Update copyright year range in all GDB files.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84 #include "common/array-view.h"
85 #include "common/gdb_optional.h"
86
87 /* Enums for exception-handling support. */
88 enum exception_event_kind
89 {
90 EX_EVENT_THROW,
91 EX_EVENT_RETHROW,
92 EX_EVENT_CATCH
93 };
94
95 /* Prototypes for local functions. */
96
97 static void map_breakpoint_numbers (const char *,
98 gdb::function_view<void (breakpoint *)>);
99
100 static void breakpoint_re_set_default (struct breakpoint *);
101
102 static void
103 create_sals_from_location_default (const struct event_location *location,
104 struct linespec_result *canonical,
105 enum bptype type_wanted);
106
107 static void create_breakpoints_sal_default (struct gdbarch *,
108 struct linespec_result *,
109 gdb::unique_xmalloc_ptr<char>,
110 gdb::unique_xmalloc_ptr<char>,
111 enum bptype,
112 enum bpdisp, int, int,
113 int,
114 const struct breakpoint_ops *,
115 int, int, int, unsigned);
116
117 static std::vector<symtab_and_line> decode_location_default
118 (struct breakpoint *b, const struct event_location *location,
119 struct program_space *search_pspace);
120
121 static int can_use_hardware_watchpoint
122 (const std::vector<value_ref_ptr> &vals);
123
124 static void mention (struct breakpoint *);
125
126 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
127 enum bptype,
128 const struct breakpoint_ops *);
129 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
130 const struct symtab_and_line *);
131
132 /* This function is used in gdbtk sources and thus can not be made
133 static. */
134 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
135 struct symtab_and_line,
136 enum bptype,
137 const struct breakpoint_ops *);
138
139 static struct breakpoint *
140 momentary_breakpoint_from_master (struct breakpoint *orig,
141 enum bptype type,
142 const struct breakpoint_ops *ops,
143 int loc_enabled);
144
145 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
146
147 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
148 CORE_ADDR bpaddr,
149 enum bptype bptype);
150
151 static void describe_other_breakpoints (struct gdbarch *,
152 struct program_space *, CORE_ADDR,
153 struct obj_section *, int);
154
155 static int watchpoint_locations_match (struct bp_location *loc1,
156 struct bp_location *loc2);
157
158 static int breakpoint_location_address_match (struct bp_location *bl,
159 const struct address_space *aspace,
160 CORE_ADDR addr);
161
162 static int breakpoint_location_address_range_overlap (struct bp_location *,
163 const address_space *,
164 CORE_ADDR, int);
165
166 static int remove_breakpoint (struct bp_location *);
167 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
168
169 static enum print_stop_action print_bp_stop_message (bpstat bs);
170
171 static int hw_breakpoint_used_count (void);
172
173 static int hw_watchpoint_use_count (struct breakpoint *);
174
175 static int hw_watchpoint_used_count_others (struct breakpoint *except,
176 enum bptype type,
177 int *other_type_used);
178
179 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
180 int count);
181
182 static void free_bp_location (struct bp_location *loc);
183 static void incref_bp_location (struct bp_location *loc);
184 static void decref_bp_location (struct bp_location **loc);
185
186 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
187
188 /* update_global_location_list's modes of operation wrt to whether to
189 insert locations now. */
190 enum ugll_insert_mode
191 {
192 /* Don't insert any breakpoint locations into the inferior, only
193 remove already-inserted locations that no longer should be
194 inserted. Functions that delete a breakpoint or breakpoints
195 should specify this mode, so that deleting a breakpoint doesn't
196 have the side effect of inserting the locations of other
197 breakpoints that are marked not-inserted, but should_be_inserted
198 returns true on them.
199
200 This behavior is useful is situations close to tear-down -- e.g.,
201 after an exec, while the target still has execution, but
202 breakpoint shadows of the previous executable image should *NOT*
203 be restored to the new image; or before detaching, where the
204 target still has execution and wants to delete breakpoints from
205 GDB's lists, and all breakpoints had already been removed from
206 the inferior. */
207 UGLL_DONT_INSERT,
208
209 /* May insert breakpoints iff breakpoints_should_be_inserted_now
210 claims breakpoints should be inserted now. */
211 UGLL_MAY_INSERT,
212
213 /* Insert locations now, irrespective of
214 breakpoints_should_be_inserted_now. E.g., say all threads are
215 stopped right now, and the user did "continue". We need to
216 insert breakpoints _before_ resuming the target, but
217 UGLL_MAY_INSERT wouldn't insert them, because
218 breakpoints_should_be_inserted_now returns false at that point,
219 as no thread is running yet. */
220 UGLL_INSERT
221 };
222
223 static void update_global_location_list (enum ugll_insert_mode);
224
225 static void update_global_location_list_nothrow (enum ugll_insert_mode);
226
227 static int is_hardware_watchpoint (const struct breakpoint *bpt);
228
229 static void insert_breakpoint_locations (void);
230
231 static void trace_pass_command (const char *, int);
232
233 static void set_tracepoint_count (int num);
234
235 static int is_masked_watchpoint (const struct breakpoint *b);
236
237 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
238
239 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
240 otherwise. */
241
242 static int strace_marker_p (struct breakpoint *b);
243
244 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
245 that are implemented on top of software or hardware breakpoints
246 (user breakpoints, internal and momentary breakpoints, etc.). */
247 static struct breakpoint_ops bkpt_base_breakpoint_ops;
248
249 /* Internal breakpoints class type. */
250 static struct breakpoint_ops internal_breakpoint_ops;
251
252 /* Momentary breakpoints class type. */
253 static struct breakpoint_ops momentary_breakpoint_ops;
254
255 /* The breakpoint_ops structure to be used in regular user created
256 breakpoints. */
257 struct breakpoint_ops bkpt_breakpoint_ops;
258
259 /* Breakpoints set on probes. */
260 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
261
262 /* Dynamic printf class type. */
263 struct breakpoint_ops dprintf_breakpoint_ops;
264
265 /* The style in which to perform a dynamic printf. This is a user
266 option because different output options have different tradeoffs;
267 if GDB does the printing, there is better error handling if there
268 is a problem with any of the arguments, but using an inferior
269 function lets you have special-purpose printers and sending of
270 output to the same place as compiled-in print functions. */
271
272 static const char dprintf_style_gdb[] = "gdb";
273 static const char dprintf_style_call[] = "call";
274 static const char dprintf_style_agent[] = "agent";
275 static const char *const dprintf_style_enums[] = {
276 dprintf_style_gdb,
277 dprintf_style_call,
278 dprintf_style_agent,
279 NULL
280 };
281 static const char *dprintf_style = dprintf_style_gdb;
282
283 /* The function to use for dynamic printf if the preferred style is to
284 call into the inferior. The value is simply a string that is
285 copied into the command, so it can be anything that GDB can
286 evaluate to a callable address, not necessarily a function name. */
287
288 static char *dprintf_function;
289
290 /* The channel to use for dynamic printf if the preferred style is to
291 call into the inferior; if a nonempty string, it will be passed to
292 the call as the first argument, with the format string as the
293 second. As with the dprintf function, this can be anything that
294 GDB knows how to evaluate, so in addition to common choices like
295 "stderr", this could be an app-specific expression like
296 "mystreams[curlogger]". */
297
298 static char *dprintf_channel;
299
300 /* True if dprintf commands should continue to operate even if GDB
301 has disconnected. */
302 static int disconnected_dprintf = 1;
303
304 struct command_line *
305 breakpoint_commands (struct breakpoint *b)
306 {
307 return b->commands ? b->commands.get () : NULL;
308 }
309
310 /* Flag indicating that a command has proceeded the inferior past the
311 current breakpoint. */
312
313 static int breakpoint_proceeded;
314
315 const char *
316 bpdisp_text (enum bpdisp disp)
317 {
318 /* NOTE: the following values are a part of MI protocol and
319 represent values of 'disp' field returned when inferior stops at
320 a breakpoint. */
321 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
322
323 return bpdisps[(int) disp];
324 }
325
326 /* Prototypes for exported functions. */
327 /* If FALSE, gdb will not use hardware support for watchpoints, even
328 if such is available. */
329 static int can_use_hw_watchpoints;
330
331 static void
332 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
333 struct cmd_list_element *c,
334 const char *value)
335 {
336 fprintf_filtered (file,
337 _("Debugger's willingness to use "
338 "watchpoint hardware is %s.\n"),
339 value);
340 }
341
342 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
343 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
344 for unrecognized breakpoint locations.
345 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
346 static enum auto_boolean pending_break_support;
347 static void
348 show_pending_break_support (struct ui_file *file, int from_tty,
349 struct cmd_list_element *c,
350 const char *value)
351 {
352 fprintf_filtered (file,
353 _("Debugger's behavior regarding "
354 "pending breakpoints is %s.\n"),
355 value);
356 }
357
358 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
359 set with "break" but falling in read-only memory.
360 If 0, gdb will warn about such breakpoints, but won't automatically
361 use hardware breakpoints. */
362 static int automatic_hardware_breakpoints;
363 static void
364 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c,
366 const char *value)
367 {
368 fprintf_filtered (file,
369 _("Automatic usage of hardware breakpoints is %s.\n"),
370 value);
371 }
372
373 /* If on, GDB keeps breakpoints inserted even if the inferior is
374 stopped, and immediately inserts any new breakpoints as soon as
375 they're created. If off (default), GDB keeps breakpoints off of
376 the target as long as possible. That is, it delays inserting
377 breakpoints until the next resume, and removes them again when the
378 target fully stops. This is a bit safer in case GDB crashes while
379 processing user input. */
380 static int always_inserted_mode = 0;
381
382 static void
383 show_always_inserted_mode (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
387 value);
388 }
389
390 /* See breakpoint.h. */
391
392 int
393 breakpoints_should_be_inserted_now (void)
394 {
395 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
396 {
397 /* If breakpoints are global, they should be inserted even if no
398 thread under gdb's control is running, or even if there are
399 no threads under GDB's control yet. */
400 return 1;
401 }
402 else if (target_has_execution)
403 {
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 for (thread_info *tp : all_non_exited_threads ())
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 static std::vector<bp_location *> moribund_locations;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 int
1051 is_tracepoint (const struct breakpoint *b)
1052 {
1053 return is_tracepoint_type (b->type);
1054 }
1055
1056 /* Factory function to create an appropriate instance of breakpoint given
1057 TYPE. */
1058
1059 static std::unique_ptr<breakpoint>
1060 new_breakpoint_from_type (bptype type)
1061 {
1062 breakpoint *b;
1063
1064 if (is_tracepoint_type (type))
1065 b = new tracepoint ();
1066 else if (is_longjmp_type (type))
1067 b = new longjmp_breakpoint ();
1068 else
1069 b = new breakpoint ();
1070
1071 return std::unique_ptr<breakpoint> (b);
1072 }
1073
1074 /* A helper function that validates that COMMANDS are valid for a
1075 breakpoint. This function will throw an exception if a problem is
1076 found. */
1077
1078 static void
1079 validate_commands_for_breakpoint (struct breakpoint *b,
1080 struct command_line *commands)
1081 {
1082 if (is_tracepoint (b))
1083 {
1084 struct tracepoint *t = (struct tracepoint *) b;
1085 struct command_line *c;
1086 struct command_line *while_stepping = 0;
1087
1088 /* Reset the while-stepping step count. The previous commands
1089 might have included a while-stepping action, while the new
1090 ones might not. */
1091 t->step_count = 0;
1092
1093 /* We need to verify that each top-level element of commands is
1094 valid for tracepoints, that there's at most one
1095 while-stepping element, and that the while-stepping's body
1096 has valid tracing commands excluding nested while-stepping.
1097 We also need to validate the tracepoint action line in the
1098 context of the tracepoint --- validate_actionline actually
1099 has side effects, like setting the tracepoint's
1100 while-stepping STEP_COUNT, in addition to checking if the
1101 collect/teval actions parse and make sense in the
1102 tracepoint's context. */
1103 for (c = commands; c; c = c->next)
1104 {
1105 if (c->control_type == while_stepping_control)
1106 {
1107 if (b->type == bp_fast_tracepoint)
1108 error (_("The 'while-stepping' command "
1109 "cannot be used for fast tracepoint"));
1110 else if (b->type == bp_static_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for static tracepoint"));
1113
1114 if (while_stepping)
1115 error (_("The 'while-stepping' command "
1116 "can be used only once"));
1117 else
1118 while_stepping = c;
1119 }
1120
1121 validate_actionline (c->line, b);
1122 }
1123 if (while_stepping)
1124 {
1125 struct command_line *c2;
1126
1127 gdb_assert (while_stepping->body_list_1 == nullptr);
1128 c2 = while_stepping->body_list_0.get ();
1129 for (; c2; c2 = c2->next)
1130 {
1131 if (c2->control_type == while_stepping_control)
1132 error (_("The 'while-stepping' command cannot be nested"));
1133 }
1134 }
1135 }
1136 else
1137 {
1138 check_no_tracepoint_commands (commands);
1139 }
1140 }
1141
1142 /* Return a vector of all the static tracepoints set at ADDR. The
1143 caller is responsible for releasing the vector. */
1144
1145 std::vector<breakpoint *>
1146 static_tracepoints_here (CORE_ADDR addr)
1147 {
1148 struct breakpoint *b;
1149 std::vector<breakpoint *> found;
1150 struct bp_location *loc;
1151
1152 ALL_BREAKPOINTS (b)
1153 if (b->type == bp_static_tracepoint)
1154 {
1155 for (loc = b->loc; loc; loc = loc->next)
1156 if (loc->address == addr)
1157 found.push_back (b);
1158 }
1159
1160 return found;
1161 }
1162
1163 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1164 validate that only allowed commands are included. */
1165
1166 void
1167 breakpoint_set_commands (struct breakpoint *b,
1168 counted_command_line &&commands)
1169 {
1170 validate_commands_for_breakpoint (b, commands.get ());
1171
1172 b->commands = std::move (commands);
1173 gdb::observers::breakpoint_modified.notify (b);
1174 }
1175
1176 /* Set the internal `silent' flag on the breakpoint. Note that this
1177 is not the same as the "silent" that may appear in the breakpoint's
1178 commands. */
1179
1180 void
1181 breakpoint_set_silent (struct breakpoint *b, int silent)
1182 {
1183 int old_silent = b->silent;
1184
1185 b->silent = silent;
1186 if (old_silent != silent)
1187 gdb::observers::breakpoint_modified.notify (b);
1188 }
1189
1190 /* Set the thread for this breakpoint. If THREAD is -1, make the
1191 breakpoint work for any thread. */
1192
1193 void
1194 breakpoint_set_thread (struct breakpoint *b, int thread)
1195 {
1196 int old_thread = b->thread;
1197
1198 b->thread = thread;
1199 if (old_thread != thread)
1200 gdb::observers::breakpoint_modified.notify (b);
1201 }
1202
1203 /* Set the task for this breakpoint. If TASK is 0, make the
1204 breakpoint work for any task. */
1205
1206 void
1207 breakpoint_set_task (struct breakpoint *b, int task)
1208 {
1209 int old_task = b->task;
1210
1211 b->task = task;
1212 if (old_task != task)
1213 gdb::observers::breakpoint_modified.notify (b);
1214 }
1215
1216 static void
1217 commands_command_1 (const char *arg, int from_tty,
1218 struct command_line *control)
1219 {
1220 counted_command_line cmd;
1221 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1222 NULL after the call to read_command_lines if the user provides an empty
1223 list of command by just typing "end". */
1224 bool cmd_read = false;
1225
1226 std::string new_arg;
1227
1228 if (arg == NULL || !*arg)
1229 {
1230 if (breakpoint_count - prev_breakpoint_count > 1)
1231 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1232 breakpoint_count);
1233 else if (breakpoint_count > 0)
1234 new_arg = string_printf ("%d", breakpoint_count);
1235 arg = new_arg.c_str ();
1236 }
1237
1238 map_breakpoint_numbers
1239 (arg, [&] (breakpoint *b)
1240 {
1241 if (!cmd_read)
1242 {
1243 gdb_assert (cmd == NULL);
1244 if (control != NULL)
1245 cmd = control->body_list_0;
1246 else
1247 {
1248 std::string str
1249 = string_printf (_("Type commands for breakpoint(s) "
1250 "%s, one per line."),
1251 arg);
1252
1253 auto do_validate = [=] (const char *line)
1254 {
1255 validate_actionline (line, b);
1256 };
1257 gdb::function_view<void (const char *)> validator;
1258 if (is_tracepoint (b))
1259 validator = do_validate;
1260
1261 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1262 }
1263 cmd_read = true;
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (b->watchpoint_thread == null_ptid
1553 || (inferior_ptid == b->watchpoint_thread
1554 && !inferior_thread ()->executing)));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 b->val = NULL;
1744 b->val_valid = 0;
1745
1746 /* Note that unlike with breakpoints, the watchpoint's condition
1747 expression is stored in the breakpoint object, not in the
1748 locations (re)created below. */
1749 if (b->cond_string != NULL)
1750 {
1751 b->cond_exp.reset ();
1752
1753 s = b->cond_string;
1754 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1755 }
1756 }
1757
1758 /* If we failed to parse the expression, for example because
1759 it refers to a global variable in a not-yet-loaded shared library,
1760 don't try to insert watchpoint. We don't automatically delete
1761 such watchpoint, though, since failure to parse expression
1762 is different from out-of-scope watchpoint. */
1763 if (!target_has_execution)
1764 {
1765 /* Without execution, memory can't change. No use to try and
1766 set watchpoint locations. The watchpoint will be reset when
1767 the target gains execution, through breakpoint_re_set. */
1768 if (!can_use_hw_watchpoints)
1769 {
1770 if (b->ops->works_in_software_mode (b))
1771 b->type = bp_watchpoint;
1772 else
1773 error (_("Can't set read/access watchpoint when "
1774 "hardware watchpoints are disabled."));
1775 }
1776 }
1777 else if (within_current_scope && b->exp)
1778 {
1779 int pc = 0;
1780 std::vector<value_ref_ptr> val_chain;
1781 struct value *v, *result;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 v = extract_bitfield_from_watchpoint_value (b, v);
1796 b->val = release_value (v);
1797 b->val_valid = 1;
1798 }
1799
1800 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1801
1802 /* Look at each value on the value chain. */
1803 gdb_assert (!val_chain.empty ());
1804 for (const value_ref_ptr &iter : val_chain)
1805 {
1806 v = iter.get ();
1807
1808 /* If it's a memory location, and GDB actually needed
1809 its contents to evaluate the expression, then we
1810 must watch it. If the first value returned is
1811 still lazy, that means an error occurred reading it;
1812 watch it anyway in case it becomes readable. */
1813 if (VALUE_LVAL (v) == lval_memory
1814 && (v == val_chain[0] || ! value_lazy (v)))
1815 {
1816 struct type *vtype = check_typedef (value_type (v));
1817
1818 /* We only watch structs and arrays if user asked
1819 for it explicitly, never if they just happen to
1820 appear in the middle of some value chain. */
1821 if (v == result
1822 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1823 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1824 {
1825 CORE_ADDR addr;
1826 enum target_hw_bp_type type;
1827 struct bp_location *loc, **tmp;
1828 int bitpos = 0, bitsize = 0;
1829
1830 if (value_bitsize (v) != 0)
1831 {
1832 /* Extract the bit parameters out from the bitfield
1833 sub-expression. */
1834 bitpos = value_bitpos (v);
1835 bitsize = value_bitsize (v);
1836 }
1837 else if (v == result && b->val_bitsize != 0)
1838 {
1839 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1840 lvalue whose bit parameters are saved in the fields
1841 VAL_BITPOS and VAL_BITSIZE. */
1842 bitpos = b->val_bitpos;
1843 bitsize = b->val_bitsize;
1844 }
1845
1846 addr = value_address (v);
1847 if (bitsize != 0)
1848 {
1849 /* Skip the bytes that don't contain the bitfield. */
1850 addr += bitpos / 8;
1851 }
1852
1853 type = hw_write;
1854 if (b->type == bp_read_watchpoint)
1855 type = hw_read;
1856 else if (b->type == bp_access_watchpoint)
1857 type = hw_access;
1858
1859 loc = allocate_bp_location (b);
1860 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1861 ;
1862 *tmp = loc;
1863 loc->gdbarch = get_type_arch (value_type (v));
1864
1865 loc->pspace = frame_pspace;
1866 loc->address = address_significant (loc->gdbarch, addr);
1867
1868 if (bitsize != 0)
1869 {
1870 /* Just cover the bytes that make up the bitfield. */
1871 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1872 }
1873 else
1874 loc->length = TYPE_LENGTH (value_type (v));
1875
1876 loc->watchpoint_type = type;
1877 }
1878 }
1879 }
1880
1881 /* Change the type of breakpoint between hardware assisted or
1882 an ordinary watchpoint depending on the hardware support
1883 and free hardware slots. REPARSE is set when the inferior
1884 is started. */
1885 if (reparse)
1886 {
1887 int reg_cnt;
1888 enum bp_loc_type loc_type;
1889 struct bp_location *bl;
1890
1891 reg_cnt = can_use_hardware_watchpoint (val_chain);
1892
1893 if (reg_cnt)
1894 {
1895 int i, target_resources_ok, other_type_used;
1896 enum bptype type;
1897
1898 /* Use an exact watchpoint when there's only one memory region to be
1899 watched, and only one debug register is needed to watch it. */
1900 b->exact = target_exact_watchpoints && reg_cnt == 1;
1901
1902 /* We need to determine how many resources are already
1903 used for all other hardware watchpoints plus this one
1904 to see if we still have enough resources to also fit
1905 this watchpoint in as well. */
1906
1907 /* If this is a software watchpoint, we try to turn it
1908 to a hardware one -- count resources as if B was of
1909 hardware watchpoint type. */
1910 type = b->type;
1911 if (type == bp_watchpoint)
1912 type = bp_hardware_watchpoint;
1913
1914 /* This watchpoint may or may not have been placed on
1915 the list yet at this point (it won't be in the list
1916 if we're trying to create it for the first time,
1917 through watch_command), so always account for it
1918 manually. */
1919
1920 /* Count resources used by all watchpoints except B. */
1921 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1922
1923 /* Add in the resources needed for B. */
1924 i += hw_watchpoint_use_count (b);
1925
1926 target_resources_ok
1927 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1928 if (target_resources_ok <= 0)
1929 {
1930 int sw_mode = b->ops->works_in_software_mode (b);
1931
1932 if (target_resources_ok == 0 && !sw_mode)
1933 error (_("Target does not support this type of "
1934 "hardware watchpoint."));
1935 else if (target_resources_ok < 0 && !sw_mode)
1936 error (_("There are not enough available hardware "
1937 "resources for this watchpoint."));
1938
1939 /* Downgrade to software watchpoint. */
1940 b->type = bp_watchpoint;
1941 }
1942 else
1943 {
1944 /* If this was a software watchpoint, we've just
1945 found we have enough resources to turn it to a
1946 hardware watchpoint. Otherwise, this is a
1947 nop. */
1948 b->type = type;
1949 }
1950 }
1951 else if (!b->ops->works_in_software_mode (b))
1952 {
1953 if (!can_use_hw_watchpoints)
1954 error (_("Can't set read/access watchpoint when "
1955 "hardware watchpoints are disabled."));
1956 else
1957 error (_("Expression cannot be implemented with "
1958 "read/access watchpoint."));
1959 }
1960 else
1961 b->type = bp_watchpoint;
1962
1963 loc_type = (b->type == bp_watchpoint? bp_loc_other
1964 : bp_loc_hardware_watchpoint);
1965 for (bl = b->loc; bl; bl = bl->next)
1966 bl->loc_type = loc_type;
1967 }
1968
1969 /* If a software watchpoint is not watching any memory, then the
1970 above left it without any location set up. But,
1971 bpstat_stop_status requires a location to be able to report
1972 stops, so make sure there's at least a dummy one. */
1973 if (b->type == bp_watchpoint && b->loc == NULL)
1974 software_watchpoint_add_no_memory_location (b, frame_pspace);
1975 }
1976 else if (!within_current_scope)
1977 {
1978 printf_filtered (_("\
1979 Watchpoint %d deleted because the program has left the block\n\
1980 in which its expression is valid.\n"),
1981 b->number);
1982 watchpoint_del_at_next_stop (b);
1983 }
1984
1985 /* Restore the selected frame. */
1986 if (frame_saved)
1987 select_frame (frame_find_by_id (saved_frame_id));
1988 }
1989
1990
1991 /* Returns 1 iff breakpoint location should be
1992 inserted in the inferior. We don't differentiate the type of BL's owner
1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1994 breakpoint_ops is not defined, because in insert_bp_location,
1995 tracepoint's insert_location will not be called. */
1996 static int
1997 should_be_inserted (struct bp_location *bl)
1998 {
1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2000 return 0;
2001
2002 if (bl->owner->disposition == disp_del_at_next_stop)
2003 return 0;
2004
2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2006 return 0;
2007
2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2009 return 0;
2010
2011 /* This is set for example, when we're attached to the parent of a
2012 vfork, and have detached from the child. The child is running
2013 free, and we expect it to do an exec or exit, at which point the
2014 OS makes the parent schedulable again (and the target reports
2015 that the vfork is done). Until the child is done with the shared
2016 memory region, do not insert breakpoints in the parent, otherwise
2017 the child could still trip on the parent's breakpoints. Since
2018 the parent is blocked anyway, it won't miss any breakpoint. */
2019 if (bl->pspace->breakpoints_not_allowed)
2020 return 0;
2021
2022 /* Don't insert a breakpoint if we're trying to step past its
2023 location, except if the breakpoint is a single-step breakpoint,
2024 and the breakpoint's thread is the thread which is stepping past
2025 a breakpoint. */
2026 if ((bl->loc_type == bp_loc_software_breakpoint
2027 || bl->loc_type == bp_loc_hardware_breakpoint)
2028 && stepping_past_instruction_at (bl->pspace->aspace,
2029 bl->address)
2030 /* The single-step breakpoint may be inserted at the location
2031 we're trying to step if the instruction branches to itself.
2032 However, the instruction won't be executed at all and it may
2033 break the semantics of the instruction, for example, the
2034 instruction is a conditional branch or updates some flags.
2035 We can't fix it unless GDB is able to emulate the instruction
2036 or switch to displaced stepping. */
2037 && !(bl->owner->type == bp_single_step
2038 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2039 {
2040 if (debug_infrun)
2041 {
2042 fprintf_unfiltered (gdb_stdlog,
2043 "infrun: skipping breakpoint: "
2044 "stepping past insn at: %s\n",
2045 paddress (bl->gdbarch, bl->address));
2046 }
2047 return 0;
2048 }
2049
2050 /* Don't insert watchpoints if we're trying to step past the
2051 instruction that triggered one. */
2052 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2053 && stepping_past_nonsteppable_watchpoint ())
2054 {
2055 if (debug_infrun)
2056 {
2057 fprintf_unfiltered (gdb_stdlog,
2058 "infrun: stepping past non-steppable watchpoint. "
2059 "skipping watchpoint at %s:%d\n",
2060 paddress (bl->gdbarch, bl->address),
2061 bl->length);
2062 }
2063 return 0;
2064 }
2065
2066 return 1;
2067 }
2068
2069 /* Same as should_be_inserted but does the check assuming
2070 that the location is not duplicated. */
2071
2072 static int
2073 unduplicated_should_be_inserted (struct bp_location *bl)
2074 {
2075 int result;
2076 const int save_duplicate = bl->duplicate;
2077
2078 bl->duplicate = 0;
2079 result = should_be_inserted (bl);
2080 bl->duplicate = save_duplicate;
2081 return result;
2082 }
2083
2084 /* Parses a conditional described by an expression COND into an
2085 agent expression bytecode suitable for evaluation
2086 by the bytecode interpreter. Return NULL if there was
2087 any error during parsing. */
2088
2089 static agent_expr_up
2090 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2091 {
2092 if (cond == NULL)
2093 return NULL;
2094
2095 agent_expr_up aexpr;
2096
2097 /* We don't want to stop processing, so catch any errors
2098 that may show up. */
2099 TRY
2100 {
2101 aexpr = gen_eval_for_expr (scope, cond);
2102 }
2103
2104 CATCH (ex, RETURN_MASK_ERROR)
2105 {
2106 /* If we got here, it means the condition could not be parsed to a valid
2107 bytecode expression and thus can't be evaluated on the target's side.
2108 It's no use iterating through the conditions. */
2109 }
2110 END_CATCH
2111
2112 /* We have a valid agent expression. */
2113 return aexpr;
2114 }
2115
2116 /* Based on location BL, create a list of breakpoint conditions to be
2117 passed on to the target. If we have duplicated locations with different
2118 conditions, we will add such conditions to the list. The idea is that the
2119 target will evaluate the list of conditions and will only notify GDB when
2120 one of them is true. */
2121
2122 static void
2123 build_target_condition_list (struct bp_location *bl)
2124 {
2125 struct bp_location **locp = NULL, **loc2p;
2126 int null_condition_or_parse_error = 0;
2127 int modified = bl->needs_update;
2128 struct bp_location *loc;
2129
2130 /* Release conditions left over from a previous insert. */
2131 bl->target_info.conditions.clear ();
2132
2133 /* This is only meaningful if the target is
2134 evaluating conditions and if the user has
2135 opted for condition evaluation on the target's
2136 side. */
2137 if (gdb_evaluates_breakpoint_condition_p ()
2138 || !target_supports_evaluation_of_breakpoint_conditions ())
2139 return;
2140
2141 /* Do a first pass to check for locations with no assigned
2142 conditions or conditions that fail to parse to a valid agent expression
2143 bytecode. If any of these happen, then it's no use to send conditions
2144 to the target since this location will always trigger and generate a
2145 response back to GDB. */
2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2147 {
2148 loc = (*loc2p);
2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2150 {
2151 if (modified)
2152 {
2153 /* Re-parse the conditions since something changed. In that
2154 case we already freed the condition bytecodes (see
2155 force_breakpoint_reinsertion). We just
2156 need to parse the condition to bytecodes again. */
2157 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2158 loc->cond.get ());
2159 }
2160
2161 /* If we have a NULL bytecode expression, it means something
2162 went wrong or we have a null condition expression. */
2163 if (!loc->cond_bytecode)
2164 {
2165 null_condition_or_parse_error = 1;
2166 break;
2167 }
2168 }
2169 }
2170
2171 /* If any of these happened, it means we will have to evaluate the conditions
2172 for the location's address on gdb's side. It is no use keeping bytecodes
2173 for all the other duplicate locations, thus we free all of them here.
2174
2175 This is so we have a finer control over which locations' conditions are
2176 being evaluated by GDB or the remote stub. */
2177 if (null_condition_or_parse_error)
2178 {
2179 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2180 {
2181 loc = (*loc2p);
2182 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2183 {
2184 /* Only go as far as the first NULL bytecode is
2185 located. */
2186 if (!loc->cond_bytecode)
2187 return;
2188
2189 loc->cond_bytecode.reset ();
2190 }
2191 }
2192 }
2193
2194 /* No NULL conditions or failed bytecode generation. Build a condition list
2195 for this location's address. */
2196 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2197 {
2198 loc = (*loc2p);
2199 if (loc->cond
2200 && is_breakpoint (loc->owner)
2201 && loc->pspace->num == bl->pspace->num
2202 && loc->owner->enable_state == bp_enabled
2203 && loc->enabled)
2204 {
2205 /* Add the condition to the vector. This will be used later
2206 to send the conditions to the target. */
2207 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 /* Parses a command described by string CMD into an agent expression
2215 bytecode suitable for evaluation by the bytecode interpreter.
2216 Return NULL if there was any error during parsing. */
2217
2218 static agent_expr_up
2219 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2220 {
2221 const char *cmdrest;
2222 const char *format_start, *format_end;
2223 struct gdbarch *gdbarch = get_current_arch ();
2224
2225 if (cmd == NULL)
2226 return NULL;
2227
2228 cmdrest = cmd;
2229
2230 if (*cmdrest == ',')
2231 ++cmdrest;
2232 cmdrest = skip_spaces (cmdrest);
2233
2234 if (*cmdrest++ != '"')
2235 error (_("No format string following the location"));
2236
2237 format_start = cmdrest;
2238
2239 format_pieces fpieces (&cmdrest);
2240
2241 format_end = cmdrest;
2242
2243 if (*cmdrest++ != '"')
2244 error (_("Bad format string, non-terminated '\"'."));
2245
2246 cmdrest = skip_spaces (cmdrest);
2247
2248 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2249 error (_("Invalid argument syntax"));
2250
2251 if (*cmdrest == ',')
2252 cmdrest++;
2253 cmdrest = skip_spaces (cmdrest);
2254
2255 /* For each argument, make an expression. */
2256
2257 std::vector<struct expression *> argvec;
2258 while (*cmdrest != '\0')
2259 {
2260 const char *cmd1;
2261
2262 cmd1 = cmdrest;
2263 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2264 argvec.push_back (expr.release ());
2265 cmdrest = cmd1;
2266 if (*cmdrest == ',')
2267 ++cmdrest;
2268 }
2269
2270 agent_expr_up aexpr;
2271
2272 /* We don't want to stop processing, so catch any errors
2273 that may show up. */
2274 TRY
2275 {
2276 aexpr = gen_printf (scope, gdbarch, 0, 0,
2277 format_start, format_end - format_start,
2278 argvec.size (), argvec.data ());
2279 }
2280 CATCH (ex, RETURN_MASK_ERROR)
2281 {
2282 /* If we got here, it means the command could not be parsed to a valid
2283 bytecode expression and thus can't be evaluated on the target's side.
2284 It's no use iterating through the other commands. */
2285 }
2286 END_CATCH
2287
2288 /* We have a valid agent expression, return it. */
2289 return aexpr;
2290 }
2291
2292 /* Based on location BL, create a list of breakpoint commands to be
2293 passed on to the target. If we have duplicated locations with
2294 different commands, we will add any such to the list. */
2295
2296 static void
2297 build_target_command_list (struct bp_location *bl)
2298 {
2299 struct bp_location **locp = NULL, **loc2p;
2300 int null_command_or_parse_error = 0;
2301 int modified = bl->needs_update;
2302 struct bp_location *loc;
2303
2304 /* Clear commands left over from a previous insert. */
2305 bl->target_info.tcommands.clear ();
2306
2307 if (!target_can_run_breakpoint_commands ())
2308 return;
2309
2310 /* For now, limit to agent-style dprintf breakpoints. */
2311 if (dprintf_style != dprintf_style_agent)
2312 return;
2313
2314 /* For now, if we have any duplicate location that isn't a dprintf,
2315 don't install the target-side commands, as that would make the
2316 breakpoint not be reported to the core, and we'd lose
2317 control. */
2318 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2319 {
2320 loc = (*loc2p);
2321 if (is_breakpoint (loc->owner)
2322 && loc->pspace->num == bl->pspace->num
2323 && loc->owner->type != bp_dprintf)
2324 return;
2325 }
2326
2327 /* Do a first pass to check for locations with no assigned
2328 conditions or conditions that fail to parse to a valid agent expression
2329 bytecode. If any of these happen, then it's no use to send conditions
2330 to the target since this location will always trigger and generate a
2331 response back to GDB. */
2332 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2333 {
2334 loc = (*loc2p);
2335 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2336 {
2337 if (modified)
2338 {
2339 /* Re-parse the commands since something changed. In that
2340 case we already freed the command bytecodes (see
2341 force_breakpoint_reinsertion). We just
2342 need to parse the command to bytecodes again. */
2343 loc->cmd_bytecode
2344 = parse_cmd_to_aexpr (bl->address,
2345 loc->owner->extra_string);
2346 }
2347
2348 /* If we have a NULL bytecode expression, it means something
2349 went wrong or we have a null command expression. */
2350 if (!loc->cmd_bytecode)
2351 {
2352 null_command_or_parse_error = 1;
2353 break;
2354 }
2355 }
2356 }
2357
2358 /* If anything failed, then we're not doing target-side commands,
2359 and so clean up. */
2360 if (null_command_or_parse_error)
2361 {
2362 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2363 {
2364 loc = (*loc2p);
2365 if (is_breakpoint (loc->owner)
2366 && loc->pspace->num == bl->pspace->num)
2367 {
2368 /* Only go as far as the first NULL bytecode is
2369 located. */
2370 if (loc->cmd_bytecode == NULL)
2371 return;
2372
2373 loc->cmd_bytecode.reset ();
2374 }
2375 }
2376 }
2377
2378 /* No NULL commands or failed bytecode generation. Build a command list
2379 for this location's address. */
2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2381 {
2382 loc = (*loc2p);
2383 if (loc->owner->extra_string
2384 && is_breakpoint (loc->owner)
2385 && loc->pspace->num == bl->pspace->num
2386 && loc->owner->enable_state == bp_enabled
2387 && loc->enabled)
2388 {
2389 /* Add the command to the vector. This will be used later
2390 to send the commands to the target. */
2391 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2392 }
2393 }
2394
2395 bl->target_info.persist = 0;
2396 /* Maybe flag this location as persistent. */
2397 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2398 bl->target_info.persist = 1;
2399 }
2400
2401 /* Return the kind of breakpoint on address *ADDR. Get the kind
2402 of breakpoint according to ADDR except single-step breakpoint.
2403 Get the kind of single-step breakpoint according to the current
2404 registers state. */
2405
2406 static int
2407 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2408 {
2409 if (bl->owner->type == bp_single_step)
2410 {
2411 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2412 struct regcache *regcache;
2413
2414 regcache = get_thread_regcache (thr);
2415
2416 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2417 regcache, addr);
2418 }
2419 else
2420 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2421 }
2422
2423 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2424 location. Any error messages are printed to TMP_ERROR_STREAM; and
2425 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2426 Returns 0 for success, 1 if the bp_location type is not supported or
2427 -1 for failure.
2428
2429 NOTE drow/2003-09-09: This routine could be broken down to an
2430 object-style method for each breakpoint or catchpoint type. */
2431 static int
2432 insert_bp_location (struct bp_location *bl,
2433 struct ui_file *tmp_error_stream,
2434 int *disabled_breaks,
2435 int *hw_breakpoint_error,
2436 int *hw_bp_error_explained_already)
2437 {
2438 gdb_exception bp_excpt = exception_none;
2439
2440 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2441 return 0;
2442
2443 /* Note we don't initialize bl->target_info, as that wipes out
2444 the breakpoint location's shadow_contents if the breakpoint
2445 is still inserted at that location. This in turn breaks
2446 target_read_memory which depends on these buffers when
2447 a memory read is requested at the breakpoint location:
2448 Once the target_info has been wiped, we fail to see that
2449 we have a breakpoint inserted at that address and thus
2450 read the breakpoint instead of returning the data saved in
2451 the breakpoint location's shadow contents. */
2452 bl->target_info.reqstd_address = bl->address;
2453 bl->target_info.placed_address_space = bl->pspace->aspace;
2454 bl->target_info.length = bl->length;
2455
2456 /* When working with target-side conditions, we must pass all the conditions
2457 for the same breakpoint address down to the target since GDB will not
2458 insert those locations. With a list of breakpoint conditions, the target
2459 can decide when to stop and notify GDB. */
2460
2461 if (is_breakpoint (bl->owner))
2462 {
2463 build_target_condition_list (bl);
2464 build_target_command_list (bl);
2465 /* Reset the modification marker. */
2466 bl->needs_update = 0;
2467 }
2468
2469 if (bl->loc_type == bp_loc_software_breakpoint
2470 || bl->loc_type == bp_loc_hardware_breakpoint)
2471 {
2472 if (bl->owner->type != bp_hardware_breakpoint)
2473 {
2474 /* If the explicitly specified breakpoint type
2475 is not hardware breakpoint, check the memory map to see
2476 if the breakpoint address is in read only memory or not.
2477
2478 Two important cases are:
2479 - location type is not hardware breakpoint, memory
2480 is readonly. We change the type of the location to
2481 hardware breakpoint.
2482 - location type is hardware breakpoint, memory is
2483 read-write. This means we've previously made the
2484 location hardware one, but then the memory map changed,
2485 so we undo.
2486
2487 When breakpoints are removed, remove_breakpoints will use
2488 location types we've just set here, the only possible
2489 problem is that memory map has changed during running
2490 program, but it's not going to work anyway with current
2491 gdb. */
2492 struct mem_region *mr
2493 = lookup_mem_region (bl->target_info.reqstd_address);
2494
2495 if (mr)
2496 {
2497 if (automatic_hardware_breakpoints)
2498 {
2499 enum bp_loc_type new_type;
2500
2501 if (mr->attrib.mode != MEM_RW)
2502 new_type = bp_loc_hardware_breakpoint;
2503 else
2504 new_type = bp_loc_software_breakpoint;
2505
2506 if (new_type != bl->loc_type)
2507 {
2508 static int said = 0;
2509
2510 bl->loc_type = new_type;
2511 if (!said)
2512 {
2513 fprintf_filtered (gdb_stdout,
2514 _("Note: automatically using "
2515 "hardware breakpoints for "
2516 "read-only addresses.\n"));
2517 said = 1;
2518 }
2519 }
2520 }
2521 else if (bl->loc_type == bp_loc_software_breakpoint
2522 && mr->attrib.mode != MEM_RW)
2523 {
2524 fprintf_unfiltered (tmp_error_stream,
2525 _("Cannot insert breakpoint %d.\n"
2526 "Cannot set software breakpoint "
2527 "at read-only address %s\n"),
2528 bl->owner->number,
2529 paddress (bl->gdbarch, bl->address));
2530 return 1;
2531 }
2532 }
2533 }
2534
2535 /* First check to see if we have to handle an overlay. */
2536 if (overlay_debugging == ovly_off
2537 || bl->section == NULL
2538 || !(section_is_overlay (bl->section)))
2539 {
2540 /* No overlay handling: just set the breakpoint. */
2541 TRY
2542 {
2543 int val;
2544
2545 val = bl->owner->ops->insert_location (bl);
2546 if (val)
2547 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2548 }
2549 CATCH (e, RETURN_MASK_ALL)
2550 {
2551 bp_excpt = e;
2552 }
2553 END_CATCH
2554 }
2555 else
2556 {
2557 /* This breakpoint is in an overlay section.
2558 Shall we set a breakpoint at the LMA? */
2559 if (!overlay_events_enabled)
2560 {
2561 /* Yes -- overlay event support is not active,
2562 so we must try to set a breakpoint at the LMA.
2563 This will not work for a hardware breakpoint. */
2564 if (bl->loc_type == bp_loc_hardware_breakpoint)
2565 warning (_("hardware breakpoint %d not supported in overlay!"),
2566 bl->owner->number);
2567 else
2568 {
2569 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2570 bl->section);
2571 /* Set a software (trap) breakpoint at the LMA. */
2572 bl->overlay_target_info = bl->target_info;
2573 bl->overlay_target_info.reqstd_address = addr;
2574
2575 /* No overlay handling: just set the breakpoint. */
2576 TRY
2577 {
2578 int val;
2579
2580 bl->overlay_target_info.kind
2581 = breakpoint_kind (bl, &addr);
2582 bl->overlay_target_info.placed_address = addr;
2583 val = target_insert_breakpoint (bl->gdbarch,
2584 &bl->overlay_target_info);
2585 if (val)
2586 bp_excpt
2587 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2588 }
2589 CATCH (e, RETURN_MASK_ALL)
2590 {
2591 bp_excpt = e;
2592 }
2593 END_CATCH
2594
2595 if (bp_excpt.reason != 0)
2596 fprintf_unfiltered (tmp_error_stream,
2597 "Overlay breakpoint %d "
2598 "failed: in ROM?\n",
2599 bl->owner->number);
2600 }
2601 }
2602 /* Shall we set a breakpoint at the VMA? */
2603 if (section_is_mapped (bl->section))
2604 {
2605 /* Yes. This overlay section is mapped into memory. */
2606 TRY
2607 {
2608 int val;
2609
2610 val = bl->owner->ops->insert_location (bl);
2611 if (val)
2612 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2613 }
2614 CATCH (e, RETURN_MASK_ALL)
2615 {
2616 bp_excpt = e;
2617 }
2618 END_CATCH
2619 }
2620 else
2621 {
2622 /* No. This breakpoint will not be inserted.
2623 No error, but do not mark the bp as 'inserted'. */
2624 return 0;
2625 }
2626 }
2627
2628 if (bp_excpt.reason != 0)
2629 {
2630 /* Can't set the breakpoint. */
2631
2632 /* In some cases, we might not be able to insert a
2633 breakpoint in a shared library that has already been
2634 removed, but we have not yet processed the shlib unload
2635 event. Unfortunately, some targets that implement
2636 breakpoint insertion themselves can't tell why the
2637 breakpoint insertion failed (e.g., the remote target
2638 doesn't define error codes), so we must treat generic
2639 errors as memory errors. */
2640 if (bp_excpt.reason == RETURN_ERROR
2641 && (bp_excpt.error == GENERIC_ERROR
2642 || bp_excpt.error == MEMORY_ERROR)
2643 && bl->loc_type == bp_loc_software_breakpoint
2644 && (solib_name_from_address (bl->pspace, bl->address)
2645 || shared_objfile_contains_address_p (bl->pspace,
2646 bl->address)))
2647 {
2648 /* See also: disable_breakpoints_in_shlibs. */
2649 bl->shlib_disabled = 1;
2650 gdb::observers::breakpoint_modified.notify (bl->owner);
2651 if (!*disabled_breaks)
2652 {
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Cannot insert breakpoint %d.\n",
2655 bl->owner->number);
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Temporarily disabling shared "
2658 "library breakpoints:\n");
2659 }
2660 *disabled_breaks = 1;
2661 fprintf_unfiltered (tmp_error_stream,
2662 "breakpoint #%d\n", bl->owner->number);
2663 return 0;
2664 }
2665 else
2666 {
2667 if (bl->loc_type == bp_loc_hardware_breakpoint)
2668 {
2669 *hw_breakpoint_error = 1;
2670 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2671 fprintf_unfiltered (tmp_error_stream,
2672 "Cannot insert hardware breakpoint %d%s",
2673 bl->owner->number,
2674 bp_excpt.message ? ":" : ".\n");
2675 if (bp_excpt.message != NULL)
2676 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2677 bp_excpt.message);
2678 }
2679 else
2680 {
2681 if (bp_excpt.message == NULL)
2682 {
2683 std::string message
2684 = memory_error_message (TARGET_XFER_E_IO,
2685 bl->gdbarch, bl->address);
2686
2687 fprintf_unfiltered (tmp_error_stream,
2688 "Cannot insert breakpoint %d.\n"
2689 "%s\n",
2690 bl->owner->number, message.c_str ());
2691 }
2692 else
2693 {
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert breakpoint %d: %s\n",
2696 bl->owner->number,
2697 bp_excpt.message);
2698 }
2699 }
2700 return 1;
2701
2702 }
2703 }
2704 else
2705 bl->inserted = 1;
2706
2707 return 0;
2708 }
2709
2710 else if (bl->loc_type == bp_loc_hardware_watchpoint
2711 /* NOTE drow/2003-09-08: This state only exists for removing
2712 watchpoints. It's not clear that it's necessary... */
2713 && bl->owner->disposition != disp_del_at_next_stop)
2714 {
2715 int val;
2716
2717 gdb_assert (bl->owner->ops != NULL
2718 && bl->owner->ops->insert_location != NULL);
2719
2720 val = bl->owner->ops->insert_location (bl);
2721
2722 /* If trying to set a read-watchpoint, and it turns out it's not
2723 supported, try emulating one with an access watchpoint. */
2724 if (val == 1 && bl->watchpoint_type == hw_read)
2725 {
2726 struct bp_location *loc, **loc_temp;
2727
2728 /* But don't try to insert it, if there's already another
2729 hw_access location that would be considered a duplicate
2730 of this one. */
2731 ALL_BP_LOCATIONS (loc, loc_temp)
2732 if (loc != bl
2733 && loc->watchpoint_type == hw_access
2734 && watchpoint_locations_match (bl, loc))
2735 {
2736 bl->duplicate = 1;
2737 bl->inserted = 1;
2738 bl->target_info = loc->target_info;
2739 bl->watchpoint_type = hw_access;
2740 val = 0;
2741 break;
2742 }
2743
2744 if (val == 1)
2745 {
2746 bl->watchpoint_type = hw_access;
2747 val = bl->owner->ops->insert_location (bl);
2748
2749 if (val)
2750 /* Back to the original value. */
2751 bl->watchpoint_type = hw_read;
2752 }
2753 }
2754
2755 bl->inserted = (val == 0);
2756 }
2757
2758 else if (bl->owner->type == bp_catchpoint)
2759 {
2760 int val;
2761
2762 gdb_assert (bl->owner->ops != NULL
2763 && bl->owner->ops->insert_location != NULL);
2764
2765 val = bl->owner->ops->insert_location (bl);
2766 if (val)
2767 {
2768 bl->owner->enable_state = bp_disabled;
2769
2770 if (val == 1)
2771 warning (_("\
2772 Error inserting catchpoint %d: Your system does not support this type\n\
2773 of catchpoint."), bl->owner->number);
2774 else
2775 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2776 }
2777
2778 bl->inserted = (val == 0);
2779
2780 /* We've already printed an error message if there was a problem
2781 inserting this catchpoint, and we've disabled the catchpoint,
2782 so just return success. */
2783 return 0;
2784 }
2785
2786 return 0;
2787 }
2788
2789 /* This function is called when program space PSPACE is about to be
2790 deleted. It takes care of updating breakpoints to not reference
2791 PSPACE anymore. */
2792
2793 void
2794 breakpoint_program_space_exit (struct program_space *pspace)
2795 {
2796 struct breakpoint *b, *b_temp;
2797 struct bp_location *loc, **loc_temp;
2798
2799 /* Remove any breakpoint that was set through this program space. */
2800 ALL_BREAKPOINTS_SAFE (b, b_temp)
2801 {
2802 if (b->pspace == pspace)
2803 delete_breakpoint (b);
2804 }
2805
2806 /* Breakpoints set through other program spaces could have locations
2807 bound to PSPACE as well. Remove those. */
2808 ALL_BP_LOCATIONS (loc, loc_temp)
2809 {
2810 struct bp_location *tmp;
2811
2812 if (loc->pspace == pspace)
2813 {
2814 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2815 if (loc->owner->loc == loc)
2816 loc->owner->loc = loc->next;
2817 else
2818 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2819 if (tmp->next == loc)
2820 {
2821 tmp->next = loc->next;
2822 break;
2823 }
2824 }
2825 }
2826
2827 /* Now update the global location list to permanently delete the
2828 removed locations above. */
2829 update_global_location_list (UGLL_DONT_INSERT);
2830 }
2831
2832 /* Make sure all breakpoints are inserted in inferior.
2833 Throws exception on any error.
2834 A breakpoint that is already inserted won't be inserted
2835 again, so calling this function twice is safe. */
2836 void
2837 insert_breakpoints (void)
2838 {
2839 struct breakpoint *bpt;
2840
2841 ALL_BREAKPOINTS (bpt)
2842 if (is_hardware_watchpoint (bpt))
2843 {
2844 struct watchpoint *w = (struct watchpoint *) bpt;
2845
2846 update_watchpoint (w, 0 /* don't reparse. */);
2847 }
2848
2849 /* Updating watchpoints creates new locations, so update the global
2850 location list. Explicitly tell ugll to insert locations and
2851 ignore breakpoints_always_inserted_mode. */
2852 update_global_location_list (UGLL_INSERT);
2853 }
2854
2855 /* Invoke CALLBACK for each of bp_location. */
2856
2857 void
2858 iterate_over_bp_locations (walk_bp_location_callback callback)
2859 {
2860 struct bp_location *loc, **loc_tmp;
2861
2862 ALL_BP_LOCATIONS (loc, loc_tmp)
2863 {
2864 callback (loc, NULL);
2865 }
2866 }
2867
2868 /* This is used when we need to synch breakpoint conditions between GDB and the
2869 target. It is the case with deleting and disabling of breakpoints when using
2870 always-inserted mode. */
2871
2872 static void
2873 update_inserted_breakpoint_locations (void)
2874 {
2875 struct bp_location *bl, **blp_tmp;
2876 int error_flag = 0;
2877 int val = 0;
2878 int disabled_breaks = 0;
2879 int hw_breakpoint_error = 0;
2880 int hw_bp_details_reported = 0;
2881
2882 string_file tmp_error_stream;
2883
2884 /* Explicitly mark the warning -- this will only be printed if
2885 there was an error. */
2886 tmp_error_stream.puts ("Warning:\n");
2887
2888 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2889
2890 ALL_BP_LOCATIONS (bl, blp_tmp)
2891 {
2892 /* We only want to update software breakpoints and hardware
2893 breakpoints. */
2894 if (!is_breakpoint (bl->owner))
2895 continue;
2896
2897 /* We only want to update locations that are already inserted
2898 and need updating. This is to avoid unwanted insertion during
2899 deletion of breakpoints. */
2900 if (!bl->inserted || !bl->needs_update)
2901 continue;
2902
2903 switch_to_program_space_and_thread (bl->pspace);
2904
2905 /* For targets that support global breakpoints, there's no need
2906 to select an inferior to insert breakpoint to. In fact, even
2907 if we aren't attached to any process yet, we should still
2908 insert breakpoints. */
2909 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2910 && inferior_ptid == null_ptid)
2911 continue;
2912
2913 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2914 &hw_breakpoint_error, &hw_bp_details_reported);
2915 if (val)
2916 error_flag = val;
2917 }
2918
2919 if (error_flag)
2920 {
2921 target_terminal::ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924 }
2925
2926 /* Used when starting or continuing the program. */
2927
2928 static void
2929 insert_breakpoint_locations (void)
2930 {
2931 struct breakpoint *bpt;
2932 struct bp_location *bl, **blp_tmp;
2933 int error_flag = 0;
2934 int val = 0;
2935 int disabled_breaks = 0;
2936 int hw_breakpoint_error = 0;
2937 int hw_bp_error_explained_already = 0;
2938
2939 string_file tmp_error_stream;
2940
2941 /* Explicitly mark the warning -- this will only be printed if
2942 there was an error. */
2943 tmp_error_stream.puts ("Warning:\n");
2944
2945 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2946
2947 ALL_BP_LOCATIONS (bl, blp_tmp)
2948 {
2949 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2950 continue;
2951
2952 /* There is no point inserting thread-specific breakpoints if
2953 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2954 has BL->OWNER always non-NULL. */
2955 if (bl->owner->thread != -1
2956 && !valid_global_thread_id (bl->owner->thread))
2957 continue;
2958
2959 switch_to_program_space_and_thread (bl->pspace);
2960
2961 /* For targets that support global breakpoints, there's no need
2962 to select an inferior to insert breakpoint to. In fact, even
2963 if we aren't attached to any process yet, we should still
2964 insert breakpoints. */
2965 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2966 && inferior_ptid == null_ptid)
2967 continue;
2968
2969 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2970 &hw_breakpoint_error, &hw_bp_error_explained_already);
2971 if (val)
2972 error_flag = val;
2973 }
2974
2975 /* If we failed to insert all locations of a watchpoint, remove
2976 them, as half-inserted watchpoint is of limited use. */
2977 ALL_BREAKPOINTS (bpt)
2978 {
2979 int some_failed = 0;
2980 struct bp_location *loc;
2981
2982 if (!is_hardware_watchpoint (bpt))
2983 continue;
2984
2985 if (!breakpoint_enabled (bpt))
2986 continue;
2987
2988 if (bpt->disposition == disp_del_at_next_stop)
2989 continue;
2990
2991 for (loc = bpt->loc; loc; loc = loc->next)
2992 if (!loc->inserted && should_be_inserted (loc))
2993 {
2994 some_failed = 1;
2995 break;
2996 }
2997 if (some_failed)
2998 {
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (loc->inserted)
3001 remove_breakpoint (loc);
3002
3003 hw_breakpoint_error = 1;
3004 tmp_error_stream.printf ("Could not insert "
3005 "hardware watchpoint %d.\n",
3006 bpt->number);
3007 error_flag = -1;
3008 }
3009 }
3010
3011 if (error_flag)
3012 {
3013 /* If a hardware breakpoint or watchpoint was inserted, add a
3014 message about possibly exhausted resources. */
3015 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3016 {
3017 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3018 You may have requested too many hardware breakpoints/watchpoints.\n");
3019 }
3020 target_terminal::ours_for_output ();
3021 error_stream (tmp_error_stream);
3022 }
3023 }
3024
3025 /* Used when the program stops.
3026 Returns zero if successful, or non-zero if there was a problem
3027 removing a breakpoint location. */
3028
3029 int
3030 remove_breakpoints (void)
3031 {
3032 struct bp_location *bl, **blp_tmp;
3033 int val = 0;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (bl->inserted && !is_tracepoint (bl->owner))
3038 val |= remove_breakpoint (bl);
3039 }
3040 return val;
3041 }
3042
3043 /* When a thread exits, remove breakpoints that are related to
3044 that thread. */
3045
3046 static void
3047 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3048 {
3049 struct breakpoint *b, *b_tmp;
3050
3051 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3052 {
3053 if (b->thread == tp->global_num && user_breakpoint_p (b))
3054 {
3055 b->disposition = disp_del_at_next_stop;
3056
3057 printf_filtered (_("\
3058 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3059 b->number, print_thread_id (tp));
3060
3061 /* Hide it from the user. */
3062 b->number = 0;
3063 }
3064 }
3065 }
3066
3067 /* Remove breakpoints of inferior INF. */
3068
3069 int
3070 remove_breakpoints_inf (inferior *inf)
3071 {
3072 struct bp_location *bl, **blp_tmp;
3073 int val;
3074
3075 ALL_BP_LOCATIONS (bl, blp_tmp)
3076 {
3077 if (bl->pspace != inf->pspace)
3078 continue;
3079
3080 if (bl->inserted && !bl->target_info.persist)
3081 {
3082 val = remove_breakpoint (bl);
3083 if (val != 0)
3084 return val;
3085 }
3086 }
3087 return 0;
3088 }
3089
3090 static int internal_breakpoint_number = -1;
3091
3092 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3093 If INTERNAL is non-zero, the breakpoint number will be populated
3094 from internal_breakpoint_number and that variable decremented.
3095 Otherwise the breakpoint number will be populated from
3096 breakpoint_count and that value incremented. Internal breakpoints
3097 do not set the internal var bpnum. */
3098 static void
3099 set_breakpoint_number (int internal, struct breakpoint *b)
3100 {
3101 if (internal)
3102 b->number = internal_breakpoint_number--;
3103 else
3104 {
3105 set_breakpoint_count (breakpoint_count + 1);
3106 b->number = breakpoint_count;
3107 }
3108 }
3109
3110 static struct breakpoint *
3111 create_internal_breakpoint (struct gdbarch *gdbarch,
3112 CORE_ADDR address, enum bptype type,
3113 const struct breakpoint_ops *ops)
3114 {
3115 symtab_and_line sal;
3116 sal.pc = address;
3117 sal.section = find_pc_overlay (sal.pc);
3118 sal.pspace = current_program_space;
3119
3120 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3121 b->number = internal_breakpoint_number--;
3122 b->disposition = disp_donttouch;
3123
3124 return b;
3125 }
3126
3127 static const char *const longjmp_names[] =
3128 {
3129 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3130 };
3131 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3132
3133 /* Per-objfile data private to breakpoint.c. */
3134 struct breakpoint_objfile_data
3135 {
3136 /* Minimal symbol for "_ovly_debug_event" (if any). */
3137 struct bound_minimal_symbol overlay_msym {};
3138
3139 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3140 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3141
3142 /* True if we have looked for longjmp probes. */
3143 int longjmp_searched = 0;
3144
3145 /* SystemTap probe points for longjmp (if any). These are non-owning
3146 references. */
3147 std::vector<probe *> longjmp_probes;
3148
3149 /* Minimal symbol for "std::terminate()" (if any). */
3150 struct bound_minimal_symbol terminate_msym {};
3151
3152 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3153 struct bound_minimal_symbol exception_msym {};
3154
3155 /* True if we have looked for exception probes. */
3156 int exception_searched = 0;
3157
3158 /* SystemTap probe points for unwinding (if any). These are non-owning
3159 references. */
3160 std::vector<probe *> exception_probes;
3161 };
3162
3163 static const struct objfile_data *breakpoint_objfile_key;
3164
3165 /* Minimal symbol not found sentinel. */
3166 static struct minimal_symbol msym_not_found;
3167
3168 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3169
3170 static int
3171 msym_not_found_p (const struct minimal_symbol *msym)
3172 {
3173 return msym == &msym_not_found;
3174 }
3175
3176 /* Return per-objfile data needed by breakpoint.c.
3177 Allocate the data if necessary. */
3178
3179 static struct breakpoint_objfile_data *
3180 get_breakpoint_objfile_data (struct objfile *objfile)
3181 {
3182 struct breakpoint_objfile_data *bp_objfile_data;
3183
3184 bp_objfile_data = ((struct breakpoint_objfile_data *)
3185 objfile_data (objfile, breakpoint_objfile_key));
3186 if (bp_objfile_data == NULL)
3187 {
3188 bp_objfile_data = new breakpoint_objfile_data ();
3189 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3190 }
3191 return bp_objfile_data;
3192 }
3193
3194 static void
3195 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3196 {
3197 struct breakpoint_objfile_data *bp_objfile_data
3198 = (struct breakpoint_objfile_data *) data;
3199
3200 delete bp_objfile_data;
3201 }
3202
3203 static void
3204 create_overlay_event_breakpoint (void)
3205 {
3206 struct objfile *objfile;
3207 const char *const func_name = "_ovly_debug_event";
3208
3209 ALL_OBJFILES (objfile)
3210 {
3211 struct breakpoint *b;
3212 struct breakpoint_objfile_data *bp_objfile_data;
3213 CORE_ADDR addr;
3214 struct explicit_location explicit_loc;
3215
3216 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3217
3218 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3219 continue;
3220
3221 if (bp_objfile_data->overlay_msym.minsym == NULL)
3222 {
3223 struct bound_minimal_symbol m;
3224
3225 m = lookup_minimal_symbol_text (func_name, objfile);
3226 if (m.minsym == NULL)
3227 {
3228 /* Avoid future lookups in this objfile. */
3229 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3230 continue;
3231 }
3232 bp_objfile_data->overlay_msym = m;
3233 }
3234
3235 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3236 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3237 bp_overlay_event,
3238 &internal_breakpoint_ops);
3239 initialize_explicit_location (&explicit_loc);
3240 explicit_loc.function_name = ASTRDUP (func_name);
3241 b->location = new_explicit_location (&explicit_loc);
3242
3243 if (overlay_debugging == ovly_auto)
3244 {
3245 b->enable_state = bp_enabled;
3246 overlay_events_enabled = 1;
3247 }
3248 else
3249 {
3250 b->enable_state = bp_disabled;
3251 overlay_events_enabled = 0;
3252 }
3253 }
3254 }
3255
3256 static void
3257 create_longjmp_master_breakpoint (void)
3258 {
3259 struct program_space *pspace;
3260
3261 scoped_restore_current_program_space restore_pspace;
3262
3263 ALL_PSPACES (pspace)
3264 {
3265 struct objfile *objfile;
3266
3267 set_current_program_space (pspace);
3268
3269 ALL_OBJFILES (objfile)
3270 {
3271 int i;
3272 struct gdbarch *gdbarch;
3273 struct breakpoint_objfile_data *bp_objfile_data;
3274
3275 gdbarch = get_objfile_arch (objfile);
3276
3277 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3278
3279 if (!bp_objfile_data->longjmp_searched)
3280 {
3281 std::vector<probe *> ret
3282 = find_probes_in_objfile (objfile, "libc", "longjmp");
3283
3284 if (!ret.empty ())
3285 {
3286 /* We are only interested in checking one element. */
3287 probe *p = ret[0];
3288
3289 if (!p->can_evaluate_arguments ())
3290 {
3291 /* We cannot use the probe interface here, because it does
3292 not know how to evaluate arguments. */
3293 ret.clear ();
3294 }
3295 }
3296 bp_objfile_data->longjmp_probes = ret;
3297 bp_objfile_data->longjmp_searched = 1;
3298 }
3299
3300 if (!bp_objfile_data->longjmp_probes.empty ())
3301 {
3302 for (probe *p : bp_objfile_data->longjmp_probes)
3303 {
3304 struct breakpoint *b;
3305
3306 b = create_internal_breakpoint (gdbarch,
3307 p->get_relocated_address (objfile),
3308 bp_longjmp_master,
3309 &internal_breakpoint_ops);
3310 b->location = new_probe_location ("-probe-stap libc:longjmp");
3311 b->enable_state = bp_disabled;
3312 }
3313
3314 continue;
3315 }
3316
3317 if (!gdbarch_get_longjmp_target_p (gdbarch))
3318 continue;
3319
3320 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3321 {
3322 struct breakpoint *b;
3323 const char *func_name;
3324 CORE_ADDR addr;
3325 struct explicit_location explicit_loc;
3326
3327 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3328 continue;
3329
3330 func_name = longjmp_names[i];
3331 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3332 {
3333 struct bound_minimal_symbol m;
3334
3335 m = lookup_minimal_symbol_text (func_name, objfile);
3336 if (m.minsym == NULL)
3337 {
3338 /* Prevent future lookups in this objfile. */
3339 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3340 continue;
3341 }
3342 bp_objfile_data->longjmp_msym[i] = m;
3343 }
3344
3345 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3346 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3347 &internal_breakpoint_ops);
3348 initialize_explicit_location (&explicit_loc);
3349 explicit_loc.function_name = ASTRDUP (func_name);
3350 b->location = new_explicit_location (&explicit_loc);
3351 b->enable_state = bp_disabled;
3352 }
3353 }
3354 }
3355 }
3356
3357 /* Create a master std::terminate breakpoint. */
3358 static void
3359 create_std_terminate_master_breakpoint (void)
3360 {
3361 struct program_space *pspace;
3362 const char *const func_name = "std::terminate()";
3363
3364 scoped_restore_current_program_space restore_pspace;
3365
3366 ALL_PSPACES (pspace)
3367 {
3368 struct objfile *objfile;
3369 CORE_ADDR addr;
3370
3371 set_current_program_space (pspace);
3372
3373 ALL_OBJFILES (objfile)
3374 {
3375 struct breakpoint *b;
3376 struct breakpoint_objfile_data *bp_objfile_data;
3377 struct explicit_location explicit_loc;
3378
3379 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3380
3381 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3382 continue;
3383
3384 if (bp_objfile_data->terminate_msym.minsym == NULL)
3385 {
3386 struct bound_minimal_symbol m;
3387
3388 m = lookup_minimal_symbol (func_name, NULL, objfile);
3389 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3390 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3391 {
3392 /* Prevent future lookups in this objfile. */
3393 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3394 continue;
3395 }
3396 bp_objfile_data->terminate_msym = m;
3397 }
3398
3399 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3400 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3401 bp_std_terminate_master,
3402 &internal_breakpoint_ops);
3403 initialize_explicit_location (&explicit_loc);
3404 explicit_loc.function_name = ASTRDUP (func_name);
3405 b->location = new_explicit_location (&explicit_loc);
3406 b->enable_state = bp_disabled;
3407 }
3408 }
3409 }
3410
3411 /* Install a master breakpoint on the unwinder's debug hook. */
3412
3413 static void
3414 create_exception_master_breakpoint (void)
3415 {
3416 struct objfile *objfile;
3417 const char *const func_name = "_Unwind_DebugHook";
3418
3419 ALL_OBJFILES (objfile)
3420 {
3421 struct breakpoint *b;
3422 struct gdbarch *gdbarch;
3423 struct breakpoint_objfile_data *bp_objfile_data;
3424 CORE_ADDR addr;
3425 struct explicit_location explicit_loc;
3426
3427 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3428
3429 /* We prefer the SystemTap probe point if it exists. */
3430 if (!bp_objfile_data->exception_searched)
3431 {
3432 std::vector<probe *> ret
3433 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3434
3435 if (!ret.empty ())
3436 {
3437 /* We are only interested in checking one element. */
3438 probe *p = ret[0];
3439
3440 if (!p->can_evaluate_arguments ())
3441 {
3442 /* We cannot use the probe interface here, because it does
3443 not know how to evaluate arguments. */
3444 ret.clear ();
3445 }
3446 }
3447 bp_objfile_data->exception_probes = ret;
3448 bp_objfile_data->exception_searched = 1;
3449 }
3450
3451 if (!bp_objfile_data->exception_probes.empty ())
3452 {
3453 gdbarch = get_objfile_arch (objfile);
3454
3455 for (probe *p : bp_objfile_data->exception_probes)
3456 {
3457 b = create_internal_breakpoint (gdbarch,
3458 p->get_relocated_address (objfile),
3459 bp_exception_master,
3460 &internal_breakpoint_ops);
3461 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3462 b->enable_state = bp_disabled;
3463 }
3464
3465 continue;
3466 }
3467
3468 /* Otherwise, try the hook function. */
3469
3470 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3471 continue;
3472
3473 gdbarch = get_objfile_arch (objfile);
3474
3475 if (bp_objfile_data->exception_msym.minsym == NULL)
3476 {
3477 struct bound_minimal_symbol debug_hook;
3478
3479 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3480 if (debug_hook.minsym == NULL)
3481 {
3482 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3483 continue;
3484 }
3485
3486 bp_objfile_data->exception_msym = debug_hook;
3487 }
3488
3489 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3490 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3491 current_top_target ());
3492 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3493 &internal_breakpoint_ops);
3494 initialize_explicit_location (&explicit_loc);
3495 explicit_loc.function_name = ASTRDUP (func_name);
3496 b->location = new_explicit_location (&explicit_loc);
3497 b->enable_state = bp_disabled;
3498 }
3499 }
3500
3501 /* Does B have a location spec? */
3502
3503 static int
3504 breakpoint_event_location_empty_p (const struct breakpoint *b)
3505 {
3506 return b->location != NULL && event_location_empty_p (b->location.get ());
3507 }
3508
3509 void
3510 update_breakpoints_after_exec (void)
3511 {
3512 struct breakpoint *b, *b_tmp;
3513 struct bp_location *bploc, **bplocp_tmp;
3514
3515 /* We're about to delete breakpoints from GDB's lists. If the
3516 INSERTED flag is true, GDB will try to lift the breakpoints by
3517 writing the breakpoints' "shadow contents" back into memory. The
3518 "shadow contents" are NOT valid after an exec, so GDB should not
3519 do that. Instead, the target is responsible from marking
3520 breakpoints out as soon as it detects an exec. We don't do that
3521 here instead, because there may be other attempts to delete
3522 breakpoints after detecting an exec and before reaching here. */
3523 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3524 if (bploc->pspace == current_program_space)
3525 gdb_assert (!bploc->inserted);
3526
3527 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3528 {
3529 if (b->pspace != current_program_space)
3530 continue;
3531
3532 /* Solib breakpoints must be explicitly reset after an exec(). */
3533 if (b->type == bp_shlib_event)
3534 {
3535 delete_breakpoint (b);
3536 continue;
3537 }
3538
3539 /* JIT breakpoints must be explicitly reset after an exec(). */
3540 if (b->type == bp_jit_event)
3541 {
3542 delete_breakpoint (b);
3543 continue;
3544 }
3545
3546 /* Thread event breakpoints must be set anew after an exec(),
3547 as must overlay event and longjmp master breakpoints. */
3548 if (b->type == bp_thread_event || b->type == bp_overlay_event
3549 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3550 || b->type == bp_exception_master)
3551 {
3552 delete_breakpoint (b);
3553 continue;
3554 }
3555
3556 /* Step-resume breakpoints are meaningless after an exec(). */
3557 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3558 {
3559 delete_breakpoint (b);
3560 continue;
3561 }
3562
3563 /* Just like single-step breakpoints. */
3564 if (b->type == bp_single_step)
3565 {
3566 delete_breakpoint (b);
3567 continue;
3568 }
3569
3570 /* Longjmp and longjmp-resume breakpoints are also meaningless
3571 after an exec. */
3572 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3573 || b->type == bp_longjmp_call_dummy
3574 || b->type == bp_exception || b->type == bp_exception_resume)
3575 {
3576 delete_breakpoint (b);
3577 continue;
3578 }
3579
3580 if (b->type == bp_catchpoint)
3581 {
3582 /* For now, none of the bp_catchpoint breakpoints need to
3583 do anything at this point. In the future, if some of
3584 the catchpoints need to something, we will need to add
3585 a new method, and call this method from here. */
3586 continue;
3587 }
3588
3589 /* bp_finish is a special case. The only way we ought to be able
3590 to see one of these when an exec() has happened, is if the user
3591 caught a vfork, and then said "finish". Ordinarily a finish just
3592 carries them to the call-site of the current callee, by setting
3593 a temporary bp there and resuming. But in this case, the finish
3594 will carry them entirely through the vfork & exec.
3595
3596 We don't want to allow a bp_finish to remain inserted now. But
3597 we can't safely delete it, 'cause finish_command has a handle to
3598 the bp on a bpstat, and will later want to delete it. There's a
3599 chance (and I've seen it happen) that if we delete the bp_finish
3600 here, that its storage will get reused by the time finish_command
3601 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3602 We really must allow finish_command to delete a bp_finish.
3603
3604 In the absence of a general solution for the "how do we know
3605 it's safe to delete something others may have handles to?"
3606 problem, what we'll do here is just uninsert the bp_finish, and
3607 let finish_command delete it.
3608
3609 (We know the bp_finish is "doomed" in the sense that it's
3610 momentary, and will be deleted as soon as finish_command sees
3611 the inferior stopped. So it doesn't matter that the bp's
3612 address is probably bogus in the new a.out, unlike e.g., the
3613 solib breakpoints.) */
3614
3615 if (b->type == bp_finish)
3616 {
3617 continue;
3618 }
3619
3620 /* Without a symbolic address, we have little hope of the
3621 pre-exec() address meaning the same thing in the post-exec()
3622 a.out. */
3623 if (breakpoint_event_location_empty_p (b))
3624 {
3625 delete_breakpoint (b);
3626 continue;
3627 }
3628 }
3629 }
3630
3631 int
3632 detach_breakpoints (ptid_t ptid)
3633 {
3634 struct bp_location *bl, **blp_tmp;
3635 int val = 0;
3636 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3637 struct inferior *inf = current_inferior ();
3638
3639 if (ptid.pid () == inferior_ptid.pid ())
3640 error (_("Cannot detach breakpoints of inferior_ptid"));
3641
3642 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3643 inferior_ptid = ptid;
3644 ALL_BP_LOCATIONS (bl, blp_tmp)
3645 {
3646 if (bl->pspace != inf->pspace)
3647 continue;
3648
3649 /* This function must physically remove breakpoints locations
3650 from the specified ptid, without modifying the breakpoint
3651 package's state. Locations of type bp_loc_other are only
3652 maintained at GDB side. So, there is no need to remove
3653 these bp_loc_other locations. Moreover, removing these
3654 would modify the breakpoint package's state. */
3655 if (bl->loc_type == bp_loc_other)
3656 continue;
3657
3658 if (bl->inserted)
3659 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3660 }
3661
3662 return val;
3663 }
3664
3665 /* Remove the breakpoint location BL from the current address space.
3666 Note that this is used to detach breakpoints from a child fork.
3667 When we get here, the child isn't in the inferior list, and neither
3668 do we have objects to represent its address space --- we should
3669 *not* look at bl->pspace->aspace here. */
3670
3671 static int
3672 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3673 {
3674 int val;
3675
3676 /* BL is never in moribund_locations by our callers. */
3677 gdb_assert (bl->owner != NULL);
3678
3679 /* The type of none suggests that owner is actually deleted.
3680 This should not ever happen. */
3681 gdb_assert (bl->owner->type != bp_none);
3682
3683 if (bl->loc_type == bp_loc_software_breakpoint
3684 || bl->loc_type == bp_loc_hardware_breakpoint)
3685 {
3686 /* "Normal" instruction breakpoint: either the standard
3687 trap-instruction bp (bp_breakpoint), or a
3688 bp_hardware_breakpoint. */
3689
3690 /* First check to see if we have to handle an overlay. */
3691 if (overlay_debugging == ovly_off
3692 || bl->section == NULL
3693 || !(section_is_overlay (bl->section)))
3694 {
3695 /* No overlay handling: just remove the breakpoint. */
3696
3697 /* If we're trying to uninsert a memory breakpoint that we
3698 know is set in a dynamic object that is marked
3699 shlib_disabled, then either the dynamic object was
3700 removed with "remove-symbol-file" or with
3701 "nosharedlibrary". In the former case, we don't know
3702 whether another dynamic object might have loaded over the
3703 breakpoint's address -- the user might well let us know
3704 about it next with add-symbol-file (the whole point of
3705 add-symbol-file is letting the user manually maintain a
3706 list of dynamically loaded objects). If we have the
3707 breakpoint's shadow memory, that is, this is a software
3708 breakpoint managed by GDB, check whether the breakpoint
3709 is still inserted in memory, to avoid overwriting wrong
3710 code with stale saved shadow contents. Note that HW
3711 breakpoints don't have shadow memory, as they're
3712 implemented using a mechanism that is not dependent on
3713 being able to modify the target's memory, and as such
3714 they should always be removed. */
3715 if (bl->shlib_disabled
3716 && bl->target_info.shadow_len != 0
3717 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3718 val = 0;
3719 else
3720 val = bl->owner->ops->remove_location (bl, reason);
3721 }
3722 else
3723 {
3724 /* This breakpoint is in an overlay section.
3725 Did we set a breakpoint at the LMA? */
3726 if (!overlay_events_enabled)
3727 {
3728 /* Yes -- overlay event support is not active, so we
3729 should have set a breakpoint at the LMA. Remove it.
3730 */
3731 /* Ignore any failures: if the LMA is in ROM, we will
3732 have already warned when we failed to insert it. */
3733 if (bl->loc_type == bp_loc_hardware_breakpoint)
3734 target_remove_hw_breakpoint (bl->gdbarch,
3735 &bl->overlay_target_info);
3736 else
3737 target_remove_breakpoint (bl->gdbarch,
3738 &bl->overlay_target_info,
3739 reason);
3740 }
3741 /* Did we set a breakpoint at the VMA?
3742 If so, we will have marked the breakpoint 'inserted'. */
3743 if (bl->inserted)
3744 {
3745 /* Yes -- remove it. Previously we did not bother to
3746 remove the breakpoint if the section had been
3747 unmapped, but let's not rely on that being safe. We
3748 don't know what the overlay manager might do. */
3749
3750 /* However, we should remove *software* breakpoints only
3751 if the section is still mapped, or else we overwrite
3752 wrong code with the saved shadow contents. */
3753 if (bl->loc_type == bp_loc_hardware_breakpoint
3754 || section_is_mapped (bl->section))
3755 val = bl->owner->ops->remove_location (bl, reason);
3756 else
3757 val = 0;
3758 }
3759 else
3760 {
3761 /* No -- not inserted, so no need to remove. No error. */
3762 val = 0;
3763 }
3764 }
3765
3766 /* In some cases, we might not be able to remove a breakpoint in
3767 a shared library that has already been removed, but we have
3768 not yet processed the shlib unload event. Similarly for an
3769 unloaded add-symbol-file object - the user might not yet have
3770 had the chance to remove-symbol-file it. shlib_disabled will
3771 be set if the library/object has already been removed, but
3772 the breakpoint hasn't been uninserted yet, e.g., after
3773 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3774 always-inserted mode. */
3775 if (val
3776 && (bl->loc_type == bp_loc_software_breakpoint
3777 && (bl->shlib_disabled
3778 || solib_name_from_address (bl->pspace, bl->address)
3779 || shared_objfile_contains_address_p (bl->pspace,
3780 bl->address))))
3781 val = 0;
3782
3783 if (val)
3784 return val;
3785 bl->inserted = (reason == DETACH_BREAKPOINT);
3786 }
3787 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3788 {
3789 gdb_assert (bl->owner->ops != NULL
3790 && bl->owner->ops->remove_location != NULL);
3791
3792 bl->inserted = (reason == DETACH_BREAKPOINT);
3793 bl->owner->ops->remove_location (bl, reason);
3794
3795 /* Failure to remove any of the hardware watchpoints comes here. */
3796 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3797 warning (_("Could not remove hardware watchpoint %d."),
3798 bl->owner->number);
3799 }
3800 else if (bl->owner->type == bp_catchpoint
3801 && breakpoint_enabled (bl->owner)
3802 && !bl->duplicate)
3803 {
3804 gdb_assert (bl->owner->ops != NULL
3805 && bl->owner->ops->remove_location != NULL);
3806
3807 val = bl->owner->ops->remove_location (bl, reason);
3808 if (val)
3809 return val;
3810
3811 bl->inserted = (reason == DETACH_BREAKPOINT);
3812 }
3813
3814 return 0;
3815 }
3816
3817 static int
3818 remove_breakpoint (struct bp_location *bl)
3819 {
3820 /* BL is never in moribund_locations by our callers. */
3821 gdb_assert (bl->owner != NULL);
3822
3823 /* The type of none suggests that owner is actually deleted.
3824 This should not ever happen. */
3825 gdb_assert (bl->owner->type != bp_none);
3826
3827 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3828
3829 switch_to_program_space_and_thread (bl->pspace);
3830
3831 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3832 }
3833
3834 /* Clear the "inserted" flag in all breakpoints. */
3835
3836 void
3837 mark_breakpoints_out (void)
3838 {
3839 struct bp_location *bl, **blp_tmp;
3840
3841 ALL_BP_LOCATIONS (bl, blp_tmp)
3842 if (bl->pspace == current_program_space)
3843 bl->inserted = 0;
3844 }
3845
3846 /* Clear the "inserted" flag in all breakpoints and delete any
3847 breakpoints which should go away between runs of the program.
3848
3849 Plus other such housekeeping that has to be done for breakpoints
3850 between runs.
3851
3852 Note: this function gets called at the end of a run (by
3853 generic_mourn_inferior) and when a run begins (by
3854 init_wait_for_inferior). */
3855
3856
3857
3858 void
3859 breakpoint_init_inferior (enum inf_context context)
3860 {
3861 struct breakpoint *b, *b_tmp;
3862 struct program_space *pspace = current_program_space;
3863
3864 /* If breakpoint locations are shared across processes, then there's
3865 nothing to do. */
3866 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3867 return;
3868
3869 mark_breakpoints_out ();
3870
3871 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3872 {
3873 if (b->loc && b->loc->pspace != pspace)
3874 continue;
3875
3876 switch (b->type)
3877 {
3878 case bp_call_dummy:
3879 case bp_longjmp_call_dummy:
3880
3881 /* If the call dummy breakpoint is at the entry point it will
3882 cause problems when the inferior is rerun, so we better get
3883 rid of it. */
3884
3885 case bp_watchpoint_scope:
3886
3887 /* Also get rid of scope breakpoints. */
3888
3889 case bp_shlib_event:
3890
3891 /* Also remove solib event breakpoints. Their addresses may
3892 have changed since the last time we ran the program.
3893 Actually we may now be debugging against different target;
3894 and so the solib backend that installed this breakpoint may
3895 not be used in by the target. E.g.,
3896
3897 (gdb) file prog-linux
3898 (gdb) run # native linux target
3899 ...
3900 (gdb) kill
3901 (gdb) file prog-win.exe
3902 (gdb) tar rem :9999 # remote Windows gdbserver.
3903 */
3904
3905 case bp_step_resume:
3906
3907 /* Also remove step-resume breakpoints. */
3908
3909 case bp_single_step:
3910
3911 /* Also remove single-step breakpoints. */
3912
3913 delete_breakpoint (b);
3914 break;
3915
3916 case bp_watchpoint:
3917 case bp_hardware_watchpoint:
3918 case bp_read_watchpoint:
3919 case bp_access_watchpoint:
3920 {
3921 struct watchpoint *w = (struct watchpoint *) b;
3922
3923 /* Likewise for watchpoints on local expressions. */
3924 if (w->exp_valid_block != NULL)
3925 delete_breakpoint (b);
3926 else
3927 {
3928 /* Get rid of existing locations, which are no longer
3929 valid. New ones will be created in
3930 update_watchpoint, when the inferior is restarted.
3931 The next update_global_location_list call will
3932 garbage collect them. */
3933 b->loc = NULL;
3934
3935 if (context == inf_starting)
3936 {
3937 /* Reset val field to force reread of starting value in
3938 insert_breakpoints. */
3939 w->val.reset (nullptr);
3940 w->val_valid = 0;
3941 }
3942 }
3943 }
3944 break;
3945 default:
3946 break;
3947 }
3948 }
3949
3950 /* Get rid of the moribund locations. */
3951 for (bp_location *bl : moribund_locations)
3952 decref_bp_location (&bl);
3953 moribund_locations.clear ();
3954 }
3955
3956 /* These functions concern about actual breakpoints inserted in the
3957 target --- to e.g. check if we need to do decr_pc adjustment or if
3958 we need to hop over the bkpt --- so we check for address space
3959 match, not program space. */
3960
3961 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3962 exists at PC. It returns ordinary_breakpoint_here if it's an
3963 ordinary breakpoint, or permanent_breakpoint_here if it's a
3964 permanent breakpoint.
3965 - When continuing from a location with an ordinary breakpoint, we
3966 actually single step once before calling insert_breakpoints.
3967 - When continuing from a location with a permanent breakpoint, we
3968 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3969 the target, to advance the PC past the breakpoint. */
3970
3971 enum breakpoint_here
3972 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3973 {
3974 struct bp_location *bl, **blp_tmp;
3975 int any_breakpoint_here = 0;
3976
3977 ALL_BP_LOCATIONS (bl, blp_tmp)
3978 {
3979 if (bl->loc_type != bp_loc_software_breakpoint
3980 && bl->loc_type != bp_loc_hardware_breakpoint)
3981 continue;
3982
3983 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3984 if ((breakpoint_enabled (bl->owner)
3985 || bl->permanent)
3986 && breakpoint_location_address_match (bl, aspace, pc))
3987 {
3988 if (overlay_debugging
3989 && section_is_overlay (bl->section)
3990 && !section_is_mapped (bl->section))
3991 continue; /* unmapped overlay -- can't be a match */
3992 else if (bl->permanent)
3993 return permanent_breakpoint_here;
3994 else
3995 any_breakpoint_here = 1;
3996 }
3997 }
3998
3999 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4000 }
4001
4002 /* See breakpoint.h. */
4003
4004 int
4005 breakpoint_in_range_p (const address_space *aspace,
4006 CORE_ADDR addr, ULONGEST len)
4007 {
4008 struct bp_location *bl, **blp_tmp;
4009
4010 ALL_BP_LOCATIONS (bl, blp_tmp)
4011 {
4012 if (bl->loc_type != bp_loc_software_breakpoint
4013 && bl->loc_type != bp_loc_hardware_breakpoint)
4014 continue;
4015
4016 if ((breakpoint_enabled (bl->owner)
4017 || bl->permanent)
4018 && breakpoint_location_address_range_overlap (bl, aspace,
4019 addr, len))
4020 {
4021 if (overlay_debugging
4022 && section_is_overlay (bl->section)
4023 && !section_is_mapped (bl->section))
4024 {
4025 /* Unmapped overlay -- can't be a match. */
4026 continue;
4027 }
4028
4029 return 1;
4030 }
4031 }
4032
4033 return 0;
4034 }
4035
4036 /* Return true if there's a moribund breakpoint at PC. */
4037
4038 int
4039 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4040 {
4041 for (bp_location *loc : moribund_locations)
4042 if (breakpoint_location_address_match (loc, aspace, pc))
4043 return 1;
4044
4045 return 0;
4046 }
4047
4048 /* Returns non-zero iff BL is inserted at PC, in address space
4049 ASPACE. */
4050
4051 static int
4052 bp_location_inserted_here_p (struct bp_location *bl,
4053 const address_space *aspace, CORE_ADDR pc)
4054 {
4055 if (bl->inserted
4056 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4057 aspace, pc))
4058 {
4059 if (overlay_debugging
4060 && section_is_overlay (bl->section)
4061 && !section_is_mapped (bl->section))
4062 return 0; /* unmapped overlay -- can't be a match */
4063 else
4064 return 1;
4065 }
4066 return 0;
4067 }
4068
4069 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4070
4071 int
4072 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4073 {
4074 struct bp_location **blp, **blp_tmp = NULL;
4075
4076 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4077 {
4078 struct bp_location *bl = *blp;
4079
4080 if (bl->loc_type != bp_loc_software_breakpoint
4081 && bl->loc_type != bp_loc_hardware_breakpoint)
4082 continue;
4083
4084 if (bp_location_inserted_here_p (bl, aspace, pc))
4085 return 1;
4086 }
4087 return 0;
4088 }
4089
4090 /* This function returns non-zero iff there is a software breakpoint
4091 inserted at PC. */
4092
4093 int
4094 software_breakpoint_inserted_here_p (const address_space *aspace,
4095 CORE_ADDR pc)
4096 {
4097 struct bp_location **blp, **blp_tmp = NULL;
4098
4099 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4100 {
4101 struct bp_location *bl = *blp;
4102
4103 if (bl->loc_type != bp_loc_software_breakpoint)
4104 continue;
4105
4106 if (bp_location_inserted_here_p (bl, aspace, pc))
4107 return 1;
4108 }
4109
4110 return 0;
4111 }
4112
4113 /* See breakpoint.h. */
4114
4115 int
4116 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4117 CORE_ADDR pc)
4118 {
4119 struct bp_location **blp, **blp_tmp = NULL;
4120
4121 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4122 {
4123 struct bp_location *bl = *blp;
4124
4125 if (bl->loc_type != bp_loc_hardware_breakpoint)
4126 continue;
4127
4128 if (bp_location_inserted_here_p (bl, aspace, pc))
4129 return 1;
4130 }
4131
4132 return 0;
4133 }
4134
4135 int
4136 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4137 CORE_ADDR addr, ULONGEST len)
4138 {
4139 struct breakpoint *bpt;
4140
4141 ALL_BREAKPOINTS (bpt)
4142 {
4143 struct bp_location *loc;
4144
4145 if (bpt->type != bp_hardware_watchpoint
4146 && bpt->type != bp_access_watchpoint)
4147 continue;
4148
4149 if (!breakpoint_enabled (bpt))
4150 continue;
4151
4152 for (loc = bpt->loc; loc; loc = loc->next)
4153 if (loc->pspace->aspace == aspace && loc->inserted)
4154 {
4155 CORE_ADDR l, h;
4156
4157 /* Check for intersection. */
4158 l = std::max<CORE_ADDR> (loc->address, addr);
4159 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4160 if (l < h)
4161 return 1;
4162 }
4163 }
4164 return 0;
4165 }
4166 \f
4167
4168 /* bpstat stuff. External routines' interfaces are documented
4169 in breakpoint.h. */
4170
4171 int
4172 is_catchpoint (struct breakpoint *ep)
4173 {
4174 return (ep->type == bp_catchpoint);
4175 }
4176
4177 /* Frees any storage that is part of a bpstat. Does not walk the
4178 'next' chain. */
4179
4180 bpstats::~bpstats ()
4181 {
4182 if (bp_location_at != NULL)
4183 decref_bp_location (&bp_location_at);
4184 }
4185
4186 /* Clear a bpstat so that it says we are not at any breakpoint.
4187 Also free any storage that is part of a bpstat. */
4188
4189 void
4190 bpstat_clear (bpstat *bsp)
4191 {
4192 bpstat p;
4193 bpstat q;
4194
4195 if (bsp == 0)
4196 return;
4197 p = *bsp;
4198 while (p != NULL)
4199 {
4200 q = p->next;
4201 delete p;
4202 p = q;
4203 }
4204 *bsp = NULL;
4205 }
4206
4207 bpstats::bpstats (const bpstats &other)
4208 : next (NULL),
4209 bp_location_at (other.bp_location_at),
4210 breakpoint_at (other.breakpoint_at),
4211 commands (other.commands),
4212 print (other.print),
4213 stop (other.stop),
4214 print_it (other.print_it)
4215 {
4216 if (other.old_val != NULL)
4217 old_val = release_value (value_copy (other.old_val.get ()));
4218 incref_bp_location (bp_location_at);
4219 }
4220
4221 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4222 is part of the bpstat is copied as well. */
4223
4224 bpstat
4225 bpstat_copy (bpstat bs)
4226 {
4227 bpstat p = NULL;
4228 bpstat tmp;
4229 bpstat retval = NULL;
4230
4231 if (bs == NULL)
4232 return bs;
4233
4234 for (; bs != NULL; bs = bs->next)
4235 {
4236 tmp = new bpstats (*bs);
4237
4238 if (p == NULL)
4239 /* This is the first thing in the chain. */
4240 retval = tmp;
4241 else
4242 p->next = tmp;
4243 p = tmp;
4244 }
4245 p->next = NULL;
4246 return retval;
4247 }
4248
4249 /* Find the bpstat associated with this breakpoint. */
4250
4251 bpstat
4252 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4253 {
4254 if (bsp == NULL)
4255 return NULL;
4256
4257 for (; bsp != NULL; bsp = bsp->next)
4258 {
4259 if (bsp->breakpoint_at == breakpoint)
4260 return bsp;
4261 }
4262 return NULL;
4263 }
4264
4265 /* See breakpoint.h. */
4266
4267 int
4268 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4269 {
4270 for (; bsp != NULL; bsp = bsp->next)
4271 {
4272 if (bsp->breakpoint_at == NULL)
4273 {
4274 /* A moribund location can never explain a signal other than
4275 GDB_SIGNAL_TRAP. */
4276 if (sig == GDB_SIGNAL_TRAP)
4277 return 1;
4278 }
4279 else
4280 {
4281 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4282 sig))
4283 return 1;
4284 }
4285 }
4286
4287 return 0;
4288 }
4289
4290 /* Put in *NUM the breakpoint number of the first breakpoint we are
4291 stopped at. *BSP upon return is a bpstat which points to the
4292 remaining breakpoints stopped at (but which is not guaranteed to be
4293 good for anything but further calls to bpstat_num).
4294
4295 Return 0 if passed a bpstat which does not indicate any breakpoints.
4296 Return -1 if stopped at a breakpoint that has been deleted since
4297 we set it.
4298 Return 1 otherwise. */
4299
4300 int
4301 bpstat_num (bpstat *bsp, int *num)
4302 {
4303 struct breakpoint *b;
4304
4305 if ((*bsp) == NULL)
4306 return 0; /* No more breakpoint values */
4307
4308 /* We assume we'll never have several bpstats that correspond to a
4309 single breakpoint -- otherwise, this function might return the
4310 same number more than once and this will look ugly. */
4311 b = (*bsp)->breakpoint_at;
4312 *bsp = (*bsp)->next;
4313 if (b == NULL)
4314 return -1; /* breakpoint that's been deleted since */
4315
4316 *num = b->number; /* We have its number */
4317 return 1;
4318 }
4319
4320 /* See breakpoint.h. */
4321
4322 void
4323 bpstat_clear_actions (void)
4324 {
4325 bpstat bs;
4326
4327 if (inferior_ptid == null_ptid)
4328 return;
4329
4330 thread_info *tp = inferior_thread ();
4331 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4332 {
4333 bs->commands = NULL;
4334 bs->old_val.reset (nullptr);
4335 }
4336 }
4337
4338 /* Called when a command is about to proceed the inferior. */
4339
4340 static void
4341 breakpoint_about_to_proceed (void)
4342 {
4343 if (inferior_ptid != null_ptid)
4344 {
4345 struct thread_info *tp = inferior_thread ();
4346
4347 /* Allow inferior function calls in breakpoint commands to not
4348 interrupt the command list. When the call finishes
4349 successfully, the inferior will be standing at the same
4350 breakpoint as if nothing happened. */
4351 if (tp->control.in_infcall)
4352 return;
4353 }
4354
4355 breakpoint_proceeded = 1;
4356 }
4357
4358 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4359 or its equivalent. */
4360
4361 static int
4362 command_line_is_silent (struct command_line *cmd)
4363 {
4364 return cmd && (strcmp ("silent", cmd->line) == 0);
4365 }
4366
4367 /* Execute all the commands associated with all the breakpoints at
4368 this location. Any of these commands could cause the process to
4369 proceed beyond this point, etc. We look out for such changes by
4370 checking the global "breakpoint_proceeded" after each command.
4371
4372 Returns true if a breakpoint command resumed the inferior. In that
4373 case, it is the caller's responsibility to recall it again with the
4374 bpstat of the current thread. */
4375
4376 static int
4377 bpstat_do_actions_1 (bpstat *bsp)
4378 {
4379 bpstat bs;
4380 int again = 0;
4381
4382 /* Avoid endless recursion if a `source' command is contained
4383 in bs->commands. */
4384 if (executing_breakpoint_commands)
4385 return 0;
4386
4387 scoped_restore save_executing
4388 = make_scoped_restore (&executing_breakpoint_commands, 1);
4389
4390 scoped_restore preventer = prevent_dont_repeat ();
4391
4392 /* This pointer will iterate over the list of bpstat's. */
4393 bs = *bsp;
4394
4395 breakpoint_proceeded = 0;
4396 for (; bs != NULL; bs = bs->next)
4397 {
4398 struct command_line *cmd = NULL;
4399
4400 /* Take ownership of the BSP's command tree, if it has one.
4401
4402 The command tree could legitimately contain commands like
4403 'step' and 'next', which call clear_proceed_status, which
4404 frees stop_bpstat's command tree. To make sure this doesn't
4405 free the tree we're executing out from under us, we need to
4406 take ownership of the tree ourselves. Since a given bpstat's
4407 commands are only executed once, we don't need to copy it; we
4408 can clear the pointer in the bpstat, and make sure we free
4409 the tree when we're done. */
4410 counted_command_line ccmd = bs->commands;
4411 bs->commands = NULL;
4412 if (ccmd != NULL)
4413 cmd = ccmd.get ();
4414 if (command_line_is_silent (cmd))
4415 {
4416 /* The action has been already done by bpstat_stop_status. */
4417 cmd = cmd->next;
4418 }
4419
4420 while (cmd != NULL)
4421 {
4422 execute_control_command (cmd);
4423
4424 if (breakpoint_proceeded)
4425 break;
4426 else
4427 cmd = cmd->next;
4428 }
4429
4430 if (breakpoint_proceeded)
4431 {
4432 if (current_ui->async)
4433 /* If we are in async mode, then the target might be still
4434 running, not stopped at any breakpoint, so nothing for
4435 us to do here -- just return to the event loop. */
4436 ;
4437 else
4438 /* In sync mode, when execute_control_command returns
4439 we're already standing on the next breakpoint.
4440 Breakpoint commands for that stop were not run, since
4441 execute_command does not run breakpoint commands --
4442 only command_line_handler does, but that one is not
4443 involved in execution of breakpoint commands. So, we
4444 can now execute breakpoint commands. It should be
4445 noted that making execute_command do bpstat actions is
4446 not an option -- in this case we'll have recursive
4447 invocation of bpstat for each breakpoint with a
4448 command, and can easily blow up GDB stack. Instead, we
4449 return true, which will trigger the caller to recall us
4450 with the new stop_bpstat. */
4451 again = 1;
4452 break;
4453 }
4454 }
4455 return again;
4456 }
4457
4458 /* Helper for bpstat_do_actions. Get the current thread, if there's
4459 one, is alive and has execution. Return NULL otherwise. */
4460
4461 static thread_info *
4462 get_bpstat_thread ()
4463 {
4464 if (inferior_ptid == null_ptid || !target_has_execution)
4465 return NULL;
4466
4467 thread_info *tp = inferior_thread ();
4468 if (tp->state == THREAD_EXITED || tp->executing)
4469 return NULL;
4470 return tp;
4471 }
4472
4473 void
4474 bpstat_do_actions (void)
4475 {
4476 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4477 thread_info *tp;
4478
4479 /* Do any commands attached to breakpoint we are stopped at. */
4480 while ((tp = get_bpstat_thread ()) != NULL)
4481 {
4482 /* Since in sync mode, bpstat_do_actions may resume the
4483 inferior, and only return when it is stopped at the next
4484 breakpoint, we keep doing breakpoint actions until it returns
4485 false to indicate the inferior was not resumed. */
4486 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4487 break;
4488 }
4489
4490 discard_cleanups (cleanup_if_error);
4491 }
4492
4493 /* Print out the (old or new) value associated with a watchpoint. */
4494
4495 static void
4496 watchpoint_value_print (struct value *val, struct ui_file *stream)
4497 {
4498 if (val == NULL)
4499 fprintf_unfiltered (stream, _("<unreadable>"));
4500 else
4501 {
4502 struct value_print_options opts;
4503 get_user_print_options (&opts);
4504 value_print (val, stream, &opts);
4505 }
4506 }
4507
4508 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4509 debugging multiple threads. */
4510
4511 void
4512 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4513 {
4514 if (uiout->is_mi_like_p ())
4515 return;
4516
4517 uiout->text ("\n");
4518
4519 if (show_thread_that_caused_stop ())
4520 {
4521 const char *name;
4522 struct thread_info *thr = inferior_thread ();
4523
4524 uiout->text ("Thread ");
4525 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4526
4527 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4528 if (name != NULL)
4529 {
4530 uiout->text (" \"");
4531 uiout->field_fmt ("name", "%s", name);
4532 uiout->text ("\"");
4533 }
4534
4535 uiout->text (" hit ");
4536 }
4537 }
4538
4539 /* Generic routine for printing messages indicating why we
4540 stopped. The behavior of this function depends on the value
4541 'print_it' in the bpstat structure. Under some circumstances we
4542 may decide not to print anything here and delegate the task to
4543 normal_stop(). */
4544
4545 static enum print_stop_action
4546 print_bp_stop_message (bpstat bs)
4547 {
4548 switch (bs->print_it)
4549 {
4550 case print_it_noop:
4551 /* Nothing should be printed for this bpstat entry. */
4552 return PRINT_UNKNOWN;
4553 break;
4554
4555 case print_it_done:
4556 /* We still want to print the frame, but we already printed the
4557 relevant messages. */
4558 return PRINT_SRC_AND_LOC;
4559 break;
4560
4561 case print_it_normal:
4562 {
4563 struct breakpoint *b = bs->breakpoint_at;
4564
4565 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4566 which has since been deleted. */
4567 if (b == NULL)
4568 return PRINT_UNKNOWN;
4569
4570 /* Normal case. Call the breakpoint's print_it method. */
4571 return b->ops->print_it (bs);
4572 }
4573 break;
4574
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("print_bp_stop_message: unrecognized enum value"));
4578 break;
4579 }
4580 }
4581
4582 /* A helper function that prints a shared library stopped event. */
4583
4584 static void
4585 print_solib_event (int is_catchpoint)
4586 {
4587 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4588 bool any_added = !current_program_space->added_solibs.empty ();
4589
4590 if (!is_catchpoint)
4591 {
4592 if (any_added || any_deleted)
4593 current_uiout->text (_("Stopped due to shared library event:\n"));
4594 else
4595 current_uiout->text (_("Stopped due to shared library event (no "
4596 "libraries added or removed)\n"));
4597 }
4598
4599 if (current_uiout->is_mi_like_p ())
4600 current_uiout->field_string ("reason",
4601 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4602
4603 if (any_deleted)
4604 {
4605 current_uiout->text (_(" Inferior unloaded "));
4606 ui_out_emit_list list_emitter (current_uiout, "removed");
4607 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4608 {
4609 const std::string &name = current_program_space->deleted_solibs[ix];
4610
4611 if (ix > 0)
4612 current_uiout->text (" ");
4613 current_uiout->field_string ("library", name);
4614 current_uiout->text ("\n");
4615 }
4616 }
4617
4618 if (any_added)
4619 {
4620 current_uiout->text (_(" Inferior loaded "));
4621 ui_out_emit_list list_emitter (current_uiout, "added");
4622 bool first = true;
4623 for (so_list *iter : current_program_space->added_solibs)
4624 {
4625 if (!first)
4626 current_uiout->text (" ");
4627 first = false;
4628 current_uiout->field_string ("library", iter->so_name);
4629 current_uiout->text ("\n");
4630 }
4631 }
4632 }
4633
4634 /* Print a message indicating what happened. This is called from
4635 normal_stop(). The input to this routine is the head of the bpstat
4636 list - a list of the eventpoints that caused this stop. KIND is
4637 the target_waitkind for the stopping event. This
4638 routine calls the generic print routine for printing a message
4639 about reasons for stopping. This will print (for example) the
4640 "Breakpoint n," part of the output. The return value of this
4641 routine is one of:
4642
4643 PRINT_UNKNOWN: Means we printed nothing.
4644 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4645 code to print the location. An example is
4646 "Breakpoint 1, " which should be followed by
4647 the location.
4648 PRINT_SRC_ONLY: Means we printed something, but there is no need
4649 to also print the location part of the message.
4650 An example is the catch/throw messages, which
4651 don't require a location appended to the end.
4652 PRINT_NOTHING: We have done some printing and we don't need any
4653 further info to be printed. */
4654
4655 enum print_stop_action
4656 bpstat_print (bpstat bs, int kind)
4657 {
4658 enum print_stop_action val;
4659
4660 /* Maybe another breakpoint in the chain caused us to stop.
4661 (Currently all watchpoints go on the bpstat whether hit or not.
4662 That probably could (should) be changed, provided care is taken
4663 with respect to bpstat_explains_signal). */
4664 for (; bs; bs = bs->next)
4665 {
4666 val = print_bp_stop_message (bs);
4667 if (val == PRINT_SRC_ONLY
4668 || val == PRINT_SRC_AND_LOC
4669 || val == PRINT_NOTHING)
4670 return val;
4671 }
4672
4673 /* If we had hit a shared library event breakpoint,
4674 print_bp_stop_message would print out this message. If we hit an
4675 OS-level shared library event, do the same thing. */
4676 if (kind == TARGET_WAITKIND_LOADED)
4677 {
4678 print_solib_event (0);
4679 return PRINT_NOTHING;
4680 }
4681
4682 /* We reached the end of the chain, or we got a null BS to start
4683 with and nothing was printed. */
4684 return PRINT_UNKNOWN;
4685 }
4686
4687 /* Evaluate the boolean expression EXP and return the result. */
4688
4689 static bool
4690 breakpoint_cond_eval (expression *exp)
4691 {
4692 struct value *mark = value_mark ();
4693 bool res = value_true (evaluate_expression (exp));
4694
4695 value_free_to_mark (mark);
4696 return res;
4697 }
4698
4699 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4700
4701 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4702 : next (NULL),
4703 bp_location_at (bl),
4704 breakpoint_at (bl->owner),
4705 commands (NULL),
4706 print (0),
4707 stop (0),
4708 print_it (print_it_normal)
4709 {
4710 incref_bp_location (bl);
4711 **bs_link_pointer = this;
4712 *bs_link_pointer = &next;
4713 }
4714
4715 bpstats::bpstats ()
4716 : next (NULL),
4717 bp_location_at (NULL),
4718 breakpoint_at (NULL),
4719 commands (NULL),
4720 print (0),
4721 stop (0),
4722 print_it (print_it_normal)
4723 {
4724 }
4725 \f
4726 /* The target has stopped with waitstatus WS. Check if any hardware
4727 watchpoints have triggered, according to the target. */
4728
4729 int
4730 watchpoints_triggered (struct target_waitstatus *ws)
4731 {
4732 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4733 CORE_ADDR addr;
4734 struct breakpoint *b;
4735
4736 if (!stopped_by_watchpoint)
4737 {
4738 /* We were not stopped by a watchpoint. Mark all watchpoints
4739 as not triggered. */
4740 ALL_BREAKPOINTS (b)
4741 if (is_hardware_watchpoint (b))
4742 {
4743 struct watchpoint *w = (struct watchpoint *) b;
4744
4745 w->watchpoint_triggered = watch_triggered_no;
4746 }
4747
4748 return 0;
4749 }
4750
4751 if (!target_stopped_data_address (current_top_target (), &addr))
4752 {
4753 /* We were stopped by a watchpoint, but we don't know where.
4754 Mark all watchpoints as unknown. */
4755 ALL_BREAKPOINTS (b)
4756 if (is_hardware_watchpoint (b))
4757 {
4758 struct watchpoint *w = (struct watchpoint *) b;
4759
4760 w->watchpoint_triggered = watch_triggered_unknown;
4761 }
4762
4763 return 1;
4764 }
4765
4766 /* The target could report the data address. Mark watchpoints
4767 affected by this data address as triggered, and all others as not
4768 triggered. */
4769
4770 ALL_BREAKPOINTS (b)
4771 if (is_hardware_watchpoint (b))
4772 {
4773 struct watchpoint *w = (struct watchpoint *) b;
4774 struct bp_location *loc;
4775
4776 w->watchpoint_triggered = watch_triggered_no;
4777 for (loc = b->loc; loc; loc = loc->next)
4778 {
4779 if (is_masked_watchpoint (b))
4780 {
4781 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4782 CORE_ADDR start = loc->address & w->hw_wp_mask;
4783
4784 if (newaddr == start)
4785 {
4786 w->watchpoint_triggered = watch_triggered_yes;
4787 break;
4788 }
4789 }
4790 /* Exact match not required. Within range is sufficient. */
4791 else if (target_watchpoint_addr_within_range (current_top_target (),
4792 addr, loc->address,
4793 loc->length))
4794 {
4795 w->watchpoint_triggered = watch_triggered_yes;
4796 break;
4797 }
4798 }
4799 }
4800
4801 return 1;
4802 }
4803
4804 /* Possible return values for watchpoint_check. */
4805 enum wp_check_result
4806 {
4807 /* The watchpoint has been deleted. */
4808 WP_DELETED = 1,
4809
4810 /* The value has changed. */
4811 WP_VALUE_CHANGED = 2,
4812
4813 /* The value has not changed. */
4814 WP_VALUE_NOT_CHANGED = 3,
4815
4816 /* Ignore this watchpoint, no matter if the value changed or not. */
4817 WP_IGNORE = 4,
4818 };
4819
4820 #define BP_TEMPFLAG 1
4821 #define BP_HARDWAREFLAG 2
4822
4823 /* Evaluate watchpoint condition expression and check if its value
4824 changed. */
4825
4826 static wp_check_result
4827 watchpoint_check (bpstat bs)
4828 {
4829 struct watchpoint *b;
4830 struct frame_info *fr;
4831 int within_current_scope;
4832
4833 /* BS is built from an existing struct breakpoint. */
4834 gdb_assert (bs->breakpoint_at != NULL);
4835 b = (struct watchpoint *) bs->breakpoint_at;
4836
4837 /* If this is a local watchpoint, we only want to check if the
4838 watchpoint frame is in scope if the current thread is the thread
4839 that was used to create the watchpoint. */
4840 if (!watchpoint_in_thread_scope (b))
4841 return WP_IGNORE;
4842
4843 if (b->exp_valid_block == NULL)
4844 within_current_scope = 1;
4845 else
4846 {
4847 struct frame_info *frame = get_current_frame ();
4848 struct gdbarch *frame_arch = get_frame_arch (frame);
4849 CORE_ADDR frame_pc = get_frame_pc (frame);
4850
4851 /* stack_frame_destroyed_p() returns a non-zero value if we're
4852 still in the function but the stack frame has already been
4853 invalidated. Since we can't rely on the values of local
4854 variables after the stack has been destroyed, we are treating
4855 the watchpoint in that state as `not changed' without further
4856 checking. Don't mark watchpoints as changed if the current
4857 frame is in an epilogue - even if they are in some other
4858 frame, our view of the stack is likely to be wrong and
4859 frame_find_by_id could error out. */
4860 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4861 return WP_IGNORE;
4862
4863 fr = frame_find_by_id (b->watchpoint_frame);
4864 within_current_scope = (fr != NULL);
4865
4866 /* If we've gotten confused in the unwinder, we might have
4867 returned a frame that can't describe this variable. */
4868 if (within_current_scope)
4869 {
4870 struct symbol *function;
4871
4872 function = get_frame_function (fr);
4873 if (function == NULL
4874 || !contained_in (b->exp_valid_block,
4875 SYMBOL_BLOCK_VALUE (function)))
4876 within_current_scope = 0;
4877 }
4878
4879 if (within_current_scope)
4880 /* If we end up stopping, the current frame will get selected
4881 in normal_stop. So this call to select_frame won't affect
4882 the user. */
4883 select_frame (fr);
4884 }
4885
4886 if (within_current_scope)
4887 {
4888 /* We use value_{,free_to_}mark because it could be a *long*
4889 time before we return to the command level and call
4890 free_all_values. We can't call free_all_values because we
4891 might be in the middle of evaluating a function call. */
4892
4893 int pc = 0;
4894 struct value *mark;
4895 struct value *new_val;
4896
4897 if (is_masked_watchpoint (b))
4898 /* Since we don't know the exact trigger address (from
4899 stopped_data_address), just tell the user we've triggered
4900 a mask watchpoint. */
4901 return WP_VALUE_CHANGED;
4902
4903 mark = value_mark ();
4904 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4905
4906 if (b->val_bitsize != 0)
4907 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4908
4909 /* We use value_equal_contents instead of value_equal because
4910 the latter coerces an array to a pointer, thus comparing just
4911 the address of the array instead of its contents. This is
4912 not what we want. */
4913 if ((b->val != NULL) != (new_val != NULL)
4914 || (b->val != NULL && !value_equal_contents (b->val.get (),
4915 new_val)))
4916 {
4917 bs->old_val = b->val;
4918 b->val = release_value (new_val);
4919 b->val_valid = 1;
4920 if (new_val != NULL)
4921 value_free_to_mark (mark);
4922 return WP_VALUE_CHANGED;
4923 }
4924 else
4925 {
4926 /* Nothing changed. */
4927 value_free_to_mark (mark);
4928 return WP_VALUE_NOT_CHANGED;
4929 }
4930 }
4931 else
4932 {
4933 /* This seems like the only logical thing to do because
4934 if we temporarily ignored the watchpoint, then when
4935 we reenter the block in which it is valid it contains
4936 garbage (in the case of a function, it may have two
4937 garbage values, one before and one after the prologue).
4938 So we can't even detect the first assignment to it and
4939 watch after that (since the garbage may or may not equal
4940 the first value assigned). */
4941 /* We print all the stop information in
4942 breakpoint_ops->print_it, but in this case, by the time we
4943 call breakpoint_ops->print_it this bp will be deleted
4944 already. So we have no choice but print the information
4945 here. */
4946
4947 SWITCH_THRU_ALL_UIS ()
4948 {
4949 struct ui_out *uiout = current_uiout;
4950
4951 if (uiout->is_mi_like_p ())
4952 uiout->field_string
4953 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4954 uiout->text ("\nWatchpoint ");
4955 uiout->field_int ("wpnum", b->number);
4956 uiout->text (" deleted because the program has left the block in\n"
4957 "which its expression is valid.\n");
4958 }
4959
4960 /* Make sure the watchpoint's commands aren't executed. */
4961 b->commands = NULL;
4962 watchpoint_del_at_next_stop (b);
4963
4964 return WP_DELETED;
4965 }
4966 }
4967
4968 /* Return true if it looks like target has stopped due to hitting
4969 breakpoint location BL. This function does not check if we should
4970 stop, only if BL explains the stop. */
4971
4972 static int
4973 bpstat_check_location (const struct bp_location *bl,
4974 const address_space *aspace, CORE_ADDR bp_addr,
4975 const struct target_waitstatus *ws)
4976 {
4977 struct breakpoint *b = bl->owner;
4978
4979 /* BL is from an existing breakpoint. */
4980 gdb_assert (b != NULL);
4981
4982 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4983 }
4984
4985 /* Determine if the watched values have actually changed, and we
4986 should stop. If not, set BS->stop to 0. */
4987
4988 static void
4989 bpstat_check_watchpoint (bpstat bs)
4990 {
4991 const struct bp_location *bl;
4992 struct watchpoint *b;
4993
4994 /* BS is built for existing struct breakpoint. */
4995 bl = bs->bp_location_at;
4996 gdb_assert (bl != NULL);
4997 b = (struct watchpoint *) bs->breakpoint_at;
4998 gdb_assert (b != NULL);
4999
5000 {
5001 int must_check_value = 0;
5002
5003 if (b->type == bp_watchpoint)
5004 /* For a software watchpoint, we must always check the
5005 watched value. */
5006 must_check_value = 1;
5007 else if (b->watchpoint_triggered == watch_triggered_yes)
5008 /* We have a hardware watchpoint (read, write, or access)
5009 and the target earlier reported an address watched by
5010 this watchpoint. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_unknown
5013 && b->type == bp_hardware_watchpoint)
5014 /* We were stopped by a hardware watchpoint, but the target could
5015 not report the data address. We must check the watchpoint's
5016 value. Access and read watchpoints are out of luck; without
5017 a data address, we can't figure it out. */
5018 must_check_value = 1;
5019
5020 if (must_check_value)
5021 {
5022 wp_check_result e;
5023
5024 TRY
5025 {
5026 e = watchpoint_check (bs);
5027 }
5028 CATCH (ex, RETURN_MASK_ALL)
5029 {
5030 exception_fprintf (gdb_stderr, ex,
5031 "Error evaluating expression "
5032 "for watchpoint %d\n",
5033 b->number);
5034
5035 SWITCH_THRU_ALL_UIS ()
5036 {
5037 printf_filtered (_("Watchpoint %d deleted.\n"),
5038 b->number);
5039 }
5040 watchpoint_del_at_next_stop (b);
5041 e = WP_DELETED;
5042 }
5043 END_CATCH
5044
5045 switch (e)
5046 {
5047 case WP_DELETED:
5048 /* We've already printed what needs to be printed. */
5049 bs->print_it = print_it_done;
5050 /* Stop. */
5051 break;
5052 case WP_IGNORE:
5053 bs->print_it = print_it_noop;
5054 bs->stop = 0;
5055 break;
5056 case WP_VALUE_CHANGED:
5057 if (b->type == bp_read_watchpoint)
5058 {
5059 /* There are two cases to consider here:
5060
5061 1. We're watching the triggered memory for reads.
5062 In that case, trust the target, and always report
5063 the watchpoint hit to the user. Even though
5064 reads don't cause value changes, the value may
5065 have changed since the last time it was read, and
5066 since we're not trapping writes, we will not see
5067 those, and as such we should ignore our notion of
5068 old value.
5069
5070 2. We're watching the triggered memory for both
5071 reads and writes. There are two ways this may
5072 happen:
5073
5074 2.1. This is a target that can't break on data
5075 reads only, but can break on accesses (reads or
5076 writes), such as e.g., x86. We detect this case
5077 at the time we try to insert read watchpoints.
5078
5079 2.2. Otherwise, the target supports read
5080 watchpoints, but, the user set an access or write
5081 watchpoint watching the same memory as this read
5082 watchpoint.
5083
5084 If we're watching memory writes as well as reads,
5085 ignore watchpoint hits when we find that the
5086 value hasn't changed, as reads don't cause
5087 changes. This still gives false positives when
5088 the program writes the same value to memory as
5089 what there was already in memory (we will confuse
5090 it for a read), but it's much better than
5091 nothing. */
5092
5093 int other_write_watchpoint = 0;
5094
5095 if (bl->watchpoint_type == hw_read)
5096 {
5097 struct breakpoint *other_b;
5098
5099 ALL_BREAKPOINTS (other_b)
5100 if (other_b->type == bp_hardware_watchpoint
5101 || other_b->type == bp_access_watchpoint)
5102 {
5103 struct watchpoint *other_w =
5104 (struct watchpoint *) other_b;
5105
5106 if (other_w->watchpoint_triggered
5107 == watch_triggered_yes)
5108 {
5109 other_write_watchpoint = 1;
5110 break;
5111 }
5112 }
5113 }
5114
5115 if (other_write_watchpoint
5116 || bl->watchpoint_type == hw_access)
5117 {
5118 /* We're watching the same memory for writes,
5119 and the value changed since the last time we
5120 updated it, so this trap must be for a write.
5121 Ignore it. */
5122 bs->print_it = print_it_noop;
5123 bs->stop = 0;
5124 }
5125 }
5126 break;
5127 case WP_VALUE_NOT_CHANGED:
5128 if (b->type == bp_hardware_watchpoint
5129 || b->type == bp_watchpoint)
5130 {
5131 /* Don't stop: write watchpoints shouldn't fire if
5132 the value hasn't changed. */
5133 bs->print_it = print_it_noop;
5134 bs->stop = 0;
5135 }
5136 /* Stop. */
5137 break;
5138 default:
5139 /* Can't happen. */
5140 break;
5141 }
5142 }
5143 else /* must_check_value == 0 */
5144 {
5145 /* This is a case where some watchpoint(s) triggered, but
5146 not at the address of this watchpoint, or else no
5147 watchpoint triggered after all. So don't print
5148 anything for this watchpoint. */
5149 bs->print_it = print_it_noop;
5150 bs->stop = 0;
5151 }
5152 }
5153 }
5154
5155 /* For breakpoints that are currently marked as telling gdb to stop,
5156 check conditions (condition proper, frame, thread and ignore count)
5157 of breakpoint referred to by BS. If we should not stop for this
5158 breakpoint, set BS->stop to 0. */
5159
5160 static void
5161 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5162 {
5163 const struct bp_location *bl;
5164 struct breakpoint *b;
5165 /* Assume stop. */
5166 bool condition_result = true;
5167 struct expression *cond;
5168
5169 gdb_assert (bs->stop);
5170
5171 /* BS is built for existing struct breakpoint. */
5172 bl = bs->bp_location_at;
5173 gdb_assert (bl != NULL);
5174 b = bs->breakpoint_at;
5175 gdb_assert (b != NULL);
5176
5177 /* Even if the target evaluated the condition on its end and notified GDB, we
5178 need to do so again since GDB does not know if we stopped due to a
5179 breakpoint or a single step breakpoint. */
5180
5181 if (frame_id_p (b->frame_id)
5182 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5183 {
5184 bs->stop = 0;
5185 return;
5186 }
5187
5188 /* If this is a thread/task-specific breakpoint, don't waste cpu
5189 evaluating the condition if this isn't the specified
5190 thread/task. */
5191 if ((b->thread != -1 && b->thread != thread->global_num)
5192 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5193 {
5194 bs->stop = 0;
5195 return;
5196 }
5197
5198 /* Evaluate extension language breakpoints that have a "stop" method
5199 implemented. */
5200 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5201
5202 if (is_watchpoint (b))
5203 {
5204 struct watchpoint *w = (struct watchpoint *) b;
5205
5206 cond = w->cond_exp.get ();
5207 }
5208 else
5209 cond = bl->cond.get ();
5210
5211 if (cond && b->disposition != disp_del_at_next_stop)
5212 {
5213 int within_current_scope = 1;
5214 struct watchpoint * w;
5215
5216 /* We use value_mark and value_free_to_mark because it could
5217 be a long time before we return to the command level and
5218 call free_all_values. We can't call free_all_values
5219 because we might be in the middle of evaluating a
5220 function call. */
5221 struct value *mark = value_mark ();
5222
5223 if (is_watchpoint (b))
5224 w = (struct watchpoint *) b;
5225 else
5226 w = NULL;
5227
5228 /* Need to select the frame, with all that implies so that
5229 the conditions will have the right context. Because we
5230 use the frame, we will not see an inlined function's
5231 variables when we arrive at a breakpoint at the start
5232 of the inlined function; the current frame will be the
5233 call site. */
5234 if (w == NULL || w->cond_exp_valid_block == NULL)
5235 select_frame (get_current_frame ());
5236 else
5237 {
5238 struct frame_info *frame;
5239
5240 /* For local watchpoint expressions, which particular
5241 instance of a local is being watched matters, so we
5242 keep track of the frame to evaluate the expression
5243 in. To evaluate the condition however, it doesn't
5244 really matter which instantiation of the function
5245 where the condition makes sense triggers the
5246 watchpoint. This allows an expression like "watch
5247 global if q > 10" set in `func', catch writes to
5248 global on all threads that call `func', or catch
5249 writes on all recursive calls of `func' by a single
5250 thread. We simply always evaluate the condition in
5251 the innermost frame that's executing where it makes
5252 sense to evaluate the condition. It seems
5253 intuitive. */
5254 frame = block_innermost_frame (w->cond_exp_valid_block);
5255 if (frame != NULL)
5256 select_frame (frame);
5257 else
5258 within_current_scope = 0;
5259 }
5260 if (within_current_scope)
5261 {
5262 TRY
5263 {
5264 condition_result = breakpoint_cond_eval (cond);
5265 }
5266 CATCH (ex, RETURN_MASK_ALL)
5267 {
5268 exception_fprintf (gdb_stderr, ex,
5269 "Error in testing breakpoint condition:\n");
5270 }
5271 END_CATCH
5272 }
5273 else
5274 {
5275 warning (_("Watchpoint condition cannot be tested "
5276 "in the current scope"));
5277 /* If we failed to set the right context for this
5278 watchpoint, unconditionally report it. */
5279 }
5280 /* FIXME-someday, should give breakpoint #. */
5281 value_free_to_mark (mark);
5282 }
5283
5284 if (cond && !condition_result)
5285 {
5286 bs->stop = 0;
5287 }
5288 else if (b->ignore_count > 0)
5289 {
5290 b->ignore_count--;
5291 bs->stop = 0;
5292 /* Increase the hit count even though we don't stop. */
5293 ++(b->hit_count);
5294 gdb::observers::breakpoint_modified.notify (b);
5295 }
5296 }
5297
5298 /* Returns true if we need to track moribund locations of LOC's type
5299 on the current target. */
5300
5301 static int
5302 need_moribund_for_location_type (struct bp_location *loc)
5303 {
5304 return ((loc->loc_type == bp_loc_software_breakpoint
5305 && !target_supports_stopped_by_sw_breakpoint ())
5306 || (loc->loc_type == bp_loc_hardware_breakpoint
5307 && !target_supports_stopped_by_hw_breakpoint ()));
5308 }
5309
5310 /* See breakpoint.h. */
5311
5312 bpstat
5313 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5314 const struct target_waitstatus *ws)
5315 {
5316 struct breakpoint *b;
5317 bpstat bs_head = NULL, *bs_link = &bs_head;
5318
5319 ALL_BREAKPOINTS (b)
5320 {
5321 if (!breakpoint_enabled (b))
5322 continue;
5323
5324 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5325 {
5326 /* For hardware watchpoints, we look only at the first
5327 location. The watchpoint_check function will work on the
5328 entire expression, not the individual locations. For
5329 read watchpoints, the watchpoints_triggered function has
5330 checked all locations already. */
5331 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5332 break;
5333
5334 if (!bl->enabled || bl->shlib_disabled)
5335 continue;
5336
5337 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5338 continue;
5339
5340 /* Come here if it's a watchpoint, or if the break address
5341 matches. */
5342
5343 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5344 explain stop. */
5345
5346 /* Assume we stop. Should we find a watchpoint that is not
5347 actually triggered, or if the condition of the breakpoint
5348 evaluates as false, we'll reset 'stop' to 0. */
5349 bs->stop = 1;
5350 bs->print = 1;
5351
5352 /* If this is a scope breakpoint, mark the associated
5353 watchpoint as triggered so that we will handle the
5354 out-of-scope event. We'll get to the watchpoint next
5355 iteration. */
5356 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5357 {
5358 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5359
5360 w->watchpoint_triggered = watch_triggered_yes;
5361 }
5362 }
5363 }
5364
5365 /* Check if a moribund breakpoint explains the stop. */
5366 if (!target_supports_stopped_by_sw_breakpoint ()
5367 || !target_supports_stopped_by_hw_breakpoint ())
5368 {
5369 for (bp_location *loc : moribund_locations)
5370 {
5371 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5372 && need_moribund_for_location_type (loc))
5373 {
5374 bpstat bs = new bpstats (loc, &bs_link);
5375 /* For hits of moribund locations, we should just proceed. */
5376 bs->stop = 0;
5377 bs->print = 0;
5378 bs->print_it = print_it_noop;
5379 }
5380 }
5381 }
5382
5383 return bs_head;
5384 }
5385
5386 /* See breakpoint.h. */
5387
5388 bpstat
5389 bpstat_stop_status (const address_space *aspace,
5390 CORE_ADDR bp_addr, thread_info *thread,
5391 const struct target_waitstatus *ws,
5392 bpstat stop_chain)
5393 {
5394 struct breakpoint *b = NULL;
5395 /* First item of allocated bpstat's. */
5396 bpstat bs_head = stop_chain;
5397 bpstat bs;
5398 int need_remove_insert;
5399 int removed_any;
5400
5401 /* First, build the bpstat chain with locations that explain a
5402 target stop, while being careful to not set the target running,
5403 as that may invalidate locations (in particular watchpoint
5404 locations are recreated). Resuming will happen here with
5405 breakpoint conditions or watchpoint expressions that include
5406 inferior function calls. */
5407 if (bs_head == NULL)
5408 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5409
5410 /* A bit of special processing for shlib breakpoints. We need to
5411 process solib loading here, so that the lists of loaded and
5412 unloaded libraries are correct before we handle "catch load" and
5413 "catch unload". */
5414 for (bs = bs_head; bs != NULL; bs = bs->next)
5415 {
5416 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5417 {
5418 handle_solib_event ();
5419 break;
5420 }
5421 }
5422
5423 /* Now go through the locations that caused the target to stop, and
5424 check whether we're interested in reporting this stop to higher
5425 layers, or whether we should resume the target transparently. */
5426
5427 removed_any = 0;
5428
5429 for (bs = bs_head; bs != NULL; bs = bs->next)
5430 {
5431 if (!bs->stop)
5432 continue;
5433
5434 b = bs->breakpoint_at;
5435 b->ops->check_status (bs);
5436 if (bs->stop)
5437 {
5438 bpstat_check_breakpoint_conditions (bs, thread);
5439
5440 if (bs->stop)
5441 {
5442 ++(b->hit_count);
5443 gdb::observers::breakpoint_modified.notify (b);
5444
5445 /* We will stop here. */
5446 if (b->disposition == disp_disable)
5447 {
5448 --(b->enable_count);
5449 if (b->enable_count <= 0)
5450 b->enable_state = bp_disabled;
5451 removed_any = 1;
5452 }
5453 if (b->silent)
5454 bs->print = 0;
5455 bs->commands = b->commands;
5456 if (command_line_is_silent (bs->commands
5457 ? bs->commands.get () : NULL))
5458 bs->print = 0;
5459
5460 b->ops->after_condition_true (bs);
5461 }
5462
5463 }
5464
5465 /* Print nothing for this entry if we don't stop or don't
5466 print. */
5467 if (!bs->stop || !bs->print)
5468 bs->print_it = print_it_noop;
5469 }
5470
5471 /* If we aren't stopping, the value of some hardware watchpoint may
5472 not have changed, but the intermediate memory locations we are
5473 watching may have. Don't bother if we're stopping; this will get
5474 done later. */
5475 need_remove_insert = 0;
5476 if (! bpstat_causes_stop (bs_head))
5477 for (bs = bs_head; bs != NULL; bs = bs->next)
5478 if (!bs->stop
5479 && bs->breakpoint_at
5480 && is_hardware_watchpoint (bs->breakpoint_at))
5481 {
5482 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5483
5484 update_watchpoint (w, 0 /* don't reparse. */);
5485 need_remove_insert = 1;
5486 }
5487
5488 if (need_remove_insert)
5489 update_global_location_list (UGLL_MAY_INSERT);
5490 else if (removed_any)
5491 update_global_location_list (UGLL_DONT_INSERT);
5492
5493 return bs_head;
5494 }
5495
5496 static void
5497 handle_jit_event (void)
5498 {
5499 struct frame_info *frame;
5500 struct gdbarch *gdbarch;
5501
5502 if (debug_infrun)
5503 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5504
5505 /* Switch terminal for any messages produced by
5506 breakpoint_re_set. */
5507 target_terminal::ours_for_output ();
5508
5509 frame = get_current_frame ();
5510 gdbarch = get_frame_arch (frame);
5511
5512 jit_event_handler (gdbarch);
5513
5514 target_terminal::inferior ();
5515 }
5516
5517 /* Prepare WHAT final decision for infrun. */
5518
5519 /* Decide what infrun needs to do with this bpstat. */
5520
5521 struct bpstat_what
5522 bpstat_what (bpstat bs_head)
5523 {
5524 struct bpstat_what retval;
5525 bpstat bs;
5526
5527 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5528 retval.call_dummy = STOP_NONE;
5529 retval.is_longjmp = 0;
5530
5531 for (bs = bs_head; bs != NULL; bs = bs->next)
5532 {
5533 /* Extract this BS's action. After processing each BS, we check
5534 if its action overrides all we've seem so far. */
5535 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5536 enum bptype bptype;
5537
5538 if (bs->breakpoint_at == NULL)
5539 {
5540 /* I suspect this can happen if it was a momentary
5541 breakpoint which has since been deleted. */
5542 bptype = bp_none;
5543 }
5544 else
5545 bptype = bs->breakpoint_at->type;
5546
5547 switch (bptype)
5548 {
5549 case bp_none:
5550 break;
5551 case bp_breakpoint:
5552 case bp_hardware_breakpoint:
5553 case bp_single_step:
5554 case bp_until:
5555 case bp_finish:
5556 case bp_shlib_event:
5557 if (bs->stop)
5558 {
5559 if (bs->print)
5560 this_action = BPSTAT_WHAT_STOP_NOISY;
5561 else
5562 this_action = BPSTAT_WHAT_STOP_SILENT;
5563 }
5564 else
5565 this_action = BPSTAT_WHAT_SINGLE;
5566 break;
5567 case bp_watchpoint:
5568 case bp_hardware_watchpoint:
5569 case bp_read_watchpoint:
5570 case bp_access_watchpoint:
5571 if (bs->stop)
5572 {
5573 if (bs->print)
5574 this_action = BPSTAT_WHAT_STOP_NOISY;
5575 else
5576 this_action = BPSTAT_WHAT_STOP_SILENT;
5577 }
5578 else
5579 {
5580 /* There was a watchpoint, but we're not stopping.
5581 This requires no further action. */
5582 }
5583 break;
5584 case bp_longjmp:
5585 case bp_longjmp_call_dummy:
5586 case bp_exception:
5587 if (bs->stop)
5588 {
5589 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5590 retval.is_longjmp = bptype != bp_exception;
5591 }
5592 else
5593 this_action = BPSTAT_WHAT_SINGLE;
5594 break;
5595 case bp_longjmp_resume:
5596 case bp_exception_resume:
5597 if (bs->stop)
5598 {
5599 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5600 retval.is_longjmp = bptype == bp_longjmp_resume;
5601 }
5602 else
5603 this_action = BPSTAT_WHAT_SINGLE;
5604 break;
5605 case bp_step_resume:
5606 if (bs->stop)
5607 this_action = BPSTAT_WHAT_STEP_RESUME;
5608 else
5609 {
5610 /* It is for the wrong frame. */
5611 this_action = BPSTAT_WHAT_SINGLE;
5612 }
5613 break;
5614 case bp_hp_step_resume:
5615 if (bs->stop)
5616 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5617 else
5618 {
5619 /* It is for the wrong frame. */
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 }
5622 break;
5623 case bp_watchpoint_scope:
5624 case bp_thread_event:
5625 case bp_overlay_event:
5626 case bp_longjmp_master:
5627 case bp_std_terminate_master:
5628 case bp_exception_master:
5629 this_action = BPSTAT_WHAT_SINGLE;
5630 break;
5631 case bp_catchpoint:
5632 if (bs->stop)
5633 {
5634 if (bs->print)
5635 this_action = BPSTAT_WHAT_STOP_NOISY;
5636 else
5637 this_action = BPSTAT_WHAT_STOP_SILENT;
5638 }
5639 else
5640 {
5641 /* There was a catchpoint, but we're not stopping.
5642 This requires no further action. */
5643 }
5644 break;
5645 case bp_jit_event:
5646 this_action = BPSTAT_WHAT_SINGLE;
5647 break;
5648 case bp_call_dummy:
5649 /* Make sure the action is stop (silent or noisy),
5650 so infrun.c pops the dummy frame. */
5651 retval.call_dummy = STOP_STACK_DUMMY;
5652 this_action = BPSTAT_WHAT_STOP_SILENT;
5653 break;
5654 case bp_std_terminate:
5655 /* Make sure the action is stop (silent or noisy),
5656 so infrun.c pops the dummy frame. */
5657 retval.call_dummy = STOP_STD_TERMINATE;
5658 this_action = BPSTAT_WHAT_STOP_SILENT;
5659 break;
5660 case bp_tracepoint:
5661 case bp_fast_tracepoint:
5662 case bp_static_tracepoint:
5663 /* Tracepoint hits should not be reported back to GDB, and
5664 if one got through somehow, it should have been filtered
5665 out already. */
5666 internal_error (__FILE__, __LINE__,
5667 _("bpstat_what: tracepoint encountered"));
5668 break;
5669 case bp_gnu_ifunc_resolver:
5670 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5671 this_action = BPSTAT_WHAT_SINGLE;
5672 break;
5673 case bp_gnu_ifunc_resolver_return:
5674 /* The breakpoint will be removed, execution will restart from the
5675 PC of the former breakpoint. */
5676 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5677 break;
5678
5679 case bp_dprintf:
5680 if (bs->stop)
5681 this_action = BPSTAT_WHAT_STOP_SILENT;
5682 else
5683 this_action = BPSTAT_WHAT_SINGLE;
5684 break;
5685
5686 default:
5687 internal_error (__FILE__, __LINE__,
5688 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5689 }
5690
5691 retval.main_action = std::max (retval.main_action, this_action);
5692 }
5693
5694 return retval;
5695 }
5696
5697 void
5698 bpstat_run_callbacks (bpstat bs_head)
5699 {
5700 bpstat bs;
5701
5702 for (bs = bs_head; bs != NULL; bs = bs->next)
5703 {
5704 struct breakpoint *b = bs->breakpoint_at;
5705
5706 if (b == NULL)
5707 continue;
5708 switch (b->type)
5709 {
5710 case bp_jit_event:
5711 handle_jit_event ();
5712 break;
5713 case bp_gnu_ifunc_resolver:
5714 gnu_ifunc_resolver_stop (b);
5715 break;
5716 case bp_gnu_ifunc_resolver_return:
5717 gnu_ifunc_resolver_return_stop (b);
5718 break;
5719 }
5720 }
5721 }
5722
5723 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5724 without hardware support). This isn't related to a specific bpstat,
5725 just to things like whether watchpoints are set. */
5726
5727 int
5728 bpstat_should_step (void)
5729 {
5730 struct breakpoint *b;
5731
5732 ALL_BREAKPOINTS (b)
5733 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5734 return 1;
5735 return 0;
5736 }
5737
5738 int
5739 bpstat_causes_stop (bpstat bs)
5740 {
5741 for (; bs != NULL; bs = bs->next)
5742 if (bs->stop)
5743 return 1;
5744
5745 return 0;
5746 }
5747
5748 \f
5749
5750 /* Compute a string of spaces suitable to indent the next line
5751 so it starts at the position corresponding to the table column
5752 named COL_NAME in the currently active table of UIOUT. */
5753
5754 static char *
5755 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5756 {
5757 static char wrap_indent[80];
5758 int i, total_width, width, align;
5759 const char *text;
5760
5761 total_width = 0;
5762 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5763 {
5764 if (strcmp (text, col_name) == 0)
5765 {
5766 gdb_assert (total_width < sizeof wrap_indent);
5767 memset (wrap_indent, ' ', total_width);
5768 wrap_indent[total_width] = 0;
5769
5770 return wrap_indent;
5771 }
5772
5773 total_width += width + 1;
5774 }
5775
5776 return NULL;
5777 }
5778
5779 /* Determine if the locations of this breakpoint will have their conditions
5780 evaluated by the target, host or a mix of both. Returns the following:
5781
5782 "host": Host evals condition.
5783 "host or target": Host or Target evals condition.
5784 "target": Target evals condition.
5785 */
5786
5787 static const char *
5788 bp_condition_evaluator (struct breakpoint *b)
5789 {
5790 struct bp_location *bl;
5791 char host_evals = 0;
5792 char target_evals = 0;
5793
5794 if (!b)
5795 return NULL;
5796
5797 if (!is_breakpoint (b))
5798 return NULL;
5799
5800 if (gdb_evaluates_breakpoint_condition_p ()
5801 || !target_supports_evaluation_of_breakpoint_conditions ())
5802 return condition_evaluation_host;
5803
5804 for (bl = b->loc; bl; bl = bl->next)
5805 {
5806 if (bl->cond_bytecode)
5807 target_evals++;
5808 else
5809 host_evals++;
5810 }
5811
5812 if (host_evals && target_evals)
5813 return condition_evaluation_both;
5814 else if (target_evals)
5815 return condition_evaluation_target;
5816 else
5817 return condition_evaluation_host;
5818 }
5819
5820 /* Determine the breakpoint location's condition evaluator. This is
5821 similar to bp_condition_evaluator, but for locations. */
5822
5823 static const char *
5824 bp_location_condition_evaluator (struct bp_location *bl)
5825 {
5826 if (bl && !is_breakpoint (bl->owner))
5827 return NULL;
5828
5829 if (gdb_evaluates_breakpoint_condition_p ()
5830 || !target_supports_evaluation_of_breakpoint_conditions ())
5831 return condition_evaluation_host;
5832
5833 if (bl && bl->cond_bytecode)
5834 return condition_evaluation_target;
5835 else
5836 return condition_evaluation_host;
5837 }
5838
5839 /* Print the LOC location out of the list of B->LOC locations. */
5840
5841 static void
5842 print_breakpoint_location (struct breakpoint *b,
5843 struct bp_location *loc)
5844 {
5845 struct ui_out *uiout = current_uiout;
5846
5847 scoped_restore_current_program_space restore_pspace;
5848
5849 if (loc != NULL && loc->shlib_disabled)
5850 loc = NULL;
5851
5852 if (loc != NULL)
5853 set_current_program_space (loc->pspace);
5854
5855 if (b->display_canonical)
5856 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5857 else if (loc && loc->symtab)
5858 {
5859 const struct symbol *sym = loc->symbol;
5860
5861 if (sym)
5862 {
5863 uiout->text ("in ");
5864 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5865 ui_out_style_kind::FUNCTION);
5866 uiout->text (" ");
5867 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5868 uiout->text ("at ");
5869 }
5870 uiout->field_string ("file",
5871 symtab_to_filename_for_display (loc->symtab),
5872 ui_out_style_kind::FILE);
5873 uiout->text (":");
5874
5875 if (uiout->is_mi_like_p ())
5876 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5877
5878 uiout->field_int ("line", loc->line_number);
5879 }
5880 else if (loc)
5881 {
5882 string_file stb;
5883
5884 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5885 demangle, "");
5886 uiout->field_stream ("at", stb);
5887 }
5888 else
5889 {
5890 uiout->field_string ("pending",
5891 event_location_to_string (b->location.get ()));
5892 /* If extra_string is available, it could be holding a condition
5893 or dprintf arguments. In either case, make sure it is printed,
5894 too, but only for non-MI streams. */
5895 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5896 {
5897 if (b->type == bp_dprintf)
5898 uiout->text (",");
5899 else
5900 uiout->text (" ");
5901 uiout->text (b->extra_string);
5902 }
5903 }
5904
5905 if (loc && is_breakpoint (b)
5906 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5907 && bp_condition_evaluator (b) == condition_evaluation_both)
5908 {
5909 uiout->text (" (");
5910 uiout->field_string ("evaluated-by",
5911 bp_location_condition_evaluator (loc));
5912 uiout->text (")");
5913 }
5914 }
5915
5916 static const char *
5917 bptype_string (enum bptype type)
5918 {
5919 struct ep_type_description
5920 {
5921 enum bptype type;
5922 const char *description;
5923 };
5924 static struct ep_type_description bptypes[] =
5925 {
5926 {bp_none, "?deleted?"},
5927 {bp_breakpoint, "breakpoint"},
5928 {bp_hardware_breakpoint, "hw breakpoint"},
5929 {bp_single_step, "sw single-step"},
5930 {bp_until, "until"},
5931 {bp_finish, "finish"},
5932 {bp_watchpoint, "watchpoint"},
5933 {bp_hardware_watchpoint, "hw watchpoint"},
5934 {bp_read_watchpoint, "read watchpoint"},
5935 {bp_access_watchpoint, "acc watchpoint"},
5936 {bp_longjmp, "longjmp"},
5937 {bp_longjmp_resume, "longjmp resume"},
5938 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5939 {bp_exception, "exception"},
5940 {bp_exception_resume, "exception resume"},
5941 {bp_step_resume, "step resume"},
5942 {bp_hp_step_resume, "high-priority step resume"},
5943 {bp_watchpoint_scope, "watchpoint scope"},
5944 {bp_call_dummy, "call dummy"},
5945 {bp_std_terminate, "std::terminate"},
5946 {bp_shlib_event, "shlib events"},
5947 {bp_thread_event, "thread events"},
5948 {bp_overlay_event, "overlay events"},
5949 {bp_longjmp_master, "longjmp master"},
5950 {bp_std_terminate_master, "std::terminate master"},
5951 {bp_exception_master, "exception master"},
5952 {bp_catchpoint, "catchpoint"},
5953 {bp_tracepoint, "tracepoint"},
5954 {bp_fast_tracepoint, "fast tracepoint"},
5955 {bp_static_tracepoint, "static tracepoint"},
5956 {bp_dprintf, "dprintf"},
5957 {bp_jit_event, "jit events"},
5958 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5959 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5960 };
5961
5962 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5963 || ((int) type != bptypes[(int) type].type))
5964 internal_error (__FILE__, __LINE__,
5965 _("bptypes table does not describe type #%d."),
5966 (int) type);
5967
5968 return bptypes[(int) type].description;
5969 }
5970
5971 /* For MI, output a field named 'thread-groups' with a list as the value.
5972 For CLI, prefix the list with the string 'inf'. */
5973
5974 static void
5975 output_thread_groups (struct ui_out *uiout,
5976 const char *field_name,
5977 const std::vector<int> &inf_nums,
5978 int mi_only)
5979 {
5980 int is_mi = uiout->is_mi_like_p ();
5981
5982 /* For backward compatibility, don't display inferiors in CLI unless
5983 there are several. Always display them for MI. */
5984 if (!is_mi && mi_only)
5985 return;
5986
5987 ui_out_emit_list list_emitter (uiout, field_name);
5988
5989 for (size_t i = 0; i < inf_nums.size (); i++)
5990 {
5991 if (is_mi)
5992 {
5993 char mi_group[10];
5994
5995 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5996 uiout->field_string (NULL, mi_group);
5997 }
5998 else
5999 {
6000 if (i == 0)
6001 uiout->text (" inf ");
6002 else
6003 uiout->text (", ");
6004
6005 uiout->text (plongest (inf_nums[i]));
6006 }
6007 }
6008 }
6009
6010 /* Print B to gdb_stdout. */
6011
6012 static void
6013 print_one_breakpoint_location (struct breakpoint *b,
6014 struct bp_location *loc,
6015 int loc_number,
6016 struct bp_location **last_loc,
6017 int allflag)
6018 {
6019 struct command_line *l;
6020 static char bpenables[] = "nynny";
6021
6022 struct ui_out *uiout = current_uiout;
6023 int header_of_multiple = 0;
6024 int part_of_multiple = (loc != NULL);
6025 struct value_print_options opts;
6026
6027 get_user_print_options (&opts);
6028
6029 gdb_assert (!loc || loc_number != 0);
6030 /* See comment in print_one_breakpoint concerning treatment of
6031 breakpoints with single disabled location. */
6032 if (loc == NULL
6033 && (b->loc != NULL
6034 && (b->loc->next != NULL || !b->loc->enabled)))
6035 header_of_multiple = 1;
6036 if (loc == NULL)
6037 loc = b->loc;
6038
6039 annotate_record ();
6040
6041 /* 1 */
6042 annotate_field (0);
6043 if (part_of_multiple)
6044 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6045 else
6046 uiout->field_int ("number", b->number);
6047
6048 /* 2 */
6049 annotate_field (1);
6050 if (part_of_multiple)
6051 uiout->field_skip ("type");
6052 else
6053 uiout->field_string ("type", bptype_string (b->type));
6054
6055 /* 3 */
6056 annotate_field (2);
6057 if (part_of_multiple)
6058 uiout->field_skip ("disp");
6059 else
6060 uiout->field_string ("disp", bpdisp_text (b->disposition));
6061
6062 /* 4 */
6063 annotate_field (3);
6064 if (part_of_multiple)
6065 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6066 else
6067 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6068
6069 /* 5 and 6 */
6070 if (b->ops != NULL && b->ops->print_one != NULL)
6071 {
6072 /* Although the print_one can possibly print all locations,
6073 calling it here is not likely to get any nice result. So,
6074 make sure there's just one location. */
6075 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6076 b->ops->print_one (b, last_loc);
6077 }
6078 else
6079 switch (b->type)
6080 {
6081 case bp_none:
6082 internal_error (__FILE__, __LINE__,
6083 _("print_one_breakpoint: bp_none encountered\n"));
6084 break;
6085
6086 case bp_watchpoint:
6087 case bp_hardware_watchpoint:
6088 case bp_read_watchpoint:
6089 case bp_access_watchpoint:
6090 {
6091 struct watchpoint *w = (struct watchpoint *) b;
6092
6093 /* Field 4, the address, is omitted (which makes the columns
6094 not line up too nicely with the headers, but the effect
6095 is relatively readable). */
6096 if (opts.addressprint)
6097 uiout->field_skip ("addr");
6098 annotate_field (5);
6099 uiout->field_string ("what", w->exp_string);
6100 }
6101 break;
6102
6103 case bp_breakpoint:
6104 case bp_hardware_breakpoint:
6105 case bp_single_step:
6106 case bp_until:
6107 case bp_finish:
6108 case bp_longjmp:
6109 case bp_longjmp_resume:
6110 case bp_longjmp_call_dummy:
6111 case bp_exception:
6112 case bp_exception_resume:
6113 case bp_step_resume:
6114 case bp_hp_step_resume:
6115 case bp_watchpoint_scope:
6116 case bp_call_dummy:
6117 case bp_std_terminate:
6118 case bp_shlib_event:
6119 case bp_thread_event:
6120 case bp_overlay_event:
6121 case bp_longjmp_master:
6122 case bp_std_terminate_master:
6123 case bp_exception_master:
6124 case bp_tracepoint:
6125 case bp_fast_tracepoint:
6126 case bp_static_tracepoint:
6127 case bp_dprintf:
6128 case bp_jit_event:
6129 case bp_gnu_ifunc_resolver:
6130 case bp_gnu_ifunc_resolver_return:
6131 if (opts.addressprint)
6132 {
6133 annotate_field (4);
6134 if (header_of_multiple)
6135 uiout->field_string ("addr", "<MULTIPLE>");
6136 else if (b->loc == NULL || loc->shlib_disabled)
6137 uiout->field_string ("addr", "<PENDING>");
6138 else
6139 uiout->field_core_addr ("addr",
6140 loc->gdbarch, loc->address);
6141 }
6142 annotate_field (5);
6143 if (!header_of_multiple)
6144 print_breakpoint_location (b, loc);
6145 if (b->loc)
6146 *last_loc = b->loc;
6147 break;
6148 }
6149
6150
6151 if (loc != NULL && !header_of_multiple)
6152 {
6153 std::vector<int> inf_nums;
6154 int mi_only = 1;
6155
6156 for (inferior *inf : all_inferiors ())
6157 {
6158 if (inf->pspace == loc->pspace)
6159 inf_nums.push_back (inf->num);
6160 }
6161
6162 /* For backward compatibility, don't display inferiors in CLI unless
6163 there are several. Always display for MI. */
6164 if (allflag
6165 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6166 && (number_of_program_spaces () > 1
6167 || number_of_inferiors () > 1)
6168 /* LOC is for existing B, it cannot be in
6169 moribund_locations and thus having NULL OWNER. */
6170 && loc->owner->type != bp_catchpoint))
6171 mi_only = 0;
6172 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6173 }
6174
6175 if (!part_of_multiple)
6176 {
6177 if (b->thread != -1)
6178 {
6179 /* FIXME: This seems to be redundant and lost here; see the
6180 "stop only in" line a little further down. */
6181 uiout->text (" thread ");
6182 uiout->field_int ("thread", b->thread);
6183 }
6184 else if (b->task != 0)
6185 {
6186 uiout->text (" task ");
6187 uiout->field_int ("task", b->task);
6188 }
6189 }
6190
6191 uiout->text ("\n");
6192
6193 if (!part_of_multiple)
6194 b->ops->print_one_detail (b, uiout);
6195
6196 if (part_of_multiple && frame_id_p (b->frame_id))
6197 {
6198 annotate_field (6);
6199 uiout->text ("\tstop only in stack frame at ");
6200 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6201 the frame ID. */
6202 uiout->field_core_addr ("frame",
6203 b->gdbarch, b->frame_id.stack_addr);
6204 uiout->text ("\n");
6205 }
6206
6207 if (!part_of_multiple && b->cond_string)
6208 {
6209 annotate_field (7);
6210 if (is_tracepoint (b))
6211 uiout->text ("\ttrace only if ");
6212 else
6213 uiout->text ("\tstop only if ");
6214 uiout->field_string ("cond", b->cond_string);
6215
6216 /* Print whether the target is doing the breakpoint's condition
6217 evaluation. If GDB is doing the evaluation, don't print anything. */
6218 if (is_breakpoint (b)
6219 && breakpoint_condition_evaluation_mode ()
6220 == condition_evaluation_target)
6221 {
6222 uiout->text (" (");
6223 uiout->field_string ("evaluated-by",
6224 bp_condition_evaluator (b));
6225 uiout->text (" evals)");
6226 }
6227 uiout->text ("\n");
6228 }
6229
6230 if (!part_of_multiple && b->thread != -1)
6231 {
6232 /* FIXME should make an annotation for this. */
6233 uiout->text ("\tstop only in thread ");
6234 if (uiout->is_mi_like_p ())
6235 uiout->field_int ("thread", b->thread);
6236 else
6237 {
6238 struct thread_info *thr = find_thread_global_id (b->thread);
6239
6240 uiout->field_string ("thread", print_thread_id (thr));
6241 }
6242 uiout->text ("\n");
6243 }
6244
6245 if (!part_of_multiple)
6246 {
6247 if (b->hit_count)
6248 {
6249 /* FIXME should make an annotation for this. */
6250 if (is_catchpoint (b))
6251 uiout->text ("\tcatchpoint");
6252 else if (is_tracepoint (b))
6253 uiout->text ("\ttracepoint");
6254 else
6255 uiout->text ("\tbreakpoint");
6256 uiout->text (" already hit ");
6257 uiout->field_int ("times", b->hit_count);
6258 if (b->hit_count == 1)
6259 uiout->text (" time\n");
6260 else
6261 uiout->text (" times\n");
6262 }
6263 else
6264 {
6265 /* Output the count also if it is zero, but only if this is mi. */
6266 if (uiout->is_mi_like_p ())
6267 uiout->field_int ("times", b->hit_count);
6268 }
6269 }
6270
6271 if (!part_of_multiple && b->ignore_count)
6272 {
6273 annotate_field (8);
6274 uiout->text ("\tignore next ");
6275 uiout->field_int ("ignore", b->ignore_count);
6276 uiout->text (" hits\n");
6277 }
6278
6279 /* Note that an enable count of 1 corresponds to "enable once"
6280 behavior, which is reported by the combination of enablement and
6281 disposition, so we don't need to mention it here. */
6282 if (!part_of_multiple && b->enable_count > 1)
6283 {
6284 annotate_field (8);
6285 uiout->text ("\tdisable after ");
6286 /* Tweak the wording to clarify that ignore and enable counts
6287 are distinct, and have additive effect. */
6288 if (b->ignore_count)
6289 uiout->text ("additional ");
6290 else
6291 uiout->text ("next ");
6292 uiout->field_int ("enable", b->enable_count);
6293 uiout->text (" hits\n");
6294 }
6295
6296 if (!part_of_multiple && is_tracepoint (b))
6297 {
6298 struct tracepoint *tp = (struct tracepoint *) b;
6299
6300 if (tp->traceframe_usage)
6301 {
6302 uiout->text ("\ttrace buffer usage ");
6303 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6304 uiout->text (" bytes\n");
6305 }
6306 }
6307
6308 l = b->commands ? b->commands.get () : NULL;
6309 if (!part_of_multiple && l)
6310 {
6311 annotate_field (9);
6312 ui_out_emit_tuple tuple_emitter (uiout, "script");
6313 print_command_lines (uiout, l, 4);
6314 }
6315
6316 if (is_tracepoint (b))
6317 {
6318 struct tracepoint *t = (struct tracepoint *) b;
6319
6320 if (!part_of_multiple && t->pass_count)
6321 {
6322 annotate_field (10);
6323 uiout->text ("\tpass count ");
6324 uiout->field_int ("pass", t->pass_count);
6325 uiout->text (" \n");
6326 }
6327
6328 /* Don't display it when tracepoint or tracepoint location is
6329 pending. */
6330 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6331 {
6332 annotate_field (11);
6333
6334 if (uiout->is_mi_like_p ())
6335 uiout->field_string ("installed",
6336 loc->inserted ? "y" : "n");
6337 else
6338 {
6339 if (loc->inserted)
6340 uiout->text ("\t");
6341 else
6342 uiout->text ("\tnot ");
6343 uiout->text ("installed on target\n");
6344 }
6345 }
6346 }
6347
6348 if (uiout->is_mi_like_p () && !part_of_multiple)
6349 {
6350 if (is_watchpoint (b))
6351 {
6352 struct watchpoint *w = (struct watchpoint *) b;
6353
6354 uiout->field_string ("original-location", w->exp_string);
6355 }
6356 else if (b->location != NULL
6357 && event_location_to_string (b->location.get ()) != NULL)
6358 uiout->field_string ("original-location",
6359 event_location_to_string (b->location.get ()));
6360 }
6361 }
6362
6363 static void
6364 print_one_breakpoint (struct breakpoint *b,
6365 struct bp_location **last_loc,
6366 int allflag)
6367 {
6368 struct ui_out *uiout = current_uiout;
6369
6370 {
6371 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6372
6373 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6374 }
6375
6376 /* If this breakpoint has custom print function,
6377 it's already printed. Otherwise, print individual
6378 locations, if any. */
6379 if (b->ops == NULL || b->ops->print_one == NULL)
6380 {
6381 /* If breakpoint has a single location that is disabled, we
6382 print it as if it had several locations, since otherwise it's
6383 hard to represent "breakpoint enabled, location disabled"
6384 situation.
6385
6386 Note that while hardware watchpoints have several locations
6387 internally, that's not a property exposed to user. */
6388 if (b->loc
6389 && !is_hardware_watchpoint (b)
6390 && (b->loc->next || !b->loc->enabled))
6391 {
6392 struct bp_location *loc;
6393 int n = 1;
6394
6395 for (loc = b->loc; loc; loc = loc->next, ++n)
6396 {
6397 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6398 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6399 }
6400 }
6401 }
6402 }
6403
6404 static int
6405 breakpoint_address_bits (struct breakpoint *b)
6406 {
6407 int print_address_bits = 0;
6408 struct bp_location *loc;
6409
6410 /* Software watchpoints that aren't watching memory don't have an
6411 address to print. */
6412 if (is_no_memory_software_watchpoint (b))
6413 return 0;
6414
6415 for (loc = b->loc; loc; loc = loc->next)
6416 {
6417 int addr_bit;
6418
6419 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6420 if (addr_bit > print_address_bits)
6421 print_address_bits = addr_bit;
6422 }
6423
6424 return print_address_bits;
6425 }
6426
6427 /* See breakpoint.h. */
6428
6429 void
6430 print_breakpoint (breakpoint *b)
6431 {
6432 struct bp_location *dummy_loc = NULL;
6433 print_one_breakpoint (b, &dummy_loc, 0);
6434 }
6435
6436 /* Return true if this breakpoint was set by the user, false if it is
6437 internal or momentary. */
6438
6439 int
6440 user_breakpoint_p (struct breakpoint *b)
6441 {
6442 return b->number > 0;
6443 }
6444
6445 /* See breakpoint.h. */
6446
6447 int
6448 pending_breakpoint_p (struct breakpoint *b)
6449 {
6450 return b->loc == NULL;
6451 }
6452
6453 /* Print information on user settable breakpoint (watchpoint, etc)
6454 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6455 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6456 FILTER is non-NULL, call it on each breakpoint and only include the
6457 ones for which it returns non-zero. Return the total number of
6458 breakpoints listed. */
6459
6460 static int
6461 breakpoint_1 (const char *args, int allflag,
6462 int (*filter) (const struct breakpoint *))
6463 {
6464 struct breakpoint *b;
6465 struct bp_location *last_loc = NULL;
6466 int nr_printable_breakpoints;
6467 struct value_print_options opts;
6468 int print_address_bits = 0;
6469 int print_type_col_width = 14;
6470 struct ui_out *uiout = current_uiout;
6471
6472 get_user_print_options (&opts);
6473
6474 /* Compute the number of rows in the table, as well as the size
6475 required for address fields. */
6476 nr_printable_breakpoints = 0;
6477 ALL_BREAKPOINTS (b)
6478 {
6479 /* If we have a filter, only list the breakpoints it accepts. */
6480 if (filter && !filter (b))
6481 continue;
6482
6483 /* If we have an "args" string, it is a list of breakpoints to
6484 accept. Skip the others. */
6485 if (args != NULL && *args != '\0')
6486 {
6487 if (allflag && parse_and_eval_long (args) != b->number)
6488 continue;
6489 if (!allflag && !number_is_in_list (args, b->number))
6490 continue;
6491 }
6492
6493 if (allflag || user_breakpoint_p (b))
6494 {
6495 int addr_bit, type_len;
6496
6497 addr_bit = breakpoint_address_bits (b);
6498 if (addr_bit > print_address_bits)
6499 print_address_bits = addr_bit;
6500
6501 type_len = strlen (bptype_string (b->type));
6502 if (type_len > print_type_col_width)
6503 print_type_col_width = type_len;
6504
6505 nr_printable_breakpoints++;
6506 }
6507 }
6508
6509 {
6510 ui_out_emit_table table_emitter (uiout,
6511 opts.addressprint ? 6 : 5,
6512 nr_printable_breakpoints,
6513 "BreakpointTable");
6514
6515 if (nr_printable_breakpoints > 0)
6516 annotate_breakpoints_headers ();
6517 if (nr_printable_breakpoints > 0)
6518 annotate_field (0);
6519 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6520 if (nr_printable_breakpoints > 0)
6521 annotate_field (1);
6522 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6523 if (nr_printable_breakpoints > 0)
6524 annotate_field (2);
6525 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (3);
6528 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6529 if (opts.addressprint)
6530 {
6531 if (nr_printable_breakpoints > 0)
6532 annotate_field (4);
6533 if (print_address_bits <= 32)
6534 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6535 else
6536 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6537 }
6538 if (nr_printable_breakpoints > 0)
6539 annotate_field (5);
6540 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6541 uiout->table_body ();
6542 if (nr_printable_breakpoints > 0)
6543 annotate_breakpoints_table ();
6544
6545 ALL_BREAKPOINTS (b)
6546 {
6547 QUIT;
6548 /* If we have a filter, only list the breakpoints it accepts. */
6549 if (filter && !filter (b))
6550 continue;
6551
6552 /* If we have an "args" string, it is a list of breakpoints to
6553 accept. Skip the others. */
6554
6555 if (args != NULL && *args != '\0')
6556 {
6557 if (allflag) /* maintenance info breakpoint */
6558 {
6559 if (parse_and_eval_long (args) != b->number)
6560 continue;
6561 }
6562 else /* all others */
6563 {
6564 if (!number_is_in_list (args, b->number))
6565 continue;
6566 }
6567 }
6568 /* We only print out user settable breakpoints unless the
6569 allflag is set. */
6570 if (allflag || user_breakpoint_p (b))
6571 print_one_breakpoint (b, &last_loc, allflag);
6572 }
6573 }
6574
6575 if (nr_printable_breakpoints == 0)
6576 {
6577 /* If there's a filter, let the caller decide how to report
6578 empty list. */
6579 if (!filter)
6580 {
6581 if (args == NULL || *args == '\0')
6582 uiout->message ("No breakpoints or watchpoints.\n");
6583 else
6584 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6585 args);
6586 }
6587 }
6588 else
6589 {
6590 if (last_loc && !server_command)
6591 set_next_address (last_loc->gdbarch, last_loc->address);
6592 }
6593
6594 /* FIXME? Should this be moved up so that it is only called when
6595 there have been breakpoints? */
6596 annotate_breakpoints_table_end ();
6597
6598 return nr_printable_breakpoints;
6599 }
6600
6601 /* Display the value of default-collect in a way that is generally
6602 compatible with the breakpoint list. */
6603
6604 static void
6605 default_collect_info (void)
6606 {
6607 struct ui_out *uiout = current_uiout;
6608
6609 /* If it has no value (which is frequently the case), say nothing; a
6610 message like "No default-collect." gets in user's face when it's
6611 not wanted. */
6612 if (!*default_collect)
6613 return;
6614
6615 /* The following phrase lines up nicely with per-tracepoint collect
6616 actions. */
6617 uiout->text ("default collect ");
6618 uiout->field_string ("default-collect", default_collect);
6619 uiout->text (" \n");
6620 }
6621
6622 static void
6623 info_breakpoints_command (const char *args, int from_tty)
6624 {
6625 breakpoint_1 (args, 0, NULL);
6626
6627 default_collect_info ();
6628 }
6629
6630 static void
6631 info_watchpoints_command (const char *args, int from_tty)
6632 {
6633 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6634 struct ui_out *uiout = current_uiout;
6635
6636 if (num_printed == 0)
6637 {
6638 if (args == NULL || *args == '\0')
6639 uiout->message ("No watchpoints.\n");
6640 else
6641 uiout->message ("No watchpoint matching '%s'.\n", args);
6642 }
6643 }
6644
6645 static void
6646 maintenance_info_breakpoints (const char *args, int from_tty)
6647 {
6648 breakpoint_1 (args, 1, NULL);
6649
6650 default_collect_info ();
6651 }
6652
6653 static int
6654 breakpoint_has_pc (struct breakpoint *b,
6655 struct program_space *pspace,
6656 CORE_ADDR pc, struct obj_section *section)
6657 {
6658 struct bp_location *bl = b->loc;
6659
6660 for (; bl; bl = bl->next)
6661 {
6662 if (bl->pspace == pspace
6663 && bl->address == pc
6664 && (!overlay_debugging || bl->section == section))
6665 return 1;
6666 }
6667 return 0;
6668 }
6669
6670 /* Print a message describing any user-breakpoints set at PC. This
6671 concerns with logical breakpoints, so we match program spaces, not
6672 address spaces. */
6673
6674 static void
6675 describe_other_breakpoints (struct gdbarch *gdbarch,
6676 struct program_space *pspace, CORE_ADDR pc,
6677 struct obj_section *section, int thread)
6678 {
6679 int others = 0;
6680 struct breakpoint *b;
6681
6682 ALL_BREAKPOINTS (b)
6683 others += (user_breakpoint_p (b)
6684 && breakpoint_has_pc (b, pspace, pc, section));
6685 if (others > 0)
6686 {
6687 if (others == 1)
6688 printf_filtered (_("Note: breakpoint "));
6689 else /* if (others == ???) */
6690 printf_filtered (_("Note: breakpoints "));
6691 ALL_BREAKPOINTS (b)
6692 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6693 {
6694 others--;
6695 printf_filtered ("%d", b->number);
6696 if (b->thread == -1 && thread != -1)
6697 printf_filtered (" (all threads)");
6698 else if (b->thread != -1)
6699 printf_filtered (" (thread %d)", b->thread);
6700 printf_filtered ("%s%s ",
6701 ((b->enable_state == bp_disabled
6702 || b->enable_state == bp_call_disabled)
6703 ? " (disabled)"
6704 : ""),
6705 (others > 1) ? ","
6706 : ((others == 1) ? " and" : ""));
6707 }
6708 printf_filtered (_("also set at pc "));
6709 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6710 printf_filtered (".\n");
6711 }
6712 }
6713 \f
6714
6715 /* Return true iff it is meaningful to use the address member of
6716 BPT locations. For some breakpoint types, the locations' address members
6717 are irrelevant and it makes no sense to attempt to compare them to other
6718 addresses (or use them for any other purpose either).
6719
6720 More specifically, each of the following breakpoint types will
6721 always have a zero valued location address and we don't want to mark
6722 breakpoints of any of these types to be a duplicate of an actual
6723 breakpoint location at address zero:
6724
6725 bp_watchpoint
6726 bp_catchpoint
6727
6728 */
6729
6730 static int
6731 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6732 {
6733 enum bptype type = bpt->type;
6734
6735 return (type != bp_watchpoint && type != bp_catchpoint);
6736 }
6737
6738 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6739 true if LOC1 and LOC2 represent the same watchpoint location. */
6740
6741 static int
6742 watchpoint_locations_match (struct bp_location *loc1,
6743 struct bp_location *loc2)
6744 {
6745 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6746 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6747
6748 /* Both of them must exist. */
6749 gdb_assert (w1 != NULL);
6750 gdb_assert (w2 != NULL);
6751
6752 /* If the target can evaluate the condition expression in hardware,
6753 then we we need to insert both watchpoints even if they are at
6754 the same place. Otherwise the watchpoint will only trigger when
6755 the condition of whichever watchpoint was inserted evaluates to
6756 true, not giving a chance for GDB to check the condition of the
6757 other watchpoint. */
6758 if ((w1->cond_exp
6759 && target_can_accel_watchpoint_condition (loc1->address,
6760 loc1->length,
6761 loc1->watchpoint_type,
6762 w1->cond_exp.get ()))
6763 || (w2->cond_exp
6764 && target_can_accel_watchpoint_condition (loc2->address,
6765 loc2->length,
6766 loc2->watchpoint_type,
6767 w2->cond_exp.get ())))
6768 return 0;
6769
6770 /* Note that this checks the owner's type, not the location's. In
6771 case the target does not support read watchpoints, but does
6772 support access watchpoints, we'll have bp_read_watchpoint
6773 watchpoints with hw_access locations. Those should be considered
6774 duplicates of hw_read locations. The hw_read locations will
6775 become hw_access locations later. */
6776 return (loc1->owner->type == loc2->owner->type
6777 && loc1->pspace->aspace == loc2->pspace->aspace
6778 && loc1->address == loc2->address
6779 && loc1->length == loc2->length);
6780 }
6781
6782 /* See breakpoint.h. */
6783
6784 int
6785 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6786 const address_space *aspace2, CORE_ADDR addr2)
6787 {
6788 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6789 || aspace1 == aspace2)
6790 && addr1 == addr2);
6791 }
6792
6793 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6794 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6795 matches ASPACE2. On targets that have global breakpoints, the address
6796 space doesn't really matter. */
6797
6798 static int
6799 breakpoint_address_match_range (const address_space *aspace1,
6800 CORE_ADDR addr1,
6801 int len1, const address_space *aspace2,
6802 CORE_ADDR addr2)
6803 {
6804 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6805 || aspace1 == aspace2)
6806 && addr2 >= addr1 && addr2 < addr1 + len1);
6807 }
6808
6809 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6810 a ranged breakpoint. In most targets, a match happens only if ASPACE
6811 matches the breakpoint's address space. On targets that have global
6812 breakpoints, the address space doesn't really matter. */
6813
6814 static int
6815 breakpoint_location_address_match (struct bp_location *bl,
6816 const address_space *aspace,
6817 CORE_ADDR addr)
6818 {
6819 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6820 aspace, addr)
6821 || (bl->length
6822 && breakpoint_address_match_range (bl->pspace->aspace,
6823 bl->address, bl->length,
6824 aspace, addr)));
6825 }
6826
6827 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6828 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6829 match happens only if ASPACE matches the breakpoint's address
6830 space. On targets that have global breakpoints, the address space
6831 doesn't really matter. */
6832
6833 static int
6834 breakpoint_location_address_range_overlap (struct bp_location *bl,
6835 const address_space *aspace,
6836 CORE_ADDR addr, int len)
6837 {
6838 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6839 || bl->pspace->aspace == aspace)
6840 {
6841 int bl_len = bl->length != 0 ? bl->length : 1;
6842
6843 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6844 return 1;
6845 }
6846 return 0;
6847 }
6848
6849 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6850 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6851 true, otherwise returns false. */
6852
6853 static int
6854 tracepoint_locations_match (struct bp_location *loc1,
6855 struct bp_location *loc2)
6856 {
6857 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6858 /* Since tracepoint locations are never duplicated with others', tracepoint
6859 locations at the same address of different tracepoints are regarded as
6860 different locations. */
6861 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6862 else
6863 return 0;
6864 }
6865
6866 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6867 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6868 represent the same location. */
6869
6870 static int
6871 breakpoint_locations_match (struct bp_location *loc1,
6872 struct bp_location *loc2)
6873 {
6874 int hw_point1, hw_point2;
6875
6876 /* Both of them must not be in moribund_locations. */
6877 gdb_assert (loc1->owner != NULL);
6878 gdb_assert (loc2->owner != NULL);
6879
6880 hw_point1 = is_hardware_watchpoint (loc1->owner);
6881 hw_point2 = is_hardware_watchpoint (loc2->owner);
6882
6883 if (hw_point1 != hw_point2)
6884 return 0;
6885 else if (hw_point1)
6886 return watchpoint_locations_match (loc1, loc2);
6887 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6888 return tracepoint_locations_match (loc1, loc2);
6889 else
6890 /* We compare bp_location.length in order to cover ranged breakpoints. */
6891 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6892 loc2->pspace->aspace, loc2->address)
6893 && loc1->length == loc2->length);
6894 }
6895
6896 static void
6897 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6898 int bnum, int have_bnum)
6899 {
6900 /* The longest string possibly returned by hex_string_custom
6901 is 50 chars. These must be at least that big for safety. */
6902 char astr1[64];
6903 char astr2[64];
6904
6905 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6906 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6907 if (have_bnum)
6908 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6909 bnum, astr1, astr2);
6910 else
6911 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6912 }
6913
6914 /* Adjust a breakpoint's address to account for architectural
6915 constraints on breakpoint placement. Return the adjusted address.
6916 Note: Very few targets require this kind of adjustment. For most
6917 targets, this function is simply the identity function. */
6918
6919 static CORE_ADDR
6920 adjust_breakpoint_address (struct gdbarch *gdbarch,
6921 CORE_ADDR bpaddr, enum bptype bptype)
6922 {
6923 if (bptype == bp_watchpoint
6924 || bptype == bp_hardware_watchpoint
6925 || bptype == bp_read_watchpoint
6926 || bptype == bp_access_watchpoint
6927 || bptype == bp_catchpoint)
6928 {
6929 /* Watchpoints and the various bp_catch_* eventpoints should not
6930 have their addresses modified. */
6931 return bpaddr;
6932 }
6933 else if (bptype == bp_single_step)
6934 {
6935 /* Single-step breakpoints should not have their addresses
6936 modified. If there's any architectural constrain that
6937 applies to this address, then it should have already been
6938 taken into account when the breakpoint was created in the
6939 first place. If we didn't do this, stepping through e.g.,
6940 Thumb-2 IT blocks would break. */
6941 return bpaddr;
6942 }
6943 else
6944 {
6945 CORE_ADDR adjusted_bpaddr = bpaddr;
6946
6947 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6948 {
6949 /* Some targets have architectural constraints on the placement
6950 of breakpoint instructions. Obtain the adjusted address. */
6951 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6952 }
6953
6954 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6955
6956 /* An adjusted breakpoint address can significantly alter
6957 a user's expectations. Print a warning if an adjustment
6958 is required. */
6959 if (adjusted_bpaddr != bpaddr)
6960 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6961
6962 return adjusted_bpaddr;
6963 }
6964 }
6965
6966 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6967 {
6968 bp_location *loc = this;
6969
6970 gdb_assert (ops != NULL);
6971
6972 loc->ops = ops;
6973 loc->owner = owner;
6974 loc->cond_bytecode = NULL;
6975 loc->shlib_disabled = 0;
6976 loc->enabled = 1;
6977
6978 switch (owner->type)
6979 {
6980 case bp_breakpoint:
6981 case bp_single_step:
6982 case bp_until:
6983 case bp_finish:
6984 case bp_longjmp:
6985 case bp_longjmp_resume:
6986 case bp_longjmp_call_dummy:
6987 case bp_exception:
6988 case bp_exception_resume:
6989 case bp_step_resume:
6990 case bp_hp_step_resume:
6991 case bp_watchpoint_scope:
6992 case bp_call_dummy:
6993 case bp_std_terminate:
6994 case bp_shlib_event:
6995 case bp_thread_event:
6996 case bp_overlay_event:
6997 case bp_jit_event:
6998 case bp_longjmp_master:
6999 case bp_std_terminate_master:
7000 case bp_exception_master:
7001 case bp_gnu_ifunc_resolver:
7002 case bp_gnu_ifunc_resolver_return:
7003 case bp_dprintf:
7004 loc->loc_type = bp_loc_software_breakpoint;
7005 mark_breakpoint_location_modified (loc);
7006 break;
7007 case bp_hardware_breakpoint:
7008 loc->loc_type = bp_loc_hardware_breakpoint;
7009 mark_breakpoint_location_modified (loc);
7010 break;
7011 case bp_hardware_watchpoint:
7012 case bp_read_watchpoint:
7013 case bp_access_watchpoint:
7014 loc->loc_type = bp_loc_hardware_watchpoint;
7015 break;
7016 case bp_watchpoint:
7017 case bp_catchpoint:
7018 case bp_tracepoint:
7019 case bp_fast_tracepoint:
7020 case bp_static_tracepoint:
7021 loc->loc_type = bp_loc_other;
7022 break;
7023 default:
7024 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7025 }
7026
7027 loc->refc = 1;
7028 }
7029
7030 /* Allocate a struct bp_location. */
7031
7032 static struct bp_location *
7033 allocate_bp_location (struct breakpoint *bpt)
7034 {
7035 return bpt->ops->allocate_location (bpt);
7036 }
7037
7038 static void
7039 free_bp_location (struct bp_location *loc)
7040 {
7041 loc->ops->dtor (loc);
7042 delete loc;
7043 }
7044
7045 /* Increment reference count. */
7046
7047 static void
7048 incref_bp_location (struct bp_location *bl)
7049 {
7050 ++bl->refc;
7051 }
7052
7053 /* Decrement reference count. If the reference count reaches 0,
7054 destroy the bp_location. Sets *BLP to NULL. */
7055
7056 static void
7057 decref_bp_location (struct bp_location **blp)
7058 {
7059 gdb_assert ((*blp)->refc > 0);
7060
7061 if (--(*blp)->refc == 0)
7062 free_bp_location (*blp);
7063 *blp = NULL;
7064 }
7065
7066 /* Add breakpoint B at the end of the global breakpoint chain. */
7067
7068 static breakpoint *
7069 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7070 {
7071 struct breakpoint *b1;
7072 struct breakpoint *result = b.get ();
7073
7074 /* Add this breakpoint to the end of the chain so that a list of
7075 breakpoints will come out in order of increasing numbers. */
7076
7077 b1 = breakpoint_chain;
7078 if (b1 == 0)
7079 breakpoint_chain = b.release ();
7080 else
7081 {
7082 while (b1->next)
7083 b1 = b1->next;
7084 b1->next = b.release ();
7085 }
7086
7087 return result;
7088 }
7089
7090 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7091
7092 static void
7093 init_raw_breakpoint_without_location (struct breakpoint *b,
7094 struct gdbarch *gdbarch,
7095 enum bptype bptype,
7096 const struct breakpoint_ops *ops)
7097 {
7098 gdb_assert (ops != NULL);
7099
7100 b->ops = ops;
7101 b->type = bptype;
7102 b->gdbarch = gdbarch;
7103 b->language = current_language->la_language;
7104 b->input_radix = input_radix;
7105 b->related_breakpoint = b;
7106 }
7107
7108 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7109 that has type BPTYPE and has no locations as yet. */
7110
7111 static struct breakpoint *
7112 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7113 enum bptype bptype,
7114 const struct breakpoint_ops *ops)
7115 {
7116 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7117
7118 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7119 return add_to_breakpoint_chain (std::move (b));
7120 }
7121
7122 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7123 resolutions should be made as the user specified the location explicitly
7124 enough. */
7125
7126 static void
7127 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7128 {
7129 gdb_assert (loc->owner != NULL);
7130
7131 if (loc->owner->type == bp_breakpoint
7132 || loc->owner->type == bp_hardware_breakpoint
7133 || is_tracepoint (loc->owner))
7134 {
7135 const char *function_name;
7136
7137 if (loc->msymbol != NULL
7138 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7139 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7140 && !explicit_loc)
7141 {
7142 struct breakpoint *b = loc->owner;
7143
7144 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7145
7146 if (b->type == bp_breakpoint && b->loc == loc
7147 && loc->next == NULL && b->related_breakpoint == b)
7148 {
7149 /* Create only the whole new breakpoint of this type but do not
7150 mess more complicated breakpoints with multiple locations. */
7151 b->type = bp_gnu_ifunc_resolver;
7152 /* Remember the resolver's address for use by the return
7153 breakpoint. */
7154 loc->related_address = loc->address;
7155 }
7156 }
7157 else
7158 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7159
7160 if (function_name)
7161 loc->function_name = xstrdup (function_name);
7162 }
7163 }
7164
7165 /* Attempt to determine architecture of location identified by SAL. */
7166 struct gdbarch *
7167 get_sal_arch (struct symtab_and_line sal)
7168 {
7169 if (sal.section)
7170 return get_objfile_arch (sal.section->objfile);
7171 if (sal.symtab)
7172 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7173
7174 return NULL;
7175 }
7176
7177 /* Low level routine for partially initializing a breakpoint of type
7178 BPTYPE. The newly created breakpoint's address, section, source
7179 file name, and line number are provided by SAL.
7180
7181 It is expected that the caller will complete the initialization of
7182 the newly created breakpoint struct as well as output any status
7183 information regarding the creation of a new breakpoint. */
7184
7185 static void
7186 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7187 struct symtab_and_line sal, enum bptype bptype,
7188 const struct breakpoint_ops *ops)
7189 {
7190 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7191
7192 add_location_to_breakpoint (b, &sal);
7193
7194 if (bptype != bp_catchpoint)
7195 gdb_assert (sal.pspace != NULL);
7196
7197 /* Store the program space that was used to set the breakpoint,
7198 except for ordinary breakpoints, which are independent of the
7199 program space. */
7200 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7201 b->pspace = sal.pspace;
7202 }
7203
7204 /* set_raw_breakpoint is a low level routine for allocating and
7205 partially initializing a breakpoint of type BPTYPE. The newly
7206 created breakpoint's address, section, source file name, and line
7207 number are provided by SAL. The newly created and partially
7208 initialized breakpoint is added to the breakpoint chain and
7209 is also returned as the value of this function.
7210
7211 It is expected that the caller will complete the initialization of
7212 the newly created breakpoint struct as well as output any status
7213 information regarding the creation of a new breakpoint. In
7214 particular, set_raw_breakpoint does NOT set the breakpoint
7215 number! Care should be taken to not allow an error to occur
7216 prior to completing the initialization of the breakpoint. If this
7217 should happen, a bogus breakpoint will be left on the chain. */
7218
7219 struct breakpoint *
7220 set_raw_breakpoint (struct gdbarch *gdbarch,
7221 struct symtab_and_line sal, enum bptype bptype,
7222 const struct breakpoint_ops *ops)
7223 {
7224 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7225
7226 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7227 return add_to_breakpoint_chain (std::move (b));
7228 }
7229
7230 /* Call this routine when stepping and nexting to enable a breakpoint
7231 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7232 initiated the operation. */
7233
7234 void
7235 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7236 {
7237 struct breakpoint *b, *b_tmp;
7238 int thread = tp->global_num;
7239
7240 /* To avoid having to rescan all objfile symbols at every step,
7241 we maintain a list of continually-inserted but always disabled
7242 longjmp "master" breakpoints. Here, we simply create momentary
7243 clones of those and enable them for the requested thread. */
7244 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7245 if (b->pspace == current_program_space
7246 && (b->type == bp_longjmp_master
7247 || b->type == bp_exception_master))
7248 {
7249 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7250 struct breakpoint *clone;
7251
7252 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7253 after their removal. */
7254 clone = momentary_breakpoint_from_master (b, type,
7255 &momentary_breakpoint_ops, 1);
7256 clone->thread = thread;
7257 }
7258
7259 tp->initiating_frame = frame;
7260 }
7261
7262 /* Delete all longjmp breakpoints from THREAD. */
7263 void
7264 delete_longjmp_breakpoint (int thread)
7265 {
7266 struct breakpoint *b, *b_tmp;
7267
7268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7269 if (b->type == bp_longjmp || b->type == bp_exception)
7270 {
7271 if (b->thread == thread)
7272 delete_breakpoint (b);
7273 }
7274 }
7275
7276 void
7277 delete_longjmp_breakpoint_at_next_stop (int thread)
7278 {
7279 struct breakpoint *b, *b_tmp;
7280
7281 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7282 if (b->type == bp_longjmp || b->type == bp_exception)
7283 {
7284 if (b->thread == thread)
7285 b->disposition = disp_del_at_next_stop;
7286 }
7287 }
7288
7289 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7290 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7291 pointer to any of them. Return NULL if this system cannot place longjmp
7292 breakpoints. */
7293
7294 struct breakpoint *
7295 set_longjmp_breakpoint_for_call_dummy (void)
7296 {
7297 struct breakpoint *b, *retval = NULL;
7298
7299 ALL_BREAKPOINTS (b)
7300 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7301 {
7302 struct breakpoint *new_b;
7303
7304 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7305 &momentary_breakpoint_ops,
7306 1);
7307 new_b->thread = inferior_thread ()->global_num;
7308
7309 /* Link NEW_B into the chain of RETVAL breakpoints. */
7310
7311 gdb_assert (new_b->related_breakpoint == new_b);
7312 if (retval == NULL)
7313 retval = new_b;
7314 new_b->related_breakpoint = retval;
7315 while (retval->related_breakpoint != new_b->related_breakpoint)
7316 retval = retval->related_breakpoint;
7317 retval->related_breakpoint = new_b;
7318 }
7319
7320 return retval;
7321 }
7322
7323 /* Verify all existing dummy frames and their associated breakpoints for
7324 TP. Remove those which can no longer be found in the current frame
7325 stack.
7326
7327 You should call this function only at places where it is safe to currently
7328 unwind the whole stack. Failed stack unwind would discard live dummy
7329 frames. */
7330
7331 void
7332 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7338 {
7339 struct breakpoint *dummy_b = b->related_breakpoint;
7340
7341 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7342 dummy_b = dummy_b->related_breakpoint;
7343 if (dummy_b->type != bp_call_dummy
7344 || frame_find_by_id (dummy_b->frame_id) != NULL)
7345 continue;
7346
7347 dummy_frame_discard (dummy_b->frame_id, tp);
7348
7349 while (b->related_breakpoint != b)
7350 {
7351 if (b_tmp == b->related_breakpoint)
7352 b_tmp = b->related_breakpoint->next;
7353 delete_breakpoint (b->related_breakpoint);
7354 }
7355 delete_breakpoint (b);
7356 }
7357 }
7358
7359 void
7360 enable_overlay_breakpoints (void)
7361 {
7362 struct breakpoint *b;
7363
7364 ALL_BREAKPOINTS (b)
7365 if (b->type == bp_overlay_event)
7366 {
7367 b->enable_state = bp_enabled;
7368 update_global_location_list (UGLL_MAY_INSERT);
7369 overlay_events_enabled = 1;
7370 }
7371 }
7372
7373 void
7374 disable_overlay_breakpoints (void)
7375 {
7376 struct breakpoint *b;
7377
7378 ALL_BREAKPOINTS (b)
7379 if (b->type == bp_overlay_event)
7380 {
7381 b->enable_state = bp_disabled;
7382 update_global_location_list (UGLL_DONT_INSERT);
7383 overlay_events_enabled = 0;
7384 }
7385 }
7386
7387 /* Set an active std::terminate breakpoint for each std::terminate
7388 master breakpoint. */
7389 void
7390 set_std_terminate_breakpoint (void)
7391 {
7392 struct breakpoint *b, *b_tmp;
7393
7394 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7395 if (b->pspace == current_program_space
7396 && b->type == bp_std_terminate_master)
7397 {
7398 momentary_breakpoint_from_master (b, bp_std_terminate,
7399 &momentary_breakpoint_ops, 1);
7400 }
7401 }
7402
7403 /* Delete all the std::terminate breakpoints. */
7404 void
7405 delete_std_terminate_breakpoint (void)
7406 {
7407 struct breakpoint *b, *b_tmp;
7408
7409 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7410 if (b->type == bp_std_terminate)
7411 delete_breakpoint (b);
7412 }
7413
7414 struct breakpoint *
7415 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7416 {
7417 struct breakpoint *b;
7418
7419 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7420 &internal_breakpoint_ops);
7421
7422 b->enable_state = bp_enabled;
7423 /* location has to be used or breakpoint_re_set will delete me. */
7424 b->location = new_address_location (b->loc->address, NULL, 0);
7425
7426 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7427
7428 return b;
7429 }
7430
7431 struct lang_and_radix
7432 {
7433 enum language lang;
7434 int radix;
7435 };
7436
7437 /* Create a breakpoint for JIT code registration and unregistration. */
7438
7439 struct breakpoint *
7440 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7441 {
7442 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7443 &internal_breakpoint_ops);
7444 }
7445
7446 /* Remove JIT code registration and unregistration breakpoint(s). */
7447
7448 void
7449 remove_jit_event_breakpoints (void)
7450 {
7451 struct breakpoint *b, *b_tmp;
7452
7453 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7454 if (b->type == bp_jit_event
7455 && b->loc->pspace == current_program_space)
7456 delete_breakpoint (b);
7457 }
7458
7459 void
7460 remove_solib_event_breakpoints (void)
7461 {
7462 struct breakpoint *b, *b_tmp;
7463
7464 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7465 if (b->type == bp_shlib_event
7466 && b->loc->pspace == current_program_space)
7467 delete_breakpoint (b);
7468 }
7469
7470 /* See breakpoint.h. */
7471
7472 void
7473 remove_solib_event_breakpoints_at_next_stop (void)
7474 {
7475 struct breakpoint *b, *b_tmp;
7476
7477 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7478 if (b->type == bp_shlib_event
7479 && b->loc->pspace == current_program_space)
7480 b->disposition = disp_del_at_next_stop;
7481 }
7482
7483 /* Helper for create_solib_event_breakpoint /
7484 create_and_insert_solib_event_breakpoint. Allows specifying which
7485 INSERT_MODE to pass through to update_global_location_list. */
7486
7487 static struct breakpoint *
7488 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7489 enum ugll_insert_mode insert_mode)
7490 {
7491 struct breakpoint *b;
7492
7493 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7494 &internal_breakpoint_ops);
7495 update_global_location_list_nothrow (insert_mode);
7496 return b;
7497 }
7498
7499 struct breakpoint *
7500 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7501 {
7502 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7503 }
7504
7505 /* See breakpoint.h. */
7506
7507 struct breakpoint *
7508 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7509 {
7510 struct breakpoint *b;
7511
7512 /* Explicitly tell update_global_location_list to insert
7513 locations. */
7514 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7515 if (!b->loc->inserted)
7516 {
7517 delete_breakpoint (b);
7518 return NULL;
7519 }
7520 return b;
7521 }
7522
7523 /* Disable any breakpoints that are on code in shared libraries. Only
7524 apply to enabled breakpoints, disabled ones can just stay disabled. */
7525
7526 void
7527 disable_breakpoints_in_shlibs (void)
7528 {
7529 struct bp_location *loc, **locp_tmp;
7530
7531 ALL_BP_LOCATIONS (loc, locp_tmp)
7532 {
7533 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7534 struct breakpoint *b = loc->owner;
7535
7536 /* We apply the check to all breakpoints, including disabled for
7537 those with loc->duplicate set. This is so that when breakpoint
7538 becomes enabled, or the duplicate is removed, gdb will try to
7539 insert all breakpoints. If we don't set shlib_disabled here,
7540 we'll try to insert those breakpoints and fail. */
7541 if (((b->type == bp_breakpoint)
7542 || (b->type == bp_jit_event)
7543 || (b->type == bp_hardware_breakpoint)
7544 || (is_tracepoint (b)))
7545 && loc->pspace == current_program_space
7546 && !loc->shlib_disabled
7547 && solib_name_from_address (loc->pspace, loc->address)
7548 )
7549 {
7550 loc->shlib_disabled = 1;
7551 }
7552 }
7553 }
7554
7555 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7556 notification of unloaded_shlib. Only apply to enabled breakpoints,
7557 disabled ones can just stay disabled. */
7558
7559 static void
7560 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7561 {
7562 struct bp_location *loc, **locp_tmp;
7563 int disabled_shlib_breaks = 0;
7564
7565 ALL_BP_LOCATIONS (loc, locp_tmp)
7566 {
7567 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7568 struct breakpoint *b = loc->owner;
7569
7570 if (solib->pspace == loc->pspace
7571 && !loc->shlib_disabled
7572 && (((b->type == bp_breakpoint
7573 || b->type == bp_jit_event
7574 || b->type == bp_hardware_breakpoint)
7575 && (loc->loc_type == bp_loc_hardware_breakpoint
7576 || loc->loc_type == bp_loc_software_breakpoint))
7577 || is_tracepoint (b))
7578 && solib_contains_address_p (solib, loc->address))
7579 {
7580 loc->shlib_disabled = 1;
7581 /* At this point, we cannot rely on remove_breakpoint
7582 succeeding so we must mark the breakpoint as not inserted
7583 to prevent future errors occurring in remove_breakpoints. */
7584 loc->inserted = 0;
7585
7586 /* This may cause duplicate notifications for the same breakpoint. */
7587 gdb::observers::breakpoint_modified.notify (b);
7588
7589 if (!disabled_shlib_breaks)
7590 {
7591 target_terminal::ours_for_output ();
7592 warning (_("Temporarily disabling breakpoints "
7593 "for unloaded shared library \"%s\""),
7594 solib->so_name);
7595 }
7596 disabled_shlib_breaks = 1;
7597 }
7598 }
7599 }
7600
7601 /* Disable any breakpoints and tracepoints in OBJFILE upon
7602 notification of free_objfile. Only apply to enabled breakpoints,
7603 disabled ones can just stay disabled. */
7604
7605 static void
7606 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7607 {
7608 struct breakpoint *b;
7609
7610 if (objfile == NULL)
7611 return;
7612
7613 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7614 managed by the user with add-symbol-file/remove-symbol-file.
7615 Similarly to how breakpoints in shared libraries are handled in
7616 response to "nosharedlibrary", mark breakpoints in such modules
7617 shlib_disabled so they end up uninserted on the next global
7618 location list update. Shared libraries not loaded by the user
7619 aren't handled here -- they're already handled in
7620 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7621 solib_unloaded observer. We skip objfiles that are not
7622 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7623 main objfile). */
7624 if ((objfile->flags & OBJF_SHARED) == 0
7625 || (objfile->flags & OBJF_USERLOADED) == 0)
7626 return;
7627
7628 ALL_BREAKPOINTS (b)
7629 {
7630 struct bp_location *loc;
7631 int bp_modified = 0;
7632
7633 if (!is_breakpoint (b) && !is_tracepoint (b))
7634 continue;
7635
7636 for (loc = b->loc; loc != NULL; loc = loc->next)
7637 {
7638 CORE_ADDR loc_addr = loc->address;
7639
7640 if (loc->loc_type != bp_loc_hardware_breakpoint
7641 && loc->loc_type != bp_loc_software_breakpoint)
7642 continue;
7643
7644 if (loc->shlib_disabled != 0)
7645 continue;
7646
7647 if (objfile->pspace != loc->pspace)
7648 continue;
7649
7650 if (loc->loc_type != bp_loc_hardware_breakpoint
7651 && loc->loc_type != bp_loc_software_breakpoint)
7652 continue;
7653
7654 if (is_addr_in_objfile (loc_addr, objfile))
7655 {
7656 loc->shlib_disabled = 1;
7657 /* At this point, we don't know whether the object was
7658 unmapped from the inferior or not, so leave the
7659 inserted flag alone. We'll handle failure to
7660 uninsert quietly, in case the object was indeed
7661 unmapped. */
7662
7663 mark_breakpoint_location_modified (loc);
7664
7665 bp_modified = 1;
7666 }
7667 }
7668
7669 if (bp_modified)
7670 gdb::observers::breakpoint_modified.notify (b);
7671 }
7672 }
7673
7674 /* FORK & VFORK catchpoints. */
7675
7676 /* An instance of this type is used to represent a fork or vfork
7677 catchpoint. A breakpoint is really of this type iff its ops pointer points
7678 to CATCH_FORK_BREAKPOINT_OPS. */
7679
7680 struct fork_catchpoint : public breakpoint
7681 {
7682 /* Process id of a child process whose forking triggered this
7683 catchpoint. This field is only valid immediately after this
7684 catchpoint has triggered. */
7685 ptid_t forked_inferior_pid;
7686 };
7687
7688 /* Implement the "insert" breakpoint_ops method for fork
7689 catchpoints. */
7690
7691 static int
7692 insert_catch_fork (struct bp_location *bl)
7693 {
7694 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7695 }
7696
7697 /* Implement the "remove" breakpoint_ops method for fork
7698 catchpoints. */
7699
7700 static int
7701 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7702 {
7703 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7704 }
7705
7706 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7707 catchpoints. */
7708
7709 static int
7710 breakpoint_hit_catch_fork (const struct bp_location *bl,
7711 const address_space *aspace, CORE_ADDR bp_addr,
7712 const struct target_waitstatus *ws)
7713 {
7714 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7715
7716 if (ws->kind != TARGET_WAITKIND_FORKED)
7717 return 0;
7718
7719 c->forked_inferior_pid = ws->value.related_pid;
7720 return 1;
7721 }
7722
7723 /* Implement the "print_it" breakpoint_ops method for fork
7724 catchpoints. */
7725
7726 static enum print_stop_action
7727 print_it_catch_fork (bpstat bs)
7728 {
7729 struct ui_out *uiout = current_uiout;
7730 struct breakpoint *b = bs->breakpoint_at;
7731 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7732
7733 annotate_catchpoint (b->number);
7734 maybe_print_thread_hit_breakpoint (uiout);
7735 if (b->disposition == disp_del)
7736 uiout->text ("Temporary catchpoint ");
7737 else
7738 uiout->text ("Catchpoint ");
7739 if (uiout->is_mi_like_p ())
7740 {
7741 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7742 uiout->field_string ("disp", bpdisp_text (b->disposition));
7743 }
7744 uiout->field_int ("bkptno", b->number);
7745 uiout->text (" (forked process ");
7746 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7747 uiout->text ("), ");
7748 return PRINT_SRC_AND_LOC;
7749 }
7750
7751 /* Implement the "print_one" breakpoint_ops method for fork
7752 catchpoints. */
7753
7754 static void
7755 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7756 {
7757 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7758 struct value_print_options opts;
7759 struct ui_out *uiout = current_uiout;
7760
7761 get_user_print_options (&opts);
7762
7763 /* Field 4, the address, is omitted (which makes the columns not
7764 line up too nicely with the headers, but the effect is relatively
7765 readable). */
7766 if (opts.addressprint)
7767 uiout->field_skip ("addr");
7768 annotate_field (5);
7769 uiout->text ("fork");
7770 if (c->forked_inferior_pid != null_ptid)
7771 {
7772 uiout->text (", process ");
7773 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7774 uiout->spaces (1);
7775 }
7776
7777 if (uiout->is_mi_like_p ())
7778 uiout->field_string ("catch-type", "fork");
7779 }
7780
7781 /* Implement the "print_mention" breakpoint_ops method for fork
7782 catchpoints. */
7783
7784 static void
7785 print_mention_catch_fork (struct breakpoint *b)
7786 {
7787 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7788 }
7789
7790 /* Implement the "print_recreate" breakpoint_ops method for fork
7791 catchpoints. */
7792
7793 static void
7794 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7795 {
7796 fprintf_unfiltered (fp, "catch fork");
7797 print_recreate_thread (b, fp);
7798 }
7799
7800 /* The breakpoint_ops structure to be used in fork catchpoints. */
7801
7802 static struct breakpoint_ops catch_fork_breakpoint_ops;
7803
7804 /* Implement the "insert" breakpoint_ops method for vfork
7805 catchpoints. */
7806
7807 static int
7808 insert_catch_vfork (struct bp_location *bl)
7809 {
7810 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7811 }
7812
7813 /* Implement the "remove" breakpoint_ops method for vfork
7814 catchpoints. */
7815
7816 static int
7817 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7818 {
7819 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7820 }
7821
7822 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7823 catchpoints. */
7824
7825 static int
7826 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7827 const address_space *aspace, CORE_ADDR bp_addr,
7828 const struct target_waitstatus *ws)
7829 {
7830 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7831
7832 if (ws->kind != TARGET_WAITKIND_VFORKED)
7833 return 0;
7834
7835 c->forked_inferior_pid = ws->value.related_pid;
7836 return 1;
7837 }
7838
7839 /* Implement the "print_it" breakpoint_ops method for vfork
7840 catchpoints. */
7841
7842 static enum print_stop_action
7843 print_it_catch_vfork (bpstat bs)
7844 {
7845 struct ui_out *uiout = current_uiout;
7846 struct breakpoint *b = bs->breakpoint_at;
7847 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7848
7849 annotate_catchpoint (b->number);
7850 maybe_print_thread_hit_breakpoint (uiout);
7851 if (b->disposition == disp_del)
7852 uiout->text ("Temporary catchpoint ");
7853 else
7854 uiout->text ("Catchpoint ");
7855 if (uiout->is_mi_like_p ())
7856 {
7857 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7858 uiout->field_string ("disp", bpdisp_text (b->disposition));
7859 }
7860 uiout->field_int ("bkptno", b->number);
7861 uiout->text (" (vforked process ");
7862 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7863 uiout->text ("), ");
7864 return PRINT_SRC_AND_LOC;
7865 }
7866
7867 /* Implement the "print_one" breakpoint_ops method for vfork
7868 catchpoints. */
7869
7870 static void
7871 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7872 {
7873 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7874 struct value_print_options opts;
7875 struct ui_out *uiout = current_uiout;
7876
7877 get_user_print_options (&opts);
7878 /* Field 4, the address, is omitted (which makes the columns not
7879 line up too nicely with the headers, but the effect is relatively
7880 readable). */
7881 if (opts.addressprint)
7882 uiout->field_skip ("addr");
7883 annotate_field (5);
7884 uiout->text ("vfork");
7885 if (c->forked_inferior_pid != null_ptid)
7886 {
7887 uiout->text (", process ");
7888 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7889 uiout->spaces (1);
7890 }
7891
7892 if (uiout->is_mi_like_p ())
7893 uiout->field_string ("catch-type", "vfork");
7894 }
7895
7896 /* Implement the "print_mention" breakpoint_ops method for vfork
7897 catchpoints. */
7898
7899 static void
7900 print_mention_catch_vfork (struct breakpoint *b)
7901 {
7902 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7903 }
7904
7905 /* Implement the "print_recreate" breakpoint_ops method for vfork
7906 catchpoints. */
7907
7908 static void
7909 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7910 {
7911 fprintf_unfiltered (fp, "catch vfork");
7912 print_recreate_thread (b, fp);
7913 }
7914
7915 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7916
7917 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7918
7919 /* An instance of this type is used to represent an solib catchpoint.
7920 A breakpoint is really of this type iff its ops pointer points to
7921 CATCH_SOLIB_BREAKPOINT_OPS. */
7922
7923 struct solib_catchpoint : public breakpoint
7924 {
7925 ~solib_catchpoint () override;
7926
7927 /* True for "catch load", false for "catch unload". */
7928 unsigned char is_load;
7929
7930 /* Regular expression to match, if any. COMPILED is only valid when
7931 REGEX is non-NULL. */
7932 char *regex;
7933 std::unique_ptr<compiled_regex> compiled;
7934 };
7935
7936 solib_catchpoint::~solib_catchpoint ()
7937 {
7938 xfree (this->regex);
7939 }
7940
7941 static int
7942 insert_catch_solib (struct bp_location *ignore)
7943 {
7944 return 0;
7945 }
7946
7947 static int
7948 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7949 {
7950 return 0;
7951 }
7952
7953 static int
7954 breakpoint_hit_catch_solib (const struct bp_location *bl,
7955 const address_space *aspace,
7956 CORE_ADDR bp_addr,
7957 const struct target_waitstatus *ws)
7958 {
7959 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7960 struct breakpoint *other;
7961
7962 if (ws->kind == TARGET_WAITKIND_LOADED)
7963 return 1;
7964
7965 ALL_BREAKPOINTS (other)
7966 {
7967 struct bp_location *other_bl;
7968
7969 if (other == bl->owner)
7970 continue;
7971
7972 if (other->type != bp_shlib_event)
7973 continue;
7974
7975 if (self->pspace != NULL && other->pspace != self->pspace)
7976 continue;
7977
7978 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7979 {
7980 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7981 return 1;
7982 }
7983 }
7984
7985 return 0;
7986 }
7987
7988 static void
7989 check_status_catch_solib (struct bpstats *bs)
7990 {
7991 struct solib_catchpoint *self
7992 = (struct solib_catchpoint *) bs->breakpoint_at;
7993
7994 if (self->is_load)
7995 {
7996 for (so_list *iter : current_program_space->added_solibs)
7997 {
7998 if (!self->regex
7999 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8000 return;
8001 }
8002 }
8003 else
8004 {
8005 for (const std::string &iter : current_program_space->deleted_solibs)
8006 {
8007 if (!self->regex
8008 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8009 return;
8010 }
8011 }
8012
8013 bs->stop = 0;
8014 bs->print_it = print_it_noop;
8015 }
8016
8017 static enum print_stop_action
8018 print_it_catch_solib (bpstat bs)
8019 {
8020 struct breakpoint *b = bs->breakpoint_at;
8021 struct ui_out *uiout = current_uiout;
8022
8023 annotate_catchpoint (b->number);
8024 maybe_print_thread_hit_breakpoint (uiout);
8025 if (b->disposition == disp_del)
8026 uiout->text ("Temporary catchpoint ");
8027 else
8028 uiout->text ("Catchpoint ");
8029 uiout->field_int ("bkptno", b->number);
8030 uiout->text ("\n");
8031 if (uiout->is_mi_like_p ())
8032 uiout->field_string ("disp", bpdisp_text (b->disposition));
8033 print_solib_event (1);
8034 return PRINT_SRC_AND_LOC;
8035 }
8036
8037 static void
8038 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8039 {
8040 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8041 struct value_print_options opts;
8042 struct ui_out *uiout = current_uiout;
8043
8044 get_user_print_options (&opts);
8045 /* Field 4, the address, is omitted (which makes the columns not
8046 line up too nicely with the headers, but the effect is relatively
8047 readable). */
8048 if (opts.addressprint)
8049 {
8050 annotate_field (4);
8051 uiout->field_skip ("addr");
8052 }
8053
8054 std::string msg;
8055 annotate_field (5);
8056 if (self->is_load)
8057 {
8058 if (self->regex)
8059 msg = string_printf (_("load of library matching %s"), self->regex);
8060 else
8061 msg = _("load of library");
8062 }
8063 else
8064 {
8065 if (self->regex)
8066 msg = string_printf (_("unload of library matching %s"), self->regex);
8067 else
8068 msg = _("unload of library");
8069 }
8070 uiout->field_string ("what", msg);
8071
8072 if (uiout->is_mi_like_p ())
8073 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8074 }
8075
8076 static void
8077 print_mention_catch_solib (struct breakpoint *b)
8078 {
8079 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8080
8081 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8082 self->is_load ? "load" : "unload");
8083 }
8084
8085 static void
8086 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8087 {
8088 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8089
8090 fprintf_unfiltered (fp, "%s %s",
8091 b->disposition == disp_del ? "tcatch" : "catch",
8092 self->is_load ? "load" : "unload");
8093 if (self->regex)
8094 fprintf_unfiltered (fp, " %s", self->regex);
8095 fprintf_unfiltered (fp, "\n");
8096 }
8097
8098 static struct breakpoint_ops catch_solib_breakpoint_ops;
8099
8100 /* Shared helper function (MI and CLI) for creating and installing
8101 a shared object event catchpoint. If IS_LOAD is non-zero then
8102 the events to be caught are load events, otherwise they are
8103 unload events. If IS_TEMP is non-zero the catchpoint is a
8104 temporary one. If ENABLED is non-zero the catchpoint is
8105 created in an enabled state. */
8106
8107 void
8108 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8109 {
8110 struct gdbarch *gdbarch = get_current_arch ();
8111
8112 if (!arg)
8113 arg = "";
8114 arg = skip_spaces (arg);
8115
8116 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8117
8118 if (*arg != '\0')
8119 {
8120 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8121 _("Invalid regexp")));
8122 c->regex = xstrdup (arg);
8123 }
8124
8125 c->is_load = is_load;
8126 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8127 &catch_solib_breakpoint_ops);
8128
8129 c->enable_state = enabled ? bp_enabled : bp_disabled;
8130
8131 install_breakpoint (0, std::move (c), 1);
8132 }
8133
8134 /* A helper function that does all the work for "catch load" and
8135 "catch unload". */
8136
8137 static void
8138 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8139 struct cmd_list_element *command)
8140 {
8141 int tempflag;
8142 const int enabled = 1;
8143
8144 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8145
8146 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8147 }
8148
8149 static void
8150 catch_load_command_1 (const char *arg, int from_tty,
8151 struct cmd_list_element *command)
8152 {
8153 catch_load_or_unload (arg, from_tty, 1, command);
8154 }
8155
8156 static void
8157 catch_unload_command_1 (const char *arg, int from_tty,
8158 struct cmd_list_element *command)
8159 {
8160 catch_load_or_unload (arg, from_tty, 0, command);
8161 }
8162
8163 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8164 is non-zero, then make the breakpoint temporary. If COND_STRING is
8165 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8166 the breakpoint_ops structure associated to the catchpoint. */
8167
8168 void
8169 init_catchpoint (struct breakpoint *b,
8170 struct gdbarch *gdbarch, int tempflag,
8171 const char *cond_string,
8172 const struct breakpoint_ops *ops)
8173 {
8174 symtab_and_line sal;
8175 sal.pspace = current_program_space;
8176
8177 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8178
8179 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8180 b->disposition = tempflag ? disp_del : disp_donttouch;
8181 }
8182
8183 void
8184 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8185 {
8186 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8187 set_breakpoint_number (internal, b);
8188 if (is_tracepoint (b))
8189 set_tracepoint_count (breakpoint_count);
8190 if (!internal)
8191 mention (b);
8192 gdb::observers::breakpoint_created.notify (b);
8193
8194 if (update_gll)
8195 update_global_location_list (UGLL_MAY_INSERT);
8196 }
8197
8198 static void
8199 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8200 int tempflag, const char *cond_string,
8201 const struct breakpoint_ops *ops)
8202 {
8203 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8204
8205 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8206
8207 c->forked_inferior_pid = null_ptid;
8208
8209 install_breakpoint (0, std::move (c), 1);
8210 }
8211
8212 /* Exec catchpoints. */
8213
8214 /* An instance of this type is used to represent an exec catchpoint.
8215 A breakpoint is really of this type iff its ops pointer points to
8216 CATCH_EXEC_BREAKPOINT_OPS. */
8217
8218 struct exec_catchpoint : public breakpoint
8219 {
8220 ~exec_catchpoint () override;
8221
8222 /* Filename of a program whose exec triggered this catchpoint.
8223 This field is only valid immediately after this catchpoint has
8224 triggered. */
8225 char *exec_pathname;
8226 };
8227
8228 /* Exec catchpoint destructor. */
8229
8230 exec_catchpoint::~exec_catchpoint ()
8231 {
8232 xfree (this->exec_pathname);
8233 }
8234
8235 static int
8236 insert_catch_exec (struct bp_location *bl)
8237 {
8238 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8239 }
8240
8241 static int
8242 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8243 {
8244 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8245 }
8246
8247 static int
8248 breakpoint_hit_catch_exec (const struct bp_location *bl,
8249 const address_space *aspace, CORE_ADDR bp_addr,
8250 const struct target_waitstatus *ws)
8251 {
8252 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8253
8254 if (ws->kind != TARGET_WAITKIND_EXECD)
8255 return 0;
8256
8257 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8258 return 1;
8259 }
8260
8261 static enum print_stop_action
8262 print_it_catch_exec (bpstat bs)
8263 {
8264 struct ui_out *uiout = current_uiout;
8265 struct breakpoint *b = bs->breakpoint_at;
8266 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8267
8268 annotate_catchpoint (b->number);
8269 maybe_print_thread_hit_breakpoint (uiout);
8270 if (b->disposition == disp_del)
8271 uiout->text ("Temporary catchpoint ");
8272 else
8273 uiout->text ("Catchpoint ");
8274 if (uiout->is_mi_like_p ())
8275 {
8276 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8277 uiout->field_string ("disp", bpdisp_text (b->disposition));
8278 }
8279 uiout->field_int ("bkptno", b->number);
8280 uiout->text (" (exec'd ");
8281 uiout->field_string ("new-exec", c->exec_pathname);
8282 uiout->text ("), ");
8283
8284 return PRINT_SRC_AND_LOC;
8285 }
8286
8287 static void
8288 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8289 {
8290 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8291 struct value_print_options opts;
8292 struct ui_out *uiout = current_uiout;
8293
8294 get_user_print_options (&opts);
8295
8296 /* Field 4, the address, is omitted (which makes the columns
8297 not line up too nicely with the headers, but the effect
8298 is relatively readable). */
8299 if (opts.addressprint)
8300 uiout->field_skip ("addr");
8301 annotate_field (5);
8302 uiout->text ("exec");
8303 if (c->exec_pathname != NULL)
8304 {
8305 uiout->text (", program \"");
8306 uiout->field_string ("what", c->exec_pathname);
8307 uiout->text ("\" ");
8308 }
8309
8310 if (uiout->is_mi_like_p ())
8311 uiout->field_string ("catch-type", "exec");
8312 }
8313
8314 static void
8315 print_mention_catch_exec (struct breakpoint *b)
8316 {
8317 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8318 }
8319
8320 /* Implement the "print_recreate" breakpoint_ops method for exec
8321 catchpoints. */
8322
8323 static void
8324 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8325 {
8326 fprintf_unfiltered (fp, "catch exec");
8327 print_recreate_thread (b, fp);
8328 }
8329
8330 static struct breakpoint_ops catch_exec_breakpoint_ops;
8331
8332 static int
8333 hw_breakpoint_used_count (void)
8334 {
8335 int i = 0;
8336 struct breakpoint *b;
8337 struct bp_location *bl;
8338
8339 ALL_BREAKPOINTS (b)
8340 {
8341 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8342 for (bl = b->loc; bl; bl = bl->next)
8343 {
8344 /* Special types of hardware breakpoints may use more than
8345 one register. */
8346 i += b->ops->resources_needed (bl);
8347 }
8348 }
8349
8350 return i;
8351 }
8352
8353 /* Returns the resources B would use if it were a hardware
8354 watchpoint. */
8355
8356 static int
8357 hw_watchpoint_use_count (struct breakpoint *b)
8358 {
8359 int i = 0;
8360 struct bp_location *bl;
8361
8362 if (!breakpoint_enabled (b))
8363 return 0;
8364
8365 for (bl = b->loc; bl; bl = bl->next)
8366 {
8367 /* Special types of hardware watchpoints may use more than
8368 one register. */
8369 i += b->ops->resources_needed (bl);
8370 }
8371
8372 return i;
8373 }
8374
8375 /* Returns the sum the used resources of all hardware watchpoints of
8376 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8377 the sum of the used resources of all hardware watchpoints of other
8378 types _not_ TYPE. */
8379
8380 static int
8381 hw_watchpoint_used_count_others (struct breakpoint *except,
8382 enum bptype type, int *other_type_used)
8383 {
8384 int i = 0;
8385 struct breakpoint *b;
8386
8387 *other_type_used = 0;
8388 ALL_BREAKPOINTS (b)
8389 {
8390 if (b == except)
8391 continue;
8392 if (!breakpoint_enabled (b))
8393 continue;
8394
8395 if (b->type == type)
8396 i += hw_watchpoint_use_count (b);
8397 else if (is_hardware_watchpoint (b))
8398 *other_type_used = 1;
8399 }
8400
8401 return i;
8402 }
8403
8404 void
8405 disable_watchpoints_before_interactive_call_start (void)
8406 {
8407 struct breakpoint *b;
8408
8409 ALL_BREAKPOINTS (b)
8410 {
8411 if (is_watchpoint (b) && breakpoint_enabled (b))
8412 {
8413 b->enable_state = bp_call_disabled;
8414 update_global_location_list (UGLL_DONT_INSERT);
8415 }
8416 }
8417 }
8418
8419 void
8420 enable_watchpoints_after_interactive_call_stop (void)
8421 {
8422 struct breakpoint *b;
8423
8424 ALL_BREAKPOINTS (b)
8425 {
8426 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8427 {
8428 b->enable_state = bp_enabled;
8429 update_global_location_list (UGLL_MAY_INSERT);
8430 }
8431 }
8432 }
8433
8434 void
8435 disable_breakpoints_before_startup (void)
8436 {
8437 current_program_space->executing_startup = 1;
8438 update_global_location_list (UGLL_DONT_INSERT);
8439 }
8440
8441 void
8442 enable_breakpoints_after_startup (void)
8443 {
8444 current_program_space->executing_startup = 0;
8445 breakpoint_re_set ();
8446 }
8447
8448 /* Create a new single-step breakpoint for thread THREAD, with no
8449 locations. */
8450
8451 static struct breakpoint *
8452 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8453 {
8454 std::unique_ptr<breakpoint> b (new breakpoint ());
8455
8456 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8457 &momentary_breakpoint_ops);
8458
8459 b->disposition = disp_donttouch;
8460 b->frame_id = null_frame_id;
8461
8462 b->thread = thread;
8463 gdb_assert (b->thread != 0);
8464
8465 return add_to_breakpoint_chain (std::move (b));
8466 }
8467
8468 /* Set a momentary breakpoint of type TYPE at address specified by
8469 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8470 frame. */
8471
8472 breakpoint_up
8473 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8474 struct frame_id frame_id, enum bptype type)
8475 {
8476 struct breakpoint *b;
8477
8478 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8479 tail-called one. */
8480 gdb_assert (!frame_id_artificial_p (frame_id));
8481
8482 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8483 b->enable_state = bp_enabled;
8484 b->disposition = disp_donttouch;
8485 b->frame_id = frame_id;
8486
8487 b->thread = inferior_thread ()->global_num;
8488
8489 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8490
8491 return breakpoint_up (b);
8492 }
8493
8494 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8495 The new breakpoint will have type TYPE, use OPS as its
8496 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8497
8498 static struct breakpoint *
8499 momentary_breakpoint_from_master (struct breakpoint *orig,
8500 enum bptype type,
8501 const struct breakpoint_ops *ops,
8502 int loc_enabled)
8503 {
8504 struct breakpoint *copy;
8505
8506 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8507 copy->loc = allocate_bp_location (copy);
8508 set_breakpoint_location_function (copy->loc, 1);
8509
8510 copy->loc->gdbarch = orig->loc->gdbarch;
8511 copy->loc->requested_address = orig->loc->requested_address;
8512 copy->loc->address = orig->loc->address;
8513 copy->loc->section = orig->loc->section;
8514 copy->loc->pspace = orig->loc->pspace;
8515 copy->loc->probe = orig->loc->probe;
8516 copy->loc->line_number = orig->loc->line_number;
8517 copy->loc->symtab = orig->loc->symtab;
8518 copy->loc->enabled = loc_enabled;
8519 copy->frame_id = orig->frame_id;
8520 copy->thread = orig->thread;
8521 copy->pspace = orig->pspace;
8522
8523 copy->enable_state = bp_enabled;
8524 copy->disposition = disp_donttouch;
8525 copy->number = internal_breakpoint_number--;
8526
8527 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8528 return copy;
8529 }
8530
8531 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8532 ORIG is NULL. */
8533
8534 struct breakpoint *
8535 clone_momentary_breakpoint (struct breakpoint *orig)
8536 {
8537 /* If there's nothing to clone, then return nothing. */
8538 if (orig == NULL)
8539 return NULL;
8540
8541 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8542 }
8543
8544 breakpoint_up
8545 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8546 enum bptype type)
8547 {
8548 struct symtab_and_line sal;
8549
8550 sal = find_pc_line (pc, 0);
8551 sal.pc = pc;
8552 sal.section = find_pc_overlay (pc);
8553 sal.explicit_pc = 1;
8554
8555 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8556 }
8557 \f
8558
8559 /* Tell the user we have just set a breakpoint B. */
8560
8561 static void
8562 mention (struct breakpoint *b)
8563 {
8564 b->ops->print_mention (b);
8565 current_uiout->text ("\n");
8566 }
8567 \f
8568
8569 static int bp_loc_is_permanent (struct bp_location *loc);
8570
8571 static struct bp_location *
8572 add_location_to_breakpoint (struct breakpoint *b,
8573 const struct symtab_and_line *sal)
8574 {
8575 struct bp_location *loc, **tmp;
8576 CORE_ADDR adjusted_address;
8577 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8578
8579 if (loc_gdbarch == NULL)
8580 loc_gdbarch = b->gdbarch;
8581
8582 /* Adjust the breakpoint's address prior to allocating a location.
8583 Once we call allocate_bp_location(), that mostly uninitialized
8584 location will be placed on the location chain. Adjustment of the
8585 breakpoint may cause target_read_memory() to be called and we do
8586 not want its scan of the location chain to find a breakpoint and
8587 location that's only been partially initialized. */
8588 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8589 sal->pc, b->type);
8590
8591 /* Sort the locations by their ADDRESS. */
8592 loc = allocate_bp_location (b);
8593 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8594 tmp = &((*tmp)->next))
8595 ;
8596 loc->next = *tmp;
8597 *tmp = loc;
8598
8599 loc->requested_address = sal->pc;
8600 loc->address = adjusted_address;
8601 loc->pspace = sal->pspace;
8602 loc->probe.prob = sal->prob;
8603 loc->probe.objfile = sal->objfile;
8604 gdb_assert (loc->pspace != NULL);
8605 loc->section = sal->section;
8606 loc->gdbarch = loc_gdbarch;
8607 loc->line_number = sal->line;
8608 loc->symtab = sal->symtab;
8609 loc->symbol = sal->symbol;
8610 loc->msymbol = sal->msymbol;
8611 loc->objfile = sal->objfile;
8612
8613 set_breakpoint_location_function (loc,
8614 sal->explicit_pc || sal->explicit_line);
8615
8616 /* While by definition, permanent breakpoints are already present in the
8617 code, we don't mark the location as inserted. Normally one would expect
8618 that GDB could rely on that breakpoint instruction to stop the program,
8619 thus removing the need to insert its own breakpoint, except that executing
8620 the breakpoint instruction can kill the target instead of reporting a
8621 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8622 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8623 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8624 breakpoint be inserted normally results in QEMU knowing about the GDB
8625 breakpoint, and thus trap before the breakpoint instruction is executed.
8626 (If GDB later needs to continue execution past the permanent breakpoint,
8627 it manually increments the PC, thus avoiding executing the breakpoint
8628 instruction.) */
8629 if (bp_loc_is_permanent (loc))
8630 loc->permanent = 1;
8631
8632 return loc;
8633 }
8634 \f
8635
8636 /* See breakpoint.h. */
8637
8638 int
8639 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8640 {
8641 int len;
8642 CORE_ADDR addr;
8643 const gdb_byte *bpoint;
8644 gdb_byte *target_mem;
8645
8646 addr = address;
8647 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8648
8649 /* Software breakpoints unsupported? */
8650 if (bpoint == NULL)
8651 return 0;
8652
8653 target_mem = (gdb_byte *) alloca (len);
8654
8655 /* Enable the automatic memory restoration from breakpoints while
8656 we read the memory. Otherwise we could say about our temporary
8657 breakpoints they are permanent. */
8658 scoped_restore restore_memory
8659 = make_scoped_restore_show_memory_breakpoints (0);
8660
8661 if (target_read_memory (address, target_mem, len) == 0
8662 && memcmp (target_mem, bpoint, len) == 0)
8663 return 1;
8664
8665 return 0;
8666 }
8667
8668 /* Return 1 if LOC is pointing to a permanent breakpoint,
8669 return 0 otherwise. */
8670
8671 static int
8672 bp_loc_is_permanent (struct bp_location *loc)
8673 {
8674 gdb_assert (loc != NULL);
8675
8676 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8677 attempt to read from the addresses the locations of these breakpoint types
8678 point to. program_breakpoint_here_p, below, will attempt to read
8679 memory. */
8680 if (!breakpoint_address_is_meaningful (loc->owner))
8681 return 0;
8682
8683 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8684 switch_to_program_space_and_thread (loc->pspace);
8685 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8686 }
8687
8688 /* Build a command list for the dprintf corresponding to the current
8689 settings of the dprintf style options. */
8690
8691 static void
8692 update_dprintf_command_list (struct breakpoint *b)
8693 {
8694 char *dprintf_args = b->extra_string;
8695 char *printf_line = NULL;
8696
8697 if (!dprintf_args)
8698 return;
8699
8700 dprintf_args = skip_spaces (dprintf_args);
8701
8702 /* Allow a comma, as it may have terminated a location, but don't
8703 insist on it. */
8704 if (*dprintf_args == ',')
8705 ++dprintf_args;
8706 dprintf_args = skip_spaces (dprintf_args);
8707
8708 if (*dprintf_args != '"')
8709 error (_("Bad format string, missing '\"'."));
8710
8711 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8712 printf_line = xstrprintf ("printf %s", dprintf_args);
8713 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8714 {
8715 if (!dprintf_function)
8716 error (_("No function supplied for dprintf call"));
8717
8718 if (dprintf_channel && strlen (dprintf_channel) > 0)
8719 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8720 dprintf_function,
8721 dprintf_channel,
8722 dprintf_args);
8723 else
8724 printf_line = xstrprintf ("call (void) %s (%s)",
8725 dprintf_function,
8726 dprintf_args);
8727 }
8728 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8729 {
8730 if (target_can_run_breakpoint_commands ())
8731 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8732 else
8733 {
8734 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8735 printf_line = xstrprintf ("printf %s", dprintf_args);
8736 }
8737 }
8738 else
8739 internal_error (__FILE__, __LINE__,
8740 _("Invalid dprintf style."));
8741
8742 gdb_assert (printf_line != NULL);
8743
8744 /* Manufacture a printf sequence. */
8745 struct command_line *printf_cmd_line
8746 = new struct command_line (simple_control, printf_line);
8747 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8748 command_lines_deleter ()));
8749 }
8750
8751 /* Update all dprintf commands, making their command lists reflect
8752 current style settings. */
8753
8754 static void
8755 update_dprintf_commands (const char *args, int from_tty,
8756 struct cmd_list_element *c)
8757 {
8758 struct breakpoint *b;
8759
8760 ALL_BREAKPOINTS (b)
8761 {
8762 if (b->type == bp_dprintf)
8763 update_dprintf_command_list (b);
8764 }
8765 }
8766
8767 /* Create a breakpoint with SAL as location. Use LOCATION
8768 as a description of the location, and COND_STRING
8769 as condition expression. If LOCATION is NULL then create an
8770 "address location" from the address in the SAL. */
8771
8772 static void
8773 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8774 gdb::array_view<const symtab_and_line> sals,
8775 event_location_up &&location,
8776 gdb::unique_xmalloc_ptr<char> filter,
8777 gdb::unique_xmalloc_ptr<char> cond_string,
8778 gdb::unique_xmalloc_ptr<char> extra_string,
8779 enum bptype type, enum bpdisp disposition,
8780 int thread, int task, int ignore_count,
8781 const struct breakpoint_ops *ops, int from_tty,
8782 int enabled, int internal, unsigned flags,
8783 int display_canonical)
8784 {
8785 int i;
8786
8787 if (type == bp_hardware_breakpoint)
8788 {
8789 int target_resources_ok;
8790
8791 i = hw_breakpoint_used_count ();
8792 target_resources_ok =
8793 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8794 i + 1, 0);
8795 if (target_resources_ok == 0)
8796 error (_("No hardware breakpoint support in the target."));
8797 else if (target_resources_ok < 0)
8798 error (_("Hardware breakpoints used exceeds limit."));
8799 }
8800
8801 gdb_assert (!sals.empty ());
8802
8803 for (const auto &sal : sals)
8804 {
8805 struct bp_location *loc;
8806
8807 if (from_tty)
8808 {
8809 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8810 if (!loc_gdbarch)
8811 loc_gdbarch = gdbarch;
8812
8813 describe_other_breakpoints (loc_gdbarch,
8814 sal.pspace, sal.pc, sal.section, thread);
8815 }
8816
8817 if (&sal == &sals[0])
8818 {
8819 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8820 b->thread = thread;
8821 b->task = task;
8822
8823 b->cond_string = cond_string.release ();
8824 b->extra_string = extra_string.release ();
8825 b->ignore_count = ignore_count;
8826 b->enable_state = enabled ? bp_enabled : bp_disabled;
8827 b->disposition = disposition;
8828
8829 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8830 b->loc->inserted = 1;
8831
8832 if (type == bp_static_tracepoint)
8833 {
8834 struct tracepoint *t = (struct tracepoint *) b;
8835 struct static_tracepoint_marker marker;
8836
8837 if (strace_marker_p (b))
8838 {
8839 /* We already know the marker exists, otherwise, we
8840 wouldn't see a sal for it. */
8841 const char *p
8842 = &event_location_to_string (b->location.get ())[3];
8843 const char *endp;
8844
8845 p = skip_spaces (p);
8846
8847 endp = skip_to_space (p);
8848
8849 t->static_trace_marker_id.assign (p, endp - p);
8850
8851 printf_filtered (_("Probed static tracepoint "
8852 "marker \"%s\"\n"),
8853 t->static_trace_marker_id.c_str ());
8854 }
8855 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8856 {
8857 t->static_trace_marker_id = std::move (marker.str_id);
8858
8859 printf_filtered (_("Probed static tracepoint "
8860 "marker \"%s\"\n"),
8861 t->static_trace_marker_id.c_str ());
8862 }
8863 else
8864 warning (_("Couldn't determine the static "
8865 "tracepoint marker to probe"));
8866 }
8867
8868 loc = b->loc;
8869 }
8870 else
8871 {
8872 loc = add_location_to_breakpoint (b, &sal);
8873 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8874 loc->inserted = 1;
8875 }
8876
8877 if (b->cond_string)
8878 {
8879 const char *arg = b->cond_string;
8880
8881 loc->cond = parse_exp_1 (&arg, loc->address,
8882 block_for_pc (loc->address), 0);
8883 if (*arg)
8884 error (_("Garbage '%s' follows condition"), arg);
8885 }
8886
8887 /* Dynamic printf requires and uses additional arguments on the
8888 command line, otherwise it's an error. */
8889 if (type == bp_dprintf)
8890 {
8891 if (b->extra_string)
8892 update_dprintf_command_list (b);
8893 else
8894 error (_("Format string required"));
8895 }
8896 else if (b->extra_string)
8897 error (_("Garbage '%s' at end of command"), b->extra_string);
8898 }
8899
8900 b->display_canonical = display_canonical;
8901 if (location != NULL)
8902 b->location = std::move (location);
8903 else
8904 b->location = new_address_location (b->loc->address, NULL, 0);
8905 b->filter = filter.release ();
8906 }
8907
8908 static void
8909 create_breakpoint_sal (struct gdbarch *gdbarch,
8910 gdb::array_view<const symtab_and_line> sals,
8911 event_location_up &&location,
8912 gdb::unique_xmalloc_ptr<char> filter,
8913 gdb::unique_xmalloc_ptr<char> cond_string,
8914 gdb::unique_xmalloc_ptr<char> extra_string,
8915 enum bptype type, enum bpdisp disposition,
8916 int thread, int task, int ignore_count,
8917 const struct breakpoint_ops *ops, int from_tty,
8918 int enabled, int internal, unsigned flags,
8919 int display_canonical)
8920 {
8921 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8922
8923 init_breakpoint_sal (b.get (), gdbarch,
8924 sals, std::move (location),
8925 std::move (filter),
8926 std::move (cond_string),
8927 std::move (extra_string),
8928 type, disposition,
8929 thread, task, ignore_count,
8930 ops, from_tty,
8931 enabled, internal, flags,
8932 display_canonical);
8933
8934 install_breakpoint (internal, std::move (b), 0);
8935 }
8936
8937 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8938 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8939 value. COND_STRING, if not NULL, specified the condition to be
8940 used for all breakpoints. Essentially the only case where
8941 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8942 function. In that case, it's still not possible to specify
8943 separate conditions for different overloaded functions, so
8944 we take just a single condition string.
8945
8946 NOTE: If the function succeeds, the caller is expected to cleanup
8947 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8948 array contents). If the function fails (error() is called), the
8949 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8950 COND and SALS arrays and each of those arrays contents. */
8951
8952 static void
8953 create_breakpoints_sal (struct gdbarch *gdbarch,
8954 struct linespec_result *canonical,
8955 gdb::unique_xmalloc_ptr<char> cond_string,
8956 gdb::unique_xmalloc_ptr<char> extra_string,
8957 enum bptype type, enum bpdisp disposition,
8958 int thread, int task, int ignore_count,
8959 const struct breakpoint_ops *ops, int from_tty,
8960 int enabled, int internal, unsigned flags)
8961 {
8962 if (canonical->pre_expanded)
8963 gdb_assert (canonical->lsals.size () == 1);
8964
8965 for (const auto &lsal : canonical->lsals)
8966 {
8967 /* Note that 'location' can be NULL in the case of a plain
8968 'break', without arguments. */
8969 event_location_up location
8970 = (canonical->location != NULL
8971 ? copy_event_location (canonical->location.get ()) : NULL);
8972 gdb::unique_xmalloc_ptr<char> filter_string
8973 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8974
8975 create_breakpoint_sal (gdbarch, lsal.sals,
8976 std::move (location),
8977 std::move (filter_string),
8978 std::move (cond_string),
8979 std::move (extra_string),
8980 type, disposition,
8981 thread, task, ignore_count, ops,
8982 from_tty, enabled, internal, flags,
8983 canonical->special_display);
8984 }
8985 }
8986
8987 /* Parse LOCATION which is assumed to be a SAL specification possibly
8988 followed by conditionals. On return, SALS contains an array of SAL
8989 addresses found. LOCATION points to the end of the SAL (for
8990 linespec locations).
8991
8992 The array and the line spec strings are allocated on the heap, it is
8993 the caller's responsibility to free them. */
8994
8995 static void
8996 parse_breakpoint_sals (const struct event_location *location,
8997 struct linespec_result *canonical)
8998 {
8999 struct symtab_and_line cursal;
9000
9001 if (event_location_type (location) == LINESPEC_LOCATION)
9002 {
9003 const char *spec = get_linespec_location (location)->spec_string;
9004
9005 if (spec == NULL)
9006 {
9007 /* The last displayed codepoint, if it's valid, is our default
9008 breakpoint address. */
9009 if (last_displayed_sal_is_valid ())
9010 {
9011 /* Set sal's pspace, pc, symtab, and line to the values
9012 corresponding to the last call to print_frame_info.
9013 Be sure to reinitialize LINE with NOTCURRENT == 0
9014 as the breakpoint line number is inappropriate otherwise.
9015 find_pc_line would adjust PC, re-set it back. */
9016 symtab_and_line sal = get_last_displayed_sal ();
9017 CORE_ADDR pc = sal.pc;
9018
9019 sal = find_pc_line (pc, 0);
9020
9021 /* "break" without arguments is equivalent to "break *PC"
9022 where PC is the last displayed codepoint's address. So
9023 make sure to set sal.explicit_pc to prevent GDB from
9024 trying to expand the list of sals to include all other
9025 instances with the same symtab and line. */
9026 sal.pc = pc;
9027 sal.explicit_pc = 1;
9028
9029 struct linespec_sals lsal;
9030 lsal.sals = {sal};
9031 lsal.canonical = NULL;
9032
9033 canonical->lsals.push_back (std::move (lsal));
9034 return;
9035 }
9036 else
9037 error (_("No default breakpoint address now."));
9038 }
9039 }
9040
9041 /* Force almost all breakpoints to be in terms of the
9042 current_source_symtab (which is decode_line_1's default).
9043 This should produce the results we want almost all of the
9044 time while leaving default_breakpoint_* alone.
9045
9046 ObjC: However, don't match an Objective-C method name which
9047 may have a '+' or '-' succeeded by a '['. */
9048 cursal = get_current_source_symtab_and_line ();
9049 if (last_displayed_sal_is_valid ())
9050 {
9051 const char *spec = NULL;
9052
9053 if (event_location_type (location) == LINESPEC_LOCATION)
9054 spec = get_linespec_location (location)->spec_string;
9055
9056 if (!cursal.symtab
9057 || (spec != NULL
9058 && strchr ("+-", spec[0]) != NULL
9059 && spec[1] != '['))
9060 {
9061 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9062 get_last_displayed_symtab (),
9063 get_last_displayed_line (),
9064 canonical, NULL, NULL);
9065 return;
9066 }
9067 }
9068
9069 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9070 cursal.symtab, cursal.line, canonical, NULL, NULL);
9071 }
9072
9073
9074 /* Convert each SAL into a real PC. Verify that the PC can be
9075 inserted as a breakpoint. If it can't throw an error. */
9076
9077 static void
9078 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9079 {
9080 for (auto &sal : sals)
9081 resolve_sal_pc (&sal);
9082 }
9083
9084 /* Fast tracepoints may have restrictions on valid locations. For
9085 instance, a fast tracepoint using a jump instead of a trap will
9086 likely have to overwrite more bytes than a trap would, and so can
9087 only be placed where the instruction is longer than the jump, or a
9088 multi-instruction sequence does not have a jump into the middle of
9089 it, etc. */
9090
9091 static void
9092 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9093 gdb::array_view<const symtab_and_line> sals)
9094 {
9095 for (const auto &sal : sals)
9096 {
9097 struct gdbarch *sarch;
9098
9099 sarch = get_sal_arch (sal);
9100 /* We fall back to GDBARCH if there is no architecture
9101 associated with SAL. */
9102 if (sarch == NULL)
9103 sarch = gdbarch;
9104 std::string msg;
9105 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9106 error (_("May not have a fast tracepoint at %s%s"),
9107 paddress (sarch, sal.pc), msg.c_str ());
9108 }
9109 }
9110
9111 /* Given TOK, a string specification of condition and thread, as
9112 accepted by the 'break' command, extract the condition
9113 string and thread number and set *COND_STRING and *THREAD.
9114 PC identifies the context at which the condition should be parsed.
9115 If no condition is found, *COND_STRING is set to NULL.
9116 If no thread is found, *THREAD is set to -1. */
9117
9118 static void
9119 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9120 char **cond_string, int *thread, int *task,
9121 char **rest)
9122 {
9123 *cond_string = NULL;
9124 *thread = -1;
9125 *task = 0;
9126 *rest = NULL;
9127
9128 while (tok && *tok)
9129 {
9130 const char *end_tok;
9131 int toklen;
9132 const char *cond_start = NULL;
9133 const char *cond_end = NULL;
9134
9135 tok = skip_spaces (tok);
9136
9137 if ((*tok == '"' || *tok == ',') && rest)
9138 {
9139 *rest = savestring (tok, strlen (tok));
9140 return;
9141 }
9142
9143 end_tok = skip_to_space (tok);
9144
9145 toklen = end_tok - tok;
9146
9147 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9148 {
9149 tok = cond_start = end_tok + 1;
9150 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9151 cond_end = tok;
9152 *cond_string = savestring (cond_start, cond_end - cond_start);
9153 }
9154 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9155 {
9156 const char *tmptok;
9157 struct thread_info *thr;
9158
9159 tok = end_tok + 1;
9160 thr = parse_thread_id (tok, &tmptok);
9161 if (tok == tmptok)
9162 error (_("Junk after thread keyword."));
9163 *thread = thr->global_num;
9164 tok = tmptok;
9165 }
9166 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9167 {
9168 char *tmptok;
9169
9170 tok = end_tok + 1;
9171 *task = strtol (tok, &tmptok, 0);
9172 if (tok == tmptok)
9173 error (_("Junk after task keyword."));
9174 if (!valid_task_id (*task))
9175 error (_("Unknown task %d."), *task);
9176 tok = tmptok;
9177 }
9178 else if (rest)
9179 {
9180 *rest = savestring (tok, strlen (tok));
9181 return;
9182 }
9183 else
9184 error (_("Junk at end of arguments."));
9185 }
9186 }
9187
9188 /* Decode a static tracepoint marker spec. */
9189
9190 static std::vector<symtab_and_line>
9191 decode_static_tracepoint_spec (const char **arg_p)
9192 {
9193 const char *p = &(*arg_p)[3];
9194 const char *endp;
9195
9196 p = skip_spaces (p);
9197
9198 endp = skip_to_space (p);
9199
9200 std::string marker_str (p, endp - p);
9201
9202 std::vector<static_tracepoint_marker> markers
9203 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9204 if (markers.empty ())
9205 error (_("No known static tracepoint marker named %s"),
9206 marker_str.c_str ());
9207
9208 std::vector<symtab_and_line> sals;
9209 sals.reserve (markers.size ());
9210
9211 for (const static_tracepoint_marker &marker : markers)
9212 {
9213 symtab_and_line sal = find_pc_line (marker.address, 0);
9214 sal.pc = marker.address;
9215 sals.push_back (sal);
9216 }
9217
9218 *arg_p = endp;
9219 return sals;
9220 }
9221
9222 /* See breakpoint.h. */
9223
9224 int
9225 create_breakpoint (struct gdbarch *gdbarch,
9226 const struct event_location *location,
9227 const char *cond_string,
9228 int thread, const char *extra_string,
9229 int parse_extra,
9230 int tempflag, enum bptype type_wanted,
9231 int ignore_count,
9232 enum auto_boolean pending_break_support,
9233 const struct breakpoint_ops *ops,
9234 int from_tty, int enabled, int internal,
9235 unsigned flags)
9236 {
9237 struct linespec_result canonical;
9238 struct cleanup *bkpt_chain = NULL;
9239 int pending = 0;
9240 int task = 0;
9241 int prev_bkpt_count = breakpoint_count;
9242
9243 gdb_assert (ops != NULL);
9244
9245 /* If extra_string isn't useful, set it to NULL. */
9246 if (extra_string != NULL && *extra_string == '\0')
9247 extra_string = NULL;
9248
9249 TRY
9250 {
9251 ops->create_sals_from_location (location, &canonical, type_wanted);
9252 }
9253 CATCH (e, RETURN_MASK_ERROR)
9254 {
9255 /* If caller is interested in rc value from parse, set
9256 value. */
9257 if (e.error == NOT_FOUND_ERROR)
9258 {
9259 /* If pending breakpoint support is turned off, throw
9260 error. */
9261
9262 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9263 throw_exception (e);
9264
9265 exception_print (gdb_stderr, e);
9266
9267 /* If pending breakpoint support is auto query and the user
9268 selects no, then simply return the error code. */
9269 if (pending_break_support == AUTO_BOOLEAN_AUTO
9270 && !nquery (_("Make %s pending on future shared library load? "),
9271 bptype_string (type_wanted)))
9272 return 0;
9273
9274 /* At this point, either the user was queried about setting
9275 a pending breakpoint and selected yes, or pending
9276 breakpoint behavior is on and thus a pending breakpoint
9277 is defaulted on behalf of the user. */
9278 pending = 1;
9279 }
9280 else
9281 throw_exception (e);
9282 }
9283 END_CATCH
9284
9285 if (!pending && canonical.lsals.empty ())
9286 return 0;
9287
9288 /* ----------------------------- SNIP -----------------------------
9289 Anything added to the cleanup chain beyond this point is assumed
9290 to be part of a breakpoint. If the breakpoint create succeeds
9291 then the memory is not reclaimed. */
9292 bkpt_chain = make_cleanup (null_cleanup, 0);
9293
9294 /* Resolve all line numbers to PC's and verify that the addresses
9295 are ok for the target. */
9296 if (!pending)
9297 {
9298 for (auto &lsal : canonical.lsals)
9299 breakpoint_sals_to_pc (lsal.sals);
9300 }
9301
9302 /* Fast tracepoints may have additional restrictions on location. */
9303 if (!pending && type_wanted == bp_fast_tracepoint)
9304 {
9305 for (const auto &lsal : canonical.lsals)
9306 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9307 }
9308
9309 /* Verify that condition can be parsed, before setting any
9310 breakpoints. Allocate a separate condition expression for each
9311 breakpoint. */
9312 if (!pending)
9313 {
9314 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9315 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9316
9317 if (parse_extra)
9318 {
9319 char *rest;
9320 char *cond;
9321
9322 const linespec_sals &lsal = canonical.lsals[0];
9323
9324 /* Here we only parse 'arg' to separate condition
9325 from thread number, so parsing in context of first
9326 sal is OK. When setting the breakpoint we'll
9327 re-parse it in context of each sal. */
9328
9329 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9330 &cond, &thread, &task, &rest);
9331 cond_string_copy.reset (cond);
9332 extra_string_copy.reset (rest);
9333 }
9334 else
9335 {
9336 if (type_wanted != bp_dprintf
9337 && extra_string != NULL && *extra_string != '\0')
9338 error (_("Garbage '%s' at end of location"), extra_string);
9339
9340 /* Create a private copy of condition string. */
9341 if (cond_string)
9342 cond_string_copy.reset (xstrdup (cond_string));
9343 /* Create a private copy of any extra string. */
9344 if (extra_string)
9345 extra_string_copy.reset (xstrdup (extra_string));
9346 }
9347
9348 ops->create_breakpoints_sal (gdbarch, &canonical,
9349 std::move (cond_string_copy),
9350 std::move (extra_string_copy),
9351 type_wanted,
9352 tempflag ? disp_del : disp_donttouch,
9353 thread, task, ignore_count, ops,
9354 from_tty, enabled, internal, flags);
9355 }
9356 else
9357 {
9358 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9359
9360 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9361 b->location = copy_event_location (location);
9362
9363 if (parse_extra)
9364 b->cond_string = NULL;
9365 else
9366 {
9367 /* Create a private copy of condition string. */
9368 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9369 b->thread = thread;
9370 }
9371
9372 /* Create a private copy of any extra string. */
9373 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9374 b->ignore_count = ignore_count;
9375 b->disposition = tempflag ? disp_del : disp_donttouch;
9376 b->condition_not_parsed = 1;
9377 b->enable_state = enabled ? bp_enabled : bp_disabled;
9378 if ((type_wanted != bp_breakpoint
9379 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9380 b->pspace = current_program_space;
9381
9382 install_breakpoint (internal, std::move (b), 0);
9383 }
9384
9385 if (canonical.lsals.size () > 1)
9386 {
9387 warning (_("Multiple breakpoints were set.\nUse the "
9388 "\"delete\" command to delete unwanted breakpoints."));
9389 prev_breakpoint_count = prev_bkpt_count;
9390 }
9391
9392 /* That's it. Discard the cleanups for data inserted into the
9393 breakpoint. */
9394 discard_cleanups (bkpt_chain);
9395
9396 /* error call may happen here - have BKPT_CHAIN already discarded. */
9397 update_global_location_list (UGLL_MAY_INSERT);
9398
9399 return 1;
9400 }
9401
9402 /* Set a breakpoint.
9403 ARG is a string describing breakpoint address,
9404 condition, and thread.
9405 FLAG specifies if a breakpoint is hardware on,
9406 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9407 and BP_TEMPFLAG. */
9408
9409 static void
9410 break_command_1 (const char *arg, int flag, int from_tty)
9411 {
9412 int tempflag = flag & BP_TEMPFLAG;
9413 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9414 ? bp_hardware_breakpoint
9415 : bp_breakpoint);
9416 struct breakpoint_ops *ops;
9417
9418 event_location_up location = string_to_event_location (&arg, current_language);
9419
9420 /* Matching breakpoints on probes. */
9421 if (location != NULL
9422 && event_location_type (location.get ()) == PROBE_LOCATION)
9423 ops = &bkpt_probe_breakpoint_ops;
9424 else
9425 ops = &bkpt_breakpoint_ops;
9426
9427 create_breakpoint (get_current_arch (),
9428 location.get (),
9429 NULL, 0, arg, 1 /* parse arg */,
9430 tempflag, type_wanted,
9431 0 /* Ignore count */,
9432 pending_break_support,
9433 ops,
9434 from_tty,
9435 1 /* enabled */,
9436 0 /* internal */,
9437 0);
9438 }
9439
9440 /* Helper function for break_command_1 and disassemble_command. */
9441
9442 void
9443 resolve_sal_pc (struct symtab_and_line *sal)
9444 {
9445 CORE_ADDR pc;
9446
9447 if (sal->pc == 0 && sal->symtab != NULL)
9448 {
9449 if (!find_line_pc (sal->symtab, sal->line, &pc))
9450 error (_("No line %d in file \"%s\"."),
9451 sal->line, symtab_to_filename_for_display (sal->symtab));
9452 sal->pc = pc;
9453
9454 /* If this SAL corresponds to a breakpoint inserted using a line
9455 number, then skip the function prologue if necessary. */
9456 if (sal->explicit_line)
9457 skip_prologue_sal (sal);
9458 }
9459
9460 if (sal->section == 0 && sal->symtab != NULL)
9461 {
9462 const struct blockvector *bv;
9463 const struct block *b;
9464 struct symbol *sym;
9465
9466 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9467 SYMTAB_COMPUNIT (sal->symtab));
9468 if (bv != NULL)
9469 {
9470 sym = block_linkage_function (b);
9471 if (sym != NULL)
9472 {
9473 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9474 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9475 sym);
9476 }
9477 else
9478 {
9479 /* It really is worthwhile to have the section, so we'll
9480 just have to look harder. This case can be executed
9481 if we have line numbers but no functions (as can
9482 happen in assembly source). */
9483
9484 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9485 switch_to_program_space_and_thread (sal->pspace);
9486
9487 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9488 if (msym.minsym)
9489 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9490 }
9491 }
9492 }
9493 }
9494
9495 void
9496 break_command (const char *arg, int from_tty)
9497 {
9498 break_command_1 (arg, 0, from_tty);
9499 }
9500
9501 void
9502 tbreak_command (const char *arg, int from_tty)
9503 {
9504 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9505 }
9506
9507 static void
9508 hbreak_command (const char *arg, int from_tty)
9509 {
9510 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9511 }
9512
9513 static void
9514 thbreak_command (const char *arg, int from_tty)
9515 {
9516 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9517 }
9518
9519 static void
9520 stop_command (const char *arg, int from_tty)
9521 {
9522 printf_filtered (_("Specify the type of breakpoint to set.\n\
9523 Usage: stop in <function | address>\n\
9524 stop at <line>\n"));
9525 }
9526
9527 static void
9528 stopin_command (const char *arg, int from_tty)
9529 {
9530 int badInput = 0;
9531
9532 if (arg == (char *) NULL)
9533 badInput = 1;
9534 else if (*arg != '*')
9535 {
9536 const char *argptr = arg;
9537 int hasColon = 0;
9538
9539 /* Look for a ':'. If this is a line number specification, then
9540 say it is bad, otherwise, it should be an address or
9541 function/method name. */
9542 while (*argptr && !hasColon)
9543 {
9544 hasColon = (*argptr == ':');
9545 argptr++;
9546 }
9547
9548 if (hasColon)
9549 badInput = (*argptr != ':'); /* Not a class::method */
9550 else
9551 badInput = isdigit (*arg); /* a simple line number */
9552 }
9553
9554 if (badInput)
9555 printf_filtered (_("Usage: stop in <function | address>\n"));
9556 else
9557 break_command_1 (arg, 0, from_tty);
9558 }
9559
9560 static void
9561 stopat_command (const char *arg, int from_tty)
9562 {
9563 int badInput = 0;
9564
9565 if (arg == (char *) NULL || *arg == '*') /* no line number */
9566 badInput = 1;
9567 else
9568 {
9569 const char *argptr = arg;
9570 int hasColon = 0;
9571
9572 /* Look for a ':'. If there is a '::' then get out, otherwise
9573 it is probably a line number. */
9574 while (*argptr && !hasColon)
9575 {
9576 hasColon = (*argptr == ':');
9577 argptr++;
9578 }
9579
9580 if (hasColon)
9581 badInput = (*argptr == ':'); /* we have class::method */
9582 else
9583 badInput = !isdigit (*arg); /* not a line number */
9584 }
9585
9586 if (badInput)
9587 printf_filtered (_("Usage: stop at LINE\n"));
9588 else
9589 break_command_1 (arg, 0, from_tty);
9590 }
9591
9592 /* The dynamic printf command is mostly like a regular breakpoint, but
9593 with a prewired command list consisting of a single output command,
9594 built from extra arguments supplied on the dprintf command
9595 line. */
9596
9597 static void
9598 dprintf_command (const char *arg, int from_tty)
9599 {
9600 event_location_up location = string_to_event_location (&arg, current_language);
9601
9602 /* If non-NULL, ARG should have been advanced past the location;
9603 the next character must be ','. */
9604 if (arg != NULL)
9605 {
9606 if (arg[0] != ',' || arg[1] == '\0')
9607 error (_("Format string required"));
9608 else
9609 {
9610 /* Skip the comma. */
9611 ++arg;
9612 }
9613 }
9614
9615 create_breakpoint (get_current_arch (),
9616 location.get (),
9617 NULL, 0, arg, 1 /* parse arg */,
9618 0, bp_dprintf,
9619 0 /* Ignore count */,
9620 pending_break_support,
9621 &dprintf_breakpoint_ops,
9622 from_tty,
9623 1 /* enabled */,
9624 0 /* internal */,
9625 0);
9626 }
9627
9628 static void
9629 agent_printf_command (const char *arg, int from_tty)
9630 {
9631 error (_("May only run agent-printf on the target"));
9632 }
9633
9634 /* Implement the "breakpoint_hit" breakpoint_ops method for
9635 ranged breakpoints. */
9636
9637 static int
9638 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9639 const address_space *aspace,
9640 CORE_ADDR bp_addr,
9641 const struct target_waitstatus *ws)
9642 {
9643 if (ws->kind != TARGET_WAITKIND_STOPPED
9644 || ws->value.sig != GDB_SIGNAL_TRAP)
9645 return 0;
9646
9647 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9648 bl->length, aspace, bp_addr);
9649 }
9650
9651 /* Implement the "resources_needed" breakpoint_ops method for
9652 ranged breakpoints. */
9653
9654 static int
9655 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9656 {
9657 return target_ranged_break_num_registers ();
9658 }
9659
9660 /* Implement the "print_it" breakpoint_ops method for
9661 ranged breakpoints. */
9662
9663 static enum print_stop_action
9664 print_it_ranged_breakpoint (bpstat bs)
9665 {
9666 struct breakpoint *b = bs->breakpoint_at;
9667 struct bp_location *bl = b->loc;
9668 struct ui_out *uiout = current_uiout;
9669
9670 gdb_assert (b->type == bp_hardware_breakpoint);
9671
9672 /* Ranged breakpoints have only one location. */
9673 gdb_assert (bl && bl->next == NULL);
9674
9675 annotate_breakpoint (b->number);
9676
9677 maybe_print_thread_hit_breakpoint (uiout);
9678
9679 if (b->disposition == disp_del)
9680 uiout->text ("Temporary ranged breakpoint ");
9681 else
9682 uiout->text ("Ranged breakpoint ");
9683 if (uiout->is_mi_like_p ())
9684 {
9685 uiout->field_string ("reason",
9686 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9687 uiout->field_string ("disp", bpdisp_text (b->disposition));
9688 }
9689 uiout->field_int ("bkptno", b->number);
9690 uiout->text (", ");
9691
9692 return PRINT_SRC_AND_LOC;
9693 }
9694
9695 /* Implement the "print_one" breakpoint_ops method for
9696 ranged breakpoints. */
9697
9698 static void
9699 print_one_ranged_breakpoint (struct breakpoint *b,
9700 struct bp_location **last_loc)
9701 {
9702 struct bp_location *bl = b->loc;
9703 struct value_print_options opts;
9704 struct ui_out *uiout = current_uiout;
9705
9706 /* Ranged breakpoints have only one location. */
9707 gdb_assert (bl && bl->next == NULL);
9708
9709 get_user_print_options (&opts);
9710
9711 if (opts.addressprint)
9712 /* We don't print the address range here, it will be printed later
9713 by print_one_detail_ranged_breakpoint. */
9714 uiout->field_skip ("addr");
9715 annotate_field (5);
9716 print_breakpoint_location (b, bl);
9717 *last_loc = bl;
9718 }
9719
9720 /* Implement the "print_one_detail" breakpoint_ops method for
9721 ranged breakpoints. */
9722
9723 static void
9724 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9725 struct ui_out *uiout)
9726 {
9727 CORE_ADDR address_start, address_end;
9728 struct bp_location *bl = b->loc;
9729 string_file stb;
9730
9731 gdb_assert (bl);
9732
9733 address_start = bl->address;
9734 address_end = address_start + bl->length - 1;
9735
9736 uiout->text ("\taddress range: ");
9737 stb.printf ("[%s, %s]",
9738 print_core_address (bl->gdbarch, address_start),
9739 print_core_address (bl->gdbarch, address_end));
9740 uiout->field_stream ("addr", stb);
9741 uiout->text ("\n");
9742 }
9743
9744 /* Implement the "print_mention" breakpoint_ops method for
9745 ranged breakpoints. */
9746
9747 static void
9748 print_mention_ranged_breakpoint (struct breakpoint *b)
9749 {
9750 struct bp_location *bl = b->loc;
9751 struct ui_out *uiout = current_uiout;
9752
9753 gdb_assert (bl);
9754 gdb_assert (b->type == bp_hardware_breakpoint);
9755
9756 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9757 b->number, paddress (bl->gdbarch, bl->address),
9758 paddress (bl->gdbarch, bl->address + bl->length - 1));
9759 }
9760
9761 /* Implement the "print_recreate" breakpoint_ops method for
9762 ranged breakpoints. */
9763
9764 static void
9765 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9766 {
9767 fprintf_unfiltered (fp, "break-range %s, %s",
9768 event_location_to_string (b->location.get ()),
9769 event_location_to_string (b->location_range_end.get ()));
9770 print_recreate_thread (b, fp);
9771 }
9772
9773 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9774
9775 static struct breakpoint_ops ranged_breakpoint_ops;
9776
9777 /* Find the address where the end of the breakpoint range should be
9778 placed, given the SAL of the end of the range. This is so that if
9779 the user provides a line number, the end of the range is set to the
9780 last instruction of the given line. */
9781
9782 static CORE_ADDR
9783 find_breakpoint_range_end (struct symtab_and_line sal)
9784 {
9785 CORE_ADDR end;
9786
9787 /* If the user provided a PC value, use it. Otherwise,
9788 find the address of the end of the given location. */
9789 if (sal.explicit_pc)
9790 end = sal.pc;
9791 else
9792 {
9793 int ret;
9794 CORE_ADDR start;
9795
9796 ret = find_line_pc_range (sal, &start, &end);
9797 if (!ret)
9798 error (_("Could not find location of the end of the range."));
9799
9800 /* find_line_pc_range returns the start of the next line. */
9801 end--;
9802 }
9803
9804 return end;
9805 }
9806
9807 /* Implement the "break-range" CLI command. */
9808
9809 static void
9810 break_range_command (const char *arg, int from_tty)
9811 {
9812 const char *arg_start;
9813 struct linespec_result canonical_start, canonical_end;
9814 int bp_count, can_use_bp, length;
9815 CORE_ADDR end;
9816 struct breakpoint *b;
9817
9818 /* We don't support software ranged breakpoints. */
9819 if (target_ranged_break_num_registers () < 0)
9820 error (_("This target does not support hardware ranged breakpoints."));
9821
9822 bp_count = hw_breakpoint_used_count ();
9823 bp_count += target_ranged_break_num_registers ();
9824 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9825 bp_count, 0);
9826 if (can_use_bp < 0)
9827 error (_("Hardware breakpoints used exceeds limit."));
9828
9829 arg = skip_spaces (arg);
9830 if (arg == NULL || arg[0] == '\0')
9831 error(_("No address range specified."));
9832
9833 arg_start = arg;
9834 event_location_up start_location = string_to_event_location (&arg,
9835 current_language);
9836 parse_breakpoint_sals (start_location.get (), &canonical_start);
9837
9838 if (arg[0] != ',')
9839 error (_("Too few arguments."));
9840 else if (canonical_start.lsals.empty ())
9841 error (_("Could not find location of the beginning of the range."));
9842
9843 const linespec_sals &lsal_start = canonical_start.lsals[0];
9844
9845 if (canonical_start.lsals.size () > 1
9846 || lsal_start.sals.size () != 1)
9847 error (_("Cannot create a ranged breakpoint with multiple locations."));
9848
9849 const symtab_and_line &sal_start = lsal_start.sals[0];
9850 std::string addr_string_start (arg_start, arg - arg_start);
9851
9852 arg++; /* Skip the comma. */
9853 arg = skip_spaces (arg);
9854
9855 /* Parse the end location. */
9856
9857 arg_start = arg;
9858
9859 /* We call decode_line_full directly here instead of using
9860 parse_breakpoint_sals because we need to specify the start location's
9861 symtab and line as the default symtab and line for the end of the
9862 range. This makes it possible to have ranges like "foo.c:27, +14",
9863 where +14 means 14 lines from the start location. */
9864 event_location_up end_location = string_to_event_location (&arg,
9865 current_language);
9866 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9867 sal_start.symtab, sal_start.line,
9868 &canonical_end, NULL, NULL);
9869
9870 if (canonical_end.lsals.empty ())
9871 error (_("Could not find location of the end of the range."));
9872
9873 const linespec_sals &lsal_end = canonical_end.lsals[0];
9874 if (canonical_end.lsals.size () > 1
9875 || lsal_end.sals.size () != 1)
9876 error (_("Cannot create a ranged breakpoint with multiple locations."));
9877
9878 const symtab_and_line &sal_end = lsal_end.sals[0];
9879
9880 end = find_breakpoint_range_end (sal_end);
9881 if (sal_start.pc > end)
9882 error (_("Invalid address range, end precedes start."));
9883
9884 length = end - sal_start.pc + 1;
9885 if (length < 0)
9886 /* Length overflowed. */
9887 error (_("Address range too large."));
9888 else if (length == 1)
9889 {
9890 /* This range is simple enough to be handled by
9891 the `hbreak' command. */
9892 hbreak_command (&addr_string_start[0], 1);
9893
9894 return;
9895 }
9896
9897 /* Now set up the breakpoint. */
9898 b = set_raw_breakpoint (get_current_arch (), sal_start,
9899 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9900 set_breakpoint_count (breakpoint_count + 1);
9901 b->number = breakpoint_count;
9902 b->disposition = disp_donttouch;
9903 b->location = std::move (start_location);
9904 b->location_range_end = std::move (end_location);
9905 b->loc->length = length;
9906
9907 mention (b);
9908 gdb::observers::breakpoint_created.notify (b);
9909 update_global_location_list (UGLL_MAY_INSERT);
9910 }
9911
9912 /* Return non-zero if EXP is verified as constant. Returned zero
9913 means EXP is variable. Also the constant detection may fail for
9914 some constant expressions and in such case still falsely return
9915 zero. */
9916
9917 static int
9918 watchpoint_exp_is_const (const struct expression *exp)
9919 {
9920 int i = exp->nelts;
9921
9922 while (i > 0)
9923 {
9924 int oplenp, argsp;
9925
9926 /* We are only interested in the descriptor of each element. */
9927 operator_length (exp, i, &oplenp, &argsp);
9928 i -= oplenp;
9929
9930 switch (exp->elts[i].opcode)
9931 {
9932 case BINOP_ADD:
9933 case BINOP_SUB:
9934 case BINOP_MUL:
9935 case BINOP_DIV:
9936 case BINOP_REM:
9937 case BINOP_MOD:
9938 case BINOP_LSH:
9939 case BINOP_RSH:
9940 case BINOP_LOGICAL_AND:
9941 case BINOP_LOGICAL_OR:
9942 case BINOP_BITWISE_AND:
9943 case BINOP_BITWISE_IOR:
9944 case BINOP_BITWISE_XOR:
9945 case BINOP_EQUAL:
9946 case BINOP_NOTEQUAL:
9947 case BINOP_LESS:
9948 case BINOP_GTR:
9949 case BINOP_LEQ:
9950 case BINOP_GEQ:
9951 case BINOP_REPEAT:
9952 case BINOP_COMMA:
9953 case BINOP_EXP:
9954 case BINOP_MIN:
9955 case BINOP_MAX:
9956 case BINOP_INTDIV:
9957 case BINOP_CONCAT:
9958 case TERNOP_COND:
9959 case TERNOP_SLICE:
9960
9961 case OP_LONG:
9962 case OP_FLOAT:
9963 case OP_LAST:
9964 case OP_COMPLEX:
9965 case OP_STRING:
9966 case OP_ARRAY:
9967 case OP_TYPE:
9968 case OP_TYPEOF:
9969 case OP_DECLTYPE:
9970 case OP_TYPEID:
9971 case OP_NAME:
9972 case OP_OBJC_NSSTRING:
9973
9974 case UNOP_NEG:
9975 case UNOP_LOGICAL_NOT:
9976 case UNOP_COMPLEMENT:
9977 case UNOP_ADDR:
9978 case UNOP_HIGH:
9979 case UNOP_CAST:
9980
9981 case UNOP_CAST_TYPE:
9982 case UNOP_REINTERPRET_CAST:
9983 case UNOP_DYNAMIC_CAST:
9984 /* Unary, binary and ternary operators: We have to check
9985 their operands. If they are constant, then so is the
9986 result of that operation. For instance, if A and B are
9987 determined to be constants, then so is "A + B".
9988
9989 UNOP_IND is one exception to the rule above, because the
9990 value of *ADDR is not necessarily a constant, even when
9991 ADDR is. */
9992 break;
9993
9994 case OP_VAR_VALUE:
9995 /* Check whether the associated symbol is a constant.
9996
9997 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9998 possible that a buggy compiler could mark a variable as
9999 constant even when it is not, and TYPE_CONST would return
10000 true in this case, while SYMBOL_CLASS wouldn't.
10001
10002 We also have to check for function symbols because they
10003 are always constant. */
10004 {
10005 struct symbol *s = exp->elts[i + 2].symbol;
10006
10007 if (SYMBOL_CLASS (s) != LOC_BLOCK
10008 && SYMBOL_CLASS (s) != LOC_CONST
10009 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10010 return 0;
10011 break;
10012 }
10013
10014 /* The default action is to return 0 because we are using
10015 the optimistic approach here: If we don't know something,
10016 then it is not a constant. */
10017 default:
10018 return 0;
10019 }
10020 }
10021
10022 return 1;
10023 }
10024
10025 /* Watchpoint destructor. */
10026
10027 watchpoint::~watchpoint ()
10028 {
10029 xfree (this->exp_string);
10030 xfree (this->exp_string_reparse);
10031 }
10032
10033 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10034
10035 static void
10036 re_set_watchpoint (struct breakpoint *b)
10037 {
10038 struct watchpoint *w = (struct watchpoint *) b;
10039
10040 /* Watchpoint can be either on expression using entirely global
10041 variables, or it can be on local variables.
10042
10043 Watchpoints of the first kind are never auto-deleted, and even
10044 persist across program restarts. Since they can use variables
10045 from shared libraries, we need to reparse expression as libraries
10046 are loaded and unloaded.
10047
10048 Watchpoints on local variables can also change meaning as result
10049 of solib event. For example, if a watchpoint uses both a local
10050 and a global variables in expression, it's a local watchpoint,
10051 but unloading of a shared library will make the expression
10052 invalid. This is not a very common use case, but we still
10053 re-evaluate expression, to avoid surprises to the user.
10054
10055 Note that for local watchpoints, we re-evaluate it only if
10056 watchpoints frame id is still valid. If it's not, it means the
10057 watchpoint is out of scope and will be deleted soon. In fact,
10058 I'm not sure we'll ever be called in this case.
10059
10060 If a local watchpoint's frame id is still valid, then
10061 w->exp_valid_block is likewise valid, and we can safely use it.
10062
10063 Don't do anything about disabled watchpoints, since they will be
10064 reevaluated again when enabled. */
10065 update_watchpoint (w, 1 /* reparse */);
10066 }
10067
10068 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10069
10070 static int
10071 insert_watchpoint (struct bp_location *bl)
10072 {
10073 struct watchpoint *w = (struct watchpoint *) bl->owner;
10074 int length = w->exact ? 1 : bl->length;
10075
10076 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10077 w->cond_exp.get ());
10078 }
10079
10080 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10081
10082 static int
10083 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10084 {
10085 struct watchpoint *w = (struct watchpoint *) bl->owner;
10086 int length = w->exact ? 1 : bl->length;
10087
10088 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10089 w->cond_exp.get ());
10090 }
10091
10092 static int
10093 breakpoint_hit_watchpoint (const struct bp_location *bl,
10094 const address_space *aspace, CORE_ADDR bp_addr,
10095 const struct target_waitstatus *ws)
10096 {
10097 struct breakpoint *b = bl->owner;
10098 struct watchpoint *w = (struct watchpoint *) b;
10099
10100 /* Continuable hardware watchpoints are treated as non-existent if the
10101 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10102 some data address). Otherwise gdb won't stop on a break instruction
10103 in the code (not from a breakpoint) when a hardware watchpoint has
10104 been defined. Also skip watchpoints which we know did not trigger
10105 (did not match the data address). */
10106 if (is_hardware_watchpoint (b)
10107 && w->watchpoint_triggered == watch_triggered_no)
10108 return 0;
10109
10110 return 1;
10111 }
10112
10113 static void
10114 check_status_watchpoint (bpstat bs)
10115 {
10116 gdb_assert (is_watchpoint (bs->breakpoint_at));
10117
10118 bpstat_check_watchpoint (bs);
10119 }
10120
10121 /* Implement the "resources_needed" breakpoint_ops method for
10122 hardware watchpoints. */
10123
10124 static int
10125 resources_needed_watchpoint (const struct bp_location *bl)
10126 {
10127 struct watchpoint *w = (struct watchpoint *) bl->owner;
10128 int length = w->exact? 1 : bl->length;
10129
10130 return target_region_ok_for_hw_watchpoint (bl->address, length);
10131 }
10132
10133 /* Implement the "works_in_software_mode" breakpoint_ops method for
10134 hardware watchpoints. */
10135
10136 static int
10137 works_in_software_mode_watchpoint (const struct breakpoint *b)
10138 {
10139 /* Read and access watchpoints only work with hardware support. */
10140 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10141 }
10142
10143 static enum print_stop_action
10144 print_it_watchpoint (bpstat bs)
10145 {
10146 struct breakpoint *b;
10147 enum print_stop_action result;
10148 struct watchpoint *w;
10149 struct ui_out *uiout = current_uiout;
10150
10151 gdb_assert (bs->bp_location_at != NULL);
10152
10153 b = bs->breakpoint_at;
10154 w = (struct watchpoint *) b;
10155
10156 annotate_watchpoint (b->number);
10157 maybe_print_thread_hit_breakpoint (uiout);
10158
10159 string_file stb;
10160
10161 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10162 switch (b->type)
10163 {
10164 case bp_watchpoint:
10165 case bp_hardware_watchpoint:
10166 if (uiout->is_mi_like_p ())
10167 uiout->field_string
10168 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10169 mention (b);
10170 tuple_emitter.emplace (uiout, "value");
10171 uiout->text ("\nOld value = ");
10172 watchpoint_value_print (bs->old_val.get (), &stb);
10173 uiout->field_stream ("old", stb);
10174 uiout->text ("\nNew value = ");
10175 watchpoint_value_print (w->val.get (), &stb);
10176 uiout->field_stream ("new", stb);
10177 uiout->text ("\n");
10178 /* More than one watchpoint may have been triggered. */
10179 result = PRINT_UNKNOWN;
10180 break;
10181
10182 case bp_read_watchpoint:
10183 if (uiout->is_mi_like_p ())
10184 uiout->field_string
10185 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10186 mention (b);
10187 tuple_emitter.emplace (uiout, "value");
10188 uiout->text ("\nValue = ");
10189 watchpoint_value_print (w->val.get (), &stb);
10190 uiout->field_stream ("value", stb);
10191 uiout->text ("\n");
10192 result = PRINT_UNKNOWN;
10193 break;
10194
10195 case bp_access_watchpoint:
10196 if (bs->old_val != NULL)
10197 {
10198 if (uiout->is_mi_like_p ())
10199 uiout->field_string
10200 ("reason",
10201 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10202 mention (b);
10203 tuple_emitter.emplace (uiout, "value");
10204 uiout->text ("\nOld value = ");
10205 watchpoint_value_print (bs->old_val.get (), &stb);
10206 uiout->field_stream ("old", stb);
10207 uiout->text ("\nNew value = ");
10208 }
10209 else
10210 {
10211 mention (b);
10212 if (uiout->is_mi_like_p ())
10213 uiout->field_string
10214 ("reason",
10215 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10216 tuple_emitter.emplace (uiout, "value");
10217 uiout->text ("\nValue = ");
10218 }
10219 watchpoint_value_print (w->val.get (), &stb);
10220 uiout->field_stream ("new", stb);
10221 uiout->text ("\n");
10222 result = PRINT_UNKNOWN;
10223 break;
10224 default:
10225 result = PRINT_UNKNOWN;
10226 }
10227
10228 return result;
10229 }
10230
10231 /* Implement the "print_mention" breakpoint_ops method for hardware
10232 watchpoints. */
10233
10234 static void
10235 print_mention_watchpoint (struct breakpoint *b)
10236 {
10237 struct watchpoint *w = (struct watchpoint *) b;
10238 struct ui_out *uiout = current_uiout;
10239 const char *tuple_name;
10240
10241 switch (b->type)
10242 {
10243 case bp_watchpoint:
10244 uiout->text ("Watchpoint ");
10245 tuple_name = "wpt";
10246 break;
10247 case bp_hardware_watchpoint:
10248 uiout->text ("Hardware watchpoint ");
10249 tuple_name = "wpt";
10250 break;
10251 case bp_read_watchpoint:
10252 uiout->text ("Hardware read watchpoint ");
10253 tuple_name = "hw-rwpt";
10254 break;
10255 case bp_access_watchpoint:
10256 uiout->text ("Hardware access (read/write) watchpoint ");
10257 tuple_name = "hw-awpt";
10258 break;
10259 default:
10260 internal_error (__FILE__, __LINE__,
10261 _("Invalid hardware watchpoint type."));
10262 }
10263
10264 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10265 uiout->field_int ("number", b->number);
10266 uiout->text (": ");
10267 uiout->field_string ("exp", w->exp_string);
10268 }
10269
10270 /* Implement the "print_recreate" breakpoint_ops method for
10271 watchpoints. */
10272
10273 static void
10274 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10275 {
10276 struct watchpoint *w = (struct watchpoint *) b;
10277
10278 switch (b->type)
10279 {
10280 case bp_watchpoint:
10281 case bp_hardware_watchpoint:
10282 fprintf_unfiltered (fp, "watch");
10283 break;
10284 case bp_read_watchpoint:
10285 fprintf_unfiltered (fp, "rwatch");
10286 break;
10287 case bp_access_watchpoint:
10288 fprintf_unfiltered (fp, "awatch");
10289 break;
10290 default:
10291 internal_error (__FILE__, __LINE__,
10292 _("Invalid watchpoint type."));
10293 }
10294
10295 fprintf_unfiltered (fp, " %s", w->exp_string);
10296 print_recreate_thread (b, fp);
10297 }
10298
10299 /* Implement the "explains_signal" breakpoint_ops method for
10300 watchpoints. */
10301
10302 static int
10303 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10304 {
10305 /* A software watchpoint cannot cause a signal other than
10306 GDB_SIGNAL_TRAP. */
10307 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10308 return 0;
10309
10310 return 1;
10311 }
10312
10313 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10314
10315 static struct breakpoint_ops watchpoint_breakpoint_ops;
10316
10317 /* Implement the "insert" breakpoint_ops method for
10318 masked hardware watchpoints. */
10319
10320 static int
10321 insert_masked_watchpoint (struct bp_location *bl)
10322 {
10323 struct watchpoint *w = (struct watchpoint *) bl->owner;
10324
10325 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10326 bl->watchpoint_type);
10327 }
10328
10329 /* Implement the "remove" breakpoint_ops method for
10330 masked hardware watchpoints. */
10331
10332 static int
10333 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10334 {
10335 struct watchpoint *w = (struct watchpoint *) bl->owner;
10336
10337 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10338 bl->watchpoint_type);
10339 }
10340
10341 /* Implement the "resources_needed" breakpoint_ops method for
10342 masked hardware watchpoints. */
10343
10344 static int
10345 resources_needed_masked_watchpoint (const struct bp_location *bl)
10346 {
10347 struct watchpoint *w = (struct watchpoint *) bl->owner;
10348
10349 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10350 }
10351
10352 /* Implement the "works_in_software_mode" breakpoint_ops method for
10353 masked hardware watchpoints. */
10354
10355 static int
10356 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10357 {
10358 return 0;
10359 }
10360
10361 /* Implement the "print_it" breakpoint_ops method for
10362 masked hardware watchpoints. */
10363
10364 static enum print_stop_action
10365 print_it_masked_watchpoint (bpstat bs)
10366 {
10367 struct breakpoint *b = bs->breakpoint_at;
10368 struct ui_out *uiout = current_uiout;
10369
10370 /* Masked watchpoints have only one location. */
10371 gdb_assert (b->loc && b->loc->next == NULL);
10372
10373 annotate_watchpoint (b->number);
10374 maybe_print_thread_hit_breakpoint (uiout);
10375
10376 switch (b->type)
10377 {
10378 case bp_hardware_watchpoint:
10379 if (uiout->is_mi_like_p ())
10380 uiout->field_string
10381 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10382 break;
10383
10384 case bp_read_watchpoint:
10385 if (uiout->is_mi_like_p ())
10386 uiout->field_string
10387 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10388 break;
10389
10390 case bp_access_watchpoint:
10391 if (uiout->is_mi_like_p ())
10392 uiout->field_string
10393 ("reason",
10394 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10395 break;
10396 default:
10397 internal_error (__FILE__, __LINE__,
10398 _("Invalid hardware watchpoint type."));
10399 }
10400
10401 mention (b);
10402 uiout->text (_("\n\
10403 Check the underlying instruction at PC for the memory\n\
10404 address and value which triggered this watchpoint.\n"));
10405 uiout->text ("\n");
10406
10407 /* More than one watchpoint may have been triggered. */
10408 return PRINT_UNKNOWN;
10409 }
10410
10411 /* Implement the "print_one_detail" breakpoint_ops method for
10412 masked hardware watchpoints. */
10413
10414 static void
10415 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10416 struct ui_out *uiout)
10417 {
10418 struct watchpoint *w = (struct watchpoint *) b;
10419
10420 /* Masked watchpoints have only one location. */
10421 gdb_assert (b->loc && b->loc->next == NULL);
10422
10423 uiout->text ("\tmask ");
10424 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10425 uiout->text ("\n");
10426 }
10427
10428 /* Implement the "print_mention" breakpoint_ops method for
10429 masked hardware watchpoints. */
10430
10431 static void
10432 print_mention_masked_watchpoint (struct breakpoint *b)
10433 {
10434 struct watchpoint *w = (struct watchpoint *) b;
10435 struct ui_out *uiout = current_uiout;
10436 const char *tuple_name;
10437
10438 switch (b->type)
10439 {
10440 case bp_hardware_watchpoint:
10441 uiout->text ("Masked hardware watchpoint ");
10442 tuple_name = "wpt";
10443 break;
10444 case bp_read_watchpoint:
10445 uiout->text ("Masked hardware read watchpoint ");
10446 tuple_name = "hw-rwpt";
10447 break;
10448 case bp_access_watchpoint:
10449 uiout->text ("Masked hardware access (read/write) watchpoint ");
10450 tuple_name = "hw-awpt";
10451 break;
10452 default:
10453 internal_error (__FILE__, __LINE__,
10454 _("Invalid hardware watchpoint type."));
10455 }
10456
10457 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10458 uiout->field_int ("number", b->number);
10459 uiout->text (": ");
10460 uiout->field_string ("exp", w->exp_string);
10461 }
10462
10463 /* Implement the "print_recreate" breakpoint_ops method for
10464 masked hardware watchpoints. */
10465
10466 static void
10467 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10468 {
10469 struct watchpoint *w = (struct watchpoint *) b;
10470 char tmp[40];
10471
10472 switch (b->type)
10473 {
10474 case bp_hardware_watchpoint:
10475 fprintf_unfiltered (fp, "watch");
10476 break;
10477 case bp_read_watchpoint:
10478 fprintf_unfiltered (fp, "rwatch");
10479 break;
10480 case bp_access_watchpoint:
10481 fprintf_unfiltered (fp, "awatch");
10482 break;
10483 default:
10484 internal_error (__FILE__, __LINE__,
10485 _("Invalid hardware watchpoint type."));
10486 }
10487
10488 sprintf_vma (tmp, w->hw_wp_mask);
10489 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10490 print_recreate_thread (b, fp);
10491 }
10492
10493 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10494
10495 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10496
10497 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10498
10499 static int
10500 is_masked_watchpoint (const struct breakpoint *b)
10501 {
10502 return b->ops == &masked_watchpoint_breakpoint_ops;
10503 }
10504
10505 /* accessflag: hw_write: watch write,
10506 hw_read: watch read,
10507 hw_access: watch access (read or write) */
10508 static void
10509 watch_command_1 (const char *arg, int accessflag, int from_tty,
10510 int just_location, int internal)
10511 {
10512 struct breakpoint *scope_breakpoint = NULL;
10513 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10514 struct value *result;
10515 int saved_bitpos = 0, saved_bitsize = 0;
10516 const char *exp_start = NULL;
10517 const char *exp_end = NULL;
10518 const char *tok, *end_tok;
10519 int toklen = -1;
10520 const char *cond_start = NULL;
10521 const char *cond_end = NULL;
10522 enum bptype bp_type;
10523 int thread = -1;
10524 int pc = 0;
10525 /* Flag to indicate whether we are going to use masks for
10526 the hardware watchpoint. */
10527 int use_mask = 0;
10528 CORE_ADDR mask = 0;
10529
10530 /* Make sure that we actually have parameters to parse. */
10531 if (arg != NULL && arg[0] != '\0')
10532 {
10533 const char *value_start;
10534
10535 exp_end = arg + strlen (arg);
10536
10537 /* Look for "parameter value" pairs at the end
10538 of the arguments string. */
10539 for (tok = exp_end - 1; tok > arg; tok--)
10540 {
10541 /* Skip whitespace at the end of the argument list. */
10542 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10543 tok--;
10544
10545 /* Find the beginning of the last token.
10546 This is the value of the parameter. */
10547 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10548 tok--;
10549 value_start = tok + 1;
10550
10551 /* Skip whitespace. */
10552 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10553 tok--;
10554
10555 end_tok = tok;
10556
10557 /* Find the beginning of the second to last token.
10558 This is the parameter itself. */
10559 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10560 tok--;
10561 tok++;
10562 toklen = end_tok - tok + 1;
10563
10564 if (toklen == 6 && startswith (tok, "thread"))
10565 {
10566 struct thread_info *thr;
10567 /* At this point we've found a "thread" token, which means
10568 the user is trying to set a watchpoint that triggers
10569 only in a specific thread. */
10570 const char *endp;
10571
10572 if (thread != -1)
10573 error(_("You can specify only one thread."));
10574
10575 /* Extract the thread ID from the next token. */
10576 thr = parse_thread_id (value_start, &endp);
10577
10578 /* Check if the user provided a valid thread ID. */
10579 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10580 invalid_thread_id_error (value_start);
10581
10582 thread = thr->global_num;
10583 }
10584 else if (toklen == 4 && startswith (tok, "mask"))
10585 {
10586 /* We've found a "mask" token, which means the user wants to
10587 create a hardware watchpoint that is going to have the mask
10588 facility. */
10589 struct value *mask_value, *mark;
10590
10591 if (use_mask)
10592 error(_("You can specify only one mask."));
10593
10594 use_mask = just_location = 1;
10595
10596 mark = value_mark ();
10597 mask_value = parse_to_comma_and_eval (&value_start);
10598 mask = value_as_address (mask_value);
10599 value_free_to_mark (mark);
10600 }
10601 else
10602 /* We didn't recognize what we found. We should stop here. */
10603 break;
10604
10605 /* Truncate the string and get rid of the "parameter value" pair before
10606 the arguments string is parsed by the parse_exp_1 function. */
10607 exp_end = tok;
10608 }
10609 }
10610 else
10611 exp_end = arg;
10612
10613 /* Parse the rest of the arguments. From here on out, everything
10614 is in terms of a newly allocated string instead of the original
10615 ARG. */
10616 innermost_block.reset ();
10617 std::string expression (arg, exp_end - arg);
10618 exp_start = arg = expression.c_str ();
10619 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10620 exp_end = arg;
10621 /* Remove trailing whitespace from the expression before saving it.
10622 This makes the eventual display of the expression string a bit
10623 prettier. */
10624 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10625 --exp_end;
10626
10627 /* Checking if the expression is not constant. */
10628 if (watchpoint_exp_is_const (exp.get ()))
10629 {
10630 int len;
10631
10632 len = exp_end - exp_start;
10633 while (len > 0 && isspace (exp_start[len - 1]))
10634 len--;
10635 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10636 }
10637
10638 exp_valid_block = innermost_block.block ();
10639 struct value *mark = value_mark ();
10640 struct value *val_as_value = nullptr;
10641 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10642 just_location);
10643
10644 if (val_as_value != NULL && just_location)
10645 {
10646 saved_bitpos = value_bitpos (val_as_value);
10647 saved_bitsize = value_bitsize (val_as_value);
10648 }
10649
10650 value_ref_ptr val;
10651 if (just_location)
10652 {
10653 int ret;
10654
10655 exp_valid_block = NULL;
10656 val = release_value (value_addr (result));
10657 value_free_to_mark (mark);
10658
10659 if (use_mask)
10660 {
10661 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10662 mask);
10663 if (ret == -1)
10664 error (_("This target does not support masked watchpoints."));
10665 else if (ret == -2)
10666 error (_("Invalid mask or memory region."));
10667 }
10668 }
10669 else if (val_as_value != NULL)
10670 val = release_value (val_as_value);
10671
10672 tok = skip_spaces (arg);
10673 end_tok = skip_to_space (tok);
10674
10675 toklen = end_tok - tok;
10676 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10677 {
10678 innermost_block.reset ();
10679 tok = cond_start = end_tok + 1;
10680 parse_exp_1 (&tok, 0, 0, 0);
10681
10682 /* The watchpoint expression may not be local, but the condition
10683 may still be. E.g.: `watch global if local > 0'. */
10684 cond_exp_valid_block = innermost_block.block ();
10685
10686 cond_end = tok;
10687 }
10688 if (*tok)
10689 error (_("Junk at end of command."));
10690
10691 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10692
10693 /* Save this because create_internal_breakpoint below invalidates
10694 'wp_frame'. */
10695 frame_id watchpoint_frame = get_frame_id (wp_frame);
10696
10697 /* If the expression is "local", then set up a "watchpoint scope"
10698 breakpoint at the point where we've left the scope of the watchpoint
10699 expression. Create the scope breakpoint before the watchpoint, so
10700 that we will encounter it first in bpstat_stop_status. */
10701 if (exp_valid_block != NULL && wp_frame != NULL)
10702 {
10703 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10704
10705 if (frame_id_p (caller_frame_id))
10706 {
10707 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10708 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10709
10710 scope_breakpoint
10711 = create_internal_breakpoint (caller_arch, caller_pc,
10712 bp_watchpoint_scope,
10713 &momentary_breakpoint_ops);
10714
10715 /* create_internal_breakpoint could invalidate WP_FRAME. */
10716 wp_frame = NULL;
10717
10718 scope_breakpoint->enable_state = bp_enabled;
10719
10720 /* Automatically delete the breakpoint when it hits. */
10721 scope_breakpoint->disposition = disp_del;
10722
10723 /* Only break in the proper frame (help with recursion). */
10724 scope_breakpoint->frame_id = caller_frame_id;
10725
10726 /* Set the address at which we will stop. */
10727 scope_breakpoint->loc->gdbarch = caller_arch;
10728 scope_breakpoint->loc->requested_address = caller_pc;
10729 scope_breakpoint->loc->address
10730 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10731 scope_breakpoint->loc->requested_address,
10732 scope_breakpoint->type);
10733 }
10734 }
10735
10736 /* Now set up the breakpoint. We create all watchpoints as hardware
10737 watchpoints here even if hardware watchpoints are turned off, a call
10738 to update_watchpoint later in this function will cause the type to
10739 drop back to bp_watchpoint (software watchpoint) if required. */
10740
10741 if (accessflag == hw_read)
10742 bp_type = bp_read_watchpoint;
10743 else if (accessflag == hw_access)
10744 bp_type = bp_access_watchpoint;
10745 else
10746 bp_type = bp_hardware_watchpoint;
10747
10748 std::unique_ptr<watchpoint> w (new watchpoint ());
10749
10750 if (use_mask)
10751 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10752 &masked_watchpoint_breakpoint_ops);
10753 else
10754 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10755 &watchpoint_breakpoint_ops);
10756 w->thread = thread;
10757 w->disposition = disp_donttouch;
10758 w->pspace = current_program_space;
10759 w->exp = std::move (exp);
10760 w->exp_valid_block = exp_valid_block;
10761 w->cond_exp_valid_block = cond_exp_valid_block;
10762 if (just_location)
10763 {
10764 struct type *t = value_type (val.get ());
10765 CORE_ADDR addr = value_as_address (val.get ());
10766
10767 w->exp_string_reparse
10768 = current_language->la_watch_location_expression (t, addr).release ();
10769
10770 w->exp_string = xstrprintf ("-location %.*s",
10771 (int) (exp_end - exp_start), exp_start);
10772 }
10773 else
10774 w->exp_string = savestring (exp_start, exp_end - exp_start);
10775
10776 if (use_mask)
10777 {
10778 w->hw_wp_mask = mask;
10779 }
10780 else
10781 {
10782 w->val = val;
10783 w->val_bitpos = saved_bitpos;
10784 w->val_bitsize = saved_bitsize;
10785 w->val_valid = 1;
10786 }
10787
10788 if (cond_start)
10789 w->cond_string = savestring (cond_start, cond_end - cond_start);
10790 else
10791 w->cond_string = 0;
10792
10793 if (frame_id_p (watchpoint_frame))
10794 {
10795 w->watchpoint_frame = watchpoint_frame;
10796 w->watchpoint_thread = inferior_ptid;
10797 }
10798 else
10799 {
10800 w->watchpoint_frame = null_frame_id;
10801 w->watchpoint_thread = null_ptid;
10802 }
10803
10804 if (scope_breakpoint != NULL)
10805 {
10806 /* The scope breakpoint is related to the watchpoint. We will
10807 need to act on them together. */
10808 w->related_breakpoint = scope_breakpoint;
10809 scope_breakpoint->related_breakpoint = w.get ();
10810 }
10811
10812 if (!just_location)
10813 value_free_to_mark (mark);
10814
10815 /* Finally update the new watchpoint. This creates the locations
10816 that should be inserted. */
10817 update_watchpoint (w.get (), 1);
10818
10819 install_breakpoint (internal, std::move (w), 1);
10820 }
10821
10822 /* Return count of debug registers needed to watch the given expression.
10823 If the watchpoint cannot be handled in hardware return zero. */
10824
10825 static int
10826 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10827 {
10828 int found_memory_cnt = 0;
10829
10830 /* Did the user specifically forbid us to use hardware watchpoints? */
10831 if (!can_use_hw_watchpoints)
10832 return 0;
10833
10834 gdb_assert (!vals.empty ());
10835 struct value *head = vals[0].get ();
10836
10837 /* Make sure that the value of the expression depends only upon
10838 memory contents, and values computed from them within GDB. If we
10839 find any register references or function calls, we can't use a
10840 hardware watchpoint.
10841
10842 The idea here is that evaluating an expression generates a series
10843 of values, one holding the value of every subexpression. (The
10844 expression a*b+c has five subexpressions: a, b, a*b, c, and
10845 a*b+c.) GDB's values hold almost enough information to establish
10846 the criteria given above --- they identify memory lvalues,
10847 register lvalues, computed values, etcetera. So we can evaluate
10848 the expression, and then scan the chain of values that leaves
10849 behind to decide whether we can detect any possible change to the
10850 expression's final value using only hardware watchpoints.
10851
10852 However, I don't think that the values returned by inferior
10853 function calls are special in any way. So this function may not
10854 notice that an expression involving an inferior function call
10855 can't be watched with hardware watchpoints. FIXME. */
10856 for (const value_ref_ptr &iter : vals)
10857 {
10858 struct value *v = iter.get ();
10859
10860 if (VALUE_LVAL (v) == lval_memory)
10861 {
10862 if (v != head && value_lazy (v))
10863 /* A lazy memory lvalue in the chain is one that GDB never
10864 needed to fetch; we either just used its address (e.g.,
10865 `a' in `a.b') or we never needed it at all (e.g., `a'
10866 in `a,b'). This doesn't apply to HEAD; if that is
10867 lazy then it was not readable, but watch it anyway. */
10868 ;
10869 else
10870 {
10871 /* Ahh, memory we actually used! Check if we can cover
10872 it with hardware watchpoints. */
10873 struct type *vtype = check_typedef (value_type (v));
10874
10875 /* We only watch structs and arrays if user asked for it
10876 explicitly, never if they just happen to appear in a
10877 middle of some value chain. */
10878 if (v == head
10879 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10880 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10881 {
10882 CORE_ADDR vaddr = value_address (v);
10883 int len;
10884 int num_regs;
10885
10886 len = (target_exact_watchpoints
10887 && is_scalar_type_recursive (vtype))?
10888 1 : TYPE_LENGTH (value_type (v));
10889
10890 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10891 if (!num_regs)
10892 return 0;
10893 else
10894 found_memory_cnt += num_regs;
10895 }
10896 }
10897 }
10898 else if (VALUE_LVAL (v) != not_lval
10899 && deprecated_value_modifiable (v) == 0)
10900 return 0; /* These are values from the history (e.g., $1). */
10901 else if (VALUE_LVAL (v) == lval_register)
10902 return 0; /* Cannot watch a register with a HW watchpoint. */
10903 }
10904
10905 /* The expression itself looks suitable for using a hardware
10906 watchpoint, but give the target machine a chance to reject it. */
10907 return found_memory_cnt;
10908 }
10909
10910 void
10911 watch_command_wrapper (const char *arg, int from_tty, int internal)
10912 {
10913 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10914 }
10915
10916 /* A helper function that looks for the "-location" argument and then
10917 calls watch_command_1. */
10918
10919 static void
10920 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10921 {
10922 int just_location = 0;
10923
10924 if (arg
10925 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10926 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10927 {
10928 arg = skip_spaces (arg);
10929 just_location = 1;
10930 }
10931
10932 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10933 }
10934
10935 static void
10936 watch_command (const char *arg, int from_tty)
10937 {
10938 watch_maybe_just_location (arg, hw_write, from_tty);
10939 }
10940
10941 void
10942 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10943 {
10944 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10945 }
10946
10947 static void
10948 rwatch_command (const char *arg, int from_tty)
10949 {
10950 watch_maybe_just_location (arg, hw_read, from_tty);
10951 }
10952
10953 void
10954 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10955 {
10956 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10957 }
10958
10959 static void
10960 awatch_command (const char *arg, int from_tty)
10961 {
10962 watch_maybe_just_location (arg, hw_access, from_tty);
10963 }
10964 \f
10965
10966 /* Data for the FSM that manages the until(location)/advance commands
10967 in infcmd.c. Here because it uses the mechanisms of
10968 breakpoints. */
10969
10970 struct until_break_fsm
10971 {
10972 /* The base class. */
10973 struct thread_fsm thread_fsm;
10974
10975 /* The thread that as current when the command was executed. */
10976 int thread;
10977
10978 /* The breakpoint set at the destination location. */
10979 struct breakpoint *location_breakpoint;
10980
10981 /* Breakpoint set at the return address in the caller frame. May be
10982 NULL. */
10983 struct breakpoint *caller_breakpoint;
10984 };
10985
10986 static void until_break_fsm_clean_up (struct thread_fsm *self,
10987 struct thread_info *thread);
10988 static int until_break_fsm_should_stop (struct thread_fsm *self,
10989 struct thread_info *thread);
10990 static enum async_reply_reason
10991 until_break_fsm_async_reply_reason (struct thread_fsm *self);
10992
10993 /* until_break_fsm's vtable. */
10994
10995 static struct thread_fsm_ops until_break_fsm_ops =
10996 {
10997 NULL, /* dtor */
10998 until_break_fsm_clean_up,
10999 until_break_fsm_should_stop,
11000 NULL, /* return_value */
11001 until_break_fsm_async_reply_reason,
11002 };
11003
11004 /* Allocate a new until_break_command_fsm. */
11005
11006 static struct until_break_fsm *
11007 new_until_break_fsm (struct interp *cmd_interp, int thread,
11008 breakpoint_up &&location_breakpoint,
11009 breakpoint_up &&caller_breakpoint)
11010 {
11011 struct until_break_fsm *sm;
11012
11013 sm = XCNEW (struct until_break_fsm);
11014 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11015
11016 sm->thread = thread;
11017 sm->location_breakpoint = location_breakpoint.release ();
11018 sm->caller_breakpoint = caller_breakpoint.release ();
11019
11020 return sm;
11021 }
11022
11023 /* Implementation of the 'should_stop' FSM method for the
11024 until(location)/advance commands. */
11025
11026 static int
11027 until_break_fsm_should_stop (struct thread_fsm *self,
11028 struct thread_info *tp)
11029 {
11030 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11031
11032 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11033 sm->location_breakpoint) != NULL
11034 || (sm->caller_breakpoint != NULL
11035 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11036 sm->caller_breakpoint) != NULL))
11037 thread_fsm_set_finished (self);
11038
11039 return 1;
11040 }
11041
11042 /* Implementation of the 'clean_up' FSM method for the
11043 until(location)/advance commands. */
11044
11045 static void
11046 until_break_fsm_clean_up (struct thread_fsm *self,
11047 struct thread_info *thread)
11048 {
11049 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11050
11051 /* Clean up our temporary breakpoints. */
11052 if (sm->location_breakpoint != NULL)
11053 {
11054 delete_breakpoint (sm->location_breakpoint);
11055 sm->location_breakpoint = NULL;
11056 }
11057 if (sm->caller_breakpoint != NULL)
11058 {
11059 delete_breakpoint (sm->caller_breakpoint);
11060 sm->caller_breakpoint = NULL;
11061 }
11062 delete_longjmp_breakpoint (sm->thread);
11063 }
11064
11065 /* Implementation of the 'async_reply_reason' FSM method for the
11066 until(location)/advance commands. */
11067
11068 static enum async_reply_reason
11069 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11070 {
11071 return EXEC_ASYNC_LOCATION_REACHED;
11072 }
11073
11074 void
11075 until_break_command (const char *arg, int from_tty, int anywhere)
11076 {
11077 struct frame_info *frame;
11078 struct gdbarch *frame_gdbarch;
11079 struct frame_id stack_frame_id;
11080 struct frame_id caller_frame_id;
11081 struct cleanup *old_chain;
11082 int thread;
11083 struct thread_info *tp;
11084 struct until_break_fsm *sm;
11085
11086 clear_proceed_status (0);
11087
11088 /* Set a breakpoint where the user wants it and at return from
11089 this function. */
11090
11091 event_location_up location = string_to_event_location (&arg, current_language);
11092
11093 std::vector<symtab_and_line> sals
11094 = (last_displayed_sal_is_valid ()
11095 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11096 get_last_displayed_symtab (),
11097 get_last_displayed_line ())
11098 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11099 NULL, (struct symtab *) NULL, 0));
11100
11101 if (sals.size () != 1)
11102 error (_("Couldn't get information on specified line."));
11103
11104 symtab_and_line &sal = sals[0];
11105
11106 if (*arg)
11107 error (_("Junk at end of arguments."));
11108
11109 resolve_sal_pc (&sal);
11110
11111 tp = inferior_thread ();
11112 thread = tp->global_num;
11113
11114 old_chain = make_cleanup (null_cleanup, NULL);
11115
11116 /* Note linespec handling above invalidates the frame chain.
11117 Installing a breakpoint also invalidates the frame chain (as it
11118 may need to switch threads), so do any frame handling before
11119 that. */
11120
11121 frame = get_selected_frame (NULL);
11122 frame_gdbarch = get_frame_arch (frame);
11123 stack_frame_id = get_stack_frame_id (frame);
11124 caller_frame_id = frame_unwind_caller_id (frame);
11125
11126 /* Keep within the current frame, or in frames called by the current
11127 one. */
11128
11129 breakpoint_up caller_breakpoint;
11130 if (frame_id_p (caller_frame_id))
11131 {
11132 struct symtab_and_line sal2;
11133 struct gdbarch *caller_gdbarch;
11134
11135 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11136 sal2.pc = frame_unwind_caller_pc (frame);
11137 caller_gdbarch = frame_unwind_caller_arch (frame);
11138 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11139 sal2,
11140 caller_frame_id,
11141 bp_until);
11142
11143 set_longjmp_breakpoint (tp, caller_frame_id);
11144 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11145 }
11146
11147 /* set_momentary_breakpoint could invalidate FRAME. */
11148 frame = NULL;
11149
11150 breakpoint_up location_breakpoint;
11151 if (anywhere)
11152 /* If the user told us to continue until a specified location,
11153 we don't specify a frame at which we need to stop. */
11154 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11155 null_frame_id, bp_until);
11156 else
11157 /* Otherwise, specify the selected frame, because we want to stop
11158 only at the very same frame. */
11159 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11160 stack_frame_id, bp_until);
11161
11162 sm = new_until_break_fsm (command_interp (), tp->global_num,
11163 std::move (location_breakpoint),
11164 std::move (caller_breakpoint));
11165 tp->thread_fsm = &sm->thread_fsm;
11166
11167 discard_cleanups (old_chain);
11168
11169 proceed (-1, GDB_SIGNAL_DEFAULT);
11170 }
11171
11172 /* This function attempts to parse an optional "if <cond>" clause
11173 from the arg string. If one is not found, it returns NULL.
11174
11175 Else, it returns a pointer to the condition string. (It does not
11176 attempt to evaluate the string against a particular block.) And,
11177 it updates arg to point to the first character following the parsed
11178 if clause in the arg string. */
11179
11180 const char *
11181 ep_parse_optional_if_clause (const char **arg)
11182 {
11183 const char *cond_string;
11184
11185 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11186 return NULL;
11187
11188 /* Skip the "if" keyword. */
11189 (*arg) += 2;
11190
11191 /* Skip any extra leading whitespace, and record the start of the
11192 condition string. */
11193 *arg = skip_spaces (*arg);
11194 cond_string = *arg;
11195
11196 /* Assume that the condition occupies the remainder of the arg
11197 string. */
11198 (*arg) += strlen (cond_string);
11199
11200 return cond_string;
11201 }
11202
11203 /* Commands to deal with catching events, such as signals, exceptions,
11204 process start/exit, etc. */
11205
11206 typedef enum
11207 {
11208 catch_fork_temporary, catch_vfork_temporary,
11209 catch_fork_permanent, catch_vfork_permanent
11210 }
11211 catch_fork_kind;
11212
11213 static void
11214 catch_fork_command_1 (const char *arg, int from_tty,
11215 struct cmd_list_element *command)
11216 {
11217 struct gdbarch *gdbarch = get_current_arch ();
11218 const char *cond_string = NULL;
11219 catch_fork_kind fork_kind;
11220 int tempflag;
11221
11222 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11223 tempflag = (fork_kind == catch_fork_temporary
11224 || fork_kind == catch_vfork_temporary);
11225
11226 if (!arg)
11227 arg = "";
11228 arg = skip_spaces (arg);
11229
11230 /* The allowed syntax is:
11231 catch [v]fork
11232 catch [v]fork if <cond>
11233
11234 First, check if there's an if clause. */
11235 cond_string = ep_parse_optional_if_clause (&arg);
11236
11237 if ((*arg != '\0') && !isspace (*arg))
11238 error (_("Junk at end of arguments."));
11239
11240 /* If this target supports it, create a fork or vfork catchpoint
11241 and enable reporting of such events. */
11242 switch (fork_kind)
11243 {
11244 case catch_fork_temporary:
11245 case catch_fork_permanent:
11246 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11247 &catch_fork_breakpoint_ops);
11248 break;
11249 case catch_vfork_temporary:
11250 case catch_vfork_permanent:
11251 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11252 &catch_vfork_breakpoint_ops);
11253 break;
11254 default:
11255 error (_("unsupported or unknown fork kind; cannot catch it"));
11256 break;
11257 }
11258 }
11259
11260 static void
11261 catch_exec_command_1 (const char *arg, int from_tty,
11262 struct cmd_list_element *command)
11263 {
11264 struct gdbarch *gdbarch = get_current_arch ();
11265 int tempflag;
11266 const char *cond_string = NULL;
11267
11268 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11269
11270 if (!arg)
11271 arg = "";
11272 arg = skip_spaces (arg);
11273
11274 /* The allowed syntax is:
11275 catch exec
11276 catch exec if <cond>
11277
11278 First, check if there's an if clause. */
11279 cond_string = ep_parse_optional_if_clause (&arg);
11280
11281 if ((*arg != '\0') && !isspace (*arg))
11282 error (_("Junk at end of arguments."));
11283
11284 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11285 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11286 &catch_exec_breakpoint_ops);
11287 c->exec_pathname = NULL;
11288
11289 install_breakpoint (0, std::move (c), 1);
11290 }
11291
11292 void
11293 init_ada_exception_breakpoint (struct breakpoint *b,
11294 struct gdbarch *gdbarch,
11295 struct symtab_and_line sal,
11296 const char *addr_string,
11297 const struct breakpoint_ops *ops,
11298 int tempflag,
11299 int enabled,
11300 int from_tty)
11301 {
11302 if (from_tty)
11303 {
11304 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11305 if (!loc_gdbarch)
11306 loc_gdbarch = gdbarch;
11307
11308 describe_other_breakpoints (loc_gdbarch,
11309 sal.pspace, sal.pc, sal.section, -1);
11310 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11311 version for exception catchpoints, because two catchpoints
11312 used for different exception names will use the same address.
11313 In this case, a "breakpoint ... also set at..." warning is
11314 unproductive. Besides, the warning phrasing is also a bit
11315 inappropriate, we should use the word catchpoint, and tell
11316 the user what type of catchpoint it is. The above is good
11317 enough for now, though. */
11318 }
11319
11320 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11321
11322 b->enable_state = enabled ? bp_enabled : bp_disabled;
11323 b->disposition = tempflag ? disp_del : disp_donttouch;
11324 b->location = string_to_event_location (&addr_string,
11325 language_def (language_ada));
11326 b->language = language_ada;
11327 }
11328
11329 static void
11330 catch_command (const char *arg, int from_tty)
11331 {
11332 error (_("Catch requires an event name."));
11333 }
11334 \f
11335
11336 static void
11337 tcatch_command (const char *arg, int from_tty)
11338 {
11339 error (_("Catch requires an event name."));
11340 }
11341
11342 /* Compare two breakpoints and return a strcmp-like result. */
11343
11344 static int
11345 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11346 {
11347 uintptr_t ua = (uintptr_t) a;
11348 uintptr_t ub = (uintptr_t) b;
11349
11350 if (a->number < b->number)
11351 return -1;
11352 else if (a->number > b->number)
11353 return 1;
11354
11355 /* Now sort by address, in case we see, e..g, two breakpoints with
11356 the number 0. */
11357 if (ua < ub)
11358 return -1;
11359 return ua > ub ? 1 : 0;
11360 }
11361
11362 /* Delete breakpoints by address or line. */
11363
11364 static void
11365 clear_command (const char *arg, int from_tty)
11366 {
11367 struct breakpoint *b;
11368 int default_match;
11369
11370 std::vector<symtab_and_line> decoded_sals;
11371 symtab_and_line last_sal;
11372 gdb::array_view<symtab_and_line> sals;
11373 if (arg)
11374 {
11375 decoded_sals
11376 = decode_line_with_current_source (arg,
11377 (DECODE_LINE_FUNFIRSTLINE
11378 | DECODE_LINE_LIST_MODE));
11379 default_match = 0;
11380 sals = decoded_sals;
11381 }
11382 else
11383 {
11384 /* Set sal's line, symtab, pc, and pspace to the values
11385 corresponding to the last call to print_frame_info. If the
11386 codepoint is not valid, this will set all the fields to 0. */
11387 last_sal = get_last_displayed_sal ();
11388 if (last_sal.symtab == 0)
11389 error (_("No source file specified."));
11390
11391 default_match = 1;
11392 sals = last_sal;
11393 }
11394
11395 /* We don't call resolve_sal_pc here. That's not as bad as it
11396 seems, because all existing breakpoints typically have both
11397 file/line and pc set. So, if clear is given file/line, we can
11398 match this to existing breakpoint without obtaining pc at all.
11399
11400 We only support clearing given the address explicitly
11401 present in breakpoint table. Say, we've set breakpoint
11402 at file:line. There were several PC values for that file:line,
11403 due to optimization, all in one block.
11404
11405 We've picked one PC value. If "clear" is issued with another
11406 PC corresponding to the same file:line, the breakpoint won't
11407 be cleared. We probably can still clear the breakpoint, but
11408 since the other PC value is never presented to user, user
11409 can only find it by guessing, and it does not seem important
11410 to support that. */
11411
11412 /* For each line spec given, delete bps which correspond to it. Do
11413 it in two passes, solely to preserve the current behavior that
11414 from_tty is forced true if we delete more than one
11415 breakpoint. */
11416
11417 std::vector<struct breakpoint *> found;
11418 for (const auto &sal : sals)
11419 {
11420 const char *sal_fullname;
11421
11422 /* If exact pc given, clear bpts at that pc.
11423 If line given (pc == 0), clear all bpts on specified line.
11424 If defaulting, clear all bpts on default line
11425 or at default pc.
11426
11427 defaulting sal.pc != 0 tests to do
11428
11429 0 1 pc
11430 1 1 pc _and_ line
11431 0 0 line
11432 1 0 <can't happen> */
11433
11434 sal_fullname = (sal.symtab == NULL
11435 ? NULL : symtab_to_fullname (sal.symtab));
11436
11437 /* Find all matching breakpoints and add them to 'found'. */
11438 ALL_BREAKPOINTS (b)
11439 {
11440 int match = 0;
11441 /* Are we going to delete b? */
11442 if (b->type != bp_none && !is_watchpoint (b))
11443 {
11444 struct bp_location *loc = b->loc;
11445 for (; loc; loc = loc->next)
11446 {
11447 /* If the user specified file:line, don't allow a PC
11448 match. This matches historical gdb behavior. */
11449 int pc_match = (!sal.explicit_line
11450 && sal.pc
11451 && (loc->pspace == sal.pspace)
11452 && (loc->address == sal.pc)
11453 && (!section_is_overlay (loc->section)
11454 || loc->section == sal.section));
11455 int line_match = 0;
11456
11457 if ((default_match || sal.explicit_line)
11458 && loc->symtab != NULL
11459 && sal_fullname != NULL
11460 && sal.pspace == loc->pspace
11461 && loc->line_number == sal.line
11462 && filename_cmp (symtab_to_fullname (loc->symtab),
11463 sal_fullname) == 0)
11464 line_match = 1;
11465
11466 if (pc_match || line_match)
11467 {
11468 match = 1;
11469 break;
11470 }
11471 }
11472 }
11473
11474 if (match)
11475 found.push_back (b);
11476 }
11477 }
11478
11479 /* Now go thru the 'found' chain and delete them. */
11480 if (found.empty ())
11481 {
11482 if (arg)
11483 error (_("No breakpoint at %s."), arg);
11484 else
11485 error (_("No breakpoint at this line."));
11486 }
11487
11488 /* Remove duplicates from the vec. */
11489 std::sort (found.begin (), found.end (),
11490 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11491 {
11492 return compare_breakpoints (bp_a, bp_b) < 0;
11493 });
11494 found.erase (std::unique (found.begin (), found.end (),
11495 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11496 {
11497 return compare_breakpoints (bp_a, bp_b) == 0;
11498 }),
11499 found.end ());
11500
11501 if (found.size () > 1)
11502 from_tty = 1; /* Always report if deleted more than one. */
11503 if (from_tty)
11504 {
11505 if (found.size () == 1)
11506 printf_unfiltered (_("Deleted breakpoint "));
11507 else
11508 printf_unfiltered (_("Deleted breakpoints "));
11509 }
11510
11511 for (breakpoint *iter : found)
11512 {
11513 if (from_tty)
11514 printf_unfiltered ("%d ", iter->number);
11515 delete_breakpoint (iter);
11516 }
11517 if (from_tty)
11518 putchar_unfiltered ('\n');
11519 }
11520 \f
11521 /* Delete breakpoint in BS if they are `delete' breakpoints and
11522 all breakpoints that are marked for deletion, whether hit or not.
11523 This is called after any breakpoint is hit, or after errors. */
11524
11525 void
11526 breakpoint_auto_delete (bpstat bs)
11527 {
11528 struct breakpoint *b, *b_tmp;
11529
11530 for (; bs; bs = bs->next)
11531 if (bs->breakpoint_at
11532 && bs->breakpoint_at->disposition == disp_del
11533 && bs->stop)
11534 delete_breakpoint (bs->breakpoint_at);
11535
11536 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11537 {
11538 if (b->disposition == disp_del_at_next_stop)
11539 delete_breakpoint (b);
11540 }
11541 }
11542
11543 /* A comparison function for bp_location AP and BP being interfaced to
11544 qsort. Sort elements primarily by their ADDRESS (no matter what
11545 does breakpoint_address_is_meaningful say for its OWNER),
11546 secondarily by ordering first permanent elements and
11547 terciarily just ensuring the array is sorted stable way despite
11548 qsort being an unstable algorithm. */
11549
11550 static int
11551 bp_locations_compare (const void *ap, const void *bp)
11552 {
11553 const struct bp_location *a = *(const struct bp_location **) ap;
11554 const struct bp_location *b = *(const struct bp_location **) bp;
11555
11556 if (a->address != b->address)
11557 return (a->address > b->address) - (a->address < b->address);
11558
11559 /* Sort locations at the same address by their pspace number, keeping
11560 locations of the same inferior (in a multi-inferior environment)
11561 grouped. */
11562
11563 if (a->pspace->num != b->pspace->num)
11564 return ((a->pspace->num > b->pspace->num)
11565 - (a->pspace->num < b->pspace->num));
11566
11567 /* Sort permanent breakpoints first. */
11568 if (a->permanent != b->permanent)
11569 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11570
11571 /* Make the internal GDB representation stable across GDB runs
11572 where A and B memory inside GDB can differ. Breakpoint locations of
11573 the same type at the same address can be sorted in arbitrary order. */
11574
11575 if (a->owner->number != b->owner->number)
11576 return ((a->owner->number > b->owner->number)
11577 - (a->owner->number < b->owner->number));
11578
11579 return (a > b) - (a < b);
11580 }
11581
11582 /* Set bp_locations_placed_address_before_address_max and
11583 bp_locations_shadow_len_after_address_max according to the current
11584 content of the bp_locations array. */
11585
11586 static void
11587 bp_locations_target_extensions_update (void)
11588 {
11589 struct bp_location *bl, **blp_tmp;
11590
11591 bp_locations_placed_address_before_address_max = 0;
11592 bp_locations_shadow_len_after_address_max = 0;
11593
11594 ALL_BP_LOCATIONS (bl, blp_tmp)
11595 {
11596 CORE_ADDR start, end, addr;
11597
11598 if (!bp_location_has_shadow (bl))
11599 continue;
11600
11601 start = bl->target_info.placed_address;
11602 end = start + bl->target_info.shadow_len;
11603
11604 gdb_assert (bl->address >= start);
11605 addr = bl->address - start;
11606 if (addr > bp_locations_placed_address_before_address_max)
11607 bp_locations_placed_address_before_address_max = addr;
11608
11609 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11610
11611 gdb_assert (bl->address < end);
11612 addr = end - bl->address;
11613 if (addr > bp_locations_shadow_len_after_address_max)
11614 bp_locations_shadow_len_after_address_max = addr;
11615 }
11616 }
11617
11618 /* Download tracepoint locations if they haven't been. */
11619
11620 static void
11621 download_tracepoint_locations (void)
11622 {
11623 struct breakpoint *b;
11624 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11625
11626 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11627
11628 ALL_TRACEPOINTS (b)
11629 {
11630 struct bp_location *bl;
11631 struct tracepoint *t;
11632 int bp_location_downloaded = 0;
11633
11634 if ((b->type == bp_fast_tracepoint
11635 ? !may_insert_fast_tracepoints
11636 : !may_insert_tracepoints))
11637 continue;
11638
11639 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11640 {
11641 if (target_can_download_tracepoint ())
11642 can_download_tracepoint = TRIBOOL_TRUE;
11643 else
11644 can_download_tracepoint = TRIBOOL_FALSE;
11645 }
11646
11647 if (can_download_tracepoint == TRIBOOL_FALSE)
11648 break;
11649
11650 for (bl = b->loc; bl; bl = bl->next)
11651 {
11652 /* In tracepoint, locations are _never_ duplicated, so
11653 should_be_inserted is equivalent to
11654 unduplicated_should_be_inserted. */
11655 if (!should_be_inserted (bl) || bl->inserted)
11656 continue;
11657
11658 switch_to_program_space_and_thread (bl->pspace);
11659
11660 target_download_tracepoint (bl);
11661
11662 bl->inserted = 1;
11663 bp_location_downloaded = 1;
11664 }
11665 t = (struct tracepoint *) b;
11666 t->number_on_target = b->number;
11667 if (bp_location_downloaded)
11668 gdb::observers::breakpoint_modified.notify (b);
11669 }
11670 }
11671
11672 /* Swap the insertion/duplication state between two locations. */
11673
11674 static void
11675 swap_insertion (struct bp_location *left, struct bp_location *right)
11676 {
11677 const int left_inserted = left->inserted;
11678 const int left_duplicate = left->duplicate;
11679 const int left_needs_update = left->needs_update;
11680 const struct bp_target_info left_target_info = left->target_info;
11681
11682 /* Locations of tracepoints can never be duplicated. */
11683 if (is_tracepoint (left->owner))
11684 gdb_assert (!left->duplicate);
11685 if (is_tracepoint (right->owner))
11686 gdb_assert (!right->duplicate);
11687
11688 left->inserted = right->inserted;
11689 left->duplicate = right->duplicate;
11690 left->needs_update = right->needs_update;
11691 left->target_info = right->target_info;
11692 right->inserted = left_inserted;
11693 right->duplicate = left_duplicate;
11694 right->needs_update = left_needs_update;
11695 right->target_info = left_target_info;
11696 }
11697
11698 /* Force the re-insertion of the locations at ADDRESS. This is called
11699 once a new/deleted/modified duplicate location is found and we are evaluating
11700 conditions on the target's side. Such conditions need to be updated on
11701 the target. */
11702
11703 static void
11704 force_breakpoint_reinsertion (struct bp_location *bl)
11705 {
11706 struct bp_location **locp = NULL, **loc2p;
11707 struct bp_location *loc;
11708 CORE_ADDR address = 0;
11709 int pspace_num;
11710
11711 address = bl->address;
11712 pspace_num = bl->pspace->num;
11713
11714 /* This is only meaningful if the target is
11715 evaluating conditions and if the user has
11716 opted for condition evaluation on the target's
11717 side. */
11718 if (gdb_evaluates_breakpoint_condition_p ()
11719 || !target_supports_evaluation_of_breakpoint_conditions ())
11720 return;
11721
11722 /* Flag all breakpoint locations with this address and
11723 the same program space as the location
11724 as "its condition has changed". We need to
11725 update the conditions on the target's side. */
11726 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11727 {
11728 loc = *loc2p;
11729
11730 if (!is_breakpoint (loc->owner)
11731 || pspace_num != loc->pspace->num)
11732 continue;
11733
11734 /* Flag the location appropriately. We use a different state to
11735 let everyone know that we already updated the set of locations
11736 with addr bl->address and program space bl->pspace. This is so
11737 we don't have to keep calling these functions just to mark locations
11738 that have already been marked. */
11739 loc->condition_changed = condition_updated;
11740
11741 /* Free the agent expression bytecode as well. We will compute
11742 it later on. */
11743 loc->cond_bytecode.reset ();
11744 }
11745 }
11746 /* Called whether new breakpoints are created, or existing breakpoints
11747 deleted, to update the global location list and recompute which
11748 locations are duplicate of which.
11749
11750 The INSERT_MODE flag determines whether locations may not, may, or
11751 shall be inserted now. See 'enum ugll_insert_mode' for more
11752 info. */
11753
11754 static void
11755 update_global_location_list (enum ugll_insert_mode insert_mode)
11756 {
11757 struct breakpoint *b;
11758 struct bp_location **locp, *loc;
11759 /* Last breakpoint location address that was marked for update. */
11760 CORE_ADDR last_addr = 0;
11761 /* Last breakpoint location program space that was marked for update. */
11762 int last_pspace_num = -1;
11763
11764 /* Used in the duplicates detection below. When iterating over all
11765 bp_locations, points to the first bp_location of a given address.
11766 Breakpoints and watchpoints of different types are never
11767 duplicates of each other. Keep one pointer for each type of
11768 breakpoint/watchpoint, so we only need to loop over all locations
11769 once. */
11770 struct bp_location *bp_loc_first; /* breakpoint */
11771 struct bp_location *wp_loc_first; /* hardware watchpoint */
11772 struct bp_location *awp_loc_first; /* access watchpoint */
11773 struct bp_location *rwp_loc_first; /* read watchpoint */
11774
11775 /* Saved former bp_locations array which we compare against the newly
11776 built bp_locations from the current state of ALL_BREAKPOINTS. */
11777 struct bp_location **old_locp;
11778 unsigned old_locations_count;
11779 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11780
11781 old_locations_count = bp_locations_count;
11782 bp_locations = NULL;
11783 bp_locations_count = 0;
11784
11785 ALL_BREAKPOINTS (b)
11786 for (loc = b->loc; loc; loc = loc->next)
11787 bp_locations_count++;
11788
11789 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11790 locp = bp_locations;
11791 ALL_BREAKPOINTS (b)
11792 for (loc = b->loc; loc; loc = loc->next)
11793 *locp++ = loc;
11794 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11795 bp_locations_compare);
11796
11797 bp_locations_target_extensions_update ();
11798
11799 /* Identify bp_location instances that are no longer present in the
11800 new list, and therefore should be freed. Note that it's not
11801 necessary that those locations should be removed from inferior --
11802 if there's another location at the same address (previously
11803 marked as duplicate), we don't need to remove/insert the
11804 location.
11805
11806 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11807 and former bp_location array state respectively. */
11808
11809 locp = bp_locations;
11810 for (old_locp = old_locations.get ();
11811 old_locp < old_locations.get () + old_locations_count;
11812 old_locp++)
11813 {
11814 struct bp_location *old_loc = *old_locp;
11815 struct bp_location **loc2p;
11816
11817 /* Tells if 'old_loc' is found among the new locations. If
11818 not, we have to free it. */
11819 int found_object = 0;
11820 /* Tells if the location should remain inserted in the target. */
11821 int keep_in_target = 0;
11822 int removed = 0;
11823
11824 /* Skip LOCP entries which will definitely never be needed.
11825 Stop either at or being the one matching OLD_LOC. */
11826 while (locp < bp_locations + bp_locations_count
11827 && (*locp)->address < old_loc->address)
11828 locp++;
11829
11830 for (loc2p = locp;
11831 (loc2p < bp_locations + bp_locations_count
11832 && (*loc2p)->address == old_loc->address);
11833 loc2p++)
11834 {
11835 /* Check if this is a new/duplicated location or a duplicated
11836 location that had its condition modified. If so, we want to send
11837 its condition to the target if evaluation of conditions is taking
11838 place there. */
11839 if ((*loc2p)->condition_changed == condition_modified
11840 && (last_addr != old_loc->address
11841 || last_pspace_num != old_loc->pspace->num))
11842 {
11843 force_breakpoint_reinsertion (*loc2p);
11844 last_pspace_num = old_loc->pspace->num;
11845 }
11846
11847 if (*loc2p == old_loc)
11848 found_object = 1;
11849 }
11850
11851 /* We have already handled this address, update it so that we don't
11852 have to go through updates again. */
11853 last_addr = old_loc->address;
11854
11855 /* Target-side condition evaluation: Handle deleted locations. */
11856 if (!found_object)
11857 force_breakpoint_reinsertion (old_loc);
11858
11859 /* If this location is no longer present, and inserted, look if
11860 there's maybe a new location at the same address. If so,
11861 mark that one inserted, and don't remove this one. This is
11862 needed so that we don't have a time window where a breakpoint
11863 at certain location is not inserted. */
11864
11865 if (old_loc->inserted)
11866 {
11867 /* If the location is inserted now, we might have to remove
11868 it. */
11869
11870 if (found_object && should_be_inserted (old_loc))
11871 {
11872 /* The location is still present in the location list,
11873 and still should be inserted. Don't do anything. */
11874 keep_in_target = 1;
11875 }
11876 else
11877 {
11878 /* This location still exists, but it won't be kept in the
11879 target since it may have been disabled. We proceed to
11880 remove its target-side condition. */
11881
11882 /* The location is either no longer present, or got
11883 disabled. See if there's another location at the
11884 same address, in which case we don't need to remove
11885 this one from the target. */
11886
11887 /* OLD_LOC comes from existing struct breakpoint. */
11888 if (breakpoint_address_is_meaningful (old_loc->owner))
11889 {
11890 for (loc2p = locp;
11891 (loc2p < bp_locations + bp_locations_count
11892 && (*loc2p)->address == old_loc->address);
11893 loc2p++)
11894 {
11895 struct bp_location *loc2 = *loc2p;
11896
11897 if (breakpoint_locations_match (loc2, old_loc))
11898 {
11899 /* Read watchpoint locations are switched to
11900 access watchpoints, if the former are not
11901 supported, but the latter are. */
11902 if (is_hardware_watchpoint (old_loc->owner))
11903 {
11904 gdb_assert (is_hardware_watchpoint (loc2->owner));
11905 loc2->watchpoint_type = old_loc->watchpoint_type;
11906 }
11907
11908 /* loc2 is a duplicated location. We need to check
11909 if it should be inserted in case it will be
11910 unduplicated. */
11911 if (loc2 != old_loc
11912 && unduplicated_should_be_inserted (loc2))
11913 {
11914 swap_insertion (old_loc, loc2);
11915 keep_in_target = 1;
11916 break;
11917 }
11918 }
11919 }
11920 }
11921 }
11922
11923 if (!keep_in_target)
11924 {
11925 if (remove_breakpoint (old_loc))
11926 {
11927 /* This is just about all we can do. We could keep
11928 this location on the global list, and try to
11929 remove it next time, but there's no particular
11930 reason why we will succeed next time.
11931
11932 Note that at this point, old_loc->owner is still
11933 valid, as delete_breakpoint frees the breakpoint
11934 only after calling us. */
11935 printf_filtered (_("warning: Error removing "
11936 "breakpoint %d\n"),
11937 old_loc->owner->number);
11938 }
11939 removed = 1;
11940 }
11941 }
11942
11943 if (!found_object)
11944 {
11945 if (removed && target_is_non_stop_p ()
11946 && need_moribund_for_location_type (old_loc))
11947 {
11948 /* This location was removed from the target. In
11949 non-stop mode, a race condition is possible where
11950 we've removed a breakpoint, but stop events for that
11951 breakpoint are already queued and will arrive later.
11952 We apply an heuristic to be able to distinguish such
11953 SIGTRAPs from other random SIGTRAPs: we keep this
11954 breakpoint location for a bit, and will retire it
11955 after we see some number of events. The theory here
11956 is that reporting of events should, "on the average",
11957 be fair, so after a while we'll see events from all
11958 threads that have anything of interest, and no longer
11959 need to keep this breakpoint location around. We
11960 don't hold locations forever so to reduce chances of
11961 mistaking a non-breakpoint SIGTRAP for a breakpoint
11962 SIGTRAP.
11963
11964 The heuristic failing can be disastrous on
11965 decr_pc_after_break targets.
11966
11967 On decr_pc_after_break targets, like e.g., x86-linux,
11968 if we fail to recognize a late breakpoint SIGTRAP,
11969 because events_till_retirement has reached 0 too
11970 soon, we'll fail to do the PC adjustment, and report
11971 a random SIGTRAP to the user. When the user resumes
11972 the inferior, it will most likely immediately crash
11973 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11974 corrupted, because of being resumed e.g., in the
11975 middle of a multi-byte instruction, or skipped a
11976 one-byte instruction. This was actually seen happen
11977 on native x86-linux, and should be less rare on
11978 targets that do not support new thread events, like
11979 remote, due to the heuristic depending on
11980 thread_count.
11981
11982 Mistaking a random SIGTRAP for a breakpoint trap
11983 causes similar symptoms (PC adjustment applied when
11984 it shouldn't), but then again, playing with SIGTRAPs
11985 behind the debugger's back is asking for trouble.
11986
11987 Since hardware watchpoint traps are always
11988 distinguishable from other traps, so we don't need to
11989 apply keep hardware watchpoint moribund locations
11990 around. We simply always ignore hardware watchpoint
11991 traps we can no longer explain. */
11992
11993 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11994 old_loc->owner = NULL;
11995
11996 moribund_locations.push_back (old_loc);
11997 }
11998 else
11999 {
12000 old_loc->owner = NULL;
12001 decref_bp_location (&old_loc);
12002 }
12003 }
12004 }
12005
12006 /* Rescan breakpoints at the same address and section, marking the
12007 first one as "first" and any others as "duplicates". This is so
12008 that the bpt instruction is only inserted once. If we have a
12009 permanent breakpoint at the same place as BPT, make that one the
12010 official one, and the rest as duplicates. Permanent breakpoints
12011 are sorted first for the same address.
12012
12013 Do the same for hardware watchpoints, but also considering the
12014 watchpoint's type (regular/access/read) and length. */
12015
12016 bp_loc_first = NULL;
12017 wp_loc_first = NULL;
12018 awp_loc_first = NULL;
12019 rwp_loc_first = NULL;
12020 ALL_BP_LOCATIONS (loc, locp)
12021 {
12022 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12023 non-NULL. */
12024 struct bp_location **loc_first_p;
12025 b = loc->owner;
12026
12027 if (!unduplicated_should_be_inserted (loc)
12028 || !breakpoint_address_is_meaningful (b)
12029 /* Don't detect duplicate for tracepoint locations because they are
12030 never duplicated. See the comments in field `duplicate' of
12031 `struct bp_location'. */
12032 || is_tracepoint (b))
12033 {
12034 /* Clear the condition modification flag. */
12035 loc->condition_changed = condition_unchanged;
12036 continue;
12037 }
12038
12039 if (b->type == bp_hardware_watchpoint)
12040 loc_first_p = &wp_loc_first;
12041 else if (b->type == bp_read_watchpoint)
12042 loc_first_p = &rwp_loc_first;
12043 else if (b->type == bp_access_watchpoint)
12044 loc_first_p = &awp_loc_first;
12045 else
12046 loc_first_p = &bp_loc_first;
12047
12048 if (*loc_first_p == NULL
12049 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12050 || !breakpoint_locations_match (loc, *loc_first_p))
12051 {
12052 *loc_first_p = loc;
12053 loc->duplicate = 0;
12054
12055 if (is_breakpoint (loc->owner) && loc->condition_changed)
12056 {
12057 loc->needs_update = 1;
12058 /* Clear the condition modification flag. */
12059 loc->condition_changed = condition_unchanged;
12060 }
12061 continue;
12062 }
12063
12064
12065 /* This and the above ensure the invariant that the first location
12066 is not duplicated, and is the inserted one.
12067 All following are marked as duplicated, and are not inserted. */
12068 if (loc->inserted)
12069 swap_insertion (loc, *loc_first_p);
12070 loc->duplicate = 1;
12071
12072 /* Clear the condition modification flag. */
12073 loc->condition_changed = condition_unchanged;
12074 }
12075
12076 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12077 {
12078 if (insert_mode != UGLL_DONT_INSERT)
12079 insert_breakpoint_locations ();
12080 else
12081 {
12082 /* Even though the caller told us to not insert new
12083 locations, we may still need to update conditions on the
12084 target's side of breakpoints that were already inserted
12085 if the target is evaluating breakpoint conditions. We
12086 only update conditions for locations that are marked
12087 "needs_update". */
12088 update_inserted_breakpoint_locations ();
12089 }
12090 }
12091
12092 if (insert_mode != UGLL_DONT_INSERT)
12093 download_tracepoint_locations ();
12094 }
12095
12096 void
12097 breakpoint_retire_moribund (void)
12098 {
12099 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12100 {
12101 struct bp_location *loc = moribund_locations[ix];
12102 if (--(loc->events_till_retirement) == 0)
12103 {
12104 decref_bp_location (&loc);
12105 unordered_remove (moribund_locations, ix);
12106 --ix;
12107 }
12108 }
12109 }
12110
12111 static void
12112 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12113 {
12114
12115 TRY
12116 {
12117 update_global_location_list (insert_mode);
12118 }
12119 CATCH (e, RETURN_MASK_ERROR)
12120 {
12121 }
12122 END_CATCH
12123 }
12124
12125 /* Clear BKP from a BPS. */
12126
12127 static void
12128 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12129 {
12130 bpstat bs;
12131
12132 for (bs = bps; bs; bs = bs->next)
12133 if (bs->breakpoint_at == bpt)
12134 {
12135 bs->breakpoint_at = NULL;
12136 bs->old_val = NULL;
12137 /* bs->commands will be freed later. */
12138 }
12139 }
12140
12141 /* Callback for iterate_over_threads. */
12142 static int
12143 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12144 {
12145 struct breakpoint *bpt = (struct breakpoint *) data;
12146
12147 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12148 return 0;
12149 }
12150
12151 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12152 callbacks. */
12153
12154 static void
12155 say_where (struct breakpoint *b)
12156 {
12157 struct value_print_options opts;
12158
12159 get_user_print_options (&opts);
12160
12161 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12162 single string. */
12163 if (b->loc == NULL)
12164 {
12165 /* For pending locations, the output differs slightly based
12166 on b->extra_string. If this is non-NULL, it contains either
12167 a condition or dprintf arguments. */
12168 if (b->extra_string == NULL)
12169 {
12170 printf_filtered (_(" (%s) pending."),
12171 event_location_to_string (b->location.get ()));
12172 }
12173 else if (b->type == bp_dprintf)
12174 {
12175 printf_filtered (_(" (%s,%s) pending."),
12176 event_location_to_string (b->location.get ()),
12177 b->extra_string);
12178 }
12179 else
12180 {
12181 printf_filtered (_(" (%s %s) pending."),
12182 event_location_to_string (b->location.get ()),
12183 b->extra_string);
12184 }
12185 }
12186 else
12187 {
12188 if (opts.addressprint || b->loc->symtab == NULL)
12189 {
12190 printf_filtered (" at ");
12191 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12192 gdb_stdout);
12193 }
12194 if (b->loc->symtab != NULL)
12195 {
12196 /* If there is a single location, we can print the location
12197 more nicely. */
12198 if (b->loc->next == NULL)
12199 {
12200 puts_filtered (": file ");
12201 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12202 file_name_style.style (),
12203 gdb_stdout);
12204 printf_filtered (", line %d.",
12205 b->loc->line_number);
12206 }
12207 else
12208 /* This is not ideal, but each location may have a
12209 different file name, and this at least reflects the
12210 real situation somewhat. */
12211 printf_filtered (": %s.",
12212 event_location_to_string (b->location.get ()));
12213 }
12214
12215 if (b->loc->next)
12216 {
12217 struct bp_location *loc = b->loc;
12218 int n = 0;
12219 for (; loc; loc = loc->next)
12220 ++n;
12221 printf_filtered (" (%d locations)", n);
12222 }
12223 }
12224 }
12225
12226 /* Default bp_location_ops methods. */
12227
12228 static void
12229 bp_location_dtor (struct bp_location *self)
12230 {
12231 xfree (self->function_name);
12232 }
12233
12234 static const struct bp_location_ops bp_location_ops =
12235 {
12236 bp_location_dtor
12237 };
12238
12239 /* Destructor for the breakpoint base class. */
12240
12241 breakpoint::~breakpoint ()
12242 {
12243 xfree (this->cond_string);
12244 xfree (this->extra_string);
12245 xfree (this->filter);
12246 }
12247
12248 static struct bp_location *
12249 base_breakpoint_allocate_location (struct breakpoint *self)
12250 {
12251 return new bp_location (&bp_location_ops, self);
12252 }
12253
12254 static void
12255 base_breakpoint_re_set (struct breakpoint *b)
12256 {
12257 /* Nothing to re-set. */
12258 }
12259
12260 #define internal_error_pure_virtual_called() \
12261 gdb_assert_not_reached ("pure virtual function called")
12262
12263 static int
12264 base_breakpoint_insert_location (struct bp_location *bl)
12265 {
12266 internal_error_pure_virtual_called ();
12267 }
12268
12269 static int
12270 base_breakpoint_remove_location (struct bp_location *bl,
12271 enum remove_bp_reason reason)
12272 {
12273 internal_error_pure_virtual_called ();
12274 }
12275
12276 static int
12277 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12278 const address_space *aspace,
12279 CORE_ADDR bp_addr,
12280 const struct target_waitstatus *ws)
12281 {
12282 internal_error_pure_virtual_called ();
12283 }
12284
12285 static void
12286 base_breakpoint_check_status (bpstat bs)
12287 {
12288 /* Always stop. */
12289 }
12290
12291 /* A "works_in_software_mode" breakpoint_ops method that just internal
12292 errors. */
12293
12294 static int
12295 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12296 {
12297 internal_error_pure_virtual_called ();
12298 }
12299
12300 /* A "resources_needed" breakpoint_ops method that just internal
12301 errors. */
12302
12303 static int
12304 base_breakpoint_resources_needed (const struct bp_location *bl)
12305 {
12306 internal_error_pure_virtual_called ();
12307 }
12308
12309 static enum print_stop_action
12310 base_breakpoint_print_it (bpstat bs)
12311 {
12312 internal_error_pure_virtual_called ();
12313 }
12314
12315 static void
12316 base_breakpoint_print_one_detail (const struct breakpoint *self,
12317 struct ui_out *uiout)
12318 {
12319 /* nothing */
12320 }
12321
12322 static void
12323 base_breakpoint_print_mention (struct breakpoint *b)
12324 {
12325 internal_error_pure_virtual_called ();
12326 }
12327
12328 static void
12329 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12330 {
12331 internal_error_pure_virtual_called ();
12332 }
12333
12334 static void
12335 base_breakpoint_create_sals_from_location
12336 (const struct event_location *location,
12337 struct linespec_result *canonical,
12338 enum bptype type_wanted)
12339 {
12340 internal_error_pure_virtual_called ();
12341 }
12342
12343 static void
12344 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12345 struct linespec_result *c,
12346 gdb::unique_xmalloc_ptr<char> cond_string,
12347 gdb::unique_xmalloc_ptr<char> extra_string,
12348 enum bptype type_wanted,
12349 enum bpdisp disposition,
12350 int thread,
12351 int task, int ignore_count,
12352 const struct breakpoint_ops *o,
12353 int from_tty, int enabled,
12354 int internal, unsigned flags)
12355 {
12356 internal_error_pure_virtual_called ();
12357 }
12358
12359 static std::vector<symtab_and_line>
12360 base_breakpoint_decode_location (struct breakpoint *b,
12361 const struct event_location *location,
12362 struct program_space *search_pspace)
12363 {
12364 internal_error_pure_virtual_called ();
12365 }
12366
12367 /* The default 'explains_signal' method. */
12368
12369 static int
12370 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12371 {
12372 return 1;
12373 }
12374
12375 /* The default "after_condition_true" method. */
12376
12377 static void
12378 base_breakpoint_after_condition_true (struct bpstats *bs)
12379 {
12380 /* Nothing to do. */
12381 }
12382
12383 struct breakpoint_ops base_breakpoint_ops =
12384 {
12385 base_breakpoint_allocate_location,
12386 base_breakpoint_re_set,
12387 base_breakpoint_insert_location,
12388 base_breakpoint_remove_location,
12389 base_breakpoint_breakpoint_hit,
12390 base_breakpoint_check_status,
12391 base_breakpoint_resources_needed,
12392 base_breakpoint_works_in_software_mode,
12393 base_breakpoint_print_it,
12394 NULL,
12395 base_breakpoint_print_one_detail,
12396 base_breakpoint_print_mention,
12397 base_breakpoint_print_recreate,
12398 base_breakpoint_create_sals_from_location,
12399 base_breakpoint_create_breakpoints_sal,
12400 base_breakpoint_decode_location,
12401 base_breakpoint_explains_signal,
12402 base_breakpoint_after_condition_true,
12403 };
12404
12405 /* Default breakpoint_ops methods. */
12406
12407 static void
12408 bkpt_re_set (struct breakpoint *b)
12409 {
12410 /* FIXME: is this still reachable? */
12411 if (breakpoint_event_location_empty_p (b))
12412 {
12413 /* Anything without a location can't be re-set. */
12414 delete_breakpoint (b);
12415 return;
12416 }
12417
12418 breakpoint_re_set_default (b);
12419 }
12420
12421 static int
12422 bkpt_insert_location (struct bp_location *bl)
12423 {
12424 CORE_ADDR addr = bl->target_info.reqstd_address;
12425
12426 bl->target_info.kind = breakpoint_kind (bl, &addr);
12427 bl->target_info.placed_address = addr;
12428
12429 if (bl->loc_type == bp_loc_hardware_breakpoint)
12430 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12431 else
12432 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12433 }
12434
12435 static int
12436 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12437 {
12438 if (bl->loc_type == bp_loc_hardware_breakpoint)
12439 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12440 else
12441 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12442 }
12443
12444 static int
12445 bkpt_breakpoint_hit (const struct bp_location *bl,
12446 const address_space *aspace, CORE_ADDR bp_addr,
12447 const struct target_waitstatus *ws)
12448 {
12449 if (ws->kind != TARGET_WAITKIND_STOPPED
12450 || ws->value.sig != GDB_SIGNAL_TRAP)
12451 return 0;
12452
12453 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12454 aspace, bp_addr))
12455 return 0;
12456
12457 if (overlay_debugging /* unmapped overlay section */
12458 && section_is_overlay (bl->section)
12459 && !section_is_mapped (bl->section))
12460 return 0;
12461
12462 return 1;
12463 }
12464
12465 static int
12466 dprintf_breakpoint_hit (const struct bp_location *bl,
12467 const address_space *aspace, CORE_ADDR bp_addr,
12468 const struct target_waitstatus *ws)
12469 {
12470 if (dprintf_style == dprintf_style_agent
12471 && target_can_run_breakpoint_commands ())
12472 {
12473 /* An agent-style dprintf never causes a stop. If we see a trap
12474 for this address it must be for a breakpoint that happens to
12475 be set at the same address. */
12476 return 0;
12477 }
12478
12479 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12480 }
12481
12482 static int
12483 bkpt_resources_needed (const struct bp_location *bl)
12484 {
12485 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12486
12487 return 1;
12488 }
12489
12490 static enum print_stop_action
12491 bkpt_print_it (bpstat bs)
12492 {
12493 struct breakpoint *b;
12494 const struct bp_location *bl;
12495 int bp_temp;
12496 struct ui_out *uiout = current_uiout;
12497
12498 gdb_assert (bs->bp_location_at != NULL);
12499
12500 bl = bs->bp_location_at;
12501 b = bs->breakpoint_at;
12502
12503 bp_temp = b->disposition == disp_del;
12504 if (bl->address != bl->requested_address)
12505 breakpoint_adjustment_warning (bl->requested_address,
12506 bl->address,
12507 b->number, 1);
12508 annotate_breakpoint (b->number);
12509 maybe_print_thread_hit_breakpoint (uiout);
12510
12511 if (bp_temp)
12512 uiout->text ("Temporary breakpoint ");
12513 else
12514 uiout->text ("Breakpoint ");
12515 if (uiout->is_mi_like_p ())
12516 {
12517 uiout->field_string ("reason",
12518 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12519 uiout->field_string ("disp", bpdisp_text (b->disposition));
12520 }
12521 uiout->field_int ("bkptno", b->number);
12522 uiout->text (", ");
12523
12524 return PRINT_SRC_AND_LOC;
12525 }
12526
12527 static void
12528 bkpt_print_mention (struct breakpoint *b)
12529 {
12530 if (current_uiout->is_mi_like_p ())
12531 return;
12532
12533 switch (b->type)
12534 {
12535 case bp_breakpoint:
12536 case bp_gnu_ifunc_resolver:
12537 if (b->disposition == disp_del)
12538 printf_filtered (_("Temporary breakpoint"));
12539 else
12540 printf_filtered (_("Breakpoint"));
12541 printf_filtered (_(" %d"), b->number);
12542 if (b->type == bp_gnu_ifunc_resolver)
12543 printf_filtered (_(" at gnu-indirect-function resolver"));
12544 break;
12545 case bp_hardware_breakpoint:
12546 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12547 break;
12548 case bp_dprintf:
12549 printf_filtered (_("Dprintf %d"), b->number);
12550 break;
12551 }
12552
12553 say_where (b);
12554 }
12555
12556 static void
12557 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12558 {
12559 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12560 fprintf_unfiltered (fp, "tbreak");
12561 else if (tp->type == bp_breakpoint)
12562 fprintf_unfiltered (fp, "break");
12563 else if (tp->type == bp_hardware_breakpoint
12564 && tp->disposition == disp_del)
12565 fprintf_unfiltered (fp, "thbreak");
12566 else if (tp->type == bp_hardware_breakpoint)
12567 fprintf_unfiltered (fp, "hbreak");
12568 else
12569 internal_error (__FILE__, __LINE__,
12570 _("unhandled breakpoint type %d"), (int) tp->type);
12571
12572 fprintf_unfiltered (fp, " %s",
12573 event_location_to_string (tp->location.get ()));
12574
12575 /* Print out extra_string if this breakpoint is pending. It might
12576 contain, for example, conditions that were set by the user. */
12577 if (tp->loc == NULL && tp->extra_string != NULL)
12578 fprintf_unfiltered (fp, " %s", tp->extra_string);
12579
12580 print_recreate_thread (tp, fp);
12581 }
12582
12583 static void
12584 bkpt_create_sals_from_location (const struct event_location *location,
12585 struct linespec_result *canonical,
12586 enum bptype type_wanted)
12587 {
12588 create_sals_from_location_default (location, canonical, type_wanted);
12589 }
12590
12591 static void
12592 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12593 struct linespec_result *canonical,
12594 gdb::unique_xmalloc_ptr<char> cond_string,
12595 gdb::unique_xmalloc_ptr<char> extra_string,
12596 enum bptype type_wanted,
12597 enum bpdisp disposition,
12598 int thread,
12599 int task, int ignore_count,
12600 const struct breakpoint_ops *ops,
12601 int from_tty, int enabled,
12602 int internal, unsigned flags)
12603 {
12604 create_breakpoints_sal_default (gdbarch, canonical,
12605 std::move (cond_string),
12606 std::move (extra_string),
12607 type_wanted,
12608 disposition, thread, task,
12609 ignore_count, ops, from_tty,
12610 enabled, internal, flags);
12611 }
12612
12613 static std::vector<symtab_and_line>
12614 bkpt_decode_location (struct breakpoint *b,
12615 const struct event_location *location,
12616 struct program_space *search_pspace)
12617 {
12618 return decode_location_default (b, location, search_pspace);
12619 }
12620
12621 /* Virtual table for internal breakpoints. */
12622
12623 static void
12624 internal_bkpt_re_set (struct breakpoint *b)
12625 {
12626 switch (b->type)
12627 {
12628 /* Delete overlay event and longjmp master breakpoints; they
12629 will be reset later by breakpoint_re_set. */
12630 case bp_overlay_event:
12631 case bp_longjmp_master:
12632 case bp_std_terminate_master:
12633 case bp_exception_master:
12634 delete_breakpoint (b);
12635 break;
12636
12637 /* This breakpoint is special, it's set up when the inferior
12638 starts and we really don't want to touch it. */
12639 case bp_shlib_event:
12640
12641 /* Like bp_shlib_event, this breakpoint type is special. Once
12642 it is set up, we do not want to touch it. */
12643 case bp_thread_event:
12644 break;
12645 }
12646 }
12647
12648 static void
12649 internal_bkpt_check_status (bpstat bs)
12650 {
12651 if (bs->breakpoint_at->type == bp_shlib_event)
12652 {
12653 /* If requested, stop when the dynamic linker notifies GDB of
12654 events. This allows the user to get control and place
12655 breakpoints in initializer routines for dynamically loaded
12656 objects (among other things). */
12657 bs->stop = stop_on_solib_events;
12658 bs->print = stop_on_solib_events;
12659 }
12660 else
12661 bs->stop = 0;
12662 }
12663
12664 static enum print_stop_action
12665 internal_bkpt_print_it (bpstat bs)
12666 {
12667 struct breakpoint *b;
12668
12669 b = bs->breakpoint_at;
12670
12671 switch (b->type)
12672 {
12673 case bp_shlib_event:
12674 /* Did we stop because the user set the stop_on_solib_events
12675 variable? (If so, we report this as a generic, "Stopped due
12676 to shlib event" message.) */
12677 print_solib_event (0);
12678 break;
12679
12680 case bp_thread_event:
12681 /* Not sure how we will get here.
12682 GDB should not stop for these breakpoints. */
12683 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12684 break;
12685
12686 case bp_overlay_event:
12687 /* By analogy with the thread event, GDB should not stop for these. */
12688 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12689 break;
12690
12691 case bp_longjmp_master:
12692 /* These should never be enabled. */
12693 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12694 break;
12695
12696 case bp_std_terminate_master:
12697 /* These should never be enabled. */
12698 printf_filtered (_("std::terminate Master Breakpoint: "
12699 "gdb should not stop!\n"));
12700 break;
12701
12702 case bp_exception_master:
12703 /* These should never be enabled. */
12704 printf_filtered (_("Exception Master Breakpoint: "
12705 "gdb should not stop!\n"));
12706 break;
12707 }
12708
12709 return PRINT_NOTHING;
12710 }
12711
12712 static void
12713 internal_bkpt_print_mention (struct breakpoint *b)
12714 {
12715 /* Nothing to mention. These breakpoints are internal. */
12716 }
12717
12718 /* Virtual table for momentary breakpoints */
12719
12720 static void
12721 momentary_bkpt_re_set (struct breakpoint *b)
12722 {
12723 /* Keep temporary breakpoints, which can be encountered when we step
12724 over a dlopen call and solib_add is resetting the breakpoints.
12725 Otherwise these should have been blown away via the cleanup chain
12726 or by breakpoint_init_inferior when we rerun the executable. */
12727 }
12728
12729 static void
12730 momentary_bkpt_check_status (bpstat bs)
12731 {
12732 /* Nothing. The point of these breakpoints is causing a stop. */
12733 }
12734
12735 static enum print_stop_action
12736 momentary_bkpt_print_it (bpstat bs)
12737 {
12738 return PRINT_UNKNOWN;
12739 }
12740
12741 static void
12742 momentary_bkpt_print_mention (struct breakpoint *b)
12743 {
12744 /* Nothing to mention. These breakpoints are internal. */
12745 }
12746
12747 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12748
12749 It gets cleared already on the removal of the first one of such placed
12750 breakpoints. This is OK as they get all removed altogether. */
12751
12752 longjmp_breakpoint::~longjmp_breakpoint ()
12753 {
12754 thread_info *tp = find_thread_global_id (this->thread);
12755
12756 if (tp != NULL)
12757 tp->initiating_frame = null_frame_id;
12758 }
12759
12760 /* Specific methods for probe breakpoints. */
12761
12762 static int
12763 bkpt_probe_insert_location (struct bp_location *bl)
12764 {
12765 int v = bkpt_insert_location (bl);
12766
12767 if (v == 0)
12768 {
12769 /* The insertion was successful, now let's set the probe's semaphore
12770 if needed. */
12771 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12772 }
12773
12774 return v;
12775 }
12776
12777 static int
12778 bkpt_probe_remove_location (struct bp_location *bl,
12779 enum remove_bp_reason reason)
12780 {
12781 /* Let's clear the semaphore before removing the location. */
12782 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12783
12784 return bkpt_remove_location (bl, reason);
12785 }
12786
12787 static void
12788 bkpt_probe_create_sals_from_location (const struct event_location *location,
12789 struct linespec_result *canonical,
12790 enum bptype type_wanted)
12791 {
12792 struct linespec_sals lsal;
12793
12794 lsal.sals = parse_probes (location, NULL, canonical);
12795 lsal.canonical
12796 = xstrdup (event_location_to_string (canonical->location.get ()));
12797 canonical->lsals.push_back (std::move (lsal));
12798 }
12799
12800 static std::vector<symtab_and_line>
12801 bkpt_probe_decode_location (struct breakpoint *b,
12802 const struct event_location *location,
12803 struct program_space *search_pspace)
12804 {
12805 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12806 if (sals.empty ())
12807 error (_("probe not found"));
12808 return sals;
12809 }
12810
12811 /* The breakpoint_ops structure to be used in tracepoints. */
12812
12813 static void
12814 tracepoint_re_set (struct breakpoint *b)
12815 {
12816 breakpoint_re_set_default (b);
12817 }
12818
12819 static int
12820 tracepoint_breakpoint_hit (const struct bp_location *bl,
12821 const address_space *aspace, CORE_ADDR bp_addr,
12822 const struct target_waitstatus *ws)
12823 {
12824 /* By definition, the inferior does not report stops at
12825 tracepoints. */
12826 return 0;
12827 }
12828
12829 static void
12830 tracepoint_print_one_detail (const struct breakpoint *self,
12831 struct ui_out *uiout)
12832 {
12833 struct tracepoint *tp = (struct tracepoint *) self;
12834 if (!tp->static_trace_marker_id.empty ())
12835 {
12836 gdb_assert (self->type == bp_static_tracepoint);
12837
12838 uiout->text ("\tmarker id is ");
12839 uiout->field_string ("static-tracepoint-marker-string-id",
12840 tp->static_trace_marker_id);
12841 uiout->text ("\n");
12842 }
12843 }
12844
12845 static void
12846 tracepoint_print_mention (struct breakpoint *b)
12847 {
12848 if (current_uiout->is_mi_like_p ())
12849 return;
12850
12851 switch (b->type)
12852 {
12853 case bp_tracepoint:
12854 printf_filtered (_("Tracepoint"));
12855 printf_filtered (_(" %d"), b->number);
12856 break;
12857 case bp_fast_tracepoint:
12858 printf_filtered (_("Fast tracepoint"));
12859 printf_filtered (_(" %d"), b->number);
12860 break;
12861 case bp_static_tracepoint:
12862 printf_filtered (_("Static tracepoint"));
12863 printf_filtered (_(" %d"), b->number);
12864 break;
12865 default:
12866 internal_error (__FILE__, __LINE__,
12867 _("unhandled tracepoint type %d"), (int) b->type);
12868 }
12869
12870 say_where (b);
12871 }
12872
12873 static void
12874 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12875 {
12876 struct tracepoint *tp = (struct tracepoint *) self;
12877
12878 if (self->type == bp_fast_tracepoint)
12879 fprintf_unfiltered (fp, "ftrace");
12880 else if (self->type == bp_static_tracepoint)
12881 fprintf_unfiltered (fp, "strace");
12882 else if (self->type == bp_tracepoint)
12883 fprintf_unfiltered (fp, "trace");
12884 else
12885 internal_error (__FILE__, __LINE__,
12886 _("unhandled tracepoint type %d"), (int) self->type);
12887
12888 fprintf_unfiltered (fp, " %s",
12889 event_location_to_string (self->location.get ()));
12890 print_recreate_thread (self, fp);
12891
12892 if (tp->pass_count)
12893 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12894 }
12895
12896 static void
12897 tracepoint_create_sals_from_location (const struct event_location *location,
12898 struct linespec_result *canonical,
12899 enum bptype type_wanted)
12900 {
12901 create_sals_from_location_default (location, canonical, type_wanted);
12902 }
12903
12904 static void
12905 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12906 struct linespec_result *canonical,
12907 gdb::unique_xmalloc_ptr<char> cond_string,
12908 gdb::unique_xmalloc_ptr<char> extra_string,
12909 enum bptype type_wanted,
12910 enum bpdisp disposition,
12911 int thread,
12912 int task, int ignore_count,
12913 const struct breakpoint_ops *ops,
12914 int from_tty, int enabled,
12915 int internal, unsigned flags)
12916 {
12917 create_breakpoints_sal_default (gdbarch, canonical,
12918 std::move (cond_string),
12919 std::move (extra_string),
12920 type_wanted,
12921 disposition, thread, task,
12922 ignore_count, ops, from_tty,
12923 enabled, internal, flags);
12924 }
12925
12926 static std::vector<symtab_and_line>
12927 tracepoint_decode_location (struct breakpoint *b,
12928 const struct event_location *location,
12929 struct program_space *search_pspace)
12930 {
12931 return decode_location_default (b, location, search_pspace);
12932 }
12933
12934 struct breakpoint_ops tracepoint_breakpoint_ops;
12935
12936 /* The breakpoint_ops structure to be use on tracepoints placed in a
12937 static probe. */
12938
12939 static void
12940 tracepoint_probe_create_sals_from_location
12941 (const struct event_location *location,
12942 struct linespec_result *canonical,
12943 enum bptype type_wanted)
12944 {
12945 /* We use the same method for breakpoint on probes. */
12946 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12947 }
12948
12949 static std::vector<symtab_and_line>
12950 tracepoint_probe_decode_location (struct breakpoint *b,
12951 const struct event_location *location,
12952 struct program_space *search_pspace)
12953 {
12954 /* We use the same method for breakpoint on probes. */
12955 return bkpt_probe_decode_location (b, location, search_pspace);
12956 }
12957
12958 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12959
12960 /* Dprintf breakpoint_ops methods. */
12961
12962 static void
12963 dprintf_re_set (struct breakpoint *b)
12964 {
12965 breakpoint_re_set_default (b);
12966
12967 /* extra_string should never be non-NULL for dprintf. */
12968 gdb_assert (b->extra_string != NULL);
12969
12970 /* 1 - connect to target 1, that can run breakpoint commands.
12971 2 - create a dprintf, which resolves fine.
12972 3 - disconnect from target 1
12973 4 - connect to target 2, that can NOT run breakpoint commands.
12974
12975 After steps #3/#4, you'll want the dprintf command list to
12976 be updated, because target 1 and 2 may well return different
12977 answers for target_can_run_breakpoint_commands().
12978 Given absence of finer grained resetting, we get to do
12979 it all the time. */
12980 if (b->extra_string != NULL)
12981 update_dprintf_command_list (b);
12982 }
12983
12984 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12985
12986 static void
12987 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12988 {
12989 fprintf_unfiltered (fp, "dprintf %s,%s",
12990 event_location_to_string (tp->location.get ()),
12991 tp->extra_string);
12992 print_recreate_thread (tp, fp);
12993 }
12994
12995 /* Implement the "after_condition_true" breakpoint_ops method for
12996 dprintf.
12997
12998 dprintf's are implemented with regular commands in their command
12999 list, but we run the commands here instead of before presenting the
13000 stop to the user, as dprintf's don't actually cause a stop. This
13001 also makes it so that the commands of multiple dprintfs at the same
13002 address are all handled. */
13003
13004 static void
13005 dprintf_after_condition_true (struct bpstats *bs)
13006 {
13007 struct bpstats tmp_bs;
13008 struct bpstats *tmp_bs_p = &tmp_bs;
13009
13010 /* dprintf's never cause a stop. This wasn't set in the
13011 check_status hook instead because that would make the dprintf's
13012 condition not be evaluated. */
13013 bs->stop = 0;
13014
13015 /* Run the command list here. Take ownership of it instead of
13016 copying. We never want these commands to run later in
13017 bpstat_do_actions, if a breakpoint that causes a stop happens to
13018 be set at same address as this dprintf, or even if running the
13019 commands here throws. */
13020 tmp_bs.commands = bs->commands;
13021 bs->commands = NULL;
13022
13023 bpstat_do_actions_1 (&tmp_bs_p);
13024
13025 /* 'tmp_bs.commands' will usually be NULL by now, but
13026 bpstat_do_actions_1 may return early without processing the whole
13027 list. */
13028 }
13029
13030 /* The breakpoint_ops structure to be used on static tracepoints with
13031 markers (`-m'). */
13032
13033 static void
13034 strace_marker_create_sals_from_location (const struct event_location *location,
13035 struct linespec_result *canonical,
13036 enum bptype type_wanted)
13037 {
13038 struct linespec_sals lsal;
13039 const char *arg_start, *arg;
13040
13041 arg = arg_start = get_linespec_location (location)->spec_string;
13042 lsal.sals = decode_static_tracepoint_spec (&arg);
13043
13044 std::string str (arg_start, arg - arg_start);
13045 const char *ptr = str.c_str ();
13046 canonical->location
13047 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13048
13049 lsal.canonical
13050 = xstrdup (event_location_to_string (canonical->location.get ()));
13051 canonical->lsals.push_back (std::move (lsal));
13052 }
13053
13054 static void
13055 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13056 struct linespec_result *canonical,
13057 gdb::unique_xmalloc_ptr<char> cond_string,
13058 gdb::unique_xmalloc_ptr<char> extra_string,
13059 enum bptype type_wanted,
13060 enum bpdisp disposition,
13061 int thread,
13062 int task, int ignore_count,
13063 const struct breakpoint_ops *ops,
13064 int from_tty, int enabled,
13065 int internal, unsigned flags)
13066 {
13067 const linespec_sals &lsal = canonical->lsals[0];
13068
13069 /* If the user is creating a static tracepoint by marker id
13070 (strace -m MARKER_ID), then store the sals index, so that
13071 breakpoint_re_set can try to match up which of the newly
13072 found markers corresponds to this one, and, don't try to
13073 expand multiple locations for each sal, given than SALS
13074 already should contain all sals for MARKER_ID. */
13075
13076 for (size_t i = 0; i < lsal.sals.size (); i++)
13077 {
13078 event_location_up location
13079 = copy_event_location (canonical->location.get ());
13080
13081 std::unique_ptr<tracepoint> tp (new tracepoint ());
13082 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13083 std::move (location), NULL,
13084 std::move (cond_string),
13085 std::move (extra_string),
13086 type_wanted, disposition,
13087 thread, task, ignore_count, ops,
13088 from_tty, enabled, internal, flags,
13089 canonical->special_display);
13090 /* Given that its possible to have multiple markers with
13091 the same string id, if the user is creating a static
13092 tracepoint by marker id ("strace -m MARKER_ID"), then
13093 store the sals index, so that breakpoint_re_set can
13094 try to match up which of the newly found markers
13095 corresponds to this one */
13096 tp->static_trace_marker_id_idx = i;
13097
13098 install_breakpoint (internal, std::move (tp), 0);
13099 }
13100 }
13101
13102 static std::vector<symtab_and_line>
13103 strace_marker_decode_location (struct breakpoint *b,
13104 const struct event_location *location,
13105 struct program_space *search_pspace)
13106 {
13107 struct tracepoint *tp = (struct tracepoint *) b;
13108 const char *s = get_linespec_location (location)->spec_string;
13109
13110 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13111 if (sals.size () > tp->static_trace_marker_id_idx)
13112 {
13113 sals[0] = sals[tp->static_trace_marker_id_idx];
13114 sals.resize (1);
13115 return sals;
13116 }
13117 else
13118 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13119 }
13120
13121 static struct breakpoint_ops strace_marker_breakpoint_ops;
13122
13123 static int
13124 strace_marker_p (struct breakpoint *b)
13125 {
13126 return b->ops == &strace_marker_breakpoint_ops;
13127 }
13128
13129 /* Delete a breakpoint and clean up all traces of it in the data
13130 structures. */
13131
13132 void
13133 delete_breakpoint (struct breakpoint *bpt)
13134 {
13135 struct breakpoint *b;
13136
13137 gdb_assert (bpt != NULL);
13138
13139 /* Has this bp already been deleted? This can happen because
13140 multiple lists can hold pointers to bp's. bpstat lists are
13141 especial culprits.
13142
13143 One example of this happening is a watchpoint's scope bp. When
13144 the scope bp triggers, we notice that the watchpoint is out of
13145 scope, and delete it. We also delete its scope bp. But the
13146 scope bp is marked "auto-deleting", and is already on a bpstat.
13147 That bpstat is then checked for auto-deleting bp's, which are
13148 deleted.
13149
13150 A real solution to this problem might involve reference counts in
13151 bp's, and/or giving them pointers back to their referencing
13152 bpstat's, and teaching delete_breakpoint to only free a bp's
13153 storage when no more references were extent. A cheaper bandaid
13154 was chosen. */
13155 if (bpt->type == bp_none)
13156 return;
13157
13158 /* At least avoid this stale reference until the reference counting
13159 of breakpoints gets resolved. */
13160 if (bpt->related_breakpoint != bpt)
13161 {
13162 struct breakpoint *related;
13163 struct watchpoint *w;
13164
13165 if (bpt->type == bp_watchpoint_scope)
13166 w = (struct watchpoint *) bpt->related_breakpoint;
13167 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13168 w = (struct watchpoint *) bpt;
13169 else
13170 w = NULL;
13171 if (w != NULL)
13172 watchpoint_del_at_next_stop (w);
13173
13174 /* Unlink bpt from the bpt->related_breakpoint ring. */
13175 for (related = bpt; related->related_breakpoint != bpt;
13176 related = related->related_breakpoint);
13177 related->related_breakpoint = bpt->related_breakpoint;
13178 bpt->related_breakpoint = bpt;
13179 }
13180
13181 /* watch_command_1 creates a watchpoint but only sets its number if
13182 update_watchpoint succeeds in creating its bp_locations. If there's
13183 a problem in that process, we'll be asked to delete the half-created
13184 watchpoint. In that case, don't announce the deletion. */
13185 if (bpt->number)
13186 gdb::observers::breakpoint_deleted.notify (bpt);
13187
13188 if (breakpoint_chain == bpt)
13189 breakpoint_chain = bpt->next;
13190
13191 ALL_BREAKPOINTS (b)
13192 if (b->next == bpt)
13193 {
13194 b->next = bpt->next;
13195 break;
13196 }
13197
13198 /* Be sure no bpstat's are pointing at the breakpoint after it's
13199 been freed. */
13200 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13201 in all threads for now. Note that we cannot just remove bpstats
13202 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13203 commands are associated with the bpstat; if we remove it here,
13204 then the later call to bpstat_do_actions (&stop_bpstat); in
13205 event-top.c won't do anything, and temporary breakpoints with
13206 commands won't work. */
13207
13208 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13209
13210 /* Now that breakpoint is removed from breakpoint list, update the
13211 global location list. This will remove locations that used to
13212 belong to this breakpoint. Do this before freeing the breakpoint
13213 itself, since remove_breakpoint looks at location's owner. It
13214 might be better design to have location completely
13215 self-contained, but it's not the case now. */
13216 update_global_location_list (UGLL_DONT_INSERT);
13217
13218 /* On the chance that someone will soon try again to delete this
13219 same bp, we mark it as deleted before freeing its storage. */
13220 bpt->type = bp_none;
13221 delete bpt;
13222 }
13223
13224 /* Iterator function to call a user-provided callback function once
13225 for each of B and its related breakpoints. */
13226
13227 static void
13228 iterate_over_related_breakpoints (struct breakpoint *b,
13229 gdb::function_view<void (breakpoint *)> function)
13230 {
13231 struct breakpoint *related;
13232
13233 related = b;
13234 do
13235 {
13236 struct breakpoint *next;
13237
13238 /* FUNCTION may delete RELATED. */
13239 next = related->related_breakpoint;
13240
13241 if (next == related)
13242 {
13243 /* RELATED is the last ring entry. */
13244 function (related);
13245
13246 /* FUNCTION may have deleted it, so we'd never reach back to
13247 B. There's nothing left to do anyway, so just break
13248 out. */
13249 break;
13250 }
13251 else
13252 function (related);
13253
13254 related = next;
13255 }
13256 while (related != b);
13257 }
13258
13259 static void
13260 delete_command (const char *arg, int from_tty)
13261 {
13262 struct breakpoint *b, *b_tmp;
13263
13264 dont_repeat ();
13265
13266 if (arg == 0)
13267 {
13268 int breaks_to_delete = 0;
13269
13270 /* Delete all breakpoints if no argument. Do not delete
13271 internal breakpoints, these have to be deleted with an
13272 explicit breakpoint number argument. */
13273 ALL_BREAKPOINTS (b)
13274 if (user_breakpoint_p (b))
13275 {
13276 breaks_to_delete = 1;
13277 break;
13278 }
13279
13280 /* Ask user only if there are some breakpoints to delete. */
13281 if (!from_tty
13282 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13283 {
13284 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13285 if (user_breakpoint_p (b))
13286 delete_breakpoint (b);
13287 }
13288 }
13289 else
13290 map_breakpoint_numbers
13291 (arg, [&] (breakpoint *br)
13292 {
13293 iterate_over_related_breakpoints (br, delete_breakpoint);
13294 });
13295 }
13296
13297 /* Return true if all locations of B bound to PSPACE are pending. If
13298 PSPACE is NULL, all locations of all program spaces are
13299 considered. */
13300
13301 static int
13302 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13303 {
13304 struct bp_location *loc;
13305
13306 for (loc = b->loc; loc != NULL; loc = loc->next)
13307 if ((pspace == NULL
13308 || loc->pspace == pspace)
13309 && !loc->shlib_disabled
13310 && !loc->pspace->executing_startup)
13311 return 0;
13312 return 1;
13313 }
13314
13315 /* Subroutine of update_breakpoint_locations to simplify it.
13316 Return non-zero if multiple fns in list LOC have the same name.
13317 Null names are ignored. */
13318
13319 static int
13320 ambiguous_names_p (struct bp_location *loc)
13321 {
13322 struct bp_location *l;
13323 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13324 xcalloc, xfree);
13325
13326 for (l = loc; l != NULL; l = l->next)
13327 {
13328 const char **slot;
13329 const char *name = l->function_name;
13330
13331 /* Allow for some names to be NULL, ignore them. */
13332 if (name == NULL)
13333 continue;
13334
13335 slot = (const char **) htab_find_slot (htab, (const void *) name,
13336 INSERT);
13337 /* NOTE: We can assume slot != NULL here because xcalloc never
13338 returns NULL. */
13339 if (*slot != NULL)
13340 {
13341 htab_delete (htab);
13342 return 1;
13343 }
13344 *slot = name;
13345 }
13346
13347 htab_delete (htab);
13348 return 0;
13349 }
13350
13351 /* When symbols change, it probably means the sources changed as well,
13352 and it might mean the static tracepoint markers are no longer at
13353 the same address or line numbers they used to be at last we
13354 checked. Losing your static tracepoints whenever you rebuild is
13355 undesirable. This function tries to resync/rematch gdb static
13356 tracepoints with the markers on the target, for static tracepoints
13357 that have not been set by marker id. Static tracepoint that have
13358 been set by marker id are reset by marker id in breakpoint_re_set.
13359 The heuristic is:
13360
13361 1) For a tracepoint set at a specific address, look for a marker at
13362 the old PC. If one is found there, assume to be the same marker.
13363 If the name / string id of the marker found is different from the
13364 previous known name, assume that means the user renamed the marker
13365 in the sources, and output a warning.
13366
13367 2) For a tracepoint set at a given line number, look for a marker
13368 at the new address of the old line number. If one is found there,
13369 assume to be the same marker. If the name / string id of the
13370 marker found is different from the previous known name, assume that
13371 means the user renamed the marker in the sources, and output a
13372 warning.
13373
13374 3) If a marker is no longer found at the same address or line, it
13375 may mean the marker no longer exists. But it may also just mean
13376 the code changed a bit. Maybe the user added a few lines of code
13377 that made the marker move up or down (in line number terms). Ask
13378 the target for info about the marker with the string id as we knew
13379 it. If found, update line number and address in the matching
13380 static tracepoint. This will get confused if there's more than one
13381 marker with the same ID (possible in UST, although unadvised
13382 precisely because it confuses tools). */
13383
13384 static struct symtab_and_line
13385 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13386 {
13387 struct tracepoint *tp = (struct tracepoint *) b;
13388 struct static_tracepoint_marker marker;
13389 CORE_ADDR pc;
13390
13391 pc = sal.pc;
13392 if (sal.line)
13393 find_line_pc (sal.symtab, sal.line, &pc);
13394
13395 if (target_static_tracepoint_marker_at (pc, &marker))
13396 {
13397 if (tp->static_trace_marker_id != marker.str_id)
13398 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13399 b->number, tp->static_trace_marker_id.c_str (),
13400 marker.str_id.c_str ());
13401
13402 tp->static_trace_marker_id = std::move (marker.str_id);
13403
13404 return sal;
13405 }
13406
13407 /* Old marker wasn't found on target at lineno. Try looking it up
13408 by string ID. */
13409 if (!sal.explicit_pc
13410 && sal.line != 0
13411 && sal.symtab != NULL
13412 && !tp->static_trace_marker_id.empty ())
13413 {
13414 std::vector<static_tracepoint_marker> markers
13415 = target_static_tracepoint_markers_by_strid
13416 (tp->static_trace_marker_id.c_str ());
13417
13418 if (!markers.empty ())
13419 {
13420 struct symbol *sym;
13421 struct static_tracepoint_marker *tpmarker;
13422 struct ui_out *uiout = current_uiout;
13423 struct explicit_location explicit_loc;
13424
13425 tpmarker = &markers[0];
13426
13427 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13428
13429 warning (_("marker for static tracepoint %d (%s) not "
13430 "found at previous line number"),
13431 b->number, tp->static_trace_marker_id.c_str ());
13432
13433 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13434 sym = find_pc_sect_function (tpmarker->address, NULL);
13435 uiout->text ("Now in ");
13436 if (sym)
13437 {
13438 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13439 ui_out_style_kind::FUNCTION);
13440 uiout->text (" at ");
13441 }
13442 uiout->field_string ("file",
13443 symtab_to_filename_for_display (sal2.symtab),
13444 ui_out_style_kind::FILE);
13445 uiout->text (":");
13446
13447 if (uiout->is_mi_like_p ())
13448 {
13449 const char *fullname = symtab_to_fullname (sal2.symtab);
13450
13451 uiout->field_string ("fullname", fullname);
13452 }
13453
13454 uiout->field_int ("line", sal2.line);
13455 uiout->text ("\n");
13456
13457 b->loc->line_number = sal2.line;
13458 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13459
13460 b->location.reset (NULL);
13461 initialize_explicit_location (&explicit_loc);
13462 explicit_loc.source_filename
13463 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13464 explicit_loc.line_offset.offset = b->loc->line_number;
13465 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13466 b->location = new_explicit_location (&explicit_loc);
13467
13468 /* Might be nice to check if function changed, and warn if
13469 so. */
13470 }
13471 }
13472 return sal;
13473 }
13474
13475 /* Returns 1 iff locations A and B are sufficiently same that
13476 we don't need to report breakpoint as changed. */
13477
13478 static int
13479 locations_are_equal (struct bp_location *a, struct bp_location *b)
13480 {
13481 while (a && b)
13482 {
13483 if (a->address != b->address)
13484 return 0;
13485
13486 if (a->shlib_disabled != b->shlib_disabled)
13487 return 0;
13488
13489 if (a->enabled != b->enabled)
13490 return 0;
13491
13492 a = a->next;
13493 b = b->next;
13494 }
13495
13496 if ((a == NULL) != (b == NULL))
13497 return 0;
13498
13499 return 1;
13500 }
13501
13502 /* Split all locations of B that are bound to PSPACE out of B's
13503 location list to a separate list and return that list's head. If
13504 PSPACE is NULL, hoist out all locations of B. */
13505
13506 static struct bp_location *
13507 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13508 {
13509 struct bp_location head;
13510 struct bp_location *i = b->loc;
13511 struct bp_location **i_link = &b->loc;
13512 struct bp_location *hoisted = &head;
13513
13514 if (pspace == NULL)
13515 {
13516 i = b->loc;
13517 b->loc = NULL;
13518 return i;
13519 }
13520
13521 head.next = NULL;
13522
13523 while (i != NULL)
13524 {
13525 if (i->pspace == pspace)
13526 {
13527 *i_link = i->next;
13528 i->next = NULL;
13529 hoisted->next = i;
13530 hoisted = i;
13531 }
13532 else
13533 i_link = &i->next;
13534 i = *i_link;
13535 }
13536
13537 return head.next;
13538 }
13539
13540 /* Create new breakpoint locations for B (a hardware or software
13541 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13542 zero, then B is a ranged breakpoint. Only recreates locations for
13543 FILTER_PSPACE. Locations of other program spaces are left
13544 untouched. */
13545
13546 void
13547 update_breakpoint_locations (struct breakpoint *b,
13548 struct program_space *filter_pspace,
13549 gdb::array_view<const symtab_and_line> sals,
13550 gdb::array_view<const symtab_and_line> sals_end)
13551 {
13552 struct bp_location *existing_locations;
13553
13554 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13555 {
13556 /* Ranged breakpoints have only one start location and one end
13557 location. */
13558 b->enable_state = bp_disabled;
13559 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13560 "multiple locations found\n"),
13561 b->number);
13562 return;
13563 }
13564
13565 /* If there's no new locations, and all existing locations are
13566 pending, don't do anything. This optimizes the common case where
13567 all locations are in the same shared library, that was unloaded.
13568 We'd like to retain the location, so that when the library is
13569 loaded again, we don't loose the enabled/disabled status of the
13570 individual locations. */
13571 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13572 return;
13573
13574 existing_locations = hoist_existing_locations (b, filter_pspace);
13575
13576 for (const auto &sal : sals)
13577 {
13578 struct bp_location *new_loc;
13579
13580 switch_to_program_space_and_thread (sal.pspace);
13581
13582 new_loc = add_location_to_breakpoint (b, &sal);
13583
13584 /* Reparse conditions, they might contain references to the
13585 old symtab. */
13586 if (b->cond_string != NULL)
13587 {
13588 const char *s;
13589
13590 s = b->cond_string;
13591 TRY
13592 {
13593 new_loc->cond = parse_exp_1 (&s, sal.pc,
13594 block_for_pc (sal.pc),
13595 0);
13596 }
13597 CATCH (e, RETURN_MASK_ERROR)
13598 {
13599 warning (_("failed to reevaluate condition "
13600 "for breakpoint %d: %s"),
13601 b->number, e.message);
13602 new_loc->enabled = 0;
13603 }
13604 END_CATCH
13605 }
13606
13607 if (!sals_end.empty ())
13608 {
13609 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13610
13611 new_loc->length = end - sals[0].pc + 1;
13612 }
13613 }
13614
13615 /* If possible, carry over 'disable' status from existing
13616 breakpoints. */
13617 {
13618 struct bp_location *e = existing_locations;
13619 /* If there are multiple breakpoints with the same function name,
13620 e.g. for inline functions, comparing function names won't work.
13621 Instead compare pc addresses; this is just a heuristic as things
13622 may have moved, but in practice it gives the correct answer
13623 often enough until a better solution is found. */
13624 int have_ambiguous_names = ambiguous_names_p (b->loc);
13625
13626 for (; e; e = e->next)
13627 {
13628 if (!e->enabled && e->function_name)
13629 {
13630 struct bp_location *l = b->loc;
13631 if (have_ambiguous_names)
13632 {
13633 for (; l; l = l->next)
13634 if (breakpoint_locations_match (e, l))
13635 {
13636 l->enabled = 0;
13637 break;
13638 }
13639 }
13640 else
13641 {
13642 for (; l; l = l->next)
13643 if (l->function_name
13644 && strcmp (e->function_name, l->function_name) == 0)
13645 {
13646 l->enabled = 0;
13647 break;
13648 }
13649 }
13650 }
13651 }
13652 }
13653
13654 if (!locations_are_equal (existing_locations, b->loc))
13655 gdb::observers::breakpoint_modified.notify (b);
13656 }
13657
13658 /* Find the SaL locations corresponding to the given LOCATION.
13659 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13660
13661 static std::vector<symtab_and_line>
13662 location_to_sals (struct breakpoint *b, struct event_location *location,
13663 struct program_space *search_pspace, int *found)
13664 {
13665 struct gdb_exception exception = exception_none;
13666
13667 gdb_assert (b->ops != NULL);
13668
13669 std::vector<symtab_and_line> sals;
13670
13671 TRY
13672 {
13673 sals = b->ops->decode_location (b, location, search_pspace);
13674 }
13675 CATCH (e, RETURN_MASK_ERROR)
13676 {
13677 int not_found_and_ok = 0;
13678
13679 exception = e;
13680
13681 /* For pending breakpoints, it's expected that parsing will
13682 fail until the right shared library is loaded. User has
13683 already told to create pending breakpoints and don't need
13684 extra messages. If breakpoint is in bp_shlib_disabled
13685 state, then user already saw the message about that
13686 breakpoint being disabled, and don't want to see more
13687 errors. */
13688 if (e.error == NOT_FOUND_ERROR
13689 && (b->condition_not_parsed
13690 || (b->loc != NULL
13691 && search_pspace != NULL
13692 && b->loc->pspace != search_pspace)
13693 || (b->loc && b->loc->shlib_disabled)
13694 || (b->loc && b->loc->pspace->executing_startup)
13695 || b->enable_state == bp_disabled))
13696 not_found_and_ok = 1;
13697
13698 if (!not_found_and_ok)
13699 {
13700 /* We surely don't want to warn about the same breakpoint
13701 10 times. One solution, implemented here, is disable
13702 the breakpoint on error. Another solution would be to
13703 have separate 'warning emitted' flag. Since this
13704 happens only when a binary has changed, I don't know
13705 which approach is better. */
13706 b->enable_state = bp_disabled;
13707 throw_exception (e);
13708 }
13709 }
13710 END_CATCH
13711
13712 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13713 {
13714 for (auto &sal : sals)
13715 resolve_sal_pc (&sal);
13716 if (b->condition_not_parsed && b->extra_string != NULL)
13717 {
13718 char *cond_string, *extra_string;
13719 int thread, task;
13720
13721 find_condition_and_thread (b->extra_string, sals[0].pc,
13722 &cond_string, &thread, &task,
13723 &extra_string);
13724 gdb_assert (b->cond_string == NULL);
13725 if (cond_string)
13726 b->cond_string = cond_string;
13727 b->thread = thread;
13728 b->task = task;
13729 if (extra_string)
13730 {
13731 xfree (b->extra_string);
13732 b->extra_string = extra_string;
13733 }
13734 b->condition_not_parsed = 0;
13735 }
13736
13737 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13738 sals[0] = update_static_tracepoint (b, sals[0]);
13739
13740 *found = 1;
13741 }
13742 else
13743 *found = 0;
13744
13745 return sals;
13746 }
13747
13748 /* The default re_set method, for typical hardware or software
13749 breakpoints. Reevaluate the breakpoint and recreate its
13750 locations. */
13751
13752 static void
13753 breakpoint_re_set_default (struct breakpoint *b)
13754 {
13755 struct program_space *filter_pspace = current_program_space;
13756 std::vector<symtab_and_line> expanded, expanded_end;
13757
13758 int found;
13759 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13760 filter_pspace, &found);
13761 if (found)
13762 expanded = std::move (sals);
13763
13764 if (b->location_range_end != NULL)
13765 {
13766 std::vector<symtab_and_line> sals_end
13767 = location_to_sals (b, b->location_range_end.get (),
13768 filter_pspace, &found);
13769 if (found)
13770 expanded_end = std::move (sals_end);
13771 }
13772
13773 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13774 }
13775
13776 /* Default method for creating SALs from an address string. It basically
13777 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13778
13779 static void
13780 create_sals_from_location_default (const struct event_location *location,
13781 struct linespec_result *canonical,
13782 enum bptype type_wanted)
13783 {
13784 parse_breakpoint_sals (location, canonical);
13785 }
13786
13787 /* Call create_breakpoints_sal for the given arguments. This is the default
13788 function for the `create_breakpoints_sal' method of
13789 breakpoint_ops. */
13790
13791 static void
13792 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13793 struct linespec_result *canonical,
13794 gdb::unique_xmalloc_ptr<char> cond_string,
13795 gdb::unique_xmalloc_ptr<char> extra_string,
13796 enum bptype type_wanted,
13797 enum bpdisp disposition,
13798 int thread,
13799 int task, int ignore_count,
13800 const struct breakpoint_ops *ops,
13801 int from_tty, int enabled,
13802 int internal, unsigned flags)
13803 {
13804 create_breakpoints_sal (gdbarch, canonical,
13805 std::move (cond_string),
13806 std::move (extra_string),
13807 type_wanted, disposition,
13808 thread, task, ignore_count, ops, from_tty,
13809 enabled, internal, flags);
13810 }
13811
13812 /* Decode the line represented by S by calling decode_line_full. This is the
13813 default function for the `decode_location' method of breakpoint_ops. */
13814
13815 static std::vector<symtab_and_line>
13816 decode_location_default (struct breakpoint *b,
13817 const struct event_location *location,
13818 struct program_space *search_pspace)
13819 {
13820 struct linespec_result canonical;
13821
13822 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13823 (struct symtab *) NULL, 0,
13824 &canonical, multiple_symbols_all,
13825 b->filter);
13826
13827 /* We should get 0 or 1 resulting SALs. */
13828 gdb_assert (canonical.lsals.size () < 2);
13829
13830 if (!canonical.lsals.empty ())
13831 {
13832 const linespec_sals &lsal = canonical.lsals[0];
13833 return std::move (lsal.sals);
13834 }
13835 return {};
13836 }
13837
13838 /* Reset a breakpoint. */
13839
13840 static void
13841 breakpoint_re_set_one (breakpoint *b)
13842 {
13843 input_radix = b->input_radix;
13844 set_language (b->language);
13845
13846 b->ops->re_set (b);
13847 }
13848
13849 /* Re-set breakpoint locations for the current program space.
13850 Locations bound to other program spaces are left untouched. */
13851
13852 void
13853 breakpoint_re_set (void)
13854 {
13855 struct breakpoint *b, *b_tmp;
13856
13857 {
13858 scoped_restore_current_language save_language;
13859 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13860 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13861
13862 /* breakpoint_re_set_one sets the current_language to the language
13863 of the breakpoint it is resetting (see prepare_re_set_context)
13864 before re-evaluating the breakpoint's location. This change can
13865 unfortunately get undone by accident if the language_mode is set
13866 to auto, and we either switch frames, or more likely in this context,
13867 we select the current frame.
13868
13869 We prevent this by temporarily turning the language_mode to
13870 language_mode_manual. We restore it once all breakpoints
13871 have been reset. */
13872 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13873 language_mode = language_mode_manual;
13874
13875 /* Note: we must not try to insert locations until after all
13876 breakpoints have been re-set. Otherwise, e.g., when re-setting
13877 breakpoint 1, we'd insert the locations of breakpoint 2, which
13878 hadn't been re-set yet, and thus may have stale locations. */
13879
13880 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13881 {
13882 TRY
13883 {
13884 breakpoint_re_set_one (b);
13885 }
13886 CATCH (ex, RETURN_MASK_ALL)
13887 {
13888 exception_fprintf (gdb_stderr, ex,
13889 "Error in re-setting breakpoint %d: ",
13890 b->number);
13891 }
13892 END_CATCH
13893 }
13894
13895 jit_breakpoint_re_set ();
13896 }
13897
13898 create_overlay_event_breakpoint ();
13899 create_longjmp_master_breakpoint ();
13900 create_std_terminate_master_breakpoint ();
13901 create_exception_master_breakpoint ();
13902
13903 /* Now we can insert. */
13904 update_global_location_list (UGLL_MAY_INSERT);
13905 }
13906 \f
13907 /* Reset the thread number of this breakpoint:
13908
13909 - If the breakpoint is for all threads, leave it as-is.
13910 - Else, reset it to the current thread for inferior_ptid. */
13911 void
13912 breakpoint_re_set_thread (struct breakpoint *b)
13913 {
13914 if (b->thread != -1)
13915 {
13916 b->thread = inferior_thread ()->global_num;
13917
13918 /* We're being called after following a fork. The new fork is
13919 selected as current, and unless this was a vfork will have a
13920 different program space from the original thread. Reset that
13921 as well. */
13922 b->loc->pspace = current_program_space;
13923 }
13924 }
13925
13926 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13927 If from_tty is nonzero, it prints a message to that effect,
13928 which ends with a period (no newline). */
13929
13930 void
13931 set_ignore_count (int bptnum, int count, int from_tty)
13932 {
13933 struct breakpoint *b;
13934
13935 if (count < 0)
13936 count = 0;
13937
13938 ALL_BREAKPOINTS (b)
13939 if (b->number == bptnum)
13940 {
13941 if (is_tracepoint (b))
13942 {
13943 if (from_tty && count != 0)
13944 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13945 bptnum);
13946 return;
13947 }
13948
13949 b->ignore_count = count;
13950 if (from_tty)
13951 {
13952 if (count == 0)
13953 printf_filtered (_("Will stop next time "
13954 "breakpoint %d is reached."),
13955 bptnum);
13956 else if (count == 1)
13957 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13958 bptnum);
13959 else
13960 printf_filtered (_("Will ignore next %d "
13961 "crossings of breakpoint %d."),
13962 count, bptnum);
13963 }
13964 gdb::observers::breakpoint_modified.notify (b);
13965 return;
13966 }
13967
13968 error (_("No breakpoint number %d."), bptnum);
13969 }
13970
13971 /* Command to set ignore-count of breakpoint N to COUNT. */
13972
13973 static void
13974 ignore_command (const char *args, int from_tty)
13975 {
13976 const char *p = args;
13977 int num;
13978
13979 if (p == 0)
13980 error_no_arg (_("a breakpoint number"));
13981
13982 num = get_number (&p);
13983 if (num == 0)
13984 error (_("bad breakpoint number: '%s'"), args);
13985 if (*p == 0)
13986 error (_("Second argument (specified ignore-count) is missing."));
13987
13988 set_ignore_count (num,
13989 longest_to_int (value_as_long (parse_and_eval (p))),
13990 from_tty);
13991 if (from_tty)
13992 printf_filtered ("\n");
13993 }
13994 \f
13995
13996 /* Call FUNCTION on each of the breakpoints with numbers in the range
13997 defined by BP_NUM_RANGE (an inclusive range). */
13998
13999 static void
14000 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14001 gdb::function_view<void (breakpoint *)> function)
14002 {
14003 if (bp_num_range.first == 0)
14004 {
14005 warning (_("bad breakpoint number at or near '%d'"),
14006 bp_num_range.first);
14007 }
14008 else
14009 {
14010 struct breakpoint *b, *tmp;
14011
14012 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14013 {
14014 bool match = false;
14015
14016 ALL_BREAKPOINTS_SAFE (b, tmp)
14017 if (b->number == i)
14018 {
14019 match = true;
14020 function (b);
14021 break;
14022 }
14023 if (!match)
14024 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14025 }
14026 }
14027 }
14028
14029 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14030 ARGS. */
14031
14032 static void
14033 map_breakpoint_numbers (const char *args,
14034 gdb::function_view<void (breakpoint *)> function)
14035 {
14036 if (args == NULL || *args == '\0')
14037 error_no_arg (_("one or more breakpoint numbers"));
14038
14039 number_or_range_parser parser (args);
14040
14041 while (!parser.finished ())
14042 {
14043 int num = parser.get_number ();
14044 map_breakpoint_number_range (std::make_pair (num, num), function);
14045 }
14046 }
14047
14048 /* Return the breakpoint location structure corresponding to the
14049 BP_NUM and LOC_NUM values. */
14050
14051 static struct bp_location *
14052 find_location_by_number (int bp_num, int loc_num)
14053 {
14054 struct breakpoint *b;
14055
14056 ALL_BREAKPOINTS (b)
14057 if (b->number == bp_num)
14058 {
14059 break;
14060 }
14061
14062 if (!b || b->number != bp_num)
14063 error (_("Bad breakpoint number '%d'"), bp_num);
14064
14065 if (loc_num == 0)
14066 error (_("Bad breakpoint location number '%d'"), loc_num);
14067
14068 int n = 0;
14069 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14070 if (++n == loc_num)
14071 return loc;
14072
14073 error (_("Bad breakpoint location number '%d'"), loc_num);
14074 }
14075
14076 /* Modes of operation for extract_bp_num. */
14077 enum class extract_bp_kind
14078 {
14079 /* Extracting a breakpoint number. */
14080 bp,
14081
14082 /* Extracting a location number. */
14083 loc,
14084 };
14085
14086 /* Extract a breakpoint or location number (as determined by KIND)
14087 from the string starting at START. TRAILER is a character which
14088 can be found after the number. If you don't want a trailer, use
14089 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14090 string. This always returns a positive integer. */
14091
14092 static int
14093 extract_bp_num (extract_bp_kind kind, const char *start,
14094 int trailer, const char **end_out = NULL)
14095 {
14096 const char *end = start;
14097 int num = get_number_trailer (&end, trailer);
14098 if (num < 0)
14099 error (kind == extract_bp_kind::bp
14100 ? _("Negative breakpoint number '%.*s'")
14101 : _("Negative breakpoint location number '%.*s'"),
14102 int (end - start), start);
14103 if (num == 0)
14104 error (kind == extract_bp_kind::bp
14105 ? _("Bad breakpoint number '%.*s'")
14106 : _("Bad breakpoint location number '%.*s'"),
14107 int (end - start), start);
14108
14109 if (end_out != NULL)
14110 *end_out = end;
14111 return num;
14112 }
14113
14114 /* Extract a breakpoint or location range (as determined by KIND) in
14115 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14116 representing the (inclusive) range. The returned pair's elements
14117 are always positive integers. */
14118
14119 static std::pair<int, int>
14120 extract_bp_or_bp_range (extract_bp_kind kind,
14121 const std::string &arg,
14122 std::string::size_type arg_offset)
14123 {
14124 std::pair<int, int> range;
14125 const char *bp_loc = &arg[arg_offset];
14126 std::string::size_type dash = arg.find ('-', arg_offset);
14127 if (dash != std::string::npos)
14128 {
14129 /* bp_loc is a range (x-z). */
14130 if (arg.length () == dash + 1)
14131 error (kind == extract_bp_kind::bp
14132 ? _("Bad breakpoint number at or near: '%s'")
14133 : _("Bad breakpoint location number at or near: '%s'"),
14134 bp_loc);
14135
14136 const char *end;
14137 const char *start_first = bp_loc;
14138 const char *start_second = &arg[dash + 1];
14139 range.first = extract_bp_num (kind, start_first, '-');
14140 range.second = extract_bp_num (kind, start_second, '\0', &end);
14141
14142 if (range.first > range.second)
14143 error (kind == extract_bp_kind::bp
14144 ? _("Inverted breakpoint range at '%.*s'")
14145 : _("Inverted breakpoint location range at '%.*s'"),
14146 int (end - start_first), start_first);
14147 }
14148 else
14149 {
14150 /* bp_loc is a single value. */
14151 range.first = extract_bp_num (kind, bp_loc, '\0');
14152 range.second = range.first;
14153 }
14154 return range;
14155 }
14156
14157 /* Extract the breakpoint/location range specified by ARG. Returns
14158 the breakpoint range in BP_NUM_RANGE, and the location range in
14159 BP_LOC_RANGE.
14160
14161 ARG may be in any of the following forms:
14162
14163 x where 'x' is a breakpoint number.
14164 x-y where 'x' and 'y' specify a breakpoint numbers range.
14165 x.y where 'x' is a breakpoint number and 'y' a location number.
14166 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14167 location number range.
14168 */
14169
14170 static void
14171 extract_bp_number_and_location (const std::string &arg,
14172 std::pair<int, int> &bp_num_range,
14173 std::pair<int, int> &bp_loc_range)
14174 {
14175 std::string::size_type dot = arg.find ('.');
14176
14177 if (dot != std::string::npos)
14178 {
14179 /* Handle 'x.y' and 'x.y-z' cases. */
14180
14181 if (arg.length () == dot + 1 || dot == 0)
14182 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14183
14184 bp_num_range.first
14185 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14186 bp_num_range.second = bp_num_range.first;
14187
14188 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14189 arg, dot + 1);
14190 }
14191 else
14192 {
14193 /* Handle x and x-y cases. */
14194
14195 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14196 bp_loc_range.first = 0;
14197 bp_loc_range.second = 0;
14198 }
14199 }
14200
14201 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14202 specifies whether to enable or disable. */
14203
14204 static void
14205 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14206 {
14207 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14208 if (loc != NULL)
14209 {
14210 if (loc->enabled != enable)
14211 {
14212 loc->enabled = enable;
14213 mark_breakpoint_location_modified (loc);
14214 }
14215 if (target_supports_enable_disable_tracepoint ()
14216 && current_trace_status ()->running && loc->owner
14217 && is_tracepoint (loc->owner))
14218 target_disable_tracepoint (loc);
14219 }
14220 update_global_location_list (UGLL_DONT_INSERT);
14221
14222 gdb::observers::breakpoint_modified.notify (loc->owner);
14223 }
14224
14225 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14226 number of the breakpoint, and BP_LOC_RANGE specifies the
14227 (inclusive) range of location numbers of that breakpoint to
14228 enable/disable. ENABLE specifies whether to enable or disable the
14229 location. */
14230
14231 static void
14232 enable_disable_breakpoint_location_range (int bp_num,
14233 std::pair<int, int> &bp_loc_range,
14234 bool enable)
14235 {
14236 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14237 enable_disable_bp_num_loc (bp_num, i, enable);
14238 }
14239
14240 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14241 If from_tty is nonzero, it prints a message to that effect,
14242 which ends with a period (no newline). */
14243
14244 void
14245 disable_breakpoint (struct breakpoint *bpt)
14246 {
14247 /* Never disable a watchpoint scope breakpoint; we want to
14248 hit them when we leave scope so we can delete both the
14249 watchpoint and its scope breakpoint at that time. */
14250 if (bpt->type == bp_watchpoint_scope)
14251 return;
14252
14253 bpt->enable_state = bp_disabled;
14254
14255 /* Mark breakpoint locations modified. */
14256 mark_breakpoint_modified (bpt);
14257
14258 if (target_supports_enable_disable_tracepoint ()
14259 && current_trace_status ()->running && is_tracepoint (bpt))
14260 {
14261 struct bp_location *location;
14262
14263 for (location = bpt->loc; location; location = location->next)
14264 target_disable_tracepoint (location);
14265 }
14266
14267 update_global_location_list (UGLL_DONT_INSERT);
14268
14269 gdb::observers::breakpoint_modified.notify (bpt);
14270 }
14271
14272 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14273 specified in ARGS. ARGS may be in any of the formats handled by
14274 extract_bp_number_and_location. ENABLE specifies whether to enable
14275 or disable the breakpoints/locations. */
14276
14277 static void
14278 enable_disable_command (const char *args, int from_tty, bool enable)
14279 {
14280 if (args == 0)
14281 {
14282 struct breakpoint *bpt;
14283
14284 ALL_BREAKPOINTS (bpt)
14285 if (user_breakpoint_p (bpt))
14286 {
14287 if (enable)
14288 enable_breakpoint (bpt);
14289 else
14290 disable_breakpoint (bpt);
14291 }
14292 }
14293 else
14294 {
14295 std::string num = extract_arg (&args);
14296
14297 while (!num.empty ())
14298 {
14299 std::pair<int, int> bp_num_range, bp_loc_range;
14300
14301 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14302
14303 if (bp_loc_range.first == bp_loc_range.second
14304 && bp_loc_range.first == 0)
14305 {
14306 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14307 map_breakpoint_number_range (bp_num_range,
14308 enable
14309 ? enable_breakpoint
14310 : disable_breakpoint);
14311 }
14312 else
14313 {
14314 /* Handle breakpoint ids with formats 'x.y' or
14315 'x.y-z'. */
14316 enable_disable_breakpoint_location_range
14317 (bp_num_range.first, bp_loc_range, enable);
14318 }
14319 num = extract_arg (&args);
14320 }
14321 }
14322 }
14323
14324 /* The disable command disables the specified breakpoints/locations
14325 (or all defined breakpoints) so they're no longer effective in
14326 stopping the inferior. ARGS may be in any of the forms defined in
14327 extract_bp_number_and_location. */
14328
14329 static void
14330 disable_command (const char *args, int from_tty)
14331 {
14332 enable_disable_command (args, from_tty, false);
14333 }
14334
14335 static void
14336 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14337 int count)
14338 {
14339 int target_resources_ok;
14340
14341 if (bpt->type == bp_hardware_breakpoint)
14342 {
14343 int i;
14344 i = hw_breakpoint_used_count ();
14345 target_resources_ok =
14346 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14347 i + 1, 0);
14348 if (target_resources_ok == 0)
14349 error (_("No hardware breakpoint support in the target."));
14350 else if (target_resources_ok < 0)
14351 error (_("Hardware breakpoints used exceeds limit."));
14352 }
14353
14354 if (is_watchpoint (bpt))
14355 {
14356 /* Initialize it just to avoid a GCC false warning. */
14357 enum enable_state orig_enable_state = bp_disabled;
14358
14359 TRY
14360 {
14361 struct watchpoint *w = (struct watchpoint *) bpt;
14362
14363 orig_enable_state = bpt->enable_state;
14364 bpt->enable_state = bp_enabled;
14365 update_watchpoint (w, 1 /* reparse */);
14366 }
14367 CATCH (e, RETURN_MASK_ALL)
14368 {
14369 bpt->enable_state = orig_enable_state;
14370 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14371 bpt->number);
14372 return;
14373 }
14374 END_CATCH
14375 }
14376
14377 bpt->enable_state = bp_enabled;
14378
14379 /* Mark breakpoint locations modified. */
14380 mark_breakpoint_modified (bpt);
14381
14382 if (target_supports_enable_disable_tracepoint ()
14383 && current_trace_status ()->running && is_tracepoint (bpt))
14384 {
14385 struct bp_location *location;
14386
14387 for (location = bpt->loc; location; location = location->next)
14388 target_enable_tracepoint (location);
14389 }
14390
14391 bpt->disposition = disposition;
14392 bpt->enable_count = count;
14393 update_global_location_list (UGLL_MAY_INSERT);
14394
14395 gdb::observers::breakpoint_modified.notify (bpt);
14396 }
14397
14398
14399 void
14400 enable_breakpoint (struct breakpoint *bpt)
14401 {
14402 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14403 }
14404
14405 /* The enable command enables the specified breakpoints/locations (or
14406 all defined breakpoints) so they once again become (or continue to
14407 be) effective in stopping the inferior. ARGS may be in any of the
14408 forms defined in extract_bp_number_and_location. */
14409
14410 static void
14411 enable_command (const char *args, int from_tty)
14412 {
14413 enable_disable_command (args, from_tty, true);
14414 }
14415
14416 static void
14417 enable_once_command (const char *args, int from_tty)
14418 {
14419 map_breakpoint_numbers
14420 (args, [&] (breakpoint *b)
14421 {
14422 iterate_over_related_breakpoints
14423 (b, [&] (breakpoint *bpt)
14424 {
14425 enable_breakpoint_disp (bpt, disp_disable, 1);
14426 });
14427 });
14428 }
14429
14430 static void
14431 enable_count_command (const char *args, int from_tty)
14432 {
14433 int count;
14434
14435 if (args == NULL)
14436 error_no_arg (_("hit count"));
14437
14438 count = get_number (&args);
14439
14440 map_breakpoint_numbers
14441 (args, [&] (breakpoint *b)
14442 {
14443 iterate_over_related_breakpoints
14444 (b, [&] (breakpoint *bpt)
14445 {
14446 enable_breakpoint_disp (bpt, disp_disable, count);
14447 });
14448 });
14449 }
14450
14451 static void
14452 enable_delete_command (const char *args, int from_tty)
14453 {
14454 map_breakpoint_numbers
14455 (args, [&] (breakpoint *b)
14456 {
14457 iterate_over_related_breakpoints
14458 (b, [&] (breakpoint *bpt)
14459 {
14460 enable_breakpoint_disp (bpt, disp_del, 1);
14461 });
14462 });
14463 }
14464 \f
14465 static void
14466 set_breakpoint_cmd (const char *args, int from_tty)
14467 {
14468 }
14469
14470 static void
14471 show_breakpoint_cmd (const char *args, int from_tty)
14472 {
14473 }
14474
14475 /* Invalidate last known value of any hardware watchpoint if
14476 the memory which that value represents has been written to by
14477 GDB itself. */
14478
14479 static void
14480 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14481 CORE_ADDR addr, ssize_t len,
14482 const bfd_byte *data)
14483 {
14484 struct breakpoint *bp;
14485
14486 ALL_BREAKPOINTS (bp)
14487 if (bp->enable_state == bp_enabled
14488 && bp->type == bp_hardware_watchpoint)
14489 {
14490 struct watchpoint *wp = (struct watchpoint *) bp;
14491
14492 if (wp->val_valid && wp->val != nullptr)
14493 {
14494 struct bp_location *loc;
14495
14496 for (loc = bp->loc; loc != NULL; loc = loc->next)
14497 if (loc->loc_type == bp_loc_hardware_watchpoint
14498 && loc->address + loc->length > addr
14499 && addr + len > loc->address)
14500 {
14501 wp->val = NULL;
14502 wp->val_valid = 0;
14503 }
14504 }
14505 }
14506 }
14507
14508 /* Create and insert a breakpoint for software single step. */
14509
14510 void
14511 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14512 const address_space *aspace,
14513 CORE_ADDR next_pc)
14514 {
14515 struct thread_info *tp = inferior_thread ();
14516 struct symtab_and_line sal;
14517 CORE_ADDR pc = next_pc;
14518
14519 if (tp->control.single_step_breakpoints == NULL)
14520 {
14521 tp->control.single_step_breakpoints
14522 = new_single_step_breakpoint (tp->global_num, gdbarch);
14523 }
14524
14525 sal = find_pc_line (pc, 0);
14526 sal.pc = pc;
14527 sal.section = find_pc_overlay (pc);
14528 sal.explicit_pc = 1;
14529 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14530
14531 update_global_location_list (UGLL_INSERT);
14532 }
14533
14534 /* Insert single step breakpoints according to the current state. */
14535
14536 int
14537 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14538 {
14539 struct regcache *regcache = get_current_regcache ();
14540 std::vector<CORE_ADDR> next_pcs;
14541
14542 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14543
14544 if (!next_pcs.empty ())
14545 {
14546 struct frame_info *frame = get_current_frame ();
14547 const address_space *aspace = get_frame_address_space (frame);
14548
14549 for (CORE_ADDR pc : next_pcs)
14550 insert_single_step_breakpoint (gdbarch, aspace, pc);
14551
14552 return 1;
14553 }
14554 else
14555 return 0;
14556 }
14557
14558 /* See breakpoint.h. */
14559
14560 int
14561 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14562 const address_space *aspace,
14563 CORE_ADDR pc)
14564 {
14565 struct bp_location *loc;
14566
14567 for (loc = bp->loc; loc != NULL; loc = loc->next)
14568 if (loc->inserted
14569 && breakpoint_location_address_match (loc, aspace, pc))
14570 return 1;
14571
14572 return 0;
14573 }
14574
14575 /* Check whether a software single-step breakpoint is inserted at
14576 PC. */
14577
14578 int
14579 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14580 CORE_ADDR pc)
14581 {
14582 struct breakpoint *bpt;
14583
14584 ALL_BREAKPOINTS (bpt)
14585 {
14586 if (bpt->type == bp_single_step
14587 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14588 return 1;
14589 }
14590 return 0;
14591 }
14592
14593 /* Tracepoint-specific operations. */
14594
14595 /* Set tracepoint count to NUM. */
14596 static void
14597 set_tracepoint_count (int num)
14598 {
14599 tracepoint_count = num;
14600 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14601 }
14602
14603 static void
14604 trace_command (const char *arg, int from_tty)
14605 {
14606 struct breakpoint_ops *ops;
14607
14608 event_location_up location = string_to_event_location (&arg,
14609 current_language);
14610 if (location != NULL
14611 && event_location_type (location.get ()) == PROBE_LOCATION)
14612 ops = &tracepoint_probe_breakpoint_ops;
14613 else
14614 ops = &tracepoint_breakpoint_ops;
14615
14616 create_breakpoint (get_current_arch (),
14617 location.get (),
14618 NULL, 0, arg, 1 /* parse arg */,
14619 0 /* tempflag */,
14620 bp_tracepoint /* type_wanted */,
14621 0 /* Ignore count */,
14622 pending_break_support,
14623 ops,
14624 from_tty,
14625 1 /* enabled */,
14626 0 /* internal */, 0);
14627 }
14628
14629 static void
14630 ftrace_command (const char *arg, int from_tty)
14631 {
14632 event_location_up location = string_to_event_location (&arg,
14633 current_language);
14634 create_breakpoint (get_current_arch (),
14635 location.get (),
14636 NULL, 0, arg, 1 /* parse arg */,
14637 0 /* tempflag */,
14638 bp_fast_tracepoint /* type_wanted */,
14639 0 /* Ignore count */,
14640 pending_break_support,
14641 &tracepoint_breakpoint_ops,
14642 from_tty,
14643 1 /* enabled */,
14644 0 /* internal */, 0);
14645 }
14646
14647 /* strace command implementation. Creates a static tracepoint. */
14648
14649 static void
14650 strace_command (const char *arg, int from_tty)
14651 {
14652 struct breakpoint_ops *ops;
14653 event_location_up location;
14654
14655 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14656 or with a normal static tracepoint. */
14657 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14658 {
14659 ops = &strace_marker_breakpoint_ops;
14660 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14661 }
14662 else
14663 {
14664 ops = &tracepoint_breakpoint_ops;
14665 location = string_to_event_location (&arg, current_language);
14666 }
14667
14668 create_breakpoint (get_current_arch (),
14669 location.get (),
14670 NULL, 0, arg, 1 /* parse arg */,
14671 0 /* tempflag */,
14672 bp_static_tracepoint /* type_wanted */,
14673 0 /* Ignore count */,
14674 pending_break_support,
14675 ops,
14676 from_tty,
14677 1 /* enabled */,
14678 0 /* internal */, 0);
14679 }
14680
14681 /* Set up a fake reader function that gets command lines from a linked
14682 list that was acquired during tracepoint uploading. */
14683
14684 static struct uploaded_tp *this_utp;
14685 static int next_cmd;
14686
14687 static char *
14688 read_uploaded_action (void)
14689 {
14690 char *rslt = nullptr;
14691
14692 if (next_cmd < this_utp->cmd_strings.size ())
14693 {
14694 rslt = this_utp->cmd_strings[next_cmd];
14695 next_cmd++;
14696 }
14697
14698 return rslt;
14699 }
14700
14701 /* Given information about a tracepoint as recorded on a target (which
14702 can be either a live system or a trace file), attempt to create an
14703 equivalent GDB tracepoint. This is not a reliable process, since
14704 the target does not necessarily have all the information used when
14705 the tracepoint was originally defined. */
14706
14707 struct tracepoint *
14708 create_tracepoint_from_upload (struct uploaded_tp *utp)
14709 {
14710 const char *addr_str;
14711 char small_buf[100];
14712 struct tracepoint *tp;
14713
14714 if (utp->at_string)
14715 addr_str = utp->at_string;
14716 else
14717 {
14718 /* In the absence of a source location, fall back to raw
14719 address. Since there is no way to confirm that the address
14720 means the same thing as when the trace was started, warn the
14721 user. */
14722 warning (_("Uploaded tracepoint %d has no "
14723 "source location, using raw address"),
14724 utp->number);
14725 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14726 addr_str = small_buf;
14727 }
14728
14729 /* There's not much we can do with a sequence of bytecodes. */
14730 if (utp->cond && !utp->cond_string)
14731 warning (_("Uploaded tracepoint %d condition "
14732 "has no source form, ignoring it"),
14733 utp->number);
14734
14735 event_location_up location = string_to_event_location (&addr_str,
14736 current_language);
14737 if (!create_breakpoint (get_current_arch (),
14738 location.get (),
14739 utp->cond_string, -1, addr_str,
14740 0 /* parse cond/thread */,
14741 0 /* tempflag */,
14742 utp->type /* type_wanted */,
14743 0 /* Ignore count */,
14744 pending_break_support,
14745 &tracepoint_breakpoint_ops,
14746 0 /* from_tty */,
14747 utp->enabled /* enabled */,
14748 0 /* internal */,
14749 CREATE_BREAKPOINT_FLAGS_INSERTED))
14750 return NULL;
14751
14752 /* Get the tracepoint we just created. */
14753 tp = get_tracepoint (tracepoint_count);
14754 gdb_assert (tp != NULL);
14755
14756 if (utp->pass > 0)
14757 {
14758 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14759 tp->number);
14760
14761 trace_pass_command (small_buf, 0);
14762 }
14763
14764 /* If we have uploaded versions of the original commands, set up a
14765 special-purpose "reader" function and call the usual command line
14766 reader, then pass the result to the breakpoint command-setting
14767 function. */
14768 if (!utp->cmd_strings.empty ())
14769 {
14770 counted_command_line cmd_list;
14771
14772 this_utp = utp;
14773 next_cmd = 0;
14774
14775 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14776
14777 breakpoint_set_commands (tp, std::move (cmd_list));
14778 }
14779 else if (!utp->actions.empty ()
14780 || !utp->step_actions.empty ())
14781 warning (_("Uploaded tracepoint %d actions "
14782 "have no source form, ignoring them"),
14783 utp->number);
14784
14785 /* Copy any status information that might be available. */
14786 tp->hit_count = utp->hit_count;
14787 tp->traceframe_usage = utp->traceframe_usage;
14788
14789 return tp;
14790 }
14791
14792 /* Print information on tracepoint number TPNUM_EXP, or all if
14793 omitted. */
14794
14795 static void
14796 info_tracepoints_command (const char *args, int from_tty)
14797 {
14798 struct ui_out *uiout = current_uiout;
14799 int num_printed;
14800
14801 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14802
14803 if (num_printed == 0)
14804 {
14805 if (args == NULL || *args == '\0')
14806 uiout->message ("No tracepoints.\n");
14807 else
14808 uiout->message ("No tracepoint matching '%s'.\n", args);
14809 }
14810
14811 default_collect_info ();
14812 }
14813
14814 /* The 'enable trace' command enables tracepoints.
14815 Not supported by all targets. */
14816 static void
14817 enable_trace_command (const char *args, int from_tty)
14818 {
14819 enable_command (args, from_tty);
14820 }
14821
14822 /* The 'disable trace' command disables tracepoints.
14823 Not supported by all targets. */
14824 static void
14825 disable_trace_command (const char *args, int from_tty)
14826 {
14827 disable_command (args, from_tty);
14828 }
14829
14830 /* Remove a tracepoint (or all if no argument). */
14831 static void
14832 delete_trace_command (const char *arg, int from_tty)
14833 {
14834 struct breakpoint *b, *b_tmp;
14835
14836 dont_repeat ();
14837
14838 if (arg == 0)
14839 {
14840 int breaks_to_delete = 0;
14841
14842 /* Delete all breakpoints if no argument.
14843 Do not delete internal or call-dummy breakpoints, these
14844 have to be deleted with an explicit breakpoint number
14845 argument. */
14846 ALL_TRACEPOINTS (b)
14847 if (is_tracepoint (b) && user_breakpoint_p (b))
14848 {
14849 breaks_to_delete = 1;
14850 break;
14851 }
14852
14853 /* Ask user only if there are some breakpoints to delete. */
14854 if (!from_tty
14855 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14856 {
14857 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14858 if (is_tracepoint (b) && user_breakpoint_p (b))
14859 delete_breakpoint (b);
14860 }
14861 }
14862 else
14863 map_breakpoint_numbers
14864 (arg, [&] (breakpoint *br)
14865 {
14866 iterate_over_related_breakpoints (br, delete_breakpoint);
14867 });
14868 }
14869
14870 /* Helper function for trace_pass_command. */
14871
14872 static void
14873 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14874 {
14875 tp->pass_count = count;
14876 gdb::observers::breakpoint_modified.notify (tp);
14877 if (from_tty)
14878 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14879 tp->number, count);
14880 }
14881
14882 /* Set passcount for tracepoint.
14883
14884 First command argument is passcount, second is tracepoint number.
14885 If tracepoint number omitted, apply to most recently defined.
14886 Also accepts special argument "all". */
14887
14888 static void
14889 trace_pass_command (const char *args, int from_tty)
14890 {
14891 struct tracepoint *t1;
14892 ULONGEST count;
14893
14894 if (args == 0 || *args == 0)
14895 error (_("passcount command requires an "
14896 "argument (count + optional TP num)"));
14897
14898 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14899
14900 args = skip_spaces (args);
14901 if (*args && strncasecmp (args, "all", 3) == 0)
14902 {
14903 struct breakpoint *b;
14904
14905 args += 3; /* Skip special argument "all". */
14906 if (*args)
14907 error (_("Junk at end of arguments."));
14908
14909 ALL_TRACEPOINTS (b)
14910 {
14911 t1 = (struct tracepoint *) b;
14912 trace_pass_set_count (t1, count, from_tty);
14913 }
14914 }
14915 else if (*args == '\0')
14916 {
14917 t1 = get_tracepoint_by_number (&args, NULL);
14918 if (t1)
14919 trace_pass_set_count (t1, count, from_tty);
14920 }
14921 else
14922 {
14923 number_or_range_parser parser (args);
14924 while (!parser.finished ())
14925 {
14926 t1 = get_tracepoint_by_number (&args, &parser);
14927 if (t1)
14928 trace_pass_set_count (t1, count, from_tty);
14929 }
14930 }
14931 }
14932
14933 struct tracepoint *
14934 get_tracepoint (int num)
14935 {
14936 struct breakpoint *t;
14937
14938 ALL_TRACEPOINTS (t)
14939 if (t->number == num)
14940 return (struct tracepoint *) t;
14941
14942 return NULL;
14943 }
14944
14945 /* Find the tracepoint with the given target-side number (which may be
14946 different from the tracepoint number after disconnecting and
14947 reconnecting). */
14948
14949 struct tracepoint *
14950 get_tracepoint_by_number_on_target (int num)
14951 {
14952 struct breakpoint *b;
14953
14954 ALL_TRACEPOINTS (b)
14955 {
14956 struct tracepoint *t = (struct tracepoint *) b;
14957
14958 if (t->number_on_target == num)
14959 return t;
14960 }
14961
14962 return NULL;
14963 }
14964
14965 /* Utility: parse a tracepoint number and look it up in the list.
14966 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14967 If the argument is missing, the most recent tracepoint
14968 (tracepoint_count) is returned. */
14969
14970 struct tracepoint *
14971 get_tracepoint_by_number (const char **arg,
14972 number_or_range_parser *parser)
14973 {
14974 struct breakpoint *t;
14975 int tpnum;
14976 const char *instring = arg == NULL ? NULL : *arg;
14977
14978 if (parser != NULL)
14979 {
14980 gdb_assert (!parser->finished ());
14981 tpnum = parser->get_number ();
14982 }
14983 else if (arg == NULL || *arg == NULL || ! **arg)
14984 tpnum = tracepoint_count;
14985 else
14986 tpnum = get_number (arg);
14987
14988 if (tpnum <= 0)
14989 {
14990 if (instring && *instring)
14991 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14992 instring);
14993 else
14994 printf_filtered (_("No previous tracepoint\n"));
14995 return NULL;
14996 }
14997
14998 ALL_TRACEPOINTS (t)
14999 if (t->number == tpnum)
15000 {
15001 return (struct tracepoint *) t;
15002 }
15003
15004 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15005 return NULL;
15006 }
15007
15008 void
15009 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15010 {
15011 if (b->thread != -1)
15012 fprintf_unfiltered (fp, " thread %d", b->thread);
15013
15014 if (b->task != 0)
15015 fprintf_unfiltered (fp, " task %d", b->task);
15016
15017 fprintf_unfiltered (fp, "\n");
15018 }
15019
15020 /* Save information on user settable breakpoints (watchpoints, etc) to
15021 a new script file named FILENAME. If FILTER is non-NULL, call it
15022 on each breakpoint and only include the ones for which it returns
15023 non-zero. */
15024
15025 static void
15026 save_breakpoints (const char *filename, int from_tty,
15027 int (*filter) (const struct breakpoint *))
15028 {
15029 struct breakpoint *tp;
15030 int any = 0;
15031 int extra_trace_bits = 0;
15032
15033 if (filename == 0 || *filename == 0)
15034 error (_("Argument required (file name in which to save)"));
15035
15036 /* See if we have anything to save. */
15037 ALL_BREAKPOINTS (tp)
15038 {
15039 /* Skip internal and momentary breakpoints. */
15040 if (!user_breakpoint_p (tp))
15041 continue;
15042
15043 /* If we have a filter, only save the breakpoints it accepts. */
15044 if (filter && !filter (tp))
15045 continue;
15046
15047 any = 1;
15048
15049 if (is_tracepoint (tp))
15050 {
15051 extra_trace_bits = 1;
15052
15053 /* We can stop searching. */
15054 break;
15055 }
15056 }
15057
15058 if (!any)
15059 {
15060 warning (_("Nothing to save."));
15061 return;
15062 }
15063
15064 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15065
15066 stdio_file fp;
15067
15068 if (!fp.open (expanded_filename.get (), "w"))
15069 error (_("Unable to open file '%s' for saving (%s)"),
15070 expanded_filename.get (), safe_strerror (errno));
15071
15072 if (extra_trace_bits)
15073 save_trace_state_variables (&fp);
15074
15075 ALL_BREAKPOINTS (tp)
15076 {
15077 /* Skip internal and momentary breakpoints. */
15078 if (!user_breakpoint_p (tp))
15079 continue;
15080
15081 /* If we have a filter, only save the breakpoints it accepts. */
15082 if (filter && !filter (tp))
15083 continue;
15084
15085 tp->ops->print_recreate (tp, &fp);
15086
15087 /* Note, we can't rely on tp->number for anything, as we can't
15088 assume the recreated breakpoint numbers will match. Use $bpnum
15089 instead. */
15090
15091 if (tp->cond_string)
15092 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15093
15094 if (tp->ignore_count)
15095 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15096
15097 if (tp->type != bp_dprintf && tp->commands)
15098 {
15099 fp.puts (" commands\n");
15100
15101 current_uiout->redirect (&fp);
15102 TRY
15103 {
15104 print_command_lines (current_uiout, tp->commands.get (), 2);
15105 }
15106 CATCH (ex, RETURN_MASK_ALL)
15107 {
15108 current_uiout->redirect (NULL);
15109 throw_exception (ex);
15110 }
15111 END_CATCH
15112
15113 current_uiout->redirect (NULL);
15114 fp.puts (" end\n");
15115 }
15116
15117 if (tp->enable_state == bp_disabled)
15118 fp.puts ("disable $bpnum\n");
15119
15120 /* If this is a multi-location breakpoint, check if the locations
15121 should be individually disabled. Watchpoint locations are
15122 special, and not user visible. */
15123 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15124 {
15125 struct bp_location *loc;
15126 int n = 1;
15127
15128 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15129 if (!loc->enabled)
15130 fp.printf ("disable $bpnum.%d\n", n);
15131 }
15132 }
15133
15134 if (extra_trace_bits && *default_collect)
15135 fp.printf ("set default-collect %s\n", default_collect);
15136
15137 if (from_tty)
15138 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15139 }
15140
15141 /* The `save breakpoints' command. */
15142
15143 static void
15144 save_breakpoints_command (const char *args, int from_tty)
15145 {
15146 save_breakpoints (args, from_tty, NULL);
15147 }
15148
15149 /* The `save tracepoints' command. */
15150
15151 static void
15152 save_tracepoints_command (const char *args, int from_tty)
15153 {
15154 save_breakpoints (args, from_tty, is_tracepoint);
15155 }
15156
15157 /* Create a vector of all tracepoints. */
15158
15159 std::vector<breakpoint *>
15160 all_tracepoints (void)
15161 {
15162 std::vector<breakpoint *> tp_vec;
15163 struct breakpoint *tp;
15164
15165 ALL_TRACEPOINTS (tp)
15166 {
15167 tp_vec.push_back (tp);
15168 }
15169
15170 return tp_vec;
15171 }
15172
15173 \f
15174 /* This help string is used to consolidate all the help string for specifying
15175 locations used by several commands. */
15176
15177 #define LOCATION_HELP_STRING \
15178 "Linespecs are colon-separated lists of location parameters, such as\n\
15179 source filename, function name, label name, and line number.\n\
15180 Example: To specify the start of a label named \"the_top\" in the\n\
15181 function \"fact\" in the file \"factorial.c\", use\n\
15182 \"factorial.c:fact:the_top\".\n\
15183 \n\
15184 Address locations begin with \"*\" and specify an exact address in the\n\
15185 program. Example: To specify the fourth byte past the start function\n\
15186 \"main\", use \"*main + 4\".\n\
15187 \n\
15188 Explicit locations are similar to linespecs but use an option/argument\n\
15189 syntax to specify location parameters.\n\
15190 Example: To specify the start of the label named \"the_top\" in the\n\
15191 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15192 -function fact -label the_top\".\n\
15193 \n\
15194 By default, a specified function is matched against the program's\n\
15195 functions in all scopes. For C++, this means in all namespaces and\n\
15196 classes. For Ada, this means in all packages. E.g., in C++,\n\
15197 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15198 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15199 specified name as a complete fully-qualified name instead.\n"
15200
15201 /* This help string is used for the break, hbreak, tbreak and thbreak
15202 commands. It is defined as a macro to prevent duplication.
15203 COMMAND should be a string constant containing the name of the
15204 command. */
15205
15206 #define BREAK_ARGS_HELP(command) \
15207 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15208 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15209 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15210 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15211 `-probe-dtrace' (for a DTrace probe).\n\
15212 LOCATION may be a linespec, address, or explicit location as described\n\
15213 below.\n\
15214 \n\
15215 With no LOCATION, uses current execution address of the selected\n\
15216 stack frame. This is useful for breaking on return to a stack frame.\n\
15217 \n\
15218 THREADNUM is the number from \"info threads\".\n\
15219 CONDITION is a boolean expression.\n\
15220 \n" LOCATION_HELP_STRING "\n\
15221 Multiple breakpoints at one place are permitted, and useful if their\n\
15222 conditions are different.\n\
15223 \n\
15224 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15225
15226 /* List of subcommands for "catch". */
15227 static struct cmd_list_element *catch_cmdlist;
15228
15229 /* List of subcommands for "tcatch". */
15230 static struct cmd_list_element *tcatch_cmdlist;
15231
15232 void
15233 add_catch_command (const char *name, const char *docstring,
15234 cmd_const_sfunc_ftype *sfunc,
15235 completer_ftype *completer,
15236 void *user_data_catch,
15237 void *user_data_tcatch)
15238 {
15239 struct cmd_list_element *command;
15240
15241 command = add_cmd (name, class_breakpoint, docstring,
15242 &catch_cmdlist);
15243 set_cmd_sfunc (command, sfunc);
15244 set_cmd_context (command, user_data_catch);
15245 set_cmd_completer (command, completer);
15246
15247 command = add_cmd (name, class_breakpoint, docstring,
15248 &tcatch_cmdlist);
15249 set_cmd_sfunc (command, sfunc);
15250 set_cmd_context (command, user_data_tcatch);
15251 set_cmd_completer (command, completer);
15252 }
15253
15254 static void
15255 save_command (const char *arg, int from_tty)
15256 {
15257 printf_unfiltered (_("\"save\" must be followed by "
15258 "the name of a save subcommand.\n"));
15259 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15260 }
15261
15262 struct breakpoint *
15263 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15264 void *data)
15265 {
15266 struct breakpoint *b, *b_tmp;
15267
15268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15269 {
15270 if ((*callback) (b, data))
15271 return b;
15272 }
15273
15274 return NULL;
15275 }
15276
15277 /* Zero if any of the breakpoint's locations could be a location where
15278 functions have been inlined, nonzero otherwise. */
15279
15280 static int
15281 is_non_inline_function (struct breakpoint *b)
15282 {
15283 /* The shared library event breakpoint is set on the address of a
15284 non-inline function. */
15285 if (b->type == bp_shlib_event)
15286 return 1;
15287
15288 return 0;
15289 }
15290
15291 /* Nonzero if the specified PC cannot be a location where functions
15292 have been inlined. */
15293
15294 int
15295 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15296 const struct target_waitstatus *ws)
15297 {
15298 struct breakpoint *b;
15299 struct bp_location *bl;
15300
15301 ALL_BREAKPOINTS (b)
15302 {
15303 if (!is_non_inline_function (b))
15304 continue;
15305
15306 for (bl = b->loc; bl != NULL; bl = bl->next)
15307 {
15308 if (!bl->shlib_disabled
15309 && bpstat_check_location (bl, aspace, pc, ws))
15310 return 1;
15311 }
15312 }
15313
15314 return 0;
15315 }
15316
15317 /* Remove any references to OBJFILE which is going to be freed. */
15318
15319 void
15320 breakpoint_free_objfile (struct objfile *objfile)
15321 {
15322 struct bp_location **locp, *loc;
15323
15324 ALL_BP_LOCATIONS (loc, locp)
15325 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15326 loc->symtab = NULL;
15327 }
15328
15329 void
15330 initialize_breakpoint_ops (void)
15331 {
15332 static int initialized = 0;
15333
15334 struct breakpoint_ops *ops;
15335
15336 if (initialized)
15337 return;
15338 initialized = 1;
15339
15340 /* The breakpoint_ops structure to be inherit by all kinds of
15341 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15342 internal and momentary breakpoints, etc.). */
15343 ops = &bkpt_base_breakpoint_ops;
15344 *ops = base_breakpoint_ops;
15345 ops->re_set = bkpt_re_set;
15346 ops->insert_location = bkpt_insert_location;
15347 ops->remove_location = bkpt_remove_location;
15348 ops->breakpoint_hit = bkpt_breakpoint_hit;
15349 ops->create_sals_from_location = bkpt_create_sals_from_location;
15350 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15351 ops->decode_location = bkpt_decode_location;
15352
15353 /* The breakpoint_ops structure to be used in regular breakpoints. */
15354 ops = &bkpt_breakpoint_ops;
15355 *ops = bkpt_base_breakpoint_ops;
15356 ops->re_set = bkpt_re_set;
15357 ops->resources_needed = bkpt_resources_needed;
15358 ops->print_it = bkpt_print_it;
15359 ops->print_mention = bkpt_print_mention;
15360 ops->print_recreate = bkpt_print_recreate;
15361
15362 /* Ranged breakpoints. */
15363 ops = &ranged_breakpoint_ops;
15364 *ops = bkpt_breakpoint_ops;
15365 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15366 ops->resources_needed = resources_needed_ranged_breakpoint;
15367 ops->print_it = print_it_ranged_breakpoint;
15368 ops->print_one = print_one_ranged_breakpoint;
15369 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15370 ops->print_mention = print_mention_ranged_breakpoint;
15371 ops->print_recreate = print_recreate_ranged_breakpoint;
15372
15373 /* Internal breakpoints. */
15374 ops = &internal_breakpoint_ops;
15375 *ops = bkpt_base_breakpoint_ops;
15376 ops->re_set = internal_bkpt_re_set;
15377 ops->check_status = internal_bkpt_check_status;
15378 ops->print_it = internal_bkpt_print_it;
15379 ops->print_mention = internal_bkpt_print_mention;
15380
15381 /* Momentary breakpoints. */
15382 ops = &momentary_breakpoint_ops;
15383 *ops = bkpt_base_breakpoint_ops;
15384 ops->re_set = momentary_bkpt_re_set;
15385 ops->check_status = momentary_bkpt_check_status;
15386 ops->print_it = momentary_bkpt_print_it;
15387 ops->print_mention = momentary_bkpt_print_mention;
15388
15389 /* Probe breakpoints. */
15390 ops = &bkpt_probe_breakpoint_ops;
15391 *ops = bkpt_breakpoint_ops;
15392 ops->insert_location = bkpt_probe_insert_location;
15393 ops->remove_location = bkpt_probe_remove_location;
15394 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15395 ops->decode_location = bkpt_probe_decode_location;
15396
15397 /* Watchpoints. */
15398 ops = &watchpoint_breakpoint_ops;
15399 *ops = base_breakpoint_ops;
15400 ops->re_set = re_set_watchpoint;
15401 ops->insert_location = insert_watchpoint;
15402 ops->remove_location = remove_watchpoint;
15403 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15404 ops->check_status = check_status_watchpoint;
15405 ops->resources_needed = resources_needed_watchpoint;
15406 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15407 ops->print_it = print_it_watchpoint;
15408 ops->print_mention = print_mention_watchpoint;
15409 ops->print_recreate = print_recreate_watchpoint;
15410 ops->explains_signal = explains_signal_watchpoint;
15411
15412 /* Masked watchpoints. */
15413 ops = &masked_watchpoint_breakpoint_ops;
15414 *ops = watchpoint_breakpoint_ops;
15415 ops->insert_location = insert_masked_watchpoint;
15416 ops->remove_location = remove_masked_watchpoint;
15417 ops->resources_needed = resources_needed_masked_watchpoint;
15418 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15419 ops->print_it = print_it_masked_watchpoint;
15420 ops->print_one_detail = print_one_detail_masked_watchpoint;
15421 ops->print_mention = print_mention_masked_watchpoint;
15422 ops->print_recreate = print_recreate_masked_watchpoint;
15423
15424 /* Tracepoints. */
15425 ops = &tracepoint_breakpoint_ops;
15426 *ops = base_breakpoint_ops;
15427 ops->re_set = tracepoint_re_set;
15428 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15429 ops->print_one_detail = tracepoint_print_one_detail;
15430 ops->print_mention = tracepoint_print_mention;
15431 ops->print_recreate = tracepoint_print_recreate;
15432 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15433 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15434 ops->decode_location = tracepoint_decode_location;
15435
15436 /* Probe tracepoints. */
15437 ops = &tracepoint_probe_breakpoint_ops;
15438 *ops = tracepoint_breakpoint_ops;
15439 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15440 ops->decode_location = tracepoint_probe_decode_location;
15441
15442 /* Static tracepoints with marker (`-m'). */
15443 ops = &strace_marker_breakpoint_ops;
15444 *ops = tracepoint_breakpoint_ops;
15445 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15446 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15447 ops->decode_location = strace_marker_decode_location;
15448
15449 /* Fork catchpoints. */
15450 ops = &catch_fork_breakpoint_ops;
15451 *ops = base_breakpoint_ops;
15452 ops->insert_location = insert_catch_fork;
15453 ops->remove_location = remove_catch_fork;
15454 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15455 ops->print_it = print_it_catch_fork;
15456 ops->print_one = print_one_catch_fork;
15457 ops->print_mention = print_mention_catch_fork;
15458 ops->print_recreate = print_recreate_catch_fork;
15459
15460 /* Vfork catchpoints. */
15461 ops = &catch_vfork_breakpoint_ops;
15462 *ops = base_breakpoint_ops;
15463 ops->insert_location = insert_catch_vfork;
15464 ops->remove_location = remove_catch_vfork;
15465 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15466 ops->print_it = print_it_catch_vfork;
15467 ops->print_one = print_one_catch_vfork;
15468 ops->print_mention = print_mention_catch_vfork;
15469 ops->print_recreate = print_recreate_catch_vfork;
15470
15471 /* Exec catchpoints. */
15472 ops = &catch_exec_breakpoint_ops;
15473 *ops = base_breakpoint_ops;
15474 ops->insert_location = insert_catch_exec;
15475 ops->remove_location = remove_catch_exec;
15476 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15477 ops->print_it = print_it_catch_exec;
15478 ops->print_one = print_one_catch_exec;
15479 ops->print_mention = print_mention_catch_exec;
15480 ops->print_recreate = print_recreate_catch_exec;
15481
15482 /* Solib-related catchpoints. */
15483 ops = &catch_solib_breakpoint_ops;
15484 *ops = base_breakpoint_ops;
15485 ops->insert_location = insert_catch_solib;
15486 ops->remove_location = remove_catch_solib;
15487 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15488 ops->check_status = check_status_catch_solib;
15489 ops->print_it = print_it_catch_solib;
15490 ops->print_one = print_one_catch_solib;
15491 ops->print_mention = print_mention_catch_solib;
15492 ops->print_recreate = print_recreate_catch_solib;
15493
15494 ops = &dprintf_breakpoint_ops;
15495 *ops = bkpt_base_breakpoint_ops;
15496 ops->re_set = dprintf_re_set;
15497 ops->resources_needed = bkpt_resources_needed;
15498 ops->print_it = bkpt_print_it;
15499 ops->print_mention = bkpt_print_mention;
15500 ops->print_recreate = dprintf_print_recreate;
15501 ops->after_condition_true = dprintf_after_condition_true;
15502 ops->breakpoint_hit = dprintf_breakpoint_hit;
15503 }
15504
15505 /* Chain containing all defined "enable breakpoint" subcommands. */
15506
15507 static struct cmd_list_element *enablebreaklist = NULL;
15508
15509 /* See breakpoint.h. */
15510
15511 cmd_list_element *commands_cmd_element = nullptr;
15512
15513 void
15514 _initialize_breakpoint (void)
15515 {
15516 struct cmd_list_element *c;
15517
15518 initialize_breakpoint_ops ();
15519
15520 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15521 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15522 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15523
15524 breakpoint_objfile_key
15525 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15526
15527 breakpoint_chain = 0;
15528 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15529 before a breakpoint is set. */
15530 breakpoint_count = 0;
15531
15532 tracepoint_count = 0;
15533
15534 add_com ("ignore", class_breakpoint, ignore_command, _("\
15535 Set ignore-count of breakpoint number N to COUNT.\n\
15536 Usage is `ignore N COUNT'."));
15537
15538 commands_cmd_element = add_com ("commands", class_breakpoint,
15539 commands_command, _("\
15540 Set commands to be executed when the given breakpoints are hit.\n\
15541 Give a space-separated breakpoint list as argument after \"commands\".\n\
15542 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15543 (e.g. `5-7').\n\
15544 With no argument, the targeted breakpoint is the last one set.\n\
15545 The commands themselves follow starting on the next line.\n\
15546 Type a line containing \"end\" to indicate the end of them.\n\
15547 Give \"silent\" as the first line to make the breakpoint silent;\n\
15548 then no output is printed when it is hit, except what the commands print."));
15549
15550 c = add_com ("condition", class_breakpoint, condition_command, _("\
15551 Specify breakpoint number N to break only if COND is true.\n\
15552 Usage is `condition N COND', where N is an integer and COND is an\n\
15553 expression to be evaluated whenever breakpoint N is reached."));
15554 set_cmd_completer (c, condition_completer);
15555
15556 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15557 Set a temporary breakpoint.\n\
15558 Like \"break\" except the breakpoint is only temporary,\n\
15559 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15560 by using \"enable delete\" on the breakpoint number.\n\
15561 \n"
15562 BREAK_ARGS_HELP ("tbreak")));
15563 set_cmd_completer (c, location_completer);
15564
15565 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15566 Set a hardware assisted breakpoint.\n\
15567 Like \"break\" except the breakpoint requires hardware support,\n\
15568 some target hardware may not have this support.\n\
15569 \n"
15570 BREAK_ARGS_HELP ("hbreak")));
15571 set_cmd_completer (c, location_completer);
15572
15573 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15574 Set a temporary hardware assisted breakpoint.\n\
15575 Like \"hbreak\" except the breakpoint is only temporary,\n\
15576 so it will be deleted when hit.\n\
15577 \n"
15578 BREAK_ARGS_HELP ("thbreak")));
15579 set_cmd_completer (c, location_completer);
15580
15581 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15582 Enable some breakpoints.\n\
15583 Give breakpoint numbers (separated by spaces) as arguments.\n\
15584 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15585 This is used to cancel the effect of the \"disable\" command.\n\
15586 With a subcommand you can enable temporarily."),
15587 &enablelist, "enable ", 1, &cmdlist);
15588
15589 add_com_alias ("en", "enable", class_breakpoint, 1);
15590
15591 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15592 Enable some breakpoints.\n\
15593 Give breakpoint numbers (separated by spaces) as arguments.\n\
15594 This is used to cancel the effect of the \"disable\" command.\n\
15595 May be abbreviated to simply \"enable\".\n"),
15596 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15597
15598 add_cmd ("once", no_class, enable_once_command, _("\
15599 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15601 &enablebreaklist);
15602
15603 add_cmd ("delete", no_class, enable_delete_command, _("\
15604 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15605 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15606 &enablebreaklist);
15607
15608 add_cmd ("count", no_class, enable_count_command, _("\
15609 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15610 If a breakpoint is hit while enabled in this fashion,\n\
15611 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15612 &enablebreaklist);
15613
15614 add_cmd ("delete", no_class, enable_delete_command, _("\
15615 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15616 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15617 &enablelist);
15618
15619 add_cmd ("once", no_class, enable_once_command, _("\
15620 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15621 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15622 &enablelist);
15623
15624 add_cmd ("count", no_class, enable_count_command, _("\
15625 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15626 If a breakpoint is hit while enabled in this fashion,\n\
15627 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15628 &enablelist);
15629
15630 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15631 Disable some breakpoints.\n\
15632 Arguments are breakpoint numbers with spaces in between.\n\
15633 To disable all breakpoints, give no argument.\n\
15634 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15635 &disablelist, "disable ", 1, &cmdlist);
15636 add_com_alias ("dis", "disable", class_breakpoint, 1);
15637 add_com_alias ("disa", "disable", class_breakpoint, 1);
15638
15639 add_cmd ("breakpoints", class_alias, disable_command, _("\
15640 Disable some breakpoints.\n\
15641 Arguments are breakpoint numbers with spaces in between.\n\
15642 To disable all breakpoints, give no argument.\n\
15643 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15644 This command may be abbreviated \"disable\"."),
15645 &disablelist);
15646
15647 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15648 Delete some breakpoints or auto-display expressions.\n\
15649 Arguments are breakpoint numbers with spaces in between.\n\
15650 To delete all breakpoints, give no argument.\n\
15651 \n\
15652 Also a prefix command for deletion of other GDB objects.\n\
15653 The \"unset\" command is also an alias for \"delete\"."),
15654 &deletelist, "delete ", 1, &cmdlist);
15655 add_com_alias ("d", "delete", class_breakpoint, 1);
15656 add_com_alias ("del", "delete", class_breakpoint, 1);
15657
15658 add_cmd ("breakpoints", class_alias, delete_command, _("\
15659 Delete some breakpoints or auto-display expressions.\n\
15660 Arguments are breakpoint numbers with spaces in between.\n\
15661 To delete all breakpoints, give no argument.\n\
15662 This command may be abbreviated \"delete\"."),
15663 &deletelist);
15664
15665 add_com ("clear", class_breakpoint, clear_command, _("\
15666 Clear breakpoint at specified location.\n\
15667 Argument may be a linespec, explicit, or address location as described below.\n\
15668 \n\
15669 With no argument, clears all breakpoints in the line that the selected frame\n\
15670 is executing in.\n"
15671 "\n" LOCATION_HELP_STRING "\n\
15672 See also the \"delete\" command which clears breakpoints by number."));
15673 add_com_alias ("cl", "clear", class_breakpoint, 1);
15674
15675 c = add_com ("break", class_breakpoint, break_command, _("\
15676 Set breakpoint at specified location.\n"
15677 BREAK_ARGS_HELP ("break")));
15678 set_cmd_completer (c, location_completer);
15679
15680 add_com_alias ("b", "break", class_run, 1);
15681 add_com_alias ("br", "break", class_run, 1);
15682 add_com_alias ("bre", "break", class_run, 1);
15683 add_com_alias ("brea", "break", class_run, 1);
15684
15685 if (dbx_commands)
15686 {
15687 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15688 Break in function/address or break at a line in the current file."),
15689 &stoplist, "stop ", 1, &cmdlist);
15690 add_cmd ("in", class_breakpoint, stopin_command,
15691 _("Break in function or address."), &stoplist);
15692 add_cmd ("at", class_breakpoint, stopat_command,
15693 _("Break at a line in the current file."), &stoplist);
15694 add_com ("status", class_info, info_breakpoints_command, _("\
15695 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15696 The \"Type\" column indicates one of:\n\
15697 \tbreakpoint - normal breakpoint\n\
15698 \twatchpoint - watchpoint\n\
15699 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15700 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15701 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15702 address and file/line number respectively.\n\
15703 \n\
15704 Convenience variable \"$_\" and default examine address for \"x\"\n\
15705 are set to the address of the last breakpoint listed unless the command\n\
15706 is prefixed with \"server \".\n\n\
15707 Convenience variable \"$bpnum\" contains the number of the last\n\
15708 breakpoint set."));
15709 }
15710
15711 add_info ("breakpoints", info_breakpoints_command, _("\
15712 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15713 The \"Type\" column indicates one of:\n\
15714 \tbreakpoint - normal breakpoint\n\
15715 \twatchpoint - watchpoint\n\
15716 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15717 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15718 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15719 address and file/line number respectively.\n\
15720 \n\
15721 Convenience variable \"$_\" and default examine address for \"x\"\n\
15722 are set to the address of the last breakpoint listed unless the command\n\
15723 is prefixed with \"server \".\n\n\
15724 Convenience variable \"$bpnum\" contains the number of the last\n\
15725 breakpoint set."));
15726
15727 add_info_alias ("b", "breakpoints", 1);
15728
15729 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15730 Status of all breakpoints, or breakpoint number NUMBER.\n\
15731 The \"Type\" column indicates one of:\n\
15732 \tbreakpoint - normal breakpoint\n\
15733 \twatchpoint - watchpoint\n\
15734 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15735 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15736 \tuntil - internal breakpoint used by the \"until\" command\n\
15737 \tfinish - internal breakpoint used by the \"finish\" command\n\
15738 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15739 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15740 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15741 address and file/line number respectively.\n\
15742 \n\
15743 Convenience variable \"$_\" and default examine address for \"x\"\n\
15744 are set to the address of the last breakpoint listed unless the command\n\
15745 is prefixed with \"server \".\n\n\
15746 Convenience variable \"$bpnum\" contains the number of the last\n\
15747 breakpoint set."),
15748 &maintenanceinfolist);
15749
15750 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15751 Set catchpoints to catch events."),
15752 &catch_cmdlist, "catch ",
15753 0/*allow-unknown*/, &cmdlist);
15754
15755 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15756 Set temporary catchpoints to catch events."),
15757 &tcatch_cmdlist, "tcatch ",
15758 0/*allow-unknown*/, &cmdlist);
15759
15760 add_catch_command ("fork", _("Catch calls to fork."),
15761 catch_fork_command_1,
15762 NULL,
15763 (void *) (uintptr_t) catch_fork_permanent,
15764 (void *) (uintptr_t) catch_fork_temporary);
15765 add_catch_command ("vfork", _("Catch calls to vfork."),
15766 catch_fork_command_1,
15767 NULL,
15768 (void *) (uintptr_t) catch_vfork_permanent,
15769 (void *) (uintptr_t) catch_vfork_temporary);
15770 add_catch_command ("exec", _("Catch calls to exec."),
15771 catch_exec_command_1,
15772 NULL,
15773 CATCH_PERMANENT,
15774 CATCH_TEMPORARY);
15775 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15776 Usage: catch load [REGEX]\n\
15777 If REGEX is given, only stop for libraries matching the regular expression."),
15778 catch_load_command_1,
15779 NULL,
15780 CATCH_PERMANENT,
15781 CATCH_TEMPORARY);
15782 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15783 Usage: catch unload [REGEX]\n\
15784 If REGEX is given, only stop for libraries matching the regular expression."),
15785 catch_unload_command_1,
15786 NULL,
15787 CATCH_PERMANENT,
15788 CATCH_TEMPORARY);
15789
15790 c = add_com ("watch", class_breakpoint, watch_command, _("\
15791 Set a watchpoint for an expression.\n\
15792 Usage: watch [-l|-location] EXPRESSION\n\
15793 A watchpoint stops execution of your program whenever the value of\n\
15794 an expression changes.\n\
15795 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15796 the memory to which it refers."));
15797 set_cmd_completer (c, expression_completer);
15798
15799 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15800 Set a read watchpoint for an expression.\n\
15801 Usage: rwatch [-l|-location] EXPRESSION\n\
15802 A watchpoint stops execution of your program whenever the value of\n\
15803 an expression is read.\n\
15804 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15805 the memory to which it refers."));
15806 set_cmd_completer (c, expression_completer);
15807
15808 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15809 Set a watchpoint for an expression.\n\
15810 Usage: awatch [-l|-location] EXPRESSION\n\
15811 A watchpoint stops execution of your program whenever the value of\n\
15812 an expression is either read or written.\n\
15813 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15814 the memory to which it refers."));
15815 set_cmd_completer (c, expression_completer);
15816
15817 add_info ("watchpoints", info_watchpoints_command, _("\
15818 Status of specified watchpoints (all watchpoints if no argument)."));
15819
15820 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15821 respond to changes - contrary to the description. */
15822 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15823 &can_use_hw_watchpoints, _("\
15824 Set debugger's willingness to use watchpoint hardware."), _("\
15825 Show debugger's willingness to use watchpoint hardware."), _("\
15826 If zero, gdb will not use hardware for new watchpoints, even if\n\
15827 such is available. (However, any hardware watchpoints that were\n\
15828 created before setting this to nonzero, will continue to use watchpoint\n\
15829 hardware.)"),
15830 NULL,
15831 show_can_use_hw_watchpoints,
15832 &setlist, &showlist);
15833
15834 can_use_hw_watchpoints = 1;
15835
15836 /* Tracepoint manipulation commands. */
15837
15838 c = add_com ("trace", class_breakpoint, trace_command, _("\
15839 Set a tracepoint at specified location.\n\
15840 \n"
15841 BREAK_ARGS_HELP ("trace") "\n\
15842 Do \"help tracepoints\" for info on other tracepoint commands."));
15843 set_cmd_completer (c, location_completer);
15844
15845 add_com_alias ("tp", "trace", class_alias, 0);
15846 add_com_alias ("tr", "trace", class_alias, 1);
15847 add_com_alias ("tra", "trace", class_alias, 1);
15848 add_com_alias ("trac", "trace", class_alias, 1);
15849
15850 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15851 Set a fast tracepoint at specified location.\n\
15852 \n"
15853 BREAK_ARGS_HELP ("ftrace") "\n\
15854 Do \"help tracepoints\" for info on other tracepoint commands."));
15855 set_cmd_completer (c, location_completer);
15856
15857 c = add_com ("strace", class_breakpoint, strace_command, _("\
15858 Set a static tracepoint at location or marker.\n\
15859 \n\
15860 strace [LOCATION] [if CONDITION]\n\
15861 LOCATION may be a linespec, explicit, or address location (described below) \n\
15862 or -m MARKER_ID.\n\n\
15863 If a marker id is specified, probe the marker with that name. With\n\
15864 no LOCATION, uses current execution address of the selected stack frame.\n\
15865 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15866 This collects arbitrary user data passed in the probe point call to the\n\
15867 tracing library. You can inspect it when analyzing the trace buffer,\n\
15868 by printing the $_sdata variable like any other convenience variable.\n\
15869 \n\
15870 CONDITION is a boolean expression.\n\
15871 \n" LOCATION_HELP_STRING "\n\
15872 Multiple tracepoints at one place are permitted, and useful if their\n\
15873 conditions are different.\n\
15874 \n\
15875 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15876 Do \"help tracepoints\" for info on other tracepoint commands."));
15877 set_cmd_completer (c, location_completer);
15878
15879 add_info ("tracepoints", info_tracepoints_command, _("\
15880 Status of specified tracepoints (all tracepoints if no argument).\n\
15881 Convenience variable \"$tpnum\" contains the number of the\n\
15882 last tracepoint set."));
15883
15884 add_info_alias ("tp", "tracepoints", 1);
15885
15886 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15887 Delete specified tracepoints.\n\
15888 Arguments are tracepoint numbers, separated by spaces.\n\
15889 No argument means delete all tracepoints."),
15890 &deletelist);
15891 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15892
15893 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15894 Disable specified tracepoints.\n\
15895 Arguments are tracepoint numbers, separated by spaces.\n\
15896 No argument means disable all tracepoints."),
15897 &disablelist);
15898 deprecate_cmd (c, "disable");
15899
15900 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15901 Enable specified tracepoints.\n\
15902 Arguments are tracepoint numbers, separated by spaces.\n\
15903 No argument means enable all tracepoints."),
15904 &enablelist);
15905 deprecate_cmd (c, "enable");
15906
15907 add_com ("passcount", class_trace, trace_pass_command, _("\
15908 Set the passcount for a tracepoint.\n\
15909 The trace will end when the tracepoint has been passed 'count' times.\n\
15910 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15911 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15912
15913 add_prefix_cmd ("save", class_breakpoint, save_command,
15914 _("Save breakpoint definitions as a script."),
15915 &save_cmdlist, "save ",
15916 0/*allow-unknown*/, &cmdlist);
15917
15918 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15919 Save current breakpoint definitions as a script.\n\
15920 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15921 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15922 session to restore them."),
15923 &save_cmdlist);
15924 set_cmd_completer (c, filename_completer);
15925
15926 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15927 Save current tracepoint definitions as a script.\n\
15928 Use the 'source' command in another debug session to restore them."),
15929 &save_cmdlist);
15930 set_cmd_completer (c, filename_completer);
15931
15932 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15933 deprecate_cmd (c, "save tracepoints");
15934
15935 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15936 Breakpoint specific settings\n\
15937 Configure various breakpoint-specific variables such as\n\
15938 pending breakpoint behavior"),
15939 &breakpoint_set_cmdlist, "set breakpoint ",
15940 0/*allow-unknown*/, &setlist);
15941 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15942 Breakpoint specific settings\n\
15943 Configure various breakpoint-specific variables such as\n\
15944 pending breakpoint behavior"),
15945 &breakpoint_show_cmdlist, "show breakpoint ",
15946 0/*allow-unknown*/, &showlist);
15947
15948 add_setshow_auto_boolean_cmd ("pending", no_class,
15949 &pending_break_support, _("\
15950 Set debugger's behavior regarding pending breakpoints."), _("\
15951 Show debugger's behavior regarding pending breakpoints."), _("\
15952 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15953 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15954 an error. If auto, an unrecognized breakpoint location results in a\n\
15955 user-query to see if a pending breakpoint should be created."),
15956 NULL,
15957 show_pending_break_support,
15958 &breakpoint_set_cmdlist,
15959 &breakpoint_show_cmdlist);
15960
15961 pending_break_support = AUTO_BOOLEAN_AUTO;
15962
15963 add_setshow_boolean_cmd ("auto-hw", no_class,
15964 &automatic_hardware_breakpoints, _("\
15965 Set automatic usage of hardware breakpoints."), _("\
15966 Show automatic usage of hardware breakpoints."), _("\
15967 If set, the debugger will automatically use hardware breakpoints for\n\
15968 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15969 a warning will be emitted for such breakpoints."),
15970 NULL,
15971 show_automatic_hardware_breakpoints,
15972 &breakpoint_set_cmdlist,
15973 &breakpoint_show_cmdlist);
15974
15975 add_setshow_boolean_cmd ("always-inserted", class_support,
15976 &always_inserted_mode, _("\
15977 Set mode for inserting breakpoints."), _("\
15978 Show mode for inserting breakpoints."), _("\
15979 When this mode is on, breakpoints are inserted immediately as soon as\n\
15980 they're created, kept inserted even when execution stops, and removed\n\
15981 only when the user deletes them. When this mode is off (the default),\n\
15982 breakpoints are inserted only when execution continues, and removed\n\
15983 when execution stops."),
15984 NULL,
15985 &show_always_inserted_mode,
15986 &breakpoint_set_cmdlist,
15987 &breakpoint_show_cmdlist);
15988
15989 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15990 condition_evaluation_enums,
15991 &condition_evaluation_mode_1, _("\
15992 Set mode of breakpoint condition evaluation."), _("\
15993 Show mode of breakpoint condition evaluation."), _("\
15994 When this is set to \"host\", breakpoint conditions will be\n\
15995 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15996 breakpoint conditions will be downloaded to the target (if the target\n\
15997 supports such feature) and conditions will be evaluated on the target's side.\n\
15998 If this is set to \"auto\" (default), this will be automatically set to\n\
15999 \"target\" if it supports condition evaluation, otherwise it will\n\
16000 be set to \"gdb\""),
16001 &set_condition_evaluation_mode,
16002 &show_condition_evaluation_mode,
16003 &breakpoint_set_cmdlist,
16004 &breakpoint_show_cmdlist);
16005
16006 add_com ("break-range", class_breakpoint, break_range_command, _("\
16007 Set a breakpoint for an address range.\n\
16008 break-range START-LOCATION, END-LOCATION\n\
16009 where START-LOCATION and END-LOCATION can be one of the following:\n\
16010 LINENUM, for that line in the current file,\n\
16011 FILE:LINENUM, for that line in that file,\n\
16012 +OFFSET, for that number of lines after the current line\n\
16013 or the start of the range\n\
16014 FUNCTION, for the first line in that function,\n\
16015 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16016 *ADDRESS, for the instruction at that address.\n\
16017 \n\
16018 The breakpoint will stop execution of the inferior whenever it executes\n\
16019 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16020 range (including START-LOCATION and END-LOCATION)."));
16021
16022 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16023 Set a dynamic printf at specified location.\n\
16024 dprintf location,format string,arg1,arg2,...\n\
16025 location may be a linespec, explicit, or address location.\n"
16026 "\n" LOCATION_HELP_STRING));
16027 set_cmd_completer (c, location_completer);
16028
16029 add_setshow_enum_cmd ("dprintf-style", class_support,
16030 dprintf_style_enums, &dprintf_style, _("\
16031 Set the style of usage for dynamic printf."), _("\
16032 Show the style of usage for dynamic printf."), _("\
16033 This setting chooses how GDB will do a dynamic printf.\n\
16034 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16035 console, as with the \"printf\" command.\n\
16036 If the value is \"call\", the print is done by calling a function in your\n\
16037 program; by default printf(), but you can choose a different function or\n\
16038 output stream by setting dprintf-function and dprintf-channel."),
16039 update_dprintf_commands, NULL,
16040 &setlist, &showlist);
16041
16042 dprintf_function = xstrdup ("printf");
16043 add_setshow_string_cmd ("dprintf-function", class_support,
16044 &dprintf_function, _("\
16045 Set the function to use for dynamic printf"), _("\
16046 Show the function to use for dynamic printf"), NULL,
16047 update_dprintf_commands, NULL,
16048 &setlist, &showlist);
16049
16050 dprintf_channel = xstrdup ("");
16051 add_setshow_string_cmd ("dprintf-channel", class_support,
16052 &dprintf_channel, _("\
16053 Set the channel to use for dynamic printf"), _("\
16054 Show the channel to use for dynamic printf"), NULL,
16055 update_dprintf_commands, NULL,
16056 &setlist, &showlist);
16057
16058 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16059 &disconnected_dprintf, _("\
16060 Set whether dprintf continues after GDB disconnects."), _("\
16061 Show whether dprintf continues after GDB disconnects."), _("\
16062 Use this to let dprintf commands continue to hit and produce output\n\
16063 even if GDB disconnects or detaches from the target."),
16064 NULL,
16065 NULL,
16066 &setlist, &showlist);
16067
16068 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16069 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16070 (target agent only) This is useful for formatted output in user-defined commands."));
16071
16072 automatic_hardware_breakpoints = 1;
16073
16074 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16075 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16076 }
This page took 0.537887 seconds and 5 git commands to generate.