Introduce class completion_tracker & rewrite completion<->readline interaction
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (const char *,
106 void (*) (struct breakpoint *,
107 void *),
108 void *);
109
110 static void ignore_command (char *, int);
111
112 static int breakpoint_re_set_one (void *);
113
114 static void breakpoint_re_set_default (struct breakpoint *);
115
116 static void
117 create_sals_from_location_default (const struct event_location *location,
118 struct linespec_result *canonical,
119 enum bptype type_wanted);
120
121 static void create_breakpoints_sal_default (struct gdbarch *,
122 struct linespec_result *,
123 gdb::unique_xmalloc_ptr<char>,
124 gdb::unique_xmalloc_ptr<char>,
125 enum bptype,
126 enum bpdisp, int, int,
127 int,
128 const struct breakpoint_ops *,
129 int, int, int, unsigned);
130
131 static void decode_location_default (struct breakpoint *b,
132 const struct event_location *location,
133 struct program_space *search_pspace,
134 struct symtabs_and_lines *sals);
135
136 static void clear_command (char *, int);
137
138 static void catch_command (char *, int);
139
140 static int can_use_hardware_watchpoint (struct value *);
141
142 static void break_command_1 (char *, int, int);
143
144 static void mention (struct breakpoint *);
145
146 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
147 enum bptype,
148 const struct breakpoint_ops *);
149 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
150 const struct symtab_and_line *);
151
152 /* This function is used in gdbtk sources and thus can not be made
153 static. */
154 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
155 struct symtab_and_line,
156 enum bptype,
157 const struct breakpoint_ops *);
158
159 static struct breakpoint *
160 momentary_breakpoint_from_master (struct breakpoint *orig,
161 enum bptype type,
162 const struct breakpoint_ops *ops,
163 int loc_enabled);
164
165 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
166
167 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
168 CORE_ADDR bpaddr,
169 enum bptype bptype);
170
171 static void describe_other_breakpoints (struct gdbarch *,
172 struct program_space *, CORE_ADDR,
173 struct obj_section *, int);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static int breakpoint_location_address_range_overlap (struct bp_location *,
183 struct address_space *,
184 CORE_ADDR, int);
185
186 static void breakpoints_info (char *, int);
187
188 static void watchpoints_info (char *, int);
189
190 static int breakpoint_1 (char *, int,
191 int (*) (const struct breakpoint *));
192
193 static int breakpoint_cond_eval (void *);
194
195 static void cleanup_executing_breakpoints (void *);
196
197 static void commands_command (char *, int);
198
199 static void condition_command (char *, int);
200
201 static int remove_breakpoint (struct bp_location *);
202 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
203
204 static enum print_stop_action print_bp_stop_message (bpstat bs);
205
206 static int watchpoint_check (void *);
207
208 static void maintenance_info_breakpoints (char *, int);
209
210 static int hw_breakpoint_used_count (void);
211
212 static int hw_watchpoint_use_count (struct breakpoint *);
213
214 static int hw_watchpoint_used_count_others (struct breakpoint *except,
215 enum bptype type,
216 int *other_type_used);
217
218 static void hbreak_command (char *, int);
219
220 static void thbreak_command (char *, int);
221
222 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
223 int count);
224
225 static void stop_command (char *arg, int from_tty);
226
227 static void stopin_command (char *arg, int from_tty);
228
229 static void stopat_command (char *arg, int from_tty);
230
231 static void tcatch_command (char *arg, int from_tty);
232
233 static void free_bp_location (struct bp_location *loc);
234 static void incref_bp_location (struct bp_location *loc);
235 static void decref_bp_location (struct bp_location **loc);
236
237 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
238
239 /* update_global_location_list's modes of operation wrt to whether to
240 insert locations now. */
241 enum ugll_insert_mode
242 {
243 /* Don't insert any breakpoint locations into the inferior, only
244 remove already-inserted locations that no longer should be
245 inserted. Functions that delete a breakpoint or breakpoints
246 should specify this mode, so that deleting a breakpoint doesn't
247 have the side effect of inserting the locations of other
248 breakpoints that are marked not-inserted, but should_be_inserted
249 returns true on them.
250
251 This behavior is useful is situations close to tear-down -- e.g.,
252 after an exec, while the target still has execution, but
253 breakpoint shadows of the previous executable image should *NOT*
254 be restored to the new image; or before detaching, where the
255 target still has execution and wants to delete breakpoints from
256 GDB's lists, and all breakpoints had already been removed from
257 the inferior. */
258 UGLL_DONT_INSERT,
259
260 /* May insert breakpoints iff breakpoints_should_be_inserted_now
261 claims breakpoints should be inserted now. */
262 UGLL_MAY_INSERT,
263
264 /* Insert locations now, irrespective of
265 breakpoints_should_be_inserted_now. E.g., say all threads are
266 stopped right now, and the user did "continue". We need to
267 insert breakpoints _before_ resuming the target, but
268 UGLL_MAY_INSERT wouldn't insert them, because
269 breakpoints_should_be_inserted_now returns false at that point,
270 as no thread is running yet. */
271 UGLL_INSERT
272 };
273
274 static void update_global_location_list (enum ugll_insert_mode);
275
276 static void update_global_location_list_nothrow (enum ugll_insert_mode);
277
278 static int is_hardware_watchpoint (const struct breakpoint *bpt);
279
280 static void insert_breakpoint_locations (void);
281
282 static void tracepoints_info (char *, int);
283
284 static void delete_trace_command (char *, int);
285
286 static void enable_trace_command (char *, int);
287
288 static void disable_trace_command (char *, int);
289
290 static void trace_pass_command (char *, int);
291
292 static void set_tracepoint_count (int num);
293
294 static int is_masked_watchpoint (const struct breakpoint *b);
295
296 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
297
298 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
299 otherwise. */
300
301 static int strace_marker_p (struct breakpoint *b);
302
303 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
304 that are implemented on top of software or hardware breakpoints
305 (user breakpoints, internal and momentary breakpoints, etc.). */
306 static struct breakpoint_ops bkpt_base_breakpoint_ops;
307
308 /* Internal breakpoints class type. */
309 static struct breakpoint_ops internal_breakpoint_ops;
310
311 /* Momentary breakpoints class type. */
312 static struct breakpoint_ops momentary_breakpoint_ops;
313
314 /* The breakpoint_ops structure to be used in regular user created
315 breakpoints. */
316 struct breakpoint_ops bkpt_breakpoint_ops;
317
318 /* Breakpoints set on probes. */
319 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
320
321 /* Dynamic printf class type. */
322 struct breakpoint_ops dprintf_breakpoint_ops;
323
324 /* The style in which to perform a dynamic printf. This is a user
325 option because different output options have different tradeoffs;
326 if GDB does the printing, there is better error handling if there
327 is a problem with any of the arguments, but using an inferior
328 function lets you have special-purpose printers and sending of
329 output to the same place as compiled-in print functions. */
330
331 static const char dprintf_style_gdb[] = "gdb";
332 static const char dprintf_style_call[] = "call";
333 static const char dprintf_style_agent[] = "agent";
334 static const char *const dprintf_style_enums[] = {
335 dprintf_style_gdb,
336 dprintf_style_call,
337 dprintf_style_agent,
338 NULL
339 };
340 static const char *dprintf_style = dprintf_style_gdb;
341
342 /* The function to use for dynamic printf if the preferred style is to
343 call into the inferior. The value is simply a string that is
344 copied into the command, so it can be anything that GDB can
345 evaluate to a callable address, not necessarily a function name. */
346
347 static char *dprintf_function;
348
349 /* The channel to use for dynamic printf if the preferred style is to
350 call into the inferior; if a nonempty string, it will be passed to
351 the call as the first argument, with the format string as the
352 second. As with the dprintf function, this can be anything that
353 GDB knows how to evaluate, so in addition to common choices like
354 "stderr", this could be an app-specific expression like
355 "mystreams[curlogger]". */
356
357 static char *dprintf_channel;
358
359 /* True if dprintf commands should continue to operate even if GDB
360 has disconnected. */
361 static int disconnected_dprintf = 1;
362
363 /* A reference-counted struct command_line. This lets multiple
364 breakpoints share a single command list. */
365 struct counted_command_line
366 {
367 /* The reference count. */
368 int refc;
369
370 /* The command list. */
371 struct command_line *commands;
372 };
373
374 struct command_line *
375 breakpoint_commands (struct breakpoint *b)
376 {
377 return b->commands ? b->commands->commands : NULL;
378 }
379
380 /* Flag indicating that a command has proceeded the inferior past the
381 current breakpoint. */
382
383 static int breakpoint_proceeded;
384
385 const char *
386 bpdisp_text (enum bpdisp disp)
387 {
388 /* NOTE: the following values are a part of MI protocol and
389 represent values of 'disp' field returned when inferior stops at
390 a breakpoint. */
391 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
392
393 return bpdisps[(int) disp];
394 }
395
396 /* Prototypes for exported functions. */
397 /* If FALSE, gdb will not use hardware support for watchpoints, even
398 if such is available. */
399 static int can_use_hw_watchpoints;
400
401 static void
402 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's willingness to use "
408 "watchpoint hardware is %s.\n"),
409 value);
410 }
411
412 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
413 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
414 for unrecognized breakpoint locations.
415 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
416 static enum auto_boolean pending_break_support;
417 static void
418 show_pending_break_support (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's behavior regarding "
424 "pending breakpoints is %s.\n"),
425 value);
426 }
427
428 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
429 set with "break" but falling in read-only memory.
430 If 0, gdb will warn about such breakpoints, but won't automatically
431 use hardware breakpoints. */
432 static int automatic_hardware_breakpoints;
433 static void
434 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Automatic usage of hardware breakpoints is %s.\n"),
440 value);
441 }
442
443 /* If on, GDB keeps breakpoints inserted even if the inferior is
444 stopped, and immediately inserts any new breakpoints as soon as
445 they're created. If off (default), GDB keeps breakpoints off of
446 the target as long as possible. That is, it delays inserting
447 breakpoints until the next resume, and removes them again when the
448 target fully stops. This is a bit safer in case GDB crashes while
449 processing user input. */
450 static int always_inserted_mode = 0;
451
452 static void
453 show_always_inserted_mode (struct ui_file *file, int from_tty,
454 struct cmd_list_element *c, const char *value)
455 {
456 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
457 value);
458 }
459
460 /* See breakpoint.h. */
461
462 int
463 breakpoints_should_be_inserted_now (void)
464 {
465 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
466 {
467 /* If breakpoints are global, they should be inserted even if no
468 thread under gdb's control is running, or even if there are
469 no threads under GDB's control yet. */
470 return 1;
471 }
472 else if (target_has_execution)
473 {
474 struct thread_info *tp;
475
476 if (always_inserted_mode)
477 {
478 /* The user wants breakpoints inserted even if all threads
479 are stopped. */
480 return 1;
481 }
482
483 if (threads_are_executing ())
484 return 1;
485
486 /* Don't remove breakpoints yet if, even though all threads are
487 stopped, we still have events to process. */
488 ALL_NON_EXITED_THREADS (tp)
489 if (tp->resumed
490 && tp->suspend.waitstatus_pending_p)
491 return 1;
492 }
493 return 0;
494 }
495
496 static const char condition_evaluation_both[] = "host or target";
497
498 /* Modes for breakpoint condition evaluation. */
499 static const char condition_evaluation_auto[] = "auto";
500 static const char condition_evaluation_host[] = "host";
501 static const char condition_evaluation_target[] = "target";
502 static const char *const condition_evaluation_enums[] = {
503 condition_evaluation_auto,
504 condition_evaluation_host,
505 condition_evaluation_target,
506 NULL
507 };
508
509 /* Global that holds the current mode for breakpoint condition evaluation. */
510 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
511
512 /* Global that we use to display information to the user (gets its value from
513 condition_evaluation_mode_1. */
514 static const char *condition_evaluation_mode = condition_evaluation_auto;
515
516 /* Translate a condition evaluation mode MODE into either "host"
517 or "target". This is used mostly to translate from "auto" to the
518 real setting that is being used. It returns the translated
519 evaluation mode. */
520
521 static const char *
522 translate_condition_evaluation_mode (const char *mode)
523 {
524 if (mode == condition_evaluation_auto)
525 {
526 if (target_supports_evaluation_of_breakpoint_conditions ())
527 return condition_evaluation_target;
528 else
529 return condition_evaluation_host;
530 }
531 else
532 return mode;
533 }
534
535 /* Discovers what condition_evaluation_auto translates to. */
536
537 static const char *
538 breakpoint_condition_evaluation_mode (void)
539 {
540 return translate_condition_evaluation_mode (condition_evaluation_mode);
541 }
542
543 /* Return true if GDB should evaluate breakpoint conditions or false
544 otherwise. */
545
546 static int
547 gdb_evaluates_breakpoint_condition_p (void)
548 {
549 const char *mode = breakpoint_condition_evaluation_mode ();
550
551 return (mode == condition_evaluation_host);
552 }
553
554 void _initialize_breakpoint (void);
555
556 /* Are we executing breakpoint commands? */
557 static int executing_breakpoint_commands;
558
559 /* Are overlay event breakpoints enabled? */
560 static int overlay_events_enabled;
561
562 /* See description in breakpoint.h. */
563 int target_exact_watchpoints = 0;
564
565 /* Walk the following statement or block through all breakpoints.
566 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
567 current breakpoint. */
568
569 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
570
571 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
572 for (B = breakpoint_chain; \
573 B ? (TMP=B->next, 1): 0; \
574 B = TMP)
575
576 /* Similar iterator for the low-level breakpoints. SAFE variant is
577 not provided so update_global_location_list must not be called
578 while executing the block of ALL_BP_LOCATIONS. */
579
580 #define ALL_BP_LOCATIONS(B,BP_TMP) \
581 for (BP_TMP = bp_locations; \
582 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
583 BP_TMP++)
584
585 /* Iterates through locations with address ADDRESS for the currently selected
586 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
587 to where the loop should start from.
588 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
589 appropriate location to start with. */
590
591 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
592 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
593 BP_LOCP_TMP = BP_LOCP_START; \
594 BP_LOCP_START \
595 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
596 && (*BP_LOCP_TMP)->address == ADDRESS); \
597 BP_LOCP_TMP++)
598
599 /* Iterator for tracepoints only. */
600
601 #define ALL_TRACEPOINTS(B) \
602 for (B = breakpoint_chain; B; B = B->next) \
603 if (is_tracepoint (B))
604
605 /* Chains of all breakpoints defined. */
606
607 struct breakpoint *breakpoint_chain;
608
609 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
610
611 static struct bp_location **bp_locations;
612
613 /* Number of elements of BP_LOCATIONS. */
614
615 static unsigned bp_locations_count;
616
617 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
618 ADDRESS for the current elements of BP_LOCATIONS which get a valid
619 result from bp_location_has_shadow. You can use it for roughly
620 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
621 an address you need to read. */
622
623 static CORE_ADDR bp_locations_placed_address_before_address_max;
624
625 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
626 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
627 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
628 You can use it for roughly limiting the subrange of BP_LOCATIONS to
629 scan for shadow bytes for an address you need to read. */
630
631 static CORE_ADDR bp_locations_shadow_len_after_address_max;
632
633 /* The locations that no longer correspond to any breakpoint, unlinked
634 from the bp_locations array, but for which a hit may still be
635 reported by a target. */
636 VEC(bp_location_p) *moribund_locations = NULL;
637
638 /* Number of last breakpoint made. */
639
640 static int breakpoint_count;
641
642 /* The value of `breakpoint_count' before the last command that
643 created breakpoints. If the last (break-like) command created more
644 than one breakpoint, then the difference between BREAKPOINT_COUNT
645 and PREV_BREAKPOINT_COUNT is more than one. */
646 static int prev_breakpoint_count;
647
648 /* Number of last tracepoint made. */
649
650 static int tracepoint_count;
651
652 static struct cmd_list_element *breakpoint_set_cmdlist;
653 static struct cmd_list_element *breakpoint_show_cmdlist;
654 struct cmd_list_element *save_cmdlist;
655
656 /* See declaration at breakpoint.h. */
657
658 struct breakpoint *
659 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
660 void *user_data)
661 {
662 struct breakpoint *b = NULL;
663
664 ALL_BREAKPOINTS (b)
665 {
666 if (func (b, user_data) != 0)
667 break;
668 }
669
670 return b;
671 }
672
673 /* Return whether a breakpoint is an active enabled breakpoint. */
674 static int
675 breakpoint_enabled (struct breakpoint *b)
676 {
677 return (b->enable_state == bp_enabled);
678 }
679
680 /* Set breakpoint count to NUM. */
681
682 static void
683 set_breakpoint_count (int num)
684 {
685 prev_breakpoint_count = breakpoint_count;
686 breakpoint_count = num;
687 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
688 }
689
690 /* Used by `start_rbreak_breakpoints' below, to record the current
691 breakpoint count before "rbreak" creates any breakpoint. */
692 static int rbreak_start_breakpoint_count;
693
694 /* Called at the start an "rbreak" command to record the first
695 breakpoint made. */
696
697 void
698 start_rbreak_breakpoints (void)
699 {
700 rbreak_start_breakpoint_count = breakpoint_count;
701 }
702
703 /* Called at the end of an "rbreak" command to record the last
704 breakpoint made. */
705
706 void
707 end_rbreak_breakpoints (void)
708 {
709 prev_breakpoint_count = rbreak_start_breakpoint_count;
710 }
711
712 /* Used in run_command to zero the hit count when a new run starts. */
713
714 void
715 clear_breakpoint_hit_counts (void)
716 {
717 struct breakpoint *b;
718
719 ALL_BREAKPOINTS (b)
720 b->hit_count = 0;
721 }
722
723 /* Allocate a new counted_command_line with reference count of 1.
724 The new structure owns COMMANDS. */
725
726 static struct counted_command_line *
727 alloc_counted_command_line (struct command_line *commands)
728 {
729 struct counted_command_line *result = XNEW (struct counted_command_line);
730
731 result->refc = 1;
732 result->commands = commands;
733
734 return result;
735 }
736
737 /* Increment reference count. This does nothing if CMD is NULL. */
738
739 static void
740 incref_counted_command_line (struct counted_command_line *cmd)
741 {
742 if (cmd)
743 ++cmd->refc;
744 }
745
746 /* Decrement reference count. If the reference count reaches 0,
747 destroy the counted_command_line. Sets *CMDP to NULL. This does
748 nothing if *CMDP is NULL. */
749
750 static void
751 decref_counted_command_line (struct counted_command_line **cmdp)
752 {
753 if (*cmdp)
754 {
755 if (--(*cmdp)->refc == 0)
756 {
757 free_command_lines (&(*cmdp)->commands);
758 xfree (*cmdp);
759 }
760 *cmdp = NULL;
761 }
762 }
763
764 /* A cleanup function that calls decref_counted_command_line. */
765
766 static void
767 do_cleanup_counted_command_line (void *arg)
768 {
769 decref_counted_command_line ((struct counted_command_line **) arg);
770 }
771
772 /* Create a cleanup that calls decref_counted_command_line on the
773 argument. */
774
775 static struct cleanup *
776 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
777 {
778 return make_cleanup (do_cleanup_counted_command_line, cmdp);
779 }
780
781 \f
782 /* Return the breakpoint with the specified number, or NULL
783 if the number does not refer to an existing breakpoint. */
784
785 struct breakpoint *
786 get_breakpoint (int num)
787 {
788 struct breakpoint *b;
789
790 ALL_BREAKPOINTS (b)
791 if (b->number == num)
792 return b;
793
794 return NULL;
795 }
796
797 \f
798
799 /* Mark locations as "conditions have changed" in case the target supports
800 evaluating conditions on its side. */
801
802 static void
803 mark_breakpoint_modified (struct breakpoint *b)
804 {
805 struct bp_location *loc;
806
807 /* This is only meaningful if the target is
808 evaluating conditions and if the user has
809 opted for condition evaluation on the target's
810 side. */
811 if (gdb_evaluates_breakpoint_condition_p ()
812 || !target_supports_evaluation_of_breakpoint_conditions ())
813 return;
814
815 if (!is_breakpoint (b))
816 return;
817
818 for (loc = b->loc; loc; loc = loc->next)
819 loc->condition_changed = condition_modified;
820 }
821
822 /* Mark location as "conditions have changed" in case the target supports
823 evaluating conditions on its side. */
824
825 static void
826 mark_breakpoint_location_modified (struct bp_location *loc)
827 {
828 /* This is only meaningful if the target is
829 evaluating conditions and if the user has
830 opted for condition evaluation on the target's
831 side. */
832 if (gdb_evaluates_breakpoint_condition_p ()
833 || !target_supports_evaluation_of_breakpoint_conditions ())
834
835 return;
836
837 if (!is_breakpoint (loc->owner))
838 return;
839
840 loc->condition_changed = condition_modified;
841 }
842
843 /* Sets the condition-evaluation mode using the static global
844 condition_evaluation_mode. */
845
846 static void
847 set_condition_evaluation_mode (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 const char *old_mode, *new_mode;
851
852 if ((condition_evaluation_mode_1 == condition_evaluation_target)
853 && !target_supports_evaluation_of_breakpoint_conditions ())
854 {
855 condition_evaluation_mode_1 = condition_evaluation_mode;
856 warning (_("Target does not support breakpoint condition evaluation.\n"
857 "Using host evaluation mode instead."));
858 return;
859 }
860
861 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
862 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
863
864 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
865 settings was "auto". */
866 condition_evaluation_mode = condition_evaluation_mode_1;
867
868 /* Only update the mode if the user picked a different one. */
869 if (new_mode != old_mode)
870 {
871 struct bp_location *loc, **loc_tmp;
872 /* If the user switched to a different evaluation mode, we
873 need to synch the changes with the target as follows:
874
875 "host" -> "target": Send all (valid) conditions to the target.
876 "target" -> "host": Remove all the conditions from the target.
877 */
878
879 if (new_mode == condition_evaluation_target)
880 {
881 /* Mark everything modified and synch conditions with the
882 target. */
883 ALL_BP_LOCATIONS (loc, loc_tmp)
884 mark_breakpoint_location_modified (loc);
885 }
886 else
887 {
888 /* Manually mark non-duplicate locations to synch conditions
889 with the target. We do this to remove all the conditions the
890 target knows about. */
891 ALL_BP_LOCATIONS (loc, loc_tmp)
892 if (is_breakpoint (loc->owner) && loc->inserted)
893 loc->needs_update = 1;
894 }
895
896 /* Do the update. */
897 update_global_location_list (UGLL_MAY_INSERT);
898 }
899
900 return;
901 }
902
903 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
904 what "auto" is translating to. */
905
906 static void
907 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c, const char *value)
909 {
910 if (condition_evaluation_mode == condition_evaluation_auto)
911 fprintf_filtered (file,
912 _("Breakpoint condition evaluation "
913 "mode is %s (currently %s).\n"),
914 value,
915 breakpoint_condition_evaluation_mode ());
916 else
917 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
918 value);
919 }
920
921 /* A comparison function for bp_location AP and BP that is used by
922 bsearch. This comparison function only cares about addresses, unlike
923 the more general bp_locations_compare function. */
924
925 static int
926 bp_locations_compare_addrs (const void *ap, const void *bp)
927 {
928 const struct bp_location *a = *(const struct bp_location **) ap;
929 const struct bp_location *b = *(const struct bp_location **) bp;
930
931 if (a->address == b->address)
932 return 0;
933 else
934 return ((a->address > b->address) - (a->address < b->address));
935 }
936
937 /* Helper function to skip all bp_locations with addresses
938 less than ADDRESS. It returns the first bp_location that
939 is greater than or equal to ADDRESS. If none is found, just
940 return NULL. */
941
942 static struct bp_location **
943 get_first_locp_gte_addr (CORE_ADDR address)
944 {
945 struct bp_location dummy_loc;
946 struct bp_location *dummy_locp = &dummy_loc;
947 struct bp_location **locp_found = NULL;
948
949 /* Initialize the dummy location's address field. */
950 dummy_loc.address = address;
951
952 /* Find a close match to the first location at ADDRESS. */
953 locp_found = ((struct bp_location **)
954 bsearch (&dummy_locp, bp_locations, bp_locations_count,
955 sizeof (struct bp_location **),
956 bp_locations_compare_addrs));
957
958 /* Nothing was found, nothing left to do. */
959 if (locp_found == NULL)
960 return NULL;
961
962 /* We may have found a location that is at ADDRESS but is not the first in the
963 location's list. Go backwards (if possible) and locate the first one. */
964 while ((locp_found - 1) >= bp_locations
965 && (*(locp_found - 1))->address == address)
966 locp_found--;
967
968 return locp_found;
969 }
970
971 void
972 set_breakpoint_condition (struct breakpoint *b, const char *exp,
973 int from_tty)
974 {
975 xfree (b->cond_string);
976 b->cond_string = NULL;
977
978 if (is_watchpoint (b))
979 {
980 struct watchpoint *w = (struct watchpoint *) b;
981
982 w->cond_exp.reset ();
983 }
984 else
985 {
986 struct bp_location *loc;
987
988 for (loc = b->loc; loc; loc = loc->next)
989 {
990 loc->cond.reset ();
991
992 /* No need to free the condition agent expression
993 bytecode (if we have one). We will handle this
994 when we go through update_global_location_list. */
995 }
996 }
997
998 if (*exp == 0)
999 {
1000 if (from_tty)
1001 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1002 }
1003 else
1004 {
1005 const char *arg = exp;
1006
1007 /* I don't know if it matters whether this is the string the user
1008 typed in or the decompiled expression. */
1009 b->cond_string = xstrdup (arg);
1010 b->condition_not_parsed = 0;
1011
1012 if (is_watchpoint (b))
1013 {
1014 struct watchpoint *w = (struct watchpoint *) b;
1015
1016 innermost_block = NULL;
1017 arg = exp;
1018 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1019 if (*arg)
1020 error (_("Junk at end of expression"));
1021 w->cond_exp_valid_block = innermost_block;
1022 }
1023 else
1024 {
1025 struct bp_location *loc;
1026
1027 for (loc = b->loc; loc; loc = loc->next)
1028 {
1029 arg = exp;
1030 loc->cond =
1031 parse_exp_1 (&arg, loc->address,
1032 block_for_pc (loc->address), 0);
1033 if (*arg)
1034 error (_("Junk at end of expression"));
1035 }
1036 }
1037 }
1038 mark_breakpoint_modified (b);
1039
1040 observer_notify_breakpoint_modified (b);
1041 }
1042
1043 /* Completion for the "condition" command. */
1044
1045 static void
1046 condition_completer (struct cmd_list_element *cmd,
1047 completion_tracker &tracker,
1048 const char *text, const char *word)
1049 {
1050 const char *space;
1051
1052 text = skip_spaces_const (text);
1053 space = skip_to_space_const (text);
1054 if (*space == '\0')
1055 {
1056 int len;
1057 struct breakpoint *b;
1058 VEC (char_ptr) *result = NULL;
1059
1060 if (text[0] == '$')
1061 {
1062 /* We don't support completion of history indices. */
1063 if (!isdigit (text[1]))
1064 complete_internalvar (tracker, &text[1]);
1065 return;
1066 }
1067
1068 /* We're completing the breakpoint number. */
1069 len = strlen (text);
1070
1071 ALL_BREAKPOINTS (b)
1072 {
1073 char number[50];
1074
1075 xsnprintf (number, sizeof (number), "%d", b->number);
1076
1077 if (strncmp (number, text, len) == 0)
1078 {
1079 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
1080 tracker.add_completion (std::move (copy));
1081 }
1082 }
1083
1084 return;
1085 }
1086
1087 /* We're completing the expression part. */
1088 text = skip_spaces_const (space);
1089 expression_completer (cmd, tracker, text, word);
1090 }
1091
1092 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1093
1094 static void
1095 condition_command (char *arg, int from_tty)
1096 {
1097 struct breakpoint *b;
1098 char *p;
1099 int bnum;
1100
1101 if (arg == 0)
1102 error_no_arg (_("breakpoint number"));
1103
1104 p = arg;
1105 bnum = get_number (&p);
1106 if (bnum == 0)
1107 error (_("Bad breakpoint argument: '%s'"), arg);
1108
1109 ALL_BREAKPOINTS (b)
1110 if (b->number == bnum)
1111 {
1112 /* Check if this breakpoint has a "stop" method implemented in an
1113 extension language. This method and conditions entered into GDB
1114 from the CLI are mutually exclusive. */
1115 const struct extension_language_defn *extlang
1116 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1117
1118 if (extlang != NULL)
1119 {
1120 error (_("Only one stop condition allowed. There is currently"
1121 " a %s stop condition defined for this breakpoint."),
1122 ext_lang_capitalized_name (extlang));
1123 }
1124 set_breakpoint_condition (b, p, from_tty);
1125
1126 if (is_breakpoint (b))
1127 update_global_location_list (UGLL_MAY_INSERT);
1128
1129 return;
1130 }
1131
1132 error (_("No breakpoint number %d."), bnum);
1133 }
1134
1135 /* Check that COMMAND do not contain commands that are suitable
1136 only for tracepoints and not suitable for ordinary breakpoints.
1137 Throw if any such commands is found. */
1138
1139 static void
1140 check_no_tracepoint_commands (struct command_line *commands)
1141 {
1142 struct command_line *c;
1143
1144 for (c = commands; c; c = c->next)
1145 {
1146 int i;
1147
1148 if (c->control_type == while_stepping_control)
1149 error (_("The 'while-stepping' command can "
1150 "only be used for tracepoints"));
1151
1152 for (i = 0; i < c->body_count; ++i)
1153 check_no_tracepoint_commands ((c->body_list)[i]);
1154
1155 /* Not that command parsing removes leading whitespace and comment
1156 lines and also empty lines. So, we only need to check for
1157 command directly. */
1158 if (strstr (c->line, "collect ") == c->line)
1159 error (_("The 'collect' command can only be used for tracepoints"));
1160
1161 if (strstr (c->line, "teval ") == c->line)
1162 error (_("The 'teval' command can only be used for tracepoints"));
1163 }
1164 }
1165
1166 struct longjmp_breakpoint : public breakpoint
1167 {
1168 ~longjmp_breakpoint () override;
1169 };
1170
1171 /* Encapsulate tests for different types of tracepoints. */
1172
1173 static bool
1174 is_tracepoint_type (bptype type)
1175 {
1176 return (type == bp_tracepoint
1177 || type == bp_fast_tracepoint
1178 || type == bp_static_tracepoint);
1179 }
1180
1181 static bool
1182 is_longjmp_type (bptype type)
1183 {
1184 return type == bp_longjmp || type == bp_exception;
1185 }
1186
1187 int
1188 is_tracepoint (const struct breakpoint *b)
1189 {
1190 return is_tracepoint_type (b->type);
1191 }
1192
1193 /* Factory function to create an appropriate instance of breakpoint given
1194 TYPE. */
1195
1196 static std::unique_ptr<breakpoint>
1197 new_breakpoint_from_type (bptype type)
1198 {
1199 breakpoint *b;
1200
1201 if (is_tracepoint_type (type))
1202 b = new tracepoint ();
1203 else if (is_longjmp_type (type))
1204 b = new longjmp_breakpoint ();
1205 else
1206 b = new breakpoint ();
1207
1208 return std::unique_ptr<breakpoint> (b);
1209 }
1210
1211 /* A helper function that validates that COMMANDS are valid for a
1212 breakpoint. This function will throw an exception if a problem is
1213 found. */
1214
1215 static void
1216 validate_commands_for_breakpoint (struct breakpoint *b,
1217 struct command_line *commands)
1218 {
1219 if (is_tracepoint (b))
1220 {
1221 struct tracepoint *t = (struct tracepoint *) b;
1222 struct command_line *c;
1223 struct command_line *while_stepping = 0;
1224
1225 /* Reset the while-stepping step count. The previous commands
1226 might have included a while-stepping action, while the new
1227 ones might not. */
1228 t->step_count = 0;
1229
1230 /* We need to verify that each top-level element of commands is
1231 valid for tracepoints, that there's at most one
1232 while-stepping element, and that the while-stepping's body
1233 has valid tracing commands excluding nested while-stepping.
1234 We also need to validate the tracepoint action line in the
1235 context of the tracepoint --- validate_actionline actually
1236 has side effects, like setting the tracepoint's
1237 while-stepping STEP_COUNT, in addition to checking if the
1238 collect/teval actions parse and make sense in the
1239 tracepoint's context. */
1240 for (c = commands; c; c = c->next)
1241 {
1242 if (c->control_type == while_stepping_control)
1243 {
1244 if (b->type == bp_fast_tracepoint)
1245 error (_("The 'while-stepping' command "
1246 "cannot be used for fast tracepoint"));
1247 else if (b->type == bp_static_tracepoint)
1248 error (_("The 'while-stepping' command "
1249 "cannot be used for static tracepoint"));
1250
1251 if (while_stepping)
1252 error (_("The 'while-stepping' command "
1253 "can be used only once"));
1254 else
1255 while_stepping = c;
1256 }
1257
1258 validate_actionline (c->line, b);
1259 }
1260 if (while_stepping)
1261 {
1262 struct command_line *c2;
1263
1264 gdb_assert (while_stepping->body_count == 1);
1265 c2 = while_stepping->body_list[0];
1266 for (; c2; c2 = c2->next)
1267 {
1268 if (c2->control_type == while_stepping_control)
1269 error (_("The 'while-stepping' command cannot be nested"));
1270 }
1271 }
1272 }
1273 else
1274 {
1275 check_no_tracepoint_commands (commands);
1276 }
1277 }
1278
1279 /* Return a vector of all the static tracepoints set at ADDR. The
1280 caller is responsible for releasing the vector. */
1281
1282 VEC(breakpoint_p) *
1283 static_tracepoints_here (CORE_ADDR addr)
1284 {
1285 struct breakpoint *b;
1286 VEC(breakpoint_p) *found = 0;
1287 struct bp_location *loc;
1288
1289 ALL_BREAKPOINTS (b)
1290 if (b->type == bp_static_tracepoint)
1291 {
1292 for (loc = b->loc; loc; loc = loc->next)
1293 if (loc->address == addr)
1294 VEC_safe_push(breakpoint_p, found, b);
1295 }
1296
1297 return found;
1298 }
1299
1300 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1301 validate that only allowed commands are included. */
1302
1303 void
1304 breakpoint_set_commands (struct breakpoint *b,
1305 command_line_up &&commands)
1306 {
1307 validate_commands_for_breakpoint (b, commands.get ());
1308
1309 decref_counted_command_line (&b->commands);
1310 b->commands = alloc_counted_command_line (commands.release ());
1311 observer_notify_breakpoint_modified (b);
1312 }
1313
1314 /* Set the internal `silent' flag on the breakpoint. Note that this
1315 is not the same as the "silent" that may appear in the breakpoint's
1316 commands. */
1317
1318 void
1319 breakpoint_set_silent (struct breakpoint *b, int silent)
1320 {
1321 int old_silent = b->silent;
1322
1323 b->silent = silent;
1324 if (old_silent != silent)
1325 observer_notify_breakpoint_modified (b);
1326 }
1327
1328 /* Set the thread for this breakpoint. If THREAD is -1, make the
1329 breakpoint work for any thread. */
1330
1331 void
1332 breakpoint_set_thread (struct breakpoint *b, int thread)
1333 {
1334 int old_thread = b->thread;
1335
1336 b->thread = thread;
1337 if (old_thread != thread)
1338 observer_notify_breakpoint_modified (b);
1339 }
1340
1341 /* Set the task for this breakpoint. If TASK is 0, make the
1342 breakpoint work for any task. */
1343
1344 void
1345 breakpoint_set_task (struct breakpoint *b, int task)
1346 {
1347 int old_task = b->task;
1348
1349 b->task = task;
1350 if (old_task != task)
1351 observer_notify_breakpoint_modified (b);
1352 }
1353
1354 void
1355 check_tracepoint_command (char *line, void *closure)
1356 {
1357 struct breakpoint *b = (struct breakpoint *) closure;
1358
1359 validate_actionline (line, b);
1360 }
1361
1362 /* A structure used to pass information through
1363 map_breakpoint_numbers. */
1364
1365 struct commands_info
1366 {
1367 /* True if the command was typed at a tty. */
1368 int from_tty;
1369
1370 /* The breakpoint range spec. */
1371 const char *arg;
1372
1373 /* Non-NULL if the body of the commands are being read from this
1374 already-parsed command. */
1375 struct command_line *control;
1376
1377 /* The command lines read from the user, or NULL if they have not
1378 yet been read. */
1379 struct counted_command_line *cmd;
1380 };
1381
1382 /* A callback for map_breakpoint_numbers that sets the commands for
1383 commands_command. */
1384
1385 static void
1386 do_map_commands_command (struct breakpoint *b, void *data)
1387 {
1388 struct commands_info *info = (struct commands_info *) data;
1389
1390 if (info->cmd == NULL)
1391 {
1392 command_line_up l;
1393
1394 if (info->control != NULL)
1395 l = copy_command_lines (info->control->body_list[0]);
1396 else
1397 {
1398 struct cleanup *old_chain;
1399 char *str;
1400
1401 str = xstrprintf (_("Type commands for breakpoint(s) "
1402 "%s, one per line."),
1403 info->arg);
1404
1405 old_chain = make_cleanup (xfree, str);
1406
1407 l = read_command_lines (str,
1408 info->from_tty, 1,
1409 (is_tracepoint (b)
1410 ? check_tracepoint_command : 0),
1411 b);
1412
1413 do_cleanups (old_chain);
1414 }
1415
1416 info->cmd = alloc_counted_command_line (l.release ());
1417 }
1418
1419 /* If a breakpoint was on the list more than once, we don't need to
1420 do anything. */
1421 if (b->commands != info->cmd)
1422 {
1423 validate_commands_for_breakpoint (b, info->cmd->commands);
1424 incref_counted_command_line (info->cmd);
1425 decref_counted_command_line (&b->commands);
1426 b->commands = info->cmd;
1427 observer_notify_breakpoint_modified (b);
1428 }
1429 }
1430
1431 static void
1432 commands_command_1 (const char *arg, int from_tty,
1433 struct command_line *control)
1434 {
1435 struct cleanup *cleanups;
1436 struct commands_info info;
1437
1438 info.from_tty = from_tty;
1439 info.control = control;
1440 info.cmd = NULL;
1441 /* If we read command lines from the user, then `info' will hold an
1442 extra reference to the commands that we must clean up. */
1443 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1444
1445 std::string new_arg;
1446
1447 if (arg == NULL || !*arg)
1448 {
1449 if (breakpoint_count - prev_breakpoint_count > 1)
1450 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1451 breakpoint_count);
1452 else if (breakpoint_count > 0)
1453 new_arg = string_printf ("%d", breakpoint_count);
1454 }
1455 else
1456 new_arg = arg;
1457
1458 info.arg = new_arg.c_str ();
1459
1460 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1461
1462 if (info.cmd == NULL)
1463 error (_("No breakpoints specified."));
1464
1465 do_cleanups (cleanups);
1466 }
1467
1468 static void
1469 commands_command (char *arg, int from_tty)
1470 {
1471 commands_command_1 (arg, from_tty, NULL);
1472 }
1473
1474 /* Like commands_command, but instead of reading the commands from
1475 input stream, takes them from an already parsed command structure.
1476
1477 This is used by cli-script.c to DTRT with breakpoint commands
1478 that are part of if and while bodies. */
1479 enum command_control_type
1480 commands_from_control_command (const char *arg, struct command_line *cmd)
1481 {
1482 commands_command_1 (arg, 0, cmd);
1483 return simple_control;
1484 }
1485
1486 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1487
1488 static int
1489 bp_location_has_shadow (struct bp_location *bl)
1490 {
1491 if (bl->loc_type != bp_loc_software_breakpoint)
1492 return 0;
1493 if (!bl->inserted)
1494 return 0;
1495 if (bl->target_info.shadow_len == 0)
1496 /* BL isn't valid, or doesn't shadow memory. */
1497 return 0;
1498 return 1;
1499 }
1500
1501 /* Update BUF, which is LEN bytes read from the target address
1502 MEMADDR, by replacing a memory breakpoint with its shadowed
1503 contents.
1504
1505 If READBUF is not NULL, this buffer must not overlap with the of
1506 the breakpoint location's shadow_contents buffer. Otherwise, a
1507 failed assertion internal error will be raised. */
1508
1509 static void
1510 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1511 const gdb_byte *writebuf_org,
1512 ULONGEST memaddr, LONGEST len,
1513 struct bp_target_info *target_info,
1514 struct gdbarch *gdbarch)
1515 {
1516 /* Now do full processing of the found relevant range of elements. */
1517 CORE_ADDR bp_addr = 0;
1518 int bp_size = 0;
1519 int bptoffset = 0;
1520
1521 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1522 current_program_space->aspace, 0))
1523 {
1524 /* The breakpoint is inserted in a different address space. */
1525 return;
1526 }
1527
1528 /* Addresses and length of the part of the breakpoint that
1529 we need to copy. */
1530 bp_addr = target_info->placed_address;
1531 bp_size = target_info->shadow_len;
1532
1533 if (bp_addr + bp_size <= memaddr)
1534 {
1535 /* The breakpoint is entirely before the chunk of memory we are
1536 reading. */
1537 return;
1538 }
1539
1540 if (bp_addr >= memaddr + len)
1541 {
1542 /* The breakpoint is entirely after the chunk of memory we are
1543 reading. */
1544 return;
1545 }
1546
1547 /* Offset within shadow_contents. */
1548 if (bp_addr < memaddr)
1549 {
1550 /* Only copy the second part of the breakpoint. */
1551 bp_size -= memaddr - bp_addr;
1552 bptoffset = memaddr - bp_addr;
1553 bp_addr = memaddr;
1554 }
1555
1556 if (bp_addr + bp_size > memaddr + len)
1557 {
1558 /* Only copy the first part of the breakpoint. */
1559 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1560 }
1561
1562 if (readbuf != NULL)
1563 {
1564 /* Verify that the readbuf buffer does not overlap with the
1565 shadow_contents buffer. */
1566 gdb_assert (target_info->shadow_contents >= readbuf + len
1567 || readbuf >= (target_info->shadow_contents
1568 + target_info->shadow_len));
1569
1570 /* Update the read buffer with this inserted breakpoint's
1571 shadow. */
1572 memcpy (readbuf + bp_addr - memaddr,
1573 target_info->shadow_contents + bptoffset, bp_size);
1574 }
1575 else
1576 {
1577 const unsigned char *bp;
1578 CORE_ADDR addr = target_info->reqstd_address;
1579 int placed_size;
1580
1581 /* Update the shadow with what we want to write to memory. */
1582 memcpy (target_info->shadow_contents + bptoffset,
1583 writebuf_org + bp_addr - memaddr, bp_size);
1584
1585 /* Determine appropriate breakpoint contents and size for this
1586 address. */
1587 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1588
1589 /* Update the final write buffer with this inserted
1590 breakpoint's INSN. */
1591 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1592 }
1593 }
1594
1595 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1596 by replacing any memory breakpoints with their shadowed contents.
1597
1598 If READBUF is not NULL, this buffer must not overlap with any of
1599 the breakpoint location's shadow_contents buffers. Otherwise,
1600 a failed assertion internal error will be raised.
1601
1602 The range of shadowed area by each bp_location is:
1603 bl->address - bp_locations_placed_address_before_address_max
1604 up to bl->address + bp_locations_shadow_len_after_address_max
1605 The range we were requested to resolve shadows for is:
1606 memaddr ... memaddr + len
1607 Thus the safe cutoff boundaries for performance optimization are
1608 memaddr + len <= (bl->address
1609 - bp_locations_placed_address_before_address_max)
1610 and:
1611 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1612
1613 void
1614 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1615 const gdb_byte *writebuf_org,
1616 ULONGEST memaddr, LONGEST len)
1617 {
1618 /* Left boundary, right boundary and median element of our binary
1619 search. */
1620 unsigned bc_l, bc_r, bc;
1621
1622 /* Find BC_L which is a leftmost element which may affect BUF
1623 content. It is safe to report lower value but a failure to
1624 report higher one. */
1625
1626 bc_l = 0;
1627 bc_r = bp_locations_count;
1628 while (bc_l + 1 < bc_r)
1629 {
1630 struct bp_location *bl;
1631
1632 bc = (bc_l + bc_r) / 2;
1633 bl = bp_locations[bc];
1634
1635 /* Check first BL->ADDRESS will not overflow due to the added
1636 constant. Then advance the left boundary only if we are sure
1637 the BC element can in no way affect the BUF content (MEMADDR
1638 to MEMADDR + LEN range).
1639
1640 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1641 offset so that we cannot miss a breakpoint with its shadow
1642 range tail still reaching MEMADDR. */
1643
1644 if ((bl->address + bp_locations_shadow_len_after_address_max
1645 >= bl->address)
1646 && (bl->address + bp_locations_shadow_len_after_address_max
1647 <= memaddr))
1648 bc_l = bc;
1649 else
1650 bc_r = bc;
1651 }
1652
1653 /* Due to the binary search above, we need to make sure we pick the
1654 first location that's at BC_L's address. E.g., if there are
1655 multiple locations at the same address, BC_L may end up pointing
1656 at a duplicate location, and miss the "master"/"inserted"
1657 location. Say, given locations L1, L2 and L3 at addresses A and
1658 B:
1659
1660 L1@A, L2@A, L3@B, ...
1661
1662 BC_L could end up pointing at location L2, while the "master"
1663 location could be L1. Since the `loc->inserted' flag is only set
1664 on "master" locations, we'd forget to restore the shadow of L1
1665 and L2. */
1666 while (bc_l > 0
1667 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1668 bc_l--;
1669
1670 /* Now do full processing of the found relevant range of elements. */
1671
1672 for (bc = bc_l; bc < bp_locations_count; bc++)
1673 {
1674 struct bp_location *bl = bp_locations[bc];
1675
1676 /* bp_location array has BL->OWNER always non-NULL. */
1677 if (bl->owner->type == bp_none)
1678 warning (_("reading through apparently deleted breakpoint #%d?"),
1679 bl->owner->number);
1680
1681 /* Performance optimization: any further element can no longer affect BUF
1682 content. */
1683
1684 if (bl->address >= bp_locations_placed_address_before_address_max
1685 && memaddr + len <= (bl->address
1686 - bp_locations_placed_address_before_address_max))
1687 break;
1688
1689 if (!bp_location_has_shadow (bl))
1690 continue;
1691
1692 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1693 memaddr, len, &bl->target_info, bl->gdbarch);
1694 }
1695 }
1696
1697 \f
1698
1699 /* Return true if BPT is either a software breakpoint or a hardware
1700 breakpoint. */
1701
1702 int
1703 is_breakpoint (const struct breakpoint *bpt)
1704 {
1705 return (bpt->type == bp_breakpoint
1706 || bpt->type == bp_hardware_breakpoint
1707 || bpt->type == bp_dprintf);
1708 }
1709
1710 /* Return true if BPT is of any hardware watchpoint kind. */
1711
1712 static int
1713 is_hardware_watchpoint (const struct breakpoint *bpt)
1714 {
1715 return (bpt->type == bp_hardware_watchpoint
1716 || bpt->type == bp_read_watchpoint
1717 || bpt->type == bp_access_watchpoint);
1718 }
1719
1720 /* Return true if BPT is of any watchpoint kind, hardware or
1721 software. */
1722
1723 int
1724 is_watchpoint (const struct breakpoint *bpt)
1725 {
1726 return (is_hardware_watchpoint (bpt)
1727 || bpt->type == bp_watchpoint);
1728 }
1729
1730 /* Returns true if the current thread and its running state are safe
1731 to evaluate or update watchpoint B. Watchpoints on local
1732 expressions need to be evaluated in the context of the thread that
1733 was current when the watchpoint was created, and, that thread needs
1734 to be stopped to be able to select the correct frame context.
1735 Watchpoints on global expressions can be evaluated on any thread,
1736 and in any state. It is presently left to the target allowing
1737 memory accesses when threads are running. */
1738
1739 static int
1740 watchpoint_in_thread_scope (struct watchpoint *b)
1741 {
1742 return (b->pspace == current_program_space
1743 && (ptid_equal (b->watchpoint_thread, null_ptid)
1744 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1745 && !is_executing (inferior_ptid))));
1746 }
1747
1748 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1749 associated bp_watchpoint_scope breakpoint. */
1750
1751 static void
1752 watchpoint_del_at_next_stop (struct watchpoint *w)
1753 {
1754 if (w->related_breakpoint != w)
1755 {
1756 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1757 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1758 w->related_breakpoint->disposition = disp_del_at_next_stop;
1759 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1760 w->related_breakpoint = w;
1761 }
1762 w->disposition = disp_del_at_next_stop;
1763 }
1764
1765 /* Extract a bitfield value from value VAL using the bit parameters contained in
1766 watchpoint W. */
1767
1768 static struct value *
1769 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1770 {
1771 struct value *bit_val;
1772
1773 if (val == NULL)
1774 return NULL;
1775
1776 bit_val = allocate_value (value_type (val));
1777
1778 unpack_value_bitfield (bit_val,
1779 w->val_bitpos,
1780 w->val_bitsize,
1781 value_contents_for_printing (val),
1782 value_offset (val),
1783 val);
1784
1785 return bit_val;
1786 }
1787
1788 /* Allocate a dummy location and add it to B, which must be a software
1789 watchpoint. This is required because even if a software watchpoint
1790 is not watching any memory, bpstat_stop_status requires a location
1791 to be able to report stops. */
1792
1793 static void
1794 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1795 struct program_space *pspace)
1796 {
1797 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1798
1799 b->loc = allocate_bp_location (b);
1800 b->loc->pspace = pspace;
1801 b->loc->address = -1;
1802 b->loc->length = -1;
1803 }
1804
1805 /* Returns true if B is a software watchpoint that is not watching any
1806 memory (e.g., "watch $pc"). */
1807
1808 static int
1809 is_no_memory_software_watchpoint (struct breakpoint *b)
1810 {
1811 return (b->type == bp_watchpoint
1812 && b->loc != NULL
1813 && b->loc->next == NULL
1814 && b->loc->address == -1
1815 && b->loc->length == -1);
1816 }
1817
1818 /* Assuming that B is a watchpoint:
1819 - Reparse watchpoint expression, if REPARSE is non-zero
1820 - Evaluate expression and store the result in B->val
1821 - Evaluate the condition if there is one, and store the result
1822 in b->loc->cond.
1823 - Update the list of values that must be watched in B->loc.
1824
1825 If the watchpoint disposition is disp_del_at_next_stop, then do
1826 nothing. If this is local watchpoint that is out of scope, delete
1827 it.
1828
1829 Even with `set breakpoint always-inserted on' the watchpoints are
1830 removed + inserted on each stop here. Normal breakpoints must
1831 never be removed because they might be missed by a running thread
1832 when debugging in non-stop mode. On the other hand, hardware
1833 watchpoints (is_hardware_watchpoint; processed here) are specific
1834 to each LWP since they are stored in each LWP's hardware debug
1835 registers. Therefore, such LWP must be stopped first in order to
1836 be able to modify its hardware watchpoints.
1837
1838 Hardware watchpoints must be reset exactly once after being
1839 presented to the user. It cannot be done sooner, because it would
1840 reset the data used to present the watchpoint hit to the user. And
1841 it must not be done later because it could display the same single
1842 watchpoint hit during multiple GDB stops. Note that the latter is
1843 relevant only to the hardware watchpoint types bp_read_watchpoint
1844 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1845 not user-visible - its hit is suppressed if the memory content has
1846 not changed.
1847
1848 The following constraints influence the location where we can reset
1849 hardware watchpoints:
1850
1851 * target_stopped_by_watchpoint and target_stopped_data_address are
1852 called several times when GDB stops.
1853
1854 [linux]
1855 * Multiple hardware watchpoints can be hit at the same time,
1856 causing GDB to stop. GDB only presents one hardware watchpoint
1857 hit at a time as the reason for stopping, and all the other hits
1858 are presented later, one after the other, each time the user
1859 requests the execution to be resumed. Execution is not resumed
1860 for the threads still having pending hit event stored in
1861 LWP_INFO->STATUS. While the watchpoint is already removed from
1862 the inferior on the first stop the thread hit event is kept being
1863 reported from its cached value by linux_nat_stopped_data_address
1864 until the real thread resume happens after the watchpoint gets
1865 presented and thus its LWP_INFO->STATUS gets reset.
1866
1867 Therefore the hardware watchpoint hit can get safely reset on the
1868 watchpoint removal from inferior. */
1869
1870 static void
1871 update_watchpoint (struct watchpoint *b, int reparse)
1872 {
1873 int within_current_scope;
1874 struct frame_id saved_frame_id;
1875 int frame_saved;
1876
1877 /* If this is a local watchpoint, we only want to check if the
1878 watchpoint frame is in scope if the current thread is the thread
1879 that was used to create the watchpoint. */
1880 if (!watchpoint_in_thread_scope (b))
1881 return;
1882
1883 if (b->disposition == disp_del_at_next_stop)
1884 return;
1885
1886 frame_saved = 0;
1887
1888 /* Determine if the watchpoint is within scope. */
1889 if (b->exp_valid_block == NULL)
1890 within_current_scope = 1;
1891 else
1892 {
1893 struct frame_info *fi = get_current_frame ();
1894 struct gdbarch *frame_arch = get_frame_arch (fi);
1895 CORE_ADDR frame_pc = get_frame_pc (fi);
1896
1897 /* If we're at a point where the stack has been destroyed
1898 (e.g. in a function epilogue), unwinding may not work
1899 properly. Do not attempt to recreate locations at this
1900 point. See similar comments in watchpoint_check. */
1901 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1902 return;
1903
1904 /* Save the current frame's ID so we can restore it after
1905 evaluating the watchpoint expression on its own frame. */
1906 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1907 took a frame parameter, so that we didn't have to change the
1908 selected frame. */
1909 frame_saved = 1;
1910 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1911
1912 fi = frame_find_by_id (b->watchpoint_frame);
1913 within_current_scope = (fi != NULL);
1914 if (within_current_scope)
1915 select_frame (fi);
1916 }
1917
1918 /* We don't free locations. They are stored in the bp_location array
1919 and update_global_location_list will eventually delete them and
1920 remove breakpoints if needed. */
1921 b->loc = NULL;
1922
1923 if (within_current_scope && reparse)
1924 {
1925 const char *s;
1926
1927 b->exp.reset ();
1928 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1929 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1930 /* If the meaning of expression itself changed, the old value is
1931 no longer relevant. We don't want to report a watchpoint hit
1932 to the user when the old value and the new value may actually
1933 be completely different objects. */
1934 value_free (b->val);
1935 b->val = NULL;
1936 b->val_valid = 0;
1937
1938 /* Note that unlike with breakpoints, the watchpoint's condition
1939 expression is stored in the breakpoint object, not in the
1940 locations (re)created below. */
1941 if (b->cond_string != NULL)
1942 {
1943 b->cond_exp.reset ();
1944
1945 s = b->cond_string;
1946 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1947 }
1948 }
1949
1950 /* If we failed to parse the expression, for example because
1951 it refers to a global variable in a not-yet-loaded shared library,
1952 don't try to insert watchpoint. We don't automatically delete
1953 such watchpoint, though, since failure to parse expression
1954 is different from out-of-scope watchpoint. */
1955 if (!target_has_execution)
1956 {
1957 /* Without execution, memory can't change. No use to try and
1958 set watchpoint locations. The watchpoint will be reset when
1959 the target gains execution, through breakpoint_re_set. */
1960 if (!can_use_hw_watchpoints)
1961 {
1962 if (b->ops->works_in_software_mode (b))
1963 b->type = bp_watchpoint;
1964 else
1965 error (_("Can't set read/access watchpoint when "
1966 "hardware watchpoints are disabled."));
1967 }
1968 }
1969 else if (within_current_scope && b->exp)
1970 {
1971 int pc = 0;
1972 struct value *val_chain, *v, *result, *next;
1973 struct program_space *frame_pspace;
1974
1975 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1976
1977 /* Avoid setting b->val if it's already set. The meaning of
1978 b->val is 'the last value' user saw, and we should update
1979 it only if we reported that last value to user. As it
1980 happens, the code that reports it updates b->val directly.
1981 We don't keep track of the memory value for masked
1982 watchpoints. */
1983 if (!b->val_valid && !is_masked_watchpoint (b))
1984 {
1985 if (b->val_bitsize != 0)
1986 {
1987 v = extract_bitfield_from_watchpoint_value (b, v);
1988 if (v != NULL)
1989 release_value (v);
1990 }
1991 b->val = v;
1992 b->val_valid = 1;
1993 }
1994
1995 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1996
1997 /* Look at each value on the value chain. */
1998 for (v = val_chain; v; v = value_next (v))
1999 {
2000 /* If it's a memory location, and GDB actually needed
2001 its contents to evaluate the expression, then we
2002 must watch it. If the first value returned is
2003 still lazy, that means an error occurred reading it;
2004 watch it anyway in case it becomes readable. */
2005 if (VALUE_LVAL (v) == lval_memory
2006 && (v == val_chain || ! value_lazy (v)))
2007 {
2008 struct type *vtype = check_typedef (value_type (v));
2009
2010 /* We only watch structs and arrays if user asked
2011 for it explicitly, never if they just happen to
2012 appear in the middle of some value chain. */
2013 if (v == result
2014 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
2015 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
2016 {
2017 CORE_ADDR addr;
2018 enum target_hw_bp_type type;
2019 struct bp_location *loc, **tmp;
2020 int bitpos = 0, bitsize = 0;
2021
2022 if (value_bitsize (v) != 0)
2023 {
2024 /* Extract the bit parameters out from the bitfield
2025 sub-expression. */
2026 bitpos = value_bitpos (v);
2027 bitsize = value_bitsize (v);
2028 }
2029 else if (v == result && b->val_bitsize != 0)
2030 {
2031 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2032 lvalue whose bit parameters are saved in the fields
2033 VAL_BITPOS and VAL_BITSIZE. */
2034 bitpos = b->val_bitpos;
2035 bitsize = b->val_bitsize;
2036 }
2037
2038 addr = value_address (v);
2039 if (bitsize != 0)
2040 {
2041 /* Skip the bytes that don't contain the bitfield. */
2042 addr += bitpos / 8;
2043 }
2044
2045 type = hw_write;
2046 if (b->type == bp_read_watchpoint)
2047 type = hw_read;
2048 else if (b->type == bp_access_watchpoint)
2049 type = hw_access;
2050
2051 loc = allocate_bp_location (b);
2052 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
2053 ;
2054 *tmp = loc;
2055 loc->gdbarch = get_type_arch (value_type (v));
2056
2057 loc->pspace = frame_pspace;
2058 loc->address = addr;
2059
2060 if (bitsize != 0)
2061 {
2062 /* Just cover the bytes that make up the bitfield. */
2063 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2064 }
2065 else
2066 loc->length = TYPE_LENGTH (value_type (v));
2067
2068 loc->watchpoint_type = type;
2069 }
2070 }
2071 }
2072
2073 /* Change the type of breakpoint between hardware assisted or
2074 an ordinary watchpoint depending on the hardware support
2075 and free hardware slots. REPARSE is set when the inferior
2076 is started. */
2077 if (reparse)
2078 {
2079 int reg_cnt;
2080 enum bp_loc_type loc_type;
2081 struct bp_location *bl;
2082
2083 reg_cnt = can_use_hardware_watchpoint (val_chain);
2084
2085 if (reg_cnt)
2086 {
2087 int i, target_resources_ok, other_type_used;
2088 enum bptype type;
2089
2090 /* Use an exact watchpoint when there's only one memory region to be
2091 watched, and only one debug register is needed to watch it. */
2092 b->exact = target_exact_watchpoints && reg_cnt == 1;
2093
2094 /* We need to determine how many resources are already
2095 used for all other hardware watchpoints plus this one
2096 to see if we still have enough resources to also fit
2097 this watchpoint in as well. */
2098
2099 /* If this is a software watchpoint, we try to turn it
2100 to a hardware one -- count resources as if B was of
2101 hardware watchpoint type. */
2102 type = b->type;
2103 if (type == bp_watchpoint)
2104 type = bp_hardware_watchpoint;
2105
2106 /* This watchpoint may or may not have been placed on
2107 the list yet at this point (it won't be in the list
2108 if we're trying to create it for the first time,
2109 through watch_command), so always account for it
2110 manually. */
2111
2112 /* Count resources used by all watchpoints except B. */
2113 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2114
2115 /* Add in the resources needed for B. */
2116 i += hw_watchpoint_use_count (b);
2117
2118 target_resources_ok
2119 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2120 if (target_resources_ok <= 0)
2121 {
2122 int sw_mode = b->ops->works_in_software_mode (b);
2123
2124 if (target_resources_ok == 0 && !sw_mode)
2125 error (_("Target does not support this type of "
2126 "hardware watchpoint."));
2127 else if (target_resources_ok < 0 && !sw_mode)
2128 error (_("There are not enough available hardware "
2129 "resources for this watchpoint."));
2130
2131 /* Downgrade to software watchpoint. */
2132 b->type = bp_watchpoint;
2133 }
2134 else
2135 {
2136 /* If this was a software watchpoint, we've just
2137 found we have enough resources to turn it to a
2138 hardware watchpoint. Otherwise, this is a
2139 nop. */
2140 b->type = type;
2141 }
2142 }
2143 else if (!b->ops->works_in_software_mode (b))
2144 {
2145 if (!can_use_hw_watchpoints)
2146 error (_("Can't set read/access watchpoint when "
2147 "hardware watchpoints are disabled."));
2148 else
2149 error (_("Expression cannot be implemented with "
2150 "read/access watchpoint."));
2151 }
2152 else
2153 b->type = bp_watchpoint;
2154
2155 loc_type = (b->type == bp_watchpoint? bp_loc_other
2156 : bp_loc_hardware_watchpoint);
2157 for (bl = b->loc; bl; bl = bl->next)
2158 bl->loc_type = loc_type;
2159 }
2160
2161 for (v = val_chain; v; v = next)
2162 {
2163 next = value_next (v);
2164 if (v != b->val)
2165 value_free (v);
2166 }
2167
2168 /* If a software watchpoint is not watching any memory, then the
2169 above left it without any location set up. But,
2170 bpstat_stop_status requires a location to be able to report
2171 stops, so make sure there's at least a dummy one. */
2172 if (b->type == bp_watchpoint && b->loc == NULL)
2173 software_watchpoint_add_no_memory_location (b, frame_pspace);
2174 }
2175 else if (!within_current_scope)
2176 {
2177 printf_filtered (_("\
2178 Watchpoint %d deleted because the program has left the block\n\
2179 in which its expression is valid.\n"),
2180 b->number);
2181 watchpoint_del_at_next_stop (b);
2182 }
2183
2184 /* Restore the selected frame. */
2185 if (frame_saved)
2186 select_frame (frame_find_by_id (saved_frame_id));
2187 }
2188
2189
2190 /* Returns 1 iff breakpoint location should be
2191 inserted in the inferior. We don't differentiate the type of BL's owner
2192 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2193 breakpoint_ops is not defined, because in insert_bp_location,
2194 tracepoint's insert_location will not be called. */
2195 static int
2196 should_be_inserted (struct bp_location *bl)
2197 {
2198 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2199 return 0;
2200
2201 if (bl->owner->disposition == disp_del_at_next_stop)
2202 return 0;
2203
2204 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2205 return 0;
2206
2207 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2208 return 0;
2209
2210 /* This is set for example, when we're attached to the parent of a
2211 vfork, and have detached from the child. The child is running
2212 free, and we expect it to do an exec or exit, at which point the
2213 OS makes the parent schedulable again (and the target reports
2214 that the vfork is done). Until the child is done with the shared
2215 memory region, do not insert breakpoints in the parent, otherwise
2216 the child could still trip on the parent's breakpoints. Since
2217 the parent is blocked anyway, it won't miss any breakpoint. */
2218 if (bl->pspace->breakpoints_not_allowed)
2219 return 0;
2220
2221 /* Don't insert a breakpoint if we're trying to step past its
2222 location, except if the breakpoint is a single-step breakpoint,
2223 and the breakpoint's thread is the thread which is stepping past
2224 a breakpoint. */
2225 if ((bl->loc_type == bp_loc_software_breakpoint
2226 || bl->loc_type == bp_loc_hardware_breakpoint)
2227 && stepping_past_instruction_at (bl->pspace->aspace,
2228 bl->address)
2229 /* The single-step breakpoint may be inserted at the location
2230 we're trying to step if the instruction branches to itself.
2231 However, the instruction won't be executed at all and it may
2232 break the semantics of the instruction, for example, the
2233 instruction is a conditional branch or updates some flags.
2234 We can't fix it unless GDB is able to emulate the instruction
2235 or switch to displaced stepping. */
2236 && !(bl->owner->type == bp_single_step
2237 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2238 {
2239 if (debug_infrun)
2240 {
2241 fprintf_unfiltered (gdb_stdlog,
2242 "infrun: skipping breakpoint: "
2243 "stepping past insn at: %s\n",
2244 paddress (bl->gdbarch, bl->address));
2245 }
2246 return 0;
2247 }
2248
2249 /* Don't insert watchpoints if we're trying to step past the
2250 instruction that triggered one. */
2251 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2252 && stepping_past_nonsteppable_watchpoint ())
2253 {
2254 if (debug_infrun)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "infrun: stepping past non-steppable watchpoint. "
2258 "skipping watchpoint at %s:%d\n",
2259 paddress (bl->gdbarch, bl->address),
2260 bl->length);
2261 }
2262 return 0;
2263 }
2264
2265 return 1;
2266 }
2267
2268 /* Same as should_be_inserted but does the check assuming
2269 that the location is not duplicated. */
2270
2271 static int
2272 unduplicated_should_be_inserted (struct bp_location *bl)
2273 {
2274 int result;
2275 const int save_duplicate = bl->duplicate;
2276
2277 bl->duplicate = 0;
2278 result = should_be_inserted (bl);
2279 bl->duplicate = save_duplicate;
2280 return result;
2281 }
2282
2283 /* Parses a conditional described by an expression COND into an
2284 agent expression bytecode suitable for evaluation
2285 by the bytecode interpreter. Return NULL if there was
2286 any error during parsing. */
2287
2288 static agent_expr_up
2289 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2290 {
2291 if (cond == NULL)
2292 return NULL;
2293
2294 agent_expr_up aexpr;
2295
2296 /* We don't want to stop processing, so catch any errors
2297 that may show up. */
2298 TRY
2299 {
2300 aexpr = gen_eval_for_expr (scope, cond);
2301 }
2302
2303 CATCH (ex, RETURN_MASK_ERROR)
2304 {
2305 /* If we got here, it means the condition could not be parsed to a valid
2306 bytecode expression and thus can't be evaluated on the target's side.
2307 It's no use iterating through the conditions. */
2308 }
2309 END_CATCH
2310
2311 /* We have a valid agent expression. */
2312 return aexpr;
2313 }
2314
2315 /* Based on location BL, create a list of breakpoint conditions to be
2316 passed on to the target. If we have duplicated locations with different
2317 conditions, we will add such conditions to the list. The idea is that the
2318 target will evaluate the list of conditions and will only notify GDB when
2319 one of them is true. */
2320
2321 static void
2322 build_target_condition_list (struct bp_location *bl)
2323 {
2324 struct bp_location **locp = NULL, **loc2p;
2325 int null_condition_or_parse_error = 0;
2326 int modified = bl->needs_update;
2327 struct bp_location *loc;
2328
2329 /* Release conditions left over from a previous insert. */
2330 bl->target_info.conditions.clear ();
2331
2332 /* This is only meaningful if the target is
2333 evaluating conditions and if the user has
2334 opted for condition evaluation on the target's
2335 side. */
2336 if (gdb_evaluates_breakpoint_condition_p ()
2337 || !target_supports_evaluation_of_breakpoint_conditions ())
2338 return;
2339
2340 /* Do a first pass to check for locations with no assigned
2341 conditions or conditions that fail to parse to a valid agent expression
2342 bytecode. If any of these happen, then it's no use to send conditions
2343 to the target since this location will always trigger and generate a
2344 response back to GDB. */
2345 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2346 {
2347 loc = (*loc2p);
2348 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2349 {
2350 if (modified)
2351 {
2352 /* Re-parse the conditions since something changed. In that
2353 case we already freed the condition bytecodes (see
2354 force_breakpoint_reinsertion). We just
2355 need to parse the condition to bytecodes again. */
2356 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2357 loc->cond.get ());
2358 }
2359
2360 /* If we have a NULL bytecode expression, it means something
2361 went wrong or we have a null condition expression. */
2362 if (!loc->cond_bytecode)
2363 {
2364 null_condition_or_parse_error = 1;
2365 break;
2366 }
2367 }
2368 }
2369
2370 /* If any of these happened, it means we will have to evaluate the conditions
2371 for the location's address on gdb's side. It is no use keeping bytecodes
2372 for all the other duplicate locations, thus we free all of them here.
2373
2374 This is so we have a finer control over which locations' conditions are
2375 being evaluated by GDB or the remote stub. */
2376 if (null_condition_or_parse_error)
2377 {
2378 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2379 {
2380 loc = (*loc2p);
2381 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2382 {
2383 /* Only go as far as the first NULL bytecode is
2384 located. */
2385 if (!loc->cond_bytecode)
2386 return;
2387
2388 loc->cond_bytecode.reset ();
2389 }
2390 }
2391 }
2392
2393 /* No NULL conditions or failed bytecode generation. Build a condition list
2394 for this location's address. */
2395 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2396 {
2397 loc = (*loc2p);
2398 if (loc->cond
2399 && is_breakpoint (loc->owner)
2400 && loc->pspace->num == bl->pspace->num
2401 && loc->owner->enable_state == bp_enabled
2402 && loc->enabled)
2403 {
2404 /* Add the condition to the vector. This will be used later
2405 to send the conditions to the target. */
2406 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2407 }
2408 }
2409
2410 return;
2411 }
2412
2413 /* Parses a command described by string CMD into an agent expression
2414 bytecode suitable for evaluation by the bytecode interpreter.
2415 Return NULL if there was any error during parsing. */
2416
2417 static agent_expr_up
2418 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2419 {
2420 struct cleanup *old_cleanups = 0;
2421 struct expression **argvec;
2422 const char *cmdrest;
2423 const char *format_start, *format_end;
2424 struct format_piece *fpieces;
2425 int nargs;
2426 struct gdbarch *gdbarch = get_current_arch ();
2427
2428 if (cmd == NULL)
2429 return NULL;
2430
2431 cmdrest = cmd;
2432
2433 if (*cmdrest == ',')
2434 ++cmdrest;
2435 cmdrest = skip_spaces_const (cmdrest);
2436
2437 if (*cmdrest++ != '"')
2438 error (_("No format string following the location"));
2439
2440 format_start = cmdrest;
2441
2442 fpieces = parse_format_string (&cmdrest);
2443
2444 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2445
2446 format_end = cmdrest;
2447
2448 if (*cmdrest++ != '"')
2449 error (_("Bad format string, non-terminated '\"'."));
2450
2451 cmdrest = skip_spaces_const (cmdrest);
2452
2453 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2454 error (_("Invalid argument syntax"));
2455
2456 if (*cmdrest == ',')
2457 cmdrest++;
2458 cmdrest = skip_spaces_const (cmdrest);
2459
2460 /* For each argument, make an expression. */
2461
2462 argvec = (struct expression **) alloca (strlen (cmd)
2463 * sizeof (struct expression *));
2464
2465 nargs = 0;
2466 while (*cmdrest != '\0')
2467 {
2468 const char *cmd1;
2469
2470 cmd1 = cmdrest;
2471 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2472 argvec[nargs++] = expr.release ();
2473 cmdrest = cmd1;
2474 if (*cmdrest == ',')
2475 ++cmdrest;
2476 }
2477
2478 agent_expr_up aexpr;
2479
2480 /* We don't want to stop processing, so catch any errors
2481 that may show up. */
2482 TRY
2483 {
2484 aexpr = gen_printf (scope, gdbarch, 0, 0,
2485 format_start, format_end - format_start,
2486 fpieces, nargs, argvec);
2487 }
2488 CATCH (ex, RETURN_MASK_ERROR)
2489 {
2490 /* If we got here, it means the command could not be parsed to a valid
2491 bytecode expression and thus can't be evaluated on the target's side.
2492 It's no use iterating through the other commands. */
2493 }
2494 END_CATCH
2495
2496 do_cleanups (old_cleanups);
2497
2498 /* We have a valid agent expression, return it. */
2499 return aexpr;
2500 }
2501
2502 /* Based on location BL, create a list of breakpoint commands to be
2503 passed on to the target. If we have duplicated locations with
2504 different commands, we will add any such to the list. */
2505
2506 static void
2507 build_target_command_list (struct bp_location *bl)
2508 {
2509 struct bp_location **locp = NULL, **loc2p;
2510 int null_command_or_parse_error = 0;
2511 int modified = bl->needs_update;
2512 struct bp_location *loc;
2513
2514 /* Clear commands left over from a previous insert. */
2515 bl->target_info.tcommands.clear ();
2516
2517 if (!target_can_run_breakpoint_commands ())
2518 return;
2519
2520 /* For now, limit to agent-style dprintf breakpoints. */
2521 if (dprintf_style != dprintf_style_agent)
2522 return;
2523
2524 /* For now, if we have any duplicate location that isn't a dprintf,
2525 don't install the target-side commands, as that would make the
2526 breakpoint not be reported to the core, and we'd lose
2527 control. */
2528 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2529 {
2530 loc = (*loc2p);
2531 if (is_breakpoint (loc->owner)
2532 && loc->pspace->num == bl->pspace->num
2533 && loc->owner->type != bp_dprintf)
2534 return;
2535 }
2536
2537 /* Do a first pass to check for locations with no assigned
2538 conditions or conditions that fail to parse to a valid agent expression
2539 bytecode. If any of these happen, then it's no use to send conditions
2540 to the target since this location will always trigger and generate a
2541 response back to GDB. */
2542 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2543 {
2544 loc = (*loc2p);
2545 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2546 {
2547 if (modified)
2548 {
2549 /* Re-parse the commands since something changed. In that
2550 case we already freed the command bytecodes (see
2551 force_breakpoint_reinsertion). We just
2552 need to parse the command to bytecodes again. */
2553 loc->cmd_bytecode
2554 = parse_cmd_to_aexpr (bl->address,
2555 loc->owner->extra_string);
2556 }
2557
2558 /* If we have a NULL bytecode expression, it means something
2559 went wrong or we have a null command expression. */
2560 if (!loc->cmd_bytecode)
2561 {
2562 null_command_or_parse_error = 1;
2563 break;
2564 }
2565 }
2566 }
2567
2568 /* If anything failed, then we're not doing target-side commands,
2569 and so clean up. */
2570 if (null_command_or_parse_error)
2571 {
2572 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2573 {
2574 loc = (*loc2p);
2575 if (is_breakpoint (loc->owner)
2576 && loc->pspace->num == bl->pspace->num)
2577 {
2578 /* Only go as far as the first NULL bytecode is
2579 located. */
2580 if (loc->cmd_bytecode == NULL)
2581 return;
2582
2583 loc->cmd_bytecode.reset ();
2584 }
2585 }
2586 }
2587
2588 /* No NULL commands or failed bytecode generation. Build a command list
2589 for this location's address. */
2590 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2591 {
2592 loc = (*loc2p);
2593 if (loc->owner->extra_string
2594 && is_breakpoint (loc->owner)
2595 && loc->pspace->num == bl->pspace->num
2596 && loc->owner->enable_state == bp_enabled
2597 && loc->enabled)
2598 {
2599 /* Add the command to the vector. This will be used later
2600 to send the commands to the target. */
2601 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2602 }
2603 }
2604
2605 bl->target_info.persist = 0;
2606 /* Maybe flag this location as persistent. */
2607 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2608 bl->target_info.persist = 1;
2609 }
2610
2611 /* Return the kind of breakpoint on address *ADDR. Get the kind
2612 of breakpoint according to ADDR except single-step breakpoint.
2613 Get the kind of single-step breakpoint according to the current
2614 registers state. */
2615
2616 static int
2617 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2618 {
2619 if (bl->owner->type == bp_single_step)
2620 {
2621 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2622 struct regcache *regcache;
2623
2624 regcache = get_thread_regcache (thr->ptid);
2625
2626 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2627 regcache, addr);
2628 }
2629 else
2630 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2631 }
2632
2633 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2634 location. Any error messages are printed to TMP_ERROR_STREAM; and
2635 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2636 Returns 0 for success, 1 if the bp_location type is not supported or
2637 -1 for failure.
2638
2639 NOTE drow/2003-09-09: This routine could be broken down to an
2640 object-style method for each breakpoint or catchpoint type. */
2641 static int
2642 insert_bp_location (struct bp_location *bl,
2643 struct ui_file *tmp_error_stream,
2644 int *disabled_breaks,
2645 int *hw_breakpoint_error,
2646 int *hw_bp_error_explained_already)
2647 {
2648 enum errors bp_err = GDB_NO_ERROR;
2649 const char *bp_err_message = NULL;
2650
2651 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2652 return 0;
2653
2654 /* Note we don't initialize bl->target_info, as that wipes out
2655 the breakpoint location's shadow_contents if the breakpoint
2656 is still inserted at that location. This in turn breaks
2657 target_read_memory which depends on these buffers when
2658 a memory read is requested at the breakpoint location:
2659 Once the target_info has been wiped, we fail to see that
2660 we have a breakpoint inserted at that address and thus
2661 read the breakpoint instead of returning the data saved in
2662 the breakpoint location's shadow contents. */
2663 bl->target_info.reqstd_address = bl->address;
2664 bl->target_info.placed_address_space = bl->pspace->aspace;
2665 bl->target_info.length = bl->length;
2666
2667 /* When working with target-side conditions, we must pass all the conditions
2668 for the same breakpoint address down to the target since GDB will not
2669 insert those locations. With a list of breakpoint conditions, the target
2670 can decide when to stop and notify GDB. */
2671
2672 if (is_breakpoint (bl->owner))
2673 {
2674 build_target_condition_list (bl);
2675 build_target_command_list (bl);
2676 /* Reset the modification marker. */
2677 bl->needs_update = 0;
2678 }
2679
2680 if (bl->loc_type == bp_loc_software_breakpoint
2681 || bl->loc_type == bp_loc_hardware_breakpoint)
2682 {
2683 if (bl->owner->type != bp_hardware_breakpoint)
2684 {
2685 /* If the explicitly specified breakpoint type
2686 is not hardware breakpoint, check the memory map to see
2687 if the breakpoint address is in read only memory or not.
2688
2689 Two important cases are:
2690 - location type is not hardware breakpoint, memory
2691 is readonly. We change the type of the location to
2692 hardware breakpoint.
2693 - location type is hardware breakpoint, memory is
2694 read-write. This means we've previously made the
2695 location hardware one, but then the memory map changed,
2696 so we undo.
2697
2698 When breakpoints are removed, remove_breakpoints will use
2699 location types we've just set here, the only possible
2700 problem is that memory map has changed during running
2701 program, but it's not going to work anyway with current
2702 gdb. */
2703 struct mem_region *mr
2704 = lookup_mem_region (bl->target_info.reqstd_address);
2705
2706 if (mr)
2707 {
2708 if (automatic_hardware_breakpoints)
2709 {
2710 enum bp_loc_type new_type;
2711
2712 if (mr->attrib.mode != MEM_RW)
2713 new_type = bp_loc_hardware_breakpoint;
2714 else
2715 new_type = bp_loc_software_breakpoint;
2716
2717 if (new_type != bl->loc_type)
2718 {
2719 static int said = 0;
2720
2721 bl->loc_type = new_type;
2722 if (!said)
2723 {
2724 fprintf_filtered (gdb_stdout,
2725 _("Note: automatically using "
2726 "hardware breakpoints for "
2727 "read-only addresses.\n"));
2728 said = 1;
2729 }
2730 }
2731 }
2732 else if (bl->loc_type == bp_loc_software_breakpoint
2733 && mr->attrib.mode != MEM_RW)
2734 {
2735 fprintf_unfiltered (tmp_error_stream,
2736 _("Cannot insert breakpoint %d.\n"
2737 "Cannot set software breakpoint "
2738 "at read-only address %s\n"),
2739 bl->owner->number,
2740 paddress (bl->gdbarch, bl->address));
2741 return 1;
2742 }
2743 }
2744 }
2745
2746 /* First check to see if we have to handle an overlay. */
2747 if (overlay_debugging == ovly_off
2748 || bl->section == NULL
2749 || !(section_is_overlay (bl->section)))
2750 {
2751 /* No overlay handling: just set the breakpoint. */
2752 TRY
2753 {
2754 int val;
2755
2756 val = bl->owner->ops->insert_location (bl);
2757 if (val)
2758 bp_err = GENERIC_ERROR;
2759 }
2760 CATCH (e, RETURN_MASK_ALL)
2761 {
2762 bp_err = e.error;
2763 bp_err_message = e.message;
2764 }
2765 END_CATCH
2766 }
2767 else
2768 {
2769 /* This breakpoint is in an overlay section.
2770 Shall we set a breakpoint at the LMA? */
2771 if (!overlay_events_enabled)
2772 {
2773 /* Yes -- overlay event support is not active,
2774 so we must try to set a breakpoint at the LMA.
2775 This will not work for a hardware breakpoint. */
2776 if (bl->loc_type == bp_loc_hardware_breakpoint)
2777 warning (_("hardware breakpoint %d not supported in overlay!"),
2778 bl->owner->number);
2779 else
2780 {
2781 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2782 bl->section);
2783 /* Set a software (trap) breakpoint at the LMA. */
2784 bl->overlay_target_info = bl->target_info;
2785 bl->overlay_target_info.reqstd_address = addr;
2786
2787 /* No overlay handling: just set the breakpoint. */
2788 TRY
2789 {
2790 int val;
2791
2792 bl->overlay_target_info.kind
2793 = breakpoint_kind (bl, &addr);
2794 bl->overlay_target_info.placed_address = addr;
2795 val = target_insert_breakpoint (bl->gdbarch,
2796 &bl->overlay_target_info);
2797 if (val)
2798 bp_err = GENERIC_ERROR;
2799 }
2800 CATCH (e, RETURN_MASK_ALL)
2801 {
2802 bp_err = e.error;
2803 bp_err_message = e.message;
2804 }
2805 END_CATCH
2806
2807 if (bp_err != GDB_NO_ERROR)
2808 fprintf_unfiltered (tmp_error_stream,
2809 "Overlay breakpoint %d "
2810 "failed: in ROM?\n",
2811 bl->owner->number);
2812 }
2813 }
2814 /* Shall we set a breakpoint at the VMA? */
2815 if (section_is_mapped (bl->section))
2816 {
2817 /* Yes. This overlay section is mapped into memory. */
2818 TRY
2819 {
2820 int val;
2821
2822 val = bl->owner->ops->insert_location (bl);
2823 if (val)
2824 bp_err = GENERIC_ERROR;
2825 }
2826 CATCH (e, RETURN_MASK_ALL)
2827 {
2828 bp_err = e.error;
2829 bp_err_message = e.message;
2830 }
2831 END_CATCH
2832 }
2833 else
2834 {
2835 /* No. This breakpoint will not be inserted.
2836 No error, but do not mark the bp as 'inserted'. */
2837 return 0;
2838 }
2839 }
2840
2841 if (bp_err != GDB_NO_ERROR)
2842 {
2843 /* Can't set the breakpoint. */
2844
2845 /* In some cases, we might not be able to insert a
2846 breakpoint in a shared library that has already been
2847 removed, but we have not yet processed the shlib unload
2848 event. Unfortunately, some targets that implement
2849 breakpoint insertion themselves can't tell why the
2850 breakpoint insertion failed (e.g., the remote target
2851 doesn't define error codes), so we must treat generic
2852 errors as memory errors. */
2853 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2854 && bl->loc_type == bp_loc_software_breakpoint
2855 && (solib_name_from_address (bl->pspace, bl->address)
2856 || shared_objfile_contains_address_p (bl->pspace,
2857 bl->address)))
2858 {
2859 /* See also: disable_breakpoints_in_shlibs. */
2860 bl->shlib_disabled = 1;
2861 observer_notify_breakpoint_modified (bl->owner);
2862 if (!*disabled_breaks)
2863 {
2864 fprintf_unfiltered (tmp_error_stream,
2865 "Cannot insert breakpoint %d.\n",
2866 bl->owner->number);
2867 fprintf_unfiltered (tmp_error_stream,
2868 "Temporarily disabling shared "
2869 "library breakpoints:\n");
2870 }
2871 *disabled_breaks = 1;
2872 fprintf_unfiltered (tmp_error_stream,
2873 "breakpoint #%d\n", bl->owner->number);
2874 return 0;
2875 }
2876 else
2877 {
2878 if (bl->loc_type == bp_loc_hardware_breakpoint)
2879 {
2880 *hw_breakpoint_error = 1;
2881 *hw_bp_error_explained_already = bp_err_message != NULL;
2882 fprintf_unfiltered (tmp_error_stream,
2883 "Cannot insert hardware breakpoint %d%s",
2884 bl->owner->number, bp_err_message ? ":" : ".\n");
2885 if (bp_err_message != NULL)
2886 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2887 }
2888 else
2889 {
2890 if (bp_err_message == NULL)
2891 {
2892 char *message
2893 = memory_error_message (TARGET_XFER_E_IO,
2894 bl->gdbarch, bl->address);
2895 struct cleanup *old_chain = make_cleanup (xfree, message);
2896
2897 fprintf_unfiltered (tmp_error_stream,
2898 "Cannot insert breakpoint %d.\n"
2899 "%s\n",
2900 bl->owner->number, message);
2901 do_cleanups (old_chain);
2902 }
2903 else
2904 {
2905 fprintf_unfiltered (tmp_error_stream,
2906 "Cannot insert breakpoint %d: %s\n",
2907 bl->owner->number,
2908 bp_err_message);
2909 }
2910 }
2911 return 1;
2912
2913 }
2914 }
2915 else
2916 bl->inserted = 1;
2917
2918 return 0;
2919 }
2920
2921 else if (bl->loc_type == bp_loc_hardware_watchpoint
2922 /* NOTE drow/2003-09-08: This state only exists for removing
2923 watchpoints. It's not clear that it's necessary... */
2924 && bl->owner->disposition != disp_del_at_next_stop)
2925 {
2926 int val;
2927
2928 gdb_assert (bl->owner->ops != NULL
2929 && bl->owner->ops->insert_location != NULL);
2930
2931 val = bl->owner->ops->insert_location (bl);
2932
2933 /* If trying to set a read-watchpoint, and it turns out it's not
2934 supported, try emulating one with an access watchpoint. */
2935 if (val == 1 && bl->watchpoint_type == hw_read)
2936 {
2937 struct bp_location *loc, **loc_temp;
2938
2939 /* But don't try to insert it, if there's already another
2940 hw_access location that would be considered a duplicate
2941 of this one. */
2942 ALL_BP_LOCATIONS (loc, loc_temp)
2943 if (loc != bl
2944 && loc->watchpoint_type == hw_access
2945 && watchpoint_locations_match (bl, loc))
2946 {
2947 bl->duplicate = 1;
2948 bl->inserted = 1;
2949 bl->target_info = loc->target_info;
2950 bl->watchpoint_type = hw_access;
2951 val = 0;
2952 break;
2953 }
2954
2955 if (val == 1)
2956 {
2957 bl->watchpoint_type = hw_access;
2958 val = bl->owner->ops->insert_location (bl);
2959
2960 if (val)
2961 /* Back to the original value. */
2962 bl->watchpoint_type = hw_read;
2963 }
2964 }
2965
2966 bl->inserted = (val == 0);
2967 }
2968
2969 else if (bl->owner->type == bp_catchpoint)
2970 {
2971 int val;
2972
2973 gdb_assert (bl->owner->ops != NULL
2974 && bl->owner->ops->insert_location != NULL);
2975
2976 val = bl->owner->ops->insert_location (bl);
2977 if (val)
2978 {
2979 bl->owner->enable_state = bp_disabled;
2980
2981 if (val == 1)
2982 warning (_("\
2983 Error inserting catchpoint %d: Your system does not support this type\n\
2984 of catchpoint."), bl->owner->number);
2985 else
2986 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2987 }
2988
2989 bl->inserted = (val == 0);
2990
2991 /* We've already printed an error message if there was a problem
2992 inserting this catchpoint, and we've disabled the catchpoint,
2993 so just return success. */
2994 return 0;
2995 }
2996
2997 return 0;
2998 }
2999
3000 /* This function is called when program space PSPACE is about to be
3001 deleted. It takes care of updating breakpoints to not reference
3002 PSPACE anymore. */
3003
3004 void
3005 breakpoint_program_space_exit (struct program_space *pspace)
3006 {
3007 struct breakpoint *b, *b_temp;
3008 struct bp_location *loc, **loc_temp;
3009
3010 /* Remove any breakpoint that was set through this program space. */
3011 ALL_BREAKPOINTS_SAFE (b, b_temp)
3012 {
3013 if (b->pspace == pspace)
3014 delete_breakpoint (b);
3015 }
3016
3017 /* Breakpoints set through other program spaces could have locations
3018 bound to PSPACE as well. Remove those. */
3019 ALL_BP_LOCATIONS (loc, loc_temp)
3020 {
3021 struct bp_location *tmp;
3022
3023 if (loc->pspace == pspace)
3024 {
3025 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
3026 if (loc->owner->loc == loc)
3027 loc->owner->loc = loc->next;
3028 else
3029 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3030 if (tmp->next == loc)
3031 {
3032 tmp->next = loc->next;
3033 break;
3034 }
3035 }
3036 }
3037
3038 /* Now update the global location list to permanently delete the
3039 removed locations above. */
3040 update_global_location_list (UGLL_DONT_INSERT);
3041 }
3042
3043 /* Make sure all breakpoints are inserted in inferior.
3044 Throws exception on any error.
3045 A breakpoint that is already inserted won't be inserted
3046 again, so calling this function twice is safe. */
3047 void
3048 insert_breakpoints (void)
3049 {
3050 struct breakpoint *bpt;
3051
3052 ALL_BREAKPOINTS (bpt)
3053 if (is_hardware_watchpoint (bpt))
3054 {
3055 struct watchpoint *w = (struct watchpoint *) bpt;
3056
3057 update_watchpoint (w, 0 /* don't reparse. */);
3058 }
3059
3060 /* Updating watchpoints creates new locations, so update the global
3061 location list. Explicitly tell ugll to insert locations and
3062 ignore breakpoints_always_inserted_mode. */
3063 update_global_location_list (UGLL_INSERT);
3064 }
3065
3066 /* Invoke CALLBACK for each of bp_location. */
3067
3068 void
3069 iterate_over_bp_locations (walk_bp_location_callback callback)
3070 {
3071 struct bp_location *loc, **loc_tmp;
3072
3073 ALL_BP_LOCATIONS (loc, loc_tmp)
3074 {
3075 callback (loc, NULL);
3076 }
3077 }
3078
3079 /* This is used when we need to synch breakpoint conditions between GDB and the
3080 target. It is the case with deleting and disabling of breakpoints when using
3081 always-inserted mode. */
3082
3083 static void
3084 update_inserted_breakpoint_locations (void)
3085 {
3086 struct bp_location *bl, **blp_tmp;
3087 int error_flag = 0;
3088 int val = 0;
3089 int disabled_breaks = 0;
3090 int hw_breakpoint_error = 0;
3091 int hw_bp_details_reported = 0;
3092
3093 string_file tmp_error_stream;
3094
3095 /* Explicitly mark the warning -- this will only be printed if
3096 there was an error. */
3097 tmp_error_stream.puts ("Warning:\n");
3098
3099 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3100
3101 ALL_BP_LOCATIONS (bl, blp_tmp)
3102 {
3103 /* We only want to update software breakpoints and hardware
3104 breakpoints. */
3105 if (!is_breakpoint (bl->owner))
3106 continue;
3107
3108 /* We only want to update locations that are already inserted
3109 and need updating. This is to avoid unwanted insertion during
3110 deletion of breakpoints. */
3111 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3112 continue;
3113
3114 switch_to_program_space_and_thread (bl->pspace);
3115
3116 /* For targets that support global breakpoints, there's no need
3117 to select an inferior to insert breakpoint to. In fact, even
3118 if we aren't attached to any process yet, we should still
3119 insert breakpoints. */
3120 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3121 && ptid_equal (inferior_ptid, null_ptid))
3122 continue;
3123
3124 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3125 &hw_breakpoint_error, &hw_bp_details_reported);
3126 if (val)
3127 error_flag = val;
3128 }
3129
3130 if (error_flag)
3131 {
3132 target_terminal_ours_for_output ();
3133 error_stream (tmp_error_stream);
3134 }
3135 }
3136
3137 /* Used when starting or continuing the program. */
3138
3139 static void
3140 insert_breakpoint_locations (void)
3141 {
3142 struct breakpoint *bpt;
3143 struct bp_location *bl, **blp_tmp;
3144 int error_flag = 0;
3145 int val = 0;
3146 int disabled_breaks = 0;
3147 int hw_breakpoint_error = 0;
3148 int hw_bp_error_explained_already = 0;
3149
3150 string_file tmp_error_stream;
3151
3152 /* Explicitly mark the warning -- this will only be printed if
3153 there was an error. */
3154 tmp_error_stream.puts ("Warning:\n");
3155
3156 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3157
3158 ALL_BP_LOCATIONS (bl, blp_tmp)
3159 {
3160 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3161 continue;
3162
3163 /* There is no point inserting thread-specific breakpoints if
3164 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3165 has BL->OWNER always non-NULL. */
3166 if (bl->owner->thread != -1
3167 && !valid_global_thread_id (bl->owner->thread))
3168 continue;
3169
3170 switch_to_program_space_and_thread (bl->pspace);
3171
3172 /* For targets that support global breakpoints, there's no need
3173 to select an inferior to insert breakpoint to. In fact, even
3174 if we aren't attached to any process yet, we should still
3175 insert breakpoints. */
3176 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3177 && ptid_equal (inferior_ptid, null_ptid))
3178 continue;
3179
3180 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3181 &hw_breakpoint_error, &hw_bp_error_explained_already);
3182 if (val)
3183 error_flag = val;
3184 }
3185
3186 /* If we failed to insert all locations of a watchpoint, remove
3187 them, as half-inserted watchpoint is of limited use. */
3188 ALL_BREAKPOINTS (bpt)
3189 {
3190 int some_failed = 0;
3191 struct bp_location *loc;
3192
3193 if (!is_hardware_watchpoint (bpt))
3194 continue;
3195
3196 if (!breakpoint_enabled (bpt))
3197 continue;
3198
3199 if (bpt->disposition == disp_del_at_next_stop)
3200 continue;
3201
3202 for (loc = bpt->loc; loc; loc = loc->next)
3203 if (!loc->inserted && should_be_inserted (loc))
3204 {
3205 some_failed = 1;
3206 break;
3207 }
3208 if (some_failed)
3209 {
3210 for (loc = bpt->loc; loc; loc = loc->next)
3211 if (loc->inserted)
3212 remove_breakpoint (loc);
3213
3214 hw_breakpoint_error = 1;
3215 tmp_error_stream.printf ("Could not insert "
3216 "hardware watchpoint %d.\n",
3217 bpt->number);
3218 error_flag = -1;
3219 }
3220 }
3221
3222 if (error_flag)
3223 {
3224 /* If a hardware breakpoint or watchpoint was inserted, add a
3225 message about possibly exhausted resources. */
3226 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3227 {
3228 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3229 You may have requested too many hardware breakpoints/watchpoints.\n");
3230 }
3231 target_terminal_ours_for_output ();
3232 error_stream (tmp_error_stream);
3233 }
3234 }
3235
3236 /* Used when the program stops.
3237 Returns zero if successful, or non-zero if there was a problem
3238 removing a breakpoint location. */
3239
3240 int
3241 remove_breakpoints (void)
3242 {
3243 struct bp_location *bl, **blp_tmp;
3244 int val = 0;
3245
3246 ALL_BP_LOCATIONS (bl, blp_tmp)
3247 {
3248 if (bl->inserted && !is_tracepoint (bl->owner))
3249 val |= remove_breakpoint (bl);
3250 }
3251 return val;
3252 }
3253
3254 /* When a thread exits, remove breakpoints that are related to
3255 that thread. */
3256
3257 static void
3258 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3259 {
3260 struct breakpoint *b, *b_tmp;
3261
3262 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3263 {
3264 if (b->thread == tp->global_num && user_breakpoint_p (b))
3265 {
3266 b->disposition = disp_del_at_next_stop;
3267
3268 printf_filtered (_("\
3269 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3270 b->number, print_thread_id (tp));
3271
3272 /* Hide it from the user. */
3273 b->number = 0;
3274 }
3275 }
3276 }
3277
3278 /* Remove breakpoints of process PID. */
3279
3280 int
3281 remove_breakpoints_pid (int pid)
3282 {
3283 struct bp_location *bl, **blp_tmp;
3284 int val;
3285 struct inferior *inf = find_inferior_pid (pid);
3286
3287 ALL_BP_LOCATIONS (bl, blp_tmp)
3288 {
3289 if (bl->pspace != inf->pspace)
3290 continue;
3291
3292 if (bl->inserted && !bl->target_info.persist)
3293 {
3294 val = remove_breakpoint (bl);
3295 if (val != 0)
3296 return val;
3297 }
3298 }
3299 return 0;
3300 }
3301
3302 int
3303 reattach_breakpoints (int pid)
3304 {
3305 struct cleanup *old_chain;
3306 struct bp_location *bl, **blp_tmp;
3307 int val;
3308 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3309 struct inferior *inf;
3310 struct thread_info *tp;
3311
3312 tp = any_live_thread_of_process (pid);
3313 if (tp == NULL)
3314 return 1;
3315
3316 inf = find_inferior_pid (pid);
3317 old_chain = save_inferior_ptid ();
3318
3319 inferior_ptid = tp->ptid;
3320
3321 string_file tmp_error_stream;
3322
3323 ALL_BP_LOCATIONS (bl, blp_tmp)
3324 {
3325 if (bl->pspace != inf->pspace)
3326 continue;
3327
3328 if (bl->inserted)
3329 {
3330 bl->inserted = 0;
3331 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3332 if (val != 0)
3333 {
3334 do_cleanups (old_chain);
3335 return val;
3336 }
3337 }
3338 }
3339 do_cleanups (old_chain);
3340 return 0;
3341 }
3342
3343 static int internal_breakpoint_number = -1;
3344
3345 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3346 If INTERNAL is non-zero, the breakpoint number will be populated
3347 from internal_breakpoint_number and that variable decremented.
3348 Otherwise the breakpoint number will be populated from
3349 breakpoint_count and that value incremented. Internal breakpoints
3350 do not set the internal var bpnum. */
3351 static void
3352 set_breakpoint_number (int internal, struct breakpoint *b)
3353 {
3354 if (internal)
3355 b->number = internal_breakpoint_number--;
3356 else
3357 {
3358 set_breakpoint_count (breakpoint_count + 1);
3359 b->number = breakpoint_count;
3360 }
3361 }
3362
3363 static struct breakpoint *
3364 create_internal_breakpoint (struct gdbarch *gdbarch,
3365 CORE_ADDR address, enum bptype type,
3366 const struct breakpoint_ops *ops)
3367 {
3368 struct symtab_and_line sal;
3369 struct breakpoint *b;
3370
3371 init_sal (&sal); /* Initialize to zeroes. */
3372
3373 sal.pc = address;
3374 sal.section = find_pc_overlay (sal.pc);
3375 sal.pspace = current_program_space;
3376
3377 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3378 b->number = internal_breakpoint_number--;
3379 b->disposition = disp_donttouch;
3380
3381 return b;
3382 }
3383
3384 static const char *const longjmp_names[] =
3385 {
3386 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3387 };
3388 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3389
3390 /* Per-objfile data private to breakpoint.c. */
3391 struct breakpoint_objfile_data
3392 {
3393 /* Minimal symbol for "_ovly_debug_event" (if any). */
3394 struct bound_minimal_symbol overlay_msym;
3395
3396 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3397 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3398
3399 /* True if we have looked for longjmp probes. */
3400 int longjmp_searched;
3401
3402 /* SystemTap probe points for longjmp (if any). */
3403 VEC (probe_p) *longjmp_probes;
3404
3405 /* Minimal symbol for "std::terminate()" (if any). */
3406 struct bound_minimal_symbol terminate_msym;
3407
3408 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3409 struct bound_minimal_symbol exception_msym;
3410
3411 /* True if we have looked for exception probes. */
3412 int exception_searched;
3413
3414 /* SystemTap probe points for unwinding (if any). */
3415 VEC (probe_p) *exception_probes;
3416 };
3417
3418 static const struct objfile_data *breakpoint_objfile_key;
3419
3420 /* Minimal symbol not found sentinel. */
3421 static struct minimal_symbol msym_not_found;
3422
3423 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3424
3425 static int
3426 msym_not_found_p (const struct minimal_symbol *msym)
3427 {
3428 return msym == &msym_not_found;
3429 }
3430
3431 /* Return per-objfile data needed by breakpoint.c.
3432 Allocate the data if necessary. */
3433
3434 static struct breakpoint_objfile_data *
3435 get_breakpoint_objfile_data (struct objfile *objfile)
3436 {
3437 struct breakpoint_objfile_data *bp_objfile_data;
3438
3439 bp_objfile_data = ((struct breakpoint_objfile_data *)
3440 objfile_data (objfile, breakpoint_objfile_key));
3441 if (bp_objfile_data == NULL)
3442 {
3443 bp_objfile_data =
3444 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3445
3446 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3447 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3448 }
3449 return bp_objfile_data;
3450 }
3451
3452 static void
3453 free_breakpoint_probes (struct objfile *obj, void *data)
3454 {
3455 struct breakpoint_objfile_data *bp_objfile_data
3456 = (struct breakpoint_objfile_data *) data;
3457
3458 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3459 VEC_free (probe_p, bp_objfile_data->exception_probes);
3460 }
3461
3462 static void
3463 create_overlay_event_breakpoint (void)
3464 {
3465 struct objfile *objfile;
3466 const char *const func_name = "_ovly_debug_event";
3467
3468 ALL_OBJFILES (objfile)
3469 {
3470 struct breakpoint *b;
3471 struct breakpoint_objfile_data *bp_objfile_data;
3472 CORE_ADDR addr;
3473 struct explicit_location explicit_loc;
3474
3475 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3476
3477 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3478 continue;
3479
3480 if (bp_objfile_data->overlay_msym.minsym == NULL)
3481 {
3482 struct bound_minimal_symbol m;
3483
3484 m = lookup_minimal_symbol_text (func_name, objfile);
3485 if (m.minsym == NULL)
3486 {
3487 /* Avoid future lookups in this objfile. */
3488 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491 bp_objfile_data->overlay_msym = m;
3492 }
3493
3494 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3495 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3496 bp_overlay_event,
3497 &internal_breakpoint_ops);
3498 initialize_explicit_location (&explicit_loc);
3499 explicit_loc.function_name = ASTRDUP (func_name);
3500 b->location = new_explicit_location (&explicit_loc);
3501
3502 if (overlay_debugging == ovly_auto)
3503 {
3504 b->enable_state = bp_enabled;
3505 overlay_events_enabled = 1;
3506 }
3507 else
3508 {
3509 b->enable_state = bp_disabled;
3510 overlay_events_enabled = 0;
3511 }
3512 }
3513 }
3514
3515 static void
3516 create_longjmp_master_breakpoint (void)
3517 {
3518 struct program_space *pspace;
3519
3520 scoped_restore_current_program_space restore_pspace;
3521
3522 ALL_PSPACES (pspace)
3523 {
3524 struct objfile *objfile;
3525
3526 set_current_program_space (pspace);
3527
3528 ALL_OBJFILES (objfile)
3529 {
3530 int i;
3531 struct gdbarch *gdbarch;
3532 struct breakpoint_objfile_data *bp_objfile_data;
3533
3534 gdbarch = get_objfile_arch (objfile);
3535
3536 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3537
3538 if (!bp_objfile_data->longjmp_searched)
3539 {
3540 VEC (probe_p) *ret;
3541
3542 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3543 if (ret != NULL)
3544 {
3545 /* We are only interested in checking one element. */
3546 struct probe *p = VEC_index (probe_p, ret, 0);
3547
3548 if (!can_evaluate_probe_arguments (p))
3549 {
3550 /* We cannot use the probe interface here, because it does
3551 not know how to evaluate arguments. */
3552 VEC_free (probe_p, ret);
3553 ret = NULL;
3554 }
3555 }
3556 bp_objfile_data->longjmp_probes = ret;
3557 bp_objfile_data->longjmp_searched = 1;
3558 }
3559
3560 if (bp_objfile_data->longjmp_probes != NULL)
3561 {
3562 int i;
3563 struct probe *probe;
3564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3565
3566 for (i = 0;
3567 VEC_iterate (probe_p,
3568 bp_objfile_data->longjmp_probes,
3569 i, probe);
3570 ++i)
3571 {
3572 struct breakpoint *b;
3573
3574 b = create_internal_breakpoint (gdbarch,
3575 get_probe_address (probe,
3576 objfile),
3577 bp_longjmp_master,
3578 &internal_breakpoint_ops);
3579 b->location = new_probe_location ("-probe-stap libc:longjmp");
3580 b->enable_state = bp_disabled;
3581 }
3582
3583 continue;
3584 }
3585
3586 if (!gdbarch_get_longjmp_target_p (gdbarch))
3587 continue;
3588
3589 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3590 {
3591 struct breakpoint *b;
3592 const char *func_name;
3593 CORE_ADDR addr;
3594 struct explicit_location explicit_loc;
3595
3596 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3597 continue;
3598
3599 func_name = longjmp_names[i];
3600 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3601 {
3602 struct bound_minimal_symbol m;
3603
3604 m = lookup_minimal_symbol_text (func_name, objfile);
3605 if (m.minsym == NULL)
3606 {
3607 /* Prevent future lookups in this objfile. */
3608 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3609 continue;
3610 }
3611 bp_objfile_data->longjmp_msym[i] = m;
3612 }
3613
3614 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3615 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3616 &internal_breakpoint_ops);
3617 initialize_explicit_location (&explicit_loc);
3618 explicit_loc.function_name = ASTRDUP (func_name);
3619 b->location = new_explicit_location (&explicit_loc);
3620 b->enable_state = bp_disabled;
3621 }
3622 }
3623 }
3624 }
3625
3626 /* Create a master std::terminate breakpoint. */
3627 static void
3628 create_std_terminate_master_breakpoint (void)
3629 {
3630 struct program_space *pspace;
3631 const char *const func_name = "std::terminate()";
3632
3633 scoped_restore_current_program_space restore_pspace;
3634
3635 ALL_PSPACES (pspace)
3636 {
3637 struct objfile *objfile;
3638 CORE_ADDR addr;
3639
3640 set_current_program_space (pspace);
3641
3642 ALL_OBJFILES (objfile)
3643 {
3644 struct breakpoint *b;
3645 struct breakpoint_objfile_data *bp_objfile_data;
3646 struct explicit_location explicit_loc;
3647
3648 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3649
3650 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3651 continue;
3652
3653 if (bp_objfile_data->terminate_msym.minsym == NULL)
3654 {
3655 struct bound_minimal_symbol m;
3656
3657 m = lookup_minimal_symbol (func_name, NULL, objfile);
3658 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3659 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3660 {
3661 /* Prevent future lookups in this objfile. */
3662 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3663 continue;
3664 }
3665 bp_objfile_data->terminate_msym = m;
3666 }
3667
3668 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3669 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3670 bp_std_terminate_master,
3671 &internal_breakpoint_ops);
3672 initialize_explicit_location (&explicit_loc);
3673 explicit_loc.function_name = ASTRDUP (func_name);
3674 b->location = new_explicit_location (&explicit_loc);
3675 b->enable_state = bp_disabled;
3676 }
3677 }
3678 }
3679
3680 /* Install a master breakpoint on the unwinder's debug hook. */
3681
3682 static void
3683 create_exception_master_breakpoint (void)
3684 {
3685 struct objfile *objfile;
3686 const char *const func_name = "_Unwind_DebugHook";
3687
3688 ALL_OBJFILES (objfile)
3689 {
3690 struct breakpoint *b;
3691 struct gdbarch *gdbarch;
3692 struct breakpoint_objfile_data *bp_objfile_data;
3693 CORE_ADDR addr;
3694 struct explicit_location explicit_loc;
3695
3696 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3697
3698 /* We prefer the SystemTap probe point if it exists. */
3699 if (!bp_objfile_data->exception_searched)
3700 {
3701 VEC (probe_p) *ret;
3702
3703 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3704
3705 if (ret != NULL)
3706 {
3707 /* We are only interested in checking one element. */
3708 struct probe *p = VEC_index (probe_p, ret, 0);
3709
3710 if (!can_evaluate_probe_arguments (p))
3711 {
3712 /* We cannot use the probe interface here, because it does
3713 not know how to evaluate arguments. */
3714 VEC_free (probe_p, ret);
3715 ret = NULL;
3716 }
3717 }
3718 bp_objfile_data->exception_probes = ret;
3719 bp_objfile_data->exception_searched = 1;
3720 }
3721
3722 if (bp_objfile_data->exception_probes != NULL)
3723 {
3724 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3725 int i;
3726 struct probe *probe;
3727
3728 for (i = 0;
3729 VEC_iterate (probe_p,
3730 bp_objfile_data->exception_probes,
3731 i, probe);
3732 ++i)
3733 {
3734 struct breakpoint *b;
3735
3736 b = create_internal_breakpoint (gdbarch,
3737 get_probe_address (probe,
3738 objfile),
3739 bp_exception_master,
3740 &internal_breakpoint_ops);
3741 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3742 b->enable_state = bp_disabled;
3743 }
3744
3745 continue;
3746 }
3747
3748 /* Otherwise, try the hook function. */
3749
3750 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3751 continue;
3752
3753 gdbarch = get_objfile_arch (objfile);
3754
3755 if (bp_objfile_data->exception_msym.minsym == NULL)
3756 {
3757 struct bound_minimal_symbol debug_hook;
3758
3759 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3760 if (debug_hook.minsym == NULL)
3761 {
3762 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3763 continue;
3764 }
3765
3766 bp_objfile_data->exception_msym = debug_hook;
3767 }
3768
3769 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3770 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3771 &current_target);
3772 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3773 &internal_breakpoint_ops);
3774 initialize_explicit_location (&explicit_loc);
3775 explicit_loc.function_name = ASTRDUP (func_name);
3776 b->location = new_explicit_location (&explicit_loc);
3777 b->enable_state = bp_disabled;
3778 }
3779 }
3780
3781 /* Does B have a location spec? */
3782
3783 static int
3784 breakpoint_event_location_empty_p (const struct breakpoint *b)
3785 {
3786 return b->location != NULL && event_location_empty_p (b->location.get ());
3787 }
3788
3789 void
3790 update_breakpoints_after_exec (void)
3791 {
3792 struct breakpoint *b, *b_tmp;
3793 struct bp_location *bploc, **bplocp_tmp;
3794
3795 /* We're about to delete breakpoints from GDB's lists. If the
3796 INSERTED flag is true, GDB will try to lift the breakpoints by
3797 writing the breakpoints' "shadow contents" back into memory. The
3798 "shadow contents" are NOT valid after an exec, so GDB should not
3799 do that. Instead, the target is responsible from marking
3800 breakpoints out as soon as it detects an exec. We don't do that
3801 here instead, because there may be other attempts to delete
3802 breakpoints after detecting an exec and before reaching here. */
3803 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3804 if (bploc->pspace == current_program_space)
3805 gdb_assert (!bploc->inserted);
3806
3807 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3808 {
3809 if (b->pspace != current_program_space)
3810 continue;
3811
3812 /* Solib breakpoints must be explicitly reset after an exec(). */
3813 if (b->type == bp_shlib_event)
3814 {
3815 delete_breakpoint (b);
3816 continue;
3817 }
3818
3819 /* JIT breakpoints must be explicitly reset after an exec(). */
3820 if (b->type == bp_jit_event)
3821 {
3822 delete_breakpoint (b);
3823 continue;
3824 }
3825
3826 /* Thread event breakpoints must be set anew after an exec(),
3827 as must overlay event and longjmp master breakpoints. */
3828 if (b->type == bp_thread_event || b->type == bp_overlay_event
3829 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3830 || b->type == bp_exception_master)
3831 {
3832 delete_breakpoint (b);
3833 continue;
3834 }
3835
3836 /* Step-resume breakpoints are meaningless after an exec(). */
3837 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3838 {
3839 delete_breakpoint (b);
3840 continue;
3841 }
3842
3843 /* Just like single-step breakpoints. */
3844 if (b->type == bp_single_step)
3845 {
3846 delete_breakpoint (b);
3847 continue;
3848 }
3849
3850 /* Longjmp and longjmp-resume breakpoints are also meaningless
3851 after an exec. */
3852 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3853 || b->type == bp_longjmp_call_dummy
3854 || b->type == bp_exception || b->type == bp_exception_resume)
3855 {
3856 delete_breakpoint (b);
3857 continue;
3858 }
3859
3860 if (b->type == bp_catchpoint)
3861 {
3862 /* For now, none of the bp_catchpoint breakpoints need to
3863 do anything at this point. In the future, if some of
3864 the catchpoints need to something, we will need to add
3865 a new method, and call this method from here. */
3866 continue;
3867 }
3868
3869 /* bp_finish is a special case. The only way we ought to be able
3870 to see one of these when an exec() has happened, is if the user
3871 caught a vfork, and then said "finish". Ordinarily a finish just
3872 carries them to the call-site of the current callee, by setting
3873 a temporary bp there and resuming. But in this case, the finish
3874 will carry them entirely through the vfork & exec.
3875
3876 We don't want to allow a bp_finish to remain inserted now. But
3877 we can't safely delete it, 'cause finish_command has a handle to
3878 the bp on a bpstat, and will later want to delete it. There's a
3879 chance (and I've seen it happen) that if we delete the bp_finish
3880 here, that its storage will get reused by the time finish_command
3881 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3882 We really must allow finish_command to delete a bp_finish.
3883
3884 In the absence of a general solution for the "how do we know
3885 it's safe to delete something others may have handles to?"
3886 problem, what we'll do here is just uninsert the bp_finish, and
3887 let finish_command delete it.
3888
3889 (We know the bp_finish is "doomed" in the sense that it's
3890 momentary, and will be deleted as soon as finish_command sees
3891 the inferior stopped. So it doesn't matter that the bp's
3892 address is probably bogus in the new a.out, unlike e.g., the
3893 solib breakpoints.) */
3894
3895 if (b->type == bp_finish)
3896 {
3897 continue;
3898 }
3899
3900 /* Without a symbolic address, we have little hope of the
3901 pre-exec() address meaning the same thing in the post-exec()
3902 a.out. */
3903 if (breakpoint_event_location_empty_p (b))
3904 {
3905 delete_breakpoint (b);
3906 continue;
3907 }
3908 }
3909 }
3910
3911 int
3912 detach_breakpoints (ptid_t ptid)
3913 {
3914 struct bp_location *bl, **blp_tmp;
3915 int val = 0;
3916 struct cleanup *old_chain = save_inferior_ptid ();
3917 struct inferior *inf = current_inferior ();
3918
3919 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3920 error (_("Cannot detach breakpoints of inferior_ptid"));
3921
3922 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3923 inferior_ptid = ptid;
3924 ALL_BP_LOCATIONS (bl, blp_tmp)
3925 {
3926 if (bl->pspace != inf->pspace)
3927 continue;
3928
3929 /* This function must physically remove breakpoints locations
3930 from the specified ptid, without modifying the breakpoint
3931 package's state. Locations of type bp_loc_other are only
3932 maintained at GDB side. So, there is no need to remove
3933 these bp_loc_other locations. Moreover, removing these
3934 would modify the breakpoint package's state. */
3935 if (bl->loc_type == bp_loc_other)
3936 continue;
3937
3938 if (bl->inserted)
3939 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3940 }
3941
3942 do_cleanups (old_chain);
3943 return val;
3944 }
3945
3946 /* Remove the breakpoint location BL from the current address space.
3947 Note that this is used to detach breakpoints from a child fork.
3948 When we get here, the child isn't in the inferior list, and neither
3949 do we have objects to represent its address space --- we should
3950 *not* look at bl->pspace->aspace here. */
3951
3952 static int
3953 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3954 {
3955 int val;
3956
3957 /* BL is never in moribund_locations by our callers. */
3958 gdb_assert (bl->owner != NULL);
3959
3960 /* The type of none suggests that owner is actually deleted.
3961 This should not ever happen. */
3962 gdb_assert (bl->owner->type != bp_none);
3963
3964 if (bl->loc_type == bp_loc_software_breakpoint
3965 || bl->loc_type == bp_loc_hardware_breakpoint)
3966 {
3967 /* "Normal" instruction breakpoint: either the standard
3968 trap-instruction bp (bp_breakpoint), or a
3969 bp_hardware_breakpoint. */
3970
3971 /* First check to see if we have to handle an overlay. */
3972 if (overlay_debugging == ovly_off
3973 || bl->section == NULL
3974 || !(section_is_overlay (bl->section)))
3975 {
3976 /* No overlay handling: just remove the breakpoint. */
3977
3978 /* If we're trying to uninsert a memory breakpoint that we
3979 know is set in a dynamic object that is marked
3980 shlib_disabled, then either the dynamic object was
3981 removed with "remove-symbol-file" or with
3982 "nosharedlibrary". In the former case, we don't know
3983 whether another dynamic object might have loaded over the
3984 breakpoint's address -- the user might well let us know
3985 about it next with add-symbol-file (the whole point of
3986 add-symbol-file is letting the user manually maintain a
3987 list of dynamically loaded objects). If we have the
3988 breakpoint's shadow memory, that is, this is a software
3989 breakpoint managed by GDB, check whether the breakpoint
3990 is still inserted in memory, to avoid overwriting wrong
3991 code with stale saved shadow contents. Note that HW
3992 breakpoints don't have shadow memory, as they're
3993 implemented using a mechanism that is not dependent on
3994 being able to modify the target's memory, and as such
3995 they should always be removed. */
3996 if (bl->shlib_disabled
3997 && bl->target_info.shadow_len != 0
3998 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3999 val = 0;
4000 else
4001 val = bl->owner->ops->remove_location (bl, reason);
4002 }
4003 else
4004 {
4005 /* This breakpoint is in an overlay section.
4006 Did we set a breakpoint at the LMA? */
4007 if (!overlay_events_enabled)
4008 {
4009 /* Yes -- overlay event support is not active, so we
4010 should have set a breakpoint at the LMA. Remove it.
4011 */
4012 /* Ignore any failures: if the LMA is in ROM, we will
4013 have already warned when we failed to insert it. */
4014 if (bl->loc_type == bp_loc_hardware_breakpoint)
4015 target_remove_hw_breakpoint (bl->gdbarch,
4016 &bl->overlay_target_info);
4017 else
4018 target_remove_breakpoint (bl->gdbarch,
4019 &bl->overlay_target_info,
4020 reason);
4021 }
4022 /* Did we set a breakpoint at the VMA?
4023 If so, we will have marked the breakpoint 'inserted'. */
4024 if (bl->inserted)
4025 {
4026 /* Yes -- remove it. Previously we did not bother to
4027 remove the breakpoint if the section had been
4028 unmapped, but let's not rely on that being safe. We
4029 don't know what the overlay manager might do. */
4030
4031 /* However, we should remove *software* breakpoints only
4032 if the section is still mapped, or else we overwrite
4033 wrong code with the saved shadow contents. */
4034 if (bl->loc_type == bp_loc_hardware_breakpoint
4035 || section_is_mapped (bl->section))
4036 val = bl->owner->ops->remove_location (bl, reason);
4037 else
4038 val = 0;
4039 }
4040 else
4041 {
4042 /* No -- not inserted, so no need to remove. No error. */
4043 val = 0;
4044 }
4045 }
4046
4047 /* In some cases, we might not be able to remove a breakpoint in
4048 a shared library that has already been removed, but we have
4049 not yet processed the shlib unload event. Similarly for an
4050 unloaded add-symbol-file object - the user might not yet have
4051 had the chance to remove-symbol-file it. shlib_disabled will
4052 be set if the library/object has already been removed, but
4053 the breakpoint hasn't been uninserted yet, e.g., after
4054 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4055 always-inserted mode. */
4056 if (val
4057 && (bl->loc_type == bp_loc_software_breakpoint
4058 && (bl->shlib_disabled
4059 || solib_name_from_address (bl->pspace, bl->address)
4060 || shared_objfile_contains_address_p (bl->pspace,
4061 bl->address))))
4062 val = 0;
4063
4064 if (val)
4065 return val;
4066 bl->inserted = (reason == DETACH_BREAKPOINT);
4067 }
4068 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4069 {
4070 gdb_assert (bl->owner->ops != NULL
4071 && bl->owner->ops->remove_location != NULL);
4072
4073 bl->inserted = (reason == DETACH_BREAKPOINT);
4074 bl->owner->ops->remove_location (bl, reason);
4075
4076 /* Failure to remove any of the hardware watchpoints comes here. */
4077 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4078 warning (_("Could not remove hardware watchpoint %d."),
4079 bl->owner->number);
4080 }
4081 else if (bl->owner->type == bp_catchpoint
4082 && breakpoint_enabled (bl->owner)
4083 && !bl->duplicate)
4084 {
4085 gdb_assert (bl->owner->ops != NULL
4086 && bl->owner->ops->remove_location != NULL);
4087
4088 val = bl->owner->ops->remove_location (bl, reason);
4089 if (val)
4090 return val;
4091
4092 bl->inserted = (reason == DETACH_BREAKPOINT);
4093 }
4094
4095 return 0;
4096 }
4097
4098 static int
4099 remove_breakpoint (struct bp_location *bl)
4100 {
4101 /* BL is never in moribund_locations by our callers. */
4102 gdb_assert (bl->owner != NULL);
4103
4104 /* The type of none suggests that owner is actually deleted.
4105 This should not ever happen. */
4106 gdb_assert (bl->owner->type != bp_none);
4107
4108 scoped_restore_current_pspace_and_thread restore_pspace_thread;
4109
4110 switch_to_program_space_and_thread (bl->pspace);
4111
4112 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4113 }
4114
4115 /* Clear the "inserted" flag in all breakpoints. */
4116
4117 void
4118 mark_breakpoints_out (void)
4119 {
4120 struct bp_location *bl, **blp_tmp;
4121
4122 ALL_BP_LOCATIONS (bl, blp_tmp)
4123 if (bl->pspace == current_program_space)
4124 bl->inserted = 0;
4125 }
4126
4127 /* Clear the "inserted" flag in all breakpoints and delete any
4128 breakpoints which should go away between runs of the program.
4129
4130 Plus other such housekeeping that has to be done for breakpoints
4131 between runs.
4132
4133 Note: this function gets called at the end of a run (by
4134 generic_mourn_inferior) and when a run begins (by
4135 init_wait_for_inferior). */
4136
4137
4138
4139 void
4140 breakpoint_init_inferior (enum inf_context context)
4141 {
4142 struct breakpoint *b, *b_tmp;
4143 struct bp_location *bl;
4144 int ix;
4145 struct program_space *pspace = current_program_space;
4146
4147 /* If breakpoint locations are shared across processes, then there's
4148 nothing to do. */
4149 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4150 return;
4151
4152 mark_breakpoints_out ();
4153
4154 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4155 {
4156 if (b->loc && b->loc->pspace != pspace)
4157 continue;
4158
4159 switch (b->type)
4160 {
4161 case bp_call_dummy:
4162 case bp_longjmp_call_dummy:
4163
4164 /* If the call dummy breakpoint is at the entry point it will
4165 cause problems when the inferior is rerun, so we better get
4166 rid of it. */
4167
4168 case bp_watchpoint_scope:
4169
4170 /* Also get rid of scope breakpoints. */
4171
4172 case bp_shlib_event:
4173
4174 /* Also remove solib event breakpoints. Their addresses may
4175 have changed since the last time we ran the program.
4176 Actually we may now be debugging against different target;
4177 and so the solib backend that installed this breakpoint may
4178 not be used in by the target. E.g.,
4179
4180 (gdb) file prog-linux
4181 (gdb) run # native linux target
4182 ...
4183 (gdb) kill
4184 (gdb) file prog-win.exe
4185 (gdb) tar rem :9999 # remote Windows gdbserver.
4186 */
4187
4188 case bp_step_resume:
4189
4190 /* Also remove step-resume breakpoints. */
4191
4192 case bp_single_step:
4193
4194 /* Also remove single-step breakpoints. */
4195
4196 delete_breakpoint (b);
4197 break;
4198
4199 case bp_watchpoint:
4200 case bp_hardware_watchpoint:
4201 case bp_read_watchpoint:
4202 case bp_access_watchpoint:
4203 {
4204 struct watchpoint *w = (struct watchpoint *) b;
4205
4206 /* Likewise for watchpoints on local expressions. */
4207 if (w->exp_valid_block != NULL)
4208 delete_breakpoint (b);
4209 else
4210 {
4211 /* Get rid of existing locations, which are no longer
4212 valid. New ones will be created in
4213 update_watchpoint, when the inferior is restarted.
4214 The next update_global_location_list call will
4215 garbage collect them. */
4216 b->loc = NULL;
4217
4218 if (context == inf_starting)
4219 {
4220 /* Reset val field to force reread of starting value in
4221 insert_breakpoints. */
4222 if (w->val)
4223 value_free (w->val);
4224 w->val = NULL;
4225 w->val_valid = 0;
4226 }
4227 }
4228 }
4229 break;
4230 default:
4231 break;
4232 }
4233 }
4234
4235 /* Get rid of the moribund locations. */
4236 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4237 decref_bp_location (&bl);
4238 VEC_free (bp_location_p, moribund_locations);
4239 }
4240
4241 /* These functions concern about actual breakpoints inserted in the
4242 target --- to e.g. check if we need to do decr_pc adjustment or if
4243 we need to hop over the bkpt --- so we check for address space
4244 match, not program space. */
4245
4246 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4247 exists at PC. It returns ordinary_breakpoint_here if it's an
4248 ordinary breakpoint, or permanent_breakpoint_here if it's a
4249 permanent breakpoint.
4250 - When continuing from a location with an ordinary breakpoint, we
4251 actually single step once before calling insert_breakpoints.
4252 - When continuing from a location with a permanent breakpoint, we
4253 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4254 the target, to advance the PC past the breakpoint. */
4255
4256 enum breakpoint_here
4257 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4258 {
4259 struct bp_location *bl, **blp_tmp;
4260 int any_breakpoint_here = 0;
4261
4262 ALL_BP_LOCATIONS (bl, blp_tmp)
4263 {
4264 if (bl->loc_type != bp_loc_software_breakpoint
4265 && bl->loc_type != bp_loc_hardware_breakpoint)
4266 continue;
4267
4268 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4269 if ((breakpoint_enabled (bl->owner)
4270 || bl->permanent)
4271 && breakpoint_location_address_match (bl, aspace, pc))
4272 {
4273 if (overlay_debugging
4274 && section_is_overlay (bl->section)
4275 && !section_is_mapped (bl->section))
4276 continue; /* unmapped overlay -- can't be a match */
4277 else if (bl->permanent)
4278 return permanent_breakpoint_here;
4279 else
4280 any_breakpoint_here = 1;
4281 }
4282 }
4283
4284 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 int
4290 breakpoint_in_range_p (struct address_space *aspace,
4291 CORE_ADDR addr, ULONGEST len)
4292 {
4293 struct bp_location *bl, **blp_tmp;
4294
4295 ALL_BP_LOCATIONS (bl, blp_tmp)
4296 {
4297 if (bl->loc_type != bp_loc_software_breakpoint
4298 && bl->loc_type != bp_loc_hardware_breakpoint)
4299 continue;
4300
4301 if ((breakpoint_enabled (bl->owner)
4302 || bl->permanent)
4303 && breakpoint_location_address_range_overlap (bl, aspace,
4304 addr, len))
4305 {
4306 if (overlay_debugging
4307 && section_is_overlay (bl->section)
4308 && !section_is_mapped (bl->section))
4309 {
4310 /* Unmapped overlay -- can't be a match. */
4311 continue;
4312 }
4313
4314 return 1;
4315 }
4316 }
4317
4318 return 0;
4319 }
4320
4321 /* Return true if there's a moribund breakpoint at PC. */
4322
4323 int
4324 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4325 {
4326 struct bp_location *loc;
4327 int ix;
4328
4329 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4330 if (breakpoint_location_address_match (loc, aspace, pc))
4331 return 1;
4332
4333 return 0;
4334 }
4335
4336 /* Returns non-zero iff BL is inserted at PC, in address space
4337 ASPACE. */
4338
4339 static int
4340 bp_location_inserted_here_p (struct bp_location *bl,
4341 struct address_space *aspace, CORE_ADDR pc)
4342 {
4343 if (bl->inserted
4344 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4345 aspace, pc))
4346 {
4347 if (overlay_debugging
4348 && section_is_overlay (bl->section)
4349 && !section_is_mapped (bl->section))
4350 return 0; /* unmapped overlay -- can't be a match */
4351 else
4352 return 1;
4353 }
4354 return 0;
4355 }
4356
4357 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4358
4359 int
4360 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4361 {
4362 struct bp_location **blp, **blp_tmp = NULL;
4363
4364 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4365 {
4366 struct bp_location *bl = *blp;
4367
4368 if (bl->loc_type != bp_loc_software_breakpoint
4369 && bl->loc_type != bp_loc_hardware_breakpoint)
4370 continue;
4371
4372 if (bp_location_inserted_here_p (bl, aspace, pc))
4373 return 1;
4374 }
4375 return 0;
4376 }
4377
4378 /* This function returns non-zero iff there is a software breakpoint
4379 inserted at PC. */
4380
4381 int
4382 software_breakpoint_inserted_here_p (struct address_space *aspace,
4383 CORE_ADDR pc)
4384 {
4385 struct bp_location **blp, **blp_tmp = NULL;
4386
4387 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4388 {
4389 struct bp_location *bl = *blp;
4390
4391 if (bl->loc_type != bp_loc_software_breakpoint)
4392 continue;
4393
4394 if (bp_location_inserted_here_p (bl, aspace, pc))
4395 return 1;
4396 }
4397
4398 return 0;
4399 }
4400
4401 /* See breakpoint.h. */
4402
4403 int
4404 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4405 CORE_ADDR pc)
4406 {
4407 struct bp_location **blp, **blp_tmp = NULL;
4408
4409 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4410 {
4411 struct bp_location *bl = *blp;
4412
4413 if (bl->loc_type != bp_loc_hardware_breakpoint)
4414 continue;
4415
4416 if (bp_location_inserted_here_p (bl, aspace, pc))
4417 return 1;
4418 }
4419
4420 return 0;
4421 }
4422
4423 int
4424 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4425 CORE_ADDR addr, ULONGEST len)
4426 {
4427 struct breakpoint *bpt;
4428
4429 ALL_BREAKPOINTS (bpt)
4430 {
4431 struct bp_location *loc;
4432
4433 if (bpt->type != bp_hardware_watchpoint
4434 && bpt->type != bp_access_watchpoint)
4435 continue;
4436
4437 if (!breakpoint_enabled (bpt))
4438 continue;
4439
4440 for (loc = bpt->loc; loc; loc = loc->next)
4441 if (loc->pspace->aspace == aspace && loc->inserted)
4442 {
4443 CORE_ADDR l, h;
4444
4445 /* Check for intersection. */
4446 l = std::max<CORE_ADDR> (loc->address, addr);
4447 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4448 if (l < h)
4449 return 1;
4450 }
4451 }
4452 return 0;
4453 }
4454 \f
4455
4456 /* bpstat stuff. External routines' interfaces are documented
4457 in breakpoint.h. */
4458
4459 int
4460 is_catchpoint (struct breakpoint *ep)
4461 {
4462 return (ep->type == bp_catchpoint);
4463 }
4464
4465 /* Frees any storage that is part of a bpstat. Does not walk the
4466 'next' chain. */
4467
4468 static void
4469 bpstat_free (bpstat bs)
4470 {
4471 if (bs->old_val != NULL)
4472 value_free (bs->old_val);
4473 decref_counted_command_line (&bs->commands);
4474 decref_bp_location (&bs->bp_location_at);
4475 xfree (bs);
4476 }
4477
4478 /* Clear a bpstat so that it says we are not at any breakpoint.
4479 Also free any storage that is part of a bpstat. */
4480
4481 void
4482 bpstat_clear (bpstat *bsp)
4483 {
4484 bpstat p;
4485 bpstat q;
4486
4487 if (bsp == 0)
4488 return;
4489 p = *bsp;
4490 while (p != NULL)
4491 {
4492 q = p->next;
4493 bpstat_free (p);
4494 p = q;
4495 }
4496 *bsp = NULL;
4497 }
4498
4499 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4500 is part of the bpstat is copied as well. */
4501
4502 bpstat
4503 bpstat_copy (bpstat bs)
4504 {
4505 bpstat p = NULL;
4506 bpstat tmp;
4507 bpstat retval = NULL;
4508
4509 if (bs == NULL)
4510 return bs;
4511
4512 for (; bs != NULL; bs = bs->next)
4513 {
4514 tmp = (bpstat) xmalloc (sizeof (*tmp));
4515 memcpy (tmp, bs, sizeof (*tmp));
4516 incref_counted_command_line (tmp->commands);
4517 incref_bp_location (tmp->bp_location_at);
4518 if (bs->old_val != NULL)
4519 {
4520 tmp->old_val = value_copy (bs->old_val);
4521 release_value (tmp->old_val);
4522 }
4523
4524 if (p == NULL)
4525 /* This is the first thing in the chain. */
4526 retval = tmp;
4527 else
4528 p->next = tmp;
4529 p = tmp;
4530 }
4531 p->next = NULL;
4532 return retval;
4533 }
4534
4535 /* Find the bpstat associated with this breakpoint. */
4536
4537 bpstat
4538 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4539 {
4540 if (bsp == NULL)
4541 return NULL;
4542
4543 for (; bsp != NULL; bsp = bsp->next)
4544 {
4545 if (bsp->breakpoint_at == breakpoint)
4546 return bsp;
4547 }
4548 return NULL;
4549 }
4550
4551 /* See breakpoint.h. */
4552
4553 int
4554 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4555 {
4556 for (; bsp != NULL; bsp = bsp->next)
4557 {
4558 if (bsp->breakpoint_at == NULL)
4559 {
4560 /* A moribund location can never explain a signal other than
4561 GDB_SIGNAL_TRAP. */
4562 if (sig == GDB_SIGNAL_TRAP)
4563 return 1;
4564 }
4565 else
4566 {
4567 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4568 sig))
4569 return 1;
4570 }
4571 }
4572
4573 return 0;
4574 }
4575
4576 /* Put in *NUM the breakpoint number of the first breakpoint we are
4577 stopped at. *BSP upon return is a bpstat which points to the
4578 remaining breakpoints stopped at (but which is not guaranteed to be
4579 good for anything but further calls to bpstat_num).
4580
4581 Return 0 if passed a bpstat which does not indicate any breakpoints.
4582 Return -1 if stopped at a breakpoint that has been deleted since
4583 we set it.
4584 Return 1 otherwise. */
4585
4586 int
4587 bpstat_num (bpstat *bsp, int *num)
4588 {
4589 struct breakpoint *b;
4590
4591 if ((*bsp) == NULL)
4592 return 0; /* No more breakpoint values */
4593
4594 /* We assume we'll never have several bpstats that correspond to a
4595 single breakpoint -- otherwise, this function might return the
4596 same number more than once and this will look ugly. */
4597 b = (*bsp)->breakpoint_at;
4598 *bsp = (*bsp)->next;
4599 if (b == NULL)
4600 return -1; /* breakpoint that's been deleted since */
4601
4602 *num = b->number; /* We have its number */
4603 return 1;
4604 }
4605
4606 /* See breakpoint.h. */
4607
4608 void
4609 bpstat_clear_actions (void)
4610 {
4611 struct thread_info *tp;
4612 bpstat bs;
4613
4614 if (ptid_equal (inferior_ptid, null_ptid))
4615 return;
4616
4617 tp = find_thread_ptid (inferior_ptid);
4618 if (tp == NULL)
4619 return;
4620
4621 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4622 {
4623 decref_counted_command_line (&bs->commands);
4624
4625 if (bs->old_val != NULL)
4626 {
4627 value_free (bs->old_val);
4628 bs->old_val = NULL;
4629 }
4630 }
4631 }
4632
4633 /* Called when a command is about to proceed the inferior. */
4634
4635 static void
4636 breakpoint_about_to_proceed (void)
4637 {
4638 if (!ptid_equal (inferior_ptid, null_ptid))
4639 {
4640 struct thread_info *tp = inferior_thread ();
4641
4642 /* Allow inferior function calls in breakpoint commands to not
4643 interrupt the command list. When the call finishes
4644 successfully, the inferior will be standing at the same
4645 breakpoint as if nothing happened. */
4646 if (tp->control.in_infcall)
4647 return;
4648 }
4649
4650 breakpoint_proceeded = 1;
4651 }
4652
4653 /* Stub for cleaning up our state if we error-out of a breakpoint
4654 command. */
4655 static void
4656 cleanup_executing_breakpoints (void *ignore)
4657 {
4658 executing_breakpoint_commands = 0;
4659 }
4660
4661 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4662 or its equivalent. */
4663
4664 static int
4665 command_line_is_silent (struct command_line *cmd)
4666 {
4667 return cmd && (strcmp ("silent", cmd->line) == 0);
4668 }
4669
4670 /* Execute all the commands associated with all the breakpoints at
4671 this location. Any of these commands could cause the process to
4672 proceed beyond this point, etc. We look out for such changes by
4673 checking the global "breakpoint_proceeded" after each command.
4674
4675 Returns true if a breakpoint command resumed the inferior. In that
4676 case, it is the caller's responsibility to recall it again with the
4677 bpstat of the current thread. */
4678
4679 static int
4680 bpstat_do_actions_1 (bpstat *bsp)
4681 {
4682 bpstat bs;
4683 struct cleanup *old_chain;
4684 int again = 0;
4685
4686 /* Avoid endless recursion if a `source' command is contained
4687 in bs->commands. */
4688 if (executing_breakpoint_commands)
4689 return 0;
4690
4691 executing_breakpoint_commands = 1;
4692 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4693
4694 scoped_restore preventer = prevent_dont_repeat ();
4695
4696 /* This pointer will iterate over the list of bpstat's. */
4697 bs = *bsp;
4698
4699 breakpoint_proceeded = 0;
4700 for (; bs != NULL; bs = bs->next)
4701 {
4702 struct counted_command_line *ccmd;
4703 struct command_line *cmd;
4704 struct cleanup *this_cmd_tree_chain;
4705
4706 /* Take ownership of the BSP's command tree, if it has one.
4707
4708 The command tree could legitimately contain commands like
4709 'step' and 'next', which call clear_proceed_status, which
4710 frees stop_bpstat's command tree. To make sure this doesn't
4711 free the tree we're executing out from under us, we need to
4712 take ownership of the tree ourselves. Since a given bpstat's
4713 commands are only executed once, we don't need to copy it; we
4714 can clear the pointer in the bpstat, and make sure we free
4715 the tree when we're done. */
4716 ccmd = bs->commands;
4717 bs->commands = NULL;
4718 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4719 cmd = ccmd ? ccmd->commands : NULL;
4720 if (command_line_is_silent (cmd))
4721 {
4722 /* The action has been already done by bpstat_stop_status. */
4723 cmd = cmd->next;
4724 }
4725
4726 while (cmd != NULL)
4727 {
4728 execute_control_command (cmd);
4729
4730 if (breakpoint_proceeded)
4731 break;
4732 else
4733 cmd = cmd->next;
4734 }
4735
4736 /* We can free this command tree now. */
4737 do_cleanups (this_cmd_tree_chain);
4738
4739 if (breakpoint_proceeded)
4740 {
4741 if (current_ui->async)
4742 /* If we are in async mode, then the target might be still
4743 running, not stopped at any breakpoint, so nothing for
4744 us to do here -- just return to the event loop. */
4745 ;
4746 else
4747 /* In sync mode, when execute_control_command returns
4748 we're already standing on the next breakpoint.
4749 Breakpoint commands for that stop were not run, since
4750 execute_command does not run breakpoint commands --
4751 only command_line_handler does, but that one is not
4752 involved in execution of breakpoint commands. So, we
4753 can now execute breakpoint commands. It should be
4754 noted that making execute_command do bpstat actions is
4755 not an option -- in this case we'll have recursive
4756 invocation of bpstat for each breakpoint with a
4757 command, and can easily blow up GDB stack. Instead, we
4758 return true, which will trigger the caller to recall us
4759 with the new stop_bpstat. */
4760 again = 1;
4761 break;
4762 }
4763 }
4764 do_cleanups (old_chain);
4765 return again;
4766 }
4767
4768 void
4769 bpstat_do_actions (void)
4770 {
4771 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4772
4773 /* Do any commands attached to breakpoint we are stopped at. */
4774 while (!ptid_equal (inferior_ptid, null_ptid)
4775 && target_has_execution
4776 && !is_exited (inferior_ptid)
4777 && !is_executing (inferior_ptid))
4778 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4779 and only return when it is stopped at the next breakpoint, we
4780 keep doing breakpoint actions until it returns false to
4781 indicate the inferior was not resumed. */
4782 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4783 break;
4784
4785 discard_cleanups (cleanup_if_error);
4786 }
4787
4788 /* Print out the (old or new) value associated with a watchpoint. */
4789
4790 static void
4791 watchpoint_value_print (struct value *val, struct ui_file *stream)
4792 {
4793 if (val == NULL)
4794 fprintf_unfiltered (stream, _("<unreadable>"));
4795 else
4796 {
4797 struct value_print_options opts;
4798 get_user_print_options (&opts);
4799 value_print (val, stream, &opts);
4800 }
4801 }
4802
4803 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4804 debugging multiple threads. */
4805
4806 void
4807 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4808 {
4809 if (uiout->is_mi_like_p ())
4810 return;
4811
4812 uiout->text ("\n");
4813
4814 if (show_thread_that_caused_stop ())
4815 {
4816 const char *name;
4817 struct thread_info *thr = inferior_thread ();
4818
4819 uiout->text ("Thread ");
4820 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4821
4822 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4823 if (name != NULL)
4824 {
4825 uiout->text (" \"");
4826 uiout->field_fmt ("name", "%s", name);
4827 uiout->text ("\"");
4828 }
4829
4830 uiout->text (" hit ");
4831 }
4832 }
4833
4834 /* Generic routine for printing messages indicating why we
4835 stopped. The behavior of this function depends on the value
4836 'print_it' in the bpstat structure. Under some circumstances we
4837 may decide not to print anything here and delegate the task to
4838 normal_stop(). */
4839
4840 static enum print_stop_action
4841 print_bp_stop_message (bpstat bs)
4842 {
4843 switch (bs->print_it)
4844 {
4845 case print_it_noop:
4846 /* Nothing should be printed for this bpstat entry. */
4847 return PRINT_UNKNOWN;
4848 break;
4849
4850 case print_it_done:
4851 /* We still want to print the frame, but we already printed the
4852 relevant messages. */
4853 return PRINT_SRC_AND_LOC;
4854 break;
4855
4856 case print_it_normal:
4857 {
4858 struct breakpoint *b = bs->breakpoint_at;
4859
4860 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4861 which has since been deleted. */
4862 if (b == NULL)
4863 return PRINT_UNKNOWN;
4864
4865 /* Normal case. Call the breakpoint's print_it method. */
4866 return b->ops->print_it (bs);
4867 }
4868 break;
4869
4870 default:
4871 internal_error (__FILE__, __LINE__,
4872 _("print_bp_stop_message: unrecognized enum value"));
4873 break;
4874 }
4875 }
4876
4877 /* A helper function that prints a shared library stopped event. */
4878
4879 static void
4880 print_solib_event (int is_catchpoint)
4881 {
4882 int any_deleted
4883 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4884 int any_added
4885 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4886
4887 if (!is_catchpoint)
4888 {
4889 if (any_added || any_deleted)
4890 current_uiout->text (_("Stopped due to shared library event:\n"));
4891 else
4892 current_uiout->text (_("Stopped due to shared library event (no "
4893 "libraries added or removed)\n"));
4894 }
4895
4896 if (current_uiout->is_mi_like_p ())
4897 current_uiout->field_string ("reason",
4898 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4899
4900 if (any_deleted)
4901 {
4902 char *name;
4903 int ix;
4904
4905 current_uiout->text (_(" Inferior unloaded "));
4906 ui_out_emit_list list_emitter (current_uiout, "removed");
4907 for (ix = 0;
4908 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4909 ix, name);
4910 ++ix)
4911 {
4912 if (ix > 0)
4913 current_uiout->text (" ");
4914 current_uiout->field_string ("library", name);
4915 current_uiout->text ("\n");
4916 }
4917 }
4918
4919 if (any_added)
4920 {
4921 struct so_list *iter;
4922 int ix;
4923
4924 current_uiout->text (_(" Inferior loaded "));
4925 ui_out_emit_list list_emitter (current_uiout, "added");
4926 for (ix = 0;
4927 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4928 ix, iter);
4929 ++ix)
4930 {
4931 if (ix > 0)
4932 current_uiout->text (" ");
4933 current_uiout->field_string ("library", iter->so_name);
4934 current_uiout->text ("\n");
4935 }
4936 }
4937 }
4938
4939 /* Print a message indicating what happened. This is called from
4940 normal_stop(). The input to this routine is the head of the bpstat
4941 list - a list of the eventpoints that caused this stop. KIND is
4942 the target_waitkind for the stopping event. This
4943 routine calls the generic print routine for printing a message
4944 about reasons for stopping. This will print (for example) the
4945 "Breakpoint n," part of the output. The return value of this
4946 routine is one of:
4947
4948 PRINT_UNKNOWN: Means we printed nothing.
4949 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4950 code to print the location. An example is
4951 "Breakpoint 1, " which should be followed by
4952 the location.
4953 PRINT_SRC_ONLY: Means we printed something, but there is no need
4954 to also print the location part of the message.
4955 An example is the catch/throw messages, which
4956 don't require a location appended to the end.
4957 PRINT_NOTHING: We have done some printing and we don't need any
4958 further info to be printed. */
4959
4960 enum print_stop_action
4961 bpstat_print (bpstat bs, int kind)
4962 {
4963 enum print_stop_action val;
4964
4965 /* Maybe another breakpoint in the chain caused us to stop.
4966 (Currently all watchpoints go on the bpstat whether hit or not.
4967 That probably could (should) be changed, provided care is taken
4968 with respect to bpstat_explains_signal). */
4969 for (; bs; bs = bs->next)
4970 {
4971 val = print_bp_stop_message (bs);
4972 if (val == PRINT_SRC_ONLY
4973 || val == PRINT_SRC_AND_LOC
4974 || val == PRINT_NOTHING)
4975 return val;
4976 }
4977
4978 /* If we had hit a shared library event breakpoint,
4979 print_bp_stop_message would print out this message. If we hit an
4980 OS-level shared library event, do the same thing. */
4981 if (kind == TARGET_WAITKIND_LOADED)
4982 {
4983 print_solib_event (0);
4984 return PRINT_NOTHING;
4985 }
4986
4987 /* We reached the end of the chain, or we got a null BS to start
4988 with and nothing was printed. */
4989 return PRINT_UNKNOWN;
4990 }
4991
4992 /* Evaluate the expression EXP and return 1 if value is zero.
4993 This returns the inverse of the condition because it is called
4994 from catch_errors which returns 0 if an exception happened, and if an
4995 exception happens we want execution to stop.
4996 The argument is a "struct expression *" that has been cast to a
4997 "void *" to make it pass through catch_errors. */
4998
4999 static int
5000 breakpoint_cond_eval (void *exp)
5001 {
5002 struct value *mark = value_mark ();
5003 int i = !value_true (evaluate_expression ((struct expression *) exp));
5004
5005 value_free_to_mark (mark);
5006 return i;
5007 }
5008
5009 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5010
5011 static bpstat
5012 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5013 {
5014 bpstat bs;
5015
5016 bs = (bpstat) xmalloc (sizeof (*bs));
5017 bs->next = NULL;
5018 **bs_link_pointer = bs;
5019 *bs_link_pointer = &bs->next;
5020 bs->breakpoint_at = bl->owner;
5021 bs->bp_location_at = bl;
5022 incref_bp_location (bl);
5023 /* If the condition is false, etc., don't do the commands. */
5024 bs->commands = NULL;
5025 bs->old_val = NULL;
5026 bs->print_it = print_it_normal;
5027 return bs;
5028 }
5029 \f
5030 /* The target has stopped with waitstatus WS. Check if any hardware
5031 watchpoints have triggered, according to the target. */
5032
5033 int
5034 watchpoints_triggered (struct target_waitstatus *ws)
5035 {
5036 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5037 CORE_ADDR addr;
5038 struct breakpoint *b;
5039
5040 if (!stopped_by_watchpoint)
5041 {
5042 /* We were not stopped by a watchpoint. Mark all watchpoints
5043 as not triggered. */
5044 ALL_BREAKPOINTS (b)
5045 if (is_hardware_watchpoint (b))
5046 {
5047 struct watchpoint *w = (struct watchpoint *) b;
5048
5049 w->watchpoint_triggered = watch_triggered_no;
5050 }
5051
5052 return 0;
5053 }
5054
5055 if (!target_stopped_data_address (&current_target, &addr))
5056 {
5057 /* We were stopped by a watchpoint, but we don't know where.
5058 Mark all watchpoints as unknown. */
5059 ALL_BREAKPOINTS (b)
5060 if (is_hardware_watchpoint (b))
5061 {
5062 struct watchpoint *w = (struct watchpoint *) b;
5063
5064 w->watchpoint_triggered = watch_triggered_unknown;
5065 }
5066
5067 return 1;
5068 }
5069
5070 /* The target could report the data address. Mark watchpoints
5071 affected by this data address as triggered, and all others as not
5072 triggered. */
5073
5074 ALL_BREAKPOINTS (b)
5075 if (is_hardware_watchpoint (b))
5076 {
5077 struct watchpoint *w = (struct watchpoint *) b;
5078 struct bp_location *loc;
5079
5080 w->watchpoint_triggered = watch_triggered_no;
5081 for (loc = b->loc; loc; loc = loc->next)
5082 {
5083 if (is_masked_watchpoint (b))
5084 {
5085 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5086 CORE_ADDR start = loc->address & w->hw_wp_mask;
5087
5088 if (newaddr == start)
5089 {
5090 w->watchpoint_triggered = watch_triggered_yes;
5091 break;
5092 }
5093 }
5094 /* Exact match not required. Within range is sufficient. */
5095 else if (target_watchpoint_addr_within_range (&current_target,
5096 addr, loc->address,
5097 loc->length))
5098 {
5099 w->watchpoint_triggered = watch_triggered_yes;
5100 break;
5101 }
5102 }
5103 }
5104
5105 return 1;
5106 }
5107
5108 /* Possible return values for watchpoint_check (this can't be an enum
5109 because of check_errors). */
5110 /* The watchpoint has been deleted. */
5111 #define WP_DELETED 1
5112 /* The value has changed. */
5113 #define WP_VALUE_CHANGED 2
5114 /* The value has not changed. */
5115 #define WP_VALUE_NOT_CHANGED 3
5116 /* Ignore this watchpoint, no matter if the value changed or not. */
5117 #define WP_IGNORE 4
5118
5119 #define BP_TEMPFLAG 1
5120 #define BP_HARDWAREFLAG 2
5121
5122 /* Evaluate watchpoint condition expression and check if its value
5123 changed.
5124
5125 P should be a pointer to struct bpstat, but is defined as a void *
5126 in order for this function to be usable with catch_errors. */
5127
5128 static int
5129 watchpoint_check (void *p)
5130 {
5131 bpstat bs = (bpstat) p;
5132 struct watchpoint *b;
5133 struct frame_info *fr;
5134 int within_current_scope;
5135
5136 /* BS is built from an existing struct breakpoint. */
5137 gdb_assert (bs->breakpoint_at != NULL);
5138 b = (struct watchpoint *) bs->breakpoint_at;
5139
5140 /* If this is a local watchpoint, we only want to check if the
5141 watchpoint frame is in scope if the current thread is the thread
5142 that was used to create the watchpoint. */
5143 if (!watchpoint_in_thread_scope (b))
5144 return WP_IGNORE;
5145
5146 if (b->exp_valid_block == NULL)
5147 within_current_scope = 1;
5148 else
5149 {
5150 struct frame_info *frame = get_current_frame ();
5151 struct gdbarch *frame_arch = get_frame_arch (frame);
5152 CORE_ADDR frame_pc = get_frame_pc (frame);
5153
5154 /* stack_frame_destroyed_p() returns a non-zero value if we're
5155 still in the function but the stack frame has already been
5156 invalidated. Since we can't rely on the values of local
5157 variables after the stack has been destroyed, we are treating
5158 the watchpoint in that state as `not changed' without further
5159 checking. Don't mark watchpoints as changed if the current
5160 frame is in an epilogue - even if they are in some other
5161 frame, our view of the stack is likely to be wrong and
5162 frame_find_by_id could error out. */
5163 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5164 return WP_IGNORE;
5165
5166 fr = frame_find_by_id (b->watchpoint_frame);
5167 within_current_scope = (fr != NULL);
5168
5169 /* If we've gotten confused in the unwinder, we might have
5170 returned a frame that can't describe this variable. */
5171 if (within_current_scope)
5172 {
5173 struct symbol *function;
5174
5175 function = get_frame_function (fr);
5176 if (function == NULL
5177 || !contained_in (b->exp_valid_block,
5178 SYMBOL_BLOCK_VALUE (function)))
5179 within_current_scope = 0;
5180 }
5181
5182 if (within_current_scope)
5183 /* If we end up stopping, the current frame will get selected
5184 in normal_stop. So this call to select_frame won't affect
5185 the user. */
5186 select_frame (fr);
5187 }
5188
5189 if (within_current_scope)
5190 {
5191 /* We use value_{,free_to_}mark because it could be a *long*
5192 time before we return to the command level and call
5193 free_all_values. We can't call free_all_values because we
5194 might be in the middle of evaluating a function call. */
5195
5196 int pc = 0;
5197 struct value *mark;
5198 struct value *new_val;
5199
5200 if (is_masked_watchpoint (b))
5201 /* Since we don't know the exact trigger address (from
5202 stopped_data_address), just tell the user we've triggered
5203 a mask watchpoint. */
5204 return WP_VALUE_CHANGED;
5205
5206 mark = value_mark ();
5207 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5208
5209 if (b->val_bitsize != 0)
5210 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5211
5212 /* We use value_equal_contents instead of value_equal because
5213 the latter coerces an array to a pointer, thus comparing just
5214 the address of the array instead of its contents. This is
5215 not what we want. */
5216 if ((b->val != NULL) != (new_val != NULL)
5217 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5218 {
5219 if (new_val != NULL)
5220 {
5221 release_value (new_val);
5222 value_free_to_mark (mark);
5223 }
5224 bs->old_val = b->val;
5225 b->val = new_val;
5226 b->val_valid = 1;
5227 return WP_VALUE_CHANGED;
5228 }
5229 else
5230 {
5231 /* Nothing changed. */
5232 value_free_to_mark (mark);
5233 return WP_VALUE_NOT_CHANGED;
5234 }
5235 }
5236 else
5237 {
5238 /* This seems like the only logical thing to do because
5239 if we temporarily ignored the watchpoint, then when
5240 we reenter the block in which it is valid it contains
5241 garbage (in the case of a function, it may have two
5242 garbage values, one before and one after the prologue).
5243 So we can't even detect the first assignment to it and
5244 watch after that (since the garbage may or may not equal
5245 the first value assigned). */
5246 /* We print all the stop information in
5247 breakpoint_ops->print_it, but in this case, by the time we
5248 call breakpoint_ops->print_it this bp will be deleted
5249 already. So we have no choice but print the information
5250 here. */
5251
5252 SWITCH_THRU_ALL_UIS ()
5253 {
5254 struct ui_out *uiout = current_uiout;
5255
5256 if (uiout->is_mi_like_p ())
5257 uiout->field_string
5258 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5259 uiout->text ("\nWatchpoint ");
5260 uiout->field_int ("wpnum", b->number);
5261 uiout->text (" deleted because the program has left the block in\n"
5262 "which its expression is valid.\n");
5263 }
5264
5265 /* Make sure the watchpoint's commands aren't executed. */
5266 decref_counted_command_line (&b->commands);
5267 watchpoint_del_at_next_stop (b);
5268
5269 return WP_DELETED;
5270 }
5271 }
5272
5273 /* Return true if it looks like target has stopped due to hitting
5274 breakpoint location BL. This function does not check if we should
5275 stop, only if BL explains the stop. */
5276
5277 static int
5278 bpstat_check_location (const struct bp_location *bl,
5279 struct address_space *aspace, CORE_ADDR bp_addr,
5280 const struct target_waitstatus *ws)
5281 {
5282 struct breakpoint *b = bl->owner;
5283
5284 /* BL is from an existing breakpoint. */
5285 gdb_assert (b != NULL);
5286
5287 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5288 }
5289
5290 /* Determine if the watched values have actually changed, and we
5291 should stop. If not, set BS->stop to 0. */
5292
5293 static void
5294 bpstat_check_watchpoint (bpstat bs)
5295 {
5296 const struct bp_location *bl;
5297 struct watchpoint *b;
5298
5299 /* BS is built for existing struct breakpoint. */
5300 bl = bs->bp_location_at;
5301 gdb_assert (bl != NULL);
5302 b = (struct watchpoint *) bs->breakpoint_at;
5303 gdb_assert (b != NULL);
5304
5305 {
5306 int must_check_value = 0;
5307
5308 if (b->type == bp_watchpoint)
5309 /* For a software watchpoint, we must always check the
5310 watched value. */
5311 must_check_value = 1;
5312 else if (b->watchpoint_triggered == watch_triggered_yes)
5313 /* We have a hardware watchpoint (read, write, or access)
5314 and the target earlier reported an address watched by
5315 this watchpoint. */
5316 must_check_value = 1;
5317 else if (b->watchpoint_triggered == watch_triggered_unknown
5318 && b->type == bp_hardware_watchpoint)
5319 /* We were stopped by a hardware watchpoint, but the target could
5320 not report the data address. We must check the watchpoint's
5321 value. Access and read watchpoints are out of luck; without
5322 a data address, we can't figure it out. */
5323 must_check_value = 1;
5324
5325 if (must_check_value)
5326 {
5327 char *message
5328 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5329 b->number);
5330 struct cleanup *cleanups = make_cleanup (xfree, message);
5331 int e = catch_errors (watchpoint_check, bs, message,
5332 RETURN_MASK_ALL);
5333 do_cleanups (cleanups);
5334 switch (e)
5335 {
5336 case WP_DELETED:
5337 /* We've already printed what needs to be printed. */
5338 bs->print_it = print_it_done;
5339 /* Stop. */
5340 break;
5341 case WP_IGNORE:
5342 bs->print_it = print_it_noop;
5343 bs->stop = 0;
5344 break;
5345 case WP_VALUE_CHANGED:
5346 if (b->type == bp_read_watchpoint)
5347 {
5348 /* There are two cases to consider here:
5349
5350 1. We're watching the triggered memory for reads.
5351 In that case, trust the target, and always report
5352 the watchpoint hit to the user. Even though
5353 reads don't cause value changes, the value may
5354 have changed since the last time it was read, and
5355 since we're not trapping writes, we will not see
5356 those, and as such we should ignore our notion of
5357 old value.
5358
5359 2. We're watching the triggered memory for both
5360 reads and writes. There are two ways this may
5361 happen:
5362
5363 2.1. This is a target that can't break on data
5364 reads only, but can break on accesses (reads or
5365 writes), such as e.g., x86. We detect this case
5366 at the time we try to insert read watchpoints.
5367
5368 2.2. Otherwise, the target supports read
5369 watchpoints, but, the user set an access or write
5370 watchpoint watching the same memory as this read
5371 watchpoint.
5372
5373 If we're watching memory writes as well as reads,
5374 ignore watchpoint hits when we find that the
5375 value hasn't changed, as reads don't cause
5376 changes. This still gives false positives when
5377 the program writes the same value to memory as
5378 what there was already in memory (we will confuse
5379 it for a read), but it's much better than
5380 nothing. */
5381
5382 int other_write_watchpoint = 0;
5383
5384 if (bl->watchpoint_type == hw_read)
5385 {
5386 struct breakpoint *other_b;
5387
5388 ALL_BREAKPOINTS (other_b)
5389 if (other_b->type == bp_hardware_watchpoint
5390 || other_b->type == bp_access_watchpoint)
5391 {
5392 struct watchpoint *other_w =
5393 (struct watchpoint *) other_b;
5394
5395 if (other_w->watchpoint_triggered
5396 == watch_triggered_yes)
5397 {
5398 other_write_watchpoint = 1;
5399 break;
5400 }
5401 }
5402 }
5403
5404 if (other_write_watchpoint
5405 || bl->watchpoint_type == hw_access)
5406 {
5407 /* We're watching the same memory for writes,
5408 and the value changed since the last time we
5409 updated it, so this trap must be for a write.
5410 Ignore it. */
5411 bs->print_it = print_it_noop;
5412 bs->stop = 0;
5413 }
5414 }
5415 break;
5416 case WP_VALUE_NOT_CHANGED:
5417 if (b->type == bp_hardware_watchpoint
5418 || b->type == bp_watchpoint)
5419 {
5420 /* Don't stop: write watchpoints shouldn't fire if
5421 the value hasn't changed. */
5422 bs->print_it = print_it_noop;
5423 bs->stop = 0;
5424 }
5425 /* Stop. */
5426 break;
5427 default:
5428 /* Can't happen. */
5429 case 0:
5430 /* Error from catch_errors. */
5431 {
5432 SWITCH_THRU_ALL_UIS ()
5433 {
5434 printf_filtered (_("Watchpoint %d deleted.\n"),
5435 b->number);
5436 }
5437 watchpoint_del_at_next_stop (b);
5438 /* We've already printed what needs to be printed. */
5439 bs->print_it = print_it_done;
5440 }
5441 break;
5442 }
5443 }
5444 else /* must_check_value == 0 */
5445 {
5446 /* This is a case where some watchpoint(s) triggered, but
5447 not at the address of this watchpoint, or else no
5448 watchpoint triggered after all. So don't print
5449 anything for this watchpoint. */
5450 bs->print_it = print_it_noop;
5451 bs->stop = 0;
5452 }
5453 }
5454 }
5455
5456 /* For breakpoints that are currently marked as telling gdb to stop,
5457 check conditions (condition proper, frame, thread and ignore count)
5458 of breakpoint referred to by BS. If we should not stop for this
5459 breakpoint, set BS->stop to 0. */
5460
5461 static void
5462 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5463 {
5464 const struct bp_location *bl;
5465 struct breakpoint *b;
5466 int value_is_zero = 0;
5467 struct expression *cond;
5468
5469 gdb_assert (bs->stop);
5470
5471 /* BS is built for existing struct breakpoint. */
5472 bl = bs->bp_location_at;
5473 gdb_assert (bl != NULL);
5474 b = bs->breakpoint_at;
5475 gdb_assert (b != NULL);
5476
5477 /* Even if the target evaluated the condition on its end and notified GDB, we
5478 need to do so again since GDB does not know if we stopped due to a
5479 breakpoint or a single step breakpoint. */
5480
5481 if (frame_id_p (b->frame_id)
5482 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5483 {
5484 bs->stop = 0;
5485 return;
5486 }
5487
5488 /* If this is a thread/task-specific breakpoint, don't waste cpu
5489 evaluating the condition if this isn't the specified
5490 thread/task. */
5491 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5492 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5493
5494 {
5495 bs->stop = 0;
5496 return;
5497 }
5498
5499 /* Evaluate extension language breakpoints that have a "stop" method
5500 implemented. */
5501 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5502
5503 if (is_watchpoint (b))
5504 {
5505 struct watchpoint *w = (struct watchpoint *) b;
5506
5507 cond = w->cond_exp.get ();
5508 }
5509 else
5510 cond = bl->cond.get ();
5511
5512 if (cond && b->disposition != disp_del_at_next_stop)
5513 {
5514 int within_current_scope = 1;
5515 struct watchpoint * w;
5516
5517 /* We use value_mark and value_free_to_mark because it could
5518 be a long time before we return to the command level and
5519 call free_all_values. We can't call free_all_values
5520 because we might be in the middle of evaluating a
5521 function call. */
5522 struct value *mark = value_mark ();
5523
5524 if (is_watchpoint (b))
5525 w = (struct watchpoint *) b;
5526 else
5527 w = NULL;
5528
5529 /* Need to select the frame, with all that implies so that
5530 the conditions will have the right context. Because we
5531 use the frame, we will not see an inlined function's
5532 variables when we arrive at a breakpoint at the start
5533 of the inlined function; the current frame will be the
5534 call site. */
5535 if (w == NULL || w->cond_exp_valid_block == NULL)
5536 select_frame (get_current_frame ());
5537 else
5538 {
5539 struct frame_info *frame;
5540
5541 /* For local watchpoint expressions, which particular
5542 instance of a local is being watched matters, so we
5543 keep track of the frame to evaluate the expression
5544 in. To evaluate the condition however, it doesn't
5545 really matter which instantiation of the function
5546 where the condition makes sense triggers the
5547 watchpoint. This allows an expression like "watch
5548 global if q > 10" set in `func', catch writes to
5549 global on all threads that call `func', or catch
5550 writes on all recursive calls of `func' by a single
5551 thread. We simply always evaluate the condition in
5552 the innermost frame that's executing where it makes
5553 sense to evaluate the condition. It seems
5554 intuitive. */
5555 frame = block_innermost_frame (w->cond_exp_valid_block);
5556 if (frame != NULL)
5557 select_frame (frame);
5558 else
5559 within_current_scope = 0;
5560 }
5561 if (within_current_scope)
5562 value_is_zero
5563 = catch_errors (breakpoint_cond_eval, cond,
5564 "Error in testing breakpoint condition:\n",
5565 RETURN_MASK_ALL);
5566 else
5567 {
5568 warning (_("Watchpoint condition cannot be tested "
5569 "in the current scope"));
5570 /* If we failed to set the right context for this
5571 watchpoint, unconditionally report it. */
5572 value_is_zero = 0;
5573 }
5574 /* FIXME-someday, should give breakpoint #. */
5575 value_free_to_mark (mark);
5576 }
5577
5578 if (cond && value_is_zero)
5579 {
5580 bs->stop = 0;
5581 }
5582 else if (b->ignore_count > 0)
5583 {
5584 b->ignore_count--;
5585 bs->stop = 0;
5586 /* Increase the hit count even though we don't stop. */
5587 ++(b->hit_count);
5588 observer_notify_breakpoint_modified (b);
5589 }
5590 }
5591
5592 /* Returns true if we need to track moribund locations of LOC's type
5593 on the current target. */
5594
5595 static int
5596 need_moribund_for_location_type (struct bp_location *loc)
5597 {
5598 return ((loc->loc_type == bp_loc_software_breakpoint
5599 && !target_supports_stopped_by_sw_breakpoint ())
5600 || (loc->loc_type == bp_loc_hardware_breakpoint
5601 && !target_supports_stopped_by_hw_breakpoint ()));
5602 }
5603
5604
5605 /* Get a bpstat associated with having just stopped at address
5606 BP_ADDR in thread PTID.
5607
5608 Determine whether we stopped at a breakpoint, etc, or whether we
5609 don't understand this stop. Result is a chain of bpstat's such
5610 that:
5611
5612 if we don't understand the stop, the result is a null pointer.
5613
5614 if we understand why we stopped, the result is not null.
5615
5616 Each element of the chain refers to a particular breakpoint or
5617 watchpoint at which we have stopped. (We may have stopped for
5618 several reasons concurrently.)
5619
5620 Each element of the chain has valid next, breakpoint_at,
5621 commands, FIXME??? fields. */
5622
5623 bpstat
5624 bpstat_stop_status (struct address_space *aspace,
5625 CORE_ADDR bp_addr, ptid_t ptid,
5626 const struct target_waitstatus *ws)
5627 {
5628 struct breakpoint *b = NULL;
5629 struct bp_location *bl;
5630 struct bp_location *loc;
5631 /* First item of allocated bpstat's. */
5632 bpstat bs_head = NULL, *bs_link = &bs_head;
5633 /* Pointer to the last thing in the chain currently. */
5634 bpstat bs;
5635 int ix;
5636 int need_remove_insert;
5637 int removed_any;
5638
5639 /* First, build the bpstat chain with locations that explain a
5640 target stop, while being careful to not set the target running,
5641 as that may invalidate locations (in particular watchpoint
5642 locations are recreated). Resuming will happen here with
5643 breakpoint conditions or watchpoint expressions that include
5644 inferior function calls. */
5645
5646 ALL_BREAKPOINTS (b)
5647 {
5648 if (!breakpoint_enabled (b))
5649 continue;
5650
5651 for (bl = b->loc; bl != NULL; bl = bl->next)
5652 {
5653 /* For hardware watchpoints, we look only at the first
5654 location. The watchpoint_check function will work on the
5655 entire expression, not the individual locations. For
5656 read watchpoints, the watchpoints_triggered function has
5657 checked all locations already. */
5658 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5659 break;
5660
5661 if (!bl->enabled || bl->shlib_disabled)
5662 continue;
5663
5664 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5665 continue;
5666
5667 /* Come here if it's a watchpoint, or if the break address
5668 matches. */
5669
5670 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5671 explain stop. */
5672
5673 /* Assume we stop. Should we find a watchpoint that is not
5674 actually triggered, or if the condition of the breakpoint
5675 evaluates as false, we'll reset 'stop' to 0. */
5676 bs->stop = 1;
5677 bs->print = 1;
5678
5679 /* If this is a scope breakpoint, mark the associated
5680 watchpoint as triggered so that we will handle the
5681 out-of-scope event. We'll get to the watchpoint next
5682 iteration. */
5683 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5684 {
5685 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5686
5687 w->watchpoint_triggered = watch_triggered_yes;
5688 }
5689 }
5690 }
5691
5692 /* Check if a moribund breakpoint explains the stop. */
5693 if (!target_supports_stopped_by_sw_breakpoint ()
5694 || !target_supports_stopped_by_hw_breakpoint ())
5695 {
5696 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5697 {
5698 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5699 && need_moribund_for_location_type (loc))
5700 {
5701 bs = bpstat_alloc (loc, &bs_link);
5702 /* For hits of moribund locations, we should just proceed. */
5703 bs->stop = 0;
5704 bs->print = 0;
5705 bs->print_it = print_it_noop;
5706 }
5707 }
5708 }
5709
5710 /* A bit of special processing for shlib breakpoints. We need to
5711 process solib loading here, so that the lists of loaded and
5712 unloaded libraries are correct before we handle "catch load" and
5713 "catch unload". */
5714 for (bs = bs_head; bs != NULL; bs = bs->next)
5715 {
5716 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5717 {
5718 handle_solib_event ();
5719 break;
5720 }
5721 }
5722
5723 /* Now go through the locations that caused the target to stop, and
5724 check whether we're interested in reporting this stop to higher
5725 layers, or whether we should resume the target transparently. */
5726
5727 removed_any = 0;
5728
5729 for (bs = bs_head; bs != NULL; bs = bs->next)
5730 {
5731 if (!bs->stop)
5732 continue;
5733
5734 b = bs->breakpoint_at;
5735 b->ops->check_status (bs);
5736 if (bs->stop)
5737 {
5738 bpstat_check_breakpoint_conditions (bs, ptid);
5739
5740 if (bs->stop)
5741 {
5742 ++(b->hit_count);
5743 observer_notify_breakpoint_modified (b);
5744
5745 /* We will stop here. */
5746 if (b->disposition == disp_disable)
5747 {
5748 --(b->enable_count);
5749 if (b->enable_count <= 0)
5750 b->enable_state = bp_disabled;
5751 removed_any = 1;
5752 }
5753 if (b->silent)
5754 bs->print = 0;
5755 bs->commands = b->commands;
5756 incref_counted_command_line (bs->commands);
5757 if (command_line_is_silent (bs->commands
5758 ? bs->commands->commands : NULL))
5759 bs->print = 0;
5760
5761 b->ops->after_condition_true (bs);
5762 }
5763
5764 }
5765
5766 /* Print nothing for this entry if we don't stop or don't
5767 print. */
5768 if (!bs->stop || !bs->print)
5769 bs->print_it = print_it_noop;
5770 }
5771
5772 /* If we aren't stopping, the value of some hardware watchpoint may
5773 not have changed, but the intermediate memory locations we are
5774 watching may have. Don't bother if we're stopping; this will get
5775 done later. */
5776 need_remove_insert = 0;
5777 if (! bpstat_causes_stop (bs_head))
5778 for (bs = bs_head; bs != NULL; bs = bs->next)
5779 if (!bs->stop
5780 && bs->breakpoint_at
5781 && is_hardware_watchpoint (bs->breakpoint_at))
5782 {
5783 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5784
5785 update_watchpoint (w, 0 /* don't reparse. */);
5786 need_remove_insert = 1;
5787 }
5788
5789 if (need_remove_insert)
5790 update_global_location_list (UGLL_MAY_INSERT);
5791 else if (removed_any)
5792 update_global_location_list (UGLL_DONT_INSERT);
5793
5794 return bs_head;
5795 }
5796
5797 static void
5798 handle_jit_event (void)
5799 {
5800 struct frame_info *frame;
5801 struct gdbarch *gdbarch;
5802
5803 if (debug_infrun)
5804 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5805
5806 /* Switch terminal for any messages produced by
5807 breakpoint_re_set. */
5808 target_terminal_ours_for_output ();
5809
5810 frame = get_current_frame ();
5811 gdbarch = get_frame_arch (frame);
5812
5813 jit_event_handler (gdbarch);
5814
5815 target_terminal_inferior ();
5816 }
5817
5818 /* Prepare WHAT final decision for infrun. */
5819
5820 /* Decide what infrun needs to do with this bpstat. */
5821
5822 struct bpstat_what
5823 bpstat_what (bpstat bs_head)
5824 {
5825 struct bpstat_what retval;
5826 bpstat bs;
5827
5828 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5829 retval.call_dummy = STOP_NONE;
5830 retval.is_longjmp = 0;
5831
5832 for (bs = bs_head; bs != NULL; bs = bs->next)
5833 {
5834 /* Extract this BS's action. After processing each BS, we check
5835 if its action overrides all we've seem so far. */
5836 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5837 enum bptype bptype;
5838
5839 if (bs->breakpoint_at == NULL)
5840 {
5841 /* I suspect this can happen if it was a momentary
5842 breakpoint which has since been deleted. */
5843 bptype = bp_none;
5844 }
5845 else
5846 bptype = bs->breakpoint_at->type;
5847
5848 switch (bptype)
5849 {
5850 case bp_none:
5851 break;
5852 case bp_breakpoint:
5853 case bp_hardware_breakpoint:
5854 case bp_single_step:
5855 case bp_until:
5856 case bp_finish:
5857 case bp_shlib_event:
5858 if (bs->stop)
5859 {
5860 if (bs->print)
5861 this_action = BPSTAT_WHAT_STOP_NOISY;
5862 else
5863 this_action = BPSTAT_WHAT_STOP_SILENT;
5864 }
5865 else
5866 this_action = BPSTAT_WHAT_SINGLE;
5867 break;
5868 case bp_watchpoint:
5869 case bp_hardware_watchpoint:
5870 case bp_read_watchpoint:
5871 case bp_access_watchpoint:
5872 if (bs->stop)
5873 {
5874 if (bs->print)
5875 this_action = BPSTAT_WHAT_STOP_NOISY;
5876 else
5877 this_action = BPSTAT_WHAT_STOP_SILENT;
5878 }
5879 else
5880 {
5881 /* There was a watchpoint, but we're not stopping.
5882 This requires no further action. */
5883 }
5884 break;
5885 case bp_longjmp:
5886 case bp_longjmp_call_dummy:
5887 case bp_exception:
5888 if (bs->stop)
5889 {
5890 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5891 retval.is_longjmp = bptype != bp_exception;
5892 }
5893 else
5894 this_action = BPSTAT_WHAT_SINGLE;
5895 break;
5896 case bp_longjmp_resume:
5897 case bp_exception_resume:
5898 if (bs->stop)
5899 {
5900 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5901 retval.is_longjmp = bptype == bp_longjmp_resume;
5902 }
5903 else
5904 this_action = BPSTAT_WHAT_SINGLE;
5905 break;
5906 case bp_step_resume:
5907 if (bs->stop)
5908 this_action = BPSTAT_WHAT_STEP_RESUME;
5909 else
5910 {
5911 /* It is for the wrong frame. */
5912 this_action = BPSTAT_WHAT_SINGLE;
5913 }
5914 break;
5915 case bp_hp_step_resume:
5916 if (bs->stop)
5917 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5918 else
5919 {
5920 /* It is for the wrong frame. */
5921 this_action = BPSTAT_WHAT_SINGLE;
5922 }
5923 break;
5924 case bp_watchpoint_scope:
5925 case bp_thread_event:
5926 case bp_overlay_event:
5927 case bp_longjmp_master:
5928 case bp_std_terminate_master:
5929 case bp_exception_master:
5930 this_action = BPSTAT_WHAT_SINGLE;
5931 break;
5932 case bp_catchpoint:
5933 if (bs->stop)
5934 {
5935 if (bs->print)
5936 this_action = BPSTAT_WHAT_STOP_NOISY;
5937 else
5938 this_action = BPSTAT_WHAT_STOP_SILENT;
5939 }
5940 else
5941 {
5942 /* There was a catchpoint, but we're not stopping.
5943 This requires no further action. */
5944 }
5945 break;
5946 case bp_jit_event:
5947 this_action = BPSTAT_WHAT_SINGLE;
5948 break;
5949 case bp_call_dummy:
5950 /* Make sure the action is stop (silent or noisy),
5951 so infrun.c pops the dummy frame. */
5952 retval.call_dummy = STOP_STACK_DUMMY;
5953 this_action = BPSTAT_WHAT_STOP_SILENT;
5954 break;
5955 case bp_std_terminate:
5956 /* Make sure the action is stop (silent or noisy),
5957 so infrun.c pops the dummy frame. */
5958 retval.call_dummy = STOP_STD_TERMINATE;
5959 this_action = BPSTAT_WHAT_STOP_SILENT;
5960 break;
5961 case bp_tracepoint:
5962 case bp_fast_tracepoint:
5963 case bp_static_tracepoint:
5964 /* Tracepoint hits should not be reported back to GDB, and
5965 if one got through somehow, it should have been filtered
5966 out already. */
5967 internal_error (__FILE__, __LINE__,
5968 _("bpstat_what: tracepoint encountered"));
5969 break;
5970 case bp_gnu_ifunc_resolver:
5971 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5972 this_action = BPSTAT_WHAT_SINGLE;
5973 break;
5974 case bp_gnu_ifunc_resolver_return:
5975 /* The breakpoint will be removed, execution will restart from the
5976 PC of the former breakpoint. */
5977 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5978 break;
5979
5980 case bp_dprintf:
5981 if (bs->stop)
5982 this_action = BPSTAT_WHAT_STOP_SILENT;
5983 else
5984 this_action = BPSTAT_WHAT_SINGLE;
5985 break;
5986
5987 default:
5988 internal_error (__FILE__, __LINE__,
5989 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5990 }
5991
5992 retval.main_action = std::max (retval.main_action, this_action);
5993 }
5994
5995 return retval;
5996 }
5997
5998 void
5999 bpstat_run_callbacks (bpstat bs_head)
6000 {
6001 bpstat bs;
6002
6003 for (bs = bs_head; bs != NULL; bs = bs->next)
6004 {
6005 struct breakpoint *b = bs->breakpoint_at;
6006
6007 if (b == NULL)
6008 continue;
6009 switch (b->type)
6010 {
6011 case bp_jit_event:
6012 handle_jit_event ();
6013 break;
6014 case bp_gnu_ifunc_resolver:
6015 gnu_ifunc_resolver_stop (b);
6016 break;
6017 case bp_gnu_ifunc_resolver_return:
6018 gnu_ifunc_resolver_return_stop (b);
6019 break;
6020 }
6021 }
6022 }
6023
6024 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6025 without hardware support). This isn't related to a specific bpstat,
6026 just to things like whether watchpoints are set. */
6027
6028 int
6029 bpstat_should_step (void)
6030 {
6031 struct breakpoint *b;
6032
6033 ALL_BREAKPOINTS (b)
6034 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6035 return 1;
6036 return 0;
6037 }
6038
6039 int
6040 bpstat_causes_stop (bpstat bs)
6041 {
6042 for (; bs != NULL; bs = bs->next)
6043 if (bs->stop)
6044 return 1;
6045
6046 return 0;
6047 }
6048
6049 \f
6050
6051 /* Compute a string of spaces suitable to indent the next line
6052 so it starts at the position corresponding to the table column
6053 named COL_NAME in the currently active table of UIOUT. */
6054
6055 static char *
6056 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6057 {
6058 static char wrap_indent[80];
6059 int i, total_width, width, align;
6060 const char *text;
6061
6062 total_width = 0;
6063 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6064 {
6065 if (strcmp (text, col_name) == 0)
6066 {
6067 gdb_assert (total_width < sizeof wrap_indent);
6068 memset (wrap_indent, ' ', total_width);
6069 wrap_indent[total_width] = 0;
6070
6071 return wrap_indent;
6072 }
6073
6074 total_width += width + 1;
6075 }
6076
6077 return NULL;
6078 }
6079
6080 /* Determine if the locations of this breakpoint will have their conditions
6081 evaluated by the target, host or a mix of both. Returns the following:
6082
6083 "host": Host evals condition.
6084 "host or target": Host or Target evals condition.
6085 "target": Target evals condition.
6086 */
6087
6088 static const char *
6089 bp_condition_evaluator (struct breakpoint *b)
6090 {
6091 struct bp_location *bl;
6092 char host_evals = 0;
6093 char target_evals = 0;
6094
6095 if (!b)
6096 return NULL;
6097
6098 if (!is_breakpoint (b))
6099 return NULL;
6100
6101 if (gdb_evaluates_breakpoint_condition_p ()
6102 || !target_supports_evaluation_of_breakpoint_conditions ())
6103 return condition_evaluation_host;
6104
6105 for (bl = b->loc; bl; bl = bl->next)
6106 {
6107 if (bl->cond_bytecode)
6108 target_evals++;
6109 else
6110 host_evals++;
6111 }
6112
6113 if (host_evals && target_evals)
6114 return condition_evaluation_both;
6115 else if (target_evals)
6116 return condition_evaluation_target;
6117 else
6118 return condition_evaluation_host;
6119 }
6120
6121 /* Determine the breakpoint location's condition evaluator. This is
6122 similar to bp_condition_evaluator, but for locations. */
6123
6124 static const char *
6125 bp_location_condition_evaluator (struct bp_location *bl)
6126 {
6127 if (bl && !is_breakpoint (bl->owner))
6128 return NULL;
6129
6130 if (gdb_evaluates_breakpoint_condition_p ()
6131 || !target_supports_evaluation_of_breakpoint_conditions ())
6132 return condition_evaluation_host;
6133
6134 if (bl && bl->cond_bytecode)
6135 return condition_evaluation_target;
6136 else
6137 return condition_evaluation_host;
6138 }
6139
6140 /* Print the LOC location out of the list of B->LOC locations. */
6141
6142 static void
6143 print_breakpoint_location (struct breakpoint *b,
6144 struct bp_location *loc)
6145 {
6146 struct ui_out *uiout = current_uiout;
6147
6148 scoped_restore_current_program_space restore_pspace;
6149
6150 if (loc != NULL && loc->shlib_disabled)
6151 loc = NULL;
6152
6153 if (loc != NULL)
6154 set_current_program_space (loc->pspace);
6155
6156 if (b->display_canonical)
6157 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6158 else if (loc && loc->symtab)
6159 {
6160 struct symbol *sym
6161 = find_pc_sect_function (loc->address, loc->section);
6162 if (sym)
6163 {
6164 uiout->text ("in ");
6165 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6166 uiout->text (" ");
6167 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6168 uiout->text ("at ");
6169 }
6170 uiout->field_string ("file",
6171 symtab_to_filename_for_display (loc->symtab));
6172 uiout->text (":");
6173
6174 if (uiout->is_mi_like_p ())
6175 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6176
6177 uiout->field_int ("line", loc->line_number);
6178 }
6179 else if (loc)
6180 {
6181 string_file stb;
6182
6183 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6184 demangle, "");
6185 uiout->field_stream ("at", stb);
6186 }
6187 else
6188 {
6189 uiout->field_string ("pending",
6190 event_location_to_string (b->location.get ()));
6191 /* If extra_string is available, it could be holding a condition
6192 or dprintf arguments. In either case, make sure it is printed,
6193 too, but only for non-MI streams. */
6194 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6195 {
6196 if (b->type == bp_dprintf)
6197 uiout->text (",");
6198 else
6199 uiout->text (" ");
6200 uiout->text (b->extra_string);
6201 }
6202 }
6203
6204 if (loc && is_breakpoint (b)
6205 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6206 && bp_condition_evaluator (b) == condition_evaluation_both)
6207 {
6208 uiout->text (" (");
6209 uiout->field_string ("evaluated-by",
6210 bp_location_condition_evaluator (loc));
6211 uiout->text (")");
6212 }
6213 }
6214
6215 static const char *
6216 bptype_string (enum bptype type)
6217 {
6218 struct ep_type_description
6219 {
6220 enum bptype type;
6221 const char *description;
6222 };
6223 static struct ep_type_description bptypes[] =
6224 {
6225 {bp_none, "?deleted?"},
6226 {bp_breakpoint, "breakpoint"},
6227 {bp_hardware_breakpoint, "hw breakpoint"},
6228 {bp_single_step, "sw single-step"},
6229 {bp_until, "until"},
6230 {bp_finish, "finish"},
6231 {bp_watchpoint, "watchpoint"},
6232 {bp_hardware_watchpoint, "hw watchpoint"},
6233 {bp_read_watchpoint, "read watchpoint"},
6234 {bp_access_watchpoint, "acc watchpoint"},
6235 {bp_longjmp, "longjmp"},
6236 {bp_longjmp_resume, "longjmp resume"},
6237 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6238 {bp_exception, "exception"},
6239 {bp_exception_resume, "exception resume"},
6240 {bp_step_resume, "step resume"},
6241 {bp_hp_step_resume, "high-priority step resume"},
6242 {bp_watchpoint_scope, "watchpoint scope"},
6243 {bp_call_dummy, "call dummy"},
6244 {bp_std_terminate, "std::terminate"},
6245 {bp_shlib_event, "shlib events"},
6246 {bp_thread_event, "thread events"},
6247 {bp_overlay_event, "overlay events"},
6248 {bp_longjmp_master, "longjmp master"},
6249 {bp_std_terminate_master, "std::terminate master"},
6250 {bp_exception_master, "exception master"},
6251 {bp_catchpoint, "catchpoint"},
6252 {bp_tracepoint, "tracepoint"},
6253 {bp_fast_tracepoint, "fast tracepoint"},
6254 {bp_static_tracepoint, "static tracepoint"},
6255 {bp_dprintf, "dprintf"},
6256 {bp_jit_event, "jit events"},
6257 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6258 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6259 };
6260
6261 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6262 || ((int) type != bptypes[(int) type].type))
6263 internal_error (__FILE__, __LINE__,
6264 _("bptypes table does not describe type #%d."),
6265 (int) type);
6266
6267 return bptypes[(int) type].description;
6268 }
6269
6270 /* For MI, output a field named 'thread-groups' with a list as the value.
6271 For CLI, prefix the list with the string 'inf'. */
6272
6273 static void
6274 output_thread_groups (struct ui_out *uiout,
6275 const char *field_name,
6276 VEC(int) *inf_num,
6277 int mi_only)
6278 {
6279 int is_mi = uiout->is_mi_like_p ();
6280 int inf;
6281 int i;
6282
6283 /* For backward compatibility, don't display inferiors in CLI unless
6284 there are several. Always display them for MI. */
6285 if (!is_mi && mi_only)
6286 return;
6287
6288 ui_out_emit_list list_emitter (uiout, field_name);
6289
6290 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6291 {
6292 if (is_mi)
6293 {
6294 char mi_group[10];
6295
6296 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6297 uiout->field_string (NULL, mi_group);
6298 }
6299 else
6300 {
6301 if (i == 0)
6302 uiout->text (" inf ");
6303 else
6304 uiout->text (", ");
6305
6306 uiout->text (plongest (inf));
6307 }
6308 }
6309 }
6310
6311 /* Print B to gdb_stdout. */
6312
6313 static void
6314 print_one_breakpoint_location (struct breakpoint *b,
6315 struct bp_location *loc,
6316 int loc_number,
6317 struct bp_location **last_loc,
6318 int allflag)
6319 {
6320 struct command_line *l;
6321 static char bpenables[] = "nynny";
6322
6323 struct ui_out *uiout = current_uiout;
6324 int header_of_multiple = 0;
6325 int part_of_multiple = (loc != NULL);
6326 struct value_print_options opts;
6327
6328 get_user_print_options (&opts);
6329
6330 gdb_assert (!loc || loc_number != 0);
6331 /* See comment in print_one_breakpoint concerning treatment of
6332 breakpoints with single disabled location. */
6333 if (loc == NULL
6334 && (b->loc != NULL
6335 && (b->loc->next != NULL || !b->loc->enabled)))
6336 header_of_multiple = 1;
6337 if (loc == NULL)
6338 loc = b->loc;
6339
6340 annotate_record ();
6341
6342 /* 1 */
6343 annotate_field (0);
6344 if (part_of_multiple)
6345 {
6346 char *formatted;
6347 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6348 uiout->field_string ("number", formatted);
6349 xfree (formatted);
6350 }
6351 else
6352 {
6353 uiout->field_int ("number", b->number);
6354 }
6355
6356 /* 2 */
6357 annotate_field (1);
6358 if (part_of_multiple)
6359 uiout->field_skip ("type");
6360 else
6361 uiout->field_string ("type", bptype_string (b->type));
6362
6363 /* 3 */
6364 annotate_field (2);
6365 if (part_of_multiple)
6366 uiout->field_skip ("disp");
6367 else
6368 uiout->field_string ("disp", bpdisp_text (b->disposition));
6369
6370
6371 /* 4 */
6372 annotate_field (3);
6373 if (part_of_multiple)
6374 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6375 else
6376 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6377 uiout->spaces (2);
6378
6379
6380 /* 5 and 6 */
6381 if (b->ops != NULL && b->ops->print_one != NULL)
6382 {
6383 /* Although the print_one can possibly print all locations,
6384 calling it here is not likely to get any nice result. So,
6385 make sure there's just one location. */
6386 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6387 b->ops->print_one (b, last_loc);
6388 }
6389 else
6390 switch (b->type)
6391 {
6392 case bp_none:
6393 internal_error (__FILE__, __LINE__,
6394 _("print_one_breakpoint: bp_none encountered\n"));
6395 break;
6396
6397 case bp_watchpoint:
6398 case bp_hardware_watchpoint:
6399 case bp_read_watchpoint:
6400 case bp_access_watchpoint:
6401 {
6402 struct watchpoint *w = (struct watchpoint *) b;
6403
6404 /* Field 4, the address, is omitted (which makes the columns
6405 not line up too nicely with the headers, but the effect
6406 is relatively readable). */
6407 if (opts.addressprint)
6408 uiout->field_skip ("addr");
6409 annotate_field (5);
6410 uiout->field_string ("what", w->exp_string);
6411 }
6412 break;
6413
6414 case bp_breakpoint:
6415 case bp_hardware_breakpoint:
6416 case bp_single_step:
6417 case bp_until:
6418 case bp_finish:
6419 case bp_longjmp:
6420 case bp_longjmp_resume:
6421 case bp_longjmp_call_dummy:
6422 case bp_exception:
6423 case bp_exception_resume:
6424 case bp_step_resume:
6425 case bp_hp_step_resume:
6426 case bp_watchpoint_scope:
6427 case bp_call_dummy:
6428 case bp_std_terminate:
6429 case bp_shlib_event:
6430 case bp_thread_event:
6431 case bp_overlay_event:
6432 case bp_longjmp_master:
6433 case bp_std_terminate_master:
6434 case bp_exception_master:
6435 case bp_tracepoint:
6436 case bp_fast_tracepoint:
6437 case bp_static_tracepoint:
6438 case bp_dprintf:
6439 case bp_jit_event:
6440 case bp_gnu_ifunc_resolver:
6441 case bp_gnu_ifunc_resolver_return:
6442 if (opts.addressprint)
6443 {
6444 annotate_field (4);
6445 if (header_of_multiple)
6446 uiout->field_string ("addr", "<MULTIPLE>");
6447 else if (b->loc == NULL || loc->shlib_disabled)
6448 uiout->field_string ("addr", "<PENDING>");
6449 else
6450 uiout->field_core_addr ("addr",
6451 loc->gdbarch, loc->address);
6452 }
6453 annotate_field (5);
6454 if (!header_of_multiple)
6455 print_breakpoint_location (b, loc);
6456 if (b->loc)
6457 *last_loc = b->loc;
6458 break;
6459 }
6460
6461
6462 if (loc != NULL && !header_of_multiple)
6463 {
6464 struct inferior *inf;
6465 VEC(int) *inf_num = NULL;
6466 int mi_only = 1;
6467
6468 ALL_INFERIORS (inf)
6469 {
6470 if (inf->pspace == loc->pspace)
6471 VEC_safe_push (int, inf_num, inf->num);
6472 }
6473
6474 /* For backward compatibility, don't display inferiors in CLI unless
6475 there are several. Always display for MI. */
6476 if (allflag
6477 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6478 && (number_of_program_spaces () > 1
6479 || number_of_inferiors () > 1)
6480 /* LOC is for existing B, it cannot be in
6481 moribund_locations and thus having NULL OWNER. */
6482 && loc->owner->type != bp_catchpoint))
6483 mi_only = 0;
6484 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6485 VEC_free (int, inf_num);
6486 }
6487
6488 if (!part_of_multiple)
6489 {
6490 if (b->thread != -1)
6491 {
6492 /* FIXME: This seems to be redundant and lost here; see the
6493 "stop only in" line a little further down. */
6494 uiout->text (" thread ");
6495 uiout->field_int ("thread", b->thread);
6496 }
6497 else if (b->task != 0)
6498 {
6499 uiout->text (" task ");
6500 uiout->field_int ("task", b->task);
6501 }
6502 }
6503
6504 uiout->text ("\n");
6505
6506 if (!part_of_multiple)
6507 b->ops->print_one_detail (b, uiout);
6508
6509 if (part_of_multiple && frame_id_p (b->frame_id))
6510 {
6511 annotate_field (6);
6512 uiout->text ("\tstop only in stack frame at ");
6513 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6514 the frame ID. */
6515 uiout->field_core_addr ("frame",
6516 b->gdbarch, b->frame_id.stack_addr);
6517 uiout->text ("\n");
6518 }
6519
6520 if (!part_of_multiple && b->cond_string)
6521 {
6522 annotate_field (7);
6523 if (is_tracepoint (b))
6524 uiout->text ("\ttrace only if ");
6525 else
6526 uiout->text ("\tstop only if ");
6527 uiout->field_string ("cond", b->cond_string);
6528
6529 /* Print whether the target is doing the breakpoint's condition
6530 evaluation. If GDB is doing the evaluation, don't print anything. */
6531 if (is_breakpoint (b)
6532 && breakpoint_condition_evaluation_mode ()
6533 == condition_evaluation_target)
6534 {
6535 uiout->text (" (");
6536 uiout->field_string ("evaluated-by",
6537 bp_condition_evaluator (b));
6538 uiout->text (" evals)");
6539 }
6540 uiout->text ("\n");
6541 }
6542
6543 if (!part_of_multiple && b->thread != -1)
6544 {
6545 /* FIXME should make an annotation for this. */
6546 uiout->text ("\tstop only in thread ");
6547 if (uiout->is_mi_like_p ())
6548 uiout->field_int ("thread", b->thread);
6549 else
6550 {
6551 struct thread_info *thr = find_thread_global_id (b->thread);
6552
6553 uiout->field_string ("thread", print_thread_id (thr));
6554 }
6555 uiout->text ("\n");
6556 }
6557
6558 if (!part_of_multiple)
6559 {
6560 if (b->hit_count)
6561 {
6562 /* FIXME should make an annotation for this. */
6563 if (is_catchpoint (b))
6564 uiout->text ("\tcatchpoint");
6565 else if (is_tracepoint (b))
6566 uiout->text ("\ttracepoint");
6567 else
6568 uiout->text ("\tbreakpoint");
6569 uiout->text (" already hit ");
6570 uiout->field_int ("times", b->hit_count);
6571 if (b->hit_count == 1)
6572 uiout->text (" time\n");
6573 else
6574 uiout->text (" times\n");
6575 }
6576 else
6577 {
6578 /* Output the count also if it is zero, but only if this is mi. */
6579 if (uiout->is_mi_like_p ())
6580 uiout->field_int ("times", b->hit_count);
6581 }
6582 }
6583
6584 if (!part_of_multiple && b->ignore_count)
6585 {
6586 annotate_field (8);
6587 uiout->text ("\tignore next ");
6588 uiout->field_int ("ignore", b->ignore_count);
6589 uiout->text (" hits\n");
6590 }
6591
6592 /* Note that an enable count of 1 corresponds to "enable once"
6593 behavior, which is reported by the combination of enablement and
6594 disposition, so we don't need to mention it here. */
6595 if (!part_of_multiple && b->enable_count > 1)
6596 {
6597 annotate_field (8);
6598 uiout->text ("\tdisable after ");
6599 /* Tweak the wording to clarify that ignore and enable counts
6600 are distinct, and have additive effect. */
6601 if (b->ignore_count)
6602 uiout->text ("additional ");
6603 else
6604 uiout->text ("next ");
6605 uiout->field_int ("enable", b->enable_count);
6606 uiout->text (" hits\n");
6607 }
6608
6609 if (!part_of_multiple && is_tracepoint (b))
6610 {
6611 struct tracepoint *tp = (struct tracepoint *) b;
6612
6613 if (tp->traceframe_usage)
6614 {
6615 uiout->text ("\ttrace buffer usage ");
6616 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6617 uiout->text (" bytes\n");
6618 }
6619 }
6620
6621 l = b->commands ? b->commands->commands : NULL;
6622 if (!part_of_multiple && l)
6623 {
6624 annotate_field (9);
6625 ui_out_emit_tuple tuple_emitter (uiout, "script");
6626 print_command_lines (uiout, l, 4);
6627 }
6628
6629 if (is_tracepoint (b))
6630 {
6631 struct tracepoint *t = (struct tracepoint *) b;
6632
6633 if (!part_of_multiple && t->pass_count)
6634 {
6635 annotate_field (10);
6636 uiout->text ("\tpass count ");
6637 uiout->field_int ("pass", t->pass_count);
6638 uiout->text (" \n");
6639 }
6640
6641 /* Don't display it when tracepoint or tracepoint location is
6642 pending. */
6643 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6644 {
6645 annotate_field (11);
6646
6647 if (uiout->is_mi_like_p ())
6648 uiout->field_string ("installed",
6649 loc->inserted ? "y" : "n");
6650 else
6651 {
6652 if (loc->inserted)
6653 uiout->text ("\t");
6654 else
6655 uiout->text ("\tnot ");
6656 uiout->text ("installed on target\n");
6657 }
6658 }
6659 }
6660
6661 if (uiout->is_mi_like_p () && !part_of_multiple)
6662 {
6663 if (is_watchpoint (b))
6664 {
6665 struct watchpoint *w = (struct watchpoint *) b;
6666
6667 uiout->field_string ("original-location", w->exp_string);
6668 }
6669 else if (b->location != NULL
6670 && event_location_to_string (b->location.get ()) != NULL)
6671 uiout->field_string ("original-location",
6672 event_location_to_string (b->location.get ()));
6673 }
6674 }
6675
6676 static void
6677 print_one_breakpoint (struct breakpoint *b,
6678 struct bp_location **last_loc,
6679 int allflag)
6680 {
6681 struct ui_out *uiout = current_uiout;
6682
6683 {
6684 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6685
6686 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6687 }
6688
6689 /* If this breakpoint has custom print function,
6690 it's already printed. Otherwise, print individual
6691 locations, if any. */
6692 if (b->ops == NULL || b->ops->print_one == NULL)
6693 {
6694 /* If breakpoint has a single location that is disabled, we
6695 print it as if it had several locations, since otherwise it's
6696 hard to represent "breakpoint enabled, location disabled"
6697 situation.
6698
6699 Note that while hardware watchpoints have several locations
6700 internally, that's not a property exposed to user. */
6701 if (b->loc
6702 && !is_hardware_watchpoint (b)
6703 && (b->loc->next || !b->loc->enabled))
6704 {
6705 struct bp_location *loc;
6706 int n = 1;
6707
6708 for (loc = b->loc; loc; loc = loc->next, ++n)
6709 {
6710 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6711 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6712 }
6713 }
6714 }
6715 }
6716
6717 static int
6718 breakpoint_address_bits (struct breakpoint *b)
6719 {
6720 int print_address_bits = 0;
6721 struct bp_location *loc;
6722
6723 /* Software watchpoints that aren't watching memory don't have an
6724 address to print. */
6725 if (is_no_memory_software_watchpoint (b))
6726 return 0;
6727
6728 for (loc = b->loc; loc; loc = loc->next)
6729 {
6730 int addr_bit;
6731
6732 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6733 if (addr_bit > print_address_bits)
6734 print_address_bits = addr_bit;
6735 }
6736
6737 return print_address_bits;
6738 }
6739
6740 struct captured_breakpoint_query_args
6741 {
6742 int bnum;
6743 };
6744
6745 static int
6746 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6747 {
6748 struct captured_breakpoint_query_args *args
6749 = (struct captured_breakpoint_query_args *) data;
6750 struct breakpoint *b;
6751 struct bp_location *dummy_loc = NULL;
6752
6753 ALL_BREAKPOINTS (b)
6754 {
6755 if (args->bnum == b->number)
6756 {
6757 print_one_breakpoint (b, &dummy_loc, 0);
6758 return GDB_RC_OK;
6759 }
6760 }
6761 return GDB_RC_NONE;
6762 }
6763
6764 enum gdb_rc
6765 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6766 char **error_message)
6767 {
6768 struct captured_breakpoint_query_args args;
6769
6770 args.bnum = bnum;
6771 /* For the moment we don't trust print_one_breakpoint() to not throw
6772 an error. */
6773 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6774 error_message, RETURN_MASK_ALL) < 0)
6775 return GDB_RC_FAIL;
6776 else
6777 return GDB_RC_OK;
6778 }
6779
6780 /* Return true if this breakpoint was set by the user, false if it is
6781 internal or momentary. */
6782
6783 int
6784 user_breakpoint_p (struct breakpoint *b)
6785 {
6786 return b->number > 0;
6787 }
6788
6789 /* See breakpoint.h. */
6790
6791 int
6792 pending_breakpoint_p (struct breakpoint *b)
6793 {
6794 return b->loc == NULL;
6795 }
6796
6797 /* Print information on user settable breakpoint (watchpoint, etc)
6798 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6799 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6800 FILTER is non-NULL, call it on each breakpoint and only include the
6801 ones for which it returns non-zero. Return the total number of
6802 breakpoints listed. */
6803
6804 static int
6805 breakpoint_1 (char *args, int allflag,
6806 int (*filter) (const struct breakpoint *))
6807 {
6808 struct breakpoint *b;
6809 struct bp_location *last_loc = NULL;
6810 int nr_printable_breakpoints;
6811 struct cleanup *bkpttbl_chain;
6812 struct value_print_options opts;
6813 int print_address_bits = 0;
6814 int print_type_col_width = 14;
6815 struct ui_out *uiout = current_uiout;
6816
6817 get_user_print_options (&opts);
6818
6819 /* Compute the number of rows in the table, as well as the size
6820 required for address fields. */
6821 nr_printable_breakpoints = 0;
6822 ALL_BREAKPOINTS (b)
6823 {
6824 /* If we have a filter, only list the breakpoints it accepts. */
6825 if (filter && !filter (b))
6826 continue;
6827
6828 /* If we have an "args" string, it is a list of breakpoints to
6829 accept. Skip the others. */
6830 if (args != NULL && *args != '\0')
6831 {
6832 if (allflag && parse_and_eval_long (args) != b->number)
6833 continue;
6834 if (!allflag && !number_is_in_list (args, b->number))
6835 continue;
6836 }
6837
6838 if (allflag || user_breakpoint_p (b))
6839 {
6840 int addr_bit, type_len;
6841
6842 addr_bit = breakpoint_address_bits (b);
6843 if (addr_bit > print_address_bits)
6844 print_address_bits = addr_bit;
6845
6846 type_len = strlen (bptype_string (b->type));
6847 if (type_len > print_type_col_width)
6848 print_type_col_width = type_len;
6849
6850 nr_printable_breakpoints++;
6851 }
6852 }
6853
6854 if (opts.addressprint)
6855 bkpttbl_chain
6856 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6857 nr_printable_breakpoints,
6858 "BreakpointTable");
6859 else
6860 bkpttbl_chain
6861 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6862 nr_printable_breakpoints,
6863 "BreakpointTable");
6864
6865 if (nr_printable_breakpoints > 0)
6866 annotate_breakpoints_headers ();
6867 if (nr_printable_breakpoints > 0)
6868 annotate_field (0);
6869 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6870 if (nr_printable_breakpoints > 0)
6871 annotate_field (1);
6872 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6873 if (nr_printable_breakpoints > 0)
6874 annotate_field (2);
6875 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6876 if (nr_printable_breakpoints > 0)
6877 annotate_field (3);
6878 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6879 if (opts.addressprint)
6880 {
6881 if (nr_printable_breakpoints > 0)
6882 annotate_field (4);
6883 if (print_address_bits <= 32)
6884 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6885 else
6886 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6887 }
6888 if (nr_printable_breakpoints > 0)
6889 annotate_field (5);
6890 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6891 uiout->table_body ();
6892 if (nr_printable_breakpoints > 0)
6893 annotate_breakpoints_table ();
6894
6895 ALL_BREAKPOINTS (b)
6896 {
6897 QUIT;
6898 /* If we have a filter, only list the breakpoints it accepts. */
6899 if (filter && !filter (b))
6900 continue;
6901
6902 /* If we have an "args" string, it is a list of breakpoints to
6903 accept. Skip the others. */
6904
6905 if (args != NULL && *args != '\0')
6906 {
6907 if (allflag) /* maintenance info breakpoint */
6908 {
6909 if (parse_and_eval_long (args) != b->number)
6910 continue;
6911 }
6912 else /* all others */
6913 {
6914 if (!number_is_in_list (args, b->number))
6915 continue;
6916 }
6917 }
6918 /* We only print out user settable breakpoints unless the
6919 allflag is set. */
6920 if (allflag || user_breakpoint_p (b))
6921 print_one_breakpoint (b, &last_loc, allflag);
6922 }
6923
6924 do_cleanups (bkpttbl_chain);
6925
6926 if (nr_printable_breakpoints == 0)
6927 {
6928 /* If there's a filter, let the caller decide how to report
6929 empty list. */
6930 if (!filter)
6931 {
6932 if (args == NULL || *args == '\0')
6933 uiout->message ("No breakpoints or watchpoints.\n");
6934 else
6935 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6936 args);
6937 }
6938 }
6939 else
6940 {
6941 if (last_loc && !server_command)
6942 set_next_address (last_loc->gdbarch, last_loc->address);
6943 }
6944
6945 /* FIXME? Should this be moved up so that it is only called when
6946 there have been breakpoints? */
6947 annotate_breakpoints_table_end ();
6948
6949 return nr_printable_breakpoints;
6950 }
6951
6952 /* Display the value of default-collect in a way that is generally
6953 compatible with the breakpoint list. */
6954
6955 static void
6956 default_collect_info (void)
6957 {
6958 struct ui_out *uiout = current_uiout;
6959
6960 /* If it has no value (which is frequently the case), say nothing; a
6961 message like "No default-collect." gets in user's face when it's
6962 not wanted. */
6963 if (!*default_collect)
6964 return;
6965
6966 /* The following phrase lines up nicely with per-tracepoint collect
6967 actions. */
6968 uiout->text ("default collect ");
6969 uiout->field_string ("default-collect", default_collect);
6970 uiout->text (" \n");
6971 }
6972
6973 static void
6974 breakpoints_info (char *args, int from_tty)
6975 {
6976 breakpoint_1 (args, 0, NULL);
6977
6978 default_collect_info ();
6979 }
6980
6981 static void
6982 watchpoints_info (char *args, int from_tty)
6983 {
6984 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6985 struct ui_out *uiout = current_uiout;
6986
6987 if (num_printed == 0)
6988 {
6989 if (args == NULL || *args == '\0')
6990 uiout->message ("No watchpoints.\n");
6991 else
6992 uiout->message ("No watchpoint matching '%s'.\n", args);
6993 }
6994 }
6995
6996 static void
6997 maintenance_info_breakpoints (char *args, int from_tty)
6998 {
6999 breakpoint_1 (args, 1, NULL);
7000
7001 default_collect_info ();
7002 }
7003
7004 static int
7005 breakpoint_has_pc (struct breakpoint *b,
7006 struct program_space *pspace,
7007 CORE_ADDR pc, struct obj_section *section)
7008 {
7009 struct bp_location *bl = b->loc;
7010
7011 for (; bl; bl = bl->next)
7012 {
7013 if (bl->pspace == pspace
7014 && bl->address == pc
7015 && (!overlay_debugging || bl->section == section))
7016 return 1;
7017 }
7018 return 0;
7019 }
7020
7021 /* Print a message describing any user-breakpoints set at PC. This
7022 concerns with logical breakpoints, so we match program spaces, not
7023 address spaces. */
7024
7025 static void
7026 describe_other_breakpoints (struct gdbarch *gdbarch,
7027 struct program_space *pspace, CORE_ADDR pc,
7028 struct obj_section *section, int thread)
7029 {
7030 int others = 0;
7031 struct breakpoint *b;
7032
7033 ALL_BREAKPOINTS (b)
7034 others += (user_breakpoint_p (b)
7035 && breakpoint_has_pc (b, pspace, pc, section));
7036 if (others > 0)
7037 {
7038 if (others == 1)
7039 printf_filtered (_("Note: breakpoint "));
7040 else /* if (others == ???) */
7041 printf_filtered (_("Note: breakpoints "));
7042 ALL_BREAKPOINTS (b)
7043 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7044 {
7045 others--;
7046 printf_filtered ("%d", b->number);
7047 if (b->thread == -1 && thread != -1)
7048 printf_filtered (" (all threads)");
7049 else if (b->thread != -1)
7050 printf_filtered (" (thread %d)", b->thread);
7051 printf_filtered ("%s%s ",
7052 ((b->enable_state == bp_disabled
7053 || b->enable_state == bp_call_disabled)
7054 ? " (disabled)"
7055 : ""),
7056 (others > 1) ? ","
7057 : ((others == 1) ? " and" : ""));
7058 }
7059 printf_filtered (_("also set at pc "));
7060 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7061 printf_filtered (".\n");
7062 }
7063 }
7064 \f
7065
7066 /* Return true iff it is meaningful to use the address member of
7067 BPT locations. For some breakpoint types, the locations' address members
7068 are irrelevant and it makes no sense to attempt to compare them to other
7069 addresses (or use them for any other purpose either).
7070
7071 More specifically, each of the following breakpoint types will
7072 always have a zero valued location address and we don't want to mark
7073 breakpoints of any of these types to be a duplicate of an actual
7074 breakpoint location at address zero:
7075
7076 bp_watchpoint
7077 bp_catchpoint
7078
7079 */
7080
7081 static int
7082 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7083 {
7084 enum bptype type = bpt->type;
7085
7086 return (type != bp_watchpoint && type != bp_catchpoint);
7087 }
7088
7089 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7090 true if LOC1 and LOC2 represent the same watchpoint location. */
7091
7092 static int
7093 watchpoint_locations_match (struct bp_location *loc1,
7094 struct bp_location *loc2)
7095 {
7096 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7097 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7098
7099 /* Both of them must exist. */
7100 gdb_assert (w1 != NULL);
7101 gdb_assert (w2 != NULL);
7102
7103 /* If the target can evaluate the condition expression in hardware,
7104 then we we need to insert both watchpoints even if they are at
7105 the same place. Otherwise the watchpoint will only trigger when
7106 the condition of whichever watchpoint was inserted evaluates to
7107 true, not giving a chance for GDB to check the condition of the
7108 other watchpoint. */
7109 if ((w1->cond_exp
7110 && target_can_accel_watchpoint_condition (loc1->address,
7111 loc1->length,
7112 loc1->watchpoint_type,
7113 w1->cond_exp.get ()))
7114 || (w2->cond_exp
7115 && target_can_accel_watchpoint_condition (loc2->address,
7116 loc2->length,
7117 loc2->watchpoint_type,
7118 w2->cond_exp.get ())))
7119 return 0;
7120
7121 /* Note that this checks the owner's type, not the location's. In
7122 case the target does not support read watchpoints, but does
7123 support access watchpoints, we'll have bp_read_watchpoint
7124 watchpoints with hw_access locations. Those should be considered
7125 duplicates of hw_read locations. The hw_read locations will
7126 become hw_access locations later. */
7127 return (loc1->owner->type == loc2->owner->type
7128 && loc1->pspace->aspace == loc2->pspace->aspace
7129 && loc1->address == loc2->address
7130 && loc1->length == loc2->length);
7131 }
7132
7133 /* See breakpoint.h. */
7134
7135 int
7136 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7137 struct address_space *aspace2, CORE_ADDR addr2)
7138 {
7139 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7140 || aspace1 == aspace2)
7141 && addr1 == addr2);
7142 }
7143
7144 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7145 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7146 matches ASPACE2. On targets that have global breakpoints, the address
7147 space doesn't really matter. */
7148
7149 static int
7150 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7151 int len1, struct address_space *aspace2,
7152 CORE_ADDR addr2)
7153 {
7154 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7155 || aspace1 == aspace2)
7156 && addr2 >= addr1 && addr2 < addr1 + len1);
7157 }
7158
7159 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7160 a ranged breakpoint. In most targets, a match happens only if ASPACE
7161 matches the breakpoint's address space. On targets that have global
7162 breakpoints, the address space doesn't really matter. */
7163
7164 static int
7165 breakpoint_location_address_match (struct bp_location *bl,
7166 struct address_space *aspace,
7167 CORE_ADDR addr)
7168 {
7169 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7170 aspace, addr)
7171 || (bl->length
7172 && breakpoint_address_match_range (bl->pspace->aspace,
7173 bl->address, bl->length,
7174 aspace, addr)));
7175 }
7176
7177 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7178 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7179 match happens only if ASPACE matches the breakpoint's address
7180 space. On targets that have global breakpoints, the address space
7181 doesn't really matter. */
7182
7183 static int
7184 breakpoint_location_address_range_overlap (struct bp_location *bl,
7185 struct address_space *aspace,
7186 CORE_ADDR addr, int len)
7187 {
7188 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7189 || bl->pspace->aspace == aspace)
7190 {
7191 int bl_len = bl->length != 0 ? bl->length : 1;
7192
7193 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7194 return 1;
7195 }
7196 return 0;
7197 }
7198
7199 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7200 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7201 true, otherwise returns false. */
7202
7203 static int
7204 tracepoint_locations_match (struct bp_location *loc1,
7205 struct bp_location *loc2)
7206 {
7207 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7208 /* Since tracepoint locations are never duplicated with others', tracepoint
7209 locations at the same address of different tracepoints are regarded as
7210 different locations. */
7211 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7212 else
7213 return 0;
7214 }
7215
7216 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7217 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7218 represent the same location. */
7219
7220 static int
7221 breakpoint_locations_match (struct bp_location *loc1,
7222 struct bp_location *loc2)
7223 {
7224 int hw_point1, hw_point2;
7225
7226 /* Both of them must not be in moribund_locations. */
7227 gdb_assert (loc1->owner != NULL);
7228 gdb_assert (loc2->owner != NULL);
7229
7230 hw_point1 = is_hardware_watchpoint (loc1->owner);
7231 hw_point2 = is_hardware_watchpoint (loc2->owner);
7232
7233 if (hw_point1 != hw_point2)
7234 return 0;
7235 else if (hw_point1)
7236 return watchpoint_locations_match (loc1, loc2);
7237 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7238 return tracepoint_locations_match (loc1, loc2);
7239 else
7240 /* We compare bp_location.length in order to cover ranged breakpoints. */
7241 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7242 loc2->pspace->aspace, loc2->address)
7243 && loc1->length == loc2->length);
7244 }
7245
7246 static void
7247 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7248 int bnum, int have_bnum)
7249 {
7250 /* The longest string possibly returned by hex_string_custom
7251 is 50 chars. These must be at least that big for safety. */
7252 char astr1[64];
7253 char astr2[64];
7254
7255 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7256 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7257 if (have_bnum)
7258 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7259 bnum, astr1, astr2);
7260 else
7261 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7262 }
7263
7264 /* Adjust a breakpoint's address to account for architectural
7265 constraints on breakpoint placement. Return the adjusted address.
7266 Note: Very few targets require this kind of adjustment. For most
7267 targets, this function is simply the identity function. */
7268
7269 static CORE_ADDR
7270 adjust_breakpoint_address (struct gdbarch *gdbarch,
7271 CORE_ADDR bpaddr, enum bptype bptype)
7272 {
7273 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7274 {
7275 /* Very few targets need any kind of breakpoint adjustment. */
7276 return bpaddr;
7277 }
7278 else if (bptype == bp_watchpoint
7279 || bptype == bp_hardware_watchpoint
7280 || bptype == bp_read_watchpoint
7281 || bptype == bp_access_watchpoint
7282 || bptype == bp_catchpoint)
7283 {
7284 /* Watchpoints and the various bp_catch_* eventpoints should not
7285 have their addresses modified. */
7286 return bpaddr;
7287 }
7288 else if (bptype == bp_single_step)
7289 {
7290 /* Single-step breakpoints should not have their addresses
7291 modified. If there's any architectural constrain that
7292 applies to this address, then it should have already been
7293 taken into account when the breakpoint was created in the
7294 first place. If we didn't do this, stepping through e.g.,
7295 Thumb-2 IT blocks would break. */
7296 return bpaddr;
7297 }
7298 else
7299 {
7300 CORE_ADDR adjusted_bpaddr;
7301
7302 /* Some targets have architectural constraints on the placement
7303 of breakpoint instructions. Obtain the adjusted address. */
7304 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7305
7306 /* An adjusted breakpoint address can significantly alter
7307 a user's expectations. Print a warning if an adjustment
7308 is required. */
7309 if (adjusted_bpaddr != bpaddr)
7310 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7311
7312 return adjusted_bpaddr;
7313 }
7314 }
7315
7316 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7317 {
7318 bp_location *loc = this;
7319
7320 gdb_assert (ops != NULL);
7321
7322 loc->ops = ops;
7323 loc->owner = owner;
7324 loc->cond_bytecode = NULL;
7325 loc->shlib_disabled = 0;
7326 loc->enabled = 1;
7327
7328 switch (owner->type)
7329 {
7330 case bp_breakpoint:
7331 case bp_single_step:
7332 case bp_until:
7333 case bp_finish:
7334 case bp_longjmp:
7335 case bp_longjmp_resume:
7336 case bp_longjmp_call_dummy:
7337 case bp_exception:
7338 case bp_exception_resume:
7339 case bp_step_resume:
7340 case bp_hp_step_resume:
7341 case bp_watchpoint_scope:
7342 case bp_call_dummy:
7343 case bp_std_terminate:
7344 case bp_shlib_event:
7345 case bp_thread_event:
7346 case bp_overlay_event:
7347 case bp_jit_event:
7348 case bp_longjmp_master:
7349 case bp_std_terminate_master:
7350 case bp_exception_master:
7351 case bp_gnu_ifunc_resolver:
7352 case bp_gnu_ifunc_resolver_return:
7353 case bp_dprintf:
7354 loc->loc_type = bp_loc_software_breakpoint;
7355 mark_breakpoint_location_modified (loc);
7356 break;
7357 case bp_hardware_breakpoint:
7358 loc->loc_type = bp_loc_hardware_breakpoint;
7359 mark_breakpoint_location_modified (loc);
7360 break;
7361 case bp_hardware_watchpoint:
7362 case bp_read_watchpoint:
7363 case bp_access_watchpoint:
7364 loc->loc_type = bp_loc_hardware_watchpoint;
7365 break;
7366 case bp_watchpoint:
7367 case bp_catchpoint:
7368 case bp_tracepoint:
7369 case bp_fast_tracepoint:
7370 case bp_static_tracepoint:
7371 loc->loc_type = bp_loc_other;
7372 break;
7373 default:
7374 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7375 }
7376
7377 loc->refc = 1;
7378 }
7379
7380 /* Allocate a struct bp_location. */
7381
7382 static struct bp_location *
7383 allocate_bp_location (struct breakpoint *bpt)
7384 {
7385 return bpt->ops->allocate_location (bpt);
7386 }
7387
7388 static void
7389 free_bp_location (struct bp_location *loc)
7390 {
7391 loc->ops->dtor (loc);
7392 delete loc;
7393 }
7394
7395 /* Increment reference count. */
7396
7397 static void
7398 incref_bp_location (struct bp_location *bl)
7399 {
7400 ++bl->refc;
7401 }
7402
7403 /* Decrement reference count. If the reference count reaches 0,
7404 destroy the bp_location. Sets *BLP to NULL. */
7405
7406 static void
7407 decref_bp_location (struct bp_location **blp)
7408 {
7409 gdb_assert ((*blp)->refc > 0);
7410
7411 if (--(*blp)->refc == 0)
7412 free_bp_location (*blp);
7413 *blp = NULL;
7414 }
7415
7416 /* Add breakpoint B at the end of the global breakpoint chain. */
7417
7418 static void
7419 add_to_breakpoint_chain (struct breakpoint *b)
7420 {
7421 struct breakpoint *b1;
7422
7423 /* Add this breakpoint to the end of the chain so that a list of
7424 breakpoints will come out in order of increasing numbers. */
7425
7426 b1 = breakpoint_chain;
7427 if (b1 == 0)
7428 breakpoint_chain = b;
7429 else
7430 {
7431 while (b1->next)
7432 b1 = b1->next;
7433 b1->next = b;
7434 }
7435 }
7436
7437 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7438
7439 static void
7440 init_raw_breakpoint_without_location (struct breakpoint *b,
7441 struct gdbarch *gdbarch,
7442 enum bptype bptype,
7443 const struct breakpoint_ops *ops)
7444 {
7445 gdb_assert (ops != NULL);
7446
7447 b->ops = ops;
7448 b->type = bptype;
7449 b->gdbarch = gdbarch;
7450 b->language = current_language->la_language;
7451 b->input_radix = input_radix;
7452 b->related_breakpoint = b;
7453 }
7454
7455 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7456 that has type BPTYPE and has no locations as yet. */
7457
7458 static struct breakpoint *
7459 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7460 enum bptype bptype,
7461 const struct breakpoint_ops *ops)
7462 {
7463 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7464
7465 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7466 add_to_breakpoint_chain (b.get ());
7467
7468 return b.release ();
7469 }
7470
7471 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7472 resolutions should be made as the user specified the location explicitly
7473 enough. */
7474
7475 static void
7476 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7477 {
7478 gdb_assert (loc->owner != NULL);
7479
7480 if (loc->owner->type == bp_breakpoint
7481 || loc->owner->type == bp_hardware_breakpoint
7482 || is_tracepoint (loc->owner))
7483 {
7484 int is_gnu_ifunc;
7485 const char *function_name;
7486 CORE_ADDR func_addr;
7487
7488 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7489 &func_addr, NULL, &is_gnu_ifunc);
7490
7491 if (is_gnu_ifunc && !explicit_loc)
7492 {
7493 struct breakpoint *b = loc->owner;
7494
7495 gdb_assert (loc->pspace == current_program_space);
7496 if (gnu_ifunc_resolve_name (function_name,
7497 &loc->requested_address))
7498 {
7499 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7500 loc->address = adjust_breakpoint_address (loc->gdbarch,
7501 loc->requested_address,
7502 b->type);
7503 }
7504 else if (b->type == bp_breakpoint && b->loc == loc
7505 && loc->next == NULL && b->related_breakpoint == b)
7506 {
7507 /* Create only the whole new breakpoint of this type but do not
7508 mess more complicated breakpoints with multiple locations. */
7509 b->type = bp_gnu_ifunc_resolver;
7510 /* Remember the resolver's address for use by the return
7511 breakpoint. */
7512 loc->related_address = func_addr;
7513 }
7514 }
7515
7516 if (function_name)
7517 loc->function_name = xstrdup (function_name);
7518 }
7519 }
7520
7521 /* Attempt to determine architecture of location identified by SAL. */
7522 struct gdbarch *
7523 get_sal_arch (struct symtab_and_line sal)
7524 {
7525 if (sal.section)
7526 return get_objfile_arch (sal.section->objfile);
7527 if (sal.symtab)
7528 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7529
7530 return NULL;
7531 }
7532
7533 /* Low level routine for partially initializing a breakpoint of type
7534 BPTYPE. The newly created breakpoint's address, section, source
7535 file name, and line number are provided by SAL.
7536
7537 It is expected that the caller will complete the initialization of
7538 the newly created breakpoint struct as well as output any status
7539 information regarding the creation of a new breakpoint. */
7540
7541 static void
7542 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7543 struct symtab_and_line sal, enum bptype bptype,
7544 const struct breakpoint_ops *ops)
7545 {
7546 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7547
7548 add_location_to_breakpoint (b, &sal);
7549
7550 if (bptype != bp_catchpoint)
7551 gdb_assert (sal.pspace != NULL);
7552
7553 /* Store the program space that was used to set the breakpoint,
7554 except for ordinary breakpoints, which are independent of the
7555 program space. */
7556 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7557 b->pspace = sal.pspace;
7558 }
7559
7560 /* set_raw_breakpoint is a low level routine for allocating and
7561 partially initializing a breakpoint of type BPTYPE. The newly
7562 created breakpoint's address, section, source file name, and line
7563 number are provided by SAL. The newly created and partially
7564 initialized breakpoint is added to the breakpoint chain and
7565 is also returned as the value of this function.
7566
7567 It is expected that the caller will complete the initialization of
7568 the newly created breakpoint struct as well as output any status
7569 information regarding the creation of a new breakpoint. In
7570 particular, set_raw_breakpoint does NOT set the breakpoint
7571 number! Care should be taken to not allow an error to occur
7572 prior to completing the initialization of the breakpoint. If this
7573 should happen, a bogus breakpoint will be left on the chain. */
7574
7575 struct breakpoint *
7576 set_raw_breakpoint (struct gdbarch *gdbarch,
7577 struct symtab_and_line sal, enum bptype bptype,
7578 const struct breakpoint_ops *ops)
7579 {
7580 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7581
7582 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7583 add_to_breakpoint_chain (b.get ());
7584
7585 return b.release ();
7586 }
7587
7588 /* Call this routine when stepping and nexting to enable a breakpoint
7589 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7590 initiated the operation. */
7591
7592 void
7593 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7594 {
7595 struct breakpoint *b, *b_tmp;
7596 int thread = tp->global_num;
7597
7598 /* To avoid having to rescan all objfile symbols at every step,
7599 we maintain a list of continually-inserted but always disabled
7600 longjmp "master" breakpoints. Here, we simply create momentary
7601 clones of those and enable them for the requested thread. */
7602 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7603 if (b->pspace == current_program_space
7604 && (b->type == bp_longjmp_master
7605 || b->type == bp_exception_master))
7606 {
7607 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7608 struct breakpoint *clone;
7609
7610 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7611 after their removal. */
7612 clone = momentary_breakpoint_from_master (b, type,
7613 &momentary_breakpoint_ops, 1);
7614 clone->thread = thread;
7615 }
7616
7617 tp->initiating_frame = frame;
7618 }
7619
7620 /* Delete all longjmp breakpoints from THREAD. */
7621 void
7622 delete_longjmp_breakpoint (int thread)
7623 {
7624 struct breakpoint *b, *b_tmp;
7625
7626 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7627 if (b->type == bp_longjmp || b->type == bp_exception)
7628 {
7629 if (b->thread == thread)
7630 delete_breakpoint (b);
7631 }
7632 }
7633
7634 void
7635 delete_longjmp_breakpoint_at_next_stop (int thread)
7636 {
7637 struct breakpoint *b, *b_tmp;
7638
7639 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7640 if (b->type == bp_longjmp || b->type == bp_exception)
7641 {
7642 if (b->thread == thread)
7643 b->disposition = disp_del_at_next_stop;
7644 }
7645 }
7646
7647 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7648 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7649 pointer to any of them. Return NULL if this system cannot place longjmp
7650 breakpoints. */
7651
7652 struct breakpoint *
7653 set_longjmp_breakpoint_for_call_dummy (void)
7654 {
7655 struct breakpoint *b, *retval = NULL;
7656
7657 ALL_BREAKPOINTS (b)
7658 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7659 {
7660 struct breakpoint *new_b;
7661
7662 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7663 &momentary_breakpoint_ops,
7664 1);
7665 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7666
7667 /* Link NEW_B into the chain of RETVAL breakpoints. */
7668
7669 gdb_assert (new_b->related_breakpoint == new_b);
7670 if (retval == NULL)
7671 retval = new_b;
7672 new_b->related_breakpoint = retval;
7673 while (retval->related_breakpoint != new_b->related_breakpoint)
7674 retval = retval->related_breakpoint;
7675 retval->related_breakpoint = new_b;
7676 }
7677
7678 return retval;
7679 }
7680
7681 /* Verify all existing dummy frames and their associated breakpoints for
7682 TP. Remove those which can no longer be found in the current frame
7683 stack.
7684
7685 You should call this function only at places where it is safe to currently
7686 unwind the whole stack. Failed stack unwind would discard live dummy
7687 frames. */
7688
7689 void
7690 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7691 {
7692 struct breakpoint *b, *b_tmp;
7693
7694 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7695 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7696 {
7697 struct breakpoint *dummy_b = b->related_breakpoint;
7698
7699 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7700 dummy_b = dummy_b->related_breakpoint;
7701 if (dummy_b->type != bp_call_dummy
7702 || frame_find_by_id (dummy_b->frame_id) != NULL)
7703 continue;
7704
7705 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7706
7707 while (b->related_breakpoint != b)
7708 {
7709 if (b_tmp == b->related_breakpoint)
7710 b_tmp = b->related_breakpoint->next;
7711 delete_breakpoint (b->related_breakpoint);
7712 }
7713 delete_breakpoint (b);
7714 }
7715 }
7716
7717 void
7718 enable_overlay_breakpoints (void)
7719 {
7720 struct breakpoint *b;
7721
7722 ALL_BREAKPOINTS (b)
7723 if (b->type == bp_overlay_event)
7724 {
7725 b->enable_state = bp_enabled;
7726 update_global_location_list (UGLL_MAY_INSERT);
7727 overlay_events_enabled = 1;
7728 }
7729 }
7730
7731 void
7732 disable_overlay_breakpoints (void)
7733 {
7734 struct breakpoint *b;
7735
7736 ALL_BREAKPOINTS (b)
7737 if (b->type == bp_overlay_event)
7738 {
7739 b->enable_state = bp_disabled;
7740 update_global_location_list (UGLL_DONT_INSERT);
7741 overlay_events_enabled = 0;
7742 }
7743 }
7744
7745 /* Set an active std::terminate breakpoint for each std::terminate
7746 master breakpoint. */
7747 void
7748 set_std_terminate_breakpoint (void)
7749 {
7750 struct breakpoint *b, *b_tmp;
7751
7752 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7753 if (b->pspace == current_program_space
7754 && b->type == bp_std_terminate_master)
7755 {
7756 momentary_breakpoint_from_master (b, bp_std_terminate,
7757 &momentary_breakpoint_ops, 1);
7758 }
7759 }
7760
7761 /* Delete all the std::terminate breakpoints. */
7762 void
7763 delete_std_terminate_breakpoint (void)
7764 {
7765 struct breakpoint *b, *b_tmp;
7766
7767 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7768 if (b->type == bp_std_terminate)
7769 delete_breakpoint (b);
7770 }
7771
7772 struct breakpoint *
7773 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7774 {
7775 struct breakpoint *b;
7776
7777 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7778 &internal_breakpoint_ops);
7779
7780 b->enable_state = bp_enabled;
7781 /* location has to be used or breakpoint_re_set will delete me. */
7782 b->location = new_address_location (b->loc->address, NULL, 0);
7783
7784 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7785
7786 return b;
7787 }
7788
7789 struct lang_and_radix
7790 {
7791 enum language lang;
7792 int radix;
7793 };
7794
7795 /* Create a breakpoint for JIT code registration and unregistration. */
7796
7797 struct breakpoint *
7798 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7799 {
7800 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7801 &internal_breakpoint_ops);
7802 }
7803
7804 /* Remove JIT code registration and unregistration breakpoint(s). */
7805
7806 void
7807 remove_jit_event_breakpoints (void)
7808 {
7809 struct breakpoint *b, *b_tmp;
7810
7811 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7812 if (b->type == bp_jit_event
7813 && b->loc->pspace == current_program_space)
7814 delete_breakpoint (b);
7815 }
7816
7817 void
7818 remove_solib_event_breakpoints (void)
7819 {
7820 struct breakpoint *b, *b_tmp;
7821
7822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7823 if (b->type == bp_shlib_event
7824 && b->loc->pspace == current_program_space)
7825 delete_breakpoint (b);
7826 }
7827
7828 /* See breakpoint.h. */
7829
7830 void
7831 remove_solib_event_breakpoints_at_next_stop (void)
7832 {
7833 struct breakpoint *b, *b_tmp;
7834
7835 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7836 if (b->type == bp_shlib_event
7837 && b->loc->pspace == current_program_space)
7838 b->disposition = disp_del_at_next_stop;
7839 }
7840
7841 /* Helper for create_solib_event_breakpoint /
7842 create_and_insert_solib_event_breakpoint. Allows specifying which
7843 INSERT_MODE to pass through to update_global_location_list. */
7844
7845 static struct breakpoint *
7846 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7847 enum ugll_insert_mode insert_mode)
7848 {
7849 struct breakpoint *b;
7850
7851 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7852 &internal_breakpoint_ops);
7853 update_global_location_list_nothrow (insert_mode);
7854 return b;
7855 }
7856
7857 struct breakpoint *
7858 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7859 {
7860 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7861 }
7862
7863 /* See breakpoint.h. */
7864
7865 struct breakpoint *
7866 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7867 {
7868 struct breakpoint *b;
7869
7870 /* Explicitly tell update_global_location_list to insert
7871 locations. */
7872 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7873 if (!b->loc->inserted)
7874 {
7875 delete_breakpoint (b);
7876 return NULL;
7877 }
7878 return b;
7879 }
7880
7881 /* Disable any breakpoints that are on code in shared libraries. Only
7882 apply to enabled breakpoints, disabled ones can just stay disabled. */
7883
7884 void
7885 disable_breakpoints_in_shlibs (void)
7886 {
7887 struct bp_location *loc, **locp_tmp;
7888
7889 ALL_BP_LOCATIONS (loc, locp_tmp)
7890 {
7891 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7892 struct breakpoint *b = loc->owner;
7893
7894 /* We apply the check to all breakpoints, including disabled for
7895 those with loc->duplicate set. This is so that when breakpoint
7896 becomes enabled, or the duplicate is removed, gdb will try to
7897 insert all breakpoints. If we don't set shlib_disabled here,
7898 we'll try to insert those breakpoints and fail. */
7899 if (((b->type == bp_breakpoint)
7900 || (b->type == bp_jit_event)
7901 || (b->type == bp_hardware_breakpoint)
7902 || (is_tracepoint (b)))
7903 && loc->pspace == current_program_space
7904 && !loc->shlib_disabled
7905 && solib_name_from_address (loc->pspace, loc->address)
7906 )
7907 {
7908 loc->shlib_disabled = 1;
7909 }
7910 }
7911 }
7912
7913 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7914 notification of unloaded_shlib. Only apply to enabled breakpoints,
7915 disabled ones can just stay disabled. */
7916
7917 static void
7918 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7919 {
7920 struct bp_location *loc, **locp_tmp;
7921 int disabled_shlib_breaks = 0;
7922
7923 ALL_BP_LOCATIONS (loc, locp_tmp)
7924 {
7925 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7926 struct breakpoint *b = loc->owner;
7927
7928 if (solib->pspace == loc->pspace
7929 && !loc->shlib_disabled
7930 && (((b->type == bp_breakpoint
7931 || b->type == bp_jit_event
7932 || b->type == bp_hardware_breakpoint)
7933 && (loc->loc_type == bp_loc_hardware_breakpoint
7934 || loc->loc_type == bp_loc_software_breakpoint))
7935 || is_tracepoint (b))
7936 && solib_contains_address_p (solib, loc->address))
7937 {
7938 loc->shlib_disabled = 1;
7939 /* At this point, we cannot rely on remove_breakpoint
7940 succeeding so we must mark the breakpoint as not inserted
7941 to prevent future errors occurring in remove_breakpoints. */
7942 loc->inserted = 0;
7943
7944 /* This may cause duplicate notifications for the same breakpoint. */
7945 observer_notify_breakpoint_modified (b);
7946
7947 if (!disabled_shlib_breaks)
7948 {
7949 target_terminal_ours_for_output ();
7950 warning (_("Temporarily disabling breakpoints "
7951 "for unloaded shared library \"%s\""),
7952 solib->so_name);
7953 }
7954 disabled_shlib_breaks = 1;
7955 }
7956 }
7957 }
7958
7959 /* Disable any breakpoints and tracepoints in OBJFILE upon
7960 notification of free_objfile. Only apply to enabled breakpoints,
7961 disabled ones can just stay disabled. */
7962
7963 static void
7964 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7965 {
7966 struct breakpoint *b;
7967
7968 if (objfile == NULL)
7969 return;
7970
7971 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7972 managed by the user with add-symbol-file/remove-symbol-file.
7973 Similarly to how breakpoints in shared libraries are handled in
7974 response to "nosharedlibrary", mark breakpoints in such modules
7975 shlib_disabled so they end up uninserted on the next global
7976 location list update. Shared libraries not loaded by the user
7977 aren't handled here -- they're already handled in
7978 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7979 solib_unloaded observer. We skip objfiles that are not
7980 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7981 main objfile). */
7982 if ((objfile->flags & OBJF_SHARED) == 0
7983 || (objfile->flags & OBJF_USERLOADED) == 0)
7984 return;
7985
7986 ALL_BREAKPOINTS (b)
7987 {
7988 struct bp_location *loc;
7989 int bp_modified = 0;
7990
7991 if (!is_breakpoint (b) && !is_tracepoint (b))
7992 continue;
7993
7994 for (loc = b->loc; loc != NULL; loc = loc->next)
7995 {
7996 CORE_ADDR loc_addr = loc->address;
7997
7998 if (loc->loc_type != bp_loc_hardware_breakpoint
7999 && loc->loc_type != bp_loc_software_breakpoint)
8000 continue;
8001
8002 if (loc->shlib_disabled != 0)
8003 continue;
8004
8005 if (objfile->pspace != loc->pspace)
8006 continue;
8007
8008 if (loc->loc_type != bp_loc_hardware_breakpoint
8009 && loc->loc_type != bp_loc_software_breakpoint)
8010 continue;
8011
8012 if (is_addr_in_objfile (loc_addr, objfile))
8013 {
8014 loc->shlib_disabled = 1;
8015 /* At this point, we don't know whether the object was
8016 unmapped from the inferior or not, so leave the
8017 inserted flag alone. We'll handle failure to
8018 uninsert quietly, in case the object was indeed
8019 unmapped. */
8020
8021 mark_breakpoint_location_modified (loc);
8022
8023 bp_modified = 1;
8024 }
8025 }
8026
8027 if (bp_modified)
8028 observer_notify_breakpoint_modified (b);
8029 }
8030 }
8031
8032 /* FORK & VFORK catchpoints. */
8033
8034 /* An instance of this type is used to represent a fork or vfork
8035 catchpoint. A breakpoint is really of this type iff its ops pointer points
8036 to CATCH_FORK_BREAKPOINT_OPS. */
8037
8038 struct fork_catchpoint : public breakpoint
8039 {
8040 /* Process id of a child process whose forking triggered this
8041 catchpoint. This field is only valid immediately after this
8042 catchpoint has triggered. */
8043 ptid_t forked_inferior_pid;
8044 };
8045
8046 /* Implement the "insert" breakpoint_ops method for fork
8047 catchpoints. */
8048
8049 static int
8050 insert_catch_fork (struct bp_location *bl)
8051 {
8052 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8053 }
8054
8055 /* Implement the "remove" breakpoint_ops method for fork
8056 catchpoints. */
8057
8058 static int
8059 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8060 {
8061 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8062 }
8063
8064 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8065 catchpoints. */
8066
8067 static int
8068 breakpoint_hit_catch_fork (const struct bp_location *bl,
8069 struct address_space *aspace, CORE_ADDR bp_addr,
8070 const struct target_waitstatus *ws)
8071 {
8072 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8073
8074 if (ws->kind != TARGET_WAITKIND_FORKED)
8075 return 0;
8076
8077 c->forked_inferior_pid = ws->value.related_pid;
8078 return 1;
8079 }
8080
8081 /* Implement the "print_it" breakpoint_ops method for fork
8082 catchpoints. */
8083
8084 static enum print_stop_action
8085 print_it_catch_fork (bpstat bs)
8086 {
8087 struct ui_out *uiout = current_uiout;
8088 struct breakpoint *b = bs->breakpoint_at;
8089 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8090
8091 annotate_catchpoint (b->number);
8092 maybe_print_thread_hit_breakpoint (uiout);
8093 if (b->disposition == disp_del)
8094 uiout->text ("Temporary catchpoint ");
8095 else
8096 uiout->text ("Catchpoint ");
8097 if (uiout->is_mi_like_p ())
8098 {
8099 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8100 uiout->field_string ("disp", bpdisp_text (b->disposition));
8101 }
8102 uiout->field_int ("bkptno", b->number);
8103 uiout->text (" (forked process ");
8104 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8105 uiout->text ("), ");
8106 return PRINT_SRC_AND_LOC;
8107 }
8108
8109 /* Implement the "print_one" breakpoint_ops method for fork
8110 catchpoints. */
8111
8112 static void
8113 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8114 {
8115 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8116 struct value_print_options opts;
8117 struct ui_out *uiout = current_uiout;
8118
8119 get_user_print_options (&opts);
8120
8121 /* Field 4, the address, is omitted (which makes the columns not
8122 line up too nicely with the headers, but the effect is relatively
8123 readable). */
8124 if (opts.addressprint)
8125 uiout->field_skip ("addr");
8126 annotate_field (5);
8127 uiout->text ("fork");
8128 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8129 {
8130 uiout->text (", process ");
8131 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8132 uiout->spaces (1);
8133 }
8134
8135 if (uiout->is_mi_like_p ())
8136 uiout->field_string ("catch-type", "fork");
8137 }
8138
8139 /* Implement the "print_mention" breakpoint_ops method for fork
8140 catchpoints. */
8141
8142 static void
8143 print_mention_catch_fork (struct breakpoint *b)
8144 {
8145 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8146 }
8147
8148 /* Implement the "print_recreate" breakpoint_ops method for fork
8149 catchpoints. */
8150
8151 static void
8152 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8153 {
8154 fprintf_unfiltered (fp, "catch fork");
8155 print_recreate_thread (b, fp);
8156 }
8157
8158 /* The breakpoint_ops structure to be used in fork catchpoints. */
8159
8160 static struct breakpoint_ops catch_fork_breakpoint_ops;
8161
8162 /* Implement the "insert" breakpoint_ops method for vfork
8163 catchpoints. */
8164
8165 static int
8166 insert_catch_vfork (struct bp_location *bl)
8167 {
8168 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8169 }
8170
8171 /* Implement the "remove" breakpoint_ops method for vfork
8172 catchpoints. */
8173
8174 static int
8175 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8176 {
8177 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8178 }
8179
8180 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8181 catchpoints. */
8182
8183 static int
8184 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8185 struct address_space *aspace, CORE_ADDR bp_addr,
8186 const struct target_waitstatus *ws)
8187 {
8188 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8189
8190 if (ws->kind != TARGET_WAITKIND_VFORKED)
8191 return 0;
8192
8193 c->forked_inferior_pid = ws->value.related_pid;
8194 return 1;
8195 }
8196
8197 /* Implement the "print_it" breakpoint_ops method for vfork
8198 catchpoints. */
8199
8200 static enum print_stop_action
8201 print_it_catch_vfork (bpstat bs)
8202 {
8203 struct ui_out *uiout = current_uiout;
8204 struct breakpoint *b = bs->breakpoint_at;
8205 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8206
8207 annotate_catchpoint (b->number);
8208 maybe_print_thread_hit_breakpoint (uiout);
8209 if (b->disposition == disp_del)
8210 uiout->text ("Temporary catchpoint ");
8211 else
8212 uiout->text ("Catchpoint ");
8213 if (uiout->is_mi_like_p ())
8214 {
8215 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8216 uiout->field_string ("disp", bpdisp_text (b->disposition));
8217 }
8218 uiout->field_int ("bkptno", b->number);
8219 uiout->text (" (vforked process ");
8220 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8221 uiout->text ("), ");
8222 return PRINT_SRC_AND_LOC;
8223 }
8224
8225 /* Implement the "print_one" breakpoint_ops method for vfork
8226 catchpoints. */
8227
8228 static void
8229 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8230 {
8231 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8232 struct value_print_options opts;
8233 struct ui_out *uiout = current_uiout;
8234
8235 get_user_print_options (&opts);
8236 /* Field 4, the address, is omitted (which makes the columns not
8237 line up too nicely with the headers, but the effect is relatively
8238 readable). */
8239 if (opts.addressprint)
8240 uiout->field_skip ("addr");
8241 annotate_field (5);
8242 uiout->text ("vfork");
8243 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8244 {
8245 uiout->text (", process ");
8246 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8247 uiout->spaces (1);
8248 }
8249
8250 if (uiout->is_mi_like_p ())
8251 uiout->field_string ("catch-type", "vfork");
8252 }
8253
8254 /* Implement the "print_mention" breakpoint_ops method for vfork
8255 catchpoints. */
8256
8257 static void
8258 print_mention_catch_vfork (struct breakpoint *b)
8259 {
8260 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8261 }
8262
8263 /* Implement the "print_recreate" breakpoint_ops method for vfork
8264 catchpoints. */
8265
8266 static void
8267 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8268 {
8269 fprintf_unfiltered (fp, "catch vfork");
8270 print_recreate_thread (b, fp);
8271 }
8272
8273 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8274
8275 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8276
8277 /* An instance of this type is used to represent an solib catchpoint.
8278 A breakpoint is really of this type iff its ops pointer points to
8279 CATCH_SOLIB_BREAKPOINT_OPS. */
8280
8281 struct solib_catchpoint : public breakpoint
8282 {
8283 ~solib_catchpoint () override;
8284
8285 /* True for "catch load", false for "catch unload". */
8286 unsigned char is_load;
8287
8288 /* Regular expression to match, if any. COMPILED is only valid when
8289 REGEX is non-NULL. */
8290 char *regex;
8291 std::unique_ptr<compiled_regex> compiled;
8292 };
8293
8294 solib_catchpoint::~solib_catchpoint ()
8295 {
8296 xfree (this->regex);
8297 }
8298
8299 static int
8300 insert_catch_solib (struct bp_location *ignore)
8301 {
8302 return 0;
8303 }
8304
8305 static int
8306 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8307 {
8308 return 0;
8309 }
8310
8311 static int
8312 breakpoint_hit_catch_solib (const struct bp_location *bl,
8313 struct address_space *aspace,
8314 CORE_ADDR bp_addr,
8315 const struct target_waitstatus *ws)
8316 {
8317 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8318 struct breakpoint *other;
8319
8320 if (ws->kind == TARGET_WAITKIND_LOADED)
8321 return 1;
8322
8323 ALL_BREAKPOINTS (other)
8324 {
8325 struct bp_location *other_bl;
8326
8327 if (other == bl->owner)
8328 continue;
8329
8330 if (other->type != bp_shlib_event)
8331 continue;
8332
8333 if (self->pspace != NULL && other->pspace != self->pspace)
8334 continue;
8335
8336 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8337 {
8338 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8339 return 1;
8340 }
8341 }
8342
8343 return 0;
8344 }
8345
8346 static void
8347 check_status_catch_solib (struct bpstats *bs)
8348 {
8349 struct solib_catchpoint *self
8350 = (struct solib_catchpoint *) bs->breakpoint_at;
8351 int ix;
8352
8353 if (self->is_load)
8354 {
8355 struct so_list *iter;
8356
8357 for (ix = 0;
8358 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8359 ix, iter);
8360 ++ix)
8361 {
8362 if (!self->regex
8363 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8364 return;
8365 }
8366 }
8367 else
8368 {
8369 char *iter;
8370
8371 for (ix = 0;
8372 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8373 ix, iter);
8374 ++ix)
8375 {
8376 if (!self->regex
8377 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8378 return;
8379 }
8380 }
8381
8382 bs->stop = 0;
8383 bs->print_it = print_it_noop;
8384 }
8385
8386 static enum print_stop_action
8387 print_it_catch_solib (bpstat bs)
8388 {
8389 struct breakpoint *b = bs->breakpoint_at;
8390 struct ui_out *uiout = current_uiout;
8391
8392 annotate_catchpoint (b->number);
8393 maybe_print_thread_hit_breakpoint (uiout);
8394 if (b->disposition == disp_del)
8395 uiout->text ("Temporary catchpoint ");
8396 else
8397 uiout->text ("Catchpoint ");
8398 uiout->field_int ("bkptno", b->number);
8399 uiout->text ("\n");
8400 if (uiout->is_mi_like_p ())
8401 uiout->field_string ("disp", bpdisp_text (b->disposition));
8402 print_solib_event (1);
8403 return PRINT_SRC_AND_LOC;
8404 }
8405
8406 static void
8407 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8408 {
8409 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8410 struct value_print_options opts;
8411 struct ui_out *uiout = current_uiout;
8412 char *msg;
8413
8414 get_user_print_options (&opts);
8415 /* Field 4, the address, is omitted (which makes the columns not
8416 line up too nicely with the headers, but the effect is relatively
8417 readable). */
8418 if (opts.addressprint)
8419 {
8420 annotate_field (4);
8421 uiout->field_skip ("addr");
8422 }
8423
8424 annotate_field (5);
8425 if (self->is_load)
8426 {
8427 if (self->regex)
8428 msg = xstrprintf (_("load of library matching %s"), self->regex);
8429 else
8430 msg = xstrdup (_("load of library"));
8431 }
8432 else
8433 {
8434 if (self->regex)
8435 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8436 else
8437 msg = xstrdup (_("unload of library"));
8438 }
8439 uiout->field_string ("what", msg);
8440 xfree (msg);
8441
8442 if (uiout->is_mi_like_p ())
8443 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8444 }
8445
8446 static void
8447 print_mention_catch_solib (struct breakpoint *b)
8448 {
8449 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8450
8451 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8452 self->is_load ? "load" : "unload");
8453 }
8454
8455 static void
8456 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8457 {
8458 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8459
8460 fprintf_unfiltered (fp, "%s %s",
8461 b->disposition == disp_del ? "tcatch" : "catch",
8462 self->is_load ? "load" : "unload");
8463 if (self->regex)
8464 fprintf_unfiltered (fp, " %s", self->regex);
8465 fprintf_unfiltered (fp, "\n");
8466 }
8467
8468 static struct breakpoint_ops catch_solib_breakpoint_ops;
8469
8470 /* Shared helper function (MI and CLI) for creating and installing
8471 a shared object event catchpoint. If IS_LOAD is non-zero then
8472 the events to be caught are load events, otherwise they are
8473 unload events. If IS_TEMP is non-zero the catchpoint is a
8474 temporary one. If ENABLED is non-zero the catchpoint is
8475 created in an enabled state. */
8476
8477 void
8478 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8479 {
8480 struct solib_catchpoint *c;
8481 struct gdbarch *gdbarch = get_current_arch ();
8482 struct cleanup *cleanup;
8483
8484 if (!arg)
8485 arg = "";
8486 arg = skip_spaces_const (arg);
8487
8488 c = new solib_catchpoint ();
8489 cleanup = make_cleanup (xfree, c);
8490
8491 if (*arg != '\0')
8492 {
8493 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8494 _("Invalid regexp")));
8495 c->regex = xstrdup (arg);
8496 }
8497
8498 c->is_load = is_load;
8499 init_catchpoint (c, gdbarch, is_temp, NULL,
8500 &catch_solib_breakpoint_ops);
8501
8502 c->enable_state = enabled ? bp_enabled : bp_disabled;
8503
8504 discard_cleanups (cleanup);
8505 install_breakpoint (0, c, 1);
8506 }
8507
8508 /* A helper function that does all the work for "catch load" and
8509 "catch unload". */
8510
8511 static void
8512 catch_load_or_unload (char *arg, int from_tty, int is_load,
8513 struct cmd_list_element *command)
8514 {
8515 int tempflag;
8516 const int enabled = 1;
8517
8518 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8519
8520 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8521 }
8522
8523 static void
8524 catch_load_command_1 (char *arg, int from_tty,
8525 struct cmd_list_element *command)
8526 {
8527 catch_load_or_unload (arg, from_tty, 1, command);
8528 }
8529
8530 static void
8531 catch_unload_command_1 (char *arg, int from_tty,
8532 struct cmd_list_element *command)
8533 {
8534 catch_load_or_unload (arg, from_tty, 0, command);
8535 }
8536
8537 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8538 is non-zero, then make the breakpoint temporary. If COND_STRING is
8539 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8540 the breakpoint_ops structure associated to the catchpoint. */
8541
8542 void
8543 init_catchpoint (struct breakpoint *b,
8544 struct gdbarch *gdbarch, int tempflag,
8545 const char *cond_string,
8546 const struct breakpoint_ops *ops)
8547 {
8548 struct symtab_and_line sal;
8549
8550 init_sal (&sal);
8551 sal.pspace = current_program_space;
8552
8553 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8554
8555 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8556 b->disposition = tempflag ? disp_del : disp_donttouch;
8557 }
8558
8559 void
8560 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8561 {
8562 add_to_breakpoint_chain (b);
8563 set_breakpoint_number (internal, b);
8564 if (is_tracepoint (b))
8565 set_tracepoint_count (breakpoint_count);
8566 if (!internal)
8567 mention (b);
8568 observer_notify_breakpoint_created (b);
8569
8570 if (update_gll)
8571 update_global_location_list (UGLL_MAY_INSERT);
8572 }
8573
8574 static void
8575 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8576 int tempflag, const char *cond_string,
8577 const struct breakpoint_ops *ops)
8578 {
8579 struct fork_catchpoint *c = new fork_catchpoint ();
8580
8581 init_catchpoint (c, gdbarch, tempflag, cond_string, ops);
8582
8583 c->forked_inferior_pid = null_ptid;
8584
8585 install_breakpoint (0, c, 1);
8586 }
8587
8588 /* Exec catchpoints. */
8589
8590 /* An instance of this type is used to represent an exec catchpoint.
8591 A breakpoint is really of this type iff its ops pointer points to
8592 CATCH_EXEC_BREAKPOINT_OPS. */
8593
8594 struct exec_catchpoint : public breakpoint
8595 {
8596 ~exec_catchpoint () override;
8597
8598 /* Filename of a program whose exec triggered this catchpoint.
8599 This field is only valid immediately after this catchpoint has
8600 triggered. */
8601 char *exec_pathname;
8602 };
8603
8604 /* Exec catchpoint destructor. */
8605
8606 exec_catchpoint::~exec_catchpoint ()
8607 {
8608 xfree (this->exec_pathname);
8609 }
8610
8611 static int
8612 insert_catch_exec (struct bp_location *bl)
8613 {
8614 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8615 }
8616
8617 static int
8618 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8619 {
8620 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8621 }
8622
8623 static int
8624 breakpoint_hit_catch_exec (const struct bp_location *bl,
8625 struct address_space *aspace, CORE_ADDR bp_addr,
8626 const struct target_waitstatus *ws)
8627 {
8628 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8629
8630 if (ws->kind != TARGET_WAITKIND_EXECD)
8631 return 0;
8632
8633 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8634 return 1;
8635 }
8636
8637 static enum print_stop_action
8638 print_it_catch_exec (bpstat bs)
8639 {
8640 struct ui_out *uiout = current_uiout;
8641 struct breakpoint *b = bs->breakpoint_at;
8642 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8643
8644 annotate_catchpoint (b->number);
8645 maybe_print_thread_hit_breakpoint (uiout);
8646 if (b->disposition == disp_del)
8647 uiout->text ("Temporary catchpoint ");
8648 else
8649 uiout->text ("Catchpoint ");
8650 if (uiout->is_mi_like_p ())
8651 {
8652 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8653 uiout->field_string ("disp", bpdisp_text (b->disposition));
8654 }
8655 uiout->field_int ("bkptno", b->number);
8656 uiout->text (" (exec'd ");
8657 uiout->field_string ("new-exec", c->exec_pathname);
8658 uiout->text ("), ");
8659
8660 return PRINT_SRC_AND_LOC;
8661 }
8662
8663 static void
8664 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8665 {
8666 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8667 struct value_print_options opts;
8668 struct ui_out *uiout = current_uiout;
8669
8670 get_user_print_options (&opts);
8671
8672 /* Field 4, the address, is omitted (which makes the columns
8673 not line up too nicely with the headers, but the effect
8674 is relatively readable). */
8675 if (opts.addressprint)
8676 uiout->field_skip ("addr");
8677 annotate_field (5);
8678 uiout->text ("exec");
8679 if (c->exec_pathname != NULL)
8680 {
8681 uiout->text (", program \"");
8682 uiout->field_string ("what", c->exec_pathname);
8683 uiout->text ("\" ");
8684 }
8685
8686 if (uiout->is_mi_like_p ())
8687 uiout->field_string ("catch-type", "exec");
8688 }
8689
8690 static void
8691 print_mention_catch_exec (struct breakpoint *b)
8692 {
8693 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8694 }
8695
8696 /* Implement the "print_recreate" breakpoint_ops method for exec
8697 catchpoints. */
8698
8699 static void
8700 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8701 {
8702 fprintf_unfiltered (fp, "catch exec");
8703 print_recreate_thread (b, fp);
8704 }
8705
8706 static struct breakpoint_ops catch_exec_breakpoint_ops;
8707
8708 static int
8709 hw_breakpoint_used_count (void)
8710 {
8711 int i = 0;
8712 struct breakpoint *b;
8713 struct bp_location *bl;
8714
8715 ALL_BREAKPOINTS (b)
8716 {
8717 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8718 for (bl = b->loc; bl; bl = bl->next)
8719 {
8720 /* Special types of hardware breakpoints may use more than
8721 one register. */
8722 i += b->ops->resources_needed (bl);
8723 }
8724 }
8725
8726 return i;
8727 }
8728
8729 /* Returns the resources B would use if it were a hardware
8730 watchpoint. */
8731
8732 static int
8733 hw_watchpoint_use_count (struct breakpoint *b)
8734 {
8735 int i = 0;
8736 struct bp_location *bl;
8737
8738 if (!breakpoint_enabled (b))
8739 return 0;
8740
8741 for (bl = b->loc; bl; bl = bl->next)
8742 {
8743 /* Special types of hardware watchpoints may use more than
8744 one register. */
8745 i += b->ops->resources_needed (bl);
8746 }
8747
8748 return i;
8749 }
8750
8751 /* Returns the sum the used resources of all hardware watchpoints of
8752 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8753 the sum of the used resources of all hardware watchpoints of other
8754 types _not_ TYPE. */
8755
8756 static int
8757 hw_watchpoint_used_count_others (struct breakpoint *except,
8758 enum bptype type, int *other_type_used)
8759 {
8760 int i = 0;
8761 struct breakpoint *b;
8762
8763 *other_type_used = 0;
8764 ALL_BREAKPOINTS (b)
8765 {
8766 if (b == except)
8767 continue;
8768 if (!breakpoint_enabled (b))
8769 continue;
8770
8771 if (b->type == type)
8772 i += hw_watchpoint_use_count (b);
8773 else if (is_hardware_watchpoint (b))
8774 *other_type_used = 1;
8775 }
8776
8777 return i;
8778 }
8779
8780 void
8781 disable_watchpoints_before_interactive_call_start (void)
8782 {
8783 struct breakpoint *b;
8784
8785 ALL_BREAKPOINTS (b)
8786 {
8787 if (is_watchpoint (b) && breakpoint_enabled (b))
8788 {
8789 b->enable_state = bp_call_disabled;
8790 update_global_location_list (UGLL_DONT_INSERT);
8791 }
8792 }
8793 }
8794
8795 void
8796 enable_watchpoints_after_interactive_call_stop (void)
8797 {
8798 struct breakpoint *b;
8799
8800 ALL_BREAKPOINTS (b)
8801 {
8802 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8803 {
8804 b->enable_state = bp_enabled;
8805 update_global_location_list (UGLL_MAY_INSERT);
8806 }
8807 }
8808 }
8809
8810 void
8811 disable_breakpoints_before_startup (void)
8812 {
8813 current_program_space->executing_startup = 1;
8814 update_global_location_list (UGLL_DONT_INSERT);
8815 }
8816
8817 void
8818 enable_breakpoints_after_startup (void)
8819 {
8820 current_program_space->executing_startup = 0;
8821 breakpoint_re_set ();
8822 }
8823
8824 /* Create a new single-step breakpoint for thread THREAD, with no
8825 locations. */
8826
8827 static struct breakpoint *
8828 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8829 {
8830 struct breakpoint *b = new breakpoint ();
8831
8832 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8833 &momentary_breakpoint_ops);
8834
8835 b->disposition = disp_donttouch;
8836 b->frame_id = null_frame_id;
8837
8838 b->thread = thread;
8839 gdb_assert (b->thread != 0);
8840
8841 add_to_breakpoint_chain (b);
8842
8843 return b;
8844 }
8845
8846 /* Set a momentary breakpoint of type TYPE at address specified by
8847 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8848 frame. */
8849
8850 struct breakpoint *
8851 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8852 struct frame_id frame_id, enum bptype type)
8853 {
8854 struct breakpoint *b;
8855
8856 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8857 tail-called one. */
8858 gdb_assert (!frame_id_artificial_p (frame_id));
8859
8860 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8861 b->enable_state = bp_enabled;
8862 b->disposition = disp_donttouch;
8863 b->frame_id = frame_id;
8864
8865 /* If we're debugging a multi-threaded program, then we want
8866 momentary breakpoints to be active in only a single thread of
8867 control. */
8868 if (in_thread_list (inferior_ptid))
8869 b->thread = ptid_to_global_thread_id (inferior_ptid);
8870
8871 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8872
8873 return b;
8874 }
8875
8876 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8877 The new breakpoint will have type TYPE, use OPS as its
8878 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8879
8880 static struct breakpoint *
8881 momentary_breakpoint_from_master (struct breakpoint *orig,
8882 enum bptype type,
8883 const struct breakpoint_ops *ops,
8884 int loc_enabled)
8885 {
8886 struct breakpoint *copy;
8887
8888 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8889 copy->loc = allocate_bp_location (copy);
8890 set_breakpoint_location_function (copy->loc, 1);
8891
8892 copy->loc->gdbarch = orig->loc->gdbarch;
8893 copy->loc->requested_address = orig->loc->requested_address;
8894 copy->loc->address = orig->loc->address;
8895 copy->loc->section = orig->loc->section;
8896 copy->loc->pspace = orig->loc->pspace;
8897 copy->loc->probe = orig->loc->probe;
8898 copy->loc->line_number = orig->loc->line_number;
8899 copy->loc->symtab = orig->loc->symtab;
8900 copy->loc->enabled = loc_enabled;
8901 copy->frame_id = orig->frame_id;
8902 copy->thread = orig->thread;
8903 copy->pspace = orig->pspace;
8904
8905 copy->enable_state = bp_enabled;
8906 copy->disposition = disp_donttouch;
8907 copy->number = internal_breakpoint_number--;
8908
8909 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8910 return copy;
8911 }
8912
8913 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8914 ORIG is NULL. */
8915
8916 struct breakpoint *
8917 clone_momentary_breakpoint (struct breakpoint *orig)
8918 {
8919 /* If there's nothing to clone, then return nothing. */
8920 if (orig == NULL)
8921 return NULL;
8922
8923 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8924 }
8925
8926 struct breakpoint *
8927 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8928 enum bptype type)
8929 {
8930 struct symtab_and_line sal;
8931
8932 sal = find_pc_line (pc, 0);
8933 sal.pc = pc;
8934 sal.section = find_pc_overlay (pc);
8935 sal.explicit_pc = 1;
8936
8937 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8938 }
8939 \f
8940
8941 /* Tell the user we have just set a breakpoint B. */
8942
8943 static void
8944 mention (struct breakpoint *b)
8945 {
8946 b->ops->print_mention (b);
8947 if (current_uiout->is_mi_like_p ())
8948 return;
8949 printf_filtered ("\n");
8950 }
8951 \f
8952
8953 static int bp_loc_is_permanent (struct bp_location *loc);
8954
8955 static struct bp_location *
8956 add_location_to_breakpoint (struct breakpoint *b,
8957 const struct symtab_and_line *sal)
8958 {
8959 struct bp_location *loc, **tmp;
8960 CORE_ADDR adjusted_address;
8961 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8962
8963 if (loc_gdbarch == NULL)
8964 loc_gdbarch = b->gdbarch;
8965
8966 /* Adjust the breakpoint's address prior to allocating a location.
8967 Once we call allocate_bp_location(), that mostly uninitialized
8968 location will be placed on the location chain. Adjustment of the
8969 breakpoint may cause target_read_memory() to be called and we do
8970 not want its scan of the location chain to find a breakpoint and
8971 location that's only been partially initialized. */
8972 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8973 sal->pc, b->type);
8974
8975 /* Sort the locations by their ADDRESS. */
8976 loc = allocate_bp_location (b);
8977 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8978 tmp = &((*tmp)->next))
8979 ;
8980 loc->next = *tmp;
8981 *tmp = loc;
8982
8983 loc->requested_address = sal->pc;
8984 loc->address = adjusted_address;
8985 loc->pspace = sal->pspace;
8986 loc->probe.probe = sal->probe;
8987 loc->probe.objfile = sal->objfile;
8988 gdb_assert (loc->pspace != NULL);
8989 loc->section = sal->section;
8990 loc->gdbarch = loc_gdbarch;
8991 loc->line_number = sal->line;
8992 loc->symtab = sal->symtab;
8993
8994 set_breakpoint_location_function (loc,
8995 sal->explicit_pc || sal->explicit_line);
8996
8997 /* While by definition, permanent breakpoints are already present in the
8998 code, we don't mark the location as inserted. Normally one would expect
8999 that GDB could rely on that breakpoint instruction to stop the program,
9000 thus removing the need to insert its own breakpoint, except that executing
9001 the breakpoint instruction can kill the target instead of reporting a
9002 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9003 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9004 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9005 breakpoint be inserted normally results in QEMU knowing about the GDB
9006 breakpoint, and thus trap before the breakpoint instruction is executed.
9007 (If GDB later needs to continue execution past the permanent breakpoint,
9008 it manually increments the PC, thus avoiding executing the breakpoint
9009 instruction.) */
9010 if (bp_loc_is_permanent (loc))
9011 loc->permanent = 1;
9012
9013 return loc;
9014 }
9015 \f
9016
9017 /* See breakpoint.h. */
9018
9019 int
9020 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9021 {
9022 int len;
9023 CORE_ADDR addr;
9024 const gdb_byte *bpoint;
9025 gdb_byte *target_mem;
9026 struct cleanup *cleanup;
9027 int retval = 0;
9028
9029 addr = address;
9030 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9031
9032 /* Software breakpoints unsupported? */
9033 if (bpoint == NULL)
9034 return 0;
9035
9036 target_mem = (gdb_byte *) alloca (len);
9037
9038 /* Enable the automatic memory restoration from breakpoints while
9039 we read the memory. Otherwise we could say about our temporary
9040 breakpoints they are permanent. */
9041 cleanup = make_show_memory_breakpoints_cleanup (0);
9042
9043 if (target_read_memory (address, target_mem, len) == 0
9044 && memcmp (target_mem, bpoint, len) == 0)
9045 retval = 1;
9046
9047 do_cleanups (cleanup);
9048
9049 return retval;
9050 }
9051
9052 /* Return 1 if LOC is pointing to a permanent breakpoint,
9053 return 0 otherwise. */
9054
9055 static int
9056 bp_loc_is_permanent (struct bp_location *loc)
9057 {
9058 gdb_assert (loc != NULL);
9059
9060 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9061 attempt to read from the addresses the locations of these breakpoint types
9062 point to. program_breakpoint_here_p, below, will attempt to read
9063 memory. */
9064 if (!breakpoint_address_is_meaningful (loc->owner))
9065 return 0;
9066
9067 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9068 switch_to_program_space_and_thread (loc->pspace);
9069 return program_breakpoint_here_p (loc->gdbarch, loc->address);
9070 }
9071
9072 /* Build a command list for the dprintf corresponding to the current
9073 settings of the dprintf style options. */
9074
9075 static void
9076 update_dprintf_command_list (struct breakpoint *b)
9077 {
9078 char *dprintf_args = b->extra_string;
9079 char *printf_line = NULL;
9080
9081 if (!dprintf_args)
9082 return;
9083
9084 dprintf_args = skip_spaces (dprintf_args);
9085
9086 /* Allow a comma, as it may have terminated a location, but don't
9087 insist on it. */
9088 if (*dprintf_args == ',')
9089 ++dprintf_args;
9090 dprintf_args = skip_spaces (dprintf_args);
9091
9092 if (*dprintf_args != '"')
9093 error (_("Bad format string, missing '\"'."));
9094
9095 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9096 printf_line = xstrprintf ("printf %s", dprintf_args);
9097 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9098 {
9099 if (!dprintf_function)
9100 error (_("No function supplied for dprintf call"));
9101
9102 if (dprintf_channel && strlen (dprintf_channel) > 0)
9103 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9104 dprintf_function,
9105 dprintf_channel,
9106 dprintf_args);
9107 else
9108 printf_line = xstrprintf ("call (void) %s (%s)",
9109 dprintf_function,
9110 dprintf_args);
9111 }
9112 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9113 {
9114 if (target_can_run_breakpoint_commands ())
9115 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9116 else
9117 {
9118 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9119 printf_line = xstrprintf ("printf %s", dprintf_args);
9120 }
9121 }
9122 else
9123 internal_error (__FILE__, __LINE__,
9124 _("Invalid dprintf style."));
9125
9126 gdb_assert (printf_line != NULL);
9127 /* Manufacture a printf sequence. */
9128 {
9129 struct command_line *printf_cmd_line = XNEW (struct command_line);
9130
9131 printf_cmd_line->control_type = simple_control;
9132 printf_cmd_line->body_count = 0;
9133 printf_cmd_line->body_list = NULL;
9134 printf_cmd_line->next = NULL;
9135 printf_cmd_line->line = printf_line;
9136
9137 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
9138 }
9139 }
9140
9141 /* Update all dprintf commands, making their command lists reflect
9142 current style settings. */
9143
9144 static void
9145 update_dprintf_commands (char *args, int from_tty,
9146 struct cmd_list_element *c)
9147 {
9148 struct breakpoint *b;
9149
9150 ALL_BREAKPOINTS (b)
9151 {
9152 if (b->type == bp_dprintf)
9153 update_dprintf_command_list (b);
9154 }
9155 }
9156
9157 /* Create a breakpoint with SAL as location. Use LOCATION
9158 as a description of the location, and COND_STRING
9159 as condition expression. If LOCATION is NULL then create an
9160 "address location" from the address in the SAL. */
9161
9162 static void
9163 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9164 struct symtabs_and_lines sals,
9165 event_location_up &&location,
9166 gdb::unique_xmalloc_ptr<char> filter,
9167 gdb::unique_xmalloc_ptr<char> cond_string,
9168 gdb::unique_xmalloc_ptr<char> extra_string,
9169 enum bptype type, enum bpdisp disposition,
9170 int thread, int task, int ignore_count,
9171 const struct breakpoint_ops *ops, int from_tty,
9172 int enabled, int internal, unsigned flags,
9173 int display_canonical)
9174 {
9175 int i;
9176
9177 if (type == bp_hardware_breakpoint)
9178 {
9179 int target_resources_ok;
9180
9181 i = hw_breakpoint_used_count ();
9182 target_resources_ok =
9183 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9184 i + 1, 0);
9185 if (target_resources_ok == 0)
9186 error (_("No hardware breakpoint support in the target."));
9187 else if (target_resources_ok < 0)
9188 error (_("Hardware breakpoints used exceeds limit."));
9189 }
9190
9191 gdb_assert (sals.nelts > 0);
9192
9193 for (i = 0; i < sals.nelts; ++i)
9194 {
9195 struct symtab_and_line sal = sals.sals[i];
9196 struct bp_location *loc;
9197
9198 if (from_tty)
9199 {
9200 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9201 if (!loc_gdbarch)
9202 loc_gdbarch = gdbarch;
9203
9204 describe_other_breakpoints (loc_gdbarch,
9205 sal.pspace, sal.pc, sal.section, thread);
9206 }
9207
9208 if (i == 0)
9209 {
9210 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9211 b->thread = thread;
9212 b->task = task;
9213
9214 b->cond_string = cond_string.release ();
9215 b->extra_string = extra_string.release ();
9216 b->ignore_count = ignore_count;
9217 b->enable_state = enabled ? bp_enabled : bp_disabled;
9218 b->disposition = disposition;
9219
9220 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9221 b->loc->inserted = 1;
9222
9223 if (type == bp_static_tracepoint)
9224 {
9225 struct tracepoint *t = (struct tracepoint *) b;
9226 struct static_tracepoint_marker marker;
9227
9228 if (strace_marker_p (b))
9229 {
9230 /* We already know the marker exists, otherwise, we
9231 wouldn't see a sal for it. */
9232 const char *p
9233 = &event_location_to_string (b->location.get ())[3];
9234 const char *endp;
9235 char *marker_str;
9236
9237 p = skip_spaces_const (p);
9238
9239 endp = skip_to_space_const (p);
9240
9241 marker_str = savestring (p, endp - p);
9242 t->static_trace_marker_id = marker_str;
9243
9244 printf_filtered (_("Probed static tracepoint "
9245 "marker \"%s\"\n"),
9246 t->static_trace_marker_id);
9247 }
9248 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9249 {
9250 t->static_trace_marker_id = xstrdup (marker.str_id);
9251 release_static_tracepoint_marker (&marker);
9252
9253 printf_filtered (_("Probed static tracepoint "
9254 "marker \"%s\"\n"),
9255 t->static_trace_marker_id);
9256 }
9257 else
9258 warning (_("Couldn't determine the static "
9259 "tracepoint marker to probe"));
9260 }
9261
9262 loc = b->loc;
9263 }
9264 else
9265 {
9266 loc = add_location_to_breakpoint (b, &sal);
9267 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9268 loc->inserted = 1;
9269 }
9270
9271 if (b->cond_string)
9272 {
9273 const char *arg = b->cond_string;
9274
9275 loc->cond = parse_exp_1 (&arg, loc->address,
9276 block_for_pc (loc->address), 0);
9277 if (*arg)
9278 error (_("Garbage '%s' follows condition"), arg);
9279 }
9280
9281 /* Dynamic printf requires and uses additional arguments on the
9282 command line, otherwise it's an error. */
9283 if (type == bp_dprintf)
9284 {
9285 if (b->extra_string)
9286 update_dprintf_command_list (b);
9287 else
9288 error (_("Format string required"));
9289 }
9290 else if (b->extra_string)
9291 error (_("Garbage '%s' at end of command"), b->extra_string);
9292 }
9293
9294 b->display_canonical = display_canonical;
9295 if (location != NULL)
9296 b->location = std::move (location);
9297 else
9298 b->location = new_address_location (b->loc->address, NULL, 0);
9299 b->filter = filter.release ();
9300 }
9301
9302 static void
9303 create_breakpoint_sal (struct gdbarch *gdbarch,
9304 struct symtabs_and_lines sals,
9305 event_location_up &&location,
9306 gdb::unique_xmalloc_ptr<char> filter,
9307 gdb::unique_xmalloc_ptr<char> cond_string,
9308 gdb::unique_xmalloc_ptr<char> extra_string,
9309 enum bptype type, enum bpdisp disposition,
9310 int thread, int task, int ignore_count,
9311 const struct breakpoint_ops *ops, int from_tty,
9312 int enabled, int internal, unsigned flags,
9313 int display_canonical)
9314 {
9315 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9316
9317 init_breakpoint_sal (b.get (), gdbarch,
9318 sals, std::move (location),
9319 std::move (filter),
9320 std::move (cond_string),
9321 std::move (extra_string),
9322 type, disposition,
9323 thread, task, ignore_count,
9324 ops, from_tty,
9325 enabled, internal, flags,
9326 display_canonical);
9327
9328 install_breakpoint (internal, b.release (), 0);
9329 }
9330
9331 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9332 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9333 value. COND_STRING, if not NULL, specified the condition to be
9334 used for all breakpoints. Essentially the only case where
9335 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9336 function. In that case, it's still not possible to specify
9337 separate conditions for different overloaded functions, so
9338 we take just a single condition string.
9339
9340 NOTE: If the function succeeds, the caller is expected to cleanup
9341 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9342 array contents). If the function fails (error() is called), the
9343 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9344 COND and SALS arrays and each of those arrays contents. */
9345
9346 static void
9347 create_breakpoints_sal (struct gdbarch *gdbarch,
9348 struct linespec_result *canonical,
9349 gdb::unique_xmalloc_ptr<char> cond_string,
9350 gdb::unique_xmalloc_ptr<char> extra_string,
9351 enum bptype type, enum bpdisp disposition,
9352 int thread, int task, int ignore_count,
9353 const struct breakpoint_ops *ops, int from_tty,
9354 int enabled, int internal, unsigned flags)
9355 {
9356 int i;
9357 struct linespec_sals *lsal;
9358
9359 if (canonical->pre_expanded)
9360 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9361
9362 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9363 {
9364 /* Note that 'location' can be NULL in the case of a plain
9365 'break', without arguments. */
9366 event_location_up location
9367 = (canonical->location != NULL
9368 ? copy_event_location (canonical->location.get ()) : NULL);
9369 gdb::unique_xmalloc_ptr<char> filter_string
9370 (lsal->canonical != NULL ? xstrdup (lsal->canonical) : NULL);
9371
9372 create_breakpoint_sal (gdbarch, lsal->sals,
9373 std::move (location),
9374 std::move (filter_string),
9375 std::move (cond_string),
9376 std::move (extra_string),
9377 type, disposition,
9378 thread, task, ignore_count, ops,
9379 from_tty, enabled, internal, flags,
9380 canonical->special_display);
9381 }
9382 }
9383
9384 /* Parse LOCATION which is assumed to be a SAL specification possibly
9385 followed by conditionals. On return, SALS contains an array of SAL
9386 addresses found. LOCATION points to the end of the SAL (for
9387 linespec locations).
9388
9389 The array and the line spec strings are allocated on the heap, it is
9390 the caller's responsibility to free them. */
9391
9392 static void
9393 parse_breakpoint_sals (const struct event_location *location,
9394 struct linespec_result *canonical)
9395 {
9396 struct symtab_and_line cursal;
9397
9398 if (event_location_type (location) == LINESPEC_LOCATION)
9399 {
9400 const char *address = get_linespec_location (location);
9401
9402 if (address == NULL)
9403 {
9404 /* The last displayed codepoint, if it's valid, is our default
9405 breakpoint address. */
9406 if (last_displayed_sal_is_valid ())
9407 {
9408 struct linespec_sals lsal;
9409 struct symtab_and_line sal;
9410 CORE_ADDR pc;
9411
9412 init_sal (&sal); /* Initialize to zeroes. */
9413 lsal.sals.sals = XNEW (struct symtab_and_line);
9414
9415 /* Set sal's pspace, pc, symtab, and line to the values
9416 corresponding to the last call to print_frame_info.
9417 Be sure to reinitialize LINE with NOTCURRENT == 0
9418 as the breakpoint line number is inappropriate otherwise.
9419 find_pc_line would adjust PC, re-set it back. */
9420 get_last_displayed_sal (&sal);
9421 pc = sal.pc;
9422 sal = find_pc_line (pc, 0);
9423
9424 /* "break" without arguments is equivalent to "break *PC"
9425 where PC is the last displayed codepoint's address. So
9426 make sure to set sal.explicit_pc to prevent GDB from
9427 trying to expand the list of sals to include all other
9428 instances with the same symtab and line. */
9429 sal.pc = pc;
9430 sal.explicit_pc = 1;
9431
9432 lsal.sals.sals[0] = sal;
9433 lsal.sals.nelts = 1;
9434 lsal.canonical = NULL;
9435
9436 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9437 return;
9438 }
9439 else
9440 error (_("No default breakpoint address now."));
9441 }
9442 }
9443
9444 /* Force almost all breakpoints to be in terms of the
9445 current_source_symtab (which is decode_line_1's default).
9446 This should produce the results we want almost all of the
9447 time while leaving default_breakpoint_* alone.
9448
9449 ObjC: However, don't match an Objective-C method name which
9450 may have a '+' or '-' succeeded by a '['. */
9451 cursal = get_current_source_symtab_and_line ();
9452 if (last_displayed_sal_is_valid ())
9453 {
9454 const char *address = NULL;
9455
9456 if (event_location_type (location) == LINESPEC_LOCATION)
9457 address = get_linespec_location (location);
9458
9459 if (!cursal.symtab
9460 || (address != NULL
9461 && strchr ("+-", address[0]) != NULL
9462 && address[1] != '['))
9463 {
9464 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9465 get_last_displayed_symtab (),
9466 get_last_displayed_line (),
9467 canonical, NULL, NULL);
9468 return;
9469 }
9470 }
9471
9472 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9473 cursal.symtab, cursal.line, canonical, NULL, NULL);
9474 }
9475
9476
9477 /* Convert each SAL into a real PC. Verify that the PC can be
9478 inserted as a breakpoint. If it can't throw an error. */
9479
9480 static void
9481 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9482 {
9483 int i;
9484
9485 for (i = 0; i < sals->nelts; i++)
9486 resolve_sal_pc (&sals->sals[i]);
9487 }
9488
9489 /* Fast tracepoints may have restrictions on valid locations. For
9490 instance, a fast tracepoint using a jump instead of a trap will
9491 likely have to overwrite more bytes than a trap would, and so can
9492 only be placed where the instruction is longer than the jump, or a
9493 multi-instruction sequence does not have a jump into the middle of
9494 it, etc. */
9495
9496 static void
9497 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9498 struct symtabs_and_lines *sals)
9499 {
9500 int i, rslt;
9501 struct symtab_and_line *sal;
9502 char *msg;
9503 struct cleanup *old_chain;
9504
9505 for (i = 0; i < sals->nelts; i++)
9506 {
9507 struct gdbarch *sarch;
9508
9509 sal = &sals->sals[i];
9510
9511 sarch = get_sal_arch (*sal);
9512 /* We fall back to GDBARCH if there is no architecture
9513 associated with SAL. */
9514 if (sarch == NULL)
9515 sarch = gdbarch;
9516 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9517 old_chain = make_cleanup (xfree, msg);
9518
9519 if (!rslt)
9520 error (_("May not have a fast tracepoint at %s%s"),
9521 paddress (sarch, sal->pc), (msg ? msg : ""));
9522
9523 do_cleanups (old_chain);
9524 }
9525 }
9526
9527 /* Given TOK, a string specification of condition and thread, as
9528 accepted by the 'break' command, extract the condition
9529 string and thread number and set *COND_STRING and *THREAD.
9530 PC identifies the context at which the condition should be parsed.
9531 If no condition is found, *COND_STRING is set to NULL.
9532 If no thread is found, *THREAD is set to -1. */
9533
9534 static void
9535 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9536 char **cond_string, int *thread, int *task,
9537 char **rest)
9538 {
9539 *cond_string = NULL;
9540 *thread = -1;
9541 *task = 0;
9542 *rest = NULL;
9543
9544 while (tok && *tok)
9545 {
9546 const char *end_tok;
9547 int toklen;
9548 const char *cond_start = NULL;
9549 const char *cond_end = NULL;
9550
9551 tok = skip_spaces_const (tok);
9552
9553 if ((*tok == '"' || *tok == ',') && rest)
9554 {
9555 *rest = savestring (tok, strlen (tok));
9556 return;
9557 }
9558
9559 end_tok = skip_to_space_const (tok);
9560
9561 toklen = end_tok - tok;
9562
9563 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9564 {
9565 tok = cond_start = end_tok + 1;
9566 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9567 cond_end = tok;
9568 *cond_string = savestring (cond_start, cond_end - cond_start);
9569 }
9570 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9571 {
9572 const char *tmptok;
9573 struct thread_info *thr;
9574
9575 tok = end_tok + 1;
9576 thr = parse_thread_id (tok, &tmptok);
9577 if (tok == tmptok)
9578 error (_("Junk after thread keyword."));
9579 *thread = thr->global_num;
9580 tok = tmptok;
9581 }
9582 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9583 {
9584 char *tmptok;
9585
9586 tok = end_tok + 1;
9587 *task = strtol (tok, &tmptok, 0);
9588 if (tok == tmptok)
9589 error (_("Junk after task keyword."));
9590 if (!valid_task_id (*task))
9591 error (_("Unknown task %d."), *task);
9592 tok = tmptok;
9593 }
9594 else if (rest)
9595 {
9596 *rest = savestring (tok, strlen (tok));
9597 return;
9598 }
9599 else
9600 error (_("Junk at end of arguments."));
9601 }
9602 }
9603
9604 /* Decode a static tracepoint marker spec. */
9605
9606 static struct symtabs_and_lines
9607 decode_static_tracepoint_spec (const char **arg_p)
9608 {
9609 VEC(static_tracepoint_marker_p) *markers = NULL;
9610 struct symtabs_and_lines sals;
9611 struct cleanup *old_chain;
9612 const char *p = &(*arg_p)[3];
9613 const char *endp;
9614 char *marker_str;
9615 int i;
9616
9617 p = skip_spaces_const (p);
9618
9619 endp = skip_to_space_const (p);
9620
9621 marker_str = savestring (p, endp - p);
9622 old_chain = make_cleanup (xfree, marker_str);
9623
9624 markers = target_static_tracepoint_markers_by_strid (marker_str);
9625 if (VEC_empty(static_tracepoint_marker_p, markers))
9626 error (_("No known static tracepoint marker named %s"), marker_str);
9627
9628 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9629 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9630
9631 for (i = 0; i < sals.nelts; i++)
9632 {
9633 struct static_tracepoint_marker *marker;
9634
9635 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9636
9637 init_sal (&sals.sals[i]);
9638
9639 sals.sals[i] = find_pc_line (marker->address, 0);
9640 sals.sals[i].pc = marker->address;
9641
9642 release_static_tracepoint_marker (marker);
9643 }
9644
9645 do_cleanups (old_chain);
9646
9647 *arg_p = endp;
9648 return sals;
9649 }
9650
9651 /* See breakpoint.h. */
9652
9653 int
9654 create_breakpoint (struct gdbarch *gdbarch,
9655 const struct event_location *location,
9656 const char *cond_string,
9657 int thread, const char *extra_string,
9658 int parse_extra,
9659 int tempflag, enum bptype type_wanted,
9660 int ignore_count,
9661 enum auto_boolean pending_break_support,
9662 const struct breakpoint_ops *ops,
9663 int from_tty, int enabled, int internal,
9664 unsigned flags)
9665 {
9666 struct linespec_result canonical;
9667 struct cleanup *bkpt_chain = NULL;
9668 int pending = 0;
9669 int task = 0;
9670 int prev_bkpt_count = breakpoint_count;
9671
9672 gdb_assert (ops != NULL);
9673
9674 /* If extra_string isn't useful, set it to NULL. */
9675 if (extra_string != NULL && *extra_string == '\0')
9676 extra_string = NULL;
9677
9678 TRY
9679 {
9680 ops->create_sals_from_location (location, &canonical, type_wanted);
9681 }
9682 CATCH (e, RETURN_MASK_ERROR)
9683 {
9684 /* If caller is interested in rc value from parse, set
9685 value. */
9686 if (e.error == NOT_FOUND_ERROR)
9687 {
9688 /* If pending breakpoint support is turned off, throw
9689 error. */
9690
9691 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9692 throw_exception (e);
9693
9694 exception_print (gdb_stderr, e);
9695
9696 /* If pending breakpoint support is auto query and the user
9697 selects no, then simply return the error code. */
9698 if (pending_break_support == AUTO_BOOLEAN_AUTO
9699 && !nquery (_("Make %s pending on future shared library load? "),
9700 bptype_string (type_wanted)))
9701 return 0;
9702
9703 /* At this point, either the user was queried about setting
9704 a pending breakpoint and selected yes, or pending
9705 breakpoint behavior is on and thus a pending breakpoint
9706 is defaulted on behalf of the user. */
9707 pending = 1;
9708 }
9709 else
9710 throw_exception (e);
9711 }
9712 END_CATCH
9713
9714 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9715 return 0;
9716
9717 /* ----------------------------- SNIP -----------------------------
9718 Anything added to the cleanup chain beyond this point is assumed
9719 to be part of a breakpoint. If the breakpoint create succeeds
9720 then the memory is not reclaimed. */
9721 bkpt_chain = make_cleanup (null_cleanup, 0);
9722
9723 /* Resolve all line numbers to PC's and verify that the addresses
9724 are ok for the target. */
9725 if (!pending)
9726 {
9727 int ix;
9728 struct linespec_sals *iter;
9729
9730 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9731 breakpoint_sals_to_pc (&iter->sals);
9732 }
9733
9734 /* Fast tracepoints may have additional restrictions on location. */
9735 if (!pending && type_wanted == bp_fast_tracepoint)
9736 {
9737 int ix;
9738 struct linespec_sals *iter;
9739
9740 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9741 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9742 }
9743
9744 /* Verify that condition can be parsed, before setting any
9745 breakpoints. Allocate a separate condition expression for each
9746 breakpoint. */
9747 if (!pending)
9748 {
9749 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9750 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9751
9752 if (parse_extra)
9753 {
9754 char *rest;
9755 char *cond;
9756 struct linespec_sals *lsal;
9757
9758 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9759
9760 /* Here we only parse 'arg' to separate condition
9761 from thread number, so parsing in context of first
9762 sal is OK. When setting the breakpoint we'll
9763 re-parse it in context of each sal. */
9764
9765 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9766 &cond, &thread, &task, &rest);
9767 cond_string_copy.reset (cond);
9768 extra_string_copy.reset (rest);
9769 }
9770 else
9771 {
9772 if (type_wanted != bp_dprintf
9773 && extra_string != NULL && *extra_string != '\0')
9774 error (_("Garbage '%s' at end of location"), extra_string);
9775
9776 /* Create a private copy of condition string. */
9777 if (cond_string)
9778 cond_string_copy.reset (xstrdup (cond_string));
9779 /* Create a private copy of any extra string. */
9780 if (extra_string)
9781 extra_string_copy.reset (xstrdup (extra_string));
9782 }
9783
9784 ops->create_breakpoints_sal (gdbarch, &canonical,
9785 std::move (cond_string_copy),
9786 std::move (extra_string_copy),
9787 type_wanted,
9788 tempflag ? disp_del : disp_donttouch,
9789 thread, task, ignore_count, ops,
9790 from_tty, enabled, internal, flags);
9791 }
9792 else
9793 {
9794 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9795
9796 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9797 b->location = copy_event_location (location);
9798
9799 if (parse_extra)
9800 b->cond_string = NULL;
9801 else
9802 {
9803 /* Create a private copy of condition string. */
9804 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9805 b->thread = thread;
9806 }
9807
9808 /* Create a private copy of any extra string. */
9809 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9810 b->ignore_count = ignore_count;
9811 b->disposition = tempflag ? disp_del : disp_donttouch;
9812 b->condition_not_parsed = 1;
9813 b->enable_state = enabled ? bp_enabled : bp_disabled;
9814 if ((type_wanted != bp_breakpoint
9815 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9816 b->pspace = current_program_space;
9817
9818 install_breakpoint (internal, b.release (), 0);
9819 }
9820
9821 if (VEC_length (linespec_sals, canonical.sals) > 1)
9822 {
9823 warning (_("Multiple breakpoints were set.\nUse the "
9824 "\"delete\" command to delete unwanted breakpoints."));
9825 prev_breakpoint_count = prev_bkpt_count;
9826 }
9827
9828 /* That's it. Discard the cleanups for data inserted into the
9829 breakpoint. */
9830 discard_cleanups (bkpt_chain);
9831
9832 /* error call may happen here - have BKPT_CHAIN already discarded. */
9833 update_global_location_list (UGLL_MAY_INSERT);
9834
9835 return 1;
9836 }
9837
9838 /* Set a breakpoint.
9839 ARG is a string describing breakpoint address,
9840 condition, and thread.
9841 FLAG specifies if a breakpoint is hardware on,
9842 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9843 and BP_TEMPFLAG. */
9844
9845 static void
9846 break_command_1 (char *arg, int flag, int from_tty)
9847 {
9848 int tempflag = flag & BP_TEMPFLAG;
9849 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9850 ? bp_hardware_breakpoint
9851 : bp_breakpoint);
9852 struct breakpoint_ops *ops;
9853
9854 event_location_up location = string_to_event_location (&arg, current_language);
9855
9856 /* Matching breakpoints on probes. */
9857 if (location != NULL
9858 && event_location_type (location.get ()) == PROBE_LOCATION)
9859 ops = &bkpt_probe_breakpoint_ops;
9860 else
9861 ops = &bkpt_breakpoint_ops;
9862
9863 create_breakpoint (get_current_arch (),
9864 location.get (),
9865 NULL, 0, arg, 1 /* parse arg */,
9866 tempflag, type_wanted,
9867 0 /* Ignore count */,
9868 pending_break_support,
9869 ops,
9870 from_tty,
9871 1 /* enabled */,
9872 0 /* internal */,
9873 0);
9874 }
9875
9876 /* Helper function for break_command_1 and disassemble_command. */
9877
9878 void
9879 resolve_sal_pc (struct symtab_and_line *sal)
9880 {
9881 CORE_ADDR pc;
9882
9883 if (sal->pc == 0 && sal->symtab != NULL)
9884 {
9885 if (!find_line_pc (sal->symtab, sal->line, &pc))
9886 error (_("No line %d in file \"%s\"."),
9887 sal->line, symtab_to_filename_for_display (sal->symtab));
9888 sal->pc = pc;
9889
9890 /* If this SAL corresponds to a breakpoint inserted using a line
9891 number, then skip the function prologue if necessary. */
9892 if (sal->explicit_line)
9893 skip_prologue_sal (sal);
9894 }
9895
9896 if (sal->section == 0 && sal->symtab != NULL)
9897 {
9898 const struct blockvector *bv;
9899 const struct block *b;
9900 struct symbol *sym;
9901
9902 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9903 SYMTAB_COMPUNIT (sal->symtab));
9904 if (bv != NULL)
9905 {
9906 sym = block_linkage_function (b);
9907 if (sym != NULL)
9908 {
9909 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9910 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9911 sym);
9912 }
9913 else
9914 {
9915 /* It really is worthwhile to have the section, so we'll
9916 just have to look harder. This case can be executed
9917 if we have line numbers but no functions (as can
9918 happen in assembly source). */
9919
9920 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9921 switch_to_program_space_and_thread (sal->pspace);
9922
9923 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9924 if (msym.minsym)
9925 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9926 }
9927 }
9928 }
9929 }
9930
9931 void
9932 break_command (char *arg, int from_tty)
9933 {
9934 break_command_1 (arg, 0, from_tty);
9935 }
9936
9937 void
9938 tbreak_command (char *arg, int from_tty)
9939 {
9940 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9941 }
9942
9943 static void
9944 hbreak_command (char *arg, int from_tty)
9945 {
9946 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9947 }
9948
9949 static void
9950 thbreak_command (char *arg, int from_tty)
9951 {
9952 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9953 }
9954
9955 static void
9956 stop_command (char *arg, int from_tty)
9957 {
9958 printf_filtered (_("Specify the type of breakpoint to set.\n\
9959 Usage: stop in <function | address>\n\
9960 stop at <line>\n"));
9961 }
9962
9963 static void
9964 stopin_command (char *arg, int from_tty)
9965 {
9966 int badInput = 0;
9967
9968 if (arg == (char *) NULL)
9969 badInput = 1;
9970 else if (*arg != '*')
9971 {
9972 char *argptr = arg;
9973 int hasColon = 0;
9974
9975 /* Look for a ':'. If this is a line number specification, then
9976 say it is bad, otherwise, it should be an address or
9977 function/method name. */
9978 while (*argptr && !hasColon)
9979 {
9980 hasColon = (*argptr == ':');
9981 argptr++;
9982 }
9983
9984 if (hasColon)
9985 badInput = (*argptr != ':'); /* Not a class::method */
9986 else
9987 badInput = isdigit (*arg); /* a simple line number */
9988 }
9989
9990 if (badInput)
9991 printf_filtered (_("Usage: stop in <function | address>\n"));
9992 else
9993 break_command_1 (arg, 0, from_tty);
9994 }
9995
9996 static void
9997 stopat_command (char *arg, int from_tty)
9998 {
9999 int badInput = 0;
10000
10001 if (arg == (char *) NULL || *arg == '*') /* no line number */
10002 badInput = 1;
10003 else
10004 {
10005 char *argptr = arg;
10006 int hasColon = 0;
10007
10008 /* Look for a ':'. If there is a '::' then get out, otherwise
10009 it is probably a line number. */
10010 while (*argptr && !hasColon)
10011 {
10012 hasColon = (*argptr == ':');
10013 argptr++;
10014 }
10015
10016 if (hasColon)
10017 badInput = (*argptr == ':'); /* we have class::method */
10018 else
10019 badInput = !isdigit (*arg); /* not a line number */
10020 }
10021
10022 if (badInput)
10023 printf_filtered (_("Usage: stop at <line>\n"));
10024 else
10025 break_command_1 (arg, 0, from_tty);
10026 }
10027
10028 /* The dynamic printf command is mostly like a regular breakpoint, but
10029 with a prewired command list consisting of a single output command,
10030 built from extra arguments supplied on the dprintf command
10031 line. */
10032
10033 static void
10034 dprintf_command (char *arg, int from_tty)
10035 {
10036 event_location_up location = string_to_event_location (&arg, current_language);
10037
10038 /* If non-NULL, ARG should have been advanced past the location;
10039 the next character must be ','. */
10040 if (arg != NULL)
10041 {
10042 if (arg[0] != ',' || arg[1] == '\0')
10043 error (_("Format string required"));
10044 else
10045 {
10046 /* Skip the comma. */
10047 ++arg;
10048 }
10049 }
10050
10051 create_breakpoint (get_current_arch (),
10052 location.get (),
10053 NULL, 0, arg, 1 /* parse arg */,
10054 0, bp_dprintf,
10055 0 /* Ignore count */,
10056 pending_break_support,
10057 &dprintf_breakpoint_ops,
10058 from_tty,
10059 1 /* enabled */,
10060 0 /* internal */,
10061 0);
10062 }
10063
10064 static void
10065 agent_printf_command (char *arg, int from_tty)
10066 {
10067 error (_("May only run agent-printf on the target"));
10068 }
10069
10070 /* Implement the "breakpoint_hit" breakpoint_ops method for
10071 ranged breakpoints. */
10072
10073 static int
10074 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10075 struct address_space *aspace,
10076 CORE_ADDR bp_addr,
10077 const struct target_waitstatus *ws)
10078 {
10079 if (ws->kind != TARGET_WAITKIND_STOPPED
10080 || ws->value.sig != GDB_SIGNAL_TRAP)
10081 return 0;
10082
10083 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10084 bl->length, aspace, bp_addr);
10085 }
10086
10087 /* Implement the "resources_needed" breakpoint_ops method for
10088 ranged breakpoints. */
10089
10090 static int
10091 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10092 {
10093 return target_ranged_break_num_registers ();
10094 }
10095
10096 /* Implement the "print_it" breakpoint_ops method for
10097 ranged breakpoints. */
10098
10099 static enum print_stop_action
10100 print_it_ranged_breakpoint (bpstat bs)
10101 {
10102 struct breakpoint *b = bs->breakpoint_at;
10103 struct bp_location *bl = b->loc;
10104 struct ui_out *uiout = current_uiout;
10105
10106 gdb_assert (b->type == bp_hardware_breakpoint);
10107
10108 /* Ranged breakpoints have only one location. */
10109 gdb_assert (bl && bl->next == NULL);
10110
10111 annotate_breakpoint (b->number);
10112
10113 maybe_print_thread_hit_breakpoint (uiout);
10114
10115 if (b->disposition == disp_del)
10116 uiout->text ("Temporary ranged breakpoint ");
10117 else
10118 uiout->text ("Ranged breakpoint ");
10119 if (uiout->is_mi_like_p ())
10120 {
10121 uiout->field_string ("reason",
10122 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10123 uiout->field_string ("disp", bpdisp_text (b->disposition));
10124 }
10125 uiout->field_int ("bkptno", b->number);
10126 uiout->text (", ");
10127
10128 return PRINT_SRC_AND_LOC;
10129 }
10130
10131 /* Implement the "print_one" breakpoint_ops method for
10132 ranged breakpoints. */
10133
10134 static void
10135 print_one_ranged_breakpoint (struct breakpoint *b,
10136 struct bp_location **last_loc)
10137 {
10138 struct bp_location *bl = b->loc;
10139 struct value_print_options opts;
10140 struct ui_out *uiout = current_uiout;
10141
10142 /* Ranged breakpoints have only one location. */
10143 gdb_assert (bl && bl->next == NULL);
10144
10145 get_user_print_options (&opts);
10146
10147 if (opts.addressprint)
10148 /* We don't print the address range here, it will be printed later
10149 by print_one_detail_ranged_breakpoint. */
10150 uiout->field_skip ("addr");
10151 annotate_field (5);
10152 print_breakpoint_location (b, bl);
10153 *last_loc = bl;
10154 }
10155
10156 /* Implement the "print_one_detail" breakpoint_ops method for
10157 ranged breakpoints. */
10158
10159 static void
10160 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10161 struct ui_out *uiout)
10162 {
10163 CORE_ADDR address_start, address_end;
10164 struct bp_location *bl = b->loc;
10165 string_file stb;
10166
10167 gdb_assert (bl);
10168
10169 address_start = bl->address;
10170 address_end = address_start + bl->length - 1;
10171
10172 uiout->text ("\taddress range: ");
10173 stb.printf ("[%s, %s]",
10174 print_core_address (bl->gdbarch, address_start),
10175 print_core_address (bl->gdbarch, address_end));
10176 uiout->field_stream ("addr", stb);
10177 uiout->text ("\n");
10178 }
10179
10180 /* Implement the "print_mention" breakpoint_ops method for
10181 ranged breakpoints. */
10182
10183 static void
10184 print_mention_ranged_breakpoint (struct breakpoint *b)
10185 {
10186 struct bp_location *bl = b->loc;
10187 struct ui_out *uiout = current_uiout;
10188
10189 gdb_assert (bl);
10190 gdb_assert (b->type == bp_hardware_breakpoint);
10191
10192 if (uiout->is_mi_like_p ())
10193 return;
10194
10195 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10196 b->number, paddress (bl->gdbarch, bl->address),
10197 paddress (bl->gdbarch, bl->address + bl->length - 1));
10198 }
10199
10200 /* Implement the "print_recreate" breakpoint_ops method for
10201 ranged breakpoints. */
10202
10203 static void
10204 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10205 {
10206 fprintf_unfiltered (fp, "break-range %s, %s",
10207 event_location_to_string (b->location.get ()),
10208 event_location_to_string (b->location_range_end.get ()));
10209 print_recreate_thread (b, fp);
10210 }
10211
10212 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10213
10214 static struct breakpoint_ops ranged_breakpoint_ops;
10215
10216 /* Find the address where the end of the breakpoint range should be
10217 placed, given the SAL of the end of the range. This is so that if
10218 the user provides a line number, the end of the range is set to the
10219 last instruction of the given line. */
10220
10221 static CORE_ADDR
10222 find_breakpoint_range_end (struct symtab_and_line sal)
10223 {
10224 CORE_ADDR end;
10225
10226 /* If the user provided a PC value, use it. Otherwise,
10227 find the address of the end of the given location. */
10228 if (sal.explicit_pc)
10229 end = sal.pc;
10230 else
10231 {
10232 int ret;
10233 CORE_ADDR start;
10234
10235 ret = find_line_pc_range (sal, &start, &end);
10236 if (!ret)
10237 error (_("Could not find location of the end of the range."));
10238
10239 /* find_line_pc_range returns the start of the next line. */
10240 end--;
10241 }
10242
10243 return end;
10244 }
10245
10246 /* Implement the "break-range" CLI command. */
10247
10248 static void
10249 break_range_command (char *arg, int from_tty)
10250 {
10251 char *arg_start, *addr_string_start;
10252 struct linespec_result canonical_start, canonical_end;
10253 int bp_count, can_use_bp, length;
10254 CORE_ADDR end;
10255 struct breakpoint *b;
10256 struct symtab_and_line sal_start, sal_end;
10257 struct cleanup *cleanup_bkpt;
10258 struct linespec_sals *lsal_start, *lsal_end;
10259
10260 /* We don't support software ranged breakpoints. */
10261 if (target_ranged_break_num_registers () < 0)
10262 error (_("This target does not support hardware ranged breakpoints."));
10263
10264 bp_count = hw_breakpoint_used_count ();
10265 bp_count += target_ranged_break_num_registers ();
10266 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10267 bp_count, 0);
10268 if (can_use_bp < 0)
10269 error (_("Hardware breakpoints used exceeds limit."));
10270
10271 arg = skip_spaces (arg);
10272 if (arg == NULL || arg[0] == '\0')
10273 error(_("No address range specified."));
10274
10275 arg_start = arg;
10276 event_location_up start_location = string_to_event_location (&arg,
10277 current_language);
10278 parse_breakpoint_sals (start_location.get (), &canonical_start);
10279
10280 if (arg[0] != ',')
10281 error (_("Too few arguments."));
10282 else if (VEC_empty (linespec_sals, canonical_start.sals))
10283 error (_("Could not find location of the beginning of the range."));
10284
10285 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10286
10287 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10288 || lsal_start->sals.nelts != 1)
10289 error (_("Cannot create a ranged breakpoint with multiple locations."));
10290
10291 sal_start = lsal_start->sals.sals[0];
10292 addr_string_start = savestring (arg_start, arg - arg_start);
10293 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10294
10295 arg++; /* Skip the comma. */
10296 arg = skip_spaces (arg);
10297
10298 /* Parse the end location. */
10299
10300 arg_start = arg;
10301
10302 /* We call decode_line_full directly here instead of using
10303 parse_breakpoint_sals because we need to specify the start location's
10304 symtab and line as the default symtab and line for the end of the
10305 range. This makes it possible to have ranges like "foo.c:27, +14",
10306 where +14 means 14 lines from the start location. */
10307 event_location_up end_location = string_to_event_location (&arg,
10308 current_language);
10309 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10310 sal_start.symtab, sal_start.line,
10311 &canonical_end, NULL, NULL);
10312
10313 if (VEC_empty (linespec_sals, canonical_end.sals))
10314 error (_("Could not find location of the end of the range."));
10315
10316 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10317 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10318 || lsal_end->sals.nelts != 1)
10319 error (_("Cannot create a ranged breakpoint with multiple locations."));
10320
10321 sal_end = lsal_end->sals.sals[0];
10322
10323 end = find_breakpoint_range_end (sal_end);
10324 if (sal_start.pc > end)
10325 error (_("Invalid address range, end precedes start."));
10326
10327 length = end - sal_start.pc + 1;
10328 if (length < 0)
10329 /* Length overflowed. */
10330 error (_("Address range too large."));
10331 else if (length == 1)
10332 {
10333 /* This range is simple enough to be handled by
10334 the `hbreak' command. */
10335 hbreak_command (addr_string_start, 1);
10336
10337 do_cleanups (cleanup_bkpt);
10338
10339 return;
10340 }
10341
10342 /* Now set up the breakpoint. */
10343 b = set_raw_breakpoint (get_current_arch (), sal_start,
10344 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10345 set_breakpoint_count (breakpoint_count + 1);
10346 b->number = breakpoint_count;
10347 b->disposition = disp_donttouch;
10348 b->location = std::move (start_location);
10349 b->location_range_end = std::move (end_location);
10350 b->loc->length = length;
10351
10352 do_cleanups (cleanup_bkpt);
10353
10354 mention (b);
10355 observer_notify_breakpoint_created (b);
10356 update_global_location_list (UGLL_MAY_INSERT);
10357 }
10358
10359 /* Return non-zero if EXP is verified as constant. Returned zero
10360 means EXP is variable. Also the constant detection may fail for
10361 some constant expressions and in such case still falsely return
10362 zero. */
10363
10364 static int
10365 watchpoint_exp_is_const (const struct expression *exp)
10366 {
10367 int i = exp->nelts;
10368
10369 while (i > 0)
10370 {
10371 int oplenp, argsp;
10372
10373 /* We are only interested in the descriptor of each element. */
10374 operator_length (exp, i, &oplenp, &argsp);
10375 i -= oplenp;
10376
10377 switch (exp->elts[i].opcode)
10378 {
10379 case BINOP_ADD:
10380 case BINOP_SUB:
10381 case BINOP_MUL:
10382 case BINOP_DIV:
10383 case BINOP_REM:
10384 case BINOP_MOD:
10385 case BINOP_LSH:
10386 case BINOP_RSH:
10387 case BINOP_LOGICAL_AND:
10388 case BINOP_LOGICAL_OR:
10389 case BINOP_BITWISE_AND:
10390 case BINOP_BITWISE_IOR:
10391 case BINOP_BITWISE_XOR:
10392 case BINOP_EQUAL:
10393 case BINOP_NOTEQUAL:
10394 case BINOP_LESS:
10395 case BINOP_GTR:
10396 case BINOP_LEQ:
10397 case BINOP_GEQ:
10398 case BINOP_REPEAT:
10399 case BINOP_COMMA:
10400 case BINOP_EXP:
10401 case BINOP_MIN:
10402 case BINOP_MAX:
10403 case BINOP_INTDIV:
10404 case BINOP_CONCAT:
10405 case TERNOP_COND:
10406 case TERNOP_SLICE:
10407
10408 case OP_LONG:
10409 case OP_DOUBLE:
10410 case OP_DECFLOAT:
10411 case OP_LAST:
10412 case OP_COMPLEX:
10413 case OP_STRING:
10414 case OP_ARRAY:
10415 case OP_TYPE:
10416 case OP_TYPEOF:
10417 case OP_DECLTYPE:
10418 case OP_TYPEID:
10419 case OP_NAME:
10420 case OP_OBJC_NSSTRING:
10421
10422 case UNOP_NEG:
10423 case UNOP_LOGICAL_NOT:
10424 case UNOP_COMPLEMENT:
10425 case UNOP_ADDR:
10426 case UNOP_HIGH:
10427 case UNOP_CAST:
10428
10429 case UNOP_CAST_TYPE:
10430 case UNOP_REINTERPRET_CAST:
10431 case UNOP_DYNAMIC_CAST:
10432 /* Unary, binary and ternary operators: We have to check
10433 their operands. If they are constant, then so is the
10434 result of that operation. For instance, if A and B are
10435 determined to be constants, then so is "A + B".
10436
10437 UNOP_IND is one exception to the rule above, because the
10438 value of *ADDR is not necessarily a constant, even when
10439 ADDR is. */
10440 break;
10441
10442 case OP_VAR_VALUE:
10443 /* Check whether the associated symbol is a constant.
10444
10445 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10446 possible that a buggy compiler could mark a variable as
10447 constant even when it is not, and TYPE_CONST would return
10448 true in this case, while SYMBOL_CLASS wouldn't.
10449
10450 We also have to check for function symbols because they
10451 are always constant. */
10452 {
10453 struct symbol *s = exp->elts[i + 2].symbol;
10454
10455 if (SYMBOL_CLASS (s) != LOC_BLOCK
10456 && SYMBOL_CLASS (s) != LOC_CONST
10457 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10458 return 0;
10459 break;
10460 }
10461
10462 /* The default action is to return 0 because we are using
10463 the optimistic approach here: If we don't know something,
10464 then it is not a constant. */
10465 default:
10466 return 0;
10467 }
10468 }
10469
10470 return 1;
10471 }
10472
10473 /* Watchpoint destructor. */
10474
10475 watchpoint::~watchpoint ()
10476 {
10477 xfree (this->exp_string);
10478 xfree (this->exp_string_reparse);
10479 value_free (this->val);
10480 }
10481
10482 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10483
10484 static void
10485 re_set_watchpoint (struct breakpoint *b)
10486 {
10487 struct watchpoint *w = (struct watchpoint *) b;
10488
10489 /* Watchpoint can be either on expression using entirely global
10490 variables, or it can be on local variables.
10491
10492 Watchpoints of the first kind are never auto-deleted, and even
10493 persist across program restarts. Since they can use variables
10494 from shared libraries, we need to reparse expression as libraries
10495 are loaded and unloaded.
10496
10497 Watchpoints on local variables can also change meaning as result
10498 of solib event. For example, if a watchpoint uses both a local
10499 and a global variables in expression, it's a local watchpoint,
10500 but unloading of a shared library will make the expression
10501 invalid. This is not a very common use case, but we still
10502 re-evaluate expression, to avoid surprises to the user.
10503
10504 Note that for local watchpoints, we re-evaluate it only if
10505 watchpoints frame id is still valid. If it's not, it means the
10506 watchpoint is out of scope and will be deleted soon. In fact,
10507 I'm not sure we'll ever be called in this case.
10508
10509 If a local watchpoint's frame id is still valid, then
10510 w->exp_valid_block is likewise valid, and we can safely use it.
10511
10512 Don't do anything about disabled watchpoints, since they will be
10513 reevaluated again when enabled. */
10514 update_watchpoint (w, 1 /* reparse */);
10515 }
10516
10517 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10518
10519 static int
10520 insert_watchpoint (struct bp_location *bl)
10521 {
10522 struct watchpoint *w = (struct watchpoint *) bl->owner;
10523 int length = w->exact ? 1 : bl->length;
10524
10525 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10526 w->cond_exp.get ());
10527 }
10528
10529 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10530
10531 static int
10532 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10533 {
10534 struct watchpoint *w = (struct watchpoint *) bl->owner;
10535 int length = w->exact ? 1 : bl->length;
10536
10537 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10538 w->cond_exp.get ());
10539 }
10540
10541 static int
10542 breakpoint_hit_watchpoint (const struct bp_location *bl,
10543 struct address_space *aspace, CORE_ADDR bp_addr,
10544 const struct target_waitstatus *ws)
10545 {
10546 struct breakpoint *b = bl->owner;
10547 struct watchpoint *w = (struct watchpoint *) b;
10548
10549 /* Continuable hardware watchpoints are treated as non-existent if the
10550 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10551 some data address). Otherwise gdb won't stop on a break instruction
10552 in the code (not from a breakpoint) when a hardware watchpoint has
10553 been defined. Also skip watchpoints which we know did not trigger
10554 (did not match the data address). */
10555 if (is_hardware_watchpoint (b)
10556 && w->watchpoint_triggered == watch_triggered_no)
10557 return 0;
10558
10559 return 1;
10560 }
10561
10562 static void
10563 check_status_watchpoint (bpstat bs)
10564 {
10565 gdb_assert (is_watchpoint (bs->breakpoint_at));
10566
10567 bpstat_check_watchpoint (bs);
10568 }
10569
10570 /* Implement the "resources_needed" breakpoint_ops method for
10571 hardware watchpoints. */
10572
10573 static int
10574 resources_needed_watchpoint (const struct bp_location *bl)
10575 {
10576 struct watchpoint *w = (struct watchpoint *) bl->owner;
10577 int length = w->exact? 1 : bl->length;
10578
10579 return target_region_ok_for_hw_watchpoint (bl->address, length);
10580 }
10581
10582 /* Implement the "works_in_software_mode" breakpoint_ops method for
10583 hardware watchpoints. */
10584
10585 static int
10586 works_in_software_mode_watchpoint (const struct breakpoint *b)
10587 {
10588 /* Read and access watchpoints only work with hardware support. */
10589 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10590 }
10591
10592 static enum print_stop_action
10593 print_it_watchpoint (bpstat bs)
10594 {
10595 struct cleanup *old_chain;
10596 struct breakpoint *b;
10597 enum print_stop_action result;
10598 struct watchpoint *w;
10599 struct ui_out *uiout = current_uiout;
10600
10601 gdb_assert (bs->bp_location_at != NULL);
10602
10603 b = bs->breakpoint_at;
10604 w = (struct watchpoint *) b;
10605
10606 old_chain = make_cleanup (null_cleanup, NULL);
10607
10608 annotate_watchpoint (b->number);
10609 maybe_print_thread_hit_breakpoint (uiout);
10610
10611 string_file stb;
10612
10613 switch (b->type)
10614 {
10615 case bp_watchpoint:
10616 case bp_hardware_watchpoint:
10617 if (uiout->is_mi_like_p ())
10618 uiout->field_string
10619 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10620 mention (b);
10621 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10622 uiout->text ("\nOld value = ");
10623 watchpoint_value_print (bs->old_val, &stb);
10624 uiout->field_stream ("old", stb);
10625 uiout->text ("\nNew value = ");
10626 watchpoint_value_print (w->val, &stb);
10627 uiout->field_stream ("new", stb);
10628 uiout->text ("\n");
10629 /* More than one watchpoint may have been triggered. */
10630 result = PRINT_UNKNOWN;
10631 break;
10632
10633 case bp_read_watchpoint:
10634 if (uiout->is_mi_like_p ())
10635 uiout->field_string
10636 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10637 mention (b);
10638 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10639 uiout->text ("\nValue = ");
10640 watchpoint_value_print (w->val, &stb);
10641 uiout->field_stream ("value", stb);
10642 uiout->text ("\n");
10643 result = PRINT_UNKNOWN;
10644 break;
10645
10646 case bp_access_watchpoint:
10647 if (bs->old_val != NULL)
10648 {
10649 if (uiout->is_mi_like_p ())
10650 uiout->field_string
10651 ("reason",
10652 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10653 mention (b);
10654 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10655 uiout->text ("\nOld value = ");
10656 watchpoint_value_print (bs->old_val, &stb);
10657 uiout->field_stream ("old", stb);
10658 uiout->text ("\nNew value = ");
10659 }
10660 else
10661 {
10662 mention (b);
10663 if (uiout->is_mi_like_p ())
10664 uiout->field_string
10665 ("reason",
10666 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10667 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10668 uiout->text ("\nValue = ");
10669 }
10670 watchpoint_value_print (w->val, &stb);
10671 uiout->field_stream ("new", stb);
10672 uiout->text ("\n");
10673 result = PRINT_UNKNOWN;
10674 break;
10675 default:
10676 result = PRINT_UNKNOWN;
10677 }
10678
10679 do_cleanups (old_chain);
10680 return result;
10681 }
10682
10683 /* Implement the "print_mention" breakpoint_ops method for hardware
10684 watchpoints. */
10685
10686 static void
10687 print_mention_watchpoint (struct breakpoint *b)
10688 {
10689 struct watchpoint *w = (struct watchpoint *) b;
10690 struct ui_out *uiout = current_uiout;
10691 const char *tuple_name;
10692
10693 switch (b->type)
10694 {
10695 case bp_watchpoint:
10696 uiout->text ("Watchpoint ");
10697 tuple_name = "wpt";
10698 break;
10699 case bp_hardware_watchpoint:
10700 uiout->text ("Hardware watchpoint ");
10701 tuple_name = "wpt";
10702 break;
10703 case bp_read_watchpoint:
10704 uiout->text ("Hardware read watchpoint ");
10705 tuple_name = "hw-rwpt";
10706 break;
10707 case bp_access_watchpoint:
10708 uiout->text ("Hardware access (read/write) watchpoint ");
10709 tuple_name = "hw-awpt";
10710 break;
10711 default:
10712 internal_error (__FILE__, __LINE__,
10713 _("Invalid hardware watchpoint type."));
10714 }
10715
10716 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10717 uiout->field_int ("number", b->number);
10718 uiout->text (": ");
10719 uiout->field_string ("exp", w->exp_string);
10720 }
10721
10722 /* Implement the "print_recreate" breakpoint_ops method for
10723 watchpoints. */
10724
10725 static void
10726 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10727 {
10728 struct watchpoint *w = (struct watchpoint *) b;
10729
10730 switch (b->type)
10731 {
10732 case bp_watchpoint:
10733 case bp_hardware_watchpoint:
10734 fprintf_unfiltered (fp, "watch");
10735 break;
10736 case bp_read_watchpoint:
10737 fprintf_unfiltered (fp, "rwatch");
10738 break;
10739 case bp_access_watchpoint:
10740 fprintf_unfiltered (fp, "awatch");
10741 break;
10742 default:
10743 internal_error (__FILE__, __LINE__,
10744 _("Invalid watchpoint type."));
10745 }
10746
10747 fprintf_unfiltered (fp, " %s", w->exp_string);
10748 print_recreate_thread (b, fp);
10749 }
10750
10751 /* Implement the "explains_signal" breakpoint_ops method for
10752 watchpoints. */
10753
10754 static int
10755 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10756 {
10757 /* A software watchpoint cannot cause a signal other than
10758 GDB_SIGNAL_TRAP. */
10759 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10760 return 0;
10761
10762 return 1;
10763 }
10764
10765 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10766
10767 static struct breakpoint_ops watchpoint_breakpoint_ops;
10768
10769 /* Implement the "insert" breakpoint_ops method for
10770 masked hardware watchpoints. */
10771
10772 static int
10773 insert_masked_watchpoint (struct bp_location *bl)
10774 {
10775 struct watchpoint *w = (struct watchpoint *) bl->owner;
10776
10777 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10778 bl->watchpoint_type);
10779 }
10780
10781 /* Implement the "remove" breakpoint_ops method for
10782 masked hardware watchpoints. */
10783
10784 static int
10785 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10786 {
10787 struct watchpoint *w = (struct watchpoint *) bl->owner;
10788
10789 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10790 bl->watchpoint_type);
10791 }
10792
10793 /* Implement the "resources_needed" breakpoint_ops method for
10794 masked hardware watchpoints. */
10795
10796 static int
10797 resources_needed_masked_watchpoint (const struct bp_location *bl)
10798 {
10799 struct watchpoint *w = (struct watchpoint *) bl->owner;
10800
10801 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10802 }
10803
10804 /* Implement the "works_in_software_mode" breakpoint_ops method for
10805 masked hardware watchpoints. */
10806
10807 static int
10808 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10809 {
10810 return 0;
10811 }
10812
10813 /* Implement the "print_it" breakpoint_ops method for
10814 masked hardware watchpoints. */
10815
10816 static enum print_stop_action
10817 print_it_masked_watchpoint (bpstat bs)
10818 {
10819 struct breakpoint *b = bs->breakpoint_at;
10820 struct ui_out *uiout = current_uiout;
10821
10822 /* Masked watchpoints have only one location. */
10823 gdb_assert (b->loc && b->loc->next == NULL);
10824
10825 annotate_watchpoint (b->number);
10826 maybe_print_thread_hit_breakpoint (uiout);
10827
10828 switch (b->type)
10829 {
10830 case bp_hardware_watchpoint:
10831 if (uiout->is_mi_like_p ())
10832 uiout->field_string
10833 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10834 break;
10835
10836 case bp_read_watchpoint:
10837 if (uiout->is_mi_like_p ())
10838 uiout->field_string
10839 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10840 break;
10841
10842 case bp_access_watchpoint:
10843 if (uiout->is_mi_like_p ())
10844 uiout->field_string
10845 ("reason",
10846 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10847 break;
10848 default:
10849 internal_error (__FILE__, __LINE__,
10850 _("Invalid hardware watchpoint type."));
10851 }
10852
10853 mention (b);
10854 uiout->text (_("\n\
10855 Check the underlying instruction at PC for the memory\n\
10856 address and value which triggered this watchpoint.\n"));
10857 uiout->text ("\n");
10858
10859 /* More than one watchpoint may have been triggered. */
10860 return PRINT_UNKNOWN;
10861 }
10862
10863 /* Implement the "print_one_detail" breakpoint_ops method for
10864 masked hardware watchpoints. */
10865
10866 static void
10867 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10868 struct ui_out *uiout)
10869 {
10870 struct watchpoint *w = (struct watchpoint *) b;
10871
10872 /* Masked watchpoints have only one location. */
10873 gdb_assert (b->loc && b->loc->next == NULL);
10874
10875 uiout->text ("\tmask ");
10876 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10877 uiout->text ("\n");
10878 }
10879
10880 /* Implement the "print_mention" breakpoint_ops method for
10881 masked hardware watchpoints. */
10882
10883 static void
10884 print_mention_masked_watchpoint (struct breakpoint *b)
10885 {
10886 struct watchpoint *w = (struct watchpoint *) b;
10887 struct ui_out *uiout = current_uiout;
10888 const char *tuple_name;
10889
10890 switch (b->type)
10891 {
10892 case bp_hardware_watchpoint:
10893 uiout->text ("Masked hardware watchpoint ");
10894 tuple_name = "wpt";
10895 break;
10896 case bp_read_watchpoint:
10897 uiout->text ("Masked hardware read watchpoint ");
10898 tuple_name = "hw-rwpt";
10899 break;
10900 case bp_access_watchpoint:
10901 uiout->text ("Masked hardware access (read/write) watchpoint ");
10902 tuple_name = "hw-awpt";
10903 break;
10904 default:
10905 internal_error (__FILE__, __LINE__,
10906 _("Invalid hardware watchpoint type."));
10907 }
10908
10909 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10910 uiout->field_int ("number", b->number);
10911 uiout->text (": ");
10912 uiout->field_string ("exp", w->exp_string);
10913 }
10914
10915 /* Implement the "print_recreate" breakpoint_ops method for
10916 masked hardware watchpoints. */
10917
10918 static void
10919 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10920 {
10921 struct watchpoint *w = (struct watchpoint *) b;
10922 char tmp[40];
10923
10924 switch (b->type)
10925 {
10926 case bp_hardware_watchpoint:
10927 fprintf_unfiltered (fp, "watch");
10928 break;
10929 case bp_read_watchpoint:
10930 fprintf_unfiltered (fp, "rwatch");
10931 break;
10932 case bp_access_watchpoint:
10933 fprintf_unfiltered (fp, "awatch");
10934 break;
10935 default:
10936 internal_error (__FILE__, __LINE__,
10937 _("Invalid hardware watchpoint type."));
10938 }
10939
10940 sprintf_vma (tmp, w->hw_wp_mask);
10941 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10942 print_recreate_thread (b, fp);
10943 }
10944
10945 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10946
10947 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10948
10949 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10950
10951 static int
10952 is_masked_watchpoint (const struct breakpoint *b)
10953 {
10954 return b->ops == &masked_watchpoint_breakpoint_ops;
10955 }
10956
10957 /* accessflag: hw_write: watch write,
10958 hw_read: watch read,
10959 hw_access: watch access (read or write) */
10960 static void
10961 watch_command_1 (const char *arg, int accessflag, int from_tty,
10962 int just_location, int internal)
10963 {
10964 struct breakpoint *scope_breakpoint = NULL;
10965 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10966 struct value *val, *mark, *result;
10967 int saved_bitpos = 0, saved_bitsize = 0;
10968 const char *exp_start = NULL;
10969 const char *exp_end = NULL;
10970 const char *tok, *end_tok;
10971 int toklen = -1;
10972 const char *cond_start = NULL;
10973 const char *cond_end = NULL;
10974 enum bptype bp_type;
10975 int thread = -1;
10976 int pc = 0;
10977 /* Flag to indicate whether we are going to use masks for
10978 the hardware watchpoint. */
10979 int use_mask = 0;
10980 CORE_ADDR mask = 0;
10981 struct watchpoint *w;
10982 char *expression;
10983 struct cleanup *back_to;
10984
10985 /* Make sure that we actually have parameters to parse. */
10986 if (arg != NULL && arg[0] != '\0')
10987 {
10988 const char *value_start;
10989
10990 exp_end = arg + strlen (arg);
10991
10992 /* Look for "parameter value" pairs at the end
10993 of the arguments string. */
10994 for (tok = exp_end - 1; tok > arg; tok--)
10995 {
10996 /* Skip whitespace at the end of the argument list. */
10997 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10998 tok--;
10999
11000 /* Find the beginning of the last token.
11001 This is the value of the parameter. */
11002 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11003 tok--;
11004 value_start = tok + 1;
11005
11006 /* Skip whitespace. */
11007 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11008 tok--;
11009
11010 end_tok = tok;
11011
11012 /* Find the beginning of the second to last token.
11013 This is the parameter itself. */
11014 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11015 tok--;
11016 tok++;
11017 toklen = end_tok - tok + 1;
11018
11019 if (toklen == 6 && startswith (tok, "thread"))
11020 {
11021 struct thread_info *thr;
11022 /* At this point we've found a "thread" token, which means
11023 the user is trying to set a watchpoint that triggers
11024 only in a specific thread. */
11025 const char *endp;
11026
11027 if (thread != -1)
11028 error(_("You can specify only one thread."));
11029
11030 /* Extract the thread ID from the next token. */
11031 thr = parse_thread_id (value_start, &endp);
11032
11033 /* Check if the user provided a valid thread ID. */
11034 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11035 invalid_thread_id_error (value_start);
11036
11037 thread = thr->global_num;
11038 }
11039 else if (toklen == 4 && startswith (tok, "mask"))
11040 {
11041 /* We've found a "mask" token, which means the user wants to
11042 create a hardware watchpoint that is going to have the mask
11043 facility. */
11044 struct value *mask_value, *mark;
11045
11046 if (use_mask)
11047 error(_("You can specify only one mask."));
11048
11049 use_mask = just_location = 1;
11050
11051 mark = value_mark ();
11052 mask_value = parse_to_comma_and_eval (&value_start);
11053 mask = value_as_address (mask_value);
11054 value_free_to_mark (mark);
11055 }
11056 else
11057 /* We didn't recognize what we found. We should stop here. */
11058 break;
11059
11060 /* Truncate the string and get rid of the "parameter value" pair before
11061 the arguments string is parsed by the parse_exp_1 function. */
11062 exp_end = tok;
11063 }
11064 }
11065 else
11066 exp_end = arg;
11067
11068 /* Parse the rest of the arguments. From here on out, everything
11069 is in terms of a newly allocated string instead of the original
11070 ARG. */
11071 innermost_block = NULL;
11072 expression = savestring (arg, exp_end - arg);
11073 back_to = make_cleanup (xfree, expression);
11074 exp_start = arg = expression;
11075 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11076 exp_end = arg;
11077 /* Remove trailing whitespace from the expression before saving it.
11078 This makes the eventual display of the expression string a bit
11079 prettier. */
11080 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11081 --exp_end;
11082
11083 /* Checking if the expression is not constant. */
11084 if (watchpoint_exp_is_const (exp.get ()))
11085 {
11086 int len;
11087
11088 len = exp_end - exp_start;
11089 while (len > 0 && isspace (exp_start[len - 1]))
11090 len--;
11091 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11092 }
11093
11094 exp_valid_block = innermost_block;
11095 mark = value_mark ();
11096 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11097
11098 if (val != NULL && just_location)
11099 {
11100 saved_bitpos = value_bitpos (val);
11101 saved_bitsize = value_bitsize (val);
11102 }
11103
11104 if (just_location)
11105 {
11106 int ret;
11107
11108 exp_valid_block = NULL;
11109 val = value_addr (result);
11110 release_value (val);
11111 value_free_to_mark (mark);
11112
11113 if (use_mask)
11114 {
11115 ret = target_masked_watch_num_registers (value_as_address (val),
11116 mask);
11117 if (ret == -1)
11118 error (_("This target does not support masked watchpoints."));
11119 else if (ret == -2)
11120 error (_("Invalid mask or memory region."));
11121 }
11122 }
11123 else if (val != NULL)
11124 release_value (val);
11125
11126 tok = skip_spaces_const (arg);
11127 end_tok = skip_to_space_const (tok);
11128
11129 toklen = end_tok - tok;
11130 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11131 {
11132 innermost_block = NULL;
11133 tok = cond_start = end_tok + 1;
11134 parse_exp_1 (&tok, 0, 0, 0);
11135
11136 /* The watchpoint expression may not be local, but the condition
11137 may still be. E.g.: `watch global if local > 0'. */
11138 cond_exp_valid_block = innermost_block;
11139
11140 cond_end = tok;
11141 }
11142 if (*tok)
11143 error (_("Junk at end of command."));
11144
11145 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
11146
11147 /* Save this because create_internal_breakpoint below invalidates
11148 'wp_frame'. */
11149 frame_id watchpoint_frame = get_frame_id (wp_frame);
11150
11151 /* If the expression is "local", then set up a "watchpoint scope"
11152 breakpoint at the point where we've left the scope of the watchpoint
11153 expression. Create the scope breakpoint before the watchpoint, so
11154 that we will encounter it first in bpstat_stop_status. */
11155 if (exp_valid_block != NULL && wp_frame != NULL)
11156 {
11157 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
11158
11159 if (frame_id_p (caller_frame_id))
11160 {
11161 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
11162 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
11163
11164 scope_breakpoint
11165 = create_internal_breakpoint (caller_arch, caller_pc,
11166 bp_watchpoint_scope,
11167 &momentary_breakpoint_ops);
11168
11169 /* create_internal_breakpoint could invalidate WP_FRAME. */
11170 wp_frame = NULL;
11171
11172 scope_breakpoint->enable_state = bp_enabled;
11173
11174 /* Automatically delete the breakpoint when it hits. */
11175 scope_breakpoint->disposition = disp_del;
11176
11177 /* Only break in the proper frame (help with recursion). */
11178 scope_breakpoint->frame_id = caller_frame_id;
11179
11180 /* Set the address at which we will stop. */
11181 scope_breakpoint->loc->gdbarch = caller_arch;
11182 scope_breakpoint->loc->requested_address = caller_pc;
11183 scope_breakpoint->loc->address
11184 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11185 scope_breakpoint->loc->requested_address,
11186 scope_breakpoint->type);
11187 }
11188 }
11189
11190 /* Now set up the breakpoint. We create all watchpoints as hardware
11191 watchpoints here even if hardware watchpoints are turned off, a call
11192 to update_watchpoint later in this function will cause the type to
11193 drop back to bp_watchpoint (software watchpoint) if required. */
11194
11195 if (accessflag == hw_read)
11196 bp_type = bp_read_watchpoint;
11197 else if (accessflag == hw_access)
11198 bp_type = bp_access_watchpoint;
11199 else
11200 bp_type = bp_hardware_watchpoint;
11201
11202 w = new watchpoint ();
11203
11204 if (use_mask)
11205 init_raw_breakpoint_without_location (w, NULL, bp_type,
11206 &masked_watchpoint_breakpoint_ops);
11207 else
11208 init_raw_breakpoint_without_location (w, NULL, bp_type,
11209 &watchpoint_breakpoint_ops);
11210 w->thread = thread;
11211 w->disposition = disp_donttouch;
11212 w->pspace = current_program_space;
11213 w->exp = std::move (exp);
11214 w->exp_valid_block = exp_valid_block;
11215 w->cond_exp_valid_block = cond_exp_valid_block;
11216 if (just_location)
11217 {
11218 struct type *t = value_type (val);
11219 CORE_ADDR addr = value_as_address (val);
11220
11221 w->exp_string_reparse
11222 = current_language->la_watch_location_expression (t, addr).release ();
11223
11224 w->exp_string = xstrprintf ("-location %.*s",
11225 (int) (exp_end - exp_start), exp_start);
11226 }
11227 else
11228 w->exp_string = savestring (exp_start, exp_end - exp_start);
11229
11230 if (use_mask)
11231 {
11232 w->hw_wp_mask = mask;
11233 }
11234 else
11235 {
11236 w->val = val;
11237 w->val_bitpos = saved_bitpos;
11238 w->val_bitsize = saved_bitsize;
11239 w->val_valid = 1;
11240 }
11241
11242 if (cond_start)
11243 w->cond_string = savestring (cond_start, cond_end - cond_start);
11244 else
11245 w->cond_string = 0;
11246
11247 if (frame_id_p (watchpoint_frame))
11248 {
11249 w->watchpoint_frame = watchpoint_frame;
11250 w->watchpoint_thread = inferior_ptid;
11251 }
11252 else
11253 {
11254 w->watchpoint_frame = null_frame_id;
11255 w->watchpoint_thread = null_ptid;
11256 }
11257
11258 if (scope_breakpoint != NULL)
11259 {
11260 /* The scope breakpoint is related to the watchpoint. We will
11261 need to act on them together. */
11262 w->related_breakpoint = scope_breakpoint;
11263 scope_breakpoint->related_breakpoint = w;
11264 }
11265
11266 if (!just_location)
11267 value_free_to_mark (mark);
11268
11269 TRY
11270 {
11271 /* Finally update the new watchpoint. This creates the locations
11272 that should be inserted. */
11273 update_watchpoint (w, 1);
11274 }
11275 CATCH (e, RETURN_MASK_ALL)
11276 {
11277 delete_breakpoint (w);
11278 throw_exception (e);
11279 }
11280 END_CATCH
11281
11282 install_breakpoint (internal, w, 1);
11283 do_cleanups (back_to);
11284 }
11285
11286 /* Return count of debug registers needed to watch the given expression.
11287 If the watchpoint cannot be handled in hardware return zero. */
11288
11289 static int
11290 can_use_hardware_watchpoint (struct value *v)
11291 {
11292 int found_memory_cnt = 0;
11293 struct value *head = v;
11294
11295 /* Did the user specifically forbid us to use hardware watchpoints? */
11296 if (!can_use_hw_watchpoints)
11297 return 0;
11298
11299 /* Make sure that the value of the expression depends only upon
11300 memory contents, and values computed from them within GDB. If we
11301 find any register references or function calls, we can't use a
11302 hardware watchpoint.
11303
11304 The idea here is that evaluating an expression generates a series
11305 of values, one holding the value of every subexpression. (The
11306 expression a*b+c has five subexpressions: a, b, a*b, c, and
11307 a*b+c.) GDB's values hold almost enough information to establish
11308 the criteria given above --- they identify memory lvalues,
11309 register lvalues, computed values, etcetera. So we can evaluate
11310 the expression, and then scan the chain of values that leaves
11311 behind to decide whether we can detect any possible change to the
11312 expression's final value using only hardware watchpoints.
11313
11314 However, I don't think that the values returned by inferior
11315 function calls are special in any way. So this function may not
11316 notice that an expression involving an inferior function call
11317 can't be watched with hardware watchpoints. FIXME. */
11318 for (; v; v = value_next (v))
11319 {
11320 if (VALUE_LVAL (v) == lval_memory)
11321 {
11322 if (v != head && value_lazy (v))
11323 /* A lazy memory lvalue in the chain is one that GDB never
11324 needed to fetch; we either just used its address (e.g.,
11325 `a' in `a.b') or we never needed it at all (e.g., `a'
11326 in `a,b'). This doesn't apply to HEAD; if that is
11327 lazy then it was not readable, but watch it anyway. */
11328 ;
11329 else
11330 {
11331 /* Ahh, memory we actually used! Check if we can cover
11332 it with hardware watchpoints. */
11333 struct type *vtype = check_typedef (value_type (v));
11334
11335 /* We only watch structs and arrays if user asked for it
11336 explicitly, never if they just happen to appear in a
11337 middle of some value chain. */
11338 if (v == head
11339 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11340 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11341 {
11342 CORE_ADDR vaddr = value_address (v);
11343 int len;
11344 int num_regs;
11345
11346 len = (target_exact_watchpoints
11347 && is_scalar_type_recursive (vtype))?
11348 1 : TYPE_LENGTH (value_type (v));
11349
11350 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11351 if (!num_regs)
11352 return 0;
11353 else
11354 found_memory_cnt += num_regs;
11355 }
11356 }
11357 }
11358 else if (VALUE_LVAL (v) != not_lval
11359 && deprecated_value_modifiable (v) == 0)
11360 return 0; /* These are values from the history (e.g., $1). */
11361 else if (VALUE_LVAL (v) == lval_register)
11362 return 0; /* Cannot watch a register with a HW watchpoint. */
11363 }
11364
11365 /* The expression itself looks suitable for using a hardware
11366 watchpoint, but give the target machine a chance to reject it. */
11367 return found_memory_cnt;
11368 }
11369
11370 void
11371 watch_command_wrapper (char *arg, int from_tty, int internal)
11372 {
11373 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11374 }
11375
11376 /* A helper function that looks for the "-location" argument and then
11377 calls watch_command_1. */
11378
11379 static void
11380 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11381 {
11382 int just_location = 0;
11383
11384 if (arg
11385 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11386 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11387 {
11388 arg = skip_spaces (arg);
11389 just_location = 1;
11390 }
11391
11392 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11393 }
11394
11395 static void
11396 watch_command (char *arg, int from_tty)
11397 {
11398 watch_maybe_just_location (arg, hw_write, from_tty);
11399 }
11400
11401 void
11402 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11403 {
11404 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11405 }
11406
11407 static void
11408 rwatch_command (char *arg, int from_tty)
11409 {
11410 watch_maybe_just_location (arg, hw_read, from_tty);
11411 }
11412
11413 void
11414 awatch_command_wrapper (char *arg, int from_tty, int internal)
11415 {
11416 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11417 }
11418
11419 static void
11420 awatch_command (char *arg, int from_tty)
11421 {
11422 watch_maybe_just_location (arg, hw_access, from_tty);
11423 }
11424 \f
11425
11426 /* Data for the FSM that manages the until(location)/advance commands
11427 in infcmd.c. Here because it uses the mechanisms of
11428 breakpoints. */
11429
11430 struct until_break_fsm
11431 {
11432 /* The base class. */
11433 struct thread_fsm thread_fsm;
11434
11435 /* The thread that as current when the command was executed. */
11436 int thread;
11437
11438 /* The breakpoint set at the destination location. */
11439 struct breakpoint *location_breakpoint;
11440
11441 /* Breakpoint set at the return address in the caller frame. May be
11442 NULL. */
11443 struct breakpoint *caller_breakpoint;
11444 };
11445
11446 static void until_break_fsm_clean_up (struct thread_fsm *self,
11447 struct thread_info *thread);
11448 static int until_break_fsm_should_stop (struct thread_fsm *self,
11449 struct thread_info *thread);
11450 static enum async_reply_reason
11451 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11452
11453 /* until_break_fsm's vtable. */
11454
11455 static struct thread_fsm_ops until_break_fsm_ops =
11456 {
11457 NULL, /* dtor */
11458 until_break_fsm_clean_up,
11459 until_break_fsm_should_stop,
11460 NULL, /* return_value */
11461 until_break_fsm_async_reply_reason,
11462 };
11463
11464 /* Allocate a new until_break_command_fsm. */
11465
11466 static struct until_break_fsm *
11467 new_until_break_fsm (struct interp *cmd_interp, int thread,
11468 struct breakpoint *location_breakpoint,
11469 struct breakpoint *caller_breakpoint)
11470 {
11471 struct until_break_fsm *sm;
11472
11473 sm = XCNEW (struct until_break_fsm);
11474 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11475
11476 sm->thread = thread;
11477 sm->location_breakpoint = location_breakpoint;
11478 sm->caller_breakpoint = caller_breakpoint;
11479
11480 return sm;
11481 }
11482
11483 /* Implementation of the 'should_stop' FSM method for the
11484 until(location)/advance commands. */
11485
11486 static int
11487 until_break_fsm_should_stop (struct thread_fsm *self,
11488 struct thread_info *tp)
11489 {
11490 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11491
11492 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11493 sm->location_breakpoint) != NULL
11494 || (sm->caller_breakpoint != NULL
11495 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11496 sm->caller_breakpoint) != NULL))
11497 thread_fsm_set_finished (self);
11498
11499 return 1;
11500 }
11501
11502 /* Implementation of the 'clean_up' FSM method for the
11503 until(location)/advance commands. */
11504
11505 static void
11506 until_break_fsm_clean_up (struct thread_fsm *self,
11507 struct thread_info *thread)
11508 {
11509 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11510
11511 /* Clean up our temporary breakpoints. */
11512 if (sm->location_breakpoint != NULL)
11513 {
11514 delete_breakpoint (sm->location_breakpoint);
11515 sm->location_breakpoint = NULL;
11516 }
11517 if (sm->caller_breakpoint != NULL)
11518 {
11519 delete_breakpoint (sm->caller_breakpoint);
11520 sm->caller_breakpoint = NULL;
11521 }
11522 delete_longjmp_breakpoint (sm->thread);
11523 }
11524
11525 /* Implementation of the 'async_reply_reason' FSM method for the
11526 until(location)/advance commands. */
11527
11528 static enum async_reply_reason
11529 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11530 {
11531 return EXEC_ASYNC_LOCATION_REACHED;
11532 }
11533
11534 void
11535 until_break_command (char *arg, int from_tty, int anywhere)
11536 {
11537 struct symtabs_and_lines sals;
11538 struct symtab_and_line sal;
11539 struct frame_info *frame;
11540 struct gdbarch *frame_gdbarch;
11541 struct frame_id stack_frame_id;
11542 struct frame_id caller_frame_id;
11543 struct breakpoint *location_breakpoint;
11544 struct breakpoint *caller_breakpoint = NULL;
11545 struct cleanup *old_chain;
11546 int thread;
11547 struct thread_info *tp;
11548 struct until_break_fsm *sm;
11549
11550 clear_proceed_status (0);
11551
11552 /* Set a breakpoint where the user wants it and at return from
11553 this function. */
11554
11555 event_location_up location = string_to_event_location (&arg, current_language);
11556
11557 if (last_displayed_sal_is_valid ())
11558 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11559 get_last_displayed_symtab (),
11560 get_last_displayed_line ());
11561 else
11562 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11563 NULL, (struct symtab *) NULL, 0);
11564
11565 if (sals.nelts != 1)
11566 error (_("Couldn't get information on specified line."));
11567
11568 sal = sals.sals[0];
11569 xfree (sals.sals); /* malloc'd, so freed. */
11570
11571 if (*arg)
11572 error (_("Junk at end of arguments."));
11573
11574 resolve_sal_pc (&sal);
11575
11576 tp = inferior_thread ();
11577 thread = tp->global_num;
11578
11579 old_chain = make_cleanup (null_cleanup, NULL);
11580
11581 /* Note linespec handling above invalidates the frame chain.
11582 Installing a breakpoint also invalidates the frame chain (as it
11583 may need to switch threads), so do any frame handling before
11584 that. */
11585
11586 frame = get_selected_frame (NULL);
11587 frame_gdbarch = get_frame_arch (frame);
11588 stack_frame_id = get_stack_frame_id (frame);
11589 caller_frame_id = frame_unwind_caller_id (frame);
11590
11591 /* Keep within the current frame, or in frames called by the current
11592 one. */
11593
11594 if (frame_id_p (caller_frame_id))
11595 {
11596 struct symtab_and_line sal2;
11597 struct gdbarch *caller_gdbarch;
11598
11599 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11600 sal2.pc = frame_unwind_caller_pc (frame);
11601 caller_gdbarch = frame_unwind_caller_arch (frame);
11602 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11603 sal2,
11604 caller_frame_id,
11605 bp_until);
11606 make_cleanup_delete_breakpoint (caller_breakpoint);
11607
11608 set_longjmp_breakpoint (tp, caller_frame_id);
11609 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11610 }
11611
11612 /* set_momentary_breakpoint could invalidate FRAME. */
11613 frame = NULL;
11614
11615 if (anywhere)
11616 /* If the user told us to continue until a specified location,
11617 we don't specify a frame at which we need to stop. */
11618 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11619 null_frame_id, bp_until);
11620 else
11621 /* Otherwise, specify the selected frame, because we want to stop
11622 only at the very same frame. */
11623 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11624 stack_frame_id, bp_until);
11625 make_cleanup_delete_breakpoint (location_breakpoint);
11626
11627 sm = new_until_break_fsm (command_interp (), tp->global_num,
11628 location_breakpoint, caller_breakpoint);
11629 tp->thread_fsm = &sm->thread_fsm;
11630
11631 discard_cleanups (old_chain);
11632
11633 proceed (-1, GDB_SIGNAL_DEFAULT);
11634 }
11635
11636 /* This function attempts to parse an optional "if <cond>" clause
11637 from the arg string. If one is not found, it returns NULL.
11638
11639 Else, it returns a pointer to the condition string. (It does not
11640 attempt to evaluate the string against a particular block.) And,
11641 it updates arg to point to the first character following the parsed
11642 if clause in the arg string. */
11643
11644 const char *
11645 ep_parse_optional_if_clause (const char **arg)
11646 {
11647 const char *cond_string;
11648
11649 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11650 return NULL;
11651
11652 /* Skip the "if" keyword. */
11653 (*arg) += 2;
11654
11655 /* Skip any extra leading whitespace, and record the start of the
11656 condition string. */
11657 *arg = skip_spaces_const (*arg);
11658 cond_string = *arg;
11659
11660 /* Assume that the condition occupies the remainder of the arg
11661 string. */
11662 (*arg) += strlen (cond_string);
11663
11664 return cond_string;
11665 }
11666
11667 /* Commands to deal with catching events, such as signals, exceptions,
11668 process start/exit, etc. */
11669
11670 typedef enum
11671 {
11672 catch_fork_temporary, catch_vfork_temporary,
11673 catch_fork_permanent, catch_vfork_permanent
11674 }
11675 catch_fork_kind;
11676
11677 static void
11678 catch_fork_command_1 (char *arg_entry, int from_tty,
11679 struct cmd_list_element *command)
11680 {
11681 const char *arg = arg_entry;
11682 struct gdbarch *gdbarch = get_current_arch ();
11683 const char *cond_string = NULL;
11684 catch_fork_kind fork_kind;
11685 int tempflag;
11686
11687 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11688 tempflag = (fork_kind == catch_fork_temporary
11689 || fork_kind == catch_vfork_temporary);
11690
11691 if (!arg)
11692 arg = "";
11693 arg = skip_spaces_const (arg);
11694
11695 /* The allowed syntax is:
11696 catch [v]fork
11697 catch [v]fork if <cond>
11698
11699 First, check if there's an if clause. */
11700 cond_string = ep_parse_optional_if_clause (&arg);
11701
11702 if ((*arg != '\0') && !isspace (*arg))
11703 error (_("Junk at end of arguments."));
11704
11705 /* If this target supports it, create a fork or vfork catchpoint
11706 and enable reporting of such events. */
11707 switch (fork_kind)
11708 {
11709 case catch_fork_temporary:
11710 case catch_fork_permanent:
11711 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11712 &catch_fork_breakpoint_ops);
11713 break;
11714 case catch_vfork_temporary:
11715 case catch_vfork_permanent:
11716 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11717 &catch_vfork_breakpoint_ops);
11718 break;
11719 default:
11720 error (_("unsupported or unknown fork kind; cannot catch it"));
11721 break;
11722 }
11723 }
11724
11725 static void
11726 catch_exec_command_1 (char *arg_entry, int from_tty,
11727 struct cmd_list_element *command)
11728 {
11729 const char *arg = arg_entry;
11730 struct exec_catchpoint *c;
11731 struct gdbarch *gdbarch = get_current_arch ();
11732 int tempflag;
11733 const char *cond_string = NULL;
11734
11735 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11736
11737 if (!arg)
11738 arg = "";
11739 arg = skip_spaces_const (arg);
11740
11741 /* The allowed syntax is:
11742 catch exec
11743 catch exec if <cond>
11744
11745 First, check if there's an if clause. */
11746 cond_string = ep_parse_optional_if_clause (&arg);
11747
11748 if ((*arg != '\0') && !isspace (*arg))
11749 error (_("Junk at end of arguments."));
11750
11751 c = new exec_catchpoint ();
11752 init_catchpoint (c, gdbarch, tempflag, cond_string,
11753 &catch_exec_breakpoint_ops);
11754 c->exec_pathname = NULL;
11755
11756 install_breakpoint (0, c, 1);
11757 }
11758
11759 void
11760 init_ada_exception_breakpoint (struct breakpoint *b,
11761 struct gdbarch *gdbarch,
11762 struct symtab_and_line sal,
11763 char *addr_string,
11764 const struct breakpoint_ops *ops,
11765 int tempflag,
11766 int enabled,
11767 int from_tty)
11768 {
11769 if (from_tty)
11770 {
11771 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11772 if (!loc_gdbarch)
11773 loc_gdbarch = gdbarch;
11774
11775 describe_other_breakpoints (loc_gdbarch,
11776 sal.pspace, sal.pc, sal.section, -1);
11777 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11778 version for exception catchpoints, because two catchpoints
11779 used for different exception names will use the same address.
11780 In this case, a "breakpoint ... also set at..." warning is
11781 unproductive. Besides, the warning phrasing is also a bit
11782 inappropriate, we should use the word catchpoint, and tell
11783 the user what type of catchpoint it is. The above is good
11784 enough for now, though. */
11785 }
11786
11787 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11788
11789 b->enable_state = enabled ? bp_enabled : bp_disabled;
11790 b->disposition = tempflag ? disp_del : disp_donttouch;
11791 b->location = string_to_event_location (&addr_string,
11792 language_def (language_ada));
11793 b->language = language_ada;
11794 }
11795
11796 static void
11797 catch_command (char *arg, int from_tty)
11798 {
11799 error (_("Catch requires an event name."));
11800 }
11801 \f
11802
11803 static void
11804 tcatch_command (char *arg, int from_tty)
11805 {
11806 error (_("Catch requires an event name."));
11807 }
11808
11809 /* A qsort comparison function that sorts breakpoints in order. */
11810
11811 static int
11812 compare_breakpoints (const void *a, const void *b)
11813 {
11814 const breakpoint_p *ba = (const breakpoint_p *) a;
11815 uintptr_t ua = (uintptr_t) *ba;
11816 const breakpoint_p *bb = (const breakpoint_p *) b;
11817 uintptr_t ub = (uintptr_t) *bb;
11818
11819 if ((*ba)->number < (*bb)->number)
11820 return -1;
11821 else if ((*ba)->number > (*bb)->number)
11822 return 1;
11823
11824 /* Now sort by address, in case we see, e..g, two breakpoints with
11825 the number 0. */
11826 if (ua < ub)
11827 return -1;
11828 return ua > ub ? 1 : 0;
11829 }
11830
11831 /* Delete breakpoints by address or line. */
11832
11833 static void
11834 clear_command (char *arg, int from_tty)
11835 {
11836 struct breakpoint *b, *prev;
11837 VEC(breakpoint_p) *found = 0;
11838 int ix;
11839 int default_match;
11840 struct symtabs_and_lines sals;
11841 struct symtab_and_line sal;
11842 int i;
11843 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11844
11845 if (arg)
11846 {
11847 sals = decode_line_with_current_source (arg,
11848 (DECODE_LINE_FUNFIRSTLINE
11849 | DECODE_LINE_LIST_MODE));
11850 make_cleanup (xfree, sals.sals);
11851 default_match = 0;
11852 }
11853 else
11854 {
11855 sals.sals = XNEW (struct symtab_and_line);
11856 make_cleanup (xfree, sals.sals);
11857 init_sal (&sal); /* Initialize to zeroes. */
11858
11859 /* Set sal's line, symtab, pc, and pspace to the values
11860 corresponding to the last call to print_frame_info. If the
11861 codepoint is not valid, this will set all the fields to 0. */
11862 get_last_displayed_sal (&sal);
11863 if (sal.symtab == 0)
11864 error (_("No source file specified."));
11865
11866 sals.sals[0] = sal;
11867 sals.nelts = 1;
11868
11869 default_match = 1;
11870 }
11871
11872 /* We don't call resolve_sal_pc here. That's not as bad as it
11873 seems, because all existing breakpoints typically have both
11874 file/line and pc set. So, if clear is given file/line, we can
11875 match this to existing breakpoint without obtaining pc at all.
11876
11877 We only support clearing given the address explicitly
11878 present in breakpoint table. Say, we've set breakpoint
11879 at file:line. There were several PC values for that file:line,
11880 due to optimization, all in one block.
11881
11882 We've picked one PC value. If "clear" is issued with another
11883 PC corresponding to the same file:line, the breakpoint won't
11884 be cleared. We probably can still clear the breakpoint, but
11885 since the other PC value is never presented to user, user
11886 can only find it by guessing, and it does not seem important
11887 to support that. */
11888
11889 /* For each line spec given, delete bps which correspond to it. Do
11890 it in two passes, solely to preserve the current behavior that
11891 from_tty is forced true if we delete more than one
11892 breakpoint. */
11893
11894 found = NULL;
11895 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11896 for (i = 0; i < sals.nelts; i++)
11897 {
11898 const char *sal_fullname;
11899
11900 /* If exact pc given, clear bpts at that pc.
11901 If line given (pc == 0), clear all bpts on specified line.
11902 If defaulting, clear all bpts on default line
11903 or at default pc.
11904
11905 defaulting sal.pc != 0 tests to do
11906
11907 0 1 pc
11908 1 1 pc _and_ line
11909 0 0 line
11910 1 0 <can't happen> */
11911
11912 sal = sals.sals[i];
11913 sal_fullname = (sal.symtab == NULL
11914 ? NULL : symtab_to_fullname (sal.symtab));
11915
11916 /* Find all matching breakpoints and add them to 'found'. */
11917 ALL_BREAKPOINTS (b)
11918 {
11919 int match = 0;
11920 /* Are we going to delete b? */
11921 if (b->type != bp_none && !is_watchpoint (b))
11922 {
11923 struct bp_location *loc = b->loc;
11924 for (; loc; loc = loc->next)
11925 {
11926 /* If the user specified file:line, don't allow a PC
11927 match. This matches historical gdb behavior. */
11928 int pc_match = (!sal.explicit_line
11929 && sal.pc
11930 && (loc->pspace == sal.pspace)
11931 && (loc->address == sal.pc)
11932 && (!section_is_overlay (loc->section)
11933 || loc->section == sal.section));
11934 int line_match = 0;
11935
11936 if ((default_match || sal.explicit_line)
11937 && loc->symtab != NULL
11938 && sal_fullname != NULL
11939 && sal.pspace == loc->pspace
11940 && loc->line_number == sal.line
11941 && filename_cmp (symtab_to_fullname (loc->symtab),
11942 sal_fullname) == 0)
11943 line_match = 1;
11944
11945 if (pc_match || line_match)
11946 {
11947 match = 1;
11948 break;
11949 }
11950 }
11951 }
11952
11953 if (match)
11954 VEC_safe_push(breakpoint_p, found, b);
11955 }
11956 }
11957
11958 /* Now go thru the 'found' chain and delete them. */
11959 if (VEC_empty(breakpoint_p, found))
11960 {
11961 if (arg)
11962 error (_("No breakpoint at %s."), arg);
11963 else
11964 error (_("No breakpoint at this line."));
11965 }
11966
11967 /* Remove duplicates from the vec. */
11968 qsort (VEC_address (breakpoint_p, found),
11969 VEC_length (breakpoint_p, found),
11970 sizeof (breakpoint_p),
11971 compare_breakpoints);
11972 prev = VEC_index (breakpoint_p, found, 0);
11973 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11974 {
11975 if (b == prev)
11976 {
11977 VEC_ordered_remove (breakpoint_p, found, ix);
11978 --ix;
11979 }
11980 }
11981
11982 if (VEC_length(breakpoint_p, found) > 1)
11983 from_tty = 1; /* Always report if deleted more than one. */
11984 if (from_tty)
11985 {
11986 if (VEC_length(breakpoint_p, found) == 1)
11987 printf_unfiltered (_("Deleted breakpoint "));
11988 else
11989 printf_unfiltered (_("Deleted breakpoints "));
11990 }
11991
11992 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11993 {
11994 if (from_tty)
11995 printf_unfiltered ("%d ", b->number);
11996 delete_breakpoint (b);
11997 }
11998 if (from_tty)
11999 putchar_unfiltered ('\n');
12000
12001 do_cleanups (cleanups);
12002 }
12003 \f
12004 /* Delete breakpoint in BS if they are `delete' breakpoints and
12005 all breakpoints that are marked for deletion, whether hit or not.
12006 This is called after any breakpoint is hit, or after errors. */
12007
12008 void
12009 breakpoint_auto_delete (bpstat bs)
12010 {
12011 struct breakpoint *b, *b_tmp;
12012
12013 for (; bs; bs = bs->next)
12014 if (bs->breakpoint_at
12015 && bs->breakpoint_at->disposition == disp_del
12016 && bs->stop)
12017 delete_breakpoint (bs->breakpoint_at);
12018
12019 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12020 {
12021 if (b->disposition == disp_del_at_next_stop)
12022 delete_breakpoint (b);
12023 }
12024 }
12025
12026 /* A comparison function for bp_location AP and BP being interfaced to
12027 qsort. Sort elements primarily by their ADDRESS (no matter what
12028 does breakpoint_address_is_meaningful say for its OWNER),
12029 secondarily by ordering first permanent elements and
12030 terciarily just ensuring the array is sorted stable way despite
12031 qsort being an unstable algorithm. */
12032
12033 static int
12034 bp_locations_compare (const void *ap, const void *bp)
12035 {
12036 const struct bp_location *a = *(const struct bp_location **) ap;
12037 const struct bp_location *b = *(const struct bp_location **) bp;
12038
12039 if (a->address != b->address)
12040 return (a->address > b->address) - (a->address < b->address);
12041
12042 /* Sort locations at the same address by their pspace number, keeping
12043 locations of the same inferior (in a multi-inferior environment)
12044 grouped. */
12045
12046 if (a->pspace->num != b->pspace->num)
12047 return ((a->pspace->num > b->pspace->num)
12048 - (a->pspace->num < b->pspace->num));
12049
12050 /* Sort permanent breakpoints first. */
12051 if (a->permanent != b->permanent)
12052 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12053
12054 /* Make the internal GDB representation stable across GDB runs
12055 where A and B memory inside GDB can differ. Breakpoint locations of
12056 the same type at the same address can be sorted in arbitrary order. */
12057
12058 if (a->owner->number != b->owner->number)
12059 return ((a->owner->number > b->owner->number)
12060 - (a->owner->number < b->owner->number));
12061
12062 return (a > b) - (a < b);
12063 }
12064
12065 /* Set bp_locations_placed_address_before_address_max and
12066 bp_locations_shadow_len_after_address_max according to the current
12067 content of the bp_locations array. */
12068
12069 static void
12070 bp_locations_target_extensions_update (void)
12071 {
12072 struct bp_location *bl, **blp_tmp;
12073
12074 bp_locations_placed_address_before_address_max = 0;
12075 bp_locations_shadow_len_after_address_max = 0;
12076
12077 ALL_BP_LOCATIONS (bl, blp_tmp)
12078 {
12079 CORE_ADDR start, end, addr;
12080
12081 if (!bp_location_has_shadow (bl))
12082 continue;
12083
12084 start = bl->target_info.placed_address;
12085 end = start + bl->target_info.shadow_len;
12086
12087 gdb_assert (bl->address >= start);
12088 addr = bl->address - start;
12089 if (addr > bp_locations_placed_address_before_address_max)
12090 bp_locations_placed_address_before_address_max = addr;
12091
12092 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12093
12094 gdb_assert (bl->address < end);
12095 addr = end - bl->address;
12096 if (addr > bp_locations_shadow_len_after_address_max)
12097 bp_locations_shadow_len_after_address_max = addr;
12098 }
12099 }
12100
12101 /* Download tracepoint locations if they haven't been. */
12102
12103 static void
12104 download_tracepoint_locations (void)
12105 {
12106 struct breakpoint *b;
12107 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12108
12109 scoped_restore_current_pspace_and_thread restore_pspace_thread;
12110
12111 ALL_TRACEPOINTS (b)
12112 {
12113 struct bp_location *bl;
12114 struct tracepoint *t;
12115 int bp_location_downloaded = 0;
12116
12117 if ((b->type == bp_fast_tracepoint
12118 ? !may_insert_fast_tracepoints
12119 : !may_insert_tracepoints))
12120 continue;
12121
12122 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12123 {
12124 if (target_can_download_tracepoint ())
12125 can_download_tracepoint = TRIBOOL_TRUE;
12126 else
12127 can_download_tracepoint = TRIBOOL_FALSE;
12128 }
12129
12130 if (can_download_tracepoint == TRIBOOL_FALSE)
12131 break;
12132
12133 for (bl = b->loc; bl; bl = bl->next)
12134 {
12135 /* In tracepoint, locations are _never_ duplicated, so
12136 should_be_inserted is equivalent to
12137 unduplicated_should_be_inserted. */
12138 if (!should_be_inserted (bl) || bl->inserted)
12139 continue;
12140
12141 switch_to_program_space_and_thread (bl->pspace);
12142
12143 target_download_tracepoint (bl);
12144
12145 bl->inserted = 1;
12146 bp_location_downloaded = 1;
12147 }
12148 t = (struct tracepoint *) b;
12149 t->number_on_target = b->number;
12150 if (bp_location_downloaded)
12151 observer_notify_breakpoint_modified (b);
12152 }
12153 }
12154
12155 /* Swap the insertion/duplication state between two locations. */
12156
12157 static void
12158 swap_insertion (struct bp_location *left, struct bp_location *right)
12159 {
12160 const int left_inserted = left->inserted;
12161 const int left_duplicate = left->duplicate;
12162 const int left_needs_update = left->needs_update;
12163 const struct bp_target_info left_target_info = left->target_info;
12164
12165 /* Locations of tracepoints can never be duplicated. */
12166 if (is_tracepoint (left->owner))
12167 gdb_assert (!left->duplicate);
12168 if (is_tracepoint (right->owner))
12169 gdb_assert (!right->duplicate);
12170
12171 left->inserted = right->inserted;
12172 left->duplicate = right->duplicate;
12173 left->needs_update = right->needs_update;
12174 left->target_info = right->target_info;
12175 right->inserted = left_inserted;
12176 right->duplicate = left_duplicate;
12177 right->needs_update = left_needs_update;
12178 right->target_info = left_target_info;
12179 }
12180
12181 /* Force the re-insertion of the locations at ADDRESS. This is called
12182 once a new/deleted/modified duplicate location is found and we are evaluating
12183 conditions on the target's side. Such conditions need to be updated on
12184 the target. */
12185
12186 static void
12187 force_breakpoint_reinsertion (struct bp_location *bl)
12188 {
12189 struct bp_location **locp = NULL, **loc2p;
12190 struct bp_location *loc;
12191 CORE_ADDR address = 0;
12192 int pspace_num;
12193
12194 address = bl->address;
12195 pspace_num = bl->pspace->num;
12196
12197 /* This is only meaningful if the target is
12198 evaluating conditions and if the user has
12199 opted for condition evaluation on the target's
12200 side. */
12201 if (gdb_evaluates_breakpoint_condition_p ()
12202 || !target_supports_evaluation_of_breakpoint_conditions ())
12203 return;
12204
12205 /* Flag all breakpoint locations with this address and
12206 the same program space as the location
12207 as "its condition has changed". We need to
12208 update the conditions on the target's side. */
12209 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12210 {
12211 loc = *loc2p;
12212
12213 if (!is_breakpoint (loc->owner)
12214 || pspace_num != loc->pspace->num)
12215 continue;
12216
12217 /* Flag the location appropriately. We use a different state to
12218 let everyone know that we already updated the set of locations
12219 with addr bl->address and program space bl->pspace. This is so
12220 we don't have to keep calling these functions just to mark locations
12221 that have already been marked. */
12222 loc->condition_changed = condition_updated;
12223
12224 /* Free the agent expression bytecode as well. We will compute
12225 it later on. */
12226 loc->cond_bytecode.reset ();
12227 }
12228 }
12229 /* Called whether new breakpoints are created, or existing breakpoints
12230 deleted, to update the global location list and recompute which
12231 locations are duplicate of which.
12232
12233 The INSERT_MODE flag determines whether locations may not, may, or
12234 shall be inserted now. See 'enum ugll_insert_mode' for more
12235 info. */
12236
12237 static void
12238 update_global_location_list (enum ugll_insert_mode insert_mode)
12239 {
12240 struct breakpoint *b;
12241 struct bp_location **locp, *loc;
12242 struct cleanup *cleanups;
12243 /* Last breakpoint location address that was marked for update. */
12244 CORE_ADDR last_addr = 0;
12245 /* Last breakpoint location program space that was marked for update. */
12246 int last_pspace_num = -1;
12247
12248 /* Used in the duplicates detection below. When iterating over all
12249 bp_locations, points to the first bp_location of a given address.
12250 Breakpoints and watchpoints of different types are never
12251 duplicates of each other. Keep one pointer for each type of
12252 breakpoint/watchpoint, so we only need to loop over all locations
12253 once. */
12254 struct bp_location *bp_loc_first; /* breakpoint */
12255 struct bp_location *wp_loc_first; /* hardware watchpoint */
12256 struct bp_location *awp_loc_first; /* access watchpoint */
12257 struct bp_location *rwp_loc_first; /* read watchpoint */
12258
12259 /* Saved former bp_locations array which we compare against the newly
12260 built bp_locations from the current state of ALL_BREAKPOINTS. */
12261 struct bp_location **old_locations, **old_locp;
12262 unsigned old_locations_count;
12263
12264 old_locations = bp_locations;
12265 old_locations_count = bp_locations_count;
12266 bp_locations = NULL;
12267 bp_locations_count = 0;
12268 cleanups = make_cleanup (xfree, old_locations);
12269
12270 ALL_BREAKPOINTS (b)
12271 for (loc = b->loc; loc; loc = loc->next)
12272 bp_locations_count++;
12273
12274 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12275 locp = bp_locations;
12276 ALL_BREAKPOINTS (b)
12277 for (loc = b->loc; loc; loc = loc->next)
12278 *locp++ = loc;
12279 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12280 bp_locations_compare);
12281
12282 bp_locations_target_extensions_update ();
12283
12284 /* Identify bp_location instances that are no longer present in the
12285 new list, and therefore should be freed. Note that it's not
12286 necessary that those locations should be removed from inferior --
12287 if there's another location at the same address (previously
12288 marked as duplicate), we don't need to remove/insert the
12289 location.
12290
12291 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12292 and former bp_location array state respectively. */
12293
12294 locp = bp_locations;
12295 for (old_locp = old_locations;
12296 old_locp < old_locations + old_locations_count;
12297 old_locp++)
12298 {
12299 struct bp_location *old_loc = *old_locp;
12300 struct bp_location **loc2p;
12301
12302 /* Tells if 'old_loc' is found among the new locations. If
12303 not, we have to free it. */
12304 int found_object = 0;
12305 /* Tells if the location should remain inserted in the target. */
12306 int keep_in_target = 0;
12307 int removed = 0;
12308
12309 /* Skip LOCP entries which will definitely never be needed.
12310 Stop either at or being the one matching OLD_LOC. */
12311 while (locp < bp_locations + bp_locations_count
12312 && (*locp)->address < old_loc->address)
12313 locp++;
12314
12315 for (loc2p = locp;
12316 (loc2p < bp_locations + bp_locations_count
12317 && (*loc2p)->address == old_loc->address);
12318 loc2p++)
12319 {
12320 /* Check if this is a new/duplicated location or a duplicated
12321 location that had its condition modified. If so, we want to send
12322 its condition to the target if evaluation of conditions is taking
12323 place there. */
12324 if ((*loc2p)->condition_changed == condition_modified
12325 && (last_addr != old_loc->address
12326 || last_pspace_num != old_loc->pspace->num))
12327 {
12328 force_breakpoint_reinsertion (*loc2p);
12329 last_pspace_num = old_loc->pspace->num;
12330 }
12331
12332 if (*loc2p == old_loc)
12333 found_object = 1;
12334 }
12335
12336 /* We have already handled this address, update it so that we don't
12337 have to go through updates again. */
12338 last_addr = old_loc->address;
12339
12340 /* Target-side condition evaluation: Handle deleted locations. */
12341 if (!found_object)
12342 force_breakpoint_reinsertion (old_loc);
12343
12344 /* If this location is no longer present, and inserted, look if
12345 there's maybe a new location at the same address. If so,
12346 mark that one inserted, and don't remove this one. This is
12347 needed so that we don't have a time window where a breakpoint
12348 at certain location is not inserted. */
12349
12350 if (old_loc->inserted)
12351 {
12352 /* If the location is inserted now, we might have to remove
12353 it. */
12354
12355 if (found_object && should_be_inserted (old_loc))
12356 {
12357 /* The location is still present in the location list,
12358 and still should be inserted. Don't do anything. */
12359 keep_in_target = 1;
12360 }
12361 else
12362 {
12363 /* This location still exists, but it won't be kept in the
12364 target since it may have been disabled. We proceed to
12365 remove its target-side condition. */
12366
12367 /* The location is either no longer present, or got
12368 disabled. See if there's another location at the
12369 same address, in which case we don't need to remove
12370 this one from the target. */
12371
12372 /* OLD_LOC comes from existing struct breakpoint. */
12373 if (breakpoint_address_is_meaningful (old_loc->owner))
12374 {
12375 for (loc2p = locp;
12376 (loc2p < bp_locations + bp_locations_count
12377 && (*loc2p)->address == old_loc->address);
12378 loc2p++)
12379 {
12380 struct bp_location *loc2 = *loc2p;
12381
12382 if (breakpoint_locations_match (loc2, old_loc))
12383 {
12384 /* Read watchpoint locations are switched to
12385 access watchpoints, if the former are not
12386 supported, but the latter are. */
12387 if (is_hardware_watchpoint (old_loc->owner))
12388 {
12389 gdb_assert (is_hardware_watchpoint (loc2->owner));
12390 loc2->watchpoint_type = old_loc->watchpoint_type;
12391 }
12392
12393 /* loc2 is a duplicated location. We need to check
12394 if it should be inserted in case it will be
12395 unduplicated. */
12396 if (loc2 != old_loc
12397 && unduplicated_should_be_inserted (loc2))
12398 {
12399 swap_insertion (old_loc, loc2);
12400 keep_in_target = 1;
12401 break;
12402 }
12403 }
12404 }
12405 }
12406 }
12407
12408 if (!keep_in_target)
12409 {
12410 if (remove_breakpoint (old_loc))
12411 {
12412 /* This is just about all we can do. We could keep
12413 this location on the global list, and try to
12414 remove it next time, but there's no particular
12415 reason why we will succeed next time.
12416
12417 Note that at this point, old_loc->owner is still
12418 valid, as delete_breakpoint frees the breakpoint
12419 only after calling us. */
12420 printf_filtered (_("warning: Error removing "
12421 "breakpoint %d\n"),
12422 old_loc->owner->number);
12423 }
12424 removed = 1;
12425 }
12426 }
12427
12428 if (!found_object)
12429 {
12430 if (removed && target_is_non_stop_p ()
12431 && need_moribund_for_location_type (old_loc))
12432 {
12433 /* This location was removed from the target. In
12434 non-stop mode, a race condition is possible where
12435 we've removed a breakpoint, but stop events for that
12436 breakpoint are already queued and will arrive later.
12437 We apply an heuristic to be able to distinguish such
12438 SIGTRAPs from other random SIGTRAPs: we keep this
12439 breakpoint location for a bit, and will retire it
12440 after we see some number of events. The theory here
12441 is that reporting of events should, "on the average",
12442 be fair, so after a while we'll see events from all
12443 threads that have anything of interest, and no longer
12444 need to keep this breakpoint location around. We
12445 don't hold locations forever so to reduce chances of
12446 mistaking a non-breakpoint SIGTRAP for a breakpoint
12447 SIGTRAP.
12448
12449 The heuristic failing can be disastrous on
12450 decr_pc_after_break targets.
12451
12452 On decr_pc_after_break targets, like e.g., x86-linux,
12453 if we fail to recognize a late breakpoint SIGTRAP,
12454 because events_till_retirement has reached 0 too
12455 soon, we'll fail to do the PC adjustment, and report
12456 a random SIGTRAP to the user. When the user resumes
12457 the inferior, it will most likely immediately crash
12458 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12459 corrupted, because of being resumed e.g., in the
12460 middle of a multi-byte instruction, or skipped a
12461 one-byte instruction. This was actually seen happen
12462 on native x86-linux, and should be less rare on
12463 targets that do not support new thread events, like
12464 remote, due to the heuristic depending on
12465 thread_count.
12466
12467 Mistaking a random SIGTRAP for a breakpoint trap
12468 causes similar symptoms (PC adjustment applied when
12469 it shouldn't), but then again, playing with SIGTRAPs
12470 behind the debugger's back is asking for trouble.
12471
12472 Since hardware watchpoint traps are always
12473 distinguishable from other traps, so we don't need to
12474 apply keep hardware watchpoint moribund locations
12475 around. We simply always ignore hardware watchpoint
12476 traps we can no longer explain. */
12477
12478 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12479 old_loc->owner = NULL;
12480
12481 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12482 }
12483 else
12484 {
12485 old_loc->owner = NULL;
12486 decref_bp_location (&old_loc);
12487 }
12488 }
12489 }
12490
12491 /* Rescan breakpoints at the same address and section, marking the
12492 first one as "first" and any others as "duplicates". This is so
12493 that the bpt instruction is only inserted once. If we have a
12494 permanent breakpoint at the same place as BPT, make that one the
12495 official one, and the rest as duplicates. Permanent breakpoints
12496 are sorted first for the same address.
12497
12498 Do the same for hardware watchpoints, but also considering the
12499 watchpoint's type (regular/access/read) and length. */
12500
12501 bp_loc_first = NULL;
12502 wp_loc_first = NULL;
12503 awp_loc_first = NULL;
12504 rwp_loc_first = NULL;
12505 ALL_BP_LOCATIONS (loc, locp)
12506 {
12507 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12508 non-NULL. */
12509 struct bp_location **loc_first_p;
12510 b = loc->owner;
12511
12512 if (!unduplicated_should_be_inserted (loc)
12513 || !breakpoint_address_is_meaningful (b)
12514 /* Don't detect duplicate for tracepoint locations because they are
12515 never duplicated. See the comments in field `duplicate' of
12516 `struct bp_location'. */
12517 || is_tracepoint (b))
12518 {
12519 /* Clear the condition modification flag. */
12520 loc->condition_changed = condition_unchanged;
12521 continue;
12522 }
12523
12524 if (b->type == bp_hardware_watchpoint)
12525 loc_first_p = &wp_loc_first;
12526 else if (b->type == bp_read_watchpoint)
12527 loc_first_p = &rwp_loc_first;
12528 else if (b->type == bp_access_watchpoint)
12529 loc_first_p = &awp_loc_first;
12530 else
12531 loc_first_p = &bp_loc_first;
12532
12533 if (*loc_first_p == NULL
12534 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12535 || !breakpoint_locations_match (loc, *loc_first_p))
12536 {
12537 *loc_first_p = loc;
12538 loc->duplicate = 0;
12539
12540 if (is_breakpoint (loc->owner) && loc->condition_changed)
12541 {
12542 loc->needs_update = 1;
12543 /* Clear the condition modification flag. */
12544 loc->condition_changed = condition_unchanged;
12545 }
12546 continue;
12547 }
12548
12549
12550 /* This and the above ensure the invariant that the first location
12551 is not duplicated, and is the inserted one.
12552 All following are marked as duplicated, and are not inserted. */
12553 if (loc->inserted)
12554 swap_insertion (loc, *loc_first_p);
12555 loc->duplicate = 1;
12556
12557 /* Clear the condition modification flag. */
12558 loc->condition_changed = condition_unchanged;
12559 }
12560
12561 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12562 {
12563 if (insert_mode != UGLL_DONT_INSERT)
12564 insert_breakpoint_locations ();
12565 else
12566 {
12567 /* Even though the caller told us to not insert new
12568 locations, we may still need to update conditions on the
12569 target's side of breakpoints that were already inserted
12570 if the target is evaluating breakpoint conditions. We
12571 only update conditions for locations that are marked
12572 "needs_update". */
12573 update_inserted_breakpoint_locations ();
12574 }
12575 }
12576
12577 if (insert_mode != UGLL_DONT_INSERT)
12578 download_tracepoint_locations ();
12579
12580 do_cleanups (cleanups);
12581 }
12582
12583 void
12584 breakpoint_retire_moribund (void)
12585 {
12586 struct bp_location *loc;
12587 int ix;
12588
12589 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12590 if (--(loc->events_till_retirement) == 0)
12591 {
12592 decref_bp_location (&loc);
12593 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12594 --ix;
12595 }
12596 }
12597
12598 static void
12599 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12600 {
12601
12602 TRY
12603 {
12604 update_global_location_list (insert_mode);
12605 }
12606 CATCH (e, RETURN_MASK_ERROR)
12607 {
12608 }
12609 END_CATCH
12610 }
12611
12612 /* Clear BKP from a BPS. */
12613
12614 static void
12615 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12616 {
12617 bpstat bs;
12618
12619 for (bs = bps; bs; bs = bs->next)
12620 if (bs->breakpoint_at == bpt)
12621 {
12622 bs->breakpoint_at = NULL;
12623 bs->old_val = NULL;
12624 /* bs->commands will be freed later. */
12625 }
12626 }
12627
12628 /* Callback for iterate_over_threads. */
12629 static int
12630 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12631 {
12632 struct breakpoint *bpt = (struct breakpoint *) data;
12633
12634 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12635 return 0;
12636 }
12637
12638 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12639 callbacks. */
12640
12641 static void
12642 say_where (struct breakpoint *b)
12643 {
12644 struct value_print_options opts;
12645
12646 get_user_print_options (&opts);
12647
12648 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12649 single string. */
12650 if (b->loc == NULL)
12651 {
12652 /* For pending locations, the output differs slightly based
12653 on b->extra_string. If this is non-NULL, it contains either
12654 a condition or dprintf arguments. */
12655 if (b->extra_string == NULL)
12656 {
12657 printf_filtered (_(" (%s) pending."),
12658 event_location_to_string (b->location.get ()));
12659 }
12660 else if (b->type == bp_dprintf)
12661 {
12662 printf_filtered (_(" (%s,%s) pending."),
12663 event_location_to_string (b->location.get ()),
12664 b->extra_string);
12665 }
12666 else
12667 {
12668 printf_filtered (_(" (%s %s) pending."),
12669 event_location_to_string (b->location.get ()),
12670 b->extra_string);
12671 }
12672 }
12673 else
12674 {
12675 if (opts.addressprint || b->loc->symtab == NULL)
12676 {
12677 printf_filtered (" at ");
12678 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12679 gdb_stdout);
12680 }
12681 if (b->loc->symtab != NULL)
12682 {
12683 /* If there is a single location, we can print the location
12684 more nicely. */
12685 if (b->loc->next == NULL)
12686 printf_filtered (": file %s, line %d.",
12687 symtab_to_filename_for_display (b->loc->symtab),
12688 b->loc->line_number);
12689 else
12690 /* This is not ideal, but each location may have a
12691 different file name, and this at least reflects the
12692 real situation somewhat. */
12693 printf_filtered (": %s.",
12694 event_location_to_string (b->location.get ()));
12695 }
12696
12697 if (b->loc->next)
12698 {
12699 struct bp_location *loc = b->loc;
12700 int n = 0;
12701 for (; loc; loc = loc->next)
12702 ++n;
12703 printf_filtered (" (%d locations)", n);
12704 }
12705 }
12706 }
12707
12708 /* Default bp_location_ops methods. */
12709
12710 static void
12711 bp_location_dtor (struct bp_location *self)
12712 {
12713 xfree (self->function_name);
12714 }
12715
12716 static const struct bp_location_ops bp_location_ops =
12717 {
12718 bp_location_dtor
12719 };
12720
12721 /* Destructor for the breakpoint base class. */
12722
12723 breakpoint::~breakpoint ()
12724 {
12725 decref_counted_command_line (&this->commands);
12726 xfree (this->cond_string);
12727 xfree (this->extra_string);
12728 xfree (this->filter);
12729 }
12730
12731 static struct bp_location *
12732 base_breakpoint_allocate_location (struct breakpoint *self)
12733 {
12734 return new bp_location (&bp_location_ops, self);
12735 }
12736
12737 static void
12738 base_breakpoint_re_set (struct breakpoint *b)
12739 {
12740 /* Nothing to re-set. */
12741 }
12742
12743 #define internal_error_pure_virtual_called() \
12744 gdb_assert_not_reached ("pure virtual function called")
12745
12746 static int
12747 base_breakpoint_insert_location (struct bp_location *bl)
12748 {
12749 internal_error_pure_virtual_called ();
12750 }
12751
12752 static int
12753 base_breakpoint_remove_location (struct bp_location *bl,
12754 enum remove_bp_reason reason)
12755 {
12756 internal_error_pure_virtual_called ();
12757 }
12758
12759 static int
12760 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12761 struct address_space *aspace,
12762 CORE_ADDR bp_addr,
12763 const struct target_waitstatus *ws)
12764 {
12765 internal_error_pure_virtual_called ();
12766 }
12767
12768 static void
12769 base_breakpoint_check_status (bpstat bs)
12770 {
12771 /* Always stop. */
12772 }
12773
12774 /* A "works_in_software_mode" breakpoint_ops method that just internal
12775 errors. */
12776
12777 static int
12778 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12779 {
12780 internal_error_pure_virtual_called ();
12781 }
12782
12783 /* A "resources_needed" breakpoint_ops method that just internal
12784 errors. */
12785
12786 static int
12787 base_breakpoint_resources_needed (const struct bp_location *bl)
12788 {
12789 internal_error_pure_virtual_called ();
12790 }
12791
12792 static enum print_stop_action
12793 base_breakpoint_print_it (bpstat bs)
12794 {
12795 internal_error_pure_virtual_called ();
12796 }
12797
12798 static void
12799 base_breakpoint_print_one_detail (const struct breakpoint *self,
12800 struct ui_out *uiout)
12801 {
12802 /* nothing */
12803 }
12804
12805 static void
12806 base_breakpoint_print_mention (struct breakpoint *b)
12807 {
12808 internal_error_pure_virtual_called ();
12809 }
12810
12811 static void
12812 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12813 {
12814 internal_error_pure_virtual_called ();
12815 }
12816
12817 static void
12818 base_breakpoint_create_sals_from_location
12819 (const struct event_location *location,
12820 struct linespec_result *canonical,
12821 enum bptype type_wanted)
12822 {
12823 internal_error_pure_virtual_called ();
12824 }
12825
12826 static void
12827 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12828 struct linespec_result *c,
12829 gdb::unique_xmalloc_ptr<char> cond_string,
12830 gdb::unique_xmalloc_ptr<char> extra_string,
12831 enum bptype type_wanted,
12832 enum bpdisp disposition,
12833 int thread,
12834 int task, int ignore_count,
12835 const struct breakpoint_ops *o,
12836 int from_tty, int enabled,
12837 int internal, unsigned flags)
12838 {
12839 internal_error_pure_virtual_called ();
12840 }
12841
12842 static void
12843 base_breakpoint_decode_location (struct breakpoint *b,
12844 const struct event_location *location,
12845 struct program_space *search_pspace,
12846 struct symtabs_and_lines *sals)
12847 {
12848 internal_error_pure_virtual_called ();
12849 }
12850
12851 /* The default 'explains_signal' method. */
12852
12853 static int
12854 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12855 {
12856 return 1;
12857 }
12858
12859 /* The default "after_condition_true" method. */
12860
12861 static void
12862 base_breakpoint_after_condition_true (struct bpstats *bs)
12863 {
12864 /* Nothing to do. */
12865 }
12866
12867 struct breakpoint_ops base_breakpoint_ops =
12868 {
12869 base_breakpoint_allocate_location,
12870 base_breakpoint_re_set,
12871 base_breakpoint_insert_location,
12872 base_breakpoint_remove_location,
12873 base_breakpoint_breakpoint_hit,
12874 base_breakpoint_check_status,
12875 base_breakpoint_resources_needed,
12876 base_breakpoint_works_in_software_mode,
12877 base_breakpoint_print_it,
12878 NULL,
12879 base_breakpoint_print_one_detail,
12880 base_breakpoint_print_mention,
12881 base_breakpoint_print_recreate,
12882 base_breakpoint_create_sals_from_location,
12883 base_breakpoint_create_breakpoints_sal,
12884 base_breakpoint_decode_location,
12885 base_breakpoint_explains_signal,
12886 base_breakpoint_after_condition_true,
12887 };
12888
12889 /* Default breakpoint_ops methods. */
12890
12891 static void
12892 bkpt_re_set (struct breakpoint *b)
12893 {
12894 /* FIXME: is this still reachable? */
12895 if (breakpoint_event_location_empty_p (b))
12896 {
12897 /* Anything without a location can't be re-set. */
12898 delete_breakpoint (b);
12899 return;
12900 }
12901
12902 breakpoint_re_set_default (b);
12903 }
12904
12905 static int
12906 bkpt_insert_location (struct bp_location *bl)
12907 {
12908 CORE_ADDR addr = bl->target_info.reqstd_address;
12909
12910 bl->target_info.kind = breakpoint_kind (bl, &addr);
12911 bl->target_info.placed_address = addr;
12912
12913 if (bl->loc_type == bp_loc_hardware_breakpoint)
12914 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12915 else
12916 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12917 }
12918
12919 static int
12920 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12921 {
12922 if (bl->loc_type == bp_loc_hardware_breakpoint)
12923 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12924 else
12925 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12926 }
12927
12928 static int
12929 bkpt_breakpoint_hit (const struct bp_location *bl,
12930 struct address_space *aspace, CORE_ADDR bp_addr,
12931 const struct target_waitstatus *ws)
12932 {
12933 if (ws->kind != TARGET_WAITKIND_STOPPED
12934 || ws->value.sig != GDB_SIGNAL_TRAP)
12935 return 0;
12936
12937 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12938 aspace, bp_addr))
12939 return 0;
12940
12941 if (overlay_debugging /* unmapped overlay section */
12942 && section_is_overlay (bl->section)
12943 && !section_is_mapped (bl->section))
12944 return 0;
12945
12946 return 1;
12947 }
12948
12949 static int
12950 dprintf_breakpoint_hit (const struct bp_location *bl,
12951 struct address_space *aspace, CORE_ADDR bp_addr,
12952 const struct target_waitstatus *ws)
12953 {
12954 if (dprintf_style == dprintf_style_agent
12955 && target_can_run_breakpoint_commands ())
12956 {
12957 /* An agent-style dprintf never causes a stop. If we see a trap
12958 for this address it must be for a breakpoint that happens to
12959 be set at the same address. */
12960 return 0;
12961 }
12962
12963 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12964 }
12965
12966 static int
12967 bkpt_resources_needed (const struct bp_location *bl)
12968 {
12969 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12970
12971 return 1;
12972 }
12973
12974 static enum print_stop_action
12975 bkpt_print_it (bpstat bs)
12976 {
12977 struct breakpoint *b;
12978 const struct bp_location *bl;
12979 int bp_temp;
12980 struct ui_out *uiout = current_uiout;
12981
12982 gdb_assert (bs->bp_location_at != NULL);
12983
12984 bl = bs->bp_location_at;
12985 b = bs->breakpoint_at;
12986
12987 bp_temp = b->disposition == disp_del;
12988 if (bl->address != bl->requested_address)
12989 breakpoint_adjustment_warning (bl->requested_address,
12990 bl->address,
12991 b->number, 1);
12992 annotate_breakpoint (b->number);
12993 maybe_print_thread_hit_breakpoint (uiout);
12994
12995 if (bp_temp)
12996 uiout->text ("Temporary breakpoint ");
12997 else
12998 uiout->text ("Breakpoint ");
12999 if (uiout->is_mi_like_p ())
13000 {
13001 uiout->field_string ("reason",
13002 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13003 uiout->field_string ("disp", bpdisp_text (b->disposition));
13004 }
13005 uiout->field_int ("bkptno", b->number);
13006 uiout->text (", ");
13007
13008 return PRINT_SRC_AND_LOC;
13009 }
13010
13011 static void
13012 bkpt_print_mention (struct breakpoint *b)
13013 {
13014 if (current_uiout->is_mi_like_p ())
13015 return;
13016
13017 switch (b->type)
13018 {
13019 case bp_breakpoint:
13020 case bp_gnu_ifunc_resolver:
13021 if (b->disposition == disp_del)
13022 printf_filtered (_("Temporary breakpoint"));
13023 else
13024 printf_filtered (_("Breakpoint"));
13025 printf_filtered (_(" %d"), b->number);
13026 if (b->type == bp_gnu_ifunc_resolver)
13027 printf_filtered (_(" at gnu-indirect-function resolver"));
13028 break;
13029 case bp_hardware_breakpoint:
13030 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13031 break;
13032 case bp_dprintf:
13033 printf_filtered (_("Dprintf %d"), b->number);
13034 break;
13035 }
13036
13037 say_where (b);
13038 }
13039
13040 static void
13041 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13042 {
13043 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13044 fprintf_unfiltered (fp, "tbreak");
13045 else if (tp->type == bp_breakpoint)
13046 fprintf_unfiltered (fp, "break");
13047 else if (tp->type == bp_hardware_breakpoint
13048 && tp->disposition == disp_del)
13049 fprintf_unfiltered (fp, "thbreak");
13050 else if (tp->type == bp_hardware_breakpoint)
13051 fprintf_unfiltered (fp, "hbreak");
13052 else
13053 internal_error (__FILE__, __LINE__,
13054 _("unhandled breakpoint type %d"), (int) tp->type);
13055
13056 fprintf_unfiltered (fp, " %s",
13057 event_location_to_string (tp->location.get ()));
13058
13059 /* Print out extra_string if this breakpoint is pending. It might
13060 contain, for example, conditions that were set by the user. */
13061 if (tp->loc == NULL && tp->extra_string != NULL)
13062 fprintf_unfiltered (fp, " %s", tp->extra_string);
13063
13064 print_recreate_thread (tp, fp);
13065 }
13066
13067 static void
13068 bkpt_create_sals_from_location (const struct event_location *location,
13069 struct linespec_result *canonical,
13070 enum bptype type_wanted)
13071 {
13072 create_sals_from_location_default (location, canonical, type_wanted);
13073 }
13074
13075 static void
13076 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13077 struct linespec_result *canonical,
13078 gdb::unique_xmalloc_ptr<char> cond_string,
13079 gdb::unique_xmalloc_ptr<char> extra_string,
13080 enum bptype type_wanted,
13081 enum bpdisp disposition,
13082 int thread,
13083 int task, int ignore_count,
13084 const struct breakpoint_ops *ops,
13085 int from_tty, int enabled,
13086 int internal, unsigned flags)
13087 {
13088 create_breakpoints_sal_default (gdbarch, canonical,
13089 std::move (cond_string),
13090 std::move (extra_string),
13091 type_wanted,
13092 disposition, thread, task,
13093 ignore_count, ops, from_tty,
13094 enabled, internal, flags);
13095 }
13096
13097 static void
13098 bkpt_decode_location (struct breakpoint *b,
13099 const struct event_location *location,
13100 struct program_space *search_pspace,
13101 struct symtabs_and_lines *sals)
13102 {
13103 decode_location_default (b, location, search_pspace, sals);
13104 }
13105
13106 /* Virtual table for internal breakpoints. */
13107
13108 static void
13109 internal_bkpt_re_set (struct breakpoint *b)
13110 {
13111 switch (b->type)
13112 {
13113 /* Delete overlay event and longjmp master breakpoints; they
13114 will be reset later by breakpoint_re_set. */
13115 case bp_overlay_event:
13116 case bp_longjmp_master:
13117 case bp_std_terminate_master:
13118 case bp_exception_master:
13119 delete_breakpoint (b);
13120 break;
13121
13122 /* This breakpoint is special, it's set up when the inferior
13123 starts and we really don't want to touch it. */
13124 case bp_shlib_event:
13125
13126 /* Like bp_shlib_event, this breakpoint type is special. Once
13127 it is set up, we do not want to touch it. */
13128 case bp_thread_event:
13129 break;
13130 }
13131 }
13132
13133 static void
13134 internal_bkpt_check_status (bpstat bs)
13135 {
13136 if (bs->breakpoint_at->type == bp_shlib_event)
13137 {
13138 /* If requested, stop when the dynamic linker notifies GDB of
13139 events. This allows the user to get control and place
13140 breakpoints in initializer routines for dynamically loaded
13141 objects (among other things). */
13142 bs->stop = stop_on_solib_events;
13143 bs->print = stop_on_solib_events;
13144 }
13145 else
13146 bs->stop = 0;
13147 }
13148
13149 static enum print_stop_action
13150 internal_bkpt_print_it (bpstat bs)
13151 {
13152 struct breakpoint *b;
13153
13154 b = bs->breakpoint_at;
13155
13156 switch (b->type)
13157 {
13158 case bp_shlib_event:
13159 /* Did we stop because the user set the stop_on_solib_events
13160 variable? (If so, we report this as a generic, "Stopped due
13161 to shlib event" message.) */
13162 print_solib_event (0);
13163 break;
13164
13165 case bp_thread_event:
13166 /* Not sure how we will get here.
13167 GDB should not stop for these breakpoints. */
13168 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13169 break;
13170
13171 case bp_overlay_event:
13172 /* By analogy with the thread event, GDB should not stop for these. */
13173 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13174 break;
13175
13176 case bp_longjmp_master:
13177 /* These should never be enabled. */
13178 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13179 break;
13180
13181 case bp_std_terminate_master:
13182 /* These should never be enabled. */
13183 printf_filtered (_("std::terminate Master Breakpoint: "
13184 "gdb should not stop!\n"));
13185 break;
13186
13187 case bp_exception_master:
13188 /* These should never be enabled. */
13189 printf_filtered (_("Exception Master Breakpoint: "
13190 "gdb should not stop!\n"));
13191 break;
13192 }
13193
13194 return PRINT_NOTHING;
13195 }
13196
13197 static void
13198 internal_bkpt_print_mention (struct breakpoint *b)
13199 {
13200 /* Nothing to mention. These breakpoints are internal. */
13201 }
13202
13203 /* Virtual table for momentary breakpoints */
13204
13205 static void
13206 momentary_bkpt_re_set (struct breakpoint *b)
13207 {
13208 /* Keep temporary breakpoints, which can be encountered when we step
13209 over a dlopen call and solib_add is resetting the breakpoints.
13210 Otherwise these should have been blown away via the cleanup chain
13211 or by breakpoint_init_inferior when we rerun the executable. */
13212 }
13213
13214 static void
13215 momentary_bkpt_check_status (bpstat bs)
13216 {
13217 /* Nothing. The point of these breakpoints is causing a stop. */
13218 }
13219
13220 static enum print_stop_action
13221 momentary_bkpt_print_it (bpstat bs)
13222 {
13223 return PRINT_UNKNOWN;
13224 }
13225
13226 static void
13227 momentary_bkpt_print_mention (struct breakpoint *b)
13228 {
13229 /* Nothing to mention. These breakpoints are internal. */
13230 }
13231
13232 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13233
13234 It gets cleared already on the removal of the first one of such placed
13235 breakpoints. This is OK as they get all removed altogether. */
13236
13237 longjmp_breakpoint::~longjmp_breakpoint ()
13238 {
13239 thread_info *tp = find_thread_global_id (this->thread);
13240
13241 if (tp != NULL)
13242 tp->initiating_frame = null_frame_id;
13243 }
13244
13245 /* Specific methods for probe breakpoints. */
13246
13247 static int
13248 bkpt_probe_insert_location (struct bp_location *bl)
13249 {
13250 int v = bkpt_insert_location (bl);
13251
13252 if (v == 0)
13253 {
13254 /* The insertion was successful, now let's set the probe's semaphore
13255 if needed. */
13256 if (bl->probe.probe->pops->set_semaphore != NULL)
13257 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13258 bl->probe.objfile,
13259 bl->gdbarch);
13260 }
13261
13262 return v;
13263 }
13264
13265 static int
13266 bkpt_probe_remove_location (struct bp_location *bl,
13267 enum remove_bp_reason reason)
13268 {
13269 /* Let's clear the semaphore before removing the location. */
13270 if (bl->probe.probe->pops->clear_semaphore != NULL)
13271 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13272 bl->probe.objfile,
13273 bl->gdbarch);
13274
13275 return bkpt_remove_location (bl, reason);
13276 }
13277
13278 static void
13279 bkpt_probe_create_sals_from_location (const struct event_location *location,
13280 struct linespec_result *canonical,
13281 enum bptype type_wanted)
13282 {
13283 struct linespec_sals lsal;
13284
13285 lsal.sals = parse_probes (location, NULL, canonical);
13286 lsal.canonical
13287 = xstrdup (event_location_to_string (canonical->location.get ()));
13288 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13289 }
13290
13291 static void
13292 bkpt_probe_decode_location (struct breakpoint *b,
13293 const struct event_location *location,
13294 struct program_space *search_pspace,
13295 struct symtabs_and_lines *sals)
13296 {
13297 *sals = parse_probes (location, search_pspace, NULL);
13298 if (!sals->sals)
13299 error (_("probe not found"));
13300 }
13301
13302 /* The breakpoint_ops structure to be used in tracepoints. */
13303
13304 static void
13305 tracepoint_re_set (struct breakpoint *b)
13306 {
13307 breakpoint_re_set_default (b);
13308 }
13309
13310 static int
13311 tracepoint_breakpoint_hit (const struct bp_location *bl,
13312 struct address_space *aspace, CORE_ADDR bp_addr,
13313 const struct target_waitstatus *ws)
13314 {
13315 /* By definition, the inferior does not report stops at
13316 tracepoints. */
13317 return 0;
13318 }
13319
13320 static void
13321 tracepoint_print_one_detail (const struct breakpoint *self,
13322 struct ui_out *uiout)
13323 {
13324 struct tracepoint *tp = (struct tracepoint *) self;
13325 if (tp->static_trace_marker_id)
13326 {
13327 gdb_assert (self->type == bp_static_tracepoint);
13328
13329 uiout->text ("\tmarker id is ");
13330 uiout->field_string ("static-tracepoint-marker-string-id",
13331 tp->static_trace_marker_id);
13332 uiout->text ("\n");
13333 }
13334 }
13335
13336 static void
13337 tracepoint_print_mention (struct breakpoint *b)
13338 {
13339 if (current_uiout->is_mi_like_p ())
13340 return;
13341
13342 switch (b->type)
13343 {
13344 case bp_tracepoint:
13345 printf_filtered (_("Tracepoint"));
13346 printf_filtered (_(" %d"), b->number);
13347 break;
13348 case bp_fast_tracepoint:
13349 printf_filtered (_("Fast tracepoint"));
13350 printf_filtered (_(" %d"), b->number);
13351 break;
13352 case bp_static_tracepoint:
13353 printf_filtered (_("Static tracepoint"));
13354 printf_filtered (_(" %d"), b->number);
13355 break;
13356 default:
13357 internal_error (__FILE__, __LINE__,
13358 _("unhandled tracepoint type %d"), (int) b->type);
13359 }
13360
13361 say_where (b);
13362 }
13363
13364 static void
13365 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13366 {
13367 struct tracepoint *tp = (struct tracepoint *) self;
13368
13369 if (self->type == bp_fast_tracepoint)
13370 fprintf_unfiltered (fp, "ftrace");
13371 else if (self->type == bp_static_tracepoint)
13372 fprintf_unfiltered (fp, "strace");
13373 else if (self->type == bp_tracepoint)
13374 fprintf_unfiltered (fp, "trace");
13375 else
13376 internal_error (__FILE__, __LINE__,
13377 _("unhandled tracepoint type %d"), (int) self->type);
13378
13379 fprintf_unfiltered (fp, " %s",
13380 event_location_to_string (self->location.get ()));
13381 print_recreate_thread (self, fp);
13382
13383 if (tp->pass_count)
13384 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13385 }
13386
13387 static void
13388 tracepoint_create_sals_from_location (const struct event_location *location,
13389 struct linespec_result *canonical,
13390 enum bptype type_wanted)
13391 {
13392 create_sals_from_location_default (location, canonical, type_wanted);
13393 }
13394
13395 static void
13396 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13397 struct linespec_result *canonical,
13398 gdb::unique_xmalloc_ptr<char> cond_string,
13399 gdb::unique_xmalloc_ptr<char> extra_string,
13400 enum bptype type_wanted,
13401 enum bpdisp disposition,
13402 int thread,
13403 int task, int ignore_count,
13404 const struct breakpoint_ops *ops,
13405 int from_tty, int enabled,
13406 int internal, unsigned flags)
13407 {
13408 create_breakpoints_sal_default (gdbarch, canonical,
13409 std::move (cond_string),
13410 std::move (extra_string),
13411 type_wanted,
13412 disposition, thread, task,
13413 ignore_count, ops, from_tty,
13414 enabled, internal, flags);
13415 }
13416
13417 static void
13418 tracepoint_decode_location (struct breakpoint *b,
13419 const struct event_location *location,
13420 struct program_space *search_pspace,
13421 struct symtabs_and_lines *sals)
13422 {
13423 decode_location_default (b, location, search_pspace, sals);
13424 }
13425
13426 struct breakpoint_ops tracepoint_breakpoint_ops;
13427
13428 /* The breakpoint_ops structure to be use on tracepoints placed in a
13429 static probe. */
13430
13431 static void
13432 tracepoint_probe_create_sals_from_location
13433 (const struct event_location *location,
13434 struct linespec_result *canonical,
13435 enum bptype type_wanted)
13436 {
13437 /* We use the same method for breakpoint on probes. */
13438 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13439 }
13440
13441 static void
13442 tracepoint_probe_decode_location (struct breakpoint *b,
13443 const struct event_location *location,
13444 struct program_space *search_pspace,
13445 struct symtabs_and_lines *sals)
13446 {
13447 /* We use the same method for breakpoint on probes. */
13448 bkpt_probe_decode_location (b, location, search_pspace, sals);
13449 }
13450
13451 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13452
13453 /* Dprintf breakpoint_ops methods. */
13454
13455 static void
13456 dprintf_re_set (struct breakpoint *b)
13457 {
13458 breakpoint_re_set_default (b);
13459
13460 /* extra_string should never be non-NULL for dprintf. */
13461 gdb_assert (b->extra_string != NULL);
13462
13463 /* 1 - connect to target 1, that can run breakpoint commands.
13464 2 - create a dprintf, which resolves fine.
13465 3 - disconnect from target 1
13466 4 - connect to target 2, that can NOT run breakpoint commands.
13467
13468 After steps #3/#4, you'll want the dprintf command list to
13469 be updated, because target 1 and 2 may well return different
13470 answers for target_can_run_breakpoint_commands().
13471 Given absence of finer grained resetting, we get to do
13472 it all the time. */
13473 if (b->extra_string != NULL)
13474 update_dprintf_command_list (b);
13475 }
13476
13477 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13478
13479 static void
13480 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13481 {
13482 fprintf_unfiltered (fp, "dprintf %s,%s",
13483 event_location_to_string (tp->location.get ()),
13484 tp->extra_string);
13485 print_recreate_thread (tp, fp);
13486 }
13487
13488 /* Implement the "after_condition_true" breakpoint_ops method for
13489 dprintf.
13490
13491 dprintf's are implemented with regular commands in their command
13492 list, but we run the commands here instead of before presenting the
13493 stop to the user, as dprintf's don't actually cause a stop. This
13494 also makes it so that the commands of multiple dprintfs at the same
13495 address are all handled. */
13496
13497 static void
13498 dprintf_after_condition_true (struct bpstats *bs)
13499 {
13500 struct cleanup *old_chain;
13501 struct bpstats tmp_bs = { NULL };
13502 struct bpstats *tmp_bs_p = &tmp_bs;
13503
13504 /* dprintf's never cause a stop. This wasn't set in the
13505 check_status hook instead because that would make the dprintf's
13506 condition not be evaluated. */
13507 bs->stop = 0;
13508
13509 /* Run the command list here. Take ownership of it instead of
13510 copying. We never want these commands to run later in
13511 bpstat_do_actions, if a breakpoint that causes a stop happens to
13512 be set at same address as this dprintf, or even if running the
13513 commands here throws. */
13514 tmp_bs.commands = bs->commands;
13515 bs->commands = NULL;
13516 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13517
13518 bpstat_do_actions_1 (&tmp_bs_p);
13519
13520 /* 'tmp_bs.commands' will usually be NULL by now, but
13521 bpstat_do_actions_1 may return early without processing the whole
13522 list. */
13523 do_cleanups (old_chain);
13524 }
13525
13526 /* The breakpoint_ops structure to be used on static tracepoints with
13527 markers (`-m'). */
13528
13529 static void
13530 strace_marker_create_sals_from_location (const struct event_location *location,
13531 struct linespec_result *canonical,
13532 enum bptype type_wanted)
13533 {
13534 struct linespec_sals lsal;
13535 const char *arg_start, *arg;
13536 char *str;
13537 struct cleanup *cleanup;
13538
13539 arg = arg_start = get_linespec_location (location);
13540 lsal.sals = decode_static_tracepoint_spec (&arg);
13541
13542 str = savestring (arg_start, arg - arg_start);
13543 cleanup = make_cleanup (xfree, str);
13544 canonical->location = new_linespec_location (&str);
13545 do_cleanups (cleanup);
13546
13547 lsal.canonical
13548 = xstrdup (event_location_to_string (canonical->location.get ()));
13549 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13550 }
13551
13552 static void
13553 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13554 struct linespec_result *canonical,
13555 gdb::unique_xmalloc_ptr<char> cond_string,
13556 gdb::unique_xmalloc_ptr<char> extra_string,
13557 enum bptype type_wanted,
13558 enum bpdisp disposition,
13559 int thread,
13560 int task, int ignore_count,
13561 const struct breakpoint_ops *ops,
13562 int from_tty, int enabled,
13563 int internal, unsigned flags)
13564 {
13565 int i;
13566 struct linespec_sals *lsal = VEC_index (linespec_sals,
13567 canonical->sals, 0);
13568
13569 /* If the user is creating a static tracepoint by marker id
13570 (strace -m MARKER_ID), then store the sals index, so that
13571 breakpoint_re_set can try to match up which of the newly
13572 found markers corresponds to this one, and, don't try to
13573 expand multiple locations for each sal, given than SALS
13574 already should contain all sals for MARKER_ID. */
13575
13576 for (i = 0; i < lsal->sals.nelts; ++i)
13577 {
13578 struct symtabs_and_lines expanded;
13579 struct tracepoint *tp;
13580 event_location_up location;
13581
13582 expanded.nelts = 1;
13583 expanded.sals = &lsal->sals.sals[i];
13584
13585 location = copy_event_location (canonical->location.get ());
13586
13587 tp = new tracepoint ();
13588 init_breakpoint_sal (tp, gdbarch, expanded,
13589 std::move (location), NULL,
13590 std::move (cond_string),
13591 std::move (extra_string),
13592 type_wanted, disposition,
13593 thread, task, ignore_count, ops,
13594 from_tty, enabled, internal, flags,
13595 canonical->special_display);
13596 /* Given that its possible to have multiple markers with
13597 the same string id, if the user is creating a static
13598 tracepoint by marker id ("strace -m MARKER_ID"), then
13599 store the sals index, so that breakpoint_re_set can
13600 try to match up which of the newly found markers
13601 corresponds to this one */
13602 tp->static_trace_marker_id_idx = i;
13603
13604 install_breakpoint (internal, tp, 0);
13605 }
13606 }
13607
13608 static void
13609 strace_marker_decode_location (struct breakpoint *b,
13610 const struct event_location *location,
13611 struct program_space *search_pspace,
13612 struct symtabs_and_lines *sals)
13613 {
13614 struct tracepoint *tp = (struct tracepoint *) b;
13615 const char *s = get_linespec_location (location);
13616
13617 *sals = decode_static_tracepoint_spec (&s);
13618 if (sals->nelts > tp->static_trace_marker_id_idx)
13619 {
13620 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13621 sals->nelts = 1;
13622 }
13623 else
13624 error (_("marker %s not found"), tp->static_trace_marker_id);
13625 }
13626
13627 static struct breakpoint_ops strace_marker_breakpoint_ops;
13628
13629 static int
13630 strace_marker_p (struct breakpoint *b)
13631 {
13632 return b->ops == &strace_marker_breakpoint_ops;
13633 }
13634
13635 /* Delete a breakpoint and clean up all traces of it in the data
13636 structures. */
13637
13638 void
13639 delete_breakpoint (struct breakpoint *bpt)
13640 {
13641 struct breakpoint *b;
13642
13643 gdb_assert (bpt != NULL);
13644
13645 /* Has this bp already been deleted? This can happen because
13646 multiple lists can hold pointers to bp's. bpstat lists are
13647 especial culprits.
13648
13649 One example of this happening is a watchpoint's scope bp. When
13650 the scope bp triggers, we notice that the watchpoint is out of
13651 scope, and delete it. We also delete its scope bp. But the
13652 scope bp is marked "auto-deleting", and is already on a bpstat.
13653 That bpstat is then checked for auto-deleting bp's, which are
13654 deleted.
13655
13656 A real solution to this problem might involve reference counts in
13657 bp's, and/or giving them pointers back to their referencing
13658 bpstat's, and teaching delete_breakpoint to only free a bp's
13659 storage when no more references were extent. A cheaper bandaid
13660 was chosen. */
13661 if (bpt->type == bp_none)
13662 return;
13663
13664 /* At least avoid this stale reference until the reference counting
13665 of breakpoints gets resolved. */
13666 if (bpt->related_breakpoint != bpt)
13667 {
13668 struct breakpoint *related;
13669 struct watchpoint *w;
13670
13671 if (bpt->type == bp_watchpoint_scope)
13672 w = (struct watchpoint *) bpt->related_breakpoint;
13673 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13674 w = (struct watchpoint *) bpt;
13675 else
13676 w = NULL;
13677 if (w != NULL)
13678 watchpoint_del_at_next_stop (w);
13679
13680 /* Unlink bpt from the bpt->related_breakpoint ring. */
13681 for (related = bpt; related->related_breakpoint != bpt;
13682 related = related->related_breakpoint);
13683 related->related_breakpoint = bpt->related_breakpoint;
13684 bpt->related_breakpoint = bpt;
13685 }
13686
13687 /* watch_command_1 creates a watchpoint but only sets its number if
13688 update_watchpoint succeeds in creating its bp_locations. If there's
13689 a problem in that process, we'll be asked to delete the half-created
13690 watchpoint. In that case, don't announce the deletion. */
13691 if (bpt->number)
13692 observer_notify_breakpoint_deleted (bpt);
13693
13694 if (breakpoint_chain == bpt)
13695 breakpoint_chain = bpt->next;
13696
13697 ALL_BREAKPOINTS (b)
13698 if (b->next == bpt)
13699 {
13700 b->next = bpt->next;
13701 break;
13702 }
13703
13704 /* Be sure no bpstat's are pointing at the breakpoint after it's
13705 been freed. */
13706 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13707 in all threads for now. Note that we cannot just remove bpstats
13708 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13709 commands are associated with the bpstat; if we remove it here,
13710 then the later call to bpstat_do_actions (&stop_bpstat); in
13711 event-top.c won't do anything, and temporary breakpoints with
13712 commands won't work. */
13713
13714 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13715
13716 /* Now that breakpoint is removed from breakpoint list, update the
13717 global location list. This will remove locations that used to
13718 belong to this breakpoint. Do this before freeing the breakpoint
13719 itself, since remove_breakpoint looks at location's owner. It
13720 might be better design to have location completely
13721 self-contained, but it's not the case now. */
13722 update_global_location_list (UGLL_DONT_INSERT);
13723
13724 /* On the chance that someone will soon try again to delete this
13725 same bp, we mark it as deleted before freeing its storage. */
13726 bpt->type = bp_none;
13727 delete bpt;
13728 }
13729
13730 static void
13731 do_delete_breakpoint_cleanup (void *b)
13732 {
13733 delete_breakpoint ((struct breakpoint *) b);
13734 }
13735
13736 struct cleanup *
13737 make_cleanup_delete_breakpoint (struct breakpoint *b)
13738 {
13739 return make_cleanup (do_delete_breakpoint_cleanup, b);
13740 }
13741
13742 /* Iterator function to call a user-provided callback function once
13743 for each of B and its related breakpoints. */
13744
13745 static void
13746 iterate_over_related_breakpoints (struct breakpoint *b,
13747 void (*function) (struct breakpoint *,
13748 void *),
13749 void *data)
13750 {
13751 struct breakpoint *related;
13752
13753 related = b;
13754 do
13755 {
13756 struct breakpoint *next;
13757
13758 /* FUNCTION may delete RELATED. */
13759 next = related->related_breakpoint;
13760
13761 if (next == related)
13762 {
13763 /* RELATED is the last ring entry. */
13764 function (related, data);
13765
13766 /* FUNCTION may have deleted it, so we'd never reach back to
13767 B. There's nothing left to do anyway, so just break
13768 out. */
13769 break;
13770 }
13771 else
13772 function (related, data);
13773
13774 related = next;
13775 }
13776 while (related != b);
13777 }
13778
13779 static void
13780 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13781 {
13782 delete_breakpoint (b);
13783 }
13784
13785 /* A callback for map_breakpoint_numbers that calls
13786 delete_breakpoint. */
13787
13788 static void
13789 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13790 {
13791 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13792 }
13793
13794 void
13795 delete_command (char *arg, int from_tty)
13796 {
13797 struct breakpoint *b, *b_tmp;
13798
13799 dont_repeat ();
13800
13801 if (arg == 0)
13802 {
13803 int breaks_to_delete = 0;
13804
13805 /* Delete all breakpoints if no argument. Do not delete
13806 internal breakpoints, these have to be deleted with an
13807 explicit breakpoint number argument. */
13808 ALL_BREAKPOINTS (b)
13809 if (user_breakpoint_p (b))
13810 {
13811 breaks_to_delete = 1;
13812 break;
13813 }
13814
13815 /* Ask user only if there are some breakpoints to delete. */
13816 if (!from_tty
13817 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13818 {
13819 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13820 if (user_breakpoint_p (b))
13821 delete_breakpoint (b);
13822 }
13823 }
13824 else
13825 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13826 }
13827
13828 /* Return true if all locations of B bound to PSPACE are pending. If
13829 PSPACE is NULL, all locations of all program spaces are
13830 considered. */
13831
13832 static int
13833 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13834 {
13835 struct bp_location *loc;
13836
13837 for (loc = b->loc; loc != NULL; loc = loc->next)
13838 if ((pspace == NULL
13839 || loc->pspace == pspace)
13840 && !loc->shlib_disabled
13841 && !loc->pspace->executing_startup)
13842 return 0;
13843 return 1;
13844 }
13845
13846 /* Subroutine of update_breakpoint_locations to simplify it.
13847 Return non-zero if multiple fns in list LOC have the same name.
13848 Null names are ignored. */
13849
13850 static int
13851 ambiguous_names_p (struct bp_location *loc)
13852 {
13853 struct bp_location *l;
13854 htab_t htab = htab_create_alloc (13, htab_hash_string,
13855 (int (*) (const void *,
13856 const void *)) streq,
13857 NULL, xcalloc, xfree);
13858
13859 for (l = loc; l != NULL; l = l->next)
13860 {
13861 const char **slot;
13862 const char *name = l->function_name;
13863
13864 /* Allow for some names to be NULL, ignore them. */
13865 if (name == NULL)
13866 continue;
13867
13868 slot = (const char **) htab_find_slot (htab, (const void *) name,
13869 INSERT);
13870 /* NOTE: We can assume slot != NULL here because xcalloc never
13871 returns NULL. */
13872 if (*slot != NULL)
13873 {
13874 htab_delete (htab);
13875 return 1;
13876 }
13877 *slot = name;
13878 }
13879
13880 htab_delete (htab);
13881 return 0;
13882 }
13883
13884 /* When symbols change, it probably means the sources changed as well,
13885 and it might mean the static tracepoint markers are no longer at
13886 the same address or line numbers they used to be at last we
13887 checked. Losing your static tracepoints whenever you rebuild is
13888 undesirable. This function tries to resync/rematch gdb static
13889 tracepoints with the markers on the target, for static tracepoints
13890 that have not been set by marker id. Static tracepoint that have
13891 been set by marker id are reset by marker id in breakpoint_re_set.
13892 The heuristic is:
13893
13894 1) For a tracepoint set at a specific address, look for a marker at
13895 the old PC. If one is found there, assume to be the same marker.
13896 If the name / string id of the marker found is different from the
13897 previous known name, assume that means the user renamed the marker
13898 in the sources, and output a warning.
13899
13900 2) For a tracepoint set at a given line number, look for a marker
13901 at the new address of the old line number. If one is found there,
13902 assume to be the same marker. If the name / string id of the
13903 marker found is different from the previous known name, assume that
13904 means the user renamed the marker in the sources, and output a
13905 warning.
13906
13907 3) If a marker is no longer found at the same address or line, it
13908 may mean the marker no longer exists. But it may also just mean
13909 the code changed a bit. Maybe the user added a few lines of code
13910 that made the marker move up or down (in line number terms). Ask
13911 the target for info about the marker with the string id as we knew
13912 it. If found, update line number and address in the matching
13913 static tracepoint. This will get confused if there's more than one
13914 marker with the same ID (possible in UST, although unadvised
13915 precisely because it confuses tools). */
13916
13917 static struct symtab_and_line
13918 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13919 {
13920 struct tracepoint *tp = (struct tracepoint *) b;
13921 struct static_tracepoint_marker marker;
13922 CORE_ADDR pc;
13923
13924 pc = sal.pc;
13925 if (sal.line)
13926 find_line_pc (sal.symtab, sal.line, &pc);
13927
13928 if (target_static_tracepoint_marker_at (pc, &marker))
13929 {
13930 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13931 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13932 b->number,
13933 tp->static_trace_marker_id, marker.str_id);
13934
13935 xfree (tp->static_trace_marker_id);
13936 tp->static_trace_marker_id = xstrdup (marker.str_id);
13937 release_static_tracepoint_marker (&marker);
13938
13939 return sal;
13940 }
13941
13942 /* Old marker wasn't found on target at lineno. Try looking it up
13943 by string ID. */
13944 if (!sal.explicit_pc
13945 && sal.line != 0
13946 && sal.symtab != NULL
13947 && tp->static_trace_marker_id != NULL)
13948 {
13949 VEC(static_tracepoint_marker_p) *markers;
13950
13951 markers
13952 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13953
13954 if (!VEC_empty(static_tracepoint_marker_p, markers))
13955 {
13956 struct symtab_and_line sal2;
13957 struct symbol *sym;
13958 struct static_tracepoint_marker *tpmarker;
13959 struct ui_out *uiout = current_uiout;
13960 struct explicit_location explicit_loc;
13961
13962 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13963
13964 xfree (tp->static_trace_marker_id);
13965 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13966
13967 warning (_("marker for static tracepoint %d (%s) not "
13968 "found at previous line number"),
13969 b->number, tp->static_trace_marker_id);
13970
13971 init_sal (&sal2);
13972
13973 sal2.pc = tpmarker->address;
13974
13975 sal2 = find_pc_line (tpmarker->address, 0);
13976 sym = find_pc_sect_function (tpmarker->address, NULL);
13977 uiout->text ("Now in ");
13978 if (sym)
13979 {
13980 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13981 uiout->text (" at ");
13982 }
13983 uiout->field_string ("file",
13984 symtab_to_filename_for_display (sal2.symtab));
13985 uiout->text (":");
13986
13987 if (uiout->is_mi_like_p ())
13988 {
13989 const char *fullname = symtab_to_fullname (sal2.symtab);
13990
13991 uiout->field_string ("fullname", fullname);
13992 }
13993
13994 uiout->field_int ("line", sal2.line);
13995 uiout->text ("\n");
13996
13997 b->loc->line_number = sal2.line;
13998 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13999
14000 b->location.reset (NULL);
14001 initialize_explicit_location (&explicit_loc);
14002 explicit_loc.source_filename
14003 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14004 explicit_loc.line_offset.offset = b->loc->line_number;
14005 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14006 b->location = new_explicit_location (&explicit_loc);
14007
14008 /* Might be nice to check if function changed, and warn if
14009 so. */
14010
14011 release_static_tracepoint_marker (tpmarker);
14012 }
14013 }
14014 return sal;
14015 }
14016
14017 /* Returns 1 iff locations A and B are sufficiently same that
14018 we don't need to report breakpoint as changed. */
14019
14020 static int
14021 locations_are_equal (struct bp_location *a, struct bp_location *b)
14022 {
14023 while (a && b)
14024 {
14025 if (a->address != b->address)
14026 return 0;
14027
14028 if (a->shlib_disabled != b->shlib_disabled)
14029 return 0;
14030
14031 if (a->enabled != b->enabled)
14032 return 0;
14033
14034 a = a->next;
14035 b = b->next;
14036 }
14037
14038 if ((a == NULL) != (b == NULL))
14039 return 0;
14040
14041 return 1;
14042 }
14043
14044 /* Split all locations of B that are bound to PSPACE out of B's
14045 location list to a separate list and return that list's head. If
14046 PSPACE is NULL, hoist out all locations of B. */
14047
14048 static struct bp_location *
14049 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14050 {
14051 struct bp_location head;
14052 struct bp_location *i = b->loc;
14053 struct bp_location **i_link = &b->loc;
14054 struct bp_location *hoisted = &head;
14055
14056 if (pspace == NULL)
14057 {
14058 i = b->loc;
14059 b->loc = NULL;
14060 return i;
14061 }
14062
14063 head.next = NULL;
14064
14065 while (i != NULL)
14066 {
14067 if (i->pspace == pspace)
14068 {
14069 *i_link = i->next;
14070 i->next = NULL;
14071 hoisted->next = i;
14072 hoisted = i;
14073 }
14074 else
14075 i_link = &i->next;
14076 i = *i_link;
14077 }
14078
14079 return head.next;
14080 }
14081
14082 /* Create new breakpoint locations for B (a hardware or software
14083 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14084 zero, then B is a ranged breakpoint. Only recreates locations for
14085 FILTER_PSPACE. Locations of other program spaces are left
14086 untouched. */
14087
14088 void
14089 update_breakpoint_locations (struct breakpoint *b,
14090 struct program_space *filter_pspace,
14091 struct symtabs_and_lines sals,
14092 struct symtabs_and_lines sals_end)
14093 {
14094 int i;
14095 struct bp_location *existing_locations;
14096
14097 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14098 {
14099 /* Ranged breakpoints have only one start location and one end
14100 location. */
14101 b->enable_state = bp_disabled;
14102 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14103 "multiple locations found\n"),
14104 b->number);
14105 return;
14106 }
14107
14108 /* If there's no new locations, and all existing locations are
14109 pending, don't do anything. This optimizes the common case where
14110 all locations are in the same shared library, that was unloaded.
14111 We'd like to retain the location, so that when the library is
14112 loaded again, we don't loose the enabled/disabled status of the
14113 individual locations. */
14114 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14115 return;
14116
14117 existing_locations = hoist_existing_locations (b, filter_pspace);
14118
14119 for (i = 0; i < sals.nelts; ++i)
14120 {
14121 struct bp_location *new_loc;
14122
14123 switch_to_program_space_and_thread (sals.sals[i].pspace);
14124
14125 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14126
14127 /* Reparse conditions, they might contain references to the
14128 old symtab. */
14129 if (b->cond_string != NULL)
14130 {
14131 const char *s;
14132
14133 s = b->cond_string;
14134 TRY
14135 {
14136 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14137 block_for_pc (sals.sals[i].pc),
14138 0);
14139 }
14140 CATCH (e, RETURN_MASK_ERROR)
14141 {
14142 warning (_("failed to reevaluate condition "
14143 "for breakpoint %d: %s"),
14144 b->number, e.message);
14145 new_loc->enabled = 0;
14146 }
14147 END_CATCH
14148 }
14149
14150 if (sals_end.nelts)
14151 {
14152 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14153
14154 new_loc->length = end - sals.sals[0].pc + 1;
14155 }
14156 }
14157
14158 /* If possible, carry over 'disable' status from existing
14159 breakpoints. */
14160 {
14161 struct bp_location *e = existing_locations;
14162 /* If there are multiple breakpoints with the same function name,
14163 e.g. for inline functions, comparing function names won't work.
14164 Instead compare pc addresses; this is just a heuristic as things
14165 may have moved, but in practice it gives the correct answer
14166 often enough until a better solution is found. */
14167 int have_ambiguous_names = ambiguous_names_p (b->loc);
14168
14169 for (; e; e = e->next)
14170 {
14171 if (!e->enabled && e->function_name)
14172 {
14173 struct bp_location *l = b->loc;
14174 if (have_ambiguous_names)
14175 {
14176 for (; l; l = l->next)
14177 if (breakpoint_locations_match (e, l))
14178 {
14179 l->enabled = 0;
14180 break;
14181 }
14182 }
14183 else
14184 {
14185 for (; l; l = l->next)
14186 if (l->function_name
14187 && strcmp (e->function_name, l->function_name) == 0)
14188 {
14189 l->enabled = 0;
14190 break;
14191 }
14192 }
14193 }
14194 }
14195 }
14196
14197 if (!locations_are_equal (existing_locations, b->loc))
14198 observer_notify_breakpoint_modified (b);
14199 }
14200
14201 /* Find the SaL locations corresponding to the given LOCATION.
14202 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14203
14204 static struct symtabs_and_lines
14205 location_to_sals (struct breakpoint *b, struct event_location *location,
14206 struct program_space *search_pspace, int *found)
14207 {
14208 struct symtabs_and_lines sals = {0};
14209 struct gdb_exception exception = exception_none;
14210
14211 gdb_assert (b->ops != NULL);
14212
14213 TRY
14214 {
14215 b->ops->decode_location (b, location, search_pspace, &sals);
14216 }
14217 CATCH (e, RETURN_MASK_ERROR)
14218 {
14219 int not_found_and_ok = 0;
14220
14221 exception = e;
14222
14223 /* For pending breakpoints, it's expected that parsing will
14224 fail until the right shared library is loaded. User has
14225 already told to create pending breakpoints and don't need
14226 extra messages. If breakpoint is in bp_shlib_disabled
14227 state, then user already saw the message about that
14228 breakpoint being disabled, and don't want to see more
14229 errors. */
14230 if (e.error == NOT_FOUND_ERROR
14231 && (b->condition_not_parsed
14232 || (b->loc != NULL
14233 && search_pspace != NULL
14234 && b->loc->pspace != search_pspace)
14235 || (b->loc && b->loc->shlib_disabled)
14236 || (b->loc && b->loc->pspace->executing_startup)
14237 || b->enable_state == bp_disabled))
14238 not_found_and_ok = 1;
14239
14240 if (!not_found_and_ok)
14241 {
14242 /* We surely don't want to warn about the same breakpoint
14243 10 times. One solution, implemented here, is disable
14244 the breakpoint on error. Another solution would be to
14245 have separate 'warning emitted' flag. Since this
14246 happens only when a binary has changed, I don't know
14247 which approach is better. */
14248 b->enable_state = bp_disabled;
14249 throw_exception (e);
14250 }
14251 }
14252 END_CATCH
14253
14254 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14255 {
14256 int i;
14257
14258 for (i = 0; i < sals.nelts; ++i)
14259 resolve_sal_pc (&sals.sals[i]);
14260 if (b->condition_not_parsed && b->extra_string != NULL)
14261 {
14262 char *cond_string, *extra_string;
14263 int thread, task;
14264
14265 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14266 &cond_string, &thread, &task,
14267 &extra_string);
14268 gdb_assert (b->cond_string == NULL);
14269 if (cond_string)
14270 b->cond_string = cond_string;
14271 b->thread = thread;
14272 b->task = task;
14273 if (extra_string)
14274 {
14275 xfree (b->extra_string);
14276 b->extra_string = extra_string;
14277 }
14278 b->condition_not_parsed = 0;
14279 }
14280
14281 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14282 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14283
14284 *found = 1;
14285 }
14286 else
14287 *found = 0;
14288
14289 return sals;
14290 }
14291
14292 /* The default re_set method, for typical hardware or software
14293 breakpoints. Reevaluate the breakpoint and recreate its
14294 locations. */
14295
14296 static void
14297 breakpoint_re_set_default (struct breakpoint *b)
14298 {
14299 int found;
14300 struct symtabs_and_lines sals, sals_end;
14301 struct symtabs_and_lines expanded = {0};
14302 struct symtabs_and_lines expanded_end = {0};
14303 struct program_space *filter_pspace = current_program_space;
14304
14305 sals = location_to_sals (b, b->location.get (), filter_pspace, &found);
14306 if (found)
14307 {
14308 make_cleanup (xfree, sals.sals);
14309 expanded = sals;
14310 }
14311
14312 if (b->location_range_end != NULL)
14313 {
14314 sals_end = location_to_sals (b, b->location_range_end.get (),
14315 filter_pspace, &found);
14316 if (found)
14317 {
14318 make_cleanup (xfree, sals_end.sals);
14319 expanded_end = sals_end;
14320 }
14321 }
14322
14323 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14324 }
14325
14326 /* Default method for creating SALs from an address string. It basically
14327 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14328
14329 static void
14330 create_sals_from_location_default (const struct event_location *location,
14331 struct linespec_result *canonical,
14332 enum bptype type_wanted)
14333 {
14334 parse_breakpoint_sals (location, canonical);
14335 }
14336
14337 /* Call create_breakpoints_sal for the given arguments. This is the default
14338 function for the `create_breakpoints_sal' method of
14339 breakpoint_ops. */
14340
14341 static void
14342 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14343 struct linespec_result *canonical,
14344 gdb::unique_xmalloc_ptr<char> cond_string,
14345 gdb::unique_xmalloc_ptr<char> extra_string,
14346 enum bptype type_wanted,
14347 enum bpdisp disposition,
14348 int thread,
14349 int task, int ignore_count,
14350 const struct breakpoint_ops *ops,
14351 int from_tty, int enabled,
14352 int internal, unsigned flags)
14353 {
14354 create_breakpoints_sal (gdbarch, canonical,
14355 std::move (cond_string),
14356 std::move (extra_string),
14357 type_wanted, disposition,
14358 thread, task, ignore_count, ops, from_tty,
14359 enabled, internal, flags);
14360 }
14361
14362 /* Decode the line represented by S by calling decode_line_full. This is the
14363 default function for the `decode_location' method of breakpoint_ops. */
14364
14365 static void
14366 decode_location_default (struct breakpoint *b,
14367 const struct event_location *location,
14368 struct program_space *search_pspace,
14369 struct symtabs_and_lines *sals)
14370 {
14371 struct linespec_result canonical;
14372
14373 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14374 (struct symtab *) NULL, 0,
14375 &canonical, multiple_symbols_all,
14376 b->filter);
14377
14378 /* We should get 0 or 1 resulting SALs. */
14379 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14380
14381 if (VEC_length (linespec_sals, canonical.sals) > 0)
14382 {
14383 struct linespec_sals *lsal;
14384
14385 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14386 *sals = lsal->sals;
14387 /* Arrange it so the destructor does not free the
14388 contents. */
14389 lsal->sals.sals = NULL;
14390 }
14391 }
14392
14393 /* Prepare the global context for a re-set of breakpoint B. */
14394
14395 static struct cleanup *
14396 prepare_re_set_context (struct breakpoint *b)
14397 {
14398 input_radix = b->input_radix;
14399 set_language (b->language);
14400
14401 return make_cleanup (null_cleanup, NULL);
14402 }
14403
14404 /* Reset a breakpoint given it's struct breakpoint * BINT.
14405 The value we return ends up being the return value from catch_errors.
14406 Unused in this case. */
14407
14408 static int
14409 breakpoint_re_set_one (void *bint)
14410 {
14411 /* Get past catch_errs. */
14412 struct breakpoint *b = (struct breakpoint *) bint;
14413 struct cleanup *cleanups;
14414
14415 cleanups = prepare_re_set_context (b);
14416 b->ops->re_set (b);
14417 do_cleanups (cleanups);
14418 return 0;
14419 }
14420
14421 /* Re-set breakpoint locations for the current program space.
14422 Locations bound to other program spaces are left untouched. */
14423
14424 void
14425 breakpoint_re_set (void)
14426 {
14427 struct breakpoint *b, *b_tmp;
14428 enum language save_language;
14429 int save_input_radix;
14430
14431 save_language = current_language->la_language;
14432 save_input_radix = input_radix;
14433
14434 {
14435 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14436
14437 /* Note: we must not try to insert locations until after all
14438 breakpoints have been re-set. Otherwise, e.g., when re-setting
14439 breakpoint 1, we'd insert the locations of breakpoint 2, which
14440 hadn't been re-set yet, and thus may have stale locations. */
14441
14442 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14443 {
14444 /* Format possible error msg. */
14445 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14446 b->number);
14447 struct cleanup *cleanups = make_cleanup (xfree, message);
14448 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14449 do_cleanups (cleanups);
14450 }
14451 set_language (save_language);
14452 input_radix = save_input_radix;
14453
14454 jit_breakpoint_re_set ();
14455 }
14456
14457 create_overlay_event_breakpoint ();
14458 create_longjmp_master_breakpoint ();
14459 create_std_terminate_master_breakpoint ();
14460 create_exception_master_breakpoint ();
14461
14462 /* Now we can insert. */
14463 update_global_location_list (UGLL_MAY_INSERT);
14464 }
14465 \f
14466 /* Reset the thread number of this breakpoint:
14467
14468 - If the breakpoint is for all threads, leave it as-is.
14469 - Else, reset it to the current thread for inferior_ptid. */
14470 void
14471 breakpoint_re_set_thread (struct breakpoint *b)
14472 {
14473 if (b->thread != -1)
14474 {
14475 if (in_thread_list (inferior_ptid))
14476 b->thread = ptid_to_global_thread_id (inferior_ptid);
14477
14478 /* We're being called after following a fork. The new fork is
14479 selected as current, and unless this was a vfork will have a
14480 different program space from the original thread. Reset that
14481 as well. */
14482 b->loc->pspace = current_program_space;
14483 }
14484 }
14485
14486 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14487 If from_tty is nonzero, it prints a message to that effect,
14488 which ends with a period (no newline). */
14489
14490 void
14491 set_ignore_count (int bptnum, int count, int from_tty)
14492 {
14493 struct breakpoint *b;
14494
14495 if (count < 0)
14496 count = 0;
14497
14498 ALL_BREAKPOINTS (b)
14499 if (b->number == bptnum)
14500 {
14501 if (is_tracepoint (b))
14502 {
14503 if (from_tty && count != 0)
14504 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14505 bptnum);
14506 return;
14507 }
14508
14509 b->ignore_count = count;
14510 if (from_tty)
14511 {
14512 if (count == 0)
14513 printf_filtered (_("Will stop next time "
14514 "breakpoint %d is reached."),
14515 bptnum);
14516 else if (count == 1)
14517 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14518 bptnum);
14519 else
14520 printf_filtered (_("Will ignore next %d "
14521 "crossings of breakpoint %d."),
14522 count, bptnum);
14523 }
14524 observer_notify_breakpoint_modified (b);
14525 return;
14526 }
14527
14528 error (_("No breakpoint number %d."), bptnum);
14529 }
14530
14531 /* Command to set ignore-count of breakpoint N to COUNT. */
14532
14533 static void
14534 ignore_command (char *args, int from_tty)
14535 {
14536 char *p = args;
14537 int num;
14538
14539 if (p == 0)
14540 error_no_arg (_("a breakpoint number"));
14541
14542 num = get_number (&p);
14543 if (num == 0)
14544 error (_("bad breakpoint number: '%s'"), args);
14545 if (*p == 0)
14546 error (_("Second argument (specified ignore-count) is missing."));
14547
14548 set_ignore_count (num,
14549 longest_to_int (value_as_long (parse_and_eval (p))),
14550 from_tty);
14551 if (from_tty)
14552 printf_filtered ("\n");
14553 }
14554 \f
14555 /* Call FUNCTION on each of the breakpoints
14556 whose numbers are given in ARGS. */
14557
14558 static void
14559 map_breakpoint_numbers (const char *args,
14560 void (*function) (struct breakpoint *,
14561 void *),
14562 void *data)
14563 {
14564 int num;
14565 struct breakpoint *b, *tmp;
14566
14567 if (args == 0 || *args == '\0')
14568 error_no_arg (_("one or more breakpoint numbers"));
14569
14570 number_or_range_parser parser (args);
14571
14572 while (!parser.finished ())
14573 {
14574 const char *p = parser.cur_tok ();
14575 bool match = false;
14576
14577 num = parser.get_number ();
14578 if (num == 0)
14579 {
14580 warning (_("bad breakpoint number at or near '%s'"), p);
14581 }
14582 else
14583 {
14584 ALL_BREAKPOINTS_SAFE (b, tmp)
14585 if (b->number == num)
14586 {
14587 match = true;
14588 function (b, data);
14589 break;
14590 }
14591 if (!match)
14592 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14593 }
14594 }
14595 }
14596
14597 static struct bp_location *
14598 find_location_by_number (char *number)
14599 {
14600 char *dot = strchr (number, '.');
14601 char *p1;
14602 int bp_num;
14603 int loc_num;
14604 struct breakpoint *b;
14605 struct bp_location *loc;
14606
14607 *dot = '\0';
14608
14609 p1 = number;
14610 bp_num = get_number (&p1);
14611 if (bp_num == 0)
14612 error (_("Bad breakpoint number '%s'"), number);
14613
14614 ALL_BREAKPOINTS (b)
14615 if (b->number == bp_num)
14616 {
14617 break;
14618 }
14619
14620 if (!b || b->number != bp_num)
14621 error (_("Bad breakpoint number '%s'"), number);
14622
14623 p1 = dot+1;
14624 loc_num = get_number (&p1);
14625 if (loc_num == 0)
14626 error (_("Bad breakpoint location number '%s'"), number);
14627
14628 --loc_num;
14629 loc = b->loc;
14630 for (;loc_num && loc; --loc_num, loc = loc->next)
14631 ;
14632 if (!loc)
14633 error (_("Bad breakpoint location number '%s'"), dot+1);
14634
14635 return loc;
14636 }
14637
14638
14639 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14640 If from_tty is nonzero, it prints a message to that effect,
14641 which ends with a period (no newline). */
14642
14643 void
14644 disable_breakpoint (struct breakpoint *bpt)
14645 {
14646 /* Never disable a watchpoint scope breakpoint; we want to
14647 hit them when we leave scope so we can delete both the
14648 watchpoint and its scope breakpoint at that time. */
14649 if (bpt->type == bp_watchpoint_scope)
14650 return;
14651
14652 bpt->enable_state = bp_disabled;
14653
14654 /* Mark breakpoint locations modified. */
14655 mark_breakpoint_modified (bpt);
14656
14657 if (target_supports_enable_disable_tracepoint ()
14658 && current_trace_status ()->running && is_tracepoint (bpt))
14659 {
14660 struct bp_location *location;
14661
14662 for (location = bpt->loc; location; location = location->next)
14663 target_disable_tracepoint (location);
14664 }
14665
14666 update_global_location_list (UGLL_DONT_INSERT);
14667
14668 observer_notify_breakpoint_modified (bpt);
14669 }
14670
14671 /* A callback for iterate_over_related_breakpoints. */
14672
14673 static void
14674 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14675 {
14676 disable_breakpoint (b);
14677 }
14678
14679 /* A callback for map_breakpoint_numbers that calls
14680 disable_breakpoint. */
14681
14682 static void
14683 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14684 {
14685 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14686 }
14687
14688 static void
14689 disable_command (char *args, int from_tty)
14690 {
14691 if (args == 0)
14692 {
14693 struct breakpoint *bpt;
14694
14695 ALL_BREAKPOINTS (bpt)
14696 if (user_breakpoint_p (bpt))
14697 disable_breakpoint (bpt);
14698 }
14699 else
14700 {
14701 char *num = extract_arg (&args);
14702
14703 while (num)
14704 {
14705 if (strchr (num, '.'))
14706 {
14707 struct bp_location *loc = find_location_by_number (num);
14708
14709 if (loc)
14710 {
14711 if (loc->enabled)
14712 {
14713 loc->enabled = 0;
14714 mark_breakpoint_location_modified (loc);
14715 }
14716 if (target_supports_enable_disable_tracepoint ()
14717 && current_trace_status ()->running && loc->owner
14718 && is_tracepoint (loc->owner))
14719 target_disable_tracepoint (loc);
14720 }
14721 update_global_location_list (UGLL_DONT_INSERT);
14722 }
14723 else
14724 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14725 num = extract_arg (&args);
14726 }
14727 }
14728 }
14729
14730 static void
14731 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14732 int count)
14733 {
14734 int target_resources_ok;
14735
14736 if (bpt->type == bp_hardware_breakpoint)
14737 {
14738 int i;
14739 i = hw_breakpoint_used_count ();
14740 target_resources_ok =
14741 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14742 i + 1, 0);
14743 if (target_resources_ok == 0)
14744 error (_("No hardware breakpoint support in the target."));
14745 else if (target_resources_ok < 0)
14746 error (_("Hardware breakpoints used exceeds limit."));
14747 }
14748
14749 if (is_watchpoint (bpt))
14750 {
14751 /* Initialize it just to avoid a GCC false warning. */
14752 enum enable_state orig_enable_state = bp_disabled;
14753
14754 TRY
14755 {
14756 struct watchpoint *w = (struct watchpoint *) bpt;
14757
14758 orig_enable_state = bpt->enable_state;
14759 bpt->enable_state = bp_enabled;
14760 update_watchpoint (w, 1 /* reparse */);
14761 }
14762 CATCH (e, RETURN_MASK_ALL)
14763 {
14764 bpt->enable_state = orig_enable_state;
14765 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14766 bpt->number);
14767 return;
14768 }
14769 END_CATCH
14770 }
14771
14772 bpt->enable_state = bp_enabled;
14773
14774 /* Mark breakpoint locations modified. */
14775 mark_breakpoint_modified (bpt);
14776
14777 if (target_supports_enable_disable_tracepoint ()
14778 && current_trace_status ()->running && is_tracepoint (bpt))
14779 {
14780 struct bp_location *location;
14781
14782 for (location = bpt->loc; location; location = location->next)
14783 target_enable_tracepoint (location);
14784 }
14785
14786 bpt->disposition = disposition;
14787 bpt->enable_count = count;
14788 update_global_location_list (UGLL_MAY_INSERT);
14789
14790 observer_notify_breakpoint_modified (bpt);
14791 }
14792
14793
14794 void
14795 enable_breakpoint (struct breakpoint *bpt)
14796 {
14797 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14798 }
14799
14800 static void
14801 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14802 {
14803 enable_breakpoint (bpt);
14804 }
14805
14806 /* A callback for map_breakpoint_numbers that calls
14807 enable_breakpoint. */
14808
14809 static void
14810 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14811 {
14812 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14813 }
14814
14815 /* The enable command enables the specified breakpoints (or all defined
14816 breakpoints) so they once again become (or continue to be) effective
14817 in stopping the inferior. */
14818
14819 static void
14820 enable_command (char *args, int from_tty)
14821 {
14822 if (args == 0)
14823 {
14824 struct breakpoint *bpt;
14825
14826 ALL_BREAKPOINTS (bpt)
14827 if (user_breakpoint_p (bpt))
14828 enable_breakpoint (bpt);
14829 }
14830 else
14831 {
14832 char *num = extract_arg (&args);
14833
14834 while (num)
14835 {
14836 if (strchr (num, '.'))
14837 {
14838 struct bp_location *loc = find_location_by_number (num);
14839
14840 if (loc)
14841 {
14842 if (!loc->enabled)
14843 {
14844 loc->enabled = 1;
14845 mark_breakpoint_location_modified (loc);
14846 }
14847 if (target_supports_enable_disable_tracepoint ()
14848 && current_trace_status ()->running && loc->owner
14849 && is_tracepoint (loc->owner))
14850 target_enable_tracepoint (loc);
14851 }
14852 update_global_location_list (UGLL_MAY_INSERT);
14853 }
14854 else
14855 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14856 num = extract_arg (&args);
14857 }
14858 }
14859 }
14860
14861 /* This struct packages up disposition data for application to multiple
14862 breakpoints. */
14863
14864 struct disp_data
14865 {
14866 enum bpdisp disp;
14867 int count;
14868 };
14869
14870 static void
14871 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14872 {
14873 struct disp_data disp_data = *(struct disp_data *) arg;
14874
14875 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14876 }
14877
14878 static void
14879 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14880 {
14881 struct disp_data disp = { disp_disable, 1 };
14882
14883 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14884 }
14885
14886 static void
14887 enable_once_command (char *args, int from_tty)
14888 {
14889 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14890 }
14891
14892 static void
14893 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14894 {
14895 struct disp_data disp = { disp_disable, *(int *) countptr };
14896
14897 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14898 }
14899
14900 static void
14901 enable_count_command (char *args, int from_tty)
14902 {
14903 int count;
14904
14905 if (args == NULL)
14906 error_no_arg (_("hit count"));
14907
14908 count = get_number (&args);
14909
14910 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14911 }
14912
14913 static void
14914 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14915 {
14916 struct disp_data disp = { disp_del, 1 };
14917
14918 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14919 }
14920
14921 static void
14922 enable_delete_command (char *args, int from_tty)
14923 {
14924 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14925 }
14926 \f
14927 static void
14928 set_breakpoint_cmd (char *args, int from_tty)
14929 {
14930 }
14931
14932 static void
14933 show_breakpoint_cmd (char *args, int from_tty)
14934 {
14935 }
14936
14937 /* Invalidate last known value of any hardware watchpoint if
14938 the memory which that value represents has been written to by
14939 GDB itself. */
14940
14941 static void
14942 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14943 CORE_ADDR addr, ssize_t len,
14944 const bfd_byte *data)
14945 {
14946 struct breakpoint *bp;
14947
14948 ALL_BREAKPOINTS (bp)
14949 if (bp->enable_state == bp_enabled
14950 && bp->type == bp_hardware_watchpoint)
14951 {
14952 struct watchpoint *wp = (struct watchpoint *) bp;
14953
14954 if (wp->val_valid && wp->val)
14955 {
14956 struct bp_location *loc;
14957
14958 for (loc = bp->loc; loc != NULL; loc = loc->next)
14959 if (loc->loc_type == bp_loc_hardware_watchpoint
14960 && loc->address + loc->length > addr
14961 && addr + len > loc->address)
14962 {
14963 value_free (wp->val);
14964 wp->val = NULL;
14965 wp->val_valid = 0;
14966 }
14967 }
14968 }
14969 }
14970
14971 /* Create and insert a breakpoint for software single step. */
14972
14973 void
14974 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14975 struct address_space *aspace,
14976 CORE_ADDR next_pc)
14977 {
14978 struct thread_info *tp = inferior_thread ();
14979 struct symtab_and_line sal;
14980 CORE_ADDR pc = next_pc;
14981
14982 if (tp->control.single_step_breakpoints == NULL)
14983 {
14984 tp->control.single_step_breakpoints
14985 = new_single_step_breakpoint (tp->global_num, gdbarch);
14986 }
14987
14988 sal = find_pc_line (pc, 0);
14989 sal.pc = pc;
14990 sal.section = find_pc_overlay (pc);
14991 sal.explicit_pc = 1;
14992 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14993
14994 update_global_location_list (UGLL_INSERT);
14995 }
14996
14997 /* Insert single step breakpoints according to the current state. */
14998
14999 int
15000 insert_single_step_breakpoints (struct gdbarch *gdbarch)
15001 {
15002 struct regcache *regcache = get_current_regcache ();
15003 std::vector<CORE_ADDR> next_pcs;
15004
15005 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
15006
15007 if (!next_pcs.empty ())
15008 {
15009 struct frame_info *frame = get_current_frame ();
15010 struct address_space *aspace = get_frame_address_space (frame);
15011
15012 for (CORE_ADDR pc : next_pcs)
15013 insert_single_step_breakpoint (gdbarch, aspace, pc);
15014
15015 return 1;
15016 }
15017 else
15018 return 0;
15019 }
15020
15021 /* See breakpoint.h. */
15022
15023 int
15024 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15025 struct address_space *aspace,
15026 CORE_ADDR pc)
15027 {
15028 struct bp_location *loc;
15029
15030 for (loc = bp->loc; loc != NULL; loc = loc->next)
15031 if (loc->inserted
15032 && breakpoint_location_address_match (loc, aspace, pc))
15033 return 1;
15034
15035 return 0;
15036 }
15037
15038 /* Check whether a software single-step breakpoint is inserted at
15039 PC. */
15040
15041 int
15042 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15043 CORE_ADDR pc)
15044 {
15045 struct breakpoint *bpt;
15046
15047 ALL_BREAKPOINTS (bpt)
15048 {
15049 if (bpt->type == bp_single_step
15050 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15051 return 1;
15052 }
15053 return 0;
15054 }
15055
15056 /* Tracepoint-specific operations. */
15057
15058 /* Set tracepoint count to NUM. */
15059 static void
15060 set_tracepoint_count (int num)
15061 {
15062 tracepoint_count = num;
15063 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15064 }
15065
15066 static void
15067 trace_command (char *arg, int from_tty)
15068 {
15069 struct breakpoint_ops *ops;
15070
15071 event_location_up location = string_to_event_location (&arg,
15072 current_language);
15073 if (location != NULL
15074 && event_location_type (location.get ()) == PROBE_LOCATION)
15075 ops = &tracepoint_probe_breakpoint_ops;
15076 else
15077 ops = &tracepoint_breakpoint_ops;
15078
15079 create_breakpoint (get_current_arch (),
15080 location.get (),
15081 NULL, 0, arg, 1 /* parse arg */,
15082 0 /* tempflag */,
15083 bp_tracepoint /* type_wanted */,
15084 0 /* Ignore count */,
15085 pending_break_support,
15086 ops,
15087 from_tty,
15088 1 /* enabled */,
15089 0 /* internal */, 0);
15090 }
15091
15092 static void
15093 ftrace_command (char *arg, int from_tty)
15094 {
15095 event_location_up location = string_to_event_location (&arg,
15096 current_language);
15097 create_breakpoint (get_current_arch (),
15098 location.get (),
15099 NULL, 0, arg, 1 /* parse arg */,
15100 0 /* tempflag */,
15101 bp_fast_tracepoint /* type_wanted */,
15102 0 /* Ignore count */,
15103 pending_break_support,
15104 &tracepoint_breakpoint_ops,
15105 from_tty,
15106 1 /* enabled */,
15107 0 /* internal */, 0);
15108 }
15109
15110 /* strace command implementation. Creates a static tracepoint. */
15111
15112 static void
15113 strace_command (char *arg, int from_tty)
15114 {
15115 struct breakpoint_ops *ops;
15116 event_location_up location;
15117 struct cleanup *back_to;
15118
15119 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15120 or with a normal static tracepoint. */
15121 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15122 {
15123 ops = &strace_marker_breakpoint_ops;
15124 location = new_linespec_location (&arg);
15125 }
15126 else
15127 {
15128 ops = &tracepoint_breakpoint_ops;
15129 location = string_to_event_location (&arg, current_language);
15130 }
15131
15132 create_breakpoint (get_current_arch (),
15133 location.get (),
15134 NULL, 0, arg, 1 /* parse arg */,
15135 0 /* tempflag */,
15136 bp_static_tracepoint /* type_wanted */,
15137 0 /* Ignore count */,
15138 pending_break_support,
15139 ops,
15140 from_tty,
15141 1 /* enabled */,
15142 0 /* internal */, 0);
15143 }
15144
15145 /* Set up a fake reader function that gets command lines from a linked
15146 list that was acquired during tracepoint uploading. */
15147
15148 static struct uploaded_tp *this_utp;
15149 static int next_cmd;
15150
15151 static char *
15152 read_uploaded_action (void)
15153 {
15154 char *rslt;
15155
15156 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15157
15158 next_cmd++;
15159
15160 return rslt;
15161 }
15162
15163 /* Given information about a tracepoint as recorded on a target (which
15164 can be either a live system or a trace file), attempt to create an
15165 equivalent GDB tracepoint. This is not a reliable process, since
15166 the target does not necessarily have all the information used when
15167 the tracepoint was originally defined. */
15168
15169 struct tracepoint *
15170 create_tracepoint_from_upload (struct uploaded_tp *utp)
15171 {
15172 char *addr_str, small_buf[100];
15173 struct tracepoint *tp;
15174
15175 if (utp->at_string)
15176 addr_str = utp->at_string;
15177 else
15178 {
15179 /* In the absence of a source location, fall back to raw
15180 address. Since there is no way to confirm that the address
15181 means the same thing as when the trace was started, warn the
15182 user. */
15183 warning (_("Uploaded tracepoint %d has no "
15184 "source location, using raw address"),
15185 utp->number);
15186 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15187 addr_str = small_buf;
15188 }
15189
15190 /* There's not much we can do with a sequence of bytecodes. */
15191 if (utp->cond && !utp->cond_string)
15192 warning (_("Uploaded tracepoint %d condition "
15193 "has no source form, ignoring it"),
15194 utp->number);
15195
15196 event_location_up location = string_to_event_location (&addr_str,
15197 current_language);
15198 if (!create_breakpoint (get_current_arch (),
15199 location.get (),
15200 utp->cond_string, -1, addr_str,
15201 0 /* parse cond/thread */,
15202 0 /* tempflag */,
15203 utp->type /* type_wanted */,
15204 0 /* Ignore count */,
15205 pending_break_support,
15206 &tracepoint_breakpoint_ops,
15207 0 /* from_tty */,
15208 utp->enabled /* enabled */,
15209 0 /* internal */,
15210 CREATE_BREAKPOINT_FLAGS_INSERTED))
15211 return NULL;
15212
15213 /* Get the tracepoint we just created. */
15214 tp = get_tracepoint (tracepoint_count);
15215 gdb_assert (tp != NULL);
15216
15217 if (utp->pass > 0)
15218 {
15219 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15220 tp->number);
15221
15222 trace_pass_command (small_buf, 0);
15223 }
15224
15225 /* If we have uploaded versions of the original commands, set up a
15226 special-purpose "reader" function and call the usual command line
15227 reader, then pass the result to the breakpoint command-setting
15228 function. */
15229 if (!VEC_empty (char_ptr, utp->cmd_strings))
15230 {
15231 command_line_up cmd_list;
15232
15233 this_utp = utp;
15234 next_cmd = 0;
15235
15236 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15237
15238 breakpoint_set_commands (tp, std::move (cmd_list));
15239 }
15240 else if (!VEC_empty (char_ptr, utp->actions)
15241 || !VEC_empty (char_ptr, utp->step_actions))
15242 warning (_("Uploaded tracepoint %d actions "
15243 "have no source form, ignoring them"),
15244 utp->number);
15245
15246 /* Copy any status information that might be available. */
15247 tp->hit_count = utp->hit_count;
15248 tp->traceframe_usage = utp->traceframe_usage;
15249
15250 return tp;
15251 }
15252
15253 /* Print information on tracepoint number TPNUM_EXP, or all if
15254 omitted. */
15255
15256 static void
15257 tracepoints_info (char *args, int from_tty)
15258 {
15259 struct ui_out *uiout = current_uiout;
15260 int num_printed;
15261
15262 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15263
15264 if (num_printed == 0)
15265 {
15266 if (args == NULL || *args == '\0')
15267 uiout->message ("No tracepoints.\n");
15268 else
15269 uiout->message ("No tracepoint matching '%s'.\n", args);
15270 }
15271
15272 default_collect_info ();
15273 }
15274
15275 /* The 'enable trace' command enables tracepoints.
15276 Not supported by all targets. */
15277 static void
15278 enable_trace_command (char *args, int from_tty)
15279 {
15280 enable_command (args, from_tty);
15281 }
15282
15283 /* The 'disable trace' command disables tracepoints.
15284 Not supported by all targets. */
15285 static void
15286 disable_trace_command (char *args, int from_tty)
15287 {
15288 disable_command (args, from_tty);
15289 }
15290
15291 /* Remove a tracepoint (or all if no argument). */
15292 static void
15293 delete_trace_command (char *arg, int from_tty)
15294 {
15295 struct breakpoint *b, *b_tmp;
15296
15297 dont_repeat ();
15298
15299 if (arg == 0)
15300 {
15301 int breaks_to_delete = 0;
15302
15303 /* Delete all breakpoints if no argument.
15304 Do not delete internal or call-dummy breakpoints, these
15305 have to be deleted with an explicit breakpoint number
15306 argument. */
15307 ALL_TRACEPOINTS (b)
15308 if (is_tracepoint (b) && user_breakpoint_p (b))
15309 {
15310 breaks_to_delete = 1;
15311 break;
15312 }
15313
15314 /* Ask user only if there are some breakpoints to delete. */
15315 if (!from_tty
15316 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15317 {
15318 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15319 if (is_tracepoint (b) && user_breakpoint_p (b))
15320 delete_breakpoint (b);
15321 }
15322 }
15323 else
15324 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15325 }
15326
15327 /* Helper function for trace_pass_command. */
15328
15329 static void
15330 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15331 {
15332 tp->pass_count = count;
15333 observer_notify_breakpoint_modified (tp);
15334 if (from_tty)
15335 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15336 tp->number, count);
15337 }
15338
15339 /* Set passcount for tracepoint.
15340
15341 First command argument is passcount, second is tracepoint number.
15342 If tracepoint number omitted, apply to most recently defined.
15343 Also accepts special argument "all". */
15344
15345 static void
15346 trace_pass_command (char *args, int from_tty)
15347 {
15348 struct tracepoint *t1;
15349 unsigned int count;
15350
15351 if (args == 0 || *args == 0)
15352 error (_("passcount command requires an "
15353 "argument (count + optional TP num)"));
15354
15355 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15356
15357 args = skip_spaces (args);
15358 if (*args && strncasecmp (args, "all", 3) == 0)
15359 {
15360 struct breakpoint *b;
15361
15362 args += 3; /* Skip special argument "all". */
15363 if (*args)
15364 error (_("Junk at end of arguments."));
15365
15366 ALL_TRACEPOINTS (b)
15367 {
15368 t1 = (struct tracepoint *) b;
15369 trace_pass_set_count (t1, count, from_tty);
15370 }
15371 }
15372 else if (*args == '\0')
15373 {
15374 t1 = get_tracepoint_by_number (&args, NULL);
15375 if (t1)
15376 trace_pass_set_count (t1, count, from_tty);
15377 }
15378 else
15379 {
15380 number_or_range_parser parser (args);
15381 while (!parser.finished ())
15382 {
15383 t1 = get_tracepoint_by_number (&args, &parser);
15384 if (t1)
15385 trace_pass_set_count (t1, count, from_tty);
15386 }
15387 }
15388 }
15389
15390 struct tracepoint *
15391 get_tracepoint (int num)
15392 {
15393 struct breakpoint *t;
15394
15395 ALL_TRACEPOINTS (t)
15396 if (t->number == num)
15397 return (struct tracepoint *) t;
15398
15399 return NULL;
15400 }
15401
15402 /* Find the tracepoint with the given target-side number (which may be
15403 different from the tracepoint number after disconnecting and
15404 reconnecting). */
15405
15406 struct tracepoint *
15407 get_tracepoint_by_number_on_target (int num)
15408 {
15409 struct breakpoint *b;
15410
15411 ALL_TRACEPOINTS (b)
15412 {
15413 struct tracepoint *t = (struct tracepoint *) b;
15414
15415 if (t->number_on_target == num)
15416 return t;
15417 }
15418
15419 return NULL;
15420 }
15421
15422 /* Utility: parse a tracepoint number and look it up in the list.
15423 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15424 If the argument is missing, the most recent tracepoint
15425 (tracepoint_count) is returned. */
15426
15427 struct tracepoint *
15428 get_tracepoint_by_number (char **arg,
15429 number_or_range_parser *parser)
15430 {
15431 struct breakpoint *t;
15432 int tpnum;
15433 char *instring = arg == NULL ? NULL : *arg;
15434
15435 if (parser != NULL)
15436 {
15437 gdb_assert (!parser->finished ());
15438 tpnum = parser->get_number ();
15439 }
15440 else if (arg == NULL || *arg == NULL || ! **arg)
15441 tpnum = tracepoint_count;
15442 else
15443 tpnum = get_number (arg);
15444
15445 if (tpnum <= 0)
15446 {
15447 if (instring && *instring)
15448 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15449 instring);
15450 else
15451 printf_filtered (_("No previous tracepoint\n"));
15452 return NULL;
15453 }
15454
15455 ALL_TRACEPOINTS (t)
15456 if (t->number == tpnum)
15457 {
15458 return (struct tracepoint *) t;
15459 }
15460
15461 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15462 return NULL;
15463 }
15464
15465 void
15466 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15467 {
15468 if (b->thread != -1)
15469 fprintf_unfiltered (fp, " thread %d", b->thread);
15470
15471 if (b->task != 0)
15472 fprintf_unfiltered (fp, " task %d", b->task);
15473
15474 fprintf_unfiltered (fp, "\n");
15475 }
15476
15477 /* Save information on user settable breakpoints (watchpoints, etc) to
15478 a new script file named FILENAME. If FILTER is non-NULL, call it
15479 on each breakpoint and only include the ones for which it returns
15480 non-zero. */
15481
15482 static void
15483 save_breakpoints (char *filename, int from_tty,
15484 int (*filter) (const struct breakpoint *))
15485 {
15486 struct breakpoint *tp;
15487 int any = 0;
15488 struct cleanup *cleanup;
15489 int extra_trace_bits = 0;
15490
15491 if (filename == 0 || *filename == 0)
15492 error (_("Argument required (file name in which to save)"));
15493
15494 /* See if we have anything to save. */
15495 ALL_BREAKPOINTS (tp)
15496 {
15497 /* Skip internal and momentary breakpoints. */
15498 if (!user_breakpoint_p (tp))
15499 continue;
15500
15501 /* If we have a filter, only save the breakpoints it accepts. */
15502 if (filter && !filter (tp))
15503 continue;
15504
15505 any = 1;
15506
15507 if (is_tracepoint (tp))
15508 {
15509 extra_trace_bits = 1;
15510
15511 /* We can stop searching. */
15512 break;
15513 }
15514 }
15515
15516 if (!any)
15517 {
15518 warning (_("Nothing to save."));
15519 return;
15520 }
15521
15522 filename = tilde_expand (filename);
15523 cleanup = make_cleanup (xfree, filename);
15524
15525 stdio_file fp;
15526
15527 if (!fp.open (filename, "w"))
15528 error (_("Unable to open file '%s' for saving (%s)"),
15529 filename, safe_strerror (errno));
15530
15531 if (extra_trace_bits)
15532 save_trace_state_variables (&fp);
15533
15534 ALL_BREAKPOINTS (tp)
15535 {
15536 /* Skip internal and momentary breakpoints. */
15537 if (!user_breakpoint_p (tp))
15538 continue;
15539
15540 /* If we have a filter, only save the breakpoints it accepts. */
15541 if (filter && !filter (tp))
15542 continue;
15543
15544 tp->ops->print_recreate (tp, &fp);
15545
15546 /* Note, we can't rely on tp->number for anything, as we can't
15547 assume the recreated breakpoint numbers will match. Use $bpnum
15548 instead. */
15549
15550 if (tp->cond_string)
15551 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15552
15553 if (tp->ignore_count)
15554 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15555
15556 if (tp->type != bp_dprintf && tp->commands)
15557 {
15558 fp.puts (" commands\n");
15559
15560 current_uiout->redirect (&fp);
15561 TRY
15562 {
15563 print_command_lines (current_uiout, tp->commands->commands, 2);
15564 }
15565 CATCH (ex, RETURN_MASK_ALL)
15566 {
15567 current_uiout->redirect (NULL);
15568 throw_exception (ex);
15569 }
15570 END_CATCH
15571
15572 current_uiout->redirect (NULL);
15573 fp.puts (" end\n");
15574 }
15575
15576 if (tp->enable_state == bp_disabled)
15577 fp.puts ("disable $bpnum\n");
15578
15579 /* If this is a multi-location breakpoint, check if the locations
15580 should be individually disabled. Watchpoint locations are
15581 special, and not user visible. */
15582 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15583 {
15584 struct bp_location *loc;
15585 int n = 1;
15586
15587 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15588 if (!loc->enabled)
15589 fp.printf ("disable $bpnum.%d\n", n);
15590 }
15591 }
15592
15593 if (extra_trace_bits && *default_collect)
15594 fp.printf ("set default-collect %s\n", default_collect);
15595
15596 if (from_tty)
15597 printf_filtered (_("Saved to file '%s'.\n"), filename);
15598 do_cleanups (cleanup);
15599 }
15600
15601 /* The `save breakpoints' command. */
15602
15603 static void
15604 save_breakpoints_command (char *args, int from_tty)
15605 {
15606 save_breakpoints (args, from_tty, NULL);
15607 }
15608
15609 /* The `save tracepoints' command. */
15610
15611 static void
15612 save_tracepoints_command (char *args, int from_tty)
15613 {
15614 save_breakpoints (args, from_tty, is_tracepoint);
15615 }
15616
15617 /* Create a vector of all tracepoints. */
15618
15619 VEC(breakpoint_p) *
15620 all_tracepoints (void)
15621 {
15622 VEC(breakpoint_p) *tp_vec = 0;
15623 struct breakpoint *tp;
15624
15625 ALL_TRACEPOINTS (tp)
15626 {
15627 VEC_safe_push (breakpoint_p, tp_vec, tp);
15628 }
15629
15630 return tp_vec;
15631 }
15632
15633 \f
15634 /* This help string is used to consolidate all the help string for specifying
15635 locations used by several commands. */
15636
15637 #define LOCATION_HELP_STRING \
15638 "Linespecs are colon-separated lists of location parameters, such as\n\
15639 source filename, function name, label name, and line number.\n\
15640 Example: To specify the start of a label named \"the_top\" in the\n\
15641 function \"fact\" in the file \"factorial.c\", use\n\
15642 \"factorial.c:fact:the_top\".\n\
15643 \n\
15644 Address locations begin with \"*\" and specify an exact address in the\n\
15645 program. Example: To specify the fourth byte past the start function\n\
15646 \"main\", use \"*main + 4\".\n\
15647 \n\
15648 Explicit locations are similar to linespecs but use an option/argument\n\
15649 syntax to specify location parameters.\n\
15650 Example: To specify the start of the label named \"the_top\" in the\n\
15651 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15652 -function fact -label the_top\".\n"
15653
15654 /* This help string is used for the break, hbreak, tbreak and thbreak
15655 commands. It is defined as a macro to prevent duplication.
15656 COMMAND should be a string constant containing the name of the
15657 command. */
15658
15659 #define BREAK_ARGS_HELP(command) \
15660 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15661 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15662 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15663 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15664 `-probe-dtrace' (for a DTrace probe).\n\
15665 LOCATION may be a linespec, address, or explicit location as described\n\
15666 below.\n\
15667 \n\
15668 With no LOCATION, uses current execution address of the selected\n\
15669 stack frame. This is useful for breaking on return to a stack frame.\n\
15670 \n\
15671 THREADNUM is the number from \"info threads\".\n\
15672 CONDITION is a boolean expression.\n\
15673 \n" LOCATION_HELP_STRING "\n\
15674 Multiple breakpoints at one place are permitted, and useful if their\n\
15675 conditions are different.\n\
15676 \n\
15677 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15678
15679 /* List of subcommands for "catch". */
15680 static struct cmd_list_element *catch_cmdlist;
15681
15682 /* List of subcommands for "tcatch". */
15683 static struct cmd_list_element *tcatch_cmdlist;
15684
15685 void
15686 add_catch_command (const char *name, const char *docstring,
15687 cmd_sfunc_ftype *sfunc,
15688 completer_ftype *completer,
15689 void *user_data_catch,
15690 void *user_data_tcatch)
15691 {
15692 struct cmd_list_element *command;
15693
15694 command = add_cmd (name, class_breakpoint, NULL, docstring,
15695 &catch_cmdlist);
15696 set_cmd_sfunc (command, sfunc);
15697 set_cmd_context (command, user_data_catch);
15698 set_cmd_completer (command, completer);
15699
15700 command = add_cmd (name, class_breakpoint, NULL, docstring,
15701 &tcatch_cmdlist);
15702 set_cmd_sfunc (command, sfunc);
15703 set_cmd_context (command, user_data_tcatch);
15704 set_cmd_completer (command, completer);
15705 }
15706
15707 static void
15708 save_command (char *arg, int from_tty)
15709 {
15710 printf_unfiltered (_("\"save\" must be followed by "
15711 "the name of a save subcommand.\n"));
15712 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15713 }
15714
15715 struct breakpoint *
15716 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15717 void *data)
15718 {
15719 struct breakpoint *b, *b_tmp;
15720
15721 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15722 {
15723 if ((*callback) (b, data))
15724 return b;
15725 }
15726
15727 return NULL;
15728 }
15729
15730 /* Zero if any of the breakpoint's locations could be a location where
15731 functions have been inlined, nonzero otherwise. */
15732
15733 static int
15734 is_non_inline_function (struct breakpoint *b)
15735 {
15736 /* The shared library event breakpoint is set on the address of a
15737 non-inline function. */
15738 if (b->type == bp_shlib_event)
15739 return 1;
15740
15741 return 0;
15742 }
15743
15744 /* Nonzero if the specified PC cannot be a location where functions
15745 have been inlined. */
15746
15747 int
15748 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15749 const struct target_waitstatus *ws)
15750 {
15751 struct breakpoint *b;
15752 struct bp_location *bl;
15753
15754 ALL_BREAKPOINTS (b)
15755 {
15756 if (!is_non_inline_function (b))
15757 continue;
15758
15759 for (bl = b->loc; bl != NULL; bl = bl->next)
15760 {
15761 if (!bl->shlib_disabled
15762 && bpstat_check_location (bl, aspace, pc, ws))
15763 return 1;
15764 }
15765 }
15766
15767 return 0;
15768 }
15769
15770 /* Remove any references to OBJFILE which is going to be freed. */
15771
15772 void
15773 breakpoint_free_objfile (struct objfile *objfile)
15774 {
15775 struct bp_location **locp, *loc;
15776
15777 ALL_BP_LOCATIONS (loc, locp)
15778 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15779 loc->symtab = NULL;
15780 }
15781
15782 void
15783 initialize_breakpoint_ops (void)
15784 {
15785 static int initialized = 0;
15786
15787 struct breakpoint_ops *ops;
15788
15789 if (initialized)
15790 return;
15791 initialized = 1;
15792
15793 /* The breakpoint_ops structure to be inherit by all kinds of
15794 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15795 internal and momentary breakpoints, etc.). */
15796 ops = &bkpt_base_breakpoint_ops;
15797 *ops = base_breakpoint_ops;
15798 ops->re_set = bkpt_re_set;
15799 ops->insert_location = bkpt_insert_location;
15800 ops->remove_location = bkpt_remove_location;
15801 ops->breakpoint_hit = bkpt_breakpoint_hit;
15802 ops->create_sals_from_location = bkpt_create_sals_from_location;
15803 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15804 ops->decode_location = bkpt_decode_location;
15805
15806 /* The breakpoint_ops structure to be used in regular breakpoints. */
15807 ops = &bkpt_breakpoint_ops;
15808 *ops = bkpt_base_breakpoint_ops;
15809 ops->re_set = bkpt_re_set;
15810 ops->resources_needed = bkpt_resources_needed;
15811 ops->print_it = bkpt_print_it;
15812 ops->print_mention = bkpt_print_mention;
15813 ops->print_recreate = bkpt_print_recreate;
15814
15815 /* Ranged breakpoints. */
15816 ops = &ranged_breakpoint_ops;
15817 *ops = bkpt_breakpoint_ops;
15818 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15819 ops->resources_needed = resources_needed_ranged_breakpoint;
15820 ops->print_it = print_it_ranged_breakpoint;
15821 ops->print_one = print_one_ranged_breakpoint;
15822 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15823 ops->print_mention = print_mention_ranged_breakpoint;
15824 ops->print_recreate = print_recreate_ranged_breakpoint;
15825
15826 /* Internal breakpoints. */
15827 ops = &internal_breakpoint_ops;
15828 *ops = bkpt_base_breakpoint_ops;
15829 ops->re_set = internal_bkpt_re_set;
15830 ops->check_status = internal_bkpt_check_status;
15831 ops->print_it = internal_bkpt_print_it;
15832 ops->print_mention = internal_bkpt_print_mention;
15833
15834 /* Momentary breakpoints. */
15835 ops = &momentary_breakpoint_ops;
15836 *ops = bkpt_base_breakpoint_ops;
15837 ops->re_set = momentary_bkpt_re_set;
15838 ops->check_status = momentary_bkpt_check_status;
15839 ops->print_it = momentary_bkpt_print_it;
15840 ops->print_mention = momentary_bkpt_print_mention;
15841
15842 /* Probe breakpoints. */
15843 ops = &bkpt_probe_breakpoint_ops;
15844 *ops = bkpt_breakpoint_ops;
15845 ops->insert_location = bkpt_probe_insert_location;
15846 ops->remove_location = bkpt_probe_remove_location;
15847 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15848 ops->decode_location = bkpt_probe_decode_location;
15849
15850 /* Watchpoints. */
15851 ops = &watchpoint_breakpoint_ops;
15852 *ops = base_breakpoint_ops;
15853 ops->re_set = re_set_watchpoint;
15854 ops->insert_location = insert_watchpoint;
15855 ops->remove_location = remove_watchpoint;
15856 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15857 ops->check_status = check_status_watchpoint;
15858 ops->resources_needed = resources_needed_watchpoint;
15859 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15860 ops->print_it = print_it_watchpoint;
15861 ops->print_mention = print_mention_watchpoint;
15862 ops->print_recreate = print_recreate_watchpoint;
15863 ops->explains_signal = explains_signal_watchpoint;
15864
15865 /* Masked watchpoints. */
15866 ops = &masked_watchpoint_breakpoint_ops;
15867 *ops = watchpoint_breakpoint_ops;
15868 ops->insert_location = insert_masked_watchpoint;
15869 ops->remove_location = remove_masked_watchpoint;
15870 ops->resources_needed = resources_needed_masked_watchpoint;
15871 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15872 ops->print_it = print_it_masked_watchpoint;
15873 ops->print_one_detail = print_one_detail_masked_watchpoint;
15874 ops->print_mention = print_mention_masked_watchpoint;
15875 ops->print_recreate = print_recreate_masked_watchpoint;
15876
15877 /* Tracepoints. */
15878 ops = &tracepoint_breakpoint_ops;
15879 *ops = base_breakpoint_ops;
15880 ops->re_set = tracepoint_re_set;
15881 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15882 ops->print_one_detail = tracepoint_print_one_detail;
15883 ops->print_mention = tracepoint_print_mention;
15884 ops->print_recreate = tracepoint_print_recreate;
15885 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15886 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15887 ops->decode_location = tracepoint_decode_location;
15888
15889 /* Probe tracepoints. */
15890 ops = &tracepoint_probe_breakpoint_ops;
15891 *ops = tracepoint_breakpoint_ops;
15892 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15893 ops->decode_location = tracepoint_probe_decode_location;
15894
15895 /* Static tracepoints with marker (`-m'). */
15896 ops = &strace_marker_breakpoint_ops;
15897 *ops = tracepoint_breakpoint_ops;
15898 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15899 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15900 ops->decode_location = strace_marker_decode_location;
15901
15902 /* Fork catchpoints. */
15903 ops = &catch_fork_breakpoint_ops;
15904 *ops = base_breakpoint_ops;
15905 ops->insert_location = insert_catch_fork;
15906 ops->remove_location = remove_catch_fork;
15907 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15908 ops->print_it = print_it_catch_fork;
15909 ops->print_one = print_one_catch_fork;
15910 ops->print_mention = print_mention_catch_fork;
15911 ops->print_recreate = print_recreate_catch_fork;
15912
15913 /* Vfork catchpoints. */
15914 ops = &catch_vfork_breakpoint_ops;
15915 *ops = base_breakpoint_ops;
15916 ops->insert_location = insert_catch_vfork;
15917 ops->remove_location = remove_catch_vfork;
15918 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15919 ops->print_it = print_it_catch_vfork;
15920 ops->print_one = print_one_catch_vfork;
15921 ops->print_mention = print_mention_catch_vfork;
15922 ops->print_recreate = print_recreate_catch_vfork;
15923
15924 /* Exec catchpoints. */
15925 ops = &catch_exec_breakpoint_ops;
15926 *ops = base_breakpoint_ops;
15927 ops->insert_location = insert_catch_exec;
15928 ops->remove_location = remove_catch_exec;
15929 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15930 ops->print_it = print_it_catch_exec;
15931 ops->print_one = print_one_catch_exec;
15932 ops->print_mention = print_mention_catch_exec;
15933 ops->print_recreate = print_recreate_catch_exec;
15934
15935 /* Solib-related catchpoints. */
15936 ops = &catch_solib_breakpoint_ops;
15937 *ops = base_breakpoint_ops;
15938 ops->insert_location = insert_catch_solib;
15939 ops->remove_location = remove_catch_solib;
15940 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15941 ops->check_status = check_status_catch_solib;
15942 ops->print_it = print_it_catch_solib;
15943 ops->print_one = print_one_catch_solib;
15944 ops->print_mention = print_mention_catch_solib;
15945 ops->print_recreate = print_recreate_catch_solib;
15946
15947 ops = &dprintf_breakpoint_ops;
15948 *ops = bkpt_base_breakpoint_ops;
15949 ops->re_set = dprintf_re_set;
15950 ops->resources_needed = bkpt_resources_needed;
15951 ops->print_it = bkpt_print_it;
15952 ops->print_mention = bkpt_print_mention;
15953 ops->print_recreate = dprintf_print_recreate;
15954 ops->after_condition_true = dprintf_after_condition_true;
15955 ops->breakpoint_hit = dprintf_breakpoint_hit;
15956 }
15957
15958 /* Chain containing all defined "enable breakpoint" subcommands. */
15959
15960 static struct cmd_list_element *enablebreaklist = NULL;
15961
15962 void
15963 _initialize_breakpoint (void)
15964 {
15965 struct cmd_list_element *c;
15966
15967 initialize_breakpoint_ops ();
15968
15969 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15970 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15971 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15972
15973 breakpoint_objfile_key
15974 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15975
15976 breakpoint_chain = 0;
15977 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15978 before a breakpoint is set. */
15979 breakpoint_count = 0;
15980
15981 tracepoint_count = 0;
15982
15983 add_com ("ignore", class_breakpoint, ignore_command, _("\
15984 Set ignore-count of breakpoint number N to COUNT.\n\
15985 Usage is `ignore N COUNT'."));
15986
15987 add_com ("commands", class_breakpoint, commands_command, _("\
15988 Set commands to be executed when the given breakpoints are hit.\n\
15989 Give a space-separated breakpoint list as argument after \"commands\".\n\
15990 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15991 (e.g. `5-7').\n\
15992 With no argument, the targeted breakpoint is the last one set.\n\
15993 The commands themselves follow starting on the next line.\n\
15994 Type a line containing \"end\" to indicate the end of them.\n\
15995 Give \"silent\" as the first line to make the breakpoint silent;\n\
15996 then no output is printed when it is hit, except what the commands print."));
15997
15998 c = add_com ("condition", class_breakpoint, condition_command, _("\
15999 Specify breakpoint number N to break only if COND is true.\n\
16000 Usage is `condition N COND', where N is an integer and COND is an\n\
16001 expression to be evaluated whenever breakpoint N is reached."));
16002 set_cmd_completer (c, condition_completer);
16003
16004 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16005 Set a temporary breakpoint.\n\
16006 Like \"break\" except the breakpoint is only temporary,\n\
16007 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16008 by using \"enable delete\" on the breakpoint number.\n\
16009 \n"
16010 BREAK_ARGS_HELP ("tbreak")));
16011 set_cmd_completer (c, location_completer);
16012
16013 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16014 Set a hardware assisted breakpoint.\n\
16015 Like \"break\" except the breakpoint requires hardware support,\n\
16016 some target hardware may not have this support.\n\
16017 \n"
16018 BREAK_ARGS_HELP ("hbreak")));
16019 set_cmd_completer (c, location_completer);
16020
16021 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16022 Set a temporary hardware assisted breakpoint.\n\
16023 Like \"hbreak\" except the breakpoint is only temporary,\n\
16024 so it will be deleted when hit.\n\
16025 \n"
16026 BREAK_ARGS_HELP ("thbreak")));
16027 set_cmd_completer (c, location_completer);
16028
16029 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16030 Enable some breakpoints.\n\
16031 Give breakpoint numbers (separated by spaces) as arguments.\n\
16032 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16033 This is used to cancel the effect of the \"disable\" command.\n\
16034 With a subcommand you can enable temporarily."),
16035 &enablelist, "enable ", 1, &cmdlist);
16036
16037 add_com_alias ("en", "enable", class_breakpoint, 1);
16038
16039 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16040 Enable some breakpoints.\n\
16041 Give breakpoint numbers (separated by spaces) as arguments.\n\
16042 This is used to cancel the effect of the \"disable\" command.\n\
16043 May be abbreviated to simply \"enable\".\n"),
16044 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16045
16046 add_cmd ("once", no_class, enable_once_command, _("\
16047 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16048 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16049 &enablebreaklist);
16050
16051 add_cmd ("delete", no_class, enable_delete_command, _("\
16052 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16053 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16054 &enablebreaklist);
16055
16056 add_cmd ("count", no_class, enable_count_command, _("\
16057 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16058 If a breakpoint is hit while enabled in this fashion,\n\
16059 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16060 &enablebreaklist);
16061
16062 add_cmd ("delete", no_class, enable_delete_command, _("\
16063 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16064 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16065 &enablelist);
16066
16067 add_cmd ("once", no_class, enable_once_command, _("\
16068 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16069 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16070 &enablelist);
16071
16072 add_cmd ("count", no_class, enable_count_command, _("\
16073 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16074 If a breakpoint is hit while enabled in this fashion,\n\
16075 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16076 &enablelist);
16077
16078 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16079 Disable some breakpoints.\n\
16080 Arguments are breakpoint numbers with spaces in between.\n\
16081 To disable all breakpoints, give no argument.\n\
16082 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16083 &disablelist, "disable ", 1, &cmdlist);
16084 add_com_alias ("dis", "disable", class_breakpoint, 1);
16085 add_com_alias ("disa", "disable", class_breakpoint, 1);
16086
16087 add_cmd ("breakpoints", class_alias, disable_command, _("\
16088 Disable some breakpoints.\n\
16089 Arguments are breakpoint numbers with spaces in between.\n\
16090 To disable all breakpoints, give no argument.\n\
16091 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16092 This command may be abbreviated \"disable\"."),
16093 &disablelist);
16094
16095 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16096 Delete some breakpoints or auto-display expressions.\n\
16097 Arguments are breakpoint numbers with spaces in between.\n\
16098 To delete all breakpoints, give no argument.\n\
16099 \n\
16100 Also a prefix command for deletion of other GDB objects.\n\
16101 The \"unset\" command is also an alias for \"delete\"."),
16102 &deletelist, "delete ", 1, &cmdlist);
16103 add_com_alias ("d", "delete", class_breakpoint, 1);
16104 add_com_alias ("del", "delete", class_breakpoint, 1);
16105
16106 add_cmd ("breakpoints", class_alias, delete_command, _("\
16107 Delete some breakpoints or auto-display expressions.\n\
16108 Arguments are breakpoint numbers with spaces in between.\n\
16109 To delete all breakpoints, give no argument.\n\
16110 This command may be abbreviated \"delete\"."),
16111 &deletelist);
16112
16113 add_com ("clear", class_breakpoint, clear_command, _("\
16114 Clear breakpoint at specified location.\n\
16115 Argument may be a linespec, explicit, or address location as described below.\n\
16116 \n\
16117 With no argument, clears all breakpoints in the line that the selected frame\n\
16118 is executing in.\n"
16119 "\n" LOCATION_HELP_STRING "\n\
16120 See also the \"delete\" command which clears breakpoints by number."));
16121 add_com_alias ("cl", "clear", class_breakpoint, 1);
16122
16123 c = add_com ("break", class_breakpoint, break_command, _("\
16124 Set breakpoint at specified location.\n"
16125 BREAK_ARGS_HELP ("break")));
16126 set_cmd_completer (c, location_completer);
16127
16128 add_com_alias ("b", "break", class_run, 1);
16129 add_com_alias ("br", "break", class_run, 1);
16130 add_com_alias ("bre", "break", class_run, 1);
16131 add_com_alias ("brea", "break", class_run, 1);
16132
16133 if (dbx_commands)
16134 {
16135 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16136 Break in function/address or break at a line in the current file."),
16137 &stoplist, "stop ", 1, &cmdlist);
16138 add_cmd ("in", class_breakpoint, stopin_command,
16139 _("Break in function or address."), &stoplist);
16140 add_cmd ("at", class_breakpoint, stopat_command,
16141 _("Break at a line in the current file."), &stoplist);
16142 add_com ("status", class_info, breakpoints_info, _("\
16143 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16144 The \"Type\" column indicates one of:\n\
16145 \tbreakpoint - normal breakpoint\n\
16146 \twatchpoint - watchpoint\n\
16147 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16148 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16149 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16150 address and file/line number respectively.\n\
16151 \n\
16152 Convenience variable \"$_\" and default examine address for \"x\"\n\
16153 are set to the address of the last breakpoint listed unless the command\n\
16154 is prefixed with \"server \".\n\n\
16155 Convenience variable \"$bpnum\" contains the number of the last\n\
16156 breakpoint set."));
16157 }
16158
16159 add_info ("breakpoints", breakpoints_info, _("\
16160 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16161 The \"Type\" column indicates one of:\n\
16162 \tbreakpoint - normal breakpoint\n\
16163 \twatchpoint - watchpoint\n\
16164 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16165 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16166 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16167 address and file/line number respectively.\n\
16168 \n\
16169 Convenience variable \"$_\" and default examine address for \"x\"\n\
16170 are set to the address of the last breakpoint listed unless the command\n\
16171 is prefixed with \"server \".\n\n\
16172 Convenience variable \"$bpnum\" contains the number of the last\n\
16173 breakpoint set."));
16174
16175 add_info_alias ("b", "breakpoints", 1);
16176
16177 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16178 Status of all breakpoints, or breakpoint number NUMBER.\n\
16179 The \"Type\" column indicates one of:\n\
16180 \tbreakpoint - normal breakpoint\n\
16181 \twatchpoint - watchpoint\n\
16182 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16183 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16184 \tuntil - internal breakpoint used by the \"until\" command\n\
16185 \tfinish - internal breakpoint used by the \"finish\" command\n\
16186 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16187 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16188 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16189 address and file/line number respectively.\n\
16190 \n\
16191 Convenience variable \"$_\" and default examine address for \"x\"\n\
16192 are set to the address of the last breakpoint listed unless the command\n\
16193 is prefixed with \"server \".\n\n\
16194 Convenience variable \"$bpnum\" contains the number of the last\n\
16195 breakpoint set."),
16196 &maintenanceinfolist);
16197
16198 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16199 Set catchpoints to catch events."),
16200 &catch_cmdlist, "catch ",
16201 0/*allow-unknown*/, &cmdlist);
16202
16203 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16204 Set temporary catchpoints to catch events."),
16205 &tcatch_cmdlist, "tcatch ",
16206 0/*allow-unknown*/, &cmdlist);
16207
16208 add_catch_command ("fork", _("Catch calls to fork."),
16209 catch_fork_command_1,
16210 NULL,
16211 (void *) (uintptr_t) catch_fork_permanent,
16212 (void *) (uintptr_t) catch_fork_temporary);
16213 add_catch_command ("vfork", _("Catch calls to vfork."),
16214 catch_fork_command_1,
16215 NULL,
16216 (void *) (uintptr_t) catch_vfork_permanent,
16217 (void *) (uintptr_t) catch_vfork_temporary);
16218 add_catch_command ("exec", _("Catch calls to exec."),
16219 catch_exec_command_1,
16220 NULL,
16221 CATCH_PERMANENT,
16222 CATCH_TEMPORARY);
16223 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16224 Usage: catch load [REGEX]\n\
16225 If REGEX is given, only stop for libraries matching the regular expression."),
16226 catch_load_command_1,
16227 NULL,
16228 CATCH_PERMANENT,
16229 CATCH_TEMPORARY);
16230 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16231 Usage: catch unload [REGEX]\n\
16232 If REGEX is given, only stop for libraries matching the regular expression."),
16233 catch_unload_command_1,
16234 NULL,
16235 CATCH_PERMANENT,
16236 CATCH_TEMPORARY);
16237
16238 c = add_com ("watch", class_breakpoint, watch_command, _("\
16239 Set a watchpoint for an expression.\n\
16240 Usage: watch [-l|-location] EXPRESSION\n\
16241 A watchpoint stops execution of your program whenever the value of\n\
16242 an expression changes.\n\
16243 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16244 the memory to which it refers."));
16245 set_cmd_completer (c, expression_completer);
16246
16247 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16248 Set a read watchpoint for an expression.\n\
16249 Usage: rwatch [-l|-location] EXPRESSION\n\
16250 A watchpoint stops execution of your program whenever the value of\n\
16251 an expression is read.\n\
16252 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16253 the memory to which it refers."));
16254 set_cmd_completer (c, expression_completer);
16255
16256 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16257 Set a watchpoint for an expression.\n\
16258 Usage: awatch [-l|-location] EXPRESSION\n\
16259 A watchpoint stops execution of your program whenever the value of\n\
16260 an expression is either read or written.\n\
16261 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16262 the memory to which it refers."));
16263 set_cmd_completer (c, expression_completer);
16264
16265 add_info ("watchpoints", watchpoints_info, _("\
16266 Status of specified watchpoints (all watchpoints if no argument)."));
16267
16268 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16269 respond to changes - contrary to the description. */
16270 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16271 &can_use_hw_watchpoints, _("\
16272 Set debugger's willingness to use watchpoint hardware."), _("\
16273 Show debugger's willingness to use watchpoint hardware."), _("\
16274 If zero, gdb will not use hardware for new watchpoints, even if\n\
16275 such is available. (However, any hardware watchpoints that were\n\
16276 created before setting this to nonzero, will continue to use watchpoint\n\
16277 hardware.)"),
16278 NULL,
16279 show_can_use_hw_watchpoints,
16280 &setlist, &showlist);
16281
16282 can_use_hw_watchpoints = 1;
16283
16284 /* Tracepoint manipulation commands. */
16285
16286 c = add_com ("trace", class_breakpoint, trace_command, _("\
16287 Set a tracepoint at specified location.\n\
16288 \n"
16289 BREAK_ARGS_HELP ("trace") "\n\
16290 Do \"help tracepoints\" for info on other tracepoint commands."));
16291 set_cmd_completer (c, location_completer);
16292
16293 add_com_alias ("tp", "trace", class_alias, 0);
16294 add_com_alias ("tr", "trace", class_alias, 1);
16295 add_com_alias ("tra", "trace", class_alias, 1);
16296 add_com_alias ("trac", "trace", class_alias, 1);
16297
16298 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16299 Set a fast tracepoint at specified location.\n\
16300 \n"
16301 BREAK_ARGS_HELP ("ftrace") "\n\
16302 Do \"help tracepoints\" for info on other tracepoint commands."));
16303 set_cmd_completer (c, location_completer);
16304
16305 c = add_com ("strace", class_breakpoint, strace_command, _("\
16306 Set a static tracepoint at location or marker.\n\
16307 \n\
16308 strace [LOCATION] [if CONDITION]\n\
16309 LOCATION may be a linespec, explicit, or address location (described below) \n\
16310 or -m MARKER_ID.\n\n\
16311 If a marker id is specified, probe the marker with that name. With\n\
16312 no LOCATION, uses current execution address of the selected stack frame.\n\
16313 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16314 This collects arbitrary user data passed in the probe point call to the\n\
16315 tracing library. You can inspect it when analyzing the trace buffer,\n\
16316 by printing the $_sdata variable like any other convenience variable.\n\
16317 \n\
16318 CONDITION is a boolean expression.\n\
16319 \n" LOCATION_HELP_STRING "\n\
16320 Multiple tracepoints at one place are permitted, and useful if their\n\
16321 conditions are different.\n\
16322 \n\
16323 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16324 Do \"help tracepoints\" for info on other tracepoint commands."));
16325 set_cmd_completer (c, location_completer);
16326
16327 add_info ("tracepoints", tracepoints_info, _("\
16328 Status of specified tracepoints (all tracepoints if no argument).\n\
16329 Convenience variable \"$tpnum\" contains the number of the\n\
16330 last tracepoint set."));
16331
16332 add_info_alias ("tp", "tracepoints", 1);
16333
16334 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16335 Delete specified tracepoints.\n\
16336 Arguments are tracepoint numbers, separated by spaces.\n\
16337 No argument means delete all tracepoints."),
16338 &deletelist);
16339 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16340
16341 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16342 Disable specified tracepoints.\n\
16343 Arguments are tracepoint numbers, separated by spaces.\n\
16344 No argument means disable all tracepoints."),
16345 &disablelist);
16346 deprecate_cmd (c, "disable");
16347
16348 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16349 Enable specified tracepoints.\n\
16350 Arguments are tracepoint numbers, separated by spaces.\n\
16351 No argument means enable all tracepoints."),
16352 &enablelist);
16353 deprecate_cmd (c, "enable");
16354
16355 add_com ("passcount", class_trace, trace_pass_command, _("\
16356 Set the passcount for a tracepoint.\n\
16357 The trace will end when the tracepoint has been passed 'count' times.\n\
16358 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16359 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16360
16361 add_prefix_cmd ("save", class_breakpoint, save_command,
16362 _("Save breakpoint definitions as a script."),
16363 &save_cmdlist, "save ",
16364 0/*allow-unknown*/, &cmdlist);
16365
16366 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16367 Save current breakpoint definitions as a script.\n\
16368 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16369 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16370 session to restore them."),
16371 &save_cmdlist);
16372 set_cmd_completer (c, filename_completer);
16373
16374 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16375 Save current tracepoint definitions as a script.\n\
16376 Use the 'source' command in another debug session to restore them."),
16377 &save_cmdlist);
16378 set_cmd_completer (c, filename_completer);
16379
16380 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16381 deprecate_cmd (c, "save tracepoints");
16382
16383 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16384 Breakpoint specific settings\n\
16385 Configure various breakpoint-specific variables such as\n\
16386 pending breakpoint behavior"),
16387 &breakpoint_set_cmdlist, "set breakpoint ",
16388 0/*allow-unknown*/, &setlist);
16389 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16390 Breakpoint specific settings\n\
16391 Configure various breakpoint-specific variables such as\n\
16392 pending breakpoint behavior"),
16393 &breakpoint_show_cmdlist, "show breakpoint ",
16394 0/*allow-unknown*/, &showlist);
16395
16396 add_setshow_auto_boolean_cmd ("pending", no_class,
16397 &pending_break_support, _("\
16398 Set debugger's behavior regarding pending breakpoints."), _("\
16399 Show debugger's behavior regarding pending breakpoints."), _("\
16400 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16401 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16402 an error. If auto, an unrecognized breakpoint location results in a\n\
16403 user-query to see if a pending breakpoint should be created."),
16404 NULL,
16405 show_pending_break_support,
16406 &breakpoint_set_cmdlist,
16407 &breakpoint_show_cmdlist);
16408
16409 pending_break_support = AUTO_BOOLEAN_AUTO;
16410
16411 add_setshow_boolean_cmd ("auto-hw", no_class,
16412 &automatic_hardware_breakpoints, _("\
16413 Set automatic usage of hardware breakpoints."), _("\
16414 Show automatic usage of hardware breakpoints."), _("\
16415 If set, the debugger will automatically use hardware breakpoints for\n\
16416 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16417 a warning will be emitted for such breakpoints."),
16418 NULL,
16419 show_automatic_hardware_breakpoints,
16420 &breakpoint_set_cmdlist,
16421 &breakpoint_show_cmdlist);
16422
16423 add_setshow_boolean_cmd ("always-inserted", class_support,
16424 &always_inserted_mode, _("\
16425 Set mode for inserting breakpoints."), _("\
16426 Show mode for inserting breakpoints."), _("\
16427 When this mode is on, breakpoints are inserted immediately as soon as\n\
16428 they're created, kept inserted even when execution stops, and removed\n\
16429 only when the user deletes them. When this mode is off (the default),\n\
16430 breakpoints are inserted only when execution continues, and removed\n\
16431 when execution stops."),
16432 NULL,
16433 &show_always_inserted_mode,
16434 &breakpoint_set_cmdlist,
16435 &breakpoint_show_cmdlist);
16436
16437 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16438 condition_evaluation_enums,
16439 &condition_evaluation_mode_1, _("\
16440 Set mode of breakpoint condition evaluation."), _("\
16441 Show mode of breakpoint condition evaluation."), _("\
16442 When this is set to \"host\", breakpoint conditions will be\n\
16443 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16444 breakpoint conditions will be downloaded to the target (if the target\n\
16445 supports such feature) and conditions will be evaluated on the target's side.\n\
16446 If this is set to \"auto\" (default), this will be automatically set to\n\
16447 \"target\" if it supports condition evaluation, otherwise it will\n\
16448 be set to \"gdb\""),
16449 &set_condition_evaluation_mode,
16450 &show_condition_evaluation_mode,
16451 &breakpoint_set_cmdlist,
16452 &breakpoint_show_cmdlist);
16453
16454 add_com ("break-range", class_breakpoint, break_range_command, _("\
16455 Set a breakpoint for an address range.\n\
16456 break-range START-LOCATION, END-LOCATION\n\
16457 where START-LOCATION and END-LOCATION can be one of the following:\n\
16458 LINENUM, for that line in the current file,\n\
16459 FILE:LINENUM, for that line in that file,\n\
16460 +OFFSET, for that number of lines after the current line\n\
16461 or the start of the range\n\
16462 FUNCTION, for the first line in that function,\n\
16463 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16464 *ADDRESS, for the instruction at that address.\n\
16465 \n\
16466 The breakpoint will stop execution of the inferior whenever it executes\n\
16467 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16468 range (including START-LOCATION and END-LOCATION)."));
16469
16470 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16471 Set a dynamic printf at specified location.\n\
16472 dprintf location,format string,arg1,arg2,...\n\
16473 location may be a linespec, explicit, or address location.\n"
16474 "\n" LOCATION_HELP_STRING));
16475 set_cmd_completer (c, location_completer);
16476
16477 add_setshow_enum_cmd ("dprintf-style", class_support,
16478 dprintf_style_enums, &dprintf_style, _("\
16479 Set the style of usage for dynamic printf."), _("\
16480 Show the style of usage for dynamic printf."), _("\
16481 This setting chooses how GDB will do a dynamic printf.\n\
16482 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16483 console, as with the \"printf\" command.\n\
16484 If the value is \"call\", the print is done by calling a function in your\n\
16485 program; by default printf(), but you can choose a different function or\n\
16486 output stream by setting dprintf-function and dprintf-channel."),
16487 update_dprintf_commands, NULL,
16488 &setlist, &showlist);
16489
16490 dprintf_function = xstrdup ("printf");
16491 add_setshow_string_cmd ("dprintf-function", class_support,
16492 &dprintf_function, _("\
16493 Set the function to use for dynamic printf"), _("\
16494 Show the function to use for dynamic printf"), NULL,
16495 update_dprintf_commands, NULL,
16496 &setlist, &showlist);
16497
16498 dprintf_channel = xstrdup ("");
16499 add_setshow_string_cmd ("dprintf-channel", class_support,
16500 &dprintf_channel, _("\
16501 Set the channel to use for dynamic printf"), _("\
16502 Show the channel to use for dynamic printf"), NULL,
16503 update_dprintf_commands, NULL,
16504 &setlist, &showlist);
16505
16506 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16507 &disconnected_dprintf, _("\
16508 Set whether dprintf continues after GDB disconnects."), _("\
16509 Show whether dprintf continues after GDB disconnects."), _("\
16510 Use this to let dprintf commands continue to hit and produce output\n\
16511 even if GDB disconnects or detaches from the target."),
16512 NULL,
16513 NULL,
16514 &setlist, &showlist);
16515
16516 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16517 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16518 (target agent only) This is useful for formatted output in user-defined commands."));
16519
16520 automatic_hardware_breakpoints = 1;
16521
16522 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16523 observer_attach_thread_exit (remove_threaded_breakpoints);
16524 }
This page took 0.439421 seconds and 4 git commands to generate.