Make some bpstat functions use bool
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "gdbsupport/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "gdbsupport/array-view.h"
86 #include "gdbsupport/gdb_optional.h"
87
88 /* Prototypes for local functions. */
89
90 static void map_breakpoint_numbers (const char *,
91 gdb::function_view<void (breakpoint *)>);
92
93 static void breakpoint_re_set_default (struct breakpoint *);
94
95 static void
96 create_sals_from_location_default (const struct event_location *location,
97 struct linespec_result *canonical,
98 enum bptype type_wanted);
99
100 static void create_breakpoints_sal_default (struct gdbarch *,
101 struct linespec_result *,
102 gdb::unique_xmalloc_ptr<char>,
103 gdb::unique_xmalloc_ptr<char>,
104 enum bptype,
105 enum bpdisp, int, int,
106 int,
107 const struct breakpoint_ops *,
108 int, int, int, unsigned);
109
110 static std::vector<symtab_and_line> decode_location_default
111 (struct breakpoint *b, const struct event_location *location,
112 struct program_space *search_pspace);
113
114 static int can_use_hardware_watchpoint
115 (const std::vector<value_ref_ptr> &vals);
116
117 static void mention (struct breakpoint *);
118
119 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
120 enum bptype,
121 const struct breakpoint_ops *);
122 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
123 const struct symtab_and_line *);
124
125 /* This function is used in gdbtk sources and thus can not be made
126 static. */
127 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
128 struct symtab_and_line,
129 enum bptype,
130 const struct breakpoint_ops *);
131
132 static struct breakpoint *
133 momentary_breakpoint_from_master (struct breakpoint *orig,
134 enum bptype type,
135 const struct breakpoint_ops *ops,
136 int loc_enabled);
137
138 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
139
140 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
141 CORE_ADDR bpaddr,
142 enum bptype bptype);
143
144 static void describe_other_breakpoints (struct gdbarch *,
145 struct program_space *, CORE_ADDR,
146 struct obj_section *, int);
147
148 static int watchpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static int is_hardware_watchpoint (const struct breakpoint *bpt);
221
222 static void insert_breakpoint_locations (void);
223
224 static void trace_pass_command (const char *, int);
225
226 static void set_tracepoint_count (int num);
227
228 static int is_masked_watchpoint (const struct breakpoint *b);
229
230 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
231
232 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
233 otherwise. */
234
235 static int strace_marker_p (struct breakpoint *b);
236
237 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
238 that are implemented on top of software or hardware breakpoints
239 (user breakpoints, internal and momentary breakpoints, etc.). */
240 static struct breakpoint_ops bkpt_base_breakpoint_ops;
241
242 /* Internal breakpoints class type. */
243 static struct breakpoint_ops internal_breakpoint_ops;
244
245 /* Momentary breakpoints class type. */
246 static struct breakpoint_ops momentary_breakpoint_ops;
247
248 /* The breakpoint_ops structure to be used in regular user created
249 breakpoints. */
250 struct breakpoint_ops bkpt_breakpoint_ops;
251
252 /* Breakpoints set on probes. */
253 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
254
255 /* Dynamic printf class type. */
256 struct breakpoint_ops dprintf_breakpoint_ops;
257
258 /* The style in which to perform a dynamic printf. This is a user
259 option because different output options have different tradeoffs;
260 if GDB does the printing, there is better error handling if there
261 is a problem with any of the arguments, but using an inferior
262 function lets you have special-purpose printers and sending of
263 output to the same place as compiled-in print functions. */
264
265 static const char dprintf_style_gdb[] = "gdb";
266 static const char dprintf_style_call[] = "call";
267 static const char dprintf_style_agent[] = "agent";
268 static const char *const dprintf_style_enums[] = {
269 dprintf_style_gdb,
270 dprintf_style_call,
271 dprintf_style_agent,
272 NULL
273 };
274 static const char *dprintf_style = dprintf_style_gdb;
275
276 /* The function to use for dynamic printf if the preferred style is to
277 call into the inferior. The value is simply a string that is
278 copied into the command, so it can be anything that GDB can
279 evaluate to a callable address, not necessarily a function name. */
280
281 static char *dprintf_function;
282
283 /* The channel to use for dynamic printf if the preferred style is to
284 call into the inferior; if a nonempty string, it will be passed to
285 the call as the first argument, with the format string as the
286 second. As with the dprintf function, this can be anything that
287 GDB knows how to evaluate, so in addition to common choices like
288 "stderr", this could be an app-specific expression like
289 "mystreams[curlogger]". */
290
291 static char *dprintf_channel;
292
293 /* True if dprintf commands should continue to operate even if GDB
294 has disconnected. */
295 static int disconnected_dprintf = 1;
296
297 struct command_line *
298 breakpoint_commands (struct breakpoint *b)
299 {
300 return b->commands ? b->commands.get () : NULL;
301 }
302
303 /* Flag indicating that a command has proceeded the inferior past the
304 current breakpoint. */
305
306 static int breakpoint_proceeded;
307
308 const char *
309 bpdisp_text (enum bpdisp disp)
310 {
311 /* NOTE: the following values are a part of MI protocol and
312 represent values of 'disp' field returned when inferior stops at
313 a breakpoint. */
314 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
315
316 return bpdisps[(int) disp];
317 }
318
319 /* Prototypes for exported functions. */
320 /* If FALSE, gdb will not use hardware support for watchpoints, even
321 if such is available. */
322 static int can_use_hw_watchpoints;
323
324 static void
325 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c,
327 const char *value)
328 {
329 fprintf_filtered (file,
330 _("Debugger's willingness to use "
331 "watchpoint hardware is %s.\n"),
332 value);
333 }
334
335 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
336 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
337 for unrecognized breakpoint locations.
338 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
339 static enum auto_boolean pending_break_support;
340 static void
341 show_pending_break_support (struct ui_file *file, int from_tty,
342 struct cmd_list_element *c,
343 const char *value)
344 {
345 fprintf_filtered (file,
346 _("Debugger's behavior regarding "
347 "pending breakpoints is %s.\n"),
348 value);
349 }
350
351 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
352 set with "break" but falling in read-only memory.
353 If 0, gdb will warn about such breakpoints, but won't automatically
354 use hardware breakpoints. */
355 static int automatic_hardware_breakpoints;
356 static void
357 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c,
359 const char *value)
360 {
361 fprintf_filtered (file,
362 _("Automatic usage of hardware breakpoints is %s.\n"),
363 value);
364 }
365
366 /* If on, GDB keeps breakpoints inserted even if the inferior is
367 stopped, and immediately inserts any new breakpoints as soon as
368 they're created. If off (default), GDB keeps breakpoints off of
369 the target as long as possible. That is, it delays inserting
370 breakpoints until the next resume, and removes them again when the
371 target fully stops. This is a bit safer in case GDB crashes while
372 processing user input. */
373 static int always_inserted_mode = 0;
374
375 static void
376 show_always_inserted_mode (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
380 value);
381 }
382
383 /* See breakpoint.h. */
384
385 int
386 breakpoints_should_be_inserted_now (void)
387 {
388 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
389 {
390 /* If breakpoints are global, they should be inserted even if no
391 thread under gdb's control is running, or even if there are
392 no threads under GDB's control yet. */
393 return 1;
394 }
395 else if (target_has_execution)
396 {
397 if (always_inserted_mode)
398 {
399 /* The user wants breakpoints inserted even if all threads
400 are stopped. */
401 return 1;
402 }
403
404 if (threads_are_executing ())
405 return 1;
406
407 /* Don't remove breakpoints yet if, even though all threads are
408 stopped, we still have events to process. */
409 for (thread_info *tp : all_non_exited_threads ())
410 if (tp->resumed
411 && tp->suspend.waitstatus_pending_p)
412 return 1;
413 }
414 return 0;
415 }
416
417 static const char condition_evaluation_both[] = "host or target";
418
419 /* Modes for breakpoint condition evaluation. */
420 static const char condition_evaluation_auto[] = "auto";
421 static const char condition_evaluation_host[] = "host";
422 static const char condition_evaluation_target[] = "target";
423 static const char *const condition_evaluation_enums[] = {
424 condition_evaluation_auto,
425 condition_evaluation_host,
426 condition_evaluation_target,
427 NULL
428 };
429
430 /* Global that holds the current mode for breakpoint condition evaluation. */
431 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
432
433 /* Global that we use to display information to the user (gets its value from
434 condition_evaluation_mode_1. */
435 static const char *condition_evaluation_mode = condition_evaluation_auto;
436
437 /* Translate a condition evaluation mode MODE into either "host"
438 or "target". This is used mostly to translate from "auto" to the
439 real setting that is being used. It returns the translated
440 evaluation mode. */
441
442 static const char *
443 translate_condition_evaluation_mode (const char *mode)
444 {
445 if (mode == condition_evaluation_auto)
446 {
447 if (target_supports_evaluation_of_breakpoint_conditions ())
448 return condition_evaluation_target;
449 else
450 return condition_evaluation_host;
451 }
452 else
453 return mode;
454 }
455
456 /* Discovers what condition_evaluation_auto translates to. */
457
458 static const char *
459 breakpoint_condition_evaluation_mode (void)
460 {
461 return translate_condition_evaluation_mode (condition_evaluation_mode);
462 }
463
464 /* Return true if GDB should evaluate breakpoint conditions or false
465 otherwise. */
466
467 static int
468 gdb_evaluates_breakpoint_condition_p (void)
469 {
470 const char *mode = breakpoint_condition_evaluation_mode ();
471
472 return (mode == condition_evaluation_host);
473 }
474
475 /* Are we executing breakpoint commands? */
476 static int executing_breakpoint_commands;
477
478 /* Are overlay event breakpoints enabled? */
479 static int overlay_events_enabled;
480
481 /* See description in breakpoint.h. */
482 int target_exact_watchpoints = 0;
483
484 /* Walk the following statement or block through all breakpoints.
485 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
486 current breakpoint. */
487
488 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
489
490 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
491 for (B = breakpoint_chain; \
492 B ? (TMP=B->next, 1): 0; \
493 B = TMP)
494
495 /* Similar iterator for the low-level breakpoints. SAFE variant is
496 not provided so update_global_location_list must not be called
497 while executing the block of ALL_BP_LOCATIONS. */
498
499 #define ALL_BP_LOCATIONS(B,BP_TMP) \
500 for (BP_TMP = bp_locations; \
501 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
502 BP_TMP++)
503
504 /* Iterates through locations with address ADDRESS for the currently selected
505 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
506 to where the loop should start from.
507 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
508 appropriate location to start with. */
509
510 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
511 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
512 BP_LOCP_TMP = BP_LOCP_START; \
513 BP_LOCP_START \
514 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
515 && (*BP_LOCP_TMP)->address == ADDRESS); \
516 BP_LOCP_TMP++)
517
518 /* Iterator for tracepoints only. */
519
520 #define ALL_TRACEPOINTS(B) \
521 for (B = breakpoint_chain; B; B = B->next) \
522 if (is_tracepoint (B))
523
524 /* Chains of all breakpoints defined. */
525
526 struct breakpoint *breakpoint_chain;
527
528 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
529
530 static struct bp_location **bp_locations;
531
532 /* Number of elements of BP_LOCATIONS. */
533
534 static unsigned bp_locations_count;
535
536 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
537 ADDRESS for the current elements of BP_LOCATIONS which get a valid
538 result from bp_location_has_shadow. You can use it for roughly
539 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
540 an address you need to read. */
541
542 static CORE_ADDR bp_locations_placed_address_before_address_max;
543
544 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
545 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
546 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
547 You can use it for roughly limiting the subrange of BP_LOCATIONS to
548 scan for shadow bytes for an address you need to read. */
549
550 static CORE_ADDR bp_locations_shadow_len_after_address_max;
551
552 /* The locations that no longer correspond to any breakpoint, unlinked
553 from the bp_locations array, but for which a hit may still be
554 reported by a target. */
555 static std::vector<bp_location *> moribund_locations;
556
557 /* Number of last breakpoint made. */
558
559 static int breakpoint_count;
560
561 /* The value of `breakpoint_count' before the last command that
562 created breakpoints. If the last (break-like) command created more
563 than one breakpoint, then the difference between BREAKPOINT_COUNT
564 and PREV_BREAKPOINT_COUNT is more than one. */
565 static int prev_breakpoint_count;
566
567 /* Number of last tracepoint made. */
568
569 static int tracepoint_count;
570
571 static struct cmd_list_element *breakpoint_set_cmdlist;
572 static struct cmd_list_element *breakpoint_show_cmdlist;
573 struct cmd_list_element *save_cmdlist;
574
575 /* See declaration at breakpoint.h. */
576
577 struct breakpoint *
578 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
579 void *user_data)
580 {
581 struct breakpoint *b = NULL;
582
583 ALL_BREAKPOINTS (b)
584 {
585 if (func (b, user_data) != 0)
586 break;
587 }
588
589 return b;
590 }
591
592 /* Return whether a breakpoint is an active enabled breakpoint. */
593 static int
594 breakpoint_enabled (struct breakpoint *b)
595 {
596 return (b->enable_state == bp_enabled);
597 }
598
599 /* Set breakpoint count to NUM. */
600
601 static void
602 set_breakpoint_count (int num)
603 {
604 prev_breakpoint_count = breakpoint_count;
605 breakpoint_count = num;
606 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
607 }
608
609 /* Used by `start_rbreak_breakpoints' below, to record the current
610 breakpoint count before "rbreak" creates any breakpoint. */
611 static int rbreak_start_breakpoint_count;
612
613 /* Called at the start an "rbreak" command to record the first
614 breakpoint made. */
615
616 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
617 {
618 rbreak_start_breakpoint_count = breakpoint_count;
619 }
620
621 /* Called at the end of an "rbreak" command to record the last
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
625 {
626 prev_breakpoint_count = rbreak_start_breakpoint_count;
627 }
628
629 /* Used in run_command to zero the hit count when a new run starts. */
630
631 void
632 clear_breakpoint_hit_counts (void)
633 {
634 struct breakpoint *b;
635
636 ALL_BREAKPOINTS (b)
637 b->hit_count = 0;
638 }
639
640 \f
641 /* Return the breakpoint with the specified number, or NULL
642 if the number does not refer to an existing breakpoint. */
643
644 struct breakpoint *
645 get_breakpoint (int num)
646 {
647 struct breakpoint *b;
648
649 ALL_BREAKPOINTS (b)
650 if (b->number == num)
651 return b;
652
653 return NULL;
654 }
655
656 \f
657
658 /* Mark locations as "conditions have changed" in case the target supports
659 evaluating conditions on its side. */
660
661 static void
662 mark_breakpoint_modified (struct breakpoint *b)
663 {
664 struct bp_location *loc;
665
666 /* This is only meaningful if the target is
667 evaluating conditions and if the user has
668 opted for condition evaluation on the target's
669 side. */
670 if (gdb_evaluates_breakpoint_condition_p ()
671 || !target_supports_evaluation_of_breakpoint_conditions ())
672 return;
673
674 if (!is_breakpoint (b))
675 return;
676
677 for (loc = b->loc; loc; loc = loc->next)
678 loc->condition_changed = condition_modified;
679 }
680
681 /* Mark location as "conditions have changed" in case the target supports
682 evaluating conditions on its side. */
683
684 static void
685 mark_breakpoint_location_modified (struct bp_location *loc)
686 {
687 /* This is only meaningful if the target is
688 evaluating conditions and if the user has
689 opted for condition evaluation on the target's
690 side. */
691 if (gdb_evaluates_breakpoint_condition_p ()
692 || !target_supports_evaluation_of_breakpoint_conditions ())
693
694 return;
695
696 if (!is_breakpoint (loc->owner))
697 return;
698
699 loc->condition_changed = condition_modified;
700 }
701
702 /* Sets the condition-evaluation mode using the static global
703 condition_evaluation_mode. */
704
705 static void
706 set_condition_evaluation_mode (const char *args, int from_tty,
707 struct cmd_list_element *c)
708 {
709 const char *old_mode, *new_mode;
710
711 if ((condition_evaluation_mode_1 == condition_evaluation_target)
712 && !target_supports_evaluation_of_breakpoint_conditions ())
713 {
714 condition_evaluation_mode_1 = condition_evaluation_mode;
715 warning (_("Target does not support breakpoint condition evaluation.\n"
716 "Using host evaluation mode instead."));
717 return;
718 }
719
720 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
721 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
722
723 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
724 settings was "auto". */
725 condition_evaluation_mode = condition_evaluation_mode_1;
726
727 /* Only update the mode if the user picked a different one. */
728 if (new_mode != old_mode)
729 {
730 struct bp_location *loc, **loc_tmp;
731 /* If the user switched to a different evaluation mode, we
732 need to synch the changes with the target as follows:
733
734 "host" -> "target": Send all (valid) conditions to the target.
735 "target" -> "host": Remove all the conditions from the target.
736 */
737
738 if (new_mode == condition_evaluation_target)
739 {
740 /* Mark everything modified and synch conditions with the
741 target. */
742 ALL_BP_LOCATIONS (loc, loc_tmp)
743 mark_breakpoint_location_modified (loc);
744 }
745 else
746 {
747 /* Manually mark non-duplicate locations to synch conditions
748 with the target. We do this to remove all the conditions the
749 target knows about. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 if (is_breakpoint (loc->owner) && loc->inserted)
752 loc->needs_update = 1;
753 }
754
755 /* Do the update. */
756 update_global_location_list (UGLL_MAY_INSERT);
757 }
758
759 return;
760 }
761
762 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
763 what "auto" is translating to. */
764
765 static void
766 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 if (condition_evaluation_mode == condition_evaluation_auto)
770 fprintf_filtered (file,
771 _("Breakpoint condition evaluation "
772 "mode is %s (currently %s).\n"),
773 value,
774 breakpoint_condition_evaluation_mode ());
775 else
776 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
777 value);
778 }
779
780 /* A comparison function for bp_location AP and BP that is used by
781 bsearch. This comparison function only cares about addresses, unlike
782 the more general bp_locations_compare function. */
783
784 static int
785 bp_locations_compare_addrs (const void *ap, const void *bp)
786 {
787 const struct bp_location *a = *(const struct bp_location **) ap;
788 const struct bp_location *b = *(const struct bp_location **) bp;
789
790 if (a->address == b->address)
791 return 0;
792 else
793 return ((a->address > b->address) - (a->address < b->address));
794 }
795
796 /* Helper function to skip all bp_locations with addresses
797 less than ADDRESS. It returns the first bp_location that
798 is greater than or equal to ADDRESS. If none is found, just
799 return NULL. */
800
801 static struct bp_location **
802 get_first_locp_gte_addr (CORE_ADDR address)
803 {
804 struct bp_location dummy_loc;
805 struct bp_location *dummy_locp = &dummy_loc;
806 struct bp_location **locp_found = NULL;
807
808 /* Initialize the dummy location's address field. */
809 dummy_loc.address = address;
810
811 /* Find a close match to the first location at ADDRESS. */
812 locp_found = ((struct bp_location **)
813 bsearch (&dummy_locp, bp_locations, bp_locations_count,
814 sizeof (struct bp_location **),
815 bp_locations_compare_addrs));
816
817 /* Nothing was found, nothing left to do. */
818 if (locp_found == NULL)
819 return NULL;
820
821 /* We may have found a location that is at ADDRESS but is not the first in the
822 location's list. Go backwards (if possible) and locate the first one. */
823 while ((locp_found - 1) >= bp_locations
824 && (*(locp_found - 1))->address == address)
825 locp_found--;
826
827 return locp_found;
828 }
829
830 void
831 set_breakpoint_condition (struct breakpoint *b, const char *exp,
832 int from_tty)
833 {
834 xfree (b->cond_string);
835 b->cond_string = NULL;
836
837 if (is_watchpoint (b))
838 {
839 struct watchpoint *w = (struct watchpoint *) b;
840
841 w->cond_exp.reset ();
842 }
843 else
844 {
845 struct bp_location *loc;
846
847 for (loc = b->loc; loc; loc = loc->next)
848 {
849 loc->cond.reset ();
850
851 /* No need to free the condition agent expression
852 bytecode (if we have one). We will handle this
853 when we go through update_global_location_list. */
854 }
855 }
856
857 if (*exp == 0)
858 {
859 if (from_tty)
860 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
861 }
862 else
863 {
864 const char *arg = exp;
865
866 /* I don't know if it matters whether this is the string the user
867 typed in or the decompiled expression. */
868 b->cond_string = xstrdup (arg);
869 b->condition_not_parsed = 0;
870
871 if (is_watchpoint (b))
872 {
873 struct watchpoint *w = (struct watchpoint *) b;
874
875 innermost_block_tracker tracker;
876 arg = exp;
877 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
878 if (*arg)
879 error (_("Junk at end of expression"));
880 w->cond_exp_valid_block = tracker.block ();
881 }
882 else
883 {
884 struct bp_location *loc;
885
886 for (loc = b->loc; loc; loc = loc->next)
887 {
888 arg = exp;
889 loc->cond =
890 parse_exp_1 (&arg, loc->address,
891 block_for_pc (loc->address), 0);
892 if (*arg)
893 error (_("Junk at end of expression"));
894 }
895 }
896 }
897 mark_breakpoint_modified (b);
898
899 gdb::observers::breakpoint_modified.notify (b);
900 }
901
902 /* Completion for the "condition" command. */
903
904 static void
905 condition_completer (struct cmd_list_element *cmd,
906 completion_tracker &tracker,
907 const char *text, const char *word)
908 {
909 const char *space;
910
911 text = skip_spaces (text);
912 space = skip_to_space (text);
913 if (*space == '\0')
914 {
915 int len;
916 struct breakpoint *b;
917
918 if (text[0] == '$')
919 {
920 /* We don't support completion of history indices. */
921 if (!isdigit (text[1]))
922 complete_internalvar (tracker, &text[1]);
923 return;
924 }
925
926 /* We're completing the breakpoint number. */
927 len = strlen (text);
928
929 ALL_BREAKPOINTS (b)
930 {
931 char number[50];
932
933 xsnprintf (number, sizeof (number), "%d", b->number);
934
935 if (strncmp (number, text, len) == 0)
936 tracker.add_completion (make_unique_xstrdup (number));
937 }
938
939 return;
940 }
941
942 /* We're completing the expression part. */
943 text = skip_spaces (space);
944 expression_completer (cmd, tracker, text, word);
945 }
946
947 /* condition N EXP -- set break condition of breakpoint N to EXP. */
948
949 static void
950 condition_command (const char *arg, int from_tty)
951 {
952 struct breakpoint *b;
953 const char *p;
954 int bnum;
955
956 if (arg == 0)
957 error_no_arg (_("breakpoint number"));
958
959 p = arg;
960 bnum = get_number (&p);
961 if (bnum == 0)
962 error (_("Bad breakpoint argument: '%s'"), arg);
963
964 ALL_BREAKPOINTS (b)
965 if (b->number == bnum)
966 {
967 /* Check if this breakpoint has a "stop" method implemented in an
968 extension language. This method and conditions entered into GDB
969 from the CLI are mutually exclusive. */
970 const struct extension_language_defn *extlang
971 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
972
973 if (extlang != NULL)
974 {
975 error (_("Only one stop condition allowed. There is currently"
976 " a %s stop condition defined for this breakpoint."),
977 ext_lang_capitalized_name (extlang));
978 }
979 set_breakpoint_condition (b, p, from_tty);
980
981 if (is_breakpoint (b))
982 update_global_location_list (UGLL_MAY_INSERT);
983
984 return;
985 }
986
987 error (_("No breakpoint number %d."), bnum);
988 }
989
990 /* Check that COMMAND do not contain commands that are suitable
991 only for tracepoints and not suitable for ordinary breakpoints.
992 Throw if any such commands is found. */
993
994 static void
995 check_no_tracepoint_commands (struct command_line *commands)
996 {
997 struct command_line *c;
998
999 for (c = commands; c; c = c->next)
1000 {
1001 if (c->control_type == while_stepping_control)
1002 error (_("The 'while-stepping' command can "
1003 "only be used for tracepoints"));
1004
1005 check_no_tracepoint_commands (c->body_list_0.get ());
1006 check_no_tracepoint_commands (c->body_list_1.get ());
1007
1008 /* Not that command parsing removes leading whitespace and comment
1009 lines and also empty lines. So, we only need to check for
1010 command directly. */
1011 if (strstr (c->line, "collect ") == c->line)
1012 error (_("The 'collect' command can only be used for tracepoints"));
1013
1014 if (strstr (c->line, "teval ") == c->line)
1015 error (_("The 'teval' command can only be used for tracepoints"));
1016 }
1017 }
1018
1019 struct longjmp_breakpoint : public breakpoint
1020 {
1021 ~longjmp_breakpoint () override;
1022 };
1023
1024 /* Encapsulate tests for different types of tracepoints. */
1025
1026 static bool
1027 is_tracepoint_type (bptype type)
1028 {
1029 return (type == bp_tracepoint
1030 || type == bp_fast_tracepoint
1031 || type == bp_static_tracepoint);
1032 }
1033
1034 static bool
1035 is_longjmp_type (bptype type)
1036 {
1037 return type == bp_longjmp || type == bp_exception;
1038 }
1039
1040 int
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 \f
1497
1498 /* Return true if BPT is either a software breakpoint or a hardware
1499 breakpoint. */
1500
1501 int
1502 is_breakpoint (const struct breakpoint *bpt)
1503 {
1504 return (bpt->type == bp_breakpoint
1505 || bpt->type == bp_hardware_breakpoint
1506 || bpt->type == bp_dprintf);
1507 }
1508
1509 /* Return true if BPT is of any hardware watchpoint kind. */
1510
1511 static int
1512 is_hardware_watchpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_hardware_watchpoint
1515 || bpt->type == bp_read_watchpoint
1516 || bpt->type == bp_access_watchpoint);
1517 }
1518
1519 /* Return true if BPT is of any watchpoint kind, hardware or
1520 software. */
1521
1522 int
1523 is_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (is_hardware_watchpoint (bpt)
1526 || bpt->type == bp_watchpoint);
1527 }
1528
1529 /* Returns true if the current thread and its running state are safe
1530 to evaluate or update watchpoint B. Watchpoints on local
1531 expressions need to be evaluated in the context of the thread that
1532 was current when the watchpoint was created, and, that thread needs
1533 to be stopped to be able to select the correct frame context.
1534 Watchpoints on global expressions can be evaluated on any thread,
1535 and in any state. It is presently left to the target allowing
1536 memory accesses when threads are running. */
1537
1538 static int
1539 watchpoint_in_thread_scope (struct watchpoint *b)
1540 {
1541 return (b->pspace == current_program_space
1542 && (b->watchpoint_thread == null_ptid
1543 || (inferior_ptid == b->watchpoint_thread
1544 && !inferior_thread ()->executing)));
1545 }
1546
1547 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1548 associated bp_watchpoint_scope breakpoint. */
1549
1550 static void
1551 watchpoint_del_at_next_stop (struct watchpoint *w)
1552 {
1553 if (w->related_breakpoint != w)
1554 {
1555 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1556 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1557 w->related_breakpoint->disposition = disp_del_at_next_stop;
1558 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1559 w->related_breakpoint = w;
1560 }
1561 w->disposition = disp_del_at_next_stop;
1562 }
1563
1564 /* Extract a bitfield value from value VAL using the bit parameters contained in
1565 watchpoint W. */
1566
1567 static struct value *
1568 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1569 {
1570 struct value *bit_val;
1571
1572 if (val == NULL)
1573 return NULL;
1574
1575 bit_val = allocate_value (value_type (val));
1576
1577 unpack_value_bitfield (bit_val,
1578 w->val_bitpos,
1579 w->val_bitsize,
1580 value_contents_for_printing (val),
1581 value_offset (val),
1582 val);
1583
1584 return bit_val;
1585 }
1586
1587 /* Allocate a dummy location and add it to B, which must be a software
1588 watchpoint. This is required because even if a software watchpoint
1589 is not watching any memory, bpstat_stop_status requires a location
1590 to be able to report stops. */
1591
1592 static void
1593 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1594 struct program_space *pspace)
1595 {
1596 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1597
1598 b->loc = allocate_bp_location (b);
1599 b->loc->pspace = pspace;
1600 b->loc->address = -1;
1601 b->loc->length = -1;
1602 }
1603
1604 /* Returns true if B is a software watchpoint that is not watching any
1605 memory (e.g., "watch $pc"). */
1606
1607 static int
1608 is_no_memory_software_watchpoint (struct breakpoint *b)
1609 {
1610 return (b->type == bp_watchpoint
1611 && b->loc != NULL
1612 && b->loc->next == NULL
1613 && b->loc->address == -1
1614 && b->loc->length == -1);
1615 }
1616
1617 /* Assuming that B is a watchpoint:
1618 - Reparse watchpoint expression, if REPARSE is non-zero
1619 - Evaluate expression and store the result in B->val
1620 - Evaluate the condition if there is one, and store the result
1621 in b->loc->cond.
1622 - Update the list of values that must be watched in B->loc.
1623
1624 If the watchpoint disposition is disp_del_at_next_stop, then do
1625 nothing. If this is local watchpoint that is out of scope, delete
1626 it.
1627
1628 Even with `set breakpoint always-inserted on' the watchpoints are
1629 removed + inserted on each stop here. Normal breakpoints must
1630 never be removed because they might be missed by a running thread
1631 when debugging in non-stop mode. On the other hand, hardware
1632 watchpoints (is_hardware_watchpoint; processed here) are specific
1633 to each LWP since they are stored in each LWP's hardware debug
1634 registers. Therefore, such LWP must be stopped first in order to
1635 be able to modify its hardware watchpoints.
1636
1637 Hardware watchpoints must be reset exactly once after being
1638 presented to the user. It cannot be done sooner, because it would
1639 reset the data used to present the watchpoint hit to the user. And
1640 it must not be done later because it could display the same single
1641 watchpoint hit during multiple GDB stops. Note that the latter is
1642 relevant only to the hardware watchpoint types bp_read_watchpoint
1643 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1644 not user-visible - its hit is suppressed if the memory content has
1645 not changed.
1646
1647 The following constraints influence the location where we can reset
1648 hardware watchpoints:
1649
1650 * target_stopped_by_watchpoint and target_stopped_data_address are
1651 called several times when GDB stops.
1652
1653 [linux]
1654 * Multiple hardware watchpoints can be hit at the same time,
1655 causing GDB to stop. GDB only presents one hardware watchpoint
1656 hit at a time as the reason for stopping, and all the other hits
1657 are presented later, one after the other, each time the user
1658 requests the execution to be resumed. Execution is not resumed
1659 for the threads still having pending hit event stored in
1660 LWP_INFO->STATUS. While the watchpoint is already removed from
1661 the inferior on the first stop the thread hit event is kept being
1662 reported from its cached value by linux_nat_stopped_data_address
1663 until the real thread resume happens after the watchpoint gets
1664 presented and thus its LWP_INFO->STATUS gets reset.
1665
1666 Therefore the hardware watchpoint hit can get safely reset on the
1667 watchpoint removal from inferior. */
1668
1669 static void
1670 update_watchpoint (struct watchpoint *b, int reparse)
1671 {
1672 int within_current_scope;
1673 struct frame_id saved_frame_id;
1674 int frame_saved;
1675
1676 /* If this is a local watchpoint, we only want to check if the
1677 watchpoint frame is in scope if the current thread is the thread
1678 that was used to create the watchpoint. */
1679 if (!watchpoint_in_thread_scope (b))
1680 return;
1681
1682 if (b->disposition == disp_del_at_next_stop)
1683 return;
1684
1685 frame_saved = 0;
1686
1687 /* Determine if the watchpoint is within scope. */
1688 if (b->exp_valid_block == NULL)
1689 within_current_scope = 1;
1690 else
1691 {
1692 struct frame_info *fi = get_current_frame ();
1693 struct gdbarch *frame_arch = get_frame_arch (fi);
1694 CORE_ADDR frame_pc = get_frame_pc (fi);
1695
1696 /* If we're at a point where the stack has been destroyed
1697 (e.g. in a function epilogue), unwinding may not work
1698 properly. Do not attempt to recreate locations at this
1699 point. See similar comments in watchpoint_check. */
1700 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1701 return;
1702
1703 /* Save the current frame's ID so we can restore it after
1704 evaluating the watchpoint expression on its own frame. */
1705 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1706 took a frame parameter, so that we didn't have to change the
1707 selected frame. */
1708 frame_saved = 1;
1709 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1710
1711 fi = frame_find_by_id (b->watchpoint_frame);
1712 within_current_scope = (fi != NULL);
1713 if (within_current_scope)
1714 select_frame (fi);
1715 }
1716
1717 /* We don't free locations. They are stored in the bp_location array
1718 and update_global_location_list will eventually delete them and
1719 remove breakpoints if needed. */
1720 b->loc = NULL;
1721
1722 if (within_current_scope && reparse)
1723 {
1724 const char *s;
1725
1726 b->exp.reset ();
1727 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1728 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1729 /* If the meaning of expression itself changed, the old value is
1730 no longer relevant. We don't want to report a watchpoint hit
1731 to the user when the old value and the new value may actually
1732 be completely different objects. */
1733 b->val = NULL;
1734 b->val_valid = 0;
1735
1736 /* Note that unlike with breakpoints, the watchpoint's condition
1737 expression is stored in the breakpoint object, not in the
1738 locations (re)created below. */
1739 if (b->cond_string != NULL)
1740 {
1741 b->cond_exp.reset ();
1742
1743 s = b->cond_string;
1744 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1745 }
1746 }
1747
1748 /* If we failed to parse the expression, for example because
1749 it refers to a global variable in a not-yet-loaded shared library,
1750 don't try to insert watchpoint. We don't automatically delete
1751 such watchpoint, though, since failure to parse expression
1752 is different from out-of-scope watchpoint. */
1753 if (!target_has_execution)
1754 {
1755 /* Without execution, memory can't change. No use to try and
1756 set watchpoint locations. The watchpoint will be reset when
1757 the target gains execution, through breakpoint_re_set. */
1758 if (!can_use_hw_watchpoints)
1759 {
1760 if (b->ops->works_in_software_mode (b))
1761 b->type = bp_watchpoint;
1762 else
1763 error (_("Can't set read/access watchpoint when "
1764 "hardware watchpoints are disabled."));
1765 }
1766 }
1767 else if (within_current_scope && b->exp)
1768 {
1769 int pc = 0;
1770 std::vector<value_ref_ptr> val_chain;
1771 struct value *v, *result;
1772 struct program_space *frame_pspace;
1773
1774 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1775
1776 /* Avoid setting b->val if it's already set. The meaning of
1777 b->val is 'the last value' user saw, and we should update
1778 it only if we reported that last value to user. As it
1779 happens, the code that reports it updates b->val directly.
1780 We don't keep track of the memory value for masked
1781 watchpoints. */
1782 if (!b->val_valid && !is_masked_watchpoint (b))
1783 {
1784 if (b->val_bitsize != 0)
1785 v = extract_bitfield_from_watchpoint_value (b, v);
1786 b->val = release_value (v);
1787 b->val_valid = 1;
1788 }
1789
1790 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1791
1792 /* Look at each value on the value chain. */
1793 gdb_assert (!val_chain.empty ());
1794 for (const value_ref_ptr &iter : val_chain)
1795 {
1796 v = iter.get ();
1797
1798 /* If it's a memory location, and GDB actually needed
1799 its contents to evaluate the expression, then we
1800 must watch it. If the first value returned is
1801 still lazy, that means an error occurred reading it;
1802 watch it anyway in case it becomes readable. */
1803 if (VALUE_LVAL (v) == lval_memory
1804 && (v == val_chain[0] || ! value_lazy (v)))
1805 {
1806 struct type *vtype = check_typedef (value_type (v));
1807
1808 /* We only watch structs and arrays if user asked
1809 for it explicitly, never if they just happen to
1810 appear in the middle of some value chain. */
1811 if (v == result
1812 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1813 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1814 {
1815 CORE_ADDR addr;
1816 enum target_hw_bp_type type;
1817 struct bp_location *loc, **tmp;
1818 int bitpos = 0, bitsize = 0;
1819
1820 if (value_bitsize (v) != 0)
1821 {
1822 /* Extract the bit parameters out from the bitfield
1823 sub-expression. */
1824 bitpos = value_bitpos (v);
1825 bitsize = value_bitsize (v);
1826 }
1827 else if (v == result && b->val_bitsize != 0)
1828 {
1829 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1830 lvalue whose bit parameters are saved in the fields
1831 VAL_BITPOS and VAL_BITSIZE. */
1832 bitpos = b->val_bitpos;
1833 bitsize = b->val_bitsize;
1834 }
1835
1836 addr = value_address (v);
1837 if (bitsize != 0)
1838 {
1839 /* Skip the bytes that don't contain the bitfield. */
1840 addr += bitpos / 8;
1841 }
1842
1843 type = hw_write;
1844 if (b->type == bp_read_watchpoint)
1845 type = hw_read;
1846 else if (b->type == bp_access_watchpoint)
1847 type = hw_access;
1848
1849 loc = allocate_bp_location (b);
1850 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1851 ;
1852 *tmp = loc;
1853 loc->gdbarch = get_type_arch (value_type (v));
1854
1855 loc->pspace = frame_pspace;
1856 loc->address = address_significant (loc->gdbarch, addr);
1857
1858 if (bitsize != 0)
1859 {
1860 /* Just cover the bytes that make up the bitfield. */
1861 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1862 }
1863 else
1864 loc->length = TYPE_LENGTH (value_type (v));
1865
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (b);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->ops->works_in_software_mode (b);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->type = type;
1939 }
1940 }
1941 else if (!b->ops->works_in_software_mode (b))
1942 {
1943 if (!can_use_hw_watchpoints)
1944 error (_("Can't set read/access watchpoint when "
1945 "hardware watchpoints are disabled."));
1946 else
1947 error (_("Expression cannot be implemented with "
1948 "read/access watchpoint."));
1949 }
1950 else
1951 b->type = bp_watchpoint;
1952
1953 loc_type = (b->type == bp_watchpoint? bp_loc_other
1954 : bp_loc_hardware_watchpoint);
1955 for (bl = b->loc; bl; bl = bl->next)
1956 bl->loc_type = loc_type;
1957 }
1958
1959 /* If a software watchpoint is not watching any memory, then the
1960 above left it without any location set up. But,
1961 bpstat_stop_status requires a location to be able to report
1962 stops, so make sure there's at least a dummy one. */
1963 if (b->type == bp_watchpoint && b->loc == NULL)
1964 software_watchpoint_add_no_memory_location (b, frame_pspace);
1965 }
1966 else if (!within_current_scope)
1967 {
1968 printf_filtered (_("\
1969 Watchpoint %d deleted because the program has left the block\n\
1970 in which its expression is valid.\n"),
1971 b->number);
1972 watchpoint_del_at_next_stop (b);
1973 }
1974
1975 /* Restore the selected frame. */
1976 if (frame_saved)
1977 select_frame (frame_find_by_id (saved_frame_id));
1978 }
1979
1980
1981 /* Returns 1 iff breakpoint location should be
1982 inserted in the inferior. We don't differentiate the type of BL's owner
1983 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1984 breakpoint_ops is not defined, because in insert_bp_location,
1985 tracepoint's insert_location will not be called. */
1986 static int
1987 should_be_inserted (struct bp_location *bl)
1988 {
1989 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1990 return 0;
1991
1992 if (bl->owner->disposition == disp_del_at_next_stop)
1993 return 0;
1994
1995 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1996 return 0;
1997
1998 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1999 return 0;
2000
2001 /* This is set for example, when we're attached to the parent of a
2002 vfork, and have detached from the child. The child is running
2003 free, and we expect it to do an exec or exit, at which point the
2004 OS makes the parent schedulable again (and the target reports
2005 that the vfork is done). Until the child is done with the shared
2006 memory region, do not insert breakpoints in the parent, otherwise
2007 the child could still trip on the parent's breakpoints. Since
2008 the parent is blocked anyway, it won't miss any breakpoint. */
2009 if (bl->pspace->breakpoints_not_allowed)
2010 return 0;
2011
2012 /* Don't insert a breakpoint if we're trying to step past its
2013 location, except if the breakpoint is a single-step breakpoint,
2014 and the breakpoint's thread is the thread which is stepping past
2015 a breakpoint. */
2016 if ((bl->loc_type == bp_loc_software_breakpoint
2017 || bl->loc_type == bp_loc_hardware_breakpoint)
2018 && stepping_past_instruction_at (bl->pspace->aspace,
2019 bl->address)
2020 /* The single-step breakpoint may be inserted at the location
2021 we're trying to step if the instruction branches to itself.
2022 However, the instruction won't be executed at all and it may
2023 break the semantics of the instruction, for example, the
2024 instruction is a conditional branch or updates some flags.
2025 We can't fix it unless GDB is able to emulate the instruction
2026 or switch to displaced stepping. */
2027 && !(bl->owner->type == bp_single_step
2028 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2029 {
2030 if (debug_infrun)
2031 {
2032 fprintf_unfiltered (gdb_stdlog,
2033 "infrun: skipping breakpoint: "
2034 "stepping past insn at: %s\n",
2035 paddress (bl->gdbarch, bl->address));
2036 }
2037 return 0;
2038 }
2039
2040 /* Don't insert watchpoints if we're trying to step past the
2041 instruction that triggered one. */
2042 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2043 && stepping_past_nonsteppable_watchpoint ())
2044 {
2045 if (debug_infrun)
2046 {
2047 fprintf_unfiltered (gdb_stdlog,
2048 "infrun: stepping past non-steppable watchpoint. "
2049 "skipping watchpoint at %s:%d\n",
2050 paddress (bl->gdbarch, bl->address),
2051 bl->length);
2052 }
2053 return 0;
2054 }
2055
2056 return 1;
2057 }
2058
2059 /* Same as should_be_inserted but does the check assuming
2060 that the location is not duplicated. */
2061
2062 static int
2063 unduplicated_should_be_inserted (struct bp_location *bl)
2064 {
2065 int result;
2066 const int save_duplicate = bl->duplicate;
2067
2068 bl->duplicate = 0;
2069 result = should_be_inserted (bl);
2070 bl->duplicate = save_duplicate;
2071 return result;
2072 }
2073
2074 /* Parses a conditional described by an expression COND into an
2075 agent expression bytecode suitable for evaluation
2076 by the bytecode interpreter. Return NULL if there was
2077 any error during parsing. */
2078
2079 static agent_expr_up
2080 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2081 {
2082 if (cond == NULL)
2083 return NULL;
2084
2085 agent_expr_up aexpr;
2086
2087 /* We don't want to stop processing, so catch any errors
2088 that may show up. */
2089 try
2090 {
2091 aexpr = gen_eval_for_expr (scope, cond);
2092 }
2093
2094 catch (const gdb_exception_error &ex)
2095 {
2096 /* If we got here, it means the condition could not be parsed to a valid
2097 bytecode expression and thus can't be evaluated on the target's side.
2098 It's no use iterating through the conditions. */
2099 }
2100
2101 /* We have a valid agent expression. */
2102 return aexpr;
2103 }
2104
2105 /* Based on location BL, create a list of breakpoint conditions to be
2106 passed on to the target. If we have duplicated locations with different
2107 conditions, we will add such conditions to the list. The idea is that the
2108 target will evaluate the list of conditions and will only notify GDB when
2109 one of them is true. */
2110
2111 static void
2112 build_target_condition_list (struct bp_location *bl)
2113 {
2114 struct bp_location **locp = NULL, **loc2p;
2115 int null_condition_or_parse_error = 0;
2116 int modified = bl->needs_update;
2117 struct bp_location *loc;
2118
2119 /* Release conditions left over from a previous insert. */
2120 bl->target_info.conditions.clear ();
2121
2122 /* This is only meaningful if the target is
2123 evaluating conditions and if the user has
2124 opted for condition evaluation on the target's
2125 side. */
2126 if (gdb_evaluates_breakpoint_condition_p ()
2127 || !target_supports_evaluation_of_breakpoint_conditions ())
2128 return;
2129
2130 /* Do a first pass to check for locations with no assigned
2131 conditions or conditions that fail to parse to a valid agent expression
2132 bytecode. If any of these happen, then it's no use to send conditions
2133 to the target since this location will always trigger and generate a
2134 response back to GDB. */
2135 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2136 {
2137 loc = (*loc2p);
2138 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2139 {
2140 if (modified)
2141 {
2142 /* Re-parse the conditions since something changed. In that
2143 case we already freed the condition bytecodes (see
2144 force_breakpoint_reinsertion). We just
2145 need to parse the condition to bytecodes again. */
2146 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2147 loc->cond.get ());
2148 }
2149
2150 /* If we have a NULL bytecode expression, it means something
2151 went wrong or we have a null condition expression. */
2152 if (!loc->cond_bytecode)
2153 {
2154 null_condition_or_parse_error = 1;
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* If any of these happened, it means we will have to evaluate the conditions
2161 for the location's address on gdb's side. It is no use keeping bytecodes
2162 for all the other duplicate locations, thus we free all of them here.
2163
2164 This is so we have a finer control over which locations' conditions are
2165 being evaluated by GDB or the remote stub. */
2166 if (null_condition_or_parse_error)
2167 {
2168 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2169 {
2170 loc = (*loc2p);
2171 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2172 {
2173 /* Only go as far as the first NULL bytecode is
2174 located. */
2175 if (!loc->cond_bytecode)
2176 return;
2177
2178 loc->cond_bytecode.reset ();
2179 }
2180 }
2181 }
2182
2183 /* No NULL conditions or failed bytecode generation. Build a condition list
2184 for this location's address. */
2185 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2186 {
2187 loc = (*loc2p);
2188 if (loc->cond
2189 && is_breakpoint (loc->owner)
2190 && loc->pspace->num == bl->pspace->num
2191 && loc->owner->enable_state == bp_enabled
2192 && loc->enabled)
2193 {
2194 /* Add the condition to the vector. This will be used later
2195 to send the conditions to the target. */
2196 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2197 }
2198 }
2199
2200 return;
2201 }
2202
2203 /* Parses a command described by string CMD into an agent expression
2204 bytecode suitable for evaluation by the bytecode interpreter.
2205 Return NULL if there was any error during parsing. */
2206
2207 static agent_expr_up
2208 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2209 {
2210 const char *cmdrest;
2211 const char *format_start, *format_end;
2212 struct gdbarch *gdbarch = get_current_arch ();
2213
2214 if (cmd == NULL)
2215 return NULL;
2216
2217 cmdrest = cmd;
2218
2219 if (*cmdrest == ',')
2220 ++cmdrest;
2221 cmdrest = skip_spaces (cmdrest);
2222
2223 if (*cmdrest++ != '"')
2224 error (_("No format string following the location"));
2225
2226 format_start = cmdrest;
2227
2228 format_pieces fpieces (&cmdrest);
2229
2230 format_end = cmdrest;
2231
2232 if (*cmdrest++ != '"')
2233 error (_("Bad format string, non-terminated '\"'."));
2234
2235 cmdrest = skip_spaces (cmdrest);
2236
2237 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2238 error (_("Invalid argument syntax"));
2239
2240 if (*cmdrest == ',')
2241 cmdrest++;
2242 cmdrest = skip_spaces (cmdrest);
2243
2244 /* For each argument, make an expression. */
2245
2246 std::vector<struct expression *> argvec;
2247 while (*cmdrest != '\0')
2248 {
2249 const char *cmd1;
2250
2251 cmd1 = cmdrest;
2252 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2253 argvec.push_back (expr.release ());
2254 cmdrest = cmd1;
2255 if (*cmdrest == ',')
2256 ++cmdrest;
2257 }
2258
2259 agent_expr_up aexpr;
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 try
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 argvec.size (), argvec.data ());
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 /* If we got here, it means the command could not be parsed to a valid
2272 bytecode expression and thus can't be evaluated on the target's side.
2273 It's no use iterating through the other commands. */
2274 }
2275
2276 /* We have a valid agent expression, return it. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint commands to be
2281 passed on to the target. If we have duplicated locations with
2282 different commands, we will add any such to the list. */
2283
2284 static void
2285 build_target_command_list (struct bp_location *bl)
2286 {
2287 struct bp_location **locp = NULL, **loc2p;
2288 int null_command_or_parse_error = 0;
2289 int modified = bl->needs_update;
2290 struct bp_location *loc;
2291
2292 /* Clear commands left over from a previous insert. */
2293 bl->target_info.tcommands.clear ();
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* For now, limit to agent-style dprintf breakpoints. */
2299 if (dprintf_style != dprintf_style_agent)
2300 return;
2301
2302 /* For now, if we have any duplicate location that isn't a dprintf,
2303 don't install the target-side commands, as that would make the
2304 breakpoint not be reported to the core, and we'd lose
2305 control. */
2306 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2307 {
2308 loc = (*loc2p);
2309 if (is_breakpoint (loc->owner)
2310 && loc->pspace->num == bl->pspace->num
2311 && loc->owner->type != bp_dprintf)
2312 return;
2313 }
2314
2315 /* Do a first pass to check for locations with no assigned
2316 conditions or conditions that fail to parse to a valid agent expression
2317 bytecode. If any of these happen, then it's no use to send conditions
2318 to the target since this location will always trigger and generate a
2319 response back to GDB. */
2320 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2321 {
2322 loc = (*loc2p);
2323 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2324 {
2325 if (modified)
2326 {
2327 /* Re-parse the commands since something changed. In that
2328 case we already freed the command bytecodes (see
2329 force_breakpoint_reinsertion). We just
2330 need to parse the command to bytecodes again. */
2331 loc->cmd_bytecode
2332 = parse_cmd_to_aexpr (bl->address,
2333 loc->owner->extra_string);
2334 }
2335
2336 /* If we have a NULL bytecode expression, it means something
2337 went wrong or we have a null command expression. */
2338 if (!loc->cmd_bytecode)
2339 {
2340 null_command_or_parse_error = 1;
2341 break;
2342 }
2343 }
2344 }
2345
2346 /* If anything failed, then we're not doing target-side commands,
2347 and so clean up. */
2348 if (null_command_or_parse_error)
2349 {
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (is_breakpoint (loc->owner)
2354 && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (loc->cmd_bytecode == NULL)
2359 return;
2360
2361 loc->cmd_bytecode.reset ();
2362 }
2363 }
2364 }
2365
2366 /* No NULL commands or failed bytecode generation. Build a command list
2367 for this location's address. */
2368 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2369 {
2370 loc = (*loc2p);
2371 if (loc->owner->extra_string
2372 && is_breakpoint (loc->owner)
2373 && loc->pspace->num == bl->pspace->num
2374 && loc->owner->enable_state == bp_enabled
2375 && loc->enabled)
2376 {
2377 /* Add the command to the vector. This will be used later
2378 to send the commands to the target. */
2379 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2380 }
2381 }
2382
2383 bl->target_info.persist = 0;
2384 /* Maybe flag this location as persistent. */
2385 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2386 bl->target_info.persist = 1;
2387 }
2388
2389 /* Return the kind of breakpoint on address *ADDR. Get the kind
2390 of breakpoint according to ADDR except single-step breakpoint.
2391 Get the kind of single-step breakpoint according to the current
2392 registers state. */
2393
2394 static int
2395 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2396 {
2397 if (bl->owner->type == bp_single_step)
2398 {
2399 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2400 struct regcache *regcache;
2401
2402 regcache = get_thread_regcache (thr);
2403
2404 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2405 regcache, addr);
2406 }
2407 else
2408 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2409 }
2410
2411 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2412 location. Any error messages are printed to TMP_ERROR_STREAM; and
2413 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2414 Returns 0 for success, 1 if the bp_location type is not supported or
2415 -1 for failure.
2416
2417 NOTE drow/2003-09-09: This routine could be broken down to an
2418 object-style method for each breakpoint or catchpoint type. */
2419 static int
2420 insert_bp_location (struct bp_location *bl,
2421 struct ui_file *tmp_error_stream,
2422 int *disabled_breaks,
2423 int *hw_breakpoint_error,
2424 int *hw_bp_error_explained_already)
2425 {
2426 gdb_exception bp_excpt;
2427
2428 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2429 return 0;
2430
2431 /* Note we don't initialize bl->target_info, as that wipes out
2432 the breakpoint location's shadow_contents if the breakpoint
2433 is still inserted at that location. This in turn breaks
2434 target_read_memory which depends on these buffers when
2435 a memory read is requested at the breakpoint location:
2436 Once the target_info has been wiped, we fail to see that
2437 we have a breakpoint inserted at that address and thus
2438 read the breakpoint instead of returning the data saved in
2439 the breakpoint location's shadow contents. */
2440 bl->target_info.reqstd_address = bl->address;
2441 bl->target_info.placed_address_space = bl->pspace->aspace;
2442 bl->target_info.length = bl->length;
2443
2444 /* When working with target-side conditions, we must pass all the conditions
2445 for the same breakpoint address down to the target since GDB will not
2446 insert those locations. With a list of breakpoint conditions, the target
2447 can decide when to stop and notify GDB. */
2448
2449 if (is_breakpoint (bl->owner))
2450 {
2451 build_target_condition_list (bl);
2452 build_target_command_list (bl);
2453 /* Reset the modification marker. */
2454 bl->needs_update = 0;
2455 }
2456
2457 if (bl->loc_type == bp_loc_software_breakpoint
2458 || bl->loc_type == bp_loc_hardware_breakpoint)
2459 {
2460 if (bl->owner->type != bp_hardware_breakpoint)
2461 {
2462 /* If the explicitly specified breakpoint type
2463 is not hardware breakpoint, check the memory map to see
2464 if the breakpoint address is in read only memory or not.
2465
2466 Two important cases are:
2467 - location type is not hardware breakpoint, memory
2468 is readonly. We change the type of the location to
2469 hardware breakpoint.
2470 - location type is hardware breakpoint, memory is
2471 read-write. This means we've previously made the
2472 location hardware one, but then the memory map changed,
2473 so we undo.
2474
2475 When breakpoints are removed, remove_breakpoints will use
2476 location types we've just set here, the only possible
2477 problem is that memory map has changed during running
2478 program, but it's not going to work anyway with current
2479 gdb. */
2480 struct mem_region *mr
2481 = lookup_mem_region (bl->target_info.reqstd_address);
2482
2483 if (mr)
2484 {
2485 if (automatic_hardware_breakpoints)
2486 {
2487 enum bp_loc_type new_type;
2488
2489 if (mr->attrib.mode != MEM_RW)
2490 new_type = bp_loc_hardware_breakpoint;
2491 else
2492 new_type = bp_loc_software_breakpoint;
2493
2494 if (new_type != bl->loc_type)
2495 {
2496 static int said = 0;
2497
2498 bl->loc_type = new_type;
2499 if (!said)
2500 {
2501 fprintf_filtered (gdb_stdout,
2502 _("Note: automatically using "
2503 "hardware breakpoints for "
2504 "read-only addresses.\n"));
2505 said = 1;
2506 }
2507 }
2508 }
2509 else if (bl->loc_type == bp_loc_software_breakpoint
2510 && mr->attrib.mode != MEM_RW)
2511 {
2512 fprintf_unfiltered (tmp_error_stream,
2513 _("Cannot insert breakpoint %d.\n"
2514 "Cannot set software breakpoint "
2515 "at read-only address %s\n"),
2516 bl->owner->number,
2517 paddress (bl->gdbarch, bl->address));
2518 return 1;
2519 }
2520 }
2521 }
2522
2523 /* First check to see if we have to handle an overlay. */
2524 if (overlay_debugging == ovly_off
2525 || bl->section == NULL
2526 || !(section_is_overlay (bl->section)))
2527 {
2528 /* No overlay handling: just set the breakpoint. */
2529 try
2530 {
2531 int val;
2532
2533 val = bl->owner->ops->insert_location (bl);
2534 if (val)
2535 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2536 }
2537 catch (gdb_exception &e)
2538 {
2539 bp_excpt = std::move (e);
2540 }
2541 }
2542 else
2543 {
2544 /* This breakpoint is in an overlay section.
2545 Shall we set a breakpoint at the LMA? */
2546 if (!overlay_events_enabled)
2547 {
2548 /* Yes -- overlay event support is not active,
2549 so we must try to set a breakpoint at the LMA.
2550 This will not work for a hardware breakpoint. */
2551 if (bl->loc_type == bp_loc_hardware_breakpoint)
2552 warning (_("hardware breakpoint %d not supported in overlay!"),
2553 bl->owner->number);
2554 else
2555 {
2556 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2557 bl->section);
2558 /* Set a software (trap) breakpoint at the LMA. */
2559 bl->overlay_target_info = bl->target_info;
2560 bl->overlay_target_info.reqstd_address = addr;
2561
2562 /* No overlay handling: just set the breakpoint. */
2563 try
2564 {
2565 int val;
2566
2567 bl->overlay_target_info.kind
2568 = breakpoint_kind (bl, &addr);
2569 bl->overlay_target_info.placed_address = addr;
2570 val = target_insert_breakpoint (bl->gdbarch,
2571 &bl->overlay_target_info);
2572 if (val)
2573 bp_excpt
2574 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2575 }
2576 catch (gdb_exception &e)
2577 {
2578 bp_excpt = std::move (e);
2579 }
2580
2581 if (bp_excpt.reason != 0)
2582 fprintf_unfiltered (tmp_error_stream,
2583 "Overlay breakpoint %d "
2584 "failed: in ROM?\n",
2585 bl->owner->number);
2586 }
2587 }
2588 /* Shall we set a breakpoint at the VMA? */
2589 if (section_is_mapped (bl->section))
2590 {
2591 /* Yes. This overlay section is mapped into memory. */
2592 try
2593 {
2594 int val;
2595
2596 val = bl->owner->ops->insert_location (bl);
2597 if (val)
2598 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2599 }
2600 catch (gdb_exception &e)
2601 {
2602 bp_excpt = std::move (e);
2603 }
2604 }
2605 else
2606 {
2607 /* No. This breakpoint will not be inserted.
2608 No error, but do not mark the bp as 'inserted'. */
2609 return 0;
2610 }
2611 }
2612
2613 if (bp_excpt.reason != 0)
2614 {
2615 /* Can't set the breakpoint. */
2616
2617 /* In some cases, we might not be able to insert a
2618 breakpoint in a shared library that has already been
2619 removed, but we have not yet processed the shlib unload
2620 event. Unfortunately, some targets that implement
2621 breakpoint insertion themselves can't tell why the
2622 breakpoint insertion failed (e.g., the remote target
2623 doesn't define error codes), so we must treat generic
2624 errors as memory errors. */
2625 if (bp_excpt.reason == RETURN_ERROR
2626 && (bp_excpt.error == GENERIC_ERROR
2627 || bp_excpt.error == MEMORY_ERROR)
2628 && bl->loc_type == bp_loc_software_breakpoint
2629 && (solib_name_from_address (bl->pspace, bl->address)
2630 || shared_objfile_contains_address_p (bl->pspace,
2631 bl->address)))
2632 {
2633 /* See also: disable_breakpoints_in_shlibs. */
2634 bl->shlib_disabled = 1;
2635 gdb::observers::breakpoint_modified.notify (bl->owner);
2636 if (!*disabled_breaks)
2637 {
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert breakpoint %d.\n",
2640 bl->owner->number);
2641 fprintf_unfiltered (tmp_error_stream,
2642 "Temporarily disabling shared "
2643 "library breakpoints:\n");
2644 }
2645 *disabled_breaks = 1;
2646 fprintf_unfiltered (tmp_error_stream,
2647 "breakpoint #%d\n", bl->owner->number);
2648 return 0;
2649 }
2650 else
2651 {
2652 if (bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 *hw_breakpoint_error = 1;
2655 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Cannot insert hardware breakpoint %d%s",
2658 bl->owner->number,
2659 bp_excpt.message ? ":" : ".\n");
2660 if (bp_excpt.message != NULL)
2661 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2662 bp_excpt.what ());
2663 }
2664 else
2665 {
2666 if (bp_excpt.message == NULL)
2667 {
2668 std::string message
2669 = memory_error_message (TARGET_XFER_E_IO,
2670 bl->gdbarch, bl->address);
2671
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert breakpoint %d.\n"
2674 "%s\n",
2675 bl->owner->number, message.c_str ());
2676 }
2677 else
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert breakpoint %d: %s\n",
2681 bl->owner->number,
2682 bp_excpt.what ());
2683 }
2684 }
2685 return 1;
2686
2687 }
2688 }
2689 else
2690 bl->inserted = 1;
2691
2692 return 0;
2693 }
2694
2695 else if (bl->loc_type == bp_loc_hardware_watchpoint
2696 /* NOTE drow/2003-09-08: This state only exists for removing
2697 watchpoints. It's not clear that it's necessary... */
2698 && bl->owner->disposition != disp_del_at_next_stop)
2699 {
2700 int val;
2701
2702 gdb_assert (bl->owner->ops != NULL
2703 && bl->owner->ops->insert_location != NULL);
2704
2705 val = bl->owner->ops->insert_location (bl);
2706
2707 /* If trying to set a read-watchpoint, and it turns out it's not
2708 supported, try emulating one with an access watchpoint. */
2709 if (val == 1 && bl->watchpoint_type == hw_read)
2710 {
2711 struct bp_location *loc, **loc_temp;
2712
2713 /* But don't try to insert it, if there's already another
2714 hw_access location that would be considered a duplicate
2715 of this one. */
2716 ALL_BP_LOCATIONS (loc, loc_temp)
2717 if (loc != bl
2718 && loc->watchpoint_type == hw_access
2719 && watchpoint_locations_match (bl, loc))
2720 {
2721 bl->duplicate = 1;
2722 bl->inserted = 1;
2723 bl->target_info = loc->target_info;
2724 bl->watchpoint_type = hw_access;
2725 val = 0;
2726 break;
2727 }
2728
2729 if (val == 1)
2730 {
2731 bl->watchpoint_type = hw_access;
2732 val = bl->owner->ops->insert_location (bl);
2733
2734 if (val)
2735 /* Back to the original value. */
2736 bl->watchpoint_type = hw_read;
2737 }
2738 }
2739
2740 bl->inserted = (val == 0);
2741 }
2742
2743 else if (bl->owner->type == bp_catchpoint)
2744 {
2745 int val;
2746
2747 gdb_assert (bl->owner->ops != NULL
2748 && bl->owner->ops->insert_location != NULL);
2749
2750 val = bl->owner->ops->insert_location (bl);
2751 if (val)
2752 {
2753 bl->owner->enable_state = bp_disabled;
2754
2755 if (val == 1)
2756 warning (_("\
2757 Error inserting catchpoint %d: Your system does not support this type\n\
2758 of catchpoint."), bl->owner->number);
2759 else
2760 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2761 }
2762
2763 bl->inserted = (val == 0);
2764
2765 /* We've already printed an error message if there was a problem
2766 inserting this catchpoint, and we've disabled the catchpoint,
2767 so just return success. */
2768 return 0;
2769 }
2770
2771 return 0;
2772 }
2773
2774 /* This function is called when program space PSPACE is about to be
2775 deleted. It takes care of updating breakpoints to not reference
2776 PSPACE anymore. */
2777
2778 void
2779 breakpoint_program_space_exit (struct program_space *pspace)
2780 {
2781 struct breakpoint *b, *b_temp;
2782 struct bp_location *loc, **loc_temp;
2783
2784 /* Remove any breakpoint that was set through this program space. */
2785 ALL_BREAKPOINTS_SAFE (b, b_temp)
2786 {
2787 if (b->pspace == pspace)
2788 delete_breakpoint (b);
2789 }
2790
2791 /* Breakpoints set through other program spaces could have locations
2792 bound to PSPACE as well. Remove those. */
2793 ALL_BP_LOCATIONS (loc, loc_temp)
2794 {
2795 struct bp_location *tmp;
2796
2797 if (loc->pspace == pspace)
2798 {
2799 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2800 if (loc->owner->loc == loc)
2801 loc->owner->loc = loc->next;
2802 else
2803 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2804 if (tmp->next == loc)
2805 {
2806 tmp->next = loc->next;
2807 break;
2808 }
2809 }
2810 }
2811
2812 /* Now update the global location list to permanently delete the
2813 removed locations above. */
2814 update_global_location_list (UGLL_DONT_INSERT);
2815 }
2816
2817 /* Make sure all breakpoints are inserted in inferior.
2818 Throws exception on any error.
2819 A breakpoint that is already inserted won't be inserted
2820 again, so calling this function twice is safe. */
2821 void
2822 insert_breakpoints (void)
2823 {
2824 struct breakpoint *bpt;
2825
2826 ALL_BREAKPOINTS (bpt)
2827 if (is_hardware_watchpoint (bpt))
2828 {
2829 struct watchpoint *w = (struct watchpoint *) bpt;
2830
2831 update_watchpoint (w, 0 /* don't reparse. */);
2832 }
2833
2834 /* Updating watchpoints creates new locations, so update the global
2835 location list. Explicitly tell ugll to insert locations and
2836 ignore breakpoints_always_inserted_mode. */
2837 update_global_location_list (UGLL_INSERT);
2838 }
2839
2840 /* Invoke CALLBACK for each of bp_location. */
2841
2842 void
2843 iterate_over_bp_locations (walk_bp_location_callback callback)
2844 {
2845 struct bp_location *loc, **loc_tmp;
2846
2847 ALL_BP_LOCATIONS (loc, loc_tmp)
2848 {
2849 callback (loc, NULL);
2850 }
2851 }
2852
2853 /* This is used when we need to synch breakpoint conditions between GDB and the
2854 target. It is the case with deleting and disabling of breakpoints when using
2855 always-inserted mode. */
2856
2857 static void
2858 update_inserted_breakpoint_locations (void)
2859 {
2860 struct bp_location *bl, **blp_tmp;
2861 int error_flag = 0;
2862 int val = 0;
2863 int disabled_breaks = 0;
2864 int hw_breakpoint_error = 0;
2865 int hw_bp_details_reported = 0;
2866
2867 string_file tmp_error_stream;
2868
2869 /* Explicitly mark the warning -- this will only be printed if
2870 there was an error. */
2871 tmp_error_stream.puts ("Warning:\n");
2872
2873 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2874
2875 ALL_BP_LOCATIONS (bl, blp_tmp)
2876 {
2877 /* We only want to update software breakpoints and hardware
2878 breakpoints. */
2879 if (!is_breakpoint (bl->owner))
2880 continue;
2881
2882 /* We only want to update locations that are already inserted
2883 and need updating. This is to avoid unwanted insertion during
2884 deletion of breakpoints. */
2885 if (!bl->inserted || !bl->needs_update)
2886 continue;
2887
2888 switch_to_program_space_and_thread (bl->pspace);
2889
2890 /* For targets that support global breakpoints, there's no need
2891 to select an inferior to insert breakpoint to. In fact, even
2892 if we aren't attached to any process yet, we should still
2893 insert breakpoints. */
2894 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2895 && inferior_ptid == null_ptid)
2896 continue;
2897
2898 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2899 &hw_breakpoint_error, &hw_bp_details_reported);
2900 if (val)
2901 error_flag = val;
2902 }
2903
2904 if (error_flag)
2905 {
2906 target_terminal::ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909 }
2910
2911 /* Used when starting or continuing the program. */
2912
2913 static void
2914 insert_breakpoint_locations (void)
2915 {
2916 struct breakpoint *bpt;
2917 struct bp_location *bl, **blp_tmp;
2918 int error_flag = 0;
2919 int val = 0;
2920 int disabled_breaks = 0;
2921 int hw_breakpoint_error = 0;
2922 int hw_bp_error_explained_already = 0;
2923
2924 string_file tmp_error_stream;
2925
2926 /* Explicitly mark the warning -- this will only be printed if
2927 there was an error. */
2928 tmp_error_stream.puts ("Warning:\n");
2929
2930 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2931
2932 ALL_BP_LOCATIONS (bl, blp_tmp)
2933 {
2934 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2935 continue;
2936
2937 /* There is no point inserting thread-specific breakpoints if
2938 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2939 has BL->OWNER always non-NULL. */
2940 if (bl->owner->thread != -1
2941 && !valid_global_thread_id (bl->owner->thread))
2942 continue;
2943
2944 switch_to_program_space_and_thread (bl->pspace);
2945
2946 /* For targets that support global breakpoints, there's no need
2947 to select an inferior to insert breakpoint to. In fact, even
2948 if we aren't attached to any process yet, we should still
2949 insert breakpoints. */
2950 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2951 && inferior_ptid == null_ptid)
2952 continue;
2953
2954 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2955 &hw_breakpoint_error, &hw_bp_error_explained_already);
2956 if (val)
2957 error_flag = val;
2958 }
2959
2960 /* If we failed to insert all locations of a watchpoint, remove
2961 them, as half-inserted watchpoint is of limited use. */
2962 ALL_BREAKPOINTS (bpt)
2963 {
2964 int some_failed = 0;
2965 struct bp_location *loc;
2966
2967 if (!is_hardware_watchpoint (bpt))
2968 continue;
2969
2970 if (!breakpoint_enabled (bpt))
2971 continue;
2972
2973 if (bpt->disposition == disp_del_at_next_stop)
2974 continue;
2975
2976 for (loc = bpt->loc; loc; loc = loc->next)
2977 if (!loc->inserted && should_be_inserted (loc))
2978 {
2979 some_failed = 1;
2980 break;
2981 }
2982 if (some_failed)
2983 {
2984 for (loc = bpt->loc; loc; loc = loc->next)
2985 if (loc->inserted)
2986 remove_breakpoint (loc);
2987
2988 hw_breakpoint_error = 1;
2989 tmp_error_stream.printf ("Could not insert "
2990 "hardware watchpoint %d.\n",
2991 bpt->number);
2992 error_flag = -1;
2993 }
2994 }
2995
2996 if (error_flag)
2997 {
2998 /* If a hardware breakpoint or watchpoint was inserted, add a
2999 message about possibly exhausted resources. */
3000 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3001 {
3002 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3003 You may have requested too many hardware breakpoints/watchpoints.\n");
3004 }
3005 target_terminal::ours_for_output ();
3006 error_stream (tmp_error_stream);
3007 }
3008 }
3009
3010 /* Used when the program stops.
3011 Returns zero if successful, or non-zero if there was a problem
3012 removing a breakpoint location. */
3013
3014 int
3015 remove_breakpoints (void)
3016 {
3017 struct bp_location *bl, **blp_tmp;
3018 int val = 0;
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->inserted && !is_tracepoint (bl->owner))
3023 val |= remove_breakpoint (bl);
3024 }
3025 return val;
3026 }
3027
3028 /* When a thread exits, remove breakpoints that are related to
3029 that thread. */
3030
3031 static void
3032 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3033 {
3034 struct breakpoint *b, *b_tmp;
3035
3036 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3037 {
3038 if (b->thread == tp->global_num && user_breakpoint_p (b))
3039 {
3040 b->disposition = disp_del_at_next_stop;
3041
3042 printf_filtered (_("\
3043 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3044 b->number, print_thread_id (tp));
3045
3046 /* Hide it from the user. */
3047 b->number = 0;
3048 }
3049 }
3050 }
3051
3052 /* See breakpoint.h. */
3053
3054 void
3055 remove_breakpoints_inf (inferior *inf)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int val;
3059
3060 ALL_BP_LOCATIONS (bl, blp_tmp)
3061 {
3062 if (bl->pspace != inf->pspace)
3063 continue;
3064
3065 if (bl->inserted && !bl->target_info.persist)
3066 {
3067 val = remove_breakpoint (bl);
3068 if (val != 0)
3069 return;
3070 }
3071 }
3072 }
3073
3074 static int internal_breakpoint_number = -1;
3075
3076 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3077 If INTERNAL is non-zero, the breakpoint number will be populated
3078 from internal_breakpoint_number and that variable decremented.
3079 Otherwise the breakpoint number will be populated from
3080 breakpoint_count and that value incremented. Internal breakpoints
3081 do not set the internal var bpnum. */
3082 static void
3083 set_breakpoint_number (int internal, struct breakpoint *b)
3084 {
3085 if (internal)
3086 b->number = internal_breakpoint_number--;
3087 else
3088 {
3089 set_breakpoint_count (breakpoint_count + 1);
3090 b->number = breakpoint_count;
3091 }
3092 }
3093
3094 static struct breakpoint *
3095 create_internal_breakpoint (struct gdbarch *gdbarch,
3096 CORE_ADDR address, enum bptype type,
3097 const struct breakpoint_ops *ops)
3098 {
3099 symtab_and_line sal;
3100 sal.pc = address;
3101 sal.section = find_pc_overlay (sal.pc);
3102 sal.pspace = current_program_space;
3103
3104 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3105 b->number = internal_breakpoint_number--;
3106 b->disposition = disp_donttouch;
3107
3108 return b;
3109 }
3110
3111 static const char *const longjmp_names[] =
3112 {
3113 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3114 };
3115 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3116
3117 /* Per-objfile data private to breakpoint.c. */
3118 struct breakpoint_objfile_data
3119 {
3120 /* Minimal symbol for "_ovly_debug_event" (if any). */
3121 struct bound_minimal_symbol overlay_msym {};
3122
3123 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3124 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3125
3126 /* True if we have looked for longjmp probes. */
3127 int longjmp_searched = 0;
3128
3129 /* SystemTap probe points for longjmp (if any). These are non-owning
3130 references. */
3131 std::vector<probe *> longjmp_probes;
3132
3133 /* Minimal symbol for "std::terminate()" (if any). */
3134 struct bound_minimal_symbol terminate_msym {};
3135
3136 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3137 struct bound_minimal_symbol exception_msym {};
3138
3139 /* True if we have looked for exception probes. */
3140 int exception_searched = 0;
3141
3142 /* SystemTap probe points for unwinding (if any). These are non-owning
3143 references. */
3144 std::vector<probe *> exception_probes;
3145 };
3146
3147 static const struct objfile_key<breakpoint_objfile_data>
3148 breakpoint_objfile_key;
3149
3150 /* Minimal symbol not found sentinel. */
3151 static struct minimal_symbol msym_not_found;
3152
3153 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3154
3155 static int
3156 msym_not_found_p (const struct minimal_symbol *msym)
3157 {
3158 return msym == &msym_not_found;
3159 }
3160
3161 /* Return per-objfile data needed by breakpoint.c.
3162 Allocate the data if necessary. */
3163
3164 static struct breakpoint_objfile_data *
3165 get_breakpoint_objfile_data (struct objfile *objfile)
3166 {
3167 struct breakpoint_objfile_data *bp_objfile_data;
3168
3169 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3170 if (bp_objfile_data == NULL)
3171 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3172 return bp_objfile_data;
3173 }
3174
3175 static void
3176 create_overlay_event_breakpoint (void)
3177 {
3178 const char *const func_name = "_ovly_debug_event";
3179
3180 for (objfile *objfile : current_program_space->objfiles ())
3181 {
3182 struct breakpoint *b;
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184 CORE_ADDR addr;
3185 struct explicit_location explicit_loc;
3186
3187 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3188
3189 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3190 continue;
3191
3192 if (bp_objfile_data->overlay_msym.minsym == NULL)
3193 {
3194 struct bound_minimal_symbol m;
3195
3196 m = lookup_minimal_symbol_text (func_name, objfile);
3197 if (m.minsym == NULL)
3198 {
3199 /* Avoid future lookups in this objfile. */
3200 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3201 continue;
3202 }
3203 bp_objfile_data->overlay_msym = m;
3204 }
3205
3206 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3207 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3208 bp_overlay_event,
3209 &internal_breakpoint_ops);
3210 initialize_explicit_location (&explicit_loc);
3211 explicit_loc.function_name = ASTRDUP (func_name);
3212 b->location = new_explicit_location (&explicit_loc);
3213
3214 if (overlay_debugging == ovly_auto)
3215 {
3216 b->enable_state = bp_enabled;
3217 overlay_events_enabled = 1;
3218 }
3219 else
3220 {
3221 b->enable_state = bp_disabled;
3222 overlay_events_enabled = 0;
3223 }
3224 }
3225 }
3226
3227 static void
3228 create_longjmp_master_breakpoint (void)
3229 {
3230 struct program_space *pspace;
3231
3232 scoped_restore_current_program_space restore_pspace;
3233
3234 ALL_PSPACES (pspace)
3235 {
3236 set_current_program_space (pspace);
3237
3238 for (objfile *objfile : current_program_space->objfiles ())
3239 {
3240 int i;
3241 struct gdbarch *gdbarch;
3242 struct breakpoint_objfile_data *bp_objfile_data;
3243
3244 gdbarch = get_objfile_arch (objfile);
3245
3246 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3247
3248 if (!bp_objfile_data->longjmp_searched)
3249 {
3250 std::vector<probe *> ret
3251 = find_probes_in_objfile (objfile, "libc", "longjmp");
3252
3253 if (!ret.empty ())
3254 {
3255 /* We are only interested in checking one element. */
3256 probe *p = ret[0];
3257
3258 if (!p->can_evaluate_arguments ())
3259 {
3260 /* We cannot use the probe interface here, because it does
3261 not know how to evaluate arguments. */
3262 ret.clear ();
3263 }
3264 }
3265 bp_objfile_data->longjmp_probes = ret;
3266 bp_objfile_data->longjmp_searched = 1;
3267 }
3268
3269 if (!bp_objfile_data->longjmp_probes.empty ())
3270 {
3271 for (probe *p : bp_objfile_data->longjmp_probes)
3272 {
3273 struct breakpoint *b;
3274
3275 b = create_internal_breakpoint (gdbarch,
3276 p->get_relocated_address (objfile),
3277 bp_longjmp_master,
3278 &internal_breakpoint_ops);
3279 b->location = new_probe_location ("-probe-stap libc:longjmp");
3280 b->enable_state = bp_disabled;
3281 }
3282
3283 continue;
3284 }
3285
3286 if (!gdbarch_get_longjmp_target_p (gdbarch))
3287 continue;
3288
3289 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3290 {
3291 struct breakpoint *b;
3292 const char *func_name;
3293 CORE_ADDR addr;
3294 struct explicit_location explicit_loc;
3295
3296 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3297 continue;
3298
3299 func_name = longjmp_names[i];
3300 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3301 {
3302 struct bound_minimal_symbol m;
3303
3304 m = lookup_minimal_symbol_text (func_name, objfile);
3305 if (m.minsym == NULL)
3306 {
3307 /* Prevent future lookups in this objfile. */
3308 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3309 continue;
3310 }
3311 bp_objfile_data->longjmp_msym[i] = m;
3312 }
3313
3314 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3315 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3316 &internal_breakpoint_ops);
3317 initialize_explicit_location (&explicit_loc);
3318 explicit_loc.function_name = ASTRDUP (func_name);
3319 b->location = new_explicit_location (&explicit_loc);
3320 b->enable_state = bp_disabled;
3321 }
3322 }
3323 }
3324 }
3325
3326 /* Create a master std::terminate breakpoint. */
3327 static void
3328 create_std_terminate_master_breakpoint (void)
3329 {
3330 struct program_space *pspace;
3331 const char *const func_name = "std::terminate()";
3332
3333 scoped_restore_current_program_space restore_pspace;
3334
3335 ALL_PSPACES (pspace)
3336 {
3337 CORE_ADDR addr;
3338
3339 set_current_program_space (pspace);
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 struct breakpoint *b;
3344 struct breakpoint_objfile_data *bp_objfile_data;
3345 struct explicit_location explicit_loc;
3346
3347 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3348
3349 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3350 continue;
3351
3352 if (bp_objfile_data->terminate_msym.minsym == NULL)
3353 {
3354 struct bound_minimal_symbol m;
3355
3356 m = lookup_minimal_symbol (func_name, NULL, objfile);
3357 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3358 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3359 {
3360 /* Prevent future lookups in this objfile. */
3361 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3362 continue;
3363 }
3364 bp_objfile_data->terminate_msym = m;
3365 }
3366
3367 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3368 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3369 bp_std_terminate_master,
3370 &internal_breakpoint_ops);
3371 initialize_explicit_location (&explicit_loc);
3372 explicit_loc.function_name = ASTRDUP (func_name);
3373 b->location = new_explicit_location (&explicit_loc);
3374 b->enable_state = bp_disabled;
3375 }
3376 }
3377 }
3378
3379 /* Install a master breakpoint on the unwinder's debug hook. */
3380
3381 static void
3382 create_exception_master_breakpoint (void)
3383 {
3384 const char *const func_name = "_Unwind_DebugHook";
3385
3386 for (objfile *objfile : current_program_space->objfiles ())
3387 {
3388 struct breakpoint *b;
3389 struct gdbarch *gdbarch;
3390 struct breakpoint_objfile_data *bp_objfile_data;
3391 CORE_ADDR addr;
3392 struct explicit_location explicit_loc;
3393
3394 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3395
3396 /* We prefer the SystemTap probe point if it exists. */
3397 if (!bp_objfile_data->exception_searched)
3398 {
3399 std::vector<probe *> ret
3400 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3401
3402 if (!ret.empty ())
3403 {
3404 /* We are only interested in checking one element. */
3405 probe *p = ret[0];
3406
3407 if (!p->can_evaluate_arguments ())
3408 {
3409 /* We cannot use the probe interface here, because it does
3410 not know how to evaluate arguments. */
3411 ret.clear ();
3412 }
3413 }
3414 bp_objfile_data->exception_probes = ret;
3415 bp_objfile_data->exception_searched = 1;
3416 }
3417
3418 if (!bp_objfile_data->exception_probes.empty ())
3419 {
3420 gdbarch = get_objfile_arch (objfile);
3421
3422 for (probe *p : bp_objfile_data->exception_probes)
3423 {
3424 b = create_internal_breakpoint (gdbarch,
3425 p->get_relocated_address (objfile),
3426 bp_exception_master,
3427 &internal_breakpoint_ops);
3428 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3429 b->enable_state = bp_disabled;
3430 }
3431
3432 continue;
3433 }
3434
3435 /* Otherwise, try the hook function. */
3436
3437 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3438 continue;
3439
3440 gdbarch = get_objfile_arch (objfile);
3441
3442 if (bp_objfile_data->exception_msym.minsym == NULL)
3443 {
3444 struct bound_minimal_symbol debug_hook;
3445
3446 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3447 if (debug_hook.minsym == NULL)
3448 {
3449 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3450 continue;
3451 }
3452
3453 bp_objfile_data->exception_msym = debug_hook;
3454 }
3455
3456 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3457 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3458 current_top_target ());
3459 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3460 &internal_breakpoint_ops);
3461 initialize_explicit_location (&explicit_loc);
3462 explicit_loc.function_name = ASTRDUP (func_name);
3463 b->location = new_explicit_location (&explicit_loc);
3464 b->enable_state = bp_disabled;
3465 }
3466 }
3467
3468 /* Does B have a location spec? */
3469
3470 static int
3471 breakpoint_event_location_empty_p (const struct breakpoint *b)
3472 {
3473 return b->location != NULL && event_location_empty_p (b->location.get ());
3474 }
3475
3476 void
3477 update_breakpoints_after_exec (void)
3478 {
3479 struct breakpoint *b, *b_tmp;
3480 struct bp_location *bploc, **bplocp_tmp;
3481
3482 /* We're about to delete breakpoints from GDB's lists. If the
3483 INSERTED flag is true, GDB will try to lift the breakpoints by
3484 writing the breakpoints' "shadow contents" back into memory. The
3485 "shadow contents" are NOT valid after an exec, so GDB should not
3486 do that. Instead, the target is responsible from marking
3487 breakpoints out as soon as it detects an exec. We don't do that
3488 here instead, because there may be other attempts to delete
3489 breakpoints after detecting an exec and before reaching here. */
3490 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3491 if (bploc->pspace == current_program_space)
3492 gdb_assert (!bploc->inserted);
3493
3494 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3495 {
3496 if (b->pspace != current_program_space)
3497 continue;
3498
3499 /* Solib breakpoints must be explicitly reset after an exec(). */
3500 if (b->type == bp_shlib_event)
3501 {
3502 delete_breakpoint (b);
3503 continue;
3504 }
3505
3506 /* JIT breakpoints must be explicitly reset after an exec(). */
3507 if (b->type == bp_jit_event)
3508 {
3509 delete_breakpoint (b);
3510 continue;
3511 }
3512
3513 /* Thread event breakpoints must be set anew after an exec(),
3514 as must overlay event and longjmp master breakpoints. */
3515 if (b->type == bp_thread_event || b->type == bp_overlay_event
3516 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3517 || b->type == bp_exception_master)
3518 {
3519 delete_breakpoint (b);
3520 continue;
3521 }
3522
3523 /* Step-resume breakpoints are meaningless after an exec(). */
3524 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3525 {
3526 delete_breakpoint (b);
3527 continue;
3528 }
3529
3530 /* Just like single-step breakpoints. */
3531 if (b->type == bp_single_step)
3532 {
3533 delete_breakpoint (b);
3534 continue;
3535 }
3536
3537 /* Longjmp and longjmp-resume breakpoints are also meaningless
3538 after an exec. */
3539 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3540 || b->type == bp_longjmp_call_dummy
3541 || b->type == bp_exception || b->type == bp_exception_resume)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 if (b->type == bp_catchpoint)
3548 {
3549 /* For now, none of the bp_catchpoint breakpoints need to
3550 do anything at this point. In the future, if some of
3551 the catchpoints need to something, we will need to add
3552 a new method, and call this method from here. */
3553 continue;
3554 }
3555
3556 /* bp_finish is a special case. The only way we ought to be able
3557 to see one of these when an exec() has happened, is if the user
3558 caught a vfork, and then said "finish". Ordinarily a finish just
3559 carries them to the call-site of the current callee, by setting
3560 a temporary bp there and resuming. But in this case, the finish
3561 will carry them entirely through the vfork & exec.
3562
3563 We don't want to allow a bp_finish to remain inserted now. But
3564 we can't safely delete it, 'cause finish_command has a handle to
3565 the bp on a bpstat, and will later want to delete it. There's a
3566 chance (and I've seen it happen) that if we delete the bp_finish
3567 here, that its storage will get reused by the time finish_command
3568 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3569 We really must allow finish_command to delete a bp_finish.
3570
3571 In the absence of a general solution for the "how do we know
3572 it's safe to delete something others may have handles to?"
3573 problem, what we'll do here is just uninsert the bp_finish, and
3574 let finish_command delete it.
3575
3576 (We know the bp_finish is "doomed" in the sense that it's
3577 momentary, and will be deleted as soon as finish_command sees
3578 the inferior stopped. So it doesn't matter that the bp's
3579 address is probably bogus in the new a.out, unlike e.g., the
3580 solib breakpoints.) */
3581
3582 if (b->type == bp_finish)
3583 {
3584 continue;
3585 }
3586
3587 /* Without a symbolic address, we have little hope of the
3588 pre-exec() address meaning the same thing in the post-exec()
3589 a.out. */
3590 if (breakpoint_event_location_empty_p (b))
3591 {
3592 delete_breakpoint (b);
3593 continue;
3594 }
3595 }
3596 }
3597
3598 int
3599 detach_breakpoints (ptid_t ptid)
3600 {
3601 struct bp_location *bl, **blp_tmp;
3602 int val = 0;
3603 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3604 struct inferior *inf = current_inferior ();
3605
3606 if (ptid.pid () == inferior_ptid.pid ())
3607 error (_("Cannot detach breakpoints of inferior_ptid"));
3608
3609 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3610 inferior_ptid = ptid;
3611 ALL_BP_LOCATIONS (bl, blp_tmp)
3612 {
3613 if (bl->pspace != inf->pspace)
3614 continue;
3615
3616 /* This function must physically remove breakpoints locations
3617 from the specified ptid, without modifying the breakpoint
3618 package's state. Locations of type bp_loc_other are only
3619 maintained at GDB side. So, there is no need to remove
3620 these bp_loc_other locations. Moreover, removing these
3621 would modify the breakpoint package's state. */
3622 if (bl->loc_type == bp_loc_other)
3623 continue;
3624
3625 if (bl->inserted)
3626 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3627 }
3628
3629 return val;
3630 }
3631
3632 /* Remove the breakpoint location BL from the current address space.
3633 Note that this is used to detach breakpoints from a child fork.
3634 When we get here, the child isn't in the inferior list, and neither
3635 do we have objects to represent its address space --- we should
3636 *not* look at bl->pspace->aspace here. */
3637
3638 static int
3639 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3640 {
3641 int val;
3642
3643 /* BL is never in moribund_locations by our callers. */
3644 gdb_assert (bl->owner != NULL);
3645
3646 /* The type of none suggests that owner is actually deleted.
3647 This should not ever happen. */
3648 gdb_assert (bl->owner->type != bp_none);
3649
3650 if (bl->loc_type == bp_loc_software_breakpoint
3651 || bl->loc_type == bp_loc_hardware_breakpoint)
3652 {
3653 /* "Normal" instruction breakpoint: either the standard
3654 trap-instruction bp (bp_breakpoint), or a
3655 bp_hardware_breakpoint. */
3656
3657 /* First check to see if we have to handle an overlay. */
3658 if (overlay_debugging == ovly_off
3659 || bl->section == NULL
3660 || !(section_is_overlay (bl->section)))
3661 {
3662 /* No overlay handling: just remove the breakpoint. */
3663
3664 /* If we're trying to uninsert a memory breakpoint that we
3665 know is set in a dynamic object that is marked
3666 shlib_disabled, then either the dynamic object was
3667 removed with "remove-symbol-file" or with
3668 "nosharedlibrary". In the former case, we don't know
3669 whether another dynamic object might have loaded over the
3670 breakpoint's address -- the user might well let us know
3671 about it next with add-symbol-file (the whole point of
3672 add-symbol-file is letting the user manually maintain a
3673 list of dynamically loaded objects). If we have the
3674 breakpoint's shadow memory, that is, this is a software
3675 breakpoint managed by GDB, check whether the breakpoint
3676 is still inserted in memory, to avoid overwriting wrong
3677 code with stale saved shadow contents. Note that HW
3678 breakpoints don't have shadow memory, as they're
3679 implemented using a mechanism that is not dependent on
3680 being able to modify the target's memory, and as such
3681 they should always be removed. */
3682 if (bl->shlib_disabled
3683 && bl->target_info.shadow_len != 0
3684 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3685 val = 0;
3686 else
3687 val = bl->owner->ops->remove_location (bl, reason);
3688 }
3689 else
3690 {
3691 /* This breakpoint is in an overlay section.
3692 Did we set a breakpoint at the LMA? */
3693 if (!overlay_events_enabled)
3694 {
3695 /* Yes -- overlay event support is not active, so we
3696 should have set a breakpoint at the LMA. Remove it.
3697 */
3698 /* Ignore any failures: if the LMA is in ROM, we will
3699 have already warned when we failed to insert it. */
3700 if (bl->loc_type == bp_loc_hardware_breakpoint)
3701 target_remove_hw_breakpoint (bl->gdbarch,
3702 &bl->overlay_target_info);
3703 else
3704 target_remove_breakpoint (bl->gdbarch,
3705 &bl->overlay_target_info,
3706 reason);
3707 }
3708 /* Did we set a breakpoint at the VMA?
3709 If so, we will have marked the breakpoint 'inserted'. */
3710 if (bl->inserted)
3711 {
3712 /* Yes -- remove it. Previously we did not bother to
3713 remove the breakpoint if the section had been
3714 unmapped, but let's not rely on that being safe. We
3715 don't know what the overlay manager might do. */
3716
3717 /* However, we should remove *software* breakpoints only
3718 if the section is still mapped, or else we overwrite
3719 wrong code with the saved shadow contents. */
3720 if (bl->loc_type == bp_loc_hardware_breakpoint
3721 || section_is_mapped (bl->section))
3722 val = bl->owner->ops->remove_location (bl, reason);
3723 else
3724 val = 0;
3725 }
3726 else
3727 {
3728 /* No -- not inserted, so no need to remove. No error. */
3729 val = 0;
3730 }
3731 }
3732
3733 /* In some cases, we might not be able to remove a breakpoint in
3734 a shared library that has already been removed, but we have
3735 not yet processed the shlib unload event. Similarly for an
3736 unloaded add-symbol-file object - the user might not yet have
3737 had the chance to remove-symbol-file it. shlib_disabled will
3738 be set if the library/object has already been removed, but
3739 the breakpoint hasn't been uninserted yet, e.g., after
3740 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3741 always-inserted mode. */
3742 if (val
3743 && (bl->loc_type == bp_loc_software_breakpoint
3744 && (bl->shlib_disabled
3745 || solib_name_from_address (bl->pspace, bl->address)
3746 || shared_objfile_contains_address_p (bl->pspace,
3747 bl->address))))
3748 val = 0;
3749
3750 if (val)
3751 return val;
3752 bl->inserted = (reason == DETACH_BREAKPOINT);
3753 }
3754 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3755 {
3756 gdb_assert (bl->owner->ops != NULL
3757 && bl->owner->ops->remove_location != NULL);
3758
3759 bl->inserted = (reason == DETACH_BREAKPOINT);
3760 bl->owner->ops->remove_location (bl, reason);
3761
3762 /* Failure to remove any of the hardware watchpoints comes here. */
3763 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3764 warning (_("Could not remove hardware watchpoint %d."),
3765 bl->owner->number);
3766 }
3767 else if (bl->owner->type == bp_catchpoint
3768 && breakpoint_enabled (bl->owner)
3769 && !bl->duplicate)
3770 {
3771 gdb_assert (bl->owner->ops != NULL
3772 && bl->owner->ops->remove_location != NULL);
3773
3774 val = bl->owner->ops->remove_location (bl, reason);
3775 if (val)
3776 return val;
3777
3778 bl->inserted = (reason == DETACH_BREAKPOINT);
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int
3785 remove_breakpoint (struct bp_location *bl)
3786 {
3787 /* BL is never in moribund_locations by our callers. */
3788 gdb_assert (bl->owner != NULL);
3789
3790 /* The type of none suggests that owner is actually deleted.
3791 This should not ever happen. */
3792 gdb_assert (bl->owner->type != bp_none);
3793
3794 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3795
3796 switch_to_program_space_and_thread (bl->pspace);
3797
3798 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3799 }
3800
3801 /* Clear the "inserted" flag in all breakpoints. */
3802
3803 void
3804 mark_breakpoints_out (void)
3805 {
3806 struct bp_location *bl, **blp_tmp;
3807
3808 ALL_BP_LOCATIONS (bl, blp_tmp)
3809 if (bl->pspace == current_program_space)
3810 bl->inserted = 0;
3811 }
3812
3813 /* Clear the "inserted" flag in all breakpoints and delete any
3814 breakpoints which should go away between runs of the program.
3815
3816 Plus other such housekeeping that has to be done for breakpoints
3817 between runs.
3818
3819 Note: this function gets called at the end of a run (by
3820 generic_mourn_inferior) and when a run begins (by
3821 init_wait_for_inferior). */
3822
3823
3824
3825 void
3826 breakpoint_init_inferior (enum inf_context context)
3827 {
3828 struct breakpoint *b, *b_tmp;
3829 struct program_space *pspace = current_program_space;
3830
3831 /* If breakpoint locations are shared across processes, then there's
3832 nothing to do. */
3833 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3834 return;
3835
3836 mark_breakpoints_out ();
3837
3838 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3839 {
3840 if (b->loc && b->loc->pspace != pspace)
3841 continue;
3842
3843 switch (b->type)
3844 {
3845 case bp_call_dummy:
3846 case bp_longjmp_call_dummy:
3847
3848 /* If the call dummy breakpoint is at the entry point it will
3849 cause problems when the inferior is rerun, so we better get
3850 rid of it. */
3851
3852 case bp_watchpoint_scope:
3853
3854 /* Also get rid of scope breakpoints. */
3855
3856 case bp_shlib_event:
3857
3858 /* Also remove solib event breakpoints. Their addresses may
3859 have changed since the last time we ran the program.
3860 Actually we may now be debugging against different target;
3861 and so the solib backend that installed this breakpoint may
3862 not be used in by the target. E.g.,
3863
3864 (gdb) file prog-linux
3865 (gdb) run # native linux target
3866 ...
3867 (gdb) kill
3868 (gdb) file prog-win.exe
3869 (gdb) tar rem :9999 # remote Windows gdbserver.
3870 */
3871
3872 case bp_step_resume:
3873
3874 /* Also remove step-resume breakpoints. */
3875
3876 case bp_single_step:
3877
3878 /* Also remove single-step breakpoints. */
3879
3880 delete_breakpoint (b);
3881 break;
3882
3883 case bp_watchpoint:
3884 case bp_hardware_watchpoint:
3885 case bp_read_watchpoint:
3886 case bp_access_watchpoint:
3887 {
3888 struct watchpoint *w = (struct watchpoint *) b;
3889
3890 /* Likewise for watchpoints on local expressions. */
3891 if (w->exp_valid_block != NULL)
3892 delete_breakpoint (b);
3893 else
3894 {
3895 /* Get rid of existing locations, which are no longer
3896 valid. New ones will be created in
3897 update_watchpoint, when the inferior is restarted.
3898 The next update_global_location_list call will
3899 garbage collect them. */
3900 b->loc = NULL;
3901
3902 if (context == inf_starting)
3903 {
3904 /* Reset val field to force reread of starting value in
3905 insert_breakpoints. */
3906 w->val.reset (nullptr);
3907 w->val_valid = 0;
3908 }
3909 }
3910 }
3911 break;
3912 default:
3913 break;
3914 }
3915 }
3916
3917 /* Get rid of the moribund locations. */
3918 for (bp_location *bl : moribund_locations)
3919 decref_bp_location (&bl);
3920 moribund_locations.clear ();
3921 }
3922
3923 /* These functions concern about actual breakpoints inserted in the
3924 target --- to e.g. check if we need to do decr_pc adjustment or if
3925 we need to hop over the bkpt --- so we check for address space
3926 match, not program space. */
3927
3928 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3929 exists at PC. It returns ordinary_breakpoint_here if it's an
3930 ordinary breakpoint, or permanent_breakpoint_here if it's a
3931 permanent breakpoint.
3932 - When continuing from a location with an ordinary breakpoint, we
3933 actually single step once before calling insert_breakpoints.
3934 - When continuing from a location with a permanent breakpoint, we
3935 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3936 the target, to advance the PC past the breakpoint. */
3937
3938 enum breakpoint_here
3939 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3940 {
3941 struct bp_location *bl, **blp_tmp;
3942 int any_breakpoint_here = 0;
3943
3944 ALL_BP_LOCATIONS (bl, blp_tmp)
3945 {
3946 if (bl->loc_type != bp_loc_software_breakpoint
3947 && bl->loc_type != bp_loc_hardware_breakpoint)
3948 continue;
3949
3950 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3951 if ((breakpoint_enabled (bl->owner)
3952 || bl->permanent)
3953 && breakpoint_location_address_match (bl, aspace, pc))
3954 {
3955 if (overlay_debugging
3956 && section_is_overlay (bl->section)
3957 && !section_is_mapped (bl->section))
3958 continue; /* unmapped overlay -- can't be a match */
3959 else if (bl->permanent)
3960 return permanent_breakpoint_here;
3961 else
3962 any_breakpoint_here = 1;
3963 }
3964 }
3965
3966 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3967 }
3968
3969 /* See breakpoint.h. */
3970
3971 int
3972 breakpoint_in_range_p (const address_space *aspace,
3973 CORE_ADDR addr, ULONGEST len)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976
3977 ALL_BP_LOCATIONS (bl, blp_tmp)
3978 {
3979 if (bl->loc_type != bp_loc_software_breakpoint
3980 && bl->loc_type != bp_loc_hardware_breakpoint)
3981 continue;
3982
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_range_overlap (bl, aspace,
3986 addr, len))
3987 {
3988 if (overlay_debugging
3989 && section_is_overlay (bl->section)
3990 && !section_is_mapped (bl->section))
3991 {
3992 /* Unmapped overlay -- can't be a match. */
3993 continue;
3994 }
3995
3996 return 1;
3997 }
3998 }
3999
4000 return 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4007 {
4008 for (bp_location *loc : moribund_locations)
4009 if (breakpoint_location_address_match (loc, aspace, pc))
4010 return 1;
4011
4012 return 0;
4013 }
4014
4015 /* Returns non-zero iff BL is inserted at PC, in address space
4016 ASPACE. */
4017
4018 static int
4019 bp_location_inserted_here_p (struct bp_location *bl,
4020 const address_space *aspace, CORE_ADDR pc)
4021 {
4022 if (bl->inserted
4023 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4024 aspace, pc))
4025 {
4026 if (overlay_debugging
4027 && section_is_overlay (bl->section)
4028 && !section_is_mapped (bl->section))
4029 return 0; /* unmapped overlay -- can't be a match */
4030 else
4031 return 1;
4032 }
4033 return 0;
4034 }
4035
4036 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4037
4038 int
4039 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4040 {
4041 struct bp_location **blp, **blp_tmp = NULL;
4042
4043 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4044 {
4045 struct bp_location *bl = *blp;
4046
4047 if (bl->loc_type != bp_loc_software_breakpoint
4048 && bl->loc_type != bp_loc_hardware_breakpoint)
4049 continue;
4050
4051 if (bp_location_inserted_here_p (bl, aspace, pc))
4052 return 1;
4053 }
4054 return 0;
4055 }
4056
4057 /* This function returns non-zero iff there is a software breakpoint
4058 inserted at PC. */
4059
4060 int
4061 software_breakpoint_inserted_here_p (const address_space *aspace,
4062 CORE_ADDR pc)
4063 {
4064 struct bp_location **blp, **blp_tmp = NULL;
4065
4066 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4067 {
4068 struct bp_location *bl = *blp;
4069
4070 if (bl->loc_type != bp_loc_software_breakpoint)
4071 continue;
4072
4073 if (bp_location_inserted_here_p (bl, aspace, pc))
4074 return 1;
4075 }
4076
4077 return 0;
4078 }
4079
4080 /* See breakpoint.h. */
4081
4082 int
4083 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4084 CORE_ADDR pc)
4085 {
4086 struct bp_location **blp, **blp_tmp = NULL;
4087
4088 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4089 {
4090 struct bp_location *bl = *blp;
4091
4092 if (bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098
4099 return 0;
4100 }
4101
4102 int
4103 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4104 CORE_ADDR addr, ULONGEST len)
4105 {
4106 struct breakpoint *bpt;
4107
4108 ALL_BREAKPOINTS (bpt)
4109 {
4110 struct bp_location *loc;
4111
4112 if (bpt->type != bp_hardware_watchpoint
4113 && bpt->type != bp_access_watchpoint)
4114 continue;
4115
4116 if (!breakpoint_enabled (bpt))
4117 continue;
4118
4119 for (loc = bpt->loc; loc; loc = loc->next)
4120 if (loc->pspace->aspace == aspace && loc->inserted)
4121 {
4122 CORE_ADDR l, h;
4123
4124 /* Check for intersection. */
4125 l = std::max<CORE_ADDR> (loc->address, addr);
4126 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4127 if (l < h)
4128 return 1;
4129 }
4130 }
4131 return 0;
4132 }
4133 \f
4134
4135 /* bpstat stuff. External routines' interfaces are documented
4136 in breakpoint.h. */
4137
4138 int
4139 is_catchpoint (struct breakpoint *ep)
4140 {
4141 return (ep->type == bp_catchpoint);
4142 }
4143
4144 /* Frees any storage that is part of a bpstat. Does not walk the
4145 'next' chain. */
4146
4147 bpstats::~bpstats ()
4148 {
4149 if (bp_location_at != NULL)
4150 decref_bp_location (&bp_location_at);
4151 }
4152
4153 /* Clear a bpstat so that it says we are not at any breakpoint.
4154 Also free any storage that is part of a bpstat. */
4155
4156 void
4157 bpstat_clear (bpstat *bsp)
4158 {
4159 bpstat p;
4160 bpstat q;
4161
4162 if (bsp == 0)
4163 return;
4164 p = *bsp;
4165 while (p != NULL)
4166 {
4167 q = p->next;
4168 delete p;
4169 p = q;
4170 }
4171 *bsp = NULL;
4172 }
4173
4174 bpstats::bpstats (const bpstats &other)
4175 : next (NULL),
4176 bp_location_at (other.bp_location_at),
4177 breakpoint_at (other.breakpoint_at),
4178 commands (other.commands),
4179 print (other.print),
4180 stop (other.stop),
4181 print_it (other.print_it)
4182 {
4183 if (other.old_val != NULL)
4184 old_val = release_value (value_copy (other.old_val.get ()));
4185 incref_bp_location (bp_location_at);
4186 }
4187
4188 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4189 is part of the bpstat is copied as well. */
4190
4191 bpstat
4192 bpstat_copy (bpstat bs)
4193 {
4194 bpstat p = NULL;
4195 bpstat tmp;
4196 bpstat retval = NULL;
4197
4198 if (bs == NULL)
4199 return bs;
4200
4201 for (; bs != NULL; bs = bs->next)
4202 {
4203 tmp = new bpstats (*bs);
4204
4205 if (p == NULL)
4206 /* This is the first thing in the chain. */
4207 retval = tmp;
4208 else
4209 p->next = tmp;
4210 p = tmp;
4211 }
4212 p->next = NULL;
4213 return retval;
4214 }
4215
4216 /* Find the bpstat associated with this breakpoint. */
4217
4218 bpstat
4219 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4220 {
4221 if (bsp == NULL)
4222 return NULL;
4223
4224 for (; bsp != NULL; bsp = bsp->next)
4225 {
4226 if (bsp->breakpoint_at == breakpoint)
4227 return bsp;
4228 }
4229 return NULL;
4230 }
4231
4232 /* See breakpoint.h. */
4233
4234 bool
4235 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4236 {
4237 for (; bsp != NULL; bsp = bsp->next)
4238 {
4239 if (bsp->breakpoint_at == NULL)
4240 {
4241 /* A moribund location can never explain a signal other than
4242 GDB_SIGNAL_TRAP. */
4243 if (sig == GDB_SIGNAL_TRAP)
4244 return true;
4245 }
4246 else
4247 {
4248 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4249 sig))
4250 return true;
4251 }
4252 }
4253
4254 return false;
4255 }
4256
4257 /* Put in *NUM the breakpoint number of the first breakpoint we are
4258 stopped at. *BSP upon return is a bpstat which points to the
4259 remaining breakpoints stopped at (but which is not guaranteed to be
4260 good for anything but further calls to bpstat_num).
4261
4262 Return 0 if passed a bpstat which does not indicate any breakpoints.
4263 Return -1 if stopped at a breakpoint that has been deleted since
4264 we set it.
4265 Return 1 otherwise. */
4266
4267 int
4268 bpstat_num (bpstat *bsp, int *num)
4269 {
4270 struct breakpoint *b;
4271
4272 if ((*bsp) == NULL)
4273 return 0; /* No more breakpoint values */
4274
4275 /* We assume we'll never have several bpstats that correspond to a
4276 single breakpoint -- otherwise, this function might return the
4277 same number more than once and this will look ugly. */
4278 b = (*bsp)->breakpoint_at;
4279 *bsp = (*bsp)->next;
4280 if (b == NULL)
4281 return -1; /* breakpoint that's been deleted since */
4282
4283 *num = b->number; /* We have its number */
4284 return 1;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 void
4290 bpstat_clear_actions (void)
4291 {
4292 bpstat bs;
4293
4294 if (inferior_ptid == null_ptid)
4295 return;
4296
4297 thread_info *tp = inferior_thread ();
4298 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4299 {
4300 bs->commands = NULL;
4301 bs->old_val.reset (nullptr);
4302 }
4303 }
4304
4305 /* Called when a command is about to proceed the inferior. */
4306
4307 static void
4308 breakpoint_about_to_proceed (void)
4309 {
4310 if (inferior_ptid != null_ptid)
4311 {
4312 struct thread_info *tp = inferior_thread ();
4313
4314 /* Allow inferior function calls in breakpoint commands to not
4315 interrupt the command list. When the call finishes
4316 successfully, the inferior will be standing at the same
4317 breakpoint as if nothing happened. */
4318 if (tp->control.in_infcall)
4319 return;
4320 }
4321
4322 breakpoint_proceeded = 1;
4323 }
4324
4325 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4326 or its equivalent. */
4327
4328 static int
4329 command_line_is_silent (struct command_line *cmd)
4330 {
4331 return cmd && (strcmp ("silent", cmd->line) == 0);
4332 }
4333
4334 /* Execute all the commands associated with all the breakpoints at
4335 this location. Any of these commands could cause the process to
4336 proceed beyond this point, etc. We look out for such changes by
4337 checking the global "breakpoint_proceeded" after each command.
4338
4339 Returns true if a breakpoint command resumed the inferior. In that
4340 case, it is the caller's responsibility to recall it again with the
4341 bpstat of the current thread. */
4342
4343 static int
4344 bpstat_do_actions_1 (bpstat *bsp)
4345 {
4346 bpstat bs;
4347 int again = 0;
4348
4349 /* Avoid endless recursion if a `source' command is contained
4350 in bs->commands. */
4351 if (executing_breakpoint_commands)
4352 return 0;
4353
4354 scoped_restore save_executing
4355 = make_scoped_restore (&executing_breakpoint_commands, 1);
4356
4357 scoped_restore preventer = prevent_dont_repeat ();
4358
4359 /* This pointer will iterate over the list of bpstat's. */
4360 bs = *bsp;
4361
4362 breakpoint_proceeded = 0;
4363 for (; bs != NULL; bs = bs->next)
4364 {
4365 struct command_line *cmd = NULL;
4366
4367 /* Take ownership of the BSP's command tree, if it has one.
4368
4369 The command tree could legitimately contain commands like
4370 'step' and 'next', which call clear_proceed_status, which
4371 frees stop_bpstat's command tree. To make sure this doesn't
4372 free the tree we're executing out from under us, we need to
4373 take ownership of the tree ourselves. Since a given bpstat's
4374 commands are only executed once, we don't need to copy it; we
4375 can clear the pointer in the bpstat, and make sure we free
4376 the tree when we're done. */
4377 counted_command_line ccmd = bs->commands;
4378 bs->commands = NULL;
4379 if (ccmd != NULL)
4380 cmd = ccmd.get ();
4381 if (command_line_is_silent (cmd))
4382 {
4383 /* The action has been already done by bpstat_stop_status. */
4384 cmd = cmd->next;
4385 }
4386
4387 while (cmd != NULL)
4388 {
4389 execute_control_command (cmd);
4390
4391 if (breakpoint_proceeded)
4392 break;
4393 else
4394 cmd = cmd->next;
4395 }
4396
4397 if (breakpoint_proceeded)
4398 {
4399 if (current_ui->async)
4400 /* If we are in async mode, then the target might be still
4401 running, not stopped at any breakpoint, so nothing for
4402 us to do here -- just return to the event loop. */
4403 ;
4404 else
4405 /* In sync mode, when execute_control_command returns
4406 we're already standing on the next breakpoint.
4407 Breakpoint commands for that stop were not run, since
4408 execute_command does not run breakpoint commands --
4409 only command_line_handler does, but that one is not
4410 involved in execution of breakpoint commands. So, we
4411 can now execute breakpoint commands. It should be
4412 noted that making execute_command do bpstat actions is
4413 not an option -- in this case we'll have recursive
4414 invocation of bpstat for each breakpoint with a
4415 command, and can easily blow up GDB stack. Instead, we
4416 return true, which will trigger the caller to recall us
4417 with the new stop_bpstat. */
4418 again = 1;
4419 break;
4420 }
4421 }
4422 return again;
4423 }
4424
4425 /* Helper for bpstat_do_actions. Get the current thread, if there's
4426 one, is alive and has execution. Return NULL otherwise. */
4427
4428 static thread_info *
4429 get_bpstat_thread ()
4430 {
4431 if (inferior_ptid == null_ptid || !target_has_execution)
4432 return NULL;
4433
4434 thread_info *tp = inferior_thread ();
4435 if (tp->state == THREAD_EXITED || tp->executing)
4436 return NULL;
4437 return tp;
4438 }
4439
4440 void
4441 bpstat_do_actions (void)
4442 {
4443 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4444 thread_info *tp;
4445
4446 /* Do any commands attached to breakpoint we are stopped at. */
4447 while ((tp = get_bpstat_thread ()) != NULL)
4448 {
4449 /* Since in sync mode, bpstat_do_actions may resume the
4450 inferior, and only return when it is stopped at the next
4451 breakpoint, we keep doing breakpoint actions until it returns
4452 false to indicate the inferior was not resumed. */
4453 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4454 break;
4455 }
4456
4457 cleanup_if_error.release ();
4458 }
4459
4460 /* Print out the (old or new) value associated with a watchpoint. */
4461
4462 static void
4463 watchpoint_value_print (struct value *val, struct ui_file *stream)
4464 {
4465 if (val == NULL)
4466 fprintf_unfiltered (stream, _("<unreadable>"));
4467 else
4468 {
4469 struct value_print_options opts;
4470 get_user_print_options (&opts);
4471 value_print (val, stream, &opts);
4472 }
4473 }
4474
4475 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4476 debugging multiple threads. */
4477
4478 void
4479 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4480 {
4481 if (uiout->is_mi_like_p ())
4482 return;
4483
4484 uiout->text ("\n");
4485
4486 if (show_thread_that_caused_stop ())
4487 {
4488 const char *name;
4489 struct thread_info *thr = inferior_thread ();
4490
4491 uiout->text ("Thread ");
4492 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4493
4494 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4495 if (name != NULL)
4496 {
4497 uiout->text (" \"");
4498 uiout->field_fmt ("name", "%s", name);
4499 uiout->text ("\"");
4500 }
4501
4502 uiout->text (" hit ");
4503 }
4504 }
4505
4506 /* Generic routine for printing messages indicating why we
4507 stopped. The behavior of this function depends on the value
4508 'print_it' in the bpstat structure. Under some circumstances we
4509 may decide not to print anything here and delegate the task to
4510 normal_stop(). */
4511
4512 static enum print_stop_action
4513 print_bp_stop_message (bpstat bs)
4514 {
4515 switch (bs->print_it)
4516 {
4517 case print_it_noop:
4518 /* Nothing should be printed for this bpstat entry. */
4519 return PRINT_UNKNOWN;
4520 break;
4521
4522 case print_it_done:
4523 /* We still want to print the frame, but we already printed the
4524 relevant messages. */
4525 return PRINT_SRC_AND_LOC;
4526 break;
4527
4528 case print_it_normal:
4529 {
4530 struct breakpoint *b = bs->breakpoint_at;
4531
4532 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4533 which has since been deleted. */
4534 if (b == NULL)
4535 return PRINT_UNKNOWN;
4536
4537 /* Normal case. Call the breakpoint's print_it method. */
4538 return b->ops->print_it (bs);
4539 }
4540 break;
4541
4542 default:
4543 internal_error (__FILE__, __LINE__,
4544 _("print_bp_stop_message: unrecognized enum value"));
4545 break;
4546 }
4547 }
4548
4549 /* A helper function that prints a shared library stopped event. */
4550
4551 static void
4552 print_solib_event (int is_catchpoint)
4553 {
4554 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4555 bool any_added = !current_program_space->added_solibs.empty ();
4556
4557 if (!is_catchpoint)
4558 {
4559 if (any_added || any_deleted)
4560 current_uiout->text (_("Stopped due to shared library event:\n"));
4561 else
4562 current_uiout->text (_("Stopped due to shared library event (no "
4563 "libraries added or removed)\n"));
4564 }
4565
4566 if (current_uiout->is_mi_like_p ())
4567 current_uiout->field_string ("reason",
4568 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4569
4570 if (any_deleted)
4571 {
4572 current_uiout->text (_(" Inferior unloaded "));
4573 ui_out_emit_list list_emitter (current_uiout, "removed");
4574 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4575 {
4576 const std::string &name = current_program_space->deleted_solibs[ix];
4577
4578 if (ix > 0)
4579 current_uiout->text (" ");
4580 current_uiout->field_string ("library", name);
4581 current_uiout->text ("\n");
4582 }
4583 }
4584
4585 if (any_added)
4586 {
4587 current_uiout->text (_(" Inferior loaded "));
4588 ui_out_emit_list list_emitter (current_uiout, "added");
4589 bool first = true;
4590 for (so_list *iter : current_program_space->added_solibs)
4591 {
4592 if (!first)
4593 current_uiout->text (" ");
4594 first = false;
4595 current_uiout->field_string ("library", iter->so_name);
4596 current_uiout->text ("\n");
4597 }
4598 }
4599 }
4600
4601 /* Print a message indicating what happened. This is called from
4602 normal_stop(). The input to this routine is the head of the bpstat
4603 list - a list of the eventpoints that caused this stop. KIND is
4604 the target_waitkind for the stopping event. This
4605 routine calls the generic print routine for printing a message
4606 about reasons for stopping. This will print (for example) the
4607 "Breakpoint n," part of the output. The return value of this
4608 routine is one of:
4609
4610 PRINT_UNKNOWN: Means we printed nothing.
4611 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4612 code to print the location. An example is
4613 "Breakpoint 1, " which should be followed by
4614 the location.
4615 PRINT_SRC_ONLY: Means we printed something, but there is no need
4616 to also print the location part of the message.
4617 An example is the catch/throw messages, which
4618 don't require a location appended to the end.
4619 PRINT_NOTHING: We have done some printing and we don't need any
4620 further info to be printed. */
4621
4622 enum print_stop_action
4623 bpstat_print (bpstat bs, int kind)
4624 {
4625 enum print_stop_action val;
4626
4627 /* Maybe another breakpoint in the chain caused us to stop.
4628 (Currently all watchpoints go on the bpstat whether hit or not.
4629 That probably could (should) be changed, provided care is taken
4630 with respect to bpstat_explains_signal). */
4631 for (; bs; bs = bs->next)
4632 {
4633 val = print_bp_stop_message (bs);
4634 if (val == PRINT_SRC_ONLY
4635 || val == PRINT_SRC_AND_LOC
4636 || val == PRINT_NOTHING)
4637 return val;
4638 }
4639
4640 /* If we had hit a shared library event breakpoint,
4641 print_bp_stop_message would print out this message. If we hit an
4642 OS-level shared library event, do the same thing. */
4643 if (kind == TARGET_WAITKIND_LOADED)
4644 {
4645 print_solib_event (0);
4646 return PRINT_NOTHING;
4647 }
4648
4649 /* We reached the end of the chain, or we got a null BS to start
4650 with and nothing was printed. */
4651 return PRINT_UNKNOWN;
4652 }
4653
4654 /* Evaluate the boolean expression EXP and return the result. */
4655
4656 static bool
4657 breakpoint_cond_eval (expression *exp)
4658 {
4659 struct value *mark = value_mark ();
4660 bool res = value_true (evaluate_expression (exp));
4661
4662 value_free_to_mark (mark);
4663 return res;
4664 }
4665
4666 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4667
4668 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4669 : next (NULL),
4670 bp_location_at (bl),
4671 breakpoint_at (bl->owner),
4672 commands (NULL),
4673 print (0),
4674 stop (0),
4675 print_it (print_it_normal)
4676 {
4677 incref_bp_location (bl);
4678 **bs_link_pointer = this;
4679 *bs_link_pointer = &next;
4680 }
4681
4682 bpstats::bpstats ()
4683 : next (NULL),
4684 bp_location_at (NULL),
4685 breakpoint_at (NULL),
4686 commands (NULL),
4687 print (0),
4688 stop (0),
4689 print_it (print_it_normal)
4690 {
4691 }
4692 \f
4693 /* The target has stopped with waitstatus WS. Check if any hardware
4694 watchpoints have triggered, according to the target. */
4695
4696 int
4697 watchpoints_triggered (struct target_waitstatus *ws)
4698 {
4699 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4700 CORE_ADDR addr;
4701 struct breakpoint *b;
4702
4703 if (!stopped_by_watchpoint)
4704 {
4705 /* We were not stopped by a watchpoint. Mark all watchpoints
4706 as not triggered. */
4707 ALL_BREAKPOINTS (b)
4708 if (is_hardware_watchpoint (b))
4709 {
4710 struct watchpoint *w = (struct watchpoint *) b;
4711
4712 w->watchpoint_triggered = watch_triggered_no;
4713 }
4714
4715 return 0;
4716 }
4717
4718 if (!target_stopped_data_address (current_top_target (), &addr))
4719 {
4720 /* We were stopped by a watchpoint, but we don't know where.
4721 Mark all watchpoints as unknown. */
4722 ALL_BREAKPOINTS (b)
4723 if (is_hardware_watchpoint (b))
4724 {
4725 struct watchpoint *w = (struct watchpoint *) b;
4726
4727 w->watchpoint_triggered = watch_triggered_unknown;
4728 }
4729
4730 return 1;
4731 }
4732
4733 /* The target could report the data address. Mark watchpoints
4734 affected by this data address as triggered, and all others as not
4735 triggered. */
4736
4737 ALL_BREAKPOINTS (b)
4738 if (is_hardware_watchpoint (b))
4739 {
4740 struct watchpoint *w = (struct watchpoint *) b;
4741 struct bp_location *loc;
4742
4743 w->watchpoint_triggered = watch_triggered_no;
4744 for (loc = b->loc; loc; loc = loc->next)
4745 {
4746 if (is_masked_watchpoint (b))
4747 {
4748 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4749 CORE_ADDR start = loc->address & w->hw_wp_mask;
4750
4751 if (newaddr == start)
4752 {
4753 w->watchpoint_triggered = watch_triggered_yes;
4754 break;
4755 }
4756 }
4757 /* Exact match not required. Within range is sufficient. */
4758 else if (target_watchpoint_addr_within_range (current_top_target (),
4759 addr, loc->address,
4760 loc->length))
4761 {
4762 w->watchpoint_triggered = watch_triggered_yes;
4763 break;
4764 }
4765 }
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Possible return values for watchpoint_check. */
4772 enum wp_check_result
4773 {
4774 /* The watchpoint has been deleted. */
4775 WP_DELETED = 1,
4776
4777 /* The value has changed. */
4778 WP_VALUE_CHANGED = 2,
4779
4780 /* The value has not changed. */
4781 WP_VALUE_NOT_CHANGED = 3,
4782
4783 /* Ignore this watchpoint, no matter if the value changed or not. */
4784 WP_IGNORE = 4,
4785 };
4786
4787 #define BP_TEMPFLAG 1
4788 #define BP_HARDWAREFLAG 2
4789
4790 /* Evaluate watchpoint condition expression and check if its value
4791 changed. */
4792
4793 static wp_check_result
4794 watchpoint_check (bpstat bs)
4795 {
4796 struct watchpoint *b;
4797 struct frame_info *fr;
4798 int within_current_scope;
4799
4800 /* BS is built from an existing struct breakpoint. */
4801 gdb_assert (bs->breakpoint_at != NULL);
4802 b = (struct watchpoint *) bs->breakpoint_at;
4803
4804 /* If this is a local watchpoint, we only want to check if the
4805 watchpoint frame is in scope if the current thread is the thread
4806 that was used to create the watchpoint. */
4807 if (!watchpoint_in_thread_scope (b))
4808 return WP_IGNORE;
4809
4810 if (b->exp_valid_block == NULL)
4811 within_current_scope = 1;
4812 else
4813 {
4814 struct frame_info *frame = get_current_frame ();
4815 struct gdbarch *frame_arch = get_frame_arch (frame);
4816 CORE_ADDR frame_pc = get_frame_pc (frame);
4817
4818 /* stack_frame_destroyed_p() returns a non-zero value if we're
4819 still in the function but the stack frame has already been
4820 invalidated. Since we can't rely on the values of local
4821 variables after the stack has been destroyed, we are treating
4822 the watchpoint in that state as `not changed' without further
4823 checking. Don't mark watchpoints as changed if the current
4824 frame is in an epilogue - even if they are in some other
4825 frame, our view of the stack is likely to be wrong and
4826 frame_find_by_id could error out. */
4827 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4828 return WP_IGNORE;
4829
4830 fr = frame_find_by_id (b->watchpoint_frame);
4831 within_current_scope = (fr != NULL);
4832
4833 /* If we've gotten confused in the unwinder, we might have
4834 returned a frame that can't describe this variable. */
4835 if (within_current_scope)
4836 {
4837 struct symbol *function;
4838
4839 function = get_frame_function (fr);
4840 if (function == NULL
4841 || !contained_in (b->exp_valid_block,
4842 SYMBOL_BLOCK_VALUE (function)))
4843 within_current_scope = 0;
4844 }
4845
4846 if (within_current_scope)
4847 /* If we end up stopping, the current frame will get selected
4848 in normal_stop. So this call to select_frame won't affect
4849 the user. */
4850 select_frame (fr);
4851 }
4852
4853 if (within_current_scope)
4854 {
4855 /* We use value_{,free_to_}mark because it could be a *long*
4856 time before we return to the command level and call
4857 free_all_values. We can't call free_all_values because we
4858 might be in the middle of evaluating a function call. */
4859
4860 int pc = 0;
4861 struct value *mark;
4862 struct value *new_val;
4863
4864 if (is_masked_watchpoint (b))
4865 /* Since we don't know the exact trigger address (from
4866 stopped_data_address), just tell the user we've triggered
4867 a mask watchpoint. */
4868 return WP_VALUE_CHANGED;
4869
4870 mark = value_mark ();
4871 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4872
4873 if (b->val_bitsize != 0)
4874 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4875
4876 /* We use value_equal_contents instead of value_equal because
4877 the latter coerces an array to a pointer, thus comparing just
4878 the address of the array instead of its contents. This is
4879 not what we want. */
4880 if ((b->val != NULL) != (new_val != NULL)
4881 || (b->val != NULL && !value_equal_contents (b->val.get (),
4882 new_val)))
4883 {
4884 bs->old_val = b->val;
4885 b->val = release_value (new_val);
4886 b->val_valid = 1;
4887 if (new_val != NULL)
4888 value_free_to_mark (mark);
4889 return WP_VALUE_CHANGED;
4890 }
4891 else
4892 {
4893 /* Nothing changed. */
4894 value_free_to_mark (mark);
4895 return WP_VALUE_NOT_CHANGED;
4896 }
4897 }
4898 else
4899 {
4900 /* This seems like the only logical thing to do because
4901 if we temporarily ignored the watchpoint, then when
4902 we reenter the block in which it is valid it contains
4903 garbage (in the case of a function, it may have two
4904 garbage values, one before and one after the prologue).
4905 So we can't even detect the first assignment to it and
4906 watch after that (since the garbage may or may not equal
4907 the first value assigned). */
4908 /* We print all the stop information in
4909 breakpoint_ops->print_it, but in this case, by the time we
4910 call breakpoint_ops->print_it this bp will be deleted
4911 already. So we have no choice but print the information
4912 here. */
4913
4914 SWITCH_THRU_ALL_UIS ()
4915 {
4916 struct ui_out *uiout = current_uiout;
4917
4918 if (uiout->is_mi_like_p ())
4919 uiout->field_string
4920 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4921 uiout->text ("\nWatchpoint ");
4922 uiout->field_int ("wpnum", b->number);
4923 uiout->text (" deleted because the program has left the block in\n"
4924 "which its expression is valid.\n");
4925 }
4926
4927 /* Make sure the watchpoint's commands aren't executed. */
4928 b->commands = NULL;
4929 watchpoint_del_at_next_stop (b);
4930
4931 return WP_DELETED;
4932 }
4933 }
4934
4935 /* Return true if it looks like target has stopped due to hitting
4936 breakpoint location BL. This function does not check if we should
4937 stop, only if BL explains the stop. */
4938
4939 static int
4940 bpstat_check_location (const struct bp_location *bl,
4941 const address_space *aspace, CORE_ADDR bp_addr,
4942 const struct target_waitstatus *ws)
4943 {
4944 struct breakpoint *b = bl->owner;
4945
4946 /* BL is from an existing breakpoint. */
4947 gdb_assert (b != NULL);
4948
4949 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4950 }
4951
4952 /* Determine if the watched values have actually changed, and we
4953 should stop. If not, set BS->stop to 0. */
4954
4955 static void
4956 bpstat_check_watchpoint (bpstat bs)
4957 {
4958 const struct bp_location *bl;
4959 struct watchpoint *b;
4960
4961 /* BS is built for existing struct breakpoint. */
4962 bl = bs->bp_location_at;
4963 gdb_assert (bl != NULL);
4964 b = (struct watchpoint *) bs->breakpoint_at;
4965 gdb_assert (b != NULL);
4966
4967 {
4968 int must_check_value = 0;
4969
4970 if (b->type == bp_watchpoint)
4971 /* For a software watchpoint, we must always check the
4972 watched value. */
4973 must_check_value = 1;
4974 else if (b->watchpoint_triggered == watch_triggered_yes)
4975 /* We have a hardware watchpoint (read, write, or access)
4976 and the target earlier reported an address watched by
4977 this watchpoint. */
4978 must_check_value = 1;
4979 else if (b->watchpoint_triggered == watch_triggered_unknown
4980 && b->type == bp_hardware_watchpoint)
4981 /* We were stopped by a hardware watchpoint, but the target could
4982 not report the data address. We must check the watchpoint's
4983 value. Access and read watchpoints are out of luck; without
4984 a data address, we can't figure it out. */
4985 must_check_value = 1;
4986
4987 if (must_check_value)
4988 {
4989 wp_check_result e;
4990
4991 try
4992 {
4993 e = watchpoint_check (bs);
4994 }
4995 catch (const gdb_exception &ex)
4996 {
4997 exception_fprintf (gdb_stderr, ex,
4998 "Error evaluating expression "
4999 "for watchpoint %d\n",
5000 b->number);
5001
5002 SWITCH_THRU_ALL_UIS ()
5003 {
5004 printf_filtered (_("Watchpoint %d deleted.\n"),
5005 b->number);
5006 }
5007 watchpoint_del_at_next_stop (b);
5008 e = WP_DELETED;
5009 }
5010
5011 switch (e)
5012 {
5013 case WP_DELETED:
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 /* Stop. */
5017 break;
5018 case WP_IGNORE:
5019 bs->print_it = print_it_noop;
5020 bs->stop = 0;
5021 break;
5022 case WP_VALUE_CHANGED:
5023 if (b->type == bp_read_watchpoint)
5024 {
5025 /* There are two cases to consider here:
5026
5027 1. We're watching the triggered memory for reads.
5028 In that case, trust the target, and always report
5029 the watchpoint hit to the user. Even though
5030 reads don't cause value changes, the value may
5031 have changed since the last time it was read, and
5032 since we're not trapping writes, we will not see
5033 those, and as such we should ignore our notion of
5034 old value.
5035
5036 2. We're watching the triggered memory for both
5037 reads and writes. There are two ways this may
5038 happen:
5039
5040 2.1. This is a target that can't break on data
5041 reads only, but can break on accesses (reads or
5042 writes), such as e.g., x86. We detect this case
5043 at the time we try to insert read watchpoints.
5044
5045 2.2. Otherwise, the target supports read
5046 watchpoints, but, the user set an access or write
5047 watchpoint watching the same memory as this read
5048 watchpoint.
5049
5050 If we're watching memory writes as well as reads,
5051 ignore watchpoint hits when we find that the
5052 value hasn't changed, as reads don't cause
5053 changes. This still gives false positives when
5054 the program writes the same value to memory as
5055 what there was already in memory (we will confuse
5056 it for a read), but it's much better than
5057 nothing. */
5058
5059 int other_write_watchpoint = 0;
5060
5061 if (bl->watchpoint_type == hw_read)
5062 {
5063 struct breakpoint *other_b;
5064
5065 ALL_BREAKPOINTS (other_b)
5066 if (other_b->type == bp_hardware_watchpoint
5067 || other_b->type == bp_access_watchpoint)
5068 {
5069 struct watchpoint *other_w =
5070 (struct watchpoint *) other_b;
5071
5072 if (other_w->watchpoint_triggered
5073 == watch_triggered_yes)
5074 {
5075 other_write_watchpoint = 1;
5076 break;
5077 }
5078 }
5079 }
5080
5081 if (other_write_watchpoint
5082 || bl->watchpoint_type == hw_access)
5083 {
5084 /* We're watching the same memory for writes,
5085 and the value changed since the last time we
5086 updated it, so this trap must be for a write.
5087 Ignore it. */
5088 bs->print_it = print_it_noop;
5089 bs->stop = 0;
5090 }
5091 }
5092 break;
5093 case WP_VALUE_NOT_CHANGED:
5094 if (b->type == bp_hardware_watchpoint
5095 || b->type == bp_watchpoint)
5096 {
5097 /* Don't stop: write watchpoints shouldn't fire if
5098 the value hasn't changed. */
5099 bs->print_it = print_it_noop;
5100 bs->stop = 0;
5101 }
5102 /* Stop. */
5103 break;
5104 default:
5105 /* Can't happen. */
5106 break;
5107 }
5108 }
5109 else /* must_check_value == 0 */
5110 {
5111 /* This is a case where some watchpoint(s) triggered, but
5112 not at the address of this watchpoint, or else no
5113 watchpoint triggered after all. So don't print
5114 anything for this watchpoint. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 }
5120
5121 /* For breakpoints that are currently marked as telling gdb to stop,
5122 check conditions (condition proper, frame, thread and ignore count)
5123 of breakpoint referred to by BS. If we should not stop for this
5124 breakpoint, set BS->stop to 0. */
5125
5126 static void
5127 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5128 {
5129 const struct bp_location *bl;
5130 struct breakpoint *b;
5131 /* Assume stop. */
5132 bool condition_result = true;
5133 struct expression *cond;
5134
5135 gdb_assert (bs->stop);
5136
5137 /* BS is built for existing struct breakpoint. */
5138 bl = bs->bp_location_at;
5139 gdb_assert (bl != NULL);
5140 b = bs->breakpoint_at;
5141 gdb_assert (b != NULL);
5142
5143 /* Even if the target evaluated the condition on its end and notified GDB, we
5144 need to do so again since GDB does not know if we stopped due to a
5145 breakpoint or a single step breakpoint. */
5146
5147 if (frame_id_p (b->frame_id)
5148 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5149 {
5150 bs->stop = 0;
5151 return;
5152 }
5153
5154 /* If this is a thread/task-specific breakpoint, don't waste cpu
5155 evaluating the condition if this isn't the specified
5156 thread/task. */
5157 if ((b->thread != -1 && b->thread != thread->global_num)
5158 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5159 {
5160 bs->stop = 0;
5161 return;
5162 }
5163
5164 /* Evaluate extension language breakpoints that have a "stop" method
5165 implemented. */
5166 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5167
5168 if (is_watchpoint (b))
5169 {
5170 struct watchpoint *w = (struct watchpoint *) b;
5171
5172 cond = w->cond_exp.get ();
5173 }
5174 else
5175 cond = bl->cond.get ();
5176
5177 if (cond && b->disposition != disp_del_at_next_stop)
5178 {
5179 int within_current_scope = 1;
5180 struct watchpoint * w;
5181
5182 /* We use value_mark and value_free_to_mark because it could
5183 be a long time before we return to the command level and
5184 call free_all_values. We can't call free_all_values
5185 because we might be in the middle of evaluating a
5186 function call. */
5187 struct value *mark = value_mark ();
5188
5189 if (is_watchpoint (b))
5190 w = (struct watchpoint *) b;
5191 else
5192 w = NULL;
5193
5194 /* Need to select the frame, with all that implies so that
5195 the conditions will have the right context. Because we
5196 use the frame, we will not see an inlined function's
5197 variables when we arrive at a breakpoint at the start
5198 of the inlined function; the current frame will be the
5199 call site. */
5200 if (w == NULL || w->cond_exp_valid_block == NULL)
5201 select_frame (get_current_frame ());
5202 else
5203 {
5204 struct frame_info *frame;
5205
5206 /* For local watchpoint expressions, which particular
5207 instance of a local is being watched matters, so we
5208 keep track of the frame to evaluate the expression
5209 in. To evaluate the condition however, it doesn't
5210 really matter which instantiation of the function
5211 where the condition makes sense triggers the
5212 watchpoint. This allows an expression like "watch
5213 global if q > 10" set in `func', catch writes to
5214 global on all threads that call `func', or catch
5215 writes on all recursive calls of `func' by a single
5216 thread. We simply always evaluate the condition in
5217 the innermost frame that's executing where it makes
5218 sense to evaluate the condition. It seems
5219 intuitive. */
5220 frame = block_innermost_frame (w->cond_exp_valid_block);
5221 if (frame != NULL)
5222 select_frame (frame);
5223 else
5224 within_current_scope = 0;
5225 }
5226 if (within_current_scope)
5227 {
5228 try
5229 {
5230 condition_result = breakpoint_cond_eval (cond);
5231 }
5232 catch (const gdb_exception &ex)
5233 {
5234 exception_fprintf (gdb_stderr, ex,
5235 "Error in testing breakpoint condition:\n");
5236 }
5237 }
5238 else
5239 {
5240 warning (_("Watchpoint condition cannot be tested "
5241 "in the current scope"));
5242 /* If we failed to set the right context for this
5243 watchpoint, unconditionally report it. */
5244 }
5245 /* FIXME-someday, should give breakpoint #. */
5246 value_free_to_mark (mark);
5247 }
5248
5249 if (cond && !condition_result)
5250 {
5251 bs->stop = 0;
5252 }
5253 else if (b->ignore_count > 0)
5254 {
5255 b->ignore_count--;
5256 bs->stop = 0;
5257 /* Increase the hit count even though we don't stop. */
5258 ++(b->hit_count);
5259 gdb::observers::breakpoint_modified.notify (b);
5260 }
5261 }
5262
5263 /* Returns true if we need to track moribund locations of LOC's type
5264 on the current target. */
5265
5266 static int
5267 need_moribund_for_location_type (struct bp_location *loc)
5268 {
5269 return ((loc->loc_type == bp_loc_software_breakpoint
5270 && !target_supports_stopped_by_sw_breakpoint ())
5271 || (loc->loc_type == bp_loc_hardware_breakpoint
5272 && !target_supports_stopped_by_hw_breakpoint ()));
5273 }
5274
5275 /* See breakpoint.h. */
5276
5277 bpstat
5278 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5279 const struct target_waitstatus *ws)
5280 {
5281 struct breakpoint *b;
5282 bpstat bs_head = NULL, *bs_link = &bs_head;
5283
5284 ALL_BREAKPOINTS (b)
5285 {
5286 if (!breakpoint_enabled (b))
5287 continue;
5288
5289 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5290 {
5291 /* For hardware watchpoints, we look only at the first
5292 location. The watchpoint_check function will work on the
5293 entire expression, not the individual locations. For
5294 read watchpoints, the watchpoints_triggered function has
5295 checked all locations already. */
5296 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5297 break;
5298
5299 if (!bl->enabled || bl->shlib_disabled)
5300 continue;
5301
5302 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5303 continue;
5304
5305 /* Come here if it's a watchpoint, or if the break address
5306 matches. */
5307
5308 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5309 explain stop. */
5310
5311 /* Assume we stop. Should we find a watchpoint that is not
5312 actually triggered, or if the condition of the breakpoint
5313 evaluates as false, we'll reset 'stop' to 0. */
5314 bs->stop = 1;
5315 bs->print = 1;
5316
5317 /* If this is a scope breakpoint, mark the associated
5318 watchpoint as triggered so that we will handle the
5319 out-of-scope event. We'll get to the watchpoint next
5320 iteration. */
5321 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5322 {
5323 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5324
5325 w->watchpoint_triggered = watch_triggered_yes;
5326 }
5327 }
5328 }
5329
5330 /* Check if a moribund breakpoint explains the stop. */
5331 if (!target_supports_stopped_by_sw_breakpoint ()
5332 || !target_supports_stopped_by_hw_breakpoint ())
5333 {
5334 for (bp_location *loc : moribund_locations)
5335 {
5336 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5337 && need_moribund_for_location_type (loc))
5338 {
5339 bpstat bs = new bpstats (loc, &bs_link);
5340 /* For hits of moribund locations, we should just proceed. */
5341 bs->stop = 0;
5342 bs->print = 0;
5343 bs->print_it = print_it_noop;
5344 }
5345 }
5346 }
5347
5348 return bs_head;
5349 }
5350
5351 /* See breakpoint.h. */
5352
5353 bpstat
5354 bpstat_stop_status (const address_space *aspace,
5355 CORE_ADDR bp_addr, thread_info *thread,
5356 const struct target_waitstatus *ws,
5357 bpstat stop_chain)
5358 {
5359 struct breakpoint *b = NULL;
5360 /* First item of allocated bpstat's. */
5361 bpstat bs_head = stop_chain;
5362 bpstat bs;
5363 int need_remove_insert;
5364 int removed_any;
5365
5366 /* First, build the bpstat chain with locations that explain a
5367 target stop, while being careful to not set the target running,
5368 as that may invalidate locations (in particular watchpoint
5369 locations are recreated). Resuming will happen here with
5370 breakpoint conditions or watchpoint expressions that include
5371 inferior function calls. */
5372 if (bs_head == NULL)
5373 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5374
5375 /* A bit of special processing for shlib breakpoints. We need to
5376 process solib loading here, so that the lists of loaded and
5377 unloaded libraries are correct before we handle "catch load" and
5378 "catch unload". */
5379 for (bs = bs_head; bs != NULL; bs = bs->next)
5380 {
5381 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5382 {
5383 handle_solib_event ();
5384 break;
5385 }
5386 }
5387
5388 /* Now go through the locations that caused the target to stop, and
5389 check whether we're interested in reporting this stop to higher
5390 layers, or whether we should resume the target transparently. */
5391
5392 removed_any = 0;
5393
5394 for (bs = bs_head; bs != NULL; bs = bs->next)
5395 {
5396 if (!bs->stop)
5397 continue;
5398
5399 b = bs->breakpoint_at;
5400 b->ops->check_status (bs);
5401 if (bs->stop)
5402 {
5403 bpstat_check_breakpoint_conditions (bs, thread);
5404
5405 if (bs->stop)
5406 {
5407 ++(b->hit_count);
5408 gdb::observers::breakpoint_modified.notify (b);
5409
5410 /* We will stop here. */
5411 if (b->disposition == disp_disable)
5412 {
5413 --(b->enable_count);
5414 if (b->enable_count <= 0)
5415 b->enable_state = bp_disabled;
5416 removed_any = 1;
5417 }
5418 if (b->silent)
5419 bs->print = 0;
5420 bs->commands = b->commands;
5421 if (command_line_is_silent (bs->commands
5422 ? bs->commands.get () : NULL))
5423 bs->print = 0;
5424
5425 b->ops->after_condition_true (bs);
5426 }
5427
5428 }
5429
5430 /* Print nothing for this entry if we don't stop or don't
5431 print. */
5432 if (!bs->stop || !bs->print)
5433 bs->print_it = print_it_noop;
5434 }
5435
5436 /* If we aren't stopping, the value of some hardware watchpoint may
5437 not have changed, but the intermediate memory locations we are
5438 watching may have. Don't bother if we're stopping; this will get
5439 done later. */
5440 need_remove_insert = 0;
5441 if (! bpstat_causes_stop (bs_head))
5442 for (bs = bs_head; bs != NULL; bs = bs->next)
5443 if (!bs->stop
5444 && bs->breakpoint_at
5445 && is_hardware_watchpoint (bs->breakpoint_at))
5446 {
5447 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5448
5449 update_watchpoint (w, 0 /* don't reparse. */);
5450 need_remove_insert = 1;
5451 }
5452
5453 if (need_remove_insert)
5454 update_global_location_list (UGLL_MAY_INSERT);
5455 else if (removed_any)
5456 update_global_location_list (UGLL_DONT_INSERT);
5457
5458 return bs_head;
5459 }
5460
5461 static void
5462 handle_jit_event (void)
5463 {
5464 struct frame_info *frame;
5465 struct gdbarch *gdbarch;
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5469
5470 /* Switch terminal for any messages produced by
5471 breakpoint_re_set. */
5472 target_terminal::ours_for_output ();
5473
5474 frame = get_current_frame ();
5475 gdbarch = get_frame_arch (frame);
5476
5477 jit_event_handler (gdbarch);
5478
5479 target_terminal::inferior ();
5480 }
5481
5482 /* Prepare WHAT final decision for infrun. */
5483
5484 /* Decide what infrun needs to do with this bpstat. */
5485
5486 struct bpstat_what
5487 bpstat_what (bpstat bs_head)
5488 {
5489 struct bpstat_what retval;
5490 bpstat bs;
5491
5492 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5493 retval.call_dummy = STOP_NONE;
5494 retval.is_longjmp = false;
5495
5496 for (bs = bs_head; bs != NULL; bs = bs->next)
5497 {
5498 /* Extract this BS's action. After processing each BS, we check
5499 if its action overrides all we've seem so far. */
5500 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5501 enum bptype bptype;
5502
5503 if (bs->breakpoint_at == NULL)
5504 {
5505 /* I suspect this can happen if it was a momentary
5506 breakpoint which has since been deleted. */
5507 bptype = bp_none;
5508 }
5509 else
5510 bptype = bs->breakpoint_at->type;
5511
5512 switch (bptype)
5513 {
5514 case bp_none:
5515 break;
5516 case bp_breakpoint:
5517 case bp_hardware_breakpoint:
5518 case bp_single_step:
5519 case bp_until:
5520 case bp_finish:
5521 case bp_shlib_event:
5522 if (bs->stop)
5523 {
5524 if (bs->print)
5525 this_action = BPSTAT_WHAT_STOP_NOISY;
5526 else
5527 this_action = BPSTAT_WHAT_STOP_SILENT;
5528 }
5529 else
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 break;
5532 case bp_watchpoint:
5533 case bp_hardware_watchpoint:
5534 case bp_read_watchpoint:
5535 case bp_access_watchpoint:
5536 if (bs->stop)
5537 {
5538 if (bs->print)
5539 this_action = BPSTAT_WHAT_STOP_NOISY;
5540 else
5541 this_action = BPSTAT_WHAT_STOP_SILENT;
5542 }
5543 else
5544 {
5545 /* There was a watchpoint, but we're not stopping.
5546 This requires no further action. */
5547 }
5548 break;
5549 case bp_longjmp:
5550 case bp_longjmp_call_dummy:
5551 case bp_exception:
5552 if (bs->stop)
5553 {
5554 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5555 retval.is_longjmp = bptype != bp_exception;
5556 }
5557 else
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 break;
5560 case bp_longjmp_resume:
5561 case bp_exception_resume:
5562 if (bs->stop)
5563 {
5564 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5565 retval.is_longjmp = bptype == bp_longjmp_resume;
5566 }
5567 else
5568 this_action = BPSTAT_WHAT_SINGLE;
5569 break;
5570 case bp_step_resume:
5571 if (bs->stop)
5572 this_action = BPSTAT_WHAT_STEP_RESUME;
5573 else
5574 {
5575 /* It is for the wrong frame. */
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 }
5578 break;
5579 case bp_hp_step_resume:
5580 if (bs->stop)
5581 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5582 else
5583 {
5584 /* It is for the wrong frame. */
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 }
5587 break;
5588 case bp_watchpoint_scope:
5589 case bp_thread_event:
5590 case bp_overlay_event:
5591 case bp_longjmp_master:
5592 case bp_std_terminate_master:
5593 case bp_exception_master:
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_catchpoint:
5597 if (bs->stop)
5598 {
5599 if (bs->print)
5600 this_action = BPSTAT_WHAT_STOP_NOISY;
5601 else
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 }
5604 else
5605 {
5606 /* Some catchpoints are implemented with breakpoints.
5607 For those, we need to step over the breakpoint. */
5608 if (bs->bp_location_at->loc_type != bp_loc_other)
5609 this_action = BPSTAT_WHAT_SINGLE;
5610 }
5611 break;
5612 case bp_jit_event:
5613 this_action = BPSTAT_WHAT_SINGLE;
5614 break;
5615 case bp_call_dummy:
5616 /* Make sure the action is stop (silent or noisy),
5617 so infrun.c pops the dummy frame. */
5618 retval.call_dummy = STOP_STACK_DUMMY;
5619 this_action = BPSTAT_WHAT_STOP_SILENT;
5620 break;
5621 case bp_std_terminate:
5622 /* Make sure the action is stop (silent or noisy),
5623 so infrun.c pops the dummy frame. */
5624 retval.call_dummy = STOP_STD_TERMINATE;
5625 this_action = BPSTAT_WHAT_STOP_SILENT;
5626 break;
5627 case bp_tracepoint:
5628 case bp_fast_tracepoint:
5629 case bp_static_tracepoint:
5630 /* Tracepoint hits should not be reported back to GDB, and
5631 if one got through somehow, it should have been filtered
5632 out already. */
5633 internal_error (__FILE__, __LINE__,
5634 _("bpstat_what: tracepoint encountered"));
5635 break;
5636 case bp_gnu_ifunc_resolver:
5637 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5638 this_action = BPSTAT_WHAT_SINGLE;
5639 break;
5640 case bp_gnu_ifunc_resolver_return:
5641 /* The breakpoint will be removed, execution will restart from the
5642 PC of the former breakpoint. */
5643 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5644 break;
5645
5646 case bp_dprintf:
5647 if (bs->stop)
5648 this_action = BPSTAT_WHAT_STOP_SILENT;
5649 else
5650 this_action = BPSTAT_WHAT_SINGLE;
5651 break;
5652
5653 default:
5654 internal_error (__FILE__, __LINE__,
5655 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5656 }
5657
5658 retval.main_action = std::max (retval.main_action, this_action);
5659 }
5660
5661 return retval;
5662 }
5663
5664 void
5665 bpstat_run_callbacks (bpstat bs_head)
5666 {
5667 bpstat bs;
5668
5669 for (bs = bs_head; bs != NULL; bs = bs->next)
5670 {
5671 struct breakpoint *b = bs->breakpoint_at;
5672
5673 if (b == NULL)
5674 continue;
5675 switch (b->type)
5676 {
5677 case bp_jit_event:
5678 handle_jit_event ();
5679 break;
5680 case bp_gnu_ifunc_resolver:
5681 gnu_ifunc_resolver_stop (b);
5682 break;
5683 case bp_gnu_ifunc_resolver_return:
5684 gnu_ifunc_resolver_return_stop (b);
5685 break;
5686 }
5687 }
5688 }
5689
5690 /* See breakpoint.h. */
5691
5692 bool
5693 bpstat_should_step ()
5694 {
5695 struct breakpoint *b;
5696
5697 ALL_BREAKPOINTS (b)
5698 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5699 return true;
5700 return false;
5701 }
5702
5703 /* See breakpoint.h. */
5704
5705 bool
5706 bpstat_causes_stop (bpstat bs)
5707 {
5708 for (; bs != NULL; bs = bs->next)
5709 if (bs->stop)
5710 return true;
5711
5712 return false;
5713 }
5714
5715 \f
5716
5717 /* Compute a string of spaces suitable to indent the next line
5718 so it starts at the position corresponding to the table column
5719 named COL_NAME in the currently active table of UIOUT. */
5720
5721 static char *
5722 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5723 {
5724 static char wrap_indent[80];
5725 int i, total_width, width, align;
5726 const char *text;
5727
5728 total_width = 0;
5729 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5730 {
5731 if (strcmp (text, col_name) == 0)
5732 {
5733 gdb_assert (total_width < sizeof wrap_indent);
5734 memset (wrap_indent, ' ', total_width);
5735 wrap_indent[total_width] = 0;
5736
5737 return wrap_indent;
5738 }
5739
5740 total_width += width + 1;
5741 }
5742
5743 return NULL;
5744 }
5745
5746 /* Determine if the locations of this breakpoint will have their conditions
5747 evaluated by the target, host or a mix of both. Returns the following:
5748
5749 "host": Host evals condition.
5750 "host or target": Host or Target evals condition.
5751 "target": Target evals condition.
5752 */
5753
5754 static const char *
5755 bp_condition_evaluator (struct breakpoint *b)
5756 {
5757 struct bp_location *bl;
5758 char host_evals = 0;
5759 char target_evals = 0;
5760
5761 if (!b)
5762 return NULL;
5763
5764 if (!is_breakpoint (b))
5765 return NULL;
5766
5767 if (gdb_evaluates_breakpoint_condition_p ()
5768 || !target_supports_evaluation_of_breakpoint_conditions ())
5769 return condition_evaluation_host;
5770
5771 for (bl = b->loc; bl; bl = bl->next)
5772 {
5773 if (bl->cond_bytecode)
5774 target_evals++;
5775 else
5776 host_evals++;
5777 }
5778
5779 if (host_evals && target_evals)
5780 return condition_evaluation_both;
5781 else if (target_evals)
5782 return condition_evaluation_target;
5783 else
5784 return condition_evaluation_host;
5785 }
5786
5787 /* Determine the breakpoint location's condition evaluator. This is
5788 similar to bp_condition_evaluator, but for locations. */
5789
5790 static const char *
5791 bp_location_condition_evaluator (struct bp_location *bl)
5792 {
5793 if (bl && !is_breakpoint (bl->owner))
5794 return NULL;
5795
5796 if (gdb_evaluates_breakpoint_condition_p ()
5797 || !target_supports_evaluation_of_breakpoint_conditions ())
5798 return condition_evaluation_host;
5799
5800 if (bl && bl->cond_bytecode)
5801 return condition_evaluation_target;
5802 else
5803 return condition_evaluation_host;
5804 }
5805
5806 /* Print the LOC location out of the list of B->LOC locations. */
5807
5808 static void
5809 print_breakpoint_location (struct breakpoint *b,
5810 struct bp_location *loc)
5811 {
5812 struct ui_out *uiout = current_uiout;
5813
5814 scoped_restore_current_program_space restore_pspace;
5815
5816 if (loc != NULL && loc->shlib_disabled)
5817 loc = NULL;
5818
5819 if (loc != NULL)
5820 set_current_program_space (loc->pspace);
5821
5822 if (b->display_canonical)
5823 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5824 else if (loc && loc->symtab)
5825 {
5826 const struct symbol *sym = loc->symbol;
5827
5828 if (sym)
5829 {
5830 uiout->text ("in ");
5831 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5832 ui_out_style_kind::FUNCTION);
5833 uiout->text (" ");
5834 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5835 uiout->text ("at ");
5836 }
5837 uiout->field_string ("file",
5838 symtab_to_filename_for_display (loc->symtab),
5839 ui_out_style_kind::FILE);
5840 uiout->text (":");
5841
5842 if (uiout->is_mi_like_p ())
5843 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5844
5845 uiout->field_int ("line", loc->line_number);
5846 }
5847 else if (loc)
5848 {
5849 string_file stb;
5850
5851 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5852 demangle, "");
5853 uiout->field_stream ("at", stb);
5854 }
5855 else
5856 {
5857 uiout->field_string ("pending",
5858 event_location_to_string (b->location.get ()));
5859 /* If extra_string is available, it could be holding a condition
5860 or dprintf arguments. In either case, make sure it is printed,
5861 too, but only for non-MI streams. */
5862 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5863 {
5864 if (b->type == bp_dprintf)
5865 uiout->text (",");
5866 else
5867 uiout->text (" ");
5868 uiout->text (b->extra_string);
5869 }
5870 }
5871
5872 if (loc && is_breakpoint (b)
5873 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5874 && bp_condition_evaluator (b) == condition_evaluation_both)
5875 {
5876 uiout->text (" (");
5877 uiout->field_string ("evaluated-by",
5878 bp_location_condition_evaluator (loc));
5879 uiout->text (")");
5880 }
5881 }
5882
5883 static const char *
5884 bptype_string (enum bptype type)
5885 {
5886 struct ep_type_description
5887 {
5888 enum bptype type;
5889 const char *description;
5890 };
5891 static struct ep_type_description bptypes[] =
5892 {
5893 {bp_none, "?deleted?"},
5894 {bp_breakpoint, "breakpoint"},
5895 {bp_hardware_breakpoint, "hw breakpoint"},
5896 {bp_single_step, "sw single-step"},
5897 {bp_until, "until"},
5898 {bp_finish, "finish"},
5899 {bp_watchpoint, "watchpoint"},
5900 {bp_hardware_watchpoint, "hw watchpoint"},
5901 {bp_read_watchpoint, "read watchpoint"},
5902 {bp_access_watchpoint, "acc watchpoint"},
5903 {bp_longjmp, "longjmp"},
5904 {bp_longjmp_resume, "longjmp resume"},
5905 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5906 {bp_exception, "exception"},
5907 {bp_exception_resume, "exception resume"},
5908 {bp_step_resume, "step resume"},
5909 {bp_hp_step_resume, "high-priority step resume"},
5910 {bp_watchpoint_scope, "watchpoint scope"},
5911 {bp_call_dummy, "call dummy"},
5912 {bp_std_terminate, "std::terminate"},
5913 {bp_shlib_event, "shlib events"},
5914 {bp_thread_event, "thread events"},
5915 {bp_overlay_event, "overlay events"},
5916 {bp_longjmp_master, "longjmp master"},
5917 {bp_std_terminate_master, "std::terminate master"},
5918 {bp_exception_master, "exception master"},
5919 {bp_catchpoint, "catchpoint"},
5920 {bp_tracepoint, "tracepoint"},
5921 {bp_fast_tracepoint, "fast tracepoint"},
5922 {bp_static_tracepoint, "static tracepoint"},
5923 {bp_dprintf, "dprintf"},
5924 {bp_jit_event, "jit events"},
5925 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5926 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5927 };
5928
5929 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5930 || ((int) type != bptypes[(int) type].type))
5931 internal_error (__FILE__, __LINE__,
5932 _("bptypes table does not describe type #%d."),
5933 (int) type);
5934
5935 return bptypes[(int) type].description;
5936 }
5937
5938 /* For MI, output a field named 'thread-groups' with a list as the value.
5939 For CLI, prefix the list with the string 'inf'. */
5940
5941 static void
5942 output_thread_groups (struct ui_out *uiout,
5943 const char *field_name,
5944 const std::vector<int> &inf_nums,
5945 int mi_only)
5946 {
5947 int is_mi = uiout->is_mi_like_p ();
5948
5949 /* For backward compatibility, don't display inferiors in CLI unless
5950 there are several. Always display them for MI. */
5951 if (!is_mi && mi_only)
5952 return;
5953
5954 ui_out_emit_list list_emitter (uiout, field_name);
5955
5956 for (size_t i = 0; i < inf_nums.size (); i++)
5957 {
5958 if (is_mi)
5959 {
5960 char mi_group[10];
5961
5962 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5963 uiout->field_string (NULL, mi_group);
5964 }
5965 else
5966 {
5967 if (i == 0)
5968 uiout->text (" inf ");
5969 else
5970 uiout->text (", ");
5971
5972 uiout->text (plongest (inf_nums[i]));
5973 }
5974 }
5975 }
5976
5977 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5978 instead of going via breakpoint_ops::print_one. This makes "maint
5979 info breakpoints" show the software breakpoint locations of
5980 catchpoints, which are considered internal implementation
5981 detail. */
5982
5983 static void
5984 print_one_breakpoint_location (struct breakpoint *b,
5985 struct bp_location *loc,
5986 int loc_number,
5987 struct bp_location **last_loc,
5988 int allflag, bool raw_loc)
5989 {
5990 struct command_line *l;
5991 static char bpenables[] = "nynny";
5992
5993 struct ui_out *uiout = current_uiout;
5994 int header_of_multiple = 0;
5995 int part_of_multiple = (loc != NULL);
5996 struct value_print_options opts;
5997
5998 get_user_print_options (&opts);
5999
6000 gdb_assert (!loc || loc_number != 0);
6001 /* See comment in print_one_breakpoint concerning treatment of
6002 breakpoints with single disabled location. */
6003 if (loc == NULL
6004 && (b->loc != NULL
6005 && (b->loc->next != NULL || !b->loc->enabled)))
6006 header_of_multiple = 1;
6007 if (loc == NULL)
6008 loc = b->loc;
6009
6010 annotate_record ();
6011
6012 /* 1 */
6013 annotate_field (0);
6014 if (part_of_multiple)
6015 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6016 else
6017 uiout->field_int ("number", b->number);
6018
6019 /* 2 */
6020 annotate_field (1);
6021 if (part_of_multiple)
6022 uiout->field_skip ("type");
6023 else
6024 uiout->field_string ("type", bptype_string (b->type));
6025
6026 /* 3 */
6027 annotate_field (2);
6028 if (part_of_multiple)
6029 uiout->field_skip ("disp");
6030 else
6031 uiout->field_string ("disp", bpdisp_text (b->disposition));
6032
6033 /* 4 */
6034 annotate_field (3);
6035 if (part_of_multiple)
6036 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6037 else
6038 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6039
6040 /* 5 and 6 */
6041 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6042 b->ops->print_one (b, last_loc);
6043 else
6044 {
6045 if (is_watchpoint (b))
6046 {
6047 struct watchpoint *w = (struct watchpoint *) b;
6048
6049 /* Field 4, the address, is omitted (which makes the columns
6050 not line up too nicely with the headers, but the effect
6051 is relatively readable). */
6052 if (opts.addressprint)
6053 uiout->field_skip ("addr");
6054 annotate_field (5);
6055 uiout->field_string ("what", w->exp_string);
6056 }
6057 else if (!is_catchpoint (b) || is_exception_catchpoint (b))
6058 {
6059 if (opts.addressprint)
6060 {
6061 annotate_field (4);
6062 if (header_of_multiple)
6063 uiout->field_string ("addr", "<MULTIPLE>");
6064 else if (b->loc == NULL || loc->shlib_disabled)
6065 uiout->field_string ("addr", "<PENDING>");
6066 else
6067 uiout->field_core_addr ("addr",
6068 loc->gdbarch, loc->address);
6069 }
6070 annotate_field (5);
6071 if (!header_of_multiple)
6072 print_breakpoint_location (b, loc);
6073 if (b->loc)
6074 *last_loc = b->loc;
6075 }
6076 }
6077
6078 if (loc != NULL && !header_of_multiple)
6079 {
6080 std::vector<int> inf_nums;
6081 int mi_only = 1;
6082
6083 for (inferior *inf : all_inferiors ())
6084 {
6085 if (inf->pspace == loc->pspace)
6086 inf_nums.push_back (inf->num);
6087 }
6088
6089 /* For backward compatibility, don't display inferiors in CLI unless
6090 there are several. Always display for MI. */
6091 if (allflag
6092 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6093 && (number_of_program_spaces () > 1
6094 || number_of_inferiors () > 1)
6095 /* LOC is for existing B, it cannot be in
6096 moribund_locations and thus having NULL OWNER. */
6097 && loc->owner->type != bp_catchpoint))
6098 mi_only = 0;
6099 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6100 }
6101
6102 if (!part_of_multiple)
6103 {
6104 if (b->thread != -1)
6105 {
6106 /* FIXME: This seems to be redundant and lost here; see the
6107 "stop only in" line a little further down. */
6108 uiout->text (" thread ");
6109 uiout->field_int ("thread", b->thread);
6110 }
6111 else if (b->task != 0)
6112 {
6113 uiout->text (" task ");
6114 uiout->field_int ("task", b->task);
6115 }
6116 }
6117
6118 uiout->text ("\n");
6119
6120 if (!part_of_multiple)
6121 b->ops->print_one_detail (b, uiout);
6122
6123 if (part_of_multiple && frame_id_p (b->frame_id))
6124 {
6125 annotate_field (6);
6126 uiout->text ("\tstop only in stack frame at ");
6127 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6128 the frame ID. */
6129 uiout->field_core_addr ("frame",
6130 b->gdbarch, b->frame_id.stack_addr);
6131 uiout->text ("\n");
6132 }
6133
6134 if (!part_of_multiple && b->cond_string)
6135 {
6136 annotate_field (7);
6137 if (is_tracepoint (b))
6138 uiout->text ("\ttrace only if ");
6139 else
6140 uiout->text ("\tstop only if ");
6141 uiout->field_string ("cond", b->cond_string);
6142
6143 /* Print whether the target is doing the breakpoint's condition
6144 evaluation. If GDB is doing the evaluation, don't print anything. */
6145 if (is_breakpoint (b)
6146 && breakpoint_condition_evaluation_mode ()
6147 == condition_evaluation_target)
6148 {
6149 uiout->text (" (");
6150 uiout->field_string ("evaluated-by",
6151 bp_condition_evaluator (b));
6152 uiout->text (" evals)");
6153 }
6154 uiout->text ("\n");
6155 }
6156
6157 if (!part_of_multiple && b->thread != -1)
6158 {
6159 /* FIXME should make an annotation for this. */
6160 uiout->text ("\tstop only in thread ");
6161 if (uiout->is_mi_like_p ())
6162 uiout->field_int ("thread", b->thread);
6163 else
6164 {
6165 struct thread_info *thr = find_thread_global_id (b->thread);
6166
6167 uiout->field_string ("thread", print_thread_id (thr));
6168 }
6169 uiout->text ("\n");
6170 }
6171
6172 if (!part_of_multiple)
6173 {
6174 if (b->hit_count)
6175 {
6176 /* FIXME should make an annotation for this. */
6177 if (is_catchpoint (b))
6178 uiout->text ("\tcatchpoint");
6179 else if (is_tracepoint (b))
6180 uiout->text ("\ttracepoint");
6181 else
6182 uiout->text ("\tbreakpoint");
6183 uiout->text (" already hit ");
6184 uiout->field_int ("times", b->hit_count);
6185 if (b->hit_count == 1)
6186 uiout->text (" time\n");
6187 else
6188 uiout->text (" times\n");
6189 }
6190 else
6191 {
6192 /* Output the count also if it is zero, but only if this is mi. */
6193 if (uiout->is_mi_like_p ())
6194 uiout->field_int ("times", b->hit_count);
6195 }
6196 }
6197
6198 if (!part_of_multiple && b->ignore_count)
6199 {
6200 annotate_field (8);
6201 uiout->text ("\tignore next ");
6202 uiout->field_int ("ignore", b->ignore_count);
6203 uiout->text (" hits\n");
6204 }
6205
6206 /* Note that an enable count of 1 corresponds to "enable once"
6207 behavior, which is reported by the combination of enablement and
6208 disposition, so we don't need to mention it here. */
6209 if (!part_of_multiple && b->enable_count > 1)
6210 {
6211 annotate_field (8);
6212 uiout->text ("\tdisable after ");
6213 /* Tweak the wording to clarify that ignore and enable counts
6214 are distinct, and have additive effect. */
6215 if (b->ignore_count)
6216 uiout->text ("additional ");
6217 else
6218 uiout->text ("next ");
6219 uiout->field_int ("enable", b->enable_count);
6220 uiout->text (" hits\n");
6221 }
6222
6223 if (!part_of_multiple && is_tracepoint (b))
6224 {
6225 struct tracepoint *tp = (struct tracepoint *) b;
6226
6227 if (tp->traceframe_usage)
6228 {
6229 uiout->text ("\ttrace buffer usage ");
6230 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6231 uiout->text (" bytes\n");
6232 }
6233 }
6234
6235 l = b->commands ? b->commands.get () : NULL;
6236 if (!part_of_multiple && l)
6237 {
6238 annotate_field (9);
6239 ui_out_emit_tuple tuple_emitter (uiout, "script");
6240 print_command_lines (uiout, l, 4);
6241 }
6242
6243 if (is_tracepoint (b))
6244 {
6245 struct tracepoint *t = (struct tracepoint *) b;
6246
6247 if (!part_of_multiple && t->pass_count)
6248 {
6249 annotate_field (10);
6250 uiout->text ("\tpass count ");
6251 uiout->field_int ("pass", t->pass_count);
6252 uiout->text (" \n");
6253 }
6254
6255 /* Don't display it when tracepoint or tracepoint location is
6256 pending. */
6257 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6258 {
6259 annotate_field (11);
6260
6261 if (uiout->is_mi_like_p ())
6262 uiout->field_string ("installed",
6263 loc->inserted ? "y" : "n");
6264 else
6265 {
6266 if (loc->inserted)
6267 uiout->text ("\t");
6268 else
6269 uiout->text ("\tnot ");
6270 uiout->text ("installed on target\n");
6271 }
6272 }
6273 }
6274
6275 if (uiout->is_mi_like_p () && !part_of_multiple)
6276 {
6277 if (is_watchpoint (b))
6278 {
6279 struct watchpoint *w = (struct watchpoint *) b;
6280
6281 uiout->field_string ("original-location", w->exp_string);
6282 }
6283 else if (b->location != NULL
6284 && event_location_to_string (b->location.get ()) != NULL)
6285 uiout->field_string ("original-location",
6286 event_location_to_string (b->location.get ()));
6287 }
6288 }
6289
6290 /* See breakpoint.h. */
6291
6292 bool fix_multi_location_breakpoint_output_globally = false;
6293
6294 static void
6295 print_one_breakpoint (struct breakpoint *b,
6296 struct bp_location **last_loc,
6297 int allflag)
6298 {
6299 struct ui_out *uiout = current_uiout;
6300 bool use_fixed_output
6301 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6302 || fix_multi_location_breakpoint_output_globally);
6303
6304 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6305 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6306
6307 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6308 are outside. */
6309 if (!use_fixed_output)
6310 bkpt_tuple_emitter.reset ();
6311
6312 /* If this breakpoint has custom print function,
6313 it's already printed. Otherwise, print individual
6314 locations, if any. */
6315 if (b->ops == NULL
6316 || b->ops->print_one == NULL
6317 || allflag)
6318 {
6319 /* If breakpoint has a single location that is disabled, we
6320 print it as if it had several locations, since otherwise it's
6321 hard to represent "breakpoint enabled, location disabled"
6322 situation.
6323
6324 Note that while hardware watchpoints have several locations
6325 internally, that's not a property exposed to users.
6326
6327 Likewise, while catchpoints may be implemented with
6328 breakpoints (e.g., catch throw), that's not a property
6329 exposed to users. We do however display the internal
6330 breakpoint locations with "maint info breakpoints". */
6331 if (!is_hardware_watchpoint (b)
6332 && (!is_catchpoint (b) || is_exception_catchpoint (b))
6333 && (allflag
6334 || (b->loc && (b->loc->next || !b->loc->enabled))))
6335 {
6336 gdb::optional<ui_out_emit_list> locations_list;
6337
6338 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6339 MI record. For later versions, place breakpoint locations in a
6340 list. */
6341 if (uiout->is_mi_like_p () && use_fixed_output)
6342 locations_list.emplace (uiout, "locations");
6343
6344 int n = 1;
6345 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6346 {
6347 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6348 print_one_breakpoint_location (b, loc, n, last_loc,
6349 allflag, allflag);
6350 }
6351 }
6352 }
6353 }
6354
6355 static int
6356 breakpoint_address_bits (struct breakpoint *b)
6357 {
6358 int print_address_bits = 0;
6359 struct bp_location *loc;
6360
6361 /* Software watchpoints that aren't watching memory don't have an
6362 address to print. */
6363 if (is_no_memory_software_watchpoint (b))
6364 return 0;
6365
6366 for (loc = b->loc; loc; loc = loc->next)
6367 {
6368 int addr_bit;
6369
6370 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6371 if (addr_bit > print_address_bits)
6372 print_address_bits = addr_bit;
6373 }
6374
6375 return print_address_bits;
6376 }
6377
6378 /* See breakpoint.h. */
6379
6380 void
6381 print_breakpoint (breakpoint *b)
6382 {
6383 struct bp_location *dummy_loc = NULL;
6384 print_one_breakpoint (b, &dummy_loc, 0);
6385 }
6386
6387 /* Return true if this breakpoint was set by the user, false if it is
6388 internal or momentary. */
6389
6390 int
6391 user_breakpoint_p (struct breakpoint *b)
6392 {
6393 return b->number > 0;
6394 }
6395
6396 /* See breakpoint.h. */
6397
6398 int
6399 pending_breakpoint_p (struct breakpoint *b)
6400 {
6401 return b->loc == NULL;
6402 }
6403
6404 /* Print information on user settable breakpoint (watchpoint, etc)
6405 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6406 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6407 FILTER is non-NULL, call it on each breakpoint and only include the
6408 ones for which it returns non-zero. Return the total number of
6409 breakpoints listed. */
6410
6411 static int
6412 breakpoint_1 (const char *args, int allflag,
6413 int (*filter) (const struct breakpoint *))
6414 {
6415 struct breakpoint *b;
6416 struct bp_location *last_loc = NULL;
6417 int nr_printable_breakpoints;
6418 struct value_print_options opts;
6419 int print_address_bits = 0;
6420 int print_type_col_width = 14;
6421 struct ui_out *uiout = current_uiout;
6422
6423 get_user_print_options (&opts);
6424
6425 /* Compute the number of rows in the table, as well as the size
6426 required for address fields. */
6427 nr_printable_breakpoints = 0;
6428 ALL_BREAKPOINTS (b)
6429 {
6430 /* If we have a filter, only list the breakpoints it accepts. */
6431 if (filter && !filter (b))
6432 continue;
6433
6434 /* If we have an "args" string, it is a list of breakpoints to
6435 accept. Skip the others. */
6436 if (args != NULL && *args != '\0')
6437 {
6438 if (allflag && parse_and_eval_long (args) != b->number)
6439 continue;
6440 if (!allflag && !number_is_in_list (args, b->number))
6441 continue;
6442 }
6443
6444 if (allflag || user_breakpoint_p (b))
6445 {
6446 int addr_bit, type_len;
6447
6448 addr_bit = breakpoint_address_bits (b);
6449 if (addr_bit > print_address_bits)
6450 print_address_bits = addr_bit;
6451
6452 type_len = strlen (bptype_string (b->type));
6453 if (type_len > print_type_col_width)
6454 print_type_col_width = type_len;
6455
6456 nr_printable_breakpoints++;
6457 }
6458 }
6459
6460 {
6461 ui_out_emit_table table_emitter (uiout,
6462 opts.addressprint ? 6 : 5,
6463 nr_printable_breakpoints,
6464 "BreakpointTable");
6465
6466 if (nr_printable_breakpoints > 0)
6467 annotate_breakpoints_headers ();
6468 if (nr_printable_breakpoints > 0)
6469 annotate_field (0);
6470 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6471 if (nr_printable_breakpoints > 0)
6472 annotate_field (1);
6473 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6474 if (nr_printable_breakpoints > 0)
6475 annotate_field (2);
6476 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6477 if (nr_printable_breakpoints > 0)
6478 annotate_field (3);
6479 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6480 if (opts.addressprint)
6481 {
6482 if (nr_printable_breakpoints > 0)
6483 annotate_field (4);
6484 if (print_address_bits <= 32)
6485 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6486 else
6487 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6488 }
6489 if (nr_printable_breakpoints > 0)
6490 annotate_field (5);
6491 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6492 uiout->table_body ();
6493 if (nr_printable_breakpoints > 0)
6494 annotate_breakpoints_table ();
6495
6496 ALL_BREAKPOINTS (b)
6497 {
6498 QUIT;
6499 /* If we have a filter, only list the breakpoints it accepts. */
6500 if (filter && !filter (b))
6501 continue;
6502
6503 /* If we have an "args" string, it is a list of breakpoints to
6504 accept. Skip the others. */
6505
6506 if (args != NULL && *args != '\0')
6507 {
6508 if (allflag) /* maintenance info breakpoint */
6509 {
6510 if (parse_and_eval_long (args) != b->number)
6511 continue;
6512 }
6513 else /* all others */
6514 {
6515 if (!number_is_in_list (args, b->number))
6516 continue;
6517 }
6518 }
6519 /* We only print out user settable breakpoints unless the
6520 allflag is set. */
6521 if (allflag || user_breakpoint_p (b))
6522 print_one_breakpoint (b, &last_loc, allflag);
6523 }
6524 }
6525
6526 if (nr_printable_breakpoints == 0)
6527 {
6528 /* If there's a filter, let the caller decide how to report
6529 empty list. */
6530 if (!filter)
6531 {
6532 if (args == NULL || *args == '\0')
6533 uiout->message ("No breakpoints or watchpoints.\n");
6534 else
6535 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6536 args);
6537 }
6538 }
6539 else
6540 {
6541 if (last_loc && !server_command)
6542 set_next_address (last_loc->gdbarch, last_loc->address);
6543 }
6544
6545 /* FIXME? Should this be moved up so that it is only called when
6546 there have been breakpoints? */
6547 annotate_breakpoints_table_end ();
6548
6549 return nr_printable_breakpoints;
6550 }
6551
6552 /* Display the value of default-collect in a way that is generally
6553 compatible with the breakpoint list. */
6554
6555 static void
6556 default_collect_info (void)
6557 {
6558 struct ui_out *uiout = current_uiout;
6559
6560 /* If it has no value (which is frequently the case), say nothing; a
6561 message like "No default-collect." gets in user's face when it's
6562 not wanted. */
6563 if (!*default_collect)
6564 return;
6565
6566 /* The following phrase lines up nicely with per-tracepoint collect
6567 actions. */
6568 uiout->text ("default collect ");
6569 uiout->field_string ("default-collect", default_collect);
6570 uiout->text (" \n");
6571 }
6572
6573 static void
6574 info_breakpoints_command (const char *args, int from_tty)
6575 {
6576 breakpoint_1 (args, 0, NULL);
6577
6578 default_collect_info ();
6579 }
6580
6581 static void
6582 info_watchpoints_command (const char *args, int from_tty)
6583 {
6584 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6585 struct ui_out *uiout = current_uiout;
6586
6587 if (num_printed == 0)
6588 {
6589 if (args == NULL || *args == '\0')
6590 uiout->message ("No watchpoints.\n");
6591 else
6592 uiout->message ("No watchpoint matching '%s'.\n", args);
6593 }
6594 }
6595
6596 static void
6597 maintenance_info_breakpoints (const char *args, int from_tty)
6598 {
6599 breakpoint_1 (args, 1, NULL);
6600
6601 default_collect_info ();
6602 }
6603
6604 static int
6605 breakpoint_has_pc (struct breakpoint *b,
6606 struct program_space *pspace,
6607 CORE_ADDR pc, struct obj_section *section)
6608 {
6609 struct bp_location *bl = b->loc;
6610
6611 for (; bl; bl = bl->next)
6612 {
6613 if (bl->pspace == pspace
6614 && bl->address == pc
6615 && (!overlay_debugging || bl->section == section))
6616 return 1;
6617 }
6618 return 0;
6619 }
6620
6621 /* Print a message describing any user-breakpoints set at PC. This
6622 concerns with logical breakpoints, so we match program spaces, not
6623 address spaces. */
6624
6625 static void
6626 describe_other_breakpoints (struct gdbarch *gdbarch,
6627 struct program_space *pspace, CORE_ADDR pc,
6628 struct obj_section *section, int thread)
6629 {
6630 int others = 0;
6631 struct breakpoint *b;
6632
6633 ALL_BREAKPOINTS (b)
6634 others += (user_breakpoint_p (b)
6635 && breakpoint_has_pc (b, pspace, pc, section));
6636 if (others > 0)
6637 {
6638 if (others == 1)
6639 printf_filtered (_("Note: breakpoint "));
6640 else /* if (others == ???) */
6641 printf_filtered (_("Note: breakpoints "));
6642 ALL_BREAKPOINTS (b)
6643 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6644 {
6645 others--;
6646 printf_filtered ("%d", b->number);
6647 if (b->thread == -1 && thread != -1)
6648 printf_filtered (" (all threads)");
6649 else if (b->thread != -1)
6650 printf_filtered (" (thread %d)", b->thread);
6651 printf_filtered ("%s%s ",
6652 ((b->enable_state == bp_disabled
6653 || b->enable_state == bp_call_disabled)
6654 ? " (disabled)"
6655 : ""),
6656 (others > 1) ? ","
6657 : ((others == 1) ? " and" : ""));
6658 }
6659 printf_filtered (_("also set at pc "));
6660 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6661 printf_filtered (".\n");
6662 }
6663 }
6664 \f
6665
6666 /* Return true iff it is meaningful to use the address member of LOC.
6667 For some breakpoint types, the locations' address members are
6668 irrelevant and it makes no sense to attempt to compare them to
6669 other addresses (or use them for any other purpose either).
6670
6671 More specifically, software watchpoints and catchpoints that are
6672 not backed by breakpoints always have a zero valued location
6673 address and we don't want to mark breakpoints of any of these types
6674 to be a duplicate of an actual breakpoint location at address
6675 zero. */
6676
6677 static bool
6678 bl_address_is_meaningful (bp_location *loc)
6679 {
6680 return loc->loc_type != bp_loc_other;
6681 }
6682
6683 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6684 true if LOC1 and LOC2 represent the same watchpoint location. */
6685
6686 static int
6687 watchpoint_locations_match (struct bp_location *loc1,
6688 struct bp_location *loc2)
6689 {
6690 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6691 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6692
6693 /* Both of them must exist. */
6694 gdb_assert (w1 != NULL);
6695 gdb_assert (w2 != NULL);
6696
6697 /* If the target can evaluate the condition expression in hardware,
6698 then we we need to insert both watchpoints even if they are at
6699 the same place. Otherwise the watchpoint will only trigger when
6700 the condition of whichever watchpoint was inserted evaluates to
6701 true, not giving a chance for GDB to check the condition of the
6702 other watchpoint. */
6703 if ((w1->cond_exp
6704 && target_can_accel_watchpoint_condition (loc1->address,
6705 loc1->length,
6706 loc1->watchpoint_type,
6707 w1->cond_exp.get ()))
6708 || (w2->cond_exp
6709 && target_can_accel_watchpoint_condition (loc2->address,
6710 loc2->length,
6711 loc2->watchpoint_type,
6712 w2->cond_exp.get ())))
6713 return 0;
6714
6715 /* Note that this checks the owner's type, not the location's. In
6716 case the target does not support read watchpoints, but does
6717 support access watchpoints, we'll have bp_read_watchpoint
6718 watchpoints with hw_access locations. Those should be considered
6719 duplicates of hw_read locations. The hw_read locations will
6720 become hw_access locations later. */
6721 return (loc1->owner->type == loc2->owner->type
6722 && loc1->pspace->aspace == loc2->pspace->aspace
6723 && loc1->address == loc2->address
6724 && loc1->length == loc2->length);
6725 }
6726
6727 /* See breakpoint.h. */
6728
6729 int
6730 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6731 const address_space *aspace2, CORE_ADDR addr2)
6732 {
6733 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6734 || aspace1 == aspace2)
6735 && addr1 == addr2);
6736 }
6737
6738 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6739 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6740 matches ASPACE2. On targets that have global breakpoints, the address
6741 space doesn't really matter. */
6742
6743 static int
6744 breakpoint_address_match_range (const address_space *aspace1,
6745 CORE_ADDR addr1,
6746 int len1, const address_space *aspace2,
6747 CORE_ADDR addr2)
6748 {
6749 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6750 || aspace1 == aspace2)
6751 && addr2 >= addr1 && addr2 < addr1 + len1);
6752 }
6753
6754 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6755 a ranged breakpoint. In most targets, a match happens only if ASPACE
6756 matches the breakpoint's address space. On targets that have global
6757 breakpoints, the address space doesn't really matter. */
6758
6759 static int
6760 breakpoint_location_address_match (struct bp_location *bl,
6761 const address_space *aspace,
6762 CORE_ADDR addr)
6763 {
6764 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6765 aspace, addr)
6766 || (bl->length
6767 && breakpoint_address_match_range (bl->pspace->aspace,
6768 bl->address, bl->length,
6769 aspace, addr)));
6770 }
6771
6772 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6773 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6774 match happens only if ASPACE matches the breakpoint's address
6775 space. On targets that have global breakpoints, the address space
6776 doesn't really matter. */
6777
6778 static int
6779 breakpoint_location_address_range_overlap (struct bp_location *bl,
6780 const address_space *aspace,
6781 CORE_ADDR addr, int len)
6782 {
6783 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6784 || bl->pspace->aspace == aspace)
6785 {
6786 int bl_len = bl->length != 0 ? bl->length : 1;
6787
6788 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6789 return 1;
6790 }
6791 return 0;
6792 }
6793
6794 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6795 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6796 true, otherwise returns false. */
6797
6798 static int
6799 tracepoint_locations_match (struct bp_location *loc1,
6800 struct bp_location *loc2)
6801 {
6802 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6803 /* Since tracepoint locations are never duplicated with others', tracepoint
6804 locations at the same address of different tracepoints are regarded as
6805 different locations. */
6806 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6807 else
6808 return 0;
6809 }
6810
6811 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6812 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6813 the same location. */
6814
6815 static int
6816 breakpoint_locations_match (struct bp_location *loc1,
6817 struct bp_location *loc2)
6818 {
6819 int hw_point1, hw_point2;
6820
6821 /* Both of them must not be in moribund_locations. */
6822 gdb_assert (loc1->owner != NULL);
6823 gdb_assert (loc2->owner != NULL);
6824
6825 hw_point1 = is_hardware_watchpoint (loc1->owner);
6826 hw_point2 = is_hardware_watchpoint (loc2->owner);
6827
6828 if (hw_point1 != hw_point2)
6829 return 0;
6830 else if (hw_point1)
6831 return watchpoint_locations_match (loc1, loc2);
6832 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6833 return tracepoint_locations_match (loc1, loc2);
6834 else
6835 /* We compare bp_location.length in order to cover ranged breakpoints. */
6836 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6837 loc2->pspace->aspace, loc2->address)
6838 && loc1->length == loc2->length);
6839 }
6840
6841 static void
6842 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6843 int bnum, int have_bnum)
6844 {
6845 /* The longest string possibly returned by hex_string_custom
6846 is 50 chars. These must be at least that big for safety. */
6847 char astr1[64];
6848 char astr2[64];
6849
6850 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6851 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6852 if (have_bnum)
6853 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6854 bnum, astr1, astr2);
6855 else
6856 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6857 }
6858
6859 /* Adjust a breakpoint's address to account for architectural
6860 constraints on breakpoint placement. Return the adjusted address.
6861 Note: Very few targets require this kind of adjustment. For most
6862 targets, this function is simply the identity function. */
6863
6864 static CORE_ADDR
6865 adjust_breakpoint_address (struct gdbarch *gdbarch,
6866 CORE_ADDR bpaddr, enum bptype bptype)
6867 {
6868 if (bptype == bp_watchpoint
6869 || bptype == bp_hardware_watchpoint
6870 || bptype == bp_read_watchpoint
6871 || bptype == bp_access_watchpoint
6872 || bptype == bp_catchpoint)
6873 {
6874 /* Watchpoints and the various bp_catch_* eventpoints should not
6875 have their addresses modified. */
6876 return bpaddr;
6877 }
6878 else if (bptype == bp_single_step)
6879 {
6880 /* Single-step breakpoints should not have their addresses
6881 modified. If there's any architectural constrain that
6882 applies to this address, then it should have already been
6883 taken into account when the breakpoint was created in the
6884 first place. If we didn't do this, stepping through e.g.,
6885 Thumb-2 IT blocks would break. */
6886 return bpaddr;
6887 }
6888 else
6889 {
6890 CORE_ADDR adjusted_bpaddr = bpaddr;
6891
6892 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6893 {
6894 /* Some targets have architectural constraints on the placement
6895 of breakpoint instructions. Obtain the adjusted address. */
6896 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6897 }
6898
6899 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6900
6901 /* An adjusted breakpoint address can significantly alter
6902 a user's expectations. Print a warning if an adjustment
6903 is required. */
6904 if (adjusted_bpaddr != bpaddr)
6905 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6906
6907 return adjusted_bpaddr;
6908 }
6909 }
6910
6911 static bp_loc_type
6912 bp_location_from_bp_type (bptype type)
6913 {
6914 switch (type)
6915 {
6916 case bp_breakpoint:
6917 case bp_single_step:
6918 case bp_until:
6919 case bp_finish:
6920 case bp_longjmp:
6921 case bp_longjmp_resume:
6922 case bp_longjmp_call_dummy:
6923 case bp_exception:
6924 case bp_exception_resume:
6925 case bp_step_resume:
6926 case bp_hp_step_resume:
6927 case bp_watchpoint_scope:
6928 case bp_call_dummy:
6929 case bp_std_terminate:
6930 case bp_shlib_event:
6931 case bp_thread_event:
6932 case bp_overlay_event:
6933 case bp_jit_event:
6934 case bp_longjmp_master:
6935 case bp_std_terminate_master:
6936 case bp_exception_master:
6937 case bp_gnu_ifunc_resolver:
6938 case bp_gnu_ifunc_resolver_return:
6939 case bp_dprintf:
6940 return bp_loc_software_breakpoint;
6941 case bp_hardware_breakpoint:
6942 return bp_loc_hardware_breakpoint;
6943 case bp_hardware_watchpoint:
6944 case bp_read_watchpoint:
6945 case bp_access_watchpoint:
6946 return bp_loc_hardware_watchpoint;
6947 case bp_watchpoint:
6948 case bp_catchpoint:
6949 case bp_tracepoint:
6950 case bp_fast_tracepoint:
6951 case bp_static_tracepoint:
6952 return bp_loc_other;
6953 default:
6954 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6955 }
6956 }
6957
6958 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6959 {
6960 this->owner = owner;
6961 this->cond_bytecode = NULL;
6962 this->shlib_disabled = 0;
6963 this->enabled = 1;
6964
6965 this->loc_type = type;
6966
6967 if (this->loc_type == bp_loc_software_breakpoint
6968 || this->loc_type == bp_loc_hardware_breakpoint)
6969 mark_breakpoint_location_modified (this);
6970
6971 this->refc = 1;
6972 }
6973
6974 bp_location::bp_location (breakpoint *owner)
6975 : bp_location::bp_location (owner,
6976 bp_location_from_bp_type (owner->type))
6977 {
6978 }
6979
6980 /* Allocate a struct bp_location. */
6981
6982 static struct bp_location *
6983 allocate_bp_location (struct breakpoint *bpt)
6984 {
6985 return bpt->ops->allocate_location (bpt);
6986 }
6987
6988 static void
6989 free_bp_location (struct bp_location *loc)
6990 {
6991 delete loc;
6992 }
6993
6994 /* Increment reference count. */
6995
6996 static void
6997 incref_bp_location (struct bp_location *bl)
6998 {
6999 ++bl->refc;
7000 }
7001
7002 /* Decrement reference count. If the reference count reaches 0,
7003 destroy the bp_location. Sets *BLP to NULL. */
7004
7005 static void
7006 decref_bp_location (struct bp_location **blp)
7007 {
7008 gdb_assert ((*blp)->refc > 0);
7009
7010 if (--(*blp)->refc == 0)
7011 free_bp_location (*blp);
7012 *blp = NULL;
7013 }
7014
7015 /* Add breakpoint B at the end of the global breakpoint chain. */
7016
7017 static breakpoint *
7018 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7019 {
7020 struct breakpoint *b1;
7021 struct breakpoint *result = b.get ();
7022
7023 /* Add this breakpoint to the end of the chain so that a list of
7024 breakpoints will come out in order of increasing numbers. */
7025
7026 b1 = breakpoint_chain;
7027 if (b1 == 0)
7028 breakpoint_chain = b.release ();
7029 else
7030 {
7031 while (b1->next)
7032 b1 = b1->next;
7033 b1->next = b.release ();
7034 }
7035
7036 return result;
7037 }
7038
7039 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7040
7041 static void
7042 init_raw_breakpoint_without_location (struct breakpoint *b,
7043 struct gdbarch *gdbarch,
7044 enum bptype bptype,
7045 const struct breakpoint_ops *ops)
7046 {
7047 gdb_assert (ops != NULL);
7048
7049 b->ops = ops;
7050 b->type = bptype;
7051 b->gdbarch = gdbarch;
7052 b->language = current_language->la_language;
7053 b->input_radix = input_radix;
7054 b->related_breakpoint = b;
7055 }
7056
7057 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7058 that has type BPTYPE and has no locations as yet. */
7059
7060 static struct breakpoint *
7061 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7062 enum bptype bptype,
7063 const struct breakpoint_ops *ops)
7064 {
7065 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7066
7067 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7068 return add_to_breakpoint_chain (std::move (b));
7069 }
7070
7071 /* Initialize loc->function_name. */
7072
7073 static void
7074 set_breakpoint_location_function (struct bp_location *loc)
7075 {
7076 gdb_assert (loc->owner != NULL);
7077
7078 if (loc->owner->type == bp_breakpoint
7079 || loc->owner->type == bp_hardware_breakpoint
7080 || is_tracepoint (loc->owner))
7081 {
7082 const char *function_name;
7083
7084 if (loc->msymbol != NULL
7085 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7086 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7087 {
7088 struct breakpoint *b = loc->owner;
7089
7090 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7091
7092 if (b->type == bp_breakpoint && b->loc == loc
7093 && loc->next == NULL && b->related_breakpoint == b)
7094 {
7095 /* Create only the whole new breakpoint of this type but do not
7096 mess more complicated breakpoints with multiple locations. */
7097 b->type = bp_gnu_ifunc_resolver;
7098 /* Remember the resolver's address for use by the return
7099 breakpoint. */
7100 loc->related_address = loc->address;
7101 }
7102 }
7103 else
7104 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7105
7106 if (function_name)
7107 loc->function_name = xstrdup (function_name);
7108 }
7109 }
7110
7111 /* Attempt to determine architecture of location identified by SAL. */
7112 struct gdbarch *
7113 get_sal_arch (struct symtab_and_line sal)
7114 {
7115 if (sal.section)
7116 return get_objfile_arch (sal.section->objfile);
7117 if (sal.symtab)
7118 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7119
7120 return NULL;
7121 }
7122
7123 /* Low level routine for partially initializing a breakpoint of type
7124 BPTYPE. The newly created breakpoint's address, section, source
7125 file name, and line number are provided by SAL.
7126
7127 It is expected that the caller will complete the initialization of
7128 the newly created breakpoint struct as well as output any status
7129 information regarding the creation of a new breakpoint. */
7130
7131 static void
7132 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7133 struct symtab_and_line sal, enum bptype bptype,
7134 const struct breakpoint_ops *ops)
7135 {
7136 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7137
7138 add_location_to_breakpoint (b, &sal);
7139
7140 if (bptype != bp_catchpoint)
7141 gdb_assert (sal.pspace != NULL);
7142
7143 /* Store the program space that was used to set the breakpoint,
7144 except for ordinary breakpoints, which are independent of the
7145 program space. */
7146 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7147 b->pspace = sal.pspace;
7148 }
7149
7150 /* set_raw_breakpoint is a low level routine for allocating and
7151 partially initializing a breakpoint of type BPTYPE. The newly
7152 created breakpoint's address, section, source file name, and line
7153 number are provided by SAL. The newly created and partially
7154 initialized breakpoint is added to the breakpoint chain and
7155 is also returned as the value of this function.
7156
7157 It is expected that the caller will complete the initialization of
7158 the newly created breakpoint struct as well as output any status
7159 information regarding the creation of a new breakpoint. In
7160 particular, set_raw_breakpoint does NOT set the breakpoint
7161 number! Care should be taken to not allow an error to occur
7162 prior to completing the initialization of the breakpoint. If this
7163 should happen, a bogus breakpoint will be left on the chain. */
7164
7165 struct breakpoint *
7166 set_raw_breakpoint (struct gdbarch *gdbarch,
7167 struct symtab_and_line sal, enum bptype bptype,
7168 const struct breakpoint_ops *ops)
7169 {
7170 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7171
7172 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7173 return add_to_breakpoint_chain (std::move (b));
7174 }
7175
7176 /* Call this routine when stepping and nexting to enable a breakpoint
7177 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7178 initiated the operation. */
7179
7180 void
7181 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7182 {
7183 struct breakpoint *b, *b_tmp;
7184 int thread = tp->global_num;
7185
7186 /* To avoid having to rescan all objfile symbols at every step,
7187 we maintain a list of continually-inserted but always disabled
7188 longjmp "master" breakpoints. Here, we simply create momentary
7189 clones of those and enable them for the requested thread. */
7190 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7191 if (b->pspace == current_program_space
7192 && (b->type == bp_longjmp_master
7193 || b->type == bp_exception_master))
7194 {
7195 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7196 struct breakpoint *clone;
7197
7198 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7199 after their removal. */
7200 clone = momentary_breakpoint_from_master (b, type,
7201 &momentary_breakpoint_ops, 1);
7202 clone->thread = thread;
7203 }
7204
7205 tp->initiating_frame = frame;
7206 }
7207
7208 /* Delete all longjmp breakpoints from THREAD. */
7209 void
7210 delete_longjmp_breakpoint (int thread)
7211 {
7212 struct breakpoint *b, *b_tmp;
7213
7214 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7215 if (b->type == bp_longjmp || b->type == bp_exception)
7216 {
7217 if (b->thread == thread)
7218 delete_breakpoint (b);
7219 }
7220 }
7221
7222 void
7223 delete_longjmp_breakpoint_at_next_stop (int thread)
7224 {
7225 struct breakpoint *b, *b_tmp;
7226
7227 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7228 if (b->type == bp_longjmp || b->type == bp_exception)
7229 {
7230 if (b->thread == thread)
7231 b->disposition = disp_del_at_next_stop;
7232 }
7233 }
7234
7235 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7236 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7237 pointer to any of them. Return NULL if this system cannot place longjmp
7238 breakpoints. */
7239
7240 struct breakpoint *
7241 set_longjmp_breakpoint_for_call_dummy (void)
7242 {
7243 struct breakpoint *b, *retval = NULL;
7244
7245 ALL_BREAKPOINTS (b)
7246 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7247 {
7248 struct breakpoint *new_b;
7249
7250 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7251 &momentary_breakpoint_ops,
7252 1);
7253 new_b->thread = inferior_thread ()->global_num;
7254
7255 /* Link NEW_B into the chain of RETVAL breakpoints. */
7256
7257 gdb_assert (new_b->related_breakpoint == new_b);
7258 if (retval == NULL)
7259 retval = new_b;
7260 new_b->related_breakpoint = retval;
7261 while (retval->related_breakpoint != new_b->related_breakpoint)
7262 retval = retval->related_breakpoint;
7263 retval->related_breakpoint = new_b;
7264 }
7265
7266 return retval;
7267 }
7268
7269 /* Verify all existing dummy frames and their associated breakpoints for
7270 TP. Remove those which can no longer be found in the current frame
7271 stack.
7272
7273 You should call this function only at places where it is safe to currently
7274 unwind the whole stack. Failed stack unwind would discard live dummy
7275 frames. */
7276
7277 void
7278 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7279 {
7280 struct breakpoint *b, *b_tmp;
7281
7282 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7283 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7284 {
7285 struct breakpoint *dummy_b = b->related_breakpoint;
7286
7287 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7288 dummy_b = dummy_b->related_breakpoint;
7289 if (dummy_b->type != bp_call_dummy
7290 || frame_find_by_id (dummy_b->frame_id) != NULL)
7291 continue;
7292
7293 dummy_frame_discard (dummy_b->frame_id, tp);
7294
7295 while (b->related_breakpoint != b)
7296 {
7297 if (b_tmp == b->related_breakpoint)
7298 b_tmp = b->related_breakpoint->next;
7299 delete_breakpoint (b->related_breakpoint);
7300 }
7301 delete_breakpoint (b);
7302 }
7303 }
7304
7305 void
7306 enable_overlay_breakpoints (void)
7307 {
7308 struct breakpoint *b;
7309
7310 ALL_BREAKPOINTS (b)
7311 if (b->type == bp_overlay_event)
7312 {
7313 b->enable_state = bp_enabled;
7314 update_global_location_list (UGLL_MAY_INSERT);
7315 overlay_events_enabled = 1;
7316 }
7317 }
7318
7319 void
7320 disable_overlay_breakpoints (void)
7321 {
7322 struct breakpoint *b;
7323
7324 ALL_BREAKPOINTS (b)
7325 if (b->type == bp_overlay_event)
7326 {
7327 b->enable_state = bp_disabled;
7328 update_global_location_list (UGLL_DONT_INSERT);
7329 overlay_events_enabled = 0;
7330 }
7331 }
7332
7333 /* Set an active std::terminate breakpoint for each std::terminate
7334 master breakpoint. */
7335 void
7336 set_std_terminate_breakpoint (void)
7337 {
7338 struct breakpoint *b, *b_tmp;
7339
7340 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7341 if (b->pspace == current_program_space
7342 && b->type == bp_std_terminate_master)
7343 {
7344 momentary_breakpoint_from_master (b, bp_std_terminate,
7345 &momentary_breakpoint_ops, 1);
7346 }
7347 }
7348
7349 /* Delete all the std::terminate breakpoints. */
7350 void
7351 delete_std_terminate_breakpoint (void)
7352 {
7353 struct breakpoint *b, *b_tmp;
7354
7355 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7356 if (b->type == bp_std_terminate)
7357 delete_breakpoint (b);
7358 }
7359
7360 struct breakpoint *
7361 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7362 {
7363 struct breakpoint *b;
7364
7365 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7366 &internal_breakpoint_ops);
7367
7368 b->enable_state = bp_enabled;
7369 /* location has to be used or breakpoint_re_set will delete me. */
7370 b->location = new_address_location (b->loc->address, NULL, 0);
7371
7372 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7373
7374 return b;
7375 }
7376
7377 struct lang_and_radix
7378 {
7379 enum language lang;
7380 int radix;
7381 };
7382
7383 /* Create a breakpoint for JIT code registration and unregistration. */
7384
7385 struct breakpoint *
7386 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7387 {
7388 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7389 &internal_breakpoint_ops);
7390 }
7391
7392 /* Remove JIT code registration and unregistration breakpoint(s). */
7393
7394 void
7395 remove_jit_event_breakpoints (void)
7396 {
7397 struct breakpoint *b, *b_tmp;
7398
7399 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7400 if (b->type == bp_jit_event
7401 && b->loc->pspace == current_program_space)
7402 delete_breakpoint (b);
7403 }
7404
7405 void
7406 remove_solib_event_breakpoints (void)
7407 {
7408 struct breakpoint *b, *b_tmp;
7409
7410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7411 if (b->type == bp_shlib_event
7412 && b->loc->pspace == current_program_space)
7413 delete_breakpoint (b);
7414 }
7415
7416 /* See breakpoint.h. */
7417
7418 void
7419 remove_solib_event_breakpoints_at_next_stop (void)
7420 {
7421 struct breakpoint *b, *b_tmp;
7422
7423 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7424 if (b->type == bp_shlib_event
7425 && b->loc->pspace == current_program_space)
7426 b->disposition = disp_del_at_next_stop;
7427 }
7428
7429 /* Helper for create_solib_event_breakpoint /
7430 create_and_insert_solib_event_breakpoint. Allows specifying which
7431 INSERT_MODE to pass through to update_global_location_list. */
7432
7433 static struct breakpoint *
7434 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7435 enum ugll_insert_mode insert_mode)
7436 {
7437 struct breakpoint *b;
7438
7439 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7440 &internal_breakpoint_ops);
7441 update_global_location_list_nothrow (insert_mode);
7442 return b;
7443 }
7444
7445 struct breakpoint *
7446 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7447 {
7448 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7449 }
7450
7451 /* See breakpoint.h. */
7452
7453 struct breakpoint *
7454 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7455 {
7456 struct breakpoint *b;
7457
7458 /* Explicitly tell update_global_location_list to insert
7459 locations. */
7460 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7461 if (!b->loc->inserted)
7462 {
7463 delete_breakpoint (b);
7464 return NULL;
7465 }
7466 return b;
7467 }
7468
7469 /* Disable any breakpoints that are on code in shared libraries. Only
7470 apply to enabled breakpoints, disabled ones can just stay disabled. */
7471
7472 void
7473 disable_breakpoints_in_shlibs (void)
7474 {
7475 struct bp_location *loc, **locp_tmp;
7476
7477 ALL_BP_LOCATIONS (loc, locp_tmp)
7478 {
7479 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7480 struct breakpoint *b = loc->owner;
7481
7482 /* We apply the check to all breakpoints, including disabled for
7483 those with loc->duplicate set. This is so that when breakpoint
7484 becomes enabled, or the duplicate is removed, gdb will try to
7485 insert all breakpoints. If we don't set shlib_disabled here,
7486 we'll try to insert those breakpoints and fail. */
7487 if (((b->type == bp_breakpoint)
7488 || (b->type == bp_jit_event)
7489 || (b->type == bp_hardware_breakpoint)
7490 || (is_tracepoint (b)))
7491 && loc->pspace == current_program_space
7492 && !loc->shlib_disabled
7493 && solib_name_from_address (loc->pspace, loc->address)
7494 )
7495 {
7496 loc->shlib_disabled = 1;
7497 }
7498 }
7499 }
7500
7501 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7502 notification of unloaded_shlib. Only apply to enabled breakpoints,
7503 disabled ones can just stay disabled. */
7504
7505 static void
7506 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7507 {
7508 struct bp_location *loc, **locp_tmp;
7509 int disabled_shlib_breaks = 0;
7510
7511 ALL_BP_LOCATIONS (loc, locp_tmp)
7512 {
7513 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7514 struct breakpoint *b = loc->owner;
7515
7516 if (solib->pspace == loc->pspace
7517 && !loc->shlib_disabled
7518 && (((b->type == bp_breakpoint
7519 || b->type == bp_jit_event
7520 || b->type == bp_hardware_breakpoint)
7521 && (loc->loc_type == bp_loc_hardware_breakpoint
7522 || loc->loc_type == bp_loc_software_breakpoint))
7523 || is_tracepoint (b))
7524 && solib_contains_address_p (solib, loc->address))
7525 {
7526 loc->shlib_disabled = 1;
7527 /* At this point, we cannot rely on remove_breakpoint
7528 succeeding so we must mark the breakpoint as not inserted
7529 to prevent future errors occurring in remove_breakpoints. */
7530 loc->inserted = 0;
7531
7532 /* This may cause duplicate notifications for the same breakpoint. */
7533 gdb::observers::breakpoint_modified.notify (b);
7534
7535 if (!disabled_shlib_breaks)
7536 {
7537 target_terminal::ours_for_output ();
7538 warning (_("Temporarily disabling breakpoints "
7539 "for unloaded shared library \"%s\""),
7540 solib->so_name);
7541 }
7542 disabled_shlib_breaks = 1;
7543 }
7544 }
7545 }
7546
7547 /* Disable any breakpoints and tracepoints in OBJFILE upon
7548 notification of free_objfile. Only apply to enabled breakpoints,
7549 disabled ones can just stay disabled. */
7550
7551 static void
7552 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7553 {
7554 struct breakpoint *b;
7555
7556 if (objfile == NULL)
7557 return;
7558
7559 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7560 managed by the user with add-symbol-file/remove-symbol-file.
7561 Similarly to how breakpoints in shared libraries are handled in
7562 response to "nosharedlibrary", mark breakpoints in such modules
7563 shlib_disabled so they end up uninserted on the next global
7564 location list update. Shared libraries not loaded by the user
7565 aren't handled here -- they're already handled in
7566 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7567 solib_unloaded observer. We skip objfiles that are not
7568 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7569 main objfile). */
7570 if ((objfile->flags & OBJF_SHARED) == 0
7571 || (objfile->flags & OBJF_USERLOADED) == 0)
7572 return;
7573
7574 ALL_BREAKPOINTS (b)
7575 {
7576 struct bp_location *loc;
7577 int bp_modified = 0;
7578
7579 if (!is_breakpoint (b) && !is_tracepoint (b))
7580 continue;
7581
7582 for (loc = b->loc; loc != NULL; loc = loc->next)
7583 {
7584 CORE_ADDR loc_addr = loc->address;
7585
7586 if (loc->loc_type != bp_loc_hardware_breakpoint
7587 && loc->loc_type != bp_loc_software_breakpoint)
7588 continue;
7589
7590 if (loc->shlib_disabled != 0)
7591 continue;
7592
7593 if (objfile->pspace != loc->pspace)
7594 continue;
7595
7596 if (loc->loc_type != bp_loc_hardware_breakpoint
7597 && loc->loc_type != bp_loc_software_breakpoint)
7598 continue;
7599
7600 if (is_addr_in_objfile (loc_addr, objfile))
7601 {
7602 loc->shlib_disabled = 1;
7603 /* At this point, we don't know whether the object was
7604 unmapped from the inferior or not, so leave the
7605 inserted flag alone. We'll handle failure to
7606 uninsert quietly, in case the object was indeed
7607 unmapped. */
7608
7609 mark_breakpoint_location_modified (loc);
7610
7611 bp_modified = 1;
7612 }
7613 }
7614
7615 if (bp_modified)
7616 gdb::observers::breakpoint_modified.notify (b);
7617 }
7618 }
7619
7620 /* FORK & VFORK catchpoints. */
7621
7622 /* An instance of this type is used to represent a fork or vfork
7623 catchpoint. A breakpoint is really of this type iff its ops pointer points
7624 to CATCH_FORK_BREAKPOINT_OPS. */
7625
7626 struct fork_catchpoint : public breakpoint
7627 {
7628 /* Process id of a child process whose forking triggered this
7629 catchpoint. This field is only valid immediately after this
7630 catchpoint has triggered. */
7631 ptid_t forked_inferior_pid;
7632 };
7633
7634 /* Implement the "insert" breakpoint_ops method for fork
7635 catchpoints. */
7636
7637 static int
7638 insert_catch_fork (struct bp_location *bl)
7639 {
7640 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7641 }
7642
7643 /* Implement the "remove" breakpoint_ops method for fork
7644 catchpoints. */
7645
7646 static int
7647 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7648 {
7649 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7650 }
7651
7652 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7653 catchpoints. */
7654
7655 static int
7656 breakpoint_hit_catch_fork (const struct bp_location *bl,
7657 const address_space *aspace, CORE_ADDR bp_addr,
7658 const struct target_waitstatus *ws)
7659 {
7660 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7661
7662 if (ws->kind != TARGET_WAITKIND_FORKED)
7663 return 0;
7664
7665 c->forked_inferior_pid = ws->value.related_pid;
7666 return 1;
7667 }
7668
7669 /* Implement the "print_it" breakpoint_ops method for fork
7670 catchpoints. */
7671
7672 static enum print_stop_action
7673 print_it_catch_fork (bpstat bs)
7674 {
7675 struct ui_out *uiout = current_uiout;
7676 struct breakpoint *b = bs->breakpoint_at;
7677 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7678
7679 annotate_catchpoint (b->number);
7680 maybe_print_thread_hit_breakpoint (uiout);
7681 if (b->disposition == disp_del)
7682 uiout->text ("Temporary catchpoint ");
7683 else
7684 uiout->text ("Catchpoint ");
7685 if (uiout->is_mi_like_p ())
7686 {
7687 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7688 uiout->field_string ("disp", bpdisp_text (b->disposition));
7689 }
7690 uiout->field_int ("bkptno", b->number);
7691 uiout->text (" (forked process ");
7692 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7693 uiout->text ("), ");
7694 return PRINT_SRC_AND_LOC;
7695 }
7696
7697 /* Implement the "print_one" breakpoint_ops method for fork
7698 catchpoints. */
7699
7700 static void
7701 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7702 {
7703 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7704 struct value_print_options opts;
7705 struct ui_out *uiout = current_uiout;
7706
7707 get_user_print_options (&opts);
7708
7709 /* Field 4, the address, is omitted (which makes the columns not
7710 line up too nicely with the headers, but the effect is relatively
7711 readable). */
7712 if (opts.addressprint)
7713 uiout->field_skip ("addr");
7714 annotate_field (5);
7715 uiout->text ("fork");
7716 if (c->forked_inferior_pid != null_ptid)
7717 {
7718 uiout->text (", process ");
7719 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7720 uiout->spaces (1);
7721 }
7722
7723 if (uiout->is_mi_like_p ())
7724 uiout->field_string ("catch-type", "fork");
7725 }
7726
7727 /* Implement the "print_mention" breakpoint_ops method for fork
7728 catchpoints. */
7729
7730 static void
7731 print_mention_catch_fork (struct breakpoint *b)
7732 {
7733 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7734 }
7735
7736 /* Implement the "print_recreate" breakpoint_ops method for fork
7737 catchpoints. */
7738
7739 static void
7740 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7741 {
7742 fprintf_unfiltered (fp, "catch fork");
7743 print_recreate_thread (b, fp);
7744 }
7745
7746 /* The breakpoint_ops structure to be used in fork catchpoints. */
7747
7748 static struct breakpoint_ops catch_fork_breakpoint_ops;
7749
7750 /* Implement the "insert" breakpoint_ops method for vfork
7751 catchpoints. */
7752
7753 static int
7754 insert_catch_vfork (struct bp_location *bl)
7755 {
7756 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7757 }
7758
7759 /* Implement the "remove" breakpoint_ops method for vfork
7760 catchpoints. */
7761
7762 static int
7763 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7764 {
7765 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7766 }
7767
7768 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7769 catchpoints. */
7770
7771 static int
7772 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7773 const address_space *aspace, CORE_ADDR bp_addr,
7774 const struct target_waitstatus *ws)
7775 {
7776 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7777
7778 if (ws->kind != TARGET_WAITKIND_VFORKED)
7779 return 0;
7780
7781 c->forked_inferior_pid = ws->value.related_pid;
7782 return 1;
7783 }
7784
7785 /* Implement the "print_it" breakpoint_ops method for vfork
7786 catchpoints. */
7787
7788 static enum print_stop_action
7789 print_it_catch_vfork (bpstat bs)
7790 {
7791 struct ui_out *uiout = current_uiout;
7792 struct breakpoint *b = bs->breakpoint_at;
7793 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7794
7795 annotate_catchpoint (b->number);
7796 maybe_print_thread_hit_breakpoint (uiout);
7797 if (b->disposition == disp_del)
7798 uiout->text ("Temporary catchpoint ");
7799 else
7800 uiout->text ("Catchpoint ");
7801 if (uiout->is_mi_like_p ())
7802 {
7803 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7804 uiout->field_string ("disp", bpdisp_text (b->disposition));
7805 }
7806 uiout->field_int ("bkptno", b->number);
7807 uiout->text (" (vforked process ");
7808 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7809 uiout->text ("), ");
7810 return PRINT_SRC_AND_LOC;
7811 }
7812
7813 /* Implement the "print_one" breakpoint_ops method for vfork
7814 catchpoints. */
7815
7816 static void
7817 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7818 {
7819 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7820 struct value_print_options opts;
7821 struct ui_out *uiout = current_uiout;
7822
7823 get_user_print_options (&opts);
7824 /* Field 4, the address, is omitted (which makes the columns not
7825 line up too nicely with the headers, but the effect is relatively
7826 readable). */
7827 if (opts.addressprint)
7828 uiout->field_skip ("addr");
7829 annotate_field (5);
7830 uiout->text ("vfork");
7831 if (c->forked_inferior_pid != null_ptid)
7832 {
7833 uiout->text (", process ");
7834 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7835 uiout->spaces (1);
7836 }
7837
7838 if (uiout->is_mi_like_p ())
7839 uiout->field_string ("catch-type", "vfork");
7840 }
7841
7842 /* Implement the "print_mention" breakpoint_ops method for vfork
7843 catchpoints. */
7844
7845 static void
7846 print_mention_catch_vfork (struct breakpoint *b)
7847 {
7848 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7849 }
7850
7851 /* Implement the "print_recreate" breakpoint_ops method for vfork
7852 catchpoints. */
7853
7854 static void
7855 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7856 {
7857 fprintf_unfiltered (fp, "catch vfork");
7858 print_recreate_thread (b, fp);
7859 }
7860
7861 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7862
7863 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7864
7865 /* An instance of this type is used to represent an solib catchpoint.
7866 A breakpoint is really of this type iff its ops pointer points to
7867 CATCH_SOLIB_BREAKPOINT_OPS. */
7868
7869 struct solib_catchpoint : public breakpoint
7870 {
7871 ~solib_catchpoint () override;
7872
7873 /* True for "catch load", false for "catch unload". */
7874 unsigned char is_load;
7875
7876 /* Regular expression to match, if any. COMPILED is only valid when
7877 REGEX is non-NULL. */
7878 char *regex;
7879 std::unique_ptr<compiled_regex> compiled;
7880 };
7881
7882 solib_catchpoint::~solib_catchpoint ()
7883 {
7884 xfree (this->regex);
7885 }
7886
7887 static int
7888 insert_catch_solib (struct bp_location *ignore)
7889 {
7890 return 0;
7891 }
7892
7893 static int
7894 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7895 {
7896 return 0;
7897 }
7898
7899 static int
7900 breakpoint_hit_catch_solib (const struct bp_location *bl,
7901 const address_space *aspace,
7902 CORE_ADDR bp_addr,
7903 const struct target_waitstatus *ws)
7904 {
7905 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7906 struct breakpoint *other;
7907
7908 if (ws->kind == TARGET_WAITKIND_LOADED)
7909 return 1;
7910
7911 ALL_BREAKPOINTS (other)
7912 {
7913 struct bp_location *other_bl;
7914
7915 if (other == bl->owner)
7916 continue;
7917
7918 if (other->type != bp_shlib_event)
7919 continue;
7920
7921 if (self->pspace != NULL && other->pspace != self->pspace)
7922 continue;
7923
7924 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7925 {
7926 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7927 return 1;
7928 }
7929 }
7930
7931 return 0;
7932 }
7933
7934 static void
7935 check_status_catch_solib (struct bpstats *bs)
7936 {
7937 struct solib_catchpoint *self
7938 = (struct solib_catchpoint *) bs->breakpoint_at;
7939
7940 if (self->is_load)
7941 {
7942 for (so_list *iter : current_program_space->added_solibs)
7943 {
7944 if (!self->regex
7945 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7946 return;
7947 }
7948 }
7949 else
7950 {
7951 for (const std::string &iter : current_program_space->deleted_solibs)
7952 {
7953 if (!self->regex
7954 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7955 return;
7956 }
7957 }
7958
7959 bs->stop = 0;
7960 bs->print_it = print_it_noop;
7961 }
7962
7963 static enum print_stop_action
7964 print_it_catch_solib (bpstat bs)
7965 {
7966 struct breakpoint *b = bs->breakpoint_at;
7967 struct ui_out *uiout = current_uiout;
7968
7969 annotate_catchpoint (b->number);
7970 maybe_print_thread_hit_breakpoint (uiout);
7971 if (b->disposition == disp_del)
7972 uiout->text ("Temporary catchpoint ");
7973 else
7974 uiout->text ("Catchpoint ");
7975 uiout->field_int ("bkptno", b->number);
7976 uiout->text ("\n");
7977 if (uiout->is_mi_like_p ())
7978 uiout->field_string ("disp", bpdisp_text (b->disposition));
7979 print_solib_event (1);
7980 return PRINT_SRC_AND_LOC;
7981 }
7982
7983 static void
7984 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7985 {
7986 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7987 struct value_print_options opts;
7988 struct ui_out *uiout = current_uiout;
7989
7990 get_user_print_options (&opts);
7991 /* Field 4, the address, is omitted (which makes the columns not
7992 line up too nicely with the headers, but the effect is relatively
7993 readable). */
7994 if (opts.addressprint)
7995 {
7996 annotate_field (4);
7997 uiout->field_skip ("addr");
7998 }
7999
8000 std::string msg;
8001 annotate_field (5);
8002 if (self->is_load)
8003 {
8004 if (self->regex)
8005 msg = string_printf (_("load of library matching %s"), self->regex);
8006 else
8007 msg = _("load of library");
8008 }
8009 else
8010 {
8011 if (self->regex)
8012 msg = string_printf (_("unload of library matching %s"), self->regex);
8013 else
8014 msg = _("unload of library");
8015 }
8016 uiout->field_string ("what", msg);
8017
8018 if (uiout->is_mi_like_p ())
8019 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8020 }
8021
8022 static void
8023 print_mention_catch_solib (struct breakpoint *b)
8024 {
8025 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8026
8027 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8028 self->is_load ? "load" : "unload");
8029 }
8030
8031 static void
8032 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8033 {
8034 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8035
8036 fprintf_unfiltered (fp, "%s %s",
8037 b->disposition == disp_del ? "tcatch" : "catch",
8038 self->is_load ? "load" : "unload");
8039 if (self->regex)
8040 fprintf_unfiltered (fp, " %s", self->regex);
8041 fprintf_unfiltered (fp, "\n");
8042 }
8043
8044 static struct breakpoint_ops catch_solib_breakpoint_ops;
8045
8046 /* Shared helper function (MI and CLI) for creating and installing
8047 a shared object event catchpoint. If IS_LOAD is non-zero then
8048 the events to be caught are load events, otherwise they are
8049 unload events. If IS_TEMP is non-zero the catchpoint is a
8050 temporary one. If ENABLED is non-zero the catchpoint is
8051 created in an enabled state. */
8052
8053 void
8054 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8055 {
8056 struct gdbarch *gdbarch = get_current_arch ();
8057
8058 if (!arg)
8059 arg = "";
8060 arg = skip_spaces (arg);
8061
8062 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8063
8064 if (*arg != '\0')
8065 {
8066 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8067 _("Invalid regexp")));
8068 c->regex = xstrdup (arg);
8069 }
8070
8071 c->is_load = is_load;
8072 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8073 &catch_solib_breakpoint_ops);
8074
8075 c->enable_state = enabled ? bp_enabled : bp_disabled;
8076
8077 install_breakpoint (0, std::move (c), 1);
8078 }
8079
8080 /* A helper function that does all the work for "catch load" and
8081 "catch unload". */
8082
8083 static void
8084 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8085 struct cmd_list_element *command)
8086 {
8087 int tempflag;
8088 const int enabled = 1;
8089
8090 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8091
8092 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8093 }
8094
8095 static void
8096 catch_load_command_1 (const char *arg, int from_tty,
8097 struct cmd_list_element *command)
8098 {
8099 catch_load_or_unload (arg, from_tty, 1, command);
8100 }
8101
8102 static void
8103 catch_unload_command_1 (const char *arg, int from_tty,
8104 struct cmd_list_element *command)
8105 {
8106 catch_load_or_unload (arg, from_tty, 0, command);
8107 }
8108
8109 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8110 is non-zero, then make the breakpoint temporary. If COND_STRING is
8111 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8112 the breakpoint_ops structure associated to the catchpoint. */
8113
8114 void
8115 init_catchpoint (struct breakpoint *b,
8116 struct gdbarch *gdbarch, int tempflag,
8117 const char *cond_string,
8118 const struct breakpoint_ops *ops)
8119 {
8120 symtab_and_line sal;
8121 sal.pspace = current_program_space;
8122
8123 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8124
8125 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8126 b->disposition = tempflag ? disp_del : disp_donttouch;
8127 }
8128
8129 void
8130 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8131 {
8132 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8133 set_breakpoint_number (internal, b);
8134 if (is_tracepoint (b))
8135 set_tracepoint_count (breakpoint_count);
8136 if (!internal)
8137 mention (b);
8138 gdb::observers::breakpoint_created.notify (b);
8139
8140 if (update_gll)
8141 update_global_location_list (UGLL_MAY_INSERT);
8142 }
8143
8144 static void
8145 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8146 int tempflag, const char *cond_string,
8147 const struct breakpoint_ops *ops)
8148 {
8149 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8150
8151 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8152
8153 c->forked_inferior_pid = null_ptid;
8154
8155 install_breakpoint (0, std::move (c), 1);
8156 }
8157
8158 /* Exec catchpoints. */
8159
8160 /* An instance of this type is used to represent an exec catchpoint.
8161 A breakpoint is really of this type iff its ops pointer points to
8162 CATCH_EXEC_BREAKPOINT_OPS. */
8163
8164 struct exec_catchpoint : public breakpoint
8165 {
8166 ~exec_catchpoint () override;
8167
8168 /* Filename of a program whose exec triggered this catchpoint.
8169 This field is only valid immediately after this catchpoint has
8170 triggered. */
8171 char *exec_pathname;
8172 };
8173
8174 /* Exec catchpoint destructor. */
8175
8176 exec_catchpoint::~exec_catchpoint ()
8177 {
8178 xfree (this->exec_pathname);
8179 }
8180
8181 static int
8182 insert_catch_exec (struct bp_location *bl)
8183 {
8184 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8185 }
8186
8187 static int
8188 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8189 {
8190 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8191 }
8192
8193 static int
8194 breakpoint_hit_catch_exec (const struct bp_location *bl,
8195 const address_space *aspace, CORE_ADDR bp_addr,
8196 const struct target_waitstatus *ws)
8197 {
8198 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8199
8200 if (ws->kind != TARGET_WAITKIND_EXECD)
8201 return 0;
8202
8203 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8204 return 1;
8205 }
8206
8207 static enum print_stop_action
8208 print_it_catch_exec (bpstat bs)
8209 {
8210 struct ui_out *uiout = current_uiout;
8211 struct breakpoint *b = bs->breakpoint_at;
8212 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8213
8214 annotate_catchpoint (b->number);
8215 maybe_print_thread_hit_breakpoint (uiout);
8216 if (b->disposition == disp_del)
8217 uiout->text ("Temporary catchpoint ");
8218 else
8219 uiout->text ("Catchpoint ");
8220 if (uiout->is_mi_like_p ())
8221 {
8222 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8223 uiout->field_string ("disp", bpdisp_text (b->disposition));
8224 }
8225 uiout->field_int ("bkptno", b->number);
8226 uiout->text (" (exec'd ");
8227 uiout->field_string ("new-exec", c->exec_pathname);
8228 uiout->text ("), ");
8229
8230 return PRINT_SRC_AND_LOC;
8231 }
8232
8233 static void
8234 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8235 {
8236 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8237 struct value_print_options opts;
8238 struct ui_out *uiout = current_uiout;
8239
8240 get_user_print_options (&opts);
8241
8242 /* Field 4, the address, is omitted (which makes the columns
8243 not line up too nicely with the headers, but the effect
8244 is relatively readable). */
8245 if (opts.addressprint)
8246 uiout->field_skip ("addr");
8247 annotate_field (5);
8248 uiout->text ("exec");
8249 if (c->exec_pathname != NULL)
8250 {
8251 uiout->text (", program \"");
8252 uiout->field_string ("what", c->exec_pathname);
8253 uiout->text ("\" ");
8254 }
8255
8256 if (uiout->is_mi_like_p ())
8257 uiout->field_string ("catch-type", "exec");
8258 }
8259
8260 static void
8261 print_mention_catch_exec (struct breakpoint *b)
8262 {
8263 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8264 }
8265
8266 /* Implement the "print_recreate" breakpoint_ops method for exec
8267 catchpoints. */
8268
8269 static void
8270 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8271 {
8272 fprintf_unfiltered (fp, "catch exec");
8273 print_recreate_thread (b, fp);
8274 }
8275
8276 static struct breakpoint_ops catch_exec_breakpoint_ops;
8277
8278 static int
8279 hw_breakpoint_used_count (void)
8280 {
8281 int i = 0;
8282 struct breakpoint *b;
8283 struct bp_location *bl;
8284
8285 ALL_BREAKPOINTS (b)
8286 {
8287 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8288 for (bl = b->loc; bl; bl = bl->next)
8289 {
8290 /* Special types of hardware breakpoints may use more than
8291 one register. */
8292 i += b->ops->resources_needed (bl);
8293 }
8294 }
8295
8296 return i;
8297 }
8298
8299 /* Returns the resources B would use if it were a hardware
8300 watchpoint. */
8301
8302 static int
8303 hw_watchpoint_use_count (struct breakpoint *b)
8304 {
8305 int i = 0;
8306 struct bp_location *bl;
8307
8308 if (!breakpoint_enabled (b))
8309 return 0;
8310
8311 for (bl = b->loc; bl; bl = bl->next)
8312 {
8313 /* Special types of hardware watchpoints may use more than
8314 one register. */
8315 i += b->ops->resources_needed (bl);
8316 }
8317
8318 return i;
8319 }
8320
8321 /* Returns the sum the used resources of all hardware watchpoints of
8322 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8323 the sum of the used resources of all hardware watchpoints of other
8324 types _not_ TYPE. */
8325
8326 static int
8327 hw_watchpoint_used_count_others (struct breakpoint *except,
8328 enum bptype type, int *other_type_used)
8329 {
8330 int i = 0;
8331 struct breakpoint *b;
8332
8333 *other_type_used = 0;
8334 ALL_BREAKPOINTS (b)
8335 {
8336 if (b == except)
8337 continue;
8338 if (!breakpoint_enabled (b))
8339 continue;
8340
8341 if (b->type == type)
8342 i += hw_watchpoint_use_count (b);
8343 else if (is_hardware_watchpoint (b))
8344 *other_type_used = 1;
8345 }
8346
8347 return i;
8348 }
8349
8350 void
8351 disable_watchpoints_before_interactive_call_start (void)
8352 {
8353 struct breakpoint *b;
8354
8355 ALL_BREAKPOINTS (b)
8356 {
8357 if (is_watchpoint (b) && breakpoint_enabled (b))
8358 {
8359 b->enable_state = bp_call_disabled;
8360 update_global_location_list (UGLL_DONT_INSERT);
8361 }
8362 }
8363 }
8364
8365 void
8366 enable_watchpoints_after_interactive_call_stop (void)
8367 {
8368 struct breakpoint *b;
8369
8370 ALL_BREAKPOINTS (b)
8371 {
8372 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8373 {
8374 b->enable_state = bp_enabled;
8375 update_global_location_list (UGLL_MAY_INSERT);
8376 }
8377 }
8378 }
8379
8380 void
8381 disable_breakpoints_before_startup (void)
8382 {
8383 current_program_space->executing_startup = 1;
8384 update_global_location_list (UGLL_DONT_INSERT);
8385 }
8386
8387 void
8388 enable_breakpoints_after_startup (void)
8389 {
8390 current_program_space->executing_startup = 0;
8391 breakpoint_re_set ();
8392 }
8393
8394 /* Create a new single-step breakpoint for thread THREAD, with no
8395 locations. */
8396
8397 static struct breakpoint *
8398 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8399 {
8400 std::unique_ptr<breakpoint> b (new breakpoint ());
8401
8402 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8403 &momentary_breakpoint_ops);
8404
8405 b->disposition = disp_donttouch;
8406 b->frame_id = null_frame_id;
8407
8408 b->thread = thread;
8409 gdb_assert (b->thread != 0);
8410
8411 return add_to_breakpoint_chain (std::move (b));
8412 }
8413
8414 /* Set a momentary breakpoint of type TYPE at address specified by
8415 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8416 frame. */
8417
8418 breakpoint_up
8419 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8420 struct frame_id frame_id, enum bptype type)
8421 {
8422 struct breakpoint *b;
8423
8424 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8425 tail-called one. */
8426 gdb_assert (!frame_id_artificial_p (frame_id));
8427
8428 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8429 b->enable_state = bp_enabled;
8430 b->disposition = disp_donttouch;
8431 b->frame_id = frame_id;
8432
8433 b->thread = inferior_thread ()->global_num;
8434
8435 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8436
8437 return breakpoint_up (b);
8438 }
8439
8440 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8441 The new breakpoint will have type TYPE, use OPS as its
8442 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8443
8444 static struct breakpoint *
8445 momentary_breakpoint_from_master (struct breakpoint *orig,
8446 enum bptype type,
8447 const struct breakpoint_ops *ops,
8448 int loc_enabled)
8449 {
8450 struct breakpoint *copy;
8451
8452 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8453 copy->loc = allocate_bp_location (copy);
8454 set_breakpoint_location_function (copy->loc);
8455
8456 copy->loc->gdbarch = orig->loc->gdbarch;
8457 copy->loc->requested_address = orig->loc->requested_address;
8458 copy->loc->address = orig->loc->address;
8459 copy->loc->section = orig->loc->section;
8460 copy->loc->pspace = orig->loc->pspace;
8461 copy->loc->probe = orig->loc->probe;
8462 copy->loc->line_number = orig->loc->line_number;
8463 copy->loc->symtab = orig->loc->symtab;
8464 copy->loc->enabled = loc_enabled;
8465 copy->frame_id = orig->frame_id;
8466 copy->thread = orig->thread;
8467 copy->pspace = orig->pspace;
8468
8469 copy->enable_state = bp_enabled;
8470 copy->disposition = disp_donttouch;
8471 copy->number = internal_breakpoint_number--;
8472
8473 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8474 return copy;
8475 }
8476
8477 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8478 ORIG is NULL. */
8479
8480 struct breakpoint *
8481 clone_momentary_breakpoint (struct breakpoint *orig)
8482 {
8483 /* If there's nothing to clone, then return nothing. */
8484 if (orig == NULL)
8485 return NULL;
8486
8487 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8488 }
8489
8490 breakpoint_up
8491 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8492 enum bptype type)
8493 {
8494 struct symtab_and_line sal;
8495
8496 sal = find_pc_line (pc, 0);
8497 sal.pc = pc;
8498 sal.section = find_pc_overlay (pc);
8499 sal.explicit_pc = 1;
8500
8501 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8502 }
8503 \f
8504
8505 /* Tell the user we have just set a breakpoint B. */
8506
8507 static void
8508 mention (struct breakpoint *b)
8509 {
8510 b->ops->print_mention (b);
8511 current_uiout->text ("\n");
8512 }
8513 \f
8514
8515 static int bp_loc_is_permanent (struct bp_location *loc);
8516
8517 static struct bp_location *
8518 add_location_to_breakpoint (struct breakpoint *b,
8519 const struct symtab_and_line *sal)
8520 {
8521 struct bp_location *loc, **tmp;
8522 CORE_ADDR adjusted_address;
8523 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8524
8525 if (loc_gdbarch == NULL)
8526 loc_gdbarch = b->gdbarch;
8527
8528 /* Adjust the breakpoint's address prior to allocating a location.
8529 Once we call allocate_bp_location(), that mostly uninitialized
8530 location will be placed on the location chain. Adjustment of the
8531 breakpoint may cause target_read_memory() to be called and we do
8532 not want its scan of the location chain to find a breakpoint and
8533 location that's only been partially initialized. */
8534 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8535 sal->pc, b->type);
8536
8537 /* Sort the locations by their ADDRESS. */
8538 loc = allocate_bp_location (b);
8539 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8540 tmp = &((*tmp)->next))
8541 ;
8542 loc->next = *tmp;
8543 *tmp = loc;
8544
8545 loc->requested_address = sal->pc;
8546 loc->address = adjusted_address;
8547 loc->pspace = sal->pspace;
8548 loc->probe.prob = sal->prob;
8549 loc->probe.objfile = sal->objfile;
8550 gdb_assert (loc->pspace != NULL);
8551 loc->section = sal->section;
8552 loc->gdbarch = loc_gdbarch;
8553 loc->line_number = sal->line;
8554 loc->symtab = sal->symtab;
8555 loc->symbol = sal->symbol;
8556 loc->msymbol = sal->msymbol;
8557 loc->objfile = sal->objfile;
8558
8559 set_breakpoint_location_function (loc);
8560
8561 /* While by definition, permanent breakpoints are already present in the
8562 code, we don't mark the location as inserted. Normally one would expect
8563 that GDB could rely on that breakpoint instruction to stop the program,
8564 thus removing the need to insert its own breakpoint, except that executing
8565 the breakpoint instruction can kill the target instead of reporting a
8566 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8567 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8568 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8569 breakpoint be inserted normally results in QEMU knowing about the GDB
8570 breakpoint, and thus trap before the breakpoint instruction is executed.
8571 (If GDB later needs to continue execution past the permanent breakpoint,
8572 it manually increments the PC, thus avoiding executing the breakpoint
8573 instruction.) */
8574 if (bp_loc_is_permanent (loc))
8575 loc->permanent = 1;
8576
8577 return loc;
8578 }
8579 \f
8580
8581 /* See breakpoint.h. */
8582
8583 int
8584 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8585 {
8586 int len;
8587 CORE_ADDR addr;
8588 const gdb_byte *bpoint;
8589 gdb_byte *target_mem;
8590
8591 addr = address;
8592 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8593
8594 /* Software breakpoints unsupported? */
8595 if (bpoint == NULL)
8596 return 0;
8597
8598 target_mem = (gdb_byte *) alloca (len);
8599
8600 /* Enable the automatic memory restoration from breakpoints while
8601 we read the memory. Otherwise we could say about our temporary
8602 breakpoints they are permanent. */
8603 scoped_restore restore_memory
8604 = make_scoped_restore_show_memory_breakpoints (0);
8605
8606 if (target_read_memory (address, target_mem, len) == 0
8607 && memcmp (target_mem, bpoint, len) == 0)
8608 return 1;
8609
8610 return 0;
8611 }
8612
8613 /* Return 1 if LOC is pointing to a permanent breakpoint,
8614 return 0 otherwise. */
8615
8616 static int
8617 bp_loc_is_permanent (struct bp_location *loc)
8618 {
8619 gdb_assert (loc != NULL);
8620
8621 /* If we have a non-breakpoint-backed catchpoint or a software
8622 watchpoint, just return 0. We should not attempt to read from
8623 the addresses the locations of these breakpoint types point to.
8624 program_breakpoint_here_p, below, will attempt to read
8625 memory. */
8626 if (!bl_address_is_meaningful (loc))
8627 return 0;
8628
8629 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8630 switch_to_program_space_and_thread (loc->pspace);
8631 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8632 }
8633
8634 /* Build a command list for the dprintf corresponding to the current
8635 settings of the dprintf style options. */
8636
8637 static void
8638 update_dprintf_command_list (struct breakpoint *b)
8639 {
8640 char *dprintf_args = b->extra_string;
8641 char *printf_line = NULL;
8642
8643 if (!dprintf_args)
8644 return;
8645
8646 dprintf_args = skip_spaces (dprintf_args);
8647
8648 /* Allow a comma, as it may have terminated a location, but don't
8649 insist on it. */
8650 if (*dprintf_args == ',')
8651 ++dprintf_args;
8652 dprintf_args = skip_spaces (dprintf_args);
8653
8654 if (*dprintf_args != '"')
8655 error (_("Bad format string, missing '\"'."));
8656
8657 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8658 printf_line = xstrprintf ("printf %s", dprintf_args);
8659 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8660 {
8661 if (!dprintf_function)
8662 error (_("No function supplied for dprintf call"));
8663
8664 if (dprintf_channel && strlen (dprintf_channel) > 0)
8665 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8666 dprintf_function,
8667 dprintf_channel,
8668 dprintf_args);
8669 else
8670 printf_line = xstrprintf ("call (void) %s (%s)",
8671 dprintf_function,
8672 dprintf_args);
8673 }
8674 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8675 {
8676 if (target_can_run_breakpoint_commands ())
8677 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8678 else
8679 {
8680 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8681 printf_line = xstrprintf ("printf %s", dprintf_args);
8682 }
8683 }
8684 else
8685 internal_error (__FILE__, __LINE__,
8686 _("Invalid dprintf style."));
8687
8688 gdb_assert (printf_line != NULL);
8689
8690 /* Manufacture a printf sequence. */
8691 struct command_line *printf_cmd_line
8692 = new struct command_line (simple_control, printf_line);
8693 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8694 command_lines_deleter ()));
8695 }
8696
8697 /* Update all dprintf commands, making their command lists reflect
8698 current style settings. */
8699
8700 static void
8701 update_dprintf_commands (const char *args, int from_tty,
8702 struct cmd_list_element *c)
8703 {
8704 struct breakpoint *b;
8705
8706 ALL_BREAKPOINTS (b)
8707 {
8708 if (b->type == bp_dprintf)
8709 update_dprintf_command_list (b);
8710 }
8711 }
8712
8713 /* Create a breakpoint with SAL as location. Use LOCATION
8714 as a description of the location, and COND_STRING
8715 as condition expression. If LOCATION is NULL then create an
8716 "address location" from the address in the SAL. */
8717
8718 static void
8719 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8720 gdb::array_view<const symtab_and_line> sals,
8721 event_location_up &&location,
8722 gdb::unique_xmalloc_ptr<char> filter,
8723 gdb::unique_xmalloc_ptr<char> cond_string,
8724 gdb::unique_xmalloc_ptr<char> extra_string,
8725 enum bptype type, enum bpdisp disposition,
8726 int thread, int task, int ignore_count,
8727 const struct breakpoint_ops *ops, int from_tty,
8728 int enabled, int internal, unsigned flags,
8729 int display_canonical)
8730 {
8731 int i;
8732
8733 if (type == bp_hardware_breakpoint)
8734 {
8735 int target_resources_ok;
8736
8737 i = hw_breakpoint_used_count ();
8738 target_resources_ok =
8739 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8740 i + 1, 0);
8741 if (target_resources_ok == 0)
8742 error (_("No hardware breakpoint support in the target."));
8743 else if (target_resources_ok < 0)
8744 error (_("Hardware breakpoints used exceeds limit."));
8745 }
8746
8747 gdb_assert (!sals.empty ());
8748
8749 for (const auto &sal : sals)
8750 {
8751 struct bp_location *loc;
8752
8753 if (from_tty)
8754 {
8755 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8756 if (!loc_gdbarch)
8757 loc_gdbarch = gdbarch;
8758
8759 describe_other_breakpoints (loc_gdbarch,
8760 sal.pspace, sal.pc, sal.section, thread);
8761 }
8762
8763 if (&sal == &sals[0])
8764 {
8765 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8766 b->thread = thread;
8767 b->task = task;
8768
8769 b->cond_string = cond_string.release ();
8770 b->extra_string = extra_string.release ();
8771 b->ignore_count = ignore_count;
8772 b->enable_state = enabled ? bp_enabled : bp_disabled;
8773 b->disposition = disposition;
8774
8775 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8776 b->loc->inserted = 1;
8777
8778 if (type == bp_static_tracepoint)
8779 {
8780 struct tracepoint *t = (struct tracepoint *) b;
8781 struct static_tracepoint_marker marker;
8782
8783 if (strace_marker_p (b))
8784 {
8785 /* We already know the marker exists, otherwise, we
8786 wouldn't see a sal for it. */
8787 const char *p
8788 = &event_location_to_string (b->location.get ())[3];
8789 const char *endp;
8790
8791 p = skip_spaces (p);
8792
8793 endp = skip_to_space (p);
8794
8795 t->static_trace_marker_id.assign (p, endp - p);
8796
8797 printf_filtered (_("Probed static tracepoint "
8798 "marker \"%s\"\n"),
8799 t->static_trace_marker_id.c_str ());
8800 }
8801 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8802 {
8803 t->static_trace_marker_id = std::move (marker.str_id);
8804
8805 printf_filtered (_("Probed static tracepoint "
8806 "marker \"%s\"\n"),
8807 t->static_trace_marker_id.c_str ());
8808 }
8809 else
8810 warning (_("Couldn't determine the static "
8811 "tracepoint marker to probe"));
8812 }
8813
8814 loc = b->loc;
8815 }
8816 else
8817 {
8818 loc = add_location_to_breakpoint (b, &sal);
8819 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8820 loc->inserted = 1;
8821 }
8822
8823 if (b->cond_string)
8824 {
8825 const char *arg = b->cond_string;
8826
8827 loc->cond = parse_exp_1 (&arg, loc->address,
8828 block_for_pc (loc->address), 0);
8829 if (*arg)
8830 error (_("Garbage '%s' follows condition"), arg);
8831 }
8832
8833 /* Dynamic printf requires and uses additional arguments on the
8834 command line, otherwise it's an error. */
8835 if (type == bp_dprintf)
8836 {
8837 if (b->extra_string)
8838 update_dprintf_command_list (b);
8839 else
8840 error (_("Format string required"));
8841 }
8842 else if (b->extra_string)
8843 error (_("Garbage '%s' at end of command"), b->extra_string);
8844 }
8845
8846 b->display_canonical = display_canonical;
8847 if (location != NULL)
8848 b->location = std::move (location);
8849 else
8850 b->location = new_address_location (b->loc->address, NULL, 0);
8851 b->filter = filter.release ();
8852 }
8853
8854 static void
8855 create_breakpoint_sal (struct gdbarch *gdbarch,
8856 gdb::array_view<const symtab_and_line> sals,
8857 event_location_up &&location,
8858 gdb::unique_xmalloc_ptr<char> filter,
8859 gdb::unique_xmalloc_ptr<char> cond_string,
8860 gdb::unique_xmalloc_ptr<char> extra_string,
8861 enum bptype type, enum bpdisp disposition,
8862 int thread, int task, int ignore_count,
8863 const struct breakpoint_ops *ops, int from_tty,
8864 int enabled, int internal, unsigned flags,
8865 int display_canonical)
8866 {
8867 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8868
8869 init_breakpoint_sal (b.get (), gdbarch,
8870 sals, std::move (location),
8871 std::move (filter),
8872 std::move (cond_string),
8873 std::move (extra_string),
8874 type, disposition,
8875 thread, task, ignore_count,
8876 ops, from_tty,
8877 enabled, internal, flags,
8878 display_canonical);
8879
8880 install_breakpoint (internal, std::move (b), 0);
8881 }
8882
8883 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8884 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8885 value. COND_STRING, if not NULL, specified the condition to be
8886 used for all breakpoints. Essentially the only case where
8887 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8888 function. In that case, it's still not possible to specify
8889 separate conditions for different overloaded functions, so
8890 we take just a single condition string.
8891
8892 NOTE: If the function succeeds, the caller is expected to cleanup
8893 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8894 array contents). If the function fails (error() is called), the
8895 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8896 COND and SALS arrays and each of those arrays contents. */
8897
8898 static void
8899 create_breakpoints_sal (struct gdbarch *gdbarch,
8900 struct linespec_result *canonical,
8901 gdb::unique_xmalloc_ptr<char> cond_string,
8902 gdb::unique_xmalloc_ptr<char> extra_string,
8903 enum bptype type, enum bpdisp disposition,
8904 int thread, int task, int ignore_count,
8905 const struct breakpoint_ops *ops, int from_tty,
8906 int enabled, int internal, unsigned flags)
8907 {
8908 if (canonical->pre_expanded)
8909 gdb_assert (canonical->lsals.size () == 1);
8910
8911 for (const auto &lsal : canonical->lsals)
8912 {
8913 /* Note that 'location' can be NULL in the case of a plain
8914 'break', without arguments. */
8915 event_location_up location
8916 = (canonical->location != NULL
8917 ? copy_event_location (canonical->location.get ()) : NULL);
8918 gdb::unique_xmalloc_ptr<char> filter_string
8919 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8920
8921 create_breakpoint_sal (gdbarch, lsal.sals,
8922 std::move (location),
8923 std::move (filter_string),
8924 std::move (cond_string),
8925 std::move (extra_string),
8926 type, disposition,
8927 thread, task, ignore_count, ops,
8928 from_tty, enabled, internal, flags,
8929 canonical->special_display);
8930 }
8931 }
8932
8933 /* Parse LOCATION which is assumed to be a SAL specification possibly
8934 followed by conditionals. On return, SALS contains an array of SAL
8935 addresses found. LOCATION points to the end of the SAL (for
8936 linespec locations).
8937
8938 The array and the line spec strings are allocated on the heap, it is
8939 the caller's responsibility to free them. */
8940
8941 static void
8942 parse_breakpoint_sals (const struct event_location *location,
8943 struct linespec_result *canonical)
8944 {
8945 struct symtab_and_line cursal;
8946
8947 if (event_location_type (location) == LINESPEC_LOCATION)
8948 {
8949 const char *spec = get_linespec_location (location)->spec_string;
8950
8951 if (spec == NULL)
8952 {
8953 /* The last displayed codepoint, if it's valid, is our default
8954 breakpoint address. */
8955 if (last_displayed_sal_is_valid ())
8956 {
8957 /* Set sal's pspace, pc, symtab, and line to the values
8958 corresponding to the last call to print_frame_info.
8959 Be sure to reinitialize LINE with NOTCURRENT == 0
8960 as the breakpoint line number is inappropriate otherwise.
8961 find_pc_line would adjust PC, re-set it back. */
8962 symtab_and_line sal = get_last_displayed_sal ();
8963 CORE_ADDR pc = sal.pc;
8964
8965 sal = find_pc_line (pc, 0);
8966
8967 /* "break" without arguments is equivalent to "break *PC"
8968 where PC is the last displayed codepoint's address. So
8969 make sure to set sal.explicit_pc to prevent GDB from
8970 trying to expand the list of sals to include all other
8971 instances with the same symtab and line. */
8972 sal.pc = pc;
8973 sal.explicit_pc = 1;
8974
8975 struct linespec_sals lsal;
8976 lsal.sals = {sal};
8977 lsal.canonical = NULL;
8978
8979 canonical->lsals.push_back (std::move (lsal));
8980 return;
8981 }
8982 else
8983 error (_("No default breakpoint address now."));
8984 }
8985 }
8986
8987 /* Force almost all breakpoints to be in terms of the
8988 current_source_symtab (which is decode_line_1's default).
8989 This should produce the results we want almost all of the
8990 time while leaving default_breakpoint_* alone.
8991
8992 ObjC: However, don't match an Objective-C method name which
8993 may have a '+' or '-' succeeded by a '['. */
8994 cursal = get_current_source_symtab_and_line ();
8995 if (last_displayed_sal_is_valid ())
8996 {
8997 const char *spec = NULL;
8998
8999 if (event_location_type (location) == LINESPEC_LOCATION)
9000 spec = get_linespec_location (location)->spec_string;
9001
9002 if (!cursal.symtab
9003 || (spec != NULL
9004 && strchr ("+-", spec[0]) != NULL
9005 && spec[1] != '['))
9006 {
9007 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9008 get_last_displayed_symtab (),
9009 get_last_displayed_line (),
9010 canonical, NULL, NULL);
9011 return;
9012 }
9013 }
9014
9015 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9016 cursal.symtab, cursal.line, canonical, NULL, NULL);
9017 }
9018
9019
9020 /* Convert each SAL into a real PC. Verify that the PC can be
9021 inserted as a breakpoint. If it can't throw an error. */
9022
9023 static void
9024 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9025 {
9026 for (auto &sal : sals)
9027 resolve_sal_pc (&sal);
9028 }
9029
9030 /* Fast tracepoints may have restrictions on valid locations. For
9031 instance, a fast tracepoint using a jump instead of a trap will
9032 likely have to overwrite more bytes than a trap would, and so can
9033 only be placed where the instruction is longer than the jump, or a
9034 multi-instruction sequence does not have a jump into the middle of
9035 it, etc. */
9036
9037 static void
9038 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9039 gdb::array_view<const symtab_and_line> sals)
9040 {
9041 for (const auto &sal : sals)
9042 {
9043 struct gdbarch *sarch;
9044
9045 sarch = get_sal_arch (sal);
9046 /* We fall back to GDBARCH if there is no architecture
9047 associated with SAL. */
9048 if (sarch == NULL)
9049 sarch = gdbarch;
9050 std::string msg;
9051 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9052 error (_("May not have a fast tracepoint at %s%s"),
9053 paddress (sarch, sal.pc), msg.c_str ());
9054 }
9055 }
9056
9057 /* Given TOK, a string specification of condition and thread, as
9058 accepted by the 'break' command, extract the condition
9059 string and thread number and set *COND_STRING and *THREAD.
9060 PC identifies the context at which the condition should be parsed.
9061 If no condition is found, *COND_STRING is set to NULL.
9062 If no thread is found, *THREAD is set to -1. */
9063
9064 static void
9065 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9066 char **cond_string, int *thread, int *task,
9067 char **rest)
9068 {
9069 *cond_string = NULL;
9070 *thread = -1;
9071 *task = 0;
9072 *rest = NULL;
9073
9074 while (tok && *tok)
9075 {
9076 const char *end_tok;
9077 int toklen;
9078 const char *cond_start = NULL;
9079 const char *cond_end = NULL;
9080
9081 tok = skip_spaces (tok);
9082
9083 if ((*tok == '"' || *tok == ',') && rest)
9084 {
9085 *rest = savestring (tok, strlen (tok));
9086 return;
9087 }
9088
9089 end_tok = skip_to_space (tok);
9090
9091 toklen = end_tok - tok;
9092
9093 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9094 {
9095 tok = cond_start = end_tok + 1;
9096 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9097 cond_end = tok;
9098 *cond_string = savestring (cond_start, cond_end - cond_start);
9099 }
9100 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9101 {
9102 const char *tmptok;
9103 struct thread_info *thr;
9104
9105 tok = end_tok + 1;
9106 thr = parse_thread_id (tok, &tmptok);
9107 if (tok == tmptok)
9108 error (_("Junk after thread keyword."));
9109 *thread = thr->global_num;
9110 tok = tmptok;
9111 }
9112 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9113 {
9114 char *tmptok;
9115
9116 tok = end_tok + 1;
9117 *task = strtol (tok, &tmptok, 0);
9118 if (tok == tmptok)
9119 error (_("Junk after task keyword."));
9120 if (!valid_task_id (*task))
9121 error (_("Unknown task %d."), *task);
9122 tok = tmptok;
9123 }
9124 else if (rest)
9125 {
9126 *rest = savestring (tok, strlen (tok));
9127 return;
9128 }
9129 else
9130 error (_("Junk at end of arguments."));
9131 }
9132 }
9133
9134 /* Decode a static tracepoint marker spec. */
9135
9136 static std::vector<symtab_and_line>
9137 decode_static_tracepoint_spec (const char **arg_p)
9138 {
9139 const char *p = &(*arg_p)[3];
9140 const char *endp;
9141
9142 p = skip_spaces (p);
9143
9144 endp = skip_to_space (p);
9145
9146 std::string marker_str (p, endp - p);
9147
9148 std::vector<static_tracepoint_marker> markers
9149 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9150 if (markers.empty ())
9151 error (_("No known static tracepoint marker named %s"),
9152 marker_str.c_str ());
9153
9154 std::vector<symtab_and_line> sals;
9155 sals.reserve (markers.size ());
9156
9157 for (const static_tracepoint_marker &marker : markers)
9158 {
9159 symtab_and_line sal = find_pc_line (marker.address, 0);
9160 sal.pc = marker.address;
9161 sals.push_back (sal);
9162 }
9163
9164 *arg_p = endp;
9165 return sals;
9166 }
9167
9168 /* See breakpoint.h. */
9169
9170 int
9171 create_breakpoint (struct gdbarch *gdbarch,
9172 const struct event_location *location,
9173 const char *cond_string,
9174 int thread, const char *extra_string,
9175 int parse_extra,
9176 int tempflag, enum bptype type_wanted,
9177 int ignore_count,
9178 enum auto_boolean pending_break_support,
9179 const struct breakpoint_ops *ops,
9180 int from_tty, int enabled, int internal,
9181 unsigned flags)
9182 {
9183 struct linespec_result canonical;
9184 int pending = 0;
9185 int task = 0;
9186 int prev_bkpt_count = breakpoint_count;
9187
9188 gdb_assert (ops != NULL);
9189
9190 /* If extra_string isn't useful, set it to NULL. */
9191 if (extra_string != NULL && *extra_string == '\0')
9192 extra_string = NULL;
9193
9194 try
9195 {
9196 ops->create_sals_from_location (location, &canonical, type_wanted);
9197 }
9198 catch (const gdb_exception_error &e)
9199 {
9200 /* If caller is interested in rc value from parse, set
9201 value. */
9202 if (e.error == NOT_FOUND_ERROR)
9203 {
9204 /* If pending breakpoint support is turned off, throw
9205 error. */
9206
9207 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9208 throw;
9209
9210 exception_print (gdb_stderr, e);
9211
9212 /* If pending breakpoint support is auto query and the user
9213 selects no, then simply return the error code. */
9214 if (pending_break_support == AUTO_BOOLEAN_AUTO
9215 && !nquery (_("Make %s pending on future shared library load? "),
9216 bptype_string (type_wanted)))
9217 return 0;
9218
9219 /* At this point, either the user was queried about setting
9220 a pending breakpoint and selected yes, or pending
9221 breakpoint behavior is on and thus a pending breakpoint
9222 is defaulted on behalf of the user. */
9223 pending = 1;
9224 }
9225 else
9226 throw;
9227 }
9228
9229 if (!pending && canonical.lsals.empty ())
9230 return 0;
9231
9232 /* Resolve all line numbers to PC's and verify that the addresses
9233 are ok for the target. */
9234 if (!pending)
9235 {
9236 for (auto &lsal : canonical.lsals)
9237 breakpoint_sals_to_pc (lsal.sals);
9238 }
9239
9240 /* Fast tracepoints may have additional restrictions on location. */
9241 if (!pending && type_wanted == bp_fast_tracepoint)
9242 {
9243 for (const auto &lsal : canonical.lsals)
9244 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9245 }
9246
9247 /* Verify that condition can be parsed, before setting any
9248 breakpoints. Allocate a separate condition expression for each
9249 breakpoint. */
9250 if (!pending)
9251 {
9252 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9253 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9254
9255 if (parse_extra)
9256 {
9257 char *rest;
9258 char *cond;
9259
9260 const linespec_sals &lsal = canonical.lsals[0];
9261
9262 /* Here we only parse 'arg' to separate condition
9263 from thread number, so parsing in context of first
9264 sal is OK. When setting the breakpoint we'll
9265 re-parse it in context of each sal. */
9266
9267 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9268 &cond, &thread, &task, &rest);
9269 cond_string_copy.reset (cond);
9270 extra_string_copy.reset (rest);
9271 }
9272 else
9273 {
9274 if (type_wanted != bp_dprintf
9275 && extra_string != NULL && *extra_string != '\0')
9276 error (_("Garbage '%s' at end of location"), extra_string);
9277
9278 /* Create a private copy of condition string. */
9279 if (cond_string)
9280 cond_string_copy.reset (xstrdup (cond_string));
9281 /* Create a private copy of any extra string. */
9282 if (extra_string)
9283 extra_string_copy.reset (xstrdup (extra_string));
9284 }
9285
9286 ops->create_breakpoints_sal (gdbarch, &canonical,
9287 std::move (cond_string_copy),
9288 std::move (extra_string_copy),
9289 type_wanted,
9290 tempflag ? disp_del : disp_donttouch,
9291 thread, task, ignore_count, ops,
9292 from_tty, enabled, internal, flags);
9293 }
9294 else
9295 {
9296 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9297
9298 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9299 b->location = copy_event_location (location);
9300
9301 if (parse_extra)
9302 b->cond_string = NULL;
9303 else
9304 {
9305 /* Create a private copy of condition string. */
9306 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9307 b->thread = thread;
9308 }
9309
9310 /* Create a private copy of any extra string. */
9311 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9312 b->ignore_count = ignore_count;
9313 b->disposition = tempflag ? disp_del : disp_donttouch;
9314 b->condition_not_parsed = 1;
9315 b->enable_state = enabled ? bp_enabled : bp_disabled;
9316 if ((type_wanted != bp_breakpoint
9317 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9318 b->pspace = current_program_space;
9319
9320 install_breakpoint (internal, std::move (b), 0);
9321 }
9322
9323 if (canonical.lsals.size () > 1)
9324 {
9325 warning (_("Multiple breakpoints were set.\nUse the "
9326 "\"delete\" command to delete unwanted breakpoints."));
9327 prev_breakpoint_count = prev_bkpt_count;
9328 }
9329
9330 update_global_location_list (UGLL_MAY_INSERT);
9331
9332 return 1;
9333 }
9334
9335 /* Set a breakpoint.
9336 ARG is a string describing breakpoint address,
9337 condition, and thread.
9338 FLAG specifies if a breakpoint is hardware on,
9339 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9340 and BP_TEMPFLAG. */
9341
9342 static void
9343 break_command_1 (const char *arg, int flag, int from_tty)
9344 {
9345 int tempflag = flag & BP_TEMPFLAG;
9346 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9347 ? bp_hardware_breakpoint
9348 : bp_breakpoint);
9349 struct breakpoint_ops *ops;
9350
9351 event_location_up location = string_to_event_location (&arg, current_language);
9352
9353 /* Matching breakpoints on probes. */
9354 if (location != NULL
9355 && event_location_type (location.get ()) == PROBE_LOCATION)
9356 ops = &bkpt_probe_breakpoint_ops;
9357 else
9358 ops = &bkpt_breakpoint_ops;
9359
9360 create_breakpoint (get_current_arch (),
9361 location.get (),
9362 NULL, 0, arg, 1 /* parse arg */,
9363 tempflag, type_wanted,
9364 0 /* Ignore count */,
9365 pending_break_support,
9366 ops,
9367 from_tty,
9368 1 /* enabled */,
9369 0 /* internal */,
9370 0);
9371 }
9372
9373 /* Helper function for break_command_1 and disassemble_command. */
9374
9375 void
9376 resolve_sal_pc (struct symtab_and_line *sal)
9377 {
9378 CORE_ADDR pc;
9379
9380 if (sal->pc == 0 && sal->symtab != NULL)
9381 {
9382 if (!find_line_pc (sal->symtab, sal->line, &pc))
9383 error (_("No line %d in file \"%s\"."),
9384 sal->line, symtab_to_filename_for_display (sal->symtab));
9385 sal->pc = pc;
9386
9387 /* If this SAL corresponds to a breakpoint inserted using a line
9388 number, then skip the function prologue if necessary. */
9389 if (sal->explicit_line)
9390 skip_prologue_sal (sal);
9391 }
9392
9393 if (sal->section == 0 && sal->symtab != NULL)
9394 {
9395 const struct blockvector *bv;
9396 const struct block *b;
9397 struct symbol *sym;
9398
9399 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9400 SYMTAB_COMPUNIT (sal->symtab));
9401 if (bv != NULL)
9402 {
9403 sym = block_linkage_function (b);
9404 if (sym != NULL)
9405 {
9406 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9407 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9408 sym);
9409 }
9410 else
9411 {
9412 /* It really is worthwhile to have the section, so we'll
9413 just have to look harder. This case can be executed
9414 if we have line numbers but no functions (as can
9415 happen in assembly source). */
9416
9417 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9418 switch_to_program_space_and_thread (sal->pspace);
9419
9420 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9421 if (msym.minsym)
9422 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9423 }
9424 }
9425 }
9426 }
9427
9428 void
9429 break_command (const char *arg, int from_tty)
9430 {
9431 break_command_1 (arg, 0, from_tty);
9432 }
9433
9434 void
9435 tbreak_command (const char *arg, int from_tty)
9436 {
9437 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9438 }
9439
9440 static void
9441 hbreak_command (const char *arg, int from_tty)
9442 {
9443 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9444 }
9445
9446 static void
9447 thbreak_command (const char *arg, int from_tty)
9448 {
9449 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9450 }
9451
9452 static void
9453 stop_command (const char *arg, int from_tty)
9454 {
9455 printf_filtered (_("Specify the type of breakpoint to set.\n\
9456 Usage: stop in <function | address>\n\
9457 stop at <line>\n"));
9458 }
9459
9460 static void
9461 stopin_command (const char *arg, int from_tty)
9462 {
9463 int badInput = 0;
9464
9465 if (arg == NULL)
9466 badInput = 1;
9467 else if (*arg != '*')
9468 {
9469 const char *argptr = arg;
9470 int hasColon = 0;
9471
9472 /* Look for a ':'. If this is a line number specification, then
9473 say it is bad, otherwise, it should be an address or
9474 function/method name. */
9475 while (*argptr && !hasColon)
9476 {
9477 hasColon = (*argptr == ':');
9478 argptr++;
9479 }
9480
9481 if (hasColon)
9482 badInput = (*argptr != ':'); /* Not a class::method */
9483 else
9484 badInput = isdigit (*arg); /* a simple line number */
9485 }
9486
9487 if (badInput)
9488 printf_filtered (_("Usage: stop in <function | address>\n"));
9489 else
9490 break_command_1 (arg, 0, from_tty);
9491 }
9492
9493 static void
9494 stopat_command (const char *arg, int from_tty)
9495 {
9496 int badInput = 0;
9497
9498 if (arg == NULL || *arg == '*') /* no line number */
9499 badInput = 1;
9500 else
9501 {
9502 const char *argptr = arg;
9503 int hasColon = 0;
9504
9505 /* Look for a ':'. If there is a '::' then get out, otherwise
9506 it is probably a line number. */
9507 while (*argptr && !hasColon)
9508 {
9509 hasColon = (*argptr == ':');
9510 argptr++;
9511 }
9512
9513 if (hasColon)
9514 badInput = (*argptr == ':'); /* we have class::method */
9515 else
9516 badInput = !isdigit (*arg); /* not a line number */
9517 }
9518
9519 if (badInput)
9520 printf_filtered (_("Usage: stop at LINE\n"));
9521 else
9522 break_command_1 (arg, 0, from_tty);
9523 }
9524
9525 /* The dynamic printf command is mostly like a regular breakpoint, but
9526 with a prewired command list consisting of a single output command,
9527 built from extra arguments supplied on the dprintf command
9528 line. */
9529
9530 static void
9531 dprintf_command (const char *arg, int from_tty)
9532 {
9533 event_location_up location = string_to_event_location (&arg, current_language);
9534
9535 /* If non-NULL, ARG should have been advanced past the location;
9536 the next character must be ','. */
9537 if (arg != NULL)
9538 {
9539 if (arg[0] != ',' || arg[1] == '\0')
9540 error (_("Format string required"));
9541 else
9542 {
9543 /* Skip the comma. */
9544 ++arg;
9545 }
9546 }
9547
9548 create_breakpoint (get_current_arch (),
9549 location.get (),
9550 NULL, 0, arg, 1 /* parse arg */,
9551 0, bp_dprintf,
9552 0 /* Ignore count */,
9553 pending_break_support,
9554 &dprintf_breakpoint_ops,
9555 from_tty,
9556 1 /* enabled */,
9557 0 /* internal */,
9558 0);
9559 }
9560
9561 static void
9562 agent_printf_command (const char *arg, int from_tty)
9563 {
9564 error (_("May only run agent-printf on the target"));
9565 }
9566
9567 /* Implement the "breakpoint_hit" breakpoint_ops method for
9568 ranged breakpoints. */
9569
9570 static int
9571 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9572 const address_space *aspace,
9573 CORE_ADDR bp_addr,
9574 const struct target_waitstatus *ws)
9575 {
9576 if (ws->kind != TARGET_WAITKIND_STOPPED
9577 || ws->value.sig != GDB_SIGNAL_TRAP)
9578 return 0;
9579
9580 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9581 bl->length, aspace, bp_addr);
9582 }
9583
9584 /* Implement the "resources_needed" breakpoint_ops method for
9585 ranged breakpoints. */
9586
9587 static int
9588 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9589 {
9590 return target_ranged_break_num_registers ();
9591 }
9592
9593 /* Implement the "print_it" breakpoint_ops method for
9594 ranged breakpoints. */
9595
9596 static enum print_stop_action
9597 print_it_ranged_breakpoint (bpstat bs)
9598 {
9599 struct breakpoint *b = bs->breakpoint_at;
9600 struct bp_location *bl = b->loc;
9601 struct ui_out *uiout = current_uiout;
9602
9603 gdb_assert (b->type == bp_hardware_breakpoint);
9604
9605 /* Ranged breakpoints have only one location. */
9606 gdb_assert (bl && bl->next == NULL);
9607
9608 annotate_breakpoint (b->number);
9609
9610 maybe_print_thread_hit_breakpoint (uiout);
9611
9612 if (b->disposition == disp_del)
9613 uiout->text ("Temporary ranged breakpoint ");
9614 else
9615 uiout->text ("Ranged breakpoint ");
9616 if (uiout->is_mi_like_p ())
9617 {
9618 uiout->field_string ("reason",
9619 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9620 uiout->field_string ("disp", bpdisp_text (b->disposition));
9621 }
9622 uiout->field_int ("bkptno", b->number);
9623 uiout->text (", ");
9624
9625 return PRINT_SRC_AND_LOC;
9626 }
9627
9628 /* Implement the "print_one" breakpoint_ops method for
9629 ranged breakpoints. */
9630
9631 static void
9632 print_one_ranged_breakpoint (struct breakpoint *b,
9633 struct bp_location **last_loc)
9634 {
9635 struct bp_location *bl = b->loc;
9636 struct value_print_options opts;
9637 struct ui_out *uiout = current_uiout;
9638
9639 /* Ranged breakpoints have only one location. */
9640 gdb_assert (bl && bl->next == NULL);
9641
9642 get_user_print_options (&opts);
9643
9644 if (opts.addressprint)
9645 /* We don't print the address range here, it will be printed later
9646 by print_one_detail_ranged_breakpoint. */
9647 uiout->field_skip ("addr");
9648 annotate_field (5);
9649 print_breakpoint_location (b, bl);
9650 *last_loc = bl;
9651 }
9652
9653 /* Implement the "print_one_detail" breakpoint_ops method for
9654 ranged breakpoints. */
9655
9656 static void
9657 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9658 struct ui_out *uiout)
9659 {
9660 CORE_ADDR address_start, address_end;
9661 struct bp_location *bl = b->loc;
9662 string_file stb;
9663
9664 gdb_assert (bl);
9665
9666 address_start = bl->address;
9667 address_end = address_start + bl->length - 1;
9668
9669 uiout->text ("\taddress range: ");
9670 stb.printf ("[%s, %s]",
9671 print_core_address (bl->gdbarch, address_start),
9672 print_core_address (bl->gdbarch, address_end));
9673 uiout->field_stream ("addr", stb);
9674 uiout->text ("\n");
9675 }
9676
9677 /* Implement the "print_mention" breakpoint_ops method for
9678 ranged breakpoints. */
9679
9680 static void
9681 print_mention_ranged_breakpoint (struct breakpoint *b)
9682 {
9683 struct bp_location *bl = b->loc;
9684 struct ui_out *uiout = current_uiout;
9685
9686 gdb_assert (bl);
9687 gdb_assert (b->type == bp_hardware_breakpoint);
9688
9689 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9690 b->number, paddress (bl->gdbarch, bl->address),
9691 paddress (bl->gdbarch, bl->address + bl->length - 1));
9692 }
9693
9694 /* Implement the "print_recreate" breakpoint_ops method for
9695 ranged breakpoints. */
9696
9697 static void
9698 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9699 {
9700 fprintf_unfiltered (fp, "break-range %s, %s",
9701 event_location_to_string (b->location.get ()),
9702 event_location_to_string (b->location_range_end.get ()));
9703 print_recreate_thread (b, fp);
9704 }
9705
9706 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9707
9708 static struct breakpoint_ops ranged_breakpoint_ops;
9709
9710 /* Find the address where the end of the breakpoint range should be
9711 placed, given the SAL of the end of the range. This is so that if
9712 the user provides a line number, the end of the range is set to the
9713 last instruction of the given line. */
9714
9715 static CORE_ADDR
9716 find_breakpoint_range_end (struct symtab_and_line sal)
9717 {
9718 CORE_ADDR end;
9719
9720 /* If the user provided a PC value, use it. Otherwise,
9721 find the address of the end of the given location. */
9722 if (sal.explicit_pc)
9723 end = sal.pc;
9724 else
9725 {
9726 int ret;
9727 CORE_ADDR start;
9728
9729 ret = find_line_pc_range (sal, &start, &end);
9730 if (!ret)
9731 error (_("Could not find location of the end of the range."));
9732
9733 /* find_line_pc_range returns the start of the next line. */
9734 end--;
9735 }
9736
9737 return end;
9738 }
9739
9740 /* Implement the "break-range" CLI command. */
9741
9742 static void
9743 break_range_command (const char *arg, int from_tty)
9744 {
9745 const char *arg_start;
9746 struct linespec_result canonical_start, canonical_end;
9747 int bp_count, can_use_bp, length;
9748 CORE_ADDR end;
9749 struct breakpoint *b;
9750
9751 /* We don't support software ranged breakpoints. */
9752 if (target_ranged_break_num_registers () < 0)
9753 error (_("This target does not support hardware ranged breakpoints."));
9754
9755 bp_count = hw_breakpoint_used_count ();
9756 bp_count += target_ranged_break_num_registers ();
9757 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9758 bp_count, 0);
9759 if (can_use_bp < 0)
9760 error (_("Hardware breakpoints used exceeds limit."));
9761
9762 arg = skip_spaces (arg);
9763 if (arg == NULL || arg[0] == '\0')
9764 error(_("No address range specified."));
9765
9766 arg_start = arg;
9767 event_location_up start_location = string_to_event_location (&arg,
9768 current_language);
9769 parse_breakpoint_sals (start_location.get (), &canonical_start);
9770
9771 if (arg[0] != ',')
9772 error (_("Too few arguments."));
9773 else if (canonical_start.lsals.empty ())
9774 error (_("Could not find location of the beginning of the range."));
9775
9776 const linespec_sals &lsal_start = canonical_start.lsals[0];
9777
9778 if (canonical_start.lsals.size () > 1
9779 || lsal_start.sals.size () != 1)
9780 error (_("Cannot create a ranged breakpoint with multiple locations."));
9781
9782 const symtab_and_line &sal_start = lsal_start.sals[0];
9783 std::string addr_string_start (arg_start, arg - arg_start);
9784
9785 arg++; /* Skip the comma. */
9786 arg = skip_spaces (arg);
9787
9788 /* Parse the end location. */
9789
9790 arg_start = arg;
9791
9792 /* We call decode_line_full directly here instead of using
9793 parse_breakpoint_sals because we need to specify the start location's
9794 symtab and line as the default symtab and line for the end of the
9795 range. This makes it possible to have ranges like "foo.c:27, +14",
9796 where +14 means 14 lines from the start location. */
9797 event_location_up end_location = string_to_event_location (&arg,
9798 current_language);
9799 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9800 sal_start.symtab, sal_start.line,
9801 &canonical_end, NULL, NULL);
9802
9803 if (canonical_end.lsals.empty ())
9804 error (_("Could not find location of the end of the range."));
9805
9806 const linespec_sals &lsal_end = canonical_end.lsals[0];
9807 if (canonical_end.lsals.size () > 1
9808 || lsal_end.sals.size () != 1)
9809 error (_("Cannot create a ranged breakpoint with multiple locations."));
9810
9811 const symtab_and_line &sal_end = lsal_end.sals[0];
9812
9813 end = find_breakpoint_range_end (sal_end);
9814 if (sal_start.pc > end)
9815 error (_("Invalid address range, end precedes start."));
9816
9817 length = end - sal_start.pc + 1;
9818 if (length < 0)
9819 /* Length overflowed. */
9820 error (_("Address range too large."));
9821 else if (length == 1)
9822 {
9823 /* This range is simple enough to be handled by
9824 the `hbreak' command. */
9825 hbreak_command (&addr_string_start[0], 1);
9826
9827 return;
9828 }
9829
9830 /* Now set up the breakpoint. */
9831 b = set_raw_breakpoint (get_current_arch (), sal_start,
9832 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9833 set_breakpoint_count (breakpoint_count + 1);
9834 b->number = breakpoint_count;
9835 b->disposition = disp_donttouch;
9836 b->location = std::move (start_location);
9837 b->location_range_end = std::move (end_location);
9838 b->loc->length = length;
9839
9840 mention (b);
9841 gdb::observers::breakpoint_created.notify (b);
9842 update_global_location_list (UGLL_MAY_INSERT);
9843 }
9844
9845 /* Return non-zero if EXP is verified as constant. Returned zero
9846 means EXP is variable. Also the constant detection may fail for
9847 some constant expressions and in such case still falsely return
9848 zero. */
9849
9850 static int
9851 watchpoint_exp_is_const (const struct expression *exp)
9852 {
9853 int i = exp->nelts;
9854
9855 while (i > 0)
9856 {
9857 int oplenp, argsp;
9858
9859 /* We are only interested in the descriptor of each element. */
9860 operator_length (exp, i, &oplenp, &argsp);
9861 i -= oplenp;
9862
9863 switch (exp->elts[i].opcode)
9864 {
9865 case BINOP_ADD:
9866 case BINOP_SUB:
9867 case BINOP_MUL:
9868 case BINOP_DIV:
9869 case BINOP_REM:
9870 case BINOP_MOD:
9871 case BINOP_LSH:
9872 case BINOP_RSH:
9873 case BINOP_LOGICAL_AND:
9874 case BINOP_LOGICAL_OR:
9875 case BINOP_BITWISE_AND:
9876 case BINOP_BITWISE_IOR:
9877 case BINOP_BITWISE_XOR:
9878 case BINOP_EQUAL:
9879 case BINOP_NOTEQUAL:
9880 case BINOP_LESS:
9881 case BINOP_GTR:
9882 case BINOP_LEQ:
9883 case BINOP_GEQ:
9884 case BINOP_REPEAT:
9885 case BINOP_COMMA:
9886 case BINOP_EXP:
9887 case BINOP_MIN:
9888 case BINOP_MAX:
9889 case BINOP_INTDIV:
9890 case BINOP_CONCAT:
9891 case TERNOP_COND:
9892 case TERNOP_SLICE:
9893
9894 case OP_LONG:
9895 case OP_FLOAT:
9896 case OP_LAST:
9897 case OP_COMPLEX:
9898 case OP_STRING:
9899 case OP_ARRAY:
9900 case OP_TYPE:
9901 case OP_TYPEOF:
9902 case OP_DECLTYPE:
9903 case OP_TYPEID:
9904 case OP_NAME:
9905 case OP_OBJC_NSSTRING:
9906
9907 case UNOP_NEG:
9908 case UNOP_LOGICAL_NOT:
9909 case UNOP_COMPLEMENT:
9910 case UNOP_ADDR:
9911 case UNOP_HIGH:
9912 case UNOP_CAST:
9913
9914 case UNOP_CAST_TYPE:
9915 case UNOP_REINTERPRET_CAST:
9916 case UNOP_DYNAMIC_CAST:
9917 /* Unary, binary and ternary operators: We have to check
9918 their operands. If they are constant, then so is the
9919 result of that operation. For instance, if A and B are
9920 determined to be constants, then so is "A + B".
9921
9922 UNOP_IND is one exception to the rule above, because the
9923 value of *ADDR is not necessarily a constant, even when
9924 ADDR is. */
9925 break;
9926
9927 case OP_VAR_VALUE:
9928 /* Check whether the associated symbol is a constant.
9929
9930 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9931 possible that a buggy compiler could mark a variable as
9932 constant even when it is not, and TYPE_CONST would return
9933 true in this case, while SYMBOL_CLASS wouldn't.
9934
9935 We also have to check for function symbols because they
9936 are always constant. */
9937 {
9938 struct symbol *s = exp->elts[i + 2].symbol;
9939
9940 if (SYMBOL_CLASS (s) != LOC_BLOCK
9941 && SYMBOL_CLASS (s) != LOC_CONST
9942 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9943 return 0;
9944 break;
9945 }
9946
9947 /* The default action is to return 0 because we are using
9948 the optimistic approach here: If we don't know something,
9949 then it is not a constant. */
9950 default:
9951 return 0;
9952 }
9953 }
9954
9955 return 1;
9956 }
9957
9958 /* Watchpoint destructor. */
9959
9960 watchpoint::~watchpoint ()
9961 {
9962 xfree (this->exp_string);
9963 xfree (this->exp_string_reparse);
9964 }
9965
9966 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9967
9968 static void
9969 re_set_watchpoint (struct breakpoint *b)
9970 {
9971 struct watchpoint *w = (struct watchpoint *) b;
9972
9973 /* Watchpoint can be either on expression using entirely global
9974 variables, or it can be on local variables.
9975
9976 Watchpoints of the first kind are never auto-deleted, and even
9977 persist across program restarts. Since they can use variables
9978 from shared libraries, we need to reparse expression as libraries
9979 are loaded and unloaded.
9980
9981 Watchpoints on local variables can also change meaning as result
9982 of solib event. For example, if a watchpoint uses both a local
9983 and a global variables in expression, it's a local watchpoint,
9984 but unloading of a shared library will make the expression
9985 invalid. This is not a very common use case, but we still
9986 re-evaluate expression, to avoid surprises to the user.
9987
9988 Note that for local watchpoints, we re-evaluate it only if
9989 watchpoints frame id is still valid. If it's not, it means the
9990 watchpoint is out of scope and will be deleted soon. In fact,
9991 I'm not sure we'll ever be called in this case.
9992
9993 If a local watchpoint's frame id is still valid, then
9994 w->exp_valid_block is likewise valid, and we can safely use it.
9995
9996 Don't do anything about disabled watchpoints, since they will be
9997 reevaluated again when enabled. */
9998 update_watchpoint (w, 1 /* reparse */);
9999 }
10000
10001 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10002
10003 static int
10004 insert_watchpoint (struct bp_location *bl)
10005 {
10006 struct watchpoint *w = (struct watchpoint *) bl->owner;
10007 int length = w->exact ? 1 : bl->length;
10008
10009 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10010 w->cond_exp.get ());
10011 }
10012
10013 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10014
10015 static int
10016 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10017 {
10018 struct watchpoint *w = (struct watchpoint *) bl->owner;
10019 int length = w->exact ? 1 : bl->length;
10020
10021 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10022 w->cond_exp.get ());
10023 }
10024
10025 static int
10026 breakpoint_hit_watchpoint (const struct bp_location *bl,
10027 const address_space *aspace, CORE_ADDR bp_addr,
10028 const struct target_waitstatus *ws)
10029 {
10030 struct breakpoint *b = bl->owner;
10031 struct watchpoint *w = (struct watchpoint *) b;
10032
10033 /* Continuable hardware watchpoints are treated as non-existent if the
10034 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10035 some data address). Otherwise gdb won't stop on a break instruction
10036 in the code (not from a breakpoint) when a hardware watchpoint has
10037 been defined. Also skip watchpoints which we know did not trigger
10038 (did not match the data address). */
10039 if (is_hardware_watchpoint (b)
10040 && w->watchpoint_triggered == watch_triggered_no)
10041 return 0;
10042
10043 return 1;
10044 }
10045
10046 static void
10047 check_status_watchpoint (bpstat bs)
10048 {
10049 gdb_assert (is_watchpoint (bs->breakpoint_at));
10050
10051 bpstat_check_watchpoint (bs);
10052 }
10053
10054 /* Implement the "resources_needed" breakpoint_ops method for
10055 hardware watchpoints. */
10056
10057 static int
10058 resources_needed_watchpoint (const struct bp_location *bl)
10059 {
10060 struct watchpoint *w = (struct watchpoint *) bl->owner;
10061 int length = w->exact? 1 : bl->length;
10062
10063 return target_region_ok_for_hw_watchpoint (bl->address, length);
10064 }
10065
10066 /* Implement the "works_in_software_mode" breakpoint_ops method for
10067 hardware watchpoints. */
10068
10069 static int
10070 works_in_software_mode_watchpoint (const struct breakpoint *b)
10071 {
10072 /* Read and access watchpoints only work with hardware support. */
10073 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10074 }
10075
10076 static enum print_stop_action
10077 print_it_watchpoint (bpstat bs)
10078 {
10079 struct breakpoint *b;
10080 enum print_stop_action result;
10081 struct watchpoint *w;
10082 struct ui_out *uiout = current_uiout;
10083
10084 gdb_assert (bs->bp_location_at != NULL);
10085
10086 b = bs->breakpoint_at;
10087 w = (struct watchpoint *) b;
10088
10089 annotate_watchpoint (b->number);
10090 maybe_print_thread_hit_breakpoint (uiout);
10091
10092 string_file stb;
10093
10094 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10095 switch (b->type)
10096 {
10097 case bp_watchpoint:
10098 case bp_hardware_watchpoint:
10099 if (uiout->is_mi_like_p ())
10100 uiout->field_string
10101 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10102 mention (b);
10103 tuple_emitter.emplace (uiout, "value");
10104 uiout->text ("\nOld value = ");
10105 watchpoint_value_print (bs->old_val.get (), &stb);
10106 uiout->field_stream ("old", stb);
10107 uiout->text ("\nNew value = ");
10108 watchpoint_value_print (w->val.get (), &stb);
10109 uiout->field_stream ("new", stb);
10110 uiout->text ("\n");
10111 /* More than one watchpoint may have been triggered. */
10112 result = PRINT_UNKNOWN;
10113 break;
10114
10115 case bp_read_watchpoint:
10116 if (uiout->is_mi_like_p ())
10117 uiout->field_string
10118 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10119 mention (b);
10120 tuple_emitter.emplace (uiout, "value");
10121 uiout->text ("\nValue = ");
10122 watchpoint_value_print (w->val.get (), &stb);
10123 uiout->field_stream ("value", stb);
10124 uiout->text ("\n");
10125 result = PRINT_UNKNOWN;
10126 break;
10127
10128 case bp_access_watchpoint:
10129 if (bs->old_val != NULL)
10130 {
10131 if (uiout->is_mi_like_p ())
10132 uiout->field_string
10133 ("reason",
10134 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10135 mention (b);
10136 tuple_emitter.emplace (uiout, "value");
10137 uiout->text ("\nOld value = ");
10138 watchpoint_value_print (bs->old_val.get (), &stb);
10139 uiout->field_stream ("old", stb);
10140 uiout->text ("\nNew value = ");
10141 }
10142 else
10143 {
10144 mention (b);
10145 if (uiout->is_mi_like_p ())
10146 uiout->field_string
10147 ("reason",
10148 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10149 tuple_emitter.emplace (uiout, "value");
10150 uiout->text ("\nValue = ");
10151 }
10152 watchpoint_value_print (w->val.get (), &stb);
10153 uiout->field_stream ("new", stb);
10154 uiout->text ("\n");
10155 result = PRINT_UNKNOWN;
10156 break;
10157 default:
10158 result = PRINT_UNKNOWN;
10159 }
10160
10161 return result;
10162 }
10163
10164 /* Implement the "print_mention" breakpoint_ops method for hardware
10165 watchpoints. */
10166
10167 static void
10168 print_mention_watchpoint (struct breakpoint *b)
10169 {
10170 struct watchpoint *w = (struct watchpoint *) b;
10171 struct ui_out *uiout = current_uiout;
10172 const char *tuple_name;
10173
10174 switch (b->type)
10175 {
10176 case bp_watchpoint:
10177 uiout->text ("Watchpoint ");
10178 tuple_name = "wpt";
10179 break;
10180 case bp_hardware_watchpoint:
10181 uiout->text ("Hardware watchpoint ");
10182 tuple_name = "wpt";
10183 break;
10184 case bp_read_watchpoint:
10185 uiout->text ("Hardware read watchpoint ");
10186 tuple_name = "hw-rwpt";
10187 break;
10188 case bp_access_watchpoint:
10189 uiout->text ("Hardware access (read/write) watchpoint ");
10190 tuple_name = "hw-awpt";
10191 break;
10192 default:
10193 internal_error (__FILE__, __LINE__,
10194 _("Invalid hardware watchpoint type."));
10195 }
10196
10197 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10198 uiout->field_int ("number", b->number);
10199 uiout->text (": ");
10200 uiout->field_string ("exp", w->exp_string);
10201 }
10202
10203 /* Implement the "print_recreate" breakpoint_ops method for
10204 watchpoints. */
10205
10206 static void
10207 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10208 {
10209 struct watchpoint *w = (struct watchpoint *) b;
10210
10211 switch (b->type)
10212 {
10213 case bp_watchpoint:
10214 case bp_hardware_watchpoint:
10215 fprintf_unfiltered (fp, "watch");
10216 break;
10217 case bp_read_watchpoint:
10218 fprintf_unfiltered (fp, "rwatch");
10219 break;
10220 case bp_access_watchpoint:
10221 fprintf_unfiltered (fp, "awatch");
10222 break;
10223 default:
10224 internal_error (__FILE__, __LINE__,
10225 _("Invalid watchpoint type."));
10226 }
10227
10228 fprintf_unfiltered (fp, " %s", w->exp_string);
10229 print_recreate_thread (b, fp);
10230 }
10231
10232 /* Implement the "explains_signal" breakpoint_ops method for
10233 watchpoints. */
10234
10235 static int
10236 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10237 {
10238 /* A software watchpoint cannot cause a signal other than
10239 GDB_SIGNAL_TRAP. */
10240 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10241 return 0;
10242
10243 return 1;
10244 }
10245
10246 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10247
10248 static struct breakpoint_ops watchpoint_breakpoint_ops;
10249
10250 /* Implement the "insert" breakpoint_ops method for
10251 masked hardware watchpoints. */
10252
10253 static int
10254 insert_masked_watchpoint (struct bp_location *bl)
10255 {
10256 struct watchpoint *w = (struct watchpoint *) bl->owner;
10257
10258 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10259 bl->watchpoint_type);
10260 }
10261
10262 /* Implement the "remove" breakpoint_ops method for
10263 masked hardware watchpoints. */
10264
10265 static int
10266 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10267 {
10268 struct watchpoint *w = (struct watchpoint *) bl->owner;
10269
10270 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10271 bl->watchpoint_type);
10272 }
10273
10274 /* Implement the "resources_needed" breakpoint_ops method for
10275 masked hardware watchpoints. */
10276
10277 static int
10278 resources_needed_masked_watchpoint (const struct bp_location *bl)
10279 {
10280 struct watchpoint *w = (struct watchpoint *) bl->owner;
10281
10282 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10283 }
10284
10285 /* Implement the "works_in_software_mode" breakpoint_ops method for
10286 masked hardware watchpoints. */
10287
10288 static int
10289 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10290 {
10291 return 0;
10292 }
10293
10294 /* Implement the "print_it" breakpoint_ops method for
10295 masked hardware watchpoints. */
10296
10297 static enum print_stop_action
10298 print_it_masked_watchpoint (bpstat bs)
10299 {
10300 struct breakpoint *b = bs->breakpoint_at;
10301 struct ui_out *uiout = current_uiout;
10302
10303 /* Masked watchpoints have only one location. */
10304 gdb_assert (b->loc && b->loc->next == NULL);
10305
10306 annotate_watchpoint (b->number);
10307 maybe_print_thread_hit_breakpoint (uiout);
10308
10309 switch (b->type)
10310 {
10311 case bp_hardware_watchpoint:
10312 if (uiout->is_mi_like_p ())
10313 uiout->field_string
10314 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10315 break;
10316
10317 case bp_read_watchpoint:
10318 if (uiout->is_mi_like_p ())
10319 uiout->field_string
10320 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10321 break;
10322
10323 case bp_access_watchpoint:
10324 if (uiout->is_mi_like_p ())
10325 uiout->field_string
10326 ("reason",
10327 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10328 break;
10329 default:
10330 internal_error (__FILE__, __LINE__,
10331 _("Invalid hardware watchpoint type."));
10332 }
10333
10334 mention (b);
10335 uiout->text (_("\n\
10336 Check the underlying instruction at PC for the memory\n\
10337 address and value which triggered this watchpoint.\n"));
10338 uiout->text ("\n");
10339
10340 /* More than one watchpoint may have been triggered. */
10341 return PRINT_UNKNOWN;
10342 }
10343
10344 /* Implement the "print_one_detail" breakpoint_ops method for
10345 masked hardware watchpoints. */
10346
10347 static void
10348 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10349 struct ui_out *uiout)
10350 {
10351 struct watchpoint *w = (struct watchpoint *) b;
10352
10353 /* Masked watchpoints have only one location. */
10354 gdb_assert (b->loc && b->loc->next == NULL);
10355
10356 uiout->text ("\tmask ");
10357 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10358 uiout->text ("\n");
10359 }
10360
10361 /* Implement the "print_mention" breakpoint_ops method for
10362 masked hardware watchpoints. */
10363
10364 static void
10365 print_mention_masked_watchpoint (struct breakpoint *b)
10366 {
10367 struct watchpoint *w = (struct watchpoint *) b;
10368 struct ui_out *uiout = current_uiout;
10369 const char *tuple_name;
10370
10371 switch (b->type)
10372 {
10373 case bp_hardware_watchpoint:
10374 uiout->text ("Masked hardware watchpoint ");
10375 tuple_name = "wpt";
10376 break;
10377 case bp_read_watchpoint:
10378 uiout->text ("Masked hardware read watchpoint ");
10379 tuple_name = "hw-rwpt";
10380 break;
10381 case bp_access_watchpoint:
10382 uiout->text ("Masked hardware access (read/write) watchpoint ");
10383 tuple_name = "hw-awpt";
10384 break;
10385 default:
10386 internal_error (__FILE__, __LINE__,
10387 _("Invalid hardware watchpoint type."));
10388 }
10389
10390 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10391 uiout->field_int ("number", b->number);
10392 uiout->text (": ");
10393 uiout->field_string ("exp", w->exp_string);
10394 }
10395
10396 /* Implement the "print_recreate" breakpoint_ops method for
10397 masked hardware watchpoints. */
10398
10399 static void
10400 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10401 {
10402 struct watchpoint *w = (struct watchpoint *) b;
10403 char tmp[40];
10404
10405 switch (b->type)
10406 {
10407 case bp_hardware_watchpoint:
10408 fprintf_unfiltered (fp, "watch");
10409 break;
10410 case bp_read_watchpoint:
10411 fprintf_unfiltered (fp, "rwatch");
10412 break;
10413 case bp_access_watchpoint:
10414 fprintf_unfiltered (fp, "awatch");
10415 break;
10416 default:
10417 internal_error (__FILE__, __LINE__,
10418 _("Invalid hardware watchpoint type."));
10419 }
10420
10421 sprintf_vma (tmp, w->hw_wp_mask);
10422 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10423 print_recreate_thread (b, fp);
10424 }
10425
10426 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10427
10428 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10429
10430 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10431
10432 static int
10433 is_masked_watchpoint (const struct breakpoint *b)
10434 {
10435 return b->ops == &masked_watchpoint_breakpoint_ops;
10436 }
10437
10438 /* accessflag: hw_write: watch write,
10439 hw_read: watch read,
10440 hw_access: watch access (read or write) */
10441 static void
10442 watch_command_1 (const char *arg, int accessflag, int from_tty,
10443 int just_location, int internal)
10444 {
10445 struct breakpoint *scope_breakpoint = NULL;
10446 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10447 struct value *result;
10448 int saved_bitpos = 0, saved_bitsize = 0;
10449 const char *exp_start = NULL;
10450 const char *exp_end = NULL;
10451 const char *tok, *end_tok;
10452 int toklen = -1;
10453 const char *cond_start = NULL;
10454 const char *cond_end = NULL;
10455 enum bptype bp_type;
10456 int thread = -1;
10457 int pc = 0;
10458 /* Flag to indicate whether we are going to use masks for
10459 the hardware watchpoint. */
10460 int use_mask = 0;
10461 CORE_ADDR mask = 0;
10462
10463 /* Make sure that we actually have parameters to parse. */
10464 if (arg != NULL && arg[0] != '\0')
10465 {
10466 const char *value_start;
10467
10468 exp_end = arg + strlen (arg);
10469
10470 /* Look for "parameter value" pairs at the end
10471 of the arguments string. */
10472 for (tok = exp_end - 1; tok > arg; tok--)
10473 {
10474 /* Skip whitespace at the end of the argument list. */
10475 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10476 tok--;
10477
10478 /* Find the beginning of the last token.
10479 This is the value of the parameter. */
10480 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10481 tok--;
10482 value_start = tok + 1;
10483
10484 /* Skip whitespace. */
10485 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10486 tok--;
10487
10488 end_tok = tok;
10489
10490 /* Find the beginning of the second to last token.
10491 This is the parameter itself. */
10492 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10493 tok--;
10494 tok++;
10495 toklen = end_tok - tok + 1;
10496
10497 if (toklen == 6 && startswith (tok, "thread"))
10498 {
10499 struct thread_info *thr;
10500 /* At this point we've found a "thread" token, which means
10501 the user is trying to set a watchpoint that triggers
10502 only in a specific thread. */
10503 const char *endp;
10504
10505 if (thread != -1)
10506 error(_("You can specify only one thread."));
10507
10508 /* Extract the thread ID from the next token. */
10509 thr = parse_thread_id (value_start, &endp);
10510
10511 /* Check if the user provided a valid thread ID. */
10512 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10513 invalid_thread_id_error (value_start);
10514
10515 thread = thr->global_num;
10516 }
10517 else if (toklen == 4 && startswith (tok, "mask"))
10518 {
10519 /* We've found a "mask" token, which means the user wants to
10520 create a hardware watchpoint that is going to have the mask
10521 facility. */
10522 struct value *mask_value, *mark;
10523
10524 if (use_mask)
10525 error(_("You can specify only one mask."));
10526
10527 use_mask = just_location = 1;
10528
10529 mark = value_mark ();
10530 mask_value = parse_to_comma_and_eval (&value_start);
10531 mask = value_as_address (mask_value);
10532 value_free_to_mark (mark);
10533 }
10534 else
10535 /* We didn't recognize what we found. We should stop here. */
10536 break;
10537
10538 /* Truncate the string and get rid of the "parameter value" pair before
10539 the arguments string is parsed by the parse_exp_1 function. */
10540 exp_end = tok;
10541 }
10542 }
10543 else
10544 exp_end = arg;
10545
10546 /* Parse the rest of the arguments. From here on out, everything
10547 is in terms of a newly allocated string instead of the original
10548 ARG. */
10549 std::string expression (arg, exp_end - arg);
10550 exp_start = arg = expression.c_str ();
10551 innermost_block_tracker tracker;
10552 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10553 exp_end = arg;
10554 /* Remove trailing whitespace from the expression before saving it.
10555 This makes the eventual display of the expression string a bit
10556 prettier. */
10557 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10558 --exp_end;
10559
10560 /* Checking if the expression is not constant. */
10561 if (watchpoint_exp_is_const (exp.get ()))
10562 {
10563 int len;
10564
10565 len = exp_end - exp_start;
10566 while (len > 0 && isspace (exp_start[len - 1]))
10567 len--;
10568 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10569 }
10570
10571 exp_valid_block = tracker.block ();
10572 struct value *mark = value_mark ();
10573 struct value *val_as_value = nullptr;
10574 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10575 just_location);
10576
10577 if (val_as_value != NULL && just_location)
10578 {
10579 saved_bitpos = value_bitpos (val_as_value);
10580 saved_bitsize = value_bitsize (val_as_value);
10581 }
10582
10583 value_ref_ptr val;
10584 if (just_location)
10585 {
10586 int ret;
10587
10588 exp_valid_block = NULL;
10589 val = release_value (value_addr (result));
10590 value_free_to_mark (mark);
10591
10592 if (use_mask)
10593 {
10594 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10595 mask);
10596 if (ret == -1)
10597 error (_("This target does not support masked watchpoints."));
10598 else if (ret == -2)
10599 error (_("Invalid mask or memory region."));
10600 }
10601 }
10602 else if (val_as_value != NULL)
10603 val = release_value (val_as_value);
10604
10605 tok = skip_spaces (arg);
10606 end_tok = skip_to_space (tok);
10607
10608 toklen = end_tok - tok;
10609 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10610 {
10611 tok = cond_start = end_tok + 1;
10612 innermost_block_tracker if_tracker;
10613 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10614
10615 /* The watchpoint expression may not be local, but the condition
10616 may still be. E.g.: `watch global if local > 0'. */
10617 cond_exp_valid_block = if_tracker.block ();
10618
10619 cond_end = tok;
10620 }
10621 if (*tok)
10622 error (_("Junk at end of command."));
10623
10624 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10625
10626 /* Save this because create_internal_breakpoint below invalidates
10627 'wp_frame'. */
10628 frame_id watchpoint_frame = get_frame_id (wp_frame);
10629
10630 /* If the expression is "local", then set up a "watchpoint scope"
10631 breakpoint at the point where we've left the scope of the watchpoint
10632 expression. Create the scope breakpoint before the watchpoint, so
10633 that we will encounter it first in bpstat_stop_status. */
10634 if (exp_valid_block != NULL && wp_frame != NULL)
10635 {
10636 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10637
10638 if (frame_id_p (caller_frame_id))
10639 {
10640 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10641 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10642
10643 scope_breakpoint
10644 = create_internal_breakpoint (caller_arch, caller_pc,
10645 bp_watchpoint_scope,
10646 &momentary_breakpoint_ops);
10647
10648 /* create_internal_breakpoint could invalidate WP_FRAME. */
10649 wp_frame = NULL;
10650
10651 scope_breakpoint->enable_state = bp_enabled;
10652
10653 /* Automatically delete the breakpoint when it hits. */
10654 scope_breakpoint->disposition = disp_del;
10655
10656 /* Only break in the proper frame (help with recursion). */
10657 scope_breakpoint->frame_id = caller_frame_id;
10658
10659 /* Set the address at which we will stop. */
10660 scope_breakpoint->loc->gdbarch = caller_arch;
10661 scope_breakpoint->loc->requested_address = caller_pc;
10662 scope_breakpoint->loc->address
10663 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10664 scope_breakpoint->loc->requested_address,
10665 scope_breakpoint->type);
10666 }
10667 }
10668
10669 /* Now set up the breakpoint. We create all watchpoints as hardware
10670 watchpoints here even if hardware watchpoints are turned off, a call
10671 to update_watchpoint later in this function will cause the type to
10672 drop back to bp_watchpoint (software watchpoint) if required. */
10673
10674 if (accessflag == hw_read)
10675 bp_type = bp_read_watchpoint;
10676 else if (accessflag == hw_access)
10677 bp_type = bp_access_watchpoint;
10678 else
10679 bp_type = bp_hardware_watchpoint;
10680
10681 std::unique_ptr<watchpoint> w (new watchpoint ());
10682
10683 if (use_mask)
10684 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10685 &masked_watchpoint_breakpoint_ops);
10686 else
10687 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10688 &watchpoint_breakpoint_ops);
10689 w->thread = thread;
10690 w->disposition = disp_donttouch;
10691 w->pspace = current_program_space;
10692 w->exp = std::move (exp);
10693 w->exp_valid_block = exp_valid_block;
10694 w->cond_exp_valid_block = cond_exp_valid_block;
10695 if (just_location)
10696 {
10697 struct type *t = value_type (val.get ());
10698 CORE_ADDR addr = value_as_address (val.get ());
10699
10700 w->exp_string_reparse
10701 = current_language->la_watch_location_expression (t, addr).release ();
10702
10703 w->exp_string = xstrprintf ("-location %.*s",
10704 (int) (exp_end - exp_start), exp_start);
10705 }
10706 else
10707 w->exp_string = savestring (exp_start, exp_end - exp_start);
10708
10709 if (use_mask)
10710 {
10711 w->hw_wp_mask = mask;
10712 }
10713 else
10714 {
10715 w->val = val;
10716 w->val_bitpos = saved_bitpos;
10717 w->val_bitsize = saved_bitsize;
10718 w->val_valid = 1;
10719 }
10720
10721 if (cond_start)
10722 w->cond_string = savestring (cond_start, cond_end - cond_start);
10723 else
10724 w->cond_string = 0;
10725
10726 if (frame_id_p (watchpoint_frame))
10727 {
10728 w->watchpoint_frame = watchpoint_frame;
10729 w->watchpoint_thread = inferior_ptid;
10730 }
10731 else
10732 {
10733 w->watchpoint_frame = null_frame_id;
10734 w->watchpoint_thread = null_ptid;
10735 }
10736
10737 if (scope_breakpoint != NULL)
10738 {
10739 /* The scope breakpoint is related to the watchpoint. We will
10740 need to act on them together. */
10741 w->related_breakpoint = scope_breakpoint;
10742 scope_breakpoint->related_breakpoint = w.get ();
10743 }
10744
10745 if (!just_location)
10746 value_free_to_mark (mark);
10747
10748 /* Finally update the new watchpoint. This creates the locations
10749 that should be inserted. */
10750 update_watchpoint (w.get (), 1);
10751
10752 install_breakpoint (internal, std::move (w), 1);
10753 }
10754
10755 /* Return count of debug registers needed to watch the given expression.
10756 If the watchpoint cannot be handled in hardware return zero. */
10757
10758 static int
10759 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10760 {
10761 int found_memory_cnt = 0;
10762
10763 /* Did the user specifically forbid us to use hardware watchpoints? */
10764 if (!can_use_hw_watchpoints)
10765 return 0;
10766
10767 gdb_assert (!vals.empty ());
10768 struct value *head = vals[0].get ();
10769
10770 /* Make sure that the value of the expression depends only upon
10771 memory contents, and values computed from them within GDB. If we
10772 find any register references or function calls, we can't use a
10773 hardware watchpoint.
10774
10775 The idea here is that evaluating an expression generates a series
10776 of values, one holding the value of every subexpression. (The
10777 expression a*b+c has five subexpressions: a, b, a*b, c, and
10778 a*b+c.) GDB's values hold almost enough information to establish
10779 the criteria given above --- they identify memory lvalues,
10780 register lvalues, computed values, etcetera. So we can evaluate
10781 the expression, and then scan the chain of values that leaves
10782 behind to decide whether we can detect any possible change to the
10783 expression's final value using only hardware watchpoints.
10784
10785 However, I don't think that the values returned by inferior
10786 function calls are special in any way. So this function may not
10787 notice that an expression involving an inferior function call
10788 can't be watched with hardware watchpoints. FIXME. */
10789 for (const value_ref_ptr &iter : vals)
10790 {
10791 struct value *v = iter.get ();
10792
10793 if (VALUE_LVAL (v) == lval_memory)
10794 {
10795 if (v != head && value_lazy (v))
10796 /* A lazy memory lvalue in the chain is one that GDB never
10797 needed to fetch; we either just used its address (e.g.,
10798 `a' in `a.b') or we never needed it at all (e.g., `a'
10799 in `a,b'). This doesn't apply to HEAD; if that is
10800 lazy then it was not readable, but watch it anyway. */
10801 ;
10802 else
10803 {
10804 /* Ahh, memory we actually used! Check if we can cover
10805 it with hardware watchpoints. */
10806 struct type *vtype = check_typedef (value_type (v));
10807
10808 /* We only watch structs and arrays if user asked for it
10809 explicitly, never if they just happen to appear in a
10810 middle of some value chain. */
10811 if (v == head
10812 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10813 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10814 {
10815 CORE_ADDR vaddr = value_address (v);
10816 int len;
10817 int num_regs;
10818
10819 len = (target_exact_watchpoints
10820 && is_scalar_type_recursive (vtype))?
10821 1 : TYPE_LENGTH (value_type (v));
10822
10823 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10824 if (!num_regs)
10825 return 0;
10826 else
10827 found_memory_cnt += num_regs;
10828 }
10829 }
10830 }
10831 else if (VALUE_LVAL (v) != not_lval
10832 && deprecated_value_modifiable (v) == 0)
10833 return 0; /* These are values from the history (e.g., $1). */
10834 else if (VALUE_LVAL (v) == lval_register)
10835 return 0; /* Cannot watch a register with a HW watchpoint. */
10836 }
10837
10838 /* The expression itself looks suitable for using a hardware
10839 watchpoint, but give the target machine a chance to reject it. */
10840 return found_memory_cnt;
10841 }
10842
10843 void
10844 watch_command_wrapper (const char *arg, int from_tty, int internal)
10845 {
10846 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10847 }
10848
10849 /* A helper function that looks for the "-location" argument and then
10850 calls watch_command_1. */
10851
10852 static void
10853 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10854 {
10855 int just_location = 0;
10856
10857 if (arg
10858 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10859 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10860 just_location = 1;
10861
10862 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10863 }
10864
10865 static void
10866 watch_command (const char *arg, int from_tty)
10867 {
10868 watch_maybe_just_location (arg, hw_write, from_tty);
10869 }
10870
10871 void
10872 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10873 {
10874 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10875 }
10876
10877 static void
10878 rwatch_command (const char *arg, int from_tty)
10879 {
10880 watch_maybe_just_location (arg, hw_read, from_tty);
10881 }
10882
10883 void
10884 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10885 {
10886 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10887 }
10888
10889 static void
10890 awatch_command (const char *arg, int from_tty)
10891 {
10892 watch_maybe_just_location (arg, hw_access, from_tty);
10893 }
10894 \f
10895
10896 /* Data for the FSM that manages the until(location)/advance commands
10897 in infcmd.c. Here because it uses the mechanisms of
10898 breakpoints. */
10899
10900 struct until_break_fsm : public thread_fsm
10901 {
10902 /* The thread that was current when the command was executed. */
10903 int thread;
10904
10905 /* The breakpoint set at the destination location. */
10906 breakpoint_up location_breakpoint;
10907
10908 /* Breakpoint set at the return address in the caller frame. May be
10909 NULL. */
10910 breakpoint_up caller_breakpoint;
10911
10912 until_break_fsm (struct interp *cmd_interp, int thread,
10913 breakpoint_up &&location_breakpoint,
10914 breakpoint_up &&caller_breakpoint)
10915 : thread_fsm (cmd_interp),
10916 thread (thread),
10917 location_breakpoint (std::move (location_breakpoint)),
10918 caller_breakpoint (std::move (caller_breakpoint))
10919 {
10920 }
10921
10922 void clean_up (struct thread_info *thread) override;
10923 bool should_stop (struct thread_info *thread) override;
10924 enum async_reply_reason do_async_reply_reason () override;
10925 };
10926
10927 /* Implementation of the 'should_stop' FSM method for the
10928 until(location)/advance commands. */
10929
10930 bool
10931 until_break_fsm::should_stop (struct thread_info *tp)
10932 {
10933 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10934 location_breakpoint.get ()) != NULL
10935 || (caller_breakpoint != NULL
10936 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10937 caller_breakpoint.get ()) != NULL))
10938 set_finished ();
10939
10940 return true;
10941 }
10942
10943 /* Implementation of the 'clean_up' FSM method for the
10944 until(location)/advance commands. */
10945
10946 void
10947 until_break_fsm::clean_up (struct thread_info *)
10948 {
10949 /* Clean up our temporary breakpoints. */
10950 location_breakpoint.reset ();
10951 caller_breakpoint.reset ();
10952 delete_longjmp_breakpoint (thread);
10953 }
10954
10955 /* Implementation of the 'async_reply_reason' FSM method for the
10956 until(location)/advance commands. */
10957
10958 enum async_reply_reason
10959 until_break_fsm::do_async_reply_reason ()
10960 {
10961 return EXEC_ASYNC_LOCATION_REACHED;
10962 }
10963
10964 void
10965 until_break_command (const char *arg, int from_tty, int anywhere)
10966 {
10967 struct frame_info *frame;
10968 struct gdbarch *frame_gdbarch;
10969 struct frame_id stack_frame_id;
10970 struct frame_id caller_frame_id;
10971 int thread;
10972 struct thread_info *tp;
10973
10974 clear_proceed_status (0);
10975
10976 /* Set a breakpoint where the user wants it and at return from
10977 this function. */
10978
10979 event_location_up location = string_to_event_location (&arg, current_language);
10980
10981 std::vector<symtab_and_line> sals
10982 = (last_displayed_sal_is_valid ()
10983 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10984 get_last_displayed_symtab (),
10985 get_last_displayed_line ())
10986 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
10987 NULL, NULL, 0));
10988
10989 if (sals.size () != 1)
10990 error (_("Couldn't get information on specified line."));
10991
10992 symtab_and_line &sal = sals[0];
10993
10994 if (*arg)
10995 error (_("Junk at end of arguments."));
10996
10997 resolve_sal_pc (&sal);
10998
10999 tp = inferior_thread ();
11000 thread = tp->global_num;
11001
11002 /* Note linespec handling above invalidates the frame chain.
11003 Installing a breakpoint also invalidates the frame chain (as it
11004 may need to switch threads), so do any frame handling before
11005 that. */
11006
11007 frame = get_selected_frame (NULL);
11008 frame_gdbarch = get_frame_arch (frame);
11009 stack_frame_id = get_stack_frame_id (frame);
11010 caller_frame_id = frame_unwind_caller_id (frame);
11011
11012 /* Keep within the current frame, or in frames called by the current
11013 one. */
11014
11015 breakpoint_up caller_breakpoint;
11016
11017 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11018
11019 if (frame_id_p (caller_frame_id))
11020 {
11021 struct symtab_and_line sal2;
11022 struct gdbarch *caller_gdbarch;
11023
11024 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11025 sal2.pc = frame_unwind_caller_pc (frame);
11026 caller_gdbarch = frame_unwind_caller_arch (frame);
11027 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11028 sal2,
11029 caller_frame_id,
11030 bp_until);
11031
11032 set_longjmp_breakpoint (tp, caller_frame_id);
11033 lj_deleter.emplace (thread);
11034 }
11035
11036 /* set_momentary_breakpoint could invalidate FRAME. */
11037 frame = NULL;
11038
11039 breakpoint_up location_breakpoint;
11040 if (anywhere)
11041 /* If the user told us to continue until a specified location,
11042 we don't specify a frame at which we need to stop. */
11043 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11044 null_frame_id, bp_until);
11045 else
11046 /* Otherwise, specify the selected frame, because we want to stop
11047 only at the very same frame. */
11048 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11049 stack_frame_id, bp_until);
11050
11051 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11052 std::move (location_breakpoint),
11053 std::move (caller_breakpoint));
11054
11055 if (lj_deleter)
11056 lj_deleter->release ();
11057
11058 proceed (-1, GDB_SIGNAL_DEFAULT);
11059 }
11060
11061 /* This function attempts to parse an optional "if <cond>" clause
11062 from the arg string. If one is not found, it returns NULL.
11063
11064 Else, it returns a pointer to the condition string. (It does not
11065 attempt to evaluate the string against a particular block.) And,
11066 it updates arg to point to the first character following the parsed
11067 if clause in the arg string. */
11068
11069 const char *
11070 ep_parse_optional_if_clause (const char **arg)
11071 {
11072 const char *cond_string;
11073
11074 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11075 return NULL;
11076
11077 /* Skip the "if" keyword. */
11078 (*arg) += 2;
11079
11080 /* Skip any extra leading whitespace, and record the start of the
11081 condition string. */
11082 *arg = skip_spaces (*arg);
11083 cond_string = *arg;
11084
11085 /* Assume that the condition occupies the remainder of the arg
11086 string. */
11087 (*arg) += strlen (cond_string);
11088
11089 return cond_string;
11090 }
11091
11092 /* Commands to deal with catching events, such as signals, exceptions,
11093 process start/exit, etc. */
11094
11095 typedef enum
11096 {
11097 catch_fork_temporary, catch_vfork_temporary,
11098 catch_fork_permanent, catch_vfork_permanent
11099 }
11100 catch_fork_kind;
11101
11102 static void
11103 catch_fork_command_1 (const char *arg, int from_tty,
11104 struct cmd_list_element *command)
11105 {
11106 struct gdbarch *gdbarch = get_current_arch ();
11107 const char *cond_string = NULL;
11108 catch_fork_kind fork_kind;
11109 int tempflag;
11110
11111 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11112 tempflag = (fork_kind == catch_fork_temporary
11113 || fork_kind == catch_vfork_temporary);
11114
11115 if (!arg)
11116 arg = "";
11117 arg = skip_spaces (arg);
11118
11119 /* The allowed syntax is:
11120 catch [v]fork
11121 catch [v]fork if <cond>
11122
11123 First, check if there's an if clause. */
11124 cond_string = ep_parse_optional_if_clause (&arg);
11125
11126 if ((*arg != '\0') && !isspace (*arg))
11127 error (_("Junk at end of arguments."));
11128
11129 /* If this target supports it, create a fork or vfork catchpoint
11130 and enable reporting of such events. */
11131 switch (fork_kind)
11132 {
11133 case catch_fork_temporary:
11134 case catch_fork_permanent:
11135 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11136 &catch_fork_breakpoint_ops);
11137 break;
11138 case catch_vfork_temporary:
11139 case catch_vfork_permanent:
11140 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11141 &catch_vfork_breakpoint_ops);
11142 break;
11143 default:
11144 error (_("unsupported or unknown fork kind; cannot catch it"));
11145 break;
11146 }
11147 }
11148
11149 static void
11150 catch_exec_command_1 (const char *arg, int from_tty,
11151 struct cmd_list_element *command)
11152 {
11153 struct gdbarch *gdbarch = get_current_arch ();
11154 int tempflag;
11155 const char *cond_string = NULL;
11156
11157 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11158
11159 if (!arg)
11160 arg = "";
11161 arg = skip_spaces (arg);
11162
11163 /* The allowed syntax is:
11164 catch exec
11165 catch exec if <cond>
11166
11167 First, check if there's an if clause. */
11168 cond_string = ep_parse_optional_if_clause (&arg);
11169
11170 if ((*arg != '\0') && !isspace (*arg))
11171 error (_("Junk at end of arguments."));
11172
11173 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11174 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11175 &catch_exec_breakpoint_ops);
11176 c->exec_pathname = NULL;
11177
11178 install_breakpoint (0, std::move (c), 1);
11179 }
11180
11181 void
11182 init_ada_exception_breakpoint (struct breakpoint *b,
11183 struct gdbarch *gdbarch,
11184 struct symtab_and_line sal,
11185 const char *addr_string,
11186 const struct breakpoint_ops *ops,
11187 int tempflag,
11188 int enabled,
11189 int from_tty)
11190 {
11191 if (from_tty)
11192 {
11193 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11194 if (!loc_gdbarch)
11195 loc_gdbarch = gdbarch;
11196
11197 describe_other_breakpoints (loc_gdbarch,
11198 sal.pspace, sal.pc, sal.section, -1);
11199 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11200 version for exception catchpoints, because two catchpoints
11201 used for different exception names will use the same address.
11202 In this case, a "breakpoint ... also set at..." warning is
11203 unproductive. Besides, the warning phrasing is also a bit
11204 inappropriate, we should use the word catchpoint, and tell
11205 the user what type of catchpoint it is. The above is good
11206 enough for now, though. */
11207 }
11208
11209 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11210
11211 b->enable_state = enabled ? bp_enabled : bp_disabled;
11212 b->disposition = tempflag ? disp_del : disp_donttouch;
11213 b->location = string_to_event_location (&addr_string,
11214 language_def (language_ada));
11215 b->language = language_ada;
11216 }
11217
11218 static void
11219 catch_command (const char *arg, int from_tty)
11220 {
11221 error (_("Catch requires an event name."));
11222 }
11223 \f
11224
11225 static void
11226 tcatch_command (const char *arg, int from_tty)
11227 {
11228 error (_("Catch requires an event name."));
11229 }
11230
11231 /* Compare two breakpoints and return a strcmp-like result. */
11232
11233 static int
11234 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11235 {
11236 uintptr_t ua = (uintptr_t) a;
11237 uintptr_t ub = (uintptr_t) b;
11238
11239 if (a->number < b->number)
11240 return -1;
11241 else if (a->number > b->number)
11242 return 1;
11243
11244 /* Now sort by address, in case we see, e..g, two breakpoints with
11245 the number 0. */
11246 if (ua < ub)
11247 return -1;
11248 return ua > ub ? 1 : 0;
11249 }
11250
11251 /* Delete breakpoints by address or line. */
11252
11253 static void
11254 clear_command (const char *arg, int from_tty)
11255 {
11256 struct breakpoint *b;
11257 int default_match;
11258
11259 std::vector<symtab_and_line> decoded_sals;
11260 symtab_and_line last_sal;
11261 gdb::array_view<symtab_and_line> sals;
11262 if (arg)
11263 {
11264 decoded_sals
11265 = decode_line_with_current_source (arg,
11266 (DECODE_LINE_FUNFIRSTLINE
11267 | DECODE_LINE_LIST_MODE));
11268 default_match = 0;
11269 sals = decoded_sals;
11270 }
11271 else
11272 {
11273 /* Set sal's line, symtab, pc, and pspace to the values
11274 corresponding to the last call to print_frame_info. If the
11275 codepoint is not valid, this will set all the fields to 0. */
11276 last_sal = get_last_displayed_sal ();
11277 if (last_sal.symtab == 0)
11278 error (_("No source file specified."));
11279
11280 default_match = 1;
11281 sals = last_sal;
11282 }
11283
11284 /* We don't call resolve_sal_pc here. That's not as bad as it
11285 seems, because all existing breakpoints typically have both
11286 file/line and pc set. So, if clear is given file/line, we can
11287 match this to existing breakpoint without obtaining pc at all.
11288
11289 We only support clearing given the address explicitly
11290 present in breakpoint table. Say, we've set breakpoint
11291 at file:line. There were several PC values for that file:line,
11292 due to optimization, all in one block.
11293
11294 We've picked one PC value. If "clear" is issued with another
11295 PC corresponding to the same file:line, the breakpoint won't
11296 be cleared. We probably can still clear the breakpoint, but
11297 since the other PC value is never presented to user, user
11298 can only find it by guessing, and it does not seem important
11299 to support that. */
11300
11301 /* For each line spec given, delete bps which correspond to it. Do
11302 it in two passes, solely to preserve the current behavior that
11303 from_tty is forced true if we delete more than one
11304 breakpoint. */
11305
11306 std::vector<struct breakpoint *> found;
11307 for (const auto &sal : sals)
11308 {
11309 const char *sal_fullname;
11310
11311 /* If exact pc given, clear bpts at that pc.
11312 If line given (pc == 0), clear all bpts on specified line.
11313 If defaulting, clear all bpts on default line
11314 or at default pc.
11315
11316 defaulting sal.pc != 0 tests to do
11317
11318 0 1 pc
11319 1 1 pc _and_ line
11320 0 0 line
11321 1 0 <can't happen> */
11322
11323 sal_fullname = (sal.symtab == NULL
11324 ? NULL : symtab_to_fullname (sal.symtab));
11325
11326 /* Find all matching breakpoints and add them to 'found'. */
11327 ALL_BREAKPOINTS (b)
11328 {
11329 int match = 0;
11330 /* Are we going to delete b? */
11331 if (b->type != bp_none && !is_watchpoint (b))
11332 {
11333 struct bp_location *loc = b->loc;
11334 for (; loc; loc = loc->next)
11335 {
11336 /* If the user specified file:line, don't allow a PC
11337 match. This matches historical gdb behavior. */
11338 int pc_match = (!sal.explicit_line
11339 && sal.pc
11340 && (loc->pspace == sal.pspace)
11341 && (loc->address == sal.pc)
11342 && (!section_is_overlay (loc->section)
11343 || loc->section == sal.section));
11344 int line_match = 0;
11345
11346 if ((default_match || sal.explicit_line)
11347 && loc->symtab != NULL
11348 && sal_fullname != NULL
11349 && sal.pspace == loc->pspace
11350 && loc->line_number == sal.line
11351 && filename_cmp (symtab_to_fullname (loc->symtab),
11352 sal_fullname) == 0)
11353 line_match = 1;
11354
11355 if (pc_match || line_match)
11356 {
11357 match = 1;
11358 break;
11359 }
11360 }
11361 }
11362
11363 if (match)
11364 found.push_back (b);
11365 }
11366 }
11367
11368 /* Now go thru the 'found' chain and delete them. */
11369 if (found.empty ())
11370 {
11371 if (arg)
11372 error (_("No breakpoint at %s."), arg);
11373 else
11374 error (_("No breakpoint at this line."));
11375 }
11376
11377 /* Remove duplicates from the vec. */
11378 std::sort (found.begin (), found.end (),
11379 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11380 {
11381 return compare_breakpoints (bp_a, bp_b) < 0;
11382 });
11383 found.erase (std::unique (found.begin (), found.end (),
11384 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11385 {
11386 return compare_breakpoints (bp_a, bp_b) == 0;
11387 }),
11388 found.end ());
11389
11390 if (found.size () > 1)
11391 from_tty = 1; /* Always report if deleted more than one. */
11392 if (from_tty)
11393 {
11394 if (found.size () == 1)
11395 printf_unfiltered (_("Deleted breakpoint "));
11396 else
11397 printf_unfiltered (_("Deleted breakpoints "));
11398 }
11399
11400 for (breakpoint *iter : found)
11401 {
11402 if (from_tty)
11403 printf_unfiltered ("%d ", iter->number);
11404 delete_breakpoint (iter);
11405 }
11406 if (from_tty)
11407 putchar_unfiltered ('\n');
11408 }
11409 \f
11410 /* Delete breakpoint in BS if they are `delete' breakpoints and
11411 all breakpoints that are marked for deletion, whether hit or not.
11412 This is called after any breakpoint is hit, or after errors. */
11413
11414 void
11415 breakpoint_auto_delete (bpstat bs)
11416 {
11417 struct breakpoint *b, *b_tmp;
11418
11419 for (; bs; bs = bs->next)
11420 if (bs->breakpoint_at
11421 && bs->breakpoint_at->disposition == disp_del
11422 && bs->stop)
11423 delete_breakpoint (bs->breakpoint_at);
11424
11425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11426 {
11427 if (b->disposition == disp_del_at_next_stop)
11428 delete_breakpoint (b);
11429 }
11430 }
11431
11432 /* A comparison function for bp_location AP and BP being interfaced to
11433 qsort. Sort elements primarily by their ADDRESS (no matter what
11434 bl_address_is_meaningful says), secondarily by ordering first
11435 permanent elements and terciarily just ensuring the array is sorted
11436 stable way despite qsort being an unstable algorithm. */
11437
11438 static int
11439 bp_locations_compare (const void *ap, const void *bp)
11440 {
11441 const struct bp_location *a = *(const struct bp_location **) ap;
11442 const struct bp_location *b = *(const struct bp_location **) bp;
11443
11444 if (a->address != b->address)
11445 return (a->address > b->address) - (a->address < b->address);
11446
11447 /* Sort locations at the same address by their pspace number, keeping
11448 locations of the same inferior (in a multi-inferior environment)
11449 grouped. */
11450
11451 if (a->pspace->num != b->pspace->num)
11452 return ((a->pspace->num > b->pspace->num)
11453 - (a->pspace->num < b->pspace->num));
11454
11455 /* Sort permanent breakpoints first. */
11456 if (a->permanent != b->permanent)
11457 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11458
11459 /* Make the internal GDB representation stable across GDB runs
11460 where A and B memory inside GDB can differ. Breakpoint locations of
11461 the same type at the same address can be sorted in arbitrary order. */
11462
11463 if (a->owner->number != b->owner->number)
11464 return ((a->owner->number > b->owner->number)
11465 - (a->owner->number < b->owner->number));
11466
11467 return (a > b) - (a < b);
11468 }
11469
11470 /* Set bp_locations_placed_address_before_address_max and
11471 bp_locations_shadow_len_after_address_max according to the current
11472 content of the bp_locations array. */
11473
11474 static void
11475 bp_locations_target_extensions_update (void)
11476 {
11477 struct bp_location *bl, **blp_tmp;
11478
11479 bp_locations_placed_address_before_address_max = 0;
11480 bp_locations_shadow_len_after_address_max = 0;
11481
11482 ALL_BP_LOCATIONS (bl, blp_tmp)
11483 {
11484 CORE_ADDR start, end, addr;
11485
11486 if (!bp_location_has_shadow (bl))
11487 continue;
11488
11489 start = bl->target_info.placed_address;
11490 end = start + bl->target_info.shadow_len;
11491
11492 gdb_assert (bl->address >= start);
11493 addr = bl->address - start;
11494 if (addr > bp_locations_placed_address_before_address_max)
11495 bp_locations_placed_address_before_address_max = addr;
11496
11497 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11498
11499 gdb_assert (bl->address < end);
11500 addr = end - bl->address;
11501 if (addr > bp_locations_shadow_len_after_address_max)
11502 bp_locations_shadow_len_after_address_max = addr;
11503 }
11504 }
11505
11506 /* Download tracepoint locations if they haven't been. */
11507
11508 static void
11509 download_tracepoint_locations (void)
11510 {
11511 struct breakpoint *b;
11512 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11513
11514 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11515
11516 ALL_TRACEPOINTS (b)
11517 {
11518 struct bp_location *bl;
11519 struct tracepoint *t;
11520 int bp_location_downloaded = 0;
11521
11522 if ((b->type == bp_fast_tracepoint
11523 ? !may_insert_fast_tracepoints
11524 : !may_insert_tracepoints))
11525 continue;
11526
11527 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11528 {
11529 if (target_can_download_tracepoint ())
11530 can_download_tracepoint = TRIBOOL_TRUE;
11531 else
11532 can_download_tracepoint = TRIBOOL_FALSE;
11533 }
11534
11535 if (can_download_tracepoint == TRIBOOL_FALSE)
11536 break;
11537
11538 for (bl = b->loc; bl; bl = bl->next)
11539 {
11540 /* In tracepoint, locations are _never_ duplicated, so
11541 should_be_inserted is equivalent to
11542 unduplicated_should_be_inserted. */
11543 if (!should_be_inserted (bl) || bl->inserted)
11544 continue;
11545
11546 switch_to_program_space_and_thread (bl->pspace);
11547
11548 target_download_tracepoint (bl);
11549
11550 bl->inserted = 1;
11551 bp_location_downloaded = 1;
11552 }
11553 t = (struct tracepoint *) b;
11554 t->number_on_target = b->number;
11555 if (bp_location_downloaded)
11556 gdb::observers::breakpoint_modified.notify (b);
11557 }
11558 }
11559
11560 /* Swap the insertion/duplication state between two locations. */
11561
11562 static void
11563 swap_insertion (struct bp_location *left, struct bp_location *right)
11564 {
11565 const int left_inserted = left->inserted;
11566 const int left_duplicate = left->duplicate;
11567 const int left_needs_update = left->needs_update;
11568 const struct bp_target_info left_target_info = left->target_info;
11569
11570 /* Locations of tracepoints can never be duplicated. */
11571 if (is_tracepoint (left->owner))
11572 gdb_assert (!left->duplicate);
11573 if (is_tracepoint (right->owner))
11574 gdb_assert (!right->duplicate);
11575
11576 left->inserted = right->inserted;
11577 left->duplicate = right->duplicate;
11578 left->needs_update = right->needs_update;
11579 left->target_info = right->target_info;
11580 right->inserted = left_inserted;
11581 right->duplicate = left_duplicate;
11582 right->needs_update = left_needs_update;
11583 right->target_info = left_target_info;
11584 }
11585
11586 /* Force the re-insertion of the locations at ADDRESS. This is called
11587 once a new/deleted/modified duplicate location is found and we are evaluating
11588 conditions on the target's side. Such conditions need to be updated on
11589 the target. */
11590
11591 static void
11592 force_breakpoint_reinsertion (struct bp_location *bl)
11593 {
11594 struct bp_location **locp = NULL, **loc2p;
11595 struct bp_location *loc;
11596 CORE_ADDR address = 0;
11597 int pspace_num;
11598
11599 address = bl->address;
11600 pspace_num = bl->pspace->num;
11601
11602 /* This is only meaningful if the target is
11603 evaluating conditions and if the user has
11604 opted for condition evaluation on the target's
11605 side. */
11606 if (gdb_evaluates_breakpoint_condition_p ()
11607 || !target_supports_evaluation_of_breakpoint_conditions ())
11608 return;
11609
11610 /* Flag all breakpoint locations with this address and
11611 the same program space as the location
11612 as "its condition has changed". We need to
11613 update the conditions on the target's side. */
11614 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11615 {
11616 loc = *loc2p;
11617
11618 if (!is_breakpoint (loc->owner)
11619 || pspace_num != loc->pspace->num)
11620 continue;
11621
11622 /* Flag the location appropriately. We use a different state to
11623 let everyone know that we already updated the set of locations
11624 with addr bl->address and program space bl->pspace. This is so
11625 we don't have to keep calling these functions just to mark locations
11626 that have already been marked. */
11627 loc->condition_changed = condition_updated;
11628
11629 /* Free the agent expression bytecode as well. We will compute
11630 it later on. */
11631 loc->cond_bytecode.reset ();
11632 }
11633 }
11634 /* Called whether new breakpoints are created, or existing breakpoints
11635 deleted, to update the global location list and recompute which
11636 locations are duplicate of which.
11637
11638 The INSERT_MODE flag determines whether locations may not, may, or
11639 shall be inserted now. See 'enum ugll_insert_mode' for more
11640 info. */
11641
11642 static void
11643 update_global_location_list (enum ugll_insert_mode insert_mode)
11644 {
11645 struct breakpoint *b;
11646 struct bp_location **locp, *loc;
11647 /* Last breakpoint location address that was marked for update. */
11648 CORE_ADDR last_addr = 0;
11649 /* Last breakpoint location program space that was marked for update. */
11650 int last_pspace_num = -1;
11651
11652 /* Used in the duplicates detection below. When iterating over all
11653 bp_locations, points to the first bp_location of a given address.
11654 Breakpoints and watchpoints of different types are never
11655 duplicates of each other. Keep one pointer for each type of
11656 breakpoint/watchpoint, so we only need to loop over all locations
11657 once. */
11658 struct bp_location *bp_loc_first; /* breakpoint */
11659 struct bp_location *wp_loc_first; /* hardware watchpoint */
11660 struct bp_location *awp_loc_first; /* access watchpoint */
11661 struct bp_location *rwp_loc_first; /* read watchpoint */
11662
11663 /* Saved former bp_locations array which we compare against the newly
11664 built bp_locations from the current state of ALL_BREAKPOINTS. */
11665 struct bp_location **old_locp;
11666 unsigned old_locations_count;
11667 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11668
11669 old_locations_count = bp_locations_count;
11670 bp_locations = NULL;
11671 bp_locations_count = 0;
11672
11673 ALL_BREAKPOINTS (b)
11674 for (loc = b->loc; loc; loc = loc->next)
11675 bp_locations_count++;
11676
11677 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11678 locp = bp_locations;
11679 ALL_BREAKPOINTS (b)
11680 for (loc = b->loc; loc; loc = loc->next)
11681 *locp++ = loc;
11682 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11683 bp_locations_compare);
11684
11685 bp_locations_target_extensions_update ();
11686
11687 /* Identify bp_location instances that are no longer present in the
11688 new list, and therefore should be freed. Note that it's not
11689 necessary that those locations should be removed from inferior --
11690 if there's another location at the same address (previously
11691 marked as duplicate), we don't need to remove/insert the
11692 location.
11693
11694 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11695 and former bp_location array state respectively. */
11696
11697 locp = bp_locations;
11698 for (old_locp = old_locations.get ();
11699 old_locp < old_locations.get () + old_locations_count;
11700 old_locp++)
11701 {
11702 struct bp_location *old_loc = *old_locp;
11703 struct bp_location **loc2p;
11704
11705 /* Tells if 'old_loc' is found among the new locations. If
11706 not, we have to free it. */
11707 int found_object = 0;
11708 /* Tells if the location should remain inserted in the target. */
11709 int keep_in_target = 0;
11710 int removed = 0;
11711
11712 /* Skip LOCP entries which will definitely never be needed.
11713 Stop either at or being the one matching OLD_LOC. */
11714 while (locp < bp_locations + bp_locations_count
11715 && (*locp)->address < old_loc->address)
11716 locp++;
11717
11718 for (loc2p = locp;
11719 (loc2p < bp_locations + bp_locations_count
11720 && (*loc2p)->address == old_loc->address);
11721 loc2p++)
11722 {
11723 /* Check if this is a new/duplicated location or a duplicated
11724 location that had its condition modified. If so, we want to send
11725 its condition to the target if evaluation of conditions is taking
11726 place there. */
11727 if ((*loc2p)->condition_changed == condition_modified
11728 && (last_addr != old_loc->address
11729 || last_pspace_num != old_loc->pspace->num))
11730 {
11731 force_breakpoint_reinsertion (*loc2p);
11732 last_pspace_num = old_loc->pspace->num;
11733 }
11734
11735 if (*loc2p == old_loc)
11736 found_object = 1;
11737 }
11738
11739 /* We have already handled this address, update it so that we don't
11740 have to go through updates again. */
11741 last_addr = old_loc->address;
11742
11743 /* Target-side condition evaluation: Handle deleted locations. */
11744 if (!found_object)
11745 force_breakpoint_reinsertion (old_loc);
11746
11747 /* If this location is no longer present, and inserted, look if
11748 there's maybe a new location at the same address. If so,
11749 mark that one inserted, and don't remove this one. This is
11750 needed so that we don't have a time window where a breakpoint
11751 at certain location is not inserted. */
11752
11753 if (old_loc->inserted)
11754 {
11755 /* If the location is inserted now, we might have to remove
11756 it. */
11757
11758 if (found_object && should_be_inserted (old_loc))
11759 {
11760 /* The location is still present in the location list,
11761 and still should be inserted. Don't do anything. */
11762 keep_in_target = 1;
11763 }
11764 else
11765 {
11766 /* This location still exists, but it won't be kept in the
11767 target since it may have been disabled. We proceed to
11768 remove its target-side condition. */
11769
11770 /* The location is either no longer present, or got
11771 disabled. See if there's another location at the
11772 same address, in which case we don't need to remove
11773 this one from the target. */
11774
11775 /* OLD_LOC comes from existing struct breakpoint. */
11776 if (bl_address_is_meaningful (old_loc))
11777 {
11778 for (loc2p = locp;
11779 (loc2p < bp_locations + bp_locations_count
11780 && (*loc2p)->address == old_loc->address);
11781 loc2p++)
11782 {
11783 struct bp_location *loc2 = *loc2p;
11784
11785 if (breakpoint_locations_match (loc2, old_loc))
11786 {
11787 /* Read watchpoint locations are switched to
11788 access watchpoints, if the former are not
11789 supported, but the latter are. */
11790 if (is_hardware_watchpoint (old_loc->owner))
11791 {
11792 gdb_assert (is_hardware_watchpoint (loc2->owner));
11793 loc2->watchpoint_type = old_loc->watchpoint_type;
11794 }
11795
11796 /* loc2 is a duplicated location. We need to check
11797 if it should be inserted in case it will be
11798 unduplicated. */
11799 if (loc2 != old_loc
11800 && unduplicated_should_be_inserted (loc2))
11801 {
11802 swap_insertion (old_loc, loc2);
11803 keep_in_target = 1;
11804 break;
11805 }
11806 }
11807 }
11808 }
11809 }
11810
11811 if (!keep_in_target)
11812 {
11813 if (remove_breakpoint (old_loc))
11814 {
11815 /* This is just about all we can do. We could keep
11816 this location on the global list, and try to
11817 remove it next time, but there's no particular
11818 reason why we will succeed next time.
11819
11820 Note that at this point, old_loc->owner is still
11821 valid, as delete_breakpoint frees the breakpoint
11822 only after calling us. */
11823 printf_filtered (_("warning: Error removing "
11824 "breakpoint %d\n"),
11825 old_loc->owner->number);
11826 }
11827 removed = 1;
11828 }
11829 }
11830
11831 if (!found_object)
11832 {
11833 if (removed && target_is_non_stop_p ()
11834 && need_moribund_for_location_type (old_loc))
11835 {
11836 /* This location was removed from the target. In
11837 non-stop mode, a race condition is possible where
11838 we've removed a breakpoint, but stop events for that
11839 breakpoint are already queued and will arrive later.
11840 We apply an heuristic to be able to distinguish such
11841 SIGTRAPs from other random SIGTRAPs: we keep this
11842 breakpoint location for a bit, and will retire it
11843 after we see some number of events. The theory here
11844 is that reporting of events should, "on the average",
11845 be fair, so after a while we'll see events from all
11846 threads that have anything of interest, and no longer
11847 need to keep this breakpoint location around. We
11848 don't hold locations forever so to reduce chances of
11849 mistaking a non-breakpoint SIGTRAP for a breakpoint
11850 SIGTRAP.
11851
11852 The heuristic failing can be disastrous on
11853 decr_pc_after_break targets.
11854
11855 On decr_pc_after_break targets, like e.g., x86-linux,
11856 if we fail to recognize a late breakpoint SIGTRAP,
11857 because events_till_retirement has reached 0 too
11858 soon, we'll fail to do the PC adjustment, and report
11859 a random SIGTRAP to the user. When the user resumes
11860 the inferior, it will most likely immediately crash
11861 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11862 corrupted, because of being resumed e.g., in the
11863 middle of a multi-byte instruction, or skipped a
11864 one-byte instruction. This was actually seen happen
11865 on native x86-linux, and should be less rare on
11866 targets that do not support new thread events, like
11867 remote, due to the heuristic depending on
11868 thread_count.
11869
11870 Mistaking a random SIGTRAP for a breakpoint trap
11871 causes similar symptoms (PC adjustment applied when
11872 it shouldn't), but then again, playing with SIGTRAPs
11873 behind the debugger's back is asking for trouble.
11874
11875 Since hardware watchpoint traps are always
11876 distinguishable from other traps, so we don't need to
11877 apply keep hardware watchpoint moribund locations
11878 around. We simply always ignore hardware watchpoint
11879 traps we can no longer explain. */
11880
11881 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11882 old_loc->owner = NULL;
11883
11884 moribund_locations.push_back (old_loc);
11885 }
11886 else
11887 {
11888 old_loc->owner = NULL;
11889 decref_bp_location (&old_loc);
11890 }
11891 }
11892 }
11893
11894 /* Rescan breakpoints at the same address and section, marking the
11895 first one as "first" and any others as "duplicates". This is so
11896 that the bpt instruction is only inserted once. If we have a
11897 permanent breakpoint at the same place as BPT, make that one the
11898 official one, and the rest as duplicates. Permanent breakpoints
11899 are sorted first for the same address.
11900
11901 Do the same for hardware watchpoints, but also considering the
11902 watchpoint's type (regular/access/read) and length. */
11903
11904 bp_loc_first = NULL;
11905 wp_loc_first = NULL;
11906 awp_loc_first = NULL;
11907 rwp_loc_first = NULL;
11908 ALL_BP_LOCATIONS (loc, locp)
11909 {
11910 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11911 non-NULL. */
11912 struct bp_location **loc_first_p;
11913 b = loc->owner;
11914
11915 if (!unduplicated_should_be_inserted (loc)
11916 || !bl_address_is_meaningful (loc)
11917 /* Don't detect duplicate for tracepoint locations because they are
11918 never duplicated. See the comments in field `duplicate' of
11919 `struct bp_location'. */
11920 || is_tracepoint (b))
11921 {
11922 /* Clear the condition modification flag. */
11923 loc->condition_changed = condition_unchanged;
11924 continue;
11925 }
11926
11927 if (b->type == bp_hardware_watchpoint)
11928 loc_first_p = &wp_loc_first;
11929 else if (b->type == bp_read_watchpoint)
11930 loc_first_p = &rwp_loc_first;
11931 else if (b->type == bp_access_watchpoint)
11932 loc_first_p = &awp_loc_first;
11933 else
11934 loc_first_p = &bp_loc_first;
11935
11936 if (*loc_first_p == NULL
11937 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11938 || !breakpoint_locations_match (loc, *loc_first_p))
11939 {
11940 *loc_first_p = loc;
11941 loc->duplicate = 0;
11942
11943 if (is_breakpoint (loc->owner) && loc->condition_changed)
11944 {
11945 loc->needs_update = 1;
11946 /* Clear the condition modification flag. */
11947 loc->condition_changed = condition_unchanged;
11948 }
11949 continue;
11950 }
11951
11952
11953 /* This and the above ensure the invariant that the first location
11954 is not duplicated, and is the inserted one.
11955 All following are marked as duplicated, and are not inserted. */
11956 if (loc->inserted)
11957 swap_insertion (loc, *loc_first_p);
11958 loc->duplicate = 1;
11959
11960 /* Clear the condition modification flag. */
11961 loc->condition_changed = condition_unchanged;
11962 }
11963
11964 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11965 {
11966 if (insert_mode != UGLL_DONT_INSERT)
11967 insert_breakpoint_locations ();
11968 else
11969 {
11970 /* Even though the caller told us to not insert new
11971 locations, we may still need to update conditions on the
11972 target's side of breakpoints that were already inserted
11973 if the target is evaluating breakpoint conditions. We
11974 only update conditions for locations that are marked
11975 "needs_update". */
11976 update_inserted_breakpoint_locations ();
11977 }
11978 }
11979
11980 if (insert_mode != UGLL_DONT_INSERT)
11981 download_tracepoint_locations ();
11982 }
11983
11984 void
11985 breakpoint_retire_moribund (void)
11986 {
11987 for (int ix = 0; ix < moribund_locations.size (); ++ix)
11988 {
11989 struct bp_location *loc = moribund_locations[ix];
11990 if (--(loc->events_till_retirement) == 0)
11991 {
11992 decref_bp_location (&loc);
11993 unordered_remove (moribund_locations, ix);
11994 --ix;
11995 }
11996 }
11997 }
11998
11999 static void
12000 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12001 {
12002
12003 try
12004 {
12005 update_global_location_list (insert_mode);
12006 }
12007 catch (const gdb_exception_error &e)
12008 {
12009 }
12010 }
12011
12012 /* Clear BKP from a BPS. */
12013
12014 static void
12015 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12016 {
12017 bpstat bs;
12018
12019 for (bs = bps; bs; bs = bs->next)
12020 if (bs->breakpoint_at == bpt)
12021 {
12022 bs->breakpoint_at = NULL;
12023 bs->old_val = NULL;
12024 /* bs->commands will be freed later. */
12025 }
12026 }
12027
12028 /* Callback for iterate_over_threads. */
12029 static int
12030 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12031 {
12032 struct breakpoint *bpt = (struct breakpoint *) data;
12033
12034 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12035 return 0;
12036 }
12037
12038 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12039 callbacks. */
12040
12041 static void
12042 say_where (struct breakpoint *b)
12043 {
12044 struct value_print_options opts;
12045
12046 get_user_print_options (&opts);
12047
12048 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12049 single string. */
12050 if (b->loc == NULL)
12051 {
12052 /* For pending locations, the output differs slightly based
12053 on b->extra_string. If this is non-NULL, it contains either
12054 a condition or dprintf arguments. */
12055 if (b->extra_string == NULL)
12056 {
12057 printf_filtered (_(" (%s) pending."),
12058 event_location_to_string (b->location.get ()));
12059 }
12060 else if (b->type == bp_dprintf)
12061 {
12062 printf_filtered (_(" (%s,%s) pending."),
12063 event_location_to_string (b->location.get ()),
12064 b->extra_string);
12065 }
12066 else
12067 {
12068 printf_filtered (_(" (%s %s) pending."),
12069 event_location_to_string (b->location.get ()),
12070 b->extra_string);
12071 }
12072 }
12073 else
12074 {
12075 if (opts.addressprint || b->loc->symtab == NULL)
12076 {
12077 printf_filtered (" at ");
12078 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12079 address_style.style (),
12080 gdb_stdout);
12081 }
12082 if (b->loc->symtab != NULL)
12083 {
12084 /* If there is a single location, we can print the location
12085 more nicely. */
12086 if (b->loc->next == NULL)
12087 {
12088 puts_filtered (": file ");
12089 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12090 file_name_style.style (),
12091 gdb_stdout);
12092 printf_filtered (", line %d.",
12093 b->loc->line_number);
12094 }
12095 else
12096 /* This is not ideal, but each location may have a
12097 different file name, and this at least reflects the
12098 real situation somewhat. */
12099 printf_filtered (": %s.",
12100 event_location_to_string (b->location.get ()));
12101 }
12102
12103 if (b->loc->next)
12104 {
12105 struct bp_location *loc = b->loc;
12106 int n = 0;
12107 for (; loc; loc = loc->next)
12108 ++n;
12109 printf_filtered (" (%d locations)", n);
12110 }
12111 }
12112 }
12113
12114 bp_location::~bp_location ()
12115 {
12116 xfree (function_name);
12117 }
12118
12119 /* Destructor for the breakpoint base class. */
12120
12121 breakpoint::~breakpoint ()
12122 {
12123 xfree (this->cond_string);
12124 xfree (this->extra_string);
12125 xfree (this->filter);
12126 }
12127
12128 static struct bp_location *
12129 base_breakpoint_allocate_location (struct breakpoint *self)
12130 {
12131 return new bp_location (self);
12132 }
12133
12134 static void
12135 base_breakpoint_re_set (struct breakpoint *b)
12136 {
12137 /* Nothing to re-set. */
12138 }
12139
12140 #define internal_error_pure_virtual_called() \
12141 gdb_assert_not_reached ("pure virtual function called")
12142
12143 static int
12144 base_breakpoint_insert_location (struct bp_location *bl)
12145 {
12146 internal_error_pure_virtual_called ();
12147 }
12148
12149 static int
12150 base_breakpoint_remove_location (struct bp_location *bl,
12151 enum remove_bp_reason reason)
12152 {
12153 internal_error_pure_virtual_called ();
12154 }
12155
12156 static int
12157 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12158 const address_space *aspace,
12159 CORE_ADDR bp_addr,
12160 const struct target_waitstatus *ws)
12161 {
12162 internal_error_pure_virtual_called ();
12163 }
12164
12165 static void
12166 base_breakpoint_check_status (bpstat bs)
12167 {
12168 /* Always stop. */
12169 }
12170
12171 /* A "works_in_software_mode" breakpoint_ops method that just internal
12172 errors. */
12173
12174 static int
12175 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12176 {
12177 internal_error_pure_virtual_called ();
12178 }
12179
12180 /* A "resources_needed" breakpoint_ops method that just internal
12181 errors. */
12182
12183 static int
12184 base_breakpoint_resources_needed (const struct bp_location *bl)
12185 {
12186 internal_error_pure_virtual_called ();
12187 }
12188
12189 static enum print_stop_action
12190 base_breakpoint_print_it (bpstat bs)
12191 {
12192 internal_error_pure_virtual_called ();
12193 }
12194
12195 static void
12196 base_breakpoint_print_one_detail (const struct breakpoint *self,
12197 struct ui_out *uiout)
12198 {
12199 /* nothing */
12200 }
12201
12202 static void
12203 base_breakpoint_print_mention (struct breakpoint *b)
12204 {
12205 internal_error_pure_virtual_called ();
12206 }
12207
12208 static void
12209 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12210 {
12211 internal_error_pure_virtual_called ();
12212 }
12213
12214 static void
12215 base_breakpoint_create_sals_from_location
12216 (const struct event_location *location,
12217 struct linespec_result *canonical,
12218 enum bptype type_wanted)
12219 {
12220 internal_error_pure_virtual_called ();
12221 }
12222
12223 static void
12224 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12225 struct linespec_result *c,
12226 gdb::unique_xmalloc_ptr<char> cond_string,
12227 gdb::unique_xmalloc_ptr<char> extra_string,
12228 enum bptype type_wanted,
12229 enum bpdisp disposition,
12230 int thread,
12231 int task, int ignore_count,
12232 const struct breakpoint_ops *o,
12233 int from_tty, int enabled,
12234 int internal, unsigned flags)
12235 {
12236 internal_error_pure_virtual_called ();
12237 }
12238
12239 static std::vector<symtab_and_line>
12240 base_breakpoint_decode_location (struct breakpoint *b,
12241 const struct event_location *location,
12242 struct program_space *search_pspace)
12243 {
12244 internal_error_pure_virtual_called ();
12245 }
12246
12247 /* The default 'explains_signal' method. */
12248
12249 static int
12250 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12251 {
12252 return 1;
12253 }
12254
12255 /* The default "after_condition_true" method. */
12256
12257 static void
12258 base_breakpoint_after_condition_true (struct bpstats *bs)
12259 {
12260 /* Nothing to do. */
12261 }
12262
12263 struct breakpoint_ops base_breakpoint_ops =
12264 {
12265 base_breakpoint_allocate_location,
12266 base_breakpoint_re_set,
12267 base_breakpoint_insert_location,
12268 base_breakpoint_remove_location,
12269 base_breakpoint_breakpoint_hit,
12270 base_breakpoint_check_status,
12271 base_breakpoint_resources_needed,
12272 base_breakpoint_works_in_software_mode,
12273 base_breakpoint_print_it,
12274 NULL,
12275 base_breakpoint_print_one_detail,
12276 base_breakpoint_print_mention,
12277 base_breakpoint_print_recreate,
12278 base_breakpoint_create_sals_from_location,
12279 base_breakpoint_create_breakpoints_sal,
12280 base_breakpoint_decode_location,
12281 base_breakpoint_explains_signal,
12282 base_breakpoint_after_condition_true,
12283 };
12284
12285 /* Default breakpoint_ops methods. */
12286
12287 static void
12288 bkpt_re_set (struct breakpoint *b)
12289 {
12290 /* FIXME: is this still reachable? */
12291 if (breakpoint_event_location_empty_p (b))
12292 {
12293 /* Anything without a location can't be re-set. */
12294 delete_breakpoint (b);
12295 return;
12296 }
12297
12298 breakpoint_re_set_default (b);
12299 }
12300
12301 static int
12302 bkpt_insert_location (struct bp_location *bl)
12303 {
12304 CORE_ADDR addr = bl->target_info.reqstd_address;
12305
12306 bl->target_info.kind = breakpoint_kind (bl, &addr);
12307 bl->target_info.placed_address = addr;
12308
12309 if (bl->loc_type == bp_loc_hardware_breakpoint)
12310 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12311 else
12312 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12313 }
12314
12315 static int
12316 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12317 {
12318 if (bl->loc_type == bp_loc_hardware_breakpoint)
12319 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12320 else
12321 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12322 }
12323
12324 static int
12325 bkpt_breakpoint_hit (const struct bp_location *bl,
12326 const address_space *aspace, CORE_ADDR bp_addr,
12327 const struct target_waitstatus *ws)
12328 {
12329 if (ws->kind != TARGET_WAITKIND_STOPPED
12330 || ws->value.sig != GDB_SIGNAL_TRAP)
12331 return 0;
12332
12333 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12334 aspace, bp_addr))
12335 return 0;
12336
12337 if (overlay_debugging /* unmapped overlay section */
12338 && section_is_overlay (bl->section)
12339 && !section_is_mapped (bl->section))
12340 return 0;
12341
12342 return 1;
12343 }
12344
12345 static int
12346 dprintf_breakpoint_hit (const struct bp_location *bl,
12347 const address_space *aspace, CORE_ADDR bp_addr,
12348 const struct target_waitstatus *ws)
12349 {
12350 if (dprintf_style == dprintf_style_agent
12351 && target_can_run_breakpoint_commands ())
12352 {
12353 /* An agent-style dprintf never causes a stop. If we see a trap
12354 for this address it must be for a breakpoint that happens to
12355 be set at the same address. */
12356 return 0;
12357 }
12358
12359 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12360 }
12361
12362 static int
12363 bkpt_resources_needed (const struct bp_location *bl)
12364 {
12365 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12366
12367 return 1;
12368 }
12369
12370 static enum print_stop_action
12371 bkpt_print_it (bpstat bs)
12372 {
12373 struct breakpoint *b;
12374 const struct bp_location *bl;
12375 int bp_temp;
12376 struct ui_out *uiout = current_uiout;
12377
12378 gdb_assert (bs->bp_location_at != NULL);
12379
12380 bl = bs->bp_location_at;
12381 b = bs->breakpoint_at;
12382
12383 bp_temp = b->disposition == disp_del;
12384 if (bl->address != bl->requested_address)
12385 breakpoint_adjustment_warning (bl->requested_address,
12386 bl->address,
12387 b->number, 1);
12388 annotate_breakpoint (b->number);
12389 maybe_print_thread_hit_breakpoint (uiout);
12390
12391 if (bp_temp)
12392 uiout->text ("Temporary breakpoint ");
12393 else
12394 uiout->text ("Breakpoint ");
12395 if (uiout->is_mi_like_p ())
12396 {
12397 uiout->field_string ("reason",
12398 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12399 uiout->field_string ("disp", bpdisp_text (b->disposition));
12400 }
12401 uiout->field_int ("bkptno", b->number);
12402 uiout->text (", ");
12403
12404 return PRINT_SRC_AND_LOC;
12405 }
12406
12407 static void
12408 bkpt_print_mention (struct breakpoint *b)
12409 {
12410 if (current_uiout->is_mi_like_p ())
12411 return;
12412
12413 switch (b->type)
12414 {
12415 case bp_breakpoint:
12416 case bp_gnu_ifunc_resolver:
12417 if (b->disposition == disp_del)
12418 printf_filtered (_("Temporary breakpoint"));
12419 else
12420 printf_filtered (_("Breakpoint"));
12421 printf_filtered (_(" %d"), b->number);
12422 if (b->type == bp_gnu_ifunc_resolver)
12423 printf_filtered (_(" at gnu-indirect-function resolver"));
12424 break;
12425 case bp_hardware_breakpoint:
12426 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12427 break;
12428 case bp_dprintf:
12429 printf_filtered (_("Dprintf %d"), b->number);
12430 break;
12431 }
12432
12433 say_where (b);
12434 }
12435
12436 static void
12437 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12438 {
12439 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12440 fprintf_unfiltered (fp, "tbreak");
12441 else if (tp->type == bp_breakpoint)
12442 fprintf_unfiltered (fp, "break");
12443 else if (tp->type == bp_hardware_breakpoint
12444 && tp->disposition == disp_del)
12445 fprintf_unfiltered (fp, "thbreak");
12446 else if (tp->type == bp_hardware_breakpoint)
12447 fprintf_unfiltered (fp, "hbreak");
12448 else
12449 internal_error (__FILE__, __LINE__,
12450 _("unhandled breakpoint type %d"), (int) tp->type);
12451
12452 fprintf_unfiltered (fp, " %s",
12453 event_location_to_string (tp->location.get ()));
12454
12455 /* Print out extra_string if this breakpoint is pending. It might
12456 contain, for example, conditions that were set by the user. */
12457 if (tp->loc == NULL && tp->extra_string != NULL)
12458 fprintf_unfiltered (fp, " %s", tp->extra_string);
12459
12460 print_recreate_thread (tp, fp);
12461 }
12462
12463 static void
12464 bkpt_create_sals_from_location (const struct event_location *location,
12465 struct linespec_result *canonical,
12466 enum bptype type_wanted)
12467 {
12468 create_sals_from_location_default (location, canonical, type_wanted);
12469 }
12470
12471 static void
12472 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12473 struct linespec_result *canonical,
12474 gdb::unique_xmalloc_ptr<char> cond_string,
12475 gdb::unique_xmalloc_ptr<char> extra_string,
12476 enum bptype type_wanted,
12477 enum bpdisp disposition,
12478 int thread,
12479 int task, int ignore_count,
12480 const struct breakpoint_ops *ops,
12481 int from_tty, int enabled,
12482 int internal, unsigned flags)
12483 {
12484 create_breakpoints_sal_default (gdbarch, canonical,
12485 std::move (cond_string),
12486 std::move (extra_string),
12487 type_wanted,
12488 disposition, thread, task,
12489 ignore_count, ops, from_tty,
12490 enabled, internal, flags);
12491 }
12492
12493 static std::vector<symtab_and_line>
12494 bkpt_decode_location (struct breakpoint *b,
12495 const struct event_location *location,
12496 struct program_space *search_pspace)
12497 {
12498 return decode_location_default (b, location, search_pspace);
12499 }
12500
12501 /* Virtual table for internal breakpoints. */
12502
12503 static void
12504 internal_bkpt_re_set (struct breakpoint *b)
12505 {
12506 switch (b->type)
12507 {
12508 /* Delete overlay event and longjmp master breakpoints; they
12509 will be reset later by breakpoint_re_set. */
12510 case bp_overlay_event:
12511 case bp_longjmp_master:
12512 case bp_std_terminate_master:
12513 case bp_exception_master:
12514 delete_breakpoint (b);
12515 break;
12516
12517 /* This breakpoint is special, it's set up when the inferior
12518 starts and we really don't want to touch it. */
12519 case bp_shlib_event:
12520
12521 /* Like bp_shlib_event, this breakpoint type is special. Once
12522 it is set up, we do not want to touch it. */
12523 case bp_thread_event:
12524 break;
12525 }
12526 }
12527
12528 static void
12529 internal_bkpt_check_status (bpstat bs)
12530 {
12531 if (bs->breakpoint_at->type == bp_shlib_event)
12532 {
12533 /* If requested, stop when the dynamic linker notifies GDB of
12534 events. This allows the user to get control and place
12535 breakpoints in initializer routines for dynamically loaded
12536 objects (among other things). */
12537 bs->stop = stop_on_solib_events;
12538 bs->print = stop_on_solib_events;
12539 }
12540 else
12541 bs->stop = 0;
12542 }
12543
12544 static enum print_stop_action
12545 internal_bkpt_print_it (bpstat bs)
12546 {
12547 struct breakpoint *b;
12548
12549 b = bs->breakpoint_at;
12550
12551 switch (b->type)
12552 {
12553 case bp_shlib_event:
12554 /* Did we stop because the user set the stop_on_solib_events
12555 variable? (If so, we report this as a generic, "Stopped due
12556 to shlib event" message.) */
12557 print_solib_event (0);
12558 break;
12559
12560 case bp_thread_event:
12561 /* Not sure how we will get here.
12562 GDB should not stop for these breakpoints. */
12563 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12564 break;
12565
12566 case bp_overlay_event:
12567 /* By analogy with the thread event, GDB should not stop for these. */
12568 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12569 break;
12570
12571 case bp_longjmp_master:
12572 /* These should never be enabled. */
12573 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12574 break;
12575
12576 case bp_std_terminate_master:
12577 /* These should never be enabled. */
12578 printf_filtered (_("std::terminate Master Breakpoint: "
12579 "gdb should not stop!\n"));
12580 break;
12581
12582 case bp_exception_master:
12583 /* These should never be enabled. */
12584 printf_filtered (_("Exception Master Breakpoint: "
12585 "gdb should not stop!\n"));
12586 break;
12587 }
12588
12589 return PRINT_NOTHING;
12590 }
12591
12592 static void
12593 internal_bkpt_print_mention (struct breakpoint *b)
12594 {
12595 /* Nothing to mention. These breakpoints are internal. */
12596 }
12597
12598 /* Virtual table for momentary breakpoints */
12599
12600 static void
12601 momentary_bkpt_re_set (struct breakpoint *b)
12602 {
12603 /* Keep temporary breakpoints, which can be encountered when we step
12604 over a dlopen call and solib_add is resetting the breakpoints.
12605 Otherwise these should have been blown away via the cleanup chain
12606 or by breakpoint_init_inferior when we rerun the executable. */
12607 }
12608
12609 static void
12610 momentary_bkpt_check_status (bpstat bs)
12611 {
12612 /* Nothing. The point of these breakpoints is causing a stop. */
12613 }
12614
12615 static enum print_stop_action
12616 momentary_bkpt_print_it (bpstat bs)
12617 {
12618 return PRINT_UNKNOWN;
12619 }
12620
12621 static void
12622 momentary_bkpt_print_mention (struct breakpoint *b)
12623 {
12624 /* Nothing to mention. These breakpoints are internal. */
12625 }
12626
12627 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12628
12629 It gets cleared already on the removal of the first one of such placed
12630 breakpoints. This is OK as they get all removed altogether. */
12631
12632 longjmp_breakpoint::~longjmp_breakpoint ()
12633 {
12634 thread_info *tp = find_thread_global_id (this->thread);
12635
12636 if (tp != NULL)
12637 tp->initiating_frame = null_frame_id;
12638 }
12639
12640 /* Specific methods for probe breakpoints. */
12641
12642 static int
12643 bkpt_probe_insert_location (struct bp_location *bl)
12644 {
12645 int v = bkpt_insert_location (bl);
12646
12647 if (v == 0)
12648 {
12649 /* The insertion was successful, now let's set the probe's semaphore
12650 if needed. */
12651 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12652 }
12653
12654 return v;
12655 }
12656
12657 static int
12658 bkpt_probe_remove_location (struct bp_location *bl,
12659 enum remove_bp_reason reason)
12660 {
12661 /* Let's clear the semaphore before removing the location. */
12662 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12663
12664 return bkpt_remove_location (bl, reason);
12665 }
12666
12667 static void
12668 bkpt_probe_create_sals_from_location (const struct event_location *location,
12669 struct linespec_result *canonical,
12670 enum bptype type_wanted)
12671 {
12672 struct linespec_sals lsal;
12673
12674 lsal.sals = parse_probes (location, NULL, canonical);
12675 lsal.canonical
12676 = xstrdup (event_location_to_string (canonical->location.get ()));
12677 canonical->lsals.push_back (std::move (lsal));
12678 }
12679
12680 static std::vector<symtab_and_line>
12681 bkpt_probe_decode_location (struct breakpoint *b,
12682 const struct event_location *location,
12683 struct program_space *search_pspace)
12684 {
12685 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12686 if (sals.empty ())
12687 error (_("probe not found"));
12688 return sals;
12689 }
12690
12691 /* The breakpoint_ops structure to be used in tracepoints. */
12692
12693 static void
12694 tracepoint_re_set (struct breakpoint *b)
12695 {
12696 breakpoint_re_set_default (b);
12697 }
12698
12699 static int
12700 tracepoint_breakpoint_hit (const struct bp_location *bl,
12701 const address_space *aspace, CORE_ADDR bp_addr,
12702 const struct target_waitstatus *ws)
12703 {
12704 /* By definition, the inferior does not report stops at
12705 tracepoints. */
12706 return 0;
12707 }
12708
12709 static void
12710 tracepoint_print_one_detail (const struct breakpoint *self,
12711 struct ui_out *uiout)
12712 {
12713 struct tracepoint *tp = (struct tracepoint *) self;
12714 if (!tp->static_trace_marker_id.empty ())
12715 {
12716 gdb_assert (self->type == bp_static_tracepoint);
12717
12718 uiout->text ("\tmarker id is ");
12719 uiout->field_string ("static-tracepoint-marker-string-id",
12720 tp->static_trace_marker_id);
12721 uiout->text ("\n");
12722 }
12723 }
12724
12725 static void
12726 tracepoint_print_mention (struct breakpoint *b)
12727 {
12728 if (current_uiout->is_mi_like_p ())
12729 return;
12730
12731 switch (b->type)
12732 {
12733 case bp_tracepoint:
12734 printf_filtered (_("Tracepoint"));
12735 printf_filtered (_(" %d"), b->number);
12736 break;
12737 case bp_fast_tracepoint:
12738 printf_filtered (_("Fast tracepoint"));
12739 printf_filtered (_(" %d"), b->number);
12740 break;
12741 case bp_static_tracepoint:
12742 printf_filtered (_("Static tracepoint"));
12743 printf_filtered (_(" %d"), b->number);
12744 break;
12745 default:
12746 internal_error (__FILE__, __LINE__,
12747 _("unhandled tracepoint type %d"), (int) b->type);
12748 }
12749
12750 say_where (b);
12751 }
12752
12753 static void
12754 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12755 {
12756 struct tracepoint *tp = (struct tracepoint *) self;
12757
12758 if (self->type == bp_fast_tracepoint)
12759 fprintf_unfiltered (fp, "ftrace");
12760 else if (self->type == bp_static_tracepoint)
12761 fprintf_unfiltered (fp, "strace");
12762 else if (self->type == bp_tracepoint)
12763 fprintf_unfiltered (fp, "trace");
12764 else
12765 internal_error (__FILE__, __LINE__,
12766 _("unhandled tracepoint type %d"), (int) self->type);
12767
12768 fprintf_unfiltered (fp, " %s",
12769 event_location_to_string (self->location.get ()));
12770 print_recreate_thread (self, fp);
12771
12772 if (tp->pass_count)
12773 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12774 }
12775
12776 static void
12777 tracepoint_create_sals_from_location (const struct event_location *location,
12778 struct linespec_result *canonical,
12779 enum bptype type_wanted)
12780 {
12781 create_sals_from_location_default (location, canonical, type_wanted);
12782 }
12783
12784 static void
12785 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12786 struct linespec_result *canonical,
12787 gdb::unique_xmalloc_ptr<char> cond_string,
12788 gdb::unique_xmalloc_ptr<char> extra_string,
12789 enum bptype type_wanted,
12790 enum bpdisp disposition,
12791 int thread,
12792 int task, int ignore_count,
12793 const struct breakpoint_ops *ops,
12794 int from_tty, int enabled,
12795 int internal, unsigned flags)
12796 {
12797 create_breakpoints_sal_default (gdbarch, canonical,
12798 std::move (cond_string),
12799 std::move (extra_string),
12800 type_wanted,
12801 disposition, thread, task,
12802 ignore_count, ops, from_tty,
12803 enabled, internal, flags);
12804 }
12805
12806 static std::vector<symtab_and_line>
12807 tracepoint_decode_location (struct breakpoint *b,
12808 const struct event_location *location,
12809 struct program_space *search_pspace)
12810 {
12811 return decode_location_default (b, location, search_pspace);
12812 }
12813
12814 struct breakpoint_ops tracepoint_breakpoint_ops;
12815
12816 /* The breakpoint_ops structure to be use on tracepoints placed in a
12817 static probe. */
12818
12819 static void
12820 tracepoint_probe_create_sals_from_location
12821 (const struct event_location *location,
12822 struct linespec_result *canonical,
12823 enum bptype type_wanted)
12824 {
12825 /* We use the same method for breakpoint on probes. */
12826 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12827 }
12828
12829 static std::vector<symtab_and_line>
12830 tracepoint_probe_decode_location (struct breakpoint *b,
12831 const struct event_location *location,
12832 struct program_space *search_pspace)
12833 {
12834 /* We use the same method for breakpoint on probes. */
12835 return bkpt_probe_decode_location (b, location, search_pspace);
12836 }
12837
12838 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12839
12840 /* Dprintf breakpoint_ops methods. */
12841
12842 static void
12843 dprintf_re_set (struct breakpoint *b)
12844 {
12845 breakpoint_re_set_default (b);
12846
12847 /* extra_string should never be non-NULL for dprintf. */
12848 gdb_assert (b->extra_string != NULL);
12849
12850 /* 1 - connect to target 1, that can run breakpoint commands.
12851 2 - create a dprintf, which resolves fine.
12852 3 - disconnect from target 1
12853 4 - connect to target 2, that can NOT run breakpoint commands.
12854
12855 After steps #3/#4, you'll want the dprintf command list to
12856 be updated, because target 1 and 2 may well return different
12857 answers for target_can_run_breakpoint_commands().
12858 Given absence of finer grained resetting, we get to do
12859 it all the time. */
12860 if (b->extra_string != NULL)
12861 update_dprintf_command_list (b);
12862 }
12863
12864 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12865
12866 static void
12867 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12868 {
12869 fprintf_unfiltered (fp, "dprintf %s,%s",
12870 event_location_to_string (tp->location.get ()),
12871 tp->extra_string);
12872 print_recreate_thread (tp, fp);
12873 }
12874
12875 /* Implement the "after_condition_true" breakpoint_ops method for
12876 dprintf.
12877
12878 dprintf's are implemented with regular commands in their command
12879 list, but we run the commands here instead of before presenting the
12880 stop to the user, as dprintf's don't actually cause a stop. This
12881 also makes it so that the commands of multiple dprintfs at the same
12882 address are all handled. */
12883
12884 static void
12885 dprintf_after_condition_true (struct bpstats *bs)
12886 {
12887 struct bpstats tmp_bs;
12888 struct bpstats *tmp_bs_p = &tmp_bs;
12889
12890 /* dprintf's never cause a stop. This wasn't set in the
12891 check_status hook instead because that would make the dprintf's
12892 condition not be evaluated. */
12893 bs->stop = 0;
12894
12895 /* Run the command list here. Take ownership of it instead of
12896 copying. We never want these commands to run later in
12897 bpstat_do_actions, if a breakpoint that causes a stop happens to
12898 be set at same address as this dprintf, or even if running the
12899 commands here throws. */
12900 tmp_bs.commands = bs->commands;
12901 bs->commands = NULL;
12902
12903 bpstat_do_actions_1 (&tmp_bs_p);
12904
12905 /* 'tmp_bs.commands' will usually be NULL by now, but
12906 bpstat_do_actions_1 may return early without processing the whole
12907 list. */
12908 }
12909
12910 /* The breakpoint_ops structure to be used on static tracepoints with
12911 markers (`-m'). */
12912
12913 static void
12914 strace_marker_create_sals_from_location (const struct event_location *location,
12915 struct linespec_result *canonical,
12916 enum bptype type_wanted)
12917 {
12918 struct linespec_sals lsal;
12919 const char *arg_start, *arg;
12920
12921 arg = arg_start = get_linespec_location (location)->spec_string;
12922 lsal.sals = decode_static_tracepoint_spec (&arg);
12923
12924 std::string str (arg_start, arg - arg_start);
12925 const char *ptr = str.c_str ();
12926 canonical->location
12927 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12928
12929 lsal.canonical
12930 = xstrdup (event_location_to_string (canonical->location.get ()));
12931 canonical->lsals.push_back (std::move (lsal));
12932 }
12933
12934 static void
12935 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12936 struct linespec_result *canonical,
12937 gdb::unique_xmalloc_ptr<char> cond_string,
12938 gdb::unique_xmalloc_ptr<char> extra_string,
12939 enum bptype type_wanted,
12940 enum bpdisp disposition,
12941 int thread,
12942 int task, int ignore_count,
12943 const struct breakpoint_ops *ops,
12944 int from_tty, int enabled,
12945 int internal, unsigned flags)
12946 {
12947 const linespec_sals &lsal = canonical->lsals[0];
12948
12949 /* If the user is creating a static tracepoint by marker id
12950 (strace -m MARKER_ID), then store the sals index, so that
12951 breakpoint_re_set can try to match up which of the newly
12952 found markers corresponds to this one, and, don't try to
12953 expand multiple locations for each sal, given than SALS
12954 already should contain all sals for MARKER_ID. */
12955
12956 for (size_t i = 0; i < lsal.sals.size (); i++)
12957 {
12958 event_location_up location
12959 = copy_event_location (canonical->location.get ());
12960
12961 std::unique_ptr<tracepoint> tp (new tracepoint ());
12962 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12963 std::move (location), NULL,
12964 std::move (cond_string),
12965 std::move (extra_string),
12966 type_wanted, disposition,
12967 thread, task, ignore_count, ops,
12968 from_tty, enabled, internal, flags,
12969 canonical->special_display);
12970 /* Given that its possible to have multiple markers with
12971 the same string id, if the user is creating a static
12972 tracepoint by marker id ("strace -m MARKER_ID"), then
12973 store the sals index, so that breakpoint_re_set can
12974 try to match up which of the newly found markers
12975 corresponds to this one */
12976 tp->static_trace_marker_id_idx = i;
12977
12978 install_breakpoint (internal, std::move (tp), 0);
12979 }
12980 }
12981
12982 static std::vector<symtab_and_line>
12983 strace_marker_decode_location (struct breakpoint *b,
12984 const struct event_location *location,
12985 struct program_space *search_pspace)
12986 {
12987 struct tracepoint *tp = (struct tracepoint *) b;
12988 const char *s = get_linespec_location (location)->spec_string;
12989
12990 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
12991 if (sals.size () > tp->static_trace_marker_id_idx)
12992 {
12993 sals[0] = sals[tp->static_trace_marker_id_idx];
12994 sals.resize (1);
12995 return sals;
12996 }
12997 else
12998 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
12999 }
13000
13001 static struct breakpoint_ops strace_marker_breakpoint_ops;
13002
13003 static int
13004 strace_marker_p (struct breakpoint *b)
13005 {
13006 return b->ops == &strace_marker_breakpoint_ops;
13007 }
13008
13009 /* Delete a breakpoint and clean up all traces of it in the data
13010 structures. */
13011
13012 void
13013 delete_breakpoint (struct breakpoint *bpt)
13014 {
13015 struct breakpoint *b;
13016
13017 gdb_assert (bpt != NULL);
13018
13019 /* Has this bp already been deleted? This can happen because
13020 multiple lists can hold pointers to bp's. bpstat lists are
13021 especial culprits.
13022
13023 One example of this happening is a watchpoint's scope bp. When
13024 the scope bp triggers, we notice that the watchpoint is out of
13025 scope, and delete it. We also delete its scope bp. But the
13026 scope bp is marked "auto-deleting", and is already on a bpstat.
13027 That bpstat is then checked for auto-deleting bp's, which are
13028 deleted.
13029
13030 A real solution to this problem might involve reference counts in
13031 bp's, and/or giving them pointers back to their referencing
13032 bpstat's, and teaching delete_breakpoint to only free a bp's
13033 storage when no more references were extent. A cheaper bandaid
13034 was chosen. */
13035 if (bpt->type == bp_none)
13036 return;
13037
13038 /* At least avoid this stale reference until the reference counting
13039 of breakpoints gets resolved. */
13040 if (bpt->related_breakpoint != bpt)
13041 {
13042 struct breakpoint *related;
13043 struct watchpoint *w;
13044
13045 if (bpt->type == bp_watchpoint_scope)
13046 w = (struct watchpoint *) bpt->related_breakpoint;
13047 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13048 w = (struct watchpoint *) bpt;
13049 else
13050 w = NULL;
13051 if (w != NULL)
13052 watchpoint_del_at_next_stop (w);
13053
13054 /* Unlink bpt from the bpt->related_breakpoint ring. */
13055 for (related = bpt; related->related_breakpoint != bpt;
13056 related = related->related_breakpoint);
13057 related->related_breakpoint = bpt->related_breakpoint;
13058 bpt->related_breakpoint = bpt;
13059 }
13060
13061 /* watch_command_1 creates a watchpoint but only sets its number if
13062 update_watchpoint succeeds in creating its bp_locations. If there's
13063 a problem in that process, we'll be asked to delete the half-created
13064 watchpoint. In that case, don't announce the deletion. */
13065 if (bpt->number)
13066 gdb::observers::breakpoint_deleted.notify (bpt);
13067
13068 if (breakpoint_chain == bpt)
13069 breakpoint_chain = bpt->next;
13070
13071 ALL_BREAKPOINTS (b)
13072 if (b->next == bpt)
13073 {
13074 b->next = bpt->next;
13075 break;
13076 }
13077
13078 /* Be sure no bpstat's are pointing at the breakpoint after it's
13079 been freed. */
13080 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13081 in all threads for now. Note that we cannot just remove bpstats
13082 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13083 commands are associated with the bpstat; if we remove it here,
13084 then the later call to bpstat_do_actions (&stop_bpstat); in
13085 event-top.c won't do anything, and temporary breakpoints with
13086 commands won't work. */
13087
13088 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13089
13090 /* Now that breakpoint is removed from breakpoint list, update the
13091 global location list. This will remove locations that used to
13092 belong to this breakpoint. Do this before freeing the breakpoint
13093 itself, since remove_breakpoint looks at location's owner. It
13094 might be better design to have location completely
13095 self-contained, but it's not the case now. */
13096 update_global_location_list (UGLL_DONT_INSERT);
13097
13098 /* On the chance that someone will soon try again to delete this
13099 same bp, we mark it as deleted before freeing its storage. */
13100 bpt->type = bp_none;
13101 delete bpt;
13102 }
13103
13104 /* Iterator function to call a user-provided callback function once
13105 for each of B and its related breakpoints. */
13106
13107 static void
13108 iterate_over_related_breakpoints (struct breakpoint *b,
13109 gdb::function_view<void (breakpoint *)> function)
13110 {
13111 struct breakpoint *related;
13112
13113 related = b;
13114 do
13115 {
13116 struct breakpoint *next;
13117
13118 /* FUNCTION may delete RELATED. */
13119 next = related->related_breakpoint;
13120
13121 if (next == related)
13122 {
13123 /* RELATED is the last ring entry. */
13124 function (related);
13125
13126 /* FUNCTION may have deleted it, so we'd never reach back to
13127 B. There's nothing left to do anyway, so just break
13128 out. */
13129 break;
13130 }
13131 else
13132 function (related);
13133
13134 related = next;
13135 }
13136 while (related != b);
13137 }
13138
13139 static void
13140 delete_command (const char *arg, int from_tty)
13141 {
13142 struct breakpoint *b, *b_tmp;
13143
13144 dont_repeat ();
13145
13146 if (arg == 0)
13147 {
13148 int breaks_to_delete = 0;
13149
13150 /* Delete all breakpoints if no argument. Do not delete
13151 internal breakpoints, these have to be deleted with an
13152 explicit breakpoint number argument. */
13153 ALL_BREAKPOINTS (b)
13154 if (user_breakpoint_p (b))
13155 {
13156 breaks_to_delete = 1;
13157 break;
13158 }
13159
13160 /* Ask user only if there are some breakpoints to delete. */
13161 if (!from_tty
13162 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13163 {
13164 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13165 if (user_breakpoint_p (b))
13166 delete_breakpoint (b);
13167 }
13168 }
13169 else
13170 map_breakpoint_numbers
13171 (arg, [&] (breakpoint *br)
13172 {
13173 iterate_over_related_breakpoints (br, delete_breakpoint);
13174 });
13175 }
13176
13177 /* Return true if all locations of B bound to PSPACE are pending. If
13178 PSPACE is NULL, all locations of all program spaces are
13179 considered. */
13180
13181 static int
13182 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13183 {
13184 struct bp_location *loc;
13185
13186 for (loc = b->loc; loc != NULL; loc = loc->next)
13187 if ((pspace == NULL
13188 || loc->pspace == pspace)
13189 && !loc->shlib_disabled
13190 && !loc->pspace->executing_startup)
13191 return 0;
13192 return 1;
13193 }
13194
13195 /* Subroutine of update_breakpoint_locations to simplify it.
13196 Return non-zero if multiple fns in list LOC have the same name.
13197 Null names are ignored. */
13198
13199 static int
13200 ambiguous_names_p (struct bp_location *loc)
13201 {
13202 struct bp_location *l;
13203 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13204 xcalloc, xfree);
13205
13206 for (l = loc; l != NULL; l = l->next)
13207 {
13208 const char **slot;
13209 const char *name = l->function_name;
13210
13211 /* Allow for some names to be NULL, ignore them. */
13212 if (name == NULL)
13213 continue;
13214
13215 slot = (const char **) htab_find_slot (htab, (const void *) name,
13216 INSERT);
13217 /* NOTE: We can assume slot != NULL here because xcalloc never
13218 returns NULL. */
13219 if (*slot != NULL)
13220 {
13221 htab_delete (htab);
13222 return 1;
13223 }
13224 *slot = name;
13225 }
13226
13227 htab_delete (htab);
13228 return 0;
13229 }
13230
13231 /* When symbols change, it probably means the sources changed as well,
13232 and it might mean the static tracepoint markers are no longer at
13233 the same address or line numbers they used to be at last we
13234 checked. Losing your static tracepoints whenever you rebuild is
13235 undesirable. This function tries to resync/rematch gdb static
13236 tracepoints with the markers on the target, for static tracepoints
13237 that have not been set by marker id. Static tracepoint that have
13238 been set by marker id are reset by marker id in breakpoint_re_set.
13239 The heuristic is:
13240
13241 1) For a tracepoint set at a specific address, look for a marker at
13242 the old PC. If one is found there, assume to be the same marker.
13243 If the name / string id of the marker found is different from the
13244 previous known name, assume that means the user renamed the marker
13245 in the sources, and output a warning.
13246
13247 2) For a tracepoint set at a given line number, look for a marker
13248 at the new address of the old line number. If one is found there,
13249 assume to be the same marker. If the name / string id of the
13250 marker found is different from the previous known name, assume that
13251 means the user renamed the marker in the sources, and output a
13252 warning.
13253
13254 3) If a marker is no longer found at the same address or line, it
13255 may mean the marker no longer exists. But it may also just mean
13256 the code changed a bit. Maybe the user added a few lines of code
13257 that made the marker move up or down (in line number terms). Ask
13258 the target for info about the marker with the string id as we knew
13259 it. If found, update line number and address in the matching
13260 static tracepoint. This will get confused if there's more than one
13261 marker with the same ID (possible in UST, although unadvised
13262 precisely because it confuses tools). */
13263
13264 static struct symtab_and_line
13265 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13266 {
13267 struct tracepoint *tp = (struct tracepoint *) b;
13268 struct static_tracepoint_marker marker;
13269 CORE_ADDR pc;
13270
13271 pc = sal.pc;
13272 if (sal.line)
13273 find_line_pc (sal.symtab, sal.line, &pc);
13274
13275 if (target_static_tracepoint_marker_at (pc, &marker))
13276 {
13277 if (tp->static_trace_marker_id != marker.str_id)
13278 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13279 b->number, tp->static_trace_marker_id.c_str (),
13280 marker.str_id.c_str ());
13281
13282 tp->static_trace_marker_id = std::move (marker.str_id);
13283
13284 return sal;
13285 }
13286
13287 /* Old marker wasn't found on target at lineno. Try looking it up
13288 by string ID. */
13289 if (!sal.explicit_pc
13290 && sal.line != 0
13291 && sal.symtab != NULL
13292 && !tp->static_trace_marker_id.empty ())
13293 {
13294 std::vector<static_tracepoint_marker> markers
13295 = target_static_tracepoint_markers_by_strid
13296 (tp->static_trace_marker_id.c_str ());
13297
13298 if (!markers.empty ())
13299 {
13300 struct symbol *sym;
13301 struct static_tracepoint_marker *tpmarker;
13302 struct ui_out *uiout = current_uiout;
13303 struct explicit_location explicit_loc;
13304
13305 tpmarker = &markers[0];
13306
13307 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13308
13309 warning (_("marker for static tracepoint %d (%s) not "
13310 "found at previous line number"),
13311 b->number, tp->static_trace_marker_id.c_str ());
13312
13313 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13314 sym = find_pc_sect_function (tpmarker->address, NULL);
13315 uiout->text ("Now in ");
13316 if (sym)
13317 {
13318 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13319 ui_out_style_kind::FUNCTION);
13320 uiout->text (" at ");
13321 }
13322 uiout->field_string ("file",
13323 symtab_to_filename_for_display (sal2.symtab),
13324 ui_out_style_kind::FILE);
13325 uiout->text (":");
13326
13327 if (uiout->is_mi_like_p ())
13328 {
13329 const char *fullname = symtab_to_fullname (sal2.symtab);
13330
13331 uiout->field_string ("fullname", fullname);
13332 }
13333
13334 uiout->field_int ("line", sal2.line);
13335 uiout->text ("\n");
13336
13337 b->loc->line_number = sal2.line;
13338 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13339
13340 b->location.reset (NULL);
13341 initialize_explicit_location (&explicit_loc);
13342 explicit_loc.source_filename
13343 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13344 explicit_loc.line_offset.offset = b->loc->line_number;
13345 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13346 b->location = new_explicit_location (&explicit_loc);
13347
13348 /* Might be nice to check if function changed, and warn if
13349 so. */
13350 }
13351 }
13352 return sal;
13353 }
13354
13355 /* Returns 1 iff locations A and B are sufficiently same that
13356 we don't need to report breakpoint as changed. */
13357
13358 static int
13359 locations_are_equal (struct bp_location *a, struct bp_location *b)
13360 {
13361 while (a && b)
13362 {
13363 if (a->address != b->address)
13364 return 0;
13365
13366 if (a->shlib_disabled != b->shlib_disabled)
13367 return 0;
13368
13369 if (a->enabled != b->enabled)
13370 return 0;
13371
13372 a = a->next;
13373 b = b->next;
13374 }
13375
13376 if ((a == NULL) != (b == NULL))
13377 return 0;
13378
13379 return 1;
13380 }
13381
13382 /* Split all locations of B that are bound to PSPACE out of B's
13383 location list to a separate list and return that list's head. If
13384 PSPACE is NULL, hoist out all locations of B. */
13385
13386 static struct bp_location *
13387 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13388 {
13389 struct bp_location head;
13390 struct bp_location *i = b->loc;
13391 struct bp_location **i_link = &b->loc;
13392 struct bp_location *hoisted = &head;
13393
13394 if (pspace == NULL)
13395 {
13396 i = b->loc;
13397 b->loc = NULL;
13398 return i;
13399 }
13400
13401 head.next = NULL;
13402
13403 while (i != NULL)
13404 {
13405 if (i->pspace == pspace)
13406 {
13407 *i_link = i->next;
13408 i->next = NULL;
13409 hoisted->next = i;
13410 hoisted = i;
13411 }
13412 else
13413 i_link = &i->next;
13414 i = *i_link;
13415 }
13416
13417 return head.next;
13418 }
13419
13420 /* Create new breakpoint locations for B (a hardware or software
13421 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13422 zero, then B is a ranged breakpoint. Only recreates locations for
13423 FILTER_PSPACE. Locations of other program spaces are left
13424 untouched. */
13425
13426 void
13427 update_breakpoint_locations (struct breakpoint *b,
13428 struct program_space *filter_pspace,
13429 gdb::array_view<const symtab_and_line> sals,
13430 gdb::array_view<const symtab_and_line> sals_end)
13431 {
13432 struct bp_location *existing_locations;
13433
13434 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13435 {
13436 /* Ranged breakpoints have only one start location and one end
13437 location. */
13438 b->enable_state = bp_disabled;
13439 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13440 "multiple locations found\n"),
13441 b->number);
13442 return;
13443 }
13444
13445 /* If there's no new locations, and all existing locations are
13446 pending, don't do anything. This optimizes the common case where
13447 all locations are in the same shared library, that was unloaded.
13448 We'd like to retain the location, so that when the library is
13449 loaded again, we don't loose the enabled/disabled status of the
13450 individual locations. */
13451 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13452 return;
13453
13454 existing_locations = hoist_existing_locations (b, filter_pspace);
13455
13456 for (const auto &sal : sals)
13457 {
13458 struct bp_location *new_loc;
13459
13460 switch_to_program_space_and_thread (sal.pspace);
13461
13462 new_loc = add_location_to_breakpoint (b, &sal);
13463
13464 /* Reparse conditions, they might contain references to the
13465 old symtab. */
13466 if (b->cond_string != NULL)
13467 {
13468 const char *s;
13469
13470 s = b->cond_string;
13471 try
13472 {
13473 new_loc->cond = parse_exp_1 (&s, sal.pc,
13474 block_for_pc (sal.pc),
13475 0);
13476 }
13477 catch (const gdb_exception_error &e)
13478 {
13479 warning (_("failed to reevaluate condition "
13480 "for breakpoint %d: %s"),
13481 b->number, e.what ());
13482 new_loc->enabled = 0;
13483 }
13484 }
13485
13486 if (!sals_end.empty ())
13487 {
13488 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13489
13490 new_loc->length = end - sals[0].pc + 1;
13491 }
13492 }
13493
13494 /* If possible, carry over 'disable' status from existing
13495 breakpoints. */
13496 {
13497 struct bp_location *e = existing_locations;
13498 /* If there are multiple breakpoints with the same function name,
13499 e.g. for inline functions, comparing function names won't work.
13500 Instead compare pc addresses; this is just a heuristic as things
13501 may have moved, but in practice it gives the correct answer
13502 often enough until a better solution is found. */
13503 int have_ambiguous_names = ambiguous_names_p (b->loc);
13504
13505 for (; e; e = e->next)
13506 {
13507 if (!e->enabled && e->function_name)
13508 {
13509 struct bp_location *l = b->loc;
13510 if (have_ambiguous_names)
13511 {
13512 for (; l; l = l->next)
13513 if (breakpoint_locations_match (e, l))
13514 {
13515 l->enabled = 0;
13516 break;
13517 }
13518 }
13519 else
13520 {
13521 for (; l; l = l->next)
13522 if (l->function_name
13523 && strcmp (e->function_name, l->function_name) == 0)
13524 {
13525 l->enabled = 0;
13526 break;
13527 }
13528 }
13529 }
13530 }
13531 }
13532
13533 if (!locations_are_equal (existing_locations, b->loc))
13534 gdb::observers::breakpoint_modified.notify (b);
13535 }
13536
13537 /* Find the SaL locations corresponding to the given LOCATION.
13538 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13539
13540 static std::vector<symtab_and_line>
13541 location_to_sals (struct breakpoint *b, struct event_location *location,
13542 struct program_space *search_pspace, int *found)
13543 {
13544 struct gdb_exception exception;
13545
13546 gdb_assert (b->ops != NULL);
13547
13548 std::vector<symtab_and_line> sals;
13549
13550 try
13551 {
13552 sals = b->ops->decode_location (b, location, search_pspace);
13553 }
13554 catch (gdb_exception_error &e)
13555 {
13556 int not_found_and_ok = 0;
13557
13558 /* For pending breakpoints, it's expected that parsing will
13559 fail until the right shared library is loaded. User has
13560 already told to create pending breakpoints and don't need
13561 extra messages. If breakpoint is in bp_shlib_disabled
13562 state, then user already saw the message about that
13563 breakpoint being disabled, and don't want to see more
13564 errors. */
13565 if (e.error == NOT_FOUND_ERROR
13566 && (b->condition_not_parsed
13567 || (b->loc != NULL
13568 && search_pspace != NULL
13569 && b->loc->pspace != search_pspace)
13570 || (b->loc && b->loc->shlib_disabled)
13571 || (b->loc && b->loc->pspace->executing_startup)
13572 || b->enable_state == bp_disabled))
13573 not_found_and_ok = 1;
13574
13575 if (!not_found_and_ok)
13576 {
13577 /* We surely don't want to warn about the same breakpoint
13578 10 times. One solution, implemented here, is disable
13579 the breakpoint on error. Another solution would be to
13580 have separate 'warning emitted' flag. Since this
13581 happens only when a binary has changed, I don't know
13582 which approach is better. */
13583 b->enable_state = bp_disabled;
13584 throw;
13585 }
13586
13587 exception = std::move (e);
13588 }
13589
13590 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13591 {
13592 for (auto &sal : sals)
13593 resolve_sal_pc (&sal);
13594 if (b->condition_not_parsed && b->extra_string != NULL)
13595 {
13596 char *cond_string, *extra_string;
13597 int thread, task;
13598
13599 find_condition_and_thread (b->extra_string, sals[0].pc,
13600 &cond_string, &thread, &task,
13601 &extra_string);
13602 gdb_assert (b->cond_string == NULL);
13603 if (cond_string)
13604 b->cond_string = cond_string;
13605 b->thread = thread;
13606 b->task = task;
13607 if (extra_string)
13608 {
13609 xfree (b->extra_string);
13610 b->extra_string = extra_string;
13611 }
13612 b->condition_not_parsed = 0;
13613 }
13614
13615 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13616 sals[0] = update_static_tracepoint (b, sals[0]);
13617
13618 *found = 1;
13619 }
13620 else
13621 *found = 0;
13622
13623 return sals;
13624 }
13625
13626 /* The default re_set method, for typical hardware or software
13627 breakpoints. Reevaluate the breakpoint and recreate its
13628 locations. */
13629
13630 static void
13631 breakpoint_re_set_default (struct breakpoint *b)
13632 {
13633 struct program_space *filter_pspace = current_program_space;
13634 std::vector<symtab_and_line> expanded, expanded_end;
13635
13636 int found;
13637 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13638 filter_pspace, &found);
13639 if (found)
13640 expanded = std::move (sals);
13641
13642 if (b->location_range_end != NULL)
13643 {
13644 std::vector<symtab_and_line> sals_end
13645 = location_to_sals (b, b->location_range_end.get (),
13646 filter_pspace, &found);
13647 if (found)
13648 expanded_end = std::move (sals_end);
13649 }
13650
13651 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13652 }
13653
13654 /* Default method for creating SALs from an address string. It basically
13655 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13656
13657 static void
13658 create_sals_from_location_default (const struct event_location *location,
13659 struct linespec_result *canonical,
13660 enum bptype type_wanted)
13661 {
13662 parse_breakpoint_sals (location, canonical);
13663 }
13664
13665 /* Call create_breakpoints_sal for the given arguments. This is the default
13666 function for the `create_breakpoints_sal' method of
13667 breakpoint_ops. */
13668
13669 static void
13670 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13671 struct linespec_result *canonical,
13672 gdb::unique_xmalloc_ptr<char> cond_string,
13673 gdb::unique_xmalloc_ptr<char> extra_string,
13674 enum bptype type_wanted,
13675 enum bpdisp disposition,
13676 int thread,
13677 int task, int ignore_count,
13678 const struct breakpoint_ops *ops,
13679 int from_tty, int enabled,
13680 int internal, unsigned flags)
13681 {
13682 create_breakpoints_sal (gdbarch, canonical,
13683 std::move (cond_string),
13684 std::move (extra_string),
13685 type_wanted, disposition,
13686 thread, task, ignore_count, ops, from_tty,
13687 enabled, internal, flags);
13688 }
13689
13690 /* Decode the line represented by S by calling decode_line_full. This is the
13691 default function for the `decode_location' method of breakpoint_ops. */
13692
13693 static std::vector<symtab_and_line>
13694 decode_location_default (struct breakpoint *b,
13695 const struct event_location *location,
13696 struct program_space *search_pspace)
13697 {
13698 struct linespec_result canonical;
13699
13700 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13701 NULL, 0, &canonical, multiple_symbols_all,
13702 b->filter);
13703
13704 /* We should get 0 or 1 resulting SALs. */
13705 gdb_assert (canonical.lsals.size () < 2);
13706
13707 if (!canonical.lsals.empty ())
13708 {
13709 const linespec_sals &lsal = canonical.lsals[0];
13710 return std::move (lsal.sals);
13711 }
13712 return {};
13713 }
13714
13715 /* Reset a breakpoint. */
13716
13717 static void
13718 breakpoint_re_set_one (breakpoint *b)
13719 {
13720 input_radix = b->input_radix;
13721 set_language (b->language);
13722
13723 b->ops->re_set (b);
13724 }
13725
13726 /* Re-set breakpoint locations for the current program space.
13727 Locations bound to other program spaces are left untouched. */
13728
13729 void
13730 breakpoint_re_set (void)
13731 {
13732 struct breakpoint *b, *b_tmp;
13733
13734 {
13735 scoped_restore_current_language save_language;
13736 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13737 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13738
13739 /* breakpoint_re_set_one sets the current_language to the language
13740 of the breakpoint it is resetting (see prepare_re_set_context)
13741 before re-evaluating the breakpoint's location. This change can
13742 unfortunately get undone by accident if the language_mode is set
13743 to auto, and we either switch frames, or more likely in this context,
13744 we select the current frame.
13745
13746 We prevent this by temporarily turning the language_mode to
13747 language_mode_manual. We restore it once all breakpoints
13748 have been reset. */
13749 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13750 language_mode = language_mode_manual;
13751
13752 /* Note: we must not try to insert locations until after all
13753 breakpoints have been re-set. Otherwise, e.g., when re-setting
13754 breakpoint 1, we'd insert the locations of breakpoint 2, which
13755 hadn't been re-set yet, and thus may have stale locations. */
13756
13757 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13758 {
13759 try
13760 {
13761 breakpoint_re_set_one (b);
13762 }
13763 catch (const gdb_exception &ex)
13764 {
13765 exception_fprintf (gdb_stderr, ex,
13766 "Error in re-setting breakpoint %d: ",
13767 b->number);
13768 }
13769 }
13770
13771 jit_breakpoint_re_set ();
13772 }
13773
13774 create_overlay_event_breakpoint ();
13775 create_longjmp_master_breakpoint ();
13776 create_std_terminate_master_breakpoint ();
13777 create_exception_master_breakpoint ();
13778
13779 /* Now we can insert. */
13780 update_global_location_list (UGLL_MAY_INSERT);
13781 }
13782 \f
13783 /* Reset the thread number of this breakpoint:
13784
13785 - If the breakpoint is for all threads, leave it as-is.
13786 - Else, reset it to the current thread for inferior_ptid. */
13787 void
13788 breakpoint_re_set_thread (struct breakpoint *b)
13789 {
13790 if (b->thread != -1)
13791 {
13792 b->thread = inferior_thread ()->global_num;
13793
13794 /* We're being called after following a fork. The new fork is
13795 selected as current, and unless this was a vfork will have a
13796 different program space from the original thread. Reset that
13797 as well. */
13798 b->loc->pspace = current_program_space;
13799 }
13800 }
13801
13802 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13803 If from_tty is nonzero, it prints a message to that effect,
13804 which ends with a period (no newline). */
13805
13806 void
13807 set_ignore_count (int bptnum, int count, int from_tty)
13808 {
13809 struct breakpoint *b;
13810
13811 if (count < 0)
13812 count = 0;
13813
13814 ALL_BREAKPOINTS (b)
13815 if (b->number == bptnum)
13816 {
13817 if (is_tracepoint (b))
13818 {
13819 if (from_tty && count != 0)
13820 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13821 bptnum);
13822 return;
13823 }
13824
13825 b->ignore_count = count;
13826 if (from_tty)
13827 {
13828 if (count == 0)
13829 printf_filtered (_("Will stop next time "
13830 "breakpoint %d is reached."),
13831 bptnum);
13832 else if (count == 1)
13833 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13834 bptnum);
13835 else
13836 printf_filtered (_("Will ignore next %d "
13837 "crossings of breakpoint %d."),
13838 count, bptnum);
13839 }
13840 gdb::observers::breakpoint_modified.notify (b);
13841 return;
13842 }
13843
13844 error (_("No breakpoint number %d."), bptnum);
13845 }
13846
13847 /* Command to set ignore-count of breakpoint N to COUNT. */
13848
13849 static void
13850 ignore_command (const char *args, int from_tty)
13851 {
13852 const char *p = args;
13853 int num;
13854
13855 if (p == 0)
13856 error_no_arg (_("a breakpoint number"));
13857
13858 num = get_number (&p);
13859 if (num == 0)
13860 error (_("bad breakpoint number: '%s'"), args);
13861 if (*p == 0)
13862 error (_("Second argument (specified ignore-count) is missing."));
13863
13864 set_ignore_count (num,
13865 longest_to_int (value_as_long (parse_and_eval (p))),
13866 from_tty);
13867 if (from_tty)
13868 printf_filtered ("\n");
13869 }
13870 \f
13871
13872 /* Call FUNCTION on each of the breakpoints with numbers in the range
13873 defined by BP_NUM_RANGE (an inclusive range). */
13874
13875 static void
13876 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13877 gdb::function_view<void (breakpoint *)> function)
13878 {
13879 if (bp_num_range.first == 0)
13880 {
13881 warning (_("bad breakpoint number at or near '%d'"),
13882 bp_num_range.first);
13883 }
13884 else
13885 {
13886 struct breakpoint *b, *tmp;
13887
13888 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13889 {
13890 bool match = false;
13891
13892 ALL_BREAKPOINTS_SAFE (b, tmp)
13893 if (b->number == i)
13894 {
13895 match = true;
13896 function (b);
13897 break;
13898 }
13899 if (!match)
13900 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13901 }
13902 }
13903 }
13904
13905 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13906 ARGS. */
13907
13908 static void
13909 map_breakpoint_numbers (const char *args,
13910 gdb::function_view<void (breakpoint *)> function)
13911 {
13912 if (args == NULL || *args == '\0')
13913 error_no_arg (_("one or more breakpoint numbers"));
13914
13915 number_or_range_parser parser (args);
13916
13917 while (!parser.finished ())
13918 {
13919 int num = parser.get_number ();
13920 map_breakpoint_number_range (std::make_pair (num, num), function);
13921 }
13922 }
13923
13924 /* Return the breakpoint location structure corresponding to the
13925 BP_NUM and LOC_NUM values. */
13926
13927 static struct bp_location *
13928 find_location_by_number (int bp_num, int loc_num)
13929 {
13930 struct breakpoint *b;
13931
13932 ALL_BREAKPOINTS (b)
13933 if (b->number == bp_num)
13934 {
13935 break;
13936 }
13937
13938 if (!b || b->number != bp_num)
13939 error (_("Bad breakpoint number '%d'"), bp_num);
13940
13941 if (loc_num == 0)
13942 error (_("Bad breakpoint location number '%d'"), loc_num);
13943
13944 int n = 0;
13945 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13946 if (++n == loc_num)
13947 return loc;
13948
13949 error (_("Bad breakpoint location number '%d'"), loc_num);
13950 }
13951
13952 /* Modes of operation for extract_bp_num. */
13953 enum class extract_bp_kind
13954 {
13955 /* Extracting a breakpoint number. */
13956 bp,
13957
13958 /* Extracting a location number. */
13959 loc,
13960 };
13961
13962 /* Extract a breakpoint or location number (as determined by KIND)
13963 from the string starting at START. TRAILER is a character which
13964 can be found after the number. If you don't want a trailer, use
13965 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13966 string. This always returns a positive integer. */
13967
13968 static int
13969 extract_bp_num (extract_bp_kind kind, const char *start,
13970 int trailer, const char **end_out = NULL)
13971 {
13972 const char *end = start;
13973 int num = get_number_trailer (&end, trailer);
13974 if (num < 0)
13975 error (kind == extract_bp_kind::bp
13976 ? _("Negative breakpoint number '%.*s'")
13977 : _("Negative breakpoint location number '%.*s'"),
13978 int (end - start), start);
13979 if (num == 0)
13980 error (kind == extract_bp_kind::bp
13981 ? _("Bad breakpoint number '%.*s'")
13982 : _("Bad breakpoint location number '%.*s'"),
13983 int (end - start), start);
13984
13985 if (end_out != NULL)
13986 *end_out = end;
13987 return num;
13988 }
13989
13990 /* Extract a breakpoint or location range (as determined by KIND) in
13991 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
13992 representing the (inclusive) range. The returned pair's elements
13993 are always positive integers. */
13994
13995 static std::pair<int, int>
13996 extract_bp_or_bp_range (extract_bp_kind kind,
13997 const std::string &arg,
13998 std::string::size_type arg_offset)
13999 {
14000 std::pair<int, int> range;
14001 const char *bp_loc = &arg[arg_offset];
14002 std::string::size_type dash = arg.find ('-', arg_offset);
14003 if (dash != std::string::npos)
14004 {
14005 /* bp_loc is a range (x-z). */
14006 if (arg.length () == dash + 1)
14007 error (kind == extract_bp_kind::bp
14008 ? _("Bad breakpoint number at or near: '%s'")
14009 : _("Bad breakpoint location number at or near: '%s'"),
14010 bp_loc);
14011
14012 const char *end;
14013 const char *start_first = bp_loc;
14014 const char *start_second = &arg[dash + 1];
14015 range.first = extract_bp_num (kind, start_first, '-');
14016 range.second = extract_bp_num (kind, start_second, '\0', &end);
14017
14018 if (range.first > range.second)
14019 error (kind == extract_bp_kind::bp
14020 ? _("Inverted breakpoint range at '%.*s'")
14021 : _("Inverted breakpoint location range at '%.*s'"),
14022 int (end - start_first), start_first);
14023 }
14024 else
14025 {
14026 /* bp_loc is a single value. */
14027 range.first = extract_bp_num (kind, bp_loc, '\0');
14028 range.second = range.first;
14029 }
14030 return range;
14031 }
14032
14033 /* Extract the breakpoint/location range specified by ARG. Returns
14034 the breakpoint range in BP_NUM_RANGE, and the location range in
14035 BP_LOC_RANGE.
14036
14037 ARG may be in any of the following forms:
14038
14039 x where 'x' is a breakpoint number.
14040 x-y where 'x' and 'y' specify a breakpoint numbers range.
14041 x.y where 'x' is a breakpoint number and 'y' a location number.
14042 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14043 location number range.
14044 */
14045
14046 static void
14047 extract_bp_number_and_location (const std::string &arg,
14048 std::pair<int, int> &bp_num_range,
14049 std::pair<int, int> &bp_loc_range)
14050 {
14051 std::string::size_type dot = arg.find ('.');
14052
14053 if (dot != std::string::npos)
14054 {
14055 /* Handle 'x.y' and 'x.y-z' cases. */
14056
14057 if (arg.length () == dot + 1 || dot == 0)
14058 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14059
14060 bp_num_range.first
14061 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14062 bp_num_range.second = bp_num_range.first;
14063
14064 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14065 arg, dot + 1);
14066 }
14067 else
14068 {
14069 /* Handle x and x-y cases. */
14070
14071 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14072 bp_loc_range.first = 0;
14073 bp_loc_range.second = 0;
14074 }
14075 }
14076
14077 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14078 specifies whether to enable or disable. */
14079
14080 static void
14081 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14082 {
14083 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14084 if (loc != NULL)
14085 {
14086 if (loc->enabled != enable)
14087 {
14088 loc->enabled = enable;
14089 mark_breakpoint_location_modified (loc);
14090 }
14091 if (target_supports_enable_disable_tracepoint ()
14092 && current_trace_status ()->running && loc->owner
14093 && is_tracepoint (loc->owner))
14094 target_disable_tracepoint (loc);
14095 }
14096 update_global_location_list (UGLL_DONT_INSERT);
14097
14098 gdb::observers::breakpoint_modified.notify (loc->owner);
14099 }
14100
14101 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14102 number of the breakpoint, and BP_LOC_RANGE specifies the
14103 (inclusive) range of location numbers of that breakpoint to
14104 enable/disable. ENABLE specifies whether to enable or disable the
14105 location. */
14106
14107 static void
14108 enable_disable_breakpoint_location_range (int bp_num,
14109 std::pair<int, int> &bp_loc_range,
14110 bool enable)
14111 {
14112 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14113 enable_disable_bp_num_loc (bp_num, i, enable);
14114 }
14115
14116 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14117 If from_tty is nonzero, it prints a message to that effect,
14118 which ends with a period (no newline). */
14119
14120 void
14121 disable_breakpoint (struct breakpoint *bpt)
14122 {
14123 /* Never disable a watchpoint scope breakpoint; we want to
14124 hit them when we leave scope so we can delete both the
14125 watchpoint and its scope breakpoint at that time. */
14126 if (bpt->type == bp_watchpoint_scope)
14127 return;
14128
14129 bpt->enable_state = bp_disabled;
14130
14131 /* Mark breakpoint locations modified. */
14132 mark_breakpoint_modified (bpt);
14133
14134 if (target_supports_enable_disable_tracepoint ()
14135 && current_trace_status ()->running && is_tracepoint (bpt))
14136 {
14137 struct bp_location *location;
14138
14139 for (location = bpt->loc; location; location = location->next)
14140 target_disable_tracepoint (location);
14141 }
14142
14143 update_global_location_list (UGLL_DONT_INSERT);
14144
14145 gdb::observers::breakpoint_modified.notify (bpt);
14146 }
14147
14148 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14149 specified in ARGS. ARGS may be in any of the formats handled by
14150 extract_bp_number_and_location. ENABLE specifies whether to enable
14151 or disable the breakpoints/locations. */
14152
14153 static void
14154 enable_disable_command (const char *args, int from_tty, bool enable)
14155 {
14156 if (args == 0)
14157 {
14158 struct breakpoint *bpt;
14159
14160 ALL_BREAKPOINTS (bpt)
14161 if (user_breakpoint_p (bpt))
14162 {
14163 if (enable)
14164 enable_breakpoint (bpt);
14165 else
14166 disable_breakpoint (bpt);
14167 }
14168 }
14169 else
14170 {
14171 std::string num = extract_arg (&args);
14172
14173 while (!num.empty ())
14174 {
14175 std::pair<int, int> bp_num_range, bp_loc_range;
14176
14177 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14178
14179 if (bp_loc_range.first == bp_loc_range.second
14180 && bp_loc_range.first == 0)
14181 {
14182 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14183 map_breakpoint_number_range (bp_num_range,
14184 enable
14185 ? enable_breakpoint
14186 : disable_breakpoint);
14187 }
14188 else
14189 {
14190 /* Handle breakpoint ids with formats 'x.y' or
14191 'x.y-z'. */
14192 enable_disable_breakpoint_location_range
14193 (bp_num_range.first, bp_loc_range, enable);
14194 }
14195 num = extract_arg (&args);
14196 }
14197 }
14198 }
14199
14200 /* The disable command disables the specified breakpoints/locations
14201 (or all defined breakpoints) so they're no longer effective in
14202 stopping the inferior. ARGS may be in any of the forms defined in
14203 extract_bp_number_and_location. */
14204
14205 static void
14206 disable_command (const char *args, int from_tty)
14207 {
14208 enable_disable_command (args, from_tty, false);
14209 }
14210
14211 static void
14212 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14213 int count)
14214 {
14215 int target_resources_ok;
14216
14217 if (bpt->type == bp_hardware_breakpoint)
14218 {
14219 int i;
14220 i = hw_breakpoint_used_count ();
14221 target_resources_ok =
14222 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14223 i + 1, 0);
14224 if (target_resources_ok == 0)
14225 error (_("No hardware breakpoint support in the target."));
14226 else if (target_resources_ok < 0)
14227 error (_("Hardware breakpoints used exceeds limit."));
14228 }
14229
14230 if (is_watchpoint (bpt))
14231 {
14232 /* Initialize it just to avoid a GCC false warning. */
14233 enum enable_state orig_enable_state = bp_disabled;
14234
14235 try
14236 {
14237 struct watchpoint *w = (struct watchpoint *) bpt;
14238
14239 orig_enable_state = bpt->enable_state;
14240 bpt->enable_state = bp_enabled;
14241 update_watchpoint (w, 1 /* reparse */);
14242 }
14243 catch (const gdb_exception &e)
14244 {
14245 bpt->enable_state = orig_enable_state;
14246 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14247 bpt->number);
14248 return;
14249 }
14250 }
14251
14252 bpt->enable_state = bp_enabled;
14253
14254 /* Mark breakpoint locations modified. */
14255 mark_breakpoint_modified (bpt);
14256
14257 if (target_supports_enable_disable_tracepoint ()
14258 && current_trace_status ()->running && is_tracepoint (bpt))
14259 {
14260 struct bp_location *location;
14261
14262 for (location = bpt->loc; location; location = location->next)
14263 target_enable_tracepoint (location);
14264 }
14265
14266 bpt->disposition = disposition;
14267 bpt->enable_count = count;
14268 update_global_location_list (UGLL_MAY_INSERT);
14269
14270 gdb::observers::breakpoint_modified.notify (bpt);
14271 }
14272
14273
14274 void
14275 enable_breakpoint (struct breakpoint *bpt)
14276 {
14277 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14278 }
14279
14280 /* The enable command enables the specified breakpoints/locations (or
14281 all defined breakpoints) so they once again become (or continue to
14282 be) effective in stopping the inferior. ARGS may be in any of the
14283 forms defined in extract_bp_number_and_location. */
14284
14285 static void
14286 enable_command (const char *args, int from_tty)
14287 {
14288 enable_disable_command (args, from_tty, true);
14289 }
14290
14291 static void
14292 enable_once_command (const char *args, int from_tty)
14293 {
14294 map_breakpoint_numbers
14295 (args, [&] (breakpoint *b)
14296 {
14297 iterate_over_related_breakpoints
14298 (b, [&] (breakpoint *bpt)
14299 {
14300 enable_breakpoint_disp (bpt, disp_disable, 1);
14301 });
14302 });
14303 }
14304
14305 static void
14306 enable_count_command (const char *args, int from_tty)
14307 {
14308 int count;
14309
14310 if (args == NULL)
14311 error_no_arg (_("hit count"));
14312
14313 count = get_number (&args);
14314
14315 map_breakpoint_numbers
14316 (args, [&] (breakpoint *b)
14317 {
14318 iterate_over_related_breakpoints
14319 (b, [&] (breakpoint *bpt)
14320 {
14321 enable_breakpoint_disp (bpt, disp_disable, count);
14322 });
14323 });
14324 }
14325
14326 static void
14327 enable_delete_command (const char *args, int from_tty)
14328 {
14329 map_breakpoint_numbers
14330 (args, [&] (breakpoint *b)
14331 {
14332 iterate_over_related_breakpoints
14333 (b, [&] (breakpoint *bpt)
14334 {
14335 enable_breakpoint_disp (bpt, disp_del, 1);
14336 });
14337 });
14338 }
14339 \f
14340 static void
14341 set_breakpoint_cmd (const char *args, int from_tty)
14342 {
14343 }
14344
14345 static void
14346 show_breakpoint_cmd (const char *args, int from_tty)
14347 {
14348 }
14349
14350 /* Invalidate last known value of any hardware watchpoint if
14351 the memory which that value represents has been written to by
14352 GDB itself. */
14353
14354 static void
14355 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14356 CORE_ADDR addr, ssize_t len,
14357 const bfd_byte *data)
14358 {
14359 struct breakpoint *bp;
14360
14361 ALL_BREAKPOINTS (bp)
14362 if (bp->enable_state == bp_enabled
14363 && bp->type == bp_hardware_watchpoint)
14364 {
14365 struct watchpoint *wp = (struct watchpoint *) bp;
14366
14367 if (wp->val_valid && wp->val != nullptr)
14368 {
14369 struct bp_location *loc;
14370
14371 for (loc = bp->loc; loc != NULL; loc = loc->next)
14372 if (loc->loc_type == bp_loc_hardware_watchpoint
14373 && loc->address + loc->length > addr
14374 && addr + len > loc->address)
14375 {
14376 wp->val = NULL;
14377 wp->val_valid = 0;
14378 }
14379 }
14380 }
14381 }
14382
14383 /* Create and insert a breakpoint for software single step. */
14384
14385 void
14386 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14387 const address_space *aspace,
14388 CORE_ADDR next_pc)
14389 {
14390 struct thread_info *tp = inferior_thread ();
14391 struct symtab_and_line sal;
14392 CORE_ADDR pc = next_pc;
14393
14394 if (tp->control.single_step_breakpoints == NULL)
14395 {
14396 tp->control.single_step_breakpoints
14397 = new_single_step_breakpoint (tp->global_num, gdbarch);
14398 }
14399
14400 sal = find_pc_line (pc, 0);
14401 sal.pc = pc;
14402 sal.section = find_pc_overlay (pc);
14403 sal.explicit_pc = 1;
14404 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14405
14406 update_global_location_list (UGLL_INSERT);
14407 }
14408
14409 /* Insert single step breakpoints according to the current state. */
14410
14411 int
14412 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14413 {
14414 struct regcache *regcache = get_current_regcache ();
14415 std::vector<CORE_ADDR> next_pcs;
14416
14417 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14418
14419 if (!next_pcs.empty ())
14420 {
14421 struct frame_info *frame = get_current_frame ();
14422 const address_space *aspace = get_frame_address_space (frame);
14423
14424 for (CORE_ADDR pc : next_pcs)
14425 insert_single_step_breakpoint (gdbarch, aspace, pc);
14426
14427 return 1;
14428 }
14429 else
14430 return 0;
14431 }
14432
14433 /* See breakpoint.h. */
14434
14435 int
14436 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14437 const address_space *aspace,
14438 CORE_ADDR pc)
14439 {
14440 struct bp_location *loc;
14441
14442 for (loc = bp->loc; loc != NULL; loc = loc->next)
14443 if (loc->inserted
14444 && breakpoint_location_address_match (loc, aspace, pc))
14445 return 1;
14446
14447 return 0;
14448 }
14449
14450 /* Check whether a software single-step breakpoint is inserted at
14451 PC. */
14452
14453 int
14454 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14455 CORE_ADDR pc)
14456 {
14457 struct breakpoint *bpt;
14458
14459 ALL_BREAKPOINTS (bpt)
14460 {
14461 if (bpt->type == bp_single_step
14462 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14463 return 1;
14464 }
14465 return 0;
14466 }
14467
14468 /* Tracepoint-specific operations. */
14469
14470 /* Set tracepoint count to NUM. */
14471 static void
14472 set_tracepoint_count (int num)
14473 {
14474 tracepoint_count = num;
14475 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14476 }
14477
14478 static void
14479 trace_command (const char *arg, int from_tty)
14480 {
14481 struct breakpoint_ops *ops;
14482
14483 event_location_up location = string_to_event_location (&arg,
14484 current_language);
14485 if (location != NULL
14486 && event_location_type (location.get ()) == PROBE_LOCATION)
14487 ops = &tracepoint_probe_breakpoint_ops;
14488 else
14489 ops = &tracepoint_breakpoint_ops;
14490
14491 create_breakpoint (get_current_arch (),
14492 location.get (),
14493 NULL, 0, arg, 1 /* parse arg */,
14494 0 /* tempflag */,
14495 bp_tracepoint /* type_wanted */,
14496 0 /* Ignore count */,
14497 pending_break_support,
14498 ops,
14499 from_tty,
14500 1 /* enabled */,
14501 0 /* internal */, 0);
14502 }
14503
14504 static void
14505 ftrace_command (const char *arg, int from_tty)
14506 {
14507 event_location_up location = string_to_event_location (&arg,
14508 current_language);
14509 create_breakpoint (get_current_arch (),
14510 location.get (),
14511 NULL, 0, arg, 1 /* parse arg */,
14512 0 /* tempflag */,
14513 bp_fast_tracepoint /* type_wanted */,
14514 0 /* Ignore count */,
14515 pending_break_support,
14516 &tracepoint_breakpoint_ops,
14517 from_tty,
14518 1 /* enabled */,
14519 0 /* internal */, 0);
14520 }
14521
14522 /* strace command implementation. Creates a static tracepoint. */
14523
14524 static void
14525 strace_command (const char *arg, int from_tty)
14526 {
14527 struct breakpoint_ops *ops;
14528 event_location_up location;
14529
14530 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14531 or with a normal static tracepoint. */
14532 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14533 {
14534 ops = &strace_marker_breakpoint_ops;
14535 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14536 }
14537 else
14538 {
14539 ops = &tracepoint_breakpoint_ops;
14540 location = string_to_event_location (&arg, current_language);
14541 }
14542
14543 create_breakpoint (get_current_arch (),
14544 location.get (),
14545 NULL, 0, arg, 1 /* parse arg */,
14546 0 /* tempflag */,
14547 bp_static_tracepoint /* type_wanted */,
14548 0 /* Ignore count */,
14549 pending_break_support,
14550 ops,
14551 from_tty,
14552 1 /* enabled */,
14553 0 /* internal */, 0);
14554 }
14555
14556 /* Set up a fake reader function that gets command lines from a linked
14557 list that was acquired during tracepoint uploading. */
14558
14559 static struct uploaded_tp *this_utp;
14560 static int next_cmd;
14561
14562 static char *
14563 read_uploaded_action (void)
14564 {
14565 char *rslt = nullptr;
14566
14567 if (next_cmd < this_utp->cmd_strings.size ())
14568 {
14569 rslt = this_utp->cmd_strings[next_cmd].get ();
14570 next_cmd++;
14571 }
14572
14573 return rslt;
14574 }
14575
14576 /* Given information about a tracepoint as recorded on a target (which
14577 can be either a live system or a trace file), attempt to create an
14578 equivalent GDB tracepoint. This is not a reliable process, since
14579 the target does not necessarily have all the information used when
14580 the tracepoint was originally defined. */
14581
14582 struct tracepoint *
14583 create_tracepoint_from_upload (struct uploaded_tp *utp)
14584 {
14585 const char *addr_str;
14586 char small_buf[100];
14587 struct tracepoint *tp;
14588
14589 if (utp->at_string)
14590 addr_str = utp->at_string.get ();
14591 else
14592 {
14593 /* In the absence of a source location, fall back to raw
14594 address. Since there is no way to confirm that the address
14595 means the same thing as when the trace was started, warn the
14596 user. */
14597 warning (_("Uploaded tracepoint %d has no "
14598 "source location, using raw address"),
14599 utp->number);
14600 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14601 addr_str = small_buf;
14602 }
14603
14604 /* There's not much we can do with a sequence of bytecodes. */
14605 if (utp->cond && !utp->cond_string)
14606 warning (_("Uploaded tracepoint %d condition "
14607 "has no source form, ignoring it"),
14608 utp->number);
14609
14610 event_location_up location = string_to_event_location (&addr_str,
14611 current_language);
14612 if (!create_breakpoint (get_current_arch (),
14613 location.get (),
14614 utp->cond_string.get (), -1, addr_str,
14615 0 /* parse cond/thread */,
14616 0 /* tempflag */,
14617 utp->type /* type_wanted */,
14618 0 /* Ignore count */,
14619 pending_break_support,
14620 &tracepoint_breakpoint_ops,
14621 0 /* from_tty */,
14622 utp->enabled /* enabled */,
14623 0 /* internal */,
14624 CREATE_BREAKPOINT_FLAGS_INSERTED))
14625 return NULL;
14626
14627 /* Get the tracepoint we just created. */
14628 tp = get_tracepoint (tracepoint_count);
14629 gdb_assert (tp != NULL);
14630
14631 if (utp->pass > 0)
14632 {
14633 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14634 tp->number);
14635
14636 trace_pass_command (small_buf, 0);
14637 }
14638
14639 /* If we have uploaded versions of the original commands, set up a
14640 special-purpose "reader" function and call the usual command line
14641 reader, then pass the result to the breakpoint command-setting
14642 function. */
14643 if (!utp->cmd_strings.empty ())
14644 {
14645 counted_command_line cmd_list;
14646
14647 this_utp = utp;
14648 next_cmd = 0;
14649
14650 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14651
14652 breakpoint_set_commands (tp, std::move (cmd_list));
14653 }
14654 else if (!utp->actions.empty ()
14655 || !utp->step_actions.empty ())
14656 warning (_("Uploaded tracepoint %d actions "
14657 "have no source form, ignoring them"),
14658 utp->number);
14659
14660 /* Copy any status information that might be available. */
14661 tp->hit_count = utp->hit_count;
14662 tp->traceframe_usage = utp->traceframe_usage;
14663
14664 return tp;
14665 }
14666
14667 /* Print information on tracepoint number TPNUM_EXP, or all if
14668 omitted. */
14669
14670 static void
14671 info_tracepoints_command (const char *args, int from_tty)
14672 {
14673 struct ui_out *uiout = current_uiout;
14674 int num_printed;
14675
14676 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14677
14678 if (num_printed == 0)
14679 {
14680 if (args == NULL || *args == '\0')
14681 uiout->message ("No tracepoints.\n");
14682 else
14683 uiout->message ("No tracepoint matching '%s'.\n", args);
14684 }
14685
14686 default_collect_info ();
14687 }
14688
14689 /* The 'enable trace' command enables tracepoints.
14690 Not supported by all targets. */
14691 static void
14692 enable_trace_command (const char *args, int from_tty)
14693 {
14694 enable_command (args, from_tty);
14695 }
14696
14697 /* The 'disable trace' command disables tracepoints.
14698 Not supported by all targets. */
14699 static void
14700 disable_trace_command (const char *args, int from_tty)
14701 {
14702 disable_command (args, from_tty);
14703 }
14704
14705 /* Remove a tracepoint (or all if no argument). */
14706 static void
14707 delete_trace_command (const char *arg, int from_tty)
14708 {
14709 struct breakpoint *b, *b_tmp;
14710
14711 dont_repeat ();
14712
14713 if (arg == 0)
14714 {
14715 int breaks_to_delete = 0;
14716
14717 /* Delete all breakpoints if no argument.
14718 Do not delete internal or call-dummy breakpoints, these
14719 have to be deleted with an explicit breakpoint number
14720 argument. */
14721 ALL_TRACEPOINTS (b)
14722 if (is_tracepoint (b) && user_breakpoint_p (b))
14723 {
14724 breaks_to_delete = 1;
14725 break;
14726 }
14727
14728 /* Ask user only if there are some breakpoints to delete. */
14729 if (!from_tty
14730 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14731 {
14732 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14733 if (is_tracepoint (b) && user_breakpoint_p (b))
14734 delete_breakpoint (b);
14735 }
14736 }
14737 else
14738 map_breakpoint_numbers
14739 (arg, [&] (breakpoint *br)
14740 {
14741 iterate_over_related_breakpoints (br, delete_breakpoint);
14742 });
14743 }
14744
14745 /* Helper function for trace_pass_command. */
14746
14747 static void
14748 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14749 {
14750 tp->pass_count = count;
14751 gdb::observers::breakpoint_modified.notify (tp);
14752 if (from_tty)
14753 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14754 tp->number, count);
14755 }
14756
14757 /* Set passcount for tracepoint.
14758
14759 First command argument is passcount, second is tracepoint number.
14760 If tracepoint number omitted, apply to most recently defined.
14761 Also accepts special argument "all". */
14762
14763 static void
14764 trace_pass_command (const char *args, int from_tty)
14765 {
14766 struct tracepoint *t1;
14767 ULONGEST count;
14768
14769 if (args == 0 || *args == 0)
14770 error (_("passcount command requires an "
14771 "argument (count + optional TP num)"));
14772
14773 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14774
14775 args = skip_spaces (args);
14776 if (*args && strncasecmp (args, "all", 3) == 0)
14777 {
14778 struct breakpoint *b;
14779
14780 args += 3; /* Skip special argument "all". */
14781 if (*args)
14782 error (_("Junk at end of arguments."));
14783
14784 ALL_TRACEPOINTS (b)
14785 {
14786 t1 = (struct tracepoint *) b;
14787 trace_pass_set_count (t1, count, from_tty);
14788 }
14789 }
14790 else if (*args == '\0')
14791 {
14792 t1 = get_tracepoint_by_number (&args, NULL);
14793 if (t1)
14794 trace_pass_set_count (t1, count, from_tty);
14795 }
14796 else
14797 {
14798 number_or_range_parser parser (args);
14799 while (!parser.finished ())
14800 {
14801 t1 = get_tracepoint_by_number (&args, &parser);
14802 if (t1)
14803 trace_pass_set_count (t1, count, from_tty);
14804 }
14805 }
14806 }
14807
14808 struct tracepoint *
14809 get_tracepoint (int num)
14810 {
14811 struct breakpoint *t;
14812
14813 ALL_TRACEPOINTS (t)
14814 if (t->number == num)
14815 return (struct tracepoint *) t;
14816
14817 return NULL;
14818 }
14819
14820 /* Find the tracepoint with the given target-side number (which may be
14821 different from the tracepoint number after disconnecting and
14822 reconnecting). */
14823
14824 struct tracepoint *
14825 get_tracepoint_by_number_on_target (int num)
14826 {
14827 struct breakpoint *b;
14828
14829 ALL_TRACEPOINTS (b)
14830 {
14831 struct tracepoint *t = (struct tracepoint *) b;
14832
14833 if (t->number_on_target == num)
14834 return t;
14835 }
14836
14837 return NULL;
14838 }
14839
14840 /* Utility: parse a tracepoint number and look it up in the list.
14841 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14842 If the argument is missing, the most recent tracepoint
14843 (tracepoint_count) is returned. */
14844
14845 struct tracepoint *
14846 get_tracepoint_by_number (const char **arg,
14847 number_or_range_parser *parser)
14848 {
14849 struct breakpoint *t;
14850 int tpnum;
14851 const char *instring = arg == NULL ? NULL : *arg;
14852
14853 if (parser != NULL)
14854 {
14855 gdb_assert (!parser->finished ());
14856 tpnum = parser->get_number ();
14857 }
14858 else if (arg == NULL || *arg == NULL || ! **arg)
14859 tpnum = tracepoint_count;
14860 else
14861 tpnum = get_number (arg);
14862
14863 if (tpnum <= 0)
14864 {
14865 if (instring && *instring)
14866 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14867 instring);
14868 else
14869 printf_filtered (_("No previous tracepoint\n"));
14870 return NULL;
14871 }
14872
14873 ALL_TRACEPOINTS (t)
14874 if (t->number == tpnum)
14875 {
14876 return (struct tracepoint *) t;
14877 }
14878
14879 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14880 return NULL;
14881 }
14882
14883 void
14884 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14885 {
14886 if (b->thread != -1)
14887 fprintf_unfiltered (fp, " thread %d", b->thread);
14888
14889 if (b->task != 0)
14890 fprintf_unfiltered (fp, " task %d", b->task);
14891
14892 fprintf_unfiltered (fp, "\n");
14893 }
14894
14895 /* Save information on user settable breakpoints (watchpoints, etc) to
14896 a new script file named FILENAME. If FILTER is non-NULL, call it
14897 on each breakpoint and only include the ones for which it returns
14898 non-zero. */
14899
14900 static void
14901 save_breakpoints (const char *filename, int from_tty,
14902 int (*filter) (const struct breakpoint *))
14903 {
14904 struct breakpoint *tp;
14905 int any = 0;
14906 int extra_trace_bits = 0;
14907
14908 if (filename == 0 || *filename == 0)
14909 error (_("Argument required (file name in which to save)"));
14910
14911 /* See if we have anything to save. */
14912 ALL_BREAKPOINTS (tp)
14913 {
14914 /* Skip internal and momentary breakpoints. */
14915 if (!user_breakpoint_p (tp))
14916 continue;
14917
14918 /* If we have a filter, only save the breakpoints it accepts. */
14919 if (filter && !filter (tp))
14920 continue;
14921
14922 any = 1;
14923
14924 if (is_tracepoint (tp))
14925 {
14926 extra_trace_bits = 1;
14927
14928 /* We can stop searching. */
14929 break;
14930 }
14931 }
14932
14933 if (!any)
14934 {
14935 warning (_("Nothing to save."));
14936 return;
14937 }
14938
14939 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14940
14941 stdio_file fp;
14942
14943 if (!fp.open (expanded_filename.get (), "w"))
14944 error (_("Unable to open file '%s' for saving (%s)"),
14945 expanded_filename.get (), safe_strerror (errno));
14946
14947 if (extra_trace_bits)
14948 save_trace_state_variables (&fp);
14949
14950 ALL_BREAKPOINTS (tp)
14951 {
14952 /* Skip internal and momentary breakpoints. */
14953 if (!user_breakpoint_p (tp))
14954 continue;
14955
14956 /* If we have a filter, only save the breakpoints it accepts. */
14957 if (filter && !filter (tp))
14958 continue;
14959
14960 tp->ops->print_recreate (tp, &fp);
14961
14962 /* Note, we can't rely on tp->number for anything, as we can't
14963 assume the recreated breakpoint numbers will match. Use $bpnum
14964 instead. */
14965
14966 if (tp->cond_string)
14967 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14968
14969 if (tp->ignore_count)
14970 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14971
14972 if (tp->type != bp_dprintf && tp->commands)
14973 {
14974 fp.puts (" commands\n");
14975
14976 current_uiout->redirect (&fp);
14977 try
14978 {
14979 print_command_lines (current_uiout, tp->commands.get (), 2);
14980 }
14981 catch (const gdb_exception &ex)
14982 {
14983 current_uiout->redirect (NULL);
14984 throw;
14985 }
14986
14987 current_uiout->redirect (NULL);
14988 fp.puts (" end\n");
14989 }
14990
14991 if (tp->enable_state == bp_disabled)
14992 fp.puts ("disable $bpnum\n");
14993
14994 /* If this is a multi-location breakpoint, check if the locations
14995 should be individually disabled. Watchpoint locations are
14996 special, and not user visible. */
14997 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
14998 {
14999 struct bp_location *loc;
15000 int n = 1;
15001
15002 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15003 if (!loc->enabled)
15004 fp.printf ("disable $bpnum.%d\n", n);
15005 }
15006 }
15007
15008 if (extra_trace_bits && *default_collect)
15009 fp.printf ("set default-collect %s\n", default_collect);
15010
15011 if (from_tty)
15012 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15013 }
15014
15015 /* The `save breakpoints' command. */
15016
15017 static void
15018 save_breakpoints_command (const char *args, int from_tty)
15019 {
15020 save_breakpoints (args, from_tty, NULL);
15021 }
15022
15023 /* The `save tracepoints' command. */
15024
15025 static void
15026 save_tracepoints_command (const char *args, int from_tty)
15027 {
15028 save_breakpoints (args, from_tty, is_tracepoint);
15029 }
15030
15031 /* Create a vector of all tracepoints. */
15032
15033 std::vector<breakpoint *>
15034 all_tracepoints (void)
15035 {
15036 std::vector<breakpoint *> tp_vec;
15037 struct breakpoint *tp;
15038
15039 ALL_TRACEPOINTS (tp)
15040 {
15041 tp_vec.push_back (tp);
15042 }
15043
15044 return tp_vec;
15045 }
15046
15047 \f
15048 /* This help string is used to consolidate all the help string for specifying
15049 locations used by several commands. */
15050
15051 #define LOCATION_HELP_STRING \
15052 "Linespecs are colon-separated lists of location parameters, such as\n\
15053 source filename, function name, label name, and line number.\n\
15054 Example: To specify the start of a label named \"the_top\" in the\n\
15055 function \"fact\" in the file \"factorial.c\", use\n\
15056 \"factorial.c:fact:the_top\".\n\
15057 \n\
15058 Address locations begin with \"*\" and specify an exact address in the\n\
15059 program. Example: To specify the fourth byte past the start function\n\
15060 \"main\", use \"*main + 4\".\n\
15061 \n\
15062 Explicit locations are similar to linespecs but use an option/argument\n\
15063 syntax to specify location parameters.\n\
15064 Example: To specify the start of the label named \"the_top\" in the\n\
15065 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15066 -function fact -label the_top\".\n\
15067 \n\
15068 By default, a specified function is matched against the program's\n\
15069 functions in all scopes. For C++, this means in all namespaces and\n\
15070 classes. For Ada, this means in all packages. E.g., in C++,\n\
15071 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15072 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15073 specified name as a complete fully-qualified name instead."
15074
15075 /* This help string is used for the break, hbreak, tbreak and thbreak
15076 commands. It is defined as a macro to prevent duplication.
15077 COMMAND should be a string constant containing the name of the
15078 command. */
15079
15080 #define BREAK_ARGS_HELP(command) \
15081 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15082 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15083 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15084 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15085 `-probe-dtrace' (for a DTrace probe).\n\
15086 LOCATION may be a linespec, address, or explicit location as described\n\
15087 below.\n\
15088 \n\
15089 With no LOCATION, uses current execution address of the selected\n\
15090 stack frame. This is useful for breaking on return to a stack frame.\n\
15091 \n\
15092 THREADNUM is the number from \"info threads\".\n\
15093 CONDITION is a boolean expression.\n\
15094 \n" LOCATION_HELP_STRING "\n\n\
15095 Multiple breakpoints at one place are permitted, and useful if their\n\
15096 conditions are different.\n\
15097 \n\
15098 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15099
15100 /* List of subcommands for "catch". */
15101 static struct cmd_list_element *catch_cmdlist;
15102
15103 /* List of subcommands for "tcatch". */
15104 static struct cmd_list_element *tcatch_cmdlist;
15105
15106 void
15107 add_catch_command (const char *name, const char *docstring,
15108 cmd_const_sfunc_ftype *sfunc,
15109 completer_ftype *completer,
15110 void *user_data_catch,
15111 void *user_data_tcatch)
15112 {
15113 struct cmd_list_element *command;
15114
15115 command = add_cmd (name, class_breakpoint, docstring,
15116 &catch_cmdlist);
15117 set_cmd_sfunc (command, sfunc);
15118 set_cmd_context (command, user_data_catch);
15119 set_cmd_completer (command, completer);
15120
15121 command = add_cmd (name, class_breakpoint, docstring,
15122 &tcatch_cmdlist);
15123 set_cmd_sfunc (command, sfunc);
15124 set_cmd_context (command, user_data_tcatch);
15125 set_cmd_completer (command, completer);
15126 }
15127
15128 static void
15129 save_command (const char *arg, int from_tty)
15130 {
15131 printf_unfiltered (_("\"save\" must be followed by "
15132 "the name of a save subcommand.\n"));
15133 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15134 }
15135
15136 struct breakpoint *
15137 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15138 void *data)
15139 {
15140 struct breakpoint *b, *b_tmp;
15141
15142 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15143 {
15144 if ((*callback) (b, data))
15145 return b;
15146 }
15147
15148 return NULL;
15149 }
15150
15151 /* Zero if any of the breakpoint's locations could be a location where
15152 functions have been inlined, nonzero otherwise. */
15153
15154 static int
15155 is_non_inline_function (struct breakpoint *b)
15156 {
15157 /* The shared library event breakpoint is set on the address of a
15158 non-inline function. */
15159 if (b->type == bp_shlib_event)
15160 return 1;
15161
15162 return 0;
15163 }
15164
15165 /* Nonzero if the specified PC cannot be a location where functions
15166 have been inlined. */
15167
15168 int
15169 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15170 const struct target_waitstatus *ws)
15171 {
15172 struct breakpoint *b;
15173 struct bp_location *bl;
15174
15175 ALL_BREAKPOINTS (b)
15176 {
15177 if (!is_non_inline_function (b))
15178 continue;
15179
15180 for (bl = b->loc; bl != NULL; bl = bl->next)
15181 {
15182 if (!bl->shlib_disabled
15183 && bpstat_check_location (bl, aspace, pc, ws))
15184 return 1;
15185 }
15186 }
15187
15188 return 0;
15189 }
15190
15191 /* Remove any references to OBJFILE which is going to be freed. */
15192
15193 void
15194 breakpoint_free_objfile (struct objfile *objfile)
15195 {
15196 struct bp_location **locp, *loc;
15197
15198 ALL_BP_LOCATIONS (loc, locp)
15199 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15200 loc->symtab = NULL;
15201 }
15202
15203 void
15204 initialize_breakpoint_ops (void)
15205 {
15206 static int initialized = 0;
15207
15208 struct breakpoint_ops *ops;
15209
15210 if (initialized)
15211 return;
15212 initialized = 1;
15213
15214 /* The breakpoint_ops structure to be inherit by all kinds of
15215 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15216 internal and momentary breakpoints, etc.). */
15217 ops = &bkpt_base_breakpoint_ops;
15218 *ops = base_breakpoint_ops;
15219 ops->re_set = bkpt_re_set;
15220 ops->insert_location = bkpt_insert_location;
15221 ops->remove_location = bkpt_remove_location;
15222 ops->breakpoint_hit = bkpt_breakpoint_hit;
15223 ops->create_sals_from_location = bkpt_create_sals_from_location;
15224 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15225 ops->decode_location = bkpt_decode_location;
15226
15227 /* The breakpoint_ops structure to be used in regular breakpoints. */
15228 ops = &bkpt_breakpoint_ops;
15229 *ops = bkpt_base_breakpoint_ops;
15230 ops->re_set = bkpt_re_set;
15231 ops->resources_needed = bkpt_resources_needed;
15232 ops->print_it = bkpt_print_it;
15233 ops->print_mention = bkpt_print_mention;
15234 ops->print_recreate = bkpt_print_recreate;
15235
15236 /* Ranged breakpoints. */
15237 ops = &ranged_breakpoint_ops;
15238 *ops = bkpt_breakpoint_ops;
15239 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15240 ops->resources_needed = resources_needed_ranged_breakpoint;
15241 ops->print_it = print_it_ranged_breakpoint;
15242 ops->print_one = print_one_ranged_breakpoint;
15243 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15244 ops->print_mention = print_mention_ranged_breakpoint;
15245 ops->print_recreate = print_recreate_ranged_breakpoint;
15246
15247 /* Internal breakpoints. */
15248 ops = &internal_breakpoint_ops;
15249 *ops = bkpt_base_breakpoint_ops;
15250 ops->re_set = internal_bkpt_re_set;
15251 ops->check_status = internal_bkpt_check_status;
15252 ops->print_it = internal_bkpt_print_it;
15253 ops->print_mention = internal_bkpt_print_mention;
15254
15255 /* Momentary breakpoints. */
15256 ops = &momentary_breakpoint_ops;
15257 *ops = bkpt_base_breakpoint_ops;
15258 ops->re_set = momentary_bkpt_re_set;
15259 ops->check_status = momentary_bkpt_check_status;
15260 ops->print_it = momentary_bkpt_print_it;
15261 ops->print_mention = momentary_bkpt_print_mention;
15262
15263 /* Probe breakpoints. */
15264 ops = &bkpt_probe_breakpoint_ops;
15265 *ops = bkpt_breakpoint_ops;
15266 ops->insert_location = bkpt_probe_insert_location;
15267 ops->remove_location = bkpt_probe_remove_location;
15268 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15269 ops->decode_location = bkpt_probe_decode_location;
15270
15271 /* Watchpoints. */
15272 ops = &watchpoint_breakpoint_ops;
15273 *ops = base_breakpoint_ops;
15274 ops->re_set = re_set_watchpoint;
15275 ops->insert_location = insert_watchpoint;
15276 ops->remove_location = remove_watchpoint;
15277 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15278 ops->check_status = check_status_watchpoint;
15279 ops->resources_needed = resources_needed_watchpoint;
15280 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15281 ops->print_it = print_it_watchpoint;
15282 ops->print_mention = print_mention_watchpoint;
15283 ops->print_recreate = print_recreate_watchpoint;
15284 ops->explains_signal = explains_signal_watchpoint;
15285
15286 /* Masked watchpoints. */
15287 ops = &masked_watchpoint_breakpoint_ops;
15288 *ops = watchpoint_breakpoint_ops;
15289 ops->insert_location = insert_masked_watchpoint;
15290 ops->remove_location = remove_masked_watchpoint;
15291 ops->resources_needed = resources_needed_masked_watchpoint;
15292 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15293 ops->print_it = print_it_masked_watchpoint;
15294 ops->print_one_detail = print_one_detail_masked_watchpoint;
15295 ops->print_mention = print_mention_masked_watchpoint;
15296 ops->print_recreate = print_recreate_masked_watchpoint;
15297
15298 /* Tracepoints. */
15299 ops = &tracepoint_breakpoint_ops;
15300 *ops = base_breakpoint_ops;
15301 ops->re_set = tracepoint_re_set;
15302 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15303 ops->print_one_detail = tracepoint_print_one_detail;
15304 ops->print_mention = tracepoint_print_mention;
15305 ops->print_recreate = tracepoint_print_recreate;
15306 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15307 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15308 ops->decode_location = tracepoint_decode_location;
15309
15310 /* Probe tracepoints. */
15311 ops = &tracepoint_probe_breakpoint_ops;
15312 *ops = tracepoint_breakpoint_ops;
15313 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15314 ops->decode_location = tracepoint_probe_decode_location;
15315
15316 /* Static tracepoints with marker (`-m'). */
15317 ops = &strace_marker_breakpoint_ops;
15318 *ops = tracepoint_breakpoint_ops;
15319 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15320 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15321 ops->decode_location = strace_marker_decode_location;
15322
15323 /* Fork catchpoints. */
15324 ops = &catch_fork_breakpoint_ops;
15325 *ops = base_breakpoint_ops;
15326 ops->insert_location = insert_catch_fork;
15327 ops->remove_location = remove_catch_fork;
15328 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15329 ops->print_it = print_it_catch_fork;
15330 ops->print_one = print_one_catch_fork;
15331 ops->print_mention = print_mention_catch_fork;
15332 ops->print_recreate = print_recreate_catch_fork;
15333
15334 /* Vfork catchpoints. */
15335 ops = &catch_vfork_breakpoint_ops;
15336 *ops = base_breakpoint_ops;
15337 ops->insert_location = insert_catch_vfork;
15338 ops->remove_location = remove_catch_vfork;
15339 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15340 ops->print_it = print_it_catch_vfork;
15341 ops->print_one = print_one_catch_vfork;
15342 ops->print_mention = print_mention_catch_vfork;
15343 ops->print_recreate = print_recreate_catch_vfork;
15344
15345 /* Exec catchpoints. */
15346 ops = &catch_exec_breakpoint_ops;
15347 *ops = base_breakpoint_ops;
15348 ops->insert_location = insert_catch_exec;
15349 ops->remove_location = remove_catch_exec;
15350 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15351 ops->print_it = print_it_catch_exec;
15352 ops->print_one = print_one_catch_exec;
15353 ops->print_mention = print_mention_catch_exec;
15354 ops->print_recreate = print_recreate_catch_exec;
15355
15356 /* Solib-related catchpoints. */
15357 ops = &catch_solib_breakpoint_ops;
15358 *ops = base_breakpoint_ops;
15359 ops->insert_location = insert_catch_solib;
15360 ops->remove_location = remove_catch_solib;
15361 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15362 ops->check_status = check_status_catch_solib;
15363 ops->print_it = print_it_catch_solib;
15364 ops->print_one = print_one_catch_solib;
15365 ops->print_mention = print_mention_catch_solib;
15366 ops->print_recreate = print_recreate_catch_solib;
15367
15368 ops = &dprintf_breakpoint_ops;
15369 *ops = bkpt_base_breakpoint_ops;
15370 ops->re_set = dprintf_re_set;
15371 ops->resources_needed = bkpt_resources_needed;
15372 ops->print_it = bkpt_print_it;
15373 ops->print_mention = bkpt_print_mention;
15374 ops->print_recreate = dprintf_print_recreate;
15375 ops->after_condition_true = dprintf_after_condition_true;
15376 ops->breakpoint_hit = dprintf_breakpoint_hit;
15377 }
15378
15379 /* Chain containing all defined "enable breakpoint" subcommands. */
15380
15381 static struct cmd_list_element *enablebreaklist = NULL;
15382
15383 /* See breakpoint.h. */
15384
15385 cmd_list_element *commands_cmd_element = nullptr;
15386
15387 void
15388 _initialize_breakpoint (void)
15389 {
15390 struct cmd_list_element *c;
15391
15392 initialize_breakpoint_ops ();
15393
15394 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15395 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15396 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15397
15398 breakpoint_chain = 0;
15399 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15400 before a breakpoint is set. */
15401 breakpoint_count = 0;
15402
15403 tracepoint_count = 0;
15404
15405 add_com ("ignore", class_breakpoint, ignore_command, _("\
15406 Set ignore-count of breakpoint number N to COUNT.\n\
15407 Usage is `ignore N COUNT'."));
15408
15409 commands_cmd_element = add_com ("commands", class_breakpoint,
15410 commands_command, _("\
15411 Set commands to be executed when the given breakpoints are hit.\n\
15412 Give a space-separated breakpoint list as argument after \"commands\".\n\
15413 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15414 (e.g. `5-7').\n\
15415 With no argument, the targeted breakpoint is the last one set.\n\
15416 The commands themselves follow starting on the next line.\n\
15417 Type a line containing \"end\" to indicate the end of them.\n\
15418 Give \"silent\" as the first line to make the breakpoint silent;\n\
15419 then no output is printed when it is hit, except what the commands print."));
15420
15421 c = add_com ("condition", class_breakpoint, condition_command, _("\
15422 Specify breakpoint number N to break only if COND is true.\n\
15423 Usage is `condition N COND', where N is an integer and COND is an\n\
15424 expression to be evaluated whenever breakpoint N is reached."));
15425 set_cmd_completer (c, condition_completer);
15426
15427 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15428 Set a temporary breakpoint.\n\
15429 Like \"break\" except the breakpoint is only temporary,\n\
15430 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15431 by using \"enable delete\" on the breakpoint number.\n\
15432 \n"
15433 BREAK_ARGS_HELP ("tbreak")));
15434 set_cmd_completer (c, location_completer);
15435
15436 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15437 Set a hardware assisted breakpoint.\n\
15438 Like \"break\" except the breakpoint requires hardware support,\n\
15439 some target hardware may not have this support.\n\
15440 \n"
15441 BREAK_ARGS_HELP ("hbreak")));
15442 set_cmd_completer (c, location_completer);
15443
15444 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15445 Set a temporary hardware assisted breakpoint.\n\
15446 Like \"hbreak\" except the breakpoint is only temporary,\n\
15447 so it will be deleted when hit.\n\
15448 \n"
15449 BREAK_ARGS_HELP ("thbreak")));
15450 set_cmd_completer (c, location_completer);
15451
15452 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15453 Enable some breakpoints.\n\
15454 Give breakpoint numbers (separated by spaces) as arguments.\n\
15455 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15456 This is used to cancel the effect of the \"disable\" command.\n\
15457 With a subcommand you can enable temporarily."),
15458 &enablelist, "enable ", 1, &cmdlist);
15459
15460 add_com_alias ("en", "enable", class_breakpoint, 1);
15461
15462 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15463 Enable some breakpoints.\n\
15464 Give breakpoint numbers (separated by spaces) as arguments.\n\
15465 This is used to cancel the effect of the \"disable\" command.\n\
15466 May be abbreviated to simply \"enable\"."),
15467 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15468
15469 add_cmd ("once", no_class, enable_once_command, _("\
15470 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15471 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15472 &enablebreaklist);
15473
15474 add_cmd ("delete", no_class, enable_delete_command, _("\
15475 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15476 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15477 &enablebreaklist);
15478
15479 add_cmd ("count", no_class, enable_count_command, _("\
15480 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15481 If a breakpoint is hit while enabled in this fashion,\n\
15482 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15483 &enablebreaklist);
15484
15485 add_cmd ("delete", no_class, enable_delete_command, _("\
15486 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15487 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15488 &enablelist);
15489
15490 add_cmd ("once", no_class, enable_once_command, _("\
15491 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15492 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15493 &enablelist);
15494
15495 add_cmd ("count", no_class, enable_count_command, _("\
15496 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15497 If a breakpoint is hit while enabled in this fashion,\n\
15498 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15499 &enablelist);
15500
15501 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15502 Disable some breakpoints.\n\
15503 Arguments are breakpoint numbers with spaces in between.\n\
15504 To disable all breakpoints, give no argument.\n\
15505 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15506 &disablelist, "disable ", 1, &cmdlist);
15507 add_com_alias ("dis", "disable", class_breakpoint, 1);
15508 add_com_alias ("disa", "disable", class_breakpoint, 1);
15509
15510 add_cmd ("breakpoints", class_alias, disable_command, _("\
15511 Disable some breakpoints.\n\
15512 Arguments are breakpoint numbers with spaces in between.\n\
15513 To disable all breakpoints, give no argument.\n\
15514 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15515 This command may be abbreviated \"disable\"."),
15516 &disablelist);
15517
15518 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15519 Delete some breakpoints or auto-display expressions.\n\
15520 Arguments are breakpoint numbers with spaces in between.\n\
15521 To delete all breakpoints, give no argument.\n\
15522 \n\
15523 Also a prefix command for deletion of other GDB objects.\n\
15524 The \"unset\" command is also an alias for \"delete\"."),
15525 &deletelist, "delete ", 1, &cmdlist);
15526 add_com_alias ("d", "delete", class_breakpoint, 1);
15527 add_com_alias ("del", "delete", class_breakpoint, 1);
15528
15529 add_cmd ("breakpoints", class_alias, delete_command, _("\
15530 Delete some breakpoints or auto-display expressions.\n\
15531 Arguments are breakpoint numbers with spaces in between.\n\
15532 To delete all breakpoints, give no argument.\n\
15533 This command may be abbreviated \"delete\"."),
15534 &deletelist);
15535
15536 add_com ("clear", class_breakpoint, clear_command, _("\
15537 Clear breakpoint at specified location.\n\
15538 Argument may be a linespec, explicit, or address location as described below.\n\
15539 \n\
15540 With no argument, clears all breakpoints in the line that the selected frame\n\
15541 is executing in.\n"
15542 "\n" LOCATION_HELP_STRING "\n\n\
15543 See also the \"delete\" command which clears breakpoints by number."));
15544 add_com_alias ("cl", "clear", class_breakpoint, 1);
15545
15546 c = add_com ("break", class_breakpoint, break_command, _("\
15547 Set breakpoint at specified location.\n"
15548 BREAK_ARGS_HELP ("break")));
15549 set_cmd_completer (c, location_completer);
15550
15551 add_com_alias ("b", "break", class_run, 1);
15552 add_com_alias ("br", "break", class_run, 1);
15553 add_com_alias ("bre", "break", class_run, 1);
15554 add_com_alias ("brea", "break", class_run, 1);
15555
15556 if (dbx_commands)
15557 {
15558 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15559 Break in function/address or break at a line in the current file."),
15560 &stoplist, "stop ", 1, &cmdlist);
15561 add_cmd ("in", class_breakpoint, stopin_command,
15562 _("Break in function or address."), &stoplist);
15563 add_cmd ("at", class_breakpoint, stopat_command,
15564 _("Break at a line in the current file."), &stoplist);
15565 add_com ("status", class_info, info_breakpoints_command, _("\
15566 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15567 The \"Type\" column indicates one of:\n\
15568 \tbreakpoint - normal breakpoint\n\
15569 \twatchpoint - watchpoint\n\
15570 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15571 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15572 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15573 address and file/line number respectively.\n\
15574 \n\
15575 Convenience variable \"$_\" and default examine address for \"x\"\n\
15576 are set to the address of the last breakpoint listed unless the command\n\
15577 is prefixed with \"server \".\n\n\
15578 Convenience variable \"$bpnum\" contains the number of the last\n\
15579 breakpoint set."));
15580 }
15581
15582 add_info ("breakpoints", info_breakpoints_command, _("\
15583 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15584 The \"Type\" column indicates one of:\n\
15585 \tbreakpoint - normal breakpoint\n\
15586 \twatchpoint - watchpoint\n\
15587 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15588 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15589 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15590 address and file/line number respectively.\n\
15591 \n\
15592 Convenience variable \"$_\" and default examine address for \"x\"\n\
15593 are set to the address of the last breakpoint listed unless the command\n\
15594 is prefixed with \"server \".\n\n\
15595 Convenience variable \"$bpnum\" contains the number of the last\n\
15596 breakpoint set."));
15597
15598 add_info_alias ("b", "breakpoints", 1);
15599
15600 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15601 Status of all breakpoints, or breakpoint number NUMBER.\n\
15602 The \"Type\" column indicates one of:\n\
15603 \tbreakpoint - normal breakpoint\n\
15604 \twatchpoint - watchpoint\n\
15605 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15606 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15607 \tuntil - internal breakpoint used by the \"until\" command\n\
15608 \tfinish - internal breakpoint used by the \"finish\" command\n\
15609 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15610 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15611 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15612 address and file/line number respectively.\n\
15613 \n\
15614 Convenience variable \"$_\" and default examine address for \"x\"\n\
15615 are set to the address of the last breakpoint listed unless the command\n\
15616 is prefixed with \"server \".\n\n\
15617 Convenience variable \"$bpnum\" contains the number of the last\n\
15618 breakpoint set."),
15619 &maintenanceinfolist);
15620
15621 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15622 Set catchpoints to catch events."),
15623 &catch_cmdlist, "catch ",
15624 0/*allow-unknown*/, &cmdlist);
15625
15626 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15627 Set temporary catchpoints to catch events."),
15628 &tcatch_cmdlist, "tcatch ",
15629 0/*allow-unknown*/, &cmdlist);
15630
15631 add_catch_command ("fork", _("Catch calls to fork."),
15632 catch_fork_command_1,
15633 NULL,
15634 (void *) (uintptr_t) catch_fork_permanent,
15635 (void *) (uintptr_t) catch_fork_temporary);
15636 add_catch_command ("vfork", _("Catch calls to vfork."),
15637 catch_fork_command_1,
15638 NULL,
15639 (void *) (uintptr_t) catch_vfork_permanent,
15640 (void *) (uintptr_t) catch_vfork_temporary);
15641 add_catch_command ("exec", _("Catch calls to exec."),
15642 catch_exec_command_1,
15643 NULL,
15644 CATCH_PERMANENT,
15645 CATCH_TEMPORARY);
15646 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15647 Usage: catch load [REGEX]\n\
15648 If REGEX is given, only stop for libraries matching the regular expression."),
15649 catch_load_command_1,
15650 NULL,
15651 CATCH_PERMANENT,
15652 CATCH_TEMPORARY);
15653 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15654 Usage: catch unload [REGEX]\n\
15655 If REGEX is given, only stop for libraries matching the regular expression."),
15656 catch_unload_command_1,
15657 NULL,
15658 CATCH_PERMANENT,
15659 CATCH_TEMPORARY);
15660
15661 c = add_com ("watch", class_breakpoint, watch_command, _("\
15662 Set a watchpoint for an expression.\n\
15663 Usage: watch [-l|-location] EXPRESSION\n\
15664 A watchpoint stops execution of your program whenever the value of\n\
15665 an expression changes.\n\
15666 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15667 the memory to which it refers."));
15668 set_cmd_completer (c, expression_completer);
15669
15670 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15671 Set a read watchpoint for an expression.\n\
15672 Usage: rwatch [-l|-location] EXPRESSION\n\
15673 A watchpoint stops execution of your program whenever the value of\n\
15674 an expression is read.\n\
15675 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15676 the memory to which it refers."));
15677 set_cmd_completer (c, expression_completer);
15678
15679 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15680 Set a watchpoint for an expression.\n\
15681 Usage: awatch [-l|-location] EXPRESSION\n\
15682 A watchpoint stops execution of your program whenever the value of\n\
15683 an expression is either read or written.\n\
15684 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15685 the memory to which it refers."));
15686 set_cmd_completer (c, expression_completer);
15687
15688 add_info ("watchpoints", info_watchpoints_command, _("\
15689 Status of specified watchpoints (all watchpoints if no argument)."));
15690
15691 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15692 respond to changes - contrary to the description. */
15693 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15694 &can_use_hw_watchpoints, _("\
15695 Set debugger's willingness to use watchpoint hardware."), _("\
15696 Show debugger's willingness to use watchpoint hardware."), _("\
15697 If zero, gdb will not use hardware for new watchpoints, even if\n\
15698 such is available. (However, any hardware watchpoints that were\n\
15699 created before setting this to nonzero, will continue to use watchpoint\n\
15700 hardware.)"),
15701 NULL,
15702 show_can_use_hw_watchpoints,
15703 &setlist, &showlist);
15704
15705 can_use_hw_watchpoints = 1;
15706
15707 /* Tracepoint manipulation commands. */
15708
15709 c = add_com ("trace", class_breakpoint, trace_command, _("\
15710 Set a tracepoint at specified location.\n\
15711 \n"
15712 BREAK_ARGS_HELP ("trace") "\n\
15713 Do \"help tracepoints\" for info on other tracepoint commands."));
15714 set_cmd_completer (c, location_completer);
15715
15716 add_com_alias ("tp", "trace", class_alias, 0);
15717 add_com_alias ("tr", "trace", class_alias, 1);
15718 add_com_alias ("tra", "trace", class_alias, 1);
15719 add_com_alias ("trac", "trace", class_alias, 1);
15720
15721 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15722 Set a fast tracepoint at specified location.\n\
15723 \n"
15724 BREAK_ARGS_HELP ("ftrace") "\n\
15725 Do \"help tracepoints\" for info on other tracepoint commands."));
15726 set_cmd_completer (c, location_completer);
15727
15728 c = add_com ("strace", class_breakpoint, strace_command, _("\
15729 Set a static tracepoint at location or marker.\n\
15730 \n\
15731 strace [LOCATION] [if CONDITION]\n\
15732 LOCATION may be a linespec, explicit, or address location (described below) \n\
15733 or -m MARKER_ID.\n\n\
15734 If a marker id is specified, probe the marker with that name. With\n\
15735 no LOCATION, uses current execution address of the selected stack frame.\n\
15736 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15737 This collects arbitrary user data passed in the probe point call to the\n\
15738 tracing library. You can inspect it when analyzing the trace buffer,\n\
15739 by printing the $_sdata variable like any other convenience variable.\n\
15740 \n\
15741 CONDITION is a boolean expression.\n\
15742 \n" LOCATION_HELP_STRING "\n\n\
15743 Multiple tracepoints at one place are permitted, and useful if their\n\
15744 conditions are different.\n\
15745 \n\
15746 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15747 Do \"help tracepoints\" for info on other tracepoint commands."));
15748 set_cmd_completer (c, location_completer);
15749
15750 add_info ("tracepoints", info_tracepoints_command, _("\
15751 Status of specified tracepoints (all tracepoints if no argument).\n\
15752 Convenience variable \"$tpnum\" contains the number of the\n\
15753 last tracepoint set."));
15754
15755 add_info_alias ("tp", "tracepoints", 1);
15756
15757 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15758 Delete specified tracepoints.\n\
15759 Arguments are tracepoint numbers, separated by spaces.\n\
15760 No argument means delete all tracepoints."),
15761 &deletelist);
15762 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15763
15764 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15765 Disable specified tracepoints.\n\
15766 Arguments are tracepoint numbers, separated by spaces.\n\
15767 No argument means disable all tracepoints."),
15768 &disablelist);
15769 deprecate_cmd (c, "disable");
15770
15771 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15772 Enable specified tracepoints.\n\
15773 Arguments are tracepoint numbers, separated by spaces.\n\
15774 No argument means enable all tracepoints."),
15775 &enablelist);
15776 deprecate_cmd (c, "enable");
15777
15778 add_com ("passcount", class_trace, trace_pass_command, _("\
15779 Set the passcount for a tracepoint.\n\
15780 The trace will end when the tracepoint has been passed 'count' times.\n\
15781 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15782 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15783
15784 add_prefix_cmd ("save", class_breakpoint, save_command,
15785 _("Save breakpoint definitions as a script."),
15786 &save_cmdlist, "save ",
15787 0/*allow-unknown*/, &cmdlist);
15788
15789 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15790 Save current breakpoint definitions as a script.\n\
15791 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15792 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15793 session to restore them."),
15794 &save_cmdlist);
15795 set_cmd_completer (c, filename_completer);
15796
15797 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15798 Save current tracepoint definitions as a script.\n\
15799 Use the 'source' command in another debug session to restore them."),
15800 &save_cmdlist);
15801 set_cmd_completer (c, filename_completer);
15802
15803 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15804 deprecate_cmd (c, "save tracepoints");
15805
15806 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15807 Breakpoint specific settings\n\
15808 Configure various breakpoint-specific variables such as\n\
15809 pending breakpoint behavior"),
15810 &breakpoint_set_cmdlist, "set breakpoint ",
15811 0/*allow-unknown*/, &setlist);
15812 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15813 Breakpoint specific settings\n\
15814 Configure various breakpoint-specific variables such as\n\
15815 pending breakpoint behavior"),
15816 &breakpoint_show_cmdlist, "show breakpoint ",
15817 0/*allow-unknown*/, &showlist);
15818
15819 add_setshow_auto_boolean_cmd ("pending", no_class,
15820 &pending_break_support, _("\
15821 Set debugger's behavior regarding pending breakpoints."), _("\
15822 Show debugger's behavior regarding pending breakpoints."), _("\
15823 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15824 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15825 an error. If auto, an unrecognized breakpoint location results in a\n\
15826 user-query to see if a pending breakpoint should be created."),
15827 NULL,
15828 show_pending_break_support,
15829 &breakpoint_set_cmdlist,
15830 &breakpoint_show_cmdlist);
15831
15832 pending_break_support = AUTO_BOOLEAN_AUTO;
15833
15834 add_setshow_boolean_cmd ("auto-hw", no_class,
15835 &automatic_hardware_breakpoints, _("\
15836 Set automatic usage of hardware breakpoints."), _("\
15837 Show automatic usage of hardware breakpoints."), _("\
15838 If set, the debugger will automatically use hardware breakpoints for\n\
15839 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15840 a warning will be emitted for such breakpoints."),
15841 NULL,
15842 show_automatic_hardware_breakpoints,
15843 &breakpoint_set_cmdlist,
15844 &breakpoint_show_cmdlist);
15845
15846 add_setshow_boolean_cmd ("always-inserted", class_support,
15847 &always_inserted_mode, _("\
15848 Set mode for inserting breakpoints."), _("\
15849 Show mode for inserting breakpoints."), _("\
15850 When this mode is on, breakpoints are inserted immediately as soon as\n\
15851 they're created, kept inserted even when execution stops, and removed\n\
15852 only when the user deletes them. When this mode is off (the default),\n\
15853 breakpoints are inserted only when execution continues, and removed\n\
15854 when execution stops."),
15855 NULL,
15856 &show_always_inserted_mode,
15857 &breakpoint_set_cmdlist,
15858 &breakpoint_show_cmdlist);
15859
15860 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15861 condition_evaluation_enums,
15862 &condition_evaluation_mode_1, _("\
15863 Set mode of breakpoint condition evaluation."), _("\
15864 Show mode of breakpoint condition evaluation."), _("\
15865 When this is set to \"host\", breakpoint conditions will be\n\
15866 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15867 breakpoint conditions will be downloaded to the target (if the target\n\
15868 supports such feature) and conditions will be evaluated on the target's side.\n\
15869 If this is set to \"auto\" (default), this will be automatically set to\n\
15870 \"target\" if it supports condition evaluation, otherwise it will\n\
15871 be set to \"gdb\""),
15872 &set_condition_evaluation_mode,
15873 &show_condition_evaluation_mode,
15874 &breakpoint_set_cmdlist,
15875 &breakpoint_show_cmdlist);
15876
15877 add_com ("break-range", class_breakpoint, break_range_command, _("\
15878 Set a breakpoint for an address range.\n\
15879 break-range START-LOCATION, END-LOCATION\n\
15880 where START-LOCATION and END-LOCATION can be one of the following:\n\
15881 LINENUM, for that line in the current file,\n\
15882 FILE:LINENUM, for that line in that file,\n\
15883 +OFFSET, for that number of lines after the current line\n\
15884 or the start of the range\n\
15885 FUNCTION, for the first line in that function,\n\
15886 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15887 *ADDRESS, for the instruction at that address.\n\
15888 \n\
15889 The breakpoint will stop execution of the inferior whenever it executes\n\
15890 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15891 range (including START-LOCATION and END-LOCATION)."));
15892
15893 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15894 Set a dynamic printf at specified location.\n\
15895 dprintf location,format string,arg1,arg2,...\n\
15896 location may be a linespec, explicit, or address location.\n"
15897 "\n" LOCATION_HELP_STRING));
15898 set_cmd_completer (c, location_completer);
15899
15900 add_setshow_enum_cmd ("dprintf-style", class_support,
15901 dprintf_style_enums, &dprintf_style, _("\
15902 Set the style of usage for dynamic printf."), _("\
15903 Show the style of usage for dynamic printf."), _("\
15904 This setting chooses how GDB will do a dynamic printf.\n\
15905 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15906 console, as with the \"printf\" command.\n\
15907 If the value is \"call\", the print is done by calling a function in your\n\
15908 program; by default printf(), but you can choose a different function or\n\
15909 output stream by setting dprintf-function and dprintf-channel."),
15910 update_dprintf_commands, NULL,
15911 &setlist, &showlist);
15912
15913 dprintf_function = xstrdup ("printf");
15914 add_setshow_string_cmd ("dprintf-function", class_support,
15915 &dprintf_function, _("\
15916 Set the function to use for dynamic printf"), _("\
15917 Show the function to use for dynamic printf"), NULL,
15918 update_dprintf_commands, NULL,
15919 &setlist, &showlist);
15920
15921 dprintf_channel = xstrdup ("");
15922 add_setshow_string_cmd ("dprintf-channel", class_support,
15923 &dprintf_channel, _("\
15924 Set the channel to use for dynamic printf"), _("\
15925 Show the channel to use for dynamic printf"), NULL,
15926 update_dprintf_commands, NULL,
15927 &setlist, &showlist);
15928
15929 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15930 &disconnected_dprintf, _("\
15931 Set whether dprintf continues after GDB disconnects."), _("\
15932 Show whether dprintf continues after GDB disconnects."), _("\
15933 Use this to let dprintf commands continue to hit and produce output\n\
15934 even if GDB disconnects or detaches from the target."),
15935 NULL,
15936 NULL,
15937 &setlist, &showlist);
15938
15939 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15940 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
15941 (target agent only) This is useful for formatted output in user-defined commands."));
15942
15943 automatic_hardware_breakpoints = 1;
15944
15945 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15946 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15947 }
This page took 0.62278 seconds and 5 git commands to generate.