 This is so we have a finer control over which locations' conditions are
2165 being evaluated by GDB or the remote stub. */
2166 if (null_condition_or_parse_error)
2167 {
2168 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2169 {
2170 loc = (*loc2p);
2171 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2172 {
2173 /* Only go as far as the first NULL bytecode is
2174 located. */
2175 if (!loc->cond_bytecode)
2176 return;
2177
2178 loc->cond_bytecode.reset ();
2179 }
2180 }
2181 }
2182
2183 /* No NULL conditions or failed bytecode generation. Build a condition list
2184 for this location's address. */
2185 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2186 {
2187 loc = (*loc2p);
2188 if (loc->cond
2189 && is_breakpoint (loc->owner)
2190 && loc->pspace->num == bl->pspace->num
2191 && loc->owner->enable_state == bp_enabled
2192 && loc->enabled)
2193 {
2194 /* Add the condition to the vector. This will be used later
2195 to send the conditions to the target. */
2196 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2197 }
2198 }
2199
2200 return;
2201 }
2202
2203 /* Parses a command described by string CMD into an agent expression
2204 bytecode suitable for evaluation by the bytecode interpreter.
2205 Return NULL if there was any error during parsing. */
2206
2207 static agent_expr_up
2208 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2209 {
2210 const char *cmdrest;
2211 const char *format_start, *format_end;
2212 struct gdbarch *gdbarch = get_current_arch ();
2213
2214 if (cmd == NULL)
2215 return NULL;
2216
2217 cmdrest = cmd;
2218
2219 if (*cmdrest == ',')
2220 ++cmdrest;
2221 cmdrest = skip_spaces (cmdrest);
2222
2223 if (*cmdrest++ != '"')
2224 error (_("No format string following the location"));
2225
2226 format_start = cmdrest;
2227
2228 format_pieces fpieces (&cmdrest);
2229
2230 format_end = cmdrest;
2231
2232 if (*cmdrest++ != '"')
2233 error (_("Bad format string, non-terminated '\"'."));
2234
2235 cmdrest = skip_spaces (cmdrest);
2236
2237 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2238 error (_("Invalid argument syntax"));
2239
2240 if (*cmdrest == ',')
2241 cmdrest++;
2242 cmdrest = skip_spaces (cmdrest);
2243
2244 /* For each argument, make an expression. */
2245
2246 std::vector<struct expression *> argvec;
2247 while (*cmdrest != '\0')
2248 {
2249 const char *cmd1;
2250
2251 cmd1 = cmdrest;
2252 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2253 argvec.push_back (expr.release ());
2254 cmdrest = cmd1;
2255 if (*cmdrest == ',')
2256 ++cmdrest;
2257 }
2258
2259 agent_expr_up aexpr;
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 try
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 argvec.size (), argvec.data ());
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 /* If we got here, it means the command could not be parsed to a valid
2272 bytecode expression and thus can't be evaluated on the target's side.
2273 It's no use iterating through the other commands. */
2274 }
2275
2276 /* We have a valid agent expression, return it. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint commands to be
2281 passed on to the target. If we have duplicated locations with
2282 different commands, we will add any such to the list. */
2283
2284 static void
2285 build_target_command_list (struct bp_location *bl)
2286 {
2287 struct bp_location **locp = NULL, **loc2p;
2288 int null_command_or_parse_error = 0;
2289 int modified = bl->needs_update;
2290 struct bp_location *loc;
2291
2292 /* Clear commands left over from a previous insert. */
2293 bl->target_info.tcommands.clear ();
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* For now, limit to agent-style dprintf breakpoints. */
2299 if (dprintf_style != dprintf_style_agent)
2300 return;
2301
2302 /* For now, if we have any duplicate location that isn't a dprintf,
2303 don't install the target-side commands, as that would make the
2304 breakpoint not be reported to the core, and we'd lose
2305 control. */
2306 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2307 {
2308 loc = (*loc2p);
2309 if (is_breakpoint (loc->owner)
2310 && loc->pspace->num == bl->pspace->num
2311 && loc->owner->type != bp_dprintf)
2312 return;
2313 }
2314
2315 /* Do a first pass to check for locations with no assigned
2316 conditions or conditions that fail to parse to a valid agent expression
2317 bytecode. If any of these happen, then it's no use to send conditions
2318 to the target since this location will always trigger and generate a
2319 response back to GDB. */
2320 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2321 {
2322 loc = (*loc2p);
2323 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2324 {
2325 if (modified)
2326 {
2327 /* Re-parse the commands since something changed. In that
2328 case we already freed the command bytecodes (see
2329 force_breakpoint_reinsertion). We just
2330 need to parse the command to bytecodes again. */
2331 loc->cmd_bytecode
2332 = parse_cmd_to_aexpr (bl->address,
2333 loc->owner->extra_string);
2334 }
2335
2336 /* If we have a NULL bytecode expression, it means something
2337 went wrong or we have a null command expression. */
2338 if (!loc->cmd_bytecode)
2339 {
2340 null_command_or_parse_error = 1;
2341 break;
2342 }
2343 }
2344 }
2345
2346 /* If anything failed, then we're not doing target-side commands,
2347 and so clean up. */
2348 if (null_command_or_parse_error)
2349 {
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (is_breakpoint (loc->owner)
2354 && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (loc->cmd_bytecode == NULL)
2359 return;
2360
2361 loc->cmd_bytecode.reset ();
2362 }
2363 }
2364 }
2365
2366 /* No NULL commands or failed bytecode generation. Build a command list
2367 for this location's address. */
2368 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2369 {
2370 loc = (*loc2p);
2371 if (loc->owner->extra_string
2372 && is_breakpoint (loc->owner)
2373 && loc->pspace->num == bl->pspace->num
2374 && loc->owner->enable_state == bp_enabled
2375 && loc->enabled)
2376 {
2377 /* Add the command to the vector. This will be used later
2378 to send the commands to the target. */
2379 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2380 }
2381 }
2382
2383 bl->target_info.persist = 0;
2384 /* Maybe flag this location as persistent. */
2385 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2386 bl->target_info.persist = 1;
2387 }
2388
2389 /* Return the kind of breakpoint on address *ADDR. Get the kind
2390 of breakpoint according to ADDR except single-step breakpoint.
2391 Get the kind of single-step breakpoint according to the current
2392 registers state. */
2393
2394 static int
2395 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2396 {
2397 if (bl->owner->type == bp_single_step)
2398 {
2399 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2400 struct regcache *regcache;
2401
2402 regcache = get_thread_regcache (thr);
2403
2404 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2405 regcache, addr);
2406 }
2407 else
2408 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2409 }
2410
2411 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2412 location. Any error messages are printed to TMP_ERROR_STREAM; and
2413 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2414 Returns 0 for success, 1 if the bp_location type is not supported or
2415 -1 for failure.
2416
2417 NOTE drow/2003-09-09: This routine could be broken down to an
2418 object-style method for each breakpoint or catchpoint type. */
2419 static int
2420 insert_bp_location (struct bp_location *bl,
2421 struct ui_file *tmp_error_stream,
2422 int *disabled_breaks,
2423 int *hw_breakpoint_error,
2424 int *hw_bp_error_explained_already)
2425 {
2426 gdb_exception bp_excpt;
2427
2428 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2429 return 0;
2430
2431 /* Note we don't initialize bl->target_info, as that wipes out
2432 the breakpoint location's shadow_contents if the breakpoint
2433 is still inserted at that location. This in turn breaks
2434 target_read_memory which depends on these buffers when
2435 a memory read is requested at the breakpoint location:
2436 Once the target_info has been wiped, we fail to see that
2437 we have a breakpoint inserted at that address and thus
2438 read the breakpoint instead of returning the data saved in
2439 the breakpoint location's shadow contents. */
2440 bl->target_info.reqstd_address = bl->address;
2441 bl->target_info.placed_address_space = bl->pspace->aspace;
2442 bl->target_info.length = bl->length;
2443
2444 /* When working with target-side conditions, we must pass all the conditions
2445 for the same breakpoint address down to the target since GDB will not
2446 insert those locations. With a list of breakpoint conditions, the target
2447 can decide when to stop and notify GDB. */
2448
2449 if (is_breakpoint (bl->owner))
2450 {
2451 build_target_condition_list (bl);
2452 build_target_command_list (bl);
2453 /* Reset the modification marker. */
2454 bl->needs_update = 0;
2455 }
2456
2457 if (bl->loc_type == bp_loc_software_breakpoint
2458 || bl->loc_type == bp_loc_hardware_breakpoint)
2459 {
2460 if (bl->owner->type != bp_hardware_breakpoint)
2461 {
2462 /* If the explicitly specified breakpoint type
2463 is not hardware breakpoint, check the memory map to see
2464 if the breakpoint address is in read only memory or not.
2465
2466 Two important cases are:
2467 - location type is not hardware breakpoint, memory
2468 is readonly. We change the type of the location to
2469 hardware breakpoint.
2470 - location type is hardware breakpoint, memory is
2471 read-write. This means we've previously made the
2472 location hardware one, but then the memory map changed,
2473 so we undo.
2474
2475 When breakpoints are removed, remove_breakpoints will use
2476 location types we've just set here, the only possible
2477 problem is that memory map has changed during running
2478 program, but it's not going to work anyway with current
2479 gdb. */
2480 struct mem_region *mr
2481 = lookup_mem_region (bl->target_info.reqstd_address);
2482
2483 if (mr)
2484 {
2485 if (automatic_hardware_breakpoints)
2486 {
2487 enum bp_loc_type new_type;
2488
2489 if (mr->attrib.mode != MEM_RW)
2490 new_type = bp_loc_hardware_breakpoint;
2491 else
2492 new_type = bp_loc_software_breakpoint;
2493
2494 if (new_type != bl->loc_type)
2495 {
2496 static int said = 0;
2497
2498 bl->loc_type = new_type;
2499 if (!said)
2500 {
2501 fprintf_filtered (gdb_stdout,
2502 _("Note: automatically using "
2503 "hardware breakpoints for "
2504 "read-only addresses.\n"));
2505 said = 1;
2506 }
2507 }
2508 }
2509 else if (bl->loc_type == bp_loc_software_breakpoint
2510 && mr->attrib.mode != MEM_RW)
2511 {
2512 fprintf_unfiltered (tmp_error_stream,
2513 _("Cannot insert breakpoint %d.\n"
2514 "Cannot set software breakpoint "
2515 "at read-only address %s\n"),
2516 bl->owner->number,
2517 paddress (bl->gdbarch, bl->address));
2518 return 1;
2519 }
2520 }
2521 }
2522
2523 /* First check to see if we have to handle an overlay. */
2524 if (overlay_debugging == ovly_off
2525 || bl->section == NULL
2526 || !(section_is_overlay (bl->section)))
2527 {
2528 /* No overlay handling: just set the breakpoint. */
2529 try
2530 {
2531 int val;
2532
2533 val = bl->owner->ops->insert_location (bl);
2534 if (val)
2535 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2536 }
2537 catch (gdb_exception &e)
2538 {
2539 bp_excpt = std::move (e);
2540 }
2541 }
2542 else
2543 {
2544 /* This breakpoint is in an overlay section.
2545 Shall we set a breakpoint at the LMA? */
2546 if (!overlay_events_enabled)
2547 {
2548 /* Yes -- overlay event support is not active,
2549 so we must try to set a breakpoint at the LMA.
2550 This will not work for a hardware breakpoint. */
2551 if (bl->loc_type == bp_loc_hardware_breakpoint)
2552 warning (_("hardware breakpoint %d not supported in overlay!"),
2553 bl->owner->number);
2554 else
2555 {
2556 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2557 bl->section);
2558 /* Set a software (trap) breakpoint at the LMA. */
2559 bl->overlay_target_info = bl->target_info;
2560 bl->overlay_target_info.reqstd_address = addr;
2561
2562 /* No overlay handling: just set the breakpoint. */
2563 try
2564 {
2565 int val;
2566
2567 bl->overlay_target_info.kind
2568 = breakpoint_kind (bl, &addr);
2569 bl->overlay_target_info.placed_address = addr;
2570 val = target_insert_breakpoint (bl->gdbarch,
2571 &bl->overlay_target_info);
2572 if (val)
2573 bp_excpt
2574 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2575 }
2576 catch (gdb_exception &e)
2577 {
2578 bp_excpt = std::move (e);
2579 }
2580
2581 if (bp_excpt.reason != 0)
2582 fprintf_unfiltered (tmp_error_stream,
2583 "Overlay breakpoint %d "
2584 "failed: in ROM?\n",
2585 bl->owner->number);
2586 }
2587 }
2588 /* Shall we set a breakpoint at the VMA? */
2589 if (section_is_mapped (bl->section))
2590 {
2591 /* Yes. This overlay section is mapped into memory. */
2592 try
2593 {
2594 int val;
2595
2596 val = bl->owner->ops->insert_location (bl);
2597 if (val)
2598 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2599 }
2600 catch (gdb_exception &e)
2601 {
2602 bp_excpt = std::move (e);
2603 }
2604 }
2605 else
2606 {
2607 /* No. This breakpoint will not be inserted.
2608 No error, but do not mark the bp as 'inserted'. */
2609 return 0;
2610 }
2611 }
2612
2613 if (bp_excpt.reason != 0)
2614 {
2615 /* Can't set the breakpoint. */
2616
2617 /* In some cases, we might not be able to insert a
2618 breakpoint in a shared library that has already been
2619 removed, but we have not yet processed the shlib unload
2620 event. Unfortunately, some targets that implement
2621 breakpoint insertion themselves can't tell why the
2622 breakpoint insertion failed (e.g., the remote target
2623 doesn't define error codes), so we must treat generic
2624 errors as memory errors. */
2625 if (bp_excpt.reason == RETURN_ERROR
2626 && (bp_excpt.error == GENERIC_ERROR
2627 || bp_excpt.error == MEMORY_ERROR)
2628 && bl->loc_type == bp_loc_software_breakpoint
2629 && (solib_name_from_address (bl->pspace, bl->address)
2630 || shared_objfile_contains_address_p (bl->pspace,
2631 bl->address)))
2632 {
2633 /* See also: disable_breakpoints_in_shlibs. */
2634 bl->shlib_disabled = 1;
2635 gdb::observers::breakpoint_modified.notify (bl->owner);
2636 if (!*disabled_breaks)
2637 {
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert breakpoint %d.\n",
2640 bl->owner->number);
2641 fprintf_unfiltered (tmp_error_stream,
2642 "Temporarily disabling shared "
2643 "library breakpoints:\n");
2644 }
2645 *disabled_breaks = 1;
2646 fprintf_unfiltered (tmp_error_stream,
2647 "breakpoint #%d\n", bl->owner->number);
2648 return 0;
2649 }
2650 else
2651 {
2652 if (bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 *hw_breakpoint_error = 1;
2655 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Cannot insert hardware breakpoint %d%s",
2658 bl->owner->number,
2659 bp_excpt.message ? ":" : ".\n");
2660 if (bp_excpt.message != NULL)
2661 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2662 bp_excpt.what ());
2663 }
2664 else
2665 {
2666 if (bp_excpt.message == NULL)
2667 {
2668 std::string message
2669 = memory_error_message (TARGET_XFER_E_IO,
2670 bl->gdbarch, bl->address);
2671
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert breakpoint %d.\n"
2674 "%s\n",
2675 bl->owner->number, message.c_str ());
2676 }
2677 else
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert breakpoint %d: %s\n",
2681 bl->owner->number,
2682 bp_excpt.what ());
2683 }
2684 }
2685 return 1;
2686
2687 }
2688 }
2689 else
2690 bl->inserted = 1;
2691
2692 return 0;
2693 }
2694
2695 else if (bl->loc_type == bp_loc_hardware_watchpoint
2696 /* NOTE drow/2003-09-08: This state only exists for removing
2697 watchpoints. It's not clear that it's necessary... */
2698 && bl->owner->disposition != disp_del_at_next_stop)
2699 {
2700 int val;
2701
2702 gdb_assert (bl->owner->ops != NULL
2703 && bl->owner->ops->insert_location != NULL);
2704
2705 val = bl->owner->ops->insert_location (bl);
2706
2707 /* If trying to set a read-watchpoint, and it turns out it's not
2708 supported, try emulating one with an access watchpoint. */
2709 if (val == 1 && bl->watchpoint_type == hw_read)
2710 {
2711 struct bp_location *loc, **loc_temp;
2712
2713 /* But don't try to insert it, if there's already another
2714 hw_access location that would be considered a duplicate
2715 of this one. */
2716 ALL_BP_LOCATIONS (loc, loc_temp)
2717 if (loc != bl
2718 && loc->watchpoint_type == hw_access
2719 && watchpoint_locations_match (bl, loc))
2720 {
2721 bl->duplicate = 1;
2722 bl->inserted = 1;
2723 bl->target_info = loc->target_info;
2724 bl->watchpoint_type = hw_access;
2725 val = 0;
2726 break;
2727 }
2728
2729 if (val == 1)
2730 {
2731 bl->watchpoint_type = hw_access;
2732 val = bl->owner->ops->insert_location (bl);
2733
2734 if (val)
2735 /* Back to the original value. */
2736 bl->watchpoint_type = hw_read;
2737 }
2738 }
2739
2740 bl->inserted = (val == 0);
2741 }
2742
2743 else if (bl->owner->type == bp_catchpoint)
2744 {
2745 int val;
2746
2747 gdb_assert (bl->owner->ops != NULL
2748 && bl->owner->ops->insert_location != NULL);
2749
2750 val = bl->owner->ops->insert_location (bl);
2751 if (val)
2752 {
2753 bl->owner->enable_state = bp_disabled;
2754
2755 if (val == 1)
2756 warning (_("\
2757 Error inserting catchpoint %d: Your system does not support this type\n\
2758 of catchpoint."), bl->owner->number);
2759 else
2760 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2761 }
2762
2763 bl->inserted = (val == 0);
2764
2765 /* We've already printed an error message if there was a problem
2766 inserting this catchpoint, and we've disabled the catchpoint,
2767 so just return success. */
2768 return 0;
2769 }
2770
2771 return 0;
2772 }
2773
2774 /* This function is called when program space PSPACE is about to be
2775 deleted. It takes care of updating breakpoints to not reference
2776 PSPACE anymore. */
2777
2778 void
2779 breakpoint_program_space_exit (struct program_space *pspace)
2780 {
2781 struct breakpoint *b, *b_temp;
2782 struct bp_location *loc, **loc_temp;
2783
2784 /* Remove any breakpoint that was set through this program space. */
2785 ALL_BREAKPOINTS_SAFE (b, b_temp)
2786 {
2787 if (b->pspace == pspace)
2788 delete_breakpoint (b);
2789 }
2790
2791 /* Breakpoints set through other program spaces could have locations
2792 bound to PSPACE as well. Remove those. */
2793 ALL_BP_LOCATIONS (loc, loc_temp)
2794 {
2795 struct bp_location *tmp;
2796
2797 if (loc->pspace == pspace)
2798 {
2799 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2800 if (loc->owner->loc == loc)
2801 loc->owner->loc = loc->next;
2802 else
2803 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2804 if (tmp->next == loc)
2805 {
2806 tmp->next = loc->next;
2807 break;
2808 }
2809 }
2810 }
2811
2812 /* Now update the global location list to permanently delete the
2813 removed locations above. */
2814 update_global_location_list (UGLL_DONT_INSERT);
2815 }
2816
2817 /* Make sure all breakpoints are inserted in inferior.
2818 Throws exception on any error.
2819 A breakpoint that is already inserted won't be inserted
2820 again, so calling this function twice is safe. */
2821 void
2822 insert_breakpoints (void)
2823 {
2824 struct breakpoint *bpt;
2825
2826 ALL_BREAKPOINTS (bpt)
2827 if (is_hardware_watchpoint (bpt))
2828 {
2829 struct watchpoint *w = (struct watchpoint *) bpt;
2830
2831 update_watchpoint (w, 0 /* don't reparse. */);
2832 }
2833
2834 /* Updating watchpoints creates new locations, so update the global
2835 location list. Explicitly tell ugll to insert locations and
2836 ignore breakpoints_always_inserted_mode. */
2837 update_global_location_list (UGLL_INSERT);
2838 }
2839
2840 /* Invoke CALLBACK for each of bp_location. */
2841
2842 void
2843 iterate_over_bp_locations (walk_bp_location_callback callback)
2844 {
2845 struct bp_location *loc, **loc_tmp;
2846
2847 ALL_BP_LOCATIONS (loc, loc_tmp)
2848 {
2849 callback (loc, NULL);
2850 }
2851 }
2852
2853 /* This is used when we need to synch breakpoint conditions between GDB and the
2854 target. It is the case with deleting and disabling of breakpoints when using
2855 always-inserted mode. */
2856
2857 static void
2858 update_inserted_breakpoint_locations (void)
2859 {
2860 struct bp_location *bl, **blp_tmp;
2861 int error_flag = 0;
2862 int val = 0;
2863 int disabled_breaks = 0;
2864 int hw_breakpoint_error = 0;
2865 int hw_bp_details_reported = 0;
2866
2867 string_file tmp_error_stream;
2868
2869 /* Explicitly mark the warning -- this will only be printed if
2870 there was an error. */
2871 tmp_error_stream.puts ("Warning:\n");
2872
2873 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2874
2875 ALL_BP_LOCATIONS (bl, blp_tmp)
2876 {
2877 /* We only want to update software breakpoints and hardware
2878 breakpoints. */
2879 if (!is_breakpoint (bl->owner))
2880 continue;
2881
2882 /* We only want to update locations that are already inserted
2883 and need updating. This is to avoid unwanted insertion during
2884 deletion of breakpoints. */
2885 if (!bl->inserted || !bl->needs_update)
2886 continue;
2887
2888 switch_to_program_space_and_thread (bl->pspace);
2889
2890 /* For targets that support global breakpoints, there's no need
2891 to select an inferior to insert breakpoint to. In fact, even
2892 if we aren't attached to any process yet, we should still
2893 insert breakpoints. */
2894 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2895 && inferior_ptid == null_ptid)
2896 continue;
2897
2898 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2899 &hw_breakpoint_error, &hw_bp_details_reported);
2900 if (val)
2901 error_flag = val;
2902 }
2903
2904 if (error_flag)
2905 {
2906 target_terminal::ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909 }
2910
2911 /* Used when starting or continuing the program. */
2912
2913 static void
2914 insert_breakpoint_locations (void)
2915 {
2916 struct breakpoint *bpt;
2917 struct bp_location *bl, **blp_tmp;
2918 int error_flag = 0;
2919 int val = 0;
2920 int disabled_breaks = 0;
2921 int hw_breakpoint_error = 0;
2922 int hw_bp_error_explained_already = 0;
2923
2924 string_file tmp_error_stream;
2925
2926 /* Explicitly mark the warning -- this will only be printed if
2927 there was an error. */
2928 tmp_error_stream.puts ("Warning:\n");
2929
2930 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2931
2932 ALL_BP_LOCATIONS (bl, blp_tmp)
2933 {
2934 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2935 continue;
2936
2937 /* There is no point inserting thread-specific breakpoints if
2938 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2939 has BL->OWNER always non-NULL. */
2940 if (bl->owner->thread != -1
2941 && !valid_global_thread_id (bl->owner->thread))
2942 continue;
2943
2944 switch_to_program_space_and_thread (bl->pspace);
2945
2946 /* For targets that support global breakpoints, there's no need
2947 to select an inferior to insert breakpoint to. In fact, even
2948 if we aren't attached to any process yet, we should still
2949 insert breakpoints. */
2950 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2951 && inferior_ptid == null_ptid)
2952 continue;
2953
2954 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2955 &hw_breakpoint_error, &hw_bp_error_explained_already);
2956 if (val)
2957 error_flag = val;
2958 }
2959
2960 /* If we failed to insert all locations of a watchpoint, remove
2961 them, as half-inserted watchpoint is of limited use. */
2962 ALL_BREAKPOINTS (bpt)
2963 {
2964 int some_failed = 0;
2965 struct bp_location *loc;
2966
2967 if (!is_hardware_watchpoint (bpt))
2968 continue;
2969
2970 if (!breakpoint_enabled (bpt))
2971 continue;
2972
2973 if (bpt->disposition == disp_del_at_next_stop)
2974 continue;
2975
2976 for (loc = bpt->loc; loc; loc = loc->next)
2977 if (!loc->inserted && should_be_inserted (loc))
2978 {
2979 some_failed = 1;
2980 break;
2981 }
2982 if (some_failed)
2983 {
2984 for (loc = bpt->loc; loc; loc = loc->next)
2985 if (loc->inserted)
2986 remove_breakpoint (loc);
2987
2988 hw_breakpoint_error = 1;
2989 tmp_error_stream.printf ("Could not insert "
2990 "hardware watchpoint %d.\n",
2991 bpt->number);
2992 error_flag = -1;
2993 }
2994 }
2995
2996 if (error_flag)
2997 {
2998 /* If a hardware breakpoint or watchpoint was inserted, add a
2999 message about possibly exhausted resources. */
3000 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3001 {
3002 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3003 You may have requested too many hardware breakpoints/watchpoints.\n");
3004 }
3005 target_terminal::ours_for_output ();
3006 error_stream (tmp_error_stream);
3007 }
3008 }
3009
3010 /* Used when the program stops.
3011 Returns zero if successful, or non-zero if there was a problem
3012 removing a breakpoint location. */
3013
3014 int
3015 remove_breakpoints (void)
3016 {
3017 struct bp_location *bl, **blp_tmp;
3018 int val = 0;
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->inserted && !is_tracepoint (bl->owner))
3023 val |= remove_breakpoint (bl);
3024 }
3025 return val;
3026 }
3027
3028 /* When a thread exits, remove breakpoints that are related to
3029 that thread. */
3030
3031 static void
3032 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3033 {
3034 struct breakpoint *b, *b_tmp;
3035
3036 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3037 {
3038 if (b->thread == tp->global_num && user_breakpoint_p (b))
3039 {
3040 b->disposition = disp_del_at_next_stop;
3041
3042 printf_filtered (_("\
3043 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3044 b->number, print_thread_id (tp));
3045
3046 /* Hide it from the user. */
3047 b->number = 0;
3048 }
3049 }
3050 }
3051
3052 /* See breakpoint.h. */
3053
3054 void
3055 remove_breakpoints_inf (inferior *inf)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int val;
3059
3060 ALL_BP_LOCATIONS (bl, blp_tmp)
3061 {
3062 if (bl->pspace != inf->pspace)
3063 continue;
3064
3065 if (bl->inserted && !bl->target_info.persist)
3066 {
3067 val = remove_breakpoint (bl);
3068 if (val != 0)
3069 return;
3070 }
3071 }
3072 }
3073
3074 static int internal_breakpoint_number = -1;
3075
3076 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3077 If INTERNAL is non-zero, the breakpoint number will be populated
3078 from internal_breakpoint_number and that variable decremented.
3079 Otherwise the breakpoint number will be populated from
3080 breakpoint_count and that value incremented. Internal breakpoints
3081 do not set the internal var bpnum. */
3082 static void
3083 set_breakpoint_number (int internal, struct breakpoint *b)
3084 {
3085 if (internal)
3086 b->number = internal_breakpoint_number--;
3087 else
3088 {
3089 set_breakpoint_count (breakpoint_count + 1);
3090 b->number = breakpoint_count;
3091 }
3092 }
3093
3094 static struct breakpoint *
3095 create_internal_breakpoint (struct gdbarch *gdbarch,
3096 CORE_ADDR address, enum bptype type,
3097 const struct breakpoint_ops *ops)
3098 {
3099 symtab_and_line sal;
3100 sal.pc = address;
3101 sal.section = find_pc_overlay (sal.pc);
3102 sal.pspace = current_program_space;
3103
3104 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3105 b->number = internal_breakpoint_number--;
3106 b->disposition = disp_donttouch;
3107
3108 return b;
3109 }
3110
3111 static const char *const longjmp_names[] =
3112 {
3113 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3114 };
3115 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3116
3117 /* Per-objfile data private to breakpoint.c. */
3118 struct breakpoint_objfile_data
3119 {
3120 /* Minimal symbol for "_ovly_debug_event" (if any). */
3121 struct bound_minimal_symbol overlay_msym {};
3122
3123 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3124 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3125
3126 /* True if we have looked for longjmp probes. */
3127 int longjmp_searched = 0;
3128
3129 /* SystemTap probe points for longjmp (if any). These are non-owning
3130 references. */
3131 std::vector<probe *> longjmp_probes;
3132
3133 /* Minimal symbol for "std::terminate()" (if any). */
3134 struct bound_minimal_symbol terminate_msym {};
3135
3136 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3137 struct bound_minimal_symbol exception_msym {};
3138
3139 /* True if we have looked for exception probes. */
3140 int exception_searched = 0;
3141
3142 /* SystemTap probe points for unwinding (if any). These are non-owning
3143 references. */
3144 std::vector<probe *> exception_probes;
3145 };
3146
3147 static const struct objfile_key<breakpoint_objfile_data>
3148 breakpoint_objfile_key;
3149
3150 /* Minimal symbol not found sentinel. */
3151 static struct minimal_symbol msym_not_found;
3152
3153 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3154
3155 static int
3156 msym_not_found_p (const struct minimal_symbol *msym)
3157 {
3158 return msym == &msym_not_found;
3159 }
3160
3161 /* Return per-objfile data needed by breakpoint.c.
3162 Allocate the data if necessary. */
3163
3164 static struct breakpoint_objfile_data *
3165 get_breakpoint_objfile_data (struct objfile *objfile)
3166 {
3167 struct breakpoint_objfile_data *bp_objfile_data;
3168
3169 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3170 if (bp_objfile_data == NULL)
3171 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3172 return bp_objfile_data;
3173 }
3174
3175 static void
3176 create_overlay_event_breakpoint (void)
3177 {
3178 const char *const func_name = "_ovly_debug_event";
3179
3180 for (objfile *objfile : current_program_space->objfiles ())
3181 {
3182 struct breakpoint *b;
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184 CORE_ADDR addr;
3185 struct explicit_location explicit_loc;
3186
3187 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3188
3189 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3190 continue;
3191
3192 if (bp_objfile_data->overlay_msym.minsym == NULL)
3193 {
3194 struct bound_minimal_symbol m;
3195
3196 m = lookup_minimal_symbol_text (func_name, objfile);
3197 if (m.minsym == NULL)
3198 {
3199 /* Avoid future lookups in this objfile. */
3200 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3201 continue;
3202 }
3203 bp_objfile_data->overlay_msym = m;
3204 }
3205
3206 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3207 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3208 bp_overlay_event,
3209 &internal_breakpoint_ops);
3210 initialize_explicit_location (&explicit_loc);
3211 explicit_loc.function_name = ASTRDUP (func_name);
3212 b->location = new_explicit_location (&explicit_loc);
3213
3214 if (overlay_debugging == ovly_auto)
3215 {
3216 b->enable_state = bp_enabled;
3217 overlay_events_enabled = 1;
3218 }
3219 else
3220 {
3221 b->enable_state = bp_disabled;
3222 overlay_events_enabled = 0;
3223 }
3224 }
3225 }
3226
3227 static void
3228 create_longjmp_master_breakpoint (void)
3229 {
3230 struct program_space *pspace;
3231
3232 scoped_restore_current_program_space restore_pspace;
3233
3234 ALL_PSPACES (pspace)
3235 {
3236 set_current_program_space (pspace);
3237
3238 for (objfile *objfile : current_program_space->objfiles ())
3239 {
3240 int i;
3241 struct gdbarch *gdbarch;
3242 struct breakpoint_objfile_data *bp_objfile_data;
3243
3244 gdbarch = get_objfile_arch (objfile);
3245
3246 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3247
3248 if (!bp_objfile_data->longjmp_searched)
3249 {
3250 std::vector<probe *> ret
3251 = find_probes_in_objfile (objfile, "libc", "longjmp");
3252
3253 if (!ret.empty ())
3254 {
3255 /* We are only interested in checking one element. */
3256 probe *p = ret[0];
3257
3258 if (!p->can_evaluate_arguments ())
3259 {
3260 /* We cannot use the probe interface here, because it does
3261 not know how to evaluate arguments. */
3262 ret.clear ();
3263 }
3264 }
3265 bp_objfile_data->longjmp_probes = ret;
3266 bp_objfile_data->longjmp_searched = 1;
3267 }
3268
3269 if (!bp_objfile_data->longjmp_probes.empty ())
3270 {
3271 for (probe *p : bp_objfile_data->longjmp_probes)
3272 {
3273 struct breakpoint *b;
3274
3275 b = create_internal_breakpoint (gdbarch,
3276 p->get_relocated_address (objfile),
3277 bp_longjmp_master,
3278 &internal_breakpoint_ops);
3279 b->location = new_probe_location ("-probe-stap libc:longjmp");
3280 b->enable_state = bp_disabled;
3281 }
3282
3283 continue;
3284 }
3285
3286 if (!gdbarch_get_longjmp_target_p (gdbarch))
3287 continue;
3288
3289 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3290 {
3291 struct breakpoint *b;
3292 const char *func_name;
3293 CORE_ADDR addr;
3294 struct explicit_location explicit_loc;
3295
3296 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3297 continue;
3298
3299 func_name = longjmp_names[i];
3300 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3301 {
3302 struct bound_minimal_symbol m;
3303
3304 m = lookup_minimal_symbol_text (func_name, objfile);
3305 if (m.minsym == NULL)
3306 {
3307 /* Prevent future lookups in this objfile. */
3308 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3309 continue;
3310 }
3311 bp_objfile_data->longjmp_msym[i] = m;
3312 }
3313
3314 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3315 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3316 &internal_breakpoint_ops);
3317 initialize_explicit_location (&explicit_loc);
3318 explicit_loc.function_name = ASTRDUP (func_name);
3319 b->location = new_explicit_location (&explicit_loc);
3320 b->enable_state = bp_disabled;
3321 }
3322 }
3323 }
3324 }
3325
3326 /* Create a master std::terminate breakpoint. */
3327 static void
3328 create_std_terminate_master_breakpoint (void)
3329 {
3330 struct program_space *pspace;
3331 const char *const func_name = "std::terminate()";
3332
3333 scoped_restore_current_program_space restore_pspace;
3334
3335 ALL_PSPACES (pspace)
3336 {
3337 CORE_ADDR addr;
3338
3339 set_current_program_space (pspace);
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 struct breakpoint *b;
3344 struct breakpoint_objfile_data *bp_objfile_data;
3345 struct explicit_location explicit_loc;
3346
3347 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3348
3349 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3350 continue;
3351
3352 if (bp_objfile_data->terminate_msym.minsym == NULL)
3353 {
3354 struct bound_minimal_symbol m;
3355
3356 m = lookup_minimal_symbol (func_name, NULL, objfile);
3357 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3358 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3359 {
3360 /* Prevent future lookups in this objfile. */
3361 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3362 continue;
3363 }
3364 bp_objfile_data->terminate_msym = m;
3365 }
3366
3367 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3368 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3369 bp_std_terminate_master,
3370 &internal_breakpoint_ops);
3371 initialize_explicit_location (&explicit_loc);
3372 explicit_loc.function_name = ASTRDUP (func_name);
3373 b->location = new_explicit_location (&explicit_loc);
3374 b->enable_state = bp_disabled;
3375 }
3376 }
3377 }
3378
3379 /* Install a master breakpoint on the unwinder's debug hook. */
3380
3381 static void
3382 create_exception_master_breakpoint (void)
3383 {
3384 const char *const func_name = "_Unwind_DebugHook";
3385
3386 for (objfile *objfile : current_program_space->objfiles ())
3387 {
3388 struct breakpoint *b;
3389 struct gdbarch *gdbarch;
3390 struct breakpoint_objfile_data *bp_objfile_data;
3391 CORE_ADDR addr;
3392 struct explicit_location explicit_loc;
3393
3394 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3395
3396 /* We prefer the SystemTap probe point if it exists. */
3397 if (!bp_objfile_data->exception_searched)
3398 {
3399 std::vector<probe *> ret
3400 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3401
3402 if (!ret.empty ())
3403 {
3404 /* We are only interested in checking one element. */
3405 probe *p = ret[0];
3406
3407 if (!p->can_evaluate_arguments ())
3408 {
3409 /* We cannot use the probe interface here, because it does
3410 not know how to evaluate arguments. */
3411 ret.clear ();
3412 }
3413 }
3414 bp_objfile_data->exception_probes = ret;
3415 bp_objfile_data->exception_searched = 1;
3416 }
3417
3418 if (!bp_objfile_data->exception_probes.empty ())
3419 {
3420 gdbarch = get_objfile_arch (objfile);
3421
3422 for (probe *p : bp_objfile_data->exception_probes)
3423 {
3424 b = create_internal_breakpoint (gdbarch,
3425 p->get_relocated_address (objfile),
3426 bp_exception_master,
3427 &internal_breakpoint_ops);
3428 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3429 b->enable_state = bp_disabled;
3430 }
3431
3432 continue;
3433 }
3434
3435 /* Otherwise, try the hook function. */
3436
3437 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3438 continue;
3439
3440 gdbarch = get_objfile_arch (objfile);
3441
3442 if (bp_objfile_data->exception_msym.minsym == NULL)
3443 {
3444 struct bound_minimal_symbol debug_hook;
3445
3446 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3447 if (debug_hook.minsym == NULL)
3448 {
3449 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3450 continue;
3451 }
3452
3453 bp_objfile_data->exception_msym = debug_hook;
3454 }
3455
3456 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3457 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3458 current_top_target ());
3459 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3460 &internal_breakpoint_ops);
3461 initialize_explicit_location (&explicit_loc);
3462 explicit_loc.function_name = ASTRDUP (func_name);
3463 b->location = new_explicit_location (&explicit_loc);
3464 b->enable_state = bp_disabled;
3465 }
3466 }
3467
3468 /* Does B have a location spec? */
3469
3470 static int
3471 breakpoint_event_location_empty_p (const struct breakpoint *b)
3472 {
3473 return b->location != NULL && event_location_empty_p (b->location.get ());
3474 }
3475
3476 void
3477 update_breakpoints_after_exec (void)
3478 {
3479 struct breakpoint *b, *b_tmp;
3480 struct bp_location *bploc, **bplocp_tmp;
3481
3482 /* We're about to delete breakpoints from GDB's lists. If the
3483 INSERTED flag is true, GDB will try to lift the breakpoints by
3484 writing the breakpoints' "shadow contents" back into memory. The
3485 "shadow contents" are NOT valid after an exec, so GDB should not
3486 do that. Instead, the target is responsible from marking
3487 breakpoints out as soon as it detects an exec. We don't do that
3488 here instead, because there may be other attempts to delete
3489 breakpoints after detecting an exec and before reaching here. */
3490 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3491 if (bploc->pspace == current_program_space)
3492 gdb_assert (!bploc->inserted);
3493
3494 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3495 {
3496 if (b->pspace != current_program_space)
3497 continue;
3498
3499 /* Solib breakpoints must be explicitly reset after an exec(). */
3500 if (b->type == bp_shlib_event)
3501 {
3502 delete_breakpoint (b);
3503 continue;
3504 }
3505
3506 /* JIT breakpoints must be explicitly reset after an exec(). */
3507 if (b->type == bp_jit_event)
3508 {
3509 delete_breakpoint (b);
3510 continue;
3511 }
3512
3513 /* Thread event breakpoints must be set anew after an exec(),
3514 as must overlay event and longjmp master breakpoints. */
3515 if (b->type == bp_thread_event || b->type == bp_overlay_event
3516 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3517 || b->type == bp_exception_master)
3518 {
3519 delete_breakpoint (b);
3520 continue;
3521 }
3522
3523 /* Step-resume breakpoints are meaningless after an exec(). */
3524 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3525 {
3526 delete_breakpoint (b);
3527 continue;
3528 }
3529
3530 /* Just like single-step breakpoints. */
3531 if (b->type == bp_single_step)
3532 {
3533 delete_breakpoint (b);
3534 continue;
3535 }
3536
3537 /* Longjmp and longjmp-resume breakpoints are also meaningless
3538 after an exec. */
3539 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3540 || b->type == bp_longjmp_call_dummy
3541 || b->type == bp_exception || b->type == bp_exception_resume)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 if (b->type == bp_catchpoint)
3548 {
3549 /* For now, none of the bp_catchpoint breakpoints need to
3550 do anything at this point. In the future, if some of
3551 the catchpoints need to something, we will need to add
3552 a new method, and call this method from here. */
3553 continue;
3554 }
3555
3556 /* bp_finish is a special case. The only way we ought to be able
3557 to see one of these when an exec() has happened, is if the user
3558 caught a vfork, and then said "finish". Ordinarily a finish just
3559 carries them to the call-site of the current callee, by setting
3560 a temporary bp there and resuming. But in this case, the finish
3561 will carry them entirely through the vfork & exec.
3562
3563 We don't want to allow a bp_finish to remain inserted now. But
3564 we can't safely delete it, 'cause finish_command has a handle to
3565 the bp on a bpstat, and will later want to delete it. There's a
3566 chance (and I've seen it happen) that if we delete the bp_finish
3567 here, that its storage will get reused by the time finish_command
3568 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3569 We really must allow finish_command to delete a bp_finish.
3570
3571 In the absence of a general solution for the "how do we know
3572 it's safe to delete something others may have handles to?"
3573 problem, what we'll do here is just uninsert the bp_finish, and
3574 let finish_command delete it.
3575
3576 (We know the bp_finish is "doomed" in the sense that it's
3577 momentary, and will be deleted as soon as finish_command sees
3578 the inferior stopped. So it doesn't matter that the bp's
3579 address is probably bogus in the new a.out, unlike e.g., the
3580 solib breakpoints.) */
3581
3582 if (b->type == bp_finish)
3583 {
3584 continue;
3585 }
3586
3587 /* Without a symbolic address, we have little hope of the
3588 pre-exec() address meaning the same thing in the post-exec()
3589 a.out. */
3590 if (breakpoint_event_location_empty_p (b))
3591 {
3592 delete_breakpoint (b);
3593 continue;
3594 }
3595 }
3596 }
3597
3598 int
3599 detach_breakpoints (ptid_t ptid)
3600 {
3601 struct bp_location *bl, **blp_tmp;
3602 int val = 0;
3603 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3604 struct inferior *inf = current_inferior ();
3605
3606 if (ptid.pid () == inferior_ptid.pid ())
3607 error (_("Cannot detach breakpoints of inferior_ptid"));
3608
3609 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3610 inferior_ptid = ptid;
3611 ALL_BP_LOCATIONS (bl, blp_tmp)
3612 {
3613 if (bl->pspace != inf->pspace)
3614 continue;
3615
3616 /* This function must physically remove breakpoints locations
3617 from the specified ptid, without modifying the breakpoint
3618 package's state. Locations of type bp_loc_other are only
3619 maintained at GDB side. So, there is no need to remove
3620 these bp_loc_other locations. Moreover, removing these
3621 would modify the breakpoint package's state. */
3622 if (bl->loc_type == bp_loc_other)
3623 continue;
3624
3625 if (bl->inserted)
3626 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3627 }
3628
3629 return val;
3630 }
3631
3632 /* Remove the breakpoint location BL from the current address space.
3633 Note that this is used to detach breakpoints from a child fork.
3634 When we get here, the child isn't in the inferior list, and neither
3635 do we have objects to represent its address space --- we should
3636 *not* look at bl->pspace->aspace here. */
3637
3638 static int
3639 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3640 {
3641 int val;
3642
3643 /* BL is never in moribund_locations by our callers. */
3644 gdb_assert (bl->owner != NULL);
3645
3646 /* The type of none suggests that owner is actually deleted.
3647 This should not ever happen. */
3648 gdb_assert (bl->owner->type != bp_none);
3649
3650 if (bl->loc_type == bp_loc_software_breakpoint
3651 || bl->loc_type == bp_loc_hardware_breakpoint)
3652 {
3653 /* "Normal" instruction breakpoint: either the standard
3654 trap-instruction bp (bp_breakpoint), or a
3655 bp_hardware_breakpoint. */
3656
3657 /* First check to see if we have to handle an overlay. */
3658 if (overlay_debugging == ovly_off
3659 || bl->section == NULL
3660 || !(section_is_overlay (bl->section)))
3661 {
3662 /* No overlay handling: just remove the breakpoint. */
3663
3664 /* If we're trying to uninsert a memory breakpoint that we
3665 know is set in a dynamic object that is marked
3666 shlib_disabled, then either the dynamic object was
3667 removed with "remove-symbol-file" or with
3668 "nosharedlibrary". In the former case, we don't know
3669 whether another dynamic object might have loaded over the
3670 breakpoint's address -- the user might well let us know
3671 about it next with add-symbol-file (the whole point of
3672 add-symbol-file is letting the user manually maintain a
3673 list of dynamically loaded objects). If we have the
3674 breakpoint's shadow memory, that is, this is a software
3675 breakpoint managed by GDB, check whether the breakpoint
3676 is still inserted in memory, to avoid overwriting wrong
3677 code with stale saved shadow contents. Note that HW
3678 breakpoints don't have shadow memory, as they're
3679 implemented using a mechanism that is not dependent on
3680 being able to modify the target's memory, and as such
3681 they should always be removed. */
3682 if (bl->shlib_disabled
3683 && bl->target_info.shadow_len != 0
3684 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3685 val = 0;
3686 else
3687 val = bl->owner->ops->remove_location (bl, reason);
3688 }
3689 else
3690 {
3691 /* This breakpoint is in an overlay section.
3692 Did we set a breakpoint at the LMA? */
3693 if (!overlay_events_enabled)
3694 {
3695 /* Yes -- overlay event support is not active, so we
3696 should have set a breakpoint at the LMA. Remove it.
3697 */
3698 /* Ignore any failures: if the LMA is in ROM, we will
3699 have already warned when we failed to insert it. */
3700 if (bl->loc_type == bp_loc_hardware_breakpoint)
3701 target_remove_hw_breakpoint (bl->gdbarch,
3702 &bl->overlay_target_info);
3703 else
3704 target_remove_breakpoint (bl->gdbarch,
3705 &bl->overlay_target_info,
3706 reason);
3707 }
3708 /* Did we set a breakpoint at the VMA?
3709 If so, we will have marked the breakpoint 'inserted'. */
3710 if (bl->inserted)
3711 {
3712 /* Yes -- remove it. Previously we did not bother to
3713 remove the breakpoint if the section had been
3714 unmapped, but let's not rely on that being safe. We
3715 don't know what the overlay manager might do. */
3716
3717 /* However, we should remove *software* breakpoints only
3718 if the section is still mapped, or else we overwrite
3719 wrong code with the saved shadow contents. */
3720 if (bl->loc_type == bp_loc_hardware_breakpoint
3721 || section_is_mapped (bl->section))
3722 val = bl->owner->ops->remove_location (bl, reason);
3723 else
3724 val = 0;
3725 }
3726 else
3727 {
3728 /* No -- not inserted, so no need to remove. No error. */
3729 val = 0;
3730 }
3731 }
3732
3733 /* In some cases, we might not be able to remove a breakpoint in
3734 a shared library that has already been removed, but we have
3735 not yet processed the shlib unload event. Similarly for an
3736 unloaded add-symbol-file object - the user might not yet have
3737 had the chance to remove-symbol-file it. shlib_disabled will
3738 be set if the library/object has already been removed, but
3739 the breakpoint hasn't been uninserted yet, e.g., after
3740 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3741 always-inserted mode. */
3742 if (val
3743 && (bl->loc_type == bp_loc_software_breakpoint
3744 && (bl->shlib_disabled
3745 || solib_name_from_address (bl->pspace, bl->address)
3746 || shared_objfile_contains_address_p (bl->pspace,
3747 bl->address))))
3748 val = 0;
3749
3750 if (val)
3751 return val;
3752 bl->inserted = (reason == DETACH_BREAKPOINT);
3753 }
3754 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3755 {
3756 gdb_assert (bl->owner->ops != NULL
3757 && bl->owner->ops->remove_location != NULL);
3758
3759 bl->inserted = (reason == DETACH_BREAKPOINT);
3760 bl->owner->ops->remove_location (bl, reason);
3761
3762 /* Failure to remove any of the hardware watchpoints comes here. */
3763 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3764 warning (_("Could not remove hardware watchpoint %d."),
3765 bl->owner->number);
3766 }
3767 else if (bl->owner->type == bp_catchpoint
3768 && breakpoint_enabled (bl->owner)
3769 && !bl->duplicate)
3770 {
3771 gdb_assert (bl->owner->ops != NULL
3772 && bl->owner->ops->remove_location != NULL);
3773
3774 val = bl->owner->ops->remove_location (bl, reason);
3775 if (val)
3776 return val;
3777
3778 bl->inserted = (reason == DETACH_BREAKPOINT);
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int
3785 remove_breakpoint (struct bp_location *bl)
3786 {
3787 /* BL is never in moribund_locations by our callers. */
3788 gdb_assert (bl->owner != NULL);
3789
3790 /* The type of none suggests that owner is actually deleted.
3791 This should not ever happen. */
3792 gdb_assert (bl->owner->type != bp_none);
3793
3794 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3795
3796 switch_to_program_space_and_thread (bl->pspace);
3797
3798 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3799 }
3800
3801 /* Clear the "inserted" flag in all breakpoints. */
3802
3803 void
3804 mark_breakpoints_out (void)
3805 {
3806 struct bp_location *bl, **blp_tmp;
3807
3808 ALL_BP_LOCATIONS (bl, blp_tmp)
3809 if (bl->pspace == current_program_space)
3810 bl->inserted = 0;
3811 }
3812
3813 /* Clear the "inserted" flag in all breakpoints and delete any
3814 breakpoints which should go away between runs of the program.
3815
3816 Plus other such housekeeping that has to be done for breakpoints
3817 between runs.
3818
3819 Note: this function gets called at the end of a run (by
3820 generic_mourn_inferior) and when a run begins (by
3821 init_wait_for_inferior). */
3822
3823
3824
3825 void
3826 breakpoint_init_inferior (enum inf_context context)
3827 {
3828 struct breakpoint *b, *b_tmp;
3829 struct program_space *pspace = current_program_space;
3830
3831 /* If breakpoint locations are shared across processes, then there's
3832 nothing to do. */
3833 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3834 return;
3835
3836 mark_breakpoints_out ();
3837
3838 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3839 {
3840 if (b->loc && b->loc->pspace != pspace)
3841 continue;
3842
3843 switch (b->type)
3844 {
3845 case bp_call_dummy:
3846 case bp_longjmp_call_dummy:
3847
3848 /* If the call dummy breakpoint is at the entry point it will
3849 cause problems when the inferior is rerun, so we better get
3850 rid of it. */
3851
3852 case bp_watchpoint_scope:
3853
3854 /* Also get rid of scope breakpoints. */
3855
3856 case bp_shlib_event:
3857
3858 /* Also remove solib event breakpoints. Their addresses may
3859 have changed since the last time we ran the program.
3860 Actually we may now be debugging against different target;
3861 and so the solib backend that installed this breakpoint may
3862 not be used in by the target. E.g.,
3863
3864 (gdb) file prog-linux
3865 (gdb) run # native linux target
3866 ...
3867 (gdb) kill
3868 (gdb) file prog-win.exe
3869 (gdb) tar rem :9999 # remote Windows gdbserver.
3870 */
3871
3872 case bp_step_resume:
3873
3874 /* Also remove step-resume breakpoints. */
3875
3876 case bp_single_step:
3877
3878 /* Also remove single-step breakpoints. */
3879
3880 delete_breakpoint (b);
3881 break;
3882
3883 case bp_watchpoint:
3884 case bp_hardware_watchpoint:
3885 case bp_read_watchpoint:
3886 case bp_access_watchpoint:
3887 {
3888 struct watchpoint *w = (struct watchpoint *) b;
3889
3890 /* Likewise for watchpoints on local expressions. */
3891 if (w->exp_valid_block != NULL)
3892 delete_breakpoint (b);
3893 else
3894 {
3895 /* Get rid of existing locations, which are no longer
3896 valid. New ones will be created in
3897 update_watchpoint, when the inferior is restarted.
3898 The next update_global_location_list call will
3899 garbage collect them. */
3900 b->loc = NULL;
3901
3902 if (context == inf_starting)
3903 {
3904 /* Reset val field to force reread of starting value in
3905 insert_breakpoints. */
3906 w->val.reset (nullptr);
3907 w->val_valid = 0;
3908 }
3909 }
3910 }
3911 break;
3912 default:
3913 break;
3914 }
3915 }
3916
3917 /* Get rid of the moribund locations. */
3918 for (bp_location *bl : moribund_locations)
3919 decref_bp_location (&bl);
3920 moribund_locations.clear ();
3921 }
3922
3923 /* These functions concern about actual breakpoints inserted in the
3924 target --- to e.g. check if we need to do decr_pc adjustment or if
3925 we need to hop over the bkpt --- so we check for address space
3926 match, not program space. */
3927
3928 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3929 exists at PC. It returns ordinary_breakpoint_here if it's an
3930 ordinary breakpoint, or permanent_breakpoint_here if it's a
3931 permanent breakpoint.
3932 - When continuing from a location with an ordinary breakpoint, we
3933 actually single step once before calling insert_breakpoints.
3934 - When continuing from a location with a permanent breakpoint, we
3935 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3936 the target, to advance the PC past the breakpoint. */
3937
3938 enum breakpoint_here
3939 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3940 {
3941 struct bp_location *bl, **blp_tmp;
3942 int any_breakpoint_here = 0;
3943
3944 ALL_BP_LOCATIONS (bl, blp_tmp)
3945 {
3946 if (bl->loc_type != bp_loc_software_breakpoint
3947 && bl->loc_type != bp_loc_hardware_breakpoint)
3948 continue;
3949
3950 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3951 if ((breakpoint_enabled (bl->owner)
3952 || bl->permanent)
3953 && breakpoint_location_address_match (bl, aspace, pc))
3954 {
3955 if (overlay_debugging
3956 && section_is_overlay (bl->section)
3957 && !section_is_mapped (bl->section))
3958 continue; /* unmapped overlay -- can't be a match */
3959 else if (bl->permanent)
3960 return permanent_breakpoint_here;
3961 else
3962 any_breakpoint_here = 1;
3963 }
3964 }
3965
3966 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3967 }
3968
3969 /* See breakpoint.h. */
3970
3971 int
3972 breakpoint_in_range_p (const address_space *aspace,
3973 CORE_ADDR addr, ULONGEST len)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976
3977 ALL_BP_LOCATIONS (bl, blp_tmp)
3978 {
3979 if (bl->loc_type != bp_loc_software_breakpoint
3980 && bl->loc_type != bp_loc_hardware_breakpoint)
3981 continue;
3982
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_range_overlap (bl, aspace,
3986 addr, len))
3987 {
3988 if (overlay_debugging
3989 && section_is_overlay (bl->section)
3990 && !section_is_mapped (bl->section))
3991 {
3992 /* Unmapped overlay -- can't be a match. */
3993 continue;
3994 }
3995
3996 return 1;
3997 }
3998 }
3999
4000 return 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4007 {
4008 for (bp_location *loc : moribund_locations)
4009 if (breakpoint_location_address_match (loc, aspace, pc))
4010 return 1;
4011
4012 return 0;
4013 }
4014
4015 /* Returns non-zero iff BL is inserted at PC, in address space
4016 ASPACE. */
4017
4018 static int
4019 bp_location_inserted_here_p (struct bp_location *bl,
4020 const address_space *aspace, CORE_ADDR pc)
4021 {
4022 if (bl->inserted
4023 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4024 aspace, pc))
4025 {
4026 if (overlay_debugging
4027 && section_is_overlay (bl->section)
4028 && !section_is_mapped (bl->section))
4029 return 0; /* unmapped overlay -- can't be a match */
4030 else
4031 return 1;
4032 }
4033 return 0;
4034 }
4035
4036 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4037
4038 int
4039 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4040 {
4041 struct bp_location **blp, **blp_tmp = NULL;
4042
4043 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4044 {
4045 struct bp_location *bl = *blp;
4046
4047 if (bl->loc_type != bp_loc_software_breakpoint
4048 && bl->loc_type != bp_loc_hardware_breakpoint)
4049 continue;
4050
4051 if (bp_location_inserted_here_p (bl, aspace, pc))
4052 return 1;
4053 }
4054 return 0;
4055 }
4056
4057 /* This function returns non-zero iff there is a software breakpoint
4058 inserted at PC. */
4059
4060 int
4061 software_breakpoint_inserted_here_p (const address_space *aspace,
4062 CORE_ADDR pc)
4063 {
4064 struct bp_location **blp, **blp_tmp = NULL;
4065
4066 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4067 {
4068 struct bp_location *bl = *blp;
4069
4070 if (bl->loc_type != bp_loc_software_breakpoint)
4071 continue;
4072
4073 if (bp_location_inserted_here_p (bl, aspace, pc))
4074 return 1;
4075 }
4076
4077 return 0;
4078 }
4079
4080 /* See breakpoint.h. */
4081
4082 int
4083 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4084 CORE_ADDR pc)
4085 {
4086 struct bp_location **blp, **blp_tmp = NULL;
4087
4088 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4089 {
4090 struct bp_location *bl = *blp;
4091
4092 if (bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098
4099 return 0;
4100 }
4101
4102 int
4103 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4104 CORE_ADDR addr, ULONGEST len)
4105 {
4106 struct breakpoint *bpt;
4107
4108 ALL_BREAKPOINTS (bpt)
4109 {
4110 struct bp_location *loc;
4111
4112 if (bpt->type != bp_hardware_watchpoint
4113 && bpt->type != bp_access_watchpoint)
4114 continue;
4115
4116 if (!breakpoint_enabled (bpt))
4117 continue;
4118
4119 for (loc = bpt->loc; loc; loc = loc->next)
4120 if (loc->pspace->aspace == aspace && loc->inserted)
4121 {
4122 CORE_ADDR l, h;
4123
4124 /* Check for intersection. */
4125 l = std::max<CORE_ADDR> (loc->address, addr);
4126 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4127 if (l < h)
4128 return 1;
4129 }
4130 }
4131 return 0;
4132 }
4133 \f
4134
4135 /* bpstat stuff. External routines' interfaces are documented
4136 in breakpoint.h. */
4137
4138 int
4139 is_catchpoint (struct breakpoint *ep)
4140 {
4141 return (ep->type == bp_catchpoint);
4142 }
4143
4144 /* Frees any storage that is part of a bpstat. Does not walk the
4145 'next' chain. */
4146
4147 bpstats::~bpstats ()
4148 {
4149 if (bp_location_at != NULL)
4150 decref_bp_location (&bp_location_at);
4151 }
4152
4153 /* Clear a bpstat so that it says we are not at any breakpoint.
4154 Also free any storage that is part of a bpstat. */
4155
4156 void
4157 bpstat_clear (bpstat *bsp)
4158 {
4159 bpstat p;
4160 bpstat q;
4161
4162 if (bsp == 0)
4163 return;
4164 p = *bsp;
4165 while (p != NULL)
4166 {
4167 q = p->next;
4168 delete p;
4169 p = q;
4170 }
4171 *bsp = NULL;
4172 }
4173
4174 bpstats::bpstats (const bpstats &other)
4175 : next (NULL),
4176 bp_location_at (other.bp_location_at),
4177 breakpoint_at (other.breakpoint_at),
4178 commands (other.commands),
4179 print (other.print),
4180 stop (other.stop),
4181 print_it (other.print_it)
4182 {
4183 if (other.old_val != NULL)
4184 old_val = release_value (value_copy (other.old_val.get ()));
4185 incref_bp_location (bp_location_at);
4186 }
4187
4188 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4189 is part of the bpstat is copied as well. */
4190
4191 bpstat
4192 bpstat_copy (bpstat bs)
4193 {
4194 bpstat p = NULL;
4195 bpstat tmp;
4196 bpstat retval = NULL;
4197
4198 if (bs == NULL)
4199 return bs;
4200
4201 for (; bs != NULL; bs = bs->next)
4202 {
4203 tmp = new bpstats (*bs);
4204
4205 if (p == NULL)
4206 /* This is the first thing in the chain. */
4207 retval = tmp;
4208 else
4209 p->next = tmp;
4210 p = tmp;
4211 }
4212 p->next = NULL;
4213 return retval;
4214 }
4215
4216 /* Find the bpstat associated with this breakpoint. */
4217
4218 bpstat
4219 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4220 {
4221 if (bsp == NULL)
4222 return NULL;
4223
4224 for (; bsp != NULL; bsp = bsp->next)
4225 {
4226 if (bsp->breakpoint_at == breakpoint)
4227 return bsp;
4228 }
4229 return NULL;
4230 }
4231
4232 /* See breakpoint.h. */
4233
4234 int
4235 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4236 {
4237 for (; bsp != NULL; bsp = bsp->next)
4238 {
4239 if (bsp->breakpoint_at == NULL)
4240 {
4241 /* A moribund location can never explain a signal other than
4242 GDB_SIGNAL_TRAP. */
4243 if (sig == GDB_SIGNAL_TRAP)
4244 return 1;
4245 }
4246 else
4247 {
4248 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4249 sig))
4250 return 1;
4251 }
4252 }
4253
4254 return 0;
4255 }
4256
4257 /* Put in *NUM the breakpoint number of the first breakpoint we are
4258 stopped at. *BSP upon return is a bpstat which points to the
4259 remaining breakpoints stopped at (but which is not guaranteed to be
4260 good for anything but further calls to bpstat_num).
4261
4262 Return 0 if passed a bpstat which does not indicate any breakpoints.
4263 Return -1 if stopped at a breakpoint that has been deleted since
4264 we set it.
4265 Return 1 otherwise. */
4266
4267 int
4268 bpstat_num (bpstat *bsp, int *num)
4269 {
4270 struct breakpoint *b;
4271
4272 if ((*bsp) == NULL)
4273 return 0; /* No more breakpoint values */
4274
4275 /* We assume we'll never have several bpstats that correspond to a
4276 single breakpoint -- otherwise, this function might return the
4277 same number more than once and this will look ugly. */
4278 b = (*bsp)->breakpoint_at;
4279 *bsp = (*bsp)->next;
4280 if (b == NULL)
4281 return -1; /* breakpoint that's been deleted since */
4282
4283 *num = b->number; /* We have its number */
4284 return 1;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 void
4290 bpstat_clear_actions (void)
4291 {
4292 bpstat bs;
4293
4294 if (inferior_ptid == null_ptid)
4295 return;
4296
4297 thread_info *tp = inferior_thread ();
4298 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4299 {
4300 bs->commands = NULL;
4301 bs->old_val.reset (nullptr);
4302 }
4303 }
4304
4305 /* Called when a command is about to proceed the inferior. */
4306
4307 static void
4308 breakpoint_about_to_proceed (void)
4309 {
4310 if (inferior_ptid != null_ptid)
4311 {
4312 struct thread_info *tp = inferior_thread ();
4313
4314 /* Allow inferior function calls in breakpoint commands to not
4315 interrupt the command list. When the call finishes
4316 successfully, the inferior will be standing at the same
4317 breakpoint as if nothing happened. */
4318 if (tp->control.in_infcall)
4319 return;
4320 }
4321
4322 breakpoint_proceeded = 1;
4323 }
4324
4325 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4326 or its equivalent. */
4327
4328 static int
4329 command_line_is_silent (struct command_line *cmd)
4330 {
4331 return cmd && (strcmp ("silent", cmd->line) == 0);
4332 }
4333
4334 /* Execute all the commands associated with all the breakpoints at
4335 this location. Any of these commands could cause the process to
4336 proceed beyond this point, etc. We look out for such changes by
4337 checking the global "breakpoint_proceeded" after each command.
4338
4339 Returns true if a breakpoint command resumed the inferior. In that
4340 case, it is the caller's responsibility to recall it again with the
4341 bpstat of the current thread. */
4342
4343 static int
4344 bpstat_do_actions_1 (bpstat *bsp)
4345 {
4346 bpstat bs;
4347 int again = 0;
4348
4349 /* Avoid endless recursion if a `source' command is contained
4350 in bs->commands. */
4351 if (executing_breakpoint_commands)
4352 return 0;
4353
4354 scoped_restore save_executing
4355 = make_scoped_restore (&executing_breakpoint_commands, 1);
4356
4357 scoped_restore preventer = prevent_dont_repeat ();
4358
4359 /* This pointer will iterate over the list of bpstat's. */
4360 bs = *bsp;
4361
4362 breakpoint_proceeded = 0;
4363 for (; bs != NULL; bs = bs->next)
4364 {
4365 struct command_line *cmd = NULL;
4366
4367 /* Take ownership of the BSP's command tree, if it has one.
4368
4369 The command tree could legitimately contain commands like
4370 'step' and 'next', which call clear_proceed_status, which
4371 frees stop_bpstat's command tree. To make sure this doesn't
4372 free the tree we're executing out from under us, we need to
4373 take ownership of the tree ourselves. Since a given bpstat's
4374 commands are only executed once, we don't need to copy it; we
4375 can clear the pointer in the bpstat, and make sure we free
4376 the tree when we're done. */
4377 counted_command_line ccmd = bs->commands;
4378 bs->commands = NULL;
4379 if (ccmd != NULL)
4380 cmd = ccmd.get ();
4381 if (command_line_is_silent (cmd))
4382 {
4383 /* The action has been already done by bpstat_stop_status. */
4384 cmd = cmd->next;
4385 }
4386
4387 while (cmd != NULL)
4388 {
4389 execute_control_command (cmd);
4390
4391 if (breakpoint_proceeded)
4392 break;
4393 else
4394 cmd = cmd->next;
4395 }
4396
4397 if (breakpoint_proceeded)
4398 {
4399 if (current_ui->async)
4400 /* If we are in async mode, then the target might be still
4401 running, not stopped at any breakpoint, so nothing for
4402 us to do here -- just return to the event loop. */
4403 ;
4404 else
4405 /* In sync mode, when execute_control_command returns
4406 we're already standing on the next breakpoint.
4407 Breakpoint commands for that stop were not run, since
4408 execute_command does not run breakpoint commands --
4409 only command_line_handler does, but that one is not
4410 involved in execution of breakpoint commands. So, we
4411 can now execute breakpoint commands. It should be
4412 noted that making execute_command do bpstat actions is
4413 not an option -- in this case we'll have recursive
4414 invocation of bpstat for each breakpoint with a
4415 command, and can easily blow up GDB stack. Instead, we
4416 return true, which will trigger the caller to recall us
4417 with the new stop_bpstat. */
4418 again = 1;
4419 break;
4420 }
4421 }
4422 return again;
4423 }
4424
4425 /* Helper for bpstat_do_actions. Get the current thread, if there's
4426 one, is alive and has execution. Return NULL otherwise. */
4427
4428 static thread_info *
4429 get_bpstat_thread ()
4430 {
4431 if (inferior_ptid == null_ptid || !target_has_execution)
4432 return NULL;
4433
4434 thread_info *tp = inferior_thread ();
4435 if (tp->state == THREAD_EXITED || tp->executing)
4436 return NULL;
4437 return tp;
4438 }
4439
4440 void
4441 bpstat_do_actions (void)
4442 {
4443 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4444 thread_info *tp;
4445
4446 /* Do any commands attached to breakpoint we are stopped at. */
4447 while ((tp = get_bpstat_thread ()) != NULL)
4448 {
4449 /* Since in sync mode, bpstat_do_actions may resume the
4450 inferior, and only return when it is stopped at the next
4451 breakpoint, we keep doing breakpoint actions until it returns
4452 false to indicate the inferior was not resumed. */
4453 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4454 break;
4455 }
4456
4457 cleanup_if_error.release ();
4458 }
4459
4460 /* Print out the (old or new) value associated with a watchpoint. */
4461
4462 static void
4463 watchpoint_value_print (struct value *val, struct ui_file *stream)
4464 {
4465 if (val == NULL)
4466 fprintf_unfiltered (stream, _("<unreadable>"));
4467 else
4468 {
4469 struct value_print_options opts;
4470 get_user_print_options (&opts);
4471 value_print (val, stream, &opts);
4472 }
4473 }
4474
4475 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4476 debugging multiple threads. */
4477
4478 void
4479 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4480 {
4481 if (uiout->is_mi_like_p ())
4482 return;
4483
4484 uiout->text ("\n");
4485
4486 if (show_thread_that_caused_stop ())
4487 {
4488 const char *name;
4489 struct thread_info *thr = inferior_thread ();
4490
4491 uiout->text ("Thread ");
4492 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4493
4494 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4495 if (name != NULL)
4496 {
4497 uiout->text (" \"");
4498 uiout->field_fmt ("name", "%s", name);
4499 uiout->text ("\"");
4500 }
4501
4502 uiout->text (" hit ");
4503 }
4504 }
4505
4506 /* Generic routine for printing messages indicating why we
4507 stopped. The behavior of this function depends on the value
4508 'print_it' in the bpstat structure. Under some circumstances we
4509 may decide not to print anything here and delegate the task to
4510 normal_stop(). */
4511
4512 static enum print_stop_action
4513 print_bp_stop_message (bpstat bs)
4514 {
4515 switch (bs->print_it)
4516 {
4517 case print_it_noop:
4518 /* Nothing should be printed for this bpstat entry. */
4519 return PRINT_UNKNOWN;
4520 break;
4521
4522 case print_it_done:
4523 /* We still want to print the frame, but we already printed the
4524 relevant messages. */
4525 return PRINT_SRC_AND_LOC;
4526 break;
4527
4528 case print_it_normal:
4529 {
4530 struct breakpoint *b = bs->breakpoint_at;
4531
4532 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4533 which has since been deleted. */
4534 if (b == NULL)
4535 return PRINT_UNKNOWN;
4536
4537 /* Normal case. Call the breakpoint's print_it method. */
4538 return b->ops->print_it (bs);
4539 }
4540 break;
4541
4542 default:
4543 internal_error (__FILE__, __LINE__,
4544 _("print_bp_stop_message: unrecognized enum value"));
4545 break;
4546 }
4547 }
4548
4549 /* A helper function that prints a shared library stopped event. */
4550
4551 static void
4552 print_solib_event (int is_catchpoint)
4553 {
4554 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4555 bool any_added = !current_program_space->added_solibs.empty ();
4556
4557 if (!is_catchpoint)
4558 {
4559 if (any_added || any_deleted)
4560 current_uiout->text (_("Stopped due to shared library event:\n"));
4561 else
4562 current_uiout->text (_("Stopped due to shared library event (no "
4563 "libraries added or removed)\n"));
4564 }
4565
4566 if (current_uiout->is_mi_like_p ())
4567 current_uiout->field_string ("reason",
4568 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4569
4570 if (any_deleted)
4571 {
4572 current_uiout->text (_(" Inferior unloaded "));
4573 ui_out_emit_list list_emitter (current_uiout, "removed");
4574 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4575 {
4576 const std::string &name = current_program_space->deleted_solibs[ix];
4577
4578 if (ix > 0)
4579 current_uiout->text (" ");
4580 current_uiout->field_string ("library", name);
4581 current_uiout->text ("\n");
4582 }
4583 }
4584
4585 if (any_added)
4586 {
4587 current_uiout->text (_(" Inferior loaded "));
4588 ui_out_emit_list list_emitter (current_uiout, "added");
4589 bool first = true;
4590 for (so_list *iter : current_program_space->added_solibs)
4591 {
4592 if (!first)
4593 current_uiout->text (" ");
4594 first = false;
4595 current_uiout->field_string ("library", iter->so_name);
4596 current_uiout->text ("\n");
4597 }
4598 }
4599 }
4600
4601 /* Print a message indicating what happened. This is called from
4602 normal_stop(). The input to this routine is the head of the bpstat
4603 list - a list of the eventpoints that caused this stop. KIND is
4604 the target_waitkind for the stopping event. This
4605 routine calls the generic print routine for printing a message
4606 about reasons for stopping. This will print (for example) the
4607 "Breakpoint n," part of the output. The return value of this
4608 routine is one of:
4609
4610 PRINT_UNKNOWN: Means we printed nothing.
4611 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4612 code to print the location. An example is
4613 "Breakpoint 1, " which should be followed by
4614 the location.
4615 PRINT_SRC_ONLY: Means we printed something, but there is no need
4616 to also print the location part of the message.
4617 An example is the catch/throw messages, which
4618 don't require a location appended to the end.
4619 PRINT_NOTHING: We have done some printing and we don't need any
4620 further info to be printed. */
4621
4622 enum print_stop_action
4623 bpstat_print (bpstat bs, int kind)
4624 {
4625 enum print_stop_action val;
4626
4627 /* Maybe another breakpoint in the chain caused us to stop.
4628 (Currently all watchpoints go on the bpstat whether hit or not.
4629 That probably could (should) be changed, provided care is taken
4630 with respect to bpstat_explains_signal). */
4631 for (; bs; bs = bs->next)
4632 {
4633 val = print_bp_stop_message (bs);
4634 if (val == PRINT_SRC_ONLY
4635 || val == PRINT_SRC_AND_LOC
4636 || val == PRINT_NOTHING)
4637 return val;
4638 }
4639
4640 /* If we had hit a shared library event breakpoint,
4641 print_bp_stop_message would print out this message. If we hit an
4642 OS-level shared library event, do the same thing. */
4643 if (kind == TARGET_WAITKIND_LOADED)
4644 {
4645 print_solib_event (0);
4646 return PRINT_NOTHING;
4647 }
4648
4649 /* We reached the end of the chain, or we got a null BS to start
4650 with and nothing was printed. */
4651 return PRINT_UNKNOWN;
4652 }
4653
4654 /* Evaluate the boolean expression EXP and return the result. */
4655
4656 static bool
4657 breakpoint_cond_eval (expression *exp)
4658 {
4659 struct value *mark = value_mark ();
4660 bool res = value_true (evaluate_expression (exp));
4661
4662 value_free_to_mark (mark);
4663 return res;
4664 }
4665
4666 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4667
4668 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4669 : next (NULL),
4670 bp_location_at (bl),
4671 breakpoint_at (bl->owner),
4672 commands (NULL),
4673 print (0),
4674 stop (0),
4675 print_it (print_it_normal)
4676 {
4677 incref_bp_location (bl);
4678 **bs_link_pointer = this;
4679 *bs_link_pointer = &next;
4680 }
4681
4682 bpstats::bpstats ()
4683 : next (NULL),
4684 bp_location_at (NULL),
4685 breakpoint_at (NULL),
4686 commands (NULL),
4687 print (0),
4688 stop (0),
4689 print_it (print_it_normal)
4690 {
4691 }
4692 \f
4693 /* The target has stopped with waitstatus WS. Check if any hardware
4694 watchpoints have triggered, according to the target. */
4695
4696 int
4697 watchpoints_triggered (struct target_waitstatus *ws)
4698 {
4699 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4700 CORE_ADDR addr;
4701 struct breakpoint *b;
4702
4703 if (!stopped_by_watchpoint)
4704 {
4705 /* We were not stopped by a watchpoint. Mark all watchpoints
4706 as not triggered. */
4707 ALL_BREAKPOINTS (b)
4708 if (is_hardware_watchpoint (b))
4709 {
4710 struct watchpoint *w = (struct watchpoint *) b;
4711
4712 w->watchpoint_triggered = watch_triggered_no;
4713 }
4714
4715 return 0;
4716 }
4717
4718 if (!target_stopped_data_address (current_top_target (), &addr))
4719 {
4720 /* We were stopped by a watchpoint, but we don't know where.
4721 Mark all watchpoints as unknown. */
4722 ALL_BREAKPOINTS (b)
4723 if (is_hardware_watchpoint (b))
4724 {
4725 struct watchpoint *w = (struct watchpoint *) b;
4726
4727 w->watchpoint_triggered = watch_triggered_unknown;
4728 }
4729
4730 return 1;
4731 }
4732
4733 /* The target could report the data address. Mark watchpoints
4734 affected by this data address as triggered, and all others as not
4735 triggered. */
4736
4737 ALL_BREAKPOINTS (b)
4738 if (is_hardware_watchpoint (b))
4739 {
4740 struct watchpoint *w = (struct watchpoint *) b;
4741 struct bp_location *loc;
4742
4743 w->watchpoint_triggered = watch_triggered_no;
4744 for (loc = b->loc; loc; loc = loc->next)
4745 {
4746 if (is_masked_watchpoint (b))
4747 {
4748 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4749 CORE_ADDR start = loc->address & w->hw_wp_mask;
4750
4751 if (newaddr == start)
4752 {
4753 w->watchpoint_triggered = watch_triggered_yes;
4754 break;
4755 }
4756 }
4757 /* Exact match not required. Within range is sufficient. */
4758 else if (target_watchpoint_addr_within_range (current_top_target (),
4759 addr, loc->address,
4760 loc->length))
4761 {
4762 w->watchpoint_triggered = watch_triggered_yes;
4763 break;
4764 }
4765 }
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Possible return values for watchpoint_check. */
4772 enum wp_check_result
4773 {
4774 /* The watchpoint has been deleted. */
4775 WP_DELETED = 1,
4776
4777 /* The value has changed. */
4778 WP_VALUE_CHANGED = 2,
4779
4780 /* The value has not changed. */
4781 WP_VALUE_NOT_CHANGED = 3,
4782
4783 /* Ignore this watchpoint, no matter if the value changed or not. */
4784 WP_IGNORE = 4,
4785 };
4786
4787 #define BP_TEMPFLAG 1
4788 #define BP_HARDWAREFLAG 2
4789
4790 /* Evaluate watchpoint condition expression and check if its value
4791 changed. */
4792
4793 static wp_check_result
4794 watchpoint_check (bpstat bs)
4795 {
4796 struct watchpoint *b;
4797 struct frame_info *fr;
4798 int within_current_scope;
4799
4800 /* BS is built from an existing struct breakpoint. */
4801 gdb_assert (bs->breakpoint_at != NULL);
4802 b = (struct watchpoint *) bs->breakpoint_at;
4803
4804 /* If this is a local watchpoint, we only want to check if the
4805 watchpoint frame is in scope if the current thread is the thread
4806 that was used to create the watchpoint. */
4807 if (!watchpoint_in_thread_scope (b))
4808 return WP_IGNORE;
4809
4810 if (b->exp_valid_block == NULL)
4811 within_current_scope = 1;
4812 else
4813 {
4814 struct frame_info *frame = get_current_frame ();
4815 struct gdbarch *frame_arch = get_frame_arch (frame);
4816 CORE_ADDR frame_pc = get_frame_pc (frame);
4817
4818 /* stack_frame_destroyed_p() returns a non-zero value if we're
4819 still in the function but the stack frame has already been
4820 invalidated. Since we can't rely on the values of local
4821 variables after the stack has been destroyed, we are treating
4822 the watchpoint in that state as `not changed' without further
4823 checking. Don't mark watchpoints as changed if the current
4824 frame is in an epilogue - even if they are in some other
4825 frame, our view of the stack is likely to be wrong and
4826 frame_find_by_id could error out. */
4827 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4828 return WP_IGNORE;
4829
4830 fr = frame_find_by_id (b->watchpoint_frame);
4831 within_current_scope = (fr != NULL);
4832
4833 /* If we've gotten confused in the unwinder, we might have
4834 returned a frame that can't describe this variable. */
4835 if (within_current_scope)
4836 {
4837 struct symbol *function;
4838
4839 function = get_frame_function (fr);
4840 if (function == NULL
4841 || !contained_in (b->exp_valid_block,
4842 SYMBOL_BLOCK_VALUE (function)))
4843 within_current_scope = 0;
4844 }
4845
4846 if (within_current_scope)
4847 /* If we end up stopping, the current frame will get selected
4848 in normal_stop. So this call to select_frame won't affect
4849 the user. */
4850 select_frame (fr);
4851 }
4852
4853 if (within_current_scope)
4854 {
4855 /* We use value_{,free_to_}mark because it could be a *long*
4856 time before we return to the command level and call
4857 free_all_values. We can't call free_all_values because we
4858 might be in the middle of evaluating a function call. */
4859
4860 int pc = 0;
4861 struct value *mark;
4862 struct value *new_val;
4863
4864 if (is_masked_watchpoint (b))
4865 /* Since we don't know the exact trigger address (from
4866 stopped_data_address), just tell the user we've triggered
4867 a mask watchpoint. */
4868 return WP_VALUE_CHANGED;
4869
4870 mark = value_mark ();
4871 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4872
4873 if (b->val_bitsize != 0)
4874 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4875
4876 /* We use value_equal_contents instead of value_equal because
4877 the latter coerces an array to a pointer, thus comparing just
4878 the address of the array instead of its contents. This is
4879 not what we want. */
4880 if ((b->val != NULL) != (new_val != NULL)
4881 || (b->val != NULL && !value_equal_contents (b->val.get (),
4882 new_val)))
4883 {
4884 bs->old_val = b->val;
4885 b->val = release_value (new_val);
4886 b->val_valid = 1;
4887 if (new_val != NULL)
4888 value_free_to_mark (mark);
4889 return WP_VALUE_CHANGED;
4890 }
4891 else
4892 {
4893 /* Nothing changed. */
4894 value_free_to_mark (mark);
4895 return WP_VALUE_NOT_CHANGED;
4896 }
4897 }
4898 else
4899 {
4900 /* This seems like the only logical thing to do because
4901 if we temporarily ignored the watchpoint, then when
4902 we reenter the block in which it is valid it contains
4903 garbage (in the case of a function, it may have two
4904 garbage values, one before and one after the prologue).
4905 So we can't even detect the first assignment to it and
4906 watch after that (since the garbage may or may not equal
4907 the first value assigned). */
4908 /* We print all the stop information in
4909 breakpoint_ops->print_it, but in this case, by the time we
4910 call breakpoint_ops->print_it this bp will be deleted
4911 already. So we have no choice but print the information
4912 here. */
4913
4914 SWITCH_THRU_ALL_UIS ()
4915 {
4916 struct ui_out *uiout = current_uiout;
4917
4918 if (uiout->is_mi_like_p ())
4919 uiout->field_string
4920 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4921 uiout->text ("\nWatchpoint ");
4922 uiout->field_int ("wpnum", b->number);
4923 uiout->text (" deleted because the program has left the block in\n"
4924 "which its expression is valid.\n");
4925 }
4926
4927 /* Make sure the watchpoint's commands aren't executed. */
4928 b->commands = NULL;
4929 watchpoint_del_at_next_stop (b);
4930
4931 return WP_DELETED;
4932 }
4933 }
4934
4935 /* Return true if it looks like target has stopped due to hitting
4936 breakpoint location BL. This function does not check if we should
4937 stop, only if BL explains the stop. */
4938
4939 static int
4940 bpstat_check_location (const struct bp_location *bl,
4941 const address_space *aspace, CORE_ADDR bp_addr,
4942 const struct target_waitstatus *ws)
4943 {
4944 struct breakpoint *b = bl->owner;
4945
4946 /* BL is from an existing breakpoint. */
4947 gdb_assert (b != NULL);
4948
4949 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4950 }
4951
4952 /* Determine if the watched values have actually changed, and we
4953 should stop. If not, set BS->stop to 0. */
4954
4955 static void
4956 bpstat_check_watchpoint (bpstat bs)
4957 {
4958 const struct bp_location *bl;
4959 struct watchpoint *b;
4960
4961 /* BS is built for existing struct breakpoint. */
4962 bl = bs->bp_location_at;
4963 gdb_assert (bl != NULL);
4964 b = (struct watchpoint *) bs->breakpoint_at;
4965 gdb_assert (b != NULL);
4966
4967 {
4968 int must_check_value = 0;
4969
4970 if (b->type == bp_watchpoint)
4971 /* For a software watchpoint, we must always check the
4972 watched value. */
4973 must_check_value = 1;
4974 else if (b->watchpoint_triggered == watch_triggered_yes)
4975 /* We have a hardware watchpoint (read, write, or access)
4976 and the target earlier reported an address watched by
4977 this watchpoint. */
4978 must_check_value = 1;
4979 else if (b->watchpoint_triggered == watch_triggered_unknown
4980 && b->type == bp_hardware_watchpoint)
4981 /* We were stopped by a hardware watchpoint, but the target could
4982 not report the data address. We must check the watchpoint's
4983 value. Access and read watchpoints are out of luck; without
4984 a data address, we can't figure it out. */
4985 must_check_value = 1;
4986
4987 if (must_check_value)
4988 {
4989 wp_check_result e;
4990
4991 try
4992 {
4993 e = watchpoint_check (bs);
4994 }
4995 catch (const gdb_exception &ex)
4996 {
4997 exception_fprintf (gdb_stderr, ex,
4998 "Error evaluating expression "
4999 "for watchpoint %d\n",
5000 b->number);
5001
5002 SWITCH_THRU_ALL_UIS ()
5003 {
5004 printf_filtered (_("Watchpoint %d deleted.\n"),
5005 b->number);
5006 }
5007 watchpoint_del_at_next_stop (b);
5008 e = WP_DELETED;
5009 }
5010
5011 switch (e)
5012 {
5013 case WP_DELETED:
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 /* Stop. */
5017 break;
5018 case WP_IGNORE:
5019 bs->print_it = print_it_noop;
5020 bs->stop = 0;
5021 break;
5022 case WP_VALUE_CHANGED:
5023 if (b->type == bp_read_watchpoint)
5024 {
5025 /* There are two cases to consider here:
5026
5027 1. We're watching the triggered memory for reads.
5028 In that case, trust the target, and always report
5029 the watchpoint hit to the user. Even though
5030 reads don't cause value changes, the value may
5031 have changed since the last time it was read, and
5032 since we're not trapping writes, we will not see
5033 those, and as such we should ignore our notion of
5034 old value.
5035
5036 2. We're watching the triggered memory for both
5037 reads and writes. There are two ways this may
5038 happen:
5039
5040 2.1. This is a target that can't break on data
5041 reads only, but can break on accesses (reads or
5042 writes), such as e.g., x86. We detect this case
5043 at the time we try to insert read watchpoints.
5044
5045 2.2. Otherwise, the target supports read
5046 watchpoints, but, the user set an access or write
5047 watchpoint watching the same memory as this read
5048 watchpoint.
5049
5050 If we're watching memory writes as well as reads,
5051 ignore watchpoint hits when we find that the
5052 value hasn't changed, as reads don't cause
5053 changes. This still gives false positives when
5054 the program writes the same value to memory as
5055 what there was already in memory (we will confuse
5056 it for a read), but it's much better than
5057 nothing. */
5058
5059 int other_write_watchpoint = 0;
5060
5061 if (bl->watchpoint_type == hw_read)
5062 {
5063 struct breakpoint *other_b;
5064
5065 ALL_BREAKPOINTS (other_b)
5066 if (other_b->type == bp_hardware_watchpoint
5067 || other_b->type == bp_access_watchpoint)
5068 {
5069 struct watchpoint *other_w =
5070 (struct watchpoint *) other_b;
5071
5072 if (other_w->watchpoint_triggered
5073 == watch_triggered_yes)
5074 {
5075 other_write_watchpoint = 1;
5076 break;
5077 }
5078 }
5079 }
5080
5081 if (other_write_watchpoint
5082 || bl->watchpoint_type == hw_access)
5083 {
5084 /* We're watching the same memory for writes,
5085 and the value changed since the last time we
5086 updated it, so this trap must be for a write.
5087 Ignore it. */
5088 bs->print_it = print_it_noop;
5089 bs->stop = 0;
5090 }
5091 }
5092 break;
5093 case WP_VALUE_NOT_CHANGED:
5094 if (b->type == bp_hardware_watchpoint
5095 || b->type == bp_watchpoint)
5096 {
5097 /* Don't stop: write watchpoints shouldn't fire if
5098 the value hasn't changed. */
5099 bs->print_it = print_it_noop;
5100 bs->stop = 0;
5101 }
5102 /* Stop. */
5103 break;
5104 default:
5105 /* Can't happen. */
5106 break;
5107 }
5108 }
5109 else /* must_check_value == 0 */
5110 {
5111 /* This is a case where some watchpoint(s) triggered, but
5112 not at the address of this watchpoint, or else no
5113 watchpoint triggered after all. So don't print
5114 anything for this watchpoint. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 }
5120
5121 /* For breakpoints that are currently marked as telling gdb to stop,
5122 check conditions (condition proper, frame, thread and ignore count)
5123 of breakpoint referred to by BS. If we should not stop for this
5124 breakpoint, set BS->stop to 0. */
5125
5126 static void
5127 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5128 {
5129 const struct bp_location *bl;
5130 struct breakpoint *b;
5131 /* Assume stop. */
5132 bool condition_result = true;
5133 struct expression *cond;
5134
5135 gdb_assert (bs->stop);
5136
5137 /* BS is built for existing struct breakpoint. */
5138 bl = bs->bp_location_at;
5139 gdb_assert (bl != NULL);
5140 b = bs->breakpoint_at;
5141 gdb_assert (b != NULL);
5142
5143 /* Even if the target evaluated the condition on its end and notified GDB, we
5144 need to do so again since GDB does not know if we stopped due to a
5145 breakpoint or a single step breakpoint. */
5146
5147 if (frame_id_p (b->frame_id)
5148 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5149 {
5150 bs->stop = 0;
5151 return;
5152 }
5153
5154 /* If this is a thread/task-specific breakpoint, don't waste cpu
5155 evaluating the condition if this isn't the specified
5156 thread/task. */
5157 if ((b->thread != -1 && b->thread != thread->global_num)
5158 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5159 {
5160 bs->stop = 0;
5161 return;
5162 }
5163
5164 /* Evaluate extension language breakpoints that have a "stop" method
5165 implemented. */
5166 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5167
5168 if (is_watchpoint (b))
5169 {
5170 struct watchpoint *w = (struct watchpoint *) b;
5171
5172 cond = w->cond_exp.get ();
5173 }
5174 else
5175 cond = bl->cond.get ();
5176
5177 if (cond && b->disposition != disp_del_at_next_stop)
5178 {
5179 int within_current_scope = 1;
5180 struct watchpoint * w;
5181
5182 /* We use value_mark and value_free_to_mark because it could
5183 be a long time before we return to the command level and
5184 call free_all_values. We can't call free_all_values
5185 because we might be in the middle of evaluating a
5186 function call. */
5187 struct value *mark = value_mark ();
5188
5189 if (is_watchpoint (b))
5190 w = (struct watchpoint *) b;
5191 else
5192 w = NULL;
5193
5194 /* Need to select the frame, with all that implies so that
5195 the conditions will have the right context. Because we
5196 use the frame, we will not see an inlined function's
5197 variables when we arrive at a breakpoint at the start
5198 of the inlined function; the current frame will be the
5199 call site. */
5200 if (w == NULL || w->cond_exp_valid_block == NULL)
5201 select_frame (get_current_frame ());
5202 else
5203 {
5204 struct frame_info *frame;
5205
5206 /* For local watchpoint expressions, which particular
5207 instance of a local is being watched matters, so we
5208 keep track of the frame to evaluate the expression
5209 in. To evaluate the condition however, it doesn't
5210 really matter which instantiation of the function
5211 where the condition makes sense triggers the
5212 watchpoint. This allows an expression like "watch
5213 global if q > 10" set in `func', catch writes to
5214 global on all threads that call `func', or catch
5215 writes on all recursive calls of `func' by a single
5216 thread. We simply always evaluate the condition in
5217 the innermost frame that's executing where it makes
5218 sense to evaluate the condition. It seems
5219 intuitive. */
5220 frame = block_innermost_frame (w->cond_exp_valid_block);
5221 if (frame != NULL)
5222 select_frame (frame);
5223 else
5224 within_current_scope = 0;
5225 }
5226 if (within_current_scope)
5227 {
5228 try
5229 {
5230 condition_result = breakpoint_cond_eval (cond);
5231 }
5232 catch (const gdb_exception &ex)
5233 {
5234 exception_fprintf (gdb_stderr, ex,
5235 "Error in testing breakpoint condition:\n");
5236 }
5237 }
5238 else
5239 {
5240 warning (_("Watchpoint condition cannot be tested "
5241 "in the current scope"));
5242 /* If we failed to set the right context for this
5243 watchpoint, unconditionally report it. */
5244 }
5245 /* FIXME-someday, should give breakpoint #. */
5246 value_free_to_mark (mark);
5247 }
5248
5249 if (cond && !condition_result)
5250 {
5251 bs->stop = 0;
5252 }
5253 else if (b->ignore_count > 0)
5254 {
5255 b->ignore_count--;
5256 bs->stop = 0;
5257 /* Increase the hit count even though we don't stop. */
5258 ++(b->hit_count);
5259 gdb::observers::breakpoint_modified.notify (b);
5260 }
5261 }
5262
5263 /* Returns true if we need to track moribund locations of LOC's type
5264 on the current target. */
5265
5266 static int
5267 need_moribund_for_location_type (struct bp_location *loc)
5268 {
5269 return ((loc->loc_type == bp_loc_software_breakpoint
5270 && !target_supports_stopped_by_sw_breakpoint ())
5271 || (loc->loc_type == bp_loc_hardware_breakpoint
5272 && !target_supports_stopped_by_hw_breakpoint ()));
5273 }
5274
5275 /* See breakpoint.h. */
5276
5277 bpstat
5278 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5279 const struct target_waitstatus *ws)
5280 {
5281 struct breakpoint *b;
5282 bpstat bs_head = NULL, *bs_link = &bs_head;
5283
5284 ALL_BREAKPOINTS (b)
5285 {
5286 if (!breakpoint_enabled (b))
5287 continue;
5288
5289 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5290 {
5291 /* For hardware watchpoints, we look only at the first
5292 location. The watchpoint_check function will work on the
5293 entire expression, not the individual locations. For
5294 read watchpoints, the watchpoints_triggered function has
5295 checked all locations already. */
5296 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5297 break;
5298
5299 if (!bl->enabled || bl->shlib_disabled)
5300 continue;
5301
5302 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5303 continue;
5304
5305 /* Come here if it's a watchpoint, or if the break address
5306 matches. */
5307
5308 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5309 explain stop. */
5310
5311 /* Assume we stop. Should we find a watchpoint that is not
5312 actually triggered, or if the condition of the breakpoint
5313 evaluates as false, we'll reset 'stop' to 0. */
5314 bs->stop = 1;
5315 bs->print = 1;
5316
5317 /* If this is a scope breakpoint, mark the associated
5318 watchpoint as triggered so that we will handle the
5319 out-of-scope event. We'll get to the watchpoint next
5320 iteration. */
5321 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5322 {
5323 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5324
5325 w->watchpoint_triggered = watch_triggered_yes;
5326 }
5327 }
5328 }
5329
5330 /* Check if a moribund breakpoint explains the stop. */
5331 if (!target_supports_stopped_by_sw_breakpoint ()
5332 || !target_supports_stopped_by_hw_breakpoint ())
5333 {
5334 for (bp_location *loc : moribund_locations)
5335 {
5336 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5337 && need_moribund_for_location_type (loc))
5338 {
5339 bpstat bs = new bpstats (loc, &bs_link);
5340 /* For hits of moribund locations, we should just proceed. */
5341 bs->stop = 0;
5342 bs->print = 0;
5343 bs->print_it = print_it_noop;
5344 }
5345 }
5346 }
5347
5348 return bs_head;
5349 }
5350
5351 /* See breakpoint.h. */
5352
5353 bpstat
5354 bpstat_stop_status (const address_space *aspace,
5355 CORE_ADDR bp_addr, thread_info *thread,
5356 const struct target_waitstatus *ws,
5357 bpstat stop_chain)
5358 {
5359 struct breakpoint *b = NULL;
5360 /* First item of allocated bpstat's. */
5361 bpstat bs_head = stop_chain;
5362 bpstat bs;
5363 int need_remove_insert;
5364 int removed_any;
5365
5366 /* First, build the bpstat chain with locations that explain a
5367 target stop, while being careful to not set the target running,
5368 as that may invalidate locations (in particular watchpoint
5369 locations are recreated). Resuming will happen here with
5370 breakpoint conditions or watchpoint expressions that include
5371 inferior function calls. */
5372 if (bs_head == NULL)
5373 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5374
5375 /* A bit of special processing for shlib breakpoints. We need to
5376 process solib loading here, so that the lists of loaded and
5377 unloaded libraries are correct before we handle "catch load" and
5378 "catch unload". */
5379 for (bs = bs_head; bs != NULL; bs = bs->next)
5380 {
5381 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5382 {
5383 handle_solib_event ();
5384 break;
5385 }
5386 }
5387
5388 /* Now go through the locations that caused the target to stop, and
5389 check whether we're interested in reporting this stop to higher
5390 layers, or whether we should resume the target transparently. */
5391
5392 removed_any = 0;
5393
5394 for (bs = bs_head; bs != NULL; bs = bs->next)
5395 {
5396 if (!bs->stop)
5397 continue;
5398
5399 b = bs->breakpoint_at;
5400 b->ops->check_status (bs);
5401 if (bs->stop)
5402 {
5403 bpstat_check_breakpoint_conditions (bs, thread);
5404
5405 if (bs->stop)
5406 {
5407 ++(b->hit_count);
5408 gdb::observers::breakpoint_modified.notify (b);
5409
5410 /* We will stop here. */
5411 if (b->disposition == disp_disable)
5412 {
5413 --(b->enable_count);
5414 if (b->enable_count <= 0)
5415 b->enable_state = bp_disabled;
5416 removed_any = 1;
5417 }
5418 if (b->silent)
5419 bs->print = 0;
5420 bs->commands = b->commands;
5421 if (command_line_is_silent (bs->commands
5422 ? bs->commands.get () : NULL))
5423 bs->print = 0;
5424
5425 b->ops->after_condition_true (bs);
5426 }
5427
5428 }
5429
5430 /* Print nothing for this entry if we don't stop or don't
5431 print. */
5432 if (!bs->stop || !bs->print)
5433 bs->print_it = print_it_noop;
5434 }
5435
5436 /* If we aren't stopping, the value of some hardware watchpoint may
5437 not have changed, but the intermediate memory locations we are
5438 watching may have. Don't bother if we're stopping; this will get
5439 done later. */
5440 need_remove_insert = 0;
5441 if (! bpstat_causes_stop (bs_head))
5442 for (bs = bs_head; bs != NULL; bs = bs->next)
5443 if (!bs->stop
5444 && bs->breakpoint_at
5445 && is_hardware_watchpoint (bs->breakpoint_at))
5446 {
5447 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5448
5449 update_watchpoint (w, 0 /* don't reparse. */);
5450 need_remove_insert = 1;
5451 }
5452
5453 if (need_remove_insert)
5454 update_global_location_list (UGLL_MAY_INSERT);
5455 else if (removed_any)
5456 update_global_location_list (UGLL_DONT_INSERT);
5457
5458 return bs_head;
5459 }
5460
5461 static void
5462 handle_jit_event (void)
5463 {
5464 struct frame_info *frame;
5465 struct gdbarch *gdbarch;
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5469
5470 /* Switch terminal for any messages produced by
5471 breakpoint_re_set. */
5472 target_terminal::ours_for_output ();
5473
5474 frame = get_current_frame ();
5475 gdbarch = get_frame_arch (frame);
5476
5477 jit_event_handler (gdbarch);
5478
5479 target_terminal::inferior ();
5480 }
5481
5482 /* Prepare WHAT final decision for infrun. */
5483
5484 /* Decide what infrun needs to do with this bpstat. */
5485
5486 struct bpstat_what
5487 bpstat_what (bpstat bs_head)
5488 {
5489 struct bpstat_what retval;
5490 bpstat bs;
5491
5492 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5493 retval.call_dummy = STOP_NONE;
5494 retval.is_longjmp = 0;
5495
5496 for (bs = bs_head; bs != NULL; bs = bs->next)
5497 {
5498 /* Extract this BS's action. After processing each BS, we check
5499 if its action overrides all we've seem so far. */
5500 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5501 enum bptype bptype;
5502
5503 if (bs->breakpoint_at == NULL)
5504 {
5505 /* I suspect this can happen if it was a momentary
5506 breakpoint which has since been deleted. */
5507 bptype = bp_none;
5508 }
5509 else
5510 bptype = bs->breakpoint_at->type;
5511
5512 switch (bptype)
5513 {
5514 case bp_none:
5515 break;
5516 case bp_breakpoint:
5517 case bp_hardware_breakpoint:
5518 case bp_single_step:
5519 case bp_until:
5520 case bp_finish:
5521 case bp_shlib_event:
5522 if (bs->stop)
5523 {
5524 if (bs->print)
5525 this_action = BPSTAT_WHAT_STOP_NOISY;
5526 else
5527 this_action = BPSTAT_WHAT_STOP_SILENT;
5528 }
5529 else
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 break;
5532 case bp_watchpoint:
5533 case bp_hardware_watchpoint:
5534 case bp_read_watchpoint:
5535 case bp_access_watchpoint:
5536 if (bs->stop)
5537 {
5538 if (bs->print)
5539 this_action = BPSTAT_WHAT_STOP_NOISY;
5540 else
5541 this_action = BPSTAT_WHAT_STOP_SILENT;
5542 }
5543 else
5544 {
5545 /* There was a watchpoint, but we're not stopping.
5546 This requires no further action. */
5547 }
5548 break;
5549 case bp_longjmp:
5550 case bp_longjmp_call_dummy:
5551 case bp_exception:
5552 if (bs->stop)
5553 {
5554 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5555 retval.is_longjmp = bptype != bp_exception;
5556 }
5557 else
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 break;
5560 case bp_longjmp_resume:
5561 case bp_exception_resume:
5562 if (bs->stop)
5563 {
5564 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5565 retval.is_longjmp = bptype == bp_longjmp_resume;
5566 }
5567 else
5568 this_action = BPSTAT_WHAT_SINGLE;
5569 break;
5570 case bp_step_resume:
5571 if (bs->stop)
5572 this_action = BPSTAT_WHAT_STEP_RESUME;
5573 else
5574 {
5575 /* It is for the wrong frame. */
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 }
5578 break;
5579 case bp_hp_step_resume:
5580 if (bs->stop)
5581 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5582 else
5583 {
5584 /* It is for the wrong frame. */
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 }
5587 break;
5588 case bp_watchpoint_scope:
5589 case bp_thread_event:
5590 case bp_overlay_event:
5591 case bp_longjmp_master:
5592 case bp_std_terminate_master:
5593 case bp_exception_master:
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_catchpoint:
5597 if (bs->stop)
5598 {
5599 if (bs->print)
5600 this_action = BPSTAT_WHAT_STOP_NOISY;
5601 else
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 }
5604 else
5605 {
5606 /* There was a catchpoint, but we're not stopping.
5607 This requires no further action. */
5608 }
5609 break;
5610 case bp_jit_event:
5611 this_action = BPSTAT_WHAT_SINGLE;
5612 break;
5613 case bp_call_dummy:
5614 /* Make sure the action is stop (silent or noisy),
5615 so infrun.c pops the dummy frame. */
5616 retval.call_dummy = STOP_STACK_DUMMY;
5617 this_action = BPSTAT_WHAT_STOP_SILENT;
5618 break;
5619 case bp_std_terminate:
5620 /* Make sure the action is stop (silent or noisy),
5621 so infrun.c pops the dummy frame. */
5622 retval.call_dummy = STOP_STD_TERMINATE;
5623 this_action = BPSTAT_WHAT_STOP_SILENT;
5624 break;
5625 case bp_tracepoint:
5626 case bp_fast_tracepoint:
5627 case bp_static_tracepoint:
5628 /* Tracepoint hits should not be reported back to GDB, and
5629 if one got through somehow, it should have been filtered
5630 out already. */
5631 internal_error (__FILE__, __LINE__,
5632 _("bpstat_what: tracepoint encountered"));
5633 break;
5634 case bp_gnu_ifunc_resolver:
5635 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5636 this_action = BPSTAT_WHAT_SINGLE;
5637 break;
5638 case bp_gnu_ifunc_resolver_return:
5639 /* The breakpoint will be removed, execution will restart from the
5640 PC of the former breakpoint. */
5641 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5642 break;
5643
5644 case bp_dprintf:
5645 if (bs->stop)
5646 this_action = BPSTAT_WHAT_STOP_SILENT;
5647 else
5648 this_action = BPSTAT_WHAT_SINGLE;
5649 break;
5650
5651 default:
5652 internal_error (__FILE__, __LINE__,
5653 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5654 }
5655
5656 retval.main_action = std::max (retval.main_action, this_action);
5657 }
5658
5659 return retval;
5660 }
5661
5662 void
5663 bpstat_run_callbacks (bpstat bs_head)
5664 {
5665 bpstat bs;
5666
5667 for (bs = bs_head; bs != NULL; bs = bs->next)
5668 {
5669 struct breakpoint *b = bs->breakpoint_at;
5670
5671 if (b == NULL)
5672 continue;
5673 switch (b->type)
5674 {
5675 case bp_jit_event:
5676 handle_jit_event ();
5677 break;
5678 case bp_gnu_ifunc_resolver:
5679 gnu_ifunc_resolver_stop (b);
5680 break;
5681 case bp_gnu_ifunc_resolver_return:
5682 gnu_ifunc_resolver_return_stop (b);
5683 break;
5684 }
5685 }
5686 }
5687
5688 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5689 without hardware support). This isn't related to a specific bpstat,
5690 just to things like whether watchpoints are set. */
5691
5692 int
5693 bpstat_should_step (void)
5694 {
5695 struct breakpoint *b;
5696
5697 ALL_BREAKPOINTS (b)
5698 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5699 return 1;
5700 return 0;
5701 }
5702
5703 int
5704 bpstat_causes_stop (bpstat bs)
5705 {
5706 for (; bs != NULL; bs = bs->next)
5707 if (bs->stop)
5708 return 1;
5709
5710 return 0;
5711 }
5712
5713 \f
5714
5715 /* Compute a string of spaces suitable to indent the next line
5716 so it starts at the position corresponding to the table column
5717 named COL_NAME in the currently active table of UIOUT. */
5718
5719 static char *
5720 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5721 {
5722 static char wrap_indent[80];
5723 int i, total_width, width, align;
5724 const char *text;
5725
5726 total_width = 0;
5727 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5728 {
5729 if (strcmp (text, col_name) == 0)
5730 {
5731 gdb_assert (total_width < sizeof wrap_indent);
5732 memset (wrap_indent, ' ', total_width);
5733 wrap_indent[total_width] = 0;
5734
5735 return wrap_indent;
5736 }
5737
5738 total_width += width + 1;
5739 }
5740
5741 return NULL;
5742 }
5743
5744 /* Determine if the locations of this breakpoint will have their conditions
5745 evaluated by the target, host or a mix of both. Returns the following:
5746
5747 "host": Host evals condition.
5748 "host or target": Host or Target evals condition.
5749 "target": Target evals condition.
5750 */
5751
5752 static const char *
5753 bp_condition_evaluator (struct breakpoint *b)
5754 {
5755 struct bp_location *bl;
5756 char host_evals = 0;
5757 char target_evals = 0;
5758
5759 if (!b)
5760 return NULL;
5761
5762 if (!is_breakpoint (b))
5763 return NULL;
5764
5765 if (gdb_evaluates_breakpoint_condition_p ()
5766 || !target_supports_evaluation_of_breakpoint_conditions ())
5767 return condition_evaluation_host;
5768
5769 for (bl = b->loc; bl; bl = bl->next)
5770 {
5771 if (bl->cond_bytecode)
5772 target_evals++;
5773 else
5774 host_evals++;
5775 }
5776
5777 if (host_evals && target_evals)
5778 return condition_evaluation_both;
5779 else if (target_evals)
5780 return condition_evaluation_target;
5781 else
5782 return condition_evaluation_host;
5783 }
5784
5785 /* Determine the breakpoint location's condition evaluator. This is
5786 similar to bp_condition_evaluator, but for locations. */
5787
5788 static const char *
5789 bp_location_condition_evaluator (struct bp_location *bl)
5790 {
5791 if (bl && !is_breakpoint (bl->owner))
5792 return NULL;
5793
5794 if (gdb_evaluates_breakpoint_condition_p ()
5795 || !target_supports_evaluation_of_breakpoint_conditions ())
5796 return condition_evaluation_host;
5797
5798 if (bl && bl->cond_bytecode)
5799 return condition_evaluation_target;
5800 else
5801 return condition_evaluation_host;
5802 }
5803
5804 /* Print the LOC location out of the list of B->LOC locations. */
5805
5806 static void
5807 print_breakpoint_location (struct breakpoint *b,
5808 struct bp_location *loc)
5809 {
5810 struct ui_out *uiout = current_uiout;
5811
5812 scoped_restore_current_program_space restore_pspace;
5813
5814 if (loc != NULL && loc->shlib_disabled)
5815 loc = NULL;
5816
5817 if (loc != NULL)
5818 set_current_program_space (loc->pspace);
5819
5820 if (b->display_canonical)
5821 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5822 else if (loc && loc->symtab)
5823 {
5824 const struct symbol *sym = loc->symbol;
5825
5826 if (sym)
5827 {
5828 uiout->text ("in ");
5829 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5830 ui_out_style_kind::FUNCTION);
5831 uiout->text (" ");
5832 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5833 uiout->text ("at ");
5834 }
5835 uiout->field_string ("file",
5836 symtab_to_filename_for_display (loc->symtab),
5837 ui_out_style_kind::FILE);
5838 uiout->text (":");
5839
5840 if (uiout->is_mi_like_p ())
5841 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5842
5843 uiout->field_int ("line", loc->line_number);
5844 }
5845 else if (loc)
5846 {
5847 string_file stb;
5848
5849 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5850 demangle, "");
5851 uiout->field_stream ("at", stb);
5852 }
5853 else
5854 {
5855 uiout->field_string ("pending",
5856 event_location_to_string (b->location.get ()));
5857 /* If extra_string is available, it could be holding a condition
5858 or dprintf arguments. In either case, make sure it is printed,
5859 too, but only for non-MI streams. */
5860 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5861 {
5862 if (b->type == bp_dprintf)
5863 uiout->text (",");
5864 else
5865 uiout->text (" ");
5866 uiout->text (b->extra_string);
5867 }
5868 }
5869
5870 if (loc && is_breakpoint (b)
5871 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5872 && bp_condition_evaluator (b) == condition_evaluation_both)
5873 {
5874 uiout->text (" (");
5875 uiout->field_string ("evaluated-by",
5876 bp_location_condition_evaluator (loc));
5877 uiout->text (")");
5878 }
5879 }
5880
5881 static const char *
5882 bptype_string (enum bptype type)
5883 {
5884 struct ep_type_description
5885 {
5886 enum bptype type;
5887 const char *description;
5888 };
5889 static struct ep_type_description bptypes[] =
5890 {
5891 {bp_none, "?deleted?"},
5892 {bp_breakpoint, "breakpoint"},
5893 {bp_hardware_breakpoint, "hw breakpoint"},
5894 {bp_single_step, "sw single-step"},
5895 {bp_until, "until"},
5896 {bp_finish, "finish"},
5897 {bp_watchpoint, "watchpoint"},
5898 {bp_hardware_watchpoint, "hw watchpoint"},
5899 {bp_read_watchpoint, "read watchpoint"},
5900 {bp_access_watchpoint, "acc watchpoint"},
5901 {bp_longjmp, "longjmp"},
5902 {bp_longjmp_resume, "longjmp resume"},
5903 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5904 {bp_exception, "exception"},
5905 {bp_exception_resume, "exception resume"},
5906 {bp_step_resume, "step resume"},
5907 {bp_hp_step_resume, "high-priority step resume"},
5908 {bp_watchpoint_scope, "watchpoint scope"},
5909 {bp_call_dummy, "call dummy"},
5910 {bp_std_terminate, "std::terminate"},
5911 {bp_shlib_event, "shlib events"},
5912 {bp_thread_event, "thread events"},
5913 {bp_overlay_event, "overlay events"},
5914 {bp_longjmp_master, "longjmp master"},
5915 {bp_std_terminate_master, "std::terminate master"},
5916 {bp_exception_master, "exception master"},
5917 {bp_catchpoint, "catchpoint"},
5918 {bp_tracepoint, "tracepoint"},
5919 {bp_fast_tracepoint, "fast tracepoint"},
5920 {bp_static_tracepoint, "static tracepoint"},
5921 {bp_dprintf, "dprintf"},
5922 {bp_jit_event, "jit events"},
5923 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5924 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5925 };
5926
5927 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5928 || ((int) type != bptypes[(int) type].type))
5929 internal_error (__FILE__, __LINE__,
5930 _("bptypes table does not describe type #%d."),
5931 (int) type);
5932
5933 return bptypes[(int) type].description;
5934 }
5935
5936 /* For MI, output a field named 'thread-groups' with a list as the value.
5937 For CLI, prefix the list with the string 'inf'. */
5938
5939 static void
5940 output_thread_groups (struct ui_out *uiout,
5941 const char *field_name,
5942 const std::vector<int> &inf_nums,
5943 int mi_only)
5944 {
5945 int is_mi = uiout->is_mi_like_p ();
5946
5947 /* For backward compatibility, don't display inferiors in CLI unless
5948 there are several. Always display them for MI. */
5949 if (!is_mi && mi_only)
5950 return;
5951
5952 ui_out_emit_list list_emitter (uiout, field_name);
5953
5954 for (size_t i = 0; i < inf_nums.size (); i++)
5955 {
5956 if (is_mi)
5957 {
5958 char mi_group[10];
5959
5960 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5961 uiout->field_string (NULL, mi_group);
5962 }
5963 else
5964 {
5965 if (i == 0)
5966 uiout->text (" inf ");
5967 else
5968 uiout->text (", ");
5969
5970 uiout->text (plongest (inf_nums[i]));
5971 }
5972 }
5973 }
5974
5975 /* Print B to gdb_stdout. */
5976
5977 static void
5978 print_one_breakpoint_location (struct breakpoint *b,
5979 struct bp_location *loc,
5980 int loc_number,
5981 struct bp_location **last_loc,
5982 int allflag)
5983 {
5984 struct command_line *l;
5985 static char bpenables[] = "nynny";
5986
5987 struct ui_out *uiout = current_uiout;
5988 int header_of_multiple = 0;
5989 int part_of_multiple = (loc != NULL);
5990 struct value_print_options opts;
5991
5992 get_user_print_options (&opts);
5993
5994 gdb_assert (!loc || loc_number != 0);
5995 /* See comment in print_one_breakpoint concerning treatment of
5996 breakpoints with single disabled location. */
5997 if (loc == NULL
5998 && (b->loc != NULL
5999 && (b->loc->next != NULL || !b->loc->enabled)))
6000 header_of_multiple = 1;
6001 if (loc == NULL)
6002 loc = b->loc;
6003
6004 annotate_record ();
6005
6006 /* 1 */
6007 annotate_field (0);
6008 if (part_of_multiple)
6009 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6010 else
6011 uiout->field_int ("number", b->number);
6012
6013 /* 2 */
6014 annotate_field (1);
6015 if (part_of_multiple)
6016 uiout->field_skip ("type");
6017 else
6018 uiout->field_string ("type", bptype_string (b->type));
6019
6020 /* 3 */
6021 annotate_field (2);
6022 if (part_of_multiple)
6023 uiout->field_skip ("disp");
6024 else
6025 uiout->field_string ("disp", bpdisp_text (b->disposition));
6026
6027 /* 4 */
6028 annotate_field (3);
6029 if (part_of_multiple)
6030 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6031 else
6032 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6033
6034 /* 5 and 6 */
6035 if (b->ops != NULL && b->ops->print_one != NULL)
6036 {
6037 /* Although the print_one can possibly print all locations,
6038 calling it here is not likely to get any nice result. So,
6039 make sure there's just one location. */
6040 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6041 b->ops->print_one (b, last_loc);
6042 }
6043 else
6044 switch (b->type)
6045 {
6046 case bp_none:
6047 internal_error (__FILE__, __LINE__,
6048 _("print_one_breakpoint: bp_none encountered\n"));
6049 break;
6050
6051 case bp_watchpoint:
6052 case bp_hardware_watchpoint:
6053 case bp_read_watchpoint:
6054 case bp_access_watchpoint:
6055 {
6056 struct watchpoint *w = (struct watchpoint *) b;
6057
6058 /* Field 4, the address, is omitted (which makes the columns
6059 not line up too nicely with the headers, but the effect
6060 is relatively readable). */
6061 if (opts.addressprint)
6062 uiout->field_skip ("addr");
6063 annotate_field (5);
6064 uiout->field_string ("what", w->exp_string);
6065 }
6066 break;
6067
6068 case bp_breakpoint:
6069 case bp_hardware_breakpoint:
6070 case bp_single_step:
6071 case bp_until:
6072 case bp_finish:
6073 case bp_longjmp:
6074 case bp_longjmp_resume:
6075 case bp_longjmp_call_dummy:
6076 case bp_exception:
6077 case bp_exception_resume:
6078 case bp_step_resume:
6079 case bp_hp_step_resume:
6080 case bp_watchpoint_scope:
6081 case bp_call_dummy:
6082 case bp_std_terminate:
6083 case bp_shlib_event:
6084 case bp_thread_event:
6085 case bp_overlay_event:
6086 case bp_longjmp_master:
6087 case bp_std_terminate_master:
6088 case bp_exception_master:
6089 case bp_tracepoint:
6090 case bp_fast_tracepoint:
6091 case bp_static_tracepoint:
6092 case bp_dprintf:
6093 case bp_jit_event:
6094 case bp_gnu_ifunc_resolver:
6095 case bp_gnu_ifunc_resolver_return:
6096 if (opts.addressprint)
6097 {
6098 annotate_field (4);
6099 if (header_of_multiple)
6100 uiout->field_string ("addr", "<MULTIPLE>");
6101 else if (b->loc == NULL || loc->shlib_disabled)
6102 uiout->field_string ("addr", "<PENDING>");
6103 else
6104 uiout->field_core_addr ("addr",
6105 loc->gdbarch, loc->address);
6106 }
6107 annotate_field (5);
6108 if (!header_of_multiple)
6109 print_breakpoint_location (b, loc);
6110 if (b->loc)
6111 *last_loc = b->loc;
6112 break;
6113 }
6114
6115
6116 if (loc != NULL && !header_of_multiple)
6117 {
6118 std::vector<int> inf_nums;
6119 int mi_only = 1;
6120
6121 for (inferior *inf : all_inferiors ())
6122 {
6123 if (inf->pspace == loc->pspace)
6124 inf_nums.push_back (inf->num);
6125 }
6126
6127 /* For backward compatibility, don't display inferiors in CLI unless
6128 there are several. Always display for MI. */
6129 if (allflag
6130 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6131 && (number_of_program_spaces () > 1
6132 || number_of_inferiors () > 1)
6133 /* LOC is for existing B, it cannot be in
6134 moribund_locations and thus having NULL OWNER. */
6135 && loc->owner->type != bp_catchpoint))
6136 mi_only = 0;
6137 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6138 }
6139
6140 if (!part_of_multiple)
6141 {
6142 if (b->thread != -1)
6143 {
6144 /* FIXME: This seems to be redundant and lost here; see the
6145 "stop only in" line a little further down. */
6146 uiout->text (" thread ");
6147 uiout->field_int ("thread", b->thread);
6148 }
6149 else if (b->task != 0)
6150 {
6151 uiout->text (" task ");
6152 uiout->field_int ("task", b->task);
6153 }
6154 }
6155
6156 uiout->text ("\n");
6157
6158 if (!part_of_multiple)
6159 b->ops->print_one_detail (b, uiout);
6160
6161 if (part_of_multiple && frame_id_p (b->frame_id))
6162 {
6163 annotate_field (6);
6164 uiout->text ("\tstop only in stack frame at ");
6165 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6166 the frame ID. */
6167 uiout->field_core_addr ("frame",
6168 b->gdbarch, b->frame_id.stack_addr);
6169 uiout->text ("\n");
6170 }
6171
6172 if (!part_of_multiple && b->cond_string)
6173 {
6174 annotate_field (7);
6175 if (is_tracepoint (b))
6176 uiout->text ("\ttrace only if ");
6177 else
6178 uiout->text ("\tstop only if ");
6179 uiout->field_string ("cond", b->cond_string);
6180
6181 /* Print whether the target is doing the breakpoint's condition
6182 evaluation. If GDB is doing the evaluation, don't print anything. */
6183 if (is_breakpoint (b)
6184 && breakpoint_condition_evaluation_mode ()
6185 == condition_evaluation_target)
6186 {
6187 uiout->text (" (");
6188 uiout->field_string ("evaluated-by",
6189 bp_condition_evaluator (b));
6190 uiout->text (" evals)");
6191 }
6192 uiout->text ("\n");
6193 }
6194
6195 if (!part_of_multiple && b->thread != -1)
6196 {
6197 /* FIXME should make an annotation for this. */
6198 uiout->text ("\tstop only in thread ");
6199 if (uiout->is_mi_like_p ())
6200 uiout->field_int ("thread", b->thread);
6201 else
6202 {
6203 struct thread_info *thr = find_thread_global_id (b->thread);
6204
6205 uiout->field_string ("thread", print_thread_id (thr));
6206 }
6207 uiout->text ("\n");
6208 }
6209
6210 if (!part_of_multiple)
6211 {
6212 if (b->hit_count)
6213 {
6214 /* FIXME should make an annotation for this. */
6215 if (is_catchpoint (b))
6216 uiout->text ("\tcatchpoint");
6217 else if (is_tracepoint (b))
6218 uiout->text ("\ttracepoint");
6219 else
6220 uiout->text ("\tbreakpoint");
6221 uiout->text (" already hit ");
6222 uiout->field_int ("times", b->hit_count);
6223 if (b->hit_count == 1)
6224 uiout->text (" time\n");
6225 else
6226 uiout->text (" times\n");
6227 }
6228 else
6229 {
6230 /* Output the count also if it is zero, but only if this is mi. */
6231 if (uiout->is_mi_like_p ())
6232 uiout->field_int ("times", b->hit_count);
6233 }
6234 }
6235
6236 if (!part_of_multiple && b->ignore_count)
6237 {
6238 annotate_field (8);
6239 uiout->text ("\tignore next ");
6240 uiout->field_int ("ignore", b->ignore_count);
6241 uiout->text (" hits\n");
6242 }
6243
6244 /* Note that an enable count of 1 corresponds to "enable once"
6245 behavior, which is reported by the combination of enablement and
6246 disposition, so we don't need to mention it here. */
6247 if (!part_of_multiple && b->enable_count > 1)
6248 {
6249 annotate_field (8);
6250 uiout->text ("\tdisable after ");
6251 /* Tweak the wording to clarify that ignore and enable counts
6252 are distinct, and have additive effect. */
6253 if (b->ignore_count)
6254 uiout->text ("additional ");
6255 else
6256 uiout->text ("next ");
6257 uiout->field_int ("enable", b->enable_count);
6258 uiout->text (" hits\n");
6259 }
6260
6261 if (!part_of_multiple && is_tracepoint (b))
6262 {
6263 struct tracepoint *tp = (struct tracepoint *) b;
6264
6265 if (tp->traceframe_usage)
6266 {
6267 uiout->text ("\ttrace buffer usage ");
6268 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6269 uiout->text (" bytes\n");
6270 }
6271 }
6272
6273 l = b->commands ? b->commands.get () : NULL;
6274 if (!part_of_multiple && l)
6275 {
6276 annotate_field (9);
6277 ui_out_emit_tuple tuple_emitter (uiout, "script");
6278 print_command_lines (uiout, l, 4);
6279 }
6280
6281 if (is_tracepoint (b))
6282 {
6283 struct tracepoint *t = (struct tracepoint *) b;
6284
6285 if (!part_of_multiple && t->pass_count)
6286 {
6287 annotate_field (10);
6288 uiout->text ("\tpass count ");
6289 uiout->field_int ("pass", t->pass_count);
6290 uiout->text (" \n");
6291 }
6292
6293 /* Don't display it when tracepoint or tracepoint location is
6294 pending. */
6295 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6296 {
6297 annotate_field (11);
6298
6299 if (uiout->is_mi_like_p ())
6300 uiout->field_string ("installed",
6301 loc->inserted ? "y" : "n");
6302 else
6303 {
6304 if (loc->inserted)
6305 uiout->text ("\t");
6306 else
6307 uiout->text ("\tnot ");
6308 uiout->text ("installed on target\n");
6309 }
6310 }
6311 }
6312
6313 if (uiout->is_mi_like_p () && !part_of_multiple)
6314 {
6315 if (is_watchpoint (b))
6316 {
6317 struct watchpoint *w = (struct watchpoint *) b;
6318
6319 uiout->field_string ("original-location", w->exp_string);
6320 }
6321 else if (b->location != NULL
6322 && event_location_to_string (b->location.get ()) != NULL)
6323 uiout->field_string ("original-location",
6324 event_location_to_string (b->location.get ()));
6325 }
6326 }
6327
6328 /* See breakpoint.h. */
6329
6330 bool fix_multi_location_breakpoint_output_globally = false;
6331
6332 static void
6333 print_one_breakpoint (struct breakpoint *b,
6334 struct bp_location **last_loc,
6335 int allflag)
6336 {
6337 struct ui_out *uiout = current_uiout;
6338 bool use_fixed_output
6339 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6340 || fix_multi_location_breakpoint_output_globally);
6341
6342 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6343 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6344
6345 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6346 are outside. */
6347 if (!use_fixed_output)
6348 bkpt_tuple_emitter.reset ();
6349
6350 /* If this breakpoint has custom print function,
6351 it's already printed. Otherwise, print individual
6352 locations, if any. */
6353 if (b->ops == NULL || b->ops->print_one == NULL)
6354 {
6355 /* If breakpoint has a single location that is disabled, we
6356 print it as if it had several locations, since otherwise it's
6357 hard to represent "breakpoint enabled, location disabled"
6358 situation.
6359
6360 Note that while hardware watchpoints have several locations
6361 internally, that's not a property exposed to user. */
6362 if (b->loc
6363 && !is_hardware_watchpoint (b)
6364 && (b->loc->next || !b->loc->enabled))
6365 {
6366 gdb::optional<ui_out_emit_list> locations_list;
6367
6368 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6369 MI record. For later versions, place breakpoint locations in a
6370 list. */
6371 if (uiout->is_mi_like_p () && use_fixed_output)
6372 locations_list.emplace (uiout, "locations");
6373
6374 int n = 1;
6375 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6376 {
6377 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6378 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6379 }
6380 }
6381 }
6382 }
6383
6384 static int
6385 breakpoint_address_bits (struct breakpoint *b)
6386 {
6387 int print_address_bits = 0;
6388 struct bp_location *loc;
6389
6390 /* Software watchpoints that aren't watching memory don't have an
6391 address to print. */
6392 if (is_no_memory_software_watchpoint (b))
6393 return 0;
6394
6395 for (loc = b->loc; loc; loc = loc->next)
6396 {
6397 int addr_bit;
6398
6399 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6400 if (addr_bit > print_address_bits)
6401 print_address_bits = addr_bit;
6402 }
6403
6404 return print_address_bits;
6405 }
6406
6407 /* See breakpoint.h. */
6408
6409 void
6410 print_breakpoint (breakpoint *b)
6411 {
6412 struct bp_location *dummy_loc = NULL;
6413 print_one_breakpoint (b, &dummy_loc, 0);
6414 }
6415
6416 /* Return true if this breakpoint was set by the user, false if it is
6417 internal or momentary. */
6418
6419 int
6420 user_breakpoint_p (struct breakpoint *b)
6421 {
6422 return b->number > 0;
6423 }
6424
6425 /* See breakpoint.h. */
6426
6427 int
6428 pending_breakpoint_p (struct breakpoint *b)
6429 {
6430 return b->loc == NULL;
6431 }
6432
6433 /* Print information on user settable breakpoint (watchpoint, etc)
6434 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6435 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6436 FILTER is non-NULL, call it on each breakpoint and only include the
6437 ones for which it returns non-zero. Return the total number of
6438 breakpoints listed. */
6439
6440 static int
6441 breakpoint_1 (const char *args, int allflag,
6442 int (*filter) (const struct breakpoint *))
6443 {
6444 struct breakpoint *b;
6445 struct bp_location *last_loc = NULL;
6446 int nr_printable_breakpoints;
6447 struct value_print_options opts;
6448 int print_address_bits = 0;
6449 int print_type_col_width = 14;
6450 struct ui_out *uiout = current_uiout;
6451
6452 get_user_print_options (&opts);
6453
6454 /* Compute the number of rows in the table, as well as the size
6455 required for address fields. */
6456 nr_printable_breakpoints = 0;
6457 ALL_BREAKPOINTS (b)
6458 {
6459 /* If we have a filter, only list the breakpoints it accepts. */
6460 if (filter && !filter (b))
6461 continue;
6462
6463 /* If we have an "args" string, it is a list of breakpoints to
6464 accept. Skip the others. */
6465 if (args != NULL && *args != '\0')
6466 {
6467 if (allflag && parse_and_eval_long (args) != b->number)
6468 continue;
6469 if (!allflag && !number_is_in_list (args, b->number))
6470 continue;
6471 }
6472
6473 if (allflag || user_breakpoint_p (b))
6474 {
6475 int addr_bit, type_len;
6476
6477 addr_bit = breakpoint_address_bits (b);
6478 if (addr_bit > print_address_bits)
6479 print_address_bits = addr_bit;
6480
6481 type_len = strlen (bptype_string (b->type));
6482 if (type_len > print_type_col_width)
6483 print_type_col_width = type_len;
6484
6485 nr_printable_breakpoints++;
6486 }
6487 }
6488
6489 {
6490 ui_out_emit_table table_emitter (uiout,
6491 opts.addressprint ? 6 : 5,
6492 nr_printable_breakpoints,
6493 "BreakpointTable");
6494
6495 if (nr_printable_breakpoints > 0)
6496 annotate_breakpoints_headers ();
6497 if (nr_printable_breakpoints > 0)
6498 annotate_field (0);
6499 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6500 if (nr_printable_breakpoints > 0)
6501 annotate_field (1);
6502 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6503 if (nr_printable_breakpoints > 0)
6504 annotate_field (2);
6505 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6506 if (nr_printable_breakpoints > 0)
6507 annotate_field (3);
6508 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6509 if (opts.addressprint)
6510 {
6511 if (nr_printable_breakpoints > 0)
6512 annotate_field (4);
6513 if (print_address_bits <= 32)
6514 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6515 else
6516 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6517 }
6518 if (nr_printable_breakpoints > 0)
6519 annotate_field (5);
6520 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6521 uiout->table_body ();
6522 if (nr_printable_breakpoints > 0)
6523 annotate_breakpoints_table ();
6524
6525 ALL_BREAKPOINTS (b)
6526 {
6527 QUIT;
6528 /* If we have a filter, only list the breakpoints it accepts. */
6529 if (filter && !filter (b))
6530 continue;
6531
6532 /* If we have an "args" string, it is a list of breakpoints to
6533 accept. Skip the others. */
6534
6535 if (args != NULL && *args != '\0')
6536 {
6537 if (allflag) /* maintenance info breakpoint */
6538 {
6539 if (parse_and_eval_long (args) != b->number)
6540 continue;
6541 }
6542 else /* all others */
6543 {
6544 if (!number_is_in_list (args, b->number))
6545 continue;
6546 }
6547 }
6548 /* We only print out user settable breakpoints unless the
6549 allflag is set. */
6550 if (allflag || user_breakpoint_p (b))
6551 print_one_breakpoint (b, &last_loc, allflag);
6552 }
6553 }
6554
6555 if (nr_printable_breakpoints == 0)
6556 {
6557 /* If there's a filter, let the caller decide how to report
6558 empty list. */
6559 if (!filter)
6560 {
6561 if (args == NULL || *args == '\0')
6562 uiout->message ("No breakpoints or watchpoints.\n");
6563 else
6564 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6565 args);
6566 }
6567 }
6568 else
6569 {
6570 if (last_loc && !server_command)
6571 set_next_address (last_loc->gdbarch, last_loc->address);
6572 }
6573
6574 /* FIXME? Should this be moved up so that it is only called when
6575 there have been breakpoints? */
6576 annotate_breakpoints_table_end ();
6577
6578 return nr_printable_breakpoints;
6579 }
6580
6581 /* Display the value of default-collect in a way that is generally
6582 compatible with the breakpoint list. */
6583
6584 static void
6585 default_collect_info (void)
6586 {
6587 struct ui_out *uiout = current_uiout;
6588
6589 /* If it has no value (which is frequently the case), say nothing; a
6590 message like "No default-collect." gets in user's face when it's
6591 not wanted. */
6592 if (!*default_collect)
6593 return;
6594
6595 /* The following phrase lines up nicely with per-tracepoint collect
6596 actions. */
6597 uiout->text ("default collect ");
6598 uiout->field_string ("default-collect", default_collect);
6599 uiout->text (" \n");
6600 }
6601
6602 static void
6603 info_breakpoints_command (const char *args, int from_tty)
6604 {
6605 breakpoint_1 (args, 0, NULL);
6606
6607 default_collect_info ();
6608 }
6609
6610 static void
6611 info_watchpoints_command (const char *args, int from_tty)
6612 {
6613 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6614 struct ui_out *uiout = current_uiout;
6615
6616 if (num_printed == 0)
6617 {
6618 if (args == NULL || *args == '\0')
6619 uiout->message ("No watchpoints.\n");
6620 else
6621 uiout->message ("No watchpoint matching '%s'.\n", args);
6622 }
6623 }
6624
6625 static void
6626 maintenance_info_breakpoints (const char *args, int from_tty)
6627 {
6628 breakpoint_1 (args, 1, NULL);
6629
6630 default_collect_info ();
6631 }
6632
6633 static int
6634 breakpoint_has_pc (struct breakpoint *b,
6635 struct program_space *pspace,
6636 CORE_ADDR pc, struct obj_section *section)
6637 {
6638 struct bp_location *bl = b->loc;
6639
6640 for (; bl; bl = bl->next)
6641 {
6642 if (bl->pspace == pspace
6643 && bl->address == pc
6644 && (!overlay_debugging || bl->section == section))
6645 return 1;
6646 }
6647 return 0;
6648 }
6649
6650 /* Print a message describing any user-breakpoints set at PC. This
6651 concerns with logical breakpoints, so we match program spaces, not
6652 address spaces. */
6653
6654 static void
6655 describe_other_breakpoints (struct gdbarch *gdbarch,
6656 struct program_space *pspace, CORE_ADDR pc,
6657 struct obj_section *section, int thread)
6658 {
6659 int others = 0;
6660 struct breakpoint *b;
6661
6662 ALL_BREAKPOINTS (b)
6663 others += (user_breakpoint_p (b)
6664 && breakpoint_has_pc (b, pspace, pc, section));
6665 if (others > 0)
6666 {
6667 if (others == 1)
6668 printf_filtered (_("Note: breakpoint "));
6669 else /* if (others == ???) */
6670 printf_filtered (_("Note: breakpoints "));
6671 ALL_BREAKPOINTS (b)
6672 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6673 {
6674 others--;
6675 printf_filtered ("%d", b->number);
6676 if (b->thread == -1 && thread != -1)
6677 printf_filtered (" (all threads)");
6678 else if (b->thread != -1)
6679 printf_filtered (" (thread %d)", b->thread);
6680 printf_filtered ("%s%s ",
6681 ((b->enable_state == bp_disabled
6682 || b->enable_state == bp_call_disabled)
6683 ? " (disabled)"
6684 : ""),
6685 (others > 1) ? ","
6686 : ((others == 1) ? " and" : ""));
6687 }
6688 printf_filtered (_("also set at pc "));
6689 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6690 printf_filtered (".\n");
6691 }
6692 }
6693 \f
6694
6695 /* Return true iff it is meaningful to use the address member of
6696 BPT locations. For some breakpoint types, the locations' address members
6697 are irrelevant and it makes no sense to attempt to compare them to other
6698 addresses (or use them for any other purpose either).
6699
6700 More specifically, each of the following breakpoint types will
6701 always have a zero valued location address and we don't want to mark
6702 breakpoints of any of these types to be a duplicate of an actual
6703 breakpoint location at address zero:
6704
6705 bp_watchpoint
6706 bp_catchpoint
6707
6708 */
6709
6710 static int
6711 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6712 {
6713 enum bptype type = bpt->type;
6714
6715 return (type != bp_watchpoint && type != bp_catchpoint);
6716 }
6717
6718 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6719 true if LOC1 and LOC2 represent the same watchpoint location. */
6720
6721 static int
6722 watchpoint_locations_match (struct bp_location *loc1,
6723 struct bp_location *loc2)
6724 {
6725 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6726 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6727
6728 /* Both of them must exist. */
6729 gdb_assert (w1 != NULL);
6730 gdb_assert (w2 != NULL);
6731
6732 /* If the target can evaluate the condition expression in hardware,
6733 then we we need to insert both watchpoints even if they are at
6734 the same place. Otherwise the watchpoint will only trigger when
6735 the condition of whichever watchpoint was inserted evaluates to
6736 true, not giving a chance for GDB to check the condition of the
6737 other watchpoint. */
6738 if ((w1->cond_exp
6739 && target_can_accel_watchpoint_condition (loc1->address,
6740 loc1->length,
6741 loc1->watchpoint_type,
6742 w1->cond_exp.get ()))
6743 || (w2->cond_exp
6744 && target_can_accel_watchpoint_condition (loc2->address,
6745 loc2->length,
6746 loc2->watchpoint_type,
6747 w2->cond_exp.get ())))
6748 return 0;
6749
6750 /* Note that this checks the owner's type, not the location's. In
6751 case the target does not support read watchpoints, but does
6752 support access watchpoints, we'll have bp_read_watchpoint
6753 watchpoints with hw_access locations. Those should be considered
6754 duplicates of hw_read locations. The hw_read locations will
6755 become hw_access locations later. */
6756 return (loc1->owner->type == loc2->owner->type
6757 && loc1->pspace->aspace == loc2->pspace->aspace
6758 && loc1->address == loc2->address
6759 && loc1->length == loc2->length);
6760 }
6761
6762 /* See breakpoint.h. */
6763
6764 int
6765 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6766 const address_space *aspace2, CORE_ADDR addr2)
6767 {
6768 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6769 || aspace1 == aspace2)
6770 && addr1 == addr2);
6771 }
6772
6773 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6774 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6775 matches ASPACE2. On targets that have global breakpoints, the address
6776 space doesn't really matter. */
6777
6778 static int
6779 breakpoint_address_match_range (const address_space *aspace1,
6780 CORE_ADDR addr1,
6781 int len1, const address_space *aspace2,
6782 CORE_ADDR addr2)
6783 {
6784 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6785 || aspace1 == aspace2)
6786 && addr2 >= addr1 && addr2 < addr1 + len1);
6787 }
6788
6789 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6790 a ranged breakpoint. In most targets, a match happens only if ASPACE
6791 matches the breakpoint's address space. On targets that have global
6792 breakpoints, the address space doesn't really matter. */
6793
6794 static int
6795 breakpoint_location_address_match (struct bp_location *bl,
6796 const address_space *aspace,
6797 CORE_ADDR addr)
6798 {
6799 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6800 aspace, addr)
6801 || (bl->length
6802 && breakpoint_address_match_range (bl->pspace->aspace,
6803 bl->address, bl->length,
6804 aspace, addr)));
6805 }
6806
6807 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6808 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6809 match happens only if ASPACE matches the breakpoint's address
6810 space. On targets that have global breakpoints, the address space
6811 doesn't really matter. */
6812
6813 static int
6814 breakpoint_location_address_range_overlap (struct bp_location *bl,
6815 const address_space *aspace,
6816 CORE_ADDR addr, int len)
6817 {
6818 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6819 || bl->pspace->aspace == aspace)
6820 {
6821 int bl_len = bl->length != 0 ? bl->length : 1;
6822
6823 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6824 return 1;
6825 }
6826 return 0;
6827 }
6828
6829 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6830 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6831 true, otherwise returns false. */
6832
6833 static int
6834 tracepoint_locations_match (struct bp_location *loc1,
6835 struct bp_location *loc2)
6836 {
6837 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6838 /* Since tracepoint locations are never duplicated with others', tracepoint
6839 locations at the same address of different tracepoints are regarded as
6840 different locations. */
6841 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6842 else
6843 return 0;
6844 }
6845
6846 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6847 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6848 represent the same location. */
6849
6850 static int
6851 breakpoint_locations_match (struct bp_location *loc1,
6852 struct bp_location *loc2)
6853 {
6854 int hw_point1, hw_point2;
6855
6856 /* Both of them must not be in moribund_locations. */
6857 gdb_assert (loc1->owner != NULL);
6858 gdb_assert (loc2->owner != NULL);
6859
6860 hw_point1 = is_hardware_watchpoint (loc1->owner);
6861 hw_point2 = is_hardware_watchpoint (loc2->owner);
6862
6863 if (hw_point1 != hw_point2)
6864 return 0;
6865 else if (hw_point1)
6866 return watchpoint_locations_match (loc1, loc2);
6867 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6868 return tracepoint_locations_match (loc1, loc2);
6869 else
6870 /* We compare bp_location.length in order to cover ranged breakpoints. */
6871 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6872 loc2->pspace->aspace, loc2->address)
6873 && loc1->length == loc2->length);
6874 }
6875
6876 static void
6877 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6878 int bnum, int have_bnum)
6879 {
6880 /* The longest string possibly returned by hex_string_custom
6881 is 50 chars. These must be at least that big for safety. */
6882 char astr1[64];
6883 char astr2[64];
6884
6885 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6886 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6887 if (have_bnum)
6888 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6889 bnum, astr1, astr2);
6890 else
6891 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6892 }
6893
6894 /* Adjust a breakpoint's address to account for architectural
6895 constraints on breakpoint placement. Return the adjusted address.
6896 Note: Very few targets require this kind of adjustment. For most
6897 targets, this function is simply the identity function. */
6898
6899 static CORE_ADDR
6900 adjust_breakpoint_address (struct gdbarch *gdbarch,
6901 CORE_ADDR bpaddr, enum bptype bptype)
6902 {
6903 if (bptype == bp_watchpoint
6904 || bptype == bp_hardware_watchpoint
6905 || bptype == bp_read_watchpoint
6906 || bptype == bp_access_watchpoint
6907 || bptype == bp_catchpoint)
6908 {
6909 /* Watchpoints and the various bp_catch_* eventpoints should not
6910 have their addresses modified. */
6911 return bpaddr;
6912 }
6913 else if (bptype == bp_single_step)
6914 {
6915 /* Single-step breakpoints should not have their addresses
6916 modified. If there's any architectural constrain that
6917 applies to this address, then it should have already been
6918 taken into account when the breakpoint was created in the
6919 first place. If we didn't do this, stepping through e.g.,
6920 Thumb-2 IT blocks would break. */
6921 return bpaddr;
6922 }
6923 else
6924 {
6925 CORE_ADDR adjusted_bpaddr = bpaddr;
6926
6927 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6928 {
6929 /* Some targets have architectural constraints on the placement
6930 of breakpoint instructions. Obtain the adjusted address. */
6931 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6932 }
6933
6934 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6935
6936 /* An adjusted breakpoint address can significantly alter
6937 a user's expectations. Print a warning if an adjustment
6938 is required. */
6939 if (adjusted_bpaddr != bpaddr)
6940 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6941
6942 return adjusted_bpaddr;
6943 }
6944 }
6945
6946 bp_location::bp_location (breakpoint *owner)
6947 {
6948 bp_location *loc = this;
6949
6950 loc->owner = owner;
6951 loc->cond_bytecode = NULL;
6952 loc->shlib_disabled = 0;
6953 loc->enabled = 1;
6954
6955 switch (owner->type)
6956 {
6957 case bp_breakpoint:
6958 case bp_single_step:
6959 case bp_until:
6960 case bp_finish:
6961 case bp_longjmp:
6962 case bp_longjmp_resume:
6963 case bp_longjmp_call_dummy:
6964 case bp_exception:
6965 case bp_exception_resume:
6966 case bp_step_resume:
6967 case bp_hp_step_resume:
6968 case bp_watchpoint_scope:
6969 case bp_call_dummy:
6970 case bp_std_terminate:
6971 case bp_shlib_event:
6972 case bp_thread_event:
6973 case bp_overlay_event:
6974 case bp_jit_event:
6975 case bp_longjmp_master:
6976 case bp_std_terminate_master:
6977 case bp_exception_master:
6978 case bp_gnu_ifunc_resolver:
6979 case bp_gnu_ifunc_resolver_return:
6980 case bp_dprintf:
6981 loc->loc_type = bp_loc_software_breakpoint;
6982 mark_breakpoint_location_modified (loc);
6983 break;
6984 case bp_hardware_breakpoint:
6985 loc->loc_type = bp_loc_hardware_breakpoint;
6986 mark_breakpoint_location_modified (loc);
6987 break;
6988 case bp_hardware_watchpoint:
6989 case bp_read_watchpoint:
6990 case bp_access_watchpoint:
6991 loc->loc_type = bp_loc_hardware_watchpoint;
6992 break;
6993 case bp_watchpoint:
6994 case bp_catchpoint:
6995 case bp_tracepoint:
6996 case bp_fast_tracepoint:
6997 case bp_static_tracepoint:
6998 loc->loc_type = bp_loc_other;
6999 break;
7000 default:
7001 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7002 }
7003
7004 loc->refc = 1;
7005 }
7006
7007 /* Allocate a struct bp_location. */
7008
7009 static struct bp_location *
7010 allocate_bp_location (struct breakpoint *bpt)
7011 {
7012 return bpt->ops->allocate_location (bpt);
7013 }
7014
7015 static void
7016 free_bp_location (struct bp_location *loc)
7017 {
7018 delete loc;
7019 }
7020
7021 /* Increment reference count. */
7022
7023 static void
7024 incref_bp_location (struct bp_location *bl)
7025 {
7026 ++bl->refc;
7027 }
7028
7029 /* Decrement reference count. If the reference count reaches 0,
7030 destroy the bp_location. Sets *BLP to NULL. */
7031
7032 static void
7033 decref_bp_location (struct bp_location **blp)
7034 {
7035 gdb_assert ((*blp)->refc > 0);
7036
7037 if (--(*blp)->refc == 0)
7038 free_bp_location (*blp);
7039 *blp = NULL;
7040 }
7041
7042 /* Add breakpoint B at the end of the global breakpoint chain. */
7043
7044 static breakpoint *
7045 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7046 {
7047 struct breakpoint *b1;
7048 struct breakpoint *result = b.get ();
7049
7050 /* Add this breakpoint to the end of the chain so that a list of
7051 breakpoints will come out in order of increasing numbers. */
7052
7053 b1 = breakpoint_chain;
7054 if (b1 == 0)
7055 breakpoint_chain = b.release ();
7056 else
7057 {
7058 while (b1->next)
7059 b1 = b1->next;
7060 b1->next = b.release ();
7061 }
7062
7063 return result;
7064 }
7065
7066 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7067
7068 static void
7069 init_raw_breakpoint_without_location (struct breakpoint *b,
7070 struct gdbarch *gdbarch,
7071 enum bptype bptype,
7072 const struct breakpoint_ops *ops)
7073 {
7074 gdb_assert (ops != NULL);
7075
7076 b->ops = ops;
7077 b->type = bptype;
7078 b->gdbarch = gdbarch;
7079 b->language = current_language->la_language;
7080 b->input_radix = input_radix;
7081 b->related_breakpoint = b;
7082 }
7083
7084 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7085 that has type BPTYPE and has no locations as yet. */
7086
7087 static struct breakpoint *
7088 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7089 enum bptype bptype,
7090 const struct breakpoint_ops *ops)
7091 {
7092 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7093
7094 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7095 return add_to_breakpoint_chain (std::move (b));
7096 }
7097
7098 /* Initialize loc->function_name. */
7099
7100 static void
7101 set_breakpoint_location_function (struct bp_location *loc)
7102 {
7103 gdb_assert (loc->owner != NULL);
7104
7105 if (loc->owner->type == bp_breakpoint
7106 || loc->owner->type == bp_hardware_breakpoint
7107 || is_tracepoint (loc->owner))
7108 {
7109 const char *function_name;
7110
7111 if (loc->msymbol != NULL
7112 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7113 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7114 {
7115 struct breakpoint *b = loc->owner;
7116
7117 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7118
7119 if (b->type == bp_breakpoint && b->loc == loc
7120 && loc->next == NULL && b->related_breakpoint == b)
7121 {
7122 /* Create only the whole new breakpoint of this type but do not
7123 mess more complicated breakpoints with multiple locations. */
7124 b->type = bp_gnu_ifunc_resolver;
7125 /* Remember the resolver's address for use by the return
7126 breakpoint. */
7127 loc->related_address = loc->address;
7128 }
7129 }
7130 else
7131 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7132
7133 if (function_name)
7134 loc->function_name = xstrdup (function_name);
7135 }
7136 }
7137
7138 /* Attempt to determine architecture of location identified by SAL. */
7139 struct gdbarch *
7140 get_sal_arch (struct symtab_and_line sal)
7141 {
7142 if (sal.section)
7143 return get_objfile_arch (sal.section->objfile);
7144 if (sal.symtab)
7145 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7146
7147 return NULL;
7148 }
7149
7150 /* Low level routine for partially initializing a breakpoint of type
7151 BPTYPE. The newly created breakpoint's address, section, source
7152 file name, and line number are provided by SAL.
7153
7154 It is expected that the caller will complete the initialization of
7155 the newly created breakpoint struct as well as output any status
7156 information regarding the creation of a new breakpoint. */
7157
7158 static void
7159 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7160 struct symtab_and_line sal, enum bptype bptype,
7161 const struct breakpoint_ops *ops)
7162 {
7163 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7164
7165 add_location_to_breakpoint (b, &sal);
7166
7167 if (bptype != bp_catchpoint)
7168 gdb_assert (sal.pspace != NULL);
7169
7170 /* Store the program space that was used to set the breakpoint,
7171 except for ordinary breakpoints, which are independent of the
7172 program space. */
7173 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7174 b->pspace = sal.pspace;
7175 }
7176
7177 /* set_raw_breakpoint is a low level routine for allocating and
7178 partially initializing a breakpoint of type BPTYPE. The newly
7179 created breakpoint's address, section, source file name, and line
7180 number are provided by SAL. The newly created and partially
7181 initialized breakpoint is added to the breakpoint chain and
7182 is also returned as the value of this function.
7183
7184 It is expected that the caller will complete the initialization of
7185 the newly created breakpoint struct as well as output any status
7186 information regarding the creation of a new breakpoint. In
7187 particular, set_raw_breakpoint does NOT set the breakpoint
7188 number! Care should be taken to not allow an error to occur
7189 prior to completing the initialization of the breakpoint. If this
7190 should happen, a bogus breakpoint will be left on the chain. */
7191
7192 struct breakpoint *
7193 set_raw_breakpoint (struct gdbarch *gdbarch,
7194 struct symtab_and_line sal, enum bptype bptype,
7195 const struct breakpoint_ops *ops)
7196 {
7197 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7198
7199 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7200 return add_to_breakpoint_chain (std::move (b));
7201 }
7202
7203 /* Call this routine when stepping and nexting to enable a breakpoint
7204 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7205 initiated the operation. */
7206
7207 void
7208 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7209 {
7210 struct breakpoint *b, *b_tmp;
7211 int thread = tp->global_num;
7212
7213 /* To avoid having to rescan all objfile symbols at every step,
7214 we maintain a list of continually-inserted but always disabled
7215 longjmp "master" breakpoints. Here, we simply create momentary
7216 clones of those and enable them for the requested thread. */
7217 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7218 if (b->pspace == current_program_space
7219 && (b->type == bp_longjmp_master
7220 || b->type == bp_exception_master))
7221 {
7222 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7223 struct breakpoint *clone;
7224
7225 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7226 after their removal. */
7227 clone = momentary_breakpoint_from_master (b, type,
7228 &momentary_breakpoint_ops, 1);
7229 clone->thread = thread;
7230 }
7231
7232 tp->initiating_frame = frame;
7233 }
7234
7235 /* Delete all longjmp breakpoints from THREAD. */
7236 void
7237 delete_longjmp_breakpoint (int thread)
7238 {
7239 struct breakpoint *b, *b_tmp;
7240
7241 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7242 if (b->type == bp_longjmp || b->type == bp_exception)
7243 {
7244 if (b->thread == thread)
7245 delete_breakpoint (b);
7246 }
7247 }
7248
7249 void
7250 delete_longjmp_breakpoint_at_next_stop (int thread)
7251 {
7252 struct breakpoint *b, *b_tmp;
7253
7254 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7255 if (b->type == bp_longjmp || b->type == bp_exception)
7256 {
7257 if (b->thread == thread)
7258 b->disposition = disp_del_at_next_stop;
7259 }
7260 }
7261
7262 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7263 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7264 pointer to any of them. Return NULL if this system cannot place longjmp
7265 breakpoints. */
7266
7267 struct breakpoint *
7268 set_longjmp_breakpoint_for_call_dummy (void)
7269 {
7270 struct breakpoint *b, *retval = NULL;
7271
7272 ALL_BREAKPOINTS (b)
7273 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7274 {
7275 struct breakpoint *new_b;
7276
7277 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7278 &momentary_breakpoint_ops,
7279 1);
7280 new_b->thread = inferior_thread ()->global_num;
7281
7282 /* Link NEW_B into the chain of RETVAL breakpoints. */
7283
7284 gdb_assert (new_b->related_breakpoint == new_b);
7285 if (retval == NULL)
7286 retval = new_b;
7287 new_b->related_breakpoint = retval;
7288 while (retval->related_breakpoint != new_b->related_breakpoint)
7289 retval = retval->related_breakpoint;
7290 retval->related_breakpoint = new_b;
7291 }
7292
7293 return retval;
7294 }
7295
7296 /* Verify all existing dummy frames and their associated breakpoints for
7297 TP. Remove those which can no longer be found in the current frame
7298 stack.
7299
7300 You should call this function only at places where it is safe to currently
7301 unwind the whole stack. Failed stack unwind would discard live dummy
7302 frames. */
7303
7304 void
7305 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7306 {
7307 struct breakpoint *b, *b_tmp;
7308
7309 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7310 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7311 {
7312 struct breakpoint *dummy_b = b->related_breakpoint;
7313
7314 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7315 dummy_b = dummy_b->related_breakpoint;
7316 if (dummy_b->type != bp_call_dummy
7317 || frame_find_by_id (dummy_b->frame_id) != NULL)
7318 continue;
7319
7320 dummy_frame_discard (dummy_b->frame_id, tp);
7321
7322 while (b->related_breakpoint != b)
7323 {
7324 if (b_tmp == b->related_breakpoint)
7325 b_tmp = b->related_breakpoint->next;
7326 delete_breakpoint (b->related_breakpoint);
7327 }
7328 delete_breakpoint (b);
7329 }
7330 }
7331
7332 void
7333 enable_overlay_breakpoints (void)
7334 {
7335 struct breakpoint *b;
7336
7337 ALL_BREAKPOINTS (b)
7338 if (b->type == bp_overlay_event)
7339 {
7340 b->enable_state = bp_enabled;
7341 update_global_location_list (UGLL_MAY_INSERT);
7342 overlay_events_enabled = 1;
7343 }
7344 }
7345
7346 void
7347 disable_overlay_breakpoints (void)
7348 {
7349 struct breakpoint *b;
7350
7351 ALL_BREAKPOINTS (b)
7352 if (b->type == bp_overlay_event)
7353 {
7354 b->enable_state = bp_disabled;
7355 update_global_location_list (UGLL_DONT_INSERT);
7356 overlay_events_enabled = 0;
7357 }
7358 }
7359
7360 /* Set an active std::terminate breakpoint for each std::terminate
7361 master breakpoint. */
7362 void
7363 set_std_terminate_breakpoint (void)
7364 {
7365 struct breakpoint *b, *b_tmp;
7366
7367 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7368 if (b->pspace == current_program_space
7369 && b->type == bp_std_terminate_master)
7370 {
7371 momentary_breakpoint_from_master (b, bp_std_terminate,
7372 &momentary_breakpoint_ops, 1);
7373 }
7374 }
7375
7376 /* Delete all the std::terminate breakpoints. */
7377 void
7378 delete_std_terminate_breakpoint (void)
7379 {
7380 struct breakpoint *b, *b_tmp;
7381
7382 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7383 if (b->type == bp_std_terminate)
7384 delete_breakpoint (b);
7385 }
7386
7387 struct breakpoint *
7388 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7389 {
7390 struct breakpoint *b;
7391
7392 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7393 &internal_breakpoint_ops);
7394
7395 b->enable_state = bp_enabled;
7396 /* location has to be used or breakpoint_re_set will delete me. */
7397 b->location = new_address_location (b->loc->address, NULL, 0);
7398
7399 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7400
7401 return b;
7402 }
7403
7404 struct lang_and_radix
7405 {
7406 enum language lang;
7407 int radix;
7408 };
7409
7410 /* Create a breakpoint for JIT code registration and unregistration. */
7411
7412 struct breakpoint *
7413 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7414 {
7415 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7416 &internal_breakpoint_ops);
7417 }
7418
7419 /* Remove JIT code registration and unregistration breakpoint(s). */
7420
7421 void
7422 remove_jit_event_breakpoints (void)
7423 {
7424 struct breakpoint *b, *b_tmp;
7425
7426 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7427 if (b->type == bp_jit_event
7428 && b->loc->pspace == current_program_space)
7429 delete_breakpoint (b);
7430 }
7431
7432 void
7433 remove_solib_event_breakpoints (void)
7434 {
7435 struct breakpoint *b, *b_tmp;
7436
7437 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7438 if (b->type == bp_shlib_event
7439 && b->loc->pspace == current_program_space)
7440 delete_breakpoint (b);
7441 }
7442
7443 /* See breakpoint.h. */
7444
7445 void
7446 remove_solib_event_breakpoints_at_next_stop (void)
7447 {
7448 struct breakpoint *b, *b_tmp;
7449
7450 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7451 if (b->type == bp_shlib_event
7452 && b->loc->pspace == current_program_space)
7453 b->disposition = disp_del_at_next_stop;
7454 }
7455
7456 /* Helper for create_solib_event_breakpoint /
7457 create_and_insert_solib_event_breakpoint. Allows specifying which
7458 INSERT_MODE to pass through to update_global_location_list. */
7459
7460 static struct breakpoint *
7461 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7462 enum ugll_insert_mode insert_mode)
7463 {
7464 struct breakpoint *b;
7465
7466 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7467 &internal_breakpoint_ops);
7468 update_global_location_list_nothrow (insert_mode);
7469 return b;
7470 }
7471
7472 struct breakpoint *
7473 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7474 {
7475 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7476 }
7477
7478 /* See breakpoint.h. */
7479
7480 struct breakpoint *
7481 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7482 {
7483 struct breakpoint *b;
7484
7485 /* Explicitly tell update_global_location_list to insert
7486 locations. */
7487 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7488 if (!b->loc->inserted)
7489 {
7490 delete_breakpoint (b);
7491 return NULL;
7492 }
7493 return b;
7494 }
7495
7496 /* Disable any breakpoints that are on code in shared libraries. Only
7497 apply to enabled breakpoints, disabled ones can just stay disabled. */
7498
7499 void
7500 disable_breakpoints_in_shlibs (void)
7501 {
7502 struct bp_location *loc, **locp_tmp;
7503
7504 ALL_BP_LOCATIONS (loc, locp_tmp)
7505 {
7506 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7507 struct breakpoint *b = loc->owner;
7508
7509 /* We apply the check to all breakpoints, including disabled for
7510 those with loc->duplicate set. This is so that when breakpoint
7511 becomes enabled, or the duplicate is removed, gdb will try to
7512 insert all breakpoints. If we don't set shlib_disabled here,
7513 we'll try to insert those breakpoints and fail. */
7514 if (((b->type == bp_breakpoint)
7515 || (b->type == bp_jit_event)
7516 || (b->type == bp_hardware_breakpoint)
7517 || (is_tracepoint (b)))
7518 && loc->pspace == current_program_space
7519 && !loc->shlib_disabled
7520 && solib_name_from_address (loc->pspace, loc->address)
7521 )
7522 {
7523 loc->shlib_disabled = 1;
7524 }
7525 }
7526 }
7527
7528 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7529 notification of unloaded_shlib. Only apply to enabled breakpoints,
7530 disabled ones can just stay disabled. */
7531
7532 static void
7533 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7534 {
7535 struct bp_location *loc, **locp_tmp;
7536 int disabled_shlib_breaks = 0;
7537
7538 ALL_BP_LOCATIONS (loc, locp_tmp)
7539 {
7540 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7541 struct breakpoint *b = loc->owner;
7542
7543 if (solib->pspace == loc->pspace
7544 && !loc->shlib_disabled
7545 && (((b->type == bp_breakpoint
7546 || b->type == bp_jit_event
7547 || b->type == bp_hardware_breakpoint)
7548 && (loc->loc_type == bp_loc_hardware_breakpoint
7549 || loc->loc_type == bp_loc_software_breakpoint))
7550 || is_tracepoint (b))
7551 && solib_contains_address_p (solib, loc->address))
7552 {
7553 loc->shlib_disabled = 1;
7554 /* At this point, we cannot rely on remove_breakpoint
7555 succeeding so we must mark the breakpoint as not inserted
7556 to prevent future errors occurring in remove_breakpoints. */
7557 loc->inserted = 0;
7558
7559 /* This may cause duplicate notifications for the same breakpoint. */
7560 gdb::observers::breakpoint_modified.notify (b);
7561
7562 if (!disabled_shlib_breaks)
7563 {
7564 target_terminal::ours_for_output ();
7565 warning (_("Temporarily disabling breakpoints "
7566 "for unloaded shared library \"%s\""),
7567 solib->so_name);
7568 }
7569 disabled_shlib_breaks = 1;
7570 }
7571 }
7572 }
7573
7574 /* Disable any breakpoints and tracepoints in OBJFILE upon
7575 notification of free_objfile. Only apply to enabled breakpoints,
7576 disabled ones can just stay disabled. */
7577
7578 static void
7579 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7580 {
7581 struct breakpoint *b;
7582
7583 if (objfile == NULL)
7584 return;
7585
7586 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7587 managed by the user with add-symbol-file/remove-symbol-file.
7588 Similarly to how breakpoints in shared libraries are handled in
7589 response to "nosharedlibrary", mark breakpoints in such modules
7590 shlib_disabled so they end up uninserted on the next global
7591 location list update. Shared libraries not loaded by the user
7592 aren't handled here -- they're already handled in
7593 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7594 solib_unloaded observer. We skip objfiles that are not
7595 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7596 main objfile). */
7597 if ((objfile->flags & OBJF_SHARED) == 0
7598 || (objfile->flags & OBJF_USERLOADED) == 0)
7599 return;
7600
7601 ALL_BREAKPOINTS (b)
7602 {
7603 struct bp_location *loc;
7604 int bp_modified = 0;
7605
7606 if (!is_breakpoint (b) && !is_tracepoint (b))
7607 continue;
7608
7609 for (loc = b->loc; loc != NULL; loc = loc->next)
7610 {
7611 CORE_ADDR loc_addr = loc->address;
7612
7613 if (loc->loc_type != bp_loc_hardware_breakpoint
7614 && loc->loc_type != bp_loc_software_breakpoint)
7615 continue;
7616
7617 if (loc->shlib_disabled != 0)
7618 continue;
7619
7620 if (objfile->pspace != loc->pspace)
7621 continue;
7622
7623 if (loc->loc_type != bp_loc_hardware_breakpoint
7624 && loc->loc_type != bp_loc_software_breakpoint)
7625 continue;
7626
7627 if (is_addr_in_objfile (loc_addr, objfile))
7628 {
7629 loc->shlib_disabled = 1;
7630 /* At this point, we don't know whether the object was
7631 unmapped from the inferior or not, so leave the
7632 inserted flag alone. We'll handle failure to
7633 uninsert quietly, in case the object was indeed
7634 unmapped. */
7635
7636 mark_breakpoint_location_modified (loc);
7637
7638 bp_modified = 1;
7639 }
7640 }
7641
7642 if (bp_modified)
7643 gdb::observers::breakpoint_modified.notify (b);
7644 }
7645 }
7646
7647 /* FORK & VFORK catchpoints. */
7648
7649 /* An instance of this type is used to represent a fork or vfork
7650 catchpoint. A breakpoint is really of this type iff its ops pointer points
7651 to CATCH_FORK_BREAKPOINT_OPS. */
7652
7653 struct fork_catchpoint : public breakpoint
7654 {
7655 /* Process id of a child process whose forking triggered this
7656 catchpoint. This field is only valid immediately after this
7657 catchpoint has triggered. */
7658 ptid_t forked_inferior_pid;
7659 };
7660
7661 /* Implement the "insert" breakpoint_ops method for fork
7662 catchpoints. */
7663
7664 static int
7665 insert_catch_fork (struct bp_location *bl)
7666 {
7667 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7668 }
7669
7670 /* Implement the "remove" breakpoint_ops method for fork
7671 catchpoints. */
7672
7673 static int
7674 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7675 {
7676 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7677 }
7678
7679 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7680 catchpoints. */
7681
7682 static int
7683 breakpoint_hit_catch_fork (const struct bp_location *bl,
7684 const address_space *aspace, CORE_ADDR bp_addr,
7685 const struct target_waitstatus *ws)
7686 {
7687 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7688
7689 if (ws->kind != TARGET_WAITKIND_FORKED)
7690 return 0;
7691
7692 c->forked_inferior_pid = ws->value.related_pid;
7693 return 1;
7694 }
7695
7696 /* Implement the "print_it" breakpoint_ops method for fork
7697 catchpoints. */
7698
7699 static enum print_stop_action
7700 print_it_catch_fork (bpstat bs)
7701 {
7702 struct ui_out *uiout = current_uiout;
7703 struct breakpoint *b = bs->breakpoint_at;
7704 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7705
7706 annotate_catchpoint (b->number);
7707 maybe_print_thread_hit_breakpoint (uiout);
7708 if (b->disposition == disp_del)
7709 uiout->text ("Temporary catchpoint ");
7710 else
7711 uiout->text ("Catchpoint ");
7712 if (uiout->is_mi_like_p ())
7713 {
7714 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7715 uiout->field_string ("disp", bpdisp_text (b->disposition));
7716 }
7717 uiout->field_int ("bkptno", b->number);
7718 uiout->text (" (forked process ");
7719 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7720 uiout->text ("), ");
7721 return PRINT_SRC_AND_LOC;
7722 }
7723
7724 /* Implement the "print_one" breakpoint_ops method for fork
7725 catchpoints. */
7726
7727 static void
7728 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7729 {
7730 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7731 struct value_print_options opts;
7732 struct ui_out *uiout = current_uiout;
7733
7734 get_user_print_options (&opts);
7735
7736 /* Field 4, the address, is omitted (which makes the columns not
7737 line up too nicely with the headers, but the effect is relatively
7738 readable). */
7739 if (opts.addressprint)
7740 uiout->field_skip ("addr");
7741 annotate_field (5);
7742 uiout->text ("fork");
7743 if (c->forked_inferior_pid != null_ptid)
7744 {
7745 uiout->text (", process ");
7746 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7747 uiout->spaces (1);
7748 }
7749
7750 if (uiout->is_mi_like_p ())
7751 uiout->field_string ("catch-type", "fork");
7752 }
7753
7754 /* Implement the "print_mention" breakpoint_ops method for fork
7755 catchpoints. */
7756
7757 static void
7758 print_mention_catch_fork (struct breakpoint *b)
7759 {
7760 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7761 }
7762
7763 /* Implement the "print_recreate" breakpoint_ops method for fork
7764 catchpoints. */
7765
7766 static void
7767 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7768 {
7769 fprintf_unfiltered (fp, "catch fork");
7770 print_recreate_thread (b, fp);
7771 }
7772
7773 /* The breakpoint_ops structure to be used in fork catchpoints. */
7774
7775 static struct breakpoint_ops catch_fork_breakpoint_ops;
7776
7777 /* Implement the "insert" breakpoint_ops method for vfork
7778 catchpoints. */
7779
7780 static int
7781 insert_catch_vfork (struct bp_location *bl)
7782 {
7783 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7784 }
7785
7786 /* Implement the "remove" breakpoint_ops method for vfork
7787 catchpoints. */
7788
7789 static int
7790 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7791 {
7792 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7793 }
7794
7795 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7796 catchpoints. */
7797
7798 static int
7799 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7800 const address_space *aspace, CORE_ADDR bp_addr,
7801 const struct target_waitstatus *ws)
7802 {
7803 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7804
7805 if (ws->kind != TARGET_WAITKIND_VFORKED)
7806 return 0;
7807
7808 c->forked_inferior_pid = ws->value.related_pid;
7809 return 1;
7810 }
7811
7812 /* Implement the "print_it" breakpoint_ops method for vfork
7813 catchpoints. */
7814
7815 static enum print_stop_action
7816 print_it_catch_vfork (bpstat bs)
7817 {
7818 struct ui_out *uiout = current_uiout;
7819 struct breakpoint *b = bs->breakpoint_at;
7820 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7821
7822 annotate_catchpoint (b->number);
7823 maybe_print_thread_hit_breakpoint (uiout);
7824 if (b->disposition == disp_del)
7825 uiout->text ("Temporary catchpoint ");
7826 else
7827 uiout->text ("Catchpoint ");
7828 if (uiout->is_mi_like_p ())
7829 {
7830 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7831 uiout->field_string ("disp", bpdisp_text (b->disposition));
7832 }
7833 uiout->field_int ("bkptno", b->number);
7834 uiout->text (" (vforked process ");
7835 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7836 uiout->text ("), ");
7837 return PRINT_SRC_AND_LOC;
7838 }
7839
7840 /* Implement the "print_one" breakpoint_ops method for vfork
7841 catchpoints. */
7842
7843 static void
7844 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7845 {
7846 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7847 struct value_print_options opts;
7848 struct ui_out *uiout = current_uiout;
7849
7850 get_user_print_options (&opts);
7851 /* Field 4, the address, is omitted (which makes the columns not
7852 line up too nicely with the headers, but the effect is relatively
7853 readable). */
7854 if (opts.addressprint)
7855 uiout->field_skip ("addr");
7856 annotate_field (5);
7857 uiout->text ("vfork");
7858 if (c->forked_inferior_pid != null_ptid)
7859 {
7860 uiout->text (", process ");
7861 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7862 uiout->spaces (1);
7863 }
7864
7865 if (uiout->is_mi_like_p ())
7866 uiout->field_string ("catch-type", "vfork");
7867 }
7868
7869 /* Implement the "print_mention" breakpoint_ops method for vfork
7870 catchpoints. */
7871
7872 static void
7873 print_mention_catch_vfork (struct breakpoint *b)
7874 {
7875 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7876 }
7877
7878 /* Implement the "print_recreate" breakpoint_ops method for vfork
7879 catchpoints. */
7880
7881 static void
7882 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7883 {
7884 fprintf_unfiltered (fp, "catch vfork");
7885 print_recreate_thread (b, fp);
7886 }
7887
7888 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7889
7890 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7891
7892 /* An instance of this type is used to represent an solib catchpoint.
7893 A breakpoint is really of this type iff its ops pointer points to
7894 CATCH_SOLIB_BREAKPOINT_OPS. */
7895
7896 struct solib_catchpoint : public breakpoint
7897 {
7898 ~solib_catchpoint () override;
7899
7900 /* True for "catch load", false for "catch unload". */
7901 unsigned char is_load;
7902
7903 /* Regular expression to match, if any. COMPILED is only valid when
7904 REGEX is non-NULL. */
7905 char *regex;
7906 std::unique_ptr<compiled_regex> compiled;
7907 };
7908
7909 solib_catchpoint::~solib_catchpoint ()
7910 {
7911 xfree (this->regex);
7912 }
7913
7914 static int
7915 insert_catch_solib (struct bp_location *ignore)
7916 {
7917 return 0;
7918 }
7919
7920 static int
7921 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7922 {
7923 return 0;
7924 }
7925
7926 static int
7927 breakpoint_hit_catch_solib (const struct bp_location *bl,
7928 const address_space *aspace,
7929 CORE_ADDR bp_addr,
7930 const struct target_waitstatus *ws)
7931 {
7932 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7933 struct breakpoint *other;
7934
7935 if (ws->kind == TARGET_WAITKIND_LOADED)
7936 return 1;
7937
7938 ALL_BREAKPOINTS (other)
7939 {
7940 struct bp_location *other_bl;
7941
7942 if (other == bl->owner)
7943 continue;
7944
7945 if (other->type != bp_shlib_event)
7946 continue;
7947
7948 if (self->pspace != NULL && other->pspace != self->pspace)
7949 continue;
7950
7951 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7952 {
7953 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7954 return 1;
7955 }
7956 }
7957
7958 return 0;
7959 }
7960
7961 static void
7962 check_status_catch_solib (struct bpstats *bs)
7963 {
7964 struct solib_catchpoint *self
7965 = (struct solib_catchpoint *) bs->breakpoint_at;
7966
7967 if (self->is_load)
7968 {
7969 for (so_list *iter : current_program_space->added_solibs)
7970 {
7971 if (!self->regex
7972 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7973 return;
7974 }
7975 }
7976 else
7977 {
7978 for (const std::string &iter : current_program_space->deleted_solibs)
7979 {
7980 if (!self->regex
7981 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7982 return;
7983 }
7984 }
7985
7986 bs->stop = 0;
7987 bs->print_it = print_it_noop;
7988 }
7989
7990 static enum print_stop_action
7991 print_it_catch_solib (bpstat bs)
7992 {
7993 struct breakpoint *b = bs->breakpoint_at;
7994 struct ui_out *uiout = current_uiout;
7995
7996 annotate_catchpoint (b->number);
7997 maybe_print_thread_hit_breakpoint (uiout);
7998 if (b->disposition == disp_del)
7999 uiout->text ("Temporary catchpoint ");
8000 else
8001 uiout->text ("Catchpoint ");
8002 uiout->field_int ("bkptno", b->number);
8003 uiout->text ("\n");
8004 if (uiout->is_mi_like_p ())
8005 uiout->field_string ("disp", bpdisp_text (b->disposition));
8006 print_solib_event (1);
8007 return PRINT_SRC_AND_LOC;
8008 }
8009
8010 static void
8011 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8012 {
8013 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8014 struct value_print_options opts;
8015 struct ui_out *uiout = current_uiout;
8016
8017 get_user_print_options (&opts);
8018 /* Field 4, the address, is omitted (which makes the columns not
8019 line up too nicely with the headers, but the effect is relatively
8020 readable). */
8021 if (opts.addressprint)
8022 {
8023 annotate_field (4);
8024 uiout->field_skip ("addr");
8025 }
8026
8027 std::string msg;
8028 annotate_field (5);
8029 if (self->is_load)
8030 {
8031 if (self->regex)
8032 msg = string_printf (_("load of library matching %s"), self->regex);
8033 else
8034 msg = _("load of library");
8035 }
8036 else
8037 {
8038 if (self->regex)
8039 msg = string_printf (_("unload of library matching %s"), self->regex);
8040 else
8041 msg = _("unload of library");
8042 }
8043 uiout->field_string ("what", msg);
8044
8045 if (uiout->is_mi_like_p ())
8046 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8047 }
8048
8049 static void
8050 print_mention_catch_solib (struct breakpoint *b)
8051 {
8052 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8053
8054 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8055 self->is_load ? "load" : "unload");
8056 }
8057
8058 static void
8059 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8060 {
8061 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8062
8063 fprintf_unfiltered (fp, "%s %s",
8064 b->disposition == disp_del ? "tcatch" : "catch",
8065 self->is_load ? "load" : "unload");
8066 if (self->regex)
8067 fprintf_unfiltered (fp, " %s", self->regex);
8068 fprintf_unfiltered (fp, "\n");
8069 }
8070
8071 static struct breakpoint_ops catch_solib_breakpoint_ops;
8072
8073 /* Shared helper function (MI and CLI) for creating and installing
8074 a shared object event catchpoint. If IS_LOAD is non-zero then
8075 the events to be caught are load events, otherwise they are
8076 unload events. If IS_TEMP is non-zero the catchpoint is a
8077 temporary one. If ENABLED is non-zero the catchpoint is
8078 created in an enabled state. */
8079
8080 void
8081 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8082 {
8083 struct gdbarch *gdbarch = get_current_arch ();
8084
8085 if (!arg)
8086 arg = "";
8087 arg = skip_spaces (arg);
8088
8089 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8090
8091 if (*arg != '\0')
8092 {
8093 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8094 _("Invalid regexp")));
8095 c->regex = xstrdup (arg);
8096 }
8097
8098 c->is_load = is_load;
8099 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8100 &catch_solib_breakpoint_ops);
8101
8102 c->enable_state = enabled ? bp_enabled : bp_disabled;
8103
8104 install_breakpoint (0, std::move (c), 1);
8105 }
8106
8107 /* A helper function that does all the work for "catch load" and
8108 "catch unload". */
8109
8110 static void
8111 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8112 struct cmd_list_element *command)
8113 {
8114 int tempflag;
8115 const int enabled = 1;
8116
8117 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8118
8119 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8120 }
8121
8122 static void
8123 catch_load_command_1 (const char *arg, int from_tty,
8124 struct cmd_list_element *command)
8125 {
8126 catch_load_or_unload (arg, from_tty, 1, command);
8127 }
8128
8129 static void
8130 catch_unload_command_1 (const char *arg, int from_tty,
8131 struct cmd_list_element *command)
8132 {
8133 catch_load_or_unload (arg, from_tty, 0, command);
8134 }
8135
8136 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8137 is non-zero, then make the breakpoint temporary. If COND_STRING is
8138 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8139 the breakpoint_ops structure associated to the catchpoint. */
8140
8141 void
8142 init_catchpoint (struct breakpoint *b,
8143 struct gdbarch *gdbarch, int tempflag,
8144 const char *cond_string,
8145 const struct breakpoint_ops *ops)
8146 {
8147 symtab_and_line sal;
8148 sal.pspace = current_program_space;
8149
8150 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8151
8152 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8153 b->disposition = tempflag ? disp_del : disp_donttouch;
8154 }
8155
8156 void
8157 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8158 {
8159 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8160 set_breakpoint_number (internal, b);
8161 if (is_tracepoint (b))
8162 set_tracepoint_count (breakpoint_count);
8163 if (!internal)
8164 mention (b);
8165 gdb::observers::breakpoint_created.notify (b);
8166
8167 if (update_gll)
8168 update_global_location_list (UGLL_MAY_INSERT);
8169 }
8170
8171 static void
8172 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8173 int tempflag, const char *cond_string,
8174 const struct breakpoint_ops *ops)
8175 {
8176 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8177
8178 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8179
8180 c->forked_inferior_pid = null_ptid;
8181
8182 install_breakpoint (0, std::move (c), 1);
8183 }
8184
8185 /* Exec catchpoints. */
8186
8187 /* An instance of this type is used to represent an exec catchpoint.
8188 A breakpoint is really of this type iff its ops pointer points to
8189 CATCH_EXEC_BREAKPOINT_OPS. */
8190
8191 struct exec_catchpoint : public breakpoint
8192 {
8193 ~exec_catchpoint () override;
8194
8195 /* Filename of a program whose exec triggered this catchpoint.
8196 This field is only valid immediately after this catchpoint has
8197 triggered. */
8198 char *exec_pathname;
8199 };
8200
8201 /* Exec catchpoint destructor. */
8202
8203 exec_catchpoint::~exec_catchpoint ()
8204 {
8205 xfree (this->exec_pathname);
8206 }
8207
8208 static int
8209 insert_catch_exec (struct bp_location *bl)
8210 {
8211 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8212 }
8213
8214 static int
8215 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8216 {
8217 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8218 }
8219
8220 static int
8221 breakpoint_hit_catch_exec (const struct bp_location *bl,
8222 const address_space *aspace, CORE_ADDR bp_addr,
8223 const struct target_waitstatus *ws)
8224 {
8225 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8226
8227 if (ws->kind != TARGET_WAITKIND_EXECD)
8228 return 0;
8229
8230 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8231 return 1;
8232 }
8233
8234 static enum print_stop_action
8235 print_it_catch_exec (bpstat bs)
8236 {
8237 struct ui_out *uiout = current_uiout;
8238 struct breakpoint *b = bs->breakpoint_at;
8239 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8240
8241 annotate_catchpoint (b->number);
8242 maybe_print_thread_hit_breakpoint (uiout);
8243 if (b->disposition == disp_del)
8244 uiout->text ("Temporary catchpoint ");
8245 else
8246 uiout->text ("Catchpoint ");
8247 if (uiout->is_mi_like_p ())
8248 {
8249 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8250 uiout->field_string ("disp", bpdisp_text (b->disposition));
8251 }
8252 uiout->field_int ("bkptno", b->number);
8253 uiout->text (" (exec'd ");
8254 uiout->field_string ("new-exec", c->exec_pathname);
8255 uiout->text ("), ");
8256
8257 return PRINT_SRC_AND_LOC;
8258 }
8259
8260 static void
8261 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8262 {
8263 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8264 struct value_print_options opts;
8265 struct ui_out *uiout = current_uiout;
8266
8267 get_user_print_options (&opts);
8268
8269 /* Field 4, the address, is omitted (which makes the columns
8270 not line up too nicely with the headers, but the effect
8271 is relatively readable). */
8272 if (opts.addressprint)
8273 uiout->field_skip ("addr");
8274 annotate_field (5);
8275 uiout->text ("exec");
8276 if (c->exec_pathname != NULL)
8277 {
8278 uiout->text (", program \"");
8279 uiout->field_string ("what", c->exec_pathname);
8280 uiout->text ("\" ");
8281 }
8282
8283 if (uiout->is_mi_like_p ())
8284 uiout->field_string ("catch-type", "exec");
8285 }
8286
8287 static void
8288 print_mention_catch_exec (struct breakpoint *b)
8289 {
8290 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8291 }
8292
8293 /* Implement the "print_recreate" breakpoint_ops method for exec
8294 catchpoints. */
8295
8296 static void
8297 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8298 {
8299 fprintf_unfiltered (fp, "catch exec");
8300 print_recreate_thread (b, fp);
8301 }
8302
8303 static struct breakpoint_ops catch_exec_breakpoint_ops;
8304
8305 static int
8306 hw_breakpoint_used_count (void)
8307 {
8308 int i = 0;
8309 struct breakpoint *b;
8310 struct bp_location *bl;
8311
8312 ALL_BREAKPOINTS (b)
8313 {
8314 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8315 for (bl = b->loc; bl; bl = bl->next)
8316 {
8317 /* Special types of hardware breakpoints may use more than
8318 one register. */
8319 i += b->ops->resources_needed (bl);
8320 }
8321 }
8322
8323 return i;
8324 }
8325
8326 /* Returns the resources B would use if it were a hardware
8327 watchpoint. */
8328
8329 static int
8330 hw_watchpoint_use_count (struct breakpoint *b)
8331 {
8332 int i = 0;
8333 struct bp_location *bl;
8334
8335 if (!breakpoint_enabled (b))
8336 return 0;
8337
8338 for (bl = b->loc; bl; bl = bl->next)
8339 {
8340 /* Special types of hardware watchpoints may use more than
8341 one register. */
8342 i += b->ops->resources_needed (bl);
8343 }
8344
8345 return i;
8346 }
8347
8348 /* Returns the sum the used resources of all hardware watchpoints of
8349 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8350 the sum of the used resources of all hardware watchpoints of other
8351 types _not_ TYPE. */
8352
8353 static int
8354 hw_watchpoint_used_count_others (struct breakpoint *except,
8355 enum bptype type, int *other_type_used)
8356 {
8357 int i = 0;
8358 struct breakpoint *b;
8359
8360 *other_type_used = 0;
8361 ALL_BREAKPOINTS (b)
8362 {
8363 if (b == except)
8364 continue;
8365 if (!breakpoint_enabled (b))
8366 continue;
8367
8368 if (b->type == type)
8369 i += hw_watchpoint_use_count (b);
8370 else if (is_hardware_watchpoint (b))
8371 *other_type_used = 1;
8372 }
8373
8374 return i;
8375 }
8376
8377 void
8378 disable_watchpoints_before_interactive_call_start (void)
8379 {
8380 struct breakpoint *b;
8381
8382 ALL_BREAKPOINTS (b)
8383 {
8384 if (is_watchpoint (b) && breakpoint_enabled (b))
8385 {
8386 b->enable_state = bp_call_disabled;
8387 update_global_location_list (UGLL_DONT_INSERT);
8388 }
8389 }
8390 }
8391
8392 void
8393 enable_watchpoints_after_interactive_call_stop (void)
8394 {
8395 struct breakpoint *b;
8396
8397 ALL_BREAKPOINTS (b)
8398 {
8399 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8400 {
8401 b->enable_state = bp_enabled;
8402 update_global_location_list (UGLL_MAY_INSERT);
8403 }
8404 }
8405 }
8406
8407 void
8408 disable_breakpoints_before_startup (void)
8409 {
8410 current_program_space->executing_startup = 1;
8411 update_global_location_list (UGLL_DONT_INSERT);
8412 }
8413
8414 void
8415 enable_breakpoints_after_startup (void)
8416 {
8417 current_program_space->executing_startup = 0;
8418 breakpoint_re_set ();
8419 }
8420
8421 /* Create a new single-step breakpoint for thread THREAD, with no
8422 locations. */
8423
8424 static struct breakpoint *
8425 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8426 {
8427 std::unique_ptr<breakpoint> b (new breakpoint ());
8428
8429 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8430 &momentary_breakpoint_ops);
8431
8432 b->disposition = disp_donttouch;
8433 b->frame_id = null_frame_id;
8434
8435 b->thread = thread;
8436 gdb_assert (b->thread != 0);
8437
8438 return add_to_breakpoint_chain (std::move (b));
8439 }
8440
8441 /* Set a momentary breakpoint of type TYPE at address specified by
8442 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8443 frame. */
8444
8445 breakpoint_up
8446 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8447 struct frame_id frame_id, enum bptype type)
8448 {
8449 struct breakpoint *b;
8450
8451 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8452 tail-called one. */
8453 gdb_assert (!frame_id_artificial_p (frame_id));
8454
8455 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8456 b->enable_state = bp_enabled;
8457 b->disposition = disp_donttouch;
8458 b->frame_id = frame_id;
8459
8460 b->thread = inferior_thread ()->global_num;
8461
8462 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8463
8464 return breakpoint_up (b);
8465 }
8466
8467 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8468 The new breakpoint will have type TYPE, use OPS as its
8469 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8470
8471 static struct breakpoint *
8472 momentary_breakpoint_from_master (struct breakpoint *orig,
8473 enum bptype type,
8474 const struct breakpoint_ops *ops,
8475 int loc_enabled)
8476 {
8477 struct breakpoint *copy;
8478
8479 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8480 copy->loc = allocate_bp_location (copy);
8481 set_breakpoint_location_function (copy->loc);
8482
8483 copy->loc->gdbarch = orig->loc->gdbarch;
8484 copy->loc->requested_address = orig->loc->requested_address;
8485 copy->loc->address = orig->loc->address;
8486 copy->loc->section = orig->loc->section;
8487 copy->loc->pspace = orig->loc->pspace;
8488 copy->loc->probe = orig->loc->probe;
8489 copy->loc->line_number = orig->loc->line_number;
8490 copy->loc->symtab = orig->loc->symtab;
8491 copy->loc->enabled = loc_enabled;
8492 copy->frame_id = orig->frame_id;
8493 copy->thread = orig->thread;
8494 copy->pspace = orig->pspace;
8495
8496 copy->enable_state = bp_enabled;
8497 copy->disposition = disp_donttouch;
8498 copy->number = internal_breakpoint_number--;
8499
8500 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8501 return copy;
8502 }
8503
8504 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8505 ORIG is NULL. */
8506
8507 struct breakpoint *
8508 clone_momentary_breakpoint (struct breakpoint *orig)
8509 {
8510 /* If there's nothing to clone, then return nothing. */
8511 if (orig == NULL)
8512 return NULL;
8513
8514 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8515 }
8516
8517 breakpoint_up
8518 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8519 enum bptype type)
8520 {
8521 struct symtab_and_line sal;
8522
8523 sal = find_pc_line (pc, 0);
8524 sal.pc = pc;
8525 sal.section = find_pc_overlay (pc);
8526 sal.explicit_pc = 1;
8527
8528 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8529 }
8530 \f
8531
8532 /* Tell the user we have just set a breakpoint B. */
8533
8534 static void
8535 mention (struct breakpoint *b)
8536 {
8537 b->ops->print_mention (b);
8538 current_uiout->text ("\n");
8539 }
8540 \f
8541
8542 static int bp_loc_is_permanent (struct bp_location *loc);
8543
8544 static struct bp_location *
8545 add_location_to_breakpoint (struct breakpoint *b,
8546 const struct symtab_and_line *sal)
8547 {
8548 struct bp_location *loc, **tmp;
8549 CORE_ADDR adjusted_address;
8550 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8551
8552 if (loc_gdbarch == NULL)
8553 loc_gdbarch = b->gdbarch;
8554
8555 /* Adjust the breakpoint's address prior to allocating a location.
8556 Once we call allocate_bp_location(), that mostly uninitialized
8557 location will be placed on the location chain. Adjustment of the
8558 breakpoint may cause target_read_memory() to be called and we do
8559 not want its scan of the location chain to find a breakpoint and
8560 location that's only been partially initialized. */
8561 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8562 sal->pc, b->type);
8563
8564 /* Sort the locations by their ADDRESS. */
8565 loc = allocate_bp_location (b);
8566 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8567 tmp = &((*tmp)->next))
8568 ;
8569 loc->next = *tmp;
8570 *tmp = loc;
8571
8572 loc->requested_address = sal->pc;
8573 loc->address = adjusted_address;
8574 loc->pspace = sal->pspace;
8575 loc->probe.prob = sal->prob;
8576 loc->probe.objfile = sal->objfile;
8577 gdb_assert (loc->pspace != NULL);
8578 loc->section = sal->section;
8579 loc->gdbarch = loc_gdbarch;
8580 loc->line_number = sal->line;
8581 loc->symtab = sal->symtab;
8582 loc->symbol = sal->symbol;
8583 loc->msymbol = sal->msymbol;
8584 loc->objfile = sal->objfile;
8585
8586 set_breakpoint_location_function (loc);
8587
8588 /* While by definition, permanent breakpoints are already present in the
8589 code, we don't mark the location as inserted. Normally one would expect
8590 that GDB could rely on that breakpoint instruction to stop the program,
8591 thus removing the need to insert its own breakpoint, except that executing
8592 the breakpoint instruction can kill the target instead of reporting a
8593 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8594 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8595 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8596 breakpoint be inserted normally results in QEMU knowing about the GDB
8597 breakpoint, and thus trap before the breakpoint instruction is executed.
8598 (If GDB later needs to continue execution past the permanent breakpoint,
8599 it manually increments the PC, thus avoiding executing the breakpoint
8600 instruction.) */
8601 if (bp_loc_is_permanent (loc))
8602 loc->permanent = 1;
8603
8604 return loc;
8605 }
8606 \f
8607
8608 /* See breakpoint.h. */
8609
8610 int
8611 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8612 {
8613 int len;
8614 CORE_ADDR addr;
8615 const gdb_byte *bpoint;
8616 gdb_byte *target_mem;
8617
8618 addr = address;
8619 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8620
8621 /* Software breakpoints unsupported? */
8622 if (bpoint == NULL)
8623 return 0;
8624
8625 target_mem = (gdb_byte *) alloca (len);
8626
8627 /* Enable the automatic memory restoration from breakpoints while
8628 we read the memory. Otherwise we could say about our temporary
8629 breakpoints they are permanent. */
8630 scoped_restore restore_memory
8631 = make_scoped_restore_show_memory_breakpoints (0);
8632
8633 if (target_read_memory (address, target_mem, len) == 0
8634 && memcmp (target_mem, bpoint, len) == 0)
8635 return 1;
8636
8637 return 0;
8638 }
8639
8640 /* Return 1 if LOC is pointing to a permanent breakpoint,
8641 return 0 otherwise. */
8642
8643 static int
8644 bp_loc_is_permanent (struct bp_location *loc)
8645 {
8646 gdb_assert (loc != NULL);
8647
8648 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8649 attempt to read from the addresses the locations of these breakpoint types
8650 point to. program_breakpoint_here_p, below, will attempt to read
8651 memory. */
8652 if (!breakpoint_address_is_meaningful (loc->owner))
8653 return 0;
8654
8655 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8656 switch_to_program_space_and_thread (loc->pspace);
8657 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8658 }
8659
8660 /* Build a command list for the dprintf corresponding to the current
8661 settings of the dprintf style options. */
8662
8663 static void
8664 update_dprintf_command_list (struct breakpoint *b)
8665 {
8666 char *dprintf_args = b->extra_string;
8667 char *printf_line = NULL;
8668
8669 if (!dprintf_args)
8670 return;
8671
8672 dprintf_args = skip_spaces (dprintf_args);
8673
8674 /* Allow a comma, as it may have terminated a location, but don't
8675 insist on it. */
8676 if (*dprintf_args == ',')
8677 ++dprintf_args;
8678 dprintf_args = skip_spaces (dprintf_args);
8679
8680 if (*dprintf_args != '"')
8681 error (_("Bad format string, missing '\"'."));
8682
8683 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8684 printf_line = xstrprintf ("printf %s", dprintf_args);
8685 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8686 {
8687 if (!dprintf_function)
8688 error (_("No function supplied for dprintf call"));
8689
8690 if (dprintf_channel && strlen (dprintf_channel) > 0)
8691 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8692 dprintf_function,
8693 dprintf_channel,
8694 dprintf_args);
8695 else
8696 printf_line = xstrprintf ("call (void) %s (%s)",
8697 dprintf_function,
8698 dprintf_args);
8699 }
8700 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8701 {
8702 if (target_can_run_breakpoint_commands ())
8703 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8704 else
8705 {
8706 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8707 printf_line = xstrprintf ("printf %s", dprintf_args);
8708 }
8709 }
8710 else
8711 internal_error (__FILE__, __LINE__,
8712 _("Invalid dprintf style."));
8713
8714 gdb_assert (printf_line != NULL);
8715
8716 /* Manufacture a printf sequence. */
8717 struct command_line *printf_cmd_line
8718 = new struct command_line (simple_control, printf_line);
8719 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8720 command_lines_deleter ()));
8721 }
8722
8723 /* Update all dprintf commands, making their command lists reflect
8724 current style settings. */
8725
8726 static void
8727 update_dprintf_commands (const char *args, int from_tty,
8728 struct cmd_list_element *c)
8729 {
8730 struct breakpoint *b;
8731
8732 ALL_BREAKPOINTS (b)
8733 {
8734 if (b->type == bp_dprintf)
8735 update_dprintf_command_list (b);
8736 }
8737 }
8738
8739 /* Create a breakpoint with SAL as location. Use LOCATION
8740 as a description of the location, and COND_STRING
8741 as condition expression. If LOCATION is NULL then create an
8742 "address location" from the address in the SAL. */
8743
8744 static void
8745 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8746 gdb::array_view<const symtab_and_line> sals,
8747 event_location_up &&location,
8748 gdb::unique_xmalloc_ptr<char> filter,
8749 gdb::unique_xmalloc_ptr<char> cond_string,
8750 gdb::unique_xmalloc_ptr<char> extra_string,
8751 enum bptype type, enum bpdisp disposition,
8752 int thread, int task, int ignore_count,
8753 const struct breakpoint_ops *ops, int from_tty,
8754 int enabled, int internal, unsigned flags,
8755 int display_canonical)
8756 {
8757 int i;
8758
8759 if (type == bp_hardware_breakpoint)
8760 {
8761 int target_resources_ok;
8762
8763 i = hw_breakpoint_used_count ();
8764 target_resources_ok =
8765 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8766 i + 1, 0);
8767 if (target_resources_ok == 0)
8768 error (_("No hardware breakpoint support in the target."));
8769 else if (target_resources_ok < 0)
8770 error (_("Hardware breakpoints used exceeds limit."));
8771 }
8772
8773 gdb_assert (!sals.empty ());
8774
8775 for (const auto &sal : sals)
8776 {
8777 struct bp_location *loc;
8778
8779 if (from_tty)
8780 {
8781 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8782 if (!loc_gdbarch)
8783 loc_gdbarch = gdbarch;
8784
8785 describe_other_breakpoints (loc_gdbarch,
8786 sal.pspace, sal.pc, sal.section, thread);
8787 }
8788
8789 if (&sal == &sals[0])
8790 {
8791 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8792 b->thread = thread;
8793 b->task = task;
8794
8795 b->cond_string = cond_string.release ();
8796 b->extra_string = extra_string.release ();
8797 b->ignore_count = ignore_count;
8798 b->enable_state = enabled ? bp_enabled : bp_disabled;
8799 b->disposition = disposition;
8800
8801 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8802 b->loc->inserted = 1;
8803
8804 if (type == bp_static_tracepoint)
8805 {
8806 struct tracepoint *t = (struct tracepoint *) b;
8807 struct static_tracepoint_marker marker;
8808
8809 if (strace_marker_p (b))
8810 {
8811 /* We already know the marker exists, otherwise, we
8812 wouldn't see a sal for it. */
8813 const char *p
8814 = &event_location_to_string (b->location.get ())[3];
8815 const char *endp;
8816
8817 p = skip_spaces (p);
8818
8819 endp = skip_to_space (p);
8820
8821 t->static_trace_marker_id.assign (p, endp - p);
8822
8823 printf_filtered (_("Probed static tracepoint "
8824 "marker \"%s\"\n"),
8825 t->static_trace_marker_id.c_str ());
8826 }
8827 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8828 {
8829 t->static_trace_marker_id = std::move (marker.str_id);
8830
8831 printf_filtered (_("Probed static tracepoint "
8832 "marker \"%s\"\n"),
8833 t->static_trace_marker_id.c_str ());
8834 }
8835 else
8836 warning (_("Couldn't determine the static "
8837 "tracepoint marker to probe"));
8838 }
8839
8840 loc = b->loc;
8841 }
8842 else
8843 {
8844 loc = add_location_to_breakpoint (b, &sal);
8845 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8846 loc->inserted = 1;
8847 }
8848
8849 if (b->cond_string)
8850 {
8851 const char *arg = b->cond_string;
8852
8853 loc->cond = parse_exp_1 (&arg, loc->address,
8854 block_for_pc (loc->address), 0);
8855 if (*arg)
8856 error (_("Garbage '%s' follows condition"), arg);
8857 }
8858
8859 /* Dynamic printf requires and uses additional arguments on the
8860 command line, otherwise it's an error. */
8861 if (type == bp_dprintf)
8862 {
8863 if (b->extra_string)
8864 update_dprintf_command_list (b);
8865 else
8866 error (_("Format string required"));
8867 }
8868 else if (b->extra_string)
8869 error (_("Garbage '%s' at end of command"), b->extra_string);
8870 }
8871
8872 b->display_canonical = display_canonical;
8873 if (location != NULL)
8874 b->location = std::move (location);
8875 else
8876 b->location = new_address_location (b->loc->address, NULL, 0);
8877 b->filter = filter.release ();
8878 }
8879
8880 static void
8881 create_breakpoint_sal (struct gdbarch *gdbarch,
8882 gdb::array_view<const symtab_and_line> sals,
8883 event_location_up &&location,
8884 gdb::unique_xmalloc_ptr<char> filter,
8885 gdb::unique_xmalloc_ptr<char> cond_string,
8886 gdb::unique_xmalloc_ptr<char> extra_string,
8887 enum bptype type, enum bpdisp disposition,
8888 int thread, int task, int ignore_count,
8889 const struct breakpoint_ops *ops, int from_tty,
8890 int enabled, int internal, unsigned flags,
8891 int display_canonical)
8892 {
8893 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8894
8895 init_breakpoint_sal (b.get (), gdbarch,
8896 sals, std::move (location),
8897 std::move (filter),
8898 std::move (cond_string),
8899 std::move (extra_string),
8900 type, disposition,
8901 thread, task, ignore_count,
8902 ops, from_tty,
8903 enabled, internal, flags,
8904 display_canonical);
8905
8906 install_breakpoint (internal, std::move (b), 0);
8907 }
8908
8909 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8910 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8911 value. COND_STRING, if not NULL, specified the condition to be
8912 used for all breakpoints. Essentially the only case where
8913 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8914 function. In that case, it's still not possible to specify
8915 separate conditions for different overloaded functions, so
8916 we take just a single condition string.
8917
8918 NOTE: If the function succeeds, the caller is expected to cleanup
8919 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8920 array contents). If the function fails (error() is called), the
8921 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8922 COND and SALS arrays and each of those arrays contents. */
8923
8924 static void
8925 create_breakpoints_sal (struct gdbarch *gdbarch,
8926 struct linespec_result *canonical,
8927 gdb::unique_xmalloc_ptr<char> cond_string,
8928 gdb::unique_xmalloc_ptr<char> extra_string,
8929 enum bptype type, enum bpdisp disposition,
8930 int thread, int task, int ignore_count,
8931 const struct breakpoint_ops *ops, int from_tty,
8932 int enabled, int internal, unsigned flags)
8933 {
8934 if (canonical->pre_expanded)
8935 gdb_assert (canonical->lsals.size () == 1);
8936
8937 for (const auto &lsal : canonical->lsals)
8938 {
8939 /* Note that 'location' can be NULL in the case of a plain
8940 'break', without arguments. */
8941 event_location_up location
8942 = (canonical->location != NULL
8943 ? copy_event_location (canonical->location.get ()) : NULL);
8944 gdb::unique_xmalloc_ptr<char> filter_string
8945 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8946
8947 create_breakpoint_sal (gdbarch, lsal.sals,
8948 std::move (location),
8949 std::move (filter_string),
8950 std::move (cond_string),
8951 std::move (extra_string),
8952 type, disposition,
8953 thread, task, ignore_count, ops,
8954 from_tty, enabled, internal, flags,
8955 canonical->special_display);
8956 }
8957 }
8958
8959 /* Parse LOCATION which is assumed to be a SAL specification possibly
8960 followed by conditionals. On return, SALS contains an array of SAL
8961 addresses found. LOCATION points to the end of the SAL (for
8962 linespec locations).
8963
8964 The array and the line spec strings are allocated on the heap, it is
8965 the caller's responsibility to free them. */
8966
8967 static void
8968 parse_breakpoint_sals (const struct event_location *location,
8969 struct linespec_result *canonical)
8970 {
8971 struct symtab_and_line cursal;
8972
8973 if (event_location_type (location) == LINESPEC_LOCATION)
8974 {
8975 const char *spec = get_linespec_location (location)->spec_string;
8976
8977 if (spec == NULL)
8978 {
8979 /* The last displayed codepoint, if it's valid, is our default
8980 breakpoint address. */
8981 if (last_displayed_sal_is_valid ())
8982 {
8983 /* Set sal's pspace, pc, symtab, and line to the values
8984 corresponding to the last call to print_frame_info.
8985 Be sure to reinitialize LINE with NOTCURRENT == 0
8986 as the breakpoint line number is inappropriate otherwise.
8987 find_pc_line would adjust PC, re-set it back. */
8988 symtab_and_line sal = get_last_displayed_sal ();
8989 CORE_ADDR pc = sal.pc;
8990
8991 sal = find_pc_line (pc, 0);
8992
8993 /* "break" without arguments is equivalent to "break *PC"
8994 where PC is the last displayed codepoint's address. So
8995 make sure to set sal.explicit_pc to prevent GDB from
8996 trying to expand the list of sals to include all other
8997 instances with the same symtab and line. */
8998 sal.pc = pc;
8999 sal.explicit_pc = 1;
9000
9001 struct linespec_sals lsal;
9002 lsal.sals = {sal};
9003 lsal.canonical = NULL;
9004
9005 canonical->lsals.push_back (std::move (lsal));
9006 return;
9007 }
9008 else
9009 error (_("No default breakpoint address now."));
9010 }
9011 }
9012
9013 /* Force almost all breakpoints to be in terms of the
9014 current_source_symtab (which is decode_line_1's default).
9015 This should produce the results we want almost all of the
9016 time while leaving default_breakpoint_* alone.
9017
9018 ObjC: However, don't match an Objective-C method name which
9019 may have a '+' or '-' succeeded by a '['. */
9020 cursal = get_current_source_symtab_and_line ();
9021 if (last_displayed_sal_is_valid ())
9022 {
9023 const char *spec = NULL;
9024
9025 if (event_location_type (location) == LINESPEC_LOCATION)
9026 spec = get_linespec_location (location)->spec_string;
9027
9028 if (!cursal.symtab
9029 || (spec != NULL
9030 && strchr ("+-", spec[0]) != NULL
9031 && spec[1] != '['))
9032 {
9033 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9034 get_last_displayed_symtab (),
9035 get_last_displayed_line (),
9036 canonical, NULL, NULL);
9037 return;
9038 }
9039 }
9040
9041 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9042 cursal.symtab, cursal.line, canonical, NULL, NULL);
9043 }
9044
9045
9046 /* Convert each SAL into a real PC. Verify that the PC can be
9047 inserted as a breakpoint. If it can't throw an error. */
9048
9049 static void
9050 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9051 {
9052 for (auto &sal : sals)
9053 resolve_sal_pc (&sal);
9054 }
9055
9056 /* Fast tracepoints may have restrictions on valid locations. For
9057 instance, a fast tracepoint using a jump instead of a trap will
9058 likely have to overwrite more bytes than a trap would, and so can
9059 only be placed where the instruction is longer than the jump, or a
9060 multi-instruction sequence does not have a jump into the middle of
9061 it, etc. */
9062
9063 static void
9064 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9065 gdb::array_view<const symtab_and_line> sals)
9066 {
9067 for (const auto &sal : sals)
9068 {
9069 struct gdbarch *sarch;
9070
9071 sarch = get_sal_arch (sal);
9072 /* We fall back to GDBARCH if there is no architecture
9073 associated with SAL. */
9074 if (sarch == NULL)
9075 sarch = gdbarch;
9076 std::string msg;
9077 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9078 error (_("May not have a fast tracepoint at %s%s"),
9079 paddress (sarch, sal.pc), msg.c_str ());
9080 }
9081 }
9082
9083 /* Given TOK, a string specification of condition and thread, as
9084 accepted by the 'break' command, extract the condition
9085 string and thread number and set *COND_STRING and *THREAD.
9086 PC identifies the context at which the condition should be parsed.
9087 If no condition is found, *COND_STRING is set to NULL.
9088 If no thread is found, *THREAD is set to -1. */
9089
9090 static void
9091 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9092 char **cond_string, int *thread, int *task,
9093 char **rest)
9094 {
9095 *cond_string = NULL;
9096 *thread = -1;
9097 *task = 0;
9098 *rest = NULL;
9099
9100 while (tok && *tok)
9101 {
9102 const char *end_tok;
9103 int toklen;
9104 const char *cond_start = NULL;
9105 const char *cond_end = NULL;
9106
9107 tok = skip_spaces (tok);
9108
9109 if ((*tok == '"' || *tok == ',') && rest)
9110 {
9111 *rest = savestring (tok, strlen (tok));
9112 return;
9113 }
9114
9115 end_tok = skip_to_space (tok);
9116
9117 toklen = end_tok - tok;
9118
9119 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9120 {
9121 tok = cond_start = end_tok + 1;
9122 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9123 cond_end = tok;
9124 *cond_string = savestring (cond_start, cond_end - cond_start);
9125 }
9126 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9127 {
9128 const char *tmptok;
9129 struct thread_info *thr;
9130
9131 tok = end_tok + 1;
9132 thr = parse_thread_id (tok, &tmptok);
9133 if (tok == tmptok)
9134 error (_("Junk after thread keyword."));
9135 *thread = thr->global_num;
9136 tok = tmptok;
9137 }
9138 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9139 {
9140 char *tmptok;
9141
9142 tok = end_tok + 1;
9143 *task = strtol (tok, &tmptok, 0);
9144 if (tok == tmptok)
9145 error (_("Junk after task keyword."));
9146 if (!valid_task_id (*task))
9147 error (_("Unknown task %d."), *task);
9148 tok = tmptok;
9149 }
9150 else if (rest)
9151 {
9152 *rest = savestring (tok, strlen (tok));
9153 return;
9154 }
9155 else
9156 error (_("Junk at end of arguments."));
9157 }
9158 }
9159
9160 /* Decode a static tracepoint marker spec. */
9161
9162 static std::vector<symtab_and_line>
9163 decode_static_tracepoint_spec (const char **arg_p)
9164 {
9165 const char *p = &(*arg_p)[3];
9166 const char *endp;
9167
9168 p = skip_spaces (p);
9169
9170 endp = skip_to_space (p);
9171
9172 std::string marker_str (p, endp - p);
9173
9174 std::vector<static_tracepoint_marker> markers
9175 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9176 if (markers.empty ())
9177 error (_("No known static tracepoint marker named %s"),
9178 marker_str.c_str ());
9179
9180 std::vector<symtab_and_line> sals;
9181 sals.reserve (markers.size ());
9182
9183 for (const static_tracepoint_marker &marker : markers)
9184 {
9185 symtab_and_line sal = find_pc_line (marker.address, 0);
9186 sal.pc = marker.address;
9187 sals.push_back (sal);
9188 }
9189
9190 *arg_p = endp;
9191 return sals;
9192 }
9193
9194 /* See breakpoint.h. */
9195
9196 int
9197 create_breakpoint (struct gdbarch *gdbarch,
9198 const struct event_location *location,
9199 const char *cond_string,
9200 int thread, const char *extra_string,
9201 int parse_extra,
9202 int tempflag, enum bptype type_wanted,
9203 int ignore_count,
9204 enum auto_boolean pending_break_support,
9205 const struct breakpoint_ops *ops,
9206 int from_tty, int enabled, int internal,
9207 unsigned flags)
9208 {
9209 struct linespec_result canonical;
9210 int pending = 0;
9211 int task = 0;
9212 int prev_bkpt_count = breakpoint_count;
9213
9214 gdb_assert (ops != NULL);
9215
9216 /* If extra_string isn't useful, set it to NULL. */
9217 if (extra_string != NULL && *extra_string == '\0')
9218 extra_string = NULL;
9219
9220 try
9221 {
9222 ops->create_sals_from_location (location, &canonical, type_wanted);
9223 }
9224 catch (const gdb_exception_error &e)
9225 {
9226 /* If caller is interested in rc value from parse, set
9227 value. */
9228 if (e.error == NOT_FOUND_ERROR)
9229 {
9230 /* If pending breakpoint support is turned off, throw
9231 error. */
9232
9233 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9234 throw;
9235
9236 exception_print (gdb_stderr, e);
9237
9238 /* If pending breakpoint support is auto query and the user
9239 selects no, then simply return the error code. */
9240 if (pending_break_support == AUTO_BOOLEAN_AUTO
9241 && !nquery (_("Make %s pending on future shared library load? "),
9242 bptype_string (type_wanted)))
9243 return 0;
9244
9245 /* At this point, either the user was queried about setting
9246 a pending breakpoint and selected yes, or pending
9247 breakpoint behavior is on and thus a pending breakpoint
9248 is defaulted on behalf of the user. */
9249 pending = 1;
9250 }
9251 else
9252 throw;
9253 }
9254
9255 if (!pending && canonical.lsals.empty ())
9256 return 0;
9257
9258 /* Resolve all line numbers to PC's and verify that the addresses
9259 are ok for the target. */
9260 if (!pending)
9261 {
9262 for (auto &lsal : canonical.lsals)
9263 breakpoint_sals_to_pc (lsal.sals);
9264 }
9265
9266 /* Fast tracepoints may have additional restrictions on location. */
9267 if (!pending && type_wanted == bp_fast_tracepoint)
9268 {
9269 for (const auto &lsal : canonical.lsals)
9270 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9271 }
9272
9273 /* Verify that condition can be parsed, before setting any
9274 breakpoints. Allocate a separate condition expression for each
9275 breakpoint. */
9276 if (!pending)
9277 {
9278 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9279 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9280
9281 if (parse_extra)
9282 {
9283 char *rest;
9284 char *cond;
9285
9286 const linespec_sals &lsal = canonical.lsals[0];
9287
9288 /* Here we only parse 'arg' to separate condition
9289 from thread number, so parsing in context of first
9290 sal is OK. When setting the breakpoint we'll
9291 re-parse it in context of each sal. */
9292
9293 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9294 &cond, &thread, &task, &rest);
9295 cond_string_copy.reset (cond);
9296 extra_string_copy.reset (rest);
9297 }
9298 else
9299 {
9300 if (type_wanted != bp_dprintf
9301 && extra_string != NULL && *extra_string != '\0')
9302 error (_("Garbage '%s' at end of location"), extra_string);
9303
9304 /* Create a private copy of condition string. */
9305 if (cond_string)
9306 cond_string_copy.reset (xstrdup (cond_string));
9307 /* Create a private copy of any extra string. */
9308 if (extra_string)
9309 extra_string_copy.reset (xstrdup (extra_string));
9310 }
9311
9312 ops->create_breakpoints_sal (gdbarch, &canonical,
9313 std::move (cond_string_copy),
9314 std::move (extra_string_copy),
9315 type_wanted,
9316 tempflag ? disp_del : disp_donttouch,
9317 thread, task, ignore_count, ops,
9318 from_tty, enabled, internal, flags);
9319 }
9320 else
9321 {
9322 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9323
9324 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9325 b->location = copy_event_location (location);
9326
9327 if (parse_extra)
9328 b->cond_string = NULL;
9329 else
9330 {
9331 /* Create a private copy of condition string. */
9332 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9333 b->thread = thread;
9334 }
9335
9336 /* Create a private copy of any extra string. */
9337 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9338 b->ignore_count = ignore_count;
9339 b->disposition = tempflag ? disp_del : disp_donttouch;
9340 b->condition_not_parsed = 1;
9341 b->enable_state = enabled ? bp_enabled : bp_disabled;
9342 if ((type_wanted != bp_breakpoint
9343 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9344 b->pspace = current_program_space;
9345
9346 install_breakpoint (internal, std::move (b), 0);
9347 }
9348
9349 if (canonical.lsals.size () > 1)
9350 {
9351 warning (_("Multiple breakpoints were set.\nUse the "
9352 "\"delete\" command to delete unwanted breakpoints."));
9353 prev_breakpoint_count = prev_bkpt_count;
9354 }
9355
9356 update_global_location_list (UGLL_MAY_INSERT);
9357
9358 return 1;
9359 }
9360
9361 /* Set a breakpoint.
9362 ARG is a string describing breakpoint address,
9363 condition, and thread.
9364 FLAG specifies if a breakpoint is hardware on,
9365 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9366 and BP_TEMPFLAG. */
9367
9368 static void
9369 break_command_1 (const char *arg, int flag, int from_tty)
9370 {
9371 int tempflag = flag & BP_TEMPFLAG;
9372 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9373 ? bp_hardware_breakpoint
9374 : bp_breakpoint);
9375 struct breakpoint_ops *ops;
9376
9377 event_location_up location = string_to_event_location (&arg, current_language);
9378
9379 /* Matching breakpoints on probes. */
9380 if (location != NULL
9381 && event_location_type (location.get ()) == PROBE_LOCATION)
9382 ops = &bkpt_probe_breakpoint_ops;
9383 else
9384 ops = &bkpt_breakpoint_ops;
9385
9386 create_breakpoint (get_current_arch (),
9387 location.get (),
9388 NULL, 0, arg, 1 /* parse arg */,
9389 tempflag, type_wanted,
9390 0 /* Ignore count */,
9391 pending_break_support,
9392 ops,
9393 from_tty,
9394 1 /* enabled */,
9395 0 /* internal */,
9396 0);
9397 }
9398
9399 /* Helper function for break_command_1 and disassemble_command. */
9400
9401 void
9402 resolve_sal_pc (struct symtab_and_line *sal)
9403 {
9404 CORE_ADDR pc;
9405
9406 if (sal->pc == 0 && sal->symtab != NULL)
9407 {
9408 if (!find_line_pc (sal->symtab, sal->line, &pc))
9409 error (_("No line %d in file \"%s\"."),
9410 sal->line, symtab_to_filename_for_display (sal->symtab));
9411 sal->pc = pc;
9412
9413 /* If this SAL corresponds to a breakpoint inserted using a line
9414 number, then skip the function prologue if necessary. */
9415 if (sal->explicit_line)
9416 skip_prologue_sal (sal);
9417 }
9418
9419 if (sal->section == 0 && sal->symtab != NULL)
9420 {
9421 const struct blockvector *bv;
9422 const struct block *b;
9423 struct symbol *sym;
9424
9425 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9426 SYMTAB_COMPUNIT (sal->symtab));
9427 if (bv != NULL)
9428 {
9429 sym = block_linkage_function (b);
9430 if (sym != NULL)
9431 {
9432 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9433 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9434 sym);
9435 }
9436 else
9437 {
9438 /* It really is worthwhile to have the section, so we'll
9439 just have to look harder. This case can be executed
9440 if we have line numbers but no functions (as can
9441 happen in assembly source). */
9442
9443 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9444 switch_to_program_space_and_thread (sal->pspace);
9445
9446 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9447 if (msym.minsym)
9448 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9449 }
9450 }
9451 }
9452 }
9453
9454 void
9455 break_command (const char *arg, int from_tty)
9456 {
9457 break_command_1 (arg, 0, from_tty);
9458 }
9459
9460 void
9461 tbreak_command (const char *arg, int from_tty)
9462 {
9463 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9464 }
9465
9466 static void
9467 hbreak_command (const char *arg, int from_tty)
9468 {
9469 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9470 }
9471
9472 static void
9473 thbreak_command (const char *arg, int from_tty)
9474 {
9475 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9476 }
9477
9478 static void
9479 stop_command (const char *arg, int from_tty)
9480 {
9481 printf_filtered (_("Specify the type of breakpoint to set.\n\
9482 Usage: stop in <function | address>\n\
9483 stop at <line>\n"));
9484 }
9485
9486 static void
9487 stopin_command (const char *arg, int from_tty)
9488 {
9489 int badInput = 0;
9490
9491 if (arg == NULL)
9492 badInput = 1;
9493 else if (*arg != '*')
9494 {
9495 const char *argptr = arg;
9496 int hasColon = 0;
9497
9498 /* Look for a ':'. If this is a line number specification, then
9499 say it is bad, otherwise, it should be an address or
9500 function/method name. */
9501 while (*argptr && !hasColon)
9502 {
9503 hasColon = (*argptr == ':');
9504 argptr++;
9505 }
9506
9507 if (hasColon)
9508 badInput = (*argptr != ':'); /* Not a class::method */
9509 else
9510 badInput = isdigit (*arg); /* a simple line number */
9511 }
9512
9513 if (badInput)
9514 printf_filtered (_("Usage: stop in <function | address>\n"));
9515 else
9516 break_command_1 (arg, 0, from_tty);
9517 }
9518
9519 static void
9520 stopat_command (const char *arg, int from_tty)
9521 {
9522 int badInput = 0;
9523
9524 if (arg == NULL || *arg == '*') /* no line number */
9525 badInput = 1;
9526 else
9527 {
9528 const char *argptr = arg;
9529 int hasColon = 0;
9530
9531 /* Look for a ':'. If there is a '::' then get out, otherwise
9532 it is probably a line number. */
9533 while (*argptr && !hasColon)
9534 {
9535 hasColon = (*argptr == ':');
9536 argptr++;
9537 }
9538
9539 if (hasColon)
9540 badInput = (*argptr == ':'); /* we have class::method */
9541 else
9542 badInput = !isdigit (*arg); /* not a line number */
9543 }
9544
9545 if (badInput)
9546 printf_filtered (_("Usage: stop at LINE\n"));
9547 else
9548 break_command_1 (arg, 0, from_tty);
9549 }
9550
9551 /* The dynamic printf command is mostly like a regular breakpoint, but
9552 with a prewired command list consisting of a single output command,
9553 built from extra arguments supplied on the dprintf command
9554 line. */
9555
9556 static void
9557 dprintf_command (const char *arg, int from_tty)
9558 {
9559 event_location_up location = string_to_event_location (&arg, current_language);
9560
9561 /* If non-NULL, ARG should have been advanced past the location;
9562 the next character must be ','. */
9563 if (arg != NULL)
9564 {
9565 if (arg[0] != ',' || arg[1] == '\0')
9566 error (_("Format string required"));
9567 else
9568 {
9569 /* Skip the comma. */
9570 ++arg;
9571 }
9572 }
9573
9574 create_breakpoint (get_current_arch (),
9575 location.get (),
9576 NULL, 0, arg, 1 /* parse arg */,
9577 0, bp_dprintf,
9578 0 /* Ignore count */,
9579 pending_break_support,
9580 &dprintf_breakpoint_ops,
9581 from_tty,
9582 1 /* enabled */,
9583 0 /* internal */,
9584 0);
9585 }
9586
9587 static void
9588 agent_printf_command (const char *arg, int from_tty)
9589 {
9590 error (_("May only run agent-printf on the target"));
9591 }
9592
9593 /* Implement the "breakpoint_hit" breakpoint_ops method for
9594 ranged breakpoints. */
9595
9596 static int
9597 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9598 const address_space *aspace,
9599 CORE_ADDR bp_addr,
9600 const struct target_waitstatus *ws)
9601 {
9602 if (ws->kind != TARGET_WAITKIND_STOPPED
9603 || ws->value.sig != GDB_SIGNAL_TRAP)
9604 return 0;
9605
9606 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9607 bl->length, aspace, bp_addr);
9608 }
9609
9610 /* Implement the "resources_needed" breakpoint_ops method for
9611 ranged breakpoints. */
9612
9613 static int
9614 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9615 {
9616 return target_ranged_break_num_registers ();
9617 }
9618
9619 /* Implement the "print_it" breakpoint_ops method for
9620 ranged breakpoints. */
9621
9622 static enum print_stop_action
9623 print_it_ranged_breakpoint (bpstat bs)
9624 {
9625 struct breakpoint *b = bs->breakpoint_at;
9626 struct bp_location *bl = b->loc;
9627 struct ui_out *uiout = current_uiout;
9628
9629 gdb_assert (b->type == bp_hardware_breakpoint);
9630
9631 /* Ranged breakpoints have only one location. */
9632 gdb_assert (bl && bl->next == NULL);
9633
9634 annotate_breakpoint (b->number);
9635
9636 maybe_print_thread_hit_breakpoint (uiout);
9637
9638 if (b->disposition == disp_del)
9639 uiout->text ("Temporary ranged breakpoint ");
9640 else
9641 uiout->text ("Ranged breakpoint ");
9642 if (uiout->is_mi_like_p ())
9643 {
9644 uiout->field_string ("reason",
9645 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9646 uiout->field_string ("disp", bpdisp_text (b->disposition));
9647 }
9648 uiout->field_int ("bkptno", b->number);
9649 uiout->text (", ");
9650
9651 return PRINT_SRC_AND_LOC;
9652 }
9653
9654 /* Implement the "print_one" breakpoint_ops method for
9655 ranged breakpoints. */
9656
9657 static void
9658 print_one_ranged_breakpoint (struct breakpoint *b,
9659 struct bp_location **last_loc)
9660 {
9661 struct bp_location *bl = b->loc;
9662 struct value_print_options opts;
9663 struct ui_out *uiout = current_uiout;
9664
9665 /* Ranged breakpoints have only one location. */
9666 gdb_assert (bl && bl->next == NULL);
9667
9668 get_user_print_options (&opts);
9669
9670 if (opts.addressprint)
9671 /* We don't print the address range here, it will be printed later
9672 by print_one_detail_ranged_breakpoint. */
9673 uiout->field_skip ("addr");
9674 annotate_field (5);
9675 print_breakpoint_location (b, bl);
9676 *last_loc = bl;
9677 }
9678
9679 /* Implement the "print_one_detail" breakpoint_ops method for
9680 ranged breakpoints. */
9681
9682 static void
9683 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9684 struct ui_out *uiout)
9685 {
9686 CORE_ADDR address_start, address_end;
9687 struct bp_location *bl = b->loc;
9688 string_file stb;
9689
9690 gdb_assert (bl);
9691
9692 address_start = bl->address;
9693 address_end = address_start + bl->length - 1;
9694
9695 uiout->text ("\taddress range: ");
9696 stb.printf ("[%s, %s]",
9697 print_core_address (bl->gdbarch, address_start),
9698 print_core_address (bl->gdbarch, address_end));
9699 uiout->field_stream ("addr", stb);
9700 uiout->text ("\n");
9701 }
9702
9703 /* Implement the "print_mention" breakpoint_ops method for
9704 ranged breakpoints. */
9705
9706 static void
9707 print_mention_ranged_breakpoint (struct breakpoint *b)
9708 {
9709 struct bp_location *bl = b->loc;
9710 struct ui_out *uiout = current_uiout;
9711
9712 gdb_assert (bl);
9713 gdb_assert (b->type == bp_hardware_breakpoint);
9714
9715 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9716 b->number, paddress (bl->gdbarch, bl->address),
9717 paddress (bl->gdbarch, bl->address + bl->length - 1));
9718 }
9719
9720 /* Implement the "print_recreate" breakpoint_ops method for
9721 ranged breakpoints. */
9722
9723 static void
9724 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9725 {
9726 fprintf_unfiltered (fp, "break-range %s, %s",
9727 event_location_to_string (b->location.get ()),
9728 event_location_to_string (b->location_range_end.get ()));
9729 print_recreate_thread (b, fp);
9730 }
9731
9732 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9733
9734 static struct breakpoint_ops ranged_breakpoint_ops;
9735
9736 /* Find the address where the end of the breakpoint range should be
9737 placed, given the SAL of the end of the range. This is so that if
9738 the user provides a line number, the end of the range is set to the
9739 last instruction of the given line. */
9740
9741 static CORE_ADDR
9742 find_breakpoint_range_end (struct symtab_and_line sal)
9743 {
9744 CORE_ADDR end;
9745
9746 /* If the user provided a PC value, use it. Otherwise,
9747 find the address of the end of the given location. */
9748 if (sal.explicit_pc)
9749 end = sal.pc;
9750 else
9751 {
9752 int ret;
9753 CORE_ADDR start;
9754
9755 ret = find_line_pc_range (sal, &start, &end);
9756 if (!ret)
9757 error (_("Could not find location of the end of the range."));
9758
9759 /* find_line_pc_range returns the start of the next line. */
9760 end--;
9761 }
9762
9763 return end;
9764 }
9765
9766 /* Implement the "break-range" CLI command. */
9767
9768 static void
9769 break_range_command (const char *arg, int from_tty)
9770 {
9771 const char *arg_start;
9772 struct linespec_result canonical_start, canonical_end;
9773 int bp_count, can_use_bp, length;
9774 CORE_ADDR end;
9775 struct breakpoint *b;
9776
9777 /* We don't support software ranged breakpoints. */
9778 if (target_ranged_break_num_registers () < 0)
9779 error (_("This target does not support hardware ranged breakpoints."));
9780
9781 bp_count = hw_breakpoint_used_count ();
9782 bp_count += target_ranged_break_num_registers ();
9783 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9784 bp_count, 0);
9785 if (can_use_bp < 0)
9786 error (_("Hardware breakpoints used exceeds limit."));
9787
9788 arg = skip_spaces (arg);
9789 if (arg == NULL || arg[0] == '\0')
9790 error(_("No address range specified."));
9791
9792 arg_start = arg;
9793 event_location_up start_location = string_to_event_location (&arg,
9794 current_language);
9795 parse_breakpoint_sals (start_location.get (), &canonical_start);
9796
9797 if (arg[0] != ',')
9798 error (_("Too few arguments."));
9799 else if (canonical_start.lsals.empty ())
9800 error (_("Could not find location of the beginning of the range."));
9801
9802 const linespec_sals &lsal_start = canonical_start.lsals[0];
9803
9804 if (canonical_start.lsals.size () > 1
9805 || lsal_start.sals.size () != 1)
9806 error (_("Cannot create a ranged breakpoint with multiple locations."));
9807
9808 const symtab_and_line &sal_start = lsal_start.sals[0];
9809 std::string addr_string_start (arg_start, arg - arg_start);
9810
9811 arg++; /* Skip the comma. */
9812 arg = skip_spaces (arg);
9813
9814 /* Parse the end location. */
9815
9816 arg_start = arg;
9817
9818 /* We call decode_line_full directly here instead of using
9819 parse_breakpoint_sals because we need to specify the start location's
9820 symtab and line as the default symtab and line for the end of the
9821 range. This makes it possible to have ranges like "foo.c:27, +14",
9822 where +14 means 14 lines from the start location. */
9823 event_location_up end_location = string_to_event_location (&arg,
9824 current_language);
9825 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9826 sal_start.symtab, sal_start.line,
9827 &canonical_end, NULL, NULL);
9828
9829 if (canonical_end.lsals.empty ())
9830 error (_("Could not find location of the end of the range."));
9831
9832 const linespec_sals &lsal_end = canonical_end.lsals[0];
9833 if (canonical_end.lsals.size () > 1
9834 || lsal_end.sals.size () != 1)
9835 error (_("Cannot create a ranged breakpoint with multiple locations."));
9836
9837 const symtab_and_line &sal_end = lsal_end.sals[0];
9838
9839 end = find_breakpoint_range_end (sal_end);
9840 if (sal_start.pc > end)
9841 error (_("Invalid address range, end precedes start."));
9842
9843 length = end - sal_start.pc + 1;
9844 if (length < 0)
9845 /* Length overflowed. */
9846 error (_("Address range too large."));
9847 else if (length == 1)
9848 {
9849 /* This range is simple enough to be handled by
9850 the `hbreak' command. */
9851 hbreak_command (&addr_string_start[0], 1);
9852
9853 return;
9854 }
9855
9856 /* Now set up the breakpoint. */
9857 b = set_raw_breakpoint (get_current_arch (), sal_start,
9858 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9859 set_breakpoint_count (breakpoint_count + 1);
9860 b->number = breakpoint_count;
9861 b->disposition = disp_donttouch;
9862 b->location = std::move (start_location);
9863 b->location_range_end = std::move (end_location);
9864 b->loc->length = length;
9865
9866 mention (b);
9867 gdb::observers::breakpoint_created.notify (b);
9868 update_global_location_list (UGLL_MAY_INSERT);
9869 }
9870
9871 /* Return non-zero if EXP is verified as constant. Returned zero
9872 means EXP is variable. Also the constant detection may fail for
9873 some constant expressions and in such case still falsely return
9874 zero. */
9875
9876 static int
9877 watchpoint_exp_is_const (const struct expression *exp)
9878 {
9879 int i = exp->nelts;
9880
9881 while (i > 0)
9882 {
9883 int oplenp, argsp;
9884
9885 /* We are only interested in the descriptor of each element. */
9886 operator_length (exp, i, &oplenp, &argsp);
9887 i -= oplenp;
9888
9889 switch (exp->elts[i].opcode)
9890 {
9891 case BINOP_ADD:
9892 case BINOP_SUB:
9893 case BINOP_MUL:
9894 case BINOP_DIV:
9895 case BINOP_REM:
9896 case BINOP_MOD:
9897 case BINOP_LSH:
9898 case BINOP_RSH:
9899 case BINOP_LOGICAL_AND:
9900 case BINOP_LOGICAL_OR:
9901 case BINOP_BITWISE_AND:
9902 case BINOP_BITWISE_IOR:
9903 case BINOP_BITWISE_XOR:
9904 case BINOP_EQUAL:
9905 case BINOP_NOTEQUAL:
9906 case BINOP_LESS:
9907 case BINOP_GTR:
9908 case BINOP_LEQ:
9909 case BINOP_GEQ:
9910 case BINOP_REPEAT:
9911 case BINOP_COMMA:
9912 case BINOP_EXP:
9913 case BINOP_MIN:
9914 case BINOP_MAX:
9915 case BINOP_INTDIV:
9916 case BINOP_CONCAT:
9917 case TERNOP_COND:
9918 case TERNOP_SLICE:
9919
9920 case OP_LONG:
9921 case OP_FLOAT:
9922 case OP_LAST:
9923 case OP_COMPLEX:
9924 case OP_STRING:
9925 case OP_ARRAY:
9926 case OP_TYPE:
9927 case OP_TYPEOF:
9928 case OP_DECLTYPE:
9929 case OP_TYPEID:
9930 case OP_NAME:
9931 case OP_OBJC_NSSTRING:
9932
9933 case UNOP_NEG:
9934 case UNOP_LOGICAL_NOT:
9935 case UNOP_COMPLEMENT:
9936 case UNOP_ADDR:
9937 case UNOP_HIGH:
9938 case UNOP_CAST:
9939
9940 case UNOP_CAST_TYPE:
9941 case UNOP_REINTERPRET_CAST:
9942 case UNOP_DYNAMIC_CAST:
9943 /* Unary, binary and ternary operators: We have to check
9944 their operands. If they are constant, then so is the
9945 result of that operation. For instance, if A and B are
9946 determined to be constants, then so is "A + B".
9947
9948 UNOP_IND is one exception to the rule above, because the
9949 value of *ADDR is not necessarily a constant, even when
9950 ADDR is. */
9951 break;
9952
9953 case OP_VAR_VALUE:
9954 /* Check whether the associated symbol is a constant.
9955
9956 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9957 possible that a buggy compiler could mark a variable as
9958 constant even when it is not, and TYPE_CONST would return
9959 true in this case, while SYMBOL_CLASS wouldn't.
9960
9961 We also have to check for function symbols because they
9962 are always constant. */
9963 {
9964 struct symbol *s = exp->elts[i + 2].symbol;
9965
9966 if (SYMBOL_CLASS (s) != LOC_BLOCK
9967 && SYMBOL_CLASS (s) != LOC_CONST
9968 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9969 return 0;
9970 break;
9971 }
9972
9973 /* The default action is to return 0 because we are using
9974 the optimistic approach here: If we don't know something,
9975 then it is not a constant. */
9976 default:
9977 return 0;
9978 }
9979 }
9980
9981 return 1;
9982 }
9983
9984 /* Watchpoint destructor. */
9985
9986 watchpoint::~watchpoint ()
9987 {
9988 xfree (this->exp_string);
9989 xfree (this->exp_string_reparse);
9990 }
9991
9992 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9993
9994 static void
9995 re_set_watchpoint (struct breakpoint *b)
9996 {
9997 struct watchpoint *w = (struct watchpoint *) b;
9998
9999 /* Watchpoint can be either on expression using entirely global
10000 variables, or it can be on local variables.
10001
10002 Watchpoints of the first kind are never auto-deleted, and even
10003 persist across program restarts. Since they can use variables
10004 from shared libraries, we need to reparse expression as libraries
10005 are loaded and unloaded.
10006
10007 Watchpoints on local variables can also change meaning as result
10008 of solib event. For example, if a watchpoint uses both a local
10009 and a global variables in expression, it's a local watchpoint,
10010 but unloading of a shared library will make the expression
10011 invalid. This is not a very common use case, but we still
10012 re-evaluate expression, to avoid surprises to the user.
10013
10014 Note that for local watchpoints, we re-evaluate it only if
10015 watchpoints frame id is still valid. If it's not, it means the
10016 watchpoint is out of scope and will be deleted soon. In fact,
10017 I'm not sure we'll ever be called in this case.
10018
10019 If a local watchpoint's frame id is still valid, then
10020 w->exp_valid_block is likewise valid, and we can safely use it.
10021
10022 Don't do anything about disabled watchpoints, since they will be
10023 reevaluated again when enabled. */
10024 update_watchpoint (w, 1 /* reparse */);
10025 }
10026
10027 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10028
10029 static int
10030 insert_watchpoint (struct bp_location *bl)
10031 {
10032 struct watchpoint *w = (struct watchpoint *) bl->owner;
10033 int length = w->exact ? 1 : bl->length;
10034
10035 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10036 w->cond_exp.get ());
10037 }
10038
10039 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10040
10041 static int
10042 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10043 {
10044 struct watchpoint *w = (struct watchpoint *) bl->owner;
10045 int length = w->exact ? 1 : bl->length;
10046
10047 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10048 w->cond_exp.get ());
10049 }
10050
10051 static int
10052 breakpoint_hit_watchpoint (const struct bp_location *bl,
10053 const address_space *aspace, CORE_ADDR bp_addr,
10054 const struct target_waitstatus *ws)
10055 {
10056 struct breakpoint *b = bl->owner;
10057 struct watchpoint *w = (struct watchpoint *) b;
10058
10059 /* Continuable hardware watchpoints are treated as non-existent if the
10060 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10061 some data address). Otherwise gdb won't stop on a break instruction
10062 in the code (not from a breakpoint) when a hardware watchpoint has
10063 been defined. Also skip watchpoints which we know did not trigger
10064 (did not match the data address). */
10065 if (is_hardware_watchpoint (b)
10066 && w->watchpoint_triggered == watch_triggered_no)
10067 return 0;
10068
10069 return 1;
10070 }
10071
10072 static void
10073 check_status_watchpoint (bpstat bs)
10074 {
10075 gdb_assert (is_watchpoint (bs->breakpoint_at));
10076
10077 bpstat_check_watchpoint (bs);
10078 }
10079
10080 /* Implement the "resources_needed" breakpoint_ops method for
10081 hardware watchpoints. */
10082
10083 static int
10084 resources_needed_watchpoint (const struct bp_location *bl)
10085 {
10086 struct watchpoint *w = (struct watchpoint *) bl->owner;
10087 int length = w->exact? 1 : bl->length;
10088
10089 return target_region_ok_for_hw_watchpoint (bl->address, length);
10090 }
10091
10092 /* Implement the "works_in_software_mode" breakpoint_ops method for
10093 hardware watchpoints. */
10094
10095 static int
10096 works_in_software_mode_watchpoint (const struct breakpoint *b)
10097 {
10098 /* Read and access watchpoints only work with hardware support. */
10099 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10100 }
10101
10102 static enum print_stop_action
10103 print_it_watchpoint (bpstat bs)
10104 {
10105 struct breakpoint *b;
10106 enum print_stop_action result;
10107 struct watchpoint *w;
10108 struct ui_out *uiout = current_uiout;
10109
10110 gdb_assert (bs->bp_location_at != NULL);
10111
10112 b = bs->breakpoint_at;
10113 w = (struct watchpoint *) b;
10114
10115 annotate_watchpoint (b->number);
10116 maybe_print_thread_hit_breakpoint (uiout);
10117
10118 string_file stb;
10119
10120 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10121 switch (b->type)
10122 {
10123 case bp_watchpoint:
10124 case bp_hardware_watchpoint:
10125 if (uiout->is_mi_like_p ())
10126 uiout->field_string
10127 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10128 mention (b);
10129 tuple_emitter.emplace (uiout, "value");
10130 uiout->text ("\nOld value = ");
10131 watchpoint_value_print (bs->old_val.get (), &stb);
10132 uiout->field_stream ("old", stb);
10133 uiout->text ("\nNew value = ");
10134 watchpoint_value_print (w->val.get (), &stb);
10135 uiout->field_stream ("new", stb);
10136 uiout->text ("\n");
10137 /* More than one watchpoint may have been triggered. */
10138 result = PRINT_UNKNOWN;
10139 break;
10140
10141 case bp_read_watchpoint:
10142 if (uiout->is_mi_like_p ())
10143 uiout->field_string
10144 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10145 mention (b);
10146 tuple_emitter.emplace (uiout, "value");
10147 uiout->text ("\nValue = ");
10148 watchpoint_value_print (w->val.get (), &stb);
10149 uiout->field_stream ("value", stb);
10150 uiout->text ("\n");
10151 result = PRINT_UNKNOWN;
10152 break;
10153
10154 case bp_access_watchpoint:
10155 if (bs->old_val != NULL)
10156 {
10157 if (uiout->is_mi_like_p ())
10158 uiout->field_string
10159 ("reason",
10160 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10161 mention (b);
10162 tuple_emitter.emplace (uiout, "value");
10163 uiout->text ("\nOld value = ");
10164 watchpoint_value_print (bs->old_val.get (), &stb);
10165 uiout->field_stream ("old", stb);
10166 uiout->text ("\nNew value = ");
10167 }
10168 else
10169 {
10170 mention (b);
10171 if (uiout->is_mi_like_p ())
10172 uiout->field_string
10173 ("reason",
10174 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10175 tuple_emitter.emplace (uiout, "value");
10176 uiout->text ("\nValue = ");
10177 }
10178 watchpoint_value_print (w->val.get (), &stb);
10179 uiout->field_stream ("new", stb);
10180 uiout->text ("\n");
10181 result = PRINT_UNKNOWN;
10182 break;
10183 default:
10184 result = PRINT_UNKNOWN;
10185 }
10186
10187 return result;
10188 }
10189
10190 /* Implement the "print_mention" breakpoint_ops method for hardware
10191 watchpoints. */
10192
10193 static void
10194 print_mention_watchpoint (struct breakpoint *b)
10195 {
10196 struct watchpoint *w = (struct watchpoint *) b;
10197 struct ui_out *uiout = current_uiout;
10198 const char *tuple_name;
10199
10200 switch (b->type)
10201 {
10202 case bp_watchpoint:
10203 uiout->text ("Watchpoint ");
10204 tuple_name = "wpt";
10205 break;
10206 case bp_hardware_watchpoint:
10207 uiout->text ("Hardware watchpoint ");
10208 tuple_name = "wpt";
10209 break;
10210 case bp_read_watchpoint:
10211 uiout->text ("Hardware read watchpoint ");
10212 tuple_name = "hw-rwpt";
10213 break;
10214 case bp_access_watchpoint:
10215 uiout->text ("Hardware access (read/write) watchpoint ");
10216 tuple_name = "hw-awpt";
10217 break;
10218 default:
10219 internal_error (__FILE__, __LINE__,
10220 _("Invalid hardware watchpoint type."));
10221 }
10222
10223 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10224 uiout->field_int ("number", b->number);
10225 uiout->text (": ");
10226 uiout->field_string ("exp", w->exp_string);
10227 }
10228
10229 /* Implement the "print_recreate" breakpoint_ops method for
10230 watchpoints. */
10231
10232 static void
10233 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10234 {
10235 struct watchpoint *w = (struct watchpoint *) b;
10236
10237 switch (b->type)
10238 {
10239 case bp_watchpoint:
10240 case bp_hardware_watchpoint:
10241 fprintf_unfiltered (fp, "watch");
10242 break;
10243 case bp_read_watchpoint:
10244 fprintf_unfiltered (fp, "rwatch");
10245 break;
10246 case bp_access_watchpoint:
10247 fprintf_unfiltered (fp, "awatch");
10248 break;
10249 default:
10250 internal_error (__FILE__, __LINE__,
10251 _("Invalid watchpoint type."));
10252 }
10253
10254 fprintf_unfiltered (fp, " %s", w->exp_string);
10255 print_recreate_thread (b, fp);
10256 }
10257
10258 /* Implement the "explains_signal" breakpoint_ops method for
10259 watchpoints. */
10260
10261 static int
10262 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10263 {
10264 /* A software watchpoint cannot cause a signal other than
10265 GDB_SIGNAL_TRAP. */
10266 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10267 return 0;
10268
10269 return 1;
10270 }
10271
10272 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10273
10274 static struct breakpoint_ops watchpoint_breakpoint_ops;
10275
10276 /* Implement the "insert" breakpoint_ops method for
10277 masked hardware watchpoints. */
10278
10279 static int
10280 insert_masked_watchpoint (struct bp_location *bl)
10281 {
10282 struct watchpoint *w = (struct watchpoint *) bl->owner;
10283
10284 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10285 bl->watchpoint_type);
10286 }
10287
10288 /* Implement the "remove" breakpoint_ops method for
10289 masked hardware watchpoints. */
10290
10291 static int
10292 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10293 {
10294 struct watchpoint *w = (struct watchpoint *) bl->owner;
10295
10296 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10297 bl->watchpoint_type);
10298 }
10299
10300 /* Implement the "resources_needed" breakpoint_ops method for
10301 masked hardware watchpoints. */
10302
10303 static int
10304 resources_needed_masked_watchpoint (const struct bp_location *bl)
10305 {
10306 struct watchpoint *w = (struct watchpoint *) bl->owner;
10307
10308 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10309 }
10310
10311 /* Implement the "works_in_software_mode" breakpoint_ops method for
10312 masked hardware watchpoints. */
10313
10314 static int
10315 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10316 {
10317 return 0;
10318 }
10319
10320 /* Implement the "print_it" breakpoint_ops method for
10321 masked hardware watchpoints. */
10322
10323 static enum print_stop_action
10324 print_it_masked_watchpoint (bpstat bs)
10325 {
10326 struct breakpoint *b = bs->breakpoint_at;
10327 struct ui_out *uiout = current_uiout;
10328
10329 /* Masked watchpoints have only one location. */
10330 gdb_assert (b->loc && b->loc->next == NULL);
10331
10332 annotate_watchpoint (b->number);
10333 maybe_print_thread_hit_breakpoint (uiout);
10334
10335 switch (b->type)
10336 {
10337 case bp_hardware_watchpoint:
10338 if (uiout->is_mi_like_p ())
10339 uiout->field_string
10340 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10341 break;
10342
10343 case bp_read_watchpoint:
10344 if (uiout->is_mi_like_p ())
10345 uiout->field_string
10346 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10347 break;
10348
10349 case bp_access_watchpoint:
10350 if (uiout->is_mi_like_p ())
10351 uiout->field_string
10352 ("reason",
10353 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10354 break;
10355 default:
10356 internal_error (__FILE__, __LINE__,
10357 _("Invalid hardware watchpoint type."));
10358 }
10359
10360 mention (b);
10361 uiout->text (_("\n\
10362 Check the underlying instruction at PC for the memory\n\
10363 address and value which triggered this watchpoint.\n"));
10364 uiout->text ("\n");
10365
10366 /* More than one watchpoint may have been triggered. */
10367 return PRINT_UNKNOWN;
10368 }
10369
10370 /* Implement the "print_one_detail" breakpoint_ops method for
10371 masked hardware watchpoints. */
10372
10373 static void
10374 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10375 struct ui_out *uiout)
10376 {
10377 struct watchpoint *w = (struct watchpoint *) b;
10378
10379 /* Masked watchpoints have only one location. */
10380 gdb_assert (b->loc && b->loc->next == NULL);
10381
10382 uiout->text ("\tmask ");
10383 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10384 uiout->text ("\n");
10385 }
10386
10387 /* Implement the "print_mention" breakpoint_ops method for
10388 masked hardware watchpoints. */
10389
10390 static void
10391 print_mention_masked_watchpoint (struct breakpoint *b)
10392 {
10393 struct watchpoint *w = (struct watchpoint *) b;
10394 struct ui_out *uiout = current_uiout;
10395 const char *tuple_name;
10396
10397 switch (b->type)
10398 {
10399 case bp_hardware_watchpoint:
10400 uiout->text ("Masked hardware watchpoint ");
10401 tuple_name = "wpt";
10402 break;
10403 case bp_read_watchpoint:
10404 uiout->text ("Masked hardware read watchpoint ");
10405 tuple_name = "hw-rwpt";
10406 break;
10407 case bp_access_watchpoint:
10408 uiout->text ("Masked hardware access (read/write) watchpoint ");
10409 tuple_name = "hw-awpt";
10410 break;
10411 default:
10412 internal_error (__FILE__, __LINE__,
10413 _("Invalid hardware watchpoint type."));
10414 }
10415
10416 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10417 uiout->field_int ("number", b->number);
10418 uiout->text (": ");
10419 uiout->field_string ("exp", w->exp_string);
10420 }
10421
10422 /* Implement the "print_recreate" breakpoint_ops method for
10423 masked hardware watchpoints. */
10424
10425 static void
10426 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10427 {
10428 struct watchpoint *w = (struct watchpoint *) b;
10429 char tmp[40];
10430
10431 switch (b->type)
10432 {
10433 case bp_hardware_watchpoint:
10434 fprintf_unfiltered (fp, "watch");
10435 break;
10436 case bp_read_watchpoint:
10437 fprintf_unfiltered (fp, "rwatch");
10438 break;
10439 case bp_access_watchpoint:
10440 fprintf_unfiltered (fp, "awatch");
10441 break;
10442 default:
10443 internal_error (__FILE__, __LINE__,
10444 _("Invalid hardware watchpoint type."));
10445 }
10446
10447 sprintf_vma (tmp, w->hw_wp_mask);
10448 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10449 print_recreate_thread (b, fp);
10450 }
10451
10452 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10453
10454 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10455
10456 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10457
10458 static int
10459 is_masked_watchpoint (const struct breakpoint *b)
10460 {
10461 return b->ops == &masked_watchpoint_breakpoint_ops;
10462 }
10463
10464 /* accessflag: hw_write: watch write,
10465 hw_read: watch read,
10466 hw_access: watch access (read or write) */
10467 static void
10468 watch_command_1 (const char *arg, int accessflag, int from_tty,
10469 int just_location, int internal)
10470 {
10471 struct breakpoint *scope_breakpoint = NULL;
10472 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10473 struct value *result;
10474 int saved_bitpos = 0, saved_bitsize = 0;
10475 const char *exp_start = NULL;
10476 const char *exp_end = NULL;
10477 const char *tok, *end_tok;
10478 int toklen = -1;
10479 const char *cond_start = NULL;
10480 const char *cond_end = NULL;
10481 enum bptype bp_type;
10482 int thread = -1;
10483 int pc = 0;
10484 /* Flag to indicate whether we are going to use masks for
10485 the hardware watchpoint. */
10486 int use_mask = 0;
10487 CORE_ADDR mask = 0;
10488
10489 /* Make sure that we actually have parameters to parse. */
10490 if (arg != NULL && arg[0] != '\0')
10491 {
10492 const char *value_start;
10493
10494 exp_end = arg + strlen (arg);
10495
10496 /* Look for "parameter value" pairs at the end
10497 of the arguments string. */
10498 for (tok = exp_end - 1; tok > arg; tok--)
10499 {
10500 /* Skip whitespace at the end of the argument list. */
10501 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10502 tok--;
10503
10504 /* Find the beginning of the last token.
10505 This is the value of the parameter. */
10506 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10507 tok--;
10508 value_start = tok + 1;
10509
10510 /* Skip whitespace. */
10511 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10512 tok--;
10513
10514 end_tok = tok;
10515
10516 /* Find the beginning of the second to last token.
10517 This is the parameter itself. */
10518 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10519 tok--;
10520 tok++;
10521 toklen = end_tok - tok + 1;
10522
10523 if (toklen == 6 && startswith (tok, "thread"))
10524 {
10525 struct thread_info *thr;
10526 /* At this point we've found a "thread" token, which means
10527 the user is trying to set a watchpoint that triggers
10528 only in a specific thread. */
10529 const char *endp;
10530
10531 if (thread != -1)
10532 error(_("You can specify only one thread."));
10533
10534 /* Extract the thread ID from the next token. */
10535 thr = parse_thread_id (value_start, &endp);
10536
10537 /* Check if the user provided a valid thread ID. */
10538 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10539 invalid_thread_id_error (value_start);
10540
10541 thread = thr->global_num;
10542 }
10543 else if (toklen == 4 && startswith (tok, "mask"))
10544 {
10545 /* We've found a "mask" token, which means the user wants to
10546 create a hardware watchpoint that is going to have the mask
10547 facility. */
10548 struct value *mask_value, *mark;
10549
10550 if (use_mask)
10551 error(_("You can specify only one mask."));
10552
10553 use_mask = just_location = 1;
10554
10555 mark = value_mark ();
10556 mask_value = parse_to_comma_and_eval (&value_start);
10557 mask = value_as_address (mask_value);
10558 value_free_to_mark (mark);
10559 }
10560 else
10561 /* We didn't recognize what we found. We should stop here. */
10562 break;
10563
10564 /* Truncate the string and get rid of the "parameter value" pair before
10565 the arguments string is parsed by the parse_exp_1 function. */
10566 exp_end = tok;
10567 }
10568 }
10569 else
10570 exp_end = arg;
10571
10572 /* Parse the rest of the arguments. From here on out, everything
10573 is in terms of a newly allocated string instead of the original
10574 ARG. */
10575 std::string expression (arg, exp_end - arg);
10576 exp_start = arg = expression.c_str ();
10577 innermost_block_tracker tracker;
10578 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10579 exp_end = arg;
10580 /* Remove trailing whitespace from the expression before saving it.
10581 This makes the eventual display of the expression string a bit
10582 prettier. */
10583 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10584 --exp_end;
10585
10586 /* Checking if the expression is not constant. */
10587 if (watchpoint_exp_is_const (exp.get ()))
10588 {
10589 int len;
10590
10591 len = exp_end - exp_start;
10592 while (len > 0 && isspace (exp_start[len - 1]))
10593 len--;
10594 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10595 }
10596
10597 exp_valid_block = tracker.block ();
10598 struct value *mark = value_mark ();
10599 struct value *val_as_value = nullptr;
10600 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10601 just_location);
10602
10603 if (val_as_value != NULL && just_location)
10604 {
10605 saved_bitpos = value_bitpos (val_as_value);
10606 saved_bitsize = value_bitsize (val_as_value);
10607 }
10608
10609 value_ref_ptr val;
10610 if (just_location)
10611 {
10612 int ret;
10613
10614 exp_valid_block = NULL;
10615 val = release_value (value_addr (result));
10616 value_free_to_mark (mark);
10617
10618 if (use_mask)
10619 {
10620 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10621 mask);
10622 if (ret == -1)
10623 error (_("This target does not support masked watchpoints."));
10624 else if (ret == -2)
10625 error (_("Invalid mask or memory region."));
10626 }
10627 }
10628 else if (val_as_value != NULL)
10629 val = release_value (val_as_value);
10630
10631 tok = skip_spaces (arg);
10632 end_tok = skip_to_space (tok);
10633
10634 toklen = end_tok - tok;
10635 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10636 {
10637 tok = cond_start = end_tok + 1;
10638 innermost_block_tracker if_tracker;
10639 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10640
10641 /* The watchpoint expression may not be local, but the condition
10642 may still be. E.g.: `watch global if local > 0'. */
10643 cond_exp_valid_block = if_tracker.block ();
10644
10645 cond_end = tok;
10646 }
10647 if (*tok)
10648 error (_("Junk at end of command."));
10649
10650 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10651
10652 /* Save this because create_internal_breakpoint below invalidates
10653 'wp_frame'. */
10654 frame_id watchpoint_frame = get_frame_id (wp_frame);
10655
10656 /* If the expression is "local", then set up a "watchpoint scope"
10657 breakpoint at the point where we've left the scope of the watchpoint
10658 expression. Create the scope breakpoint before the watchpoint, so
10659 that we will encounter it first in bpstat_stop_status. */
10660 if (exp_valid_block != NULL && wp_frame != NULL)
10661 {
10662 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10663
10664 if (frame_id_p (caller_frame_id))
10665 {
10666 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10667 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10668
10669 scope_breakpoint
10670 = create_internal_breakpoint (caller_arch, caller_pc,
10671 bp_watchpoint_scope,
10672 &momentary_breakpoint_ops);
10673
10674 /* create_internal_breakpoint could invalidate WP_FRAME. */
10675 wp_frame = NULL;
10676
10677 scope_breakpoint->enable_state = bp_enabled;
10678
10679 /* Automatically delete the breakpoint when it hits. */
10680 scope_breakpoint->disposition = disp_del;
10681
10682 /* Only break in the proper frame (help with recursion). */
10683 scope_breakpoint->frame_id = caller_frame_id;
10684
10685 /* Set the address at which we will stop. */
10686 scope_breakpoint->loc->gdbarch = caller_arch;
10687 scope_breakpoint->loc->requested_address = caller_pc;
10688 scope_breakpoint->loc->address
10689 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10690 scope_breakpoint->loc->requested_address,
10691 scope_breakpoint->type);
10692 }
10693 }
10694
10695 /* Now set up the breakpoint. We create all watchpoints as hardware
10696 watchpoints here even if hardware watchpoints are turned off, a call
10697 to update_watchpoint later in this function will cause the type to
10698 drop back to bp_watchpoint (software watchpoint) if required. */
10699
10700 if (accessflag == hw_read)
10701 bp_type = bp_read_watchpoint;
10702 else if (accessflag == hw_access)
10703 bp_type = bp_access_watchpoint;
10704 else
10705 bp_type = bp_hardware_watchpoint;
10706
10707 std::unique_ptr<watchpoint> w (new watchpoint ());
10708
10709 if (use_mask)
10710 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10711 &masked_watchpoint_breakpoint_ops);
10712 else
10713 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10714 &watchpoint_breakpoint_ops);
10715 w->thread = thread;
10716 w->disposition = disp_donttouch;
10717 w->pspace = current_program_space;
10718 w->exp = std::move (exp);
10719 w->exp_valid_block = exp_valid_block;
10720 w->cond_exp_valid_block = cond_exp_valid_block;
10721 if (just_location)
10722 {
10723 struct type *t = value_type (val.get ());
10724 CORE_ADDR addr = value_as_address (val.get ());
10725
10726 w->exp_string_reparse
10727 = current_language->la_watch_location_expression (t, addr).release ();
10728
10729 w->exp_string = xstrprintf ("-location %.*s",
10730 (int) (exp_end - exp_start), exp_start);
10731 }
10732 else
10733 w->exp_string = savestring (exp_start, exp_end - exp_start);
10734
10735 if (use_mask)
10736 {
10737 w->hw_wp_mask = mask;
10738 }
10739 else
10740 {
10741 w->val = val;
10742 w->val_bitpos = saved_bitpos;
10743 w->val_bitsize = saved_bitsize;
10744 w->val_valid = 1;
10745 }
10746
10747 if (cond_start)
10748 w->cond_string = savestring (cond_start, cond_end - cond_start);
10749 else
10750 w->cond_string = 0;
10751
10752 if (frame_id_p (watchpoint_frame))
10753 {
10754 w->watchpoint_frame = watchpoint_frame;
10755 w->watchpoint_thread = inferior_ptid;
10756 }
10757 else
10758 {
10759 w->watchpoint_frame = null_frame_id;
10760 w->watchpoint_thread = null_ptid;
10761 }
10762
10763 if (scope_breakpoint != NULL)
10764 {
10765 /* The scope breakpoint is related to the watchpoint. We will
10766 need to act on them together. */
10767 w->related_breakpoint = scope_breakpoint;
10768 scope_breakpoint->related_breakpoint = w.get ();
10769 }
10770
10771 if (!just_location)
10772 value_free_to_mark (mark);
10773
10774 /* Finally update the new watchpoint. This creates the locations
10775 that should be inserted. */
10776 update_watchpoint (w.get (), 1);
10777
10778 install_breakpoint (internal, std::move (w), 1);
10779 }
10780
10781 /* Return count of debug registers needed to watch the given expression.
10782 If the watchpoint cannot be handled in hardware return zero. */
10783
10784 static int
10785 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10786 {
10787 int found_memory_cnt = 0;
10788
10789 /* Did the user specifically forbid us to use hardware watchpoints? */
10790 if (!can_use_hw_watchpoints)
10791 return 0;
10792
10793 gdb_assert (!vals.empty ());
10794 struct value *head = vals[0].get ();
10795
10796 /* Make sure that the value of the expression depends only upon
10797 memory contents, and values computed from them within GDB. If we
10798 find any register references or function calls, we can't use a
10799 hardware watchpoint.
10800
10801 The idea here is that evaluating an expression generates a series
10802 of values, one holding the value of every subexpression. (The
10803 expression a*b+c has five subexpressions: a, b, a*b, c, and
10804 a*b+c.) GDB's values hold almost enough information to establish
10805 the criteria given above --- they identify memory lvalues,
10806 register lvalues, computed values, etcetera. So we can evaluate
10807 the expression, and then scan the chain of values that leaves
10808 behind to decide whether we can detect any possible change to the
10809 expression's final value using only hardware watchpoints.
10810
10811 However, I don't think that the values returned by inferior
10812 function calls are special in any way. So this function may not
10813 notice that an expression involving an inferior function call
10814 can't be watched with hardware watchpoints. FIXME. */
10815 for (const value_ref_ptr &iter : vals)
10816 {
10817 struct value *v = iter.get ();
10818
10819 if (VALUE_LVAL (v) == lval_memory)
10820 {
10821 if (v != head && value_lazy (v))
10822 /* A lazy memory lvalue in the chain is one that GDB never
10823 needed to fetch; we either just used its address (e.g.,
10824 `a' in `a.b') or we never needed it at all (e.g., `a'
10825 in `a,b'). This doesn't apply to HEAD; if that is
10826 lazy then it was not readable, but watch it anyway. */
10827 ;
10828 else
10829 {
10830 /* Ahh, memory we actually used! Check if we can cover
10831 it with hardware watchpoints. */
10832 struct type *vtype = check_typedef (value_type (v));
10833
10834 /* We only watch structs and arrays if user asked for it
10835 explicitly, never if they just happen to appear in a
10836 middle of some value chain. */
10837 if (v == head
10838 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10839 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10840 {
10841 CORE_ADDR vaddr = value_address (v);
10842 int len;
10843 int num_regs;
10844
10845 len = (target_exact_watchpoints
10846 && is_scalar_type_recursive (vtype))?
10847 1 : TYPE_LENGTH (value_type (v));
10848
10849 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10850 if (!num_regs)
10851 return 0;
10852 else
10853 found_memory_cnt += num_regs;
10854 }
10855 }
10856 }
10857 else if (VALUE_LVAL (v) != not_lval
10858 && deprecated_value_modifiable (v) == 0)
10859 return 0; /* These are values from the history (e.g., $1). */
10860 else if (VALUE_LVAL (v) == lval_register)
10861 return 0; /* Cannot watch a register with a HW watchpoint. */
10862 }
10863
10864 /* The expression itself looks suitable for using a hardware
10865 watchpoint, but give the target machine a chance to reject it. */
10866 return found_memory_cnt;
10867 }
10868
10869 void
10870 watch_command_wrapper (const char *arg, int from_tty, int internal)
10871 {
10872 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10873 }
10874
10875 /* A helper function that looks for the "-location" argument and then
10876 calls watch_command_1. */
10877
10878 static void
10879 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10880 {
10881 int just_location = 0;
10882
10883 if (arg
10884 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10885 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10886 just_location = 1;
10887
10888 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10889 }
10890
10891 static void
10892 watch_command (const char *arg, int from_tty)
10893 {
10894 watch_maybe_just_location (arg, hw_write, from_tty);
10895 }
10896
10897 void
10898 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10899 {
10900 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10901 }
10902
10903 static void
10904 rwatch_command (const char *arg, int from_tty)
10905 {
10906 watch_maybe_just_location (arg, hw_read, from_tty);
10907 }
10908
10909 void
10910 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10911 {
10912 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10913 }
10914
10915 static void
10916 awatch_command (const char *arg, int from_tty)
10917 {
10918 watch_maybe_just_location (arg, hw_access, from_tty);
10919 }
10920 \f
10921
10922 /* Data for the FSM that manages the until(location)/advance commands
10923 in infcmd.c. Here because it uses the mechanisms of
10924 breakpoints. */
10925
10926 struct until_break_fsm : public thread_fsm
10927 {
10928 /* The thread that was current when the command was executed. */
10929 int thread;
10930
10931 /* The breakpoint set at the destination location. */
10932 breakpoint_up location_breakpoint;
10933
10934 /* Breakpoint set at the return address in the caller frame. May be
10935 NULL. */
10936 breakpoint_up caller_breakpoint;
10937
10938 until_break_fsm (struct interp *cmd_interp, int thread,
10939 breakpoint_up &&location_breakpoint,
10940 breakpoint_up &&caller_breakpoint)
10941 : thread_fsm (cmd_interp),
10942 thread (thread),
10943 location_breakpoint (std::move (location_breakpoint)),
10944 caller_breakpoint (std::move (caller_breakpoint))
10945 {
10946 }
10947
10948 void clean_up (struct thread_info *thread) override;
10949 bool should_stop (struct thread_info *thread) override;
10950 enum async_reply_reason do_async_reply_reason () override;
10951 };
10952
10953 /* Implementation of the 'should_stop' FSM method for the
10954 until(location)/advance commands. */
10955
10956 bool
10957 until_break_fsm::should_stop (struct thread_info *tp)
10958 {
10959 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10960 location_breakpoint.get ()) != NULL
10961 || (caller_breakpoint != NULL
10962 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10963 caller_breakpoint.get ()) != NULL))
10964 set_finished ();
10965
10966 return true;
10967 }
10968
10969 /* Implementation of the 'clean_up' FSM method for the
10970 until(location)/advance commands. */
10971
10972 void
10973 until_break_fsm::clean_up (struct thread_info *)
10974 {
10975 /* Clean up our temporary breakpoints. */
10976 location_breakpoint.reset ();
10977 caller_breakpoint.reset ();
10978 delete_longjmp_breakpoint (thread);
10979 }
10980
10981 /* Implementation of the 'async_reply_reason' FSM method for the
10982 until(location)/advance commands. */
10983
10984 enum async_reply_reason
10985 until_break_fsm::do_async_reply_reason ()
10986 {
10987 return EXEC_ASYNC_LOCATION_REACHED;
10988 }
10989
10990 void
10991 until_break_command (const char *arg, int from_tty, int anywhere)
10992 {
10993 struct frame_info *frame;
10994 struct gdbarch *frame_gdbarch;
10995 struct frame_id stack_frame_id;
10996 struct frame_id caller_frame_id;
10997 int thread;
10998 struct thread_info *tp;
10999
11000 clear_proceed_status (0);
11001
11002 /* Set a breakpoint where the user wants it and at return from
11003 this function. */
11004
11005 event_location_up location = string_to_event_location (&arg, current_language);
11006
11007 std::vector<symtab_and_line> sals
11008 = (last_displayed_sal_is_valid ()
11009 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11010 get_last_displayed_symtab (),
11011 get_last_displayed_line ())
11012 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11013 NULL, NULL, 0));
11014
11015 if (sals.size () != 1)
11016 error (_("Couldn't get information on specified line."));
11017
11018 symtab_and_line &sal = sals[0];
11019
11020 if (*arg)
11021 error (_("Junk at end of arguments."));
11022
11023 resolve_sal_pc (&sal);
11024
11025 tp = inferior_thread ();
11026 thread = tp->global_num;
11027
11028 /* Note linespec handling above invalidates the frame chain.
11029 Installing a breakpoint also invalidates the frame chain (as it
11030 may need to switch threads), so do any frame handling before
11031 that. */
11032
11033 frame = get_selected_frame (NULL);
11034 frame_gdbarch = get_frame_arch (frame);
11035 stack_frame_id = get_stack_frame_id (frame);
11036 caller_frame_id = frame_unwind_caller_id (frame);
11037
11038 /* Keep within the current frame, or in frames called by the current
11039 one. */
11040
11041 breakpoint_up caller_breakpoint;
11042
11043 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11044
11045 if (frame_id_p (caller_frame_id))
11046 {
11047 struct symtab_and_line sal2;
11048 struct gdbarch *caller_gdbarch;
11049
11050 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11051 sal2.pc = frame_unwind_caller_pc (frame);
11052 caller_gdbarch = frame_unwind_caller_arch (frame);
11053 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11054 sal2,
11055 caller_frame_id,
11056 bp_until);
11057
11058 set_longjmp_breakpoint (tp, caller_frame_id);
11059 lj_deleter.emplace (thread);
11060 }
11061
11062 /* set_momentary_breakpoint could invalidate FRAME. */
11063 frame = NULL;
11064
11065 breakpoint_up location_breakpoint;
11066 if (anywhere)
11067 /* If the user told us to continue until a specified location,
11068 we don't specify a frame at which we need to stop. */
11069 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11070 null_frame_id, bp_until);
11071 else
11072 /* Otherwise, specify the selected frame, because we want to stop
11073 only at the very same frame. */
11074 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11075 stack_frame_id, bp_until);
11076
11077 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11078 std::move (location_breakpoint),
11079 std::move (caller_breakpoint));
11080
11081 if (lj_deleter)
11082 lj_deleter->release ();
11083
11084 proceed (-1, GDB_SIGNAL_DEFAULT);
11085 }
11086
11087 /* This function attempts to parse an optional "if <cond>" clause
11088 from the arg string. If one is not found, it returns NULL.
11089
11090 Else, it returns a pointer to the condition string. (It does not
11091 attempt to evaluate the string against a particular block.) And,
11092 it updates arg to point to the first character following the parsed
11093 if clause in the arg string. */
11094
11095 const char *
11096 ep_parse_optional_if_clause (const char **arg)
11097 {
11098 const char *cond_string;
11099
11100 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11101 return NULL;
11102
11103 /* Skip the "if" keyword. */
11104 (*arg) += 2;
11105
11106 /* Skip any extra leading whitespace, and record the start of the
11107 condition string. */
11108 *arg = skip_spaces (*arg);
11109 cond_string = *arg;
11110
11111 /* Assume that the condition occupies the remainder of the arg
11112 string. */
11113 (*arg) += strlen (cond_string);
11114
11115 return cond_string;
11116 }
11117
11118 /* Commands to deal with catching events, such as signals, exceptions,
11119 process start/exit, etc. */
11120
11121 typedef enum
11122 {
11123 catch_fork_temporary, catch_vfork_temporary,
11124 catch_fork_permanent, catch_vfork_permanent
11125 }
11126 catch_fork_kind;
11127
11128 static void
11129 catch_fork_command_1 (const char *arg, int from_tty,
11130 struct cmd_list_element *command)
11131 {
11132 struct gdbarch *gdbarch = get_current_arch ();
11133 const char *cond_string = NULL;
11134 catch_fork_kind fork_kind;
11135 int tempflag;
11136
11137 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11138 tempflag = (fork_kind == catch_fork_temporary
11139 || fork_kind == catch_vfork_temporary);
11140
11141 if (!arg)
11142 arg = "";
11143 arg = skip_spaces (arg);
11144
11145 /* The allowed syntax is:
11146 catch [v]fork
11147 catch [v]fork if <cond>
11148
11149 First, check if there's an if clause. */
11150 cond_string = ep_parse_optional_if_clause (&arg);
11151
11152 if ((*arg != '\0') && !isspace (*arg))
11153 error (_("Junk at end of arguments."));
11154
11155 /* If this target supports it, create a fork or vfork catchpoint
11156 and enable reporting of such events. */
11157 switch (fork_kind)
11158 {
11159 case catch_fork_temporary:
11160 case catch_fork_permanent:
11161 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11162 &catch_fork_breakpoint_ops);
11163 break;
11164 case catch_vfork_temporary:
11165 case catch_vfork_permanent:
11166 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11167 &catch_vfork_breakpoint_ops);
11168 break;
11169 default:
11170 error (_("unsupported or unknown fork kind; cannot catch it"));
11171 break;
11172 }
11173 }
11174
11175 static void
11176 catch_exec_command_1 (const char *arg, int from_tty,
11177 struct cmd_list_element *command)
11178 {
11179 struct gdbarch *gdbarch = get_current_arch ();
11180 int tempflag;
11181 const char *cond_string = NULL;
11182
11183 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11184
11185 if (!arg)
11186 arg = "";
11187 arg = skip_spaces (arg);
11188
11189 /* The allowed syntax is:
11190 catch exec
11191 catch exec if <cond>
11192
11193 First, check if there's an if clause. */
11194 cond_string = ep_parse_optional_if_clause (&arg);
11195
11196 if ((*arg != '\0') && !isspace (*arg))
11197 error (_("Junk at end of arguments."));
11198
11199 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11200 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11201 &catch_exec_breakpoint_ops);
11202 c->exec_pathname = NULL;
11203
11204 install_breakpoint (0, std::move (c), 1);
11205 }
11206
11207 void
11208 init_ada_exception_breakpoint (struct breakpoint *b,
11209 struct gdbarch *gdbarch,
11210 struct symtab_and_line sal,
11211 const char *addr_string,
11212 const struct breakpoint_ops *ops,
11213 int tempflag,
11214 int enabled,
11215 int from_tty)
11216 {
11217 if (from_tty)
11218 {
11219 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11220 if (!loc_gdbarch)
11221 loc_gdbarch = gdbarch;
11222
11223 describe_other_breakpoints (loc_gdbarch,
11224 sal.pspace, sal.pc, sal.section, -1);
11225 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11226 version for exception catchpoints, because two catchpoints
11227 used for different exception names will use the same address.
11228 In this case, a "breakpoint ... also set at..." warning is
11229 unproductive. Besides, the warning phrasing is also a bit
11230 inappropriate, we should use the word catchpoint, and tell
11231 the user what type of catchpoint it is. The above is good
11232 enough for now, though. */
11233 }
11234
11235 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11236
11237 b->enable_state = enabled ? bp_enabled : bp_disabled;
11238 b->disposition = tempflag ? disp_del : disp_donttouch;
11239 b->location = string_to_event_location (&addr_string,
11240 language_def (language_ada));
11241 b->language = language_ada;
11242 }
11243
11244 static void
11245 catch_command (const char *arg, int from_tty)
11246 {
11247 error (_("Catch requires an event name."));
11248 }
11249 \f
11250
11251 static void
11252 tcatch_command (const char *arg, int from_tty)
11253 {
11254 error (_("Catch requires an event name."));
11255 }
11256
11257 /* Compare two breakpoints and return a strcmp-like result. */
11258
11259 static int
11260 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11261 {
11262 uintptr_t ua = (uintptr_t) a;
11263 uintptr_t ub = (uintptr_t) b;
11264
11265 if (a->number < b->number)
11266 return -1;
11267 else if (a->number > b->number)
11268 return 1;
11269
11270 /* Now sort by address, in case we see, e..g, two breakpoints with
11271 the number 0. */
11272 if (ua < ub)
11273 return -1;
11274 return ua > ub ? 1 : 0;
11275 }
11276
11277 /* Delete breakpoints by address or line. */
11278
11279 static void
11280 clear_command (const char *arg, int from_tty)
11281 {
11282 struct breakpoint *b;
11283 int default_match;
11284
11285 std::vector<symtab_and_line> decoded_sals;
11286 symtab_and_line last_sal;
11287 gdb::array_view<symtab_and_line> sals;
11288 if (arg)
11289 {
11290 decoded_sals
11291 = decode_line_with_current_source (arg,
11292 (DECODE_LINE_FUNFIRSTLINE
11293 | DECODE_LINE_LIST_MODE));
11294 default_match = 0;
11295 sals = decoded_sals;
11296 }
11297 else
11298 {
11299 /* Set sal's line, symtab, pc, and pspace to the values
11300 corresponding to the last call to print_frame_info. If the
11301 codepoint is not valid, this will set all the fields to 0. */
11302 last_sal = get_last_displayed_sal ();
11303 if (last_sal.symtab == 0)
11304 error (_("No source file specified."));
11305
11306 default_match = 1;
11307 sals = last_sal;
11308 }
11309
11310 /* We don't call resolve_sal_pc here. That's not as bad as it
11311 seems, because all existing breakpoints typically have both
11312 file/line and pc set. So, if clear is given file/line, we can
11313 match this to existing breakpoint without obtaining pc at all.
11314
11315 We only support clearing given the address explicitly
11316 present in breakpoint table. Say, we've set breakpoint
11317 at file:line. There were several PC values for that file:line,
11318 due to optimization, all in one block.
11319
11320 We've picked one PC value. If "clear" is issued with another
11321 PC corresponding to the same file:line, the breakpoint won't
11322 be cleared. We probably can still clear the breakpoint, but
11323 since the other PC value is never presented to user, user
11324 can only find it by guessing, and it does not seem important
11325 to support that. */
11326
11327 /* For each line spec given, delete bps which correspond to it. Do
11328 it in two passes, solely to preserve the current behavior that
11329 from_tty is forced true if we delete more than one
11330 breakpoint. */
11331
11332 std::vector<struct breakpoint *> found;
11333 for (const auto &sal : sals)
11334 {
11335 const char *sal_fullname;
11336
11337 /* If exact pc given, clear bpts at that pc.
11338 If line given (pc == 0), clear all bpts on specified line.
11339 If defaulting, clear all bpts on default line
11340 or at default pc.
11341
11342 defaulting sal.pc != 0 tests to do
11343
11344 0 1 pc
11345 1 1 pc _and_ line
11346 0 0 line
11347 1 0 <can't happen> */
11348
11349 sal_fullname = (sal.symtab == NULL
11350 ? NULL : symtab_to_fullname (sal.symtab));
11351
11352 /* Find all matching breakpoints and add them to 'found'. */
11353 ALL_BREAKPOINTS (b)
11354 {
11355 int match = 0;
11356 /* Are we going to delete b? */
11357 if (b->type != bp_none && !is_watchpoint (b))
11358 {
11359 struct bp_location *loc = b->loc;
11360 for (; loc; loc = loc->next)
11361 {
11362 /* If the user specified file:line, don't allow a PC
11363 match. This matches historical gdb behavior. */
11364 int pc_match = (!sal.explicit_line
11365 && sal.pc
11366 && (loc->pspace == sal.pspace)
11367 && (loc->address == sal.pc)
11368 && (!section_is_overlay (loc->section)
11369 || loc->section == sal.section));
11370 int line_match = 0;
11371
11372 if ((default_match || sal.explicit_line)
11373 && loc->symtab != NULL
11374 && sal_fullname != NULL
11375 && sal.pspace == loc->pspace
11376 && loc->line_number == sal.line
11377 && filename_cmp (symtab_to_fullname (loc->symtab),
11378 sal_fullname) == 0)
11379 line_match = 1;
11380
11381 if (pc_match || line_match)
11382 {
11383 match = 1;
11384 break;
11385 }
11386 }
11387 }
11388
11389 if (match)
11390 found.push_back (b);
11391 }
11392 }
11393
11394 /* Now go thru the 'found' chain and delete them. */
11395 if (found.empty ())
11396 {
11397 if (arg)
11398 error (_("No breakpoint at %s."), arg);
11399 else
11400 error (_("No breakpoint at this line."));
11401 }
11402
11403 /* Remove duplicates from the vec. */
11404 std::sort (found.begin (), found.end (),
11405 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11406 {
11407 return compare_breakpoints (bp_a, bp_b) < 0;
11408 });
11409 found.erase (std::unique (found.begin (), found.end (),
11410 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11411 {
11412 return compare_breakpoints (bp_a, bp_b) == 0;
11413 }),
11414 found.end ());
11415
11416 if (found.size () > 1)
11417 from_tty = 1; /* Always report if deleted more than one. */
11418 if (from_tty)
11419 {
11420 if (found.size () == 1)
11421 printf_unfiltered (_("Deleted breakpoint "));
11422 else
11423 printf_unfiltered (_("Deleted breakpoints "));
11424 }
11425
11426 for (breakpoint *iter : found)
11427 {
11428 if (from_tty)
11429 printf_unfiltered ("%d ", iter->number);
11430 delete_breakpoint (iter);
11431 }
11432 if (from_tty)
11433 putchar_unfiltered ('\n');
11434 }
11435 \f
11436 /* Delete breakpoint in BS if they are `delete' breakpoints and
11437 all breakpoints that are marked for deletion, whether hit or not.
11438 This is called after any breakpoint is hit, or after errors. */
11439
11440 void
11441 breakpoint_auto_delete (bpstat bs)
11442 {
11443 struct breakpoint *b, *b_tmp;
11444
11445 for (; bs; bs = bs->next)
11446 if (bs->breakpoint_at
11447 && bs->breakpoint_at->disposition == disp_del
11448 && bs->stop)
11449 delete_breakpoint (bs->breakpoint_at);
11450
11451 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11452 {
11453 if (b->disposition == disp_del_at_next_stop)
11454 delete_breakpoint (b);
11455 }
11456 }
11457
11458 /* A comparison function for bp_location AP and BP being interfaced to
11459 qsort. Sort elements primarily by their ADDRESS (no matter what
11460 does breakpoint_address_is_meaningful say for its OWNER),
11461 secondarily by ordering first permanent elements and
11462 terciarily just ensuring the array is sorted stable way despite
11463 qsort being an unstable algorithm. */
11464
11465 static int
11466 bp_locations_compare (const void *ap, const void *bp)
11467 {
11468 const struct bp_location *a = *(const struct bp_location **) ap;
11469 const struct bp_location *b = *(const struct bp_location **) bp;
11470
11471 if (a->address != b->address)
11472 return (a->address > b->address) - (a->address < b->address);
11473
11474 /* Sort locations at the same address by their pspace number, keeping
11475 locations of the same inferior (in a multi-inferior environment)
11476 grouped. */
11477
11478 if (a->pspace->num != b->pspace->num)
11479 return ((a->pspace->num > b->pspace->num)
11480 - (a->pspace->num < b->pspace->num));
11481
11482 /* Sort permanent breakpoints first. */
11483 if (a->permanent != b->permanent)
11484 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11485
11486 /* Make the internal GDB representation stable across GDB runs
11487 where A and B memory inside GDB can differ. Breakpoint locations of
11488 the same type at the same address can be sorted in arbitrary order. */
11489
11490 if (a->owner->number != b->owner->number)
11491 return ((a->owner->number > b->owner->number)
11492 - (a->owner->number < b->owner->number));
11493
11494 return (a > b) - (a < b);
11495 }
11496
11497 /* Set bp_locations_placed_address_before_address_max and
11498 bp_locations_shadow_len_after_address_max according to the current
11499 content of the bp_locations array. */
11500
11501 static void
11502 bp_locations_target_extensions_update (void)
11503 {
11504 struct bp_location *bl, **blp_tmp;
11505
11506 bp_locations_placed_address_before_address_max = 0;
11507 bp_locations_shadow_len_after_address_max = 0;
11508
11509 ALL_BP_LOCATIONS (bl, blp_tmp)
11510 {
11511 CORE_ADDR start, end, addr;
11512
11513 if (!bp_location_has_shadow (bl))
11514 continue;
11515
11516 start = bl->target_info.placed_address;
11517 end = start + bl->target_info.shadow_len;
11518
11519 gdb_assert (bl->address >= start);
11520 addr = bl->address - start;
11521 if (addr > bp_locations_placed_address_before_address_max)
11522 bp_locations_placed_address_before_address_max = addr;
11523
11524 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11525
11526 gdb_assert (bl->address < end);
11527 addr = end - bl->address;
11528 if (addr > bp_locations_shadow_len_after_address_max)
11529 bp_locations_shadow_len_after_address_max = addr;
11530 }
11531 }
11532
11533 /* Download tracepoint locations if they haven't been. */
11534
11535 static void
11536 download_tracepoint_locations (void)
11537 {
11538 struct breakpoint *b;
11539 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11540
11541 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11542
11543 ALL_TRACEPOINTS (b)
11544 {
11545 struct bp_location *bl;
11546 struct tracepoint *t;
11547 int bp_location_downloaded = 0;
11548
11549 if ((b->type == bp_fast_tracepoint
11550 ? !may_insert_fast_tracepoints
11551 : !may_insert_tracepoints))
11552 continue;
11553
11554 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11555 {
11556 if (target_can_download_tracepoint ())
11557 can_download_tracepoint = TRIBOOL_TRUE;
11558 else
11559 can_download_tracepoint = TRIBOOL_FALSE;
11560 }
11561
11562 if (can_download_tracepoint == TRIBOOL_FALSE)
11563 break;
11564
11565 for (bl = b->loc; bl; bl = bl->next)
11566 {
11567 /* In tracepoint, locations are _never_ duplicated, so
11568 should_be_inserted is equivalent to
11569 unduplicated_should_be_inserted. */
11570 if (!should_be_inserted (bl) || bl->inserted)
11571 continue;
11572
11573 switch_to_program_space_and_thread (bl->pspace);
11574
11575 target_download_tracepoint (bl);
11576
11577 bl->inserted = 1;
11578 bp_location_downloaded = 1;
11579 }
11580 t = (struct tracepoint *) b;
11581 t->number_on_target = b->number;
11582 if (bp_location_downloaded)
11583 gdb::observers::breakpoint_modified.notify (b);
11584 }
11585 }
11586
11587 /* Swap the insertion/duplication state between two locations. */
11588
11589 static void
11590 swap_insertion (struct bp_location *left, struct bp_location *right)
11591 {
11592 const int left_inserted = left->inserted;
11593 const int left_duplicate = left->duplicate;
11594 const int left_needs_update = left->needs_update;
11595 const struct bp_target_info left_target_info = left->target_info;
11596
11597 /* Locations of tracepoints can never be duplicated. */
11598 if (is_tracepoint (left->owner))
11599 gdb_assert (!left->duplicate);
11600 if (is_tracepoint (right->owner))
11601 gdb_assert (!right->duplicate);
11602
11603 left->inserted = right->inserted;
11604 left->duplicate = right->duplicate;
11605 left->needs_update = right->needs_update;
11606 left->target_info = right->target_info;
11607 right->inserted = left_inserted;
11608 right->duplicate = left_duplicate;
11609 right->needs_update = left_needs_update;
11610 right->target_info = left_target_info;
11611 }
11612
11613 /* Force the re-insertion of the locations at ADDRESS. This is called
11614 once a new/deleted/modified duplicate location is found and we are evaluating
11615 conditions on the target's side. Such conditions need to be updated on
11616 the target. */
11617
11618 static void
11619 force_breakpoint_reinsertion (struct bp_location *bl)
11620 {
11621 struct bp_location **locp = NULL, **loc2p;
11622 struct bp_location *loc;
11623 CORE_ADDR address = 0;
11624 int pspace_num;
11625
11626 address = bl->address;
11627 pspace_num = bl->pspace->num;
11628
11629 /* This is only meaningful if the target is
11630 evaluating conditions and if the user has
11631 opted for condition evaluation on the target's
11632 side. */
11633 if (gdb_evaluates_breakpoint_condition_p ()
11634 || !target_supports_evaluation_of_breakpoint_conditions ())
11635 return;
11636
11637 /* Flag all breakpoint locations with this address and
11638 the same program space as the location
11639 as "its condition has changed". We need to
11640 update the conditions on the target's side. */
11641 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11642 {
11643 loc = *loc2p;
11644
11645 if (!is_breakpoint (loc->owner)
11646 || pspace_num != loc->pspace->num)
11647 continue;
11648
11649 /* Flag the location appropriately. We use a different state to
11650 let everyone know that we already updated the set of locations
11651 with addr bl->address and program space bl->pspace. This is so
11652 we don't have to keep calling these functions just to mark locations
11653 that have already been marked. */
11654 loc->condition_changed = condition_updated;
11655
11656 /* Free the agent expression bytecode as well. We will compute
11657 it later on. */
11658 loc->cond_bytecode.reset ();
11659 }
11660 }
11661 /* Called whether new breakpoints are created, or existing breakpoints
11662 deleted, to update the global location list and recompute which
11663 locations are duplicate of which.
11664
11665 The INSERT_MODE flag determines whether locations may not, may, or
11666 shall be inserted now. See 'enum ugll_insert_mode' for more
11667 info. */
11668
11669 static void
11670 update_global_location_list (enum ugll_insert_mode insert_mode)
11671 {
11672 struct breakpoint *b;
11673 struct bp_location **locp, *loc;
11674 /* Last breakpoint location address that was marked for update. */
11675 CORE_ADDR last_addr = 0;
11676 /* Last breakpoint location program space that was marked for update. */
11677 int last_pspace_num = -1;
11678
11679 /* Used in the duplicates detection below. When iterating over all
11680 bp_locations, points to the first bp_location of a given address.
11681 Breakpoints and watchpoints of different types are never
11682 duplicates of each other. Keep one pointer for each type of
11683 breakpoint/watchpoint, so we only need to loop over all locations
11684 once. */
11685 struct bp_location *bp_loc_first; /* breakpoint */
11686 struct bp_location *wp_loc_first; /* hardware watchpoint */
11687 struct bp_location *awp_loc_first; /* access watchpoint */
11688 struct bp_location *rwp_loc_first; /* read watchpoint */
11689
11690 /* Saved former bp_locations array which we compare against the newly
11691 built bp_locations from the current state of ALL_BREAKPOINTS. */
11692 struct bp_location **old_locp;
11693 unsigned old_locations_count;
11694 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11695
11696 old_locations_count = bp_locations_count;
11697 bp_locations = NULL;
11698 bp_locations_count = 0;
11699
11700 ALL_BREAKPOINTS (b)
11701 for (loc = b->loc; loc; loc = loc->next)
11702 bp_locations_count++;
11703
11704 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11705 locp = bp_locations;
11706 ALL_BREAKPOINTS (b)
11707 for (loc = b->loc; loc; loc = loc->next)
11708 *locp++ = loc;
11709 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11710 bp_locations_compare);
11711
11712 bp_locations_target_extensions_update ();
11713
11714 /* Identify bp_location instances that are no longer present in the
11715 new list, and therefore should be freed. Note that it's not
11716 necessary that those locations should be removed from inferior --
11717 if there's another location at the same address (previously
11718 marked as duplicate), we don't need to remove/insert the
11719 location.
11720
11721 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11722 and former bp_location array state respectively. */
11723
11724 locp = bp_locations;
11725 for (old_locp = old_locations.get ();
11726 old_locp < old_locations.get () + old_locations_count;
11727 old_locp++)
11728 {
11729 struct bp_location *old_loc = *old_locp;
11730 struct bp_location **loc2p;
11731
11732 /* Tells if 'old_loc' is found among the new locations. If
11733 not, we have to free it. */
11734 int found_object = 0;
11735 /* Tells if the location should remain inserted in the target. */
11736 int keep_in_target = 0;
11737 int removed = 0;
11738
11739 /* Skip LOCP entries which will definitely never be needed.
11740 Stop either at or being the one matching OLD_LOC. */
11741 while (locp < bp_locations + bp_locations_count
11742 && (*locp)->address < old_loc->address)
11743 locp++;
11744
11745 for (loc2p = locp;
11746 (loc2p < bp_locations + bp_locations_count
11747 && (*loc2p)->address == old_loc->address);
11748 loc2p++)
11749 {
11750 /* Check if this is a new/duplicated location or a duplicated
11751 location that had its condition modified. If so, we want to send
11752 its condition to the target if evaluation of conditions is taking
11753 place there. */
11754 if ((*loc2p)->condition_changed == condition_modified
11755 && (last_addr != old_loc->address
11756 || last_pspace_num != old_loc->pspace->num))
11757 {
11758 force_breakpoint_reinsertion (*loc2p);
11759 last_pspace_num = old_loc->pspace->num;
11760 }
11761
11762 if (*loc2p == old_loc)
11763 found_object = 1;
11764 }
11765
11766 /* We have already handled this address, update it so that we don't
11767 have to go through updates again. */
11768 last_addr = old_loc->address;
11769
11770 /* Target-side condition evaluation: Handle deleted locations. */
11771 if (!found_object)
11772 force_breakpoint_reinsertion (old_loc);
11773
11774 /* If this location is no longer present, and inserted, look if
11775 there's maybe a new location at the same address. If so,
11776 mark that one inserted, and don't remove this one. This is
11777 needed so that we don't have a time window where a breakpoint
11778 at certain location is not inserted. */
11779
11780 if (old_loc->inserted)
11781 {
11782 /* If the location is inserted now, we might have to remove
11783 it. */
11784
11785 if (found_object && should_be_inserted (old_loc))
11786 {
11787 /* The location is still present in the location list,
11788 and still should be inserted. Don't do anything. */
11789 keep_in_target = 1;
11790 }
11791 else
11792 {
11793 /* This location still exists, but it won't be kept in the
11794 target since it may have been disabled. We proceed to
11795 remove its target-side condition. */
11796
11797 /* The location is either no longer present, or got
11798 disabled. See if there's another location at the
11799 same address, in which case we don't need to remove
11800 this one from the target. */
11801
11802 /* OLD_LOC comes from existing struct breakpoint. */
11803 if (breakpoint_address_is_meaningful (old_loc->owner))
11804 {
11805 for (loc2p = locp;
11806 (loc2p < bp_locations + bp_locations_count
11807 && (*loc2p)->address == old_loc->address);
11808 loc2p++)
11809 {
11810 struct bp_location *loc2 = *loc2p;
11811
11812 if (breakpoint_locations_match (loc2, old_loc))
11813 {
11814 /* Read watchpoint locations are switched to
11815 access watchpoints, if the former are not
11816 supported, but the latter are. */
11817 if (is_hardware_watchpoint (old_loc->owner))
11818 {
11819 gdb_assert (is_hardware_watchpoint (loc2->owner));
11820 loc2->watchpoint_type = old_loc->watchpoint_type;
11821 }
11822
11823 /* loc2 is a duplicated location. We need to check
11824 if it should be inserted in case it will be
11825 unduplicated. */
11826 if (loc2 != old_loc
11827 && unduplicated_should_be_inserted (loc2))
11828 {
11829 swap_insertion (old_loc, loc2);
11830 keep_in_target = 1;
11831 break;
11832 }
11833 }
11834 }
11835 }
11836 }
11837
11838 if (!keep_in_target)
11839 {
11840 if (remove_breakpoint (old_loc))
11841 {
11842 /* This is just about all we can do. We could keep
11843 this location on the global list, and try to
11844 remove it next time, but there's no particular
11845 reason why we will succeed next time.
11846
11847 Note that at this point, old_loc->owner is still
11848 valid, as delete_breakpoint frees the breakpoint
11849 only after calling us. */
11850 printf_filtered (_("warning: Error removing "
11851 "breakpoint %d\n"),
11852 old_loc->owner->number);
11853 }
11854 removed = 1;
11855 }
11856 }
11857
11858 if (!found_object)
11859 {
11860 if (removed && target_is_non_stop_p ()
11861 && need_moribund_for_location_type (old_loc))
11862 {
11863 /* This location was removed from the target. In
11864 non-stop mode, a race condition is possible where
11865 we've removed a breakpoint, but stop events for that
11866 breakpoint are already queued and will arrive later.
11867 We apply an heuristic to be able to distinguish such
11868 SIGTRAPs from other random SIGTRAPs: we keep this
11869 breakpoint location for a bit, and will retire it
11870 after we see some number of events. The theory here
11871 is that reporting of events should, "on the average",
11872 be fair, so after a while we'll see events from all
11873 threads that have anything of interest, and no longer
11874 need to keep this breakpoint location around. We
11875 don't hold locations forever so to reduce chances of
11876 mistaking a non-breakpoint SIGTRAP for a breakpoint
11877 SIGTRAP.
11878
11879 The heuristic failing can be disastrous on
11880 decr_pc_after_break targets.
11881
11882 On decr_pc_after_break targets, like e.g., x86-linux,
11883 if we fail to recognize a late breakpoint SIGTRAP,
11884 because events_till_retirement has reached 0 too
11885 soon, we'll fail to do the PC adjustment, and report
11886 a random SIGTRAP to the user. When the user resumes
11887 the inferior, it will most likely immediately crash
11888 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11889 corrupted, because of being resumed e.g., in the
11890 middle of a multi-byte instruction, or skipped a
11891 one-byte instruction. This was actually seen happen
11892 on native x86-linux, and should be less rare on
11893 targets that do not support new thread events, like
11894 remote, due to the heuristic depending on
11895 thread_count.
11896
11897 Mistaking a random SIGTRAP for a breakpoint trap
11898 causes similar symptoms (PC adjustment applied when
11899 it shouldn't), but then again, playing with SIGTRAPs
11900 behind the debugger's back is asking for trouble.
11901
11902 Since hardware watchpoint traps are always
11903 distinguishable from other traps, so we don't need to
11904 apply keep hardware watchpoint moribund locations
11905 around. We simply always ignore hardware watchpoint
11906 traps we can no longer explain. */
11907
11908 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11909 old_loc->owner = NULL;
11910
11911 moribund_locations.push_back (old_loc);
11912 }
11913 else
11914 {
11915 old_loc->owner = NULL;
11916 decref_bp_location (&old_loc);
11917 }
11918 }
11919 }
11920
11921 /* Rescan breakpoints at the same address and section, marking the
11922 first one as "first" and any others as "duplicates". This is so
11923 that the bpt instruction is only inserted once. If we have a
11924 permanent breakpoint at the same place as BPT, make that one the
11925 official one, and the rest as duplicates. Permanent breakpoints
11926 are sorted first for the same address.
11927
11928 Do the same for hardware watchpoints, but also considering the
11929 watchpoint's type (regular/access/read) and length. */
11930
11931 bp_loc_first = NULL;
11932 wp_loc_first = NULL;
11933 awp_loc_first = NULL;
11934 rwp_loc_first = NULL;
11935 ALL_BP_LOCATIONS (loc, locp)
11936 {
11937 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11938 non-NULL. */
11939 struct bp_location **loc_first_p;
11940 b = loc->owner;
11941
11942 if (!unduplicated_should_be_inserted (loc)
11943 || !breakpoint_address_is_meaningful (b)
11944 /* Don't detect duplicate for tracepoint locations because they are
11945 never duplicated. See the comments in field `duplicate' of
11946 `struct bp_location'. */
11947 || is_tracepoint (b))
11948 {
11949 /* Clear the condition modification flag. */
11950 loc->condition_changed = condition_unchanged;
11951 continue;
11952 }
11953
11954 if (b->type == bp_hardware_watchpoint)
11955 loc_first_p = &wp_loc_first;
11956 else if (b->type == bp_read_watchpoint)
11957 loc_first_p = &rwp_loc_first;
11958 else if (b->type == bp_access_watchpoint)
11959 loc_first_p = &awp_loc_first;
11960 else
11961 loc_first_p = &bp_loc_first;
11962
11963 if (*loc_first_p == NULL
11964 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11965 || !breakpoint_locations_match (loc, *loc_first_p))
11966 {
11967 *loc_first_p = loc;
11968 loc->duplicate = 0;
11969
11970 if (is_breakpoint (loc->owner) && loc->condition_changed)
11971 {
11972 loc->needs_update = 1;
11973 /* Clear the condition modification flag. */
11974 loc->condition_changed = condition_unchanged;
11975 }
11976 continue;
11977 }
11978
11979
11980 /* This and the above ensure the invariant that the first location
11981 is not duplicated, and is the inserted one.
11982 All following are marked as duplicated, and are not inserted. */
11983 if (loc->inserted)
11984 swap_insertion (loc, *loc_first_p);
11985 loc->duplicate = 1;
11986
11987 /* Clear the condition modification flag. */
11988 loc->condition_changed = condition_unchanged;
11989 }
11990
11991 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11992 {
11993 if (insert_mode != UGLL_DONT_INSERT)
11994 insert_breakpoint_locations ();
11995 else
11996 {
11997 /* Even though the caller told us to not insert new
11998 locations, we may still need to update conditions on the
11999 target's side of breakpoints that were already inserted
12000 if the target is evaluating breakpoint conditions. We
12001 only update conditions for locations that are marked
12002 "needs_update". */
12003 update_inserted_breakpoint_locations ();
12004 }
12005 }
12006
12007 if (insert_mode != UGLL_DONT_INSERT)
12008 download_tracepoint_locations ();
12009 }
12010
12011 void
12012 breakpoint_retire_moribund (void)
12013 {
12014 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12015 {
12016 struct bp_location *loc = moribund_locations[ix];
12017 if (--(loc->events_till_retirement) == 0)
12018 {
12019 decref_bp_location (&loc);
12020 unordered_remove (moribund_locations, ix);
12021 --ix;
12022 }
12023 }
12024 }
12025
12026 static void
12027 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12028 {
12029
12030 try
12031 {
12032 update_global_location_list (insert_mode);
12033 }
12034 catch (const gdb_exception_error &e)
12035 {
12036 }
12037 }
12038
12039 /* Clear BKP from a BPS. */
12040
12041 static void
12042 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12043 {
12044 bpstat bs;
12045
12046 for (bs = bps; bs; bs = bs->next)
12047 if (bs->breakpoint_at == bpt)
12048 {
12049 bs->breakpoint_at = NULL;
12050 bs->old_val = NULL;
12051 /* bs->commands will be freed later. */
12052 }
12053 }
12054
12055 /* Callback for iterate_over_threads. */
12056 static int
12057 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12058 {
12059 struct breakpoint *bpt = (struct breakpoint *) data;
12060
12061 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12062 return 0;
12063 }
12064
12065 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12066 callbacks. */
12067
12068 static void
12069 say_where (struct breakpoint *b)
12070 {
12071 struct value_print_options opts;
12072
12073 get_user_print_options (&opts);
12074
12075 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12076 single string. */
12077 if (b->loc == NULL)
12078 {
12079 /* For pending locations, the output differs slightly based
12080 on b->extra_string. If this is non-NULL, it contains either
12081 a condition or dprintf arguments. */
12082 if (b->extra_string == NULL)
12083 {
12084 printf_filtered (_(" (%s) pending."),
12085 event_location_to_string (b->location.get ()));
12086 }
12087 else if (b->type == bp_dprintf)
12088 {
12089 printf_filtered (_(" (%s,%s) pending."),
12090 event_location_to_string (b->location.get ()),
12091 b->extra_string);
12092 }
12093 else
12094 {
12095 printf_filtered (_(" (%s %s) pending."),
12096 event_location_to_string (b->location.get ()),
12097 b->extra_string);
12098 }
12099 }
12100 else
12101 {
12102 if (opts.addressprint || b->loc->symtab == NULL)
12103 {
12104 printf_filtered (" at ");
12105 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12106 address_style.style (),
12107 gdb_stdout);
12108 }
12109 if (b->loc->symtab != NULL)
12110 {
12111 /* If there is a single location, we can print the location
12112 more nicely. */
12113 if (b->loc->next == NULL)
12114 {
12115 puts_filtered (": file ");
12116 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12117 file_name_style.style (),
12118 gdb_stdout);
12119 printf_filtered (", line %d.",
12120 b->loc->line_number);
12121 }
12122 else
12123 /* This is not ideal, but each location may have a
12124 different file name, and this at least reflects the
12125 real situation somewhat. */
12126 printf_filtered (": %s.",
12127 event_location_to_string (b->location.get ()));
12128 }
12129
12130 if (b->loc->next)
12131 {
12132 struct bp_location *loc = b->loc;
12133 int n = 0;
12134 for (; loc; loc = loc->next)
12135 ++n;
12136 printf_filtered (" (%d locations)", n);
12137 }
12138 }
12139 }
12140
12141 bp_location::~bp_location ()
12142 {
12143 xfree (function_name);
12144 }
12145
12146 /* Destructor for the breakpoint base class. */
12147
12148 breakpoint::~breakpoint ()
12149 {
12150 xfree (this->cond_string);
12151 xfree (this->extra_string);
12152 xfree (this->filter);
12153 }
12154
12155 static struct bp_location *
12156 base_breakpoint_allocate_location (struct breakpoint *self)
12157 {
12158 return new bp_location (self);
12159 }
12160
12161 static void
12162 base_breakpoint_re_set (struct breakpoint *b)
12163 {
12164 /* Nothing to re-set. */
12165 }
12166
12167 #define internal_error_pure_virtual_called() \
12168 gdb_assert_not_reached ("pure virtual function called")
12169
12170 static int
12171 base_breakpoint_insert_location (struct bp_location *bl)
12172 {
12173 internal_error_pure_virtual_called ();
12174 }
12175
12176 static int
12177 base_breakpoint_remove_location (struct bp_location *bl,
12178 enum remove_bp_reason reason)
12179 {
12180 internal_error_pure_virtual_called ();
12181 }
12182
12183 static int
12184 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12185 const address_space *aspace,
12186 CORE_ADDR bp_addr,
12187 const struct target_waitstatus *ws)
12188 {
12189 internal_error_pure_virtual_called ();
12190 }
12191
12192 static void
12193 base_breakpoint_check_status (bpstat bs)
12194 {
12195 /* Always stop. */
12196 }
12197
12198 /* A "works_in_software_mode" breakpoint_ops method that just internal
12199 errors. */
12200
12201 static int
12202 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12203 {
12204 internal_error_pure_virtual_called ();
12205 }
12206
12207 /* A "resources_needed" breakpoint_ops method that just internal
12208 errors. */
12209
12210 static int
12211 base_breakpoint_resources_needed (const struct bp_location *bl)
12212 {
12213 internal_error_pure_virtual_called ();
12214 }
12215
12216 static enum print_stop_action
12217 base_breakpoint_print_it (bpstat bs)
12218 {
12219 internal_error_pure_virtual_called ();
12220 }
12221
12222 static void
12223 base_breakpoint_print_one_detail (const struct breakpoint *self,
12224 struct ui_out *uiout)
12225 {
12226 /* nothing */
12227 }
12228
12229 static void
12230 base_breakpoint_print_mention (struct breakpoint *b)
12231 {
12232 internal_error_pure_virtual_called ();
12233 }
12234
12235 static void
12236 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12237 {
12238 internal_error_pure_virtual_called ();
12239 }
12240
12241 static void
12242 base_breakpoint_create_sals_from_location
12243 (const struct event_location *location,
12244 struct linespec_result *canonical,
12245 enum bptype type_wanted)
12246 {
12247 internal_error_pure_virtual_called ();
12248 }
12249
12250 static void
12251 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12252 struct linespec_result *c,
12253 gdb::unique_xmalloc_ptr<char> cond_string,
12254 gdb::unique_xmalloc_ptr<char> extra_string,
12255 enum bptype type_wanted,
12256 enum bpdisp disposition,
12257 int thread,
12258 int task, int ignore_count,
12259 const struct breakpoint_ops *o,
12260 int from_tty, int enabled,
12261 int internal, unsigned flags)
12262 {
12263 internal_error_pure_virtual_called ();
12264 }
12265
12266 static std::vector<symtab_and_line>
12267 base_breakpoint_decode_location (struct breakpoint *b,
12268 const struct event_location *location,
12269 struct program_space *search_pspace)
12270 {
12271 internal_error_pure_virtual_called ();
12272 }
12273
12274 /* The default 'explains_signal' method. */
12275
12276 static int
12277 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12278 {
12279 return 1;
12280 }
12281
12282 /* The default "after_condition_true" method. */
12283
12284 static void
12285 base_breakpoint_after_condition_true (struct bpstats *bs)
12286 {
12287 /* Nothing to do. */
12288 }
12289
12290 struct breakpoint_ops base_breakpoint_ops =
12291 {
12292 base_breakpoint_allocate_location,
12293 base_breakpoint_re_set,
12294 base_breakpoint_insert_location,
12295 base_breakpoint_remove_location,
12296 base_breakpoint_breakpoint_hit,
12297 base_breakpoint_check_status,
12298 base_breakpoint_resources_needed,
12299 base_breakpoint_works_in_software_mode,
12300 base_breakpoint_print_it,
12301 NULL,
12302 base_breakpoint_print_one_detail,
12303 base_breakpoint_print_mention,
12304 base_breakpoint_print_recreate,
12305 base_breakpoint_create_sals_from_location,
12306 base_breakpoint_create_breakpoints_sal,
12307 base_breakpoint_decode_location,
12308 base_breakpoint_explains_signal,
12309 base_breakpoint_after_condition_true,
12310 };
12311
12312 /* Default breakpoint_ops methods. */
12313
12314 static void
12315 bkpt_re_set (struct breakpoint *b)
12316 {
12317 /* FIXME: is this still reachable? */
12318 if (breakpoint_event_location_empty_p (b))
12319 {
12320 /* Anything without a location can't be re-set. */
12321 delete_breakpoint (b);
12322 return;
12323 }
12324
12325 breakpoint_re_set_default (b);
12326 }
12327
12328 static int
12329 bkpt_insert_location (struct bp_location *bl)
12330 {
12331 CORE_ADDR addr = bl->target_info.reqstd_address;
12332
12333 bl->target_info.kind = breakpoint_kind (bl, &addr);
12334 bl->target_info.placed_address = addr;
12335
12336 if (bl->loc_type == bp_loc_hardware_breakpoint)
12337 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12338 else
12339 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12340 }
12341
12342 static int
12343 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12344 {
12345 if (bl->loc_type == bp_loc_hardware_breakpoint)
12346 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12347 else
12348 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12349 }
12350
12351 static int
12352 bkpt_breakpoint_hit (const struct bp_location *bl,
12353 const address_space *aspace, CORE_ADDR bp_addr,
12354 const struct target_waitstatus *ws)
12355 {
12356 if (ws->kind != TARGET_WAITKIND_STOPPED
12357 || ws->value.sig != GDB_SIGNAL_TRAP)
12358 return 0;
12359
12360 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12361 aspace, bp_addr))
12362 return 0;
12363
12364 if (overlay_debugging /* unmapped overlay section */
12365 && section_is_overlay (bl->section)
12366 && !section_is_mapped (bl->section))
12367 return 0;
12368
12369 return 1;
12370 }
12371
12372 static int
12373 dprintf_breakpoint_hit (const struct bp_location *bl,
12374 const address_space *aspace, CORE_ADDR bp_addr,
12375 const struct target_waitstatus *ws)
12376 {
12377 if (dprintf_style == dprintf_style_agent
12378 && target_can_run_breakpoint_commands ())
12379 {
12380 /* An agent-style dprintf never causes a stop. If we see a trap
12381 for this address it must be for a breakpoint that happens to
12382 be set at the same address. */
12383 return 0;
12384 }
12385
12386 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12387 }
12388
12389 static int
12390 bkpt_resources_needed (const struct bp_location *bl)
12391 {
12392 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12393
12394 return 1;
12395 }
12396
12397 static enum print_stop_action
12398 bkpt_print_it (bpstat bs)
12399 {
12400 struct breakpoint *b;
12401 const struct bp_location *bl;
12402 int bp_temp;
12403 struct ui_out *uiout = current_uiout;
12404
12405 gdb_assert (bs->bp_location_at != NULL);
12406
12407 bl = bs->bp_location_at;
12408 b = bs->breakpoint_at;
12409
12410 bp_temp = b->disposition == disp_del;
12411 if (bl->address != bl->requested_address)
12412 breakpoint_adjustment_warning (bl->requested_address,
12413 bl->address,
12414 b->number, 1);
12415 annotate_breakpoint (b->number);
12416 maybe_print_thread_hit_breakpoint (uiout);
12417
12418 if (bp_temp)
12419 uiout->text ("Temporary breakpoint ");
12420 else
12421 uiout->text ("Breakpoint ");
12422 if (uiout->is_mi_like_p ())
12423 {
12424 uiout->field_string ("reason",
12425 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12426 uiout->field_string ("disp", bpdisp_text (b->disposition));
12427 }
12428 uiout->field_int ("bkptno", b->number);
12429 uiout->text (", ");
12430
12431 return PRINT_SRC_AND_LOC;
12432 }
12433
12434 static void
12435 bkpt_print_mention (struct breakpoint *b)
12436 {
12437 if (current_uiout->is_mi_like_p ())
12438 return;
12439
12440 switch (b->type)
12441 {
12442 case bp_breakpoint:
12443 case bp_gnu_ifunc_resolver:
12444 if (b->disposition == disp_del)
12445 printf_filtered (_("Temporary breakpoint"));
12446 else
12447 printf_filtered (_("Breakpoint"));
12448 printf_filtered (_(" %d"), b->number);
12449 if (b->type == bp_gnu_ifunc_resolver)
12450 printf_filtered (_(" at gnu-indirect-function resolver"));
12451 break;
12452 case bp_hardware_breakpoint:
12453 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12454 break;
12455 case bp_dprintf:
12456 printf_filtered (_("Dprintf %d"), b->number);
12457 break;
12458 }
12459
12460 say_where (b);
12461 }
12462
12463 static void
12464 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12465 {
12466 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12467 fprintf_unfiltered (fp, "tbreak");
12468 else if (tp->type == bp_breakpoint)
12469 fprintf_unfiltered (fp, "break");
12470 else if (tp->type == bp_hardware_breakpoint
12471 && tp->disposition == disp_del)
12472 fprintf_unfiltered (fp, "thbreak");
12473 else if (tp->type == bp_hardware_breakpoint)
12474 fprintf_unfiltered (fp, "hbreak");
12475 else
12476 internal_error (__FILE__, __LINE__,
12477 _("unhandled breakpoint type %d"), (int) tp->type);
12478
12479 fprintf_unfiltered (fp, " %s",
12480 event_location_to_string (tp->location.get ()));
12481
12482 /* Print out extra_string if this breakpoint is pending. It might
12483 contain, for example, conditions that were set by the user. */
12484 if (tp->loc == NULL && tp->extra_string != NULL)
12485 fprintf_unfiltered (fp, " %s", tp->extra_string);
12486
12487 print_recreate_thread (tp, fp);
12488 }
12489
12490 static void
12491 bkpt_create_sals_from_location (const struct event_location *location,
12492 struct linespec_result *canonical,
12493 enum bptype type_wanted)
12494 {
12495 create_sals_from_location_default (location, canonical, type_wanted);
12496 }
12497
12498 static void
12499 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12500 struct linespec_result *canonical,
12501 gdb::unique_xmalloc_ptr<char> cond_string,
12502 gdb::unique_xmalloc_ptr<char> extra_string,
12503 enum bptype type_wanted,
12504 enum bpdisp disposition,
12505 int thread,
12506 int task, int ignore_count,
12507 const struct breakpoint_ops *ops,
12508 int from_tty, int enabled,
12509 int internal, unsigned flags)
12510 {
12511 create_breakpoints_sal_default (gdbarch, canonical,
12512 std::move (cond_string),
12513 std::move (extra_string),
12514 type_wanted,
12515 disposition, thread, task,
12516 ignore_count, ops, from_tty,
12517 enabled, internal, flags);
12518 }
12519
12520 static std::vector<symtab_and_line>
12521 bkpt_decode_location (struct breakpoint *b,
12522 const struct event_location *location,
12523 struct program_space *search_pspace)
12524 {
12525 return decode_location_default (b, location, search_pspace);
12526 }
12527
12528 /* Virtual table for internal breakpoints. */
12529
12530 static void
12531 internal_bkpt_re_set (struct breakpoint *b)
12532 {
12533 switch (b->type)
12534 {
12535 /* Delete overlay event and longjmp master breakpoints; they
12536 will be reset later by breakpoint_re_set. */
12537 case bp_overlay_event:
12538 case bp_longjmp_master:
12539 case bp_std_terminate_master:
12540 case bp_exception_master:
12541 delete_breakpoint (b);
12542 break;
12543
12544 /* This breakpoint is special, it's set up when the inferior
12545 starts and we really don't want to touch it. */
12546 case bp_shlib_event:
12547
12548 /* Like bp_shlib_event, this breakpoint type is special. Once
12549 it is set up, we do not want to touch it. */
12550 case bp_thread_event:
12551 break;
12552 }
12553 }
12554
12555 static void
12556 internal_bkpt_check_status (bpstat bs)
12557 {
12558 if (bs->breakpoint_at->type == bp_shlib_event)
12559 {
12560 /* If requested, stop when the dynamic linker notifies GDB of
12561 events. This allows the user to get control and place
12562 breakpoints in initializer routines for dynamically loaded
12563 objects (among other things). */
12564 bs->stop = stop_on_solib_events;
12565 bs->print = stop_on_solib_events;
12566 }
12567 else
12568 bs->stop = 0;
12569 }
12570
12571 static enum print_stop_action
12572 internal_bkpt_print_it (bpstat bs)
12573 {
12574 struct breakpoint *b;
12575
12576 b = bs->breakpoint_at;
12577
12578 switch (b->type)
12579 {
12580 case bp_shlib_event:
12581 /* Did we stop because the user set the stop_on_solib_events
12582 variable? (If so, we report this as a generic, "Stopped due
12583 to shlib event" message.) */
12584 print_solib_event (0);
12585 break;
12586
12587 case bp_thread_event:
12588 /* Not sure how we will get here.
12589 GDB should not stop for these breakpoints. */
12590 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12591 break;
12592
12593 case bp_overlay_event:
12594 /* By analogy with the thread event, GDB should not stop for these. */
12595 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12596 break;
12597
12598 case bp_longjmp_master:
12599 /* These should never be enabled. */
12600 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12601 break;
12602
12603 case bp_std_terminate_master:
12604 /* These should never be enabled. */
12605 printf_filtered (_("std::terminate Master Breakpoint: "
12606 "gdb should not stop!\n"));
12607 break;
12608
12609 case bp_exception_master:
12610 /* These should never be enabled. */
12611 printf_filtered (_("Exception Master Breakpoint: "
12612 "gdb should not stop!\n"));
12613 break;
12614 }
12615
12616 return PRINT_NOTHING;
12617 }
12618
12619 static void
12620 internal_bkpt_print_mention (struct breakpoint *b)
12621 {
12622 /* Nothing to mention. These breakpoints are internal. */
12623 }
12624
12625 /* Virtual table for momentary breakpoints */
12626
12627 static void
12628 momentary_bkpt_re_set (struct breakpoint *b)
12629 {
12630 /* Keep temporary breakpoints, which can be encountered when we step
12631 over a dlopen call and solib_add is resetting the breakpoints.
12632 Otherwise these should have been blown away via the cleanup chain
12633 or by breakpoint_init_inferior when we rerun the executable. */
12634 }
12635
12636 static void
12637 momentary_bkpt_check_status (bpstat bs)
12638 {
12639 /* Nothing. The point of these breakpoints is causing a stop. */
12640 }
12641
12642 static enum print_stop_action
12643 momentary_bkpt_print_it (bpstat bs)
12644 {
12645 return PRINT_UNKNOWN;
12646 }
12647
12648 static void
12649 momentary_bkpt_print_mention (struct breakpoint *b)
12650 {
12651 /* Nothing to mention. These breakpoints are internal. */
12652 }
12653
12654 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12655
12656 It gets cleared already on the removal of the first one of such placed
12657 breakpoints. This is OK as they get all removed altogether. */
12658
12659 longjmp_breakpoint::~longjmp_breakpoint ()
12660 {
12661 thread_info *tp = find_thread_global_id (this->thread);
12662
12663 if (tp != NULL)
12664 tp->initiating_frame = null_frame_id;
12665 }
12666
12667 /* Specific methods for probe breakpoints. */
12668
12669 static int
12670 bkpt_probe_insert_location (struct bp_location *bl)
12671 {
12672 int v = bkpt_insert_location (bl);
12673
12674 if (v == 0)
12675 {
12676 /* The insertion was successful, now let's set the probe's semaphore
12677 if needed. */
12678 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12679 }
12680
12681 return v;
12682 }
12683
12684 static int
12685 bkpt_probe_remove_location (struct bp_location *bl,
12686 enum remove_bp_reason reason)
12687 {
12688 /* Let's clear the semaphore before removing the location. */
12689 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12690
12691 return bkpt_remove_location (bl, reason);
12692 }
12693
12694 static void
12695 bkpt_probe_create_sals_from_location (const struct event_location *location,
12696 struct linespec_result *canonical,
12697 enum bptype type_wanted)
12698 {
12699 struct linespec_sals lsal;
12700
12701 lsal.sals = parse_probes (location, NULL, canonical);
12702 lsal.canonical
12703 = xstrdup (event_location_to_string (canonical->location.get ()));
12704 canonical->lsals.push_back (std::move (lsal));
12705 }
12706
12707 static std::vector<symtab_and_line>
12708 bkpt_probe_decode_location (struct breakpoint *b,
12709 const struct event_location *location,
12710 struct program_space *search_pspace)
12711 {
12712 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12713 if (sals.empty ())
12714 error (_("probe not found"));
12715 return sals;
12716 }
12717
12718 /* The breakpoint_ops structure to be used in tracepoints. */
12719
12720 static void
12721 tracepoint_re_set (struct breakpoint *b)
12722 {
12723 breakpoint_re_set_default (b);
12724 }
12725
12726 static int
12727 tracepoint_breakpoint_hit (const struct bp_location *bl,
12728 const address_space *aspace, CORE_ADDR bp_addr,
12729 const struct target_waitstatus *ws)
12730 {
12731 /* By definition, the inferior does not report stops at
12732 tracepoints. */
12733 return 0;
12734 }
12735
12736 static void
12737 tracepoint_print_one_detail (const struct breakpoint *self,
12738 struct ui_out *uiout)
12739 {
12740 struct tracepoint *tp = (struct tracepoint *) self;
12741 if (!tp->static_trace_marker_id.empty ())
12742 {
12743 gdb_assert (self->type == bp_static_tracepoint);
12744
12745 uiout->text ("\tmarker id is ");
12746 uiout->field_string ("static-tracepoint-marker-string-id",
12747 tp->static_trace_marker_id);
12748 uiout->text ("\n");
12749 }
12750 }
12751
12752 static void
12753 tracepoint_print_mention (struct breakpoint *b)
12754 {
12755 if (current_uiout->is_mi_like_p ())
12756 return;
12757
12758 switch (b->type)
12759 {
12760 case bp_tracepoint:
12761 printf_filtered (_("Tracepoint"));
12762 printf_filtered (_(" %d"), b->number);
12763 break;
12764 case bp_fast_tracepoint:
12765 printf_filtered (_("Fast tracepoint"));
12766 printf_filtered (_(" %d"), b->number);
12767 break;
12768 case bp_static_tracepoint:
12769 printf_filtered (_("Static tracepoint"));
12770 printf_filtered (_(" %d"), b->number);
12771 break;
12772 default:
12773 internal_error (__FILE__, __LINE__,
12774 _("unhandled tracepoint type %d"), (int) b->type);
12775 }
12776
12777 say_where (b);
12778 }
12779
12780 static void
12781 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12782 {
12783 struct tracepoint *tp = (struct tracepoint *) self;
12784
12785 if (self->type == bp_fast_tracepoint)
12786 fprintf_unfiltered (fp, "ftrace");
12787 else if (self->type == bp_static_tracepoint)
12788 fprintf_unfiltered (fp, "strace");
12789 else if (self->type == bp_tracepoint)
12790 fprintf_unfiltered (fp, "trace");
12791 else
12792 internal_error (__FILE__, __LINE__,
12793 _("unhandled tracepoint type %d"), (int) self->type);
12794
12795 fprintf_unfiltered (fp, " %s",
12796 event_location_to_string (self->location.get ()));
12797 print_recreate_thread (self, fp);
12798
12799 if (tp->pass_count)
12800 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12801 }
12802
12803 static void
12804 tracepoint_create_sals_from_location (const struct event_location *location,
12805 struct linespec_result *canonical,
12806 enum bptype type_wanted)
12807 {
12808 create_sals_from_location_default (location, canonical, type_wanted);
12809 }
12810
12811 static void
12812 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12813 struct linespec_result *canonical,
12814 gdb::unique_xmalloc_ptr<char> cond_string,
12815 gdb::unique_xmalloc_ptr<char> extra_string,
12816 enum bptype type_wanted,
12817 enum bpdisp disposition,
12818 int thread,
12819 int task, int ignore_count,
12820 const struct breakpoint_ops *ops,
12821 int from_tty, int enabled,
12822 int internal, unsigned flags)
12823 {
12824 create_breakpoints_sal_default (gdbarch, canonical,
12825 std::move (cond_string),
12826 std::move (extra_string),
12827 type_wanted,
12828 disposition, thread, task,
12829 ignore_count, ops, from_tty,
12830 enabled, internal, flags);
12831 }
12832
12833 static std::vector<symtab_and_line>
12834 tracepoint_decode_location (struct breakpoint *b,
12835 const struct event_location *location,
12836 struct program_space *search_pspace)
12837 {
12838 return decode_location_default (b, location, search_pspace);
12839 }
12840
12841 struct breakpoint_ops tracepoint_breakpoint_ops;
12842
12843 /* The breakpoint_ops structure to be use on tracepoints placed in a
12844 static probe. */
12845
12846 static void
12847 tracepoint_probe_create_sals_from_location
12848 (const struct event_location *location,
12849 struct linespec_result *canonical,
12850 enum bptype type_wanted)
12851 {
12852 /* We use the same method for breakpoint on probes. */
12853 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12854 }
12855
12856 static std::vector<symtab_and_line>
12857 tracepoint_probe_decode_location (struct breakpoint *b,
12858 const struct event_location *location,
12859 struct program_space *search_pspace)
12860 {
12861 /* We use the same method for breakpoint on probes. */
12862 return bkpt_probe_decode_location (b, location, search_pspace);
12863 }
12864
12865 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12866
12867 /* Dprintf breakpoint_ops methods. */
12868
12869 static void
12870 dprintf_re_set (struct breakpoint *b)
12871 {
12872 breakpoint_re_set_default (b);
12873
12874 /* extra_string should never be non-NULL for dprintf. */
12875 gdb_assert (b->extra_string != NULL);
12876
12877 /* 1 - connect to target 1, that can run breakpoint commands.
12878 2 - create a dprintf, which resolves fine.
12879 3 - disconnect from target 1
12880 4 - connect to target 2, that can NOT run breakpoint commands.
12881
12882 After steps #3/#4, you'll want the dprintf command list to
12883 be updated, because target 1 and 2 may well return different
12884 answers for target_can_run_breakpoint_commands().
12885 Given absence of finer grained resetting, we get to do
12886 it all the time. */
12887 if (b->extra_string != NULL)
12888 update_dprintf_command_list (b);
12889 }
12890
12891 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12892
12893 static void
12894 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12895 {
12896 fprintf_unfiltered (fp, "dprintf %s,%s",
12897 event_location_to_string (tp->location.get ()),
12898 tp->extra_string);
12899 print_recreate_thread (tp, fp);
12900 }
12901
12902 /* Implement the "after_condition_true" breakpoint_ops method for
12903 dprintf.
12904
12905 dprintf's are implemented with regular commands in their command
12906 list, but we run the commands here instead of before presenting the
12907 stop to the user, as dprintf's don't actually cause a stop. This
12908 also makes it so that the commands of multiple dprintfs at the same
12909 address are all handled. */
12910
12911 static void
12912 dprintf_after_condition_true (struct bpstats *bs)
12913 {
12914 struct bpstats tmp_bs;
12915 struct bpstats *tmp_bs_p = &tmp_bs;
12916
12917 /* dprintf's never cause a stop. This wasn't set in the
12918 check_status hook instead because that would make the dprintf's
12919 condition not be evaluated. */
12920 bs->stop = 0;
12921
12922 /* Run the command list here. Take ownership of it instead of
12923 copying. We never want these commands to run later in
12924 bpstat_do_actions, if a breakpoint that causes a stop happens to
12925 be set at same address as this dprintf, or even if running the
12926 commands here throws. */
12927 tmp_bs.commands = bs->commands;
12928 bs->commands = NULL;
12929
12930 bpstat_do_actions_1 (&tmp_bs_p);
12931
12932 /* 'tmp_bs.commands' will usually be NULL by now, but
12933 bpstat_do_actions_1 may return early without processing the whole
12934 list. */
12935 }
12936
12937 /* The breakpoint_ops structure to be used on static tracepoints with
12938 markers (`-m'). */
12939
12940 static void
12941 strace_marker_create_sals_from_location (const struct event_location *location,
12942 struct linespec_result *canonical,
12943 enum bptype type_wanted)
12944 {
12945 struct linespec_sals lsal;
12946 const char *arg_start, *arg;
12947
12948 arg = arg_start = get_linespec_location (location)->spec_string;
12949 lsal.sals = decode_static_tracepoint_spec (&arg);
12950
12951 std::string str (arg_start, arg - arg_start);
12952 const char *ptr = str.c_str ();
12953 canonical->location
12954 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12955
12956 lsal.canonical
12957 = xstrdup (event_location_to_string (canonical->location.get ()));
12958 canonical->lsals.push_back (std::move (lsal));
12959 }
12960
12961 static void
12962 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12963 struct linespec_result *canonical,
12964 gdb::unique_xmalloc_ptr<char> cond_string,
12965 gdb::unique_xmalloc_ptr<char> extra_string,
12966 enum bptype type_wanted,
12967 enum bpdisp disposition,
12968 int thread,
12969 int task, int ignore_count,
12970 const struct breakpoint_ops *ops,
12971 int from_tty, int enabled,
12972 int internal, unsigned flags)
12973 {
12974 const linespec_sals &lsal = canonical->lsals[0];
12975
12976 /* If the user is creating a static tracepoint by marker id
12977 (strace -m MARKER_ID), then store the sals index, so that
12978 breakpoint_re_set can try to match up which of the newly
12979 found markers corresponds to this one, and, don't try to
12980 expand multiple locations for each sal, given than SALS
12981 already should contain all sals for MARKER_ID. */
12982
12983 for (size_t i = 0; i < lsal.sals.size (); i++)
12984 {
12985 event_location_up location
12986 = copy_event_location (canonical->location.get ());
12987
12988 std::unique_ptr<tracepoint> tp (new tracepoint ());
12989 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12990 std::move (location), NULL,
12991 std::move (cond_string),
12992 std::move (extra_string),
12993 type_wanted, disposition,
12994 thread, task, ignore_count, ops,
12995 from_tty, enabled, internal, flags,
12996 canonical->special_display);
12997 /* Given that its possible to have multiple markers with
12998 the same string id, if the user is creating a static
12999 tracepoint by marker id ("strace -m MARKER_ID"), then
13000 store the sals index, so that breakpoint_re_set can
13001 try to match up which of the newly found markers
13002 corresponds to this one */
13003 tp->static_trace_marker_id_idx = i;
13004
13005 install_breakpoint (internal, std::move (tp), 0);
13006 }
13007 }
13008
13009 static std::vector<symtab_and_line>
13010 strace_marker_decode_location (struct breakpoint *b,
13011 const struct event_location *location,
13012 struct program_space *search_pspace)
13013 {
13014 struct tracepoint *tp = (struct tracepoint *) b;
13015 const char *s = get_linespec_location (location)->spec_string;
13016
13017 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13018 if (sals.size () > tp->static_trace_marker_id_idx)
13019 {
13020 sals[0] = sals[tp->static_trace_marker_id_idx];
13021 sals.resize (1);
13022 return sals;
13023 }
13024 else
13025 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13026 }
13027
13028 static struct breakpoint_ops strace_marker_breakpoint_ops;
13029
13030 static int
13031 strace_marker_p (struct breakpoint *b)
13032 {
13033 return b->ops == &strace_marker_breakpoint_ops;
13034 }
13035
13036 /* Delete a breakpoint and clean up all traces of it in the data
13037 structures. */
13038
13039 void
13040 delete_breakpoint (struct breakpoint *bpt)
13041 {
13042 struct breakpoint *b;
13043
13044 gdb_assert (bpt != NULL);
13045
13046 /* Has this bp already been deleted? This can happen because
13047 multiple lists can hold pointers to bp's. bpstat lists are
13048 especial culprits.
13049
13050 One example of this happening is a watchpoint's scope bp. When
13051 the scope bp triggers, we notice that the watchpoint is out of
13052 scope, and delete it. We also delete its scope bp. But the
13053 scope bp is marked "auto-deleting", and is already on a bpstat.
13054 That bpstat is then checked for auto-deleting bp's, which are
13055 deleted.
13056
13057 A real solution to this problem might involve reference counts in
13058 bp's, and/or giving them pointers back to their referencing
13059 bpstat's, and teaching delete_breakpoint to only free a bp's
13060 storage when no more references were extent. A cheaper bandaid
13061 was chosen. */
13062 if (bpt->type == bp_none)
13063 return;
13064
13065 /* At least avoid this stale reference until the reference counting
13066 of breakpoints gets resolved. */
13067 if (bpt->related_breakpoint != bpt)
13068 {
13069 struct breakpoint *related;
13070 struct watchpoint *w;
13071
13072 if (bpt->type == bp_watchpoint_scope)
13073 w = (struct watchpoint *) bpt->related_breakpoint;
13074 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13075 w = (struct watchpoint *) bpt;
13076 else
13077 w = NULL;
13078 if (w != NULL)
13079 watchpoint_del_at_next_stop (w);
13080
13081 /* Unlink bpt from the bpt->related_breakpoint ring. */
13082 for (related = bpt; related->related_breakpoint != bpt;
13083 related = related->related_breakpoint);
13084 related->related_breakpoint = bpt->related_breakpoint;
13085 bpt->related_breakpoint = bpt;
13086 }
13087
13088 /* watch_command_1 creates a watchpoint but only sets its number if
13089 update_watchpoint succeeds in creating its bp_locations. If there's
13090 a problem in that process, we'll be asked to delete the half-created
13091 watchpoint. In that case, don't announce the deletion. */
13092 if (bpt->number)
13093 gdb::observers::breakpoint_deleted.notify (bpt);
13094
13095 if (breakpoint_chain == bpt)
13096 breakpoint_chain = bpt->next;
13097
13098 ALL_BREAKPOINTS (b)
13099 if (b->next == bpt)
13100 {
13101 b->next = bpt->next;
13102 break;
13103 }
13104
13105 /* Be sure no bpstat's are pointing at the breakpoint after it's
13106 been freed. */
13107 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13108 in all threads for now. Note that we cannot just remove bpstats
13109 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13110 commands are associated with the bpstat; if we remove it here,
13111 then the later call to bpstat_do_actions (&stop_bpstat); in
13112 event-top.c won't do anything, and temporary breakpoints with
13113 commands won't work. */
13114
13115 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13116
13117 /* Now that breakpoint is removed from breakpoint list, update the
13118 global location list. This will remove locations that used to
13119 belong to this breakpoint. Do this before freeing the breakpoint
13120 itself, since remove_breakpoint looks at location's owner. It
13121 might be better design to have location completely
13122 self-contained, but it's not the case now. */
13123 update_global_location_list (UGLL_DONT_INSERT);
13124
13125 /* On the chance that someone will soon try again to delete this
13126 same bp, we mark it as deleted before freeing its storage. */
13127 bpt->type = bp_none;
13128 delete bpt;
13129 }
13130
13131 /* Iterator function to call a user-provided callback function once
13132 for each of B and its related breakpoints. */
13133
13134 static void
13135 iterate_over_related_breakpoints (struct breakpoint *b,
13136 gdb::function_view<void (breakpoint *)> function)
13137 {
13138 struct breakpoint *related;
13139
13140 related = b;
13141 do
13142 {
13143 struct breakpoint *next;
13144
13145 /* FUNCTION may delete RELATED. */
13146 next = related->related_breakpoint;
13147
13148 if (next == related)
13149 {
13150 /* RELATED is the last ring entry. */
13151 function (related);
13152
13153 /* FUNCTION may have deleted it, so we'd never reach back to
13154 B. There's nothing left to do anyway, so just break
13155 out. */
13156 break;
13157 }
13158 else
13159 function (related);
13160
13161 related = next;
13162 }
13163 while (related != b);
13164 }
13165
13166 static void
13167 delete_command (const char *arg, int from_tty)
13168 {
13169 struct breakpoint *b, *b_tmp;
13170
13171 dont_repeat ();
13172
13173 if (arg == 0)
13174 {
13175 int breaks_to_delete = 0;
13176
13177 /* Delete all breakpoints if no argument. Do not delete
13178 internal breakpoints, these have to be deleted with an
13179 explicit breakpoint number argument. */
13180 ALL_BREAKPOINTS (b)
13181 if (user_breakpoint_p (b))
13182 {
13183 breaks_to_delete = 1;
13184 break;
13185 }
13186
13187 /* Ask user only if there are some breakpoints to delete. */
13188 if (!from_tty
13189 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13190 {
13191 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13192 if (user_breakpoint_p (b))
13193 delete_breakpoint (b);
13194 }
13195 }
13196 else
13197 map_breakpoint_numbers
13198 (arg, [&] (breakpoint *br)
13199 {
13200 iterate_over_related_breakpoints (br, delete_breakpoint);
13201 });
13202 }
13203
13204 /* Return true if all locations of B bound to PSPACE are pending. If
13205 PSPACE is NULL, all locations of all program spaces are
13206 considered. */
13207
13208 static int
13209 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13210 {
13211 struct bp_location *loc;
13212
13213 for (loc = b->loc; loc != NULL; loc = loc->next)
13214 if ((pspace == NULL
13215 || loc->pspace == pspace)
13216 && !loc->shlib_disabled
13217 && !loc->pspace->executing_startup)
13218 return 0;
13219 return 1;
13220 }
13221
13222 /* Subroutine of update_breakpoint_locations to simplify it.
13223 Return non-zero if multiple fns in list LOC have the same name.
13224 Null names are ignored. */
13225
13226 static int
13227 ambiguous_names_p (struct bp_location *loc)
13228 {
13229 struct bp_location *l;
13230 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13231 xcalloc, xfree);
13232
13233 for (l = loc; l != NULL; l = l->next)
13234 {
13235 const char **slot;
13236 const char *name = l->function_name;
13237
13238 /* Allow for some names to be NULL, ignore them. */
13239 if (name == NULL)
13240 continue;
13241
13242 slot = (const char **) htab_find_slot (htab, (const void *) name,
13243 INSERT);
13244 /* NOTE: We can assume slot != NULL here because xcalloc never
13245 returns NULL. */
13246 if (*slot != NULL)
13247 {
13248 htab_delete (htab);
13249 return 1;
13250 }
13251 *slot = name;
13252 }
13253
13254 htab_delete (htab);
13255 return 0;
13256 }
13257
13258 /* When symbols change, it probably means the sources changed as well,
13259 and it might mean the static tracepoint markers are no longer at
13260 the same address or line numbers they used to be at last we
13261 checked. Losing your static tracepoints whenever you rebuild is
13262 undesirable. This function tries to resync/rematch gdb static
13263 tracepoints with the markers on the target, for static tracepoints
13264 that have not been set by marker id. Static tracepoint that have
13265 been set by marker id are reset by marker id in breakpoint_re_set.
13266 The heuristic is:
13267
13268 1) For a tracepoint set at a specific address, look for a marker at
13269 the old PC. If one is found there, assume to be the same marker.
13270 If the name / string id of the marker found is different from the
13271 previous known name, assume that means the user renamed the marker
13272 in the sources, and output a warning.
13273
13274 2) For a tracepoint set at a given line number, look for a marker
13275 at the new address of the old line number. If one is found there,
13276 assume to be the same marker. If the name / string id of the
13277 marker found is different from the previous known name, assume that
13278 means the user renamed the marker in the sources, and output a
13279 warning.
13280
13281 3) If a marker is no longer found at the same address or line, it
13282 may mean the marker no longer exists. But it may also just mean
13283 the code changed a bit. Maybe the user added a few lines of code
13284 that made the marker move up or down (in line number terms). Ask
13285 the target for info about the marker with the string id as we knew
13286 it. If found, update line number and address in the matching
13287 static tracepoint. This will get confused if there's more than one
13288 marker with the same ID (possible in UST, although unadvised
13289 precisely because it confuses tools). */
13290
13291 static struct symtab_and_line
13292 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13293 {
13294 struct tracepoint *tp = (struct tracepoint *) b;
13295 struct static_tracepoint_marker marker;
13296 CORE_ADDR pc;
13297
13298 pc = sal.pc;
13299 if (sal.line)
13300 find_line_pc (sal.symtab, sal.line, &pc);
13301
13302 if (target_static_tracepoint_marker_at (pc, &marker))
13303 {
13304 if (tp->static_trace_marker_id != marker.str_id)
13305 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13306 b->number, tp->static_trace_marker_id.c_str (),
13307 marker.str_id.c_str ());
13308
13309 tp->static_trace_marker_id = std::move (marker.str_id);
13310
13311 return sal;
13312 }
13313
13314 /* Old marker wasn't found on target at lineno. Try looking it up
13315 by string ID. */
13316 if (!sal.explicit_pc
13317 && sal.line != 0
13318 && sal.symtab != NULL
13319 && !tp->static_trace_marker_id.empty ())
13320 {
13321 std::vector<static_tracepoint_marker> markers
13322 = target_static_tracepoint_markers_by_strid
13323 (tp->static_trace_marker_id.c_str ());
13324
13325 if (!markers.empty ())
13326 {
13327 struct symbol *sym;
13328 struct static_tracepoint_marker *tpmarker;
13329 struct ui_out *uiout = current_uiout;
13330 struct explicit_location explicit_loc;
13331
13332 tpmarker = &markers[0];
13333
13334 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13335
13336 warning (_("marker for static tracepoint %d (%s) not "
13337 "found at previous line number"),
13338 b->number, tp->static_trace_marker_id.c_str ());
13339
13340 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13341 sym = find_pc_sect_function (tpmarker->address, NULL);
13342 uiout->text ("Now in ");
13343 if (sym)
13344 {
13345 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13346 ui_out_style_kind::FUNCTION);
13347 uiout->text (" at ");
13348 }
13349 uiout->field_string ("file",
13350 symtab_to_filename_for_display (sal2.symtab),
13351 ui_out_style_kind::FILE);
13352 uiout->text (":");
13353
13354 if (uiout->is_mi_like_p ())
13355 {
13356 const char *fullname = symtab_to_fullname (sal2.symtab);
13357
13358 uiout->field_string ("fullname", fullname);
13359 }
13360
13361 uiout->field_int ("line", sal2.line);
13362 uiout->text ("\n");
13363
13364 b->loc->line_number = sal2.line;
13365 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13366
13367 b->location.reset (NULL);
13368 initialize_explicit_location (&explicit_loc);
13369 explicit_loc.source_filename
13370 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13371 explicit_loc.line_offset.offset = b->loc->line_number;
13372 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13373 b->location = new_explicit_location (&explicit_loc);
13374
13375 /* Might be nice to check if function changed, and warn if
13376 so. */
13377 }
13378 }
13379 return sal;
13380 }
13381
13382 /* Returns 1 iff locations A and B are sufficiently same that
13383 we don't need to report breakpoint as changed. */
13384
13385 static int
13386 locations_are_equal (struct bp_location *a, struct bp_location *b)
13387 {
13388 while (a && b)
13389 {
13390 if (a->address != b->address)
13391 return 0;
13392
13393 if (a->shlib_disabled != b->shlib_disabled)
13394 return 0;
13395
13396 if (a->enabled != b->enabled)
13397 return 0;
13398
13399 a = a->next;
13400 b = b->next;
13401 }
13402
13403 if ((a == NULL) != (b == NULL))
13404 return 0;
13405
13406 return 1;
13407 }
13408
13409 /* Split all locations of B that are bound to PSPACE out of B's
13410 location list to a separate list and return that list's head. If
13411 PSPACE is NULL, hoist out all locations of B. */
13412
13413 static struct bp_location *
13414 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13415 {
13416 struct bp_location head;
13417 struct bp_location *i = b->loc;
13418 struct bp_location **i_link = &b->loc;
13419 struct bp_location *hoisted = &head;
13420
13421 if (pspace == NULL)
13422 {
13423 i = b->loc;
13424 b->loc = NULL;
13425 return i;
13426 }
13427
13428 head.next = NULL;
13429
13430 while (i != NULL)
13431 {
13432 if (i->pspace == pspace)
13433 {
13434 *i_link = i->next;
13435 i->next = NULL;
13436 hoisted->next = i;
13437 hoisted = i;
13438 }
13439 else
13440 i_link = &i->next;
13441 i = *i_link;
13442 }
13443
13444 return head.next;
13445 }
13446
13447 /* Create new breakpoint locations for B (a hardware or software
13448 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13449 zero, then B is a ranged breakpoint. Only recreates locations for
13450 FILTER_PSPACE. Locations of other program spaces are left
13451 untouched. */
13452
13453 void
13454 update_breakpoint_locations (struct breakpoint *b,
13455 struct program_space *filter_pspace,
13456 gdb::array_view<const symtab_and_line> sals,
13457 gdb::array_view<const symtab_and_line> sals_end)
13458 {
13459 struct bp_location *existing_locations;
13460
13461 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13462 {
13463 /* Ranged breakpoints have only one start location and one end
13464 location. */
13465 b->enable_state = bp_disabled;
13466 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13467 "multiple locations found\n"),
13468 b->number);
13469 return;
13470 }
13471
13472 /* If there's no new locations, and all existing locations are
13473 pending, don't do anything. This optimizes the common case where
13474 all locations are in the same shared library, that was unloaded.
13475 We'd like to retain the location, so that when the library is
13476 loaded again, we don't loose the enabled/disabled status of the
13477 individual locations. */
13478 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13479 return;
13480
13481 existing_locations = hoist_existing_locations (b, filter_pspace);
13482
13483 for (const auto &sal : sals)
13484 {
13485 struct bp_location *new_loc;
13486
13487 switch_to_program_space_and_thread (sal.pspace);
13488
13489 new_loc = add_location_to_breakpoint (b, &sal);
13490
13491 /* Reparse conditions, they might contain references to the
13492 old symtab. */
13493 if (b->cond_string != NULL)
13494 {
13495 const char *s;
13496
13497 s = b->cond_string;
13498 try
13499 {
13500 new_loc->cond = parse_exp_1 (&s, sal.pc,
13501 block_for_pc (sal.pc),
13502 0);
13503 }
13504 catch (const gdb_exception_error &e)
13505 {
13506 warning (_("failed to reevaluate condition "
13507 "for breakpoint %d: %s"),
13508 b->number, e.what ());
13509 new_loc->enabled = 0;
13510 }
13511 }
13512
13513 if (!sals_end.empty ())
13514 {
13515 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13516
13517 new_loc->length = end - sals[0].pc + 1;
13518 }
13519 }
13520
13521 /* If possible, carry over 'disable' status from existing
13522 breakpoints. */
13523 {
13524 struct bp_location *e = existing_locations;
13525 /* If there are multiple breakpoints with the same function name,
13526 e.g. for inline functions, comparing function names won't work.
13527 Instead compare pc addresses; this is just a heuristic as things
13528 may have moved, but in practice it gives the correct answer
13529 often enough until a better solution is found. */
13530 int have_ambiguous_names = ambiguous_names_p (b->loc);
13531
13532 for (; e; e = e->next)
13533 {
13534 if (!e->enabled && e->function_name)
13535 {
13536 struct bp_location *l = b->loc;
13537 if (have_ambiguous_names)
13538 {
13539 for (; l; l = l->next)
13540 if (breakpoint_locations_match (e, l))
13541 {
13542 l->enabled = 0;
13543 break;
13544 }
13545 }
13546 else
13547 {
13548 for (; l; l = l->next)
13549 if (l->function_name
13550 && strcmp (e->function_name, l->function_name) == 0)
13551 {
13552 l->enabled = 0;
13553 break;
13554 }
13555 }
13556 }
13557 }
13558 }
13559
13560 if (!locations_are_equal (existing_locations, b->loc))
13561 gdb::observers::breakpoint_modified.notify (b);
13562 }
13563
13564 /* Find the SaL locations corresponding to the given LOCATION.
13565 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13566
13567 static std::vector<symtab_and_line>
13568 location_to_sals (struct breakpoint *b, struct event_location *location,
13569 struct program_space *search_pspace, int *found)
13570 {
13571 struct gdb_exception exception;
13572
13573 gdb_assert (b->ops != NULL);
13574
13575 std::vector<symtab_and_line> sals;
13576
13577 try
13578 {
13579 sals = b->ops->decode_location (b, location, search_pspace);
13580 }
13581 catch (gdb_exception_error &e)
13582 {
13583 int not_found_and_ok = 0;
13584
13585 /* For pending breakpoints, it's expected that parsing will
13586 fail until the right shared library is loaded. User has
13587 already told to create pending breakpoints and don't need
13588 extra messages. If breakpoint is in bp_shlib_disabled
13589 state, then user already saw the message about that
13590 breakpoint being disabled, and don't want to see more
13591 errors. */
13592 if (e.error == NOT_FOUND_ERROR
13593 && (b->condition_not_parsed
13594 || (b->loc != NULL
13595 && search_pspace != NULL
13596 && b->loc->pspace != search_pspace)
13597 || (b->loc && b->loc->shlib_disabled)
13598 || (b->loc && b->loc->pspace->executing_startup)
13599 || b->enable_state == bp_disabled))
13600 not_found_and_ok = 1;
13601
13602 if (!not_found_and_ok)
13603 {
13604 /* We surely don't want to warn about the same breakpoint
13605 10 times. One solution, implemented here, is disable
13606 the breakpoint on error. Another solution would be to
13607 have separate 'warning emitted' flag. Since this
13608 happens only when a binary has changed, I don't know
13609 which approach is better. */
13610 b->enable_state = bp_disabled;
13611 throw;
13612 }
13613
13614 exception = std::move (e);
13615 }
13616
13617 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13618 {
13619 for (auto &sal : sals)
13620 resolve_sal_pc (&sal);
13621 if (b->condition_not_parsed && b->extra_string != NULL)
13622 {
13623 char *cond_string, *extra_string;
13624 int thread, task;
13625
13626 find_condition_and_thread (b->extra_string, sals[0].pc,
13627 &cond_string, &thread, &task,
13628 &extra_string);
13629 gdb_assert (b->cond_string == NULL);
13630 if (cond_string)
13631 b->cond_string = cond_string;
13632 b->thread = thread;
13633 b->task = task;
13634 if (extra_string)
13635 {
13636 xfree (b->extra_string);
13637 b->extra_string = extra_string;
13638 }
13639 b->condition_not_parsed = 0;
13640 }
13641
13642 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13643 sals[0] = update_static_tracepoint (b, sals[0]);
13644
13645 *found = 1;
13646 }
13647 else
13648 *found = 0;
13649
13650 return sals;
13651 }
13652
13653 /* The default re_set method, for typical hardware or software
13654 breakpoints. Reevaluate the breakpoint and recreate its
13655 locations. */
13656
13657 static void
13658 breakpoint_re_set_default (struct breakpoint *b)
13659 {
13660 struct program_space *filter_pspace = current_program_space;
13661 std::vector<symtab_and_line> expanded, expanded_end;
13662
13663 int found;
13664 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13665 filter_pspace, &found);
13666 if (found)
13667 expanded = std::move (sals);
13668
13669 if (b->location_range_end != NULL)
13670 {
13671 std::vector<symtab_and_line> sals_end
13672 = location_to_sals (b, b->location_range_end.get (),
13673 filter_pspace, &found);
13674 if (found)
13675 expanded_end = std::move (sals_end);
13676 }
13677
13678 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13679 }
13680
13681 /* Default method for creating SALs from an address string. It basically
13682 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13683
13684 static void
13685 create_sals_from_location_default (const struct event_location *location,
13686 struct linespec_result *canonical,
13687 enum bptype type_wanted)
13688 {
13689 parse_breakpoint_sals (location, canonical);
13690 }
13691
13692 /* Call create_breakpoints_sal for the given arguments. This is the default
13693 function for the `create_breakpoints_sal' method of
13694 breakpoint_ops. */
13695
13696 static void
13697 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13698 struct linespec_result *canonical,
13699 gdb::unique_xmalloc_ptr<char> cond_string,
13700 gdb::unique_xmalloc_ptr<char> extra_string,
13701 enum bptype type_wanted,
13702 enum bpdisp disposition,
13703 int thread,
13704 int task, int ignore_count,
13705 const struct breakpoint_ops *ops,
13706 int from_tty, int enabled,
13707 int internal, unsigned flags)
13708 {
13709 create_breakpoints_sal (gdbarch, canonical,
13710 std::move (cond_string),
13711 std::move (extra_string),
13712 type_wanted, disposition,
13713 thread, task, ignore_count, ops, from_tty,
13714 enabled, internal, flags);
13715 }
13716
13717 /* Decode the line represented by S by calling decode_line_full. This is the
13718 default function for the `decode_location' method of breakpoint_ops. */
13719
13720 static std::vector<symtab_and_line>
13721 decode_location_default (struct breakpoint *b,
13722 const struct event_location *location,
13723 struct program_space *search_pspace)
13724 {
13725 struct linespec_result canonical;
13726
13727 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13728 NULL, 0, &canonical, multiple_symbols_all,
13729 b->filter);
13730
13731 /* We should get 0 or 1 resulting SALs. */
13732 gdb_assert (canonical.lsals.size () < 2);
13733
13734 if (!canonical.lsals.empty ())
13735 {
13736 const linespec_sals &lsal = canonical.lsals[0];
13737 return std::move (lsal.sals);
13738 }
13739 return {};
13740 }
13741
13742 /* Reset a breakpoint. */
13743
13744 static void
13745 breakpoint_re_set_one (breakpoint *b)
13746 {
13747 input_radix = b->input_radix;
13748 set_language (b->language);
13749
13750 b->ops->re_set (b);
13751 }
13752
13753 /* Re-set breakpoint locations for the current program space.
13754 Locations bound to other program spaces are left untouched. */
13755
13756 void
13757 breakpoint_re_set (void)
13758 {
13759 struct breakpoint *b, *b_tmp;
13760
13761 {
13762 scoped_restore_current_language save_language;
13763 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13764 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13765
13766 /* breakpoint_re_set_one sets the current_language to the language
13767 of the breakpoint it is resetting (see prepare_re_set_context)
13768 before re-evaluating the breakpoint's location. This change can
13769 unfortunately get undone by accident if the language_mode is set
13770 to auto, and we either switch frames, or more likely in this context,
13771 we select the current frame.
13772
13773 We prevent this by temporarily turning the language_mode to
13774 language_mode_manual. We restore it once all breakpoints
13775 have been reset. */
13776 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13777 language_mode = language_mode_manual;
13778
13779 /* Note: we must not try to insert locations until after all
13780 breakpoints have been re-set. Otherwise, e.g., when re-setting
13781 breakpoint 1, we'd insert the locations of breakpoint 2, which
13782 hadn't been re-set yet, and thus may have stale locations. */
13783
13784 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13785 {
13786 try
13787 {
13788 breakpoint_re_set_one (b);
13789 }
13790 catch (const gdb_exception &ex)
13791 {
13792 exception_fprintf (gdb_stderr, ex,
13793 "Error in re-setting breakpoint %d: ",
13794 b->number);
13795 }
13796 }
13797
13798 jit_breakpoint_re_set ();
13799 }
13800
13801 create_overlay_event_breakpoint ();
13802 create_longjmp_master_breakpoint ();
13803 create_std_terminate_master_breakpoint ();
13804 create_exception_master_breakpoint ();
13805
13806 /* Now we can insert. */
13807 update_global_location_list (UGLL_MAY_INSERT);
13808 }
13809 \f
13810 /* Reset the thread number of this breakpoint:
13811
13812 - If the breakpoint is for all threads, leave it as-is.
13813 - Else, reset it to the current thread for inferior_ptid. */
13814 void
13815 breakpoint_re_set_thread (struct breakpoint *b)
13816 {
13817 if (b->thread != -1)
13818 {
13819 b->thread = inferior_thread ()->global_num;
13820
13821 /* We're being called after following a fork. The new fork is
13822 selected as current, and unless this was a vfork will have a
13823 different program space from the original thread. Reset that
13824 as well. */
13825 b->loc->pspace = current_program_space;
13826 }
13827 }
13828
13829 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13830 If from_tty is nonzero, it prints a message to that effect,
13831 which ends with a period (no newline). */
13832
13833 void
13834 set_ignore_count (int bptnum, int count, int from_tty)
13835 {
13836 struct breakpoint *b;
13837
13838 if (count < 0)
13839 count = 0;
13840
13841 ALL_BREAKPOINTS (b)
13842 if (b->number == bptnum)
13843 {
13844 if (is_tracepoint (b))
13845 {
13846 if (from_tty && count != 0)
13847 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13848 bptnum);
13849 return;
13850 }
13851
13852 b->ignore_count = count;
13853 if (from_tty)
13854 {
13855 if (count == 0)
13856 printf_filtered (_("Will stop next time "
13857 "breakpoint %d is reached."),
13858 bptnum);
13859 else if (count == 1)
13860 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13861 bptnum);
13862 else
13863 printf_filtered (_("Will ignore next %d "
13864 "crossings of breakpoint %d."),
13865 count, bptnum);
13866 }
13867 gdb::observers::breakpoint_modified.notify (b);
13868 return;
13869 }
13870
13871 error (_("No breakpoint number %d."), bptnum);
13872 }
13873
13874 /* Command to set ignore-count of breakpoint N to COUNT. */
13875
13876 static void
13877 ignore_command (const char *args, int from_tty)
13878 {
13879 const char *p = args;
13880 int num;
13881
13882 if (p == 0)
13883 error_no_arg (_("a breakpoint number"));
13884
13885 num = get_number (&p);
13886 if (num == 0)
13887 error (_("bad breakpoint number: '%s'"), args);
13888 if (*p == 0)
13889 error (_("Second argument (specified ignore-count) is missing."));
13890
13891 set_ignore_count (num,
13892 longest_to_int (value_as_long (parse_and_eval (p))),
13893 from_tty);
13894 if (from_tty)
13895 printf_filtered ("\n");
13896 }
13897 \f
13898
13899 /* Call FUNCTION on each of the breakpoints with numbers in the range
13900 defined by BP_NUM_RANGE (an inclusive range). */
13901
13902 static void
13903 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13904 gdb::function_view<void (breakpoint *)> function)
13905 {
13906 if (bp_num_range.first == 0)
13907 {
13908 warning (_("bad breakpoint number at or near '%d'"),
13909 bp_num_range.first);
13910 }
13911 else
13912 {
13913 struct breakpoint *b, *tmp;
13914
13915 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13916 {
13917 bool match = false;
13918
13919 ALL_BREAKPOINTS_SAFE (b, tmp)
13920 if (b->number == i)
13921 {
13922 match = true;
13923 function (b);
13924 break;
13925 }
13926 if (!match)
13927 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13928 }
13929 }
13930 }
13931
13932 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13933 ARGS. */
13934
13935 static void
13936 map_breakpoint_numbers (const char *args,
13937 gdb::function_view<void (breakpoint *)> function)
13938 {
13939 if (args == NULL || *args == '\0')
13940 error_no_arg (_("one or more breakpoint numbers"));
13941
13942 number_or_range_parser parser (args);
13943
13944 while (!parser.finished ())
13945 {
13946 int num = parser.get_number ();
13947 map_breakpoint_number_range (std::make_pair (num, num), function);
13948 }
13949 }
13950
13951 /* Return the breakpoint location structure corresponding to the
13952 BP_NUM and LOC_NUM values. */
13953
13954 static struct bp_location *
13955 find_location_by_number (int bp_num, int loc_num)
13956 {
13957 struct breakpoint *b;
13958
13959 ALL_BREAKPOINTS (b)
13960 if (b->number == bp_num)
13961 {
13962 break;
13963 }
13964
13965 if (!b || b->number != bp_num)
13966 error (_("Bad breakpoint number '%d'"), bp_num);
13967
13968 if (loc_num == 0)
13969 error (_("Bad breakpoint location number '%d'"), loc_num);
13970
13971 int n = 0;
13972 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13973 if (++n == loc_num)
13974 return loc;
13975
13976 error (_("Bad breakpoint location number '%d'"), loc_num);
13977 }
13978
13979 /* Modes of operation for extract_bp_num. */
13980 enum class extract_bp_kind
13981 {
13982 /* Extracting a breakpoint number. */
13983 bp,
13984
13985 /* Extracting a location number. */
13986 loc,
13987 };
13988
13989 /* Extract a breakpoint or location number (as determined by KIND)
13990 from the string starting at START. TRAILER is a character which
13991 can be found after the number. If you don't want a trailer, use
13992 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13993 string. This always returns a positive integer. */
13994
13995 static int
13996 extract_bp_num (extract_bp_kind kind, const char *start,
13997 int trailer, const char **end_out = NULL)
13998 {
13999 const char *end = start;
14000 int num = get_number_trailer (&end, trailer);
14001 if (num < 0)
14002 error (kind == extract_bp_kind::bp
14003 ? _("Negative breakpoint number '%.*s'")
14004 : _("Negative breakpoint location number '%.*s'"),
14005 int (end - start), start);
14006 if (num == 0)
14007 error (kind == extract_bp_kind::bp
14008 ? _("Bad breakpoint number '%.*s'")
14009 : _("Bad breakpoint location number '%.*s'"),
14010 int (end - start), start);
14011
14012 if (end_out != NULL)
14013 *end_out = end;
14014 return num;
14015 }
14016
14017 /* Extract a breakpoint or location range (as determined by KIND) in
14018 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14019 representing the (inclusive) range. The returned pair's elements
14020 are always positive integers. */
14021
14022 static std::pair<int, int>
14023 extract_bp_or_bp_range (extract_bp_kind kind,
14024 const std::string &arg,
14025 std::string::size_type arg_offset)
14026 {
14027 std::pair<int, int> range;
14028 const char *bp_loc = &arg[arg_offset];
14029 std::string::size_type dash = arg.find ('-', arg_offset);
14030 if (dash != std::string::npos)
14031 {
14032 /* bp_loc is a range (x-z). */
14033 if (arg.length () == dash + 1)
14034 error (kind == extract_bp_kind::bp
14035 ? _("Bad breakpoint number at or near: '%s'")
14036 : _("Bad breakpoint location number at or near: '%s'"),
14037 bp_loc);
14038
14039 const char *end;
14040 const char *start_first = bp_loc;
14041 const char *start_second = &arg[dash + 1];
14042 range.first = extract_bp_num (kind, start_first, '-');
14043 range.second = extract_bp_num (kind, start_second, '\0', &end);
14044
14045 if (range.first > range.second)
14046 error (kind == extract_bp_kind::bp
14047 ? _("Inverted breakpoint range at '%.*s'")
14048 : _("Inverted breakpoint location range at '%.*s'"),
14049 int (end - start_first), start_first);
14050 }
14051 else
14052 {
14053 /* bp_loc is a single value. */
14054 range.first = extract_bp_num (kind, bp_loc, '\0');
14055 range.second = range.first;
14056 }
14057 return range;
14058 }
14059
14060 /* Extract the breakpoint/location range specified by ARG. Returns
14061 the breakpoint range in BP_NUM_RANGE, and the location range in
14062 BP_LOC_RANGE.
14063
14064 ARG may be in any of the following forms:
14065
14066 x where 'x' is a breakpoint number.
14067 x-y where 'x' and 'y' specify a breakpoint numbers range.
14068 x.y where 'x' is a breakpoint number and 'y' a location number.
14069 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14070 location number range.
14071 */
14072
14073 static void
14074 extract_bp_number_and_location (const std::string &arg,
14075 std::pair<int, int> &bp_num_range,
14076 std::pair<int, int> &bp_loc_range)
14077 {
14078 std::string::size_type dot = arg.find ('.');
14079
14080 if (dot != std::string::npos)
14081 {
14082 /* Handle 'x.y' and 'x.y-z' cases. */
14083
14084 if (arg.length () == dot + 1 || dot == 0)
14085 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14086
14087 bp_num_range.first
14088 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14089 bp_num_range.second = bp_num_range.first;
14090
14091 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14092 arg, dot + 1);
14093 }
14094 else
14095 {
14096 /* Handle x and x-y cases. */
14097
14098 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14099 bp_loc_range.first = 0;
14100 bp_loc_range.second = 0;
14101 }
14102 }
14103
14104 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14105 specifies whether to enable or disable. */
14106
14107 static void
14108 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14109 {
14110 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14111 if (loc != NULL)
14112 {
14113 if (loc->enabled != enable)
14114 {
14115 loc->enabled = enable;
14116 mark_breakpoint_location_modified (loc);
14117 }
14118 if (target_supports_enable_disable_tracepoint ()
14119 && current_trace_status ()->running && loc->owner
14120 && is_tracepoint (loc->owner))
14121 target_disable_tracepoint (loc);
14122 }
14123 update_global_location_list (UGLL_DONT_INSERT);
14124
14125 gdb::observers::breakpoint_modified.notify (loc->owner);
14126 }
14127
14128 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14129 number of the breakpoint, and BP_LOC_RANGE specifies the
14130 (inclusive) range of location numbers of that breakpoint to
14131 enable/disable. ENABLE specifies whether to enable or disable the
14132 location. */
14133
14134 static void
14135 enable_disable_breakpoint_location_range (int bp_num,
14136 std::pair<int, int> &bp_loc_range,
14137 bool enable)
14138 {
14139 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14140 enable_disable_bp_num_loc (bp_num, i, enable);
14141 }
14142
14143 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14144 If from_tty is nonzero, it prints a message to that effect,
14145 which ends with a period (no newline). */
14146
14147 void
14148 disable_breakpoint (struct breakpoint *bpt)
14149 {
14150 /* Never disable a watchpoint scope breakpoint; we want to
14151 hit them when we leave scope so we can delete both the
14152 watchpoint and its scope breakpoint at that time. */
14153 if (bpt->type == bp_watchpoint_scope)
14154 return;
14155
14156 bpt->enable_state = bp_disabled;
14157
14158 /* Mark breakpoint locations modified. */
14159 mark_breakpoint_modified (bpt);
14160
14161 if (target_supports_enable_disable_tracepoint ()
14162 && current_trace_status ()->running && is_tracepoint (bpt))
14163 {
14164 struct bp_location *location;
14165
14166 for (location = bpt->loc; location; location = location->next)
14167 target_disable_tracepoint (location);
14168 }
14169
14170 update_global_location_list (UGLL_DONT_INSERT);
14171
14172 gdb::observers::breakpoint_modified.notify (bpt);
14173 }
14174
14175 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14176 specified in ARGS. ARGS may be in any of the formats handled by
14177 extract_bp_number_and_location. ENABLE specifies whether to enable
14178 or disable the breakpoints/locations. */
14179
14180 static void
14181 enable_disable_command (const char *args, int from_tty, bool enable)
14182 {
14183 if (args == 0)
14184 {
14185 struct breakpoint *bpt;
14186
14187 ALL_BREAKPOINTS (bpt)
14188 if (user_breakpoint_p (bpt))
14189 {
14190 if (enable)
14191 enable_breakpoint (bpt);
14192 else
14193 disable_breakpoint (bpt);
14194 }
14195 }
14196 else
14197 {
14198 std::string num = extract_arg (&args);
14199
14200 while (!num.empty ())
14201 {
14202 std::pair<int, int> bp_num_range, bp_loc_range;
14203
14204 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14205
14206 if (bp_loc_range.first == bp_loc_range.second
14207 && bp_loc_range.first == 0)
14208 {
14209 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14210 map_breakpoint_number_range (bp_num_range,
14211 enable
14212 ? enable_breakpoint
14213 : disable_breakpoint);
14214 }
14215 else
14216 {
14217 /* Handle breakpoint ids with formats 'x.y' or
14218 'x.y-z'. */
14219 enable_disable_breakpoint_location_range
14220 (bp_num_range.first, bp_loc_range, enable);
14221 }
14222 num = extract_arg (&args);
14223 }
14224 }
14225 }
14226
14227 /* The disable command disables the specified breakpoints/locations
14228 (or all defined breakpoints) so they're no longer effective in
14229 stopping the inferior. ARGS may be in any of the forms defined in
14230 extract_bp_number_and_location. */
14231
14232 static void
14233 disable_command (const char *args, int from_tty)
14234 {
14235 enable_disable_command (args, from_tty, false);
14236 }
14237
14238 static void
14239 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14240 int count)
14241 {
14242 int target_resources_ok;
14243
14244 if (bpt->type == bp_hardware_breakpoint)
14245 {
14246 int i;
14247 i = hw_breakpoint_used_count ();
14248 target_resources_ok =
14249 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14250 i + 1, 0);
14251 if (target_resources_ok == 0)
14252 error (_("No hardware breakpoint support in the target."));
14253 else if (target_resources_ok < 0)
14254 error (_("Hardware breakpoints used exceeds limit."));
14255 }
14256
14257 if (is_watchpoint (bpt))
14258 {
14259 /* Initialize it just to avoid a GCC false warning. */
14260 enum enable_state orig_enable_state = bp_disabled;
14261
14262 try
14263 {
14264 struct watchpoint *w = (struct watchpoint *) bpt;
14265
14266 orig_enable_state = bpt->enable_state;
14267 bpt->enable_state = bp_enabled;
14268 update_watchpoint (w, 1 /* reparse */);
14269 }
14270 catch (const gdb_exception &e)
14271 {
14272 bpt->enable_state = orig_enable_state;
14273 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14274 bpt->number);
14275 return;
14276 }
14277 }
14278
14279 bpt->enable_state = bp_enabled;
14280
14281 /* Mark breakpoint locations modified. */
14282 mark_breakpoint_modified (bpt);
14283
14284 if (target_supports_enable_disable_tracepoint ()
14285 && current_trace_status ()->running && is_tracepoint (bpt))
14286 {
14287 struct bp_location *location;
14288
14289 for (location = bpt->loc; location; location = location->next)
14290 target_enable_tracepoint (location);
14291 }
14292
14293 bpt->disposition = disposition;
14294 bpt->enable_count = count;
14295 update_global_location_list (UGLL_MAY_INSERT);
14296
14297 gdb::observers::breakpoint_modified.notify (bpt);
14298 }
14299
14300
14301 void
14302 enable_breakpoint (struct breakpoint *bpt)
14303 {
14304 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14305 }
14306
14307 /* The enable command enables the specified breakpoints/locations (or
14308 all defined breakpoints) so they once again become (or continue to
14309 be) effective in stopping the inferior. ARGS may be in any of the
14310 forms defined in extract_bp_number_and_location. */
14311
14312 static void
14313 enable_command (const char *args, int from_tty)
14314 {
14315 enable_disable_command (args, from_tty, true);
14316 }
14317
14318 static void
14319 enable_once_command (const char *args, int from_tty)
14320 {
14321 map_breakpoint_numbers
14322 (args, [&] (breakpoint *b)
14323 {
14324 iterate_over_related_breakpoints
14325 (b, [&] (breakpoint *bpt)
14326 {
14327 enable_breakpoint_disp (bpt, disp_disable, 1);
14328 });
14329 });
14330 }
14331
14332 static void
14333 enable_count_command (const char *args, int from_tty)
14334 {
14335 int count;
14336
14337 if (args == NULL)
14338 error_no_arg (_("hit count"));
14339
14340 count = get_number (&args);
14341
14342 map_breakpoint_numbers
14343 (args, [&] (breakpoint *b)
14344 {
14345 iterate_over_related_breakpoints
14346 (b, [&] (breakpoint *bpt)
14347 {
14348 enable_breakpoint_disp (bpt, disp_disable, count);
14349 });
14350 });
14351 }
14352
14353 static void
14354 enable_delete_command (const char *args, int from_tty)
14355 {
14356 map_breakpoint_numbers
14357 (args, [&] (breakpoint *b)
14358 {
14359 iterate_over_related_breakpoints
14360 (b, [&] (breakpoint *bpt)
14361 {
14362 enable_breakpoint_disp (bpt, disp_del, 1);
14363 });
14364 });
14365 }
14366 \f
14367 static void
14368 set_breakpoint_cmd (const char *args, int from_tty)
14369 {
14370 }
14371
14372 static void
14373 show_breakpoint_cmd (const char *args, int from_tty)
14374 {
14375 }
14376
14377 /* Invalidate last known value of any hardware watchpoint if
14378 the memory which that value represents has been written to by
14379 GDB itself. */
14380
14381 static void
14382 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14383 CORE_ADDR addr, ssize_t len,
14384 const bfd_byte *data)
14385 {
14386 struct breakpoint *bp;
14387
14388 ALL_BREAKPOINTS (bp)
14389 if (bp->enable_state == bp_enabled
14390 && bp->type == bp_hardware_watchpoint)
14391 {
14392 struct watchpoint *wp = (struct watchpoint *) bp;
14393
14394 if (wp->val_valid && wp->val != nullptr)
14395 {
14396 struct bp_location *loc;
14397
14398 for (loc = bp->loc; loc != NULL; loc = loc->next)
14399 if (loc->loc_type == bp_loc_hardware_watchpoint
14400 && loc->address + loc->length > addr
14401 && addr + len > loc->address)
14402 {
14403 wp->val = NULL;
14404 wp->val_valid = 0;
14405 }
14406 }
14407 }
14408 }
14409
14410 /* Create and insert a breakpoint for software single step. */
14411
14412 void
14413 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14414 const address_space *aspace,
14415 CORE_ADDR next_pc)
14416 {
14417 struct thread_info *tp = inferior_thread ();
14418 struct symtab_and_line sal;
14419 CORE_ADDR pc = next_pc;
14420
14421 if (tp->control.single_step_breakpoints == NULL)
14422 {
14423 tp->control.single_step_breakpoints
14424 = new_single_step_breakpoint (tp->global_num, gdbarch);
14425 }
14426
14427 sal = find_pc_line (pc, 0);
14428 sal.pc = pc;
14429 sal.section = find_pc_overlay (pc);
14430 sal.explicit_pc = 1;
14431 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14432
14433 update_global_location_list (UGLL_INSERT);
14434 }
14435
14436 /* Insert single step breakpoints according to the current state. */
14437
14438 int
14439 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14440 {
14441 struct regcache *regcache = get_current_regcache ();
14442 std::vector<CORE_ADDR> next_pcs;
14443
14444 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14445
14446 if (!next_pcs.empty ())
14447 {
14448 struct frame_info *frame = get_current_frame ();
14449 const address_space *aspace = get_frame_address_space (frame);
14450
14451 for (CORE_ADDR pc : next_pcs)
14452 insert_single_step_breakpoint (gdbarch, aspace, pc);
14453
14454 return 1;
14455 }
14456 else
14457 return 0;
14458 }
14459
14460 /* See breakpoint.h. */
14461
14462 int
14463 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14464 const address_space *aspace,
14465 CORE_ADDR pc)
14466 {
14467 struct bp_location *loc;
14468
14469 for (loc = bp->loc; loc != NULL; loc = loc->next)
14470 if (loc->inserted
14471 && breakpoint_location_address_match (loc, aspace, pc))
14472 return 1;
14473
14474 return 0;
14475 }
14476
14477 /* Check whether a software single-step breakpoint is inserted at
14478 PC. */
14479
14480 int
14481 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14482 CORE_ADDR pc)
14483 {
14484 struct breakpoint *bpt;
14485
14486 ALL_BREAKPOINTS (bpt)
14487 {
14488 if (bpt->type == bp_single_step
14489 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14490 return 1;
14491 }
14492 return 0;
14493 }
14494
14495 /* Tracepoint-specific operations. */
14496
14497 /* Set tracepoint count to NUM. */
14498 static void
14499 set_tracepoint_count (int num)
14500 {
14501 tracepoint_count = num;
14502 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14503 }
14504
14505 static void
14506 trace_command (const char *arg, int from_tty)
14507 {
14508 struct breakpoint_ops *ops;
14509
14510 event_location_up location = string_to_event_location (&arg,
14511 current_language);
14512 if (location != NULL
14513 && event_location_type (location.get ()) == PROBE_LOCATION)
14514 ops = &tracepoint_probe_breakpoint_ops;
14515 else
14516 ops = &tracepoint_breakpoint_ops;
14517
14518 create_breakpoint (get_current_arch (),
14519 location.get (),
14520 NULL, 0, arg, 1 /* parse arg */,
14521 0 /* tempflag */,
14522 bp_tracepoint /* type_wanted */,
14523 0 /* Ignore count */,
14524 pending_break_support,
14525 ops,
14526 from_tty,
14527 1 /* enabled */,
14528 0 /* internal */, 0);
14529 }
14530
14531 static void
14532 ftrace_command (const char *arg, int from_tty)
14533 {
14534 event_location_up location = string_to_event_location (&arg,
14535 current_language);
14536 create_breakpoint (get_current_arch (),
14537 location.get (),
14538 NULL, 0, arg, 1 /* parse arg */,
14539 0 /* tempflag */,
14540 bp_fast_tracepoint /* type_wanted */,
14541 0 /* Ignore count */,
14542 pending_break_support,
14543 &tracepoint_breakpoint_ops,
14544 from_tty,
14545 1 /* enabled */,
14546 0 /* internal */, 0);
14547 }
14548
14549 /* strace command implementation. Creates a static tracepoint. */
14550
14551 static void
14552 strace_command (const char *arg, int from_tty)
14553 {
14554 struct breakpoint_ops *ops;
14555 event_location_up location;
14556
14557 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14558 or with a normal static tracepoint. */
14559 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14560 {
14561 ops = &strace_marker_breakpoint_ops;
14562 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14563 }
14564 else
14565 {
14566 ops = &tracepoint_breakpoint_ops;
14567 location = string_to_event_location (&arg, current_language);
14568 }
14569
14570 create_breakpoint (get_current_arch (),
14571 location.get (),
14572 NULL, 0, arg, 1 /* parse arg */,
14573 0 /* tempflag */,
14574 bp_static_tracepoint /* type_wanted */,
14575 0 /* Ignore count */,
14576 pending_break_support,
14577 ops,
14578 from_tty,
14579 1 /* enabled */,
14580 0 /* internal */, 0);
14581 }
14582
14583 /* Set up a fake reader function that gets command lines from a linked
14584 list that was acquired during tracepoint uploading. */
14585
14586 static struct uploaded_tp *this_utp;
14587 static int next_cmd;
14588
14589 static char *
14590 read_uploaded_action (void)
14591 {
14592 char *rslt = nullptr;
14593
14594 if (next_cmd < this_utp->cmd_strings.size ())
14595 {
14596 rslt = this_utp->cmd_strings[next_cmd].get ();
14597 next_cmd++;
14598 }
14599
14600 return rslt;
14601 }
14602
14603 /* Given information about a tracepoint as recorded on a target (which
14604 can be either a live system or a trace file), attempt to create an
14605 equivalent GDB tracepoint. This is not a reliable process, since
14606 the target does not necessarily have all the information used when
14607 the tracepoint was originally defined. */
14608
14609 struct tracepoint *
14610 create_tracepoint_from_upload (struct uploaded_tp *utp)
14611 {
14612 const char *addr_str;
14613 char small_buf[100];
14614 struct tracepoint *tp;
14615
14616 if (utp->at_string)
14617 addr_str = utp->at_string.get ();
14618 else
14619 {
14620 /* In the absence of a source location, fall back to raw
14621 address. Since there is no way to confirm that the address
14622 means the same thing as when the trace was started, warn the
14623 user. */
14624 warning (_("Uploaded tracepoint %d has no "
14625 "source location, using raw address"),
14626 utp->number);
14627 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14628 addr_str = small_buf;
14629 }
14630
14631 /* There's not much we can do with a sequence of bytecodes. */
14632 if (utp->cond && !utp->cond_string)
14633 warning (_("Uploaded tracepoint %d condition "
14634 "has no source form, ignoring it"),
14635 utp->number);
14636
14637 event_location_up location = string_to_event_location (&addr_str,
14638 current_language);
14639 if (!create_breakpoint (get_current_arch (),
14640 location.get (),
14641 utp->cond_string.get (), -1, addr_str,
14642 0 /* parse cond/thread */,
14643 0 /* tempflag */,
14644 utp->type /* type_wanted */,
14645 0 /* Ignore count */,
14646 pending_break_support,
14647 &tracepoint_breakpoint_ops,
14648 0 /* from_tty */,
14649 utp->enabled /* enabled */,
14650 0 /* internal */,
14651 CREATE_BREAKPOINT_FLAGS_INSERTED))
14652 return NULL;
14653
14654 /* Get the tracepoint we just created. */
14655 tp = get_tracepoint (tracepoint_count);
14656 gdb_assert (tp != NULL);
14657
14658 if (utp->pass > 0)
14659 {
14660 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14661 tp->number);
14662
14663 trace_pass_command (small_buf, 0);
14664 }
14665
14666 /* If we have uploaded versions of the original commands, set up a
14667 special-purpose "reader" function and call the usual command line
14668 reader, then pass the result to the breakpoint command-setting
14669 function. */
14670 if (!utp->cmd_strings.empty ())
14671 {
14672 counted_command_line cmd_list;
14673
14674 this_utp = utp;
14675 next_cmd = 0;
14676
14677 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14678
14679 breakpoint_set_commands (tp, std::move (cmd_list));
14680 }
14681 else if (!utp->actions.empty ()
14682 || !utp->step_actions.empty ())
14683 warning (_("Uploaded tracepoint %d actions "
14684 "have no source form, ignoring them"),
14685 utp->number);
14686
14687 /* Copy any status information that might be available. */
14688 tp->hit_count = utp->hit_count;
14689 tp->traceframe_usage = utp->traceframe_usage;
14690
14691 return tp;
14692 }
14693
14694 /* Print information on tracepoint number TPNUM_EXP, or all if
14695 omitted. */
14696
14697 static void
14698 info_tracepoints_command (const char *args, int from_tty)
14699 {
14700 struct ui_out *uiout = current_uiout;
14701 int num_printed;
14702
14703 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14704
14705 if (num_printed == 0)
14706 {
14707 if (args == NULL || *args == '\0')
14708 uiout->message ("No tracepoints.\n");
14709 else
14710 uiout->message ("No tracepoint matching '%s'.\n", args);
14711 }
14712
14713 default_collect_info ();
14714 }
14715
14716 /* The 'enable trace' command enables tracepoints.
14717 Not supported by all targets. */
14718 static void
14719 enable_trace_command (const char *args, int from_tty)
14720 {
14721 enable_command (args, from_tty);
14722 }
14723
14724 /* The 'disable trace' command disables tracepoints.
14725 Not supported by all targets. */
14726 static void
14727 disable_trace_command (const char *args, int from_tty)
14728 {
14729 disable_command (args, from_tty);
14730 }
14731
14732 /* Remove a tracepoint (or all if no argument). */
14733 static void
14734 delete_trace_command (const char *arg, int from_tty)
14735 {
14736 struct breakpoint *b, *b_tmp;
14737
14738 dont_repeat ();
14739
14740 if (arg == 0)
14741 {
14742 int breaks_to_delete = 0;
14743
14744 /* Delete all breakpoints if no argument.
14745 Do not delete internal or call-dummy breakpoints, these
14746 have to be deleted with an explicit breakpoint number
14747 argument. */
14748 ALL_TRACEPOINTS (b)
14749 if (is_tracepoint (b) && user_breakpoint_p (b))
14750 {
14751 breaks_to_delete = 1;
14752 break;
14753 }
14754
14755 /* Ask user only if there are some breakpoints to delete. */
14756 if (!from_tty
14757 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14758 {
14759 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14760 if (is_tracepoint (b) && user_breakpoint_p (b))
14761 delete_breakpoint (b);
14762 }
14763 }
14764 else
14765 map_breakpoint_numbers
14766 (arg, [&] (breakpoint *br)
14767 {
14768 iterate_over_related_breakpoints (br, delete_breakpoint);
14769 });
14770 }
14771
14772 /* Helper function for trace_pass_command. */
14773
14774 static void
14775 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14776 {
14777 tp->pass_count = count;
14778 gdb::observers::breakpoint_modified.notify (tp);
14779 if (from_tty)
14780 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14781 tp->number, count);
14782 }
14783
14784 /* Set passcount for tracepoint.
14785
14786 First command argument is passcount, second is tracepoint number.
14787 If tracepoint number omitted, apply to most recently defined.
14788 Also accepts special argument "all". */
14789
14790 static void
14791 trace_pass_command (const char *args, int from_tty)
14792 {
14793 struct tracepoint *t1;
14794 ULONGEST count;
14795
14796 if (args == 0 || *args == 0)
14797 error (_("passcount command requires an "
14798 "argument (count + optional TP num)"));
14799
14800 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14801
14802 args = skip_spaces (args);
14803 if (*args && strncasecmp (args, "all", 3) == 0)
14804 {
14805 struct breakpoint *b;
14806
14807 args += 3; /* Skip special argument "all". */
14808 if (*args)
14809 error (_("Junk at end of arguments."));
14810
14811 ALL_TRACEPOINTS (b)
14812 {
14813 t1 = (struct tracepoint *) b;
14814 trace_pass_set_count (t1, count, from_tty);
14815 }
14816 }
14817 else if (*args == '\0')
14818 {
14819 t1 = get_tracepoint_by_number (&args, NULL);
14820 if (t1)
14821 trace_pass_set_count (t1, count, from_tty);
14822 }
14823 else
14824 {
14825 number_or_range_parser parser (args);
14826 while (!parser.finished ())
14827 {
14828 t1 = get_tracepoint_by_number (&args, &parser);
14829 if (t1)
14830 trace_pass_set_count (t1, count, from_tty);
14831 }
14832 }
14833 }
14834
14835 struct tracepoint *
14836 get_tracepoint (int num)
14837 {
14838 struct breakpoint *t;
14839
14840 ALL_TRACEPOINTS (t)
14841 if (t->number == num)
14842 return (struct tracepoint *) t;
14843
14844 return NULL;
14845 }
14846
14847 /* Find the tracepoint with the given target-side number (which may be
14848 different from the tracepoint number after disconnecting and
14849 reconnecting). */
14850
14851 struct tracepoint *
14852 get_tracepoint_by_number_on_target (int num)
14853 {
14854 struct breakpoint *b;
14855
14856 ALL_TRACEPOINTS (b)
14857 {
14858 struct tracepoint *t = (struct tracepoint *) b;
14859
14860 if (t->number_on_target == num)
14861 return t;
14862 }
14863
14864 return NULL;
14865 }
14866
14867 /* Utility: parse a tracepoint number and look it up in the list.
14868 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14869 If the argument is missing, the most recent tracepoint
14870 (tracepoint_count) is returned. */
14871
14872 struct tracepoint *
14873 get_tracepoint_by_number (const char **arg,
14874 number_or_range_parser *parser)
14875 {
14876 struct breakpoint *t;
14877 int tpnum;
14878 const char *instring = arg == NULL ? NULL : *arg;
14879
14880 if (parser != NULL)
14881 {
14882 gdb_assert (!parser->finished ());
14883 tpnum = parser->get_number ();
14884 }
14885 else if (arg == NULL || *arg == NULL || ! **arg)
14886 tpnum = tracepoint_count;
14887 else
14888 tpnum = get_number (arg);
14889
14890 if (tpnum <= 0)
14891 {
14892 if (instring && *instring)
14893 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14894 instring);
14895 else
14896 printf_filtered (_("No previous tracepoint\n"));
14897 return NULL;
14898 }
14899
14900 ALL_TRACEPOINTS (t)
14901 if (t->number == tpnum)
14902 {
14903 return (struct tracepoint *) t;
14904 }
14905
14906 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14907 return NULL;
14908 }
14909
14910 void
14911 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14912 {
14913 if (b->thread != -1)
14914 fprintf_unfiltered (fp, " thread %d", b->thread);
14915
14916 if (b->task != 0)
14917 fprintf_unfiltered (fp, " task %d", b->task);
14918
14919 fprintf_unfiltered (fp, "\n");
14920 }
14921
14922 /* Save information on user settable breakpoints (watchpoints, etc) to
14923 a new script file named FILENAME. If FILTER is non-NULL, call it
14924 on each breakpoint and only include the ones for which it returns
14925 non-zero. */
14926
14927 static void
14928 save_breakpoints (const char *filename, int from_tty,
14929 int (*filter) (const struct breakpoint *))
14930 {
14931 struct breakpoint *tp;
14932 int any = 0;
14933 int extra_trace_bits = 0;
14934
14935 if (filename == 0 || *filename == 0)
14936 error (_("Argument required (file name in which to save)"));
14937
14938 /* See if we have anything to save. */
14939 ALL_BREAKPOINTS (tp)
14940 {
14941 /* Skip internal and momentary breakpoints. */
14942 if (!user_breakpoint_p (tp))
14943 continue;
14944
14945 /* If we have a filter, only save the breakpoints it accepts. */
14946 if (filter && !filter (tp))
14947 continue;
14948
14949 any = 1;
14950
14951 if (is_tracepoint (tp))
14952 {
14953 extra_trace_bits = 1;
14954
14955 /* We can stop searching. */
14956 break;
14957 }
14958 }
14959
14960 if (!any)
14961 {
14962 warning (_("Nothing to save."));
14963 return;
14964 }
14965
14966 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14967
14968 stdio_file fp;
14969
14970 if (!fp.open (expanded_filename.get (), "w"))
14971 error (_("Unable to open file '%s' for saving (%s)"),
14972 expanded_filename.get (), safe_strerror (errno));
14973
14974 if (extra_trace_bits)
14975 save_trace_state_variables (&fp);
14976
14977 ALL_BREAKPOINTS (tp)
14978 {
14979 /* Skip internal and momentary breakpoints. */
14980 if (!user_breakpoint_p (tp))
14981 continue;
14982
14983 /* If we have a filter, only save the breakpoints it accepts. */
14984 if (filter && !filter (tp))
14985 continue;
14986
14987 tp->ops->print_recreate (tp, &fp);
14988
14989 /* Note, we can't rely on tp->number for anything, as we can't
14990 assume the recreated breakpoint numbers will match. Use $bpnum
14991 instead. */
14992
14993 if (tp->cond_string)
14994 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14995
14996 if (tp->ignore_count)
14997 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14998
14999 if (tp->type != bp_dprintf && tp->commands)
15000 {
15001 fp.puts (" commands\n");
15002
15003 current_uiout->redirect (&fp);
15004 try
15005 {
15006 print_command_lines (current_uiout, tp->commands.get (), 2);
15007 }
15008 catch (const gdb_exception &ex)
15009 {
15010 current_uiout->redirect (NULL);
15011 throw;
15012 }
15013
15014 current_uiout->redirect (NULL);
15015 fp.puts (" end\n");
15016 }
15017
15018 if (tp->enable_state == bp_disabled)
15019 fp.puts ("disable $bpnum\n");
15020
15021 /* If this is a multi-location breakpoint, check if the locations
15022 should be individually disabled. Watchpoint locations are
15023 special, and not user visible. */
15024 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15025 {
15026 struct bp_location *loc;
15027 int n = 1;
15028
15029 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15030 if (!loc->enabled)
15031 fp.printf ("disable $bpnum.%d\n", n);
15032 }
15033 }
15034
15035 if (extra_trace_bits && *default_collect)
15036 fp.printf ("set default-collect %s\n", default_collect);
15037
15038 if (from_tty)
15039 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15040 }
15041
15042 /* The `save breakpoints' command. */
15043
15044 static void
15045 save_breakpoints_command (const char *args, int from_tty)
15046 {
15047 save_breakpoints (args, from_tty, NULL);
15048 }
15049
15050 /* The `save tracepoints' command. */
15051
15052 static void
15053 save_tracepoints_command (const char *args, int from_tty)
15054 {
15055 save_breakpoints (args, from_tty, is_tracepoint);
15056 }
15057
15058 /* Create a vector of all tracepoints. */
15059
15060 std::vector<breakpoint *>
15061 all_tracepoints (void)
15062 {
15063 std::vector<breakpoint *> tp_vec;
15064 struct breakpoint *tp;
15065
15066 ALL_TRACEPOINTS (tp)
15067 {
15068 tp_vec.push_back (tp);
15069 }
15070
15071 return tp_vec;
15072 }
15073
15074 \f
15075 /* This help string is used to consolidate all the help string for specifying
15076 locations used by several commands. */
15077
15078 #define LOCATION_HELP_STRING \
15079 "Linespecs are colon-separated lists of location parameters, such as\n\
15080 source filename, function name, label name, and line number.\n\
15081 Example: To specify the start of a label named \"the_top\" in the\n\
15082 function \"fact\" in the file \"factorial.c\", use\n\
15083 \"factorial.c:fact:the_top\".\n\
15084 \n\
15085 Address locations begin with \"*\" and specify an exact address in the\n\
15086 program. Example: To specify the fourth byte past the start function\n\
15087 \"main\", use \"*main + 4\".\n\
15088 \n\
15089 Explicit locations are similar to linespecs but use an option/argument\n\
15090 syntax to specify location parameters.\n\
15091 Example: To specify the start of the label named \"the_top\" in the\n\
15092 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15093 -function fact -label the_top\".\n\
15094 \n\
15095 By default, a specified function is matched against the program's\n\
15096 functions in all scopes. For C++, this means in all namespaces and\n\
15097 classes. For Ada, this means in all packages. E.g., in C++,\n\
15098 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15099 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15100 specified name as a complete fully-qualified name instead."
15101
15102 /* This help string is used for the break, hbreak, tbreak and thbreak
15103 commands. It is defined as a macro to prevent duplication.
15104 COMMAND should be a string constant containing the name of the
15105 command. */
15106
15107 #define BREAK_ARGS_HELP(command) \
15108 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15109 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15110 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15111 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15112 `-probe-dtrace' (for a DTrace probe).\n\
15113 LOCATION may be a linespec, address, or explicit location as described\n\
15114 below.\n\
15115 \n\
15116 With no LOCATION, uses current execution address of the selected\n\
15117 stack frame. This is useful for breaking on return to a stack frame.\n\
15118 \n\
15119 THREADNUM is the number from \"info threads\".\n\
15120 CONDITION is a boolean expression.\n\
15121 \n" LOCATION_HELP_STRING "\n\n\
15122 Multiple breakpoints at one place are permitted, and useful if their\n\
15123 conditions are different.\n\
15124 \n\
15125 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15126
15127 /* List of subcommands for "catch". */
15128 static struct cmd_list_element *catch_cmdlist;
15129
15130 /* List of subcommands for "tcatch". */
15131 static struct cmd_list_element *tcatch_cmdlist;
15132
15133 void
15134 add_catch_command (const char *name, const char *docstring,
15135 cmd_const_sfunc_ftype *sfunc,
15136 completer_ftype *completer,
15137 void *user_data_catch,
15138 void *user_data_tcatch)
15139 {
15140 struct cmd_list_element *command;
15141
15142 command = add_cmd (name, class_breakpoint, docstring,
15143 &catch_cmdlist);
15144 set_cmd_sfunc (command, sfunc);
15145 set_cmd_context (command, user_data_catch);
15146 set_cmd_completer (command, completer);
15147
15148 command = add_cmd (name, class_breakpoint, docstring,
15149 &tcatch_cmdlist);
15150 set_cmd_sfunc (command, sfunc);
15151 set_cmd_context (command, user_data_tcatch);
15152 set_cmd_completer (command, completer);
15153 }
15154
15155 static void
15156 save_command (const char *arg, int from_tty)
15157 {
15158 printf_unfiltered (_("\"save\" must be followed by "
15159 "the name of a save subcommand.\n"));
15160 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15161 }
15162
15163 struct breakpoint *
15164 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15165 void *data)
15166 {
15167 struct breakpoint *b, *b_tmp;
15168
15169 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15170 {
15171 if ((*callback) (b, data))
15172 return b;
15173 }
15174
15175 return NULL;
15176 }
15177
15178 /* Zero if any of the breakpoint's locations could be a location where
15179 functions have been inlined, nonzero otherwise. */
15180
15181 static int
15182 is_non_inline_function (struct breakpoint *b)
15183 {
15184 /* The shared library event breakpoint is set on the address of a
15185 non-inline function. */
15186 if (b->type == bp_shlib_event)
15187 return 1;
15188
15189 return 0;
15190 }
15191
15192 /* Nonzero if the specified PC cannot be a location where functions
15193 have been inlined. */
15194
15195 int
15196 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15197 const struct target_waitstatus *ws)
15198 {
15199 struct breakpoint *b;
15200 struct bp_location *bl;
15201
15202 ALL_BREAKPOINTS (b)
15203 {
15204 if (!is_non_inline_function (b))
15205 continue;
15206
15207 for (bl = b->loc; bl != NULL; bl = bl->next)
15208 {
15209 if (!bl->shlib_disabled
15210 && bpstat_check_location (bl, aspace, pc, ws))
15211 return 1;
15212 }
15213 }
15214
15215 return 0;
15216 }
15217
15218 /* Remove any references to OBJFILE which is going to be freed. */
15219
15220 void
15221 breakpoint_free_objfile (struct objfile *objfile)
15222 {
15223 struct bp_location **locp, *loc;
15224
15225 ALL_BP_LOCATIONS (loc, locp)
15226 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15227 loc->symtab = NULL;
15228 }
15229
15230 void
15231 initialize_breakpoint_ops (void)
15232 {
15233 static int initialized = 0;
15234
15235 struct breakpoint_ops *ops;
15236
15237 if (initialized)
15238 return;
15239 initialized = 1;
15240
15241 /* The breakpoint_ops structure to be inherit by all kinds of
15242 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15243 internal and momentary breakpoints, etc.). */
15244 ops = &bkpt_base_breakpoint_ops;
15245 *ops = base_breakpoint_ops;
15246 ops->re_set = bkpt_re_set;
15247 ops->insert_location = bkpt_insert_location;
15248 ops->remove_location = bkpt_remove_location;
15249 ops->breakpoint_hit = bkpt_breakpoint_hit;
15250 ops->create_sals_from_location = bkpt_create_sals_from_location;
15251 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15252 ops->decode_location = bkpt_decode_location;
15253
15254 /* The breakpoint_ops structure to be used in regular breakpoints. */
15255 ops = &bkpt_breakpoint_ops;
15256 *ops = bkpt_base_breakpoint_ops;
15257 ops->re_set = bkpt_re_set;
15258 ops->resources_needed = bkpt_resources_needed;
15259 ops->print_it = bkpt_print_it;
15260 ops->print_mention = bkpt_print_mention;
15261 ops->print_recreate = bkpt_print_recreate;
15262
15263 /* Ranged breakpoints. */
15264 ops = &ranged_breakpoint_ops;
15265 *ops = bkpt_breakpoint_ops;
15266 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15267 ops->resources_needed = resources_needed_ranged_breakpoint;
15268 ops->print_it = print_it_ranged_breakpoint;
15269 ops->print_one = print_one_ranged_breakpoint;
15270 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15271 ops->print_mention = print_mention_ranged_breakpoint;
15272 ops->print_recreate = print_recreate_ranged_breakpoint;
15273
15274 /* Internal breakpoints. */
15275 ops = &internal_breakpoint_ops;
15276 *ops = bkpt_base_breakpoint_ops;
15277 ops->re_set = internal_bkpt_re_set;
15278 ops->check_status = internal_bkpt_check_status;
15279 ops->print_it = internal_bkpt_print_it;
15280 ops->print_mention = internal_bkpt_print_mention;
15281
15282 /* Momentary breakpoints. */
15283 ops = &momentary_breakpoint_ops;
15284 *ops = bkpt_base_breakpoint_ops;
15285 ops->re_set = momentary_bkpt_re_set;
15286 ops->check_status = momentary_bkpt_check_status;
15287 ops->print_it = momentary_bkpt_print_it;
15288 ops->print_mention = momentary_bkpt_print_mention;
15289
15290 /* Probe breakpoints. */
15291 ops = &bkpt_probe_breakpoint_ops;
15292 *ops = bkpt_breakpoint_ops;
15293 ops->insert_location = bkpt_probe_insert_location;
15294 ops->remove_location = bkpt_probe_remove_location;
15295 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15296 ops->decode_location = bkpt_probe_decode_location;
15297
15298 /* Watchpoints. */
15299 ops = &watchpoint_breakpoint_ops;
15300 *ops = base_breakpoint_ops;
15301 ops->re_set = re_set_watchpoint;
15302 ops->insert_location = insert_watchpoint;
15303 ops->remove_location = remove_watchpoint;
15304 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15305 ops->check_status = check_status_watchpoint;
15306 ops->resources_needed = resources_needed_watchpoint;
15307 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15308 ops->print_it = print_it_watchpoint;
15309 ops->print_mention = print_mention_watchpoint;
15310 ops->print_recreate = print_recreate_watchpoint;
15311 ops->explains_signal = explains_signal_watchpoint;
15312
15313 /* Masked watchpoints. */
15314 ops = &masked_watchpoint_breakpoint_ops;
15315 *ops = watchpoint_breakpoint_ops;
15316 ops->insert_location = insert_masked_watchpoint;
15317 ops->remove_location = remove_masked_watchpoint;
15318 ops->resources_needed = resources_needed_masked_watchpoint;
15319 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15320 ops->print_it = print_it_masked_watchpoint;
15321 ops->print_one_detail = print_one_detail_masked_watchpoint;
15322 ops->print_mention = print_mention_masked_watchpoint;
15323 ops->print_recreate = print_recreate_masked_watchpoint;
15324
15325 /* Tracepoints. */
15326 ops = &tracepoint_breakpoint_ops;
15327 *ops = base_breakpoint_ops;
15328 ops->re_set = tracepoint_re_set;
15329 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15330 ops->print_one_detail = tracepoint_print_one_detail;
15331 ops->print_mention = tracepoint_print_mention;
15332 ops->print_recreate = tracepoint_print_recreate;
15333 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15334 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15335 ops->decode_location = tracepoint_decode_location;
15336
15337 /* Probe tracepoints. */
15338 ops = &tracepoint_probe_breakpoint_ops;
15339 *ops = tracepoint_breakpoint_ops;
15340 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15341 ops->decode_location = tracepoint_probe_decode_location;
15342
15343 /* Static tracepoints with marker (`-m'). */
15344 ops = &strace_marker_breakpoint_ops;
15345 *ops = tracepoint_breakpoint_ops;
15346 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15347 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15348 ops->decode_location = strace_marker_decode_location;
15349
15350 /* Fork catchpoints. */
15351 ops = &catch_fork_breakpoint_ops;
15352 *ops = base_breakpoint_ops;
15353 ops->insert_location = insert_catch_fork;
15354 ops->remove_location = remove_catch_fork;
15355 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15356 ops->print_it = print_it_catch_fork;
15357 ops->print_one = print_one_catch_fork;
15358 ops->print_mention = print_mention_catch_fork;
15359 ops->print_recreate = print_recreate_catch_fork;
15360
15361 /* Vfork catchpoints. */
15362 ops = &catch_vfork_breakpoint_ops;
15363 *ops = base_breakpoint_ops;
15364 ops->insert_location = insert_catch_vfork;
15365 ops->remove_location = remove_catch_vfork;
15366 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15367 ops->print_it = print_it_catch_vfork;
15368 ops->print_one = print_one_catch_vfork;
15369 ops->print_mention = print_mention_catch_vfork;
15370 ops->print_recreate = print_recreate_catch_vfork;
15371
15372 /* Exec catchpoints. */
15373 ops = &catch_exec_breakpoint_ops;
15374 *ops = base_breakpoint_ops;
15375 ops->insert_location = insert_catch_exec;
15376 ops->remove_location = remove_catch_exec;
15377 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15378 ops->print_it = print_it_catch_exec;
15379 ops->print_one = print_one_catch_exec;
15380 ops->print_mention = print_mention_catch_exec;
15381 ops->print_recreate = print_recreate_catch_exec;
15382
15383 /* Solib-related catchpoints. */
15384 ops = &catch_solib_breakpoint_ops;
15385 *ops = base_breakpoint_ops;
15386 ops->insert_location = insert_catch_solib;
15387 ops->remove_location = remove_catch_solib;
15388 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15389 ops->check_status = check_status_catch_solib;
15390 ops->print_it = print_it_catch_solib;
15391 ops->print_one = print_one_catch_solib;
15392 ops->print_mention = print_mention_catch_solib;
15393 ops->print_recreate = print_recreate_catch_solib;
15394
15395 ops = &dprintf_breakpoint_ops;
15396 *ops = bkpt_base_breakpoint_ops;
15397 ops->re_set = dprintf_re_set;
15398 ops->resources_needed = bkpt_resources_needed;
15399 ops->print_it = bkpt_print_it;
15400 ops->print_mention = bkpt_print_mention;
15401 ops->print_recreate = dprintf_print_recreate;
15402 ops->after_condition_true = dprintf_after_condition_true;
15403 ops->breakpoint_hit = dprintf_breakpoint_hit;
15404 }
15405
15406 /* Chain containing all defined "enable breakpoint" subcommands. */
15407
15408 static struct cmd_list_element *enablebreaklist = NULL;
15409
15410 /* See breakpoint.h. */
15411
15412 cmd_list_element *commands_cmd_element = nullptr;
15413
15414 void
15415 _initialize_breakpoint (void)
15416 {
15417 struct cmd_list_element *c;
15418
15419 initialize_breakpoint_ops ();
15420
15421 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15422 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15423 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15424
15425 breakpoint_chain = 0;
15426 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15427 before a breakpoint is set. */
15428 breakpoint_count = 0;
15429
15430 tracepoint_count = 0;
15431
15432 add_com ("ignore", class_breakpoint, ignore_command, _("\
15433 Set ignore-count of breakpoint number N to COUNT.\n\
15434 Usage is `ignore N COUNT'."));
15435
15436 commands_cmd_element = add_com ("commands", class_breakpoint,
15437 commands_command, _("\
15438 Set commands to be executed when the given breakpoints are hit.\n\
15439 Give a space-separated breakpoint list as argument after \"commands\".\n\
15440 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15441 (e.g. `5-7').\n\
15442 With no argument, the targeted breakpoint is the last one set.\n\
15443 The commands themselves follow starting on the next line.\n\
15444 Type a line containing \"end\" to indicate the end of them.\n\
15445 Give \"silent\" as the first line to make the breakpoint silent;\n\
15446 then no output is printed when it is hit, except what the commands print."));
15447
15448 c = add_com ("condition", class_breakpoint, condition_command, _("\
15449 Specify breakpoint number N to break only if COND is true.\n\
15450 Usage is `condition N COND', where N is an integer and COND is an\n\
15451 expression to be evaluated whenever breakpoint N is reached."));
15452 set_cmd_completer (c, condition_completer);
15453
15454 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15455 Set a temporary breakpoint.\n\
15456 Like \"break\" except the breakpoint is only temporary,\n\
15457 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15458 by using \"enable delete\" on the breakpoint number.\n\
15459 \n"
15460 BREAK_ARGS_HELP ("tbreak")));
15461 set_cmd_completer (c, location_completer);
15462
15463 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15464 Set a hardware assisted breakpoint.\n\
15465 Like \"break\" except the breakpoint requires hardware support,\n\
15466 some target hardware may not have this support.\n\
15467 \n"
15468 BREAK_ARGS_HELP ("hbreak")));
15469 set_cmd_completer (c, location_completer);
15470
15471 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15472 Set a temporary hardware assisted breakpoint.\n\
15473 Like \"hbreak\" except the breakpoint is only temporary,\n\
15474 so it will be deleted when hit.\n\
15475 \n"
15476 BREAK_ARGS_HELP ("thbreak")));
15477 set_cmd_completer (c, location_completer);
15478
15479 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15480 Enable some breakpoints.\n\
15481 Give breakpoint numbers (separated by spaces) as arguments.\n\
15482 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15483 This is used to cancel the effect of the \"disable\" command.\n\
15484 With a subcommand you can enable temporarily."),
15485 &enablelist, "enable ", 1, &cmdlist);
15486
15487 add_com_alias ("en", "enable", class_breakpoint, 1);
15488
15489 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15490 Enable some breakpoints.\n\
15491 Give breakpoint numbers (separated by spaces) as arguments.\n\
15492 This is used to cancel the effect of the \"disable\" command.\n\
15493 May be abbreviated to simply \"enable\"."),
15494 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15495
15496 add_cmd ("once", no_class, enable_once_command, _("\
15497 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15498 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15499 &enablebreaklist);
15500
15501 add_cmd ("delete", no_class, enable_delete_command, _("\
15502 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15503 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15504 &enablebreaklist);
15505
15506 add_cmd ("count", no_class, enable_count_command, _("\
15507 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15508 If a breakpoint is hit while enabled in this fashion,\n\
15509 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15510 &enablebreaklist);
15511
15512 add_cmd ("delete", no_class, enable_delete_command, _("\
15513 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15514 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15515 &enablelist);
15516
15517 add_cmd ("once", no_class, enable_once_command, _("\
15518 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15519 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15520 &enablelist);
15521
15522 add_cmd ("count", no_class, enable_count_command, _("\
15523 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15524 If a breakpoint is hit while enabled in this fashion,\n\
15525 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15526 &enablelist);
15527
15528 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15529 Disable some breakpoints.\n\
15530 Arguments are breakpoint numbers with spaces in between.\n\
15531 To disable all breakpoints, give no argument.\n\
15532 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15533 &disablelist, "disable ", 1, &cmdlist);
15534 add_com_alias ("dis", "disable", class_breakpoint, 1);
15535 add_com_alias ("disa", "disable", class_breakpoint, 1);
15536
15537 add_cmd ("breakpoints", class_alias, disable_command, _("\
15538 Disable some breakpoints.\n\
15539 Arguments are breakpoint numbers with spaces in between.\n\
15540 To disable all breakpoints, give no argument.\n\
15541 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15542 This command may be abbreviated \"disable\"."),
15543 &disablelist);
15544
15545 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15546 Delete some breakpoints or auto-display expressions.\n\
15547 Arguments are breakpoint numbers with spaces in between.\n\
15548 To delete all breakpoints, give no argument.\n\
15549 \n\
15550 Also a prefix command for deletion of other GDB objects.\n\
15551 The \"unset\" command is also an alias for \"delete\"."),
15552 &deletelist, "delete ", 1, &cmdlist);
15553 add_com_alias ("d", "delete", class_breakpoint, 1);
15554 add_com_alias ("del", "delete", class_breakpoint, 1);
15555
15556 add_cmd ("breakpoints", class_alias, delete_command, _("\
15557 Delete some breakpoints or auto-display expressions.\n\
15558 Arguments are breakpoint numbers with spaces in between.\n\
15559 To delete all breakpoints, give no argument.\n\
15560 This command may be abbreviated \"delete\"."),
15561 &deletelist);
15562
15563 add_com ("clear", class_breakpoint, clear_command, _("\
15564 Clear breakpoint at specified location.\n\
15565 Argument may be a linespec, explicit, or address location as described below.\n\
15566 \n\
15567 With no argument, clears all breakpoints in the line that the selected frame\n\
15568 is executing in.\n"
15569 "\n" LOCATION_HELP_STRING "\n\n\
15570 See also the \"delete\" command which clears breakpoints by number."));
15571 add_com_alias ("cl", "clear", class_breakpoint, 1);
15572
15573 c = add_com ("break", class_breakpoint, break_command, _("\
15574 Set breakpoint at specified location.\n"
15575 BREAK_ARGS_HELP ("break")));
15576 set_cmd_completer (c, location_completer);
15577
15578 add_com_alias ("b", "break", class_run, 1);
15579 add_com_alias ("br", "break", class_run, 1);
15580 add_com_alias ("bre", "break", class_run, 1);
15581 add_com_alias ("brea", "break", class_run, 1);
15582
15583 if (dbx_commands)
15584 {
15585 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15586 Break in function/address or break at a line in the current file."),
15587 &stoplist, "stop ", 1, &cmdlist);
15588 add_cmd ("in", class_breakpoint, stopin_command,
15589 _("Break in function or address."), &stoplist);
15590 add_cmd ("at", class_breakpoint, stopat_command,
15591 _("Break at a line in the current file."), &stoplist);
15592 add_com ("status", class_info, info_breakpoints_command, _("\
15593 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15594 The \"Type\" column indicates one of:\n\
15595 \tbreakpoint - normal breakpoint\n\
15596 \twatchpoint - watchpoint\n\
15597 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15598 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15599 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15600 address and file/line number respectively.\n\
15601 \n\
15602 Convenience variable \"$_\" and default examine address for \"x\"\n\
15603 are set to the address of the last breakpoint listed unless the command\n\
15604 is prefixed with \"server \".\n\n\
15605 Convenience variable \"$bpnum\" contains the number of the last\n\
15606 breakpoint set."));
15607 }
15608
15609 add_info ("breakpoints", info_breakpoints_command, _("\
15610 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15611 The \"Type\" column indicates one of:\n\
15612 \tbreakpoint - normal breakpoint\n\
15613 \twatchpoint - watchpoint\n\
15614 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15615 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15616 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15617 address and file/line number respectively.\n\
15618 \n\
15619 Convenience variable \"$_\" and default examine address for \"x\"\n\
15620 are set to the address of the last breakpoint listed unless the command\n\
15621 is prefixed with \"server \".\n\n\
15622 Convenience variable \"$bpnum\" contains the number of the last\n\
15623 breakpoint set."));
15624
15625 add_info_alias ("b", "breakpoints", 1);
15626
15627 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15628 Status of all breakpoints, or breakpoint number NUMBER.\n\
15629 The \"Type\" column indicates one of:\n\
15630 \tbreakpoint - normal breakpoint\n\
15631 \twatchpoint - watchpoint\n\
15632 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15633 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15634 \tuntil - internal breakpoint used by the \"until\" command\n\
15635 \tfinish - internal breakpoint used by the \"finish\" command\n\
15636 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15637 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15638 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15639 address and file/line number respectively.\n\
15640 \n\
15641 Convenience variable \"$_\" and default examine address for \"x\"\n\
15642 are set to the address of the last breakpoint listed unless the command\n\
15643 is prefixed with \"server \".\n\n\
15644 Convenience variable \"$bpnum\" contains the number of the last\n\
15645 breakpoint set."),
15646 &maintenanceinfolist);
15647
15648 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15649 Set catchpoints to catch events."),
15650 &catch_cmdlist, "catch ",
15651 0/*allow-unknown*/, &cmdlist);
15652
15653 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15654 Set temporary catchpoints to catch events."),
15655 &tcatch_cmdlist, "tcatch ",
15656 0/*allow-unknown*/, &cmdlist);
15657
15658 add_catch_command ("fork", _("Catch calls to fork."),
15659 catch_fork_command_1,
15660 NULL,
15661 (void *) (uintptr_t) catch_fork_permanent,
15662 (void *) (uintptr_t) catch_fork_temporary);
15663 add_catch_command ("vfork", _("Catch calls to vfork."),
15664 catch_fork_command_1,
15665 NULL,
15666 (void *) (uintptr_t) catch_vfork_permanent,
15667 (void *) (uintptr_t) catch_vfork_temporary);
15668 add_catch_command ("exec", _("Catch calls to exec."),
15669 catch_exec_command_1,
15670 NULL,
15671 CATCH_PERMANENT,
15672 CATCH_TEMPORARY);
15673 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15674 Usage: catch load [REGEX]\n\
15675 If REGEX is given, only stop for libraries matching the regular expression."),
15676 catch_load_command_1,
15677 NULL,
15678 CATCH_PERMANENT,
15679 CATCH_TEMPORARY);
15680 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15681 Usage: catch unload [REGEX]\n\
15682 If REGEX is given, only stop for libraries matching the regular expression."),
15683 catch_unload_command_1,
15684 NULL,
15685 CATCH_PERMANENT,
15686 CATCH_TEMPORARY);
15687
15688 c = add_com ("watch", class_breakpoint, watch_command, _("\
15689 Set a watchpoint for an expression.\n\
15690 Usage: watch [-l|-location] EXPRESSION\n\
15691 A watchpoint stops execution of your program whenever the value of\n\
15692 an expression changes.\n\
15693 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15694 the memory to which it refers."));
15695 set_cmd_completer (c, expression_completer);
15696
15697 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15698 Set a read watchpoint for an expression.\n\
15699 Usage: rwatch [-l|-location] EXPRESSION\n\
15700 A watchpoint stops execution of your program whenever the value of\n\
15701 an expression is read.\n\
15702 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15703 the memory to which it refers."));
15704 set_cmd_completer (c, expression_completer);
15705
15706 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15707 Set a watchpoint for an expression.\n\
15708 Usage: awatch [-l|-location] EXPRESSION\n\
15709 A watchpoint stops execution of your program whenever the value of\n\
15710 an expression is either read or written.\n\
15711 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15712 the memory to which it refers."));
15713 set_cmd_completer (c, expression_completer);
15714
15715 add_info ("watchpoints", info_watchpoints_command, _("\
15716 Status of specified watchpoints (all watchpoints if no argument)."));
15717
15718 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15719 respond to changes - contrary to the description. */
15720 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15721 &can_use_hw_watchpoints, _("\
15722 Set debugger's willingness to use watchpoint hardware."), _("\
15723 Show debugger's willingness to use watchpoint hardware."), _("\
15724 If zero, gdb will not use hardware for new watchpoints, even if\n\
15725 such is available. (However, any hardware watchpoints that were\n\
15726 created before setting this to nonzero, will continue to use watchpoint\n\
15727 hardware.)"),
15728 NULL,
15729 show_can_use_hw_watchpoints,
15730 &setlist, &showlist);
15731
15732 can_use_hw_watchpoints = 1;
15733
15734 /* Tracepoint manipulation commands. */
15735
15736 c = add_com ("trace", class_breakpoint, trace_command, _("\
15737 Set a tracepoint at specified location.\n\
15738 \n"
15739 BREAK_ARGS_HELP ("trace") "\n\
15740 Do \"help tracepoints\" for info on other tracepoint commands."));
15741 set_cmd_completer (c, location_completer);
15742
15743 add_com_alias ("tp", "trace", class_alias, 0);
15744 add_com_alias ("tr", "trace", class_alias, 1);
15745 add_com_alias ("tra", "trace", class_alias, 1);
15746 add_com_alias ("trac", "trace", class_alias, 1);
15747
15748 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15749 Set a fast tracepoint at specified location.\n\
15750 \n"
15751 BREAK_ARGS_HELP ("ftrace") "\n\
15752 Do \"help tracepoints\" for info on other tracepoint commands."));
15753 set_cmd_completer (c, location_completer);
15754
15755 c = add_com ("strace", class_breakpoint, strace_command, _("\
15756 Set a static tracepoint at location or marker.\n\
15757 \n\
15758 strace [LOCATION] [if CONDITION]\n\
15759 LOCATION may be a linespec, explicit, or address location (described below) \n\
15760 or -m MARKER_ID.\n\n\
15761 If a marker id is specified, probe the marker with that name. With\n\
15762 no LOCATION, uses current execution address of the selected stack frame.\n\
15763 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15764 This collects arbitrary user data passed in the probe point call to the\n\
15765 tracing library. You can inspect it when analyzing the trace buffer,\n\
15766 by printing the $_sdata variable like any other convenience variable.\n\
15767 \n\
15768 CONDITION is a boolean expression.\n\
15769 \n" LOCATION_HELP_STRING "\n\n\
15770 Multiple tracepoints at one place are permitted, and useful if their\n\
15771 conditions are different.\n\
15772 \n\
15773 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15774 Do \"help tracepoints\" for info on other tracepoint commands."));
15775 set_cmd_completer (c, location_completer);
15776
15777 add_info ("tracepoints", info_tracepoints_command, _("\
15778 Status of specified tracepoints (all tracepoints if no argument).\n\
15779 Convenience variable \"$tpnum\" contains the number of the\n\
15780 last tracepoint set."));
15781
15782 add_info_alias ("tp", "tracepoints", 1);
15783
15784 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15785 Delete specified tracepoints.\n\
15786 Arguments are tracepoint numbers, separated by spaces.\n\
15787 No argument means delete all tracepoints."),
15788 &deletelist);
15789 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15790
15791 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15792 Disable specified tracepoints.\n\
15793 Arguments are tracepoint numbers, separated by spaces.\n\
15794 No argument means disable all tracepoints."),
15795 &disablelist);
15796 deprecate_cmd (c, "disable");
15797
15798 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15799 Enable specified tracepoints.\n\
15800 Arguments are tracepoint numbers, separated by spaces.\n\
15801 No argument means enable all tracepoints."),
15802 &enablelist);
15803 deprecate_cmd (c, "enable");
15804
15805 add_com ("passcount", class_trace, trace_pass_command, _("\
15806 Set the passcount for a tracepoint.\n\
15807 The trace will end when the tracepoint has been passed 'count' times.\n\
15808 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15809 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15810
15811 add_prefix_cmd ("save", class_breakpoint, save_command,
15812 _("Save breakpoint definitions as a script."),
15813 &save_cmdlist, "save ",
15814 0/*allow-unknown*/, &cmdlist);
15815
15816 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15817 Save current breakpoint definitions as a script.\n\
15818 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15819 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15820 session to restore them."),
15821 &save_cmdlist);
15822 set_cmd_completer (c, filename_completer);
15823
15824 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15825 Save current tracepoint definitions as a script.\n\
15826 Use the 'source' command in another debug session to restore them."),
15827 &save_cmdlist);
15828 set_cmd_completer (c, filename_completer);
15829
15830 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15831 deprecate_cmd (c, "save tracepoints");
15832
15833 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15834 Breakpoint specific settings\n\
15835 Configure various breakpoint-specific variables such as\n\
15836 pending breakpoint behavior"),
15837 &breakpoint_set_cmdlist, "set breakpoint ",
15838 0/*allow-unknown*/, &setlist);
15839 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15840 Breakpoint specific settings\n\
15841 Configure various breakpoint-specific variables such as\n\
15842 pending breakpoint behavior"),
15843 &breakpoint_show_cmdlist, "show breakpoint ",
15844 0/*allow-unknown*/, &showlist);
15845
15846 add_setshow_auto_boolean_cmd ("pending", no_class,
15847 &pending_break_support, _("\
15848 Set debugger's behavior regarding pending breakpoints."), _("\
15849 Show debugger's behavior regarding pending breakpoints."), _("\
15850 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15851 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15852 an error. If auto, an unrecognized breakpoint location results in a\n\
15853 user-query to see if a pending breakpoint should be created."),
15854 NULL,
15855 show_pending_break_support,
15856 &breakpoint_set_cmdlist,
15857 &breakpoint_show_cmdlist);
15858
15859 pending_break_support = AUTO_BOOLEAN_AUTO;
15860
15861 add_setshow_boolean_cmd ("auto-hw", no_class,
15862 &automatic_hardware_breakpoints, _("\
15863 Set automatic usage of hardware breakpoints."), _("\
15864 Show automatic usage of hardware breakpoints."), _("\
15865 If set, the debugger will automatically use hardware breakpoints for\n\
15866 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15867 a warning will be emitted for such breakpoints."),
15868 NULL,
15869 show_automatic_hardware_breakpoints,
15870 &breakpoint_set_cmdlist,
15871 &breakpoint_show_cmdlist);
15872
15873 add_setshow_boolean_cmd ("always-inserted", class_support,
15874 &always_inserted_mode, _("\
15875 Set mode for inserting breakpoints."), _("\
15876 Show mode for inserting breakpoints."), _("\
15877 When this mode is on, breakpoints are inserted immediately as soon as\n\
15878 they're created, kept inserted even when execution stops, and removed\n\
15879 only when the user deletes them. When this mode is off (the default),\n\
15880 breakpoints are inserted only when execution continues, and removed\n\
15881 when execution stops."),
15882 NULL,
15883 &show_always_inserted_mode,
15884 &breakpoint_set_cmdlist,
15885 &breakpoint_show_cmdlist);
15886
15887 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15888 condition_evaluation_enums,
15889 &condition_evaluation_mode_1, _("\
15890 Set mode of breakpoint condition evaluation."), _("\
15891 Show mode of breakpoint condition evaluation."), _("\
15892 When this is set to \"host\", breakpoint conditions will be\n\
15893 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15894 breakpoint conditions will be downloaded to the target (if the target\n\
15895 supports such feature) and conditions will be evaluated on the target's side.\n\
15896 If this is set to \"auto\" (default), this will be automatically set to\n\
15897 \"target\" if it supports condition evaluation, otherwise it will\n\
15898 be set to \"gdb\""),
15899 &set_condition_evaluation_mode,
15900 &show_condition_evaluation_mode,
15901 &breakpoint_set_cmdlist,
15902 &breakpoint_show_cmdlist);
15903
15904 add_com ("break-range", class_breakpoint, break_range_command, _("\
15905 Set a breakpoint for an address range.\n\
15906 break-range START-LOCATION, END-LOCATION\n\
15907 where START-LOCATION and END-LOCATION can be one of the following:\n\
15908 LINENUM, for that line in the current file,\n\
15909 FILE:LINENUM, for that line in that file,\n\
15910 +OFFSET, for that number of lines after the current line\n\
15911 or the start of the range\n\
15912 FUNCTION, for the first line in that function,\n\
15913 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15914 *ADDRESS, for the instruction at that address.\n\
15915 \n\
15916 The breakpoint will stop execution of the inferior whenever it executes\n\
15917 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15918 range (including START-LOCATION and END-LOCATION)."));
15919
15920 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15921 Set a dynamic printf at specified location.\n\
15922 dprintf location,format string,arg1,arg2,...\n\
15923 location may be a linespec, explicit, or address location.\n"
15924 "\n" LOCATION_HELP_STRING));
15925 set_cmd_completer (c, location_completer);
15926
15927 add_setshow_enum_cmd ("dprintf-style", class_support,
15928 dprintf_style_enums, &dprintf_style, _("\
15929 Set the style of usage for dynamic printf."), _("\
15930 Show the style of usage for dynamic printf."), _("\
15931 This setting chooses how GDB will do a dynamic printf.\n\
15932 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15933 console, as with the \"printf\" command.\n\
15934 If the value is \"call\", the print is done by calling a function in your\n\
15935 program; by default printf(), but you can choose a different function or\n\
15936 output stream by setting dprintf-function and dprintf-channel."),
15937 update_dprintf_commands, NULL,
15938 &setlist, &showlist);
15939
15940 dprintf_function = xstrdup ("printf");
15941 add_setshow_string_cmd ("dprintf-function", class_support,
15942 &dprintf_function, _("\
15943 Set the function to use for dynamic printf"), _("\
15944 Show the function to use for dynamic printf"), NULL,
15945 update_dprintf_commands, NULL,
15946 &setlist, &showlist);
15947
15948 dprintf_channel = xstrdup ("");
15949 add_setshow_string_cmd ("dprintf-channel", class_support,
15950 &dprintf_channel, _("\
15951 Set the channel to use for dynamic printf"), _("\
15952 Show the channel to use for dynamic printf"), NULL,
15953 update_dprintf_commands, NULL,
15954 &setlist, &showlist);
15955
15956 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15957 &disconnected_dprintf, _("\
15958 Set whether dprintf continues after GDB disconnects."), _("\
15959 Show whether dprintf continues after GDB disconnects."), _("\
15960 Use this to let dprintf commands continue to hit and produce output\n\
15961 even if GDB disconnects or detaches from the target."),
15962 NULL,
15963 NULL,
15964 &setlist, &showlist);
15965
15966 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15967 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
15968 (target agent only) This is useful for formatted output in user-defined commands."));
15969
15970 automatic_hardware_breakpoints = 1;
15971
15972 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15973 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15974 }
This page took 0.676781 seconds and 4 git commands to generate.