f3101af96fbd80d73e9a35e228b706de3b5a0c84
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 check_no_tracepoint_commands (c->body_list_0.get ());
1019 check_no_tracepoint_commands (c->body_list_1.get ());
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_list_1 == nullptr);
1131 c2 = while_stepping->body_list_0.get ();
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 counted_command_line &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 static void
1220 commands_command_1 (const char *arg, int from_tty,
1221 struct command_line *control)
1222 {
1223 counted_command_line cmd;
1224
1225 std::string new_arg;
1226
1227 if (arg == NULL || !*arg)
1228 {
1229 if (breakpoint_count - prev_breakpoint_count > 1)
1230 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1231 breakpoint_count);
1232 else if (breakpoint_count > 0)
1233 new_arg = string_printf ("%d", breakpoint_count);
1234 arg = new_arg.c_str ();
1235 }
1236
1237 map_breakpoint_numbers
1238 (arg, [&] (breakpoint *b)
1239 {
1240 if (cmd == NULL)
1241 {
1242 if (control != NULL)
1243 cmd = control->body_list_0;
1244 else
1245 {
1246 std::string str
1247 = string_printf (_("Type commands for breakpoint(s) "
1248 "%s, one per line."),
1249 arg);
1250
1251 auto do_validate = [=] (const char *line)
1252 {
1253 validate_actionline (line, b);
1254 };
1255 gdb::function_view<void (const char *)> validator;
1256 if (is_tracepoint (b))
1257 validator = do_validate;
1258
1259 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1260 }
1261 }
1262
1263 /* If a breakpoint was on the list more than once, we don't need to
1264 do anything. */
1265 if (b->commands != cmd)
1266 {
1267 validate_commands_for_breakpoint (b, cmd.get ());
1268 b->commands = cmd;
1269 gdb::observers::breakpoint_modified.notify (b);
1270 }
1271 });
1272 }
1273
1274 static void
1275 commands_command (const char *arg, int from_tty)
1276 {
1277 commands_command_1 (arg, from_tty, NULL);
1278 }
1279
1280 /* Like commands_command, but instead of reading the commands from
1281 input stream, takes them from an already parsed command structure.
1282
1283 This is used by cli-script.c to DTRT with breakpoint commands
1284 that are part of if and while bodies. */
1285 enum command_control_type
1286 commands_from_control_command (const char *arg, struct command_line *cmd)
1287 {
1288 commands_command_1 (arg, 0, cmd);
1289 return simple_control;
1290 }
1291
1292 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1293
1294 static int
1295 bp_location_has_shadow (struct bp_location *bl)
1296 {
1297 if (bl->loc_type != bp_loc_software_breakpoint)
1298 return 0;
1299 if (!bl->inserted)
1300 return 0;
1301 if (bl->target_info.shadow_len == 0)
1302 /* BL isn't valid, or doesn't shadow memory. */
1303 return 0;
1304 return 1;
1305 }
1306
1307 /* Update BUF, which is LEN bytes read from the target address
1308 MEMADDR, by replacing a memory breakpoint with its shadowed
1309 contents.
1310
1311 If READBUF is not NULL, this buffer must not overlap with the of
1312 the breakpoint location's shadow_contents buffer. Otherwise, a
1313 failed assertion internal error will be raised. */
1314
1315 static void
1316 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1317 const gdb_byte *writebuf_org,
1318 ULONGEST memaddr, LONGEST len,
1319 struct bp_target_info *target_info,
1320 struct gdbarch *gdbarch)
1321 {
1322 /* Now do full processing of the found relevant range of elements. */
1323 CORE_ADDR bp_addr = 0;
1324 int bp_size = 0;
1325 int bptoffset = 0;
1326
1327 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1328 current_program_space->aspace, 0))
1329 {
1330 /* The breakpoint is inserted in a different address space. */
1331 return;
1332 }
1333
1334 /* Addresses and length of the part of the breakpoint that
1335 we need to copy. */
1336 bp_addr = target_info->placed_address;
1337 bp_size = target_info->shadow_len;
1338
1339 if (bp_addr + bp_size <= memaddr)
1340 {
1341 /* The breakpoint is entirely before the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 if (bp_addr >= memaddr + len)
1347 {
1348 /* The breakpoint is entirely after the chunk of memory we are
1349 reading. */
1350 return;
1351 }
1352
1353 /* Offset within shadow_contents. */
1354 if (bp_addr < memaddr)
1355 {
1356 /* Only copy the second part of the breakpoint. */
1357 bp_size -= memaddr - bp_addr;
1358 bptoffset = memaddr - bp_addr;
1359 bp_addr = memaddr;
1360 }
1361
1362 if (bp_addr + bp_size > memaddr + len)
1363 {
1364 /* Only copy the first part of the breakpoint. */
1365 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1366 }
1367
1368 if (readbuf != NULL)
1369 {
1370 /* Verify that the readbuf buffer does not overlap with the
1371 shadow_contents buffer. */
1372 gdb_assert (target_info->shadow_contents >= readbuf + len
1373 || readbuf >= (target_info->shadow_contents
1374 + target_info->shadow_len));
1375
1376 /* Update the read buffer with this inserted breakpoint's
1377 shadow. */
1378 memcpy (readbuf + bp_addr - memaddr,
1379 target_info->shadow_contents + bptoffset, bp_size);
1380 }
1381 else
1382 {
1383 const unsigned char *bp;
1384 CORE_ADDR addr = target_info->reqstd_address;
1385 int placed_size;
1386
1387 /* Update the shadow with what we want to write to memory. */
1388 memcpy (target_info->shadow_contents + bptoffset,
1389 writebuf_org + bp_addr - memaddr, bp_size);
1390
1391 /* Determine appropriate breakpoint contents and size for this
1392 address. */
1393 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1394
1395 /* Update the final write buffer with this inserted
1396 breakpoint's INSN. */
1397 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1398 }
1399 }
1400
1401 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1402 by replacing any memory breakpoints with their shadowed contents.
1403
1404 If READBUF is not NULL, this buffer must not overlap with any of
1405 the breakpoint location's shadow_contents buffers. Otherwise,
1406 a failed assertion internal error will be raised.
1407
1408 The range of shadowed area by each bp_location is:
1409 bl->address - bp_locations_placed_address_before_address_max
1410 up to bl->address + bp_locations_shadow_len_after_address_max
1411 The range we were requested to resolve shadows for is:
1412 memaddr ... memaddr + len
1413 Thus the safe cutoff boundaries for performance optimization are
1414 memaddr + len <= (bl->address
1415 - bp_locations_placed_address_before_address_max)
1416 and:
1417 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1418
1419 void
1420 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1421 const gdb_byte *writebuf_org,
1422 ULONGEST memaddr, LONGEST len)
1423 {
1424 /* Left boundary, right boundary and median element of our binary
1425 search. */
1426 unsigned bc_l, bc_r, bc;
1427
1428 /* Find BC_L which is a leftmost element which may affect BUF
1429 content. It is safe to report lower value but a failure to
1430 report higher one. */
1431
1432 bc_l = 0;
1433 bc_r = bp_locations_count;
1434 while (bc_l + 1 < bc_r)
1435 {
1436 struct bp_location *bl;
1437
1438 bc = (bc_l + bc_r) / 2;
1439 bl = bp_locations[bc];
1440
1441 /* Check first BL->ADDRESS will not overflow due to the added
1442 constant. Then advance the left boundary only if we are sure
1443 the BC element can in no way affect the BUF content (MEMADDR
1444 to MEMADDR + LEN range).
1445
1446 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1447 offset so that we cannot miss a breakpoint with its shadow
1448 range tail still reaching MEMADDR. */
1449
1450 if ((bl->address + bp_locations_shadow_len_after_address_max
1451 >= bl->address)
1452 && (bl->address + bp_locations_shadow_len_after_address_max
1453 <= memaddr))
1454 bc_l = bc;
1455 else
1456 bc_r = bc;
1457 }
1458
1459 /* Due to the binary search above, we need to make sure we pick the
1460 first location that's at BC_L's address. E.g., if there are
1461 multiple locations at the same address, BC_L may end up pointing
1462 at a duplicate location, and miss the "master"/"inserted"
1463 location. Say, given locations L1, L2 and L3 at addresses A and
1464 B:
1465
1466 L1@A, L2@A, L3@B, ...
1467
1468 BC_L could end up pointing at location L2, while the "master"
1469 location could be L1. Since the `loc->inserted' flag is only set
1470 on "master" locations, we'd forget to restore the shadow of L1
1471 and L2. */
1472 while (bc_l > 0
1473 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1474 bc_l--;
1475
1476 /* Now do full processing of the found relevant range of elements. */
1477
1478 for (bc = bc_l; bc < bp_locations_count; bc++)
1479 {
1480 struct bp_location *bl = bp_locations[bc];
1481
1482 /* bp_location array has BL->OWNER always non-NULL. */
1483 if (bl->owner->type == bp_none)
1484 warning (_("reading through apparently deleted breakpoint #%d?"),
1485 bl->owner->number);
1486
1487 /* Performance optimization: any further element can no longer affect BUF
1488 content. */
1489
1490 if (bl->address >= bp_locations_placed_address_before_address_max
1491 && memaddr + len <= (bl->address
1492 - bp_locations_placed_address_before_address_max))
1493 break;
1494
1495 if (!bp_location_has_shadow (bl))
1496 continue;
1497
1498 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1499 memaddr, len, &bl->target_info, bl->gdbarch);
1500 }
1501 }
1502
1503 \f
1504
1505 /* Return true if BPT is either a software breakpoint or a hardware
1506 breakpoint. */
1507
1508 int
1509 is_breakpoint (const struct breakpoint *bpt)
1510 {
1511 return (bpt->type == bp_breakpoint
1512 || bpt->type == bp_hardware_breakpoint
1513 || bpt->type == bp_dprintf);
1514 }
1515
1516 /* Return true if BPT is of any hardware watchpoint kind. */
1517
1518 static int
1519 is_hardware_watchpoint (const struct breakpoint *bpt)
1520 {
1521 return (bpt->type == bp_hardware_watchpoint
1522 || bpt->type == bp_read_watchpoint
1523 || bpt->type == bp_access_watchpoint);
1524 }
1525
1526 /* Return true if BPT is of any watchpoint kind, hardware or
1527 software. */
1528
1529 int
1530 is_watchpoint (const struct breakpoint *bpt)
1531 {
1532 return (is_hardware_watchpoint (bpt)
1533 || bpt->type == bp_watchpoint);
1534 }
1535
1536 /* Returns true if the current thread and its running state are safe
1537 to evaluate or update watchpoint B. Watchpoints on local
1538 expressions need to be evaluated in the context of the thread that
1539 was current when the watchpoint was created, and, that thread needs
1540 to be stopped to be able to select the correct frame context.
1541 Watchpoints on global expressions can be evaluated on any thread,
1542 and in any state. It is presently left to the target allowing
1543 memory accesses when threads are running. */
1544
1545 static int
1546 watchpoint_in_thread_scope (struct watchpoint *b)
1547 {
1548 return (b->pspace == current_program_space
1549 && (ptid_equal (b->watchpoint_thread, null_ptid)
1550 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1551 && !is_executing (inferior_ptid))));
1552 }
1553
1554 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1555 associated bp_watchpoint_scope breakpoint. */
1556
1557 static void
1558 watchpoint_del_at_next_stop (struct watchpoint *w)
1559 {
1560 if (w->related_breakpoint != w)
1561 {
1562 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1563 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1564 w->related_breakpoint->disposition = disp_del_at_next_stop;
1565 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1566 w->related_breakpoint = w;
1567 }
1568 w->disposition = disp_del_at_next_stop;
1569 }
1570
1571 /* Extract a bitfield value from value VAL using the bit parameters contained in
1572 watchpoint W. */
1573
1574 static struct value *
1575 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1576 {
1577 struct value *bit_val;
1578
1579 if (val == NULL)
1580 return NULL;
1581
1582 bit_val = allocate_value (value_type (val));
1583
1584 unpack_value_bitfield (bit_val,
1585 w->val_bitpos,
1586 w->val_bitsize,
1587 value_contents_for_printing (val),
1588 value_offset (val),
1589 val);
1590
1591 return bit_val;
1592 }
1593
1594 /* Allocate a dummy location and add it to B, which must be a software
1595 watchpoint. This is required because even if a software watchpoint
1596 is not watching any memory, bpstat_stop_status requires a location
1597 to be able to report stops. */
1598
1599 static void
1600 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1601 struct program_space *pspace)
1602 {
1603 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1604
1605 b->loc = allocate_bp_location (b);
1606 b->loc->pspace = pspace;
1607 b->loc->address = -1;
1608 b->loc->length = -1;
1609 }
1610
1611 /* Returns true if B is a software watchpoint that is not watching any
1612 memory (e.g., "watch $pc"). */
1613
1614 static int
1615 is_no_memory_software_watchpoint (struct breakpoint *b)
1616 {
1617 return (b->type == bp_watchpoint
1618 && b->loc != NULL
1619 && b->loc->next == NULL
1620 && b->loc->address == -1
1621 && b->loc->length == -1);
1622 }
1623
1624 /* Assuming that B is a watchpoint:
1625 - Reparse watchpoint expression, if REPARSE is non-zero
1626 - Evaluate expression and store the result in B->val
1627 - Evaluate the condition if there is one, and store the result
1628 in b->loc->cond.
1629 - Update the list of values that must be watched in B->loc.
1630
1631 If the watchpoint disposition is disp_del_at_next_stop, then do
1632 nothing. If this is local watchpoint that is out of scope, delete
1633 it.
1634
1635 Even with `set breakpoint always-inserted on' the watchpoints are
1636 removed + inserted on each stop here. Normal breakpoints must
1637 never be removed because they might be missed by a running thread
1638 when debugging in non-stop mode. On the other hand, hardware
1639 watchpoints (is_hardware_watchpoint; processed here) are specific
1640 to each LWP since they are stored in each LWP's hardware debug
1641 registers. Therefore, such LWP must be stopped first in order to
1642 be able to modify its hardware watchpoints.
1643
1644 Hardware watchpoints must be reset exactly once after being
1645 presented to the user. It cannot be done sooner, because it would
1646 reset the data used to present the watchpoint hit to the user. And
1647 it must not be done later because it could display the same single
1648 watchpoint hit during multiple GDB stops. Note that the latter is
1649 relevant only to the hardware watchpoint types bp_read_watchpoint
1650 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1651 not user-visible - its hit is suppressed if the memory content has
1652 not changed.
1653
1654 The following constraints influence the location where we can reset
1655 hardware watchpoints:
1656
1657 * target_stopped_by_watchpoint and target_stopped_data_address are
1658 called several times when GDB stops.
1659
1660 [linux]
1661 * Multiple hardware watchpoints can be hit at the same time,
1662 causing GDB to stop. GDB only presents one hardware watchpoint
1663 hit at a time as the reason for stopping, and all the other hits
1664 are presented later, one after the other, each time the user
1665 requests the execution to be resumed. Execution is not resumed
1666 for the threads still having pending hit event stored in
1667 LWP_INFO->STATUS. While the watchpoint is already removed from
1668 the inferior on the first stop the thread hit event is kept being
1669 reported from its cached value by linux_nat_stopped_data_address
1670 until the real thread resume happens after the watchpoint gets
1671 presented and thus its LWP_INFO->STATUS gets reset.
1672
1673 Therefore the hardware watchpoint hit can get safely reset on the
1674 watchpoint removal from inferior. */
1675
1676 static void
1677 update_watchpoint (struct watchpoint *b, int reparse)
1678 {
1679 int within_current_scope;
1680 struct frame_id saved_frame_id;
1681 int frame_saved;
1682
1683 /* If this is a local watchpoint, we only want to check if the
1684 watchpoint frame is in scope if the current thread is the thread
1685 that was used to create the watchpoint. */
1686 if (!watchpoint_in_thread_scope (b))
1687 return;
1688
1689 if (b->disposition == disp_del_at_next_stop)
1690 return;
1691
1692 frame_saved = 0;
1693
1694 /* Determine if the watchpoint is within scope. */
1695 if (b->exp_valid_block == NULL)
1696 within_current_scope = 1;
1697 else
1698 {
1699 struct frame_info *fi = get_current_frame ();
1700 struct gdbarch *frame_arch = get_frame_arch (fi);
1701 CORE_ADDR frame_pc = get_frame_pc (fi);
1702
1703 /* If we're at a point where the stack has been destroyed
1704 (e.g. in a function epilogue), unwinding may not work
1705 properly. Do not attempt to recreate locations at this
1706 point. See similar comments in watchpoint_check. */
1707 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1708 return;
1709
1710 /* Save the current frame's ID so we can restore it after
1711 evaluating the watchpoint expression on its own frame. */
1712 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1713 took a frame parameter, so that we didn't have to change the
1714 selected frame. */
1715 frame_saved = 1;
1716 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1717
1718 fi = frame_find_by_id (b->watchpoint_frame);
1719 within_current_scope = (fi != NULL);
1720 if (within_current_scope)
1721 select_frame (fi);
1722 }
1723
1724 /* We don't free locations. They are stored in the bp_location array
1725 and update_global_location_list will eventually delete them and
1726 remove breakpoints if needed. */
1727 b->loc = NULL;
1728
1729 if (within_current_scope && reparse)
1730 {
1731 const char *s;
1732
1733 b->exp.reset ();
1734 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1735 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1736 /* If the meaning of expression itself changed, the old value is
1737 no longer relevant. We don't want to report a watchpoint hit
1738 to the user when the old value and the new value may actually
1739 be completely different objects. */
1740 b->val = NULL;
1741 b->val_valid = 0;
1742
1743 /* Note that unlike with breakpoints, the watchpoint's condition
1744 expression is stored in the breakpoint object, not in the
1745 locations (re)created below. */
1746 if (b->cond_string != NULL)
1747 {
1748 b->cond_exp.reset ();
1749
1750 s = b->cond_string;
1751 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1752 }
1753 }
1754
1755 /* If we failed to parse the expression, for example because
1756 it refers to a global variable in a not-yet-loaded shared library,
1757 don't try to insert watchpoint. We don't automatically delete
1758 such watchpoint, though, since failure to parse expression
1759 is different from out-of-scope watchpoint. */
1760 if (!target_has_execution)
1761 {
1762 /* Without execution, memory can't change. No use to try and
1763 set watchpoint locations. The watchpoint will be reset when
1764 the target gains execution, through breakpoint_re_set. */
1765 if (!can_use_hw_watchpoints)
1766 {
1767 if (b->ops->works_in_software_mode (b))
1768 b->type = bp_watchpoint;
1769 else
1770 error (_("Can't set read/access watchpoint when "
1771 "hardware watchpoints are disabled."));
1772 }
1773 }
1774 else if (within_current_scope && b->exp)
1775 {
1776 int pc = 0;
1777 std::vector<value_ref_ptr> val_chain;
1778 struct value *v, *result, *next;
1779 struct program_space *frame_pspace;
1780
1781 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1782
1783 /* Avoid setting b->val if it's already set. The meaning of
1784 b->val is 'the last value' user saw, and we should update
1785 it only if we reported that last value to user. As it
1786 happens, the code that reports it updates b->val directly.
1787 We don't keep track of the memory value for masked
1788 watchpoints. */
1789 if (!b->val_valid && !is_masked_watchpoint (b))
1790 {
1791 if (b->val_bitsize != 0)
1792 v = extract_bitfield_from_watchpoint_value (b, v);
1793 b->val = release_value (v);
1794 b->val_valid = 1;
1795 }
1796
1797 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1798
1799 /* Look at each value on the value chain. */
1800 gdb_assert (!val_chain.empty ());
1801 for (const value_ref_ptr &iter : val_chain)
1802 {
1803 v = iter.get ();
1804
1805 /* If it's a memory location, and GDB actually needed
1806 its contents to evaluate the expression, then we
1807 must watch it. If the first value returned is
1808 still lazy, that means an error occurred reading it;
1809 watch it anyway in case it becomes readable. */
1810 if (VALUE_LVAL (v) == lval_memory
1811 && (v == val_chain[0] || ! value_lazy (v)))
1812 {
1813 struct type *vtype = check_typedef (value_type (v));
1814
1815 /* We only watch structs and arrays if user asked
1816 for it explicitly, never if they just happen to
1817 appear in the middle of some value chain. */
1818 if (v == result
1819 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1820 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1821 {
1822 CORE_ADDR addr;
1823 enum target_hw_bp_type type;
1824 struct bp_location *loc, **tmp;
1825 int bitpos = 0, bitsize = 0;
1826
1827 if (value_bitsize (v) != 0)
1828 {
1829 /* Extract the bit parameters out from the bitfield
1830 sub-expression. */
1831 bitpos = value_bitpos (v);
1832 bitsize = value_bitsize (v);
1833 }
1834 else if (v == result && b->val_bitsize != 0)
1835 {
1836 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1837 lvalue whose bit parameters are saved in the fields
1838 VAL_BITPOS and VAL_BITSIZE. */
1839 bitpos = b->val_bitpos;
1840 bitsize = b->val_bitsize;
1841 }
1842
1843 addr = value_address (v);
1844 if (bitsize != 0)
1845 {
1846 /* Skip the bytes that don't contain the bitfield. */
1847 addr += bitpos / 8;
1848 }
1849
1850 type = hw_write;
1851 if (b->type == bp_read_watchpoint)
1852 type = hw_read;
1853 else if (b->type == bp_access_watchpoint)
1854 type = hw_access;
1855
1856 loc = allocate_bp_location (b);
1857 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1858 ;
1859 *tmp = loc;
1860 loc->gdbarch = get_type_arch (value_type (v));
1861
1862 loc->pspace = frame_pspace;
1863 loc->address = address_significant (loc->gdbarch, addr);
1864
1865 if (bitsize != 0)
1866 {
1867 /* Just cover the bytes that make up the bitfield. */
1868 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1869 }
1870 else
1871 loc->length = TYPE_LENGTH (value_type (v));
1872
1873 loc->watchpoint_type = type;
1874 }
1875 }
1876 }
1877
1878 /* Change the type of breakpoint between hardware assisted or
1879 an ordinary watchpoint depending on the hardware support
1880 and free hardware slots. REPARSE is set when the inferior
1881 is started. */
1882 if (reparse)
1883 {
1884 int reg_cnt;
1885 enum bp_loc_type loc_type;
1886 struct bp_location *bl;
1887
1888 reg_cnt = can_use_hardware_watchpoint (val_chain);
1889
1890 if (reg_cnt)
1891 {
1892 int i, target_resources_ok, other_type_used;
1893 enum bptype type;
1894
1895 /* Use an exact watchpoint when there's only one memory region to be
1896 watched, and only one debug register is needed to watch it. */
1897 b->exact = target_exact_watchpoints && reg_cnt == 1;
1898
1899 /* We need to determine how many resources are already
1900 used for all other hardware watchpoints plus this one
1901 to see if we still have enough resources to also fit
1902 this watchpoint in as well. */
1903
1904 /* If this is a software watchpoint, we try to turn it
1905 to a hardware one -- count resources as if B was of
1906 hardware watchpoint type. */
1907 type = b->type;
1908 if (type == bp_watchpoint)
1909 type = bp_hardware_watchpoint;
1910
1911 /* This watchpoint may or may not have been placed on
1912 the list yet at this point (it won't be in the list
1913 if we're trying to create it for the first time,
1914 through watch_command), so always account for it
1915 manually. */
1916
1917 /* Count resources used by all watchpoints except B. */
1918 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1919
1920 /* Add in the resources needed for B. */
1921 i += hw_watchpoint_use_count (b);
1922
1923 target_resources_ok
1924 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1925 if (target_resources_ok <= 0)
1926 {
1927 int sw_mode = b->ops->works_in_software_mode (b);
1928
1929 if (target_resources_ok == 0 && !sw_mode)
1930 error (_("Target does not support this type of "
1931 "hardware watchpoint."));
1932 else if (target_resources_ok < 0 && !sw_mode)
1933 error (_("There are not enough available hardware "
1934 "resources for this watchpoint."));
1935
1936 /* Downgrade to software watchpoint. */
1937 b->type = bp_watchpoint;
1938 }
1939 else
1940 {
1941 /* If this was a software watchpoint, we've just
1942 found we have enough resources to turn it to a
1943 hardware watchpoint. Otherwise, this is a
1944 nop. */
1945 b->type = type;
1946 }
1947 }
1948 else if (!b->ops->works_in_software_mode (b))
1949 {
1950 if (!can_use_hw_watchpoints)
1951 error (_("Can't set read/access watchpoint when "
1952 "hardware watchpoints are disabled."));
1953 else
1954 error (_("Expression cannot be implemented with "
1955 "read/access watchpoint."));
1956 }
1957 else
1958 b->type = bp_watchpoint;
1959
1960 loc_type = (b->type == bp_watchpoint? bp_loc_other
1961 : bp_loc_hardware_watchpoint);
1962 for (bl = b->loc; bl; bl = bl->next)
1963 bl->loc_type = loc_type;
1964 }
1965
1966 /* If a software watchpoint is not watching any memory, then the
1967 above left it without any location set up. But,
1968 bpstat_stop_status requires a location to be able to report
1969 stops, so make sure there's at least a dummy one. */
1970 if (b->type == bp_watchpoint && b->loc == NULL)
1971 software_watchpoint_add_no_memory_location (b, frame_pspace);
1972 }
1973 else if (!within_current_scope)
1974 {
1975 printf_filtered (_("\
1976 Watchpoint %d deleted because the program has left the block\n\
1977 in which its expression is valid.\n"),
1978 b->number);
1979 watchpoint_del_at_next_stop (b);
1980 }
1981
1982 /* Restore the selected frame. */
1983 if (frame_saved)
1984 select_frame (frame_find_by_id (saved_frame_id));
1985 }
1986
1987
1988 /* Returns 1 iff breakpoint location should be
1989 inserted in the inferior. We don't differentiate the type of BL's owner
1990 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1991 breakpoint_ops is not defined, because in insert_bp_location,
1992 tracepoint's insert_location will not be called. */
1993 static int
1994 should_be_inserted (struct bp_location *bl)
1995 {
1996 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1997 return 0;
1998
1999 if (bl->owner->disposition == disp_del_at_next_stop)
2000 return 0;
2001
2002 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2003 return 0;
2004
2005 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2006 return 0;
2007
2008 /* This is set for example, when we're attached to the parent of a
2009 vfork, and have detached from the child. The child is running
2010 free, and we expect it to do an exec or exit, at which point the
2011 OS makes the parent schedulable again (and the target reports
2012 that the vfork is done). Until the child is done with the shared
2013 memory region, do not insert breakpoints in the parent, otherwise
2014 the child could still trip on the parent's breakpoints. Since
2015 the parent is blocked anyway, it won't miss any breakpoint. */
2016 if (bl->pspace->breakpoints_not_allowed)
2017 return 0;
2018
2019 /* Don't insert a breakpoint if we're trying to step past its
2020 location, except if the breakpoint is a single-step breakpoint,
2021 and the breakpoint's thread is the thread which is stepping past
2022 a breakpoint. */
2023 if ((bl->loc_type == bp_loc_software_breakpoint
2024 || bl->loc_type == bp_loc_hardware_breakpoint)
2025 && stepping_past_instruction_at (bl->pspace->aspace,
2026 bl->address)
2027 /* The single-step breakpoint may be inserted at the location
2028 we're trying to step if the instruction branches to itself.
2029 However, the instruction won't be executed at all and it may
2030 break the semantics of the instruction, for example, the
2031 instruction is a conditional branch or updates some flags.
2032 We can't fix it unless GDB is able to emulate the instruction
2033 or switch to displaced stepping. */
2034 && !(bl->owner->type == bp_single_step
2035 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2036 {
2037 if (debug_infrun)
2038 {
2039 fprintf_unfiltered (gdb_stdlog,
2040 "infrun: skipping breakpoint: "
2041 "stepping past insn at: %s\n",
2042 paddress (bl->gdbarch, bl->address));
2043 }
2044 return 0;
2045 }
2046
2047 /* Don't insert watchpoints if we're trying to step past the
2048 instruction that triggered one. */
2049 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2050 && stepping_past_nonsteppable_watchpoint ())
2051 {
2052 if (debug_infrun)
2053 {
2054 fprintf_unfiltered (gdb_stdlog,
2055 "infrun: stepping past non-steppable watchpoint. "
2056 "skipping watchpoint at %s:%d\n",
2057 paddress (bl->gdbarch, bl->address),
2058 bl->length);
2059 }
2060 return 0;
2061 }
2062
2063 return 1;
2064 }
2065
2066 /* Same as should_be_inserted but does the check assuming
2067 that the location is not duplicated. */
2068
2069 static int
2070 unduplicated_should_be_inserted (struct bp_location *bl)
2071 {
2072 int result;
2073 const int save_duplicate = bl->duplicate;
2074
2075 bl->duplicate = 0;
2076 result = should_be_inserted (bl);
2077 bl->duplicate = save_duplicate;
2078 return result;
2079 }
2080
2081 /* Parses a conditional described by an expression COND into an
2082 agent expression bytecode suitable for evaluation
2083 by the bytecode interpreter. Return NULL if there was
2084 any error during parsing. */
2085
2086 static agent_expr_up
2087 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2088 {
2089 if (cond == NULL)
2090 return NULL;
2091
2092 agent_expr_up aexpr;
2093
2094 /* We don't want to stop processing, so catch any errors
2095 that may show up. */
2096 TRY
2097 {
2098 aexpr = gen_eval_for_expr (scope, cond);
2099 }
2100
2101 CATCH (ex, RETURN_MASK_ERROR)
2102 {
2103 /* If we got here, it means the condition could not be parsed to a valid
2104 bytecode expression and thus can't be evaluated on the target's side.
2105 It's no use iterating through the conditions. */
2106 }
2107 END_CATCH
2108
2109 /* We have a valid agent expression. */
2110 return aexpr;
2111 }
2112
2113 /* Based on location BL, create a list of breakpoint conditions to be
2114 passed on to the target. If we have duplicated locations with different
2115 conditions, we will add such conditions to the list. The idea is that the
2116 target will evaluate the list of conditions and will only notify GDB when
2117 one of them is true. */
2118
2119 static void
2120 build_target_condition_list (struct bp_location *bl)
2121 {
2122 struct bp_location **locp = NULL, **loc2p;
2123 int null_condition_or_parse_error = 0;
2124 int modified = bl->needs_update;
2125 struct bp_location *loc;
2126
2127 /* Release conditions left over from a previous insert. */
2128 bl->target_info.conditions.clear ();
2129
2130 /* This is only meaningful if the target is
2131 evaluating conditions and if the user has
2132 opted for condition evaluation on the target's
2133 side. */
2134 if (gdb_evaluates_breakpoint_condition_p ()
2135 || !target_supports_evaluation_of_breakpoint_conditions ())
2136 return;
2137
2138 /* Do a first pass to check for locations with no assigned
2139 conditions or conditions that fail to parse to a valid agent expression
2140 bytecode. If any of these happen, then it's no use to send conditions
2141 to the target since this location will always trigger and generate a
2142 response back to GDB. */
2143 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2144 {
2145 loc = (*loc2p);
2146 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2147 {
2148 if (modified)
2149 {
2150 /* Re-parse the conditions since something changed. In that
2151 case we already freed the condition bytecodes (see
2152 force_breakpoint_reinsertion). We just
2153 need to parse the condition to bytecodes again. */
2154 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2155 loc->cond.get ());
2156 }
2157
2158 /* If we have a NULL bytecode expression, it means something
2159 went wrong or we have a null condition expression. */
2160 if (!loc->cond_bytecode)
2161 {
2162 null_condition_or_parse_error = 1;
2163 break;
2164 }
2165 }
2166 }
2167
2168 /* If any of these happened, it means we will have to evaluate the conditions
2169 for the location's address on gdb's side. It is no use keeping bytecodes
2170 for all the other duplicate locations, thus we free all of them here.
2171
2172 This is so we have a finer control over which locations' conditions are
2173 being evaluated by GDB or the remote stub. */
2174 if (null_condition_or_parse_error)
2175 {
2176 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2177 {
2178 loc = (*loc2p);
2179 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2180 {
2181 /* Only go as far as the first NULL bytecode is
2182 located. */
2183 if (!loc->cond_bytecode)
2184 return;
2185
2186 loc->cond_bytecode.reset ();
2187 }
2188 }
2189 }
2190
2191 /* No NULL conditions or failed bytecode generation. Build a condition list
2192 for this location's address. */
2193 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2194 {
2195 loc = (*loc2p);
2196 if (loc->cond
2197 && is_breakpoint (loc->owner)
2198 && loc->pspace->num == bl->pspace->num
2199 && loc->owner->enable_state == bp_enabled
2200 && loc->enabled)
2201 {
2202 /* Add the condition to the vector. This will be used later
2203 to send the conditions to the target. */
2204 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2205 }
2206 }
2207
2208 return;
2209 }
2210
2211 /* Parses a command described by string CMD into an agent expression
2212 bytecode suitable for evaluation by the bytecode interpreter.
2213 Return NULL if there was any error during parsing. */
2214
2215 static agent_expr_up
2216 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2217 {
2218 const char *cmdrest;
2219 const char *format_start, *format_end;
2220 struct gdbarch *gdbarch = get_current_arch ();
2221
2222 if (cmd == NULL)
2223 return NULL;
2224
2225 cmdrest = cmd;
2226
2227 if (*cmdrest == ',')
2228 ++cmdrest;
2229 cmdrest = skip_spaces (cmdrest);
2230
2231 if (*cmdrest++ != '"')
2232 error (_("No format string following the location"));
2233
2234 format_start = cmdrest;
2235
2236 format_pieces fpieces (&cmdrest);
2237
2238 format_end = cmdrest;
2239
2240 if (*cmdrest++ != '"')
2241 error (_("Bad format string, non-terminated '\"'."));
2242
2243 cmdrest = skip_spaces (cmdrest);
2244
2245 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2246 error (_("Invalid argument syntax"));
2247
2248 if (*cmdrest == ',')
2249 cmdrest++;
2250 cmdrest = skip_spaces (cmdrest);
2251
2252 /* For each argument, make an expression. */
2253
2254 std::vector<struct expression *> argvec;
2255 while (*cmdrest != '\0')
2256 {
2257 const char *cmd1;
2258
2259 cmd1 = cmdrest;
2260 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2261 argvec.push_back (expr.release ());
2262 cmdrest = cmd1;
2263 if (*cmdrest == ',')
2264 ++cmdrest;
2265 }
2266
2267 agent_expr_up aexpr;
2268
2269 /* We don't want to stop processing, so catch any errors
2270 that may show up. */
2271 TRY
2272 {
2273 aexpr = gen_printf (scope, gdbarch, 0, 0,
2274 format_start, format_end - format_start,
2275 argvec.size (), argvec.data ());
2276 }
2277 CATCH (ex, RETURN_MASK_ERROR)
2278 {
2279 /* If we got here, it means the command could not be parsed to a valid
2280 bytecode expression and thus can't be evaluated on the target's side.
2281 It's no use iterating through the other commands. */
2282 }
2283 END_CATCH
2284
2285 /* We have a valid agent expression, return it. */
2286 return aexpr;
2287 }
2288
2289 /* Based on location BL, create a list of breakpoint commands to be
2290 passed on to the target. If we have duplicated locations with
2291 different commands, we will add any such to the list. */
2292
2293 static void
2294 build_target_command_list (struct bp_location *bl)
2295 {
2296 struct bp_location **locp = NULL, **loc2p;
2297 int null_command_or_parse_error = 0;
2298 int modified = bl->needs_update;
2299 struct bp_location *loc;
2300
2301 /* Clear commands left over from a previous insert. */
2302 bl->target_info.tcommands.clear ();
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* For now, limit to agent-style dprintf breakpoints. */
2308 if (dprintf_style != dprintf_style_agent)
2309 return;
2310
2311 /* For now, if we have any duplicate location that isn't a dprintf,
2312 don't install the target-side commands, as that would make the
2313 breakpoint not be reported to the core, and we'd lose
2314 control. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner)
2319 && loc->pspace->num == bl->pspace->num
2320 && loc->owner->type != bp_dprintf)
2321 return;
2322 }
2323
2324 /* Do a first pass to check for locations with no assigned
2325 conditions or conditions that fail to parse to a valid agent expression
2326 bytecode. If any of these happen, then it's no use to send conditions
2327 to the target since this location will always trigger and generate a
2328 response back to GDB. */
2329 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2330 {
2331 loc = (*loc2p);
2332 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2333 {
2334 if (modified)
2335 {
2336 /* Re-parse the commands since something changed. In that
2337 case we already freed the command bytecodes (see
2338 force_breakpoint_reinsertion). We just
2339 need to parse the command to bytecodes again. */
2340 loc->cmd_bytecode
2341 = parse_cmd_to_aexpr (bl->address,
2342 loc->owner->extra_string);
2343 }
2344
2345 /* If we have a NULL bytecode expression, it means something
2346 went wrong or we have a null command expression. */
2347 if (!loc->cmd_bytecode)
2348 {
2349 null_command_or_parse_error = 1;
2350 break;
2351 }
2352 }
2353 }
2354
2355 /* If anything failed, then we're not doing target-side commands,
2356 and so clean up. */
2357 if (null_command_or_parse_error)
2358 {
2359 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2360 {
2361 loc = (*loc2p);
2362 if (is_breakpoint (loc->owner)
2363 && loc->pspace->num == bl->pspace->num)
2364 {
2365 /* Only go as far as the first NULL bytecode is
2366 located. */
2367 if (loc->cmd_bytecode == NULL)
2368 return;
2369
2370 loc->cmd_bytecode.reset ();
2371 }
2372 }
2373 }
2374
2375 /* No NULL commands or failed bytecode generation. Build a command list
2376 for this location's address. */
2377 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2378 {
2379 loc = (*loc2p);
2380 if (loc->owner->extra_string
2381 && is_breakpoint (loc->owner)
2382 && loc->pspace->num == bl->pspace->num
2383 && loc->owner->enable_state == bp_enabled
2384 && loc->enabled)
2385 {
2386 /* Add the command to the vector. This will be used later
2387 to send the commands to the target. */
2388 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2389 }
2390 }
2391
2392 bl->target_info.persist = 0;
2393 /* Maybe flag this location as persistent. */
2394 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2395 bl->target_info.persist = 1;
2396 }
2397
2398 /* Return the kind of breakpoint on address *ADDR. Get the kind
2399 of breakpoint according to ADDR except single-step breakpoint.
2400 Get the kind of single-step breakpoint according to the current
2401 registers state. */
2402
2403 static int
2404 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2405 {
2406 if (bl->owner->type == bp_single_step)
2407 {
2408 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2409 struct regcache *regcache;
2410
2411 regcache = get_thread_regcache (thr->ptid);
2412
2413 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2414 regcache, addr);
2415 }
2416 else
2417 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2418 }
2419
2420 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2421 location. Any error messages are printed to TMP_ERROR_STREAM; and
2422 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2423 Returns 0 for success, 1 if the bp_location type is not supported or
2424 -1 for failure.
2425
2426 NOTE drow/2003-09-09: This routine could be broken down to an
2427 object-style method for each breakpoint or catchpoint type. */
2428 static int
2429 insert_bp_location (struct bp_location *bl,
2430 struct ui_file *tmp_error_stream,
2431 int *disabled_breaks,
2432 int *hw_breakpoint_error,
2433 int *hw_bp_error_explained_already)
2434 {
2435 gdb_exception bp_excpt = exception_none;
2436
2437 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2438 return 0;
2439
2440 /* Note we don't initialize bl->target_info, as that wipes out
2441 the breakpoint location's shadow_contents if the breakpoint
2442 is still inserted at that location. This in turn breaks
2443 target_read_memory which depends on these buffers when
2444 a memory read is requested at the breakpoint location:
2445 Once the target_info has been wiped, we fail to see that
2446 we have a breakpoint inserted at that address and thus
2447 read the breakpoint instead of returning the data saved in
2448 the breakpoint location's shadow contents. */
2449 bl->target_info.reqstd_address = bl->address;
2450 bl->target_info.placed_address_space = bl->pspace->aspace;
2451 bl->target_info.length = bl->length;
2452
2453 /* When working with target-side conditions, we must pass all the conditions
2454 for the same breakpoint address down to the target since GDB will not
2455 insert those locations. With a list of breakpoint conditions, the target
2456 can decide when to stop and notify GDB. */
2457
2458 if (is_breakpoint (bl->owner))
2459 {
2460 build_target_condition_list (bl);
2461 build_target_command_list (bl);
2462 /* Reset the modification marker. */
2463 bl->needs_update = 0;
2464 }
2465
2466 if (bl->loc_type == bp_loc_software_breakpoint
2467 || bl->loc_type == bp_loc_hardware_breakpoint)
2468 {
2469 if (bl->owner->type != bp_hardware_breakpoint)
2470 {
2471 /* If the explicitly specified breakpoint type
2472 is not hardware breakpoint, check the memory map to see
2473 if the breakpoint address is in read only memory or not.
2474
2475 Two important cases are:
2476 - location type is not hardware breakpoint, memory
2477 is readonly. We change the type of the location to
2478 hardware breakpoint.
2479 - location type is hardware breakpoint, memory is
2480 read-write. This means we've previously made the
2481 location hardware one, but then the memory map changed,
2482 so we undo.
2483
2484 When breakpoints are removed, remove_breakpoints will use
2485 location types we've just set here, the only possible
2486 problem is that memory map has changed during running
2487 program, but it's not going to work anyway with current
2488 gdb. */
2489 struct mem_region *mr
2490 = lookup_mem_region (bl->target_info.reqstd_address);
2491
2492 if (mr)
2493 {
2494 if (automatic_hardware_breakpoints)
2495 {
2496 enum bp_loc_type new_type;
2497
2498 if (mr->attrib.mode != MEM_RW)
2499 new_type = bp_loc_hardware_breakpoint;
2500 else
2501 new_type = bp_loc_software_breakpoint;
2502
2503 if (new_type != bl->loc_type)
2504 {
2505 static int said = 0;
2506
2507 bl->loc_type = new_type;
2508 if (!said)
2509 {
2510 fprintf_filtered (gdb_stdout,
2511 _("Note: automatically using "
2512 "hardware breakpoints for "
2513 "read-only addresses.\n"));
2514 said = 1;
2515 }
2516 }
2517 }
2518 else if (bl->loc_type == bp_loc_software_breakpoint
2519 && mr->attrib.mode != MEM_RW)
2520 {
2521 fprintf_unfiltered (tmp_error_stream,
2522 _("Cannot insert breakpoint %d.\n"
2523 "Cannot set software breakpoint "
2524 "at read-only address %s\n"),
2525 bl->owner->number,
2526 paddress (bl->gdbarch, bl->address));
2527 return 1;
2528 }
2529 }
2530 }
2531
2532 /* First check to see if we have to handle an overlay. */
2533 if (overlay_debugging == ovly_off
2534 || bl->section == NULL
2535 || !(section_is_overlay (bl->section)))
2536 {
2537 /* No overlay handling: just set the breakpoint. */
2538 TRY
2539 {
2540 int val;
2541
2542 val = bl->owner->ops->insert_location (bl);
2543 if (val)
2544 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2545 }
2546 CATCH (e, RETURN_MASK_ALL)
2547 {
2548 bp_excpt = e;
2549 }
2550 END_CATCH
2551 }
2552 else
2553 {
2554 /* This breakpoint is in an overlay section.
2555 Shall we set a breakpoint at the LMA? */
2556 if (!overlay_events_enabled)
2557 {
2558 /* Yes -- overlay event support is not active,
2559 so we must try to set a breakpoint at the LMA.
2560 This will not work for a hardware breakpoint. */
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 warning (_("hardware breakpoint %d not supported in overlay!"),
2563 bl->owner->number);
2564 else
2565 {
2566 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2567 bl->section);
2568 /* Set a software (trap) breakpoint at the LMA. */
2569 bl->overlay_target_info = bl->target_info;
2570 bl->overlay_target_info.reqstd_address = addr;
2571
2572 /* No overlay handling: just set the breakpoint. */
2573 TRY
2574 {
2575 int val;
2576
2577 bl->overlay_target_info.kind
2578 = breakpoint_kind (bl, &addr);
2579 bl->overlay_target_info.placed_address = addr;
2580 val = target_insert_breakpoint (bl->gdbarch,
2581 &bl->overlay_target_info);
2582 if (val)
2583 bp_excpt
2584 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2585 }
2586 CATCH (e, RETURN_MASK_ALL)
2587 {
2588 bp_excpt = e;
2589 }
2590 END_CATCH
2591
2592 if (bp_excpt.reason != 0)
2593 fprintf_unfiltered (tmp_error_stream,
2594 "Overlay breakpoint %d "
2595 "failed: in ROM?\n",
2596 bl->owner->number);
2597 }
2598 }
2599 /* Shall we set a breakpoint at the VMA? */
2600 if (section_is_mapped (bl->section))
2601 {
2602 /* Yes. This overlay section is mapped into memory. */
2603 TRY
2604 {
2605 int val;
2606
2607 val = bl->owner->ops->insert_location (bl);
2608 if (val)
2609 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2610 }
2611 CATCH (e, RETURN_MASK_ALL)
2612 {
2613 bp_excpt = e;
2614 }
2615 END_CATCH
2616 }
2617 else
2618 {
2619 /* No. This breakpoint will not be inserted.
2620 No error, but do not mark the bp as 'inserted'. */
2621 return 0;
2622 }
2623 }
2624
2625 if (bp_excpt.reason != 0)
2626 {
2627 /* Can't set the breakpoint. */
2628
2629 /* In some cases, we might not be able to insert a
2630 breakpoint in a shared library that has already been
2631 removed, but we have not yet processed the shlib unload
2632 event. Unfortunately, some targets that implement
2633 breakpoint insertion themselves can't tell why the
2634 breakpoint insertion failed (e.g., the remote target
2635 doesn't define error codes), so we must treat generic
2636 errors as memory errors. */
2637 if (bp_excpt.reason == RETURN_ERROR
2638 && (bp_excpt.error == GENERIC_ERROR
2639 || bp_excpt.error == MEMORY_ERROR)
2640 && bl->loc_type == bp_loc_software_breakpoint
2641 && (solib_name_from_address (bl->pspace, bl->address)
2642 || shared_objfile_contains_address_p (bl->pspace,
2643 bl->address)))
2644 {
2645 /* See also: disable_breakpoints_in_shlibs. */
2646 bl->shlib_disabled = 1;
2647 gdb::observers::breakpoint_modified.notify (bl->owner);
2648 if (!*disabled_breaks)
2649 {
2650 fprintf_unfiltered (tmp_error_stream,
2651 "Cannot insert breakpoint %d.\n",
2652 bl->owner->number);
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Temporarily disabling shared "
2655 "library breakpoints:\n");
2656 }
2657 *disabled_breaks = 1;
2658 fprintf_unfiltered (tmp_error_stream,
2659 "breakpoint #%d\n", bl->owner->number);
2660 return 0;
2661 }
2662 else
2663 {
2664 if (bl->loc_type == bp_loc_hardware_breakpoint)
2665 {
2666 *hw_breakpoint_error = 1;
2667 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2668 fprintf_unfiltered (tmp_error_stream,
2669 "Cannot insert hardware breakpoint %d%s",
2670 bl->owner->number,
2671 bp_excpt.message ? ":" : ".\n");
2672 if (bp_excpt.message != NULL)
2673 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2674 bp_excpt.message);
2675 }
2676 else
2677 {
2678 if (bp_excpt.message == NULL)
2679 {
2680 std::string message
2681 = memory_error_message (TARGET_XFER_E_IO,
2682 bl->gdbarch, bl->address);
2683
2684 fprintf_unfiltered (tmp_error_stream,
2685 "Cannot insert breakpoint %d.\n"
2686 "%s\n",
2687 bl->owner->number, message.c_str ());
2688 }
2689 else
2690 {
2691 fprintf_unfiltered (tmp_error_stream,
2692 "Cannot insert breakpoint %d: %s\n",
2693 bl->owner->number,
2694 bp_excpt.message);
2695 }
2696 }
2697 return 1;
2698
2699 }
2700 }
2701 else
2702 bl->inserted = 1;
2703
2704 return 0;
2705 }
2706
2707 else if (bl->loc_type == bp_loc_hardware_watchpoint
2708 /* NOTE drow/2003-09-08: This state only exists for removing
2709 watchpoints. It's not clear that it's necessary... */
2710 && bl->owner->disposition != disp_del_at_next_stop)
2711 {
2712 int val;
2713
2714 gdb_assert (bl->owner->ops != NULL
2715 && bl->owner->ops->insert_location != NULL);
2716
2717 val = bl->owner->ops->insert_location (bl);
2718
2719 /* If trying to set a read-watchpoint, and it turns out it's not
2720 supported, try emulating one with an access watchpoint. */
2721 if (val == 1 && bl->watchpoint_type == hw_read)
2722 {
2723 struct bp_location *loc, **loc_temp;
2724
2725 /* But don't try to insert it, if there's already another
2726 hw_access location that would be considered a duplicate
2727 of this one. */
2728 ALL_BP_LOCATIONS (loc, loc_temp)
2729 if (loc != bl
2730 && loc->watchpoint_type == hw_access
2731 && watchpoint_locations_match (bl, loc))
2732 {
2733 bl->duplicate = 1;
2734 bl->inserted = 1;
2735 bl->target_info = loc->target_info;
2736 bl->watchpoint_type = hw_access;
2737 val = 0;
2738 break;
2739 }
2740
2741 if (val == 1)
2742 {
2743 bl->watchpoint_type = hw_access;
2744 val = bl->owner->ops->insert_location (bl);
2745
2746 if (val)
2747 /* Back to the original value. */
2748 bl->watchpoint_type = hw_read;
2749 }
2750 }
2751
2752 bl->inserted = (val == 0);
2753 }
2754
2755 else if (bl->owner->type == bp_catchpoint)
2756 {
2757 int val;
2758
2759 gdb_assert (bl->owner->ops != NULL
2760 && bl->owner->ops->insert_location != NULL);
2761
2762 val = bl->owner->ops->insert_location (bl);
2763 if (val)
2764 {
2765 bl->owner->enable_state = bp_disabled;
2766
2767 if (val == 1)
2768 warning (_("\
2769 Error inserting catchpoint %d: Your system does not support this type\n\
2770 of catchpoint."), bl->owner->number);
2771 else
2772 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2773 }
2774
2775 bl->inserted = (val == 0);
2776
2777 /* We've already printed an error message if there was a problem
2778 inserting this catchpoint, and we've disabled the catchpoint,
2779 so just return success. */
2780 return 0;
2781 }
2782
2783 return 0;
2784 }
2785
2786 /* This function is called when program space PSPACE is about to be
2787 deleted. It takes care of updating breakpoints to not reference
2788 PSPACE anymore. */
2789
2790 void
2791 breakpoint_program_space_exit (struct program_space *pspace)
2792 {
2793 struct breakpoint *b, *b_temp;
2794 struct bp_location *loc, **loc_temp;
2795
2796 /* Remove any breakpoint that was set through this program space. */
2797 ALL_BREAKPOINTS_SAFE (b, b_temp)
2798 {
2799 if (b->pspace == pspace)
2800 delete_breakpoint (b);
2801 }
2802
2803 /* Breakpoints set through other program spaces could have locations
2804 bound to PSPACE as well. Remove those. */
2805 ALL_BP_LOCATIONS (loc, loc_temp)
2806 {
2807 struct bp_location *tmp;
2808
2809 if (loc->pspace == pspace)
2810 {
2811 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2812 if (loc->owner->loc == loc)
2813 loc->owner->loc = loc->next;
2814 else
2815 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2816 if (tmp->next == loc)
2817 {
2818 tmp->next = loc->next;
2819 break;
2820 }
2821 }
2822 }
2823
2824 /* Now update the global location list to permanently delete the
2825 removed locations above. */
2826 update_global_location_list (UGLL_DONT_INSERT);
2827 }
2828
2829 /* Make sure all breakpoints are inserted in inferior.
2830 Throws exception on any error.
2831 A breakpoint that is already inserted won't be inserted
2832 again, so calling this function twice is safe. */
2833 void
2834 insert_breakpoints (void)
2835 {
2836 struct breakpoint *bpt;
2837
2838 ALL_BREAKPOINTS (bpt)
2839 if (is_hardware_watchpoint (bpt))
2840 {
2841 struct watchpoint *w = (struct watchpoint *) bpt;
2842
2843 update_watchpoint (w, 0 /* don't reparse. */);
2844 }
2845
2846 /* Updating watchpoints creates new locations, so update the global
2847 location list. Explicitly tell ugll to insert locations and
2848 ignore breakpoints_always_inserted_mode. */
2849 update_global_location_list (UGLL_INSERT);
2850 }
2851
2852 /* Invoke CALLBACK for each of bp_location. */
2853
2854 void
2855 iterate_over_bp_locations (walk_bp_location_callback callback)
2856 {
2857 struct bp_location *loc, **loc_tmp;
2858
2859 ALL_BP_LOCATIONS (loc, loc_tmp)
2860 {
2861 callback (loc, NULL);
2862 }
2863 }
2864
2865 /* This is used when we need to synch breakpoint conditions between GDB and the
2866 target. It is the case with deleting and disabling of breakpoints when using
2867 always-inserted mode. */
2868
2869 static void
2870 update_inserted_breakpoint_locations (void)
2871 {
2872 struct bp_location *bl, **blp_tmp;
2873 int error_flag = 0;
2874 int val = 0;
2875 int disabled_breaks = 0;
2876 int hw_breakpoint_error = 0;
2877 int hw_bp_details_reported = 0;
2878
2879 string_file tmp_error_stream;
2880
2881 /* Explicitly mark the warning -- this will only be printed if
2882 there was an error. */
2883 tmp_error_stream.puts ("Warning:\n");
2884
2885 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2886
2887 ALL_BP_LOCATIONS (bl, blp_tmp)
2888 {
2889 /* We only want to update software breakpoints and hardware
2890 breakpoints. */
2891 if (!is_breakpoint (bl->owner))
2892 continue;
2893
2894 /* We only want to update locations that are already inserted
2895 and need updating. This is to avoid unwanted insertion during
2896 deletion of breakpoints. */
2897 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2898 continue;
2899
2900 switch_to_program_space_and_thread (bl->pspace);
2901
2902 /* For targets that support global breakpoints, there's no need
2903 to select an inferior to insert breakpoint to. In fact, even
2904 if we aren't attached to any process yet, we should still
2905 insert breakpoints. */
2906 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2907 && ptid_equal (inferior_ptid, null_ptid))
2908 continue;
2909
2910 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2911 &hw_breakpoint_error, &hw_bp_details_reported);
2912 if (val)
2913 error_flag = val;
2914 }
2915
2916 if (error_flag)
2917 {
2918 target_terminal::ours_for_output ();
2919 error_stream (tmp_error_stream);
2920 }
2921 }
2922
2923 /* Used when starting or continuing the program. */
2924
2925 static void
2926 insert_breakpoint_locations (void)
2927 {
2928 struct breakpoint *bpt;
2929 struct bp_location *bl, **blp_tmp;
2930 int error_flag = 0;
2931 int val = 0;
2932 int disabled_breaks = 0;
2933 int hw_breakpoint_error = 0;
2934 int hw_bp_error_explained_already = 0;
2935
2936 string_file tmp_error_stream;
2937
2938 /* Explicitly mark the warning -- this will only be printed if
2939 there was an error. */
2940 tmp_error_stream.puts ("Warning:\n");
2941
2942 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2943
2944 ALL_BP_LOCATIONS (bl, blp_tmp)
2945 {
2946 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2947 continue;
2948
2949 /* There is no point inserting thread-specific breakpoints if
2950 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2951 has BL->OWNER always non-NULL. */
2952 if (bl->owner->thread != -1
2953 && !valid_global_thread_id (bl->owner->thread))
2954 continue;
2955
2956 switch_to_program_space_and_thread (bl->pspace);
2957
2958 /* For targets that support global breakpoints, there's no need
2959 to select an inferior to insert breakpoint to. In fact, even
2960 if we aren't attached to any process yet, we should still
2961 insert breakpoints. */
2962 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2963 && ptid_equal (inferior_ptid, null_ptid))
2964 continue;
2965
2966 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2967 &hw_breakpoint_error, &hw_bp_error_explained_already);
2968 if (val)
2969 error_flag = val;
2970 }
2971
2972 /* If we failed to insert all locations of a watchpoint, remove
2973 them, as half-inserted watchpoint is of limited use. */
2974 ALL_BREAKPOINTS (bpt)
2975 {
2976 int some_failed = 0;
2977 struct bp_location *loc;
2978
2979 if (!is_hardware_watchpoint (bpt))
2980 continue;
2981
2982 if (!breakpoint_enabled (bpt))
2983 continue;
2984
2985 if (bpt->disposition == disp_del_at_next_stop)
2986 continue;
2987
2988 for (loc = bpt->loc; loc; loc = loc->next)
2989 if (!loc->inserted && should_be_inserted (loc))
2990 {
2991 some_failed = 1;
2992 break;
2993 }
2994 if (some_failed)
2995 {
2996 for (loc = bpt->loc; loc; loc = loc->next)
2997 if (loc->inserted)
2998 remove_breakpoint (loc);
2999
3000 hw_breakpoint_error = 1;
3001 tmp_error_stream.printf ("Could not insert "
3002 "hardware watchpoint %d.\n",
3003 bpt->number);
3004 error_flag = -1;
3005 }
3006 }
3007
3008 if (error_flag)
3009 {
3010 /* If a hardware breakpoint or watchpoint was inserted, add a
3011 message about possibly exhausted resources. */
3012 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3013 {
3014 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3015 You may have requested too many hardware breakpoints/watchpoints.\n");
3016 }
3017 target_terminal::ours_for_output ();
3018 error_stream (tmp_error_stream);
3019 }
3020 }
3021
3022 /* Used when the program stops.
3023 Returns zero if successful, or non-zero if there was a problem
3024 removing a breakpoint location. */
3025
3026 int
3027 remove_breakpoints (void)
3028 {
3029 struct bp_location *bl, **blp_tmp;
3030 int val = 0;
3031
3032 ALL_BP_LOCATIONS (bl, blp_tmp)
3033 {
3034 if (bl->inserted && !is_tracepoint (bl->owner))
3035 val |= remove_breakpoint (bl);
3036 }
3037 return val;
3038 }
3039
3040 /* When a thread exits, remove breakpoints that are related to
3041 that thread. */
3042
3043 static void
3044 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3045 {
3046 struct breakpoint *b, *b_tmp;
3047
3048 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3049 {
3050 if (b->thread == tp->global_num && user_breakpoint_p (b))
3051 {
3052 b->disposition = disp_del_at_next_stop;
3053
3054 printf_filtered (_("\
3055 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3056 b->number, print_thread_id (tp));
3057
3058 /* Hide it from the user. */
3059 b->number = 0;
3060 }
3061 }
3062 }
3063
3064 /* Remove breakpoints of process PID. */
3065
3066 int
3067 remove_breakpoints_pid (int pid)
3068 {
3069 struct bp_location *bl, **blp_tmp;
3070 int val;
3071 struct inferior *inf = find_inferior_pid (pid);
3072
3073 ALL_BP_LOCATIONS (bl, blp_tmp)
3074 {
3075 if (bl->pspace != inf->pspace)
3076 continue;
3077
3078 if (bl->inserted && !bl->target_info.persist)
3079 {
3080 val = remove_breakpoint (bl);
3081 if (val != 0)
3082 return val;
3083 }
3084 }
3085 return 0;
3086 }
3087
3088 static int internal_breakpoint_number = -1;
3089
3090 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3091 If INTERNAL is non-zero, the breakpoint number will be populated
3092 from internal_breakpoint_number and that variable decremented.
3093 Otherwise the breakpoint number will be populated from
3094 breakpoint_count and that value incremented. Internal breakpoints
3095 do not set the internal var bpnum. */
3096 static void
3097 set_breakpoint_number (int internal, struct breakpoint *b)
3098 {
3099 if (internal)
3100 b->number = internal_breakpoint_number--;
3101 else
3102 {
3103 set_breakpoint_count (breakpoint_count + 1);
3104 b->number = breakpoint_count;
3105 }
3106 }
3107
3108 static struct breakpoint *
3109 create_internal_breakpoint (struct gdbarch *gdbarch,
3110 CORE_ADDR address, enum bptype type,
3111 const struct breakpoint_ops *ops)
3112 {
3113 symtab_and_line sal;
3114 sal.pc = address;
3115 sal.section = find_pc_overlay (sal.pc);
3116 sal.pspace = current_program_space;
3117
3118 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3119 b->number = internal_breakpoint_number--;
3120 b->disposition = disp_donttouch;
3121
3122 return b;
3123 }
3124
3125 static const char *const longjmp_names[] =
3126 {
3127 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3128 };
3129 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3130
3131 /* Per-objfile data private to breakpoint.c. */
3132 struct breakpoint_objfile_data
3133 {
3134 /* Minimal symbol for "_ovly_debug_event" (if any). */
3135 struct bound_minimal_symbol overlay_msym {};
3136
3137 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3138 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3139
3140 /* True if we have looked for longjmp probes. */
3141 int longjmp_searched = 0;
3142
3143 /* SystemTap probe points for longjmp (if any). These are non-owning
3144 references. */
3145 std::vector<probe *> longjmp_probes;
3146
3147 /* Minimal symbol for "std::terminate()" (if any). */
3148 struct bound_minimal_symbol terminate_msym {};
3149
3150 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3151 struct bound_minimal_symbol exception_msym {};
3152
3153 /* True if we have looked for exception probes. */
3154 int exception_searched = 0;
3155
3156 /* SystemTap probe points for unwinding (if any). These are non-owning
3157 references. */
3158 std::vector<probe *> exception_probes;
3159 };
3160
3161 static const struct objfile_data *breakpoint_objfile_key;
3162
3163 /* Minimal symbol not found sentinel. */
3164 static struct minimal_symbol msym_not_found;
3165
3166 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3167
3168 static int
3169 msym_not_found_p (const struct minimal_symbol *msym)
3170 {
3171 return msym == &msym_not_found;
3172 }
3173
3174 /* Return per-objfile data needed by breakpoint.c.
3175 Allocate the data if necessary. */
3176
3177 static struct breakpoint_objfile_data *
3178 get_breakpoint_objfile_data (struct objfile *objfile)
3179 {
3180 struct breakpoint_objfile_data *bp_objfile_data;
3181
3182 bp_objfile_data = ((struct breakpoint_objfile_data *)
3183 objfile_data (objfile, breakpoint_objfile_key));
3184 if (bp_objfile_data == NULL)
3185 {
3186 bp_objfile_data = new breakpoint_objfile_data ();
3187 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3188 }
3189 return bp_objfile_data;
3190 }
3191
3192 static void
3193 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3194 {
3195 struct breakpoint_objfile_data *bp_objfile_data
3196 = (struct breakpoint_objfile_data *) data;
3197
3198 delete bp_objfile_data;
3199 }
3200
3201 static void
3202 create_overlay_event_breakpoint (void)
3203 {
3204 struct objfile *objfile;
3205 const char *const func_name = "_ovly_debug_event";
3206
3207 ALL_OBJFILES (objfile)
3208 {
3209 struct breakpoint *b;
3210 struct breakpoint_objfile_data *bp_objfile_data;
3211 CORE_ADDR addr;
3212 struct explicit_location explicit_loc;
3213
3214 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3215
3216 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3217 continue;
3218
3219 if (bp_objfile_data->overlay_msym.minsym == NULL)
3220 {
3221 struct bound_minimal_symbol m;
3222
3223 m = lookup_minimal_symbol_text (func_name, objfile);
3224 if (m.minsym == NULL)
3225 {
3226 /* Avoid future lookups in this objfile. */
3227 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3228 continue;
3229 }
3230 bp_objfile_data->overlay_msym = m;
3231 }
3232
3233 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3234 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3235 bp_overlay_event,
3236 &internal_breakpoint_ops);
3237 initialize_explicit_location (&explicit_loc);
3238 explicit_loc.function_name = ASTRDUP (func_name);
3239 b->location = new_explicit_location (&explicit_loc);
3240
3241 if (overlay_debugging == ovly_auto)
3242 {
3243 b->enable_state = bp_enabled;
3244 overlay_events_enabled = 1;
3245 }
3246 else
3247 {
3248 b->enable_state = bp_disabled;
3249 overlay_events_enabled = 0;
3250 }
3251 }
3252 }
3253
3254 static void
3255 create_longjmp_master_breakpoint (void)
3256 {
3257 struct program_space *pspace;
3258
3259 scoped_restore_current_program_space restore_pspace;
3260
3261 ALL_PSPACES (pspace)
3262 {
3263 struct objfile *objfile;
3264
3265 set_current_program_space (pspace);
3266
3267 ALL_OBJFILES (objfile)
3268 {
3269 int i;
3270 struct gdbarch *gdbarch;
3271 struct breakpoint_objfile_data *bp_objfile_data;
3272
3273 gdbarch = get_objfile_arch (objfile);
3274
3275 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3276
3277 if (!bp_objfile_data->longjmp_searched)
3278 {
3279 std::vector<probe *> ret
3280 = find_probes_in_objfile (objfile, "libc", "longjmp");
3281
3282 if (!ret.empty ())
3283 {
3284 /* We are only interested in checking one element. */
3285 probe *p = ret[0];
3286
3287 if (!p->can_evaluate_arguments ())
3288 {
3289 /* We cannot use the probe interface here, because it does
3290 not know how to evaluate arguments. */
3291 ret.clear ();
3292 }
3293 }
3294 bp_objfile_data->longjmp_probes = ret;
3295 bp_objfile_data->longjmp_searched = 1;
3296 }
3297
3298 if (!bp_objfile_data->longjmp_probes.empty ())
3299 {
3300 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3301
3302 for (probe *p : bp_objfile_data->longjmp_probes)
3303 {
3304 struct breakpoint *b;
3305
3306 b = create_internal_breakpoint (gdbarch,
3307 p->get_relocated_address (objfile),
3308 bp_longjmp_master,
3309 &internal_breakpoint_ops);
3310 b->location = new_probe_location ("-probe-stap libc:longjmp");
3311 b->enable_state = bp_disabled;
3312 }
3313
3314 continue;
3315 }
3316
3317 if (!gdbarch_get_longjmp_target_p (gdbarch))
3318 continue;
3319
3320 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3321 {
3322 struct breakpoint *b;
3323 const char *func_name;
3324 CORE_ADDR addr;
3325 struct explicit_location explicit_loc;
3326
3327 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3328 continue;
3329
3330 func_name = longjmp_names[i];
3331 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3332 {
3333 struct bound_minimal_symbol m;
3334
3335 m = lookup_minimal_symbol_text (func_name, objfile);
3336 if (m.minsym == NULL)
3337 {
3338 /* Prevent future lookups in this objfile. */
3339 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3340 continue;
3341 }
3342 bp_objfile_data->longjmp_msym[i] = m;
3343 }
3344
3345 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3346 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3347 &internal_breakpoint_ops);
3348 initialize_explicit_location (&explicit_loc);
3349 explicit_loc.function_name = ASTRDUP (func_name);
3350 b->location = new_explicit_location (&explicit_loc);
3351 b->enable_state = bp_disabled;
3352 }
3353 }
3354 }
3355 }
3356
3357 /* Create a master std::terminate breakpoint. */
3358 static void
3359 create_std_terminate_master_breakpoint (void)
3360 {
3361 struct program_space *pspace;
3362 const char *const func_name = "std::terminate()";
3363
3364 scoped_restore_current_program_space restore_pspace;
3365
3366 ALL_PSPACES (pspace)
3367 {
3368 struct objfile *objfile;
3369 CORE_ADDR addr;
3370
3371 set_current_program_space (pspace);
3372
3373 ALL_OBJFILES (objfile)
3374 {
3375 struct breakpoint *b;
3376 struct breakpoint_objfile_data *bp_objfile_data;
3377 struct explicit_location explicit_loc;
3378
3379 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3380
3381 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3382 continue;
3383
3384 if (bp_objfile_data->terminate_msym.minsym == NULL)
3385 {
3386 struct bound_minimal_symbol m;
3387
3388 m = lookup_minimal_symbol (func_name, NULL, objfile);
3389 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3390 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3391 {
3392 /* Prevent future lookups in this objfile. */
3393 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3394 continue;
3395 }
3396 bp_objfile_data->terminate_msym = m;
3397 }
3398
3399 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3400 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3401 bp_std_terminate_master,
3402 &internal_breakpoint_ops);
3403 initialize_explicit_location (&explicit_loc);
3404 explicit_loc.function_name = ASTRDUP (func_name);
3405 b->location = new_explicit_location (&explicit_loc);
3406 b->enable_state = bp_disabled;
3407 }
3408 }
3409 }
3410
3411 /* Install a master breakpoint on the unwinder's debug hook. */
3412
3413 static void
3414 create_exception_master_breakpoint (void)
3415 {
3416 struct objfile *objfile;
3417 const char *const func_name = "_Unwind_DebugHook";
3418
3419 ALL_OBJFILES (objfile)
3420 {
3421 struct breakpoint *b;
3422 struct gdbarch *gdbarch;
3423 struct breakpoint_objfile_data *bp_objfile_data;
3424 CORE_ADDR addr;
3425 struct explicit_location explicit_loc;
3426
3427 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3428
3429 /* We prefer the SystemTap probe point if it exists. */
3430 if (!bp_objfile_data->exception_searched)
3431 {
3432 std::vector<probe *> ret
3433 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3434
3435 if (!ret.empty ())
3436 {
3437 /* We are only interested in checking one element. */
3438 probe *p = ret[0];
3439
3440 if (!p->can_evaluate_arguments ())
3441 {
3442 /* We cannot use the probe interface here, because it does
3443 not know how to evaluate arguments. */
3444 ret.clear ();
3445 }
3446 }
3447 bp_objfile_data->exception_probes = ret;
3448 bp_objfile_data->exception_searched = 1;
3449 }
3450
3451 if (!bp_objfile_data->exception_probes.empty ())
3452 {
3453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3454
3455 for (probe *p : bp_objfile_data->exception_probes)
3456 {
3457 struct breakpoint *b;
3458
3459 b = create_internal_breakpoint (gdbarch,
3460 p->get_relocated_address (objfile),
3461 bp_exception_master,
3462 &internal_breakpoint_ops);
3463 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3464 b->enable_state = bp_disabled;
3465 }
3466
3467 continue;
3468 }
3469
3470 /* Otherwise, try the hook function. */
3471
3472 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3473 continue;
3474
3475 gdbarch = get_objfile_arch (objfile);
3476
3477 if (bp_objfile_data->exception_msym.minsym == NULL)
3478 {
3479 struct bound_minimal_symbol debug_hook;
3480
3481 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3482 if (debug_hook.minsym == NULL)
3483 {
3484 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3485 continue;
3486 }
3487
3488 bp_objfile_data->exception_msym = debug_hook;
3489 }
3490
3491 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3492 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, target_stack);
3493 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3494 &internal_breakpoint_ops);
3495 initialize_explicit_location (&explicit_loc);
3496 explicit_loc.function_name = ASTRDUP (func_name);
3497 b->location = new_explicit_location (&explicit_loc);
3498 b->enable_state = bp_disabled;
3499 }
3500 }
3501
3502 /* Does B have a location spec? */
3503
3504 static int
3505 breakpoint_event_location_empty_p (const struct breakpoint *b)
3506 {
3507 return b->location != NULL && event_location_empty_p (b->location.get ());
3508 }
3509
3510 void
3511 update_breakpoints_after_exec (void)
3512 {
3513 struct breakpoint *b, *b_tmp;
3514 struct bp_location *bploc, **bplocp_tmp;
3515
3516 /* We're about to delete breakpoints from GDB's lists. If the
3517 INSERTED flag is true, GDB will try to lift the breakpoints by
3518 writing the breakpoints' "shadow contents" back into memory. The
3519 "shadow contents" are NOT valid after an exec, so GDB should not
3520 do that. Instead, the target is responsible from marking
3521 breakpoints out as soon as it detects an exec. We don't do that
3522 here instead, because there may be other attempts to delete
3523 breakpoints after detecting an exec and before reaching here. */
3524 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3525 if (bploc->pspace == current_program_space)
3526 gdb_assert (!bploc->inserted);
3527
3528 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3529 {
3530 if (b->pspace != current_program_space)
3531 continue;
3532
3533 /* Solib breakpoints must be explicitly reset after an exec(). */
3534 if (b->type == bp_shlib_event)
3535 {
3536 delete_breakpoint (b);
3537 continue;
3538 }
3539
3540 /* JIT breakpoints must be explicitly reset after an exec(). */
3541 if (b->type == bp_jit_event)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 /* Thread event breakpoints must be set anew after an exec(),
3548 as must overlay event and longjmp master breakpoints. */
3549 if (b->type == bp_thread_event || b->type == bp_overlay_event
3550 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3551 || b->type == bp_exception_master)
3552 {
3553 delete_breakpoint (b);
3554 continue;
3555 }
3556
3557 /* Step-resume breakpoints are meaningless after an exec(). */
3558 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3559 {
3560 delete_breakpoint (b);
3561 continue;
3562 }
3563
3564 /* Just like single-step breakpoints. */
3565 if (b->type == bp_single_step)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 /* Longjmp and longjmp-resume breakpoints are also meaningless
3572 after an exec. */
3573 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3574 || b->type == bp_longjmp_call_dummy
3575 || b->type == bp_exception || b->type == bp_exception_resume)
3576 {
3577 delete_breakpoint (b);
3578 continue;
3579 }
3580
3581 if (b->type == bp_catchpoint)
3582 {
3583 /* For now, none of the bp_catchpoint breakpoints need to
3584 do anything at this point. In the future, if some of
3585 the catchpoints need to something, we will need to add
3586 a new method, and call this method from here. */
3587 continue;
3588 }
3589
3590 /* bp_finish is a special case. The only way we ought to be able
3591 to see one of these when an exec() has happened, is if the user
3592 caught a vfork, and then said "finish". Ordinarily a finish just
3593 carries them to the call-site of the current callee, by setting
3594 a temporary bp there and resuming. But in this case, the finish
3595 will carry them entirely through the vfork & exec.
3596
3597 We don't want to allow a bp_finish to remain inserted now. But
3598 we can't safely delete it, 'cause finish_command has a handle to
3599 the bp on a bpstat, and will later want to delete it. There's a
3600 chance (and I've seen it happen) that if we delete the bp_finish
3601 here, that its storage will get reused by the time finish_command
3602 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3603 We really must allow finish_command to delete a bp_finish.
3604
3605 In the absence of a general solution for the "how do we know
3606 it's safe to delete something others may have handles to?"
3607 problem, what we'll do here is just uninsert the bp_finish, and
3608 let finish_command delete it.
3609
3610 (We know the bp_finish is "doomed" in the sense that it's
3611 momentary, and will be deleted as soon as finish_command sees
3612 the inferior stopped. So it doesn't matter that the bp's
3613 address is probably bogus in the new a.out, unlike e.g., the
3614 solib breakpoints.) */
3615
3616 if (b->type == bp_finish)
3617 {
3618 continue;
3619 }
3620
3621 /* Without a symbolic address, we have little hope of the
3622 pre-exec() address meaning the same thing in the post-exec()
3623 a.out. */
3624 if (breakpoint_event_location_empty_p (b))
3625 {
3626 delete_breakpoint (b);
3627 continue;
3628 }
3629 }
3630 }
3631
3632 int
3633 detach_breakpoints (ptid_t ptid)
3634 {
3635 struct bp_location *bl, **blp_tmp;
3636 int val = 0;
3637 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3638 struct inferior *inf = current_inferior ();
3639
3640 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3641 error (_("Cannot detach breakpoints of inferior_ptid"));
3642
3643 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3644 inferior_ptid = ptid;
3645 ALL_BP_LOCATIONS (bl, blp_tmp)
3646 {
3647 if (bl->pspace != inf->pspace)
3648 continue;
3649
3650 /* This function must physically remove breakpoints locations
3651 from the specified ptid, without modifying the breakpoint
3652 package's state. Locations of type bp_loc_other are only
3653 maintained at GDB side. So, there is no need to remove
3654 these bp_loc_other locations. Moreover, removing these
3655 would modify the breakpoint package's state. */
3656 if (bl->loc_type == bp_loc_other)
3657 continue;
3658
3659 if (bl->inserted)
3660 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3661 }
3662
3663 return val;
3664 }
3665
3666 /* Remove the breakpoint location BL from the current address space.
3667 Note that this is used to detach breakpoints from a child fork.
3668 When we get here, the child isn't in the inferior list, and neither
3669 do we have objects to represent its address space --- we should
3670 *not* look at bl->pspace->aspace here. */
3671
3672 static int
3673 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3674 {
3675 int val;
3676
3677 /* BL is never in moribund_locations by our callers. */
3678 gdb_assert (bl->owner != NULL);
3679
3680 /* The type of none suggests that owner is actually deleted.
3681 This should not ever happen. */
3682 gdb_assert (bl->owner->type != bp_none);
3683
3684 if (bl->loc_type == bp_loc_software_breakpoint
3685 || bl->loc_type == bp_loc_hardware_breakpoint)
3686 {
3687 /* "Normal" instruction breakpoint: either the standard
3688 trap-instruction bp (bp_breakpoint), or a
3689 bp_hardware_breakpoint. */
3690
3691 /* First check to see if we have to handle an overlay. */
3692 if (overlay_debugging == ovly_off
3693 || bl->section == NULL
3694 || !(section_is_overlay (bl->section)))
3695 {
3696 /* No overlay handling: just remove the breakpoint. */
3697
3698 /* If we're trying to uninsert a memory breakpoint that we
3699 know is set in a dynamic object that is marked
3700 shlib_disabled, then either the dynamic object was
3701 removed with "remove-symbol-file" or with
3702 "nosharedlibrary". In the former case, we don't know
3703 whether another dynamic object might have loaded over the
3704 breakpoint's address -- the user might well let us know
3705 about it next with add-symbol-file (the whole point of
3706 add-symbol-file is letting the user manually maintain a
3707 list of dynamically loaded objects). If we have the
3708 breakpoint's shadow memory, that is, this is a software
3709 breakpoint managed by GDB, check whether the breakpoint
3710 is still inserted in memory, to avoid overwriting wrong
3711 code with stale saved shadow contents. Note that HW
3712 breakpoints don't have shadow memory, as they're
3713 implemented using a mechanism that is not dependent on
3714 being able to modify the target's memory, and as such
3715 they should always be removed. */
3716 if (bl->shlib_disabled
3717 && bl->target_info.shadow_len != 0
3718 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3719 val = 0;
3720 else
3721 val = bl->owner->ops->remove_location (bl, reason);
3722 }
3723 else
3724 {
3725 /* This breakpoint is in an overlay section.
3726 Did we set a breakpoint at the LMA? */
3727 if (!overlay_events_enabled)
3728 {
3729 /* Yes -- overlay event support is not active, so we
3730 should have set a breakpoint at the LMA. Remove it.
3731 */
3732 /* Ignore any failures: if the LMA is in ROM, we will
3733 have already warned when we failed to insert it. */
3734 if (bl->loc_type == bp_loc_hardware_breakpoint)
3735 target_remove_hw_breakpoint (bl->gdbarch,
3736 &bl->overlay_target_info);
3737 else
3738 target_remove_breakpoint (bl->gdbarch,
3739 &bl->overlay_target_info,
3740 reason);
3741 }
3742 /* Did we set a breakpoint at the VMA?
3743 If so, we will have marked the breakpoint 'inserted'. */
3744 if (bl->inserted)
3745 {
3746 /* Yes -- remove it. Previously we did not bother to
3747 remove the breakpoint if the section had been
3748 unmapped, but let's not rely on that being safe. We
3749 don't know what the overlay manager might do. */
3750
3751 /* However, we should remove *software* breakpoints only
3752 if the section is still mapped, or else we overwrite
3753 wrong code with the saved shadow contents. */
3754 if (bl->loc_type == bp_loc_hardware_breakpoint
3755 || section_is_mapped (bl->section))
3756 val = bl->owner->ops->remove_location (bl, reason);
3757 else
3758 val = 0;
3759 }
3760 else
3761 {
3762 /* No -- not inserted, so no need to remove. No error. */
3763 val = 0;
3764 }
3765 }
3766
3767 /* In some cases, we might not be able to remove a breakpoint in
3768 a shared library that has already been removed, but we have
3769 not yet processed the shlib unload event. Similarly for an
3770 unloaded add-symbol-file object - the user might not yet have
3771 had the chance to remove-symbol-file it. shlib_disabled will
3772 be set if the library/object has already been removed, but
3773 the breakpoint hasn't been uninserted yet, e.g., after
3774 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3775 always-inserted mode. */
3776 if (val
3777 && (bl->loc_type == bp_loc_software_breakpoint
3778 && (bl->shlib_disabled
3779 || solib_name_from_address (bl->pspace, bl->address)
3780 || shared_objfile_contains_address_p (bl->pspace,
3781 bl->address))))
3782 val = 0;
3783
3784 if (val)
3785 return val;
3786 bl->inserted = (reason == DETACH_BREAKPOINT);
3787 }
3788 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3789 {
3790 gdb_assert (bl->owner->ops != NULL
3791 && bl->owner->ops->remove_location != NULL);
3792
3793 bl->inserted = (reason == DETACH_BREAKPOINT);
3794 bl->owner->ops->remove_location (bl, reason);
3795
3796 /* Failure to remove any of the hardware watchpoints comes here. */
3797 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3798 warning (_("Could not remove hardware watchpoint %d."),
3799 bl->owner->number);
3800 }
3801 else if (bl->owner->type == bp_catchpoint
3802 && breakpoint_enabled (bl->owner)
3803 && !bl->duplicate)
3804 {
3805 gdb_assert (bl->owner->ops != NULL
3806 && bl->owner->ops->remove_location != NULL);
3807
3808 val = bl->owner->ops->remove_location (bl, reason);
3809 if (val)
3810 return val;
3811
3812 bl->inserted = (reason == DETACH_BREAKPOINT);
3813 }
3814
3815 return 0;
3816 }
3817
3818 static int
3819 remove_breakpoint (struct bp_location *bl)
3820 {
3821 /* BL is never in moribund_locations by our callers. */
3822 gdb_assert (bl->owner != NULL);
3823
3824 /* The type of none suggests that owner is actually deleted.
3825 This should not ever happen. */
3826 gdb_assert (bl->owner->type != bp_none);
3827
3828 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3829
3830 switch_to_program_space_and_thread (bl->pspace);
3831
3832 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3833 }
3834
3835 /* Clear the "inserted" flag in all breakpoints. */
3836
3837 void
3838 mark_breakpoints_out (void)
3839 {
3840 struct bp_location *bl, **blp_tmp;
3841
3842 ALL_BP_LOCATIONS (bl, blp_tmp)
3843 if (bl->pspace == current_program_space)
3844 bl->inserted = 0;
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints and delete any
3848 breakpoints which should go away between runs of the program.
3849
3850 Plus other such housekeeping that has to be done for breakpoints
3851 between runs.
3852
3853 Note: this function gets called at the end of a run (by
3854 generic_mourn_inferior) and when a run begins (by
3855 init_wait_for_inferior). */
3856
3857
3858
3859 void
3860 breakpoint_init_inferior (enum inf_context context)
3861 {
3862 struct breakpoint *b, *b_tmp;
3863 struct bp_location *bl;
3864 int ix;
3865 struct program_space *pspace = current_program_space;
3866
3867 /* If breakpoint locations are shared across processes, then there's
3868 nothing to do. */
3869 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3870 return;
3871
3872 mark_breakpoints_out ();
3873
3874 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3875 {
3876 if (b->loc && b->loc->pspace != pspace)
3877 continue;
3878
3879 switch (b->type)
3880 {
3881 case bp_call_dummy:
3882 case bp_longjmp_call_dummy:
3883
3884 /* If the call dummy breakpoint is at the entry point it will
3885 cause problems when the inferior is rerun, so we better get
3886 rid of it. */
3887
3888 case bp_watchpoint_scope:
3889
3890 /* Also get rid of scope breakpoints. */
3891
3892 case bp_shlib_event:
3893
3894 /* Also remove solib event breakpoints. Their addresses may
3895 have changed since the last time we ran the program.
3896 Actually we may now be debugging against different target;
3897 and so the solib backend that installed this breakpoint may
3898 not be used in by the target. E.g.,
3899
3900 (gdb) file prog-linux
3901 (gdb) run # native linux target
3902 ...
3903 (gdb) kill
3904 (gdb) file prog-win.exe
3905 (gdb) tar rem :9999 # remote Windows gdbserver.
3906 */
3907
3908 case bp_step_resume:
3909
3910 /* Also remove step-resume breakpoints. */
3911
3912 case bp_single_step:
3913
3914 /* Also remove single-step breakpoints. */
3915
3916 delete_breakpoint (b);
3917 break;
3918
3919 case bp_watchpoint:
3920 case bp_hardware_watchpoint:
3921 case bp_read_watchpoint:
3922 case bp_access_watchpoint:
3923 {
3924 struct watchpoint *w = (struct watchpoint *) b;
3925
3926 /* Likewise for watchpoints on local expressions. */
3927 if (w->exp_valid_block != NULL)
3928 delete_breakpoint (b);
3929 else
3930 {
3931 /* Get rid of existing locations, which are no longer
3932 valid. New ones will be created in
3933 update_watchpoint, when the inferior is restarted.
3934 The next update_global_location_list call will
3935 garbage collect them. */
3936 b->loc = NULL;
3937
3938 if (context == inf_starting)
3939 {
3940 /* Reset val field to force reread of starting value in
3941 insert_breakpoints. */
3942 w->val.reset (nullptr);
3943 w->val_valid = 0;
3944 }
3945 }
3946 }
3947 break;
3948 default:
3949 break;
3950 }
3951 }
3952
3953 /* Get rid of the moribund locations. */
3954 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3955 decref_bp_location (&bl);
3956 VEC_free (bp_location_p, moribund_locations);
3957 }
3958
3959 /* These functions concern about actual breakpoints inserted in the
3960 target --- to e.g. check if we need to do decr_pc adjustment or if
3961 we need to hop over the bkpt --- so we check for address space
3962 match, not program space. */
3963
3964 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3965 exists at PC. It returns ordinary_breakpoint_here if it's an
3966 ordinary breakpoint, or permanent_breakpoint_here if it's a
3967 permanent breakpoint.
3968 - When continuing from a location with an ordinary breakpoint, we
3969 actually single step once before calling insert_breakpoints.
3970 - When continuing from a location with a permanent breakpoint, we
3971 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3972 the target, to advance the PC past the breakpoint. */
3973
3974 enum breakpoint_here
3975 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3976 {
3977 struct bp_location *bl, **blp_tmp;
3978 int any_breakpoint_here = 0;
3979
3980 ALL_BP_LOCATIONS (bl, blp_tmp)
3981 {
3982 if (bl->loc_type != bp_loc_software_breakpoint
3983 && bl->loc_type != bp_loc_hardware_breakpoint)
3984 continue;
3985
3986 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3987 if ((breakpoint_enabled (bl->owner)
3988 || bl->permanent)
3989 && breakpoint_location_address_match (bl, aspace, pc))
3990 {
3991 if (overlay_debugging
3992 && section_is_overlay (bl->section)
3993 && !section_is_mapped (bl->section))
3994 continue; /* unmapped overlay -- can't be a match */
3995 else if (bl->permanent)
3996 return permanent_breakpoint_here;
3997 else
3998 any_breakpoint_here = 1;
3999 }
4000 }
4001
4002 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4003 }
4004
4005 /* See breakpoint.h. */
4006
4007 int
4008 breakpoint_in_range_p (const address_space *aspace,
4009 CORE_ADDR addr, ULONGEST len)
4010 {
4011 struct bp_location *bl, **blp_tmp;
4012
4013 ALL_BP_LOCATIONS (bl, blp_tmp)
4014 {
4015 if (bl->loc_type != bp_loc_software_breakpoint
4016 && bl->loc_type != bp_loc_hardware_breakpoint)
4017 continue;
4018
4019 if ((breakpoint_enabled (bl->owner)
4020 || bl->permanent)
4021 && breakpoint_location_address_range_overlap (bl, aspace,
4022 addr, len))
4023 {
4024 if (overlay_debugging
4025 && section_is_overlay (bl->section)
4026 && !section_is_mapped (bl->section))
4027 {
4028 /* Unmapped overlay -- can't be a match. */
4029 continue;
4030 }
4031
4032 return 1;
4033 }
4034 }
4035
4036 return 0;
4037 }
4038
4039 /* Return true if there's a moribund breakpoint at PC. */
4040
4041 int
4042 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4043 {
4044 struct bp_location *loc;
4045 int ix;
4046
4047 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4048 if (breakpoint_location_address_match (loc, aspace, pc))
4049 return 1;
4050
4051 return 0;
4052 }
4053
4054 /* Returns non-zero iff BL is inserted at PC, in address space
4055 ASPACE. */
4056
4057 static int
4058 bp_location_inserted_here_p (struct bp_location *bl,
4059 const address_space *aspace, CORE_ADDR pc)
4060 {
4061 if (bl->inserted
4062 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4063 aspace, pc))
4064 {
4065 if (overlay_debugging
4066 && section_is_overlay (bl->section)
4067 && !section_is_mapped (bl->section))
4068 return 0; /* unmapped overlay -- can't be a match */
4069 else
4070 return 1;
4071 }
4072 return 0;
4073 }
4074
4075 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4076
4077 int
4078 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4079 {
4080 struct bp_location **blp, **blp_tmp = NULL;
4081
4082 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4083 {
4084 struct bp_location *bl = *blp;
4085
4086 if (bl->loc_type != bp_loc_software_breakpoint
4087 && bl->loc_type != bp_loc_hardware_breakpoint)
4088 continue;
4089
4090 if (bp_location_inserted_here_p (bl, aspace, pc))
4091 return 1;
4092 }
4093 return 0;
4094 }
4095
4096 /* This function returns non-zero iff there is a software breakpoint
4097 inserted at PC. */
4098
4099 int
4100 software_breakpoint_inserted_here_p (const address_space *aspace,
4101 CORE_ADDR pc)
4102 {
4103 struct bp_location **blp, **blp_tmp = NULL;
4104
4105 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4106 {
4107 struct bp_location *bl = *blp;
4108
4109 if (bl->loc_type != bp_loc_software_breakpoint)
4110 continue;
4111
4112 if (bp_location_inserted_here_p (bl, aspace, pc))
4113 return 1;
4114 }
4115
4116 return 0;
4117 }
4118
4119 /* See breakpoint.h. */
4120
4121 int
4122 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4123 CORE_ADDR pc)
4124 {
4125 struct bp_location **blp, **blp_tmp = NULL;
4126
4127 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4128 {
4129 struct bp_location *bl = *blp;
4130
4131 if (bl->loc_type != bp_loc_hardware_breakpoint)
4132 continue;
4133
4134 if (bp_location_inserted_here_p (bl, aspace, pc))
4135 return 1;
4136 }
4137
4138 return 0;
4139 }
4140
4141 int
4142 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4143 CORE_ADDR addr, ULONGEST len)
4144 {
4145 struct breakpoint *bpt;
4146
4147 ALL_BREAKPOINTS (bpt)
4148 {
4149 struct bp_location *loc;
4150
4151 if (bpt->type != bp_hardware_watchpoint
4152 && bpt->type != bp_access_watchpoint)
4153 continue;
4154
4155 if (!breakpoint_enabled (bpt))
4156 continue;
4157
4158 for (loc = bpt->loc; loc; loc = loc->next)
4159 if (loc->pspace->aspace == aspace && loc->inserted)
4160 {
4161 CORE_ADDR l, h;
4162
4163 /* Check for intersection. */
4164 l = std::max<CORE_ADDR> (loc->address, addr);
4165 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4166 if (l < h)
4167 return 1;
4168 }
4169 }
4170 return 0;
4171 }
4172 \f
4173
4174 /* bpstat stuff. External routines' interfaces are documented
4175 in breakpoint.h. */
4176
4177 int
4178 is_catchpoint (struct breakpoint *ep)
4179 {
4180 return (ep->type == bp_catchpoint);
4181 }
4182
4183 /* Frees any storage that is part of a bpstat. Does not walk the
4184 'next' chain. */
4185
4186 bpstats::~bpstats ()
4187 {
4188 if (bp_location_at != NULL)
4189 decref_bp_location (&bp_location_at);
4190 }
4191
4192 /* Clear a bpstat so that it says we are not at any breakpoint.
4193 Also free any storage that is part of a bpstat. */
4194
4195 void
4196 bpstat_clear (bpstat *bsp)
4197 {
4198 bpstat p;
4199 bpstat q;
4200
4201 if (bsp == 0)
4202 return;
4203 p = *bsp;
4204 while (p != NULL)
4205 {
4206 q = p->next;
4207 delete p;
4208 p = q;
4209 }
4210 *bsp = NULL;
4211 }
4212
4213 bpstats::bpstats (const bpstats &other)
4214 : next (NULL),
4215 bp_location_at (other.bp_location_at),
4216 breakpoint_at (other.breakpoint_at),
4217 commands (other.commands),
4218 print (other.print),
4219 stop (other.stop),
4220 print_it (other.print_it)
4221 {
4222 if (other.old_val != NULL)
4223 old_val = release_value (value_copy (other.old_val.get ()));
4224 incref_bp_location (bp_location_at);
4225 }
4226
4227 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4228 is part of the bpstat is copied as well. */
4229
4230 bpstat
4231 bpstat_copy (bpstat bs)
4232 {
4233 bpstat p = NULL;
4234 bpstat tmp;
4235 bpstat retval = NULL;
4236
4237 if (bs == NULL)
4238 return bs;
4239
4240 for (; bs != NULL; bs = bs->next)
4241 {
4242 tmp = new bpstats (*bs);
4243
4244 if (p == NULL)
4245 /* This is the first thing in the chain. */
4246 retval = tmp;
4247 else
4248 p->next = tmp;
4249 p = tmp;
4250 }
4251 p->next = NULL;
4252 return retval;
4253 }
4254
4255 /* Find the bpstat associated with this breakpoint. */
4256
4257 bpstat
4258 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4259 {
4260 if (bsp == NULL)
4261 return NULL;
4262
4263 for (; bsp != NULL; bsp = bsp->next)
4264 {
4265 if (bsp->breakpoint_at == breakpoint)
4266 return bsp;
4267 }
4268 return NULL;
4269 }
4270
4271 /* See breakpoint.h. */
4272
4273 int
4274 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4275 {
4276 for (; bsp != NULL; bsp = bsp->next)
4277 {
4278 if (bsp->breakpoint_at == NULL)
4279 {
4280 /* A moribund location can never explain a signal other than
4281 GDB_SIGNAL_TRAP. */
4282 if (sig == GDB_SIGNAL_TRAP)
4283 return 1;
4284 }
4285 else
4286 {
4287 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4288 sig))
4289 return 1;
4290 }
4291 }
4292
4293 return 0;
4294 }
4295
4296 /* Put in *NUM the breakpoint number of the first breakpoint we are
4297 stopped at. *BSP upon return is a bpstat which points to the
4298 remaining breakpoints stopped at (but which is not guaranteed to be
4299 good for anything but further calls to bpstat_num).
4300
4301 Return 0 if passed a bpstat which does not indicate any breakpoints.
4302 Return -1 if stopped at a breakpoint that has been deleted since
4303 we set it.
4304 Return 1 otherwise. */
4305
4306 int
4307 bpstat_num (bpstat *bsp, int *num)
4308 {
4309 struct breakpoint *b;
4310
4311 if ((*bsp) == NULL)
4312 return 0; /* No more breakpoint values */
4313
4314 /* We assume we'll never have several bpstats that correspond to a
4315 single breakpoint -- otherwise, this function might return the
4316 same number more than once and this will look ugly. */
4317 b = (*bsp)->breakpoint_at;
4318 *bsp = (*bsp)->next;
4319 if (b == NULL)
4320 return -1; /* breakpoint that's been deleted since */
4321
4322 *num = b->number; /* We have its number */
4323 return 1;
4324 }
4325
4326 /* See breakpoint.h. */
4327
4328 void
4329 bpstat_clear_actions (void)
4330 {
4331 struct thread_info *tp;
4332 bpstat bs;
4333
4334 if (ptid_equal (inferior_ptid, null_ptid))
4335 return;
4336
4337 tp = find_thread_ptid (inferior_ptid);
4338 if (tp == NULL)
4339 return;
4340
4341 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4342 {
4343 bs->commands = NULL;
4344 bs->old_val.reset (nullptr);
4345 }
4346 }
4347
4348 /* Called when a command is about to proceed the inferior. */
4349
4350 static void
4351 breakpoint_about_to_proceed (void)
4352 {
4353 if (!ptid_equal (inferior_ptid, null_ptid))
4354 {
4355 struct thread_info *tp = inferior_thread ();
4356
4357 /* Allow inferior function calls in breakpoint commands to not
4358 interrupt the command list. When the call finishes
4359 successfully, the inferior will be standing at the same
4360 breakpoint as if nothing happened. */
4361 if (tp->control.in_infcall)
4362 return;
4363 }
4364
4365 breakpoint_proceeded = 1;
4366 }
4367
4368 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4369 or its equivalent. */
4370
4371 static int
4372 command_line_is_silent (struct command_line *cmd)
4373 {
4374 return cmd && (strcmp ("silent", cmd->line) == 0);
4375 }
4376
4377 /* Execute all the commands associated with all the breakpoints at
4378 this location. Any of these commands could cause the process to
4379 proceed beyond this point, etc. We look out for such changes by
4380 checking the global "breakpoint_proceeded" after each command.
4381
4382 Returns true if a breakpoint command resumed the inferior. In that
4383 case, it is the caller's responsibility to recall it again with the
4384 bpstat of the current thread. */
4385
4386 static int
4387 bpstat_do_actions_1 (bpstat *bsp)
4388 {
4389 bpstat bs;
4390 int again = 0;
4391
4392 /* Avoid endless recursion if a `source' command is contained
4393 in bs->commands. */
4394 if (executing_breakpoint_commands)
4395 return 0;
4396
4397 scoped_restore save_executing
4398 = make_scoped_restore (&executing_breakpoint_commands, 1);
4399
4400 scoped_restore preventer = prevent_dont_repeat ();
4401
4402 /* This pointer will iterate over the list of bpstat's. */
4403 bs = *bsp;
4404
4405 breakpoint_proceeded = 0;
4406 for (; bs != NULL; bs = bs->next)
4407 {
4408 struct command_line *cmd = NULL;
4409
4410 /* Take ownership of the BSP's command tree, if it has one.
4411
4412 The command tree could legitimately contain commands like
4413 'step' and 'next', which call clear_proceed_status, which
4414 frees stop_bpstat's command tree. To make sure this doesn't
4415 free the tree we're executing out from under us, we need to
4416 take ownership of the tree ourselves. Since a given bpstat's
4417 commands are only executed once, we don't need to copy it; we
4418 can clear the pointer in the bpstat, and make sure we free
4419 the tree when we're done. */
4420 counted_command_line ccmd = bs->commands;
4421 bs->commands = NULL;
4422 if (ccmd != NULL)
4423 cmd = ccmd.get ();
4424 if (command_line_is_silent (cmd))
4425 {
4426 /* The action has been already done by bpstat_stop_status. */
4427 cmd = cmd->next;
4428 }
4429
4430 while (cmd != NULL)
4431 {
4432 execute_control_command (cmd);
4433
4434 if (breakpoint_proceeded)
4435 break;
4436 else
4437 cmd = cmd->next;
4438 }
4439
4440 if (breakpoint_proceeded)
4441 {
4442 if (current_ui->async)
4443 /* If we are in async mode, then the target might be still
4444 running, not stopped at any breakpoint, so nothing for
4445 us to do here -- just return to the event loop. */
4446 ;
4447 else
4448 /* In sync mode, when execute_control_command returns
4449 we're already standing on the next breakpoint.
4450 Breakpoint commands for that stop were not run, since
4451 execute_command does not run breakpoint commands --
4452 only command_line_handler does, but that one is not
4453 involved in execution of breakpoint commands. So, we
4454 can now execute breakpoint commands. It should be
4455 noted that making execute_command do bpstat actions is
4456 not an option -- in this case we'll have recursive
4457 invocation of bpstat for each breakpoint with a
4458 command, and can easily blow up GDB stack. Instead, we
4459 return true, which will trigger the caller to recall us
4460 with the new stop_bpstat. */
4461 again = 1;
4462 break;
4463 }
4464 }
4465 return again;
4466 }
4467
4468 void
4469 bpstat_do_actions (void)
4470 {
4471 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4472
4473 /* Do any commands attached to breakpoint we are stopped at. */
4474 while (!ptid_equal (inferior_ptid, null_ptid)
4475 && target_has_execution
4476 && !is_exited (inferior_ptid)
4477 && !is_executing (inferior_ptid))
4478 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4479 and only return when it is stopped at the next breakpoint, we
4480 keep doing breakpoint actions until it returns false to
4481 indicate the inferior was not resumed. */
4482 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4483 break;
4484
4485 discard_cleanups (cleanup_if_error);
4486 }
4487
4488 /* Print out the (old or new) value associated with a watchpoint. */
4489
4490 static void
4491 watchpoint_value_print (struct value *val, struct ui_file *stream)
4492 {
4493 if (val == NULL)
4494 fprintf_unfiltered (stream, _("<unreadable>"));
4495 else
4496 {
4497 struct value_print_options opts;
4498 get_user_print_options (&opts);
4499 value_print (val, stream, &opts);
4500 }
4501 }
4502
4503 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4504 debugging multiple threads. */
4505
4506 void
4507 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4508 {
4509 if (uiout->is_mi_like_p ())
4510 return;
4511
4512 uiout->text ("\n");
4513
4514 if (show_thread_that_caused_stop ())
4515 {
4516 const char *name;
4517 struct thread_info *thr = inferior_thread ();
4518
4519 uiout->text ("Thread ");
4520 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4521
4522 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4523 if (name != NULL)
4524 {
4525 uiout->text (" \"");
4526 uiout->field_fmt ("name", "%s", name);
4527 uiout->text ("\"");
4528 }
4529
4530 uiout->text (" hit ");
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4583 bool any_added = !current_program_space->added_solibs.empty ();
4584
4585 if (!is_catchpoint)
4586 {
4587 if (any_added || any_deleted)
4588 current_uiout->text (_("Stopped due to shared library event:\n"));
4589 else
4590 current_uiout->text (_("Stopped due to shared library event (no "
4591 "libraries added or removed)\n"));
4592 }
4593
4594 if (current_uiout->is_mi_like_p ())
4595 current_uiout->field_string ("reason",
4596 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4597
4598 if (any_deleted)
4599 {
4600 current_uiout->text (_(" Inferior unloaded "));
4601 ui_out_emit_list list_emitter (current_uiout, "removed");
4602 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4603 {
4604 const std::string &name = current_program_space->deleted_solibs[ix];
4605
4606 if (ix > 0)
4607 current_uiout->text (" ");
4608 current_uiout->field_string ("library", name);
4609 current_uiout->text ("\n");
4610 }
4611 }
4612
4613 if (any_added)
4614 {
4615 current_uiout->text (_(" Inferior loaded "));
4616 ui_out_emit_list list_emitter (current_uiout, "added");
4617 bool first = true;
4618 for (so_list *iter : current_program_space->added_solibs)
4619 {
4620 if (!first)
4621 current_uiout->text (" ");
4622 first = false;
4623 current_uiout->field_string ("library", iter->so_name);
4624 current_uiout->text ("\n");
4625 }
4626 }
4627 }
4628
4629 /* Print a message indicating what happened. This is called from
4630 normal_stop(). The input to this routine is the head of the bpstat
4631 list - a list of the eventpoints that caused this stop. KIND is
4632 the target_waitkind for the stopping event. This
4633 routine calls the generic print routine for printing a message
4634 about reasons for stopping. This will print (for example) the
4635 "Breakpoint n," part of the output. The return value of this
4636 routine is one of:
4637
4638 PRINT_UNKNOWN: Means we printed nothing.
4639 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4640 code to print the location. An example is
4641 "Breakpoint 1, " which should be followed by
4642 the location.
4643 PRINT_SRC_ONLY: Means we printed something, but there is no need
4644 to also print the location part of the message.
4645 An example is the catch/throw messages, which
4646 don't require a location appended to the end.
4647 PRINT_NOTHING: We have done some printing and we don't need any
4648 further info to be printed. */
4649
4650 enum print_stop_action
4651 bpstat_print (bpstat bs, int kind)
4652 {
4653 enum print_stop_action val;
4654
4655 /* Maybe another breakpoint in the chain caused us to stop.
4656 (Currently all watchpoints go on the bpstat whether hit or not.
4657 That probably could (should) be changed, provided care is taken
4658 with respect to bpstat_explains_signal). */
4659 for (; bs; bs = bs->next)
4660 {
4661 val = print_bp_stop_message (bs);
4662 if (val == PRINT_SRC_ONLY
4663 || val == PRINT_SRC_AND_LOC
4664 || val == PRINT_NOTHING)
4665 return val;
4666 }
4667
4668 /* If we had hit a shared library event breakpoint,
4669 print_bp_stop_message would print out this message. If we hit an
4670 OS-level shared library event, do the same thing. */
4671 if (kind == TARGET_WAITKIND_LOADED)
4672 {
4673 print_solib_event (0);
4674 return PRINT_NOTHING;
4675 }
4676
4677 /* We reached the end of the chain, or we got a null BS to start
4678 with and nothing was printed. */
4679 return PRINT_UNKNOWN;
4680 }
4681
4682 /* Evaluate the boolean expression EXP and return the result. */
4683
4684 static bool
4685 breakpoint_cond_eval (expression *exp)
4686 {
4687 struct value *mark = value_mark ();
4688 bool res = value_true (evaluate_expression (exp));
4689
4690 value_free_to_mark (mark);
4691 return res;
4692 }
4693
4694 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4695
4696 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4697 : next (NULL),
4698 bp_location_at (bl),
4699 breakpoint_at (bl->owner),
4700 commands (NULL),
4701 print (0),
4702 stop (0),
4703 print_it (print_it_normal)
4704 {
4705 incref_bp_location (bl);
4706 **bs_link_pointer = this;
4707 *bs_link_pointer = &next;
4708 }
4709
4710 bpstats::bpstats ()
4711 : next (NULL),
4712 bp_location_at (NULL),
4713 breakpoint_at (NULL),
4714 commands (NULL),
4715 print (0),
4716 stop (0),
4717 print_it (print_it_normal)
4718 {
4719 }
4720 \f
4721 /* The target has stopped with waitstatus WS. Check if any hardware
4722 watchpoints have triggered, according to the target. */
4723
4724 int
4725 watchpoints_triggered (struct target_waitstatus *ws)
4726 {
4727 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4728 CORE_ADDR addr;
4729 struct breakpoint *b;
4730
4731 if (!stopped_by_watchpoint)
4732 {
4733 /* We were not stopped by a watchpoint. Mark all watchpoints
4734 as not triggered. */
4735 ALL_BREAKPOINTS (b)
4736 if (is_hardware_watchpoint (b))
4737 {
4738 struct watchpoint *w = (struct watchpoint *) b;
4739
4740 w->watchpoint_triggered = watch_triggered_no;
4741 }
4742
4743 return 0;
4744 }
4745
4746 if (!target_stopped_data_address (target_stack, &addr))
4747 {
4748 /* We were stopped by a watchpoint, but we don't know where.
4749 Mark all watchpoints as unknown. */
4750 ALL_BREAKPOINTS (b)
4751 if (is_hardware_watchpoint (b))
4752 {
4753 struct watchpoint *w = (struct watchpoint *) b;
4754
4755 w->watchpoint_triggered = watch_triggered_unknown;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* The target could report the data address. Mark watchpoints
4762 affected by this data address as triggered, and all others as not
4763 triggered. */
4764
4765 ALL_BREAKPOINTS (b)
4766 if (is_hardware_watchpoint (b))
4767 {
4768 struct watchpoint *w = (struct watchpoint *) b;
4769 struct bp_location *loc;
4770
4771 w->watchpoint_triggered = watch_triggered_no;
4772 for (loc = b->loc; loc; loc = loc->next)
4773 {
4774 if (is_masked_watchpoint (b))
4775 {
4776 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4777 CORE_ADDR start = loc->address & w->hw_wp_mask;
4778
4779 if (newaddr == start)
4780 {
4781 w->watchpoint_triggered = watch_triggered_yes;
4782 break;
4783 }
4784 }
4785 /* Exact match not required. Within range is sufficient. */
4786 else if (target_watchpoint_addr_within_range (target_stack,
4787 addr, loc->address,
4788 loc->length))
4789 {
4790 w->watchpoint_triggered = watch_triggered_yes;
4791 break;
4792 }
4793 }
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Possible return values for watchpoint_check. */
4800 enum wp_check_result
4801 {
4802 /* The watchpoint has been deleted. */
4803 WP_DELETED = 1,
4804
4805 /* The value has changed. */
4806 WP_VALUE_CHANGED = 2,
4807
4808 /* The value has not changed. */
4809 WP_VALUE_NOT_CHANGED = 3,
4810
4811 /* Ignore this watchpoint, no matter if the value changed or not. */
4812 WP_IGNORE = 4,
4813 };
4814
4815 #define BP_TEMPFLAG 1
4816 #define BP_HARDWAREFLAG 2
4817
4818 /* Evaluate watchpoint condition expression and check if its value
4819 changed. */
4820
4821 static wp_check_result
4822 watchpoint_check (bpstat bs)
4823 {
4824 struct watchpoint *b;
4825 struct frame_info *fr;
4826 int within_current_scope;
4827
4828 /* BS is built from an existing struct breakpoint. */
4829 gdb_assert (bs->breakpoint_at != NULL);
4830 b = (struct watchpoint *) bs->breakpoint_at;
4831
4832 /* If this is a local watchpoint, we only want to check if the
4833 watchpoint frame is in scope if the current thread is the thread
4834 that was used to create the watchpoint. */
4835 if (!watchpoint_in_thread_scope (b))
4836 return WP_IGNORE;
4837
4838 if (b->exp_valid_block == NULL)
4839 within_current_scope = 1;
4840 else
4841 {
4842 struct frame_info *frame = get_current_frame ();
4843 struct gdbarch *frame_arch = get_frame_arch (frame);
4844 CORE_ADDR frame_pc = get_frame_pc (frame);
4845
4846 /* stack_frame_destroyed_p() returns a non-zero value if we're
4847 still in the function but the stack frame has already been
4848 invalidated. Since we can't rely on the values of local
4849 variables after the stack has been destroyed, we are treating
4850 the watchpoint in that state as `not changed' without further
4851 checking. Don't mark watchpoints as changed if the current
4852 frame is in an epilogue - even if they are in some other
4853 frame, our view of the stack is likely to be wrong and
4854 frame_find_by_id could error out. */
4855 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4856 return WP_IGNORE;
4857
4858 fr = frame_find_by_id (b->watchpoint_frame);
4859 within_current_scope = (fr != NULL);
4860
4861 /* If we've gotten confused in the unwinder, we might have
4862 returned a frame that can't describe this variable. */
4863 if (within_current_scope)
4864 {
4865 struct symbol *function;
4866
4867 function = get_frame_function (fr);
4868 if (function == NULL
4869 || !contained_in (b->exp_valid_block,
4870 SYMBOL_BLOCK_VALUE (function)))
4871 within_current_scope = 0;
4872 }
4873
4874 if (within_current_scope)
4875 /* If we end up stopping, the current frame will get selected
4876 in normal_stop. So this call to select_frame won't affect
4877 the user. */
4878 select_frame (fr);
4879 }
4880
4881 if (within_current_scope)
4882 {
4883 /* We use value_{,free_to_}mark because it could be a *long*
4884 time before we return to the command level and call
4885 free_all_values. We can't call free_all_values because we
4886 might be in the middle of evaluating a function call. */
4887
4888 int pc = 0;
4889 struct value *mark;
4890 struct value *new_val;
4891
4892 if (is_masked_watchpoint (b))
4893 /* Since we don't know the exact trigger address (from
4894 stopped_data_address), just tell the user we've triggered
4895 a mask watchpoint. */
4896 return WP_VALUE_CHANGED;
4897
4898 mark = value_mark ();
4899 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4900
4901 if (b->val_bitsize != 0)
4902 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4903
4904 /* We use value_equal_contents instead of value_equal because
4905 the latter coerces an array to a pointer, thus comparing just
4906 the address of the array instead of its contents. This is
4907 not what we want. */
4908 if ((b->val != NULL) != (new_val != NULL)
4909 || (b->val != NULL && !value_equal_contents (b->val.get (),
4910 new_val)))
4911 {
4912 bs->old_val = b->val;
4913 b->val = release_value (new_val);
4914 b->val_valid = 1;
4915 if (new_val != NULL)
4916 value_free_to_mark (mark);
4917 return WP_VALUE_CHANGED;
4918 }
4919 else
4920 {
4921 /* Nothing changed. */
4922 value_free_to_mark (mark);
4923 return WP_VALUE_NOT_CHANGED;
4924 }
4925 }
4926 else
4927 {
4928 /* This seems like the only logical thing to do because
4929 if we temporarily ignored the watchpoint, then when
4930 we reenter the block in which it is valid it contains
4931 garbage (in the case of a function, it may have two
4932 garbage values, one before and one after the prologue).
4933 So we can't even detect the first assignment to it and
4934 watch after that (since the garbage may or may not equal
4935 the first value assigned). */
4936 /* We print all the stop information in
4937 breakpoint_ops->print_it, but in this case, by the time we
4938 call breakpoint_ops->print_it this bp will be deleted
4939 already. So we have no choice but print the information
4940 here. */
4941
4942 SWITCH_THRU_ALL_UIS ()
4943 {
4944 struct ui_out *uiout = current_uiout;
4945
4946 if (uiout->is_mi_like_p ())
4947 uiout->field_string
4948 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4949 uiout->text ("\nWatchpoint ");
4950 uiout->field_int ("wpnum", b->number);
4951 uiout->text (" deleted because the program has left the block in\n"
4952 "which its expression is valid.\n");
4953 }
4954
4955 /* Make sure the watchpoint's commands aren't executed. */
4956 b->commands = NULL;
4957 watchpoint_del_at_next_stop (b);
4958
4959 return WP_DELETED;
4960 }
4961 }
4962
4963 /* Return true if it looks like target has stopped due to hitting
4964 breakpoint location BL. This function does not check if we should
4965 stop, only if BL explains the stop. */
4966
4967 static int
4968 bpstat_check_location (const struct bp_location *bl,
4969 const address_space *aspace, CORE_ADDR bp_addr,
4970 const struct target_waitstatus *ws)
4971 {
4972 struct breakpoint *b = bl->owner;
4973
4974 /* BL is from an existing breakpoint. */
4975 gdb_assert (b != NULL);
4976
4977 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4978 }
4979
4980 /* Determine if the watched values have actually changed, and we
4981 should stop. If not, set BS->stop to 0. */
4982
4983 static void
4984 bpstat_check_watchpoint (bpstat bs)
4985 {
4986 const struct bp_location *bl;
4987 struct watchpoint *b;
4988
4989 /* BS is built for existing struct breakpoint. */
4990 bl = bs->bp_location_at;
4991 gdb_assert (bl != NULL);
4992 b = (struct watchpoint *) bs->breakpoint_at;
4993 gdb_assert (b != NULL);
4994
4995 {
4996 int must_check_value = 0;
4997
4998 if (b->type == bp_watchpoint)
4999 /* For a software watchpoint, we must always check the
5000 watched value. */
5001 must_check_value = 1;
5002 else if (b->watchpoint_triggered == watch_triggered_yes)
5003 /* We have a hardware watchpoint (read, write, or access)
5004 and the target earlier reported an address watched by
5005 this watchpoint. */
5006 must_check_value = 1;
5007 else if (b->watchpoint_triggered == watch_triggered_unknown
5008 && b->type == bp_hardware_watchpoint)
5009 /* We were stopped by a hardware watchpoint, but the target could
5010 not report the data address. We must check the watchpoint's
5011 value. Access and read watchpoints are out of luck; without
5012 a data address, we can't figure it out. */
5013 must_check_value = 1;
5014
5015 if (must_check_value)
5016 {
5017 wp_check_result e;
5018
5019 TRY
5020 {
5021 e = watchpoint_check (bs);
5022 }
5023 CATCH (ex, RETURN_MASK_ALL)
5024 {
5025 exception_fprintf (gdb_stderr, ex,
5026 "Error evaluating expression "
5027 "for watchpoint %d\n",
5028 b->number);
5029
5030 SWITCH_THRU_ALL_UIS ()
5031 {
5032 printf_filtered (_("Watchpoint %d deleted.\n"),
5033 b->number);
5034 }
5035 watchpoint_del_at_next_stop (b);
5036 e = WP_DELETED;
5037 }
5038 END_CATCH
5039
5040 switch (e)
5041 {
5042 case WP_DELETED:
5043 /* We've already printed what needs to be printed. */
5044 bs->print_it = print_it_done;
5045 /* Stop. */
5046 break;
5047 case WP_IGNORE:
5048 bs->print_it = print_it_noop;
5049 bs->stop = 0;
5050 break;
5051 case WP_VALUE_CHANGED:
5052 if (b->type == bp_read_watchpoint)
5053 {
5054 /* There are two cases to consider here:
5055
5056 1. We're watching the triggered memory for reads.
5057 In that case, trust the target, and always report
5058 the watchpoint hit to the user. Even though
5059 reads don't cause value changes, the value may
5060 have changed since the last time it was read, and
5061 since we're not trapping writes, we will not see
5062 those, and as such we should ignore our notion of
5063 old value.
5064
5065 2. We're watching the triggered memory for both
5066 reads and writes. There are two ways this may
5067 happen:
5068
5069 2.1. This is a target that can't break on data
5070 reads only, but can break on accesses (reads or
5071 writes), such as e.g., x86. We detect this case
5072 at the time we try to insert read watchpoints.
5073
5074 2.2. Otherwise, the target supports read
5075 watchpoints, but, the user set an access or write
5076 watchpoint watching the same memory as this read
5077 watchpoint.
5078
5079 If we're watching memory writes as well as reads,
5080 ignore watchpoint hits when we find that the
5081 value hasn't changed, as reads don't cause
5082 changes. This still gives false positives when
5083 the program writes the same value to memory as
5084 what there was already in memory (we will confuse
5085 it for a read), but it's much better than
5086 nothing. */
5087
5088 int other_write_watchpoint = 0;
5089
5090 if (bl->watchpoint_type == hw_read)
5091 {
5092 struct breakpoint *other_b;
5093
5094 ALL_BREAKPOINTS (other_b)
5095 if (other_b->type == bp_hardware_watchpoint
5096 || other_b->type == bp_access_watchpoint)
5097 {
5098 struct watchpoint *other_w =
5099 (struct watchpoint *) other_b;
5100
5101 if (other_w->watchpoint_triggered
5102 == watch_triggered_yes)
5103 {
5104 other_write_watchpoint = 1;
5105 break;
5106 }
5107 }
5108 }
5109
5110 if (other_write_watchpoint
5111 || bl->watchpoint_type == hw_access)
5112 {
5113 /* We're watching the same memory for writes,
5114 and the value changed since the last time we
5115 updated it, so this trap must be for a write.
5116 Ignore it. */
5117 bs->print_it = print_it_noop;
5118 bs->stop = 0;
5119 }
5120 }
5121 break;
5122 case WP_VALUE_NOT_CHANGED:
5123 if (b->type == bp_hardware_watchpoint
5124 || b->type == bp_watchpoint)
5125 {
5126 /* Don't stop: write watchpoints shouldn't fire if
5127 the value hasn't changed. */
5128 bs->print_it = print_it_noop;
5129 bs->stop = 0;
5130 }
5131 /* Stop. */
5132 break;
5133 default:
5134 /* Can't happen. */
5135 break;
5136 }
5137 }
5138 else /* must_check_value == 0 */
5139 {
5140 /* This is a case where some watchpoint(s) triggered, but
5141 not at the address of this watchpoint, or else no
5142 watchpoint triggered after all. So don't print
5143 anything for this watchpoint. */
5144 bs->print_it = print_it_noop;
5145 bs->stop = 0;
5146 }
5147 }
5148 }
5149
5150 /* For breakpoints that are currently marked as telling gdb to stop,
5151 check conditions (condition proper, frame, thread and ignore count)
5152 of breakpoint referred to by BS. If we should not stop for this
5153 breakpoint, set BS->stop to 0. */
5154
5155 static void
5156 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5157 {
5158 const struct bp_location *bl;
5159 struct breakpoint *b;
5160 /* Assume stop. */
5161 bool condition_result = true;
5162 struct expression *cond;
5163
5164 gdb_assert (bs->stop);
5165
5166 /* BS is built for existing struct breakpoint. */
5167 bl = bs->bp_location_at;
5168 gdb_assert (bl != NULL);
5169 b = bs->breakpoint_at;
5170 gdb_assert (b != NULL);
5171
5172 /* Even if the target evaluated the condition on its end and notified GDB, we
5173 need to do so again since GDB does not know if we stopped due to a
5174 breakpoint or a single step breakpoint. */
5175
5176 if (frame_id_p (b->frame_id)
5177 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5178 {
5179 bs->stop = 0;
5180 return;
5181 }
5182
5183 /* If this is a thread/task-specific breakpoint, don't waste cpu
5184 evaluating the condition if this isn't the specified
5185 thread/task. */
5186 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5187 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5188
5189 {
5190 bs->stop = 0;
5191 return;
5192 }
5193
5194 /* Evaluate extension language breakpoints that have a "stop" method
5195 implemented. */
5196 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5197
5198 if (is_watchpoint (b))
5199 {
5200 struct watchpoint *w = (struct watchpoint *) b;
5201
5202 cond = w->cond_exp.get ();
5203 }
5204 else
5205 cond = bl->cond.get ();
5206
5207 if (cond && b->disposition != disp_del_at_next_stop)
5208 {
5209 int within_current_scope = 1;
5210 struct watchpoint * w;
5211
5212 /* We use value_mark and value_free_to_mark because it could
5213 be a long time before we return to the command level and
5214 call free_all_values. We can't call free_all_values
5215 because we might be in the middle of evaluating a
5216 function call. */
5217 struct value *mark = value_mark ();
5218
5219 if (is_watchpoint (b))
5220 w = (struct watchpoint *) b;
5221 else
5222 w = NULL;
5223
5224 /* Need to select the frame, with all that implies so that
5225 the conditions will have the right context. Because we
5226 use the frame, we will not see an inlined function's
5227 variables when we arrive at a breakpoint at the start
5228 of the inlined function; the current frame will be the
5229 call site. */
5230 if (w == NULL || w->cond_exp_valid_block == NULL)
5231 select_frame (get_current_frame ());
5232 else
5233 {
5234 struct frame_info *frame;
5235
5236 /* For local watchpoint expressions, which particular
5237 instance of a local is being watched matters, so we
5238 keep track of the frame to evaluate the expression
5239 in. To evaluate the condition however, it doesn't
5240 really matter which instantiation of the function
5241 where the condition makes sense triggers the
5242 watchpoint. This allows an expression like "watch
5243 global if q > 10" set in `func', catch writes to
5244 global on all threads that call `func', or catch
5245 writes on all recursive calls of `func' by a single
5246 thread. We simply always evaluate the condition in
5247 the innermost frame that's executing where it makes
5248 sense to evaluate the condition. It seems
5249 intuitive. */
5250 frame = block_innermost_frame (w->cond_exp_valid_block);
5251 if (frame != NULL)
5252 select_frame (frame);
5253 else
5254 within_current_scope = 0;
5255 }
5256 if (within_current_scope)
5257 {
5258 TRY
5259 {
5260 condition_result = breakpoint_cond_eval (cond);
5261 }
5262 CATCH (ex, RETURN_MASK_ALL)
5263 {
5264 exception_fprintf (gdb_stderr, ex,
5265 "Error in testing breakpoint condition:\n");
5266 }
5267 END_CATCH
5268 }
5269 else
5270 {
5271 warning (_("Watchpoint condition cannot be tested "
5272 "in the current scope"));
5273 /* If we failed to set the right context for this
5274 watchpoint, unconditionally report it. */
5275 }
5276 /* FIXME-someday, should give breakpoint #. */
5277 value_free_to_mark (mark);
5278 }
5279
5280 if (cond && !condition_result)
5281 {
5282 bs->stop = 0;
5283 }
5284 else if (b->ignore_count > 0)
5285 {
5286 b->ignore_count--;
5287 bs->stop = 0;
5288 /* Increase the hit count even though we don't stop. */
5289 ++(b->hit_count);
5290 gdb::observers::breakpoint_modified.notify (b);
5291 }
5292 }
5293
5294 /* Returns true if we need to track moribund locations of LOC's type
5295 on the current target. */
5296
5297 static int
5298 need_moribund_for_location_type (struct bp_location *loc)
5299 {
5300 return ((loc->loc_type == bp_loc_software_breakpoint
5301 && !target_supports_stopped_by_sw_breakpoint ())
5302 || (loc->loc_type == bp_loc_hardware_breakpoint
5303 && !target_supports_stopped_by_hw_breakpoint ()));
5304 }
5305
5306 /* See breakpoint.h. */
5307
5308 bpstat
5309 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5310 const struct target_waitstatus *ws)
5311 {
5312 struct breakpoint *b;
5313 bpstat bs_head = NULL, *bs_link = &bs_head;
5314
5315 ALL_BREAKPOINTS (b)
5316 {
5317 if (!breakpoint_enabled (b))
5318 continue;
5319
5320 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5321 {
5322 /* For hardware watchpoints, we look only at the first
5323 location. The watchpoint_check function will work on the
5324 entire expression, not the individual locations. For
5325 read watchpoints, the watchpoints_triggered function has
5326 checked all locations already. */
5327 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5328 break;
5329
5330 if (!bl->enabled || bl->shlib_disabled)
5331 continue;
5332
5333 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5334 continue;
5335
5336 /* Come here if it's a watchpoint, or if the break address
5337 matches. */
5338
5339 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5340 explain stop. */
5341
5342 /* Assume we stop. Should we find a watchpoint that is not
5343 actually triggered, or if the condition of the breakpoint
5344 evaluates as false, we'll reset 'stop' to 0. */
5345 bs->stop = 1;
5346 bs->print = 1;
5347
5348 /* If this is a scope breakpoint, mark the associated
5349 watchpoint as triggered so that we will handle the
5350 out-of-scope event. We'll get to the watchpoint next
5351 iteration. */
5352 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5353 {
5354 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5355
5356 w->watchpoint_triggered = watch_triggered_yes;
5357 }
5358 }
5359 }
5360
5361 /* Check if a moribund breakpoint explains the stop. */
5362 if (!target_supports_stopped_by_sw_breakpoint ()
5363 || !target_supports_stopped_by_hw_breakpoint ())
5364 {
5365 bp_location *loc;
5366
5367 for (int ix = 0;
5368 VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5369 {
5370 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5371 && need_moribund_for_location_type (loc))
5372 {
5373 bpstat bs = new bpstats (loc, &bs_link);
5374 /* For hits of moribund locations, we should just proceed. */
5375 bs->stop = 0;
5376 bs->print = 0;
5377 bs->print_it = print_it_noop;
5378 }
5379 }
5380 }
5381
5382 return bs_head;
5383 }
5384
5385 /* See breakpoint.h. */
5386
5387 bpstat
5388 bpstat_stop_status (const address_space *aspace,
5389 CORE_ADDR bp_addr, ptid_t ptid,
5390 const struct target_waitstatus *ws,
5391 bpstat stop_chain)
5392 {
5393 struct breakpoint *b = NULL;
5394 /* First item of allocated bpstat's. */
5395 bpstat bs_head = stop_chain;
5396 bpstat bs;
5397 int need_remove_insert;
5398 int removed_any;
5399
5400 /* First, build the bpstat chain with locations that explain a
5401 target stop, while being careful to not set the target running,
5402 as that may invalidate locations (in particular watchpoint
5403 locations are recreated). Resuming will happen here with
5404 breakpoint conditions or watchpoint expressions that include
5405 inferior function calls. */
5406 if (bs_head == NULL)
5407 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5408
5409 /* A bit of special processing for shlib breakpoints. We need to
5410 process solib loading here, so that the lists of loaded and
5411 unloaded libraries are correct before we handle "catch load" and
5412 "catch unload". */
5413 for (bs = bs_head; bs != NULL; bs = bs->next)
5414 {
5415 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5416 {
5417 handle_solib_event ();
5418 break;
5419 }
5420 }
5421
5422 /* Now go through the locations that caused the target to stop, and
5423 check whether we're interested in reporting this stop to higher
5424 layers, or whether we should resume the target transparently. */
5425
5426 removed_any = 0;
5427
5428 for (bs = bs_head; bs != NULL; bs = bs->next)
5429 {
5430 if (!bs->stop)
5431 continue;
5432
5433 b = bs->breakpoint_at;
5434 b->ops->check_status (bs);
5435 if (bs->stop)
5436 {
5437 bpstat_check_breakpoint_conditions (bs, ptid);
5438
5439 if (bs->stop)
5440 {
5441 ++(b->hit_count);
5442 gdb::observers::breakpoint_modified.notify (b);
5443
5444 /* We will stop here. */
5445 if (b->disposition == disp_disable)
5446 {
5447 --(b->enable_count);
5448 if (b->enable_count <= 0)
5449 b->enable_state = bp_disabled;
5450 removed_any = 1;
5451 }
5452 if (b->silent)
5453 bs->print = 0;
5454 bs->commands = b->commands;
5455 if (command_line_is_silent (bs->commands
5456 ? bs->commands.get () : NULL))
5457 bs->print = 0;
5458
5459 b->ops->after_condition_true (bs);
5460 }
5461
5462 }
5463
5464 /* Print nothing for this entry if we don't stop or don't
5465 print. */
5466 if (!bs->stop || !bs->print)
5467 bs->print_it = print_it_noop;
5468 }
5469
5470 /* If we aren't stopping, the value of some hardware watchpoint may
5471 not have changed, but the intermediate memory locations we are
5472 watching may have. Don't bother if we're stopping; this will get
5473 done later. */
5474 need_remove_insert = 0;
5475 if (! bpstat_causes_stop (bs_head))
5476 for (bs = bs_head; bs != NULL; bs = bs->next)
5477 if (!bs->stop
5478 && bs->breakpoint_at
5479 && is_hardware_watchpoint (bs->breakpoint_at))
5480 {
5481 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5482
5483 update_watchpoint (w, 0 /* don't reparse. */);
5484 need_remove_insert = 1;
5485 }
5486
5487 if (need_remove_insert)
5488 update_global_location_list (UGLL_MAY_INSERT);
5489 else if (removed_any)
5490 update_global_location_list (UGLL_DONT_INSERT);
5491
5492 return bs_head;
5493 }
5494
5495 static void
5496 handle_jit_event (void)
5497 {
5498 struct frame_info *frame;
5499 struct gdbarch *gdbarch;
5500
5501 if (debug_infrun)
5502 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5503
5504 /* Switch terminal for any messages produced by
5505 breakpoint_re_set. */
5506 target_terminal::ours_for_output ();
5507
5508 frame = get_current_frame ();
5509 gdbarch = get_frame_arch (frame);
5510
5511 jit_event_handler (gdbarch);
5512
5513 target_terminal::inferior ();
5514 }
5515
5516 /* Prepare WHAT final decision for infrun. */
5517
5518 /* Decide what infrun needs to do with this bpstat. */
5519
5520 struct bpstat_what
5521 bpstat_what (bpstat bs_head)
5522 {
5523 struct bpstat_what retval;
5524 bpstat bs;
5525
5526 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5527 retval.call_dummy = STOP_NONE;
5528 retval.is_longjmp = 0;
5529
5530 for (bs = bs_head; bs != NULL; bs = bs->next)
5531 {
5532 /* Extract this BS's action. After processing each BS, we check
5533 if its action overrides all we've seem so far. */
5534 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5535 enum bptype bptype;
5536
5537 if (bs->breakpoint_at == NULL)
5538 {
5539 /* I suspect this can happen if it was a momentary
5540 breakpoint which has since been deleted. */
5541 bptype = bp_none;
5542 }
5543 else
5544 bptype = bs->breakpoint_at->type;
5545
5546 switch (bptype)
5547 {
5548 case bp_none:
5549 break;
5550 case bp_breakpoint:
5551 case bp_hardware_breakpoint:
5552 case bp_single_step:
5553 case bp_until:
5554 case bp_finish:
5555 case bp_shlib_event:
5556 if (bs->stop)
5557 {
5558 if (bs->print)
5559 this_action = BPSTAT_WHAT_STOP_NOISY;
5560 else
5561 this_action = BPSTAT_WHAT_STOP_SILENT;
5562 }
5563 else
5564 this_action = BPSTAT_WHAT_SINGLE;
5565 break;
5566 case bp_watchpoint:
5567 case bp_hardware_watchpoint:
5568 case bp_read_watchpoint:
5569 case bp_access_watchpoint:
5570 if (bs->stop)
5571 {
5572 if (bs->print)
5573 this_action = BPSTAT_WHAT_STOP_NOISY;
5574 else
5575 this_action = BPSTAT_WHAT_STOP_SILENT;
5576 }
5577 else
5578 {
5579 /* There was a watchpoint, but we're not stopping.
5580 This requires no further action. */
5581 }
5582 break;
5583 case bp_longjmp:
5584 case bp_longjmp_call_dummy:
5585 case bp_exception:
5586 if (bs->stop)
5587 {
5588 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5589 retval.is_longjmp = bptype != bp_exception;
5590 }
5591 else
5592 this_action = BPSTAT_WHAT_SINGLE;
5593 break;
5594 case bp_longjmp_resume:
5595 case bp_exception_resume:
5596 if (bs->stop)
5597 {
5598 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5599 retval.is_longjmp = bptype == bp_longjmp_resume;
5600 }
5601 else
5602 this_action = BPSTAT_WHAT_SINGLE;
5603 break;
5604 case bp_step_resume:
5605 if (bs->stop)
5606 this_action = BPSTAT_WHAT_STEP_RESUME;
5607 else
5608 {
5609 /* It is for the wrong frame. */
5610 this_action = BPSTAT_WHAT_SINGLE;
5611 }
5612 break;
5613 case bp_hp_step_resume:
5614 if (bs->stop)
5615 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5616 else
5617 {
5618 /* It is for the wrong frame. */
5619 this_action = BPSTAT_WHAT_SINGLE;
5620 }
5621 break;
5622 case bp_watchpoint_scope:
5623 case bp_thread_event:
5624 case bp_overlay_event:
5625 case bp_longjmp_master:
5626 case bp_std_terminate_master:
5627 case bp_exception_master:
5628 this_action = BPSTAT_WHAT_SINGLE;
5629 break;
5630 case bp_catchpoint:
5631 if (bs->stop)
5632 {
5633 if (bs->print)
5634 this_action = BPSTAT_WHAT_STOP_NOISY;
5635 else
5636 this_action = BPSTAT_WHAT_STOP_SILENT;
5637 }
5638 else
5639 {
5640 /* There was a catchpoint, but we're not stopping.
5641 This requires no further action. */
5642 }
5643 break;
5644 case bp_jit_event:
5645 this_action = BPSTAT_WHAT_SINGLE;
5646 break;
5647 case bp_call_dummy:
5648 /* Make sure the action is stop (silent or noisy),
5649 so infrun.c pops the dummy frame. */
5650 retval.call_dummy = STOP_STACK_DUMMY;
5651 this_action = BPSTAT_WHAT_STOP_SILENT;
5652 break;
5653 case bp_std_terminate:
5654 /* Make sure the action is stop (silent or noisy),
5655 so infrun.c pops the dummy frame. */
5656 retval.call_dummy = STOP_STD_TERMINATE;
5657 this_action = BPSTAT_WHAT_STOP_SILENT;
5658 break;
5659 case bp_tracepoint:
5660 case bp_fast_tracepoint:
5661 case bp_static_tracepoint:
5662 /* Tracepoint hits should not be reported back to GDB, and
5663 if one got through somehow, it should have been filtered
5664 out already. */
5665 internal_error (__FILE__, __LINE__,
5666 _("bpstat_what: tracepoint encountered"));
5667 break;
5668 case bp_gnu_ifunc_resolver:
5669 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5670 this_action = BPSTAT_WHAT_SINGLE;
5671 break;
5672 case bp_gnu_ifunc_resolver_return:
5673 /* The breakpoint will be removed, execution will restart from the
5674 PC of the former breakpoint. */
5675 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5676 break;
5677
5678 case bp_dprintf:
5679 if (bs->stop)
5680 this_action = BPSTAT_WHAT_STOP_SILENT;
5681 else
5682 this_action = BPSTAT_WHAT_SINGLE;
5683 break;
5684
5685 default:
5686 internal_error (__FILE__, __LINE__,
5687 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5688 }
5689
5690 retval.main_action = std::max (retval.main_action, this_action);
5691 }
5692
5693 return retval;
5694 }
5695
5696 void
5697 bpstat_run_callbacks (bpstat bs_head)
5698 {
5699 bpstat bs;
5700
5701 for (bs = bs_head; bs != NULL; bs = bs->next)
5702 {
5703 struct breakpoint *b = bs->breakpoint_at;
5704
5705 if (b == NULL)
5706 continue;
5707 switch (b->type)
5708 {
5709 case bp_jit_event:
5710 handle_jit_event ();
5711 break;
5712 case bp_gnu_ifunc_resolver:
5713 gnu_ifunc_resolver_stop (b);
5714 break;
5715 case bp_gnu_ifunc_resolver_return:
5716 gnu_ifunc_resolver_return_stop (b);
5717 break;
5718 }
5719 }
5720 }
5721
5722 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5723 without hardware support). This isn't related to a specific bpstat,
5724 just to things like whether watchpoints are set. */
5725
5726 int
5727 bpstat_should_step (void)
5728 {
5729 struct breakpoint *b;
5730
5731 ALL_BREAKPOINTS (b)
5732 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5733 return 1;
5734 return 0;
5735 }
5736
5737 int
5738 bpstat_causes_stop (bpstat bs)
5739 {
5740 for (; bs != NULL; bs = bs->next)
5741 if (bs->stop)
5742 return 1;
5743
5744 return 0;
5745 }
5746
5747 \f
5748
5749 /* Compute a string of spaces suitable to indent the next line
5750 so it starts at the position corresponding to the table column
5751 named COL_NAME in the currently active table of UIOUT. */
5752
5753 static char *
5754 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5755 {
5756 static char wrap_indent[80];
5757 int i, total_width, width, align;
5758 const char *text;
5759
5760 total_width = 0;
5761 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5762 {
5763 if (strcmp (text, col_name) == 0)
5764 {
5765 gdb_assert (total_width < sizeof wrap_indent);
5766 memset (wrap_indent, ' ', total_width);
5767 wrap_indent[total_width] = 0;
5768
5769 return wrap_indent;
5770 }
5771
5772 total_width += width + 1;
5773 }
5774
5775 return NULL;
5776 }
5777
5778 /* Determine if the locations of this breakpoint will have their conditions
5779 evaluated by the target, host or a mix of both. Returns the following:
5780
5781 "host": Host evals condition.
5782 "host or target": Host or Target evals condition.
5783 "target": Target evals condition.
5784 */
5785
5786 static const char *
5787 bp_condition_evaluator (struct breakpoint *b)
5788 {
5789 struct bp_location *bl;
5790 char host_evals = 0;
5791 char target_evals = 0;
5792
5793 if (!b)
5794 return NULL;
5795
5796 if (!is_breakpoint (b))
5797 return NULL;
5798
5799 if (gdb_evaluates_breakpoint_condition_p ()
5800 || !target_supports_evaluation_of_breakpoint_conditions ())
5801 return condition_evaluation_host;
5802
5803 for (bl = b->loc; bl; bl = bl->next)
5804 {
5805 if (bl->cond_bytecode)
5806 target_evals++;
5807 else
5808 host_evals++;
5809 }
5810
5811 if (host_evals && target_evals)
5812 return condition_evaluation_both;
5813 else if (target_evals)
5814 return condition_evaluation_target;
5815 else
5816 return condition_evaluation_host;
5817 }
5818
5819 /* Determine the breakpoint location's condition evaluator. This is
5820 similar to bp_condition_evaluator, but for locations. */
5821
5822 static const char *
5823 bp_location_condition_evaluator (struct bp_location *bl)
5824 {
5825 if (bl && !is_breakpoint (bl->owner))
5826 return NULL;
5827
5828 if (gdb_evaluates_breakpoint_condition_p ()
5829 || !target_supports_evaluation_of_breakpoint_conditions ())
5830 return condition_evaluation_host;
5831
5832 if (bl && bl->cond_bytecode)
5833 return condition_evaluation_target;
5834 else
5835 return condition_evaluation_host;
5836 }
5837
5838 /* Print the LOC location out of the list of B->LOC locations. */
5839
5840 static void
5841 print_breakpoint_location (struct breakpoint *b,
5842 struct bp_location *loc)
5843 {
5844 struct ui_out *uiout = current_uiout;
5845
5846 scoped_restore_current_program_space restore_pspace;
5847
5848 if (loc != NULL && loc->shlib_disabled)
5849 loc = NULL;
5850
5851 if (loc != NULL)
5852 set_current_program_space (loc->pspace);
5853
5854 if (b->display_canonical)
5855 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5856 else if (loc && loc->symtab)
5857 {
5858 const struct symbol *sym = loc->symbol;
5859
5860 if (sym == NULL)
5861 sym = find_pc_sect_function (loc->address, loc->section);
5862
5863 if (sym)
5864 {
5865 uiout->text ("in ");
5866 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5867 uiout->text (" ");
5868 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5869 uiout->text ("at ");
5870 }
5871 uiout->field_string ("file",
5872 symtab_to_filename_for_display (loc->symtab));
5873 uiout->text (":");
5874
5875 if (uiout->is_mi_like_p ())
5876 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5877
5878 uiout->field_int ("line", loc->line_number);
5879 }
5880 else if (loc)
5881 {
5882 string_file stb;
5883
5884 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5885 demangle, "");
5886 uiout->field_stream ("at", stb);
5887 }
5888 else
5889 {
5890 uiout->field_string ("pending",
5891 event_location_to_string (b->location.get ()));
5892 /* If extra_string is available, it could be holding a condition
5893 or dprintf arguments. In either case, make sure it is printed,
5894 too, but only for non-MI streams. */
5895 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5896 {
5897 if (b->type == bp_dprintf)
5898 uiout->text (",");
5899 else
5900 uiout->text (" ");
5901 uiout->text (b->extra_string);
5902 }
5903 }
5904
5905 if (loc && is_breakpoint (b)
5906 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5907 && bp_condition_evaluator (b) == condition_evaluation_both)
5908 {
5909 uiout->text (" (");
5910 uiout->field_string ("evaluated-by",
5911 bp_location_condition_evaluator (loc));
5912 uiout->text (")");
5913 }
5914 }
5915
5916 static const char *
5917 bptype_string (enum bptype type)
5918 {
5919 struct ep_type_description
5920 {
5921 enum bptype type;
5922 const char *description;
5923 };
5924 static struct ep_type_description bptypes[] =
5925 {
5926 {bp_none, "?deleted?"},
5927 {bp_breakpoint, "breakpoint"},
5928 {bp_hardware_breakpoint, "hw breakpoint"},
5929 {bp_single_step, "sw single-step"},
5930 {bp_until, "until"},
5931 {bp_finish, "finish"},
5932 {bp_watchpoint, "watchpoint"},
5933 {bp_hardware_watchpoint, "hw watchpoint"},
5934 {bp_read_watchpoint, "read watchpoint"},
5935 {bp_access_watchpoint, "acc watchpoint"},
5936 {bp_longjmp, "longjmp"},
5937 {bp_longjmp_resume, "longjmp resume"},
5938 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5939 {bp_exception, "exception"},
5940 {bp_exception_resume, "exception resume"},
5941 {bp_step_resume, "step resume"},
5942 {bp_hp_step_resume, "high-priority step resume"},
5943 {bp_watchpoint_scope, "watchpoint scope"},
5944 {bp_call_dummy, "call dummy"},
5945 {bp_std_terminate, "std::terminate"},
5946 {bp_shlib_event, "shlib events"},
5947 {bp_thread_event, "thread events"},
5948 {bp_overlay_event, "overlay events"},
5949 {bp_longjmp_master, "longjmp master"},
5950 {bp_std_terminate_master, "std::terminate master"},
5951 {bp_exception_master, "exception master"},
5952 {bp_catchpoint, "catchpoint"},
5953 {bp_tracepoint, "tracepoint"},
5954 {bp_fast_tracepoint, "fast tracepoint"},
5955 {bp_static_tracepoint, "static tracepoint"},
5956 {bp_dprintf, "dprintf"},
5957 {bp_jit_event, "jit events"},
5958 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5959 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5960 };
5961
5962 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5963 || ((int) type != bptypes[(int) type].type))
5964 internal_error (__FILE__, __LINE__,
5965 _("bptypes table does not describe type #%d."),
5966 (int) type);
5967
5968 return bptypes[(int) type].description;
5969 }
5970
5971 /* For MI, output a field named 'thread-groups' with a list as the value.
5972 For CLI, prefix the list with the string 'inf'. */
5973
5974 static void
5975 output_thread_groups (struct ui_out *uiout,
5976 const char *field_name,
5977 const std::vector<int> &inf_nums,
5978 int mi_only)
5979 {
5980 int is_mi = uiout->is_mi_like_p ();
5981
5982 /* For backward compatibility, don't display inferiors in CLI unless
5983 there are several. Always display them for MI. */
5984 if (!is_mi && mi_only)
5985 return;
5986
5987 ui_out_emit_list list_emitter (uiout, field_name);
5988
5989 for (size_t i = 0; i < inf_nums.size (); i++)
5990 {
5991 if (is_mi)
5992 {
5993 char mi_group[10];
5994
5995 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5996 uiout->field_string (NULL, mi_group);
5997 }
5998 else
5999 {
6000 if (i == 0)
6001 uiout->text (" inf ");
6002 else
6003 uiout->text (", ");
6004
6005 uiout->text (plongest (inf_nums[i]));
6006 }
6007 }
6008 }
6009
6010 /* Print B to gdb_stdout. */
6011
6012 static void
6013 print_one_breakpoint_location (struct breakpoint *b,
6014 struct bp_location *loc,
6015 int loc_number,
6016 struct bp_location **last_loc,
6017 int allflag)
6018 {
6019 struct command_line *l;
6020 static char bpenables[] = "nynny";
6021
6022 struct ui_out *uiout = current_uiout;
6023 int header_of_multiple = 0;
6024 int part_of_multiple = (loc != NULL);
6025 struct value_print_options opts;
6026
6027 get_user_print_options (&opts);
6028
6029 gdb_assert (!loc || loc_number != 0);
6030 /* See comment in print_one_breakpoint concerning treatment of
6031 breakpoints with single disabled location. */
6032 if (loc == NULL
6033 && (b->loc != NULL
6034 && (b->loc->next != NULL || !b->loc->enabled)))
6035 header_of_multiple = 1;
6036 if (loc == NULL)
6037 loc = b->loc;
6038
6039 annotate_record ();
6040
6041 /* 1 */
6042 annotate_field (0);
6043 if (part_of_multiple)
6044 {
6045 char *formatted;
6046 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6047 uiout->field_string ("number", formatted);
6048 xfree (formatted);
6049 }
6050 else
6051 {
6052 uiout->field_int ("number", b->number);
6053 }
6054
6055 /* 2 */
6056 annotate_field (1);
6057 if (part_of_multiple)
6058 uiout->field_skip ("type");
6059 else
6060 uiout->field_string ("type", bptype_string (b->type));
6061
6062 /* 3 */
6063 annotate_field (2);
6064 if (part_of_multiple)
6065 uiout->field_skip ("disp");
6066 else
6067 uiout->field_string ("disp", bpdisp_text (b->disposition));
6068
6069
6070 /* 4 */
6071 annotate_field (3);
6072 if (part_of_multiple)
6073 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6074 else
6075 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6076 uiout->spaces (2);
6077
6078
6079 /* 5 and 6 */
6080 if (b->ops != NULL && b->ops->print_one != NULL)
6081 {
6082 /* Although the print_one can possibly print all locations,
6083 calling it here is not likely to get any nice result. So,
6084 make sure there's just one location. */
6085 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6086 b->ops->print_one (b, last_loc);
6087 }
6088 else
6089 switch (b->type)
6090 {
6091 case bp_none:
6092 internal_error (__FILE__, __LINE__,
6093 _("print_one_breakpoint: bp_none encountered\n"));
6094 break;
6095
6096 case bp_watchpoint:
6097 case bp_hardware_watchpoint:
6098 case bp_read_watchpoint:
6099 case bp_access_watchpoint:
6100 {
6101 struct watchpoint *w = (struct watchpoint *) b;
6102
6103 /* Field 4, the address, is omitted (which makes the columns
6104 not line up too nicely with the headers, but the effect
6105 is relatively readable). */
6106 if (opts.addressprint)
6107 uiout->field_skip ("addr");
6108 annotate_field (5);
6109 uiout->field_string ("what", w->exp_string);
6110 }
6111 break;
6112
6113 case bp_breakpoint:
6114 case bp_hardware_breakpoint:
6115 case bp_single_step:
6116 case bp_until:
6117 case bp_finish:
6118 case bp_longjmp:
6119 case bp_longjmp_resume:
6120 case bp_longjmp_call_dummy:
6121 case bp_exception:
6122 case bp_exception_resume:
6123 case bp_step_resume:
6124 case bp_hp_step_resume:
6125 case bp_watchpoint_scope:
6126 case bp_call_dummy:
6127 case bp_std_terminate:
6128 case bp_shlib_event:
6129 case bp_thread_event:
6130 case bp_overlay_event:
6131 case bp_longjmp_master:
6132 case bp_std_terminate_master:
6133 case bp_exception_master:
6134 case bp_tracepoint:
6135 case bp_fast_tracepoint:
6136 case bp_static_tracepoint:
6137 case bp_dprintf:
6138 case bp_jit_event:
6139 case bp_gnu_ifunc_resolver:
6140 case bp_gnu_ifunc_resolver_return:
6141 if (opts.addressprint)
6142 {
6143 annotate_field (4);
6144 if (header_of_multiple)
6145 uiout->field_string ("addr", "<MULTIPLE>");
6146 else if (b->loc == NULL || loc->shlib_disabled)
6147 uiout->field_string ("addr", "<PENDING>");
6148 else
6149 uiout->field_core_addr ("addr",
6150 loc->gdbarch, loc->address);
6151 }
6152 annotate_field (5);
6153 if (!header_of_multiple)
6154 print_breakpoint_location (b, loc);
6155 if (b->loc)
6156 *last_loc = b->loc;
6157 break;
6158 }
6159
6160
6161 if (loc != NULL && !header_of_multiple)
6162 {
6163 struct inferior *inf;
6164 std::vector<int> inf_nums;
6165 int mi_only = 1;
6166
6167 ALL_INFERIORS (inf)
6168 {
6169 if (inf->pspace == loc->pspace)
6170 inf_nums.push_back (inf->num);
6171 }
6172
6173 /* For backward compatibility, don't display inferiors in CLI unless
6174 there are several. Always display for MI. */
6175 if (allflag
6176 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6177 && (number_of_program_spaces () > 1
6178 || number_of_inferiors () > 1)
6179 /* LOC is for existing B, it cannot be in
6180 moribund_locations and thus having NULL OWNER. */
6181 && loc->owner->type != bp_catchpoint))
6182 mi_only = 0;
6183 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6184 }
6185
6186 if (!part_of_multiple)
6187 {
6188 if (b->thread != -1)
6189 {
6190 /* FIXME: This seems to be redundant and lost here; see the
6191 "stop only in" line a little further down. */
6192 uiout->text (" thread ");
6193 uiout->field_int ("thread", b->thread);
6194 }
6195 else if (b->task != 0)
6196 {
6197 uiout->text (" task ");
6198 uiout->field_int ("task", b->task);
6199 }
6200 }
6201
6202 uiout->text ("\n");
6203
6204 if (!part_of_multiple)
6205 b->ops->print_one_detail (b, uiout);
6206
6207 if (part_of_multiple && frame_id_p (b->frame_id))
6208 {
6209 annotate_field (6);
6210 uiout->text ("\tstop only in stack frame at ");
6211 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6212 the frame ID. */
6213 uiout->field_core_addr ("frame",
6214 b->gdbarch, b->frame_id.stack_addr);
6215 uiout->text ("\n");
6216 }
6217
6218 if (!part_of_multiple && b->cond_string)
6219 {
6220 annotate_field (7);
6221 if (is_tracepoint (b))
6222 uiout->text ("\ttrace only if ");
6223 else
6224 uiout->text ("\tstop only if ");
6225 uiout->field_string ("cond", b->cond_string);
6226
6227 /* Print whether the target is doing the breakpoint's condition
6228 evaluation. If GDB is doing the evaluation, don't print anything. */
6229 if (is_breakpoint (b)
6230 && breakpoint_condition_evaluation_mode ()
6231 == condition_evaluation_target)
6232 {
6233 uiout->text (" (");
6234 uiout->field_string ("evaluated-by",
6235 bp_condition_evaluator (b));
6236 uiout->text (" evals)");
6237 }
6238 uiout->text ("\n");
6239 }
6240
6241 if (!part_of_multiple && b->thread != -1)
6242 {
6243 /* FIXME should make an annotation for this. */
6244 uiout->text ("\tstop only in thread ");
6245 if (uiout->is_mi_like_p ())
6246 uiout->field_int ("thread", b->thread);
6247 else
6248 {
6249 struct thread_info *thr = find_thread_global_id (b->thread);
6250
6251 uiout->field_string ("thread", print_thread_id (thr));
6252 }
6253 uiout->text ("\n");
6254 }
6255
6256 if (!part_of_multiple)
6257 {
6258 if (b->hit_count)
6259 {
6260 /* FIXME should make an annotation for this. */
6261 if (is_catchpoint (b))
6262 uiout->text ("\tcatchpoint");
6263 else if (is_tracepoint (b))
6264 uiout->text ("\ttracepoint");
6265 else
6266 uiout->text ("\tbreakpoint");
6267 uiout->text (" already hit ");
6268 uiout->field_int ("times", b->hit_count);
6269 if (b->hit_count == 1)
6270 uiout->text (" time\n");
6271 else
6272 uiout->text (" times\n");
6273 }
6274 else
6275 {
6276 /* Output the count also if it is zero, but only if this is mi. */
6277 if (uiout->is_mi_like_p ())
6278 uiout->field_int ("times", b->hit_count);
6279 }
6280 }
6281
6282 if (!part_of_multiple && b->ignore_count)
6283 {
6284 annotate_field (8);
6285 uiout->text ("\tignore next ");
6286 uiout->field_int ("ignore", b->ignore_count);
6287 uiout->text (" hits\n");
6288 }
6289
6290 /* Note that an enable count of 1 corresponds to "enable once"
6291 behavior, which is reported by the combination of enablement and
6292 disposition, so we don't need to mention it here. */
6293 if (!part_of_multiple && b->enable_count > 1)
6294 {
6295 annotate_field (8);
6296 uiout->text ("\tdisable after ");
6297 /* Tweak the wording to clarify that ignore and enable counts
6298 are distinct, and have additive effect. */
6299 if (b->ignore_count)
6300 uiout->text ("additional ");
6301 else
6302 uiout->text ("next ");
6303 uiout->field_int ("enable", b->enable_count);
6304 uiout->text (" hits\n");
6305 }
6306
6307 if (!part_of_multiple && is_tracepoint (b))
6308 {
6309 struct tracepoint *tp = (struct tracepoint *) b;
6310
6311 if (tp->traceframe_usage)
6312 {
6313 uiout->text ("\ttrace buffer usage ");
6314 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6315 uiout->text (" bytes\n");
6316 }
6317 }
6318
6319 l = b->commands ? b->commands.get () : NULL;
6320 if (!part_of_multiple && l)
6321 {
6322 annotate_field (9);
6323 ui_out_emit_tuple tuple_emitter (uiout, "script");
6324 print_command_lines (uiout, l, 4);
6325 }
6326
6327 if (is_tracepoint (b))
6328 {
6329 struct tracepoint *t = (struct tracepoint *) b;
6330
6331 if (!part_of_multiple && t->pass_count)
6332 {
6333 annotate_field (10);
6334 uiout->text ("\tpass count ");
6335 uiout->field_int ("pass", t->pass_count);
6336 uiout->text (" \n");
6337 }
6338
6339 /* Don't display it when tracepoint or tracepoint location is
6340 pending. */
6341 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6342 {
6343 annotate_field (11);
6344
6345 if (uiout->is_mi_like_p ())
6346 uiout->field_string ("installed",
6347 loc->inserted ? "y" : "n");
6348 else
6349 {
6350 if (loc->inserted)
6351 uiout->text ("\t");
6352 else
6353 uiout->text ("\tnot ");
6354 uiout->text ("installed on target\n");
6355 }
6356 }
6357 }
6358
6359 if (uiout->is_mi_like_p () && !part_of_multiple)
6360 {
6361 if (is_watchpoint (b))
6362 {
6363 struct watchpoint *w = (struct watchpoint *) b;
6364
6365 uiout->field_string ("original-location", w->exp_string);
6366 }
6367 else if (b->location != NULL
6368 && event_location_to_string (b->location.get ()) != NULL)
6369 uiout->field_string ("original-location",
6370 event_location_to_string (b->location.get ()));
6371 }
6372 }
6373
6374 static void
6375 print_one_breakpoint (struct breakpoint *b,
6376 struct bp_location **last_loc,
6377 int allflag)
6378 {
6379 struct ui_out *uiout = current_uiout;
6380
6381 {
6382 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6383
6384 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6385 }
6386
6387 /* If this breakpoint has custom print function,
6388 it's already printed. Otherwise, print individual
6389 locations, if any. */
6390 if (b->ops == NULL || b->ops->print_one == NULL)
6391 {
6392 /* If breakpoint has a single location that is disabled, we
6393 print it as if it had several locations, since otherwise it's
6394 hard to represent "breakpoint enabled, location disabled"
6395 situation.
6396
6397 Note that while hardware watchpoints have several locations
6398 internally, that's not a property exposed to user. */
6399 if (b->loc
6400 && !is_hardware_watchpoint (b)
6401 && (b->loc->next || !b->loc->enabled))
6402 {
6403 struct bp_location *loc;
6404 int n = 1;
6405
6406 for (loc = b->loc; loc; loc = loc->next, ++n)
6407 {
6408 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6409 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6410 }
6411 }
6412 }
6413 }
6414
6415 static int
6416 breakpoint_address_bits (struct breakpoint *b)
6417 {
6418 int print_address_bits = 0;
6419 struct bp_location *loc;
6420
6421 /* Software watchpoints that aren't watching memory don't have an
6422 address to print. */
6423 if (is_no_memory_software_watchpoint (b))
6424 return 0;
6425
6426 for (loc = b->loc; loc; loc = loc->next)
6427 {
6428 int addr_bit;
6429
6430 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6431 if (addr_bit > print_address_bits)
6432 print_address_bits = addr_bit;
6433 }
6434
6435 return print_address_bits;
6436 }
6437
6438 /* See breakpoint.h. */
6439
6440 void
6441 print_breakpoint (breakpoint *b)
6442 {
6443 struct bp_location *dummy_loc = NULL;
6444 print_one_breakpoint (b, &dummy_loc, 0);
6445 }
6446
6447 /* Return true if this breakpoint was set by the user, false if it is
6448 internal or momentary. */
6449
6450 int
6451 user_breakpoint_p (struct breakpoint *b)
6452 {
6453 return b->number > 0;
6454 }
6455
6456 /* See breakpoint.h. */
6457
6458 int
6459 pending_breakpoint_p (struct breakpoint *b)
6460 {
6461 return b->loc == NULL;
6462 }
6463
6464 /* Print information on user settable breakpoint (watchpoint, etc)
6465 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6466 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6467 FILTER is non-NULL, call it on each breakpoint and only include the
6468 ones for which it returns non-zero. Return the total number of
6469 breakpoints listed. */
6470
6471 static int
6472 breakpoint_1 (const char *args, int allflag,
6473 int (*filter) (const struct breakpoint *))
6474 {
6475 struct breakpoint *b;
6476 struct bp_location *last_loc = NULL;
6477 int nr_printable_breakpoints;
6478 struct value_print_options opts;
6479 int print_address_bits = 0;
6480 int print_type_col_width = 14;
6481 struct ui_out *uiout = current_uiout;
6482
6483 get_user_print_options (&opts);
6484
6485 /* Compute the number of rows in the table, as well as the size
6486 required for address fields. */
6487 nr_printable_breakpoints = 0;
6488 ALL_BREAKPOINTS (b)
6489 {
6490 /* If we have a filter, only list the breakpoints it accepts. */
6491 if (filter && !filter (b))
6492 continue;
6493
6494 /* If we have an "args" string, it is a list of breakpoints to
6495 accept. Skip the others. */
6496 if (args != NULL && *args != '\0')
6497 {
6498 if (allflag && parse_and_eval_long (args) != b->number)
6499 continue;
6500 if (!allflag && !number_is_in_list (args, b->number))
6501 continue;
6502 }
6503
6504 if (allflag || user_breakpoint_p (b))
6505 {
6506 int addr_bit, type_len;
6507
6508 addr_bit = breakpoint_address_bits (b);
6509 if (addr_bit > print_address_bits)
6510 print_address_bits = addr_bit;
6511
6512 type_len = strlen (bptype_string (b->type));
6513 if (type_len > print_type_col_width)
6514 print_type_col_width = type_len;
6515
6516 nr_printable_breakpoints++;
6517 }
6518 }
6519
6520 {
6521 ui_out_emit_table table_emitter (uiout,
6522 opts.addressprint ? 6 : 5,
6523 nr_printable_breakpoints,
6524 "BreakpointTable");
6525
6526 if (nr_printable_breakpoints > 0)
6527 annotate_breakpoints_headers ();
6528 if (nr_printable_breakpoints > 0)
6529 annotate_field (0);
6530 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6531 if (nr_printable_breakpoints > 0)
6532 annotate_field (1);
6533 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6534 if (nr_printable_breakpoints > 0)
6535 annotate_field (2);
6536 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6537 if (nr_printable_breakpoints > 0)
6538 annotate_field (3);
6539 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6540 if (opts.addressprint)
6541 {
6542 if (nr_printable_breakpoints > 0)
6543 annotate_field (4);
6544 if (print_address_bits <= 32)
6545 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6546 else
6547 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6548 }
6549 if (nr_printable_breakpoints > 0)
6550 annotate_field (5);
6551 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6552 uiout->table_body ();
6553 if (nr_printable_breakpoints > 0)
6554 annotate_breakpoints_table ();
6555
6556 ALL_BREAKPOINTS (b)
6557 {
6558 QUIT;
6559 /* If we have a filter, only list the breakpoints it accepts. */
6560 if (filter && !filter (b))
6561 continue;
6562
6563 /* If we have an "args" string, it is a list of breakpoints to
6564 accept. Skip the others. */
6565
6566 if (args != NULL && *args != '\0')
6567 {
6568 if (allflag) /* maintenance info breakpoint */
6569 {
6570 if (parse_and_eval_long (args) != b->number)
6571 continue;
6572 }
6573 else /* all others */
6574 {
6575 if (!number_is_in_list (args, b->number))
6576 continue;
6577 }
6578 }
6579 /* We only print out user settable breakpoints unless the
6580 allflag is set. */
6581 if (allflag || user_breakpoint_p (b))
6582 print_one_breakpoint (b, &last_loc, allflag);
6583 }
6584 }
6585
6586 if (nr_printable_breakpoints == 0)
6587 {
6588 /* If there's a filter, let the caller decide how to report
6589 empty list. */
6590 if (!filter)
6591 {
6592 if (args == NULL || *args == '\0')
6593 uiout->message ("No breakpoints or watchpoints.\n");
6594 else
6595 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6596 args);
6597 }
6598 }
6599 else
6600 {
6601 if (last_loc && !server_command)
6602 set_next_address (last_loc->gdbarch, last_loc->address);
6603 }
6604
6605 /* FIXME? Should this be moved up so that it is only called when
6606 there have been breakpoints? */
6607 annotate_breakpoints_table_end ();
6608
6609 return nr_printable_breakpoints;
6610 }
6611
6612 /* Display the value of default-collect in a way that is generally
6613 compatible with the breakpoint list. */
6614
6615 static void
6616 default_collect_info (void)
6617 {
6618 struct ui_out *uiout = current_uiout;
6619
6620 /* If it has no value (which is frequently the case), say nothing; a
6621 message like "No default-collect." gets in user's face when it's
6622 not wanted. */
6623 if (!*default_collect)
6624 return;
6625
6626 /* The following phrase lines up nicely with per-tracepoint collect
6627 actions. */
6628 uiout->text ("default collect ");
6629 uiout->field_string ("default-collect", default_collect);
6630 uiout->text (" \n");
6631 }
6632
6633 static void
6634 info_breakpoints_command (const char *args, int from_tty)
6635 {
6636 breakpoint_1 (args, 0, NULL);
6637
6638 default_collect_info ();
6639 }
6640
6641 static void
6642 info_watchpoints_command (const char *args, int from_tty)
6643 {
6644 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6645 struct ui_out *uiout = current_uiout;
6646
6647 if (num_printed == 0)
6648 {
6649 if (args == NULL || *args == '\0')
6650 uiout->message ("No watchpoints.\n");
6651 else
6652 uiout->message ("No watchpoint matching '%s'.\n", args);
6653 }
6654 }
6655
6656 static void
6657 maintenance_info_breakpoints (const char *args, int from_tty)
6658 {
6659 breakpoint_1 (args, 1, NULL);
6660
6661 default_collect_info ();
6662 }
6663
6664 static int
6665 breakpoint_has_pc (struct breakpoint *b,
6666 struct program_space *pspace,
6667 CORE_ADDR pc, struct obj_section *section)
6668 {
6669 struct bp_location *bl = b->loc;
6670
6671 for (; bl; bl = bl->next)
6672 {
6673 if (bl->pspace == pspace
6674 && bl->address == pc
6675 && (!overlay_debugging || bl->section == section))
6676 return 1;
6677 }
6678 return 0;
6679 }
6680
6681 /* Print a message describing any user-breakpoints set at PC. This
6682 concerns with logical breakpoints, so we match program spaces, not
6683 address spaces. */
6684
6685 static void
6686 describe_other_breakpoints (struct gdbarch *gdbarch,
6687 struct program_space *pspace, CORE_ADDR pc,
6688 struct obj_section *section, int thread)
6689 {
6690 int others = 0;
6691 struct breakpoint *b;
6692
6693 ALL_BREAKPOINTS (b)
6694 others += (user_breakpoint_p (b)
6695 && breakpoint_has_pc (b, pspace, pc, section));
6696 if (others > 0)
6697 {
6698 if (others == 1)
6699 printf_filtered (_("Note: breakpoint "));
6700 else /* if (others == ???) */
6701 printf_filtered (_("Note: breakpoints "));
6702 ALL_BREAKPOINTS (b)
6703 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6704 {
6705 others--;
6706 printf_filtered ("%d", b->number);
6707 if (b->thread == -1 && thread != -1)
6708 printf_filtered (" (all threads)");
6709 else if (b->thread != -1)
6710 printf_filtered (" (thread %d)", b->thread);
6711 printf_filtered ("%s%s ",
6712 ((b->enable_state == bp_disabled
6713 || b->enable_state == bp_call_disabled)
6714 ? " (disabled)"
6715 : ""),
6716 (others > 1) ? ","
6717 : ((others == 1) ? " and" : ""));
6718 }
6719 printf_filtered (_("also set at pc "));
6720 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6721 printf_filtered (".\n");
6722 }
6723 }
6724 \f
6725
6726 /* Return true iff it is meaningful to use the address member of
6727 BPT locations. For some breakpoint types, the locations' address members
6728 are irrelevant and it makes no sense to attempt to compare them to other
6729 addresses (or use them for any other purpose either).
6730
6731 More specifically, each of the following breakpoint types will
6732 always have a zero valued location address and we don't want to mark
6733 breakpoints of any of these types to be a duplicate of an actual
6734 breakpoint location at address zero:
6735
6736 bp_watchpoint
6737 bp_catchpoint
6738
6739 */
6740
6741 static int
6742 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6743 {
6744 enum bptype type = bpt->type;
6745
6746 return (type != bp_watchpoint && type != bp_catchpoint);
6747 }
6748
6749 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6750 true if LOC1 and LOC2 represent the same watchpoint location. */
6751
6752 static int
6753 watchpoint_locations_match (struct bp_location *loc1,
6754 struct bp_location *loc2)
6755 {
6756 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6757 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6758
6759 /* Both of them must exist. */
6760 gdb_assert (w1 != NULL);
6761 gdb_assert (w2 != NULL);
6762
6763 /* If the target can evaluate the condition expression in hardware,
6764 then we we need to insert both watchpoints even if they are at
6765 the same place. Otherwise the watchpoint will only trigger when
6766 the condition of whichever watchpoint was inserted evaluates to
6767 true, not giving a chance for GDB to check the condition of the
6768 other watchpoint. */
6769 if ((w1->cond_exp
6770 && target_can_accel_watchpoint_condition (loc1->address,
6771 loc1->length,
6772 loc1->watchpoint_type,
6773 w1->cond_exp.get ()))
6774 || (w2->cond_exp
6775 && target_can_accel_watchpoint_condition (loc2->address,
6776 loc2->length,
6777 loc2->watchpoint_type,
6778 w2->cond_exp.get ())))
6779 return 0;
6780
6781 /* Note that this checks the owner's type, not the location's. In
6782 case the target does not support read watchpoints, but does
6783 support access watchpoints, we'll have bp_read_watchpoint
6784 watchpoints with hw_access locations. Those should be considered
6785 duplicates of hw_read locations. The hw_read locations will
6786 become hw_access locations later. */
6787 return (loc1->owner->type == loc2->owner->type
6788 && loc1->pspace->aspace == loc2->pspace->aspace
6789 && loc1->address == loc2->address
6790 && loc1->length == loc2->length);
6791 }
6792
6793 /* See breakpoint.h. */
6794
6795 int
6796 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6797 const address_space *aspace2, CORE_ADDR addr2)
6798 {
6799 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6800 || aspace1 == aspace2)
6801 && addr1 == addr2);
6802 }
6803
6804 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6805 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6806 matches ASPACE2. On targets that have global breakpoints, the address
6807 space doesn't really matter. */
6808
6809 static int
6810 breakpoint_address_match_range (const address_space *aspace1,
6811 CORE_ADDR addr1,
6812 int len1, const address_space *aspace2,
6813 CORE_ADDR addr2)
6814 {
6815 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6816 || aspace1 == aspace2)
6817 && addr2 >= addr1 && addr2 < addr1 + len1);
6818 }
6819
6820 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6821 a ranged breakpoint. In most targets, a match happens only if ASPACE
6822 matches the breakpoint's address space. On targets that have global
6823 breakpoints, the address space doesn't really matter. */
6824
6825 static int
6826 breakpoint_location_address_match (struct bp_location *bl,
6827 const address_space *aspace,
6828 CORE_ADDR addr)
6829 {
6830 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6831 aspace, addr)
6832 || (bl->length
6833 && breakpoint_address_match_range (bl->pspace->aspace,
6834 bl->address, bl->length,
6835 aspace, addr)));
6836 }
6837
6838 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6839 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6840 match happens only if ASPACE matches the breakpoint's address
6841 space. On targets that have global breakpoints, the address space
6842 doesn't really matter. */
6843
6844 static int
6845 breakpoint_location_address_range_overlap (struct bp_location *bl,
6846 const address_space *aspace,
6847 CORE_ADDR addr, int len)
6848 {
6849 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6850 || bl->pspace->aspace == aspace)
6851 {
6852 int bl_len = bl->length != 0 ? bl->length : 1;
6853
6854 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6855 return 1;
6856 }
6857 return 0;
6858 }
6859
6860 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6861 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6862 true, otherwise returns false. */
6863
6864 static int
6865 tracepoint_locations_match (struct bp_location *loc1,
6866 struct bp_location *loc2)
6867 {
6868 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6869 /* Since tracepoint locations are never duplicated with others', tracepoint
6870 locations at the same address of different tracepoints are regarded as
6871 different locations. */
6872 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6873 else
6874 return 0;
6875 }
6876
6877 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6878 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6879 represent the same location. */
6880
6881 static int
6882 breakpoint_locations_match (struct bp_location *loc1,
6883 struct bp_location *loc2)
6884 {
6885 int hw_point1, hw_point2;
6886
6887 /* Both of them must not be in moribund_locations. */
6888 gdb_assert (loc1->owner != NULL);
6889 gdb_assert (loc2->owner != NULL);
6890
6891 hw_point1 = is_hardware_watchpoint (loc1->owner);
6892 hw_point2 = is_hardware_watchpoint (loc2->owner);
6893
6894 if (hw_point1 != hw_point2)
6895 return 0;
6896 else if (hw_point1)
6897 return watchpoint_locations_match (loc1, loc2);
6898 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6899 return tracepoint_locations_match (loc1, loc2);
6900 else
6901 /* We compare bp_location.length in order to cover ranged breakpoints. */
6902 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6903 loc2->pspace->aspace, loc2->address)
6904 && loc1->length == loc2->length);
6905 }
6906
6907 static void
6908 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6909 int bnum, int have_bnum)
6910 {
6911 /* The longest string possibly returned by hex_string_custom
6912 is 50 chars. These must be at least that big for safety. */
6913 char astr1[64];
6914 char astr2[64];
6915
6916 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6917 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6918 if (have_bnum)
6919 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6920 bnum, astr1, astr2);
6921 else
6922 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6923 }
6924
6925 /* Adjust a breakpoint's address to account for architectural
6926 constraints on breakpoint placement. Return the adjusted address.
6927 Note: Very few targets require this kind of adjustment. For most
6928 targets, this function is simply the identity function. */
6929
6930 static CORE_ADDR
6931 adjust_breakpoint_address (struct gdbarch *gdbarch,
6932 CORE_ADDR bpaddr, enum bptype bptype)
6933 {
6934 if (bptype == bp_watchpoint
6935 || bptype == bp_hardware_watchpoint
6936 || bptype == bp_read_watchpoint
6937 || bptype == bp_access_watchpoint
6938 || bptype == bp_catchpoint)
6939 {
6940 /* Watchpoints and the various bp_catch_* eventpoints should not
6941 have their addresses modified. */
6942 return bpaddr;
6943 }
6944 else if (bptype == bp_single_step)
6945 {
6946 /* Single-step breakpoints should not have their addresses
6947 modified. If there's any architectural constrain that
6948 applies to this address, then it should have already been
6949 taken into account when the breakpoint was created in the
6950 first place. If we didn't do this, stepping through e.g.,
6951 Thumb-2 IT blocks would break. */
6952 return bpaddr;
6953 }
6954 else
6955 {
6956 CORE_ADDR adjusted_bpaddr = bpaddr;
6957
6958 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6959 {
6960 /* Some targets have architectural constraints on the placement
6961 of breakpoint instructions. Obtain the adjusted address. */
6962 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6963 }
6964
6965 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6966
6967 /* An adjusted breakpoint address can significantly alter
6968 a user's expectations. Print a warning if an adjustment
6969 is required. */
6970 if (adjusted_bpaddr != bpaddr)
6971 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6972
6973 return adjusted_bpaddr;
6974 }
6975 }
6976
6977 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6978 {
6979 bp_location *loc = this;
6980
6981 gdb_assert (ops != NULL);
6982
6983 loc->ops = ops;
6984 loc->owner = owner;
6985 loc->cond_bytecode = NULL;
6986 loc->shlib_disabled = 0;
6987 loc->enabled = 1;
6988
6989 switch (owner->type)
6990 {
6991 case bp_breakpoint:
6992 case bp_single_step:
6993 case bp_until:
6994 case bp_finish:
6995 case bp_longjmp:
6996 case bp_longjmp_resume:
6997 case bp_longjmp_call_dummy:
6998 case bp_exception:
6999 case bp_exception_resume:
7000 case bp_step_resume:
7001 case bp_hp_step_resume:
7002 case bp_watchpoint_scope:
7003 case bp_call_dummy:
7004 case bp_std_terminate:
7005 case bp_shlib_event:
7006 case bp_thread_event:
7007 case bp_overlay_event:
7008 case bp_jit_event:
7009 case bp_longjmp_master:
7010 case bp_std_terminate_master:
7011 case bp_exception_master:
7012 case bp_gnu_ifunc_resolver:
7013 case bp_gnu_ifunc_resolver_return:
7014 case bp_dprintf:
7015 loc->loc_type = bp_loc_software_breakpoint;
7016 mark_breakpoint_location_modified (loc);
7017 break;
7018 case bp_hardware_breakpoint:
7019 loc->loc_type = bp_loc_hardware_breakpoint;
7020 mark_breakpoint_location_modified (loc);
7021 break;
7022 case bp_hardware_watchpoint:
7023 case bp_read_watchpoint:
7024 case bp_access_watchpoint:
7025 loc->loc_type = bp_loc_hardware_watchpoint;
7026 break;
7027 case bp_watchpoint:
7028 case bp_catchpoint:
7029 case bp_tracepoint:
7030 case bp_fast_tracepoint:
7031 case bp_static_tracepoint:
7032 loc->loc_type = bp_loc_other;
7033 break;
7034 default:
7035 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7036 }
7037
7038 loc->refc = 1;
7039 }
7040
7041 /* Allocate a struct bp_location. */
7042
7043 static struct bp_location *
7044 allocate_bp_location (struct breakpoint *bpt)
7045 {
7046 return bpt->ops->allocate_location (bpt);
7047 }
7048
7049 static void
7050 free_bp_location (struct bp_location *loc)
7051 {
7052 loc->ops->dtor (loc);
7053 delete loc;
7054 }
7055
7056 /* Increment reference count. */
7057
7058 static void
7059 incref_bp_location (struct bp_location *bl)
7060 {
7061 ++bl->refc;
7062 }
7063
7064 /* Decrement reference count. If the reference count reaches 0,
7065 destroy the bp_location. Sets *BLP to NULL. */
7066
7067 static void
7068 decref_bp_location (struct bp_location **blp)
7069 {
7070 gdb_assert ((*blp)->refc > 0);
7071
7072 if (--(*blp)->refc == 0)
7073 free_bp_location (*blp);
7074 *blp = NULL;
7075 }
7076
7077 /* Add breakpoint B at the end of the global breakpoint chain. */
7078
7079 static breakpoint *
7080 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7081 {
7082 struct breakpoint *b1;
7083 struct breakpoint *result = b.get ();
7084
7085 /* Add this breakpoint to the end of the chain so that a list of
7086 breakpoints will come out in order of increasing numbers. */
7087
7088 b1 = breakpoint_chain;
7089 if (b1 == 0)
7090 breakpoint_chain = b.release ();
7091 else
7092 {
7093 while (b1->next)
7094 b1 = b1->next;
7095 b1->next = b.release ();
7096 }
7097
7098 return result;
7099 }
7100
7101 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7102
7103 static void
7104 init_raw_breakpoint_without_location (struct breakpoint *b,
7105 struct gdbarch *gdbarch,
7106 enum bptype bptype,
7107 const struct breakpoint_ops *ops)
7108 {
7109 gdb_assert (ops != NULL);
7110
7111 b->ops = ops;
7112 b->type = bptype;
7113 b->gdbarch = gdbarch;
7114 b->language = current_language->la_language;
7115 b->input_radix = input_radix;
7116 b->related_breakpoint = b;
7117 }
7118
7119 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7120 that has type BPTYPE and has no locations as yet. */
7121
7122 static struct breakpoint *
7123 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7124 enum bptype bptype,
7125 const struct breakpoint_ops *ops)
7126 {
7127 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7128
7129 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7130 return add_to_breakpoint_chain (std::move (b));
7131 }
7132
7133 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7134 resolutions should be made as the user specified the location explicitly
7135 enough. */
7136
7137 static void
7138 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7139 {
7140 gdb_assert (loc->owner != NULL);
7141
7142 if (loc->owner->type == bp_breakpoint
7143 || loc->owner->type == bp_hardware_breakpoint
7144 || is_tracepoint (loc->owner))
7145 {
7146 const char *function_name;
7147
7148 if (loc->msymbol != NULL
7149 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7150 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7151 && !explicit_loc)
7152 {
7153 struct breakpoint *b = loc->owner;
7154
7155 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7156
7157 if (b->type == bp_breakpoint && b->loc == loc
7158 && loc->next == NULL && b->related_breakpoint == b)
7159 {
7160 /* Create only the whole new breakpoint of this type but do not
7161 mess more complicated breakpoints with multiple locations. */
7162 b->type = bp_gnu_ifunc_resolver;
7163 /* Remember the resolver's address for use by the return
7164 breakpoint. */
7165 loc->related_address = loc->address;
7166 }
7167 }
7168 else
7169 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7170
7171 if (function_name)
7172 loc->function_name = xstrdup (function_name);
7173 }
7174 }
7175
7176 /* Attempt to determine architecture of location identified by SAL. */
7177 struct gdbarch *
7178 get_sal_arch (struct symtab_and_line sal)
7179 {
7180 if (sal.section)
7181 return get_objfile_arch (sal.section->objfile);
7182 if (sal.symtab)
7183 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7184
7185 return NULL;
7186 }
7187
7188 /* Low level routine for partially initializing a breakpoint of type
7189 BPTYPE. The newly created breakpoint's address, section, source
7190 file name, and line number are provided by SAL.
7191
7192 It is expected that the caller will complete the initialization of
7193 the newly created breakpoint struct as well as output any status
7194 information regarding the creation of a new breakpoint. */
7195
7196 static void
7197 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7198 struct symtab_and_line sal, enum bptype bptype,
7199 const struct breakpoint_ops *ops)
7200 {
7201 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7202
7203 add_location_to_breakpoint (b, &sal);
7204
7205 if (bptype != bp_catchpoint)
7206 gdb_assert (sal.pspace != NULL);
7207
7208 /* Store the program space that was used to set the breakpoint,
7209 except for ordinary breakpoints, which are independent of the
7210 program space. */
7211 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7212 b->pspace = sal.pspace;
7213 }
7214
7215 /* set_raw_breakpoint is a low level routine for allocating and
7216 partially initializing a breakpoint of type BPTYPE. The newly
7217 created breakpoint's address, section, source file name, and line
7218 number are provided by SAL. The newly created and partially
7219 initialized breakpoint is added to the breakpoint chain and
7220 is also returned as the value of this function.
7221
7222 It is expected that the caller will complete the initialization of
7223 the newly created breakpoint struct as well as output any status
7224 information regarding the creation of a new breakpoint. In
7225 particular, set_raw_breakpoint does NOT set the breakpoint
7226 number! Care should be taken to not allow an error to occur
7227 prior to completing the initialization of the breakpoint. If this
7228 should happen, a bogus breakpoint will be left on the chain. */
7229
7230 struct breakpoint *
7231 set_raw_breakpoint (struct gdbarch *gdbarch,
7232 struct symtab_and_line sal, enum bptype bptype,
7233 const struct breakpoint_ops *ops)
7234 {
7235 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7236
7237 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7238 return add_to_breakpoint_chain (std::move (b));
7239 }
7240
7241 /* Call this routine when stepping and nexting to enable a breakpoint
7242 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7243 initiated the operation. */
7244
7245 void
7246 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7247 {
7248 struct breakpoint *b, *b_tmp;
7249 int thread = tp->global_num;
7250
7251 /* To avoid having to rescan all objfile symbols at every step,
7252 we maintain a list of continually-inserted but always disabled
7253 longjmp "master" breakpoints. Here, we simply create momentary
7254 clones of those and enable them for the requested thread. */
7255 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7256 if (b->pspace == current_program_space
7257 && (b->type == bp_longjmp_master
7258 || b->type == bp_exception_master))
7259 {
7260 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7261 struct breakpoint *clone;
7262
7263 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7264 after their removal. */
7265 clone = momentary_breakpoint_from_master (b, type,
7266 &momentary_breakpoint_ops, 1);
7267 clone->thread = thread;
7268 }
7269
7270 tp->initiating_frame = frame;
7271 }
7272
7273 /* Delete all longjmp breakpoints from THREAD. */
7274 void
7275 delete_longjmp_breakpoint (int thread)
7276 {
7277 struct breakpoint *b, *b_tmp;
7278
7279 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7280 if (b->type == bp_longjmp || b->type == bp_exception)
7281 {
7282 if (b->thread == thread)
7283 delete_breakpoint (b);
7284 }
7285 }
7286
7287 void
7288 delete_longjmp_breakpoint_at_next_stop (int thread)
7289 {
7290 struct breakpoint *b, *b_tmp;
7291
7292 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7293 if (b->type == bp_longjmp || b->type == bp_exception)
7294 {
7295 if (b->thread == thread)
7296 b->disposition = disp_del_at_next_stop;
7297 }
7298 }
7299
7300 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7301 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7302 pointer to any of them. Return NULL if this system cannot place longjmp
7303 breakpoints. */
7304
7305 struct breakpoint *
7306 set_longjmp_breakpoint_for_call_dummy (void)
7307 {
7308 struct breakpoint *b, *retval = NULL;
7309
7310 ALL_BREAKPOINTS (b)
7311 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7312 {
7313 struct breakpoint *new_b;
7314
7315 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7316 &momentary_breakpoint_ops,
7317 1);
7318 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7319
7320 /* Link NEW_B into the chain of RETVAL breakpoints. */
7321
7322 gdb_assert (new_b->related_breakpoint == new_b);
7323 if (retval == NULL)
7324 retval = new_b;
7325 new_b->related_breakpoint = retval;
7326 while (retval->related_breakpoint != new_b->related_breakpoint)
7327 retval = retval->related_breakpoint;
7328 retval->related_breakpoint = new_b;
7329 }
7330
7331 return retval;
7332 }
7333
7334 /* Verify all existing dummy frames and their associated breakpoints for
7335 TP. Remove those which can no longer be found in the current frame
7336 stack.
7337
7338 You should call this function only at places where it is safe to currently
7339 unwind the whole stack. Failed stack unwind would discard live dummy
7340 frames. */
7341
7342 void
7343 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7344 {
7345 struct breakpoint *b, *b_tmp;
7346
7347 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7348 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7349 {
7350 struct breakpoint *dummy_b = b->related_breakpoint;
7351
7352 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7353 dummy_b = dummy_b->related_breakpoint;
7354 if (dummy_b->type != bp_call_dummy
7355 || frame_find_by_id (dummy_b->frame_id) != NULL)
7356 continue;
7357
7358 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7359
7360 while (b->related_breakpoint != b)
7361 {
7362 if (b_tmp == b->related_breakpoint)
7363 b_tmp = b->related_breakpoint->next;
7364 delete_breakpoint (b->related_breakpoint);
7365 }
7366 delete_breakpoint (b);
7367 }
7368 }
7369
7370 void
7371 enable_overlay_breakpoints (void)
7372 {
7373 struct breakpoint *b;
7374
7375 ALL_BREAKPOINTS (b)
7376 if (b->type == bp_overlay_event)
7377 {
7378 b->enable_state = bp_enabled;
7379 update_global_location_list (UGLL_MAY_INSERT);
7380 overlay_events_enabled = 1;
7381 }
7382 }
7383
7384 void
7385 disable_overlay_breakpoints (void)
7386 {
7387 struct breakpoint *b;
7388
7389 ALL_BREAKPOINTS (b)
7390 if (b->type == bp_overlay_event)
7391 {
7392 b->enable_state = bp_disabled;
7393 update_global_location_list (UGLL_DONT_INSERT);
7394 overlay_events_enabled = 0;
7395 }
7396 }
7397
7398 /* Set an active std::terminate breakpoint for each std::terminate
7399 master breakpoint. */
7400 void
7401 set_std_terminate_breakpoint (void)
7402 {
7403 struct breakpoint *b, *b_tmp;
7404
7405 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7406 if (b->pspace == current_program_space
7407 && b->type == bp_std_terminate_master)
7408 {
7409 momentary_breakpoint_from_master (b, bp_std_terminate,
7410 &momentary_breakpoint_ops, 1);
7411 }
7412 }
7413
7414 /* Delete all the std::terminate breakpoints. */
7415 void
7416 delete_std_terminate_breakpoint (void)
7417 {
7418 struct breakpoint *b, *b_tmp;
7419
7420 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7421 if (b->type == bp_std_terminate)
7422 delete_breakpoint (b);
7423 }
7424
7425 struct breakpoint *
7426 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7427 {
7428 struct breakpoint *b;
7429
7430 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7431 &internal_breakpoint_ops);
7432
7433 b->enable_state = bp_enabled;
7434 /* location has to be used or breakpoint_re_set will delete me. */
7435 b->location = new_address_location (b->loc->address, NULL, 0);
7436
7437 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7438
7439 return b;
7440 }
7441
7442 struct lang_and_radix
7443 {
7444 enum language lang;
7445 int radix;
7446 };
7447
7448 /* Create a breakpoint for JIT code registration and unregistration. */
7449
7450 struct breakpoint *
7451 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7452 {
7453 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7454 &internal_breakpoint_ops);
7455 }
7456
7457 /* Remove JIT code registration and unregistration breakpoint(s). */
7458
7459 void
7460 remove_jit_event_breakpoints (void)
7461 {
7462 struct breakpoint *b, *b_tmp;
7463
7464 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7465 if (b->type == bp_jit_event
7466 && b->loc->pspace == current_program_space)
7467 delete_breakpoint (b);
7468 }
7469
7470 void
7471 remove_solib_event_breakpoints (void)
7472 {
7473 struct breakpoint *b, *b_tmp;
7474
7475 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7476 if (b->type == bp_shlib_event
7477 && b->loc->pspace == current_program_space)
7478 delete_breakpoint (b);
7479 }
7480
7481 /* See breakpoint.h. */
7482
7483 void
7484 remove_solib_event_breakpoints_at_next_stop (void)
7485 {
7486 struct breakpoint *b, *b_tmp;
7487
7488 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7489 if (b->type == bp_shlib_event
7490 && b->loc->pspace == current_program_space)
7491 b->disposition = disp_del_at_next_stop;
7492 }
7493
7494 /* Helper for create_solib_event_breakpoint /
7495 create_and_insert_solib_event_breakpoint. Allows specifying which
7496 INSERT_MODE to pass through to update_global_location_list. */
7497
7498 static struct breakpoint *
7499 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7500 enum ugll_insert_mode insert_mode)
7501 {
7502 struct breakpoint *b;
7503
7504 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7505 &internal_breakpoint_ops);
7506 update_global_location_list_nothrow (insert_mode);
7507 return b;
7508 }
7509
7510 struct breakpoint *
7511 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7512 {
7513 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7514 }
7515
7516 /* See breakpoint.h. */
7517
7518 struct breakpoint *
7519 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7520 {
7521 struct breakpoint *b;
7522
7523 /* Explicitly tell update_global_location_list to insert
7524 locations. */
7525 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7526 if (!b->loc->inserted)
7527 {
7528 delete_breakpoint (b);
7529 return NULL;
7530 }
7531 return b;
7532 }
7533
7534 /* Disable any breakpoints that are on code in shared libraries. Only
7535 apply to enabled breakpoints, disabled ones can just stay disabled. */
7536
7537 void
7538 disable_breakpoints_in_shlibs (void)
7539 {
7540 struct bp_location *loc, **locp_tmp;
7541
7542 ALL_BP_LOCATIONS (loc, locp_tmp)
7543 {
7544 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7545 struct breakpoint *b = loc->owner;
7546
7547 /* We apply the check to all breakpoints, including disabled for
7548 those with loc->duplicate set. This is so that when breakpoint
7549 becomes enabled, or the duplicate is removed, gdb will try to
7550 insert all breakpoints. If we don't set shlib_disabled here,
7551 we'll try to insert those breakpoints and fail. */
7552 if (((b->type == bp_breakpoint)
7553 || (b->type == bp_jit_event)
7554 || (b->type == bp_hardware_breakpoint)
7555 || (is_tracepoint (b)))
7556 && loc->pspace == current_program_space
7557 && !loc->shlib_disabled
7558 && solib_name_from_address (loc->pspace, loc->address)
7559 )
7560 {
7561 loc->shlib_disabled = 1;
7562 }
7563 }
7564 }
7565
7566 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7567 notification of unloaded_shlib. Only apply to enabled breakpoints,
7568 disabled ones can just stay disabled. */
7569
7570 static void
7571 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7572 {
7573 struct bp_location *loc, **locp_tmp;
7574 int disabled_shlib_breaks = 0;
7575
7576 ALL_BP_LOCATIONS (loc, locp_tmp)
7577 {
7578 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7579 struct breakpoint *b = loc->owner;
7580
7581 if (solib->pspace == loc->pspace
7582 && !loc->shlib_disabled
7583 && (((b->type == bp_breakpoint
7584 || b->type == bp_jit_event
7585 || b->type == bp_hardware_breakpoint)
7586 && (loc->loc_type == bp_loc_hardware_breakpoint
7587 || loc->loc_type == bp_loc_software_breakpoint))
7588 || is_tracepoint (b))
7589 && solib_contains_address_p (solib, loc->address))
7590 {
7591 loc->shlib_disabled = 1;
7592 /* At this point, we cannot rely on remove_breakpoint
7593 succeeding so we must mark the breakpoint as not inserted
7594 to prevent future errors occurring in remove_breakpoints. */
7595 loc->inserted = 0;
7596
7597 /* This may cause duplicate notifications for the same breakpoint. */
7598 gdb::observers::breakpoint_modified.notify (b);
7599
7600 if (!disabled_shlib_breaks)
7601 {
7602 target_terminal::ours_for_output ();
7603 warning (_("Temporarily disabling breakpoints "
7604 "for unloaded shared library \"%s\""),
7605 solib->so_name);
7606 }
7607 disabled_shlib_breaks = 1;
7608 }
7609 }
7610 }
7611
7612 /* Disable any breakpoints and tracepoints in OBJFILE upon
7613 notification of free_objfile. Only apply to enabled breakpoints,
7614 disabled ones can just stay disabled. */
7615
7616 static void
7617 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7618 {
7619 struct breakpoint *b;
7620
7621 if (objfile == NULL)
7622 return;
7623
7624 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7625 managed by the user with add-symbol-file/remove-symbol-file.
7626 Similarly to how breakpoints in shared libraries are handled in
7627 response to "nosharedlibrary", mark breakpoints in such modules
7628 shlib_disabled so they end up uninserted on the next global
7629 location list update. Shared libraries not loaded by the user
7630 aren't handled here -- they're already handled in
7631 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7632 solib_unloaded observer. We skip objfiles that are not
7633 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7634 main objfile). */
7635 if ((objfile->flags & OBJF_SHARED) == 0
7636 || (objfile->flags & OBJF_USERLOADED) == 0)
7637 return;
7638
7639 ALL_BREAKPOINTS (b)
7640 {
7641 struct bp_location *loc;
7642 int bp_modified = 0;
7643
7644 if (!is_breakpoint (b) && !is_tracepoint (b))
7645 continue;
7646
7647 for (loc = b->loc; loc != NULL; loc = loc->next)
7648 {
7649 CORE_ADDR loc_addr = loc->address;
7650
7651 if (loc->loc_type != bp_loc_hardware_breakpoint
7652 && loc->loc_type != bp_loc_software_breakpoint)
7653 continue;
7654
7655 if (loc->shlib_disabled != 0)
7656 continue;
7657
7658 if (objfile->pspace != loc->pspace)
7659 continue;
7660
7661 if (loc->loc_type != bp_loc_hardware_breakpoint
7662 && loc->loc_type != bp_loc_software_breakpoint)
7663 continue;
7664
7665 if (is_addr_in_objfile (loc_addr, objfile))
7666 {
7667 loc->shlib_disabled = 1;
7668 /* At this point, we don't know whether the object was
7669 unmapped from the inferior or not, so leave the
7670 inserted flag alone. We'll handle failure to
7671 uninsert quietly, in case the object was indeed
7672 unmapped. */
7673
7674 mark_breakpoint_location_modified (loc);
7675
7676 bp_modified = 1;
7677 }
7678 }
7679
7680 if (bp_modified)
7681 gdb::observers::breakpoint_modified.notify (b);
7682 }
7683 }
7684
7685 /* FORK & VFORK catchpoints. */
7686
7687 /* An instance of this type is used to represent a fork or vfork
7688 catchpoint. A breakpoint is really of this type iff its ops pointer points
7689 to CATCH_FORK_BREAKPOINT_OPS. */
7690
7691 struct fork_catchpoint : public breakpoint
7692 {
7693 /* Process id of a child process whose forking triggered this
7694 catchpoint. This field is only valid immediately after this
7695 catchpoint has triggered. */
7696 ptid_t forked_inferior_pid;
7697 };
7698
7699 /* Implement the "insert" breakpoint_ops method for fork
7700 catchpoints. */
7701
7702 static int
7703 insert_catch_fork (struct bp_location *bl)
7704 {
7705 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7706 }
7707
7708 /* Implement the "remove" breakpoint_ops method for fork
7709 catchpoints. */
7710
7711 static int
7712 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7713 {
7714 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7715 }
7716
7717 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7718 catchpoints. */
7719
7720 static int
7721 breakpoint_hit_catch_fork (const struct bp_location *bl,
7722 const address_space *aspace, CORE_ADDR bp_addr,
7723 const struct target_waitstatus *ws)
7724 {
7725 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7726
7727 if (ws->kind != TARGET_WAITKIND_FORKED)
7728 return 0;
7729
7730 c->forked_inferior_pid = ws->value.related_pid;
7731 return 1;
7732 }
7733
7734 /* Implement the "print_it" breakpoint_ops method for fork
7735 catchpoints. */
7736
7737 static enum print_stop_action
7738 print_it_catch_fork (bpstat bs)
7739 {
7740 struct ui_out *uiout = current_uiout;
7741 struct breakpoint *b = bs->breakpoint_at;
7742 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7743
7744 annotate_catchpoint (b->number);
7745 maybe_print_thread_hit_breakpoint (uiout);
7746 if (b->disposition == disp_del)
7747 uiout->text ("Temporary catchpoint ");
7748 else
7749 uiout->text ("Catchpoint ");
7750 if (uiout->is_mi_like_p ())
7751 {
7752 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7753 uiout->field_string ("disp", bpdisp_text (b->disposition));
7754 }
7755 uiout->field_int ("bkptno", b->number);
7756 uiout->text (" (forked process ");
7757 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7758 uiout->text ("), ");
7759 return PRINT_SRC_AND_LOC;
7760 }
7761
7762 /* Implement the "print_one" breakpoint_ops method for fork
7763 catchpoints. */
7764
7765 static void
7766 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7767 {
7768 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7769 struct value_print_options opts;
7770 struct ui_out *uiout = current_uiout;
7771
7772 get_user_print_options (&opts);
7773
7774 /* Field 4, the address, is omitted (which makes the columns not
7775 line up too nicely with the headers, but the effect is relatively
7776 readable). */
7777 if (opts.addressprint)
7778 uiout->field_skip ("addr");
7779 annotate_field (5);
7780 uiout->text ("fork");
7781 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7782 {
7783 uiout->text (", process ");
7784 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7785 uiout->spaces (1);
7786 }
7787
7788 if (uiout->is_mi_like_p ())
7789 uiout->field_string ("catch-type", "fork");
7790 }
7791
7792 /* Implement the "print_mention" breakpoint_ops method for fork
7793 catchpoints. */
7794
7795 static void
7796 print_mention_catch_fork (struct breakpoint *b)
7797 {
7798 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7799 }
7800
7801 /* Implement the "print_recreate" breakpoint_ops method for fork
7802 catchpoints. */
7803
7804 static void
7805 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7806 {
7807 fprintf_unfiltered (fp, "catch fork");
7808 print_recreate_thread (b, fp);
7809 }
7810
7811 /* The breakpoint_ops structure to be used in fork catchpoints. */
7812
7813 static struct breakpoint_ops catch_fork_breakpoint_ops;
7814
7815 /* Implement the "insert" breakpoint_ops method for vfork
7816 catchpoints. */
7817
7818 static int
7819 insert_catch_vfork (struct bp_location *bl)
7820 {
7821 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7822 }
7823
7824 /* Implement the "remove" breakpoint_ops method for vfork
7825 catchpoints. */
7826
7827 static int
7828 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7829 {
7830 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7831 }
7832
7833 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7834 catchpoints. */
7835
7836 static int
7837 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7838 const address_space *aspace, CORE_ADDR bp_addr,
7839 const struct target_waitstatus *ws)
7840 {
7841 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7842
7843 if (ws->kind != TARGET_WAITKIND_VFORKED)
7844 return 0;
7845
7846 c->forked_inferior_pid = ws->value.related_pid;
7847 return 1;
7848 }
7849
7850 /* Implement the "print_it" breakpoint_ops method for vfork
7851 catchpoints. */
7852
7853 static enum print_stop_action
7854 print_it_catch_vfork (bpstat bs)
7855 {
7856 struct ui_out *uiout = current_uiout;
7857 struct breakpoint *b = bs->breakpoint_at;
7858 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7859
7860 annotate_catchpoint (b->number);
7861 maybe_print_thread_hit_breakpoint (uiout);
7862 if (b->disposition == disp_del)
7863 uiout->text ("Temporary catchpoint ");
7864 else
7865 uiout->text ("Catchpoint ");
7866 if (uiout->is_mi_like_p ())
7867 {
7868 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7869 uiout->field_string ("disp", bpdisp_text (b->disposition));
7870 }
7871 uiout->field_int ("bkptno", b->number);
7872 uiout->text (" (vforked process ");
7873 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7874 uiout->text ("), ");
7875 return PRINT_SRC_AND_LOC;
7876 }
7877
7878 /* Implement the "print_one" breakpoint_ops method for vfork
7879 catchpoints. */
7880
7881 static void
7882 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7883 {
7884 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7885 struct value_print_options opts;
7886 struct ui_out *uiout = current_uiout;
7887
7888 get_user_print_options (&opts);
7889 /* Field 4, the address, is omitted (which makes the columns not
7890 line up too nicely with the headers, but the effect is relatively
7891 readable). */
7892 if (opts.addressprint)
7893 uiout->field_skip ("addr");
7894 annotate_field (5);
7895 uiout->text ("vfork");
7896 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7897 {
7898 uiout->text (", process ");
7899 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7900 uiout->spaces (1);
7901 }
7902
7903 if (uiout->is_mi_like_p ())
7904 uiout->field_string ("catch-type", "vfork");
7905 }
7906
7907 /* Implement the "print_mention" breakpoint_ops method for vfork
7908 catchpoints. */
7909
7910 static void
7911 print_mention_catch_vfork (struct breakpoint *b)
7912 {
7913 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7914 }
7915
7916 /* Implement the "print_recreate" breakpoint_ops method for vfork
7917 catchpoints. */
7918
7919 static void
7920 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7921 {
7922 fprintf_unfiltered (fp, "catch vfork");
7923 print_recreate_thread (b, fp);
7924 }
7925
7926 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7927
7928 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7929
7930 /* An instance of this type is used to represent an solib catchpoint.
7931 A breakpoint is really of this type iff its ops pointer points to
7932 CATCH_SOLIB_BREAKPOINT_OPS. */
7933
7934 struct solib_catchpoint : public breakpoint
7935 {
7936 ~solib_catchpoint () override;
7937
7938 /* True for "catch load", false for "catch unload". */
7939 unsigned char is_load;
7940
7941 /* Regular expression to match, if any. COMPILED is only valid when
7942 REGEX is non-NULL. */
7943 char *regex;
7944 std::unique_ptr<compiled_regex> compiled;
7945 };
7946
7947 solib_catchpoint::~solib_catchpoint ()
7948 {
7949 xfree (this->regex);
7950 }
7951
7952 static int
7953 insert_catch_solib (struct bp_location *ignore)
7954 {
7955 return 0;
7956 }
7957
7958 static int
7959 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7960 {
7961 return 0;
7962 }
7963
7964 static int
7965 breakpoint_hit_catch_solib (const struct bp_location *bl,
7966 const address_space *aspace,
7967 CORE_ADDR bp_addr,
7968 const struct target_waitstatus *ws)
7969 {
7970 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7971 struct breakpoint *other;
7972
7973 if (ws->kind == TARGET_WAITKIND_LOADED)
7974 return 1;
7975
7976 ALL_BREAKPOINTS (other)
7977 {
7978 struct bp_location *other_bl;
7979
7980 if (other == bl->owner)
7981 continue;
7982
7983 if (other->type != bp_shlib_event)
7984 continue;
7985
7986 if (self->pspace != NULL && other->pspace != self->pspace)
7987 continue;
7988
7989 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7990 {
7991 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7992 return 1;
7993 }
7994 }
7995
7996 return 0;
7997 }
7998
7999 static void
8000 check_status_catch_solib (struct bpstats *bs)
8001 {
8002 struct solib_catchpoint *self
8003 = (struct solib_catchpoint *) bs->breakpoint_at;
8004
8005 if (self->is_load)
8006 {
8007 for (so_list *iter : current_program_space->added_solibs)
8008 {
8009 if (!self->regex
8010 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8011 return;
8012 }
8013 }
8014 else
8015 {
8016 for (const std::string &iter : current_program_space->deleted_solibs)
8017 {
8018 if (!self->regex
8019 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8020 return;
8021 }
8022 }
8023
8024 bs->stop = 0;
8025 bs->print_it = print_it_noop;
8026 }
8027
8028 static enum print_stop_action
8029 print_it_catch_solib (bpstat bs)
8030 {
8031 struct breakpoint *b = bs->breakpoint_at;
8032 struct ui_out *uiout = current_uiout;
8033
8034 annotate_catchpoint (b->number);
8035 maybe_print_thread_hit_breakpoint (uiout);
8036 if (b->disposition == disp_del)
8037 uiout->text ("Temporary catchpoint ");
8038 else
8039 uiout->text ("Catchpoint ");
8040 uiout->field_int ("bkptno", b->number);
8041 uiout->text ("\n");
8042 if (uiout->is_mi_like_p ())
8043 uiout->field_string ("disp", bpdisp_text (b->disposition));
8044 print_solib_event (1);
8045 return PRINT_SRC_AND_LOC;
8046 }
8047
8048 static void
8049 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8050 {
8051 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8052 struct value_print_options opts;
8053 struct ui_out *uiout = current_uiout;
8054 char *msg;
8055
8056 get_user_print_options (&opts);
8057 /* Field 4, the address, is omitted (which makes the columns not
8058 line up too nicely with the headers, but the effect is relatively
8059 readable). */
8060 if (opts.addressprint)
8061 {
8062 annotate_field (4);
8063 uiout->field_skip ("addr");
8064 }
8065
8066 annotate_field (5);
8067 if (self->is_load)
8068 {
8069 if (self->regex)
8070 msg = xstrprintf (_("load of library matching %s"), self->regex);
8071 else
8072 msg = xstrdup (_("load of library"));
8073 }
8074 else
8075 {
8076 if (self->regex)
8077 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8078 else
8079 msg = xstrdup (_("unload of library"));
8080 }
8081 uiout->field_string ("what", msg);
8082 xfree (msg);
8083
8084 if (uiout->is_mi_like_p ())
8085 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8086 }
8087
8088 static void
8089 print_mention_catch_solib (struct breakpoint *b)
8090 {
8091 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8092
8093 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8094 self->is_load ? "load" : "unload");
8095 }
8096
8097 static void
8098 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8099 {
8100 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8101
8102 fprintf_unfiltered (fp, "%s %s",
8103 b->disposition == disp_del ? "tcatch" : "catch",
8104 self->is_load ? "load" : "unload");
8105 if (self->regex)
8106 fprintf_unfiltered (fp, " %s", self->regex);
8107 fprintf_unfiltered (fp, "\n");
8108 }
8109
8110 static struct breakpoint_ops catch_solib_breakpoint_ops;
8111
8112 /* Shared helper function (MI and CLI) for creating and installing
8113 a shared object event catchpoint. If IS_LOAD is non-zero then
8114 the events to be caught are load events, otherwise they are
8115 unload events. If IS_TEMP is non-zero the catchpoint is a
8116 temporary one. If ENABLED is non-zero the catchpoint is
8117 created in an enabled state. */
8118
8119 void
8120 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8121 {
8122 struct gdbarch *gdbarch = get_current_arch ();
8123
8124 if (!arg)
8125 arg = "";
8126 arg = skip_spaces (arg);
8127
8128 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8129
8130 if (*arg != '\0')
8131 {
8132 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8133 _("Invalid regexp")));
8134 c->regex = xstrdup (arg);
8135 }
8136
8137 c->is_load = is_load;
8138 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8139 &catch_solib_breakpoint_ops);
8140
8141 c->enable_state = enabled ? bp_enabled : bp_disabled;
8142
8143 install_breakpoint (0, std::move (c), 1);
8144 }
8145
8146 /* A helper function that does all the work for "catch load" and
8147 "catch unload". */
8148
8149 static void
8150 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8151 struct cmd_list_element *command)
8152 {
8153 int tempflag;
8154 const int enabled = 1;
8155
8156 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8157
8158 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8159 }
8160
8161 static void
8162 catch_load_command_1 (const char *arg, int from_tty,
8163 struct cmd_list_element *command)
8164 {
8165 catch_load_or_unload (arg, from_tty, 1, command);
8166 }
8167
8168 static void
8169 catch_unload_command_1 (const char *arg, int from_tty,
8170 struct cmd_list_element *command)
8171 {
8172 catch_load_or_unload (arg, from_tty, 0, command);
8173 }
8174
8175 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8176 is non-zero, then make the breakpoint temporary. If COND_STRING is
8177 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8178 the breakpoint_ops structure associated to the catchpoint. */
8179
8180 void
8181 init_catchpoint (struct breakpoint *b,
8182 struct gdbarch *gdbarch, int tempflag,
8183 const char *cond_string,
8184 const struct breakpoint_ops *ops)
8185 {
8186 symtab_and_line sal;
8187 sal.pspace = current_program_space;
8188
8189 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8190
8191 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8192 b->disposition = tempflag ? disp_del : disp_donttouch;
8193 }
8194
8195 void
8196 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8197 {
8198 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8199 set_breakpoint_number (internal, b);
8200 if (is_tracepoint (b))
8201 set_tracepoint_count (breakpoint_count);
8202 if (!internal)
8203 mention (b);
8204 gdb::observers::breakpoint_created.notify (b);
8205
8206 if (update_gll)
8207 update_global_location_list (UGLL_MAY_INSERT);
8208 }
8209
8210 static void
8211 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8212 int tempflag, const char *cond_string,
8213 const struct breakpoint_ops *ops)
8214 {
8215 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8216
8217 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8218
8219 c->forked_inferior_pid = null_ptid;
8220
8221 install_breakpoint (0, std::move (c), 1);
8222 }
8223
8224 /* Exec catchpoints. */
8225
8226 /* An instance of this type is used to represent an exec catchpoint.
8227 A breakpoint is really of this type iff its ops pointer points to
8228 CATCH_EXEC_BREAKPOINT_OPS. */
8229
8230 struct exec_catchpoint : public breakpoint
8231 {
8232 ~exec_catchpoint () override;
8233
8234 /* Filename of a program whose exec triggered this catchpoint.
8235 This field is only valid immediately after this catchpoint has
8236 triggered. */
8237 char *exec_pathname;
8238 };
8239
8240 /* Exec catchpoint destructor. */
8241
8242 exec_catchpoint::~exec_catchpoint ()
8243 {
8244 xfree (this->exec_pathname);
8245 }
8246
8247 static int
8248 insert_catch_exec (struct bp_location *bl)
8249 {
8250 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8251 }
8252
8253 static int
8254 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8255 {
8256 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8257 }
8258
8259 static int
8260 breakpoint_hit_catch_exec (const struct bp_location *bl,
8261 const address_space *aspace, CORE_ADDR bp_addr,
8262 const struct target_waitstatus *ws)
8263 {
8264 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8265
8266 if (ws->kind != TARGET_WAITKIND_EXECD)
8267 return 0;
8268
8269 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8270 return 1;
8271 }
8272
8273 static enum print_stop_action
8274 print_it_catch_exec (bpstat bs)
8275 {
8276 struct ui_out *uiout = current_uiout;
8277 struct breakpoint *b = bs->breakpoint_at;
8278 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8279
8280 annotate_catchpoint (b->number);
8281 maybe_print_thread_hit_breakpoint (uiout);
8282 if (b->disposition == disp_del)
8283 uiout->text ("Temporary catchpoint ");
8284 else
8285 uiout->text ("Catchpoint ");
8286 if (uiout->is_mi_like_p ())
8287 {
8288 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8289 uiout->field_string ("disp", bpdisp_text (b->disposition));
8290 }
8291 uiout->field_int ("bkptno", b->number);
8292 uiout->text (" (exec'd ");
8293 uiout->field_string ("new-exec", c->exec_pathname);
8294 uiout->text ("), ");
8295
8296 return PRINT_SRC_AND_LOC;
8297 }
8298
8299 static void
8300 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8301 {
8302 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8303 struct value_print_options opts;
8304 struct ui_out *uiout = current_uiout;
8305
8306 get_user_print_options (&opts);
8307
8308 /* Field 4, the address, is omitted (which makes the columns
8309 not line up too nicely with the headers, but the effect
8310 is relatively readable). */
8311 if (opts.addressprint)
8312 uiout->field_skip ("addr");
8313 annotate_field (5);
8314 uiout->text ("exec");
8315 if (c->exec_pathname != NULL)
8316 {
8317 uiout->text (", program \"");
8318 uiout->field_string ("what", c->exec_pathname);
8319 uiout->text ("\" ");
8320 }
8321
8322 if (uiout->is_mi_like_p ())
8323 uiout->field_string ("catch-type", "exec");
8324 }
8325
8326 static void
8327 print_mention_catch_exec (struct breakpoint *b)
8328 {
8329 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8330 }
8331
8332 /* Implement the "print_recreate" breakpoint_ops method for exec
8333 catchpoints. */
8334
8335 static void
8336 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8337 {
8338 fprintf_unfiltered (fp, "catch exec");
8339 print_recreate_thread (b, fp);
8340 }
8341
8342 static struct breakpoint_ops catch_exec_breakpoint_ops;
8343
8344 static int
8345 hw_breakpoint_used_count (void)
8346 {
8347 int i = 0;
8348 struct breakpoint *b;
8349 struct bp_location *bl;
8350
8351 ALL_BREAKPOINTS (b)
8352 {
8353 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8354 for (bl = b->loc; bl; bl = bl->next)
8355 {
8356 /* Special types of hardware breakpoints may use more than
8357 one register. */
8358 i += b->ops->resources_needed (bl);
8359 }
8360 }
8361
8362 return i;
8363 }
8364
8365 /* Returns the resources B would use if it were a hardware
8366 watchpoint. */
8367
8368 static int
8369 hw_watchpoint_use_count (struct breakpoint *b)
8370 {
8371 int i = 0;
8372 struct bp_location *bl;
8373
8374 if (!breakpoint_enabled (b))
8375 return 0;
8376
8377 for (bl = b->loc; bl; bl = bl->next)
8378 {
8379 /* Special types of hardware watchpoints may use more than
8380 one register. */
8381 i += b->ops->resources_needed (bl);
8382 }
8383
8384 return i;
8385 }
8386
8387 /* Returns the sum the used resources of all hardware watchpoints of
8388 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8389 the sum of the used resources of all hardware watchpoints of other
8390 types _not_ TYPE. */
8391
8392 static int
8393 hw_watchpoint_used_count_others (struct breakpoint *except,
8394 enum bptype type, int *other_type_used)
8395 {
8396 int i = 0;
8397 struct breakpoint *b;
8398
8399 *other_type_used = 0;
8400 ALL_BREAKPOINTS (b)
8401 {
8402 if (b == except)
8403 continue;
8404 if (!breakpoint_enabled (b))
8405 continue;
8406
8407 if (b->type == type)
8408 i += hw_watchpoint_use_count (b);
8409 else if (is_hardware_watchpoint (b))
8410 *other_type_used = 1;
8411 }
8412
8413 return i;
8414 }
8415
8416 void
8417 disable_watchpoints_before_interactive_call_start (void)
8418 {
8419 struct breakpoint *b;
8420
8421 ALL_BREAKPOINTS (b)
8422 {
8423 if (is_watchpoint (b) && breakpoint_enabled (b))
8424 {
8425 b->enable_state = bp_call_disabled;
8426 update_global_location_list (UGLL_DONT_INSERT);
8427 }
8428 }
8429 }
8430
8431 void
8432 enable_watchpoints_after_interactive_call_stop (void)
8433 {
8434 struct breakpoint *b;
8435
8436 ALL_BREAKPOINTS (b)
8437 {
8438 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8439 {
8440 b->enable_state = bp_enabled;
8441 update_global_location_list (UGLL_MAY_INSERT);
8442 }
8443 }
8444 }
8445
8446 void
8447 disable_breakpoints_before_startup (void)
8448 {
8449 current_program_space->executing_startup = 1;
8450 update_global_location_list (UGLL_DONT_INSERT);
8451 }
8452
8453 void
8454 enable_breakpoints_after_startup (void)
8455 {
8456 current_program_space->executing_startup = 0;
8457 breakpoint_re_set ();
8458 }
8459
8460 /* Create a new single-step breakpoint for thread THREAD, with no
8461 locations. */
8462
8463 static struct breakpoint *
8464 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8465 {
8466 std::unique_ptr<breakpoint> b (new breakpoint ());
8467
8468 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8469 &momentary_breakpoint_ops);
8470
8471 b->disposition = disp_donttouch;
8472 b->frame_id = null_frame_id;
8473
8474 b->thread = thread;
8475 gdb_assert (b->thread != 0);
8476
8477 return add_to_breakpoint_chain (std::move (b));
8478 }
8479
8480 /* Set a momentary breakpoint of type TYPE at address specified by
8481 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8482 frame. */
8483
8484 breakpoint_up
8485 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8486 struct frame_id frame_id, enum bptype type)
8487 {
8488 struct breakpoint *b;
8489
8490 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8491 tail-called one. */
8492 gdb_assert (!frame_id_artificial_p (frame_id));
8493
8494 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8495 b->enable_state = bp_enabled;
8496 b->disposition = disp_donttouch;
8497 b->frame_id = frame_id;
8498
8499 /* If we're debugging a multi-threaded program, then we want
8500 momentary breakpoints to be active in only a single thread of
8501 control. */
8502 if (in_thread_list (inferior_ptid))
8503 b->thread = ptid_to_global_thread_id (inferior_ptid);
8504
8505 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8506
8507 return breakpoint_up (b);
8508 }
8509
8510 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8511 The new breakpoint will have type TYPE, use OPS as its
8512 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8513
8514 static struct breakpoint *
8515 momentary_breakpoint_from_master (struct breakpoint *orig,
8516 enum bptype type,
8517 const struct breakpoint_ops *ops,
8518 int loc_enabled)
8519 {
8520 struct breakpoint *copy;
8521
8522 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8523 copy->loc = allocate_bp_location (copy);
8524 set_breakpoint_location_function (copy->loc, 1);
8525
8526 copy->loc->gdbarch = orig->loc->gdbarch;
8527 copy->loc->requested_address = orig->loc->requested_address;
8528 copy->loc->address = orig->loc->address;
8529 copy->loc->section = orig->loc->section;
8530 copy->loc->pspace = orig->loc->pspace;
8531 copy->loc->probe = orig->loc->probe;
8532 copy->loc->line_number = orig->loc->line_number;
8533 copy->loc->symtab = orig->loc->symtab;
8534 copy->loc->enabled = loc_enabled;
8535 copy->frame_id = orig->frame_id;
8536 copy->thread = orig->thread;
8537 copy->pspace = orig->pspace;
8538
8539 copy->enable_state = bp_enabled;
8540 copy->disposition = disp_donttouch;
8541 copy->number = internal_breakpoint_number--;
8542
8543 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8544 return copy;
8545 }
8546
8547 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8548 ORIG is NULL. */
8549
8550 struct breakpoint *
8551 clone_momentary_breakpoint (struct breakpoint *orig)
8552 {
8553 /* If there's nothing to clone, then return nothing. */
8554 if (orig == NULL)
8555 return NULL;
8556
8557 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8558 }
8559
8560 breakpoint_up
8561 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8562 enum bptype type)
8563 {
8564 struct symtab_and_line sal;
8565
8566 sal = find_pc_line (pc, 0);
8567 sal.pc = pc;
8568 sal.section = find_pc_overlay (pc);
8569 sal.explicit_pc = 1;
8570
8571 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8572 }
8573 \f
8574
8575 /* Tell the user we have just set a breakpoint B. */
8576
8577 static void
8578 mention (struct breakpoint *b)
8579 {
8580 b->ops->print_mention (b);
8581 current_uiout->text ("\n");
8582 }
8583 \f
8584
8585 static int bp_loc_is_permanent (struct bp_location *loc);
8586
8587 static struct bp_location *
8588 add_location_to_breakpoint (struct breakpoint *b,
8589 const struct symtab_and_line *sal)
8590 {
8591 struct bp_location *loc, **tmp;
8592 CORE_ADDR adjusted_address;
8593 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8594
8595 if (loc_gdbarch == NULL)
8596 loc_gdbarch = b->gdbarch;
8597
8598 /* Adjust the breakpoint's address prior to allocating a location.
8599 Once we call allocate_bp_location(), that mostly uninitialized
8600 location will be placed on the location chain. Adjustment of the
8601 breakpoint may cause target_read_memory() to be called and we do
8602 not want its scan of the location chain to find a breakpoint and
8603 location that's only been partially initialized. */
8604 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8605 sal->pc, b->type);
8606
8607 /* Sort the locations by their ADDRESS. */
8608 loc = allocate_bp_location (b);
8609 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8610 tmp = &((*tmp)->next))
8611 ;
8612 loc->next = *tmp;
8613 *tmp = loc;
8614
8615 loc->requested_address = sal->pc;
8616 loc->address = adjusted_address;
8617 loc->pspace = sal->pspace;
8618 loc->probe.prob = sal->prob;
8619 loc->probe.objfile = sal->objfile;
8620 gdb_assert (loc->pspace != NULL);
8621 loc->section = sal->section;
8622 loc->gdbarch = loc_gdbarch;
8623 loc->line_number = sal->line;
8624 loc->symtab = sal->symtab;
8625 loc->symbol = sal->symbol;
8626 loc->msymbol = sal->msymbol;
8627 loc->objfile = sal->objfile;
8628
8629 set_breakpoint_location_function (loc,
8630 sal->explicit_pc || sal->explicit_line);
8631
8632 /* While by definition, permanent breakpoints are already present in the
8633 code, we don't mark the location as inserted. Normally one would expect
8634 that GDB could rely on that breakpoint instruction to stop the program,
8635 thus removing the need to insert its own breakpoint, except that executing
8636 the breakpoint instruction can kill the target instead of reporting a
8637 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8638 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8639 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8640 breakpoint be inserted normally results in QEMU knowing about the GDB
8641 breakpoint, and thus trap before the breakpoint instruction is executed.
8642 (If GDB later needs to continue execution past the permanent breakpoint,
8643 it manually increments the PC, thus avoiding executing the breakpoint
8644 instruction.) */
8645 if (bp_loc_is_permanent (loc))
8646 loc->permanent = 1;
8647
8648 return loc;
8649 }
8650 \f
8651
8652 /* See breakpoint.h. */
8653
8654 int
8655 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8656 {
8657 int len;
8658 CORE_ADDR addr;
8659 const gdb_byte *bpoint;
8660 gdb_byte *target_mem;
8661
8662 addr = address;
8663 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8664
8665 /* Software breakpoints unsupported? */
8666 if (bpoint == NULL)
8667 return 0;
8668
8669 target_mem = (gdb_byte *) alloca (len);
8670
8671 /* Enable the automatic memory restoration from breakpoints while
8672 we read the memory. Otherwise we could say about our temporary
8673 breakpoints they are permanent. */
8674 scoped_restore restore_memory
8675 = make_scoped_restore_show_memory_breakpoints (0);
8676
8677 if (target_read_memory (address, target_mem, len) == 0
8678 && memcmp (target_mem, bpoint, len) == 0)
8679 return 1;
8680
8681 return 0;
8682 }
8683
8684 /* Return 1 if LOC is pointing to a permanent breakpoint,
8685 return 0 otherwise. */
8686
8687 static int
8688 bp_loc_is_permanent (struct bp_location *loc)
8689 {
8690 gdb_assert (loc != NULL);
8691
8692 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8693 attempt to read from the addresses the locations of these breakpoint types
8694 point to. program_breakpoint_here_p, below, will attempt to read
8695 memory. */
8696 if (!breakpoint_address_is_meaningful (loc->owner))
8697 return 0;
8698
8699 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8700 switch_to_program_space_and_thread (loc->pspace);
8701 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8702 }
8703
8704 /* Build a command list for the dprintf corresponding to the current
8705 settings of the dprintf style options. */
8706
8707 static void
8708 update_dprintf_command_list (struct breakpoint *b)
8709 {
8710 char *dprintf_args = b->extra_string;
8711 char *printf_line = NULL;
8712
8713 if (!dprintf_args)
8714 return;
8715
8716 dprintf_args = skip_spaces (dprintf_args);
8717
8718 /* Allow a comma, as it may have terminated a location, but don't
8719 insist on it. */
8720 if (*dprintf_args == ',')
8721 ++dprintf_args;
8722 dprintf_args = skip_spaces (dprintf_args);
8723
8724 if (*dprintf_args != '"')
8725 error (_("Bad format string, missing '\"'."));
8726
8727 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8728 printf_line = xstrprintf ("printf %s", dprintf_args);
8729 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8730 {
8731 if (!dprintf_function)
8732 error (_("No function supplied for dprintf call"));
8733
8734 if (dprintf_channel && strlen (dprintf_channel) > 0)
8735 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8736 dprintf_function,
8737 dprintf_channel,
8738 dprintf_args);
8739 else
8740 printf_line = xstrprintf ("call (void) %s (%s)",
8741 dprintf_function,
8742 dprintf_args);
8743 }
8744 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8745 {
8746 if (target_can_run_breakpoint_commands ())
8747 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8748 else
8749 {
8750 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8751 printf_line = xstrprintf ("printf %s", dprintf_args);
8752 }
8753 }
8754 else
8755 internal_error (__FILE__, __LINE__,
8756 _("Invalid dprintf style."));
8757
8758 gdb_assert (printf_line != NULL);
8759
8760 /* Manufacture a printf sequence. */
8761 struct command_line *printf_cmd_line
8762 = new struct command_line (simple_control, printf_line);
8763 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8764 command_lines_deleter ()));
8765 }
8766
8767 /* Update all dprintf commands, making their command lists reflect
8768 current style settings. */
8769
8770 static void
8771 update_dprintf_commands (const char *args, int from_tty,
8772 struct cmd_list_element *c)
8773 {
8774 struct breakpoint *b;
8775
8776 ALL_BREAKPOINTS (b)
8777 {
8778 if (b->type == bp_dprintf)
8779 update_dprintf_command_list (b);
8780 }
8781 }
8782
8783 /* Create a breakpoint with SAL as location. Use LOCATION
8784 as a description of the location, and COND_STRING
8785 as condition expression. If LOCATION is NULL then create an
8786 "address location" from the address in the SAL. */
8787
8788 static void
8789 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8790 gdb::array_view<const symtab_and_line> sals,
8791 event_location_up &&location,
8792 gdb::unique_xmalloc_ptr<char> filter,
8793 gdb::unique_xmalloc_ptr<char> cond_string,
8794 gdb::unique_xmalloc_ptr<char> extra_string,
8795 enum bptype type, enum bpdisp disposition,
8796 int thread, int task, int ignore_count,
8797 const struct breakpoint_ops *ops, int from_tty,
8798 int enabled, int internal, unsigned flags,
8799 int display_canonical)
8800 {
8801 int i;
8802
8803 if (type == bp_hardware_breakpoint)
8804 {
8805 int target_resources_ok;
8806
8807 i = hw_breakpoint_used_count ();
8808 target_resources_ok =
8809 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8810 i + 1, 0);
8811 if (target_resources_ok == 0)
8812 error (_("No hardware breakpoint support in the target."));
8813 else if (target_resources_ok < 0)
8814 error (_("Hardware breakpoints used exceeds limit."));
8815 }
8816
8817 gdb_assert (!sals.empty ());
8818
8819 for (const auto &sal : sals)
8820 {
8821 struct bp_location *loc;
8822
8823 if (from_tty)
8824 {
8825 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8826 if (!loc_gdbarch)
8827 loc_gdbarch = gdbarch;
8828
8829 describe_other_breakpoints (loc_gdbarch,
8830 sal.pspace, sal.pc, sal.section, thread);
8831 }
8832
8833 if (&sal == &sals[0])
8834 {
8835 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8836 b->thread = thread;
8837 b->task = task;
8838
8839 b->cond_string = cond_string.release ();
8840 b->extra_string = extra_string.release ();
8841 b->ignore_count = ignore_count;
8842 b->enable_state = enabled ? bp_enabled : bp_disabled;
8843 b->disposition = disposition;
8844
8845 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8846 b->loc->inserted = 1;
8847
8848 if (type == bp_static_tracepoint)
8849 {
8850 struct tracepoint *t = (struct tracepoint *) b;
8851 struct static_tracepoint_marker marker;
8852
8853 if (strace_marker_p (b))
8854 {
8855 /* We already know the marker exists, otherwise, we
8856 wouldn't see a sal for it. */
8857 const char *p
8858 = &event_location_to_string (b->location.get ())[3];
8859 const char *endp;
8860
8861 p = skip_spaces (p);
8862
8863 endp = skip_to_space (p);
8864
8865 t->static_trace_marker_id.assign (p, endp - p);
8866
8867 printf_filtered (_("Probed static tracepoint "
8868 "marker \"%s\"\n"),
8869 t->static_trace_marker_id.c_str ());
8870 }
8871 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8872 {
8873 t->static_trace_marker_id = std::move (marker.str_id);
8874
8875 printf_filtered (_("Probed static tracepoint "
8876 "marker \"%s\"\n"),
8877 t->static_trace_marker_id.c_str ());
8878 }
8879 else
8880 warning (_("Couldn't determine the static "
8881 "tracepoint marker to probe"));
8882 }
8883
8884 loc = b->loc;
8885 }
8886 else
8887 {
8888 loc = add_location_to_breakpoint (b, &sal);
8889 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8890 loc->inserted = 1;
8891 }
8892
8893 if (b->cond_string)
8894 {
8895 const char *arg = b->cond_string;
8896
8897 loc->cond = parse_exp_1 (&arg, loc->address,
8898 block_for_pc (loc->address), 0);
8899 if (*arg)
8900 error (_("Garbage '%s' follows condition"), arg);
8901 }
8902
8903 /* Dynamic printf requires and uses additional arguments on the
8904 command line, otherwise it's an error. */
8905 if (type == bp_dprintf)
8906 {
8907 if (b->extra_string)
8908 update_dprintf_command_list (b);
8909 else
8910 error (_("Format string required"));
8911 }
8912 else if (b->extra_string)
8913 error (_("Garbage '%s' at end of command"), b->extra_string);
8914 }
8915
8916 b->display_canonical = display_canonical;
8917 if (location != NULL)
8918 b->location = std::move (location);
8919 else
8920 b->location = new_address_location (b->loc->address, NULL, 0);
8921 b->filter = filter.release ();
8922 }
8923
8924 static void
8925 create_breakpoint_sal (struct gdbarch *gdbarch,
8926 gdb::array_view<const symtab_and_line> sals,
8927 event_location_up &&location,
8928 gdb::unique_xmalloc_ptr<char> filter,
8929 gdb::unique_xmalloc_ptr<char> cond_string,
8930 gdb::unique_xmalloc_ptr<char> extra_string,
8931 enum bptype type, enum bpdisp disposition,
8932 int thread, int task, int ignore_count,
8933 const struct breakpoint_ops *ops, int from_tty,
8934 int enabled, int internal, unsigned flags,
8935 int display_canonical)
8936 {
8937 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8938
8939 init_breakpoint_sal (b.get (), gdbarch,
8940 sals, std::move (location),
8941 std::move (filter),
8942 std::move (cond_string),
8943 std::move (extra_string),
8944 type, disposition,
8945 thread, task, ignore_count,
8946 ops, from_tty,
8947 enabled, internal, flags,
8948 display_canonical);
8949
8950 install_breakpoint (internal, std::move (b), 0);
8951 }
8952
8953 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8954 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8955 value. COND_STRING, if not NULL, specified the condition to be
8956 used for all breakpoints. Essentially the only case where
8957 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8958 function. In that case, it's still not possible to specify
8959 separate conditions for different overloaded functions, so
8960 we take just a single condition string.
8961
8962 NOTE: If the function succeeds, the caller is expected to cleanup
8963 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8964 array contents). If the function fails (error() is called), the
8965 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8966 COND and SALS arrays and each of those arrays contents. */
8967
8968 static void
8969 create_breakpoints_sal (struct gdbarch *gdbarch,
8970 struct linespec_result *canonical,
8971 gdb::unique_xmalloc_ptr<char> cond_string,
8972 gdb::unique_xmalloc_ptr<char> extra_string,
8973 enum bptype type, enum bpdisp disposition,
8974 int thread, int task, int ignore_count,
8975 const struct breakpoint_ops *ops, int from_tty,
8976 int enabled, int internal, unsigned flags)
8977 {
8978 if (canonical->pre_expanded)
8979 gdb_assert (canonical->lsals.size () == 1);
8980
8981 for (const auto &lsal : canonical->lsals)
8982 {
8983 /* Note that 'location' can be NULL in the case of a plain
8984 'break', without arguments. */
8985 event_location_up location
8986 = (canonical->location != NULL
8987 ? copy_event_location (canonical->location.get ()) : NULL);
8988 gdb::unique_xmalloc_ptr<char> filter_string
8989 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8990
8991 create_breakpoint_sal (gdbarch, lsal.sals,
8992 std::move (location),
8993 std::move (filter_string),
8994 std::move (cond_string),
8995 std::move (extra_string),
8996 type, disposition,
8997 thread, task, ignore_count, ops,
8998 from_tty, enabled, internal, flags,
8999 canonical->special_display);
9000 }
9001 }
9002
9003 /* Parse LOCATION which is assumed to be a SAL specification possibly
9004 followed by conditionals. On return, SALS contains an array of SAL
9005 addresses found. LOCATION points to the end of the SAL (for
9006 linespec locations).
9007
9008 The array and the line spec strings are allocated on the heap, it is
9009 the caller's responsibility to free them. */
9010
9011 static void
9012 parse_breakpoint_sals (const struct event_location *location,
9013 struct linespec_result *canonical)
9014 {
9015 struct symtab_and_line cursal;
9016
9017 if (event_location_type (location) == LINESPEC_LOCATION)
9018 {
9019 const char *spec = get_linespec_location (location)->spec_string;
9020
9021 if (spec == NULL)
9022 {
9023 /* The last displayed codepoint, if it's valid, is our default
9024 breakpoint address. */
9025 if (last_displayed_sal_is_valid ())
9026 {
9027 /* Set sal's pspace, pc, symtab, and line to the values
9028 corresponding to the last call to print_frame_info.
9029 Be sure to reinitialize LINE with NOTCURRENT == 0
9030 as the breakpoint line number is inappropriate otherwise.
9031 find_pc_line would adjust PC, re-set it back. */
9032 symtab_and_line sal = get_last_displayed_sal ();
9033 CORE_ADDR pc = sal.pc;
9034
9035 sal = find_pc_line (pc, 0);
9036
9037 /* "break" without arguments is equivalent to "break *PC"
9038 where PC is the last displayed codepoint's address. So
9039 make sure to set sal.explicit_pc to prevent GDB from
9040 trying to expand the list of sals to include all other
9041 instances with the same symtab and line. */
9042 sal.pc = pc;
9043 sal.explicit_pc = 1;
9044
9045 struct linespec_sals lsal;
9046 lsal.sals = {sal};
9047 lsal.canonical = NULL;
9048
9049 canonical->lsals.push_back (std::move (lsal));
9050 return;
9051 }
9052 else
9053 error (_("No default breakpoint address now."));
9054 }
9055 }
9056
9057 /* Force almost all breakpoints to be in terms of the
9058 current_source_symtab (which is decode_line_1's default).
9059 This should produce the results we want almost all of the
9060 time while leaving default_breakpoint_* alone.
9061
9062 ObjC: However, don't match an Objective-C method name which
9063 may have a '+' or '-' succeeded by a '['. */
9064 cursal = get_current_source_symtab_and_line ();
9065 if (last_displayed_sal_is_valid ())
9066 {
9067 const char *spec = NULL;
9068
9069 if (event_location_type (location) == LINESPEC_LOCATION)
9070 spec = get_linespec_location (location)->spec_string;
9071
9072 if (!cursal.symtab
9073 || (spec != NULL
9074 && strchr ("+-", spec[0]) != NULL
9075 && spec[1] != '['))
9076 {
9077 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9078 get_last_displayed_symtab (),
9079 get_last_displayed_line (),
9080 canonical, NULL, NULL);
9081 return;
9082 }
9083 }
9084
9085 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9086 cursal.symtab, cursal.line, canonical, NULL, NULL);
9087 }
9088
9089
9090 /* Convert each SAL into a real PC. Verify that the PC can be
9091 inserted as a breakpoint. If it can't throw an error. */
9092
9093 static void
9094 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9095 {
9096 for (auto &sal : sals)
9097 resolve_sal_pc (&sal);
9098 }
9099
9100 /* Fast tracepoints may have restrictions on valid locations. For
9101 instance, a fast tracepoint using a jump instead of a trap will
9102 likely have to overwrite more bytes than a trap would, and so can
9103 only be placed where the instruction is longer than the jump, or a
9104 multi-instruction sequence does not have a jump into the middle of
9105 it, etc. */
9106
9107 static void
9108 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9109 gdb::array_view<const symtab_and_line> sals)
9110 {
9111 for (const auto &sal : sals)
9112 {
9113 struct gdbarch *sarch;
9114
9115 sarch = get_sal_arch (sal);
9116 /* We fall back to GDBARCH if there is no architecture
9117 associated with SAL. */
9118 if (sarch == NULL)
9119 sarch = gdbarch;
9120 std::string msg;
9121 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9122 error (_("May not have a fast tracepoint at %s%s"),
9123 paddress (sarch, sal.pc), msg.c_str ());
9124 }
9125 }
9126
9127 /* Given TOK, a string specification of condition and thread, as
9128 accepted by the 'break' command, extract the condition
9129 string and thread number and set *COND_STRING and *THREAD.
9130 PC identifies the context at which the condition should be parsed.
9131 If no condition is found, *COND_STRING is set to NULL.
9132 If no thread is found, *THREAD is set to -1. */
9133
9134 static void
9135 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9136 char **cond_string, int *thread, int *task,
9137 char **rest)
9138 {
9139 *cond_string = NULL;
9140 *thread = -1;
9141 *task = 0;
9142 *rest = NULL;
9143
9144 while (tok && *tok)
9145 {
9146 const char *end_tok;
9147 int toklen;
9148 const char *cond_start = NULL;
9149 const char *cond_end = NULL;
9150
9151 tok = skip_spaces (tok);
9152
9153 if ((*tok == '"' || *tok == ',') && rest)
9154 {
9155 *rest = savestring (tok, strlen (tok));
9156 return;
9157 }
9158
9159 end_tok = skip_to_space (tok);
9160
9161 toklen = end_tok - tok;
9162
9163 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9164 {
9165 tok = cond_start = end_tok + 1;
9166 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9167 cond_end = tok;
9168 *cond_string = savestring (cond_start, cond_end - cond_start);
9169 }
9170 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9171 {
9172 const char *tmptok;
9173 struct thread_info *thr;
9174
9175 tok = end_tok + 1;
9176 thr = parse_thread_id (tok, &tmptok);
9177 if (tok == tmptok)
9178 error (_("Junk after thread keyword."));
9179 *thread = thr->global_num;
9180 tok = tmptok;
9181 }
9182 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9183 {
9184 char *tmptok;
9185
9186 tok = end_tok + 1;
9187 *task = strtol (tok, &tmptok, 0);
9188 if (tok == tmptok)
9189 error (_("Junk after task keyword."));
9190 if (!valid_task_id (*task))
9191 error (_("Unknown task %d."), *task);
9192 tok = tmptok;
9193 }
9194 else if (rest)
9195 {
9196 *rest = savestring (tok, strlen (tok));
9197 return;
9198 }
9199 else
9200 error (_("Junk at end of arguments."));
9201 }
9202 }
9203
9204 /* Decode a static tracepoint marker spec. */
9205
9206 static std::vector<symtab_and_line>
9207 decode_static_tracepoint_spec (const char **arg_p)
9208 {
9209 const char *p = &(*arg_p)[3];
9210 const char *endp;
9211
9212 p = skip_spaces (p);
9213
9214 endp = skip_to_space (p);
9215
9216 std::string marker_str (p, endp - p);
9217
9218 std::vector<static_tracepoint_marker> markers
9219 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9220 if (markers.empty ())
9221 error (_("No known static tracepoint marker named %s"),
9222 marker_str.c_str ());
9223
9224 std::vector<symtab_and_line> sals;
9225 sals.reserve (markers.size ());
9226
9227 for (const static_tracepoint_marker &marker : markers)
9228 {
9229 symtab_and_line sal = find_pc_line (marker.address, 0);
9230 sal.pc = marker.address;
9231 sals.push_back (sal);
9232 }
9233
9234 *arg_p = endp;
9235 return sals;
9236 }
9237
9238 /* See breakpoint.h. */
9239
9240 int
9241 create_breakpoint (struct gdbarch *gdbarch,
9242 const struct event_location *location,
9243 const char *cond_string,
9244 int thread, const char *extra_string,
9245 int parse_extra,
9246 int tempflag, enum bptype type_wanted,
9247 int ignore_count,
9248 enum auto_boolean pending_break_support,
9249 const struct breakpoint_ops *ops,
9250 int from_tty, int enabled, int internal,
9251 unsigned flags)
9252 {
9253 struct linespec_result canonical;
9254 struct cleanup *bkpt_chain = NULL;
9255 int pending = 0;
9256 int task = 0;
9257 int prev_bkpt_count = breakpoint_count;
9258
9259 gdb_assert (ops != NULL);
9260
9261 /* If extra_string isn't useful, set it to NULL. */
9262 if (extra_string != NULL && *extra_string == '\0')
9263 extra_string = NULL;
9264
9265 TRY
9266 {
9267 ops->create_sals_from_location (location, &canonical, type_wanted);
9268 }
9269 CATCH (e, RETURN_MASK_ERROR)
9270 {
9271 /* If caller is interested in rc value from parse, set
9272 value. */
9273 if (e.error == NOT_FOUND_ERROR)
9274 {
9275 /* If pending breakpoint support is turned off, throw
9276 error. */
9277
9278 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9279 throw_exception (e);
9280
9281 exception_print (gdb_stderr, e);
9282
9283 /* If pending breakpoint support is auto query and the user
9284 selects no, then simply return the error code. */
9285 if (pending_break_support == AUTO_BOOLEAN_AUTO
9286 && !nquery (_("Make %s pending on future shared library load? "),
9287 bptype_string (type_wanted)))
9288 return 0;
9289
9290 /* At this point, either the user was queried about setting
9291 a pending breakpoint and selected yes, or pending
9292 breakpoint behavior is on and thus a pending breakpoint
9293 is defaulted on behalf of the user. */
9294 pending = 1;
9295 }
9296 else
9297 throw_exception (e);
9298 }
9299 END_CATCH
9300
9301 if (!pending && canonical.lsals.empty ())
9302 return 0;
9303
9304 /* ----------------------------- SNIP -----------------------------
9305 Anything added to the cleanup chain beyond this point is assumed
9306 to be part of a breakpoint. If the breakpoint create succeeds
9307 then the memory is not reclaimed. */
9308 bkpt_chain = make_cleanup (null_cleanup, 0);
9309
9310 /* Resolve all line numbers to PC's and verify that the addresses
9311 are ok for the target. */
9312 if (!pending)
9313 {
9314 for (auto &lsal : canonical.lsals)
9315 breakpoint_sals_to_pc (lsal.sals);
9316 }
9317
9318 /* Fast tracepoints may have additional restrictions on location. */
9319 if (!pending && type_wanted == bp_fast_tracepoint)
9320 {
9321 for (const auto &lsal : canonical.lsals)
9322 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9323 }
9324
9325 /* Verify that condition can be parsed, before setting any
9326 breakpoints. Allocate a separate condition expression for each
9327 breakpoint. */
9328 if (!pending)
9329 {
9330 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9331 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9332
9333 if (parse_extra)
9334 {
9335 char *rest;
9336 char *cond;
9337
9338 const linespec_sals &lsal = canonical.lsals[0];
9339
9340 /* Here we only parse 'arg' to separate condition
9341 from thread number, so parsing in context of first
9342 sal is OK. When setting the breakpoint we'll
9343 re-parse it in context of each sal. */
9344
9345 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9346 &cond, &thread, &task, &rest);
9347 cond_string_copy.reset (cond);
9348 extra_string_copy.reset (rest);
9349 }
9350 else
9351 {
9352 if (type_wanted != bp_dprintf
9353 && extra_string != NULL && *extra_string != '\0')
9354 error (_("Garbage '%s' at end of location"), extra_string);
9355
9356 /* Create a private copy of condition string. */
9357 if (cond_string)
9358 cond_string_copy.reset (xstrdup (cond_string));
9359 /* Create a private copy of any extra string. */
9360 if (extra_string)
9361 extra_string_copy.reset (xstrdup (extra_string));
9362 }
9363
9364 ops->create_breakpoints_sal (gdbarch, &canonical,
9365 std::move (cond_string_copy),
9366 std::move (extra_string_copy),
9367 type_wanted,
9368 tempflag ? disp_del : disp_donttouch,
9369 thread, task, ignore_count, ops,
9370 from_tty, enabled, internal, flags);
9371 }
9372 else
9373 {
9374 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9375
9376 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9377 b->location = copy_event_location (location);
9378
9379 if (parse_extra)
9380 b->cond_string = NULL;
9381 else
9382 {
9383 /* Create a private copy of condition string. */
9384 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9385 b->thread = thread;
9386 }
9387
9388 /* Create a private copy of any extra string. */
9389 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9390 b->ignore_count = ignore_count;
9391 b->disposition = tempflag ? disp_del : disp_donttouch;
9392 b->condition_not_parsed = 1;
9393 b->enable_state = enabled ? bp_enabled : bp_disabled;
9394 if ((type_wanted != bp_breakpoint
9395 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9396 b->pspace = current_program_space;
9397
9398 install_breakpoint (internal, std::move (b), 0);
9399 }
9400
9401 if (canonical.lsals.size () > 1)
9402 {
9403 warning (_("Multiple breakpoints were set.\nUse the "
9404 "\"delete\" command to delete unwanted breakpoints."));
9405 prev_breakpoint_count = prev_bkpt_count;
9406 }
9407
9408 /* That's it. Discard the cleanups for data inserted into the
9409 breakpoint. */
9410 discard_cleanups (bkpt_chain);
9411
9412 /* error call may happen here - have BKPT_CHAIN already discarded. */
9413 update_global_location_list (UGLL_MAY_INSERT);
9414
9415 return 1;
9416 }
9417
9418 /* Set a breakpoint.
9419 ARG is a string describing breakpoint address,
9420 condition, and thread.
9421 FLAG specifies if a breakpoint is hardware on,
9422 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9423 and BP_TEMPFLAG. */
9424
9425 static void
9426 break_command_1 (const char *arg, int flag, int from_tty)
9427 {
9428 int tempflag = flag & BP_TEMPFLAG;
9429 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9430 ? bp_hardware_breakpoint
9431 : bp_breakpoint);
9432 struct breakpoint_ops *ops;
9433
9434 event_location_up location = string_to_event_location (&arg, current_language);
9435
9436 /* Matching breakpoints on probes. */
9437 if (location != NULL
9438 && event_location_type (location.get ()) == PROBE_LOCATION)
9439 ops = &bkpt_probe_breakpoint_ops;
9440 else
9441 ops = &bkpt_breakpoint_ops;
9442
9443 create_breakpoint (get_current_arch (),
9444 location.get (),
9445 NULL, 0, arg, 1 /* parse arg */,
9446 tempflag, type_wanted,
9447 0 /* Ignore count */,
9448 pending_break_support,
9449 ops,
9450 from_tty,
9451 1 /* enabled */,
9452 0 /* internal */,
9453 0);
9454 }
9455
9456 /* Helper function for break_command_1 and disassemble_command. */
9457
9458 void
9459 resolve_sal_pc (struct symtab_and_line *sal)
9460 {
9461 CORE_ADDR pc;
9462
9463 if (sal->pc == 0 && sal->symtab != NULL)
9464 {
9465 if (!find_line_pc (sal->symtab, sal->line, &pc))
9466 error (_("No line %d in file \"%s\"."),
9467 sal->line, symtab_to_filename_for_display (sal->symtab));
9468 sal->pc = pc;
9469
9470 /* If this SAL corresponds to a breakpoint inserted using a line
9471 number, then skip the function prologue if necessary. */
9472 if (sal->explicit_line)
9473 skip_prologue_sal (sal);
9474 }
9475
9476 if (sal->section == 0 && sal->symtab != NULL)
9477 {
9478 const struct blockvector *bv;
9479 const struct block *b;
9480 struct symbol *sym;
9481
9482 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9483 SYMTAB_COMPUNIT (sal->symtab));
9484 if (bv != NULL)
9485 {
9486 sym = block_linkage_function (b);
9487 if (sym != NULL)
9488 {
9489 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9490 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9491 sym);
9492 }
9493 else
9494 {
9495 /* It really is worthwhile to have the section, so we'll
9496 just have to look harder. This case can be executed
9497 if we have line numbers but no functions (as can
9498 happen in assembly source). */
9499
9500 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9501 switch_to_program_space_and_thread (sal->pspace);
9502
9503 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9504 if (msym.minsym)
9505 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9506 }
9507 }
9508 }
9509 }
9510
9511 void
9512 break_command (const char *arg, int from_tty)
9513 {
9514 break_command_1 (arg, 0, from_tty);
9515 }
9516
9517 void
9518 tbreak_command (const char *arg, int from_tty)
9519 {
9520 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9521 }
9522
9523 static void
9524 hbreak_command (const char *arg, int from_tty)
9525 {
9526 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9527 }
9528
9529 static void
9530 thbreak_command (const char *arg, int from_tty)
9531 {
9532 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9533 }
9534
9535 static void
9536 stop_command (const char *arg, int from_tty)
9537 {
9538 printf_filtered (_("Specify the type of breakpoint to set.\n\
9539 Usage: stop in <function | address>\n\
9540 stop at <line>\n"));
9541 }
9542
9543 static void
9544 stopin_command (const char *arg, int from_tty)
9545 {
9546 int badInput = 0;
9547
9548 if (arg == (char *) NULL)
9549 badInput = 1;
9550 else if (*arg != '*')
9551 {
9552 const char *argptr = arg;
9553 int hasColon = 0;
9554
9555 /* Look for a ':'. If this is a line number specification, then
9556 say it is bad, otherwise, it should be an address or
9557 function/method name. */
9558 while (*argptr && !hasColon)
9559 {
9560 hasColon = (*argptr == ':');
9561 argptr++;
9562 }
9563
9564 if (hasColon)
9565 badInput = (*argptr != ':'); /* Not a class::method */
9566 else
9567 badInput = isdigit (*arg); /* a simple line number */
9568 }
9569
9570 if (badInput)
9571 printf_filtered (_("Usage: stop in <function | address>\n"));
9572 else
9573 break_command_1 (arg, 0, from_tty);
9574 }
9575
9576 static void
9577 stopat_command (const char *arg, int from_tty)
9578 {
9579 int badInput = 0;
9580
9581 if (arg == (char *) NULL || *arg == '*') /* no line number */
9582 badInput = 1;
9583 else
9584 {
9585 const char *argptr = arg;
9586 int hasColon = 0;
9587
9588 /* Look for a ':'. If there is a '::' then get out, otherwise
9589 it is probably a line number. */
9590 while (*argptr && !hasColon)
9591 {
9592 hasColon = (*argptr == ':');
9593 argptr++;
9594 }
9595
9596 if (hasColon)
9597 badInput = (*argptr == ':'); /* we have class::method */
9598 else
9599 badInput = !isdigit (*arg); /* not a line number */
9600 }
9601
9602 if (badInput)
9603 printf_filtered (_("Usage: stop at <line>\n"));
9604 else
9605 break_command_1 (arg, 0, from_tty);
9606 }
9607
9608 /* The dynamic printf command is mostly like a regular breakpoint, but
9609 with a prewired command list consisting of a single output command,
9610 built from extra arguments supplied on the dprintf command
9611 line. */
9612
9613 static void
9614 dprintf_command (const char *arg, int from_tty)
9615 {
9616 event_location_up location = string_to_event_location (&arg, current_language);
9617
9618 /* If non-NULL, ARG should have been advanced past the location;
9619 the next character must be ','. */
9620 if (arg != NULL)
9621 {
9622 if (arg[0] != ',' || arg[1] == '\0')
9623 error (_("Format string required"));
9624 else
9625 {
9626 /* Skip the comma. */
9627 ++arg;
9628 }
9629 }
9630
9631 create_breakpoint (get_current_arch (),
9632 location.get (),
9633 NULL, 0, arg, 1 /* parse arg */,
9634 0, bp_dprintf,
9635 0 /* Ignore count */,
9636 pending_break_support,
9637 &dprintf_breakpoint_ops,
9638 from_tty,
9639 1 /* enabled */,
9640 0 /* internal */,
9641 0);
9642 }
9643
9644 static void
9645 agent_printf_command (const char *arg, int from_tty)
9646 {
9647 error (_("May only run agent-printf on the target"));
9648 }
9649
9650 /* Implement the "breakpoint_hit" breakpoint_ops method for
9651 ranged breakpoints. */
9652
9653 static int
9654 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9655 const address_space *aspace,
9656 CORE_ADDR bp_addr,
9657 const struct target_waitstatus *ws)
9658 {
9659 if (ws->kind != TARGET_WAITKIND_STOPPED
9660 || ws->value.sig != GDB_SIGNAL_TRAP)
9661 return 0;
9662
9663 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9664 bl->length, aspace, bp_addr);
9665 }
9666
9667 /* Implement the "resources_needed" breakpoint_ops method for
9668 ranged breakpoints. */
9669
9670 static int
9671 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9672 {
9673 return target_ranged_break_num_registers ();
9674 }
9675
9676 /* Implement the "print_it" breakpoint_ops method for
9677 ranged breakpoints. */
9678
9679 static enum print_stop_action
9680 print_it_ranged_breakpoint (bpstat bs)
9681 {
9682 struct breakpoint *b = bs->breakpoint_at;
9683 struct bp_location *bl = b->loc;
9684 struct ui_out *uiout = current_uiout;
9685
9686 gdb_assert (b->type == bp_hardware_breakpoint);
9687
9688 /* Ranged breakpoints have only one location. */
9689 gdb_assert (bl && bl->next == NULL);
9690
9691 annotate_breakpoint (b->number);
9692
9693 maybe_print_thread_hit_breakpoint (uiout);
9694
9695 if (b->disposition == disp_del)
9696 uiout->text ("Temporary ranged breakpoint ");
9697 else
9698 uiout->text ("Ranged breakpoint ");
9699 if (uiout->is_mi_like_p ())
9700 {
9701 uiout->field_string ("reason",
9702 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9703 uiout->field_string ("disp", bpdisp_text (b->disposition));
9704 }
9705 uiout->field_int ("bkptno", b->number);
9706 uiout->text (", ");
9707
9708 return PRINT_SRC_AND_LOC;
9709 }
9710
9711 /* Implement the "print_one" breakpoint_ops method for
9712 ranged breakpoints. */
9713
9714 static void
9715 print_one_ranged_breakpoint (struct breakpoint *b,
9716 struct bp_location **last_loc)
9717 {
9718 struct bp_location *bl = b->loc;
9719 struct value_print_options opts;
9720 struct ui_out *uiout = current_uiout;
9721
9722 /* Ranged breakpoints have only one location. */
9723 gdb_assert (bl && bl->next == NULL);
9724
9725 get_user_print_options (&opts);
9726
9727 if (opts.addressprint)
9728 /* We don't print the address range here, it will be printed later
9729 by print_one_detail_ranged_breakpoint. */
9730 uiout->field_skip ("addr");
9731 annotate_field (5);
9732 print_breakpoint_location (b, bl);
9733 *last_loc = bl;
9734 }
9735
9736 /* Implement the "print_one_detail" breakpoint_ops method for
9737 ranged breakpoints. */
9738
9739 static void
9740 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9741 struct ui_out *uiout)
9742 {
9743 CORE_ADDR address_start, address_end;
9744 struct bp_location *bl = b->loc;
9745 string_file stb;
9746
9747 gdb_assert (bl);
9748
9749 address_start = bl->address;
9750 address_end = address_start + bl->length - 1;
9751
9752 uiout->text ("\taddress range: ");
9753 stb.printf ("[%s, %s]",
9754 print_core_address (bl->gdbarch, address_start),
9755 print_core_address (bl->gdbarch, address_end));
9756 uiout->field_stream ("addr", stb);
9757 uiout->text ("\n");
9758 }
9759
9760 /* Implement the "print_mention" breakpoint_ops method for
9761 ranged breakpoints. */
9762
9763 static void
9764 print_mention_ranged_breakpoint (struct breakpoint *b)
9765 {
9766 struct bp_location *bl = b->loc;
9767 struct ui_out *uiout = current_uiout;
9768
9769 gdb_assert (bl);
9770 gdb_assert (b->type == bp_hardware_breakpoint);
9771
9772 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9773 b->number, paddress (bl->gdbarch, bl->address),
9774 paddress (bl->gdbarch, bl->address + bl->length - 1));
9775 }
9776
9777 /* Implement the "print_recreate" breakpoint_ops method for
9778 ranged breakpoints. */
9779
9780 static void
9781 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9782 {
9783 fprintf_unfiltered (fp, "break-range %s, %s",
9784 event_location_to_string (b->location.get ()),
9785 event_location_to_string (b->location_range_end.get ()));
9786 print_recreate_thread (b, fp);
9787 }
9788
9789 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9790
9791 static struct breakpoint_ops ranged_breakpoint_ops;
9792
9793 /* Find the address where the end of the breakpoint range should be
9794 placed, given the SAL of the end of the range. This is so that if
9795 the user provides a line number, the end of the range is set to the
9796 last instruction of the given line. */
9797
9798 static CORE_ADDR
9799 find_breakpoint_range_end (struct symtab_and_line sal)
9800 {
9801 CORE_ADDR end;
9802
9803 /* If the user provided a PC value, use it. Otherwise,
9804 find the address of the end of the given location. */
9805 if (sal.explicit_pc)
9806 end = sal.pc;
9807 else
9808 {
9809 int ret;
9810 CORE_ADDR start;
9811
9812 ret = find_line_pc_range (sal, &start, &end);
9813 if (!ret)
9814 error (_("Could not find location of the end of the range."));
9815
9816 /* find_line_pc_range returns the start of the next line. */
9817 end--;
9818 }
9819
9820 return end;
9821 }
9822
9823 /* Implement the "break-range" CLI command. */
9824
9825 static void
9826 break_range_command (const char *arg, int from_tty)
9827 {
9828 const char *arg_start;
9829 struct linespec_result canonical_start, canonical_end;
9830 int bp_count, can_use_bp, length;
9831 CORE_ADDR end;
9832 struct breakpoint *b;
9833
9834 /* We don't support software ranged breakpoints. */
9835 if (target_ranged_break_num_registers () < 0)
9836 error (_("This target does not support hardware ranged breakpoints."));
9837
9838 bp_count = hw_breakpoint_used_count ();
9839 bp_count += target_ranged_break_num_registers ();
9840 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9841 bp_count, 0);
9842 if (can_use_bp < 0)
9843 error (_("Hardware breakpoints used exceeds limit."));
9844
9845 arg = skip_spaces (arg);
9846 if (arg == NULL || arg[0] == '\0')
9847 error(_("No address range specified."));
9848
9849 arg_start = arg;
9850 event_location_up start_location = string_to_event_location (&arg,
9851 current_language);
9852 parse_breakpoint_sals (start_location.get (), &canonical_start);
9853
9854 if (arg[0] != ',')
9855 error (_("Too few arguments."));
9856 else if (canonical_start.lsals.empty ())
9857 error (_("Could not find location of the beginning of the range."));
9858
9859 const linespec_sals &lsal_start = canonical_start.lsals[0];
9860
9861 if (canonical_start.lsals.size () > 1
9862 || lsal_start.sals.size () != 1)
9863 error (_("Cannot create a ranged breakpoint with multiple locations."));
9864
9865 const symtab_and_line &sal_start = lsal_start.sals[0];
9866 std::string addr_string_start (arg_start, arg - arg_start);
9867
9868 arg++; /* Skip the comma. */
9869 arg = skip_spaces (arg);
9870
9871 /* Parse the end location. */
9872
9873 arg_start = arg;
9874
9875 /* We call decode_line_full directly here instead of using
9876 parse_breakpoint_sals because we need to specify the start location's
9877 symtab and line as the default symtab and line for the end of the
9878 range. This makes it possible to have ranges like "foo.c:27, +14",
9879 where +14 means 14 lines from the start location. */
9880 event_location_up end_location = string_to_event_location (&arg,
9881 current_language);
9882 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9883 sal_start.symtab, sal_start.line,
9884 &canonical_end, NULL, NULL);
9885
9886 if (canonical_end.lsals.empty ())
9887 error (_("Could not find location of the end of the range."));
9888
9889 const linespec_sals &lsal_end = canonical_end.lsals[0];
9890 if (canonical_end.lsals.size () > 1
9891 || lsal_end.sals.size () != 1)
9892 error (_("Cannot create a ranged breakpoint with multiple locations."));
9893
9894 const symtab_and_line &sal_end = lsal_end.sals[0];
9895
9896 end = find_breakpoint_range_end (sal_end);
9897 if (sal_start.pc > end)
9898 error (_("Invalid address range, end precedes start."));
9899
9900 length = end - sal_start.pc + 1;
9901 if (length < 0)
9902 /* Length overflowed. */
9903 error (_("Address range too large."));
9904 else if (length == 1)
9905 {
9906 /* This range is simple enough to be handled by
9907 the `hbreak' command. */
9908 hbreak_command (&addr_string_start[0], 1);
9909
9910 return;
9911 }
9912
9913 /* Now set up the breakpoint. */
9914 b = set_raw_breakpoint (get_current_arch (), sal_start,
9915 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9916 set_breakpoint_count (breakpoint_count + 1);
9917 b->number = breakpoint_count;
9918 b->disposition = disp_donttouch;
9919 b->location = std::move (start_location);
9920 b->location_range_end = std::move (end_location);
9921 b->loc->length = length;
9922
9923 mention (b);
9924 gdb::observers::breakpoint_created.notify (b);
9925 update_global_location_list (UGLL_MAY_INSERT);
9926 }
9927
9928 /* Return non-zero if EXP is verified as constant. Returned zero
9929 means EXP is variable. Also the constant detection may fail for
9930 some constant expressions and in such case still falsely return
9931 zero. */
9932
9933 static int
9934 watchpoint_exp_is_const (const struct expression *exp)
9935 {
9936 int i = exp->nelts;
9937
9938 while (i > 0)
9939 {
9940 int oplenp, argsp;
9941
9942 /* We are only interested in the descriptor of each element. */
9943 operator_length (exp, i, &oplenp, &argsp);
9944 i -= oplenp;
9945
9946 switch (exp->elts[i].opcode)
9947 {
9948 case BINOP_ADD:
9949 case BINOP_SUB:
9950 case BINOP_MUL:
9951 case BINOP_DIV:
9952 case BINOP_REM:
9953 case BINOP_MOD:
9954 case BINOP_LSH:
9955 case BINOP_RSH:
9956 case BINOP_LOGICAL_AND:
9957 case BINOP_LOGICAL_OR:
9958 case BINOP_BITWISE_AND:
9959 case BINOP_BITWISE_IOR:
9960 case BINOP_BITWISE_XOR:
9961 case BINOP_EQUAL:
9962 case BINOP_NOTEQUAL:
9963 case BINOP_LESS:
9964 case BINOP_GTR:
9965 case BINOP_LEQ:
9966 case BINOP_GEQ:
9967 case BINOP_REPEAT:
9968 case BINOP_COMMA:
9969 case BINOP_EXP:
9970 case BINOP_MIN:
9971 case BINOP_MAX:
9972 case BINOP_INTDIV:
9973 case BINOP_CONCAT:
9974 case TERNOP_COND:
9975 case TERNOP_SLICE:
9976
9977 case OP_LONG:
9978 case OP_FLOAT:
9979 case OP_LAST:
9980 case OP_COMPLEX:
9981 case OP_STRING:
9982 case OP_ARRAY:
9983 case OP_TYPE:
9984 case OP_TYPEOF:
9985 case OP_DECLTYPE:
9986 case OP_TYPEID:
9987 case OP_NAME:
9988 case OP_OBJC_NSSTRING:
9989
9990 case UNOP_NEG:
9991 case UNOP_LOGICAL_NOT:
9992 case UNOP_COMPLEMENT:
9993 case UNOP_ADDR:
9994 case UNOP_HIGH:
9995 case UNOP_CAST:
9996
9997 case UNOP_CAST_TYPE:
9998 case UNOP_REINTERPRET_CAST:
9999 case UNOP_DYNAMIC_CAST:
10000 /* Unary, binary and ternary operators: We have to check
10001 their operands. If they are constant, then so is the
10002 result of that operation. For instance, if A and B are
10003 determined to be constants, then so is "A + B".
10004
10005 UNOP_IND is one exception to the rule above, because the
10006 value of *ADDR is not necessarily a constant, even when
10007 ADDR is. */
10008 break;
10009
10010 case OP_VAR_VALUE:
10011 /* Check whether the associated symbol is a constant.
10012
10013 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10014 possible that a buggy compiler could mark a variable as
10015 constant even when it is not, and TYPE_CONST would return
10016 true in this case, while SYMBOL_CLASS wouldn't.
10017
10018 We also have to check for function symbols because they
10019 are always constant. */
10020 {
10021 struct symbol *s = exp->elts[i + 2].symbol;
10022
10023 if (SYMBOL_CLASS (s) != LOC_BLOCK
10024 && SYMBOL_CLASS (s) != LOC_CONST
10025 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10026 return 0;
10027 break;
10028 }
10029
10030 /* The default action is to return 0 because we are using
10031 the optimistic approach here: If we don't know something,
10032 then it is not a constant. */
10033 default:
10034 return 0;
10035 }
10036 }
10037
10038 return 1;
10039 }
10040
10041 /* Watchpoint destructor. */
10042
10043 watchpoint::~watchpoint ()
10044 {
10045 xfree (this->exp_string);
10046 xfree (this->exp_string_reparse);
10047 }
10048
10049 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10050
10051 static void
10052 re_set_watchpoint (struct breakpoint *b)
10053 {
10054 struct watchpoint *w = (struct watchpoint *) b;
10055
10056 /* Watchpoint can be either on expression using entirely global
10057 variables, or it can be on local variables.
10058
10059 Watchpoints of the first kind are never auto-deleted, and even
10060 persist across program restarts. Since they can use variables
10061 from shared libraries, we need to reparse expression as libraries
10062 are loaded and unloaded.
10063
10064 Watchpoints on local variables can also change meaning as result
10065 of solib event. For example, if a watchpoint uses both a local
10066 and a global variables in expression, it's a local watchpoint,
10067 but unloading of a shared library will make the expression
10068 invalid. This is not a very common use case, but we still
10069 re-evaluate expression, to avoid surprises to the user.
10070
10071 Note that for local watchpoints, we re-evaluate it only if
10072 watchpoints frame id is still valid. If it's not, it means the
10073 watchpoint is out of scope and will be deleted soon. In fact,
10074 I'm not sure we'll ever be called in this case.
10075
10076 If a local watchpoint's frame id is still valid, then
10077 w->exp_valid_block is likewise valid, and we can safely use it.
10078
10079 Don't do anything about disabled watchpoints, since they will be
10080 reevaluated again when enabled. */
10081 update_watchpoint (w, 1 /* reparse */);
10082 }
10083
10084 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10085
10086 static int
10087 insert_watchpoint (struct bp_location *bl)
10088 {
10089 struct watchpoint *w = (struct watchpoint *) bl->owner;
10090 int length = w->exact ? 1 : bl->length;
10091
10092 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10093 w->cond_exp.get ());
10094 }
10095
10096 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10097
10098 static int
10099 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10100 {
10101 struct watchpoint *w = (struct watchpoint *) bl->owner;
10102 int length = w->exact ? 1 : bl->length;
10103
10104 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10105 w->cond_exp.get ());
10106 }
10107
10108 static int
10109 breakpoint_hit_watchpoint (const struct bp_location *bl,
10110 const address_space *aspace, CORE_ADDR bp_addr,
10111 const struct target_waitstatus *ws)
10112 {
10113 struct breakpoint *b = bl->owner;
10114 struct watchpoint *w = (struct watchpoint *) b;
10115
10116 /* Continuable hardware watchpoints are treated as non-existent if the
10117 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10118 some data address). Otherwise gdb won't stop on a break instruction
10119 in the code (not from a breakpoint) when a hardware watchpoint has
10120 been defined. Also skip watchpoints which we know did not trigger
10121 (did not match the data address). */
10122 if (is_hardware_watchpoint (b)
10123 && w->watchpoint_triggered == watch_triggered_no)
10124 return 0;
10125
10126 return 1;
10127 }
10128
10129 static void
10130 check_status_watchpoint (bpstat bs)
10131 {
10132 gdb_assert (is_watchpoint (bs->breakpoint_at));
10133
10134 bpstat_check_watchpoint (bs);
10135 }
10136
10137 /* Implement the "resources_needed" breakpoint_ops method for
10138 hardware watchpoints. */
10139
10140 static int
10141 resources_needed_watchpoint (const struct bp_location *bl)
10142 {
10143 struct watchpoint *w = (struct watchpoint *) bl->owner;
10144 int length = w->exact? 1 : bl->length;
10145
10146 return target_region_ok_for_hw_watchpoint (bl->address, length);
10147 }
10148
10149 /* Implement the "works_in_software_mode" breakpoint_ops method for
10150 hardware watchpoints. */
10151
10152 static int
10153 works_in_software_mode_watchpoint (const struct breakpoint *b)
10154 {
10155 /* Read and access watchpoints only work with hardware support. */
10156 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10157 }
10158
10159 static enum print_stop_action
10160 print_it_watchpoint (bpstat bs)
10161 {
10162 struct breakpoint *b;
10163 enum print_stop_action result;
10164 struct watchpoint *w;
10165 struct ui_out *uiout = current_uiout;
10166
10167 gdb_assert (bs->bp_location_at != NULL);
10168
10169 b = bs->breakpoint_at;
10170 w = (struct watchpoint *) b;
10171
10172 annotate_watchpoint (b->number);
10173 maybe_print_thread_hit_breakpoint (uiout);
10174
10175 string_file stb;
10176
10177 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10178 switch (b->type)
10179 {
10180 case bp_watchpoint:
10181 case bp_hardware_watchpoint:
10182 if (uiout->is_mi_like_p ())
10183 uiout->field_string
10184 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10185 mention (b);
10186 tuple_emitter.emplace (uiout, "value");
10187 uiout->text ("\nOld value = ");
10188 watchpoint_value_print (bs->old_val.get (), &stb);
10189 uiout->field_stream ("old", stb);
10190 uiout->text ("\nNew value = ");
10191 watchpoint_value_print (w->val.get (), &stb);
10192 uiout->field_stream ("new", stb);
10193 uiout->text ("\n");
10194 /* More than one watchpoint may have been triggered. */
10195 result = PRINT_UNKNOWN;
10196 break;
10197
10198 case bp_read_watchpoint:
10199 if (uiout->is_mi_like_p ())
10200 uiout->field_string
10201 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10202 mention (b);
10203 tuple_emitter.emplace (uiout, "value");
10204 uiout->text ("\nValue = ");
10205 watchpoint_value_print (w->val.get (), &stb);
10206 uiout->field_stream ("value", stb);
10207 uiout->text ("\n");
10208 result = PRINT_UNKNOWN;
10209 break;
10210
10211 case bp_access_watchpoint:
10212 if (bs->old_val != NULL)
10213 {
10214 if (uiout->is_mi_like_p ())
10215 uiout->field_string
10216 ("reason",
10217 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10218 mention (b);
10219 tuple_emitter.emplace (uiout, "value");
10220 uiout->text ("\nOld value = ");
10221 watchpoint_value_print (bs->old_val.get (), &stb);
10222 uiout->field_stream ("old", stb);
10223 uiout->text ("\nNew value = ");
10224 }
10225 else
10226 {
10227 mention (b);
10228 if (uiout->is_mi_like_p ())
10229 uiout->field_string
10230 ("reason",
10231 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10232 tuple_emitter.emplace (uiout, "value");
10233 uiout->text ("\nValue = ");
10234 }
10235 watchpoint_value_print (w->val.get (), &stb);
10236 uiout->field_stream ("new", stb);
10237 uiout->text ("\n");
10238 result = PRINT_UNKNOWN;
10239 break;
10240 default:
10241 result = PRINT_UNKNOWN;
10242 }
10243
10244 return result;
10245 }
10246
10247 /* Implement the "print_mention" breakpoint_ops method for hardware
10248 watchpoints. */
10249
10250 static void
10251 print_mention_watchpoint (struct breakpoint *b)
10252 {
10253 struct watchpoint *w = (struct watchpoint *) b;
10254 struct ui_out *uiout = current_uiout;
10255 const char *tuple_name;
10256
10257 switch (b->type)
10258 {
10259 case bp_watchpoint:
10260 uiout->text ("Watchpoint ");
10261 tuple_name = "wpt";
10262 break;
10263 case bp_hardware_watchpoint:
10264 uiout->text ("Hardware watchpoint ");
10265 tuple_name = "wpt";
10266 break;
10267 case bp_read_watchpoint:
10268 uiout->text ("Hardware read watchpoint ");
10269 tuple_name = "hw-rwpt";
10270 break;
10271 case bp_access_watchpoint:
10272 uiout->text ("Hardware access (read/write) watchpoint ");
10273 tuple_name = "hw-awpt";
10274 break;
10275 default:
10276 internal_error (__FILE__, __LINE__,
10277 _("Invalid hardware watchpoint type."));
10278 }
10279
10280 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10281 uiout->field_int ("number", b->number);
10282 uiout->text (": ");
10283 uiout->field_string ("exp", w->exp_string);
10284 }
10285
10286 /* Implement the "print_recreate" breakpoint_ops method for
10287 watchpoints. */
10288
10289 static void
10290 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10291 {
10292 struct watchpoint *w = (struct watchpoint *) b;
10293
10294 switch (b->type)
10295 {
10296 case bp_watchpoint:
10297 case bp_hardware_watchpoint:
10298 fprintf_unfiltered (fp, "watch");
10299 break;
10300 case bp_read_watchpoint:
10301 fprintf_unfiltered (fp, "rwatch");
10302 break;
10303 case bp_access_watchpoint:
10304 fprintf_unfiltered (fp, "awatch");
10305 break;
10306 default:
10307 internal_error (__FILE__, __LINE__,
10308 _("Invalid watchpoint type."));
10309 }
10310
10311 fprintf_unfiltered (fp, " %s", w->exp_string);
10312 print_recreate_thread (b, fp);
10313 }
10314
10315 /* Implement the "explains_signal" breakpoint_ops method for
10316 watchpoints. */
10317
10318 static int
10319 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10320 {
10321 /* A software watchpoint cannot cause a signal other than
10322 GDB_SIGNAL_TRAP. */
10323 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10324 return 0;
10325
10326 return 1;
10327 }
10328
10329 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10330
10331 static struct breakpoint_ops watchpoint_breakpoint_ops;
10332
10333 /* Implement the "insert" breakpoint_ops method for
10334 masked hardware watchpoints. */
10335
10336 static int
10337 insert_masked_watchpoint (struct bp_location *bl)
10338 {
10339 struct watchpoint *w = (struct watchpoint *) bl->owner;
10340
10341 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10342 bl->watchpoint_type);
10343 }
10344
10345 /* Implement the "remove" breakpoint_ops method for
10346 masked hardware watchpoints. */
10347
10348 static int
10349 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10350 {
10351 struct watchpoint *w = (struct watchpoint *) bl->owner;
10352
10353 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10354 bl->watchpoint_type);
10355 }
10356
10357 /* Implement the "resources_needed" breakpoint_ops method for
10358 masked hardware watchpoints. */
10359
10360 static int
10361 resources_needed_masked_watchpoint (const struct bp_location *bl)
10362 {
10363 struct watchpoint *w = (struct watchpoint *) bl->owner;
10364
10365 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10366 }
10367
10368 /* Implement the "works_in_software_mode" breakpoint_ops method for
10369 masked hardware watchpoints. */
10370
10371 static int
10372 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10373 {
10374 return 0;
10375 }
10376
10377 /* Implement the "print_it" breakpoint_ops method for
10378 masked hardware watchpoints. */
10379
10380 static enum print_stop_action
10381 print_it_masked_watchpoint (bpstat bs)
10382 {
10383 struct breakpoint *b = bs->breakpoint_at;
10384 struct ui_out *uiout = current_uiout;
10385
10386 /* Masked watchpoints have only one location. */
10387 gdb_assert (b->loc && b->loc->next == NULL);
10388
10389 annotate_watchpoint (b->number);
10390 maybe_print_thread_hit_breakpoint (uiout);
10391
10392 switch (b->type)
10393 {
10394 case bp_hardware_watchpoint:
10395 if (uiout->is_mi_like_p ())
10396 uiout->field_string
10397 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10398 break;
10399
10400 case bp_read_watchpoint:
10401 if (uiout->is_mi_like_p ())
10402 uiout->field_string
10403 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10404 break;
10405
10406 case bp_access_watchpoint:
10407 if (uiout->is_mi_like_p ())
10408 uiout->field_string
10409 ("reason",
10410 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10411 break;
10412 default:
10413 internal_error (__FILE__, __LINE__,
10414 _("Invalid hardware watchpoint type."));
10415 }
10416
10417 mention (b);
10418 uiout->text (_("\n\
10419 Check the underlying instruction at PC for the memory\n\
10420 address and value which triggered this watchpoint.\n"));
10421 uiout->text ("\n");
10422
10423 /* More than one watchpoint may have been triggered. */
10424 return PRINT_UNKNOWN;
10425 }
10426
10427 /* Implement the "print_one_detail" breakpoint_ops method for
10428 masked hardware watchpoints. */
10429
10430 static void
10431 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10432 struct ui_out *uiout)
10433 {
10434 struct watchpoint *w = (struct watchpoint *) b;
10435
10436 /* Masked watchpoints have only one location. */
10437 gdb_assert (b->loc && b->loc->next == NULL);
10438
10439 uiout->text ("\tmask ");
10440 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10441 uiout->text ("\n");
10442 }
10443
10444 /* Implement the "print_mention" breakpoint_ops method for
10445 masked hardware watchpoints. */
10446
10447 static void
10448 print_mention_masked_watchpoint (struct breakpoint *b)
10449 {
10450 struct watchpoint *w = (struct watchpoint *) b;
10451 struct ui_out *uiout = current_uiout;
10452 const char *tuple_name;
10453
10454 switch (b->type)
10455 {
10456 case bp_hardware_watchpoint:
10457 uiout->text ("Masked hardware watchpoint ");
10458 tuple_name = "wpt";
10459 break;
10460 case bp_read_watchpoint:
10461 uiout->text ("Masked hardware read watchpoint ");
10462 tuple_name = "hw-rwpt";
10463 break;
10464 case bp_access_watchpoint:
10465 uiout->text ("Masked hardware access (read/write) watchpoint ");
10466 tuple_name = "hw-awpt";
10467 break;
10468 default:
10469 internal_error (__FILE__, __LINE__,
10470 _("Invalid hardware watchpoint type."));
10471 }
10472
10473 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10474 uiout->field_int ("number", b->number);
10475 uiout->text (": ");
10476 uiout->field_string ("exp", w->exp_string);
10477 }
10478
10479 /* Implement the "print_recreate" breakpoint_ops method for
10480 masked hardware watchpoints. */
10481
10482 static void
10483 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10484 {
10485 struct watchpoint *w = (struct watchpoint *) b;
10486 char tmp[40];
10487
10488 switch (b->type)
10489 {
10490 case bp_hardware_watchpoint:
10491 fprintf_unfiltered (fp, "watch");
10492 break;
10493 case bp_read_watchpoint:
10494 fprintf_unfiltered (fp, "rwatch");
10495 break;
10496 case bp_access_watchpoint:
10497 fprintf_unfiltered (fp, "awatch");
10498 break;
10499 default:
10500 internal_error (__FILE__, __LINE__,
10501 _("Invalid hardware watchpoint type."));
10502 }
10503
10504 sprintf_vma (tmp, w->hw_wp_mask);
10505 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10506 print_recreate_thread (b, fp);
10507 }
10508
10509 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10510
10511 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10512
10513 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10514
10515 static int
10516 is_masked_watchpoint (const struct breakpoint *b)
10517 {
10518 return b->ops == &masked_watchpoint_breakpoint_ops;
10519 }
10520
10521 /* accessflag: hw_write: watch write,
10522 hw_read: watch read,
10523 hw_access: watch access (read or write) */
10524 static void
10525 watch_command_1 (const char *arg, int accessflag, int from_tty,
10526 int just_location, int internal)
10527 {
10528 struct breakpoint *scope_breakpoint = NULL;
10529 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10530 struct value *mark, *result;
10531 int saved_bitpos = 0, saved_bitsize = 0;
10532 const char *exp_start = NULL;
10533 const char *exp_end = NULL;
10534 const char *tok, *end_tok;
10535 int toklen = -1;
10536 const char *cond_start = NULL;
10537 const char *cond_end = NULL;
10538 enum bptype bp_type;
10539 int thread = -1;
10540 int pc = 0;
10541 /* Flag to indicate whether we are going to use masks for
10542 the hardware watchpoint. */
10543 int use_mask = 0;
10544 CORE_ADDR mask = 0;
10545
10546 /* Make sure that we actually have parameters to parse. */
10547 if (arg != NULL && arg[0] != '\0')
10548 {
10549 const char *value_start;
10550
10551 exp_end = arg + strlen (arg);
10552
10553 /* Look for "parameter value" pairs at the end
10554 of the arguments string. */
10555 for (tok = exp_end - 1; tok > arg; tok--)
10556 {
10557 /* Skip whitespace at the end of the argument list. */
10558 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10559 tok--;
10560
10561 /* Find the beginning of the last token.
10562 This is the value of the parameter. */
10563 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10564 tok--;
10565 value_start = tok + 1;
10566
10567 /* Skip whitespace. */
10568 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10569 tok--;
10570
10571 end_tok = tok;
10572
10573 /* Find the beginning of the second to last token.
10574 This is the parameter itself. */
10575 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10576 tok--;
10577 tok++;
10578 toklen = end_tok - tok + 1;
10579
10580 if (toklen == 6 && startswith (tok, "thread"))
10581 {
10582 struct thread_info *thr;
10583 /* At this point we've found a "thread" token, which means
10584 the user is trying to set a watchpoint that triggers
10585 only in a specific thread. */
10586 const char *endp;
10587
10588 if (thread != -1)
10589 error(_("You can specify only one thread."));
10590
10591 /* Extract the thread ID from the next token. */
10592 thr = parse_thread_id (value_start, &endp);
10593
10594 /* Check if the user provided a valid thread ID. */
10595 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10596 invalid_thread_id_error (value_start);
10597
10598 thread = thr->global_num;
10599 }
10600 else if (toklen == 4 && startswith (tok, "mask"))
10601 {
10602 /* We've found a "mask" token, which means the user wants to
10603 create a hardware watchpoint that is going to have the mask
10604 facility. */
10605 struct value *mask_value, *mark;
10606
10607 if (use_mask)
10608 error(_("You can specify only one mask."));
10609
10610 use_mask = just_location = 1;
10611
10612 mark = value_mark ();
10613 mask_value = parse_to_comma_and_eval (&value_start);
10614 mask = value_as_address (mask_value);
10615 value_free_to_mark (mark);
10616 }
10617 else
10618 /* We didn't recognize what we found. We should stop here. */
10619 break;
10620
10621 /* Truncate the string and get rid of the "parameter value" pair before
10622 the arguments string is parsed by the parse_exp_1 function. */
10623 exp_end = tok;
10624 }
10625 }
10626 else
10627 exp_end = arg;
10628
10629 /* Parse the rest of the arguments. From here on out, everything
10630 is in terms of a newly allocated string instead of the original
10631 ARG. */
10632 innermost_block.reset ();
10633 std::string expression (arg, exp_end - arg);
10634 exp_start = arg = expression.c_str ();
10635 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10636 exp_end = arg;
10637 /* Remove trailing whitespace from the expression before saving it.
10638 This makes the eventual display of the expression string a bit
10639 prettier. */
10640 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10641 --exp_end;
10642
10643 /* Checking if the expression is not constant. */
10644 if (watchpoint_exp_is_const (exp.get ()))
10645 {
10646 int len;
10647
10648 len = exp_end - exp_start;
10649 while (len > 0 && isspace (exp_start[len - 1]))
10650 len--;
10651 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10652 }
10653
10654 exp_valid_block = innermost_block.block ();
10655 mark = value_mark ();
10656 struct value *val_as_value = nullptr;
10657 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10658 just_location);
10659
10660 if (val_as_value != NULL && just_location)
10661 {
10662 saved_bitpos = value_bitpos (val_as_value);
10663 saved_bitsize = value_bitsize (val_as_value);
10664 }
10665
10666 value_ref_ptr val;
10667 if (just_location)
10668 {
10669 int ret;
10670
10671 exp_valid_block = NULL;
10672 val = release_value (value_addr (result));
10673 value_free_to_mark (mark);
10674
10675 if (use_mask)
10676 {
10677 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10678 mask);
10679 if (ret == -1)
10680 error (_("This target does not support masked watchpoints."));
10681 else if (ret == -2)
10682 error (_("Invalid mask or memory region."));
10683 }
10684 }
10685 else if (val_as_value != NULL)
10686 val = release_value (val_as_value);
10687
10688 tok = skip_spaces (arg);
10689 end_tok = skip_to_space (tok);
10690
10691 toklen = end_tok - tok;
10692 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10693 {
10694 innermost_block.reset ();
10695 tok = cond_start = end_tok + 1;
10696 parse_exp_1 (&tok, 0, 0, 0);
10697
10698 /* The watchpoint expression may not be local, but the condition
10699 may still be. E.g.: `watch global if local > 0'. */
10700 cond_exp_valid_block = innermost_block.block ();
10701
10702 cond_end = tok;
10703 }
10704 if (*tok)
10705 error (_("Junk at end of command."));
10706
10707 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10708
10709 /* Save this because create_internal_breakpoint below invalidates
10710 'wp_frame'. */
10711 frame_id watchpoint_frame = get_frame_id (wp_frame);
10712
10713 /* If the expression is "local", then set up a "watchpoint scope"
10714 breakpoint at the point where we've left the scope of the watchpoint
10715 expression. Create the scope breakpoint before the watchpoint, so
10716 that we will encounter it first in bpstat_stop_status. */
10717 if (exp_valid_block != NULL && wp_frame != NULL)
10718 {
10719 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10720
10721 if (frame_id_p (caller_frame_id))
10722 {
10723 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10724 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10725
10726 scope_breakpoint
10727 = create_internal_breakpoint (caller_arch, caller_pc,
10728 bp_watchpoint_scope,
10729 &momentary_breakpoint_ops);
10730
10731 /* create_internal_breakpoint could invalidate WP_FRAME. */
10732 wp_frame = NULL;
10733
10734 scope_breakpoint->enable_state = bp_enabled;
10735
10736 /* Automatically delete the breakpoint when it hits. */
10737 scope_breakpoint->disposition = disp_del;
10738
10739 /* Only break in the proper frame (help with recursion). */
10740 scope_breakpoint->frame_id = caller_frame_id;
10741
10742 /* Set the address at which we will stop. */
10743 scope_breakpoint->loc->gdbarch = caller_arch;
10744 scope_breakpoint->loc->requested_address = caller_pc;
10745 scope_breakpoint->loc->address
10746 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10747 scope_breakpoint->loc->requested_address,
10748 scope_breakpoint->type);
10749 }
10750 }
10751
10752 /* Now set up the breakpoint. We create all watchpoints as hardware
10753 watchpoints here even if hardware watchpoints are turned off, a call
10754 to update_watchpoint later in this function will cause the type to
10755 drop back to bp_watchpoint (software watchpoint) if required. */
10756
10757 if (accessflag == hw_read)
10758 bp_type = bp_read_watchpoint;
10759 else if (accessflag == hw_access)
10760 bp_type = bp_access_watchpoint;
10761 else
10762 bp_type = bp_hardware_watchpoint;
10763
10764 std::unique_ptr<watchpoint> w (new watchpoint ());
10765
10766 if (use_mask)
10767 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10768 &masked_watchpoint_breakpoint_ops);
10769 else
10770 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10771 &watchpoint_breakpoint_ops);
10772 w->thread = thread;
10773 w->disposition = disp_donttouch;
10774 w->pspace = current_program_space;
10775 w->exp = std::move (exp);
10776 w->exp_valid_block = exp_valid_block;
10777 w->cond_exp_valid_block = cond_exp_valid_block;
10778 if (just_location)
10779 {
10780 struct type *t = value_type (val.get ());
10781 CORE_ADDR addr = value_as_address (val.get ());
10782
10783 w->exp_string_reparse
10784 = current_language->la_watch_location_expression (t, addr).release ();
10785
10786 w->exp_string = xstrprintf ("-location %.*s",
10787 (int) (exp_end - exp_start), exp_start);
10788 }
10789 else
10790 w->exp_string = savestring (exp_start, exp_end - exp_start);
10791
10792 if (use_mask)
10793 {
10794 w->hw_wp_mask = mask;
10795 }
10796 else
10797 {
10798 w->val = val;
10799 w->val_bitpos = saved_bitpos;
10800 w->val_bitsize = saved_bitsize;
10801 w->val_valid = 1;
10802 }
10803
10804 if (cond_start)
10805 w->cond_string = savestring (cond_start, cond_end - cond_start);
10806 else
10807 w->cond_string = 0;
10808
10809 if (frame_id_p (watchpoint_frame))
10810 {
10811 w->watchpoint_frame = watchpoint_frame;
10812 w->watchpoint_thread = inferior_ptid;
10813 }
10814 else
10815 {
10816 w->watchpoint_frame = null_frame_id;
10817 w->watchpoint_thread = null_ptid;
10818 }
10819
10820 if (scope_breakpoint != NULL)
10821 {
10822 /* The scope breakpoint is related to the watchpoint. We will
10823 need to act on them together. */
10824 w->related_breakpoint = scope_breakpoint;
10825 scope_breakpoint->related_breakpoint = w.get ();
10826 }
10827
10828 if (!just_location)
10829 value_free_to_mark (mark);
10830
10831 /* Finally update the new watchpoint. This creates the locations
10832 that should be inserted. */
10833 update_watchpoint (w.get (), 1);
10834
10835 install_breakpoint (internal, std::move (w), 1);
10836 }
10837
10838 /* Return count of debug registers needed to watch the given expression.
10839 If the watchpoint cannot be handled in hardware return zero. */
10840
10841 static int
10842 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10843 {
10844 int found_memory_cnt = 0;
10845
10846 /* Did the user specifically forbid us to use hardware watchpoints? */
10847 if (!can_use_hw_watchpoints)
10848 return 0;
10849
10850 gdb_assert (!vals.empty ());
10851 struct value *head = vals[0].get ();
10852
10853 /* Make sure that the value of the expression depends only upon
10854 memory contents, and values computed from them within GDB. If we
10855 find any register references or function calls, we can't use a
10856 hardware watchpoint.
10857
10858 The idea here is that evaluating an expression generates a series
10859 of values, one holding the value of every subexpression. (The
10860 expression a*b+c has five subexpressions: a, b, a*b, c, and
10861 a*b+c.) GDB's values hold almost enough information to establish
10862 the criteria given above --- they identify memory lvalues,
10863 register lvalues, computed values, etcetera. So we can evaluate
10864 the expression, and then scan the chain of values that leaves
10865 behind to decide whether we can detect any possible change to the
10866 expression's final value using only hardware watchpoints.
10867
10868 However, I don't think that the values returned by inferior
10869 function calls are special in any way. So this function may not
10870 notice that an expression involving an inferior function call
10871 can't be watched with hardware watchpoints. FIXME. */
10872 for (const value_ref_ptr &iter : vals)
10873 {
10874 struct value *v = iter.get ();
10875
10876 if (VALUE_LVAL (v) == lval_memory)
10877 {
10878 if (v != head && value_lazy (v))
10879 /* A lazy memory lvalue in the chain is one that GDB never
10880 needed to fetch; we either just used its address (e.g.,
10881 `a' in `a.b') or we never needed it at all (e.g., `a'
10882 in `a,b'). This doesn't apply to HEAD; if that is
10883 lazy then it was not readable, but watch it anyway. */
10884 ;
10885 else
10886 {
10887 /* Ahh, memory we actually used! Check if we can cover
10888 it with hardware watchpoints. */
10889 struct type *vtype = check_typedef (value_type (v));
10890
10891 /* We only watch structs and arrays if user asked for it
10892 explicitly, never if they just happen to appear in a
10893 middle of some value chain. */
10894 if (v == head
10895 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10896 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10897 {
10898 CORE_ADDR vaddr = value_address (v);
10899 int len;
10900 int num_regs;
10901
10902 len = (target_exact_watchpoints
10903 && is_scalar_type_recursive (vtype))?
10904 1 : TYPE_LENGTH (value_type (v));
10905
10906 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10907 if (!num_regs)
10908 return 0;
10909 else
10910 found_memory_cnt += num_regs;
10911 }
10912 }
10913 }
10914 else if (VALUE_LVAL (v) != not_lval
10915 && deprecated_value_modifiable (v) == 0)
10916 return 0; /* These are values from the history (e.g., $1). */
10917 else if (VALUE_LVAL (v) == lval_register)
10918 return 0; /* Cannot watch a register with a HW watchpoint. */
10919 }
10920
10921 /* The expression itself looks suitable for using a hardware
10922 watchpoint, but give the target machine a chance to reject it. */
10923 return found_memory_cnt;
10924 }
10925
10926 void
10927 watch_command_wrapper (const char *arg, int from_tty, int internal)
10928 {
10929 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10930 }
10931
10932 /* A helper function that looks for the "-location" argument and then
10933 calls watch_command_1. */
10934
10935 static void
10936 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10937 {
10938 int just_location = 0;
10939
10940 if (arg
10941 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10942 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10943 {
10944 arg = skip_spaces (arg);
10945 just_location = 1;
10946 }
10947
10948 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10949 }
10950
10951 static void
10952 watch_command (const char *arg, int from_tty)
10953 {
10954 watch_maybe_just_location (arg, hw_write, from_tty);
10955 }
10956
10957 void
10958 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10959 {
10960 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10961 }
10962
10963 static void
10964 rwatch_command (const char *arg, int from_tty)
10965 {
10966 watch_maybe_just_location (arg, hw_read, from_tty);
10967 }
10968
10969 void
10970 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10971 {
10972 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10973 }
10974
10975 static void
10976 awatch_command (const char *arg, int from_tty)
10977 {
10978 watch_maybe_just_location (arg, hw_access, from_tty);
10979 }
10980 \f
10981
10982 /* Data for the FSM that manages the until(location)/advance commands
10983 in infcmd.c. Here because it uses the mechanisms of
10984 breakpoints. */
10985
10986 struct until_break_fsm
10987 {
10988 /* The base class. */
10989 struct thread_fsm thread_fsm;
10990
10991 /* The thread that as current when the command was executed. */
10992 int thread;
10993
10994 /* The breakpoint set at the destination location. */
10995 struct breakpoint *location_breakpoint;
10996
10997 /* Breakpoint set at the return address in the caller frame. May be
10998 NULL. */
10999 struct breakpoint *caller_breakpoint;
11000 };
11001
11002 static void until_break_fsm_clean_up (struct thread_fsm *self,
11003 struct thread_info *thread);
11004 static int until_break_fsm_should_stop (struct thread_fsm *self,
11005 struct thread_info *thread);
11006 static enum async_reply_reason
11007 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11008
11009 /* until_break_fsm's vtable. */
11010
11011 static struct thread_fsm_ops until_break_fsm_ops =
11012 {
11013 NULL, /* dtor */
11014 until_break_fsm_clean_up,
11015 until_break_fsm_should_stop,
11016 NULL, /* return_value */
11017 until_break_fsm_async_reply_reason,
11018 };
11019
11020 /* Allocate a new until_break_command_fsm. */
11021
11022 static struct until_break_fsm *
11023 new_until_break_fsm (struct interp *cmd_interp, int thread,
11024 breakpoint_up &&location_breakpoint,
11025 breakpoint_up &&caller_breakpoint)
11026 {
11027 struct until_break_fsm *sm;
11028
11029 sm = XCNEW (struct until_break_fsm);
11030 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11031
11032 sm->thread = thread;
11033 sm->location_breakpoint = location_breakpoint.release ();
11034 sm->caller_breakpoint = caller_breakpoint.release ();
11035
11036 return sm;
11037 }
11038
11039 /* Implementation of the 'should_stop' FSM method for the
11040 until(location)/advance commands. */
11041
11042 static int
11043 until_break_fsm_should_stop (struct thread_fsm *self,
11044 struct thread_info *tp)
11045 {
11046 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11047
11048 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11049 sm->location_breakpoint) != NULL
11050 || (sm->caller_breakpoint != NULL
11051 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11052 sm->caller_breakpoint) != NULL))
11053 thread_fsm_set_finished (self);
11054
11055 return 1;
11056 }
11057
11058 /* Implementation of the 'clean_up' FSM method for the
11059 until(location)/advance commands. */
11060
11061 static void
11062 until_break_fsm_clean_up (struct thread_fsm *self,
11063 struct thread_info *thread)
11064 {
11065 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11066
11067 /* Clean up our temporary breakpoints. */
11068 if (sm->location_breakpoint != NULL)
11069 {
11070 delete_breakpoint (sm->location_breakpoint);
11071 sm->location_breakpoint = NULL;
11072 }
11073 if (sm->caller_breakpoint != NULL)
11074 {
11075 delete_breakpoint (sm->caller_breakpoint);
11076 sm->caller_breakpoint = NULL;
11077 }
11078 delete_longjmp_breakpoint (sm->thread);
11079 }
11080
11081 /* Implementation of the 'async_reply_reason' FSM method for the
11082 until(location)/advance commands. */
11083
11084 static enum async_reply_reason
11085 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11086 {
11087 return EXEC_ASYNC_LOCATION_REACHED;
11088 }
11089
11090 void
11091 until_break_command (const char *arg, int from_tty, int anywhere)
11092 {
11093 struct frame_info *frame;
11094 struct gdbarch *frame_gdbarch;
11095 struct frame_id stack_frame_id;
11096 struct frame_id caller_frame_id;
11097 struct cleanup *old_chain;
11098 int thread;
11099 struct thread_info *tp;
11100 struct until_break_fsm *sm;
11101
11102 clear_proceed_status (0);
11103
11104 /* Set a breakpoint where the user wants it and at return from
11105 this function. */
11106
11107 event_location_up location = string_to_event_location (&arg, current_language);
11108
11109 std::vector<symtab_and_line> sals
11110 = (last_displayed_sal_is_valid ()
11111 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11112 get_last_displayed_symtab (),
11113 get_last_displayed_line ())
11114 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11115 NULL, (struct symtab *) NULL, 0));
11116
11117 if (sals.size () != 1)
11118 error (_("Couldn't get information on specified line."));
11119
11120 symtab_and_line &sal = sals[0];
11121
11122 if (*arg)
11123 error (_("Junk at end of arguments."));
11124
11125 resolve_sal_pc (&sal);
11126
11127 tp = inferior_thread ();
11128 thread = tp->global_num;
11129
11130 old_chain = make_cleanup (null_cleanup, NULL);
11131
11132 /* Note linespec handling above invalidates the frame chain.
11133 Installing a breakpoint also invalidates the frame chain (as it
11134 may need to switch threads), so do any frame handling before
11135 that. */
11136
11137 frame = get_selected_frame (NULL);
11138 frame_gdbarch = get_frame_arch (frame);
11139 stack_frame_id = get_stack_frame_id (frame);
11140 caller_frame_id = frame_unwind_caller_id (frame);
11141
11142 /* Keep within the current frame, or in frames called by the current
11143 one. */
11144
11145 breakpoint_up caller_breakpoint;
11146 if (frame_id_p (caller_frame_id))
11147 {
11148 struct symtab_and_line sal2;
11149 struct gdbarch *caller_gdbarch;
11150
11151 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11152 sal2.pc = frame_unwind_caller_pc (frame);
11153 caller_gdbarch = frame_unwind_caller_arch (frame);
11154 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11155 sal2,
11156 caller_frame_id,
11157 bp_until);
11158
11159 set_longjmp_breakpoint (tp, caller_frame_id);
11160 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11161 }
11162
11163 /* set_momentary_breakpoint could invalidate FRAME. */
11164 frame = NULL;
11165
11166 breakpoint_up location_breakpoint;
11167 if (anywhere)
11168 /* If the user told us to continue until a specified location,
11169 we don't specify a frame at which we need to stop. */
11170 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11171 null_frame_id, bp_until);
11172 else
11173 /* Otherwise, specify the selected frame, because we want to stop
11174 only at the very same frame. */
11175 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11176 stack_frame_id, bp_until);
11177
11178 sm = new_until_break_fsm (command_interp (), tp->global_num,
11179 std::move (location_breakpoint),
11180 std::move (caller_breakpoint));
11181 tp->thread_fsm = &sm->thread_fsm;
11182
11183 discard_cleanups (old_chain);
11184
11185 proceed (-1, GDB_SIGNAL_DEFAULT);
11186 }
11187
11188 /* This function attempts to parse an optional "if <cond>" clause
11189 from the arg string. If one is not found, it returns NULL.
11190
11191 Else, it returns a pointer to the condition string. (It does not
11192 attempt to evaluate the string against a particular block.) And,
11193 it updates arg to point to the first character following the parsed
11194 if clause in the arg string. */
11195
11196 const char *
11197 ep_parse_optional_if_clause (const char **arg)
11198 {
11199 const char *cond_string;
11200
11201 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11202 return NULL;
11203
11204 /* Skip the "if" keyword. */
11205 (*arg) += 2;
11206
11207 /* Skip any extra leading whitespace, and record the start of the
11208 condition string. */
11209 *arg = skip_spaces (*arg);
11210 cond_string = *arg;
11211
11212 /* Assume that the condition occupies the remainder of the arg
11213 string. */
11214 (*arg) += strlen (cond_string);
11215
11216 return cond_string;
11217 }
11218
11219 /* Commands to deal with catching events, such as signals, exceptions,
11220 process start/exit, etc. */
11221
11222 typedef enum
11223 {
11224 catch_fork_temporary, catch_vfork_temporary,
11225 catch_fork_permanent, catch_vfork_permanent
11226 }
11227 catch_fork_kind;
11228
11229 static void
11230 catch_fork_command_1 (const char *arg, int from_tty,
11231 struct cmd_list_element *command)
11232 {
11233 struct gdbarch *gdbarch = get_current_arch ();
11234 const char *cond_string = NULL;
11235 catch_fork_kind fork_kind;
11236 int tempflag;
11237
11238 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11239 tempflag = (fork_kind == catch_fork_temporary
11240 || fork_kind == catch_vfork_temporary);
11241
11242 if (!arg)
11243 arg = "";
11244 arg = skip_spaces (arg);
11245
11246 /* The allowed syntax is:
11247 catch [v]fork
11248 catch [v]fork if <cond>
11249
11250 First, check if there's an if clause. */
11251 cond_string = ep_parse_optional_if_clause (&arg);
11252
11253 if ((*arg != '\0') && !isspace (*arg))
11254 error (_("Junk at end of arguments."));
11255
11256 /* If this target supports it, create a fork or vfork catchpoint
11257 and enable reporting of such events. */
11258 switch (fork_kind)
11259 {
11260 case catch_fork_temporary:
11261 case catch_fork_permanent:
11262 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11263 &catch_fork_breakpoint_ops);
11264 break;
11265 case catch_vfork_temporary:
11266 case catch_vfork_permanent:
11267 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11268 &catch_vfork_breakpoint_ops);
11269 break;
11270 default:
11271 error (_("unsupported or unknown fork kind; cannot catch it"));
11272 break;
11273 }
11274 }
11275
11276 static void
11277 catch_exec_command_1 (const char *arg, int from_tty,
11278 struct cmd_list_element *command)
11279 {
11280 struct gdbarch *gdbarch = get_current_arch ();
11281 int tempflag;
11282 const char *cond_string = NULL;
11283
11284 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11285
11286 if (!arg)
11287 arg = "";
11288 arg = skip_spaces (arg);
11289
11290 /* The allowed syntax is:
11291 catch exec
11292 catch exec if <cond>
11293
11294 First, check if there's an if clause. */
11295 cond_string = ep_parse_optional_if_clause (&arg);
11296
11297 if ((*arg != '\0') && !isspace (*arg))
11298 error (_("Junk at end of arguments."));
11299
11300 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11301 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11302 &catch_exec_breakpoint_ops);
11303 c->exec_pathname = NULL;
11304
11305 install_breakpoint (0, std::move (c), 1);
11306 }
11307
11308 void
11309 init_ada_exception_breakpoint (struct breakpoint *b,
11310 struct gdbarch *gdbarch,
11311 struct symtab_and_line sal,
11312 const char *addr_string,
11313 const struct breakpoint_ops *ops,
11314 int tempflag,
11315 int enabled,
11316 int from_tty)
11317 {
11318 if (from_tty)
11319 {
11320 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11321 if (!loc_gdbarch)
11322 loc_gdbarch = gdbarch;
11323
11324 describe_other_breakpoints (loc_gdbarch,
11325 sal.pspace, sal.pc, sal.section, -1);
11326 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11327 version for exception catchpoints, because two catchpoints
11328 used for different exception names will use the same address.
11329 In this case, a "breakpoint ... also set at..." warning is
11330 unproductive. Besides, the warning phrasing is also a bit
11331 inappropriate, we should use the word catchpoint, and tell
11332 the user what type of catchpoint it is. The above is good
11333 enough for now, though. */
11334 }
11335
11336 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11337
11338 b->enable_state = enabled ? bp_enabled : bp_disabled;
11339 b->disposition = tempflag ? disp_del : disp_donttouch;
11340 b->location = string_to_event_location (&addr_string,
11341 language_def (language_ada));
11342 b->language = language_ada;
11343 }
11344
11345 static void
11346 catch_command (const char *arg, int from_tty)
11347 {
11348 error (_("Catch requires an event name."));
11349 }
11350 \f
11351
11352 static void
11353 tcatch_command (const char *arg, int from_tty)
11354 {
11355 error (_("Catch requires an event name."));
11356 }
11357
11358 /* Compare two breakpoints and return a strcmp-like result. */
11359
11360 static int
11361 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11362 {
11363 uintptr_t ua = (uintptr_t) a;
11364 uintptr_t ub = (uintptr_t) b;
11365
11366 if (a->number < b->number)
11367 return -1;
11368 else if (a->number > b->number)
11369 return 1;
11370
11371 /* Now sort by address, in case we see, e..g, two breakpoints with
11372 the number 0. */
11373 if (ua < ub)
11374 return -1;
11375 return ua > ub ? 1 : 0;
11376 }
11377
11378 /* Delete breakpoints by address or line. */
11379
11380 static void
11381 clear_command (const char *arg, int from_tty)
11382 {
11383 struct breakpoint *b;
11384 int default_match;
11385
11386 std::vector<symtab_and_line> decoded_sals;
11387 symtab_and_line last_sal;
11388 gdb::array_view<symtab_and_line> sals;
11389 if (arg)
11390 {
11391 decoded_sals
11392 = decode_line_with_current_source (arg,
11393 (DECODE_LINE_FUNFIRSTLINE
11394 | DECODE_LINE_LIST_MODE));
11395 default_match = 0;
11396 sals = decoded_sals;
11397 }
11398 else
11399 {
11400 /* Set sal's line, symtab, pc, and pspace to the values
11401 corresponding to the last call to print_frame_info. If the
11402 codepoint is not valid, this will set all the fields to 0. */
11403 last_sal = get_last_displayed_sal ();
11404 if (last_sal.symtab == 0)
11405 error (_("No source file specified."));
11406
11407 default_match = 1;
11408 sals = last_sal;
11409 }
11410
11411 /* We don't call resolve_sal_pc here. That's not as bad as it
11412 seems, because all existing breakpoints typically have both
11413 file/line and pc set. So, if clear is given file/line, we can
11414 match this to existing breakpoint without obtaining pc at all.
11415
11416 We only support clearing given the address explicitly
11417 present in breakpoint table. Say, we've set breakpoint
11418 at file:line. There were several PC values for that file:line,
11419 due to optimization, all in one block.
11420
11421 We've picked one PC value. If "clear" is issued with another
11422 PC corresponding to the same file:line, the breakpoint won't
11423 be cleared. We probably can still clear the breakpoint, but
11424 since the other PC value is never presented to user, user
11425 can only find it by guessing, and it does not seem important
11426 to support that. */
11427
11428 /* For each line spec given, delete bps which correspond to it. Do
11429 it in two passes, solely to preserve the current behavior that
11430 from_tty is forced true if we delete more than one
11431 breakpoint. */
11432
11433 std::vector<struct breakpoint *> found;
11434 for (const auto &sal : sals)
11435 {
11436 const char *sal_fullname;
11437
11438 /* If exact pc given, clear bpts at that pc.
11439 If line given (pc == 0), clear all bpts on specified line.
11440 If defaulting, clear all bpts on default line
11441 or at default pc.
11442
11443 defaulting sal.pc != 0 tests to do
11444
11445 0 1 pc
11446 1 1 pc _and_ line
11447 0 0 line
11448 1 0 <can't happen> */
11449
11450 sal_fullname = (sal.symtab == NULL
11451 ? NULL : symtab_to_fullname (sal.symtab));
11452
11453 /* Find all matching breakpoints and add them to 'found'. */
11454 ALL_BREAKPOINTS (b)
11455 {
11456 int match = 0;
11457 /* Are we going to delete b? */
11458 if (b->type != bp_none && !is_watchpoint (b))
11459 {
11460 struct bp_location *loc = b->loc;
11461 for (; loc; loc = loc->next)
11462 {
11463 /* If the user specified file:line, don't allow a PC
11464 match. This matches historical gdb behavior. */
11465 int pc_match = (!sal.explicit_line
11466 && sal.pc
11467 && (loc->pspace == sal.pspace)
11468 && (loc->address == sal.pc)
11469 && (!section_is_overlay (loc->section)
11470 || loc->section == sal.section));
11471 int line_match = 0;
11472
11473 if ((default_match || sal.explicit_line)
11474 && loc->symtab != NULL
11475 && sal_fullname != NULL
11476 && sal.pspace == loc->pspace
11477 && loc->line_number == sal.line
11478 && filename_cmp (symtab_to_fullname (loc->symtab),
11479 sal_fullname) == 0)
11480 line_match = 1;
11481
11482 if (pc_match || line_match)
11483 {
11484 match = 1;
11485 break;
11486 }
11487 }
11488 }
11489
11490 if (match)
11491 found.push_back (b);
11492 }
11493 }
11494
11495 /* Now go thru the 'found' chain and delete them. */
11496 if (found.empty ())
11497 {
11498 if (arg)
11499 error (_("No breakpoint at %s."), arg);
11500 else
11501 error (_("No breakpoint at this line."));
11502 }
11503
11504 /* Remove duplicates from the vec. */
11505 std::sort (found.begin (), found.end (),
11506 [] (const breakpoint *a, const breakpoint *b)
11507 {
11508 return compare_breakpoints (a, b) < 0;
11509 });
11510 found.erase (std::unique (found.begin (), found.end (),
11511 [] (const breakpoint *a, const breakpoint *b)
11512 {
11513 return compare_breakpoints (a, b) == 0;
11514 }),
11515 found.end ());
11516
11517 if (found.size () > 1)
11518 from_tty = 1; /* Always report if deleted more than one. */
11519 if (from_tty)
11520 {
11521 if (found.size () == 1)
11522 printf_unfiltered (_("Deleted breakpoint "));
11523 else
11524 printf_unfiltered (_("Deleted breakpoints "));
11525 }
11526
11527 for (breakpoint *iter : found)
11528 {
11529 if (from_tty)
11530 printf_unfiltered ("%d ", iter->number);
11531 delete_breakpoint (iter);
11532 }
11533 if (from_tty)
11534 putchar_unfiltered ('\n');
11535 }
11536 \f
11537 /* Delete breakpoint in BS if they are `delete' breakpoints and
11538 all breakpoints that are marked for deletion, whether hit or not.
11539 This is called after any breakpoint is hit, or after errors. */
11540
11541 void
11542 breakpoint_auto_delete (bpstat bs)
11543 {
11544 struct breakpoint *b, *b_tmp;
11545
11546 for (; bs; bs = bs->next)
11547 if (bs->breakpoint_at
11548 && bs->breakpoint_at->disposition == disp_del
11549 && bs->stop)
11550 delete_breakpoint (bs->breakpoint_at);
11551
11552 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11553 {
11554 if (b->disposition == disp_del_at_next_stop)
11555 delete_breakpoint (b);
11556 }
11557 }
11558
11559 /* A comparison function for bp_location AP and BP being interfaced to
11560 qsort. Sort elements primarily by their ADDRESS (no matter what
11561 does breakpoint_address_is_meaningful say for its OWNER),
11562 secondarily by ordering first permanent elements and
11563 terciarily just ensuring the array is sorted stable way despite
11564 qsort being an unstable algorithm. */
11565
11566 static int
11567 bp_locations_compare (const void *ap, const void *bp)
11568 {
11569 const struct bp_location *a = *(const struct bp_location **) ap;
11570 const struct bp_location *b = *(const struct bp_location **) bp;
11571
11572 if (a->address != b->address)
11573 return (a->address > b->address) - (a->address < b->address);
11574
11575 /* Sort locations at the same address by their pspace number, keeping
11576 locations of the same inferior (in a multi-inferior environment)
11577 grouped. */
11578
11579 if (a->pspace->num != b->pspace->num)
11580 return ((a->pspace->num > b->pspace->num)
11581 - (a->pspace->num < b->pspace->num));
11582
11583 /* Sort permanent breakpoints first. */
11584 if (a->permanent != b->permanent)
11585 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11586
11587 /* Make the internal GDB representation stable across GDB runs
11588 where A and B memory inside GDB can differ. Breakpoint locations of
11589 the same type at the same address can be sorted in arbitrary order. */
11590
11591 if (a->owner->number != b->owner->number)
11592 return ((a->owner->number > b->owner->number)
11593 - (a->owner->number < b->owner->number));
11594
11595 return (a > b) - (a < b);
11596 }
11597
11598 /* Set bp_locations_placed_address_before_address_max and
11599 bp_locations_shadow_len_after_address_max according to the current
11600 content of the bp_locations array. */
11601
11602 static void
11603 bp_locations_target_extensions_update (void)
11604 {
11605 struct bp_location *bl, **blp_tmp;
11606
11607 bp_locations_placed_address_before_address_max = 0;
11608 bp_locations_shadow_len_after_address_max = 0;
11609
11610 ALL_BP_LOCATIONS (bl, blp_tmp)
11611 {
11612 CORE_ADDR start, end, addr;
11613
11614 if (!bp_location_has_shadow (bl))
11615 continue;
11616
11617 start = bl->target_info.placed_address;
11618 end = start + bl->target_info.shadow_len;
11619
11620 gdb_assert (bl->address >= start);
11621 addr = bl->address - start;
11622 if (addr > bp_locations_placed_address_before_address_max)
11623 bp_locations_placed_address_before_address_max = addr;
11624
11625 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11626
11627 gdb_assert (bl->address < end);
11628 addr = end - bl->address;
11629 if (addr > bp_locations_shadow_len_after_address_max)
11630 bp_locations_shadow_len_after_address_max = addr;
11631 }
11632 }
11633
11634 /* Download tracepoint locations if they haven't been. */
11635
11636 static void
11637 download_tracepoint_locations (void)
11638 {
11639 struct breakpoint *b;
11640 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11641
11642 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11643
11644 ALL_TRACEPOINTS (b)
11645 {
11646 struct bp_location *bl;
11647 struct tracepoint *t;
11648 int bp_location_downloaded = 0;
11649
11650 if ((b->type == bp_fast_tracepoint
11651 ? !may_insert_fast_tracepoints
11652 : !may_insert_tracepoints))
11653 continue;
11654
11655 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11656 {
11657 if (target_can_download_tracepoint ())
11658 can_download_tracepoint = TRIBOOL_TRUE;
11659 else
11660 can_download_tracepoint = TRIBOOL_FALSE;
11661 }
11662
11663 if (can_download_tracepoint == TRIBOOL_FALSE)
11664 break;
11665
11666 for (bl = b->loc; bl; bl = bl->next)
11667 {
11668 /* In tracepoint, locations are _never_ duplicated, so
11669 should_be_inserted is equivalent to
11670 unduplicated_should_be_inserted. */
11671 if (!should_be_inserted (bl) || bl->inserted)
11672 continue;
11673
11674 switch_to_program_space_and_thread (bl->pspace);
11675
11676 target_download_tracepoint (bl);
11677
11678 bl->inserted = 1;
11679 bp_location_downloaded = 1;
11680 }
11681 t = (struct tracepoint *) b;
11682 t->number_on_target = b->number;
11683 if (bp_location_downloaded)
11684 gdb::observers::breakpoint_modified.notify (b);
11685 }
11686 }
11687
11688 /* Swap the insertion/duplication state between two locations. */
11689
11690 static void
11691 swap_insertion (struct bp_location *left, struct bp_location *right)
11692 {
11693 const int left_inserted = left->inserted;
11694 const int left_duplicate = left->duplicate;
11695 const int left_needs_update = left->needs_update;
11696 const struct bp_target_info left_target_info = left->target_info;
11697
11698 /* Locations of tracepoints can never be duplicated. */
11699 if (is_tracepoint (left->owner))
11700 gdb_assert (!left->duplicate);
11701 if (is_tracepoint (right->owner))
11702 gdb_assert (!right->duplicate);
11703
11704 left->inserted = right->inserted;
11705 left->duplicate = right->duplicate;
11706 left->needs_update = right->needs_update;
11707 left->target_info = right->target_info;
11708 right->inserted = left_inserted;
11709 right->duplicate = left_duplicate;
11710 right->needs_update = left_needs_update;
11711 right->target_info = left_target_info;
11712 }
11713
11714 /* Force the re-insertion of the locations at ADDRESS. This is called
11715 once a new/deleted/modified duplicate location is found and we are evaluating
11716 conditions on the target's side. Such conditions need to be updated on
11717 the target. */
11718
11719 static void
11720 force_breakpoint_reinsertion (struct bp_location *bl)
11721 {
11722 struct bp_location **locp = NULL, **loc2p;
11723 struct bp_location *loc;
11724 CORE_ADDR address = 0;
11725 int pspace_num;
11726
11727 address = bl->address;
11728 pspace_num = bl->pspace->num;
11729
11730 /* This is only meaningful if the target is
11731 evaluating conditions and if the user has
11732 opted for condition evaluation on the target's
11733 side. */
11734 if (gdb_evaluates_breakpoint_condition_p ()
11735 || !target_supports_evaluation_of_breakpoint_conditions ())
11736 return;
11737
11738 /* Flag all breakpoint locations with this address and
11739 the same program space as the location
11740 as "its condition has changed". We need to
11741 update the conditions on the target's side. */
11742 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11743 {
11744 loc = *loc2p;
11745
11746 if (!is_breakpoint (loc->owner)
11747 || pspace_num != loc->pspace->num)
11748 continue;
11749
11750 /* Flag the location appropriately. We use a different state to
11751 let everyone know that we already updated the set of locations
11752 with addr bl->address and program space bl->pspace. This is so
11753 we don't have to keep calling these functions just to mark locations
11754 that have already been marked. */
11755 loc->condition_changed = condition_updated;
11756
11757 /* Free the agent expression bytecode as well. We will compute
11758 it later on. */
11759 loc->cond_bytecode.reset ();
11760 }
11761 }
11762 /* Called whether new breakpoints are created, or existing breakpoints
11763 deleted, to update the global location list and recompute which
11764 locations are duplicate of which.
11765
11766 The INSERT_MODE flag determines whether locations may not, may, or
11767 shall be inserted now. See 'enum ugll_insert_mode' for more
11768 info. */
11769
11770 static void
11771 update_global_location_list (enum ugll_insert_mode insert_mode)
11772 {
11773 struct breakpoint *b;
11774 struct bp_location **locp, *loc;
11775 /* Last breakpoint location address that was marked for update. */
11776 CORE_ADDR last_addr = 0;
11777 /* Last breakpoint location program space that was marked for update. */
11778 int last_pspace_num = -1;
11779
11780 /* Used in the duplicates detection below. When iterating over all
11781 bp_locations, points to the first bp_location of a given address.
11782 Breakpoints and watchpoints of different types are never
11783 duplicates of each other. Keep one pointer for each type of
11784 breakpoint/watchpoint, so we only need to loop over all locations
11785 once. */
11786 struct bp_location *bp_loc_first; /* breakpoint */
11787 struct bp_location *wp_loc_first; /* hardware watchpoint */
11788 struct bp_location *awp_loc_first; /* access watchpoint */
11789 struct bp_location *rwp_loc_first; /* read watchpoint */
11790
11791 /* Saved former bp_locations array which we compare against the newly
11792 built bp_locations from the current state of ALL_BREAKPOINTS. */
11793 struct bp_location **old_locp;
11794 unsigned old_locations_count;
11795 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11796
11797 old_locations_count = bp_locations_count;
11798 bp_locations = NULL;
11799 bp_locations_count = 0;
11800
11801 ALL_BREAKPOINTS (b)
11802 for (loc = b->loc; loc; loc = loc->next)
11803 bp_locations_count++;
11804
11805 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11806 locp = bp_locations;
11807 ALL_BREAKPOINTS (b)
11808 for (loc = b->loc; loc; loc = loc->next)
11809 *locp++ = loc;
11810 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11811 bp_locations_compare);
11812
11813 bp_locations_target_extensions_update ();
11814
11815 /* Identify bp_location instances that are no longer present in the
11816 new list, and therefore should be freed. Note that it's not
11817 necessary that those locations should be removed from inferior --
11818 if there's another location at the same address (previously
11819 marked as duplicate), we don't need to remove/insert the
11820 location.
11821
11822 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11823 and former bp_location array state respectively. */
11824
11825 locp = bp_locations;
11826 for (old_locp = old_locations.get ();
11827 old_locp < old_locations.get () + old_locations_count;
11828 old_locp++)
11829 {
11830 struct bp_location *old_loc = *old_locp;
11831 struct bp_location **loc2p;
11832
11833 /* Tells if 'old_loc' is found among the new locations. If
11834 not, we have to free it. */
11835 int found_object = 0;
11836 /* Tells if the location should remain inserted in the target. */
11837 int keep_in_target = 0;
11838 int removed = 0;
11839
11840 /* Skip LOCP entries which will definitely never be needed.
11841 Stop either at or being the one matching OLD_LOC. */
11842 while (locp < bp_locations + bp_locations_count
11843 && (*locp)->address < old_loc->address)
11844 locp++;
11845
11846 for (loc2p = locp;
11847 (loc2p < bp_locations + bp_locations_count
11848 && (*loc2p)->address == old_loc->address);
11849 loc2p++)
11850 {
11851 /* Check if this is a new/duplicated location or a duplicated
11852 location that had its condition modified. If so, we want to send
11853 its condition to the target if evaluation of conditions is taking
11854 place there. */
11855 if ((*loc2p)->condition_changed == condition_modified
11856 && (last_addr != old_loc->address
11857 || last_pspace_num != old_loc->pspace->num))
11858 {
11859 force_breakpoint_reinsertion (*loc2p);
11860 last_pspace_num = old_loc->pspace->num;
11861 }
11862
11863 if (*loc2p == old_loc)
11864 found_object = 1;
11865 }
11866
11867 /* We have already handled this address, update it so that we don't
11868 have to go through updates again. */
11869 last_addr = old_loc->address;
11870
11871 /* Target-side condition evaluation: Handle deleted locations. */
11872 if (!found_object)
11873 force_breakpoint_reinsertion (old_loc);
11874
11875 /* If this location is no longer present, and inserted, look if
11876 there's maybe a new location at the same address. If so,
11877 mark that one inserted, and don't remove this one. This is
11878 needed so that we don't have a time window where a breakpoint
11879 at certain location is not inserted. */
11880
11881 if (old_loc->inserted)
11882 {
11883 /* If the location is inserted now, we might have to remove
11884 it. */
11885
11886 if (found_object && should_be_inserted (old_loc))
11887 {
11888 /* The location is still present in the location list,
11889 and still should be inserted. Don't do anything. */
11890 keep_in_target = 1;
11891 }
11892 else
11893 {
11894 /* This location still exists, but it won't be kept in the
11895 target since it may have been disabled. We proceed to
11896 remove its target-side condition. */
11897
11898 /* The location is either no longer present, or got
11899 disabled. See if there's another location at the
11900 same address, in which case we don't need to remove
11901 this one from the target. */
11902
11903 /* OLD_LOC comes from existing struct breakpoint. */
11904 if (breakpoint_address_is_meaningful (old_loc->owner))
11905 {
11906 for (loc2p = locp;
11907 (loc2p < bp_locations + bp_locations_count
11908 && (*loc2p)->address == old_loc->address);
11909 loc2p++)
11910 {
11911 struct bp_location *loc2 = *loc2p;
11912
11913 if (breakpoint_locations_match (loc2, old_loc))
11914 {
11915 /* Read watchpoint locations are switched to
11916 access watchpoints, if the former are not
11917 supported, but the latter are. */
11918 if (is_hardware_watchpoint (old_loc->owner))
11919 {
11920 gdb_assert (is_hardware_watchpoint (loc2->owner));
11921 loc2->watchpoint_type = old_loc->watchpoint_type;
11922 }
11923
11924 /* loc2 is a duplicated location. We need to check
11925 if it should be inserted in case it will be
11926 unduplicated. */
11927 if (loc2 != old_loc
11928 && unduplicated_should_be_inserted (loc2))
11929 {
11930 swap_insertion (old_loc, loc2);
11931 keep_in_target = 1;
11932 break;
11933 }
11934 }
11935 }
11936 }
11937 }
11938
11939 if (!keep_in_target)
11940 {
11941 if (remove_breakpoint (old_loc))
11942 {
11943 /* This is just about all we can do. We could keep
11944 this location on the global list, and try to
11945 remove it next time, but there's no particular
11946 reason why we will succeed next time.
11947
11948 Note that at this point, old_loc->owner is still
11949 valid, as delete_breakpoint frees the breakpoint
11950 only after calling us. */
11951 printf_filtered (_("warning: Error removing "
11952 "breakpoint %d\n"),
11953 old_loc->owner->number);
11954 }
11955 removed = 1;
11956 }
11957 }
11958
11959 if (!found_object)
11960 {
11961 if (removed && target_is_non_stop_p ()
11962 && need_moribund_for_location_type (old_loc))
11963 {
11964 /* This location was removed from the target. In
11965 non-stop mode, a race condition is possible where
11966 we've removed a breakpoint, but stop events for that
11967 breakpoint are already queued and will arrive later.
11968 We apply an heuristic to be able to distinguish such
11969 SIGTRAPs from other random SIGTRAPs: we keep this
11970 breakpoint location for a bit, and will retire it
11971 after we see some number of events. The theory here
11972 is that reporting of events should, "on the average",
11973 be fair, so after a while we'll see events from all
11974 threads that have anything of interest, and no longer
11975 need to keep this breakpoint location around. We
11976 don't hold locations forever so to reduce chances of
11977 mistaking a non-breakpoint SIGTRAP for a breakpoint
11978 SIGTRAP.
11979
11980 The heuristic failing can be disastrous on
11981 decr_pc_after_break targets.
11982
11983 On decr_pc_after_break targets, like e.g., x86-linux,
11984 if we fail to recognize a late breakpoint SIGTRAP,
11985 because events_till_retirement has reached 0 too
11986 soon, we'll fail to do the PC adjustment, and report
11987 a random SIGTRAP to the user. When the user resumes
11988 the inferior, it will most likely immediately crash
11989 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11990 corrupted, because of being resumed e.g., in the
11991 middle of a multi-byte instruction, or skipped a
11992 one-byte instruction. This was actually seen happen
11993 on native x86-linux, and should be less rare on
11994 targets that do not support new thread events, like
11995 remote, due to the heuristic depending on
11996 thread_count.
11997
11998 Mistaking a random SIGTRAP for a breakpoint trap
11999 causes similar symptoms (PC adjustment applied when
12000 it shouldn't), but then again, playing with SIGTRAPs
12001 behind the debugger's back is asking for trouble.
12002
12003 Since hardware watchpoint traps are always
12004 distinguishable from other traps, so we don't need to
12005 apply keep hardware watchpoint moribund locations
12006 around. We simply always ignore hardware watchpoint
12007 traps we can no longer explain. */
12008
12009 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12010 old_loc->owner = NULL;
12011
12012 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12013 }
12014 else
12015 {
12016 old_loc->owner = NULL;
12017 decref_bp_location (&old_loc);
12018 }
12019 }
12020 }
12021
12022 /* Rescan breakpoints at the same address and section, marking the
12023 first one as "first" and any others as "duplicates". This is so
12024 that the bpt instruction is only inserted once. If we have a
12025 permanent breakpoint at the same place as BPT, make that one the
12026 official one, and the rest as duplicates. Permanent breakpoints
12027 are sorted first for the same address.
12028
12029 Do the same for hardware watchpoints, but also considering the
12030 watchpoint's type (regular/access/read) and length. */
12031
12032 bp_loc_first = NULL;
12033 wp_loc_first = NULL;
12034 awp_loc_first = NULL;
12035 rwp_loc_first = NULL;
12036 ALL_BP_LOCATIONS (loc, locp)
12037 {
12038 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12039 non-NULL. */
12040 struct bp_location **loc_first_p;
12041 b = loc->owner;
12042
12043 if (!unduplicated_should_be_inserted (loc)
12044 || !breakpoint_address_is_meaningful (b)
12045 /* Don't detect duplicate for tracepoint locations because they are
12046 never duplicated. See the comments in field `duplicate' of
12047 `struct bp_location'. */
12048 || is_tracepoint (b))
12049 {
12050 /* Clear the condition modification flag. */
12051 loc->condition_changed = condition_unchanged;
12052 continue;
12053 }
12054
12055 if (b->type == bp_hardware_watchpoint)
12056 loc_first_p = &wp_loc_first;
12057 else if (b->type == bp_read_watchpoint)
12058 loc_first_p = &rwp_loc_first;
12059 else if (b->type == bp_access_watchpoint)
12060 loc_first_p = &awp_loc_first;
12061 else
12062 loc_first_p = &bp_loc_first;
12063
12064 if (*loc_first_p == NULL
12065 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12066 || !breakpoint_locations_match (loc, *loc_first_p))
12067 {
12068 *loc_first_p = loc;
12069 loc->duplicate = 0;
12070
12071 if (is_breakpoint (loc->owner) && loc->condition_changed)
12072 {
12073 loc->needs_update = 1;
12074 /* Clear the condition modification flag. */
12075 loc->condition_changed = condition_unchanged;
12076 }
12077 continue;
12078 }
12079
12080
12081 /* This and the above ensure the invariant that the first location
12082 is not duplicated, and is the inserted one.
12083 All following are marked as duplicated, and are not inserted. */
12084 if (loc->inserted)
12085 swap_insertion (loc, *loc_first_p);
12086 loc->duplicate = 1;
12087
12088 /* Clear the condition modification flag. */
12089 loc->condition_changed = condition_unchanged;
12090 }
12091
12092 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12093 {
12094 if (insert_mode != UGLL_DONT_INSERT)
12095 insert_breakpoint_locations ();
12096 else
12097 {
12098 /* Even though the caller told us to not insert new
12099 locations, we may still need to update conditions on the
12100 target's side of breakpoints that were already inserted
12101 if the target is evaluating breakpoint conditions. We
12102 only update conditions for locations that are marked
12103 "needs_update". */
12104 update_inserted_breakpoint_locations ();
12105 }
12106 }
12107
12108 if (insert_mode != UGLL_DONT_INSERT)
12109 download_tracepoint_locations ();
12110 }
12111
12112 void
12113 breakpoint_retire_moribund (void)
12114 {
12115 struct bp_location *loc;
12116 int ix;
12117
12118 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12119 if (--(loc->events_till_retirement) == 0)
12120 {
12121 decref_bp_location (&loc);
12122 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12123 --ix;
12124 }
12125 }
12126
12127 static void
12128 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12129 {
12130
12131 TRY
12132 {
12133 update_global_location_list (insert_mode);
12134 }
12135 CATCH (e, RETURN_MASK_ERROR)
12136 {
12137 }
12138 END_CATCH
12139 }
12140
12141 /* Clear BKP from a BPS. */
12142
12143 static void
12144 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12145 {
12146 bpstat bs;
12147
12148 for (bs = bps; bs; bs = bs->next)
12149 if (bs->breakpoint_at == bpt)
12150 {
12151 bs->breakpoint_at = NULL;
12152 bs->old_val = NULL;
12153 /* bs->commands will be freed later. */
12154 }
12155 }
12156
12157 /* Callback for iterate_over_threads. */
12158 static int
12159 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12160 {
12161 struct breakpoint *bpt = (struct breakpoint *) data;
12162
12163 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12164 return 0;
12165 }
12166
12167 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12168 callbacks. */
12169
12170 static void
12171 say_where (struct breakpoint *b)
12172 {
12173 struct value_print_options opts;
12174
12175 get_user_print_options (&opts);
12176
12177 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12178 single string. */
12179 if (b->loc == NULL)
12180 {
12181 /* For pending locations, the output differs slightly based
12182 on b->extra_string. If this is non-NULL, it contains either
12183 a condition or dprintf arguments. */
12184 if (b->extra_string == NULL)
12185 {
12186 printf_filtered (_(" (%s) pending."),
12187 event_location_to_string (b->location.get ()));
12188 }
12189 else if (b->type == bp_dprintf)
12190 {
12191 printf_filtered (_(" (%s,%s) pending."),
12192 event_location_to_string (b->location.get ()),
12193 b->extra_string);
12194 }
12195 else
12196 {
12197 printf_filtered (_(" (%s %s) pending."),
12198 event_location_to_string (b->location.get ()),
12199 b->extra_string);
12200 }
12201 }
12202 else
12203 {
12204 if (opts.addressprint || b->loc->symtab == NULL)
12205 {
12206 printf_filtered (" at ");
12207 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12208 gdb_stdout);
12209 }
12210 if (b->loc->symtab != NULL)
12211 {
12212 /* If there is a single location, we can print the location
12213 more nicely. */
12214 if (b->loc->next == NULL)
12215 printf_filtered (": file %s, line %d.",
12216 symtab_to_filename_for_display (b->loc->symtab),
12217 b->loc->line_number);
12218 else
12219 /* This is not ideal, but each location may have a
12220 different file name, and this at least reflects the
12221 real situation somewhat. */
12222 printf_filtered (": %s.",
12223 event_location_to_string (b->location.get ()));
12224 }
12225
12226 if (b->loc->next)
12227 {
12228 struct bp_location *loc = b->loc;
12229 int n = 0;
12230 for (; loc; loc = loc->next)
12231 ++n;
12232 printf_filtered (" (%d locations)", n);
12233 }
12234 }
12235 }
12236
12237 /* Default bp_location_ops methods. */
12238
12239 static void
12240 bp_location_dtor (struct bp_location *self)
12241 {
12242 xfree (self->function_name);
12243 }
12244
12245 static const struct bp_location_ops bp_location_ops =
12246 {
12247 bp_location_dtor
12248 };
12249
12250 /* Destructor for the breakpoint base class. */
12251
12252 breakpoint::~breakpoint ()
12253 {
12254 xfree (this->cond_string);
12255 xfree (this->extra_string);
12256 xfree (this->filter);
12257 }
12258
12259 static struct bp_location *
12260 base_breakpoint_allocate_location (struct breakpoint *self)
12261 {
12262 return new bp_location (&bp_location_ops, self);
12263 }
12264
12265 static void
12266 base_breakpoint_re_set (struct breakpoint *b)
12267 {
12268 /* Nothing to re-set. */
12269 }
12270
12271 #define internal_error_pure_virtual_called() \
12272 gdb_assert_not_reached ("pure virtual function called")
12273
12274 static int
12275 base_breakpoint_insert_location (struct bp_location *bl)
12276 {
12277 internal_error_pure_virtual_called ();
12278 }
12279
12280 static int
12281 base_breakpoint_remove_location (struct bp_location *bl,
12282 enum remove_bp_reason reason)
12283 {
12284 internal_error_pure_virtual_called ();
12285 }
12286
12287 static int
12288 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12289 const address_space *aspace,
12290 CORE_ADDR bp_addr,
12291 const struct target_waitstatus *ws)
12292 {
12293 internal_error_pure_virtual_called ();
12294 }
12295
12296 static void
12297 base_breakpoint_check_status (bpstat bs)
12298 {
12299 /* Always stop. */
12300 }
12301
12302 /* A "works_in_software_mode" breakpoint_ops method that just internal
12303 errors. */
12304
12305 static int
12306 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12307 {
12308 internal_error_pure_virtual_called ();
12309 }
12310
12311 /* A "resources_needed" breakpoint_ops method that just internal
12312 errors. */
12313
12314 static int
12315 base_breakpoint_resources_needed (const struct bp_location *bl)
12316 {
12317 internal_error_pure_virtual_called ();
12318 }
12319
12320 static enum print_stop_action
12321 base_breakpoint_print_it (bpstat bs)
12322 {
12323 internal_error_pure_virtual_called ();
12324 }
12325
12326 static void
12327 base_breakpoint_print_one_detail (const struct breakpoint *self,
12328 struct ui_out *uiout)
12329 {
12330 /* nothing */
12331 }
12332
12333 static void
12334 base_breakpoint_print_mention (struct breakpoint *b)
12335 {
12336 internal_error_pure_virtual_called ();
12337 }
12338
12339 static void
12340 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12341 {
12342 internal_error_pure_virtual_called ();
12343 }
12344
12345 static void
12346 base_breakpoint_create_sals_from_location
12347 (const struct event_location *location,
12348 struct linespec_result *canonical,
12349 enum bptype type_wanted)
12350 {
12351 internal_error_pure_virtual_called ();
12352 }
12353
12354 static void
12355 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12356 struct linespec_result *c,
12357 gdb::unique_xmalloc_ptr<char> cond_string,
12358 gdb::unique_xmalloc_ptr<char> extra_string,
12359 enum bptype type_wanted,
12360 enum bpdisp disposition,
12361 int thread,
12362 int task, int ignore_count,
12363 const struct breakpoint_ops *o,
12364 int from_tty, int enabled,
12365 int internal, unsigned flags)
12366 {
12367 internal_error_pure_virtual_called ();
12368 }
12369
12370 static std::vector<symtab_and_line>
12371 base_breakpoint_decode_location (struct breakpoint *b,
12372 const struct event_location *location,
12373 struct program_space *search_pspace)
12374 {
12375 internal_error_pure_virtual_called ();
12376 }
12377
12378 /* The default 'explains_signal' method. */
12379
12380 static int
12381 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12382 {
12383 return 1;
12384 }
12385
12386 /* The default "after_condition_true" method. */
12387
12388 static void
12389 base_breakpoint_after_condition_true (struct bpstats *bs)
12390 {
12391 /* Nothing to do. */
12392 }
12393
12394 struct breakpoint_ops base_breakpoint_ops =
12395 {
12396 base_breakpoint_allocate_location,
12397 base_breakpoint_re_set,
12398 base_breakpoint_insert_location,
12399 base_breakpoint_remove_location,
12400 base_breakpoint_breakpoint_hit,
12401 base_breakpoint_check_status,
12402 base_breakpoint_resources_needed,
12403 base_breakpoint_works_in_software_mode,
12404 base_breakpoint_print_it,
12405 NULL,
12406 base_breakpoint_print_one_detail,
12407 base_breakpoint_print_mention,
12408 base_breakpoint_print_recreate,
12409 base_breakpoint_create_sals_from_location,
12410 base_breakpoint_create_breakpoints_sal,
12411 base_breakpoint_decode_location,
12412 base_breakpoint_explains_signal,
12413 base_breakpoint_after_condition_true,
12414 };
12415
12416 /* Default breakpoint_ops methods. */
12417
12418 static void
12419 bkpt_re_set (struct breakpoint *b)
12420 {
12421 /* FIXME: is this still reachable? */
12422 if (breakpoint_event_location_empty_p (b))
12423 {
12424 /* Anything without a location can't be re-set. */
12425 delete_breakpoint (b);
12426 return;
12427 }
12428
12429 breakpoint_re_set_default (b);
12430 }
12431
12432 static int
12433 bkpt_insert_location (struct bp_location *bl)
12434 {
12435 CORE_ADDR addr = bl->target_info.reqstd_address;
12436
12437 bl->target_info.kind = breakpoint_kind (bl, &addr);
12438 bl->target_info.placed_address = addr;
12439
12440 if (bl->loc_type == bp_loc_hardware_breakpoint)
12441 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12442 else
12443 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12444 }
12445
12446 static int
12447 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12448 {
12449 if (bl->loc_type == bp_loc_hardware_breakpoint)
12450 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12451 else
12452 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12453 }
12454
12455 static int
12456 bkpt_breakpoint_hit (const struct bp_location *bl,
12457 const address_space *aspace, CORE_ADDR bp_addr,
12458 const struct target_waitstatus *ws)
12459 {
12460 if (ws->kind != TARGET_WAITKIND_STOPPED
12461 || ws->value.sig != GDB_SIGNAL_TRAP)
12462 return 0;
12463
12464 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12465 aspace, bp_addr))
12466 return 0;
12467
12468 if (overlay_debugging /* unmapped overlay section */
12469 && section_is_overlay (bl->section)
12470 && !section_is_mapped (bl->section))
12471 return 0;
12472
12473 return 1;
12474 }
12475
12476 static int
12477 dprintf_breakpoint_hit (const struct bp_location *bl,
12478 const address_space *aspace, CORE_ADDR bp_addr,
12479 const struct target_waitstatus *ws)
12480 {
12481 if (dprintf_style == dprintf_style_agent
12482 && target_can_run_breakpoint_commands ())
12483 {
12484 /* An agent-style dprintf never causes a stop. If we see a trap
12485 for this address it must be for a breakpoint that happens to
12486 be set at the same address. */
12487 return 0;
12488 }
12489
12490 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12491 }
12492
12493 static int
12494 bkpt_resources_needed (const struct bp_location *bl)
12495 {
12496 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12497
12498 return 1;
12499 }
12500
12501 static enum print_stop_action
12502 bkpt_print_it (bpstat bs)
12503 {
12504 struct breakpoint *b;
12505 const struct bp_location *bl;
12506 int bp_temp;
12507 struct ui_out *uiout = current_uiout;
12508
12509 gdb_assert (bs->bp_location_at != NULL);
12510
12511 bl = bs->bp_location_at;
12512 b = bs->breakpoint_at;
12513
12514 bp_temp = b->disposition == disp_del;
12515 if (bl->address != bl->requested_address)
12516 breakpoint_adjustment_warning (bl->requested_address,
12517 bl->address,
12518 b->number, 1);
12519 annotate_breakpoint (b->number);
12520 maybe_print_thread_hit_breakpoint (uiout);
12521
12522 if (bp_temp)
12523 uiout->text ("Temporary breakpoint ");
12524 else
12525 uiout->text ("Breakpoint ");
12526 if (uiout->is_mi_like_p ())
12527 {
12528 uiout->field_string ("reason",
12529 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12530 uiout->field_string ("disp", bpdisp_text (b->disposition));
12531 }
12532 uiout->field_int ("bkptno", b->number);
12533 uiout->text (", ");
12534
12535 return PRINT_SRC_AND_LOC;
12536 }
12537
12538 static void
12539 bkpt_print_mention (struct breakpoint *b)
12540 {
12541 if (current_uiout->is_mi_like_p ())
12542 return;
12543
12544 switch (b->type)
12545 {
12546 case bp_breakpoint:
12547 case bp_gnu_ifunc_resolver:
12548 if (b->disposition == disp_del)
12549 printf_filtered (_("Temporary breakpoint"));
12550 else
12551 printf_filtered (_("Breakpoint"));
12552 printf_filtered (_(" %d"), b->number);
12553 if (b->type == bp_gnu_ifunc_resolver)
12554 printf_filtered (_(" at gnu-indirect-function resolver"));
12555 break;
12556 case bp_hardware_breakpoint:
12557 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12558 break;
12559 case bp_dprintf:
12560 printf_filtered (_("Dprintf %d"), b->number);
12561 break;
12562 }
12563
12564 say_where (b);
12565 }
12566
12567 static void
12568 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12569 {
12570 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12571 fprintf_unfiltered (fp, "tbreak");
12572 else if (tp->type == bp_breakpoint)
12573 fprintf_unfiltered (fp, "break");
12574 else if (tp->type == bp_hardware_breakpoint
12575 && tp->disposition == disp_del)
12576 fprintf_unfiltered (fp, "thbreak");
12577 else if (tp->type == bp_hardware_breakpoint)
12578 fprintf_unfiltered (fp, "hbreak");
12579 else
12580 internal_error (__FILE__, __LINE__,
12581 _("unhandled breakpoint type %d"), (int) tp->type);
12582
12583 fprintf_unfiltered (fp, " %s",
12584 event_location_to_string (tp->location.get ()));
12585
12586 /* Print out extra_string if this breakpoint is pending. It might
12587 contain, for example, conditions that were set by the user. */
12588 if (tp->loc == NULL && tp->extra_string != NULL)
12589 fprintf_unfiltered (fp, " %s", tp->extra_string);
12590
12591 print_recreate_thread (tp, fp);
12592 }
12593
12594 static void
12595 bkpt_create_sals_from_location (const struct event_location *location,
12596 struct linespec_result *canonical,
12597 enum bptype type_wanted)
12598 {
12599 create_sals_from_location_default (location, canonical, type_wanted);
12600 }
12601
12602 static void
12603 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12604 struct linespec_result *canonical,
12605 gdb::unique_xmalloc_ptr<char> cond_string,
12606 gdb::unique_xmalloc_ptr<char> extra_string,
12607 enum bptype type_wanted,
12608 enum bpdisp disposition,
12609 int thread,
12610 int task, int ignore_count,
12611 const struct breakpoint_ops *ops,
12612 int from_tty, int enabled,
12613 int internal, unsigned flags)
12614 {
12615 create_breakpoints_sal_default (gdbarch, canonical,
12616 std::move (cond_string),
12617 std::move (extra_string),
12618 type_wanted,
12619 disposition, thread, task,
12620 ignore_count, ops, from_tty,
12621 enabled, internal, flags);
12622 }
12623
12624 static std::vector<symtab_and_line>
12625 bkpt_decode_location (struct breakpoint *b,
12626 const struct event_location *location,
12627 struct program_space *search_pspace)
12628 {
12629 return decode_location_default (b, location, search_pspace);
12630 }
12631
12632 /* Virtual table for internal breakpoints. */
12633
12634 static void
12635 internal_bkpt_re_set (struct breakpoint *b)
12636 {
12637 switch (b->type)
12638 {
12639 /* Delete overlay event and longjmp master breakpoints; they
12640 will be reset later by breakpoint_re_set. */
12641 case bp_overlay_event:
12642 case bp_longjmp_master:
12643 case bp_std_terminate_master:
12644 case bp_exception_master:
12645 delete_breakpoint (b);
12646 break;
12647
12648 /* This breakpoint is special, it's set up when the inferior
12649 starts and we really don't want to touch it. */
12650 case bp_shlib_event:
12651
12652 /* Like bp_shlib_event, this breakpoint type is special. Once
12653 it is set up, we do not want to touch it. */
12654 case bp_thread_event:
12655 break;
12656 }
12657 }
12658
12659 static void
12660 internal_bkpt_check_status (bpstat bs)
12661 {
12662 if (bs->breakpoint_at->type == bp_shlib_event)
12663 {
12664 /* If requested, stop when the dynamic linker notifies GDB of
12665 events. This allows the user to get control and place
12666 breakpoints in initializer routines for dynamically loaded
12667 objects (among other things). */
12668 bs->stop = stop_on_solib_events;
12669 bs->print = stop_on_solib_events;
12670 }
12671 else
12672 bs->stop = 0;
12673 }
12674
12675 static enum print_stop_action
12676 internal_bkpt_print_it (bpstat bs)
12677 {
12678 struct breakpoint *b;
12679
12680 b = bs->breakpoint_at;
12681
12682 switch (b->type)
12683 {
12684 case bp_shlib_event:
12685 /* Did we stop because the user set the stop_on_solib_events
12686 variable? (If so, we report this as a generic, "Stopped due
12687 to shlib event" message.) */
12688 print_solib_event (0);
12689 break;
12690
12691 case bp_thread_event:
12692 /* Not sure how we will get here.
12693 GDB should not stop for these breakpoints. */
12694 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12695 break;
12696
12697 case bp_overlay_event:
12698 /* By analogy with the thread event, GDB should not stop for these. */
12699 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12700 break;
12701
12702 case bp_longjmp_master:
12703 /* These should never be enabled. */
12704 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12705 break;
12706
12707 case bp_std_terminate_master:
12708 /* These should never be enabled. */
12709 printf_filtered (_("std::terminate Master Breakpoint: "
12710 "gdb should not stop!\n"));
12711 break;
12712
12713 case bp_exception_master:
12714 /* These should never be enabled. */
12715 printf_filtered (_("Exception Master Breakpoint: "
12716 "gdb should not stop!\n"));
12717 break;
12718 }
12719
12720 return PRINT_NOTHING;
12721 }
12722
12723 static void
12724 internal_bkpt_print_mention (struct breakpoint *b)
12725 {
12726 /* Nothing to mention. These breakpoints are internal. */
12727 }
12728
12729 /* Virtual table for momentary breakpoints */
12730
12731 static void
12732 momentary_bkpt_re_set (struct breakpoint *b)
12733 {
12734 /* Keep temporary breakpoints, which can be encountered when we step
12735 over a dlopen call and solib_add is resetting the breakpoints.
12736 Otherwise these should have been blown away via the cleanup chain
12737 or by breakpoint_init_inferior when we rerun the executable. */
12738 }
12739
12740 static void
12741 momentary_bkpt_check_status (bpstat bs)
12742 {
12743 /* Nothing. The point of these breakpoints is causing a stop. */
12744 }
12745
12746 static enum print_stop_action
12747 momentary_bkpt_print_it (bpstat bs)
12748 {
12749 return PRINT_UNKNOWN;
12750 }
12751
12752 static void
12753 momentary_bkpt_print_mention (struct breakpoint *b)
12754 {
12755 /* Nothing to mention. These breakpoints are internal. */
12756 }
12757
12758 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12759
12760 It gets cleared already on the removal of the first one of such placed
12761 breakpoints. This is OK as they get all removed altogether. */
12762
12763 longjmp_breakpoint::~longjmp_breakpoint ()
12764 {
12765 thread_info *tp = find_thread_global_id (this->thread);
12766
12767 if (tp != NULL)
12768 tp->initiating_frame = null_frame_id;
12769 }
12770
12771 /* Specific methods for probe breakpoints. */
12772
12773 static int
12774 bkpt_probe_insert_location (struct bp_location *bl)
12775 {
12776 int v = bkpt_insert_location (bl);
12777
12778 if (v == 0)
12779 {
12780 /* The insertion was successful, now let's set the probe's semaphore
12781 if needed. */
12782 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12783 }
12784
12785 return v;
12786 }
12787
12788 static int
12789 bkpt_probe_remove_location (struct bp_location *bl,
12790 enum remove_bp_reason reason)
12791 {
12792 /* Let's clear the semaphore before removing the location. */
12793 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12794
12795 return bkpt_remove_location (bl, reason);
12796 }
12797
12798 static void
12799 bkpt_probe_create_sals_from_location (const struct event_location *location,
12800 struct linespec_result *canonical,
12801 enum bptype type_wanted)
12802 {
12803 struct linespec_sals lsal;
12804
12805 lsal.sals = parse_probes (location, NULL, canonical);
12806 lsal.canonical
12807 = xstrdup (event_location_to_string (canonical->location.get ()));
12808 canonical->lsals.push_back (std::move (lsal));
12809 }
12810
12811 static std::vector<symtab_and_line>
12812 bkpt_probe_decode_location (struct breakpoint *b,
12813 const struct event_location *location,
12814 struct program_space *search_pspace)
12815 {
12816 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12817 if (sals.empty ())
12818 error (_("probe not found"));
12819 return sals;
12820 }
12821
12822 /* The breakpoint_ops structure to be used in tracepoints. */
12823
12824 static void
12825 tracepoint_re_set (struct breakpoint *b)
12826 {
12827 breakpoint_re_set_default (b);
12828 }
12829
12830 static int
12831 tracepoint_breakpoint_hit (const struct bp_location *bl,
12832 const address_space *aspace, CORE_ADDR bp_addr,
12833 const struct target_waitstatus *ws)
12834 {
12835 /* By definition, the inferior does not report stops at
12836 tracepoints. */
12837 return 0;
12838 }
12839
12840 static void
12841 tracepoint_print_one_detail (const struct breakpoint *self,
12842 struct ui_out *uiout)
12843 {
12844 struct tracepoint *tp = (struct tracepoint *) self;
12845 if (!tp->static_trace_marker_id.empty ())
12846 {
12847 gdb_assert (self->type == bp_static_tracepoint);
12848
12849 uiout->text ("\tmarker id is ");
12850 uiout->field_string ("static-tracepoint-marker-string-id",
12851 tp->static_trace_marker_id);
12852 uiout->text ("\n");
12853 }
12854 }
12855
12856 static void
12857 tracepoint_print_mention (struct breakpoint *b)
12858 {
12859 if (current_uiout->is_mi_like_p ())
12860 return;
12861
12862 switch (b->type)
12863 {
12864 case bp_tracepoint:
12865 printf_filtered (_("Tracepoint"));
12866 printf_filtered (_(" %d"), b->number);
12867 break;
12868 case bp_fast_tracepoint:
12869 printf_filtered (_("Fast tracepoint"));
12870 printf_filtered (_(" %d"), b->number);
12871 break;
12872 case bp_static_tracepoint:
12873 printf_filtered (_("Static tracepoint"));
12874 printf_filtered (_(" %d"), b->number);
12875 break;
12876 default:
12877 internal_error (__FILE__, __LINE__,
12878 _("unhandled tracepoint type %d"), (int) b->type);
12879 }
12880
12881 say_where (b);
12882 }
12883
12884 static void
12885 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12886 {
12887 struct tracepoint *tp = (struct tracepoint *) self;
12888
12889 if (self->type == bp_fast_tracepoint)
12890 fprintf_unfiltered (fp, "ftrace");
12891 else if (self->type == bp_static_tracepoint)
12892 fprintf_unfiltered (fp, "strace");
12893 else if (self->type == bp_tracepoint)
12894 fprintf_unfiltered (fp, "trace");
12895 else
12896 internal_error (__FILE__, __LINE__,
12897 _("unhandled tracepoint type %d"), (int) self->type);
12898
12899 fprintf_unfiltered (fp, " %s",
12900 event_location_to_string (self->location.get ()));
12901 print_recreate_thread (self, fp);
12902
12903 if (tp->pass_count)
12904 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12905 }
12906
12907 static void
12908 tracepoint_create_sals_from_location (const struct event_location *location,
12909 struct linespec_result *canonical,
12910 enum bptype type_wanted)
12911 {
12912 create_sals_from_location_default (location, canonical, type_wanted);
12913 }
12914
12915 static void
12916 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12917 struct linespec_result *canonical,
12918 gdb::unique_xmalloc_ptr<char> cond_string,
12919 gdb::unique_xmalloc_ptr<char> extra_string,
12920 enum bptype type_wanted,
12921 enum bpdisp disposition,
12922 int thread,
12923 int task, int ignore_count,
12924 const struct breakpoint_ops *ops,
12925 int from_tty, int enabled,
12926 int internal, unsigned flags)
12927 {
12928 create_breakpoints_sal_default (gdbarch, canonical,
12929 std::move (cond_string),
12930 std::move (extra_string),
12931 type_wanted,
12932 disposition, thread, task,
12933 ignore_count, ops, from_tty,
12934 enabled, internal, flags);
12935 }
12936
12937 static std::vector<symtab_and_line>
12938 tracepoint_decode_location (struct breakpoint *b,
12939 const struct event_location *location,
12940 struct program_space *search_pspace)
12941 {
12942 return decode_location_default (b, location, search_pspace);
12943 }
12944
12945 struct breakpoint_ops tracepoint_breakpoint_ops;
12946
12947 /* The breakpoint_ops structure to be use on tracepoints placed in a
12948 static probe. */
12949
12950 static void
12951 tracepoint_probe_create_sals_from_location
12952 (const struct event_location *location,
12953 struct linespec_result *canonical,
12954 enum bptype type_wanted)
12955 {
12956 /* We use the same method for breakpoint on probes. */
12957 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12958 }
12959
12960 static std::vector<symtab_and_line>
12961 tracepoint_probe_decode_location (struct breakpoint *b,
12962 const struct event_location *location,
12963 struct program_space *search_pspace)
12964 {
12965 /* We use the same method for breakpoint on probes. */
12966 return bkpt_probe_decode_location (b, location, search_pspace);
12967 }
12968
12969 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12970
12971 /* Dprintf breakpoint_ops methods. */
12972
12973 static void
12974 dprintf_re_set (struct breakpoint *b)
12975 {
12976 breakpoint_re_set_default (b);
12977
12978 /* extra_string should never be non-NULL for dprintf. */
12979 gdb_assert (b->extra_string != NULL);
12980
12981 /* 1 - connect to target 1, that can run breakpoint commands.
12982 2 - create a dprintf, which resolves fine.
12983 3 - disconnect from target 1
12984 4 - connect to target 2, that can NOT run breakpoint commands.
12985
12986 After steps #3/#4, you'll want the dprintf command list to
12987 be updated, because target 1 and 2 may well return different
12988 answers for target_can_run_breakpoint_commands().
12989 Given absence of finer grained resetting, we get to do
12990 it all the time. */
12991 if (b->extra_string != NULL)
12992 update_dprintf_command_list (b);
12993 }
12994
12995 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12996
12997 static void
12998 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12999 {
13000 fprintf_unfiltered (fp, "dprintf %s,%s",
13001 event_location_to_string (tp->location.get ()),
13002 tp->extra_string);
13003 print_recreate_thread (tp, fp);
13004 }
13005
13006 /* Implement the "after_condition_true" breakpoint_ops method for
13007 dprintf.
13008
13009 dprintf's are implemented with regular commands in their command
13010 list, but we run the commands here instead of before presenting the
13011 stop to the user, as dprintf's don't actually cause a stop. This
13012 also makes it so that the commands of multiple dprintfs at the same
13013 address are all handled. */
13014
13015 static void
13016 dprintf_after_condition_true (struct bpstats *bs)
13017 {
13018 struct bpstats tmp_bs;
13019 struct bpstats *tmp_bs_p = &tmp_bs;
13020
13021 /* dprintf's never cause a stop. This wasn't set in the
13022 check_status hook instead because that would make the dprintf's
13023 condition not be evaluated. */
13024 bs->stop = 0;
13025
13026 /* Run the command list here. Take ownership of it instead of
13027 copying. We never want these commands to run later in
13028 bpstat_do_actions, if a breakpoint that causes a stop happens to
13029 be set at same address as this dprintf, or even if running the
13030 commands here throws. */
13031 tmp_bs.commands = bs->commands;
13032 bs->commands = NULL;
13033
13034 bpstat_do_actions_1 (&tmp_bs_p);
13035
13036 /* 'tmp_bs.commands' will usually be NULL by now, but
13037 bpstat_do_actions_1 may return early without processing the whole
13038 list. */
13039 }
13040
13041 /* The breakpoint_ops structure to be used on static tracepoints with
13042 markers (`-m'). */
13043
13044 static void
13045 strace_marker_create_sals_from_location (const struct event_location *location,
13046 struct linespec_result *canonical,
13047 enum bptype type_wanted)
13048 {
13049 struct linespec_sals lsal;
13050 const char *arg_start, *arg;
13051
13052 arg = arg_start = get_linespec_location (location)->spec_string;
13053 lsal.sals = decode_static_tracepoint_spec (&arg);
13054
13055 std::string str (arg_start, arg - arg_start);
13056 const char *ptr = str.c_str ();
13057 canonical->location
13058 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13059
13060 lsal.canonical
13061 = xstrdup (event_location_to_string (canonical->location.get ()));
13062 canonical->lsals.push_back (std::move (lsal));
13063 }
13064
13065 static void
13066 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13067 struct linespec_result *canonical,
13068 gdb::unique_xmalloc_ptr<char> cond_string,
13069 gdb::unique_xmalloc_ptr<char> extra_string,
13070 enum bptype type_wanted,
13071 enum bpdisp disposition,
13072 int thread,
13073 int task, int ignore_count,
13074 const struct breakpoint_ops *ops,
13075 int from_tty, int enabled,
13076 int internal, unsigned flags)
13077 {
13078 const linespec_sals &lsal = canonical->lsals[0];
13079
13080 /* If the user is creating a static tracepoint by marker id
13081 (strace -m MARKER_ID), then store the sals index, so that
13082 breakpoint_re_set can try to match up which of the newly
13083 found markers corresponds to this one, and, don't try to
13084 expand multiple locations for each sal, given than SALS
13085 already should contain all sals for MARKER_ID. */
13086
13087 for (size_t i = 0; i < lsal.sals.size (); i++)
13088 {
13089 event_location_up location
13090 = copy_event_location (canonical->location.get ());
13091
13092 std::unique_ptr<tracepoint> tp (new tracepoint ());
13093 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13094 std::move (location), NULL,
13095 std::move (cond_string),
13096 std::move (extra_string),
13097 type_wanted, disposition,
13098 thread, task, ignore_count, ops,
13099 from_tty, enabled, internal, flags,
13100 canonical->special_display);
13101 /* Given that its possible to have multiple markers with
13102 the same string id, if the user is creating a static
13103 tracepoint by marker id ("strace -m MARKER_ID"), then
13104 store the sals index, so that breakpoint_re_set can
13105 try to match up which of the newly found markers
13106 corresponds to this one */
13107 tp->static_trace_marker_id_idx = i;
13108
13109 install_breakpoint (internal, std::move (tp), 0);
13110 }
13111 }
13112
13113 static std::vector<symtab_and_line>
13114 strace_marker_decode_location (struct breakpoint *b,
13115 const struct event_location *location,
13116 struct program_space *search_pspace)
13117 {
13118 struct tracepoint *tp = (struct tracepoint *) b;
13119 const char *s = get_linespec_location (location)->spec_string;
13120
13121 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13122 if (sals.size () > tp->static_trace_marker_id_idx)
13123 {
13124 sals[0] = sals[tp->static_trace_marker_id_idx];
13125 sals.resize (1);
13126 return sals;
13127 }
13128 else
13129 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13130 }
13131
13132 static struct breakpoint_ops strace_marker_breakpoint_ops;
13133
13134 static int
13135 strace_marker_p (struct breakpoint *b)
13136 {
13137 return b->ops == &strace_marker_breakpoint_ops;
13138 }
13139
13140 /* Delete a breakpoint and clean up all traces of it in the data
13141 structures. */
13142
13143 void
13144 delete_breakpoint (struct breakpoint *bpt)
13145 {
13146 struct breakpoint *b;
13147
13148 gdb_assert (bpt != NULL);
13149
13150 /* Has this bp already been deleted? This can happen because
13151 multiple lists can hold pointers to bp's. bpstat lists are
13152 especial culprits.
13153
13154 One example of this happening is a watchpoint's scope bp. When
13155 the scope bp triggers, we notice that the watchpoint is out of
13156 scope, and delete it. We also delete its scope bp. But the
13157 scope bp is marked "auto-deleting", and is already on a bpstat.
13158 That bpstat is then checked for auto-deleting bp's, which are
13159 deleted.
13160
13161 A real solution to this problem might involve reference counts in
13162 bp's, and/or giving them pointers back to their referencing
13163 bpstat's, and teaching delete_breakpoint to only free a bp's
13164 storage when no more references were extent. A cheaper bandaid
13165 was chosen. */
13166 if (bpt->type == bp_none)
13167 return;
13168
13169 /* At least avoid this stale reference until the reference counting
13170 of breakpoints gets resolved. */
13171 if (bpt->related_breakpoint != bpt)
13172 {
13173 struct breakpoint *related;
13174 struct watchpoint *w;
13175
13176 if (bpt->type == bp_watchpoint_scope)
13177 w = (struct watchpoint *) bpt->related_breakpoint;
13178 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13179 w = (struct watchpoint *) bpt;
13180 else
13181 w = NULL;
13182 if (w != NULL)
13183 watchpoint_del_at_next_stop (w);
13184
13185 /* Unlink bpt from the bpt->related_breakpoint ring. */
13186 for (related = bpt; related->related_breakpoint != bpt;
13187 related = related->related_breakpoint);
13188 related->related_breakpoint = bpt->related_breakpoint;
13189 bpt->related_breakpoint = bpt;
13190 }
13191
13192 /* watch_command_1 creates a watchpoint but only sets its number if
13193 update_watchpoint succeeds in creating its bp_locations. If there's
13194 a problem in that process, we'll be asked to delete the half-created
13195 watchpoint. In that case, don't announce the deletion. */
13196 if (bpt->number)
13197 gdb::observers::breakpoint_deleted.notify (bpt);
13198
13199 if (breakpoint_chain == bpt)
13200 breakpoint_chain = bpt->next;
13201
13202 ALL_BREAKPOINTS (b)
13203 if (b->next == bpt)
13204 {
13205 b->next = bpt->next;
13206 break;
13207 }
13208
13209 /* Be sure no bpstat's are pointing at the breakpoint after it's
13210 been freed. */
13211 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13212 in all threads for now. Note that we cannot just remove bpstats
13213 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13214 commands are associated with the bpstat; if we remove it here,
13215 then the later call to bpstat_do_actions (&stop_bpstat); in
13216 event-top.c won't do anything, and temporary breakpoints with
13217 commands won't work. */
13218
13219 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13220
13221 /* Now that breakpoint is removed from breakpoint list, update the
13222 global location list. This will remove locations that used to
13223 belong to this breakpoint. Do this before freeing the breakpoint
13224 itself, since remove_breakpoint looks at location's owner. It
13225 might be better design to have location completely
13226 self-contained, but it's not the case now. */
13227 update_global_location_list (UGLL_DONT_INSERT);
13228
13229 /* On the chance that someone will soon try again to delete this
13230 same bp, we mark it as deleted before freeing its storage. */
13231 bpt->type = bp_none;
13232 delete bpt;
13233 }
13234
13235 /* Iterator function to call a user-provided callback function once
13236 for each of B and its related breakpoints. */
13237
13238 static void
13239 iterate_over_related_breakpoints (struct breakpoint *b,
13240 gdb::function_view<void (breakpoint *)> function)
13241 {
13242 struct breakpoint *related;
13243
13244 related = b;
13245 do
13246 {
13247 struct breakpoint *next;
13248
13249 /* FUNCTION may delete RELATED. */
13250 next = related->related_breakpoint;
13251
13252 if (next == related)
13253 {
13254 /* RELATED is the last ring entry. */
13255 function (related);
13256
13257 /* FUNCTION may have deleted it, so we'd never reach back to
13258 B. There's nothing left to do anyway, so just break
13259 out. */
13260 break;
13261 }
13262 else
13263 function (related);
13264
13265 related = next;
13266 }
13267 while (related != b);
13268 }
13269
13270 static void
13271 delete_command (const char *arg, int from_tty)
13272 {
13273 struct breakpoint *b, *b_tmp;
13274
13275 dont_repeat ();
13276
13277 if (arg == 0)
13278 {
13279 int breaks_to_delete = 0;
13280
13281 /* Delete all breakpoints if no argument. Do not delete
13282 internal breakpoints, these have to be deleted with an
13283 explicit breakpoint number argument. */
13284 ALL_BREAKPOINTS (b)
13285 if (user_breakpoint_p (b))
13286 {
13287 breaks_to_delete = 1;
13288 break;
13289 }
13290
13291 /* Ask user only if there are some breakpoints to delete. */
13292 if (!from_tty
13293 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13294 {
13295 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13296 if (user_breakpoint_p (b))
13297 delete_breakpoint (b);
13298 }
13299 }
13300 else
13301 map_breakpoint_numbers
13302 (arg, [&] (breakpoint *b)
13303 {
13304 iterate_over_related_breakpoints (b, delete_breakpoint);
13305 });
13306 }
13307
13308 /* Return true if all locations of B bound to PSPACE are pending. If
13309 PSPACE is NULL, all locations of all program spaces are
13310 considered. */
13311
13312 static int
13313 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13314 {
13315 struct bp_location *loc;
13316
13317 for (loc = b->loc; loc != NULL; loc = loc->next)
13318 if ((pspace == NULL
13319 || loc->pspace == pspace)
13320 && !loc->shlib_disabled
13321 && !loc->pspace->executing_startup)
13322 return 0;
13323 return 1;
13324 }
13325
13326 /* Subroutine of update_breakpoint_locations to simplify it.
13327 Return non-zero if multiple fns in list LOC have the same name.
13328 Null names are ignored. */
13329
13330 static int
13331 ambiguous_names_p (struct bp_location *loc)
13332 {
13333 struct bp_location *l;
13334 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13335 xcalloc, xfree);
13336
13337 for (l = loc; l != NULL; l = l->next)
13338 {
13339 const char **slot;
13340 const char *name = l->function_name;
13341
13342 /* Allow for some names to be NULL, ignore them. */
13343 if (name == NULL)
13344 continue;
13345
13346 slot = (const char **) htab_find_slot (htab, (const void *) name,
13347 INSERT);
13348 /* NOTE: We can assume slot != NULL here because xcalloc never
13349 returns NULL. */
13350 if (*slot != NULL)
13351 {
13352 htab_delete (htab);
13353 return 1;
13354 }
13355 *slot = name;
13356 }
13357
13358 htab_delete (htab);
13359 return 0;
13360 }
13361
13362 /* When symbols change, it probably means the sources changed as well,
13363 and it might mean the static tracepoint markers are no longer at
13364 the same address or line numbers they used to be at last we
13365 checked. Losing your static tracepoints whenever you rebuild is
13366 undesirable. This function tries to resync/rematch gdb static
13367 tracepoints with the markers on the target, for static tracepoints
13368 that have not been set by marker id. Static tracepoint that have
13369 been set by marker id are reset by marker id in breakpoint_re_set.
13370 The heuristic is:
13371
13372 1) For a tracepoint set at a specific address, look for a marker at
13373 the old PC. If one is found there, assume to be the same marker.
13374 If the name / string id of the marker found is different from the
13375 previous known name, assume that means the user renamed the marker
13376 in the sources, and output a warning.
13377
13378 2) For a tracepoint set at a given line number, look for a marker
13379 at the new address of the old line number. If one is found there,
13380 assume to be the same marker. If the name / string id of the
13381 marker found is different from the previous known name, assume that
13382 means the user renamed the marker in the sources, and output a
13383 warning.
13384
13385 3) If a marker is no longer found at the same address or line, it
13386 may mean the marker no longer exists. But it may also just mean
13387 the code changed a bit. Maybe the user added a few lines of code
13388 that made the marker move up or down (in line number terms). Ask
13389 the target for info about the marker with the string id as we knew
13390 it. If found, update line number and address in the matching
13391 static tracepoint. This will get confused if there's more than one
13392 marker with the same ID (possible in UST, although unadvised
13393 precisely because it confuses tools). */
13394
13395 static struct symtab_and_line
13396 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13397 {
13398 struct tracepoint *tp = (struct tracepoint *) b;
13399 struct static_tracepoint_marker marker;
13400 CORE_ADDR pc;
13401
13402 pc = sal.pc;
13403 if (sal.line)
13404 find_line_pc (sal.symtab, sal.line, &pc);
13405
13406 if (target_static_tracepoint_marker_at (pc, &marker))
13407 {
13408 if (tp->static_trace_marker_id != marker.str_id)
13409 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13410 b->number, tp->static_trace_marker_id.c_str (),
13411 marker.str_id.c_str ());
13412
13413 tp->static_trace_marker_id = std::move (marker.str_id);
13414
13415 return sal;
13416 }
13417
13418 /* Old marker wasn't found on target at lineno. Try looking it up
13419 by string ID. */
13420 if (!sal.explicit_pc
13421 && sal.line != 0
13422 && sal.symtab != NULL
13423 && !tp->static_trace_marker_id.empty ())
13424 {
13425 std::vector<static_tracepoint_marker> markers
13426 = target_static_tracepoint_markers_by_strid
13427 (tp->static_trace_marker_id.c_str ());
13428
13429 if (!markers.empty ())
13430 {
13431 struct symbol *sym;
13432 struct static_tracepoint_marker *tpmarker;
13433 struct ui_out *uiout = current_uiout;
13434 struct explicit_location explicit_loc;
13435
13436 tpmarker = &markers[0];
13437
13438 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13439
13440 warning (_("marker for static tracepoint %d (%s) not "
13441 "found at previous line number"),
13442 b->number, tp->static_trace_marker_id.c_str ());
13443
13444 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13445 sym = find_pc_sect_function (tpmarker->address, NULL);
13446 uiout->text ("Now in ");
13447 if (sym)
13448 {
13449 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13450 uiout->text (" at ");
13451 }
13452 uiout->field_string ("file",
13453 symtab_to_filename_for_display (sal2.symtab));
13454 uiout->text (":");
13455
13456 if (uiout->is_mi_like_p ())
13457 {
13458 const char *fullname = symtab_to_fullname (sal2.symtab);
13459
13460 uiout->field_string ("fullname", fullname);
13461 }
13462
13463 uiout->field_int ("line", sal2.line);
13464 uiout->text ("\n");
13465
13466 b->loc->line_number = sal2.line;
13467 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13468
13469 b->location.reset (NULL);
13470 initialize_explicit_location (&explicit_loc);
13471 explicit_loc.source_filename
13472 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13473 explicit_loc.line_offset.offset = b->loc->line_number;
13474 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13475 b->location = new_explicit_location (&explicit_loc);
13476
13477 /* Might be nice to check if function changed, and warn if
13478 so. */
13479 }
13480 }
13481 return sal;
13482 }
13483
13484 /* Returns 1 iff locations A and B are sufficiently same that
13485 we don't need to report breakpoint as changed. */
13486
13487 static int
13488 locations_are_equal (struct bp_location *a, struct bp_location *b)
13489 {
13490 while (a && b)
13491 {
13492 if (a->address != b->address)
13493 return 0;
13494
13495 if (a->shlib_disabled != b->shlib_disabled)
13496 return 0;
13497
13498 if (a->enabled != b->enabled)
13499 return 0;
13500
13501 a = a->next;
13502 b = b->next;
13503 }
13504
13505 if ((a == NULL) != (b == NULL))
13506 return 0;
13507
13508 return 1;
13509 }
13510
13511 /* Split all locations of B that are bound to PSPACE out of B's
13512 location list to a separate list and return that list's head. If
13513 PSPACE is NULL, hoist out all locations of B. */
13514
13515 static struct bp_location *
13516 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13517 {
13518 struct bp_location head;
13519 struct bp_location *i = b->loc;
13520 struct bp_location **i_link = &b->loc;
13521 struct bp_location *hoisted = &head;
13522
13523 if (pspace == NULL)
13524 {
13525 i = b->loc;
13526 b->loc = NULL;
13527 return i;
13528 }
13529
13530 head.next = NULL;
13531
13532 while (i != NULL)
13533 {
13534 if (i->pspace == pspace)
13535 {
13536 *i_link = i->next;
13537 i->next = NULL;
13538 hoisted->next = i;
13539 hoisted = i;
13540 }
13541 else
13542 i_link = &i->next;
13543 i = *i_link;
13544 }
13545
13546 return head.next;
13547 }
13548
13549 /* Create new breakpoint locations for B (a hardware or software
13550 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13551 zero, then B is a ranged breakpoint. Only recreates locations for
13552 FILTER_PSPACE. Locations of other program spaces are left
13553 untouched. */
13554
13555 void
13556 update_breakpoint_locations (struct breakpoint *b,
13557 struct program_space *filter_pspace,
13558 gdb::array_view<const symtab_and_line> sals,
13559 gdb::array_view<const symtab_and_line> sals_end)
13560 {
13561 struct bp_location *existing_locations;
13562
13563 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13564 {
13565 /* Ranged breakpoints have only one start location and one end
13566 location. */
13567 b->enable_state = bp_disabled;
13568 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13569 "multiple locations found\n"),
13570 b->number);
13571 return;
13572 }
13573
13574 /* If there's no new locations, and all existing locations are
13575 pending, don't do anything. This optimizes the common case where
13576 all locations are in the same shared library, that was unloaded.
13577 We'd like to retain the location, so that when the library is
13578 loaded again, we don't loose the enabled/disabled status of the
13579 individual locations. */
13580 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13581 return;
13582
13583 existing_locations = hoist_existing_locations (b, filter_pspace);
13584
13585 for (const auto &sal : sals)
13586 {
13587 struct bp_location *new_loc;
13588
13589 switch_to_program_space_and_thread (sal.pspace);
13590
13591 new_loc = add_location_to_breakpoint (b, &sal);
13592
13593 /* Reparse conditions, they might contain references to the
13594 old symtab. */
13595 if (b->cond_string != NULL)
13596 {
13597 const char *s;
13598
13599 s = b->cond_string;
13600 TRY
13601 {
13602 new_loc->cond = parse_exp_1 (&s, sal.pc,
13603 block_for_pc (sal.pc),
13604 0);
13605 }
13606 CATCH (e, RETURN_MASK_ERROR)
13607 {
13608 warning (_("failed to reevaluate condition "
13609 "for breakpoint %d: %s"),
13610 b->number, e.message);
13611 new_loc->enabled = 0;
13612 }
13613 END_CATCH
13614 }
13615
13616 if (!sals_end.empty ())
13617 {
13618 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13619
13620 new_loc->length = end - sals[0].pc + 1;
13621 }
13622 }
13623
13624 /* If possible, carry over 'disable' status from existing
13625 breakpoints. */
13626 {
13627 struct bp_location *e = existing_locations;
13628 /* If there are multiple breakpoints with the same function name,
13629 e.g. for inline functions, comparing function names won't work.
13630 Instead compare pc addresses; this is just a heuristic as things
13631 may have moved, but in practice it gives the correct answer
13632 often enough until a better solution is found. */
13633 int have_ambiguous_names = ambiguous_names_p (b->loc);
13634
13635 for (; e; e = e->next)
13636 {
13637 if (!e->enabled && e->function_name)
13638 {
13639 struct bp_location *l = b->loc;
13640 if (have_ambiguous_names)
13641 {
13642 for (; l; l = l->next)
13643 if (breakpoint_locations_match (e, l))
13644 {
13645 l->enabled = 0;
13646 break;
13647 }
13648 }
13649 else
13650 {
13651 for (; l; l = l->next)
13652 if (l->function_name
13653 && strcmp (e->function_name, l->function_name) == 0)
13654 {
13655 l->enabled = 0;
13656 break;
13657 }
13658 }
13659 }
13660 }
13661 }
13662
13663 if (!locations_are_equal (existing_locations, b->loc))
13664 gdb::observers::breakpoint_modified.notify (b);
13665 }
13666
13667 /* Find the SaL locations corresponding to the given LOCATION.
13668 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13669
13670 static std::vector<symtab_and_line>
13671 location_to_sals (struct breakpoint *b, struct event_location *location,
13672 struct program_space *search_pspace, int *found)
13673 {
13674 struct gdb_exception exception = exception_none;
13675
13676 gdb_assert (b->ops != NULL);
13677
13678 std::vector<symtab_and_line> sals;
13679
13680 TRY
13681 {
13682 sals = b->ops->decode_location (b, location, search_pspace);
13683 }
13684 CATCH (e, RETURN_MASK_ERROR)
13685 {
13686 int not_found_and_ok = 0;
13687
13688 exception = e;
13689
13690 /* For pending breakpoints, it's expected that parsing will
13691 fail until the right shared library is loaded. User has
13692 already told to create pending breakpoints and don't need
13693 extra messages. If breakpoint is in bp_shlib_disabled
13694 state, then user already saw the message about that
13695 breakpoint being disabled, and don't want to see more
13696 errors. */
13697 if (e.error == NOT_FOUND_ERROR
13698 && (b->condition_not_parsed
13699 || (b->loc != NULL
13700 && search_pspace != NULL
13701 && b->loc->pspace != search_pspace)
13702 || (b->loc && b->loc->shlib_disabled)
13703 || (b->loc && b->loc->pspace->executing_startup)
13704 || b->enable_state == bp_disabled))
13705 not_found_and_ok = 1;
13706
13707 if (!not_found_and_ok)
13708 {
13709 /* We surely don't want to warn about the same breakpoint
13710 10 times. One solution, implemented here, is disable
13711 the breakpoint on error. Another solution would be to
13712 have separate 'warning emitted' flag. Since this
13713 happens only when a binary has changed, I don't know
13714 which approach is better. */
13715 b->enable_state = bp_disabled;
13716 throw_exception (e);
13717 }
13718 }
13719 END_CATCH
13720
13721 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13722 {
13723 for (auto &sal : sals)
13724 resolve_sal_pc (&sal);
13725 if (b->condition_not_parsed && b->extra_string != NULL)
13726 {
13727 char *cond_string, *extra_string;
13728 int thread, task;
13729
13730 find_condition_and_thread (b->extra_string, sals[0].pc,
13731 &cond_string, &thread, &task,
13732 &extra_string);
13733 gdb_assert (b->cond_string == NULL);
13734 if (cond_string)
13735 b->cond_string = cond_string;
13736 b->thread = thread;
13737 b->task = task;
13738 if (extra_string)
13739 {
13740 xfree (b->extra_string);
13741 b->extra_string = extra_string;
13742 }
13743 b->condition_not_parsed = 0;
13744 }
13745
13746 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13747 sals[0] = update_static_tracepoint (b, sals[0]);
13748
13749 *found = 1;
13750 }
13751 else
13752 *found = 0;
13753
13754 return sals;
13755 }
13756
13757 /* The default re_set method, for typical hardware or software
13758 breakpoints. Reevaluate the breakpoint and recreate its
13759 locations. */
13760
13761 static void
13762 breakpoint_re_set_default (struct breakpoint *b)
13763 {
13764 struct program_space *filter_pspace = current_program_space;
13765 std::vector<symtab_and_line> expanded, expanded_end;
13766
13767 int found;
13768 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13769 filter_pspace, &found);
13770 if (found)
13771 expanded = std::move (sals);
13772
13773 if (b->location_range_end != NULL)
13774 {
13775 std::vector<symtab_and_line> sals_end
13776 = location_to_sals (b, b->location_range_end.get (),
13777 filter_pspace, &found);
13778 if (found)
13779 expanded_end = std::move (sals_end);
13780 }
13781
13782 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13783 }
13784
13785 /* Default method for creating SALs from an address string. It basically
13786 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13787
13788 static void
13789 create_sals_from_location_default (const struct event_location *location,
13790 struct linespec_result *canonical,
13791 enum bptype type_wanted)
13792 {
13793 parse_breakpoint_sals (location, canonical);
13794 }
13795
13796 /* Call create_breakpoints_sal for the given arguments. This is the default
13797 function for the `create_breakpoints_sal' method of
13798 breakpoint_ops. */
13799
13800 static void
13801 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13802 struct linespec_result *canonical,
13803 gdb::unique_xmalloc_ptr<char> cond_string,
13804 gdb::unique_xmalloc_ptr<char> extra_string,
13805 enum bptype type_wanted,
13806 enum bpdisp disposition,
13807 int thread,
13808 int task, int ignore_count,
13809 const struct breakpoint_ops *ops,
13810 int from_tty, int enabled,
13811 int internal, unsigned flags)
13812 {
13813 create_breakpoints_sal (gdbarch, canonical,
13814 std::move (cond_string),
13815 std::move (extra_string),
13816 type_wanted, disposition,
13817 thread, task, ignore_count, ops, from_tty,
13818 enabled, internal, flags);
13819 }
13820
13821 /* Decode the line represented by S by calling decode_line_full. This is the
13822 default function for the `decode_location' method of breakpoint_ops. */
13823
13824 static std::vector<symtab_and_line>
13825 decode_location_default (struct breakpoint *b,
13826 const struct event_location *location,
13827 struct program_space *search_pspace)
13828 {
13829 struct linespec_result canonical;
13830
13831 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13832 (struct symtab *) NULL, 0,
13833 &canonical, multiple_symbols_all,
13834 b->filter);
13835
13836 /* We should get 0 or 1 resulting SALs. */
13837 gdb_assert (canonical.lsals.size () < 2);
13838
13839 if (!canonical.lsals.empty ())
13840 {
13841 const linespec_sals &lsal = canonical.lsals[0];
13842 return std::move (lsal.sals);
13843 }
13844 return {};
13845 }
13846
13847 /* Reset a breakpoint. */
13848
13849 static void
13850 breakpoint_re_set_one (breakpoint *b)
13851 {
13852 input_radix = b->input_radix;
13853 set_language (b->language);
13854
13855 b->ops->re_set (b);
13856 }
13857
13858 /* Re-set breakpoint locations for the current program space.
13859 Locations bound to other program spaces are left untouched. */
13860
13861 void
13862 breakpoint_re_set (void)
13863 {
13864 struct breakpoint *b, *b_tmp;
13865
13866 {
13867 scoped_restore_current_language save_language;
13868 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13869 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13870
13871 /* Note: we must not try to insert locations until after all
13872 breakpoints have been re-set. Otherwise, e.g., when re-setting
13873 breakpoint 1, we'd insert the locations of breakpoint 2, which
13874 hadn't been re-set yet, and thus may have stale locations. */
13875
13876 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13877 {
13878 TRY
13879 {
13880 breakpoint_re_set_one (b);
13881 }
13882 CATCH (ex, RETURN_MASK_ALL)
13883 {
13884 exception_fprintf (gdb_stderr, ex,
13885 "Error in re-setting breakpoint %d: ",
13886 b->number);
13887 }
13888 END_CATCH
13889 }
13890
13891 jit_breakpoint_re_set ();
13892 }
13893
13894 create_overlay_event_breakpoint ();
13895 create_longjmp_master_breakpoint ();
13896 create_std_terminate_master_breakpoint ();
13897 create_exception_master_breakpoint ();
13898
13899 /* Now we can insert. */
13900 update_global_location_list (UGLL_MAY_INSERT);
13901 }
13902 \f
13903 /* Reset the thread number of this breakpoint:
13904
13905 - If the breakpoint is for all threads, leave it as-is.
13906 - Else, reset it to the current thread for inferior_ptid. */
13907 void
13908 breakpoint_re_set_thread (struct breakpoint *b)
13909 {
13910 if (b->thread != -1)
13911 {
13912 if (in_thread_list (inferior_ptid))
13913 b->thread = ptid_to_global_thread_id (inferior_ptid);
13914
13915 /* We're being called after following a fork. The new fork is
13916 selected as current, and unless this was a vfork will have a
13917 different program space from the original thread. Reset that
13918 as well. */
13919 b->loc->pspace = current_program_space;
13920 }
13921 }
13922
13923 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13924 If from_tty is nonzero, it prints a message to that effect,
13925 which ends with a period (no newline). */
13926
13927 void
13928 set_ignore_count (int bptnum, int count, int from_tty)
13929 {
13930 struct breakpoint *b;
13931
13932 if (count < 0)
13933 count = 0;
13934
13935 ALL_BREAKPOINTS (b)
13936 if (b->number == bptnum)
13937 {
13938 if (is_tracepoint (b))
13939 {
13940 if (from_tty && count != 0)
13941 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13942 bptnum);
13943 return;
13944 }
13945
13946 b->ignore_count = count;
13947 if (from_tty)
13948 {
13949 if (count == 0)
13950 printf_filtered (_("Will stop next time "
13951 "breakpoint %d is reached."),
13952 bptnum);
13953 else if (count == 1)
13954 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13955 bptnum);
13956 else
13957 printf_filtered (_("Will ignore next %d "
13958 "crossings of breakpoint %d."),
13959 count, bptnum);
13960 }
13961 gdb::observers::breakpoint_modified.notify (b);
13962 return;
13963 }
13964
13965 error (_("No breakpoint number %d."), bptnum);
13966 }
13967
13968 /* Command to set ignore-count of breakpoint N to COUNT. */
13969
13970 static void
13971 ignore_command (const char *args, int from_tty)
13972 {
13973 const char *p = args;
13974 int num;
13975
13976 if (p == 0)
13977 error_no_arg (_("a breakpoint number"));
13978
13979 num = get_number (&p);
13980 if (num == 0)
13981 error (_("bad breakpoint number: '%s'"), args);
13982 if (*p == 0)
13983 error (_("Second argument (specified ignore-count) is missing."));
13984
13985 set_ignore_count (num,
13986 longest_to_int (value_as_long (parse_and_eval (p))),
13987 from_tty);
13988 if (from_tty)
13989 printf_filtered ("\n");
13990 }
13991 \f
13992
13993 /* Call FUNCTION on each of the breakpoints with numbers in the range
13994 defined by BP_NUM_RANGE (an inclusive range). */
13995
13996 static void
13997 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13998 gdb::function_view<void (breakpoint *)> function)
13999 {
14000 if (bp_num_range.first == 0)
14001 {
14002 warning (_("bad breakpoint number at or near '%d'"),
14003 bp_num_range.first);
14004 }
14005 else
14006 {
14007 struct breakpoint *b, *tmp;
14008
14009 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14010 {
14011 bool match = false;
14012
14013 ALL_BREAKPOINTS_SAFE (b, tmp)
14014 if (b->number == i)
14015 {
14016 match = true;
14017 function (b);
14018 break;
14019 }
14020 if (!match)
14021 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14022 }
14023 }
14024 }
14025
14026 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14027 ARGS. */
14028
14029 static void
14030 map_breakpoint_numbers (const char *args,
14031 gdb::function_view<void (breakpoint *)> function)
14032 {
14033 if (args == NULL || *args == '\0')
14034 error_no_arg (_("one or more breakpoint numbers"));
14035
14036 number_or_range_parser parser (args);
14037
14038 while (!parser.finished ())
14039 {
14040 int num = parser.get_number ();
14041 map_breakpoint_number_range (std::make_pair (num, num), function);
14042 }
14043 }
14044
14045 /* Return the breakpoint location structure corresponding to the
14046 BP_NUM and LOC_NUM values. */
14047
14048 static struct bp_location *
14049 find_location_by_number (int bp_num, int loc_num)
14050 {
14051 struct breakpoint *b;
14052
14053 ALL_BREAKPOINTS (b)
14054 if (b->number == bp_num)
14055 {
14056 break;
14057 }
14058
14059 if (!b || b->number != bp_num)
14060 error (_("Bad breakpoint number '%d'"), bp_num);
14061
14062 if (loc_num == 0)
14063 error (_("Bad breakpoint location number '%d'"), loc_num);
14064
14065 int n = 0;
14066 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14067 if (++n == loc_num)
14068 return loc;
14069
14070 error (_("Bad breakpoint location number '%d'"), loc_num);
14071 }
14072
14073 /* Modes of operation for extract_bp_num. */
14074 enum class extract_bp_kind
14075 {
14076 /* Extracting a breakpoint number. */
14077 bp,
14078
14079 /* Extracting a location number. */
14080 loc,
14081 };
14082
14083 /* Extract a breakpoint or location number (as determined by KIND)
14084 from the string starting at START. TRAILER is a character which
14085 can be found after the number. If you don't want a trailer, use
14086 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14087 string. This always returns a positive integer. */
14088
14089 static int
14090 extract_bp_num (extract_bp_kind kind, const char *start,
14091 int trailer, const char **end_out = NULL)
14092 {
14093 const char *end = start;
14094 int num = get_number_trailer (&end, trailer);
14095 if (num < 0)
14096 error (kind == extract_bp_kind::bp
14097 ? _("Negative breakpoint number '%.*s'")
14098 : _("Negative breakpoint location number '%.*s'"),
14099 int (end - start), start);
14100 if (num == 0)
14101 error (kind == extract_bp_kind::bp
14102 ? _("Bad breakpoint number '%.*s'")
14103 : _("Bad breakpoint location number '%.*s'"),
14104 int (end - start), start);
14105
14106 if (end_out != NULL)
14107 *end_out = end;
14108 return num;
14109 }
14110
14111 /* Extract a breakpoint or location range (as determined by KIND) in
14112 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14113 representing the (inclusive) range. The returned pair's elements
14114 are always positive integers. */
14115
14116 static std::pair<int, int>
14117 extract_bp_or_bp_range (extract_bp_kind kind,
14118 const std::string &arg,
14119 std::string::size_type arg_offset)
14120 {
14121 std::pair<int, int> range;
14122 const char *bp_loc = &arg[arg_offset];
14123 std::string::size_type dash = arg.find ('-', arg_offset);
14124 if (dash != std::string::npos)
14125 {
14126 /* bp_loc is a range (x-z). */
14127 if (arg.length () == dash + 1)
14128 error (kind == extract_bp_kind::bp
14129 ? _("Bad breakpoint number at or near: '%s'")
14130 : _("Bad breakpoint location number at or near: '%s'"),
14131 bp_loc);
14132
14133 const char *end;
14134 const char *start_first = bp_loc;
14135 const char *start_second = &arg[dash + 1];
14136 range.first = extract_bp_num (kind, start_first, '-');
14137 range.second = extract_bp_num (kind, start_second, '\0', &end);
14138
14139 if (range.first > range.second)
14140 error (kind == extract_bp_kind::bp
14141 ? _("Inverted breakpoint range at '%.*s'")
14142 : _("Inverted breakpoint location range at '%.*s'"),
14143 int (end - start_first), start_first);
14144 }
14145 else
14146 {
14147 /* bp_loc is a single value. */
14148 range.first = extract_bp_num (kind, bp_loc, '\0');
14149 range.second = range.first;
14150 }
14151 return range;
14152 }
14153
14154 /* Extract the breakpoint/location range specified by ARG. Returns
14155 the breakpoint range in BP_NUM_RANGE, and the location range in
14156 BP_LOC_RANGE.
14157
14158 ARG may be in any of the following forms:
14159
14160 x where 'x' is a breakpoint number.
14161 x-y where 'x' and 'y' specify a breakpoint numbers range.
14162 x.y where 'x' is a breakpoint number and 'y' a location number.
14163 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14164 location number range.
14165 */
14166
14167 static void
14168 extract_bp_number_and_location (const std::string &arg,
14169 std::pair<int, int> &bp_num_range,
14170 std::pair<int, int> &bp_loc_range)
14171 {
14172 std::string::size_type dot = arg.find ('.');
14173
14174 if (dot != std::string::npos)
14175 {
14176 /* Handle 'x.y' and 'x.y-z' cases. */
14177
14178 if (arg.length () == dot + 1 || dot == 0)
14179 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14180
14181 bp_num_range.first
14182 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14183 bp_num_range.second = bp_num_range.first;
14184
14185 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14186 arg, dot + 1);
14187 }
14188 else
14189 {
14190 /* Handle x and x-y cases. */
14191
14192 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14193 bp_loc_range.first = 0;
14194 bp_loc_range.second = 0;
14195 }
14196 }
14197
14198 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14199 specifies whether to enable or disable. */
14200
14201 static void
14202 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14203 {
14204 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14205 if (loc != NULL)
14206 {
14207 if (loc->enabled != enable)
14208 {
14209 loc->enabled = enable;
14210 mark_breakpoint_location_modified (loc);
14211 }
14212 if (target_supports_enable_disable_tracepoint ()
14213 && current_trace_status ()->running && loc->owner
14214 && is_tracepoint (loc->owner))
14215 target_disable_tracepoint (loc);
14216 }
14217 update_global_location_list (UGLL_DONT_INSERT);
14218 }
14219
14220 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14221 number of the breakpoint, and BP_LOC_RANGE specifies the
14222 (inclusive) range of location numbers of that breakpoint to
14223 enable/disable. ENABLE specifies whether to enable or disable the
14224 location. */
14225
14226 static void
14227 enable_disable_breakpoint_location_range (int bp_num,
14228 std::pair<int, int> &bp_loc_range,
14229 bool enable)
14230 {
14231 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14232 enable_disable_bp_num_loc (bp_num, i, enable);
14233 }
14234
14235 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14236 If from_tty is nonzero, it prints a message to that effect,
14237 which ends with a period (no newline). */
14238
14239 void
14240 disable_breakpoint (struct breakpoint *bpt)
14241 {
14242 /* Never disable a watchpoint scope breakpoint; we want to
14243 hit them when we leave scope so we can delete both the
14244 watchpoint and its scope breakpoint at that time. */
14245 if (bpt->type == bp_watchpoint_scope)
14246 return;
14247
14248 bpt->enable_state = bp_disabled;
14249
14250 /* Mark breakpoint locations modified. */
14251 mark_breakpoint_modified (bpt);
14252
14253 if (target_supports_enable_disable_tracepoint ()
14254 && current_trace_status ()->running && is_tracepoint (bpt))
14255 {
14256 struct bp_location *location;
14257
14258 for (location = bpt->loc; location; location = location->next)
14259 target_disable_tracepoint (location);
14260 }
14261
14262 update_global_location_list (UGLL_DONT_INSERT);
14263
14264 gdb::observers::breakpoint_modified.notify (bpt);
14265 }
14266
14267 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14268 specified in ARGS. ARGS may be in any of the formats handled by
14269 extract_bp_number_and_location. ENABLE specifies whether to enable
14270 or disable the breakpoints/locations. */
14271
14272 static void
14273 enable_disable_command (const char *args, int from_tty, bool enable)
14274 {
14275 if (args == 0)
14276 {
14277 struct breakpoint *bpt;
14278
14279 ALL_BREAKPOINTS (bpt)
14280 if (user_breakpoint_p (bpt))
14281 {
14282 if (enable)
14283 enable_breakpoint (bpt);
14284 else
14285 disable_breakpoint (bpt);
14286 }
14287 }
14288 else
14289 {
14290 std::string num = extract_arg (&args);
14291
14292 while (!num.empty ())
14293 {
14294 std::pair<int, int> bp_num_range, bp_loc_range;
14295
14296 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14297
14298 if (bp_loc_range.first == bp_loc_range.second
14299 && bp_loc_range.first == 0)
14300 {
14301 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14302 map_breakpoint_number_range (bp_num_range,
14303 enable
14304 ? enable_breakpoint
14305 : disable_breakpoint);
14306 }
14307 else
14308 {
14309 /* Handle breakpoint ids with formats 'x.y' or
14310 'x.y-z'. */
14311 enable_disable_breakpoint_location_range
14312 (bp_num_range.first, bp_loc_range, enable);
14313 }
14314 num = extract_arg (&args);
14315 }
14316 }
14317 }
14318
14319 /* The disable command disables the specified breakpoints/locations
14320 (or all defined breakpoints) so they're no longer effective in
14321 stopping the inferior. ARGS may be in any of the forms defined in
14322 extract_bp_number_and_location. */
14323
14324 static void
14325 disable_command (const char *args, int from_tty)
14326 {
14327 enable_disable_command (args, from_tty, false);
14328 }
14329
14330 static void
14331 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14332 int count)
14333 {
14334 int target_resources_ok;
14335
14336 if (bpt->type == bp_hardware_breakpoint)
14337 {
14338 int i;
14339 i = hw_breakpoint_used_count ();
14340 target_resources_ok =
14341 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14342 i + 1, 0);
14343 if (target_resources_ok == 0)
14344 error (_("No hardware breakpoint support in the target."));
14345 else if (target_resources_ok < 0)
14346 error (_("Hardware breakpoints used exceeds limit."));
14347 }
14348
14349 if (is_watchpoint (bpt))
14350 {
14351 /* Initialize it just to avoid a GCC false warning. */
14352 enum enable_state orig_enable_state = bp_disabled;
14353
14354 TRY
14355 {
14356 struct watchpoint *w = (struct watchpoint *) bpt;
14357
14358 orig_enable_state = bpt->enable_state;
14359 bpt->enable_state = bp_enabled;
14360 update_watchpoint (w, 1 /* reparse */);
14361 }
14362 CATCH (e, RETURN_MASK_ALL)
14363 {
14364 bpt->enable_state = orig_enable_state;
14365 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14366 bpt->number);
14367 return;
14368 }
14369 END_CATCH
14370 }
14371
14372 bpt->enable_state = bp_enabled;
14373
14374 /* Mark breakpoint locations modified. */
14375 mark_breakpoint_modified (bpt);
14376
14377 if (target_supports_enable_disable_tracepoint ()
14378 && current_trace_status ()->running && is_tracepoint (bpt))
14379 {
14380 struct bp_location *location;
14381
14382 for (location = bpt->loc; location; location = location->next)
14383 target_enable_tracepoint (location);
14384 }
14385
14386 bpt->disposition = disposition;
14387 bpt->enable_count = count;
14388 update_global_location_list (UGLL_MAY_INSERT);
14389
14390 gdb::observers::breakpoint_modified.notify (bpt);
14391 }
14392
14393
14394 void
14395 enable_breakpoint (struct breakpoint *bpt)
14396 {
14397 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14398 }
14399
14400 /* The enable command enables the specified breakpoints/locations (or
14401 all defined breakpoints) so they once again become (or continue to
14402 be) effective in stopping the inferior. ARGS may be in any of the
14403 forms defined in extract_bp_number_and_location. */
14404
14405 static void
14406 enable_command (const char *args, int from_tty)
14407 {
14408 enable_disable_command (args, from_tty, true);
14409 }
14410
14411 static void
14412 enable_once_command (const char *args, int from_tty)
14413 {
14414 map_breakpoint_numbers
14415 (args, [&] (breakpoint *b)
14416 {
14417 iterate_over_related_breakpoints
14418 (b, [&] (breakpoint *bpt)
14419 {
14420 enable_breakpoint_disp (bpt, disp_disable, 1);
14421 });
14422 });
14423 }
14424
14425 static void
14426 enable_count_command (const char *args, int from_tty)
14427 {
14428 int count;
14429
14430 if (args == NULL)
14431 error_no_arg (_("hit count"));
14432
14433 count = get_number (&args);
14434
14435 map_breakpoint_numbers
14436 (args, [&] (breakpoint *b)
14437 {
14438 iterate_over_related_breakpoints
14439 (b, [&] (breakpoint *bpt)
14440 {
14441 enable_breakpoint_disp (bpt, disp_disable, count);
14442 });
14443 });
14444 }
14445
14446 static void
14447 enable_delete_command (const char *args, int from_tty)
14448 {
14449 map_breakpoint_numbers
14450 (args, [&] (breakpoint *b)
14451 {
14452 iterate_over_related_breakpoints
14453 (b, [&] (breakpoint *bpt)
14454 {
14455 enable_breakpoint_disp (bpt, disp_del, 1);
14456 });
14457 });
14458 }
14459 \f
14460 static void
14461 set_breakpoint_cmd (const char *args, int from_tty)
14462 {
14463 }
14464
14465 static void
14466 show_breakpoint_cmd (const char *args, int from_tty)
14467 {
14468 }
14469
14470 /* Invalidate last known value of any hardware watchpoint if
14471 the memory which that value represents has been written to by
14472 GDB itself. */
14473
14474 static void
14475 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14476 CORE_ADDR addr, ssize_t len,
14477 const bfd_byte *data)
14478 {
14479 struct breakpoint *bp;
14480
14481 ALL_BREAKPOINTS (bp)
14482 if (bp->enable_state == bp_enabled
14483 && bp->type == bp_hardware_watchpoint)
14484 {
14485 struct watchpoint *wp = (struct watchpoint *) bp;
14486
14487 if (wp->val_valid && wp->val != nullptr)
14488 {
14489 struct bp_location *loc;
14490
14491 for (loc = bp->loc; loc != NULL; loc = loc->next)
14492 if (loc->loc_type == bp_loc_hardware_watchpoint
14493 && loc->address + loc->length > addr
14494 && addr + len > loc->address)
14495 {
14496 wp->val = NULL;
14497 wp->val_valid = 0;
14498 }
14499 }
14500 }
14501 }
14502
14503 /* Create and insert a breakpoint for software single step. */
14504
14505 void
14506 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14507 const address_space *aspace,
14508 CORE_ADDR next_pc)
14509 {
14510 struct thread_info *tp = inferior_thread ();
14511 struct symtab_and_line sal;
14512 CORE_ADDR pc = next_pc;
14513
14514 if (tp->control.single_step_breakpoints == NULL)
14515 {
14516 tp->control.single_step_breakpoints
14517 = new_single_step_breakpoint (tp->global_num, gdbarch);
14518 }
14519
14520 sal = find_pc_line (pc, 0);
14521 sal.pc = pc;
14522 sal.section = find_pc_overlay (pc);
14523 sal.explicit_pc = 1;
14524 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14525
14526 update_global_location_list (UGLL_INSERT);
14527 }
14528
14529 /* Insert single step breakpoints according to the current state. */
14530
14531 int
14532 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14533 {
14534 struct regcache *regcache = get_current_regcache ();
14535 std::vector<CORE_ADDR> next_pcs;
14536
14537 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14538
14539 if (!next_pcs.empty ())
14540 {
14541 struct frame_info *frame = get_current_frame ();
14542 const address_space *aspace = get_frame_address_space (frame);
14543
14544 for (CORE_ADDR pc : next_pcs)
14545 insert_single_step_breakpoint (gdbarch, aspace, pc);
14546
14547 return 1;
14548 }
14549 else
14550 return 0;
14551 }
14552
14553 /* See breakpoint.h. */
14554
14555 int
14556 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14557 const address_space *aspace,
14558 CORE_ADDR pc)
14559 {
14560 struct bp_location *loc;
14561
14562 for (loc = bp->loc; loc != NULL; loc = loc->next)
14563 if (loc->inserted
14564 && breakpoint_location_address_match (loc, aspace, pc))
14565 return 1;
14566
14567 return 0;
14568 }
14569
14570 /* Check whether a software single-step breakpoint is inserted at
14571 PC. */
14572
14573 int
14574 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14575 CORE_ADDR pc)
14576 {
14577 struct breakpoint *bpt;
14578
14579 ALL_BREAKPOINTS (bpt)
14580 {
14581 if (bpt->type == bp_single_step
14582 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14583 return 1;
14584 }
14585 return 0;
14586 }
14587
14588 /* Tracepoint-specific operations. */
14589
14590 /* Set tracepoint count to NUM. */
14591 static void
14592 set_tracepoint_count (int num)
14593 {
14594 tracepoint_count = num;
14595 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14596 }
14597
14598 static void
14599 trace_command (const char *arg, int from_tty)
14600 {
14601 struct breakpoint_ops *ops;
14602
14603 event_location_up location = string_to_event_location (&arg,
14604 current_language);
14605 if (location != NULL
14606 && event_location_type (location.get ()) == PROBE_LOCATION)
14607 ops = &tracepoint_probe_breakpoint_ops;
14608 else
14609 ops = &tracepoint_breakpoint_ops;
14610
14611 create_breakpoint (get_current_arch (),
14612 location.get (),
14613 NULL, 0, arg, 1 /* parse arg */,
14614 0 /* tempflag */,
14615 bp_tracepoint /* type_wanted */,
14616 0 /* Ignore count */,
14617 pending_break_support,
14618 ops,
14619 from_tty,
14620 1 /* enabled */,
14621 0 /* internal */, 0);
14622 }
14623
14624 static void
14625 ftrace_command (const char *arg, int from_tty)
14626 {
14627 event_location_up location = string_to_event_location (&arg,
14628 current_language);
14629 create_breakpoint (get_current_arch (),
14630 location.get (),
14631 NULL, 0, arg, 1 /* parse arg */,
14632 0 /* tempflag */,
14633 bp_fast_tracepoint /* type_wanted */,
14634 0 /* Ignore count */,
14635 pending_break_support,
14636 &tracepoint_breakpoint_ops,
14637 from_tty,
14638 1 /* enabled */,
14639 0 /* internal */, 0);
14640 }
14641
14642 /* strace command implementation. Creates a static tracepoint. */
14643
14644 static void
14645 strace_command (const char *arg, int from_tty)
14646 {
14647 struct breakpoint_ops *ops;
14648 event_location_up location;
14649
14650 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14651 or with a normal static tracepoint. */
14652 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14653 {
14654 ops = &strace_marker_breakpoint_ops;
14655 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14656 }
14657 else
14658 {
14659 ops = &tracepoint_breakpoint_ops;
14660 location = string_to_event_location (&arg, current_language);
14661 }
14662
14663 create_breakpoint (get_current_arch (),
14664 location.get (),
14665 NULL, 0, arg, 1 /* parse arg */,
14666 0 /* tempflag */,
14667 bp_static_tracepoint /* type_wanted */,
14668 0 /* Ignore count */,
14669 pending_break_support,
14670 ops,
14671 from_tty,
14672 1 /* enabled */,
14673 0 /* internal */, 0);
14674 }
14675
14676 /* Set up a fake reader function that gets command lines from a linked
14677 list that was acquired during tracepoint uploading. */
14678
14679 static struct uploaded_tp *this_utp;
14680 static int next_cmd;
14681
14682 static char *
14683 read_uploaded_action (void)
14684 {
14685 char *rslt = nullptr;
14686
14687 if (next_cmd < this_utp->cmd_strings.size ())
14688 {
14689 rslt = this_utp->cmd_strings[next_cmd];
14690 next_cmd++;
14691 }
14692
14693 return rslt;
14694 }
14695
14696 /* Given information about a tracepoint as recorded on a target (which
14697 can be either a live system or a trace file), attempt to create an
14698 equivalent GDB tracepoint. This is not a reliable process, since
14699 the target does not necessarily have all the information used when
14700 the tracepoint was originally defined. */
14701
14702 struct tracepoint *
14703 create_tracepoint_from_upload (struct uploaded_tp *utp)
14704 {
14705 const char *addr_str;
14706 char small_buf[100];
14707 struct tracepoint *tp;
14708
14709 if (utp->at_string)
14710 addr_str = utp->at_string;
14711 else
14712 {
14713 /* In the absence of a source location, fall back to raw
14714 address. Since there is no way to confirm that the address
14715 means the same thing as when the trace was started, warn the
14716 user. */
14717 warning (_("Uploaded tracepoint %d has no "
14718 "source location, using raw address"),
14719 utp->number);
14720 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14721 addr_str = small_buf;
14722 }
14723
14724 /* There's not much we can do with a sequence of bytecodes. */
14725 if (utp->cond && !utp->cond_string)
14726 warning (_("Uploaded tracepoint %d condition "
14727 "has no source form, ignoring it"),
14728 utp->number);
14729
14730 event_location_up location = string_to_event_location (&addr_str,
14731 current_language);
14732 if (!create_breakpoint (get_current_arch (),
14733 location.get (),
14734 utp->cond_string, -1, addr_str,
14735 0 /* parse cond/thread */,
14736 0 /* tempflag */,
14737 utp->type /* type_wanted */,
14738 0 /* Ignore count */,
14739 pending_break_support,
14740 &tracepoint_breakpoint_ops,
14741 0 /* from_tty */,
14742 utp->enabled /* enabled */,
14743 0 /* internal */,
14744 CREATE_BREAKPOINT_FLAGS_INSERTED))
14745 return NULL;
14746
14747 /* Get the tracepoint we just created. */
14748 tp = get_tracepoint (tracepoint_count);
14749 gdb_assert (tp != NULL);
14750
14751 if (utp->pass > 0)
14752 {
14753 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14754 tp->number);
14755
14756 trace_pass_command (small_buf, 0);
14757 }
14758
14759 /* If we have uploaded versions of the original commands, set up a
14760 special-purpose "reader" function and call the usual command line
14761 reader, then pass the result to the breakpoint command-setting
14762 function. */
14763 if (!utp->cmd_strings.empty ())
14764 {
14765 counted_command_line cmd_list;
14766
14767 this_utp = utp;
14768 next_cmd = 0;
14769
14770 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14771
14772 breakpoint_set_commands (tp, std::move (cmd_list));
14773 }
14774 else if (!utp->actions.empty ()
14775 || !utp->step_actions.empty ())
14776 warning (_("Uploaded tracepoint %d actions "
14777 "have no source form, ignoring them"),
14778 utp->number);
14779
14780 /* Copy any status information that might be available. */
14781 tp->hit_count = utp->hit_count;
14782 tp->traceframe_usage = utp->traceframe_usage;
14783
14784 return tp;
14785 }
14786
14787 /* Print information on tracepoint number TPNUM_EXP, or all if
14788 omitted. */
14789
14790 static void
14791 info_tracepoints_command (const char *args, int from_tty)
14792 {
14793 struct ui_out *uiout = current_uiout;
14794 int num_printed;
14795
14796 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14797
14798 if (num_printed == 0)
14799 {
14800 if (args == NULL || *args == '\0')
14801 uiout->message ("No tracepoints.\n");
14802 else
14803 uiout->message ("No tracepoint matching '%s'.\n", args);
14804 }
14805
14806 default_collect_info ();
14807 }
14808
14809 /* The 'enable trace' command enables tracepoints.
14810 Not supported by all targets. */
14811 static void
14812 enable_trace_command (const char *args, int from_tty)
14813 {
14814 enable_command (args, from_tty);
14815 }
14816
14817 /* The 'disable trace' command disables tracepoints.
14818 Not supported by all targets. */
14819 static void
14820 disable_trace_command (const char *args, int from_tty)
14821 {
14822 disable_command (args, from_tty);
14823 }
14824
14825 /* Remove a tracepoint (or all if no argument). */
14826 static void
14827 delete_trace_command (const char *arg, int from_tty)
14828 {
14829 struct breakpoint *b, *b_tmp;
14830
14831 dont_repeat ();
14832
14833 if (arg == 0)
14834 {
14835 int breaks_to_delete = 0;
14836
14837 /* Delete all breakpoints if no argument.
14838 Do not delete internal or call-dummy breakpoints, these
14839 have to be deleted with an explicit breakpoint number
14840 argument. */
14841 ALL_TRACEPOINTS (b)
14842 if (is_tracepoint (b) && user_breakpoint_p (b))
14843 {
14844 breaks_to_delete = 1;
14845 break;
14846 }
14847
14848 /* Ask user only if there are some breakpoints to delete. */
14849 if (!from_tty
14850 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14851 {
14852 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14853 if (is_tracepoint (b) && user_breakpoint_p (b))
14854 delete_breakpoint (b);
14855 }
14856 }
14857 else
14858 map_breakpoint_numbers
14859 (arg, [&] (breakpoint *b)
14860 {
14861 iterate_over_related_breakpoints (b, delete_breakpoint);
14862 });
14863 }
14864
14865 /* Helper function for trace_pass_command. */
14866
14867 static void
14868 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14869 {
14870 tp->pass_count = count;
14871 gdb::observers::breakpoint_modified.notify (tp);
14872 if (from_tty)
14873 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14874 tp->number, count);
14875 }
14876
14877 /* Set passcount for tracepoint.
14878
14879 First command argument is passcount, second is tracepoint number.
14880 If tracepoint number omitted, apply to most recently defined.
14881 Also accepts special argument "all". */
14882
14883 static void
14884 trace_pass_command (const char *args, int from_tty)
14885 {
14886 struct tracepoint *t1;
14887 ULONGEST count;
14888
14889 if (args == 0 || *args == 0)
14890 error (_("passcount command requires an "
14891 "argument (count + optional TP num)"));
14892
14893 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14894
14895 args = skip_spaces (args);
14896 if (*args && strncasecmp (args, "all", 3) == 0)
14897 {
14898 struct breakpoint *b;
14899
14900 args += 3; /* Skip special argument "all". */
14901 if (*args)
14902 error (_("Junk at end of arguments."));
14903
14904 ALL_TRACEPOINTS (b)
14905 {
14906 t1 = (struct tracepoint *) b;
14907 trace_pass_set_count (t1, count, from_tty);
14908 }
14909 }
14910 else if (*args == '\0')
14911 {
14912 t1 = get_tracepoint_by_number (&args, NULL);
14913 if (t1)
14914 trace_pass_set_count (t1, count, from_tty);
14915 }
14916 else
14917 {
14918 number_or_range_parser parser (args);
14919 while (!parser.finished ())
14920 {
14921 t1 = get_tracepoint_by_number (&args, &parser);
14922 if (t1)
14923 trace_pass_set_count (t1, count, from_tty);
14924 }
14925 }
14926 }
14927
14928 struct tracepoint *
14929 get_tracepoint (int num)
14930 {
14931 struct breakpoint *t;
14932
14933 ALL_TRACEPOINTS (t)
14934 if (t->number == num)
14935 return (struct tracepoint *) t;
14936
14937 return NULL;
14938 }
14939
14940 /* Find the tracepoint with the given target-side number (which may be
14941 different from the tracepoint number after disconnecting and
14942 reconnecting). */
14943
14944 struct tracepoint *
14945 get_tracepoint_by_number_on_target (int num)
14946 {
14947 struct breakpoint *b;
14948
14949 ALL_TRACEPOINTS (b)
14950 {
14951 struct tracepoint *t = (struct tracepoint *) b;
14952
14953 if (t->number_on_target == num)
14954 return t;
14955 }
14956
14957 return NULL;
14958 }
14959
14960 /* Utility: parse a tracepoint number and look it up in the list.
14961 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14962 If the argument is missing, the most recent tracepoint
14963 (tracepoint_count) is returned. */
14964
14965 struct tracepoint *
14966 get_tracepoint_by_number (const char **arg,
14967 number_or_range_parser *parser)
14968 {
14969 struct breakpoint *t;
14970 int tpnum;
14971 const char *instring = arg == NULL ? NULL : *arg;
14972
14973 if (parser != NULL)
14974 {
14975 gdb_assert (!parser->finished ());
14976 tpnum = parser->get_number ();
14977 }
14978 else if (arg == NULL || *arg == NULL || ! **arg)
14979 tpnum = tracepoint_count;
14980 else
14981 tpnum = get_number (arg);
14982
14983 if (tpnum <= 0)
14984 {
14985 if (instring && *instring)
14986 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14987 instring);
14988 else
14989 printf_filtered (_("No previous tracepoint\n"));
14990 return NULL;
14991 }
14992
14993 ALL_TRACEPOINTS (t)
14994 if (t->number == tpnum)
14995 {
14996 return (struct tracepoint *) t;
14997 }
14998
14999 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15000 return NULL;
15001 }
15002
15003 void
15004 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15005 {
15006 if (b->thread != -1)
15007 fprintf_unfiltered (fp, " thread %d", b->thread);
15008
15009 if (b->task != 0)
15010 fprintf_unfiltered (fp, " task %d", b->task);
15011
15012 fprintf_unfiltered (fp, "\n");
15013 }
15014
15015 /* Save information on user settable breakpoints (watchpoints, etc) to
15016 a new script file named FILENAME. If FILTER is non-NULL, call it
15017 on each breakpoint and only include the ones for which it returns
15018 non-zero. */
15019
15020 static void
15021 save_breakpoints (const char *filename, int from_tty,
15022 int (*filter) (const struct breakpoint *))
15023 {
15024 struct breakpoint *tp;
15025 int any = 0;
15026 int extra_trace_bits = 0;
15027
15028 if (filename == 0 || *filename == 0)
15029 error (_("Argument required (file name in which to save)"));
15030
15031 /* See if we have anything to save. */
15032 ALL_BREAKPOINTS (tp)
15033 {
15034 /* Skip internal and momentary breakpoints. */
15035 if (!user_breakpoint_p (tp))
15036 continue;
15037
15038 /* If we have a filter, only save the breakpoints it accepts. */
15039 if (filter && !filter (tp))
15040 continue;
15041
15042 any = 1;
15043
15044 if (is_tracepoint (tp))
15045 {
15046 extra_trace_bits = 1;
15047
15048 /* We can stop searching. */
15049 break;
15050 }
15051 }
15052
15053 if (!any)
15054 {
15055 warning (_("Nothing to save."));
15056 return;
15057 }
15058
15059 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15060
15061 stdio_file fp;
15062
15063 if (!fp.open (expanded_filename.get (), "w"))
15064 error (_("Unable to open file '%s' for saving (%s)"),
15065 expanded_filename.get (), safe_strerror (errno));
15066
15067 if (extra_trace_bits)
15068 save_trace_state_variables (&fp);
15069
15070 ALL_BREAKPOINTS (tp)
15071 {
15072 /* Skip internal and momentary breakpoints. */
15073 if (!user_breakpoint_p (tp))
15074 continue;
15075
15076 /* If we have a filter, only save the breakpoints it accepts. */
15077 if (filter && !filter (tp))
15078 continue;
15079
15080 tp->ops->print_recreate (tp, &fp);
15081
15082 /* Note, we can't rely on tp->number for anything, as we can't
15083 assume the recreated breakpoint numbers will match. Use $bpnum
15084 instead. */
15085
15086 if (tp->cond_string)
15087 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15088
15089 if (tp->ignore_count)
15090 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15091
15092 if (tp->type != bp_dprintf && tp->commands)
15093 {
15094 fp.puts (" commands\n");
15095
15096 current_uiout->redirect (&fp);
15097 TRY
15098 {
15099 print_command_lines (current_uiout, tp->commands.get (), 2);
15100 }
15101 CATCH (ex, RETURN_MASK_ALL)
15102 {
15103 current_uiout->redirect (NULL);
15104 throw_exception (ex);
15105 }
15106 END_CATCH
15107
15108 current_uiout->redirect (NULL);
15109 fp.puts (" end\n");
15110 }
15111
15112 if (tp->enable_state == bp_disabled)
15113 fp.puts ("disable $bpnum\n");
15114
15115 /* If this is a multi-location breakpoint, check if the locations
15116 should be individually disabled. Watchpoint locations are
15117 special, and not user visible. */
15118 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15119 {
15120 struct bp_location *loc;
15121 int n = 1;
15122
15123 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15124 if (!loc->enabled)
15125 fp.printf ("disable $bpnum.%d\n", n);
15126 }
15127 }
15128
15129 if (extra_trace_bits && *default_collect)
15130 fp.printf ("set default-collect %s\n", default_collect);
15131
15132 if (from_tty)
15133 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15134 }
15135
15136 /* The `save breakpoints' command. */
15137
15138 static void
15139 save_breakpoints_command (const char *args, int from_tty)
15140 {
15141 save_breakpoints (args, from_tty, NULL);
15142 }
15143
15144 /* The `save tracepoints' command. */
15145
15146 static void
15147 save_tracepoints_command (const char *args, int from_tty)
15148 {
15149 save_breakpoints (args, from_tty, is_tracepoint);
15150 }
15151
15152 /* Create a vector of all tracepoints. */
15153
15154 VEC(breakpoint_p) *
15155 all_tracepoints (void)
15156 {
15157 VEC(breakpoint_p) *tp_vec = 0;
15158 struct breakpoint *tp;
15159
15160 ALL_TRACEPOINTS (tp)
15161 {
15162 VEC_safe_push (breakpoint_p, tp_vec, tp);
15163 }
15164
15165 return tp_vec;
15166 }
15167
15168 \f
15169 /* This help string is used to consolidate all the help string for specifying
15170 locations used by several commands. */
15171
15172 #define LOCATION_HELP_STRING \
15173 "Linespecs are colon-separated lists of location parameters, such as\n\
15174 source filename, function name, label name, and line number.\n\
15175 Example: To specify the start of a label named \"the_top\" in the\n\
15176 function \"fact\" in the file \"factorial.c\", use\n\
15177 \"factorial.c:fact:the_top\".\n\
15178 \n\
15179 Address locations begin with \"*\" and specify an exact address in the\n\
15180 program. Example: To specify the fourth byte past the start function\n\
15181 \"main\", use \"*main + 4\".\n\
15182 \n\
15183 Explicit locations are similar to linespecs but use an option/argument\n\
15184 syntax to specify location parameters.\n\
15185 Example: To specify the start of the label named \"the_top\" in the\n\
15186 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15187 -function fact -label the_top\".\n\
15188 \n\
15189 By default, a specified function is matched against the program's\n\
15190 functions in all scopes. For C++, this means in all namespaces and\n\
15191 classes. For Ada, this means in all packages. E.g., in C++,\n\
15192 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15193 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15194 specified name as a complete fully-qualified name instead.\n"
15195
15196 /* This help string is used for the break, hbreak, tbreak and thbreak
15197 commands. It is defined as a macro to prevent duplication.
15198 COMMAND should be a string constant containing the name of the
15199 command. */
15200
15201 #define BREAK_ARGS_HELP(command) \
15202 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15203 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15204 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15205 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15206 `-probe-dtrace' (for a DTrace probe).\n\
15207 LOCATION may be a linespec, address, or explicit location as described\n\
15208 below.\n\
15209 \n\
15210 With no LOCATION, uses current execution address of the selected\n\
15211 stack frame. This is useful for breaking on return to a stack frame.\n\
15212 \n\
15213 THREADNUM is the number from \"info threads\".\n\
15214 CONDITION is a boolean expression.\n\
15215 \n" LOCATION_HELP_STRING "\n\
15216 Multiple breakpoints at one place are permitted, and useful if their\n\
15217 conditions are different.\n\
15218 \n\
15219 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15220
15221 /* List of subcommands for "catch". */
15222 static struct cmd_list_element *catch_cmdlist;
15223
15224 /* List of subcommands for "tcatch". */
15225 static struct cmd_list_element *tcatch_cmdlist;
15226
15227 void
15228 add_catch_command (const char *name, const char *docstring,
15229 cmd_const_sfunc_ftype *sfunc,
15230 completer_ftype *completer,
15231 void *user_data_catch,
15232 void *user_data_tcatch)
15233 {
15234 struct cmd_list_element *command;
15235
15236 command = add_cmd (name, class_breakpoint, docstring,
15237 &catch_cmdlist);
15238 set_cmd_sfunc (command, sfunc);
15239 set_cmd_context (command, user_data_catch);
15240 set_cmd_completer (command, completer);
15241
15242 command = add_cmd (name, class_breakpoint, docstring,
15243 &tcatch_cmdlist);
15244 set_cmd_sfunc (command, sfunc);
15245 set_cmd_context (command, user_data_tcatch);
15246 set_cmd_completer (command, completer);
15247 }
15248
15249 static void
15250 save_command (const char *arg, int from_tty)
15251 {
15252 printf_unfiltered (_("\"save\" must be followed by "
15253 "the name of a save subcommand.\n"));
15254 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15255 }
15256
15257 struct breakpoint *
15258 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15259 void *data)
15260 {
15261 struct breakpoint *b, *b_tmp;
15262
15263 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15264 {
15265 if ((*callback) (b, data))
15266 return b;
15267 }
15268
15269 return NULL;
15270 }
15271
15272 /* Zero if any of the breakpoint's locations could be a location where
15273 functions have been inlined, nonzero otherwise. */
15274
15275 static int
15276 is_non_inline_function (struct breakpoint *b)
15277 {
15278 /* The shared library event breakpoint is set on the address of a
15279 non-inline function. */
15280 if (b->type == bp_shlib_event)
15281 return 1;
15282
15283 return 0;
15284 }
15285
15286 /* Nonzero if the specified PC cannot be a location where functions
15287 have been inlined. */
15288
15289 int
15290 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15291 const struct target_waitstatus *ws)
15292 {
15293 struct breakpoint *b;
15294 struct bp_location *bl;
15295
15296 ALL_BREAKPOINTS (b)
15297 {
15298 if (!is_non_inline_function (b))
15299 continue;
15300
15301 for (bl = b->loc; bl != NULL; bl = bl->next)
15302 {
15303 if (!bl->shlib_disabled
15304 && bpstat_check_location (bl, aspace, pc, ws))
15305 return 1;
15306 }
15307 }
15308
15309 return 0;
15310 }
15311
15312 /* Remove any references to OBJFILE which is going to be freed. */
15313
15314 void
15315 breakpoint_free_objfile (struct objfile *objfile)
15316 {
15317 struct bp_location **locp, *loc;
15318
15319 ALL_BP_LOCATIONS (loc, locp)
15320 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15321 loc->symtab = NULL;
15322 }
15323
15324 void
15325 initialize_breakpoint_ops (void)
15326 {
15327 static int initialized = 0;
15328
15329 struct breakpoint_ops *ops;
15330
15331 if (initialized)
15332 return;
15333 initialized = 1;
15334
15335 /* The breakpoint_ops structure to be inherit by all kinds of
15336 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15337 internal and momentary breakpoints, etc.). */
15338 ops = &bkpt_base_breakpoint_ops;
15339 *ops = base_breakpoint_ops;
15340 ops->re_set = bkpt_re_set;
15341 ops->insert_location = bkpt_insert_location;
15342 ops->remove_location = bkpt_remove_location;
15343 ops->breakpoint_hit = bkpt_breakpoint_hit;
15344 ops->create_sals_from_location = bkpt_create_sals_from_location;
15345 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15346 ops->decode_location = bkpt_decode_location;
15347
15348 /* The breakpoint_ops structure to be used in regular breakpoints. */
15349 ops = &bkpt_breakpoint_ops;
15350 *ops = bkpt_base_breakpoint_ops;
15351 ops->re_set = bkpt_re_set;
15352 ops->resources_needed = bkpt_resources_needed;
15353 ops->print_it = bkpt_print_it;
15354 ops->print_mention = bkpt_print_mention;
15355 ops->print_recreate = bkpt_print_recreate;
15356
15357 /* Ranged breakpoints. */
15358 ops = &ranged_breakpoint_ops;
15359 *ops = bkpt_breakpoint_ops;
15360 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15361 ops->resources_needed = resources_needed_ranged_breakpoint;
15362 ops->print_it = print_it_ranged_breakpoint;
15363 ops->print_one = print_one_ranged_breakpoint;
15364 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15365 ops->print_mention = print_mention_ranged_breakpoint;
15366 ops->print_recreate = print_recreate_ranged_breakpoint;
15367
15368 /* Internal breakpoints. */
15369 ops = &internal_breakpoint_ops;
15370 *ops = bkpt_base_breakpoint_ops;
15371 ops->re_set = internal_bkpt_re_set;
15372 ops->check_status = internal_bkpt_check_status;
15373 ops->print_it = internal_bkpt_print_it;
15374 ops->print_mention = internal_bkpt_print_mention;
15375
15376 /* Momentary breakpoints. */
15377 ops = &momentary_breakpoint_ops;
15378 *ops = bkpt_base_breakpoint_ops;
15379 ops->re_set = momentary_bkpt_re_set;
15380 ops->check_status = momentary_bkpt_check_status;
15381 ops->print_it = momentary_bkpt_print_it;
15382 ops->print_mention = momentary_bkpt_print_mention;
15383
15384 /* Probe breakpoints. */
15385 ops = &bkpt_probe_breakpoint_ops;
15386 *ops = bkpt_breakpoint_ops;
15387 ops->insert_location = bkpt_probe_insert_location;
15388 ops->remove_location = bkpt_probe_remove_location;
15389 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15390 ops->decode_location = bkpt_probe_decode_location;
15391
15392 /* Watchpoints. */
15393 ops = &watchpoint_breakpoint_ops;
15394 *ops = base_breakpoint_ops;
15395 ops->re_set = re_set_watchpoint;
15396 ops->insert_location = insert_watchpoint;
15397 ops->remove_location = remove_watchpoint;
15398 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15399 ops->check_status = check_status_watchpoint;
15400 ops->resources_needed = resources_needed_watchpoint;
15401 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15402 ops->print_it = print_it_watchpoint;
15403 ops->print_mention = print_mention_watchpoint;
15404 ops->print_recreate = print_recreate_watchpoint;
15405 ops->explains_signal = explains_signal_watchpoint;
15406
15407 /* Masked watchpoints. */
15408 ops = &masked_watchpoint_breakpoint_ops;
15409 *ops = watchpoint_breakpoint_ops;
15410 ops->insert_location = insert_masked_watchpoint;
15411 ops->remove_location = remove_masked_watchpoint;
15412 ops->resources_needed = resources_needed_masked_watchpoint;
15413 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15414 ops->print_it = print_it_masked_watchpoint;
15415 ops->print_one_detail = print_one_detail_masked_watchpoint;
15416 ops->print_mention = print_mention_masked_watchpoint;
15417 ops->print_recreate = print_recreate_masked_watchpoint;
15418
15419 /* Tracepoints. */
15420 ops = &tracepoint_breakpoint_ops;
15421 *ops = base_breakpoint_ops;
15422 ops->re_set = tracepoint_re_set;
15423 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15424 ops->print_one_detail = tracepoint_print_one_detail;
15425 ops->print_mention = tracepoint_print_mention;
15426 ops->print_recreate = tracepoint_print_recreate;
15427 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15428 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15429 ops->decode_location = tracepoint_decode_location;
15430
15431 /* Probe tracepoints. */
15432 ops = &tracepoint_probe_breakpoint_ops;
15433 *ops = tracepoint_breakpoint_ops;
15434 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15435 ops->decode_location = tracepoint_probe_decode_location;
15436
15437 /* Static tracepoints with marker (`-m'). */
15438 ops = &strace_marker_breakpoint_ops;
15439 *ops = tracepoint_breakpoint_ops;
15440 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15441 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15442 ops->decode_location = strace_marker_decode_location;
15443
15444 /* Fork catchpoints. */
15445 ops = &catch_fork_breakpoint_ops;
15446 *ops = base_breakpoint_ops;
15447 ops->insert_location = insert_catch_fork;
15448 ops->remove_location = remove_catch_fork;
15449 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15450 ops->print_it = print_it_catch_fork;
15451 ops->print_one = print_one_catch_fork;
15452 ops->print_mention = print_mention_catch_fork;
15453 ops->print_recreate = print_recreate_catch_fork;
15454
15455 /* Vfork catchpoints. */
15456 ops = &catch_vfork_breakpoint_ops;
15457 *ops = base_breakpoint_ops;
15458 ops->insert_location = insert_catch_vfork;
15459 ops->remove_location = remove_catch_vfork;
15460 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15461 ops->print_it = print_it_catch_vfork;
15462 ops->print_one = print_one_catch_vfork;
15463 ops->print_mention = print_mention_catch_vfork;
15464 ops->print_recreate = print_recreate_catch_vfork;
15465
15466 /* Exec catchpoints. */
15467 ops = &catch_exec_breakpoint_ops;
15468 *ops = base_breakpoint_ops;
15469 ops->insert_location = insert_catch_exec;
15470 ops->remove_location = remove_catch_exec;
15471 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15472 ops->print_it = print_it_catch_exec;
15473 ops->print_one = print_one_catch_exec;
15474 ops->print_mention = print_mention_catch_exec;
15475 ops->print_recreate = print_recreate_catch_exec;
15476
15477 /* Solib-related catchpoints. */
15478 ops = &catch_solib_breakpoint_ops;
15479 *ops = base_breakpoint_ops;
15480 ops->insert_location = insert_catch_solib;
15481 ops->remove_location = remove_catch_solib;
15482 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15483 ops->check_status = check_status_catch_solib;
15484 ops->print_it = print_it_catch_solib;
15485 ops->print_one = print_one_catch_solib;
15486 ops->print_mention = print_mention_catch_solib;
15487 ops->print_recreate = print_recreate_catch_solib;
15488
15489 ops = &dprintf_breakpoint_ops;
15490 *ops = bkpt_base_breakpoint_ops;
15491 ops->re_set = dprintf_re_set;
15492 ops->resources_needed = bkpt_resources_needed;
15493 ops->print_it = bkpt_print_it;
15494 ops->print_mention = bkpt_print_mention;
15495 ops->print_recreate = dprintf_print_recreate;
15496 ops->after_condition_true = dprintf_after_condition_true;
15497 ops->breakpoint_hit = dprintf_breakpoint_hit;
15498 }
15499
15500 /* Chain containing all defined "enable breakpoint" subcommands. */
15501
15502 static struct cmd_list_element *enablebreaklist = NULL;
15503
15504 void
15505 _initialize_breakpoint (void)
15506 {
15507 struct cmd_list_element *c;
15508
15509 initialize_breakpoint_ops ();
15510
15511 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15512 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15513 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15514
15515 breakpoint_objfile_key
15516 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15517
15518 breakpoint_chain = 0;
15519 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15520 before a breakpoint is set. */
15521 breakpoint_count = 0;
15522
15523 tracepoint_count = 0;
15524
15525 add_com ("ignore", class_breakpoint, ignore_command, _("\
15526 Set ignore-count of breakpoint number N to COUNT.\n\
15527 Usage is `ignore N COUNT'."));
15528
15529 add_com ("commands", class_breakpoint, commands_command, _("\
15530 Set commands to be executed when the given breakpoints are hit.\n\
15531 Give a space-separated breakpoint list as argument after \"commands\".\n\
15532 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15533 (e.g. `5-7').\n\
15534 With no argument, the targeted breakpoint is the last one set.\n\
15535 The commands themselves follow starting on the next line.\n\
15536 Type a line containing \"end\" to indicate the end of them.\n\
15537 Give \"silent\" as the first line to make the breakpoint silent;\n\
15538 then no output is printed when it is hit, except what the commands print."));
15539
15540 c = add_com ("condition", class_breakpoint, condition_command, _("\
15541 Specify breakpoint number N to break only if COND is true.\n\
15542 Usage is `condition N COND', where N is an integer and COND is an\n\
15543 expression to be evaluated whenever breakpoint N is reached."));
15544 set_cmd_completer (c, condition_completer);
15545
15546 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15547 Set a temporary breakpoint.\n\
15548 Like \"break\" except the breakpoint is only temporary,\n\
15549 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15550 by using \"enable delete\" on the breakpoint number.\n\
15551 \n"
15552 BREAK_ARGS_HELP ("tbreak")));
15553 set_cmd_completer (c, location_completer);
15554
15555 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15556 Set a hardware assisted breakpoint.\n\
15557 Like \"break\" except the breakpoint requires hardware support,\n\
15558 some target hardware may not have this support.\n\
15559 \n"
15560 BREAK_ARGS_HELP ("hbreak")));
15561 set_cmd_completer (c, location_completer);
15562
15563 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15564 Set a temporary hardware assisted breakpoint.\n\
15565 Like \"hbreak\" except the breakpoint is only temporary,\n\
15566 so it will be deleted when hit.\n\
15567 \n"
15568 BREAK_ARGS_HELP ("thbreak")));
15569 set_cmd_completer (c, location_completer);
15570
15571 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15572 Enable some breakpoints.\n\
15573 Give breakpoint numbers (separated by spaces) as arguments.\n\
15574 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15575 This is used to cancel the effect of the \"disable\" command.\n\
15576 With a subcommand you can enable temporarily."),
15577 &enablelist, "enable ", 1, &cmdlist);
15578
15579 add_com_alias ("en", "enable", class_breakpoint, 1);
15580
15581 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15582 Enable some breakpoints.\n\
15583 Give breakpoint numbers (separated by spaces) as arguments.\n\
15584 This is used to cancel the effect of the \"disable\" command.\n\
15585 May be abbreviated to simply \"enable\".\n"),
15586 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15587
15588 add_cmd ("once", no_class, enable_once_command, _("\
15589 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15590 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15591 &enablebreaklist);
15592
15593 add_cmd ("delete", no_class, enable_delete_command, _("\
15594 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15595 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15596 &enablebreaklist);
15597
15598 add_cmd ("count", no_class, enable_count_command, _("\
15599 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion,\n\
15601 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15602 &enablebreaklist);
15603
15604 add_cmd ("delete", no_class, enable_delete_command, _("\
15605 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15606 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15607 &enablelist);
15608
15609 add_cmd ("once", no_class, enable_once_command, _("\
15610 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15611 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15612 &enablelist);
15613
15614 add_cmd ("count", no_class, enable_count_command, _("\
15615 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15616 If a breakpoint is hit while enabled in this fashion,\n\
15617 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15618 &enablelist);
15619
15620 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15621 Disable some breakpoints.\n\
15622 Arguments are breakpoint numbers with spaces in between.\n\
15623 To disable all breakpoints, give no argument.\n\
15624 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15625 &disablelist, "disable ", 1, &cmdlist);
15626 add_com_alias ("dis", "disable", class_breakpoint, 1);
15627 add_com_alias ("disa", "disable", class_breakpoint, 1);
15628
15629 add_cmd ("breakpoints", class_alias, disable_command, _("\
15630 Disable some breakpoints.\n\
15631 Arguments are breakpoint numbers with spaces in between.\n\
15632 To disable all breakpoints, give no argument.\n\
15633 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15634 This command may be abbreviated \"disable\"."),
15635 &disablelist);
15636
15637 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15638 Delete some breakpoints or auto-display expressions.\n\
15639 Arguments are breakpoint numbers with spaces in between.\n\
15640 To delete all breakpoints, give no argument.\n\
15641 \n\
15642 Also a prefix command for deletion of other GDB objects.\n\
15643 The \"unset\" command is also an alias for \"delete\"."),
15644 &deletelist, "delete ", 1, &cmdlist);
15645 add_com_alias ("d", "delete", class_breakpoint, 1);
15646 add_com_alias ("del", "delete", class_breakpoint, 1);
15647
15648 add_cmd ("breakpoints", class_alias, delete_command, _("\
15649 Delete some breakpoints or auto-display expressions.\n\
15650 Arguments are breakpoint numbers with spaces in between.\n\
15651 To delete all breakpoints, give no argument.\n\
15652 This command may be abbreviated \"delete\"."),
15653 &deletelist);
15654
15655 add_com ("clear", class_breakpoint, clear_command, _("\
15656 Clear breakpoint at specified location.\n\
15657 Argument may be a linespec, explicit, or address location as described below.\n\
15658 \n\
15659 With no argument, clears all breakpoints in the line that the selected frame\n\
15660 is executing in.\n"
15661 "\n" LOCATION_HELP_STRING "\n\
15662 See also the \"delete\" command which clears breakpoints by number."));
15663 add_com_alias ("cl", "clear", class_breakpoint, 1);
15664
15665 c = add_com ("break", class_breakpoint, break_command, _("\
15666 Set breakpoint at specified location.\n"
15667 BREAK_ARGS_HELP ("break")));
15668 set_cmd_completer (c, location_completer);
15669
15670 add_com_alias ("b", "break", class_run, 1);
15671 add_com_alias ("br", "break", class_run, 1);
15672 add_com_alias ("bre", "break", class_run, 1);
15673 add_com_alias ("brea", "break", class_run, 1);
15674
15675 if (dbx_commands)
15676 {
15677 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15678 Break in function/address or break at a line in the current file."),
15679 &stoplist, "stop ", 1, &cmdlist);
15680 add_cmd ("in", class_breakpoint, stopin_command,
15681 _("Break in function or address."), &stoplist);
15682 add_cmd ("at", class_breakpoint, stopat_command,
15683 _("Break at a line in the current file."), &stoplist);
15684 add_com ("status", class_info, info_breakpoints_command, _("\
15685 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15686 The \"Type\" column indicates one of:\n\
15687 \tbreakpoint - normal breakpoint\n\
15688 \twatchpoint - watchpoint\n\
15689 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15690 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15691 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15692 address and file/line number respectively.\n\
15693 \n\
15694 Convenience variable \"$_\" and default examine address for \"x\"\n\
15695 are set to the address of the last breakpoint listed unless the command\n\
15696 is prefixed with \"server \".\n\n\
15697 Convenience variable \"$bpnum\" contains the number of the last\n\
15698 breakpoint set."));
15699 }
15700
15701 add_info ("breakpoints", info_breakpoints_command, _("\
15702 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15703 The \"Type\" column indicates one of:\n\
15704 \tbreakpoint - normal breakpoint\n\
15705 \twatchpoint - watchpoint\n\
15706 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15707 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15708 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15709 address and file/line number respectively.\n\
15710 \n\
15711 Convenience variable \"$_\" and default examine address for \"x\"\n\
15712 are set to the address of the last breakpoint listed unless the command\n\
15713 is prefixed with \"server \".\n\n\
15714 Convenience variable \"$bpnum\" contains the number of the last\n\
15715 breakpoint set."));
15716
15717 add_info_alias ("b", "breakpoints", 1);
15718
15719 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15720 Status of all breakpoints, or breakpoint number NUMBER.\n\
15721 The \"Type\" column indicates one of:\n\
15722 \tbreakpoint - normal breakpoint\n\
15723 \twatchpoint - watchpoint\n\
15724 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15725 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15726 \tuntil - internal breakpoint used by the \"until\" command\n\
15727 \tfinish - internal breakpoint used by the \"finish\" command\n\
15728 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15729 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15730 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15731 address and file/line number respectively.\n\
15732 \n\
15733 Convenience variable \"$_\" and default examine address for \"x\"\n\
15734 are set to the address of the last breakpoint listed unless the command\n\
15735 is prefixed with \"server \".\n\n\
15736 Convenience variable \"$bpnum\" contains the number of the last\n\
15737 breakpoint set."),
15738 &maintenanceinfolist);
15739
15740 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15741 Set catchpoints to catch events."),
15742 &catch_cmdlist, "catch ",
15743 0/*allow-unknown*/, &cmdlist);
15744
15745 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15746 Set temporary catchpoints to catch events."),
15747 &tcatch_cmdlist, "tcatch ",
15748 0/*allow-unknown*/, &cmdlist);
15749
15750 add_catch_command ("fork", _("Catch calls to fork."),
15751 catch_fork_command_1,
15752 NULL,
15753 (void *) (uintptr_t) catch_fork_permanent,
15754 (void *) (uintptr_t) catch_fork_temporary);
15755 add_catch_command ("vfork", _("Catch calls to vfork."),
15756 catch_fork_command_1,
15757 NULL,
15758 (void *) (uintptr_t) catch_vfork_permanent,
15759 (void *) (uintptr_t) catch_vfork_temporary);
15760 add_catch_command ("exec", _("Catch calls to exec."),
15761 catch_exec_command_1,
15762 NULL,
15763 CATCH_PERMANENT,
15764 CATCH_TEMPORARY);
15765 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15766 Usage: catch load [REGEX]\n\
15767 If REGEX is given, only stop for libraries matching the regular expression."),
15768 catch_load_command_1,
15769 NULL,
15770 CATCH_PERMANENT,
15771 CATCH_TEMPORARY);
15772 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15773 Usage: catch unload [REGEX]\n\
15774 If REGEX is given, only stop for libraries matching the regular expression."),
15775 catch_unload_command_1,
15776 NULL,
15777 CATCH_PERMANENT,
15778 CATCH_TEMPORARY);
15779
15780 c = add_com ("watch", class_breakpoint, watch_command, _("\
15781 Set a watchpoint for an expression.\n\
15782 Usage: watch [-l|-location] EXPRESSION\n\
15783 A watchpoint stops execution of your program whenever the value of\n\
15784 an expression changes.\n\
15785 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15786 the memory to which it refers."));
15787 set_cmd_completer (c, expression_completer);
15788
15789 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15790 Set a read watchpoint for an expression.\n\
15791 Usage: rwatch [-l|-location] EXPRESSION\n\
15792 A watchpoint stops execution of your program whenever the value of\n\
15793 an expression is read.\n\
15794 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15795 the memory to which it refers."));
15796 set_cmd_completer (c, expression_completer);
15797
15798 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15799 Set a watchpoint for an expression.\n\
15800 Usage: awatch [-l|-location] EXPRESSION\n\
15801 A watchpoint stops execution of your program whenever the value of\n\
15802 an expression is either read or written.\n\
15803 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15804 the memory to which it refers."));
15805 set_cmd_completer (c, expression_completer);
15806
15807 add_info ("watchpoints", info_watchpoints_command, _("\
15808 Status of specified watchpoints (all watchpoints if no argument)."));
15809
15810 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15811 respond to changes - contrary to the description. */
15812 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15813 &can_use_hw_watchpoints, _("\
15814 Set debugger's willingness to use watchpoint hardware."), _("\
15815 Show debugger's willingness to use watchpoint hardware."), _("\
15816 If zero, gdb will not use hardware for new watchpoints, even if\n\
15817 such is available. (However, any hardware watchpoints that were\n\
15818 created before setting this to nonzero, will continue to use watchpoint\n\
15819 hardware.)"),
15820 NULL,
15821 show_can_use_hw_watchpoints,
15822 &setlist, &showlist);
15823
15824 can_use_hw_watchpoints = 1;
15825
15826 /* Tracepoint manipulation commands. */
15827
15828 c = add_com ("trace", class_breakpoint, trace_command, _("\
15829 Set a tracepoint at specified location.\n\
15830 \n"
15831 BREAK_ARGS_HELP ("trace") "\n\
15832 Do \"help tracepoints\" for info on other tracepoint commands."));
15833 set_cmd_completer (c, location_completer);
15834
15835 add_com_alias ("tp", "trace", class_alias, 0);
15836 add_com_alias ("tr", "trace", class_alias, 1);
15837 add_com_alias ("tra", "trace", class_alias, 1);
15838 add_com_alias ("trac", "trace", class_alias, 1);
15839
15840 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15841 Set a fast tracepoint at specified location.\n\
15842 \n"
15843 BREAK_ARGS_HELP ("ftrace") "\n\
15844 Do \"help tracepoints\" for info on other tracepoint commands."));
15845 set_cmd_completer (c, location_completer);
15846
15847 c = add_com ("strace", class_breakpoint, strace_command, _("\
15848 Set a static tracepoint at location or marker.\n\
15849 \n\
15850 strace [LOCATION] [if CONDITION]\n\
15851 LOCATION may be a linespec, explicit, or address location (described below) \n\
15852 or -m MARKER_ID.\n\n\
15853 If a marker id is specified, probe the marker with that name. With\n\
15854 no LOCATION, uses current execution address of the selected stack frame.\n\
15855 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15856 This collects arbitrary user data passed in the probe point call to the\n\
15857 tracing library. You can inspect it when analyzing the trace buffer,\n\
15858 by printing the $_sdata variable like any other convenience variable.\n\
15859 \n\
15860 CONDITION is a boolean expression.\n\
15861 \n" LOCATION_HELP_STRING "\n\
15862 Multiple tracepoints at one place are permitted, and useful if their\n\
15863 conditions are different.\n\
15864 \n\
15865 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15866 Do \"help tracepoints\" for info on other tracepoint commands."));
15867 set_cmd_completer (c, location_completer);
15868
15869 add_info ("tracepoints", info_tracepoints_command, _("\
15870 Status of specified tracepoints (all tracepoints if no argument).\n\
15871 Convenience variable \"$tpnum\" contains the number of the\n\
15872 last tracepoint set."));
15873
15874 add_info_alias ("tp", "tracepoints", 1);
15875
15876 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15877 Delete specified tracepoints.\n\
15878 Arguments are tracepoint numbers, separated by spaces.\n\
15879 No argument means delete all tracepoints."),
15880 &deletelist);
15881 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15882
15883 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15884 Disable specified tracepoints.\n\
15885 Arguments are tracepoint numbers, separated by spaces.\n\
15886 No argument means disable all tracepoints."),
15887 &disablelist);
15888 deprecate_cmd (c, "disable");
15889
15890 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15891 Enable specified tracepoints.\n\
15892 Arguments are tracepoint numbers, separated by spaces.\n\
15893 No argument means enable all tracepoints."),
15894 &enablelist);
15895 deprecate_cmd (c, "enable");
15896
15897 add_com ("passcount", class_trace, trace_pass_command, _("\
15898 Set the passcount for a tracepoint.\n\
15899 The trace will end when the tracepoint has been passed 'count' times.\n\
15900 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15901 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15902
15903 add_prefix_cmd ("save", class_breakpoint, save_command,
15904 _("Save breakpoint definitions as a script."),
15905 &save_cmdlist, "save ",
15906 0/*allow-unknown*/, &cmdlist);
15907
15908 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15909 Save current breakpoint definitions as a script.\n\
15910 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15911 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15912 session to restore them."),
15913 &save_cmdlist);
15914 set_cmd_completer (c, filename_completer);
15915
15916 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15917 Save current tracepoint definitions as a script.\n\
15918 Use the 'source' command in another debug session to restore them."),
15919 &save_cmdlist);
15920 set_cmd_completer (c, filename_completer);
15921
15922 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15923 deprecate_cmd (c, "save tracepoints");
15924
15925 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15926 Breakpoint specific settings\n\
15927 Configure various breakpoint-specific variables such as\n\
15928 pending breakpoint behavior"),
15929 &breakpoint_set_cmdlist, "set breakpoint ",
15930 0/*allow-unknown*/, &setlist);
15931 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15932 Breakpoint specific settings\n\
15933 Configure various breakpoint-specific variables such as\n\
15934 pending breakpoint behavior"),
15935 &breakpoint_show_cmdlist, "show breakpoint ",
15936 0/*allow-unknown*/, &showlist);
15937
15938 add_setshow_auto_boolean_cmd ("pending", no_class,
15939 &pending_break_support, _("\
15940 Set debugger's behavior regarding pending breakpoints."), _("\
15941 Show debugger's behavior regarding pending breakpoints."), _("\
15942 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15943 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15944 an error. If auto, an unrecognized breakpoint location results in a\n\
15945 user-query to see if a pending breakpoint should be created."),
15946 NULL,
15947 show_pending_break_support,
15948 &breakpoint_set_cmdlist,
15949 &breakpoint_show_cmdlist);
15950
15951 pending_break_support = AUTO_BOOLEAN_AUTO;
15952
15953 add_setshow_boolean_cmd ("auto-hw", no_class,
15954 &automatic_hardware_breakpoints, _("\
15955 Set automatic usage of hardware breakpoints."), _("\
15956 Show automatic usage of hardware breakpoints."), _("\
15957 If set, the debugger will automatically use hardware breakpoints for\n\
15958 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15959 a warning will be emitted for such breakpoints."),
15960 NULL,
15961 show_automatic_hardware_breakpoints,
15962 &breakpoint_set_cmdlist,
15963 &breakpoint_show_cmdlist);
15964
15965 add_setshow_boolean_cmd ("always-inserted", class_support,
15966 &always_inserted_mode, _("\
15967 Set mode for inserting breakpoints."), _("\
15968 Show mode for inserting breakpoints."), _("\
15969 When this mode is on, breakpoints are inserted immediately as soon as\n\
15970 they're created, kept inserted even when execution stops, and removed\n\
15971 only when the user deletes them. When this mode is off (the default),\n\
15972 breakpoints are inserted only when execution continues, and removed\n\
15973 when execution stops."),
15974 NULL,
15975 &show_always_inserted_mode,
15976 &breakpoint_set_cmdlist,
15977 &breakpoint_show_cmdlist);
15978
15979 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15980 condition_evaluation_enums,
15981 &condition_evaluation_mode_1, _("\
15982 Set mode of breakpoint condition evaluation."), _("\
15983 Show mode of breakpoint condition evaluation."), _("\
15984 When this is set to \"host\", breakpoint conditions will be\n\
15985 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15986 breakpoint conditions will be downloaded to the target (if the target\n\
15987 supports such feature) and conditions will be evaluated on the target's side.\n\
15988 If this is set to \"auto\" (default), this will be automatically set to\n\
15989 \"target\" if it supports condition evaluation, otherwise it will\n\
15990 be set to \"gdb\""),
15991 &set_condition_evaluation_mode,
15992 &show_condition_evaluation_mode,
15993 &breakpoint_set_cmdlist,
15994 &breakpoint_show_cmdlist);
15995
15996 add_com ("break-range", class_breakpoint, break_range_command, _("\
15997 Set a breakpoint for an address range.\n\
15998 break-range START-LOCATION, END-LOCATION\n\
15999 where START-LOCATION and END-LOCATION can be one of the following:\n\
16000 LINENUM, for that line in the current file,\n\
16001 FILE:LINENUM, for that line in that file,\n\
16002 +OFFSET, for that number of lines after the current line\n\
16003 or the start of the range\n\
16004 FUNCTION, for the first line in that function,\n\
16005 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16006 *ADDRESS, for the instruction at that address.\n\
16007 \n\
16008 The breakpoint will stop execution of the inferior whenever it executes\n\
16009 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16010 range (including START-LOCATION and END-LOCATION)."));
16011
16012 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16013 Set a dynamic printf at specified location.\n\
16014 dprintf location,format string,arg1,arg2,...\n\
16015 location may be a linespec, explicit, or address location.\n"
16016 "\n" LOCATION_HELP_STRING));
16017 set_cmd_completer (c, location_completer);
16018
16019 add_setshow_enum_cmd ("dprintf-style", class_support,
16020 dprintf_style_enums, &dprintf_style, _("\
16021 Set the style of usage for dynamic printf."), _("\
16022 Show the style of usage for dynamic printf."), _("\
16023 This setting chooses how GDB will do a dynamic printf.\n\
16024 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16025 console, as with the \"printf\" command.\n\
16026 If the value is \"call\", the print is done by calling a function in your\n\
16027 program; by default printf(), but you can choose a different function or\n\
16028 output stream by setting dprintf-function and dprintf-channel."),
16029 update_dprintf_commands, NULL,
16030 &setlist, &showlist);
16031
16032 dprintf_function = xstrdup ("printf");
16033 add_setshow_string_cmd ("dprintf-function", class_support,
16034 &dprintf_function, _("\
16035 Set the function to use for dynamic printf"), _("\
16036 Show the function to use for dynamic printf"), NULL,
16037 update_dprintf_commands, NULL,
16038 &setlist, &showlist);
16039
16040 dprintf_channel = xstrdup ("");
16041 add_setshow_string_cmd ("dprintf-channel", class_support,
16042 &dprintf_channel, _("\
16043 Set the channel to use for dynamic printf"), _("\
16044 Show the channel to use for dynamic printf"), NULL,
16045 update_dprintf_commands, NULL,
16046 &setlist, &showlist);
16047
16048 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16049 &disconnected_dprintf, _("\
16050 Set whether dprintf continues after GDB disconnects."), _("\
16051 Show whether dprintf continues after GDB disconnects."), _("\
16052 Use this to let dprintf commands continue to hit and produce output\n\
16053 even if GDB disconnects or detaches from the target."),
16054 NULL,
16055 NULL,
16056 &setlist, &showlist);
16057
16058 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16059 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16060 (target agent only) This is useful for formatted output in user-defined commands."));
16061
16062 automatic_hardware_breakpoints = 1;
16063
16064 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16065 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16066 }
This page took 0.333666 seconds and 3 git commands to generate.