Revert the header-sorting patch
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "common/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "common/array-view.h"
86 #include "common/gdb_optional.h"
87
88 /* Enums for exception-handling support. */
89 enum exception_event_kind
90 {
91 EX_EVENT_THROW,
92 EX_EVENT_RETHROW,
93 EX_EVENT_CATCH
94 };
95
96 /* Prototypes for local functions. */
97
98 static void map_breakpoint_numbers (const char *,
99 gdb::function_view<void (breakpoint *)>);
100
101 static void breakpoint_re_set_default (struct breakpoint *);
102
103 static void
104 create_sals_from_location_default (const struct event_location *location,
105 struct linespec_result *canonical,
106 enum bptype type_wanted);
107
108 static void create_breakpoints_sal_default (struct gdbarch *,
109 struct linespec_result *,
110 gdb::unique_xmalloc_ptr<char>,
111 gdb::unique_xmalloc_ptr<char>,
112 enum bptype,
113 enum bpdisp, int, int,
114 int,
115 const struct breakpoint_ops *,
116 int, int, int, unsigned);
117
118 static std::vector<symtab_and_line> decode_location_default
119 (struct breakpoint *b, const struct event_location *location,
120 struct program_space *search_pspace);
121
122 static int can_use_hardware_watchpoint
123 (const std::vector<value_ref_ptr> &vals);
124
125 static void mention (struct breakpoint *);
126
127 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
128 enum bptype,
129 const struct breakpoint_ops *);
130 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
131 const struct symtab_and_line *);
132
133 /* This function is used in gdbtk sources and thus can not be made
134 static. */
135 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
136 struct symtab_and_line,
137 enum bptype,
138 const struct breakpoint_ops *);
139
140 static struct breakpoint *
141 momentary_breakpoint_from_master (struct breakpoint *orig,
142 enum bptype type,
143 const struct breakpoint_ops *ops,
144 int loc_enabled);
145
146 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
147
148 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
149 CORE_ADDR bpaddr,
150 enum bptype bptype);
151
152 static void describe_other_breakpoints (struct gdbarch *,
153 struct program_space *, CORE_ADDR,
154 struct obj_section *, int);
155
156 static int watchpoint_locations_match (struct bp_location *loc1,
157 struct bp_location *loc2);
158
159 static int breakpoint_location_address_match (struct bp_location *bl,
160 const struct address_space *aspace,
161 CORE_ADDR addr);
162
163 static int breakpoint_location_address_range_overlap (struct bp_location *,
164 const address_space *,
165 CORE_ADDR, int);
166
167 static int remove_breakpoint (struct bp_location *);
168 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
169
170 static enum print_stop_action print_bp_stop_message (bpstat bs);
171
172 static int hw_breakpoint_used_count (void);
173
174 static int hw_watchpoint_use_count (struct breakpoint *);
175
176 static int hw_watchpoint_used_count_others (struct breakpoint *except,
177 enum bptype type,
178 int *other_type_used);
179
180 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
181 int count);
182
183 static void free_bp_location (struct bp_location *loc);
184 static void incref_bp_location (struct bp_location *loc);
185 static void decref_bp_location (struct bp_location **loc);
186
187 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
188
189 /* update_global_location_list's modes of operation wrt to whether to
190 insert locations now. */
191 enum ugll_insert_mode
192 {
193 /* Don't insert any breakpoint locations into the inferior, only
194 remove already-inserted locations that no longer should be
195 inserted. Functions that delete a breakpoint or breakpoints
196 should specify this mode, so that deleting a breakpoint doesn't
197 have the side effect of inserting the locations of other
198 breakpoints that are marked not-inserted, but should_be_inserted
199 returns true on them.
200
201 This behavior is useful is situations close to tear-down -- e.g.,
202 after an exec, while the target still has execution, but
203 breakpoint shadows of the previous executable image should *NOT*
204 be restored to the new image; or before detaching, where the
205 target still has execution and wants to delete breakpoints from
206 GDB's lists, and all breakpoints had already been removed from
207 the inferior. */
208 UGLL_DONT_INSERT,
209
210 /* May insert breakpoints iff breakpoints_should_be_inserted_now
211 claims breakpoints should be inserted now. */
212 UGLL_MAY_INSERT,
213
214 /* Insert locations now, irrespective of
215 breakpoints_should_be_inserted_now. E.g., say all threads are
216 stopped right now, and the user did "continue". We need to
217 insert breakpoints _before_ resuming the target, but
218 UGLL_MAY_INSERT wouldn't insert them, because
219 breakpoints_should_be_inserted_now returns false at that point,
220 as no thread is running yet. */
221 UGLL_INSERT
222 };
223
224 static void update_global_location_list (enum ugll_insert_mode);
225
226 static void update_global_location_list_nothrow (enum ugll_insert_mode);
227
228 static int is_hardware_watchpoint (const struct breakpoint *bpt);
229
230 static void insert_breakpoint_locations (void);
231
232 static void trace_pass_command (const char *, int);
233
234 static void set_tracepoint_count (int num);
235
236 static int is_masked_watchpoint (const struct breakpoint *b);
237
238 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
239
240 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
241 otherwise. */
242
243 static int strace_marker_p (struct breakpoint *b);
244
245 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
246 that are implemented on top of software or hardware breakpoints
247 (user breakpoints, internal and momentary breakpoints, etc.). */
248 static struct breakpoint_ops bkpt_base_breakpoint_ops;
249
250 /* Internal breakpoints class type. */
251 static struct breakpoint_ops internal_breakpoint_ops;
252
253 /* Momentary breakpoints class type. */
254 static struct breakpoint_ops momentary_breakpoint_ops;
255
256 /* The breakpoint_ops structure to be used in regular user created
257 breakpoints. */
258 struct breakpoint_ops bkpt_breakpoint_ops;
259
260 /* Breakpoints set on probes. */
261 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
262
263 /* Dynamic printf class type. */
264 struct breakpoint_ops dprintf_breakpoint_ops;
265
266 /* The style in which to perform a dynamic printf. This is a user
267 option because different output options have different tradeoffs;
268 if GDB does the printing, there is better error handling if there
269 is a problem with any of the arguments, but using an inferior
270 function lets you have special-purpose printers and sending of
271 output to the same place as compiled-in print functions. */
272
273 static const char dprintf_style_gdb[] = "gdb";
274 static const char dprintf_style_call[] = "call";
275 static const char dprintf_style_agent[] = "agent";
276 static const char *const dprintf_style_enums[] = {
277 dprintf_style_gdb,
278 dprintf_style_call,
279 dprintf_style_agent,
280 NULL
281 };
282 static const char *dprintf_style = dprintf_style_gdb;
283
284 /* The function to use for dynamic printf if the preferred style is to
285 call into the inferior. The value is simply a string that is
286 copied into the command, so it can be anything that GDB can
287 evaluate to a callable address, not necessarily a function name. */
288
289 static char *dprintf_function;
290
291 /* The channel to use for dynamic printf if the preferred style is to
292 call into the inferior; if a nonempty string, it will be passed to
293 the call as the first argument, with the format string as the
294 second. As with the dprintf function, this can be anything that
295 GDB knows how to evaluate, so in addition to common choices like
296 "stderr", this could be an app-specific expression like
297 "mystreams[curlogger]". */
298
299 static char *dprintf_channel;
300
301 /* True if dprintf commands should continue to operate even if GDB
302 has disconnected. */
303 static int disconnected_dprintf = 1;
304
305 struct command_line *
306 breakpoint_commands (struct breakpoint *b)
307 {
308 return b->commands ? b->commands.get () : NULL;
309 }
310
311 /* Flag indicating that a command has proceeded the inferior past the
312 current breakpoint. */
313
314 static int breakpoint_proceeded;
315
316 const char *
317 bpdisp_text (enum bpdisp disp)
318 {
319 /* NOTE: the following values are a part of MI protocol and
320 represent values of 'disp' field returned when inferior stops at
321 a breakpoint. */
322 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
323
324 return bpdisps[(int) disp];
325 }
326
327 /* Prototypes for exported functions. */
328 /* If FALSE, gdb will not use hardware support for watchpoints, even
329 if such is available. */
330 static int can_use_hw_watchpoints;
331
332 static void
333 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
334 struct cmd_list_element *c,
335 const char *value)
336 {
337 fprintf_filtered (file,
338 _("Debugger's willingness to use "
339 "watchpoint hardware is %s.\n"),
340 value);
341 }
342
343 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
344 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
345 for unrecognized breakpoint locations.
346 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
347 static enum auto_boolean pending_break_support;
348 static void
349 show_pending_break_support (struct ui_file *file, int from_tty,
350 struct cmd_list_element *c,
351 const char *value)
352 {
353 fprintf_filtered (file,
354 _("Debugger's behavior regarding "
355 "pending breakpoints is %s.\n"),
356 value);
357 }
358
359 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
360 set with "break" but falling in read-only memory.
361 If 0, gdb will warn about such breakpoints, but won't automatically
362 use hardware breakpoints. */
363 static int automatic_hardware_breakpoints;
364 static void
365 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c,
367 const char *value)
368 {
369 fprintf_filtered (file,
370 _("Automatic usage of hardware breakpoints is %s.\n"),
371 value);
372 }
373
374 /* If on, GDB keeps breakpoints inserted even if the inferior is
375 stopped, and immediately inserts any new breakpoints as soon as
376 they're created. If off (default), GDB keeps breakpoints off of
377 the target as long as possible. That is, it delays inserting
378 breakpoints until the next resume, and removes them again when the
379 target fully stops. This is a bit safer in case GDB crashes while
380 processing user input. */
381 static int always_inserted_mode = 0;
382
383 static void
384 show_always_inserted_mode (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386 {
387 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
388 value);
389 }
390
391 /* See breakpoint.h. */
392
393 int
394 breakpoints_should_be_inserted_now (void)
395 {
396 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
397 {
398 /* If breakpoints are global, they should be inserted even if no
399 thread under gdb's control is running, or even if there are
400 no threads under GDB's control yet. */
401 return 1;
402 }
403 else if (target_has_execution)
404 {
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 for (thread_info *tp : all_non_exited_threads ())
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 static std::vector<bp_location *> moribund_locations;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block_tracker tracker;
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = tracker.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 if (c->control_type == while_stepping_control)
1013 error (_("The 'while-stepping' command can "
1014 "only be used for tracepoints"));
1015
1016 check_no_tracepoint_commands (c->body_list_0.get ());
1017 check_no_tracepoint_commands (c->body_list_1.get ());
1018
1019 /* Not that command parsing removes leading whitespace and comment
1020 lines and also empty lines. So, we only need to check for
1021 command directly. */
1022 if (strstr (c->line, "collect ") == c->line)
1023 error (_("The 'collect' command can only be used for tracepoints"));
1024
1025 if (strstr (c->line, "teval ") == c->line)
1026 error (_("The 'teval' command can only be used for tracepoints"));
1027 }
1028 }
1029
1030 struct longjmp_breakpoint : public breakpoint
1031 {
1032 ~longjmp_breakpoint () override;
1033 };
1034
1035 /* Encapsulate tests for different types of tracepoints. */
1036
1037 static bool
1038 is_tracepoint_type (bptype type)
1039 {
1040 return (type == bp_tracepoint
1041 || type == bp_fast_tracepoint
1042 || type == bp_static_tracepoint);
1043 }
1044
1045 static bool
1046 is_longjmp_type (bptype type)
1047 {
1048 return type == bp_longjmp || type == bp_exception;
1049 }
1050
1051 int
1052 is_tracepoint (const struct breakpoint *b)
1053 {
1054 return is_tracepoint_type (b->type);
1055 }
1056
1057 /* Factory function to create an appropriate instance of breakpoint given
1058 TYPE. */
1059
1060 static std::unique_ptr<breakpoint>
1061 new_breakpoint_from_type (bptype type)
1062 {
1063 breakpoint *b;
1064
1065 if (is_tracepoint_type (type))
1066 b = new tracepoint ();
1067 else if (is_longjmp_type (type))
1068 b = new longjmp_breakpoint ();
1069 else
1070 b = new breakpoint ();
1071
1072 return std::unique_ptr<breakpoint> (b);
1073 }
1074
1075 /* A helper function that validates that COMMANDS are valid for a
1076 breakpoint. This function will throw an exception if a problem is
1077 found. */
1078
1079 static void
1080 validate_commands_for_breakpoint (struct breakpoint *b,
1081 struct command_line *commands)
1082 {
1083 if (is_tracepoint (b))
1084 {
1085 struct tracepoint *t = (struct tracepoint *) b;
1086 struct command_line *c;
1087 struct command_line *while_stepping = 0;
1088
1089 /* Reset the while-stepping step count. The previous commands
1090 might have included a while-stepping action, while the new
1091 ones might not. */
1092 t->step_count = 0;
1093
1094 /* We need to verify that each top-level element of commands is
1095 valid for tracepoints, that there's at most one
1096 while-stepping element, and that the while-stepping's body
1097 has valid tracing commands excluding nested while-stepping.
1098 We also need to validate the tracepoint action line in the
1099 context of the tracepoint --- validate_actionline actually
1100 has side effects, like setting the tracepoint's
1101 while-stepping STEP_COUNT, in addition to checking if the
1102 collect/teval actions parse and make sense in the
1103 tracepoint's context. */
1104 for (c = commands; c; c = c->next)
1105 {
1106 if (c->control_type == while_stepping_control)
1107 {
1108 if (b->type == bp_fast_tracepoint)
1109 error (_("The 'while-stepping' command "
1110 "cannot be used for fast tracepoint"));
1111 else if (b->type == bp_static_tracepoint)
1112 error (_("The 'while-stepping' command "
1113 "cannot be used for static tracepoint"));
1114
1115 if (while_stepping)
1116 error (_("The 'while-stepping' command "
1117 "can be used only once"));
1118 else
1119 while_stepping = c;
1120 }
1121
1122 validate_actionline (c->line, b);
1123 }
1124 if (while_stepping)
1125 {
1126 struct command_line *c2;
1127
1128 gdb_assert (while_stepping->body_list_1 == nullptr);
1129 c2 = while_stepping->body_list_0.get ();
1130 for (; c2; c2 = c2->next)
1131 {
1132 if (c2->control_type == while_stepping_control)
1133 error (_("The 'while-stepping' command cannot be nested"));
1134 }
1135 }
1136 }
1137 else
1138 {
1139 check_no_tracepoint_commands (commands);
1140 }
1141 }
1142
1143 /* Return a vector of all the static tracepoints set at ADDR. The
1144 caller is responsible for releasing the vector. */
1145
1146 std::vector<breakpoint *>
1147 static_tracepoints_here (CORE_ADDR addr)
1148 {
1149 struct breakpoint *b;
1150 std::vector<breakpoint *> found;
1151 struct bp_location *loc;
1152
1153 ALL_BREAKPOINTS (b)
1154 if (b->type == bp_static_tracepoint)
1155 {
1156 for (loc = b->loc; loc; loc = loc->next)
1157 if (loc->address == addr)
1158 found.push_back (b);
1159 }
1160
1161 return found;
1162 }
1163
1164 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1165 validate that only allowed commands are included. */
1166
1167 void
1168 breakpoint_set_commands (struct breakpoint *b,
1169 counted_command_line &&commands)
1170 {
1171 validate_commands_for_breakpoint (b, commands.get ());
1172
1173 b->commands = std::move (commands);
1174 gdb::observers::breakpoint_modified.notify (b);
1175 }
1176
1177 /* Set the internal `silent' flag on the breakpoint. Note that this
1178 is not the same as the "silent" that may appear in the breakpoint's
1179 commands. */
1180
1181 void
1182 breakpoint_set_silent (struct breakpoint *b, int silent)
1183 {
1184 int old_silent = b->silent;
1185
1186 b->silent = silent;
1187 if (old_silent != silent)
1188 gdb::observers::breakpoint_modified.notify (b);
1189 }
1190
1191 /* Set the thread for this breakpoint. If THREAD is -1, make the
1192 breakpoint work for any thread. */
1193
1194 void
1195 breakpoint_set_thread (struct breakpoint *b, int thread)
1196 {
1197 int old_thread = b->thread;
1198
1199 b->thread = thread;
1200 if (old_thread != thread)
1201 gdb::observers::breakpoint_modified.notify (b);
1202 }
1203
1204 /* Set the task for this breakpoint. If TASK is 0, make the
1205 breakpoint work for any task. */
1206
1207 void
1208 breakpoint_set_task (struct breakpoint *b, int task)
1209 {
1210 int old_task = b->task;
1211
1212 b->task = task;
1213 if (old_task != task)
1214 gdb::observers::breakpoint_modified.notify (b);
1215 }
1216
1217 static void
1218 commands_command_1 (const char *arg, int from_tty,
1219 struct command_line *control)
1220 {
1221 counted_command_line cmd;
1222 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1223 NULL after the call to read_command_lines if the user provides an empty
1224 list of command by just typing "end". */
1225 bool cmd_read = false;
1226
1227 std::string new_arg;
1228
1229 if (arg == NULL || !*arg)
1230 {
1231 if (breakpoint_count - prev_breakpoint_count > 1)
1232 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1233 breakpoint_count);
1234 else if (breakpoint_count > 0)
1235 new_arg = string_printf ("%d", breakpoint_count);
1236 arg = new_arg.c_str ();
1237 }
1238
1239 map_breakpoint_numbers
1240 (arg, [&] (breakpoint *b)
1241 {
1242 if (!cmd_read)
1243 {
1244 gdb_assert (cmd == NULL);
1245 if (control != NULL)
1246 cmd = control->body_list_0;
1247 else
1248 {
1249 std::string str
1250 = string_printf (_("Type commands for breakpoint(s) "
1251 "%s, one per line."),
1252 arg);
1253
1254 auto do_validate = [=] (const char *line)
1255 {
1256 validate_actionline (line, b);
1257 };
1258 gdb::function_view<void (const char *)> validator;
1259 if (is_tracepoint (b))
1260 validator = do_validate;
1261
1262 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1263 }
1264 cmd_read = true;
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (b->watchpoint_thread == null_ptid
1554 || (inferior_ptid == b->watchpoint_thread
1555 && !inferior_thread ()->executing)));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || !bl->needs_update)
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && inferior_ptid == null_ptid)
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && inferior_ptid == null_ptid)
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of inferior INF. */
3069
3070 int
3071 remove_breakpoints_inf (inferior *inf)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075
3076 ALL_BP_LOCATIONS (bl, blp_tmp)
3077 {
3078 if (bl->pspace != inf->pspace)
3079 continue;
3080
3081 if (bl->inserted && !bl->target_info.persist)
3082 {
3083 val = remove_breakpoint (bl);
3084 if (val != 0)
3085 return val;
3086 }
3087 }
3088 return 0;
3089 }
3090
3091 static int internal_breakpoint_number = -1;
3092
3093 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3094 If INTERNAL is non-zero, the breakpoint number will be populated
3095 from internal_breakpoint_number and that variable decremented.
3096 Otherwise the breakpoint number will be populated from
3097 breakpoint_count and that value incremented. Internal breakpoints
3098 do not set the internal var bpnum. */
3099 static void
3100 set_breakpoint_number (int internal, struct breakpoint *b)
3101 {
3102 if (internal)
3103 b->number = internal_breakpoint_number--;
3104 else
3105 {
3106 set_breakpoint_count (breakpoint_count + 1);
3107 b->number = breakpoint_count;
3108 }
3109 }
3110
3111 static struct breakpoint *
3112 create_internal_breakpoint (struct gdbarch *gdbarch,
3113 CORE_ADDR address, enum bptype type,
3114 const struct breakpoint_ops *ops)
3115 {
3116 symtab_and_line sal;
3117 sal.pc = address;
3118 sal.section = find_pc_overlay (sal.pc);
3119 sal.pspace = current_program_space;
3120
3121 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3122 b->number = internal_breakpoint_number--;
3123 b->disposition = disp_donttouch;
3124
3125 return b;
3126 }
3127
3128 static const char *const longjmp_names[] =
3129 {
3130 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3131 };
3132 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3133
3134 /* Per-objfile data private to breakpoint.c. */
3135 struct breakpoint_objfile_data
3136 {
3137 /* Minimal symbol for "_ovly_debug_event" (if any). */
3138 struct bound_minimal_symbol overlay_msym {};
3139
3140 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3141 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3142
3143 /* True if we have looked for longjmp probes. */
3144 int longjmp_searched = 0;
3145
3146 /* SystemTap probe points for longjmp (if any). These are non-owning
3147 references. */
3148 std::vector<probe *> longjmp_probes;
3149
3150 /* Minimal symbol for "std::terminate()" (if any). */
3151 struct bound_minimal_symbol terminate_msym {};
3152
3153 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3154 struct bound_minimal_symbol exception_msym {};
3155
3156 /* True if we have looked for exception probes. */
3157 int exception_searched = 0;
3158
3159 /* SystemTap probe points for unwinding (if any). These are non-owning
3160 references. */
3161 std::vector<probe *> exception_probes;
3162 };
3163
3164 static const struct objfile_data *breakpoint_objfile_key;
3165
3166 /* Minimal symbol not found sentinel. */
3167 static struct minimal_symbol msym_not_found;
3168
3169 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3170
3171 static int
3172 msym_not_found_p (const struct minimal_symbol *msym)
3173 {
3174 return msym == &msym_not_found;
3175 }
3176
3177 /* Return per-objfile data needed by breakpoint.c.
3178 Allocate the data if necessary. */
3179
3180 static struct breakpoint_objfile_data *
3181 get_breakpoint_objfile_data (struct objfile *objfile)
3182 {
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184
3185 bp_objfile_data = ((struct breakpoint_objfile_data *)
3186 objfile_data (objfile, breakpoint_objfile_key));
3187 if (bp_objfile_data == NULL)
3188 {
3189 bp_objfile_data = new breakpoint_objfile_data ();
3190 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3191 }
3192 return bp_objfile_data;
3193 }
3194
3195 static void
3196 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3197 {
3198 struct breakpoint_objfile_data *bp_objfile_data
3199 = (struct breakpoint_objfile_data *) data;
3200
3201 delete bp_objfile_data;
3202 }
3203
3204 static void
3205 create_overlay_event_breakpoint (void)
3206 {
3207 const char *const func_name = "_ovly_debug_event";
3208
3209 for (objfile *objfile : current_program_space->objfiles ())
3210 {
3211 struct breakpoint *b;
3212 struct breakpoint_objfile_data *bp_objfile_data;
3213 CORE_ADDR addr;
3214 struct explicit_location explicit_loc;
3215
3216 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3217
3218 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3219 continue;
3220
3221 if (bp_objfile_data->overlay_msym.minsym == NULL)
3222 {
3223 struct bound_minimal_symbol m;
3224
3225 m = lookup_minimal_symbol_text (func_name, objfile);
3226 if (m.minsym == NULL)
3227 {
3228 /* Avoid future lookups in this objfile. */
3229 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3230 continue;
3231 }
3232 bp_objfile_data->overlay_msym = m;
3233 }
3234
3235 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3236 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3237 bp_overlay_event,
3238 &internal_breakpoint_ops);
3239 initialize_explicit_location (&explicit_loc);
3240 explicit_loc.function_name = ASTRDUP (func_name);
3241 b->location = new_explicit_location (&explicit_loc);
3242
3243 if (overlay_debugging == ovly_auto)
3244 {
3245 b->enable_state = bp_enabled;
3246 overlay_events_enabled = 1;
3247 }
3248 else
3249 {
3250 b->enable_state = bp_disabled;
3251 overlay_events_enabled = 0;
3252 }
3253 }
3254 }
3255
3256 static void
3257 create_longjmp_master_breakpoint (void)
3258 {
3259 struct program_space *pspace;
3260
3261 scoped_restore_current_program_space restore_pspace;
3262
3263 ALL_PSPACES (pspace)
3264 {
3265 set_current_program_space (pspace);
3266
3267 for (objfile *objfile : current_program_space->objfiles ())
3268 {
3269 int i;
3270 struct gdbarch *gdbarch;
3271 struct breakpoint_objfile_data *bp_objfile_data;
3272
3273 gdbarch = get_objfile_arch (objfile);
3274
3275 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3276
3277 if (!bp_objfile_data->longjmp_searched)
3278 {
3279 std::vector<probe *> ret
3280 = find_probes_in_objfile (objfile, "libc", "longjmp");
3281
3282 if (!ret.empty ())
3283 {
3284 /* We are only interested in checking one element. */
3285 probe *p = ret[0];
3286
3287 if (!p->can_evaluate_arguments ())
3288 {
3289 /* We cannot use the probe interface here, because it does
3290 not know how to evaluate arguments. */
3291 ret.clear ();
3292 }
3293 }
3294 bp_objfile_data->longjmp_probes = ret;
3295 bp_objfile_data->longjmp_searched = 1;
3296 }
3297
3298 if (!bp_objfile_data->longjmp_probes.empty ())
3299 {
3300 for (probe *p : bp_objfile_data->longjmp_probes)
3301 {
3302 struct breakpoint *b;
3303
3304 b = create_internal_breakpoint (gdbarch,
3305 p->get_relocated_address (objfile),
3306 bp_longjmp_master,
3307 &internal_breakpoint_ops);
3308 b->location = new_probe_location ("-probe-stap libc:longjmp");
3309 b->enable_state = bp_disabled;
3310 }
3311
3312 continue;
3313 }
3314
3315 if (!gdbarch_get_longjmp_target_p (gdbarch))
3316 continue;
3317
3318 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3319 {
3320 struct breakpoint *b;
3321 const char *func_name;
3322 CORE_ADDR addr;
3323 struct explicit_location explicit_loc;
3324
3325 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3326 continue;
3327
3328 func_name = longjmp_names[i];
3329 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3330 {
3331 struct bound_minimal_symbol m;
3332
3333 m = lookup_minimal_symbol_text (func_name, objfile);
3334 if (m.minsym == NULL)
3335 {
3336 /* Prevent future lookups in this objfile. */
3337 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3338 continue;
3339 }
3340 bp_objfile_data->longjmp_msym[i] = m;
3341 }
3342
3343 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3344 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3345 &internal_breakpoint_ops);
3346 initialize_explicit_location (&explicit_loc);
3347 explicit_loc.function_name = ASTRDUP (func_name);
3348 b->location = new_explicit_location (&explicit_loc);
3349 b->enable_state = bp_disabled;
3350 }
3351 }
3352 }
3353 }
3354
3355 /* Create a master std::terminate breakpoint. */
3356 static void
3357 create_std_terminate_master_breakpoint (void)
3358 {
3359 struct program_space *pspace;
3360 const char *const func_name = "std::terminate()";
3361
3362 scoped_restore_current_program_space restore_pspace;
3363
3364 ALL_PSPACES (pspace)
3365 {
3366 CORE_ADDR addr;
3367
3368 set_current_program_space (pspace);
3369
3370 for (objfile *objfile : current_program_space->objfiles ())
3371 {
3372 struct breakpoint *b;
3373 struct breakpoint_objfile_data *bp_objfile_data;
3374 struct explicit_location explicit_loc;
3375
3376 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3377
3378 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3379 continue;
3380
3381 if (bp_objfile_data->terminate_msym.minsym == NULL)
3382 {
3383 struct bound_minimal_symbol m;
3384
3385 m = lookup_minimal_symbol (func_name, NULL, objfile);
3386 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3387 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3388 {
3389 /* Prevent future lookups in this objfile. */
3390 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3391 continue;
3392 }
3393 bp_objfile_data->terminate_msym = m;
3394 }
3395
3396 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3397 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3398 bp_std_terminate_master,
3399 &internal_breakpoint_ops);
3400 initialize_explicit_location (&explicit_loc);
3401 explicit_loc.function_name = ASTRDUP (func_name);
3402 b->location = new_explicit_location (&explicit_loc);
3403 b->enable_state = bp_disabled;
3404 }
3405 }
3406 }
3407
3408 /* Install a master breakpoint on the unwinder's debug hook. */
3409
3410 static void
3411 create_exception_master_breakpoint (void)
3412 {
3413 const char *const func_name = "_Unwind_DebugHook";
3414
3415 for (objfile *objfile : current_program_space->objfiles ())
3416 {
3417 struct breakpoint *b;
3418 struct gdbarch *gdbarch;
3419 struct breakpoint_objfile_data *bp_objfile_data;
3420 CORE_ADDR addr;
3421 struct explicit_location explicit_loc;
3422
3423 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3424
3425 /* We prefer the SystemTap probe point if it exists. */
3426 if (!bp_objfile_data->exception_searched)
3427 {
3428 std::vector<probe *> ret
3429 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3430
3431 if (!ret.empty ())
3432 {
3433 /* We are only interested in checking one element. */
3434 probe *p = ret[0];
3435
3436 if (!p->can_evaluate_arguments ())
3437 {
3438 /* We cannot use the probe interface here, because it does
3439 not know how to evaluate arguments. */
3440 ret.clear ();
3441 }
3442 }
3443 bp_objfile_data->exception_probes = ret;
3444 bp_objfile_data->exception_searched = 1;
3445 }
3446
3447 if (!bp_objfile_data->exception_probes.empty ())
3448 {
3449 gdbarch = get_objfile_arch (objfile);
3450
3451 for (probe *p : bp_objfile_data->exception_probes)
3452 {
3453 b = create_internal_breakpoint (gdbarch,
3454 p->get_relocated_address (objfile),
3455 bp_exception_master,
3456 &internal_breakpoint_ops);
3457 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3458 b->enable_state = bp_disabled;
3459 }
3460
3461 continue;
3462 }
3463
3464 /* Otherwise, try the hook function. */
3465
3466 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3467 continue;
3468
3469 gdbarch = get_objfile_arch (objfile);
3470
3471 if (bp_objfile_data->exception_msym.minsym == NULL)
3472 {
3473 struct bound_minimal_symbol debug_hook;
3474
3475 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3476 if (debug_hook.minsym == NULL)
3477 {
3478 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3479 continue;
3480 }
3481
3482 bp_objfile_data->exception_msym = debug_hook;
3483 }
3484
3485 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3486 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3487 current_top_target ());
3488 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3489 &internal_breakpoint_ops);
3490 initialize_explicit_location (&explicit_loc);
3491 explicit_loc.function_name = ASTRDUP (func_name);
3492 b->location = new_explicit_location (&explicit_loc);
3493 b->enable_state = bp_disabled;
3494 }
3495 }
3496
3497 /* Does B have a location spec? */
3498
3499 static int
3500 breakpoint_event_location_empty_p (const struct breakpoint *b)
3501 {
3502 return b->location != NULL && event_location_empty_p (b->location.get ());
3503 }
3504
3505 void
3506 update_breakpoints_after_exec (void)
3507 {
3508 struct breakpoint *b, *b_tmp;
3509 struct bp_location *bploc, **bplocp_tmp;
3510
3511 /* We're about to delete breakpoints from GDB's lists. If the
3512 INSERTED flag is true, GDB will try to lift the breakpoints by
3513 writing the breakpoints' "shadow contents" back into memory. The
3514 "shadow contents" are NOT valid after an exec, so GDB should not
3515 do that. Instead, the target is responsible from marking
3516 breakpoints out as soon as it detects an exec. We don't do that
3517 here instead, because there may be other attempts to delete
3518 breakpoints after detecting an exec and before reaching here. */
3519 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3520 if (bploc->pspace == current_program_space)
3521 gdb_assert (!bploc->inserted);
3522
3523 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3524 {
3525 if (b->pspace != current_program_space)
3526 continue;
3527
3528 /* Solib breakpoints must be explicitly reset after an exec(). */
3529 if (b->type == bp_shlib_event)
3530 {
3531 delete_breakpoint (b);
3532 continue;
3533 }
3534
3535 /* JIT breakpoints must be explicitly reset after an exec(). */
3536 if (b->type == bp_jit_event)
3537 {
3538 delete_breakpoint (b);
3539 continue;
3540 }
3541
3542 /* Thread event breakpoints must be set anew after an exec(),
3543 as must overlay event and longjmp master breakpoints. */
3544 if (b->type == bp_thread_event || b->type == bp_overlay_event
3545 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3546 || b->type == bp_exception_master)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* Step-resume breakpoints are meaningless after an exec(). */
3553 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3554 {
3555 delete_breakpoint (b);
3556 continue;
3557 }
3558
3559 /* Just like single-step breakpoints. */
3560 if (b->type == bp_single_step)
3561 {
3562 delete_breakpoint (b);
3563 continue;
3564 }
3565
3566 /* Longjmp and longjmp-resume breakpoints are also meaningless
3567 after an exec. */
3568 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3569 || b->type == bp_longjmp_call_dummy
3570 || b->type == bp_exception || b->type == bp_exception_resume)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 if (b->type == bp_catchpoint)
3577 {
3578 /* For now, none of the bp_catchpoint breakpoints need to
3579 do anything at this point. In the future, if some of
3580 the catchpoints need to something, we will need to add
3581 a new method, and call this method from here. */
3582 continue;
3583 }
3584
3585 /* bp_finish is a special case. The only way we ought to be able
3586 to see one of these when an exec() has happened, is if the user
3587 caught a vfork, and then said "finish". Ordinarily a finish just
3588 carries them to the call-site of the current callee, by setting
3589 a temporary bp there and resuming. But in this case, the finish
3590 will carry them entirely through the vfork & exec.
3591
3592 We don't want to allow a bp_finish to remain inserted now. But
3593 we can't safely delete it, 'cause finish_command has a handle to
3594 the bp on a bpstat, and will later want to delete it. There's a
3595 chance (and I've seen it happen) that if we delete the bp_finish
3596 here, that its storage will get reused by the time finish_command
3597 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3598 We really must allow finish_command to delete a bp_finish.
3599
3600 In the absence of a general solution for the "how do we know
3601 it's safe to delete something others may have handles to?"
3602 problem, what we'll do here is just uninsert the bp_finish, and
3603 let finish_command delete it.
3604
3605 (We know the bp_finish is "doomed" in the sense that it's
3606 momentary, and will be deleted as soon as finish_command sees
3607 the inferior stopped. So it doesn't matter that the bp's
3608 address is probably bogus in the new a.out, unlike e.g., the
3609 solib breakpoints.) */
3610
3611 if (b->type == bp_finish)
3612 {
3613 continue;
3614 }
3615
3616 /* Without a symbolic address, we have little hope of the
3617 pre-exec() address meaning the same thing in the post-exec()
3618 a.out. */
3619 if (breakpoint_event_location_empty_p (b))
3620 {
3621 delete_breakpoint (b);
3622 continue;
3623 }
3624 }
3625 }
3626
3627 int
3628 detach_breakpoints (ptid_t ptid)
3629 {
3630 struct bp_location *bl, **blp_tmp;
3631 int val = 0;
3632 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3633 struct inferior *inf = current_inferior ();
3634
3635 if (ptid.pid () == inferior_ptid.pid ())
3636 error (_("Cannot detach breakpoints of inferior_ptid"));
3637
3638 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3639 inferior_ptid = ptid;
3640 ALL_BP_LOCATIONS (bl, blp_tmp)
3641 {
3642 if (bl->pspace != inf->pspace)
3643 continue;
3644
3645 /* This function must physically remove breakpoints locations
3646 from the specified ptid, without modifying the breakpoint
3647 package's state. Locations of type bp_loc_other are only
3648 maintained at GDB side. So, there is no need to remove
3649 these bp_loc_other locations. Moreover, removing these
3650 would modify the breakpoint package's state. */
3651 if (bl->loc_type == bp_loc_other)
3652 continue;
3653
3654 if (bl->inserted)
3655 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3656 }
3657
3658 return val;
3659 }
3660
3661 /* Remove the breakpoint location BL from the current address space.
3662 Note that this is used to detach breakpoints from a child fork.
3663 When we get here, the child isn't in the inferior list, and neither
3664 do we have objects to represent its address space --- we should
3665 *not* look at bl->pspace->aspace here. */
3666
3667 static int
3668 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3669 {
3670 int val;
3671
3672 /* BL is never in moribund_locations by our callers. */
3673 gdb_assert (bl->owner != NULL);
3674
3675 /* The type of none suggests that owner is actually deleted.
3676 This should not ever happen. */
3677 gdb_assert (bl->owner->type != bp_none);
3678
3679 if (bl->loc_type == bp_loc_software_breakpoint
3680 || bl->loc_type == bp_loc_hardware_breakpoint)
3681 {
3682 /* "Normal" instruction breakpoint: either the standard
3683 trap-instruction bp (bp_breakpoint), or a
3684 bp_hardware_breakpoint. */
3685
3686 /* First check to see if we have to handle an overlay. */
3687 if (overlay_debugging == ovly_off
3688 || bl->section == NULL
3689 || !(section_is_overlay (bl->section)))
3690 {
3691 /* No overlay handling: just remove the breakpoint. */
3692
3693 /* If we're trying to uninsert a memory breakpoint that we
3694 know is set in a dynamic object that is marked
3695 shlib_disabled, then either the dynamic object was
3696 removed with "remove-symbol-file" or with
3697 "nosharedlibrary". In the former case, we don't know
3698 whether another dynamic object might have loaded over the
3699 breakpoint's address -- the user might well let us know
3700 about it next with add-symbol-file (the whole point of
3701 add-symbol-file is letting the user manually maintain a
3702 list of dynamically loaded objects). If we have the
3703 breakpoint's shadow memory, that is, this is a software
3704 breakpoint managed by GDB, check whether the breakpoint
3705 is still inserted in memory, to avoid overwriting wrong
3706 code with stale saved shadow contents. Note that HW
3707 breakpoints don't have shadow memory, as they're
3708 implemented using a mechanism that is not dependent on
3709 being able to modify the target's memory, and as such
3710 they should always be removed. */
3711 if (bl->shlib_disabled
3712 && bl->target_info.shadow_len != 0
3713 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3714 val = 0;
3715 else
3716 val = bl->owner->ops->remove_location (bl, reason);
3717 }
3718 else
3719 {
3720 /* This breakpoint is in an overlay section.
3721 Did we set a breakpoint at the LMA? */
3722 if (!overlay_events_enabled)
3723 {
3724 /* Yes -- overlay event support is not active, so we
3725 should have set a breakpoint at the LMA. Remove it.
3726 */
3727 /* Ignore any failures: if the LMA is in ROM, we will
3728 have already warned when we failed to insert it. */
3729 if (bl->loc_type == bp_loc_hardware_breakpoint)
3730 target_remove_hw_breakpoint (bl->gdbarch,
3731 &bl->overlay_target_info);
3732 else
3733 target_remove_breakpoint (bl->gdbarch,
3734 &bl->overlay_target_info,
3735 reason);
3736 }
3737 /* Did we set a breakpoint at the VMA?
3738 If so, we will have marked the breakpoint 'inserted'. */
3739 if (bl->inserted)
3740 {
3741 /* Yes -- remove it. Previously we did not bother to
3742 remove the breakpoint if the section had been
3743 unmapped, but let's not rely on that being safe. We
3744 don't know what the overlay manager might do. */
3745
3746 /* However, we should remove *software* breakpoints only
3747 if the section is still mapped, or else we overwrite
3748 wrong code with the saved shadow contents. */
3749 if (bl->loc_type == bp_loc_hardware_breakpoint
3750 || section_is_mapped (bl->section))
3751 val = bl->owner->ops->remove_location (bl, reason);
3752 else
3753 val = 0;
3754 }
3755 else
3756 {
3757 /* No -- not inserted, so no need to remove. No error. */
3758 val = 0;
3759 }
3760 }
3761
3762 /* In some cases, we might not be able to remove a breakpoint in
3763 a shared library that has already been removed, but we have
3764 not yet processed the shlib unload event. Similarly for an
3765 unloaded add-symbol-file object - the user might not yet have
3766 had the chance to remove-symbol-file it. shlib_disabled will
3767 be set if the library/object has already been removed, but
3768 the breakpoint hasn't been uninserted yet, e.g., after
3769 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3770 always-inserted mode. */
3771 if (val
3772 && (bl->loc_type == bp_loc_software_breakpoint
3773 && (bl->shlib_disabled
3774 || solib_name_from_address (bl->pspace, bl->address)
3775 || shared_objfile_contains_address_p (bl->pspace,
3776 bl->address))))
3777 val = 0;
3778
3779 if (val)
3780 return val;
3781 bl->inserted = (reason == DETACH_BREAKPOINT);
3782 }
3783 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3784 {
3785 gdb_assert (bl->owner->ops != NULL
3786 && bl->owner->ops->remove_location != NULL);
3787
3788 bl->inserted = (reason == DETACH_BREAKPOINT);
3789 bl->owner->ops->remove_location (bl, reason);
3790
3791 /* Failure to remove any of the hardware watchpoints comes here. */
3792 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3793 warning (_("Could not remove hardware watchpoint %d."),
3794 bl->owner->number);
3795 }
3796 else if (bl->owner->type == bp_catchpoint
3797 && breakpoint_enabled (bl->owner)
3798 && !bl->duplicate)
3799 {
3800 gdb_assert (bl->owner->ops != NULL
3801 && bl->owner->ops->remove_location != NULL);
3802
3803 val = bl->owner->ops->remove_location (bl, reason);
3804 if (val)
3805 return val;
3806
3807 bl->inserted = (reason == DETACH_BREAKPOINT);
3808 }
3809
3810 return 0;
3811 }
3812
3813 static int
3814 remove_breakpoint (struct bp_location *bl)
3815 {
3816 /* BL is never in moribund_locations by our callers. */
3817 gdb_assert (bl->owner != NULL);
3818
3819 /* The type of none suggests that owner is actually deleted.
3820 This should not ever happen. */
3821 gdb_assert (bl->owner->type != bp_none);
3822
3823 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3824
3825 switch_to_program_space_and_thread (bl->pspace);
3826
3827 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3828 }
3829
3830 /* Clear the "inserted" flag in all breakpoints. */
3831
3832 void
3833 mark_breakpoints_out (void)
3834 {
3835 struct bp_location *bl, **blp_tmp;
3836
3837 ALL_BP_LOCATIONS (bl, blp_tmp)
3838 if (bl->pspace == current_program_space)
3839 bl->inserted = 0;
3840 }
3841
3842 /* Clear the "inserted" flag in all breakpoints and delete any
3843 breakpoints which should go away between runs of the program.
3844
3845 Plus other such housekeeping that has to be done for breakpoints
3846 between runs.
3847
3848 Note: this function gets called at the end of a run (by
3849 generic_mourn_inferior) and when a run begins (by
3850 init_wait_for_inferior). */
3851
3852
3853
3854 void
3855 breakpoint_init_inferior (enum inf_context context)
3856 {
3857 struct breakpoint *b, *b_tmp;
3858 struct program_space *pspace = current_program_space;
3859
3860 /* If breakpoint locations are shared across processes, then there's
3861 nothing to do. */
3862 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3863 return;
3864
3865 mark_breakpoints_out ();
3866
3867 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3868 {
3869 if (b->loc && b->loc->pspace != pspace)
3870 continue;
3871
3872 switch (b->type)
3873 {
3874 case bp_call_dummy:
3875 case bp_longjmp_call_dummy:
3876
3877 /* If the call dummy breakpoint is at the entry point it will
3878 cause problems when the inferior is rerun, so we better get
3879 rid of it. */
3880
3881 case bp_watchpoint_scope:
3882
3883 /* Also get rid of scope breakpoints. */
3884
3885 case bp_shlib_event:
3886
3887 /* Also remove solib event breakpoints. Their addresses may
3888 have changed since the last time we ran the program.
3889 Actually we may now be debugging against different target;
3890 and so the solib backend that installed this breakpoint may
3891 not be used in by the target. E.g.,
3892
3893 (gdb) file prog-linux
3894 (gdb) run # native linux target
3895 ...
3896 (gdb) kill
3897 (gdb) file prog-win.exe
3898 (gdb) tar rem :9999 # remote Windows gdbserver.
3899 */
3900
3901 case bp_step_resume:
3902
3903 /* Also remove step-resume breakpoints. */
3904
3905 case bp_single_step:
3906
3907 /* Also remove single-step breakpoints. */
3908
3909 delete_breakpoint (b);
3910 break;
3911
3912 case bp_watchpoint:
3913 case bp_hardware_watchpoint:
3914 case bp_read_watchpoint:
3915 case bp_access_watchpoint:
3916 {
3917 struct watchpoint *w = (struct watchpoint *) b;
3918
3919 /* Likewise for watchpoints on local expressions. */
3920 if (w->exp_valid_block != NULL)
3921 delete_breakpoint (b);
3922 else
3923 {
3924 /* Get rid of existing locations, which are no longer
3925 valid. New ones will be created in
3926 update_watchpoint, when the inferior is restarted.
3927 The next update_global_location_list call will
3928 garbage collect them. */
3929 b->loc = NULL;
3930
3931 if (context == inf_starting)
3932 {
3933 /* Reset val field to force reread of starting value in
3934 insert_breakpoints. */
3935 w->val.reset (nullptr);
3936 w->val_valid = 0;
3937 }
3938 }
3939 }
3940 break;
3941 default:
3942 break;
3943 }
3944 }
3945
3946 /* Get rid of the moribund locations. */
3947 for (bp_location *bl : moribund_locations)
3948 decref_bp_location (&bl);
3949 moribund_locations.clear ();
3950 }
3951
3952 /* These functions concern about actual breakpoints inserted in the
3953 target --- to e.g. check if we need to do decr_pc adjustment or if
3954 we need to hop over the bkpt --- so we check for address space
3955 match, not program space. */
3956
3957 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3958 exists at PC. It returns ordinary_breakpoint_here if it's an
3959 ordinary breakpoint, or permanent_breakpoint_here if it's a
3960 permanent breakpoint.
3961 - When continuing from a location with an ordinary breakpoint, we
3962 actually single step once before calling insert_breakpoints.
3963 - When continuing from a location with a permanent breakpoint, we
3964 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3965 the target, to advance the PC past the breakpoint. */
3966
3967 enum breakpoint_here
3968 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3969 {
3970 struct bp_location *bl, **blp_tmp;
3971 int any_breakpoint_here = 0;
3972
3973 ALL_BP_LOCATIONS (bl, blp_tmp)
3974 {
3975 if (bl->loc_type != bp_loc_software_breakpoint
3976 && bl->loc_type != bp_loc_hardware_breakpoint)
3977 continue;
3978
3979 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3980 if ((breakpoint_enabled (bl->owner)
3981 || bl->permanent)
3982 && breakpoint_location_address_match (bl, aspace, pc))
3983 {
3984 if (overlay_debugging
3985 && section_is_overlay (bl->section)
3986 && !section_is_mapped (bl->section))
3987 continue; /* unmapped overlay -- can't be a match */
3988 else if (bl->permanent)
3989 return permanent_breakpoint_here;
3990 else
3991 any_breakpoint_here = 1;
3992 }
3993 }
3994
3995 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3996 }
3997
3998 /* See breakpoint.h. */
3999
4000 int
4001 breakpoint_in_range_p (const address_space *aspace,
4002 CORE_ADDR addr, ULONGEST len)
4003 {
4004 struct bp_location *bl, **blp_tmp;
4005
4006 ALL_BP_LOCATIONS (bl, blp_tmp)
4007 {
4008 if (bl->loc_type != bp_loc_software_breakpoint
4009 && bl->loc_type != bp_loc_hardware_breakpoint)
4010 continue;
4011
4012 if ((breakpoint_enabled (bl->owner)
4013 || bl->permanent)
4014 && breakpoint_location_address_range_overlap (bl, aspace,
4015 addr, len))
4016 {
4017 if (overlay_debugging
4018 && section_is_overlay (bl->section)
4019 && !section_is_mapped (bl->section))
4020 {
4021 /* Unmapped overlay -- can't be a match. */
4022 continue;
4023 }
4024
4025 return 1;
4026 }
4027 }
4028
4029 return 0;
4030 }
4031
4032 /* Return true if there's a moribund breakpoint at PC. */
4033
4034 int
4035 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4036 {
4037 for (bp_location *loc : moribund_locations)
4038 if (breakpoint_location_address_match (loc, aspace, pc))
4039 return 1;
4040
4041 return 0;
4042 }
4043
4044 /* Returns non-zero iff BL is inserted at PC, in address space
4045 ASPACE. */
4046
4047 static int
4048 bp_location_inserted_here_p (struct bp_location *bl,
4049 const address_space *aspace, CORE_ADDR pc)
4050 {
4051 if (bl->inserted
4052 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4053 aspace, pc))
4054 {
4055 if (overlay_debugging
4056 && section_is_overlay (bl->section)
4057 && !section_is_mapped (bl->section))
4058 return 0; /* unmapped overlay -- can't be a match */
4059 else
4060 return 1;
4061 }
4062 return 0;
4063 }
4064
4065 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4066
4067 int
4068 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4069 {
4070 struct bp_location **blp, **blp_tmp = NULL;
4071
4072 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4073 {
4074 struct bp_location *bl = *blp;
4075
4076 if (bl->loc_type != bp_loc_software_breakpoint
4077 && bl->loc_type != bp_loc_hardware_breakpoint)
4078 continue;
4079
4080 if (bp_location_inserted_here_p (bl, aspace, pc))
4081 return 1;
4082 }
4083 return 0;
4084 }
4085
4086 /* This function returns non-zero iff there is a software breakpoint
4087 inserted at PC. */
4088
4089 int
4090 software_breakpoint_inserted_here_p (const address_space *aspace,
4091 CORE_ADDR pc)
4092 {
4093 struct bp_location **blp, **blp_tmp = NULL;
4094
4095 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4096 {
4097 struct bp_location *bl = *blp;
4098
4099 if (bl->loc_type != bp_loc_software_breakpoint)
4100 continue;
4101
4102 if (bp_location_inserted_here_p (bl, aspace, pc))
4103 return 1;
4104 }
4105
4106 return 0;
4107 }
4108
4109 /* See breakpoint.h. */
4110
4111 int
4112 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4113 CORE_ADDR pc)
4114 {
4115 struct bp_location **blp, **blp_tmp = NULL;
4116
4117 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4118 {
4119 struct bp_location *bl = *blp;
4120
4121 if (bl->loc_type != bp_loc_hardware_breakpoint)
4122 continue;
4123
4124 if (bp_location_inserted_here_p (bl, aspace, pc))
4125 return 1;
4126 }
4127
4128 return 0;
4129 }
4130
4131 int
4132 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4133 CORE_ADDR addr, ULONGEST len)
4134 {
4135 struct breakpoint *bpt;
4136
4137 ALL_BREAKPOINTS (bpt)
4138 {
4139 struct bp_location *loc;
4140
4141 if (bpt->type != bp_hardware_watchpoint
4142 && bpt->type != bp_access_watchpoint)
4143 continue;
4144
4145 if (!breakpoint_enabled (bpt))
4146 continue;
4147
4148 for (loc = bpt->loc; loc; loc = loc->next)
4149 if (loc->pspace->aspace == aspace && loc->inserted)
4150 {
4151 CORE_ADDR l, h;
4152
4153 /* Check for intersection. */
4154 l = std::max<CORE_ADDR> (loc->address, addr);
4155 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4156 if (l < h)
4157 return 1;
4158 }
4159 }
4160 return 0;
4161 }
4162 \f
4163
4164 /* bpstat stuff. External routines' interfaces are documented
4165 in breakpoint.h. */
4166
4167 int
4168 is_catchpoint (struct breakpoint *ep)
4169 {
4170 return (ep->type == bp_catchpoint);
4171 }
4172
4173 /* Frees any storage that is part of a bpstat. Does not walk the
4174 'next' chain. */
4175
4176 bpstats::~bpstats ()
4177 {
4178 if (bp_location_at != NULL)
4179 decref_bp_location (&bp_location_at);
4180 }
4181
4182 /* Clear a bpstat so that it says we are not at any breakpoint.
4183 Also free any storage that is part of a bpstat. */
4184
4185 void
4186 bpstat_clear (bpstat *bsp)
4187 {
4188 bpstat p;
4189 bpstat q;
4190
4191 if (bsp == 0)
4192 return;
4193 p = *bsp;
4194 while (p != NULL)
4195 {
4196 q = p->next;
4197 delete p;
4198 p = q;
4199 }
4200 *bsp = NULL;
4201 }
4202
4203 bpstats::bpstats (const bpstats &other)
4204 : next (NULL),
4205 bp_location_at (other.bp_location_at),
4206 breakpoint_at (other.breakpoint_at),
4207 commands (other.commands),
4208 print (other.print),
4209 stop (other.stop),
4210 print_it (other.print_it)
4211 {
4212 if (other.old_val != NULL)
4213 old_val = release_value (value_copy (other.old_val.get ()));
4214 incref_bp_location (bp_location_at);
4215 }
4216
4217 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4218 is part of the bpstat is copied as well. */
4219
4220 bpstat
4221 bpstat_copy (bpstat bs)
4222 {
4223 bpstat p = NULL;
4224 bpstat tmp;
4225 bpstat retval = NULL;
4226
4227 if (bs == NULL)
4228 return bs;
4229
4230 for (; bs != NULL; bs = bs->next)
4231 {
4232 tmp = new bpstats (*bs);
4233
4234 if (p == NULL)
4235 /* This is the first thing in the chain. */
4236 retval = tmp;
4237 else
4238 p->next = tmp;
4239 p = tmp;
4240 }
4241 p->next = NULL;
4242 return retval;
4243 }
4244
4245 /* Find the bpstat associated with this breakpoint. */
4246
4247 bpstat
4248 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4249 {
4250 if (bsp == NULL)
4251 return NULL;
4252
4253 for (; bsp != NULL; bsp = bsp->next)
4254 {
4255 if (bsp->breakpoint_at == breakpoint)
4256 return bsp;
4257 }
4258 return NULL;
4259 }
4260
4261 /* See breakpoint.h. */
4262
4263 int
4264 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4265 {
4266 for (; bsp != NULL; bsp = bsp->next)
4267 {
4268 if (bsp->breakpoint_at == NULL)
4269 {
4270 /* A moribund location can never explain a signal other than
4271 GDB_SIGNAL_TRAP. */
4272 if (sig == GDB_SIGNAL_TRAP)
4273 return 1;
4274 }
4275 else
4276 {
4277 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4278 sig))
4279 return 1;
4280 }
4281 }
4282
4283 return 0;
4284 }
4285
4286 /* Put in *NUM the breakpoint number of the first breakpoint we are
4287 stopped at. *BSP upon return is a bpstat which points to the
4288 remaining breakpoints stopped at (but which is not guaranteed to be
4289 good for anything but further calls to bpstat_num).
4290
4291 Return 0 if passed a bpstat which does not indicate any breakpoints.
4292 Return -1 if stopped at a breakpoint that has been deleted since
4293 we set it.
4294 Return 1 otherwise. */
4295
4296 int
4297 bpstat_num (bpstat *bsp, int *num)
4298 {
4299 struct breakpoint *b;
4300
4301 if ((*bsp) == NULL)
4302 return 0; /* No more breakpoint values */
4303
4304 /* We assume we'll never have several bpstats that correspond to a
4305 single breakpoint -- otherwise, this function might return the
4306 same number more than once and this will look ugly. */
4307 b = (*bsp)->breakpoint_at;
4308 *bsp = (*bsp)->next;
4309 if (b == NULL)
4310 return -1; /* breakpoint that's been deleted since */
4311
4312 *num = b->number; /* We have its number */
4313 return 1;
4314 }
4315
4316 /* See breakpoint.h. */
4317
4318 void
4319 bpstat_clear_actions (void)
4320 {
4321 bpstat bs;
4322
4323 if (inferior_ptid == null_ptid)
4324 return;
4325
4326 thread_info *tp = inferior_thread ();
4327 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4328 {
4329 bs->commands = NULL;
4330 bs->old_val.reset (nullptr);
4331 }
4332 }
4333
4334 /* Called when a command is about to proceed the inferior. */
4335
4336 static void
4337 breakpoint_about_to_proceed (void)
4338 {
4339 if (inferior_ptid != null_ptid)
4340 {
4341 struct thread_info *tp = inferior_thread ();
4342
4343 /* Allow inferior function calls in breakpoint commands to not
4344 interrupt the command list. When the call finishes
4345 successfully, the inferior will be standing at the same
4346 breakpoint as if nothing happened. */
4347 if (tp->control.in_infcall)
4348 return;
4349 }
4350
4351 breakpoint_proceeded = 1;
4352 }
4353
4354 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4355 or its equivalent. */
4356
4357 static int
4358 command_line_is_silent (struct command_line *cmd)
4359 {
4360 return cmd && (strcmp ("silent", cmd->line) == 0);
4361 }
4362
4363 /* Execute all the commands associated with all the breakpoints at
4364 this location. Any of these commands could cause the process to
4365 proceed beyond this point, etc. We look out for such changes by
4366 checking the global "breakpoint_proceeded" after each command.
4367
4368 Returns true if a breakpoint command resumed the inferior. In that
4369 case, it is the caller's responsibility to recall it again with the
4370 bpstat of the current thread. */
4371
4372 static int
4373 bpstat_do_actions_1 (bpstat *bsp)
4374 {
4375 bpstat bs;
4376 int again = 0;
4377
4378 /* Avoid endless recursion if a `source' command is contained
4379 in bs->commands. */
4380 if (executing_breakpoint_commands)
4381 return 0;
4382
4383 scoped_restore save_executing
4384 = make_scoped_restore (&executing_breakpoint_commands, 1);
4385
4386 scoped_restore preventer = prevent_dont_repeat ();
4387
4388 /* This pointer will iterate over the list of bpstat's. */
4389 bs = *bsp;
4390
4391 breakpoint_proceeded = 0;
4392 for (; bs != NULL; bs = bs->next)
4393 {
4394 struct command_line *cmd = NULL;
4395
4396 /* Take ownership of the BSP's command tree, if it has one.
4397
4398 The command tree could legitimately contain commands like
4399 'step' and 'next', which call clear_proceed_status, which
4400 frees stop_bpstat's command tree. To make sure this doesn't
4401 free the tree we're executing out from under us, we need to
4402 take ownership of the tree ourselves. Since a given bpstat's
4403 commands are only executed once, we don't need to copy it; we
4404 can clear the pointer in the bpstat, and make sure we free
4405 the tree when we're done. */
4406 counted_command_line ccmd = bs->commands;
4407 bs->commands = NULL;
4408 if (ccmd != NULL)
4409 cmd = ccmd.get ();
4410 if (command_line_is_silent (cmd))
4411 {
4412 /* The action has been already done by bpstat_stop_status. */
4413 cmd = cmd->next;
4414 }
4415
4416 while (cmd != NULL)
4417 {
4418 execute_control_command (cmd);
4419
4420 if (breakpoint_proceeded)
4421 break;
4422 else
4423 cmd = cmd->next;
4424 }
4425
4426 if (breakpoint_proceeded)
4427 {
4428 if (current_ui->async)
4429 /* If we are in async mode, then the target might be still
4430 running, not stopped at any breakpoint, so nothing for
4431 us to do here -- just return to the event loop. */
4432 ;
4433 else
4434 /* In sync mode, when execute_control_command returns
4435 we're already standing on the next breakpoint.
4436 Breakpoint commands for that stop were not run, since
4437 execute_command does not run breakpoint commands --
4438 only command_line_handler does, but that one is not
4439 involved in execution of breakpoint commands. So, we
4440 can now execute breakpoint commands. It should be
4441 noted that making execute_command do bpstat actions is
4442 not an option -- in this case we'll have recursive
4443 invocation of bpstat for each breakpoint with a
4444 command, and can easily blow up GDB stack. Instead, we
4445 return true, which will trigger the caller to recall us
4446 with the new stop_bpstat. */
4447 again = 1;
4448 break;
4449 }
4450 }
4451 return again;
4452 }
4453
4454 /* Helper for bpstat_do_actions. Get the current thread, if there's
4455 one, is alive and has execution. Return NULL otherwise. */
4456
4457 static thread_info *
4458 get_bpstat_thread ()
4459 {
4460 if (inferior_ptid == null_ptid || !target_has_execution)
4461 return NULL;
4462
4463 thread_info *tp = inferior_thread ();
4464 if (tp->state == THREAD_EXITED || tp->executing)
4465 return NULL;
4466 return tp;
4467 }
4468
4469 void
4470 bpstat_do_actions (void)
4471 {
4472 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4473 thread_info *tp;
4474
4475 /* Do any commands attached to breakpoint we are stopped at. */
4476 while ((tp = get_bpstat_thread ()) != NULL)
4477 {
4478 /* Since in sync mode, bpstat_do_actions may resume the
4479 inferior, and only return when it is stopped at the next
4480 breakpoint, we keep doing breakpoint actions until it returns
4481 false to indicate the inferior was not resumed. */
4482 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4483 break;
4484 }
4485
4486 cleanup_if_error.release ();
4487 }
4488
4489 /* Print out the (old or new) value associated with a watchpoint. */
4490
4491 static void
4492 watchpoint_value_print (struct value *val, struct ui_file *stream)
4493 {
4494 if (val == NULL)
4495 fprintf_unfiltered (stream, _("<unreadable>"));
4496 else
4497 {
4498 struct value_print_options opts;
4499 get_user_print_options (&opts);
4500 value_print (val, stream, &opts);
4501 }
4502 }
4503
4504 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4505 debugging multiple threads. */
4506
4507 void
4508 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4509 {
4510 if (uiout->is_mi_like_p ())
4511 return;
4512
4513 uiout->text ("\n");
4514
4515 if (show_thread_that_caused_stop ())
4516 {
4517 const char *name;
4518 struct thread_info *thr = inferior_thread ();
4519
4520 uiout->text ("Thread ");
4521 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4522
4523 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4524 if (name != NULL)
4525 {
4526 uiout->text (" \"");
4527 uiout->field_fmt ("name", "%s", name);
4528 uiout->text ("\"");
4529 }
4530
4531 uiout->text (" hit ");
4532 }
4533 }
4534
4535 /* Generic routine for printing messages indicating why we
4536 stopped. The behavior of this function depends on the value
4537 'print_it' in the bpstat structure. Under some circumstances we
4538 may decide not to print anything here and delegate the task to
4539 normal_stop(). */
4540
4541 static enum print_stop_action
4542 print_bp_stop_message (bpstat bs)
4543 {
4544 switch (bs->print_it)
4545 {
4546 case print_it_noop:
4547 /* Nothing should be printed for this bpstat entry. */
4548 return PRINT_UNKNOWN;
4549 break;
4550
4551 case print_it_done:
4552 /* We still want to print the frame, but we already printed the
4553 relevant messages. */
4554 return PRINT_SRC_AND_LOC;
4555 break;
4556
4557 case print_it_normal:
4558 {
4559 struct breakpoint *b = bs->breakpoint_at;
4560
4561 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4562 which has since been deleted. */
4563 if (b == NULL)
4564 return PRINT_UNKNOWN;
4565
4566 /* Normal case. Call the breakpoint's print_it method. */
4567 return b->ops->print_it (bs);
4568 }
4569 break;
4570
4571 default:
4572 internal_error (__FILE__, __LINE__,
4573 _("print_bp_stop_message: unrecognized enum value"));
4574 break;
4575 }
4576 }
4577
4578 /* A helper function that prints a shared library stopped event. */
4579
4580 static void
4581 print_solib_event (int is_catchpoint)
4582 {
4583 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4584 bool any_added = !current_program_space->added_solibs.empty ();
4585
4586 if (!is_catchpoint)
4587 {
4588 if (any_added || any_deleted)
4589 current_uiout->text (_("Stopped due to shared library event:\n"));
4590 else
4591 current_uiout->text (_("Stopped due to shared library event (no "
4592 "libraries added or removed)\n"));
4593 }
4594
4595 if (current_uiout->is_mi_like_p ())
4596 current_uiout->field_string ("reason",
4597 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4598
4599 if (any_deleted)
4600 {
4601 current_uiout->text (_(" Inferior unloaded "));
4602 ui_out_emit_list list_emitter (current_uiout, "removed");
4603 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4604 {
4605 const std::string &name = current_program_space->deleted_solibs[ix];
4606
4607 if (ix > 0)
4608 current_uiout->text (" ");
4609 current_uiout->field_string ("library", name);
4610 current_uiout->text ("\n");
4611 }
4612 }
4613
4614 if (any_added)
4615 {
4616 current_uiout->text (_(" Inferior loaded "));
4617 ui_out_emit_list list_emitter (current_uiout, "added");
4618 bool first = true;
4619 for (so_list *iter : current_program_space->added_solibs)
4620 {
4621 if (!first)
4622 current_uiout->text (" ");
4623 first = false;
4624 current_uiout->field_string ("library", iter->so_name);
4625 current_uiout->text ("\n");
4626 }
4627 }
4628 }
4629
4630 /* Print a message indicating what happened. This is called from
4631 normal_stop(). The input to this routine is the head of the bpstat
4632 list - a list of the eventpoints that caused this stop. KIND is
4633 the target_waitkind for the stopping event. This
4634 routine calls the generic print routine for printing a message
4635 about reasons for stopping. This will print (for example) the
4636 "Breakpoint n," part of the output. The return value of this
4637 routine is one of:
4638
4639 PRINT_UNKNOWN: Means we printed nothing.
4640 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4641 code to print the location. An example is
4642 "Breakpoint 1, " which should be followed by
4643 the location.
4644 PRINT_SRC_ONLY: Means we printed something, but there is no need
4645 to also print the location part of the message.
4646 An example is the catch/throw messages, which
4647 don't require a location appended to the end.
4648 PRINT_NOTHING: We have done some printing and we don't need any
4649 further info to be printed. */
4650
4651 enum print_stop_action
4652 bpstat_print (bpstat bs, int kind)
4653 {
4654 enum print_stop_action val;
4655
4656 /* Maybe another breakpoint in the chain caused us to stop.
4657 (Currently all watchpoints go on the bpstat whether hit or not.
4658 That probably could (should) be changed, provided care is taken
4659 with respect to bpstat_explains_signal). */
4660 for (; bs; bs = bs->next)
4661 {
4662 val = print_bp_stop_message (bs);
4663 if (val == PRINT_SRC_ONLY
4664 || val == PRINT_SRC_AND_LOC
4665 || val == PRINT_NOTHING)
4666 return val;
4667 }
4668
4669 /* If we had hit a shared library event breakpoint,
4670 print_bp_stop_message would print out this message. If we hit an
4671 OS-level shared library event, do the same thing. */
4672 if (kind == TARGET_WAITKIND_LOADED)
4673 {
4674 print_solib_event (0);
4675 return PRINT_NOTHING;
4676 }
4677
4678 /* We reached the end of the chain, or we got a null BS to start
4679 with and nothing was printed. */
4680 return PRINT_UNKNOWN;
4681 }
4682
4683 /* Evaluate the boolean expression EXP and return the result. */
4684
4685 static bool
4686 breakpoint_cond_eval (expression *exp)
4687 {
4688 struct value *mark = value_mark ();
4689 bool res = value_true (evaluate_expression (exp));
4690
4691 value_free_to_mark (mark);
4692 return res;
4693 }
4694
4695 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4696
4697 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4698 : next (NULL),
4699 bp_location_at (bl),
4700 breakpoint_at (bl->owner),
4701 commands (NULL),
4702 print (0),
4703 stop (0),
4704 print_it (print_it_normal)
4705 {
4706 incref_bp_location (bl);
4707 **bs_link_pointer = this;
4708 *bs_link_pointer = &next;
4709 }
4710
4711 bpstats::bpstats ()
4712 : next (NULL),
4713 bp_location_at (NULL),
4714 breakpoint_at (NULL),
4715 commands (NULL),
4716 print (0),
4717 stop (0),
4718 print_it (print_it_normal)
4719 {
4720 }
4721 \f
4722 /* The target has stopped with waitstatus WS. Check if any hardware
4723 watchpoints have triggered, according to the target. */
4724
4725 int
4726 watchpoints_triggered (struct target_waitstatus *ws)
4727 {
4728 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4729 CORE_ADDR addr;
4730 struct breakpoint *b;
4731
4732 if (!stopped_by_watchpoint)
4733 {
4734 /* We were not stopped by a watchpoint. Mark all watchpoints
4735 as not triggered. */
4736 ALL_BREAKPOINTS (b)
4737 if (is_hardware_watchpoint (b))
4738 {
4739 struct watchpoint *w = (struct watchpoint *) b;
4740
4741 w->watchpoint_triggered = watch_triggered_no;
4742 }
4743
4744 return 0;
4745 }
4746
4747 if (!target_stopped_data_address (current_top_target (), &addr))
4748 {
4749 /* We were stopped by a watchpoint, but we don't know where.
4750 Mark all watchpoints as unknown. */
4751 ALL_BREAKPOINTS (b)
4752 if (is_hardware_watchpoint (b))
4753 {
4754 struct watchpoint *w = (struct watchpoint *) b;
4755
4756 w->watchpoint_triggered = watch_triggered_unknown;
4757 }
4758
4759 return 1;
4760 }
4761
4762 /* The target could report the data address. Mark watchpoints
4763 affected by this data address as triggered, and all others as not
4764 triggered. */
4765
4766 ALL_BREAKPOINTS (b)
4767 if (is_hardware_watchpoint (b))
4768 {
4769 struct watchpoint *w = (struct watchpoint *) b;
4770 struct bp_location *loc;
4771
4772 w->watchpoint_triggered = watch_triggered_no;
4773 for (loc = b->loc; loc; loc = loc->next)
4774 {
4775 if (is_masked_watchpoint (b))
4776 {
4777 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4778 CORE_ADDR start = loc->address & w->hw_wp_mask;
4779
4780 if (newaddr == start)
4781 {
4782 w->watchpoint_triggered = watch_triggered_yes;
4783 break;
4784 }
4785 }
4786 /* Exact match not required. Within range is sufficient. */
4787 else if (target_watchpoint_addr_within_range (current_top_target (),
4788 addr, loc->address,
4789 loc->length))
4790 {
4791 w->watchpoint_triggered = watch_triggered_yes;
4792 break;
4793 }
4794 }
4795 }
4796
4797 return 1;
4798 }
4799
4800 /* Possible return values for watchpoint_check. */
4801 enum wp_check_result
4802 {
4803 /* The watchpoint has been deleted. */
4804 WP_DELETED = 1,
4805
4806 /* The value has changed. */
4807 WP_VALUE_CHANGED = 2,
4808
4809 /* The value has not changed. */
4810 WP_VALUE_NOT_CHANGED = 3,
4811
4812 /* Ignore this watchpoint, no matter if the value changed or not. */
4813 WP_IGNORE = 4,
4814 };
4815
4816 #define BP_TEMPFLAG 1
4817 #define BP_HARDWAREFLAG 2
4818
4819 /* Evaluate watchpoint condition expression and check if its value
4820 changed. */
4821
4822 static wp_check_result
4823 watchpoint_check (bpstat bs)
4824 {
4825 struct watchpoint *b;
4826 struct frame_info *fr;
4827 int within_current_scope;
4828
4829 /* BS is built from an existing struct breakpoint. */
4830 gdb_assert (bs->breakpoint_at != NULL);
4831 b = (struct watchpoint *) bs->breakpoint_at;
4832
4833 /* If this is a local watchpoint, we only want to check if the
4834 watchpoint frame is in scope if the current thread is the thread
4835 that was used to create the watchpoint. */
4836 if (!watchpoint_in_thread_scope (b))
4837 return WP_IGNORE;
4838
4839 if (b->exp_valid_block == NULL)
4840 within_current_scope = 1;
4841 else
4842 {
4843 struct frame_info *frame = get_current_frame ();
4844 struct gdbarch *frame_arch = get_frame_arch (frame);
4845 CORE_ADDR frame_pc = get_frame_pc (frame);
4846
4847 /* stack_frame_destroyed_p() returns a non-zero value if we're
4848 still in the function but the stack frame has already been
4849 invalidated. Since we can't rely on the values of local
4850 variables after the stack has been destroyed, we are treating
4851 the watchpoint in that state as `not changed' without further
4852 checking. Don't mark watchpoints as changed if the current
4853 frame is in an epilogue - even if they are in some other
4854 frame, our view of the stack is likely to be wrong and
4855 frame_find_by_id could error out. */
4856 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4857 return WP_IGNORE;
4858
4859 fr = frame_find_by_id (b->watchpoint_frame);
4860 within_current_scope = (fr != NULL);
4861
4862 /* If we've gotten confused in the unwinder, we might have
4863 returned a frame that can't describe this variable. */
4864 if (within_current_scope)
4865 {
4866 struct symbol *function;
4867
4868 function = get_frame_function (fr);
4869 if (function == NULL
4870 || !contained_in (b->exp_valid_block,
4871 SYMBOL_BLOCK_VALUE (function)))
4872 within_current_scope = 0;
4873 }
4874
4875 if (within_current_scope)
4876 /* If we end up stopping, the current frame will get selected
4877 in normal_stop. So this call to select_frame won't affect
4878 the user. */
4879 select_frame (fr);
4880 }
4881
4882 if (within_current_scope)
4883 {
4884 /* We use value_{,free_to_}mark because it could be a *long*
4885 time before we return to the command level and call
4886 free_all_values. We can't call free_all_values because we
4887 might be in the middle of evaluating a function call. */
4888
4889 int pc = 0;
4890 struct value *mark;
4891 struct value *new_val;
4892
4893 if (is_masked_watchpoint (b))
4894 /* Since we don't know the exact trigger address (from
4895 stopped_data_address), just tell the user we've triggered
4896 a mask watchpoint. */
4897 return WP_VALUE_CHANGED;
4898
4899 mark = value_mark ();
4900 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4901
4902 if (b->val_bitsize != 0)
4903 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4904
4905 /* We use value_equal_contents instead of value_equal because
4906 the latter coerces an array to a pointer, thus comparing just
4907 the address of the array instead of its contents. This is
4908 not what we want. */
4909 if ((b->val != NULL) != (new_val != NULL)
4910 || (b->val != NULL && !value_equal_contents (b->val.get (),
4911 new_val)))
4912 {
4913 bs->old_val = b->val;
4914 b->val = release_value (new_val);
4915 b->val_valid = 1;
4916 if (new_val != NULL)
4917 value_free_to_mark (mark);
4918 return WP_VALUE_CHANGED;
4919 }
4920 else
4921 {
4922 /* Nothing changed. */
4923 value_free_to_mark (mark);
4924 return WP_VALUE_NOT_CHANGED;
4925 }
4926 }
4927 else
4928 {
4929 /* This seems like the only logical thing to do because
4930 if we temporarily ignored the watchpoint, then when
4931 we reenter the block in which it is valid it contains
4932 garbage (in the case of a function, it may have two
4933 garbage values, one before and one after the prologue).
4934 So we can't even detect the first assignment to it and
4935 watch after that (since the garbage may or may not equal
4936 the first value assigned). */
4937 /* We print all the stop information in
4938 breakpoint_ops->print_it, but in this case, by the time we
4939 call breakpoint_ops->print_it this bp will be deleted
4940 already. So we have no choice but print the information
4941 here. */
4942
4943 SWITCH_THRU_ALL_UIS ()
4944 {
4945 struct ui_out *uiout = current_uiout;
4946
4947 if (uiout->is_mi_like_p ())
4948 uiout->field_string
4949 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4950 uiout->text ("\nWatchpoint ");
4951 uiout->field_int ("wpnum", b->number);
4952 uiout->text (" deleted because the program has left the block in\n"
4953 "which its expression is valid.\n");
4954 }
4955
4956 /* Make sure the watchpoint's commands aren't executed. */
4957 b->commands = NULL;
4958 watchpoint_del_at_next_stop (b);
4959
4960 return WP_DELETED;
4961 }
4962 }
4963
4964 /* Return true if it looks like target has stopped due to hitting
4965 breakpoint location BL. This function does not check if we should
4966 stop, only if BL explains the stop. */
4967
4968 static int
4969 bpstat_check_location (const struct bp_location *bl,
4970 const address_space *aspace, CORE_ADDR bp_addr,
4971 const struct target_waitstatus *ws)
4972 {
4973 struct breakpoint *b = bl->owner;
4974
4975 /* BL is from an existing breakpoint. */
4976 gdb_assert (b != NULL);
4977
4978 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4979 }
4980
4981 /* Determine if the watched values have actually changed, and we
4982 should stop. If not, set BS->stop to 0. */
4983
4984 static void
4985 bpstat_check_watchpoint (bpstat bs)
4986 {
4987 const struct bp_location *bl;
4988 struct watchpoint *b;
4989
4990 /* BS is built for existing struct breakpoint. */
4991 bl = bs->bp_location_at;
4992 gdb_assert (bl != NULL);
4993 b = (struct watchpoint *) bs->breakpoint_at;
4994 gdb_assert (b != NULL);
4995
4996 {
4997 int must_check_value = 0;
4998
4999 if (b->type == bp_watchpoint)
5000 /* For a software watchpoint, we must always check the
5001 watched value. */
5002 must_check_value = 1;
5003 else if (b->watchpoint_triggered == watch_triggered_yes)
5004 /* We have a hardware watchpoint (read, write, or access)
5005 and the target earlier reported an address watched by
5006 this watchpoint. */
5007 must_check_value = 1;
5008 else if (b->watchpoint_triggered == watch_triggered_unknown
5009 && b->type == bp_hardware_watchpoint)
5010 /* We were stopped by a hardware watchpoint, but the target could
5011 not report the data address. We must check the watchpoint's
5012 value. Access and read watchpoints are out of luck; without
5013 a data address, we can't figure it out. */
5014 must_check_value = 1;
5015
5016 if (must_check_value)
5017 {
5018 wp_check_result e;
5019
5020 TRY
5021 {
5022 e = watchpoint_check (bs);
5023 }
5024 CATCH (ex, RETURN_MASK_ALL)
5025 {
5026 exception_fprintf (gdb_stderr, ex,
5027 "Error evaluating expression "
5028 "for watchpoint %d\n",
5029 b->number);
5030
5031 SWITCH_THRU_ALL_UIS ()
5032 {
5033 printf_filtered (_("Watchpoint %d deleted.\n"),
5034 b->number);
5035 }
5036 watchpoint_del_at_next_stop (b);
5037 e = WP_DELETED;
5038 }
5039 END_CATCH
5040
5041 switch (e)
5042 {
5043 case WP_DELETED:
5044 /* We've already printed what needs to be printed. */
5045 bs->print_it = print_it_done;
5046 /* Stop. */
5047 break;
5048 case WP_IGNORE:
5049 bs->print_it = print_it_noop;
5050 bs->stop = 0;
5051 break;
5052 case WP_VALUE_CHANGED:
5053 if (b->type == bp_read_watchpoint)
5054 {
5055 /* There are two cases to consider here:
5056
5057 1. We're watching the triggered memory for reads.
5058 In that case, trust the target, and always report
5059 the watchpoint hit to the user. Even though
5060 reads don't cause value changes, the value may
5061 have changed since the last time it was read, and
5062 since we're not trapping writes, we will not see
5063 those, and as such we should ignore our notion of
5064 old value.
5065
5066 2. We're watching the triggered memory for both
5067 reads and writes. There are two ways this may
5068 happen:
5069
5070 2.1. This is a target that can't break on data
5071 reads only, but can break on accesses (reads or
5072 writes), such as e.g., x86. We detect this case
5073 at the time we try to insert read watchpoints.
5074
5075 2.2. Otherwise, the target supports read
5076 watchpoints, but, the user set an access or write
5077 watchpoint watching the same memory as this read
5078 watchpoint.
5079
5080 If we're watching memory writes as well as reads,
5081 ignore watchpoint hits when we find that the
5082 value hasn't changed, as reads don't cause
5083 changes. This still gives false positives when
5084 the program writes the same value to memory as
5085 what there was already in memory (we will confuse
5086 it for a read), but it's much better than
5087 nothing. */
5088
5089 int other_write_watchpoint = 0;
5090
5091 if (bl->watchpoint_type == hw_read)
5092 {
5093 struct breakpoint *other_b;
5094
5095 ALL_BREAKPOINTS (other_b)
5096 if (other_b->type == bp_hardware_watchpoint
5097 || other_b->type == bp_access_watchpoint)
5098 {
5099 struct watchpoint *other_w =
5100 (struct watchpoint *) other_b;
5101
5102 if (other_w->watchpoint_triggered
5103 == watch_triggered_yes)
5104 {
5105 other_write_watchpoint = 1;
5106 break;
5107 }
5108 }
5109 }
5110
5111 if (other_write_watchpoint
5112 || bl->watchpoint_type == hw_access)
5113 {
5114 /* We're watching the same memory for writes,
5115 and the value changed since the last time we
5116 updated it, so this trap must be for a write.
5117 Ignore it. */
5118 bs->print_it = print_it_noop;
5119 bs->stop = 0;
5120 }
5121 }
5122 break;
5123 case WP_VALUE_NOT_CHANGED:
5124 if (b->type == bp_hardware_watchpoint
5125 || b->type == bp_watchpoint)
5126 {
5127 /* Don't stop: write watchpoints shouldn't fire if
5128 the value hasn't changed. */
5129 bs->print_it = print_it_noop;
5130 bs->stop = 0;
5131 }
5132 /* Stop. */
5133 break;
5134 default:
5135 /* Can't happen. */
5136 break;
5137 }
5138 }
5139 else /* must_check_value == 0 */
5140 {
5141 /* This is a case where some watchpoint(s) triggered, but
5142 not at the address of this watchpoint, or else no
5143 watchpoint triggered after all. So don't print
5144 anything for this watchpoint. */
5145 bs->print_it = print_it_noop;
5146 bs->stop = 0;
5147 }
5148 }
5149 }
5150
5151 /* For breakpoints that are currently marked as telling gdb to stop,
5152 check conditions (condition proper, frame, thread and ignore count)
5153 of breakpoint referred to by BS. If we should not stop for this
5154 breakpoint, set BS->stop to 0. */
5155
5156 static void
5157 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5158 {
5159 const struct bp_location *bl;
5160 struct breakpoint *b;
5161 /* Assume stop. */
5162 bool condition_result = true;
5163 struct expression *cond;
5164
5165 gdb_assert (bs->stop);
5166
5167 /* BS is built for existing struct breakpoint. */
5168 bl = bs->bp_location_at;
5169 gdb_assert (bl != NULL);
5170 b = bs->breakpoint_at;
5171 gdb_assert (b != NULL);
5172
5173 /* Even if the target evaluated the condition on its end and notified GDB, we
5174 need to do so again since GDB does not know if we stopped due to a
5175 breakpoint or a single step breakpoint. */
5176
5177 if (frame_id_p (b->frame_id)
5178 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5179 {
5180 bs->stop = 0;
5181 return;
5182 }
5183
5184 /* If this is a thread/task-specific breakpoint, don't waste cpu
5185 evaluating the condition if this isn't the specified
5186 thread/task. */
5187 if ((b->thread != -1 && b->thread != thread->global_num)
5188 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5189 {
5190 bs->stop = 0;
5191 return;
5192 }
5193
5194 /* Evaluate extension language breakpoints that have a "stop" method
5195 implemented. */
5196 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5197
5198 if (is_watchpoint (b))
5199 {
5200 struct watchpoint *w = (struct watchpoint *) b;
5201
5202 cond = w->cond_exp.get ();
5203 }
5204 else
5205 cond = bl->cond.get ();
5206
5207 if (cond && b->disposition != disp_del_at_next_stop)
5208 {
5209 int within_current_scope = 1;
5210 struct watchpoint * w;
5211
5212 /* We use value_mark and value_free_to_mark because it could
5213 be a long time before we return to the command level and
5214 call free_all_values. We can't call free_all_values
5215 because we might be in the middle of evaluating a
5216 function call. */
5217 struct value *mark = value_mark ();
5218
5219 if (is_watchpoint (b))
5220 w = (struct watchpoint *) b;
5221 else
5222 w = NULL;
5223
5224 /* Need to select the frame, with all that implies so that
5225 the conditions will have the right context. Because we
5226 use the frame, we will not see an inlined function's
5227 variables when we arrive at a breakpoint at the start
5228 of the inlined function; the current frame will be the
5229 call site. */
5230 if (w == NULL || w->cond_exp_valid_block == NULL)
5231 select_frame (get_current_frame ());
5232 else
5233 {
5234 struct frame_info *frame;
5235
5236 /* For local watchpoint expressions, which particular
5237 instance of a local is being watched matters, so we
5238 keep track of the frame to evaluate the expression
5239 in. To evaluate the condition however, it doesn't
5240 really matter which instantiation of the function
5241 where the condition makes sense triggers the
5242 watchpoint. This allows an expression like "watch
5243 global if q > 10" set in `func', catch writes to
5244 global on all threads that call `func', or catch
5245 writes on all recursive calls of `func' by a single
5246 thread. We simply always evaluate the condition in
5247 the innermost frame that's executing where it makes
5248 sense to evaluate the condition. It seems
5249 intuitive. */
5250 frame = block_innermost_frame (w->cond_exp_valid_block);
5251 if (frame != NULL)
5252 select_frame (frame);
5253 else
5254 within_current_scope = 0;
5255 }
5256 if (within_current_scope)
5257 {
5258 TRY
5259 {
5260 condition_result = breakpoint_cond_eval (cond);
5261 }
5262 CATCH (ex, RETURN_MASK_ALL)
5263 {
5264 exception_fprintf (gdb_stderr, ex,
5265 "Error in testing breakpoint condition:\n");
5266 }
5267 END_CATCH
5268 }
5269 else
5270 {
5271 warning (_("Watchpoint condition cannot be tested "
5272 "in the current scope"));
5273 /* If we failed to set the right context for this
5274 watchpoint, unconditionally report it. */
5275 }
5276 /* FIXME-someday, should give breakpoint #. */
5277 value_free_to_mark (mark);
5278 }
5279
5280 if (cond && !condition_result)
5281 {
5282 bs->stop = 0;
5283 }
5284 else if (b->ignore_count > 0)
5285 {
5286 b->ignore_count--;
5287 bs->stop = 0;
5288 /* Increase the hit count even though we don't stop. */
5289 ++(b->hit_count);
5290 gdb::observers::breakpoint_modified.notify (b);
5291 }
5292 }
5293
5294 /* Returns true if we need to track moribund locations of LOC's type
5295 on the current target. */
5296
5297 static int
5298 need_moribund_for_location_type (struct bp_location *loc)
5299 {
5300 return ((loc->loc_type == bp_loc_software_breakpoint
5301 && !target_supports_stopped_by_sw_breakpoint ())
5302 || (loc->loc_type == bp_loc_hardware_breakpoint
5303 && !target_supports_stopped_by_hw_breakpoint ()));
5304 }
5305
5306 /* See breakpoint.h. */
5307
5308 bpstat
5309 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5310 const struct target_waitstatus *ws)
5311 {
5312 struct breakpoint *b;
5313 bpstat bs_head = NULL, *bs_link = &bs_head;
5314
5315 ALL_BREAKPOINTS (b)
5316 {
5317 if (!breakpoint_enabled (b))
5318 continue;
5319
5320 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5321 {
5322 /* For hardware watchpoints, we look only at the first
5323 location. The watchpoint_check function will work on the
5324 entire expression, not the individual locations. For
5325 read watchpoints, the watchpoints_triggered function has
5326 checked all locations already. */
5327 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5328 break;
5329
5330 if (!bl->enabled || bl->shlib_disabled)
5331 continue;
5332
5333 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5334 continue;
5335
5336 /* Come here if it's a watchpoint, or if the break address
5337 matches. */
5338
5339 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5340 explain stop. */
5341
5342 /* Assume we stop. Should we find a watchpoint that is not
5343 actually triggered, or if the condition of the breakpoint
5344 evaluates as false, we'll reset 'stop' to 0. */
5345 bs->stop = 1;
5346 bs->print = 1;
5347
5348 /* If this is a scope breakpoint, mark the associated
5349 watchpoint as triggered so that we will handle the
5350 out-of-scope event. We'll get to the watchpoint next
5351 iteration. */
5352 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5353 {
5354 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5355
5356 w->watchpoint_triggered = watch_triggered_yes;
5357 }
5358 }
5359 }
5360
5361 /* Check if a moribund breakpoint explains the stop. */
5362 if (!target_supports_stopped_by_sw_breakpoint ()
5363 || !target_supports_stopped_by_hw_breakpoint ())
5364 {
5365 for (bp_location *loc : moribund_locations)
5366 {
5367 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5368 && need_moribund_for_location_type (loc))
5369 {
5370 bpstat bs = new bpstats (loc, &bs_link);
5371 /* For hits of moribund locations, we should just proceed. */
5372 bs->stop = 0;
5373 bs->print = 0;
5374 bs->print_it = print_it_noop;
5375 }
5376 }
5377 }
5378
5379 return bs_head;
5380 }
5381
5382 /* See breakpoint.h. */
5383
5384 bpstat
5385 bpstat_stop_status (const address_space *aspace,
5386 CORE_ADDR bp_addr, thread_info *thread,
5387 const struct target_waitstatus *ws,
5388 bpstat stop_chain)
5389 {
5390 struct breakpoint *b = NULL;
5391 /* First item of allocated bpstat's. */
5392 bpstat bs_head = stop_chain;
5393 bpstat bs;
5394 int need_remove_insert;
5395 int removed_any;
5396
5397 /* First, build the bpstat chain with locations that explain a
5398 target stop, while being careful to not set the target running,
5399 as that may invalidate locations (in particular watchpoint
5400 locations are recreated). Resuming will happen here with
5401 breakpoint conditions or watchpoint expressions that include
5402 inferior function calls. */
5403 if (bs_head == NULL)
5404 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5405
5406 /* A bit of special processing for shlib breakpoints. We need to
5407 process solib loading here, so that the lists of loaded and
5408 unloaded libraries are correct before we handle "catch load" and
5409 "catch unload". */
5410 for (bs = bs_head; bs != NULL; bs = bs->next)
5411 {
5412 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5413 {
5414 handle_solib_event ();
5415 break;
5416 }
5417 }
5418
5419 /* Now go through the locations that caused the target to stop, and
5420 check whether we're interested in reporting this stop to higher
5421 layers, or whether we should resume the target transparently. */
5422
5423 removed_any = 0;
5424
5425 for (bs = bs_head; bs != NULL; bs = bs->next)
5426 {
5427 if (!bs->stop)
5428 continue;
5429
5430 b = bs->breakpoint_at;
5431 b->ops->check_status (bs);
5432 if (bs->stop)
5433 {
5434 bpstat_check_breakpoint_conditions (bs, thread);
5435
5436 if (bs->stop)
5437 {
5438 ++(b->hit_count);
5439 gdb::observers::breakpoint_modified.notify (b);
5440
5441 /* We will stop here. */
5442 if (b->disposition == disp_disable)
5443 {
5444 --(b->enable_count);
5445 if (b->enable_count <= 0)
5446 b->enable_state = bp_disabled;
5447 removed_any = 1;
5448 }
5449 if (b->silent)
5450 bs->print = 0;
5451 bs->commands = b->commands;
5452 if (command_line_is_silent (bs->commands
5453 ? bs->commands.get () : NULL))
5454 bs->print = 0;
5455
5456 b->ops->after_condition_true (bs);
5457 }
5458
5459 }
5460
5461 /* Print nothing for this entry if we don't stop or don't
5462 print. */
5463 if (!bs->stop || !bs->print)
5464 bs->print_it = print_it_noop;
5465 }
5466
5467 /* If we aren't stopping, the value of some hardware watchpoint may
5468 not have changed, but the intermediate memory locations we are
5469 watching may have. Don't bother if we're stopping; this will get
5470 done later. */
5471 need_remove_insert = 0;
5472 if (! bpstat_causes_stop (bs_head))
5473 for (bs = bs_head; bs != NULL; bs = bs->next)
5474 if (!bs->stop
5475 && bs->breakpoint_at
5476 && is_hardware_watchpoint (bs->breakpoint_at))
5477 {
5478 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5479
5480 update_watchpoint (w, 0 /* don't reparse. */);
5481 need_remove_insert = 1;
5482 }
5483
5484 if (need_remove_insert)
5485 update_global_location_list (UGLL_MAY_INSERT);
5486 else if (removed_any)
5487 update_global_location_list (UGLL_DONT_INSERT);
5488
5489 return bs_head;
5490 }
5491
5492 static void
5493 handle_jit_event (void)
5494 {
5495 struct frame_info *frame;
5496 struct gdbarch *gdbarch;
5497
5498 if (debug_infrun)
5499 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5500
5501 /* Switch terminal for any messages produced by
5502 breakpoint_re_set. */
5503 target_terminal::ours_for_output ();
5504
5505 frame = get_current_frame ();
5506 gdbarch = get_frame_arch (frame);
5507
5508 jit_event_handler (gdbarch);
5509
5510 target_terminal::inferior ();
5511 }
5512
5513 /* Prepare WHAT final decision for infrun. */
5514
5515 /* Decide what infrun needs to do with this bpstat. */
5516
5517 struct bpstat_what
5518 bpstat_what (bpstat bs_head)
5519 {
5520 struct bpstat_what retval;
5521 bpstat bs;
5522
5523 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5524 retval.call_dummy = STOP_NONE;
5525 retval.is_longjmp = 0;
5526
5527 for (bs = bs_head; bs != NULL; bs = bs->next)
5528 {
5529 /* Extract this BS's action. After processing each BS, we check
5530 if its action overrides all we've seem so far. */
5531 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5532 enum bptype bptype;
5533
5534 if (bs->breakpoint_at == NULL)
5535 {
5536 /* I suspect this can happen if it was a momentary
5537 breakpoint which has since been deleted. */
5538 bptype = bp_none;
5539 }
5540 else
5541 bptype = bs->breakpoint_at->type;
5542
5543 switch (bptype)
5544 {
5545 case bp_none:
5546 break;
5547 case bp_breakpoint:
5548 case bp_hardware_breakpoint:
5549 case bp_single_step:
5550 case bp_until:
5551 case bp_finish:
5552 case bp_shlib_event:
5553 if (bs->stop)
5554 {
5555 if (bs->print)
5556 this_action = BPSTAT_WHAT_STOP_NOISY;
5557 else
5558 this_action = BPSTAT_WHAT_STOP_SILENT;
5559 }
5560 else
5561 this_action = BPSTAT_WHAT_SINGLE;
5562 break;
5563 case bp_watchpoint:
5564 case bp_hardware_watchpoint:
5565 case bp_read_watchpoint:
5566 case bp_access_watchpoint:
5567 if (bs->stop)
5568 {
5569 if (bs->print)
5570 this_action = BPSTAT_WHAT_STOP_NOISY;
5571 else
5572 this_action = BPSTAT_WHAT_STOP_SILENT;
5573 }
5574 else
5575 {
5576 /* There was a watchpoint, but we're not stopping.
5577 This requires no further action. */
5578 }
5579 break;
5580 case bp_longjmp:
5581 case bp_longjmp_call_dummy:
5582 case bp_exception:
5583 if (bs->stop)
5584 {
5585 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5586 retval.is_longjmp = bptype != bp_exception;
5587 }
5588 else
5589 this_action = BPSTAT_WHAT_SINGLE;
5590 break;
5591 case bp_longjmp_resume:
5592 case bp_exception_resume:
5593 if (bs->stop)
5594 {
5595 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5596 retval.is_longjmp = bptype == bp_longjmp_resume;
5597 }
5598 else
5599 this_action = BPSTAT_WHAT_SINGLE;
5600 break;
5601 case bp_step_resume:
5602 if (bs->stop)
5603 this_action = BPSTAT_WHAT_STEP_RESUME;
5604 else
5605 {
5606 /* It is for the wrong frame. */
5607 this_action = BPSTAT_WHAT_SINGLE;
5608 }
5609 break;
5610 case bp_hp_step_resume:
5611 if (bs->stop)
5612 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5613 else
5614 {
5615 /* It is for the wrong frame. */
5616 this_action = BPSTAT_WHAT_SINGLE;
5617 }
5618 break;
5619 case bp_watchpoint_scope:
5620 case bp_thread_event:
5621 case bp_overlay_event:
5622 case bp_longjmp_master:
5623 case bp_std_terminate_master:
5624 case bp_exception_master:
5625 this_action = BPSTAT_WHAT_SINGLE;
5626 break;
5627 case bp_catchpoint:
5628 if (bs->stop)
5629 {
5630 if (bs->print)
5631 this_action = BPSTAT_WHAT_STOP_NOISY;
5632 else
5633 this_action = BPSTAT_WHAT_STOP_SILENT;
5634 }
5635 else
5636 {
5637 /* There was a catchpoint, but we're not stopping.
5638 This requires no further action. */
5639 }
5640 break;
5641 case bp_jit_event:
5642 this_action = BPSTAT_WHAT_SINGLE;
5643 break;
5644 case bp_call_dummy:
5645 /* Make sure the action is stop (silent or noisy),
5646 so infrun.c pops the dummy frame. */
5647 retval.call_dummy = STOP_STACK_DUMMY;
5648 this_action = BPSTAT_WHAT_STOP_SILENT;
5649 break;
5650 case bp_std_terminate:
5651 /* Make sure the action is stop (silent or noisy),
5652 so infrun.c pops the dummy frame. */
5653 retval.call_dummy = STOP_STD_TERMINATE;
5654 this_action = BPSTAT_WHAT_STOP_SILENT;
5655 break;
5656 case bp_tracepoint:
5657 case bp_fast_tracepoint:
5658 case bp_static_tracepoint:
5659 /* Tracepoint hits should not be reported back to GDB, and
5660 if one got through somehow, it should have been filtered
5661 out already. */
5662 internal_error (__FILE__, __LINE__,
5663 _("bpstat_what: tracepoint encountered"));
5664 break;
5665 case bp_gnu_ifunc_resolver:
5666 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5667 this_action = BPSTAT_WHAT_SINGLE;
5668 break;
5669 case bp_gnu_ifunc_resolver_return:
5670 /* The breakpoint will be removed, execution will restart from the
5671 PC of the former breakpoint. */
5672 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5673 break;
5674
5675 case bp_dprintf:
5676 if (bs->stop)
5677 this_action = BPSTAT_WHAT_STOP_SILENT;
5678 else
5679 this_action = BPSTAT_WHAT_SINGLE;
5680 break;
5681
5682 default:
5683 internal_error (__FILE__, __LINE__,
5684 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5685 }
5686
5687 retval.main_action = std::max (retval.main_action, this_action);
5688 }
5689
5690 return retval;
5691 }
5692
5693 void
5694 bpstat_run_callbacks (bpstat bs_head)
5695 {
5696 bpstat bs;
5697
5698 for (bs = bs_head; bs != NULL; bs = bs->next)
5699 {
5700 struct breakpoint *b = bs->breakpoint_at;
5701
5702 if (b == NULL)
5703 continue;
5704 switch (b->type)
5705 {
5706 case bp_jit_event:
5707 handle_jit_event ();
5708 break;
5709 case bp_gnu_ifunc_resolver:
5710 gnu_ifunc_resolver_stop (b);
5711 break;
5712 case bp_gnu_ifunc_resolver_return:
5713 gnu_ifunc_resolver_return_stop (b);
5714 break;
5715 }
5716 }
5717 }
5718
5719 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5720 without hardware support). This isn't related to a specific bpstat,
5721 just to things like whether watchpoints are set. */
5722
5723 int
5724 bpstat_should_step (void)
5725 {
5726 struct breakpoint *b;
5727
5728 ALL_BREAKPOINTS (b)
5729 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5730 return 1;
5731 return 0;
5732 }
5733
5734 int
5735 bpstat_causes_stop (bpstat bs)
5736 {
5737 for (; bs != NULL; bs = bs->next)
5738 if (bs->stop)
5739 return 1;
5740
5741 return 0;
5742 }
5743
5744 \f
5745
5746 /* Compute a string of spaces suitable to indent the next line
5747 so it starts at the position corresponding to the table column
5748 named COL_NAME in the currently active table of UIOUT. */
5749
5750 static char *
5751 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5752 {
5753 static char wrap_indent[80];
5754 int i, total_width, width, align;
5755 const char *text;
5756
5757 total_width = 0;
5758 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5759 {
5760 if (strcmp (text, col_name) == 0)
5761 {
5762 gdb_assert (total_width < sizeof wrap_indent);
5763 memset (wrap_indent, ' ', total_width);
5764 wrap_indent[total_width] = 0;
5765
5766 return wrap_indent;
5767 }
5768
5769 total_width += width + 1;
5770 }
5771
5772 return NULL;
5773 }
5774
5775 /* Determine if the locations of this breakpoint will have their conditions
5776 evaluated by the target, host or a mix of both. Returns the following:
5777
5778 "host": Host evals condition.
5779 "host or target": Host or Target evals condition.
5780 "target": Target evals condition.
5781 */
5782
5783 static const char *
5784 bp_condition_evaluator (struct breakpoint *b)
5785 {
5786 struct bp_location *bl;
5787 char host_evals = 0;
5788 char target_evals = 0;
5789
5790 if (!b)
5791 return NULL;
5792
5793 if (!is_breakpoint (b))
5794 return NULL;
5795
5796 if (gdb_evaluates_breakpoint_condition_p ()
5797 || !target_supports_evaluation_of_breakpoint_conditions ())
5798 return condition_evaluation_host;
5799
5800 for (bl = b->loc; bl; bl = bl->next)
5801 {
5802 if (bl->cond_bytecode)
5803 target_evals++;
5804 else
5805 host_evals++;
5806 }
5807
5808 if (host_evals && target_evals)
5809 return condition_evaluation_both;
5810 else if (target_evals)
5811 return condition_evaluation_target;
5812 else
5813 return condition_evaluation_host;
5814 }
5815
5816 /* Determine the breakpoint location's condition evaluator. This is
5817 similar to bp_condition_evaluator, but for locations. */
5818
5819 static const char *
5820 bp_location_condition_evaluator (struct bp_location *bl)
5821 {
5822 if (bl && !is_breakpoint (bl->owner))
5823 return NULL;
5824
5825 if (gdb_evaluates_breakpoint_condition_p ()
5826 || !target_supports_evaluation_of_breakpoint_conditions ())
5827 return condition_evaluation_host;
5828
5829 if (bl && bl->cond_bytecode)
5830 return condition_evaluation_target;
5831 else
5832 return condition_evaluation_host;
5833 }
5834
5835 /* Print the LOC location out of the list of B->LOC locations. */
5836
5837 static void
5838 print_breakpoint_location (struct breakpoint *b,
5839 struct bp_location *loc)
5840 {
5841 struct ui_out *uiout = current_uiout;
5842
5843 scoped_restore_current_program_space restore_pspace;
5844
5845 if (loc != NULL && loc->shlib_disabled)
5846 loc = NULL;
5847
5848 if (loc != NULL)
5849 set_current_program_space (loc->pspace);
5850
5851 if (b->display_canonical)
5852 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5853 else if (loc && loc->symtab)
5854 {
5855 const struct symbol *sym = loc->symbol;
5856
5857 if (sym)
5858 {
5859 uiout->text ("in ");
5860 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5861 ui_out_style_kind::FUNCTION);
5862 uiout->text (" ");
5863 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5864 uiout->text ("at ");
5865 }
5866 uiout->field_string ("file",
5867 symtab_to_filename_for_display (loc->symtab),
5868 ui_out_style_kind::FILE);
5869 uiout->text (":");
5870
5871 if (uiout->is_mi_like_p ())
5872 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5873
5874 uiout->field_int ("line", loc->line_number);
5875 }
5876 else if (loc)
5877 {
5878 string_file stb;
5879
5880 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5881 demangle, "");
5882 uiout->field_stream ("at", stb);
5883 }
5884 else
5885 {
5886 uiout->field_string ("pending",
5887 event_location_to_string (b->location.get ()));
5888 /* If extra_string is available, it could be holding a condition
5889 or dprintf arguments. In either case, make sure it is printed,
5890 too, but only for non-MI streams. */
5891 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5892 {
5893 if (b->type == bp_dprintf)
5894 uiout->text (",");
5895 else
5896 uiout->text (" ");
5897 uiout->text (b->extra_string);
5898 }
5899 }
5900
5901 if (loc && is_breakpoint (b)
5902 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5903 && bp_condition_evaluator (b) == condition_evaluation_both)
5904 {
5905 uiout->text (" (");
5906 uiout->field_string ("evaluated-by",
5907 bp_location_condition_evaluator (loc));
5908 uiout->text (")");
5909 }
5910 }
5911
5912 static const char *
5913 bptype_string (enum bptype type)
5914 {
5915 struct ep_type_description
5916 {
5917 enum bptype type;
5918 const char *description;
5919 };
5920 static struct ep_type_description bptypes[] =
5921 {
5922 {bp_none, "?deleted?"},
5923 {bp_breakpoint, "breakpoint"},
5924 {bp_hardware_breakpoint, "hw breakpoint"},
5925 {bp_single_step, "sw single-step"},
5926 {bp_until, "until"},
5927 {bp_finish, "finish"},
5928 {bp_watchpoint, "watchpoint"},
5929 {bp_hardware_watchpoint, "hw watchpoint"},
5930 {bp_read_watchpoint, "read watchpoint"},
5931 {bp_access_watchpoint, "acc watchpoint"},
5932 {bp_longjmp, "longjmp"},
5933 {bp_longjmp_resume, "longjmp resume"},
5934 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5935 {bp_exception, "exception"},
5936 {bp_exception_resume, "exception resume"},
5937 {bp_step_resume, "step resume"},
5938 {bp_hp_step_resume, "high-priority step resume"},
5939 {bp_watchpoint_scope, "watchpoint scope"},
5940 {bp_call_dummy, "call dummy"},
5941 {bp_std_terminate, "std::terminate"},
5942 {bp_shlib_event, "shlib events"},
5943 {bp_thread_event, "thread events"},
5944 {bp_overlay_event, "overlay events"},
5945 {bp_longjmp_master, "longjmp master"},
5946 {bp_std_terminate_master, "std::terminate master"},
5947 {bp_exception_master, "exception master"},
5948 {bp_catchpoint, "catchpoint"},
5949 {bp_tracepoint, "tracepoint"},
5950 {bp_fast_tracepoint, "fast tracepoint"},
5951 {bp_static_tracepoint, "static tracepoint"},
5952 {bp_dprintf, "dprintf"},
5953 {bp_jit_event, "jit events"},
5954 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5955 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5956 };
5957
5958 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5959 || ((int) type != bptypes[(int) type].type))
5960 internal_error (__FILE__, __LINE__,
5961 _("bptypes table does not describe type #%d."),
5962 (int) type);
5963
5964 return bptypes[(int) type].description;
5965 }
5966
5967 /* For MI, output a field named 'thread-groups' with a list as the value.
5968 For CLI, prefix the list with the string 'inf'. */
5969
5970 static void
5971 output_thread_groups (struct ui_out *uiout,
5972 const char *field_name,
5973 const std::vector<int> &inf_nums,
5974 int mi_only)
5975 {
5976 int is_mi = uiout->is_mi_like_p ();
5977
5978 /* For backward compatibility, don't display inferiors in CLI unless
5979 there are several. Always display them for MI. */
5980 if (!is_mi && mi_only)
5981 return;
5982
5983 ui_out_emit_list list_emitter (uiout, field_name);
5984
5985 for (size_t i = 0; i < inf_nums.size (); i++)
5986 {
5987 if (is_mi)
5988 {
5989 char mi_group[10];
5990
5991 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5992 uiout->field_string (NULL, mi_group);
5993 }
5994 else
5995 {
5996 if (i == 0)
5997 uiout->text (" inf ");
5998 else
5999 uiout->text (", ");
6000
6001 uiout->text (plongest (inf_nums[i]));
6002 }
6003 }
6004 }
6005
6006 /* Print B to gdb_stdout. */
6007
6008 static void
6009 print_one_breakpoint_location (struct breakpoint *b,
6010 struct bp_location *loc,
6011 int loc_number,
6012 struct bp_location **last_loc,
6013 int allflag)
6014 {
6015 struct command_line *l;
6016 static char bpenables[] = "nynny";
6017
6018 struct ui_out *uiout = current_uiout;
6019 int header_of_multiple = 0;
6020 int part_of_multiple = (loc != NULL);
6021 struct value_print_options opts;
6022
6023 get_user_print_options (&opts);
6024
6025 gdb_assert (!loc || loc_number != 0);
6026 /* See comment in print_one_breakpoint concerning treatment of
6027 breakpoints with single disabled location. */
6028 if (loc == NULL
6029 && (b->loc != NULL
6030 && (b->loc->next != NULL || !b->loc->enabled)))
6031 header_of_multiple = 1;
6032 if (loc == NULL)
6033 loc = b->loc;
6034
6035 annotate_record ();
6036
6037 /* 1 */
6038 annotate_field (0);
6039 if (part_of_multiple)
6040 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6041 else
6042 uiout->field_int ("number", b->number);
6043
6044 /* 2 */
6045 annotate_field (1);
6046 if (part_of_multiple)
6047 uiout->field_skip ("type");
6048 else
6049 uiout->field_string ("type", bptype_string (b->type));
6050
6051 /* 3 */
6052 annotate_field (2);
6053 if (part_of_multiple)
6054 uiout->field_skip ("disp");
6055 else
6056 uiout->field_string ("disp", bpdisp_text (b->disposition));
6057
6058 /* 4 */
6059 annotate_field (3);
6060 if (part_of_multiple)
6061 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6062 else
6063 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6064
6065 /* 5 and 6 */
6066 if (b->ops != NULL && b->ops->print_one != NULL)
6067 {
6068 /* Although the print_one can possibly print all locations,
6069 calling it here is not likely to get any nice result. So,
6070 make sure there's just one location. */
6071 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6072 b->ops->print_one (b, last_loc);
6073 }
6074 else
6075 switch (b->type)
6076 {
6077 case bp_none:
6078 internal_error (__FILE__, __LINE__,
6079 _("print_one_breakpoint: bp_none encountered\n"));
6080 break;
6081
6082 case bp_watchpoint:
6083 case bp_hardware_watchpoint:
6084 case bp_read_watchpoint:
6085 case bp_access_watchpoint:
6086 {
6087 struct watchpoint *w = (struct watchpoint *) b;
6088
6089 /* Field 4, the address, is omitted (which makes the columns
6090 not line up too nicely with the headers, but the effect
6091 is relatively readable). */
6092 if (opts.addressprint)
6093 uiout->field_skip ("addr");
6094 annotate_field (5);
6095 uiout->field_string ("what", w->exp_string);
6096 }
6097 break;
6098
6099 case bp_breakpoint:
6100 case bp_hardware_breakpoint:
6101 case bp_single_step:
6102 case bp_until:
6103 case bp_finish:
6104 case bp_longjmp:
6105 case bp_longjmp_resume:
6106 case bp_longjmp_call_dummy:
6107 case bp_exception:
6108 case bp_exception_resume:
6109 case bp_step_resume:
6110 case bp_hp_step_resume:
6111 case bp_watchpoint_scope:
6112 case bp_call_dummy:
6113 case bp_std_terminate:
6114 case bp_shlib_event:
6115 case bp_thread_event:
6116 case bp_overlay_event:
6117 case bp_longjmp_master:
6118 case bp_std_terminate_master:
6119 case bp_exception_master:
6120 case bp_tracepoint:
6121 case bp_fast_tracepoint:
6122 case bp_static_tracepoint:
6123 case bp_dprintf:
6124 case bp_jit_event:
6125 case bp_gnu_ifunc_resolver:
6126 case bp_gnu_ifunc_resolver_return:
6127 if (opts.addressprint)
6128 {
6129 annotate_field (4);
6130 if (header_of_multiple)
6131 uiout->field_string ("addr", "<MULTIPLE>");
6132 else if (b->loc == NULL || loc->shlib_disabled)
6133 uiout->field_string ("addr", "<PENDING>");
6134 else
6135 uiout->field_core_addr ("addr",
6136 loc->gdbarch, loc->address);
6137 }
6138 annotate_field (5);
6139 if (!header_of_multiple)
6140 print_breakpoint_location (b, loc);
6141 if (b->loc)
6142 *last_loc = b->loc;
6143 break;
6144 }
6145
6146
6147 if (loc != NULL && !header_of_multiple)
6148 {
6149 std::vector<int> inf_nums;
6150 int mi_only = 1;
6151
6152 for (inferior *inf : all_inferiors ())
6153 {
6154 if (inf->pspace == loc->pspace)
6155 inf_nums.push_back (inf->num);
6156 }
6157
6158 /* For backward compatibility, don't display inferiors in CLI unless
6159 there are several. Always display for MI. */
6160 if (allflag
6161 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6162 && (number_of_program_spaces () > 1
6163 || number_of_inferiors () > 1)
6164 /* LOC is for existing B, it cannot be in
6165 moribund_locations and thus having NULL OWNER. */
6166 && loc->owner->type != bp_catchpoint))
6167 mi_only = 0;
6168 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6169 }
6170
6171 if (!part_of_multiple)
6172 {
6173 if (b->thread != -1)
6174 {
6175 /* FIXME: This seems to be redundant and lost here; see the
6176 "stop only in" line a little further down. */
6177 uiout->text (" thread ");
6178 uiout->field_int ("thread", b->thread);
6179 }
6180 else if (b->task != 0)
6181 {
6182 uiout->text (" task ");
6183 uiout->field_int ("task", b->task);
6184 }
6185 }
6186
6187 uiout->text ("\n");
6188
6189 if (!part_of_multiple)
6190 b->ops->print_one_detail (b, uiout);
6191
6192 if (part_of_multiple && frame_id_p (b->frame_id))
6193 {
6194 annotate_field (6);
6195 uiout->text ("\tstop only in stack frame at ");
6196 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6197 the frame ID. */
6198 uiout->field_core_addr ("frame",
6199 b->gdbarch, b->frame_id.stack_addr);
6200 uiout->text ("\n");
6201 }
6202
6203 if (!part_of_multiple && b->cond_string)
6204 {
6205 annotate_field (7);
6206 if (is_tracepoint (b))
6207 uiout->text ("\ttrace only if ");
6208 else
6209 uiout->text ("\tstop only if ");
6210 uiout->field_string ("cond", b->cond_string);
6211
6212 /* Print whether the target is doing the breakpoint's condition
6213 evaluation. If GDB is doing the evaluation, don't print anything. */
6214 if (is_breakpoint (b)
6215 && breakpoint_condition_evaluation_mode ()
6216 == condition_evaluation_target)
6217 {
6218 uiout->text (" (");
6219 uiout->field_string ("evaluated-by",
6220 bp_condition_evaluator (b));
6221 uiout->text (" evals)");
6222 }
6223 uiout->text ("\n");
6224 }
6225
6226 if (!part_of_multiple && b->thread != -1)
6227 {
6228 /* FIXME should make an annotation for this. */
6229 uiout->text ("\tstop only in thread ");
6230 if (uiout->is_mi_like_p ())
6231 uiout->field_int ("thread", b->thread);
6232 else
6233 {
6234 struct thread_info *thr = find_thread_global_id (b->thread);
6235
6236 uiout->field_string ("thread", print_thread_id (thr));
6237 }
6238 uiout->text ("\n");
6239 }
6240
6241 if (!part_of_multiple)
6242 {
6243 if (b->hit_count)
6244 {
6245 /* FIXME should make an annotation for this. */
6246 if (is_catchpoint (b))
6247 uiout->text ("\tcatchpoint");
6248 else if (is_tracepoint (b))
6249 uiout->text ("\ttracepoint");
6250 else
6251 uiout->text ("\tbreakpoint");
6252 uiout->text (" already hit ");
6253 uiout->field_int ("times", b->hit_count);
6254 if (b->hit_count == 1)
6255 uiout->text (" time\n");
6256 else
6257 uiout->text (" times\n");
6258 }
6259 else
6260 {
6261 /* Output the count also if it is zero, but only if this is mi. */
6262 if (uiout->is_mi_like_p ())
6263 uiout->field_int ("times", b->hit_count);
6264 }
6265 }
6266
6267 if (!part_of_multiple && b->ignore_count)
6268 {
6269 annotate_field (8);
6270 uiout->text ("\tignore next ");
6271 uiout->field_int ("ignore", b->ignore_count);
6272 uiout->text (" hits\n");
6273 }
6274
6275 /* Note that an enable count of 1 corresponds to "enable once"
6276 behavior, which is reported by the combination of enablement and
6277 disposition, so we don't need to mention it here. */
6278 if (!part_of_multiple && b->enable_count > 1)
6279 {
6280 annotate_field (8);
6281 uiout->text ("\tdisable after ");
6282 /* Tweak the wording to clarify that ignore and enable counts
6283 are distinct, and have additive effect. */
6284 if (b->ignore_count)
6285 uiout->text ("additional ");
6286 else
6287 uiout->text ("next ");
6288 uiout->field_int ("enable", b->enable_count);
6289 uiout->text (" hits\n");
6290 }
6291
6292 if (!part_of_multiple && is_tracepoint (b))
6293 {
6294 struct tracepoint *tp = (struct tracepoint *) b;
6295
6296 if (tp->traceframe_usage)
6297 {
6298 uiout->text ("\ttrace buffer usage ");
6299 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6300 uiout->text (" bytes\n");
6301 }
6302 }
6303
6304 l = b->commands ? b->commands.get () : NULL;
6305 if (!part_of_multiple && l)
6306 {
6307 annotate_field (9);
6308 ui_out_emit_tuple tuple_emitter (uiout, "script");
6309 print_command_lines (uiout, l, 4);
6310 }
6311
6312 if (is_tracepoint (b))
6313 {
6314 struct tracepoint *t = (struct tracepoint *) b;
6315
6316 if (!part_of_multiple && t->pass_count)
6317 {
6318 annotate_field (10);
6319 uiout->text ("\tpass count ");
6320 uiout->field_int ("pass", t->pass_count);
6321 uiout->text (" \n");
6322 }
6323
6324 /* Don't display it when tracepoint or tracepoint location is
6325 pending. */
6326 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6327 {
6328 annotate_field (11);
6329
6330 if (uiout->is_mi_like_p ())
6331 uiout->field_string ("installed",
6332 loc->inserted ? "y" : "n");
6333 else
6334 {
6335 if (loc->inserted)
6336 uiout->text ("\t");
6337 else
6338 uiout->text ("\tnot ");
6339 uiout->text ("installed on target\n");
6340 }
6341 }
6342 }
6343
6344 if (uiout->is_mi_like_p () && !part_of_multiple)
6345 {
6346 if (is_watchpoint (b))
6347 {
6348 struct watchpoint *w = (struct watchpoint *) b;
6349
6350 uiout->field_string ("original-location", w->exp_string);
6351 }
6352 else if (b->location != NULL
6353 && event_location_to_string (b->location.get ()) != NULL)
6354 uiout->field_string ("original-location",
6355 event_location_to_string (b->location.get ()));
6356 }
6357 }
6358
6359 static void
6360 print_one_breakpoint (struct breakpoint *b,
6361 struct bp_location **last_loc,
6362 int allflag)
6363 {
6364 struct ui_out *uiout = current_uiout;
6365 bool use_fixed_output = mi_multi_location_breakpoint_output_fixed (uiout);
6366
6367 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6368 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6369
6370 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6371 are outside. */
6372 if (!use_fixed_output)
6373 bkpt_tuple_emitter.reset ();
6374
6375 /* If this breakpoint has custom print function,
6376 it's already printed. Otherwise, print individual
6377 locations, if any. */
6378 if (b->ops == NULL || b->ops->print_one == NULL)
6379 {
6380 /* If breakpoint has a single location that is disabled, we
6381 print it as if it had several locations, since otherwise it's
6382 hard to represent "breakpoint enabled, location disabled"
6383 situation.
6384
6385 Note that while hardware watchpoints have several locations
6386 internally, that's not a property exposed to user. */
6387 if (b->loc
6388 && !is_hardware_watchpoint (b)
6389 && (b->loc->next || !b->loc->enabled))
6390 {
6391 gdb::optional<ui_out_emit_list> locations_list;
6392
6393 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6394 MI record. For later versions, place breakpoint locations in a
6395 list. */
6396 if (uiout->is_mi_like_p () && use_fixed_output)
6397 locations_list.emplace (uiout, "locations");
6398
6399 int n = 1;
6400 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6401 {
6402 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6403 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6404 }
6405 }
6406 }
6407 }
6408
6409 static int
6410 breakpoint_address_bits (struct breakpoint *b)
6411 {
6412 int print_address_bits = 0;
6413 struct bp_location *loc;
6414
6415 /* Software watchpoints that aren't watching memory don't have an
6416 address to print. */
6417 if (is_no_memory_software_watchpoint (b))
6418 return 0;
6419
6420 for (loc = b->loc; loc; loc = loc->next)
6421 {
6422 int addr_bit;
6423
6424 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6425 if (addr_bit > print_address_bits)
6426 print_address_bits = addr_bit;
6427 }
6428
6429 return print_address_bits;
6430 }
6431
6432 /* See breakpoint.h. */
6433
6434 void
6435 print_breakpoint (breakpoint *b)
6436 {
6437 struct bp_location *dummy_loc = NULL;
6438 print_one_breakpoint (b, &dummy_loc, 0);
6439 }
6440
6441 /* Return true if this breakpoint was set by the user, false if it is
6442 internal or momentary. */
6443
6444 int
6445 user_breakpoint_p (struct breakpoint *b)
6446 {
6447 return b->number > 0;
6448 }
6449
6450 /* See breakpoint.h. */
6451
6452 int
6453 pending_breakpoint_p (struct breakpoint *b)
6454 {
6455 return b->loc == NULL;
6456 }
6457
6458 /* Print information on user settable breakpoint (watchpoint, etc)
6459 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6460 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6461 FILTER is non-NULL, call it on each breakpoint and only include the
6462 ones for which it returns non-zero. Return the total number of
6463 breakpoints listed. */
6464
6465 static int
6466 breakpoint_1 (const char *args, int allflag,
6467 int (*filter) (const struct breakpoint *))
6468 {
6469 struct breakpoint *b;
6470 struct bp_location *last_loc = NULL;
6471 int nr_printable_breakpoints;
6472 struct value_print_options opts;
6473 int print_address_bits = 0;
6474 int print_type_col_width = 14;
6475 struct ui_out *uiout = current_uiout;
6476
6477 get_user_print_options (&opts);
6478
6479 /* Compute the number of rows in the table, as well as the size
6480 required for address fields. */
6481 nr_printable_breakpoints = 0;
6482 ALL_BREAKPOINTS (b)
6483 {
6484 /* If we have a filter, only list the breakpoints it accepts. */
6485 if (filter && !filter (b))
6486 continue;
6487
6488 /* If we have an "args" string, it is a list of breakpoints to
6489 accept. Skip the others. */
6490 if (args != NULL && *args != '\0')
6491 {
6492 if (allflag && parse_and_eval_long (args) != b->number)
6493 continue;
6494 if (!allflag && !number_is_in_list (args, b->number))
6495 continue;
6496 }
6497
6498 if (allflag || user_breakpoint_p (b))
6499 {
6500 int addr_bit, type_len;
6501
6502 addr_bit = breakpoint_address_bits (b);
6503 if (addr_bit > print_address_bits)
6504 print_address_bits = addr_bit;
6505
6506 type_len = strlen (bptype_string (b->type));
6507 if (type_len > print_type_col_width)
6508 print_type_col_width = type_len;
6509
6510 nr_printable_breakpoints++;
6511 }
6512 }
6513
6514 {
6515 ui_out_emit_table table_emitter (uiout,
6516 opts.addressprint ? 6 : 5,
6517 nr_printable_breakpoints,
6518 "BreakpointTable");
6519
6520 if (nr_printable_breakpoints > 0)
6521 annotate_breakpoints_headers ();
6522 if (nr_printable_breakpoints > 0)
6523 annotate_field (0);
6524 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6525 if (nr_printable_breakpoints > 0)
6526 annotate_field (1);
6527 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6528 if (nr_printable_breakpoints > 0)
6529 annotate_field (2);
6530 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6531 if (nr_printable_breakpoints > 0)
6532 annotate_field (3);
6533 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6534 if (opts.addressprint)
6535 {
6536 if (nr_printable_breakpoints > 0)
6537 annotate_field (4);
6538 if (print_address_bits <= 32)
6539 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6540 else
6541 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6542 }
6543 if (nr_printable_breakpoints > 0)
6544 annotate_field (5);
6545 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6546 uiout->table_body ();
6547 if (nr_printable_breakpoints > 0)
6548 annotate_breakpoints_table ();
6549
6550 ALL_BREAKPOINTS (b)
6551 {
6552 QUIT;
6553 /* If we have a filter, only list the breakpoints it accepts. */
6554 if (filter && !filter (b))
6555 continue;
6556
6557 /* If we have an "args" string, it is a list of breakpoints to
6558 accept. Skip the others. */
6559
6560 if (args != NULL && *args != '\0')
6561 {
6562 if (allflag) /* maintenance info breakpoint */
6563 {
6564 if (parse_and_eval_long (args) != b->number)
6565 continue;
6566 }
6567 else /* all others */
6568 {
6569 if (!number_is_in_list (args, b->number))
6570 continue;
6571 }
6572 }
6573 /* We only print out user settable breakpoints unless the
6574 allflag is set. */
6575 if (allflag || user_breakpoint_p (b))
6576 print_one_breakpoint (b, &last_loc, allflag);
6577 }
6578 }
6579
6580 if (nr_printable_breakpoints == 0)
6581 {
6582 /* If there's a filter, let the caller decide how to report
6583 empty list. */
6584 if (!filter)
6585 {
6586 if (args == NULL || *args == '\0')
6587 uiout->message ("No breakpoints or watchpoints.\n");
6588 else
6589 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6590 args);
6591 }
6592 }
6593 else
6594 {
6595 if (last_loc && !server_command)
6596 set_next_address (last_loc->gdbarch, last_loc->address);
6597 }
6598
6599 /* FIXME? Should this be moved up so that it is only called when
6600 there have been breakpoints? */
6601 annotate_breakpoints_table_end ();
6602
6603 return nr_printable_breakpoints;
6604 }
6605
6606 /* Display the value of default-collect in a way that is generally
6607 compatible with the breakpoint list. */
6608
6609 static void
6610 default_collect_info (void)
6611 {
6612 struct ui_out *uiout = current_uiout;
6613
6614 /* If it has no value (which is frequently the case), say nothing; a
6615 message like "No default-collect." gets in user's face when it's
6616 not wanted. */
6617 if (!*default_collect)
6618 return;
6619
6620 /* The following phrase lines up nicely with per-tracepoint collect
6621 actions. */
6622 uiout->text ("default collect ");
6623 uiout->field_string ("default-collect", default_collect);
6624 uiout->text (" \n");
6625 }
6626
6627 static void
6628 info_breakpoints_command (const char *args, int from_tty)
6629 {
6630 breakpoint_1 (args, 0, NULL);
6631
6632 default_collect_info ();
6633 }
6634
6635 static void
6636 info_watchpoints_command (const char *args, int from_tty)
6637 {
6638 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6639 struct ui_out *uiout = current_uiout;
6640
6641 if (num_printed == 0)
6642 {
6643 if (args == NULL || *args == '\0')
6644 uiout->message ("No watchpoints.\n");
6645 else
6646 uiout->message ("No watchpoint matching '%s'.\n", args);
6647 }
6648 }
6649
6650 static void
6651 maintenance_info_breakpoints (const char *args, int from_tty)
6652 {
6653 breakpoint_1 (args, 1, NULL);
6654
6655 default_collect_info ();
6656 }
6657
6658 static int
6659 breakpoint_has_pc (struct breakpoint *b,
6660 struct program_space *pspace,
6661 CORE_ADDR pc, struct obj_section *section)
6662 {
6663 struct bp_location *bl = b->loc;
6664
6665 for (; bl; bl = bl->next)
6666 {
6667 if (bl->pspace == pspace
6668 && bl->address == pc
6669 && (!overlay_debugging || bl->section == section))
6670 return 1;
6671 }
6672 return 0;
6673 }
6674
6675 /* Print a message describing any user-breakpoints set at PC. This
6676 concerns with logical breakpoints, so we match program spaces, not
6677 address spaces. */
6678
6679 static void
6680 describe_other_breakpoints (struct gdbarch *gdbarch,
6681 struct program_space *pspace, CORE_ADDR pc,
6682 struct obj_section *section, int thread)
6683 {
6684 int others = 0;
6685 struct breakpoint *b;
6686
6687 ALL_BREAKPOINTS (b)
6688 others += (user_breakpoint_p (b)
6689 && breakpoint_has_pc (b, pspace, pc, section));
6690 if (others > 0)
6691 {
6692 if (others == 1)
6693 printf_filtered (_("Note: breakpoint "));
6694 else /* if (others == ???) */
6695 printf_filtered (_("Note: breakpoints "));
6696 ALL_BREAKPOINTS (b)
6697 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6698 {
6699 others--;
6700 printf_filtered ("%d", b->number);
6701 if (b->thread == -1 && thread != -1)
6702 printf_filtered (" (all threads)");
6703 else if (b->thread != -1)
6704 printf_filtered (" (thread %d)", b->thread);
6705 printf_filtered ("%s%s ",
6706 ((b->enable_state == bp_disabled
6707 || b->enable_state == bp_call_disabled)
6708 ? " (disabled)"
6709 : ""),
6710 (others > 1) ? ","
6711 : ((others == 1) ? " and" : ""));
6712 }
6713 printf_filtered (_("also set at pc "));
6714 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6715 printf_filtered (".\n");
6716 }
6717 }
6718 \f
6719
6720 /* Return true iff it is meaningful to use the address member of
6721 BPT locations. For some breakpoint types, the locations' address members
6722 are irrelevant and it makes no sense to attempt to compare them to other
6723 addresses (or use them for any other purpose either).
6724
6725 More specifically, each of the following breakpoint types will
6726 always have a zero valued location address and we don't want to mark
6727 breakpoints of any of these types to be a duplicate of an actual
6728 breakpoint location at address zero:
6729
6730 bp_watchpoint
6731 bp_catchpoint
6732
6733 */
6734
6735 static int
6736 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6737 {
6738 enum bptype type = bpt->type;
6739
6740 return (type != bp_watchpoint && type != bp_catchpoint);
6741 }
6742
6743 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6744 true if LOC1 and LOC2 represent the same watchpoint location. */
6745
6746 static int
6747 watchpoint_locations_match (struct bp_location *loc1,
6748 struct bp_location *loc2)
6749 {
6750 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6751 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6752
6753 /* Both of them must exist. */
6754 gdb_assert (w1 != NULL);
6755 gdb_assert (w2 != NULL);
6756
6757 /* If the target can evaluate the condition expression in hardware,
6758 then we we need to insert both watchpoints even if they are at
6759 the same place. Otherwise the watchpoint will only trigger when
6760 the condition of whichever watchpoint was inserted evaluates to
6761 true, not giving a chance for GDB to check the condition of the
6762 other watchpoint. */
6763 if ((w1->cond_exp
6764 && target_can_accel_watchpoint_condition (loc1->address,
6765 loc1->length,
6766 loc1->watchpoint_type,
6767 w1->cond_exp.get ()))
6768 || (w2->cond_exp
6769 && target_can_accel_watchpoint_condition (loc2->address,
6770 loc2->length,
6771 loc2->watchpoint_type,
6772 w2->cond_exp.get ())))
6773 return 0;
6774
6775 /* Note that this checks the owner's type, not the location's. In
6776 case the target does not support read watchpoints, but does
6777 support access watchpoints, we'll have bp_read_watchpoint
6778 watchpoints with hw_access locations. Those should be considered
6779 duplicates of hw_read locations. The hw_read locations will
6780 become hw_access locations later. */
6781 return (loc1->owner->type == loc2->owner->type
6782 && loc1->pspace->aspace == loc2->pspace->aspace
6783 && loc1->address == loc2->address
6784 && loc1->length == loc2->length);
6785 }
6786
6787 /* See breakpoint.h. */
6788
6789 int
6790 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6791 const address_space *aspace2, CORE_ADDR addr2)
6792 {
6793 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6794 || aspace1 == aspace2)
6795 && addr1 == addr2);
6796 }
6797
6798 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6799 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6800 matches ASPACE2. On targets that have global breakpoints, the address
6801 space doesn't really matter. */
6802
6803 static int
6804 breakpoint_address_match_range (const address_space *aspace1,
6805 CORE_ADDR addr1,
6806 int len1, const address_space *aspace2,
6807 CORE_ADDR addr2)
6808 {
6809 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6810 || aspace1 == aspace2)
6811 && addr2 >= addr1 && addr2 < addr1 + len1);
6812 }
6813
6814 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6815 a ranged breakpoint. In most targets, a match happens only if ASPACE
6816 matches the breakpoint's address space. On targets that have global
6817 breakpoints, the address space doesn't really matter. */
6818
6819 static int
6820 breakpoint_location_address_match (struct bp_location *bl,
6821 const address_space *aspace,
6822 CORE_ADDR addr)
6823 {
6824 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6825 aspace, addr)
6826 || (bl->length
6827 && breakpoint_address_match_range (bl->pspace->aspace,
6828 bl->address, bl->length,
6829 aspace, addr)));
6830 }
6831
6832 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6833 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6834 match happens only if ASPACE matches the breakpoint's address
6835 space. On targets that have global breakpoints, the address space
6836 doesn't really matter. */
6837
6838 static int
6839 breakpoint_location_address_range_overlap (struct bp_location *bl,
6840 const address_space *aspace,
6841 CORE_ADDR addr, int len)
6842 {
6843 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6844 || bl->pspace->aspace == aspace)
6845 {
6846 int bl_len = bl->length != 0 ? bl->length : 1;
6847
6848 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6849 return 1;
6850 }
6851 return 0;
6852 }
6853
6854 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6855 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6856 true, otherwise returns false. */
6857
6858 static int
6859 tracepoint_locations_match (struct bp_location *loc1,
6860 struct bp_location *loc2)
6861 {
6862 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6863 /* Since tracepoint locations are never duplicated with others', tracepoint
6864 locations at the same address of different tracepoints are regarded as
6865 different locations. */
6866 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6867 else
6868 return 0;
6869 }
6870
6871 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6872 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6873 represent the same location. */
6874
6875 static int
6876 breakpoint_locations_match (struct bp_location *loc1,
6877 struct bp_location *loc2)
6878 {
6879 int hw_point1, hw_point2;
6880
6881 /* Both of them must not be in moribund_locations. */
6882 gdb_assert (loc1->owner != NULL);
6883 gdb_assert (loc2->owner != NULL);
6884
6885 hw_point1 = is_hardware_watchpoint (loc1->owner);
6886 hw_point2 = is_hardware_watchpoint (loc2->owner);
6887
6888 if (hw_point1 != hw_point2)
6889 return 0;
6890 else if (hw_point1)
6891 return watchpoint_locations_match (loc1, loc2);
6892 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6893 return tracepoint_locations_match (loc1, loc2);
6894 else
6895 /* We compare bp_location.length in order to cover ranged breakpoints. */
6896 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6897 loc2->pspace->aspace, loc2->address)
6898 && loc1->length == loc2->length);
6899 }
6900
6901 static void
6902 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6903 int bnum, int have_bnum)
6904 {
6905 /* The longest string possibly returned by hex_string_custom
6906 is 50 chars. These must be at least that big for safety. */
6907 char astr1[64];
6908 char astr2[64];
6909
6910 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6911 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6912 if (have_bnum)
6913 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6914 bnum, astr1, astr2);
6915 else
6916 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6917 }
6918
6919 /* Adjust a breakpoint's address to account for architectural
6920 constraints on breakpoint placement. Return the adjusted address.
6921 Note: Very few targets require this kind of adjustment. For most
6922 targets, this function is simply the identity function. */
6923
6924 static CORE_ADDR
6925 adjust_breakpoint_address (struct gdbarch *gdbarch,
6926 CORE_ADDR bpaddr, enum bptype bptype)
6927 {
6928 if (bptype == bp_watchpoint
6929 || bptype == bp_hardware_watchpoint
6930 || bptype == bp_read_watchpoint
6931 || bptype == bp_access_watchpoint
6932 || bptype == bp_catchpoint)
6933 {
6934 /* Watchpoints and the various bp_catch_* eventpoints should not
6935 have their addresses modified. */
6936 return bpaddr;
6937 }
6938 else if (bptype == bp_single_step)
6939 {
6940 /* Single-step breakpoints should not have their addresses
6941 modified. If there's any architectural constrain that
6942 applies to this address, then it should have already been
6943 taken into account when the breakpoint was created in the
6944 first place. If we didn't do this, stepping through e.g.,
6945 Thumb-2 IT blocks would break. */
6946 return bpaddr;
6947 }
6948 else
6949 {
6950 CORE_ADDR adjusted_bpaddr = bpaddr;
6951
6952 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6953 {
6954 /* Some targets have architectural constraints on the placement
6955 of breakpoint instructions. Obtain the adjusted address. */
6956 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6957 }
6958
6959 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6960
6961 /* An adjusted breakpoint address can significantly alter
6962 a user's expectations. Print a warning if an adjustment
6963 is required. */
6964 if (adjusted_bpaddr != bpaddr)
6965 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6966
6967 return adjusted_bpaddr;
6968 }
6969 }
6970
6971 bp_location::bp_location (breakpoint *owner)
6972 {
6973 bp_location *loc = this;
6974
6975 loc->owner = owner;
6976 loc->cond_bytecode = NULL;
6977 loc->shlib_disabled = 0;
6978 loc->enabled = 1;
6979
6980 switch (owner->type)
6981 {
6982 case bp_breakpoint:
6983 case bp_single_step:
6984 case bp_until:
6985 case bp_finish:
6986 case bp_longjmp:
6987 case bp_longjmp_resume:
6988 case bp_longjmp_call_dummy:
6989 case bp_exception:
6990 case bp_exception_resume:
6991 case bp_step_resume:
6992 case bp_hp_step_resume:
6993 case bp_watchpoint_scope:
6994 case bp_call_dummy:
6995 case bp_std_terminate:
6996 case bp_shlib_event:
6997 case bp_thread_event:
6998 case bp_overlay_event:
6999 case bp_jit_event:
7000 case bp_longjmp_master:
7001 case bp_std_terminate_master:
7002 case bp_exception_master:
7003 case bp_gnu_ifunc_resolver:
7004 case bp_gnu_ifunc_resolver_return:
7005 case bp_dprintf:
7006 loc->loc_type = bp_loc_software_breakpoint;
7007 mark_breakpoint_location_modified (loc);
7008 break;
7009 case bp_hardware_breakpoint:
7010 loc->loc_type = bp_loc_hardware_breakpoint;
7011 mark_breakpoint_location_modified (loc);
7012 break;
7013 case bp_hardware_watchpoint:
7014 case bp_read_watchpoint:
7015 case bp_access_watchpoint:
7016 loc->loc_type = bp_loc_hardware_watchpoint;
7017 break;
7018 case bp_watchpoint:
7019 case bp_catchpoint:
7020 case bp_tracepoint:
7021 case bp_fast_tracepoint:
7022 case bp_static_tracepoint:
7023 loc->loc_type = bp_loc_other;
7024 break;
7025 default:
7026 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7027 }
7028
7029 loc->refc = 1;
7030 }
7031
7032 /* Allocate a struct bp_location. */
7033
7034 static struct bp_location *
7035 allocate_bp_location (struct breakpoint *bpt)
7036 {
7037 return bpt->ops->allocate_location (bpt);
7038 }
7039
7040 static void
7041 free_bp_location (struct bp_location *loc)
7042 {
7043 delete loc;
7044 }
7045
7046 /* Increment reference count. */
7047
7048 static void
7049 incref_bp_location (struct bp_location *bl)
7050 {
7051 ++bl->refc;
7052 }
7053
7054 /* Decrement reference count. If the reference count reaches 0,
7055 destroy the bp_location. Sets *BLP to NULL. */
7056
7057 static void
7058 decref_bp_location (struct bp_location **blp)
7059 {
7060 gdb_assert ((*blp)->refc > 0);
7061
7062 if (--(*blp)->refc == 0)
7063 free_bp_location (*blp);
7064 *blp = NULL;
7065 }
7066
7067 /* Add breakpoint B at the end of the global breakpoint chain. */
7068
7069 static breakpoint *
7070 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7071 {
7072 struct breakpoint *b1;
7073 struct breakpoint *result = b.get ();
7074
7075 /* Add this breakpoint to the end of the chain so that a list of
7076 breakpoints will come out in order of increasing numbers. */
7077
7078 b1 = breakpoint_chain;
7079 if (b1 == 0)
7080 breakpoint_chain = b.release ();
7081 else
7082 {
7083 while (b1->next)
7084 b1 = b1->next;
7085 b1->next = b.release ();
7086 }
7087
7088 return result;
7089 }
7090
7091 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7092
7093 static void
7094 init_raw_breakpoint_without_location (struct breakpoint *b,
7095 struct gdbarch *gdbarch,
7096 enum bptype bptype,
7097 const struct breakpoint_ops *ops)
7098 {
7099 gdb_assert (ops != NULL);
7100
7101 b->ops = ops;
7102 b->type = bptype;
7103 b->gdbarch = gdbarch;
7104 b->language = current_language->la_language;
7105 b->input_radix = input_radix;
7106 b->related_breakpoint = b;
7107 }
7108
7109 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7110 that has type BPTYPE and has no locations as yet. */
7111
7112 static struct breakpoint *
7113 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7114 enum bptype bptype,
7115 const struct breakpoint_ops *ops)
7116 {
7117 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7118
7119 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7120 return add_to_breakpoint_chain (std::move (b));
7121 }
7122
7123 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7124 resolutions should be made as the user specified the location explicitly
7125 enough. */
7126
7127 static void
7128 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7129 {
7130 gdb_assert (loc->owner != NULL);
7131
7132 if (loc->owner->type == bp_breakpoint
7133 || loc->owner->type == bp_hardware_breakpoint
7134 || is_tracepoint (loc->owner))
7135 {
7136 const char *function_name;
7137
7138 if (loc->msymbol != NULL
7139 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7140 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7141 && !explicit_loc)
7142 {
7143 struct breakpoint *b = loc->owner;
7144
7145 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7146
7147 if (b->type == bp_breakpoint && b->loc == loc
7148 && loc->next == NULL && b->related_breakpoint == b)
7149 {
7150 /* Create only the whole new breakpoint of this type but do not
7151 mess more complicated breakpoints with multiple locations. */
7152 b->type = bp_gnu_ifunc_resolver;
7153 /* Remember the resolver's address for use by the return
7154 breakpoint. */
7155 loc->related_address = loc->address;
7156 }
7157 }
7158 else
7159 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7160
7161 if (function_name)
7162 loc->function_name = xstrdup (function_name);
7163 }
7164 }
7165
7166 /* Attempt to determine architecture of location identified by SAL. */
7167 struct gdbarch *
7168 get_sal_arch (struct symtab_and_line sal)
7169 {
7170 if (sal.section)
7171 return get_objfile_arch (sal.section->objfile);
7172 if (sal.symtab)
7173 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7174
7175 return NULL;
7176 }
7177
7178 /* Low level routine for partially initializing a breakpoint of type
7179 BPTYPE. The newly created breakpoint's address, section, source
7180 file name, and line number are provided by SAL.
7181
7182 It is expected that the caller will complete the initialization of
7183 the newly created breakpoint struct as well as output any status
7184 information regarding the creation of a new breakpoint. */
7185
7186 static void
7187 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7188 struct symtab_and_line sal, enum bptype bptype,
7189 const struct breakpoint_ops *ops)
7190 {
7191 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7192
7193 add_location_to_breakpoint (b, &sal);
7194
7195 if (bptype != bp_catchpoint)
7196 gdb_assert (sal.pspace != NULL);
7197
7198 /* Store the program space that was used to set the breakpoint,
7199 except for ordinary breakpoints, which are independent of the
7200 program space. */
7201 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7202 b->pspace = sal.pspace;
7203 }
7204
7205 /* set_raw_breakpoint is a low level routine for allocating and
7206 partially initializing a breakpoint of type BPTYPE. The newly
7207 created breakpoint's address, section, source file name, and line
7208 number are provided by SAL. The newly created and partially
7209 initialized breakpoint is added to the breakpoint chain and
7210 is also returned as the value of this function.
7211
7212 It is expected that the caller will complete the initialization of
7213 the newly created breakpoint struct as well as output any status
7214 information regarding the creation of a new breakpoint. In
7215 particular, set_raw_breakpoint does NOT set the breakpoint
7216 number! Care should be taken to not allow an error to occur
7217 prior to completing the initialization of the breakpoint. If this
7218 should happen, a bogus breakpoint will be left on the chain. */
7219
7220 struct breakpoint *
7221 set_raw_breakpoint (struct gdbarch *gdbarch,
7222 struct symtab_and_line sal, enum bptype bptype,
7223 const struct breakpoint_ops *ops)
7224 {
7225 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7226
7227 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7228 return add_to_breakpoint_chain (std::move (b));
7229 }
7230
7231 /* Call this routine when stepping and nexting to enable a breakpoint
7232 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7233 initiated the operation. */
7234
7235 void
7236 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7237 {
7238 struct breakpoint *b, *b_tmp;
7239 int thread = tp->global_num;
7240
7241 /* To avoid having to rescan all objfile symbols at every step,
7242 we maintain a list of continually-inserted but always disabled
7243 longjmp "master" breakpoints. Here, we simply create momentary
7244 clones of those and enable them for the requested thread. */
7245 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7246 if (b->pspace == current_program_space
7247 && (b->type == bp_longjmp_master
7248 || b->type == bp_exception_master))
7249 {
7250 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7251 struct breakpoint *clone;
7252
7253 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7254 after their removal. */
7255 clone = momentary_breakpoint_from_master (b, type,
7256 &momentary_breakpoint_ops, 1);
7257 clone->thread = thread;
7258 }
7259
7260 tp->initiating_frame = frame;
7261 }
7262
7263 /* Delete all longjmp breakpoints from THREAD. */
7264 void
7265 delete_longjmp_breakpoint (int thread)
7266 {
7267 struct breakpoint *b, *b_tmp;
7268
7269 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7270 if (b->type == bp_longjmp || b->type == bp_exception)
7271 {
7272 if (b->thread == thread)
7273 delete_breakpoint (b);
7274 }
7275 }
7276
7277 void
7278 delete_longjmp_breakpoint_at_next_stop (int thread)
7279 {
7280 struct breakpoint *b, *b_tmp;
7281
7282 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7283 if (b->type == bp_longjmp || b->type == bp_exception)
7284 {
7285 if (b->thread == thread)
7286 b->disposition = disp_del_at_next_stop;
7287 }
7288 }
7289
7290 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7291 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7292 pointer to any of them. Return NULL if this system cannot place longjmp
7293 breakpoints. */
7294
7295 struct breakpoint *
7296 set_longjmp_breakpoint_for_call_dummy (void)
7297 {
7298 struct breakpoint *b, *retval = NULL;
7299
7300 ALL_BREAKPOINTS (b)
7301 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7302 {
7303 struct breakpoint *new_b;
7304
7305 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7306 &momentary_breakpoint_ops,
7307 1);
7308 new_b->thread = inferior_thread ()->global_num;
7309
7310 /* Link NEW_B into the chain of RETVAL breakpoints. */
7311
7312 gdb_assert (new_b->related_breakpoint == new_b);
7313 if (retval == NULL)
7314 retval = new_b;
7315 new_b->related_breakpoint = retval;
7316 while (retval->related_breakpoint != new_b->related_breakpoint)
7317 retval = retval->related_breakpoint;
7318 retval->related_breakpoint = new_b;
7319 }
7320
7321 return retval;
7322 }
7323
7324 /* Verify all existing dummy frames and their associated breakpoints for
7325 TP. Remove those which can no longer be found in the current frame
7326 stack.
7327
7328 You should call this function only at places where it is safe to currently
7329 unwind the whole stack. Failed stack unwind would discard live dummy
7330 frames. */
7331
7332 void
7333 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7334 {
7335 struct breakpoint *b, *b_tmp;
7336
7337 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7338 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7339 {
7340 struct breakpoint *dummy_b = b->related_breakpoint;
7341
7342 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7343 dummy_b = dummy_b->related_breakpoint;
7344 if (dummy_b->type != bp_call_dummy
7345 || frame_find_by_id (dummy_b->frame_id) != NULL)
7346 continue;
7347
7348 dummy_frame_discard (dummy_b->frame_id, tp);
7349
7350 while (b->related_breakpoint != b)
7351 {
7352 if (b_tmp == b->related_breakpoint)
7353 b_tmp = b->related_breakpoint->next;
7354 delete_breakpoint (b->related_breakpoint);
7355 }
7356 delete_breakpoint (b);
7357 }
7358 }
7359
7360 void
7361 enable_overlay_breakpoints (void)
7362 {
7363 struct breakpoint *b;
7364
7365 ALL_BREAKPOINTS (b)
7366 if (b->type == bp_overlay_event)
7367 {
7368 b->enable_state = bp_enabled;
7369 update_global_location_list (UGLL_MAY_INSERT);
7370 overlay_events_enabled = 1;
7371 }
7372 }
7373
7374 void
7375 disable_overlay_breakpoints (void)
7376 {
7377 struct breakpoint *b;
7378
7379 ALL_BREAKPOINTS (b)
7380 if (b->type == bp_overlay_event)
7381 {
7382 b->enable_state = bp_disabled;
7383 update_global_location_list (UGLL_DONT_INSERT);
7384 overlay_events_enabled = 0;
7385 }
7386 }
7387
7388 /* Set an active std::terminate breakpoint for each std::terminate
7389 master breakpoint. */
7390 void
7391 set_std_terminate_breakpoint (void)
7392 {
7393 struct breakpoint *b, *b_tmp;
7394
7395 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7396 if (b->pspace == current_program_space
7397 && b->type == bp_std_terminate_master)
7398 {
7399 momentary_breakpoint_from_master (b, bp_std_terminate,
7400 &momentary_breakpoint_ops, 1);
7401 }
7402 }
7403
7404 /* Delete all the std::terminate breakpoints. */
7405 void
7406 delete_std_terminate_breakpoint (void)
7407 {
7408 struct breakpoint *b, *b_tmp;
7409
7410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7411 if (b->type == bp_std_terminate)
7412 delete_breakpoint (b);
7413 }
7414
7415 struct breakpoint *
7416 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7417 {
7418 struct breakpoint *b;
7419
7420 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7421 &internal_breakpoint_ops);
7422
7423 b->enable_state = bp_enabled;
7424 /* location has to be used or breakpoint_re_set will delete me. */
7425 b->location = new_address_location (b->loc->address, NULL, 0);
7426
7427 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7428
7429 return b;
7430 }
7431
7432 struct lang_and_radix
7433 {
7434 enum language lang;
7435 int radix;
7436 };
7437
7438 /* Create a breakpoint for JIT code registration and unregistration. */
7439
7440 struct breakpoint *
7441 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7442 {
7443 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7444 &internal_breakpoint_ops);
7445 }
7446
7447 /* Remove JIT code registration and unregistration breakpoint(s). */
7448
7449 void
7450 remove_jit_event_breakpoints (void)
7451 {
7452 struct breakpoint *b, *b_tmp;
7453
7454 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7455 if (b->type == bp_jit_event
7456 && b->loc->pspace == current_program_space)
7457 delete_breakpoint (b);
7458 }
7459
7460 void
7461 remove_solib_event_breakpoints (void)
7462 {
7463 struct breakpoint *b, *b_tmp;
7464
7465 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7466 if (b->type == bp_shlib_event
7467 && b->loc->pspace == current_program_space)
7468 delete_breakpoint (b);
7469 }
7470
7471 /* See breakpoint.h. */
7472
7473 void
7474 remove_solib_event_breakpoints_at_next_stop (void)
7475 {
7476 struct breakpoint *b, *b_tmp;
7477
7478 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7479 if (b->type == bp_shlib_event
7480 && b->loc->pspace == current_program_space)
7481 b->disposition = disp_del_at_next_stop;
7482 }
7483
7484 /* Helper for create_solib_event_breakpoint /
7485 create_and_insert_solib_event_breakpoint. Allows specifying which
7486 INSERT_MODE to pass through to update_global_location_list. */
7487
7488 static struct breakpoint *
7489 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7490 enum ugll_insert_mode insert_mode)
7491 {
7492 struct breakpoint *b;
7493
7494 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7495 &internal_breakpoint_ops);
7496 update_global_location_list_nothrow (insert_mode);
7497 return b;
7498 }
7499
7500 struct breakpoint *
7501 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7502 {
7503 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7504 }
7505
7506 /* See breakpoint.h. */
7507
7508 struct breakpoint *
7509 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7510 {
7511 struct breakpoint *b;
7512
7513 /* Explicitly tell update_global_location_list to insert
7514 locations. */
7515 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7516 if (!b->loc->inserted)
7517 {
7518 delete_breakpoint (b);
7519 return NULL;
7520 }
7521 return b;
7522 }
7523
7524 /* Disable any breakpoints that are on code in shared libraries. Only
7525 apply to enabled breakpoints, disabled ones can just stay disabled. */
7526
7527 void
7528 disable_breakpoints_in_shlibs (void)
7529 {
7530 struct bp_location *loc, **locp_tmp;
7531
7532 ALL_BP_LOCATIONS (loc, locp_tmp)
7533 {
7534 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7535 struct breakpoint *b = loc->owner;
7536
7537 /* We apply the check to all breakpoints, including disabled for
7538 those with loc->duplicate set. This is so that when breakpoint
7539 becomes enabled, or the duplicate is removed, gdb will try to
7540 insert all breakpoints. If we don't set shlib_disabled here,
7541 we'll try to insert those breakpoints and fail. */
7542 if (((b->type == bp_breakpoint)
7543 || (b->type == bp_jit_event)
7544 || (b->type == bp_hardware_breakpoint)
7545 || (is_tracepoint (b)))
7546 && loc->pspace == current_program_space
7547 && !loc->shlib_disabled
7548 && solib_name_from_address (loc->pspace, loc->address)
7549 )
7550 {
7551 loc->shlib_disabled = 1;
7552 }
7553 }
7554 }
7555
7556 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7557 notification of unloaded_shlib. Only apply to enabled breakpoints,
7558 disabled ones can just stay disabled. */
7559
7560 static void
7561 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7562 {
7563 struct bp_location *loc, **locp_tmp;
7564 int disabled_shlib_breaks = 0;
7565
7566 ALL_BP_LOCATIONS (loc, locp_tmp)
7567 {
7568 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7569 struct breakpoint *b = loc->owner;
7570
7571 if (solib->pspace == loc->pspace
7572 && !loc->shlib_disabled
7573 && (((b->type == bp_breakpoint
7574 || b->type == bp_jit_event
7575 || b->type == bp_hardware_breakpoint)
7576 && (loc->loc_type == bp_loc_hardware_breakpoint
7577 || loc->loc_type == bp_loc_software_breakpoint))
7578 || is_tracepoint (b))
7579 && solib_contains_address_p (solib, loc->address))
7580 {
7581 loc->shlib_disabled = 1;
7582 /* At this point, we cannot rely on remove_breakpoint
7583 succeeding so we must mark the breakpoint as not inserted
7584 to prevent future errors occurring in remove_breakpoints. */
7585 loc->inserted = 0;
7586
7587 /* This may cause duplicate notifications for the same breakpoint. */
7588 gdb::observers::breakpoint_modified.notify (b);
7589
7590 if (!disabled_shlib_breaks)
7591 {
7592 target_terminal::ours_for_output ();
7593 warning (_("Temporarily disabling breakpoints "
7594 "for unloaded shared library \"%s\""),
7595 solib->so_name);
7596 }
7597 disabled_shlib_breaks = 1;
7598 }
7599 }
7600 }
7601
7602 /* Disable any breakpoints and tracepoints in OBJFILE upon
7603 notification of free_objfile. Only apply to enabled breakpoints,
7604 disabled ones can just stay disabled. */
7605
7606 static void
7607 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7608 {
7609 struct breakpoint *b;
7610
7611 if (objfile == NULL)
7612 return;
7613
7614 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7615 managed by the user with add-symbol-file/remove-symbol-file.
7616 Similarly to how breakpoints in shared libraries are handled in
7617 response to "nosharedlibrary", mark breakpoints in such modules
7618 shlib_disabled so they end up uninserted on the next global
7619 location list update. Shared libraries not loaded by the user
7620 aren't handled here -- they're already handled in
7621 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7622 solib_unloaded observer. We skip objfiles that are not
7623 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7624 main objfile). */
7625 if ((objfile->flags & OBJF_SHARED) == 0
7626 || (objfile->flags & OBJF_USERLOADED) == 0)
7627 return;
7628
7629 ALL_BREAKPOINTS (b)
7630 {
7631 struct bp_location *loc;
7632 int bp_modified = 0;
7633
7634 if (!is_breakpoint (b) && !is_tracepoint (b))
7635 continue;
7636
7637 for (loc = b->loc; loc != NULL; loc = loc->next)
7638 {
7639 CORE_ADDR loc_addr = loc->address;
7640
7641 if (loc->loc_type != bp_loc_hardware_breakpoint
7642 && loc->loc_type != bp_loc_software_breakpoint)
7643 continue;
7644
7645 if (loc->shlib_disabled != 0)
7646 continue;
7647
7648 if (objfile->pspace != loc->pspace)
7649 continue;
7650
7651 if (loc->loc_type != bp_loc_hardware_breakpoint
7652 && loc->loc_type != bp_loc_software_breakpoint)
7653 continue;
7654
7655 if (is_addr_in_objfile (loc_addr, objfile))
7656 {
7657 loc->shlib_disabled = 1;
7658 /* At this point, we don't know whether the object was
7659 unmapped from the inferior or not, so leave the
7660 inserted flag alone. We'll handle failure to
7661 uninsert quietly, in case the object was indeed
7662 unmapped. */
7663
7664 mark_breakpoint_location_modified (loc);
7665
7666 bp_modified = 1;
7667 }
7668 }
7669
7670 if (bp_modified)
7671 gdb::observers::breakpoint_modified.notify (b);
7672 }
7673 }
7674
7675 /* FORK & VFORK catchpoints. */
7676
7677 /* An instance of this type is used to represent a fork or vfork
7678 catchpoint. A breakpoint is really of this type iff its ops pointer points
7679 to CATCH_FORK_BREAKPOINT_OPS. */
7680
7681 struct fork_catchpoint : public breakpoint
7682 {
7683 /* Process id of a child process whose forking triggered this
7684 catchpoint. This field is only valid immediately after this
7685 catchpoint has triggered. */
7686 ptid_t forked_inferior_pid;
7687 };
7688
7689 /* Implement the "insert" breakpoint_ops method for fork
7690 catchpoints. */
7691
7692 static int
7693 insert_catch_fork (struct bp_location *bl)
7694 {
7695 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7696 }
7697
7698 /* Implement the "remove" breakpoint_ops method for fork
7699 catchpoints. */
7700
7701 static int
7702 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7703 {
7704 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7705 }
7706
7707 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7708 catchpoints. */
7709
7710 static int
7711 breakpoint_hit_catch_fork (const struct bp_location *bl,
7712 const address_space *aspace, CORE_ADDR bp_addr,
7713 const struct target_waitstatus *ws)
7714 {
7715 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7716
7717 if (ws->kind != TARGET_WAITKIND_FORKED)
7718 return 0;
7719
7720 c->forked_inferior_pid = ws->value.related_pid;
7721 return 1;
7722 }
7723
7724 /* Implement the "print_it" breakpoint_ops method for fork
7725 catchpoints. */
7726
7727 static enum print_stop_action
7728 print_it_catch_fork (bpstat bs)
7729 {
7730 struct ui_out *uiout = current_uiout;
7731 struct breakpoint *b = bs->breakpoint_at;
7732 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7733
7734 annotate_catchpoint (b->number);
7735 maybe_print_thread_hit_breakpoint (uiout);
7736 if (b->disposition == disp_del)
7737 uiout->text ("Temporary catchpoint ");
7738 else
7739 uiout->text ("Catchpoint ");
7740 if (uiout->is_mi_like_p ())
7741 {
7742 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7743 uiout->field_string ("disp", bpdisp_text (b->disposition));
7744 }
7745 uiout->field_int ("bkptno", b->number);
7746 uiout->text (" (forked process ");
7747 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7748 uiout->text ("), ");
7749 return PRINT_SRC_AND_LOC;
7750 }
7751
7752 /* Implement the "print_one" breakpoint_ops method for fork
7753 catchpoints. */
7754
7755 static void
7756 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7757 {
7758 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7759 struct value_print_options opts;
7760 struct ui_out *uiout = current_uiout;
7761
7762 get_user_print_options (&opts);
7763
7764 /* Field 4, the address, is omitted (which makes the columns not
7765 line up too nicely with the headers, but the effect is relatively
7766 readable). */
7767 if (opts.addressprint)
7768 uiout->field_skip ("addr");
7769 annotate_field (5);
7770 uiout->text ("fork");
7771 if (c->forked_inferior_pid != null_ptid)
7772 {
7773 uiout->text (", process ");
7774 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7775 uiout->spaces (1);
7776 }
7777
7778 if (uiout->is_mi_like_p ())
7779 uiout->field_string ("catch-type", "fork");
7780 }
7781
7782 /* Implement the "print_mention" breakpoint_ops method for fork
7783 catchpoints. */
7784
7785 static void
7786 print_mention_catch_fork (struct breakpoint *b)
7787 {
7788 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7789 }
7790
7791 /* Implement the "print_recreate" breakpoint_ops method for fork
7792 catchpoints. */
7793
7794 static void
7795 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7796 {
7797 fprintf_unfiltered (fp, "catch fork");
7798 print_recreate_thread (b, fp);
7799 }
7800
7801 /* The breakpoint_ops structure to be used in fork catchpoints. */
7802
7803 static struct breakpoint_ops catch_fork_breakpoint_ops;
7804
7805 /* Implement the "insert" breakpoint_ops method for vfork
7806 catchpoints. */
7807
7808 static int
7809 insert_catch_vfork (struct bp_location *bl)
7810 {
7811 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7812 }
7813
7814 /* Implement the "remove" breakpoint_ops method for vfork
7815 catchpoints. */
7816
7817 static int
7818 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7819 {
7820 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7821 }
7822
7823 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7824 catchpoints. */
7825
7826 static int
7827 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7828 const address_space *aspace, CORE_ADDR bp_addr,
7829 const struct target_waitstatus *ws)
7830 {
7831 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7832
7833 if (ws->kind != TARGET_WAITKIND_VFORKED)
7834 return 0;
7835
7836 c->forked_inferior_pid = ws->value.related_pid;
7837 return 1;
7838 }
7839
7840 /* Implement the "print_it" breakpoint_ops method for vfork
7841 catchpoints. */
7842
7843 static enum print_stop_action
7844 print_it_catch_vfork (bpstat bs)
7845 {
7846 struct ui_out *uiout = current_uiout;
7847 struct breakpoint *b = bs->breakpoint_at;
7848 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7849
7850 annotate_catchpoint (b->number);
7851 maybe_print_thread_hit_breakpoint (uiout);
7852 if (b->disposition == disp_del)
7853 uiout->text ("Temporary catchpoint ");
7854 else
7855 uiout->text ("Catchpoint ");
7856 if (uiout->is_mi_like_p ())
7857 {
7858 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7859 uiout->field_string ("disp", bpdisp_text (b->disposition));
7860 }
7861 uiout->field_int ("bkptno", b->number);
7862 uiout->text (" (vforked process ");
7863 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7864 uiout->text ("), ");
7865 return PRINT_SRC_AND_LOC;
7866 }
7867
7868 /* Implement the "print_one" breakpoint_ops method for vfork
7869 catchpoints. */
7870
7871 static void
7872 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7873 {
7874 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7875 struct value_print_options opts;
7876 struct ui_out *uiout = current_uiout;
7877
7878 get_user_print_options (&opts);
7879 /* Field 4, the address, is omitted (which makes the columns not
7880 line up too nicely with the headers, but the effect is relatively
7881 readable). */
7882 if (opts.addressprint)
7883 uiout->field_skip ("addr");
7884 annotate_field (5);
7885 uiout->text ("vfork");
7886 if (c->forked_inferior_pid != null_ptid)
7887 {
7888 uiout->text (", process ");
7889 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7890 uiout->spaces (1);
7891 }
7892
7893 if (uiout->is_mi_like_p ())
7894 uiout->field_string ("catch-type", "vfork");
7895 }
7896
7897 /* Implement the "print_mention" breakpoint_ops method for vfork
7898 catchpoints. */
7899
7900 static void
7901 print_mention_catch_vfork (struct breakpoint *b)
7902 {
7903 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7904 }
7905
7906 /* Implement the "print_recreate" breakpoint_ops method for vfork
7907 catchpoints. */
7908
7909 static void
7910 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7911 {
7912 fprintf_unfiltered (fp, "catch vfork");
7913 print_recreate_thread (b, fp);
7914 }
7915
7916 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7917
7918 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7919
7920 /* An instance of this type is used to represent an solib catchpoint.
7921 A breakpoint is really of this type iff its ops pointer points to
7922 CATCH_SOLIB_BREAKPOINT_OPS. */
7923
7924 struct solib_catchpoint : public breakpoint
7925 {
7926 ~solib_catchpoint () override;
7927
7928 /* True for "catch load", false for "catch unload". */
7929 unsigned char is_load;
7930
7931 /* Regular expression to match, if any. COMPILED is only valid when
7932 REGEX is non-NULL. */
7933 char *regex;
7934 std::unique_ptr<compiled_regex> compiled;
7935 };
7936
7937 solib_catchpoint::~solib_catchpoint ()
7938 {
7939 xfree (this->regex);
7940 }
7941
7942 static int
7943 insert_catch_solib (struct bp_location *ignore)
7944 {
7945 return 0;
7946 }
7947
7948 static int
7949 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7950 {
7951 return 0;
7952 }
7953
7954 static int
7955 breakpoint_hit_catch_solib (const struct bp_location *bl,
7956 const address_space *aspace,
7957 CORE_ADDR bp_addr,
7958 const struct target_waitstatus *ws)
7959 {
7960 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7961 struct breakpoint *other;
7962
7963 if (ws->kind == TARGET_WAITKIND_LOADED)
7964 return 1;
7965
7966 ALL_BREAKPOINTS (other)
7967 {
7968 struct bp_location *other_bl;
7969
7970 if (other == bl->owner)
7971 continue;
7972
7973 if (other->type != bp_shlib_event)
7974 continue;
7975
7976 if (self->pspace != NULL && other->pspace != self->pspace)
7977 continue;
7978
7979 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7980 {
7981 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7982 return 1;
7983 }
7984 }
7985
7986 return 0;
7987 }
7988
7989 static void
7990 check_status_catch_solib (struct bpstats *bs)
7991 {
7992 struct solib_catchpoint *self
7993 = (struct solib_catchpoint *) bs->breakpoint_at;
7994
7995 if (self->is_load)
7996 {
7997 for (so_list *iter : current_program_space->added_solibs)
7998 {
7999 if (!self->regex
8000 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8001 return;
8002 }
8003 }
8004 else
8005 {
8006 for (const std::string &iter : current_program_space->deleted_solibs)
8007 {
8008 if (!self->regex
8009 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8010 return;
8011 }
8012 }
8013
8014 bs->stop = 0;
8015 bs->print_it = print_it_noop;
8016 }
8017
8018 static enum print_stop_action
8019 print_it_catch_solib (bpstat bs)
8020 {
8021 struct breakpoint *b = bs->breakpoint_at;
8022 struct ui_out *uiout = current_uiout;
8023
8024 annotate_catchpoint (b->number);
8025 maybe_print_thread_hit_breakpoint (uiout);
8026 if (b->disposition == disp_del)
8027 uiout->text ("Temporary catchpoint ");
8028 else
8029 uiout->text ("Catchpoint ");
8030 uiout->field_int ("bkptno", b->number);
8031 uiout->text ("\n");
8032 if (uiout->is_mi_like_p ())
8033 uiout->field_string ("disp", bpdisp_text (b->disposition));
8034 print_solib_event (1);
8035 return PRINT_SRC_AND_LOC;
8036 }
8037
8038 static void
8039 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8040 {
8041 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8042 struct value_print_options opts;
8043 struct ui_out *uiout = current_uiout;
8044
8045 get_user_print_options (&opts);
8046 /* Field 4, the address, is omitted (which makes the columns not
8047 line up too nicely with the headers, but the effect is relatively
8048 readable). */
8049 if (opts.addressprint)
8050 {
8051 annotate_field (4);
8052 uiout->field_skip ("addr");
8053 }
8054
8055 std::string msg;
8056 annotate_field (5);
8057 if (self->is_load)
8058 {
8059 if (self->regex)
8060 msg = string_printf (_("load of library matching %s"), self->regex);
8061 else
8062 msg = _("load of library");
8063 }
8064 else
8065 {
8066 if (self->regex)
8067 msg = string_printf (_("unload of library matching %s"), self->regex);
8068 else
8069 msg = _("unload of library");
8070 }
8071 uiout->field_string ("what", msg);
8072
8073 if (uiout->is_mi_like_p ())
8074 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8075 }
8076
8077 static void
8078 print_mention_catch_solib (struct breakpoint *b)
8079 {
8080 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8081
8082 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8083 self->is_load ? "load" : "unload");
8084 }
8085
8086 static void
8087 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8088 {
8089 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8090
8091 fprintf_unfiltered (fp, "%s %s",
8092 b->disposition == disp_del ? "tcatch" : "catch",
8093 self->is_load ? "load" : "unload");
8094 if (self->regex)
8095 fprintf_unfiltered (fp, " %s", self->regex);
8096 fprintf_unfiltered (fp, "\n");
8097 }
8098
8099 static struct breakpoint_ops catch_solib_breakpoint_ops;
8100
8101 /* Shared helper function (MI and CLI) for creating and installing
8102 a shared object event catchpoint. If IS_LOAD is non-zero then
8103 the events to be caught are load events, otherwise they are
8104 unload events. If IS_TEMP is non-zero the catchpoint is a
8105 temporary one. If ENABLED is non-zero the catchpoint is
8106 created in an enabled state. */
8107
8108 void
8109 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8110 {
8111 struct gdbarch *gdbarch = get_current_arch ();
8112
8113 if (!arg)
8114 arg = "";
8115 arg = skip_spaces (arg);
8116
8117 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8118
8119 if (*arg != '\0')
8120 {
8121 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8122 _("Invalid regexp")));
8123 c->regex = xstrdup (arg);
8124 }
8125
8126 c->is_load = is_load;
8127 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8128 &catch_solib_breakpoint_ops);
8129
8130 c->enable_state = enabled ? bp_enabled : bp_disabled;
8131
8132 install_breakpoint (0, std::move (c), 1);
8133 }
8134
8135 /* A helper function that does all the work for "catch load" and
8136 "catch unload". */
8137
8138 static void
8139 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8140 struct cmd_list_element *command)
8141 {
8142 int tempflag;
8143 const int enabled = 1;
8144
8145 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8146
8147 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8148 }
8149
8150 static void
8151 catch_load_command_1 (const char *arg, int from_tty,
8152 struct cmd_list_element *command)
8153 {
8154 catch_load_or_unload (arg, from_tty, 1, command);
8155 }
8156
8157 static void
8158 catch_unload_command_1 (const char *arg, int from_tty,
8159 struct cmd_list_element *command)
8160 {
8161 catch_load_or_unload (arg, from_tty, 0, command);
8162 }
8163
8164 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8165 is non-zero, then make the breakpoint temporary. If COND_STRING is
8166 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8167 the breakpoint_ops structure associated to the catchpoint. */
8168
8169 void
8170 init_catchpoint (struct breakpoint *b,
8171 struct gdbarch *gdbarch, int tempflag,
8172 const char *cond_string,
8173 const struct breakpoint_ops *ops)
8174 {
8175 symtab_and_line sal;
8176 sal.pspace = current_program_space;
8177
8178 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8179
8180 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8181 b->disposition = tempflag ? disp_del : disp_donttouch;
8182 }
8183
8184 void
8185 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8186 {
8187 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8188 set_breakpoint_number (internal, b);
8189 if (is_tracepoint (b))
8190 set_tracepoint_count (breakpoint_count);
8191 if (!internal)
8192 mention (b);
8193 gdb::observers::breakpoint_created.notify (b);
8194
8195 if (update_gll)
8196 update_global_location_list (UGLL_MAY_INSERT);
8197 }
8198
8199 static void
8200 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8201 int tempflag, const char *cond_string,
8202 const struct breakpoint_ops *ops)
8203 {
8204 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8205
8206 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8207
8208 c->forked_inferior_pid = null_ptid;
8209
8210 install_breakpoint (0, std::move (c), 1);
8211 }
8212
8213 /* Exec catchpoints. */
8214
8215 /* An instance of this type is used to represent an exec catchpoint.
8216 A breakpoint is really of this type iff its ops pointer points to
8217 CATCH_EXEC_BREAKPOINT_OPS. */
8218
8219 struct exec_catchpoint : public breakpoint
8220 {
8221 ~exec_catchpoint () override;
8222
8223 /* Filename of a program whose exec triggered this catchpoint.
8224 This field is only valid immediately after this catchpoint has
8225 triggered. */
8226 char *exec_pathname;
8227 };
8228
8229 /* Exec catchpoint destructor. */
8230
8231 exec_catchpoint::~exec_catchpoint ()
8232 {
8233 xfree (this->exec_pathname);
8234 }
8235
8236 static int
8237 insert_catch_exec (struct bp_location *bl)
8238 {
8239 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8240 }
8241
8242 static int
8243 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8244 {
8245 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8246 }
8247
8248 static int
8249 breakpoint_hit_catch_exec (const struct bp_location *bl,
8250 const address_space *aspace, CORE_ADDR bp_addr,
8251 const struct target_waitstatus *ws)
8252 {
8253 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8254
8255 if (ws->kind != TARGET_WAITKIND_EXECD)
8256 return 0;
8257
8258 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8259 return 1;
8260 }
8261
8262 static enum print_stop_action
8263 print_it_catch_exec (bpstat bs)
8264 {
8265 struct ui_out *uiout = current_uiout;
8266 struct breakpoint *b = bs->breakpoint_at;
8267 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8268
8269 annotate_catchpoint (b->number);
8270 maybe_print_thread_hit_breakpoint (uiout);
8271 if (b->disposition == disp_del)
8272 uiout->text ("Temporary catchpoint ");
8273 else
8274 uiout->text ("Catchpoint ");
8275 if (uiout->is_mi_like_p ())
8276 {
8277 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8278 uiout->field_string ("disp", bpdisp_text (b->disposition));
8279 }
8280 uiout->field_int ("bkptno", b->number);
8281 uiout->text (" (exec'd ");
8282 uiout->field_string ("new-exec", c->exec_pathname);
8283 uiout->text ("), ");
8284
8285 return PRINT_SRC_AND_LOC;
8286 }
8287
8288 static void
8289 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8290 {
8291 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8292 struct value_print_options opts;
8293 struct ui_out *uiout = current_uiout;
8294
8295 get_user_print_options (&opts);
8296
8297 /* Field 4, the address, is omitted (which makes the columns
8298 not line up too nicely with the headers, but the effect
8299 is relatively readable). */
8300 if (opts.addressprint)
8301 uiout->field_skip ("addr");
8302 annotate_field (5);
8303 uiout->text ("exec");
8304 if (c->exec_pathname != NULL)
8305 {
8306 uiout->text (", program \"");
8307 uiout->field_string ("what", c->exec_pathname);
8308 uiout->text ("\" ");
8309 }
8310
8311 if (uiout->is_mi_like_p ())
8312 uiout->field_string ("catch-type", "exec");
8313 }
8314
8315 static void
8316 print_mention_catch_exec (struct breakpoint *b)
8317 {
8318 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8319 }
8320
8321 /* Implement the "print_recreate" breakpoint_ops method for exec
8322 catchpoints. */
8323
8324 static void
8325 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8326 {
8327 fprintf_unfiltered (fp, "catch exec");
8328 print_recreate_thread (b, fp);
8329 }
8330
8331 static struct breakpoint_ops catch_exec_breakpoint_ops;
8332
8333 static int
8334 hw_breakpoint_used_count (void)
8335 {
8336 int i = 0;
8337 struct breakpoint *b;
8338 struct bp_location *bl;
8339
8340 ALL_BREAKPOINTS (b)
8341 {
8342 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8343 for (bl = b->loc; bl; bl = bl->next)
8344 {
8345 /* Special types of hardware breakpoints may use more than
8346 one register. */
8347 i += b->ops->resources_needed (bl);
8348 }
8349 }
8350
8351 return i;
8352 }
8353
8354 /* Returns the resources B would use if it were a hardware
8355 watchpoint. */
8356
8357 static int
8358 hw_watchpoint_use_count (struct breakpoint *b)
8359 {
8360 int i = 0;
8361 struct bp_location *bl;
8362
8363 if (!breakpoint_enabled (b))
8364 return 0;
8365
8366 for (bl = b->loc; bl; bl = bl->next)
8367 {
8368 /* Special types of hardware watchpoints may use more than
8369 one register. */
8370 i += b->ops->resources_needed (bl);
8371 }
8372
8373 return i;
8374 }
8375
8376 /* Returns the sum the used resources of all hardware watchpoints of
8377 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8378 the sum of the used resources of all hardware watchpoints of other
8379 types _not_ TYPE. */
8380
8381 static int
8382 hw_watchpoint_used_count_others (struct breakpoint *except,
8383 enum bptype type, int *other_type_used)
8384 {
8385 int i = 0;
8386 struct breakpoint *b;
8387
8388 *other_type_used = 0;
8389 ALL_BREAKPOINTS (b)
8390 {
8391 if (b == except)
8392 continue;
8393 if (!breakpoint_enabled (b))
8394 continue;
8395
8396 if (b->type == type)
8397 i += hw_watchpoint_use_count (b);
8398 else if (is_hardware_watchpoint (b))
8399 *other_type_used = 1;
8400 }
8401
8402 return i;
8403 }
8404
8405 void
8406 disable_watchpoints_before_interactive_call_start (void)
8407 {
8408 struct breakpoint *b;
8409
8410 ALL_BREAKPOINTS (b)
8411 {
8412 if (is_watchpoint (b) && breakpoint_enabled (b))
8413 {
8414 b->enable_state = bp_call_disabled;
8415 update_global_location_list (UGLL_DONT_INSERT);
8416 }
8417 }
8418 }
8419
8420 void
8421 enable_watchpoints_after_interactive_call_stop (void)
8422 {
8423 struct breakpoint *b;
8424
8425 ALL_BREAKPOINTS (b)
8426 {
8427 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8428 {
8429 b->enable_state = bp_enabled;
8430 update_global_location_list (UGLL_MAY_INSERT);
8431 }
8432 }
8433 }
8434
8435 void
8436 disable_breakpoints_before_startup (void)
8437 {
8438 current_program_space->executing_startup = 1;
8439 update_global_location_list (UGLL_DONT_INSERT);
8440 }
8441
8442 void
8443 enable_breakpoints_after_startup (void)
8444 {
8445 current_program_space->executing_startup = 0;
8446 breakpoint_re_set ();
8447 }
8448
8449 /* Create a new single-step breakpoint for thread THREAD, with no
8450 locations. */
8451
8452 static struct breakpoint *
8453 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8454 {
8455 std::unique_ptr<breakpoint> b (new breakpoint ());
8456
8457 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8458 &momentary_breakpoint_ops);
8459
8460 b->disposition = disp_donttouch;
8461 b->frame_id = null_frame_id;
8462
8463 b->thread = thread;
8464 gdb_assert (b->thread != 0);
8465
8466 return add_to_breakpoint_chain (std::move (b));
8467 }
8468
8469 /* Set a momentary breakpoint of type TYPE at address specified by
8470 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8471 frame. */
8472
8473 breakpoint_up
8474 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8475 struct frame_id frame_id, enum bptype type)
8476 {
8477 struct breakpoint *b;
8478
8479 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8480 tail-called one. */
8481 gdb_assert (!frame_id_artificial_p (frame_id));
8482
8483 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8484 b->enable_state = bp_enabled;
8485 b->disposition = disp_donttouch;
8486 b->frame_id = frame_id;
8487
8488 b->thread = inferior_thread ()->global_num;
8489
8490 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8491
8492 return breakpoint_up (b);
8493 }
8494
8495 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8496 The new breakpoint will have type TYPE, use OPS as its
8497 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8498
8499 static struct breakpoint *
8500 momentary_breakpoint_from_master (struct breakpoint *orig,
8501 enum bptype type,
8502 const struct breakpoint_ops *ops,
8503 int loc_enabled)
8504 {
8505 struct breakpoint *copy;
8506
8507 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8508 copy->loc = allocate_bp_location (copy);
8509 set_breakpoint_location_function (copy->loc, 1);
8510
8511 copy->loc->gdbarch = orig->loc->gdbarch;
8512 copy->loc->requested_address = orig->loc->requested_address;
8513 copy->loc->address = orig->loc->address;
8514 copy->loc->section = orig->loc->section;
8515 copy->loc->pspace = orig->loc->pspace;
8516 copy->loc->probe = orig->loc->probe;
8517 copy->loc->line_number = orig->loc->line_number;
8518 copy->loc->symtab = orig->loc->symtab;
8519 copy->loc->enabled = loc_enabled;
8520 copy->frame_id = orig->frame_id;
8521 copy->thread = orig->thread;
8522 copy->pspace = orig->pspace;
8523
8524 copy->enable_state = bp_enabled;
8525 copy->disposition = disp_donttouch;
8526 copy->number = internal_breakpoint_number--;
8527
8528 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8529 return copy;
8530 }
8531
8532 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8533 ORIG is NULL. */
8534
8535 struct breakpoint *
8536 clone_momentary_breakpoint (struct breakpoint *orig)
8537 {
8538 /* If there's nothing to clone, then return nothing. */
8539 if (orig == NULL)
8540 return NULL;
8541
8542 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8543 }
8544
8545 breakpoint_up
8546 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8547 enum bptype type)
8548 {
8549 struct symtab_and_line sal;
8550
8551 sal = find_pc_line (pc, 0);
8552 sal.pc = pc;
8553 sal.section = find_pc_overlay (pc);
8554 sal.explicit_pc = 1;
8555
8556 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8557 }
8558 \f
8559
8560 /* Tell the user we have just set a breakpoint B. */
8561
8562 static void
8563 mention (struct breakpoint *b)
8564 {
8565 b->ops->print_mention (b);
8566 current_uiout->text ("\n");
8567 }
8568 \f
8569
8570 static int bp_loc_is_permanent (struct bp_location *loc);
8571
8572 static struct bp_location *
8573 add_location_to_breakpoint (struct breakpoint *b,
8574 const struct symtab_and_line *sal)
8575 {
8576 struct bp_location *loc, **tmp;
8577 CORE_ADDR adjusted_address;
8578 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8579
8580 if (loc_gdbarch == NULL)
8581 loc_gdbarch = b->gdbarch;
8582
8583 /* Adjust the breakpoint's address prior to allocating a location.
8584 Once we call allocate_bp_location(), that mostly uninitialized
8585 location will be placed on the location chain. Adjustment of the
8586 breakpoint may cause target_read_memory() to be called and we do
8587 not want its scan of the location chain to find a breakpoint and
8588 location that's only been partially initialized. */
8589 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8590 sal->pc, b->type);
8591
8592 /* Sort the locations by their ADDRESS. */
8593 loc = allocate_bp_location (b);
8594 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8595 tmp = &((*tmp)->next))
8596 ;
8597 loc->next = *tmp;
8598 *tmp = loc;
8599
8600 loc->requested_address = sal->pc;
8601 loc->address = adjusted_address;
8602 loc->pspace = sal->pspace;
8603 loc->probe.prob = sal->prob;
8604 loc->probe.objfile = sal->objfile;
8605 gdb_assert (loc->pspace != NULL);
8606 loc->section = sal->section;
8607 loc->gdbarch = loc_gdbarch;
8608 loc->line_number = sal->line;
8609 loc->symtab = sal->symtab;
8610 loc->symbol = sal->symbol;
8611 loc->msymbol = sal->msymbol;
8612 loc->objfile = sal->objfile;
8613
8614 set_breakpoint_location_function (loc,
8615 sal->explicit_pc || sal->explicit_line);
8616
8617 /* While by definition, permanent breakpoints are already present in the
8618 code, we don't mark the location as inserted. Normally one would expect
8619 that GDB could rely on that breakpoint instruction to stop the program,
8620 thus removing the need to insert its own breakpoint, except that executing
8621 the breakpoint instruction can kill the target instead of reporting a
8622 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8623 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8624 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8625 breakpoint be inserted normally results in QEMU knowing about the GDB
8626 breakpoint, and thus trap before the breakpoint instruction is executed.
8627 (If GDB later needs to continue execution past the permanent breakpoint,
8628 it manually increments the PC, thus avoiding executing the breakpoint
8629 instruction.) */
8630 if (bp_loc_is_permanent (loc))
8631 loc->permanent = 1;
8632
8633 return loc;
8634 }
8635 \f
8636
8637 /* See breakpoint.h. */
8638
8639 int
8640 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8641 {
8642 int len;
8643 CORE_ADDR addr;
8644 const gdb_byte *bpoint;
8645 gdb_byte *target_mem;
8646
8647 addr = address;
8648 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8649
8650 /* Software breakpoints unsupported? */
8651 if (bpoint == NULL)
8652 return 0;
8653
8654 target_mem = (gdb_byte *) alloca (len);
8655
8656 /* Enable the automatic memory restoration from breakpoints while
8657 we read the memory. Otherwise we could say about our temporary
8658 breakpoints they are permanent. */
8659 scoped_restore restore_memory
8660 = make_scoped_restore_show_memory_breakpoints (0);
8661
8662 if (target_read_memory (address, target_mem, len) == 0
8663 && memcmp (target_mem, bpoint, len) == 0)
8664 return 1;
8665
8666 return 0;
8667 }
8668
8669 /* Return 1 if LOC is pointing to a permanent breakpoint,
8670 return 0 otherwise. */
8671
8672 static int
8673 bp_loc_is_permanent (struct bp_location *loc)
8674 {
8675 gdb_assert (loc != NULL);
8676
8677 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8678 attempt to read from the addresses the locations of these breakpoint types
8679 point to. program_breakpoint_here_p, below, will attempt to read
8680 memory. */
8681 if (!breakpoint_address_is_meaningful (loc->owner))
8682 return 0;
8683
8684 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8685 switch_to_program_space_and_thread (loc->pspace);
8686 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8687 }
8688
8689 /* Build a command list for the dprintf corresponding to the current
8690 settings of the dprintf style options. */
8691
8692 static void
8693 update_dprintf_command_list (struct breakpoint *b)
8694 {
8695 char *dprintf_args = b->extra_string;
8696 char *printf_line = NULL;
8697
8698 if (!dprintf_args)
8699 return;
8700
8701 dprintf_args = skip_spaces (dprintf_args);
8702
8703 /* Allow a comma, as it may have terminated a location, but don't
8704 insist on it. */
8705 if (*dprintf_args == ',')
8706 ++dprintf_args;
8707 dprintf_args = skip_spaces (dprintf_args);
8708
8709 if (*dprintf_args != '"')
8710 error (_("Bad format string, missing '\"'."));
8711
8712 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8713 printf_line = xstrprintf ("printf %s", dprintf_args);
8714 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8715 {
8716 if (!dprintf_function)
8717 error (_("No function supplied for dprintf call"));
8718
8719 if (dprintf_channel && strlen (dprintf_channel) > 0)
8720 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8721 dprintf_function,
8722 dprintf_channel,
8723 dprintf_args);
8724 else
8725 printf_line = xstrprintf ("call (void) %s (%s)",
8726 dprintf_function,
8727 dprintf_args);
8728 }
8729 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8730 {
8731 if (target_can_run_breakpoint_commands ())
8732 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8733 else
8734 {
8735 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8736 printf_line = xstrprintf ("printf %s", dprintf_args);
8737 }
8738 }
8739 else
8740 internal_error (__FILE__, __LINE__,
8741 _("Invalid dprintf style."));
8742
8743 gdb_assert (printf_line != NULL);
8744
8745 /* Manufacture a printf sequence. */
8746 struct command_line *printf_cmd_line
8747 = new struct command_line (simple_control, printf_line);
8748 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8749 command_lines_deleter ()));
8750 }
8751
8752 /* Update all dprintf commands, making their command lists reflect
8753 current style settings. */
8754
8755 static void
8756 update_dprintf_commands (const char *args, int from_tty,
8757 struct cmd_list_element *c)
8758 {
8759 struct breakpoint *b;
8760
8761 ALL_BREAKPOINTS (b)
8762 {
8763 if (b->type == bp_dprintf)
8764 update_dprintf_command_list (b);
8765 }
8766 }
8767
8768 /* Create a breakpoint with SAL as location. Use LOCATION
8769 as a description of the location, and COND_STRING
8770 as condition expression. If LOCATION is NULL then create an
8771 "address location" from the address in the SAL. */
8772
8773 static void
8774 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8775 gdb::array_view<const symtab_and_line> sals,
8776 event_location_up &&location,
8777 gdb::unique_xmalloc_ptr<char> filter,
8778 gdb::unique_xmalloc_ptr<char> cond_string,
8779 gdb::unique_xmalloc_ptr<char> extra_string,
8780 enum bptype type, enum bpdisp disposition,
8781 int thread, int task, int ignore_count,
8782 const struct breakpoint_ops *ops, int from_tty,
8783 int enabled, int internal, unsigned flags,
8784 int display_canonical)
8785 {
8786 int i;
8787
8788 if (type == bp_hardware_breakpoint)
8789 {
8790 int target_resources_ok;
8791
8792 i = hw_breakpoint_used_count ();
8793 target_resources_ok =
8794 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8795 i + 1, 0);
8796 if (target_resources_ok == 0)
8797 error (_("No hardware breakpoint support in the target."));
8798 else if (target_resources_ok < 0)
8799 error (_("Hardware breakpoints used exceeds limit."));
8800 }
8801
8802 gdb_assert (!sals.empty ());
8803
8804 for (const auto &sal : sals)
8805 {
8806 struct bp_location *loc;
8807
8808 if (from_tty)
8809 {
8810 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8811 if (!loc_gdbarch)
8812 loc_gdbarch = gdbarch;
8813
8814 describe_other_breakpoints (loc_gdbarch,
8815 sal.pspace, sal.pc, sal.section, thread);
8816 }
8817
8818 if (&sal == &sals[0])
8819 {
8820 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8821 b->thread = thread;
8822 b->task = task;
8823
8824 b->cond_string = cond_string.release ();
8825 b->extra_string = extra_string.release ();
8826 b->ignore_count = ignore_count;
8827 b->enable_state = enabled ? bp_enabled : bp_disabled;
8828 b->disposition = disposition;
8829
8830 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8831 b->loc->inserted = 1;
8832
8833 if (type == bp_static_tracepoint)
8834 {
8835 struct tracepoint *t = (struct tracepoint *) b;
8836 struct static_tracepoint_marker marker;
8837
8838 if (strace_marker_p (b))
8839 {
8840 /* We already know the marker exists, otherwise, we
8841 wouldn't see a sal for it. */
8842 const char *p
8843 = &event_location_to_string (b->location.get ())[3];
8844 const char *endp;
8845
8846 p = skip_spaces (p);
8847
8848 endp = skip_to_space (p);
8849
8850 t->static_trace_marker_id.assign (p, endp - p);
8851
8852 printf_filtered (_("Probed static tracepoint "
8853 "marker \"%s\"\n"),
8854 t->static_trace_marker_id.c_str ());
8855 }
8856 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8857 {
8858 t->static_trace_marker_id = std::move (marker.str_id);
8859
8860 printf_filtered (_("Probed static tracepoint "
8861 "marker \"%s\"\n"),
8862 t->static_trace_marker_id.c_str ());
8863 }
8864 else
8865 warning (_("Couldn't determine the static "
8866 "tracepoint marker to probe"));
8867 }
8868
8869 loc = b->loc;
8870 }
8871 else
8872 {
8873 loc = add_location_to_breakpoint (b, &sal);
8874 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8875 loc->inserted = 1;
8876 }
8877
8878 if (b->cond_string)
8879 {
8880 const char *arg = b->cond_string;
8881
8882 loc->cond = parse_exp_1 (&arg, loc->address,
8883 block_for_pc (loc->address), 0);
8884 if (*arg)
8885 error (_("Garbage '%s' follows condition"), arg);
8886 }
8887
8888 /* Dynamic printf requires and uses additional arguments on the
8889 command line, otherwise it's an error. */
8890 if (type == bp_dprintf)
8891 {
8892 if (b->extra_string)
8893 update_dprintf_command_list (b);
8894 else
8895 error (_("Format string required"));
8896 }
8897 else if (b->extra_string)
8898 error (_("Garbage '%s' at end of command"), b->extra_string);
8899 }
8900
8901 b->display_canonical = display_canonical;
8902 if (location != NULL)
8903 b->location = std::move (location);
8904 else
8905 b->location = new_address_location (b->loc->address, NULL, 0);
8906 b->filter = filter.release ();
8907 }
8908
8909 static void
8910 create_breakpoint_sal (struct gdbarch *gdbarch,
8911 gdb::array_view<const symtab_and_line> sals,
8912 event_location_up &&location,
8913 gdb::unique_xmalloc_ptr<char> filter,
8914 gdb::unique_xmalloc_ptr<char> cond_string,
8915 gdb::unique_xmalloc_ptr<char> extra_string,
8916 enum bptype type, enum bpdisp disposition,
8917 int thread, int task, int ignore_count,
8918 const struct breakpoint_ops *ops, int from_tty,
8919 int enabled, int internal, unsigned flags,
8920 int display_canonical)
8921 {
8922 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8923
8924 init_breakpoint_sal (b.get (), gdbarch,
8925 sals, std::move (location),
8926 std::move (filter),
8927 std::move (cond_string),
8928 std::move (extra_string),
8929 type, disposition,
8930 thread, task, ignore_count,
8931 ops, from_tty,
8932 enabled, internal, flags,
8933 display_canonical);
8934
8935 install_breakpoint (internal, std::move (b), 0);
8936 }
8937
8938 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8939 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8940 value. COND_STRING, if not NULL, specified the condition to be
8941 used for all breakpoints. Essentially the only case where
8942 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8943 function. In that case, it's still not possible to specify
8944 separate conditions for different overloaded functions, so
8945 we take just a single condition string.
8946
8947 NOTE: If the function succeeds, the caller is expected to cleanup
8948 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8949 array contents). If the function fails (error() is called), the
8950 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8951 COND and SALS arrays and each of those arrays contents. */
8952
8953 static void
8954 create_breakpoints_sal (struct gdbarch *gdbarch,
8955 struct linespec_result *canonical,
8956 gdb::unique_xmalloc_ptr<char> cond_string,
8957 gdb::unique_xmalloc_ptr<char> extra_string,
8958 enum bptype type, enum bpdisp disposition,
8959 int thread, int task, int ignore_count,
8960 const struct breakpoint_ops *ops, int from_tty,
8961 int enabled, int internal, unsigned flags)
8962 {
8963 if (canonical->pre_expanded)
8964 gdb_assert (canonical->lsals.size () == 1);
8965
8966 for (const auto &lsal : canonical->lsals)
8967 {
8968 /* Note that 'location' can be NULL in the case of a plain
8969 'break', without arguments. */
8970 event_location_up location
8971 = (canonical->location != NULL
8972 ? copy_event_location (canonical->location.get ()) : NULL);
8973 gdb::unique_xmalloc_ptr<char> filter_string
8974 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8975
8976 create_breakpoint_sal (gdbarch, lsal.sals,
8977 std::move (location),
8978 std::move (filter_string),
8979 std::move (cond_string),
8980 std::move (extra_string),
8981 type, disposition,
8982 thread, task, ignore_count, ops,
8983 from_tty, enabled, internal, flags,
8984 canonical->special_display);
8985 }
8986 }
8987
8988 /* Parse LOCATION which is assumed to be a SAL specification possibly
8989 followed by conditionals. On return, SALS contains an array of SAL
8990 addresses found. LOCATION points to the end of the SAL (for
8991 linespec locations).
8992
8993 The array and the line spec strings are allocated on the heap, it is
8994 the caller's responsibility to free them. */
8995
8996 static void
8997 parse_breakpoint_sals (const struct event_location *location,
8998 struct linespec_result *canonical)
8999 {
9000 struct symtab_and_line cursal;
9001
9002 if (event_location_type (location) == LINESPEC_LOCATION)
9003 {
9004 const char *spec = get_linespec_location (location)->spec_string;
9005
9006 if (spec == NULL)
9007 {
9008 /* The last displayed codepoint, if it's valid, is our default
9009 breakpoint address. */
9010 if (last_displayed_sal_is_valid ())
9011 {
9012 /* Set sal's pspace, pc, symtab, and line to the values
9013 corresponding to the last call to print_frame_info.
9014 Be sure to reinitialize LINE with NOTCURRENT == 0
9015 as the breakpoint line number is inappropriate otherwise.
9016 find_pc_line would adjust PC, re-set it back. */
9017 symtab_and_line sal = get_last_displayed_sal ();
9018 CORE_ADDR pc = sal.pc;
9019
9020 sal = find_pc_line (pc, 0);
9021
9022 /* "break" without arguments is equivalent to "break *PC"
9023 where PC is the last displayed codepoint's address. So
9024 make sure to set sal.explicit_pc to prevent GDB from
9025 trying to expand the list of sals to include all other
9026 instances with the same symtab and line. */
9027 sal.pc = pc;
9028 sal.explicit_pc = 1;
9029
9030 struct linespec_sals lsal;
9031 lsal.sals = {sal};
9032 lsal.canonical = NULL;
9033
9034 canonical->lsals.push_back (std::move (lsal));
9035 return;
9036 }
9037 else
9038 error (_("No default breakpoint address now."));
9039 }
9040 }
9041
9042 /* Force almost all breakpoints to be in terms of the
9043 current_source_symtab (which is decode_line_1's default).
9044 This should produce the results we want almost all of the
9045 time while leaving default_breakpoint_* alone.
9046
9047 ObjC: However, don't match an Objective-C method name which
9048 may have a '+' or '-' succeeded by a '['. */
9049 cursal = get_current_source_symtab_and_line ();
9050 if (last_displayed_sal_is_valid ())
9051 {
9052 const char *spec = NULL;
9053
9054 if (event_location_type (location) == LINESPEC_LOCATION)
9055 spec = get_linespec_location (location)->spec_string;
9056
9057 if (!cursal.symtab
9058 || (spec != NULL
9059 && strchr ("+-", spec[0]) != NULL
9060 && spec[1] != '['))
9061 {
9062 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9063 get_last_displayed_symtab (),
9064 get_last_displayed_line (),
9065 canonical, NULL, NULL);
9066 return;
9067 }
9068 }
9069
9070 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9071 cursal.symtab, cursal.line, canonical, NULL, NULL);
9072 }
9073
9074
9075 /* Convert each SAL into a real PC. Verify that the PC can be
9076 inserted as a breakpoint. If it can't throw an error. */
9077
9078 static void
9079 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9080 {
9081 for (auto &sal : sals)
9082 resolve_sal_pc (&sal);
9083 }
9084
9085 /* Fast tracepoints may have restrictions on valid locations. For
9086 instance, a fast tracepoint using a jump instead of a trap will
9087 likely have to overwrite more bytes than a trap would, and so can
9088 only be placed where the instruction is longer than the jump, or a
9089 multi-instruction sequence does not have a jump into the middle of
9090 it, etc. */
9091
9092 static void
9093 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9094 gdb::array_view<const symtab_and_line> sals)
9095 {
9096 for (const auto &sal : sals)
9097 {
9098 struct gdbarch *sarch;
9099
9100 sarch = get_sal_arch (sal);
9101 /* We fall back to GDBARCH if there is no architecture
9102 associated with SAL. */
9103 if (sarch == NULL)
9104 sarch = gdbarch;
9105 std::string msg;
9106 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9107 error (_("May not have a fast tracepoint at %s%s"),
9108 paddress (sarch, sal.pc), msg.c_str ());
9109 }
9110 }
9111
9112 /* Given TOK, a string specification of condition and thread, as
9113 accepted by the 'break' command, extract the condition
9114 string and thread number and set *COND_STRING and *THREAD.
9115 PC identifies the context at which the condition should be parsed.
9116 If no condition is found, *COND_STRING is set to NULL.
9117 If no thread is found, *THREAD is set to -1. */
9118
9119 static void
9120 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9121 char **cond_string, int *thread, int *task,
9122 char **rest)
9123 {
9124 *cond_string = NULL;
9125 *thread = -1;
9126 *task = 0;
9127 *rest = NULL;
9128
9129 while (tok && *tok)
9130 {
9131 const char *end_tok;
9132 int toklen;
9133 const char *cond_start = NULL;
9134 const char *cond_end = NULL;
9135
9136 tok = skip_spaces (tok);
9137
9138 if ((*tok == '"' || *tok == ',') && rest)
9139 {
9140 *rest = savestring (tok, strlen (tok));
9141 return;
9142 }
9143
9144 end_tok = skip_to_space (tok);
9145
9146 toklen = end_tok - tok;
9147
9148 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9149 {
9150 tok = cond_start = end_tok + 1;
9151 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9152 cond_end = tok;
9153 *cond_string = savestring (cond_start, cond_end - cond_start);
9154 }
9155 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9156 {
9157 const char *tmptok;
9158 struct thread_info *thr;
9159
9160 tok = end_tok + 1;
9161 thr = parse_thread_id (tok, &tmptok);
9162 if (tok == tmptok)
9163 error (_("Junk after thread keyword."));
9164 *thread = thr->global_num;
9165 tok = tmptok;
9166 }
9167 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9168 {
9169 char *tmptok;
9170
9171 tok = end_tok + 1;
9172 *task = strtol (tok, &tmptok, 0);
9173 if (tok == tmptok)
9174 error (_("Junk after task keyword."));
9175 if (!valid_task_id (*task))
9176 error (_("Unknown task %d."), *task);
9177 tok = tmptok;
9178 }
9179 else if (rest)
9180 {
9181 *rest = savestring (tok, strlen (tok));
9182 return;
9183 }
9184 else
9185 error (_("Junk at end of arguments."));
9186 }
9187 }
9188
9189 /* Decode a static tracepoint marker spec. */
9190
9191 static std::vector<symtab_and_line>
9192 decode_static_tracepoint_spec (const char **arg_p)
9193 {
9194 const char *p = &(*arg_p)[3];
9195 const char *endp;
9196
9197 p = skip_spaces (p);
9198
9199 endp = skip_to_space (p);
9200
9201 std::string marker_str (p, endp - p);
9202
9203 std::vector<static_tracepoint_marker> markers
9204 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9205 if (markers.empty ())
9206 error (_("No known static tracepoint marker named %s"),
9207 marker_str.c_str ());
9208
9209 std::vector<symtab_and_line> sals;
9210 sals.reserve (markers.size ());
9211
9212 for (const static_tracepoint_marker &marker : markers)
9213 {
9214 symtab_and_line sal = find_pc_line (marker.address, 0);
9215 sal.pc = marker.address;
9216 sals.push_back (sal);
9217 }
9218
9219 *arg_p = endp;
9220 return sals;
9221 }
9222
9223 /* See breakpoint.h. */
9224
9225 int
9226 create_breakpoint (struct gdbarch *gdbarch,
9227 const struct event_location *location,
9228 const char *cond_string,
9229 int thread, const char *extra_string,
9230 int parse_extra,
9231 int tempflag, enum bptype type_wanted,
9232 int ignore_count,
9233 enum auto_boolean pending_break_support,
9234 const struct breakpoint_ops *ops,
9235 int from_tty, int enabled, int internal,
9236 unsigned flags)
9237 {
9238 struct linespec_result canonical;
9239 int pending = 0;
9240 int task = 0;
9241 int prev_bkpt_count = breakpoint_count;
9242
9243 gdb_assert (ops != NULL);
9244
9245 /* If extra_string isn't useful, set it to NULL. */
9246 if (extra_string != NULL && *extra_string == '\0')
9247 extra_string = NULL;
9248
9249 TRY
9250 {
9251 ops->create_sals_from_location (location, &canonical, type_wanted);
9252 }
9253 CATCH (e, RETURN_MASK_ERROR)
9254 {
9255 /* If caller is interested in rc value from parse, set
9256 value. */
9257 if (e.error == NOT_FOUND_ERROR)
9258 {
9259 /* If pending breakpoint support is turned off, throw
9260 error. */
9261
9262 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9263 throw_exception (e);
9264
9265 exception_print (gdb_stderr, e);
9266
9267 /* If pending breakpoint support is auto query and the user
9268 selects no, then simply return the error code. */
9269 if (pending_break_support == AUTO_BOOLEAN_AUTO
9270 && !nquery (_("Make %s pending on future shared library load? "),
9271 bptype_string (type_wanted)))
9272 return 0;
9273
9274 /* At this point, either the user was queried about setting
9275 a pending breakpoint and selected yes, or pending
9276 breakpoint behavior is on and thus a pending breakpoint
9277 is defaulted on behalf of the user. */
9278 pending = 1;
9279 }
9280 else
9281 throw_exception (e);
9282 }
9283 END_CATCH
9284
9285 if (!pending && canonical.lsals.empty ())
9286 return 0;
9287
9288 /* Resolve all line numbers to PC's and verify that the addresses
9289 are ok for the target. */
9290 if (!pending)
9291 {
9292 for (auto &lsal : canonical.lsals)
9293 breakpoint_sals_to_pc (lsal.sals);
9294 }
9295
9296 /* Fast tracepoints may have additional restrictions on location. */
9297 if (!pending && type_wanted == bp_fast_tracepoint)
9298 {
9299 for (const auto &lsal : canonical.lsals)
9300 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9301 }
9302
9303 /* Verify that condition can be parsed, before setting any
9304 breakpoints. Allocate a separate condition expression for each
9305 breakpoint. */
9306 if (!pending)
9307 {
9308 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9309 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9310
9311 if (parse_extra)
9312 {
9313 char *rest;
9314 char *cond;
9315
9316 const linespec_sals &lsal = canonical.lsals[0];
9317
9318 /* Here we only parse 'arg' to separate condition
9319 from thread number, so parsing in context of first
9320 sal is OK. When setting the breakpoint we'll
9321 re-parse it in context of each sal. */
9322
9323 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9324 &cond, &thread, &task, &rest);
9325 cond_string_copy.reset (cond);
9326 extra_string_copy.reset (rest);
9327 }
9328 else
9329 {
9330 if (type_wanted != bp_dprintf
9331 && extra_string != NULL && *extra_string != '\0')
9332 error (_("Garbage '%s' at end of location"), extra_string);
9333
9334 /* Create a private copy of condition string. */
9335 if (cond_string)
9336 cond_string_copy.reset (xstrdup (cond_string));
9337 /* Create a private copy of any extra string. */
9338 if (extra_string)
9339 extra_string_copy.reset (xstrdup (extra_string));
9340 }
9341
9342 ops->create_breakpoints_sal (gdbarch, &canonical,
9343 std::move (cond_string_copy),
9344 std::move (extra_string_copy),
9345 type_wanted,
9346 tempflag ? disp_del : disp_donttouch,
9347 thread, task, ignore_count, ops,
9348 from_tty, enabled, internal, flags);
9349 }
9350 else
9351 {
9352 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9353
9354 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9355 b->location = copy_event_location (location);
9356
9357 if (parse_extra)
9358 b->cond_string = NULL;
9359 else
9360 {
9361 /* Create a private copy of condition string. */
9362 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9363 b->thread = thread;
9364 }
9365
9366 /* Create a private copy of any extra string. */
9367 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9368 b->ignore_count = ignore_count;
9369 b->disposition = tempflag ? disp_del : disp_donttouch;
9370 b->condition_not_parsed = 1;
9371 b->enable_state = enabled ? bp_enabled : bp_disabled;
9372 if ((type_wanted != bp_breakpoint
9373 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9374 b->pspace = current_program_space;
9375
9376 install_breakpoint (internal, std::move (b), 0);
9377 }
9378
9379 if (canonical.lsals.size () > 1)
9380 {
9381 warning (_("Multiple breakpoints were set.\nUse the "
9382 "\"delete\" command to delete unwanted breakpoints."));
9383 prev_breakpoint_count = prev_bkpt_count;
9384 }
9385
9386 update_global_location_list (UGLL_MAY_INSERT);
9387
9388 return 1;
9389 }
9390
9391 /* Set a breakpoint.
9392 ARG is a string describing breakpoint address,
9393 condition, and thread.
9394 FLAG specifies if a breakpoint is hardware on,
9395 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9396 and BP_TEMPFLAG. */
9397
9398 static void
9399 break_command_1 (const char *arg, int flag, int from_tty)
9400 {
9401 int tempflag = flag & BP_TEMPFLAG;
9402 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9403 ? bp_hardware_breakpoint
9404 : bp_breakpoint);
9405 struct breakpoint_ops *ops;
9406
9407 event_location_up location = string_to_event_location (&arg, current_language);
9408
9409 /* Matching breakpoints on probes. */
9410 if (location != NULL
9411 && event_location_type (location.get ()) == PROBE_LOCATION)
9412 ops = &bkpt_probe_breakpoint_ops;
9413 else
9414 ops = &bkpt_breakpoint_ops;
9415
9416 create_breakpoint (get_current_arch (),
9417 location.get (),
9418 NULL, 0, arg, 1 /* parse arg */,
9419 tempflag, type_wanted,
9420 0 /* Ignore count */,
9421 pending_break_support,
9422 ops,
9423 from_tty,
9424 1 /* enabled */,
9425 0 /* internal */,
9426 0);
9427 }
9428
9429 /* Helper function for break_command_1 and disassemble_command. */
9430
9431 void
9432 resolve_sal_pc (struct symtab_and_line *sal)
9433 {
9434 CORE_ADDR pc;
9435
9436 if (sal->pc == 0 && sal->symtab != NULL)
9437 {
9438 if (!find_line_pc (sal->symtab, sal->line, &pc))
9439 error (_("No line %d in file \"%s\"."),
9440 sal->line, symtab_to_filename_for_display (sal->symtab));
9441 sal->pc = pc;
9442
9443 /* If this SAL corresponds to a breakpoint inserted using a line
9444 number, then skip the function prologue if necessary. */
9445 if (sal->explicit_line)
9446 skip_prologue_sal (sal);
9447 }
9448
9449 if (sal->section == 0 && sal->symtab != NULL)
9450 {
9451 const struct blockvector *bv;
9452 const struct block *b;
9453 struct symbol *sym;
9454
9455 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9456 SYMTAB_COMPUNIT (sal->symtab));
9457 if (bv != NULL)
9458 {
9459 sym = block_linkage_function (b);
9460 if (sym != NULL)
9461 {
9462 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9463 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9464 sym);
9465 }
9466 else
9467 {
9468 /* It really is worthwhile to have the section, so we'll
9469 just have to look harder. This case can be executed
9470 if we have line numbers but no functions (as can
9471 happen in assembly source). */
9472
9473 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9474 switch_to_program_space_and_thread (sal->pspace);
9475
9476 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9477 if (msym.minsym)
9478 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9479 }
9480 }
9481 }
9482 }
9483
9484 void
9485 break_command (const char *arg, int from_tty)
9486 {
9487 break_command_1 (arg, 0, from_tty);
9488 }
9489
9490 void
9491 tbreak_command (const char *arg, int from_tty)
9492 {
9493 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9494 }
9495
9496 static void
9497 hbreak_command (const char *arg, int from_tty)
9498 {
9499 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9500 }
9501
9502 static void
9503 thbreak_command (const char *arg, int from_tty)
9504 {
9505 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9506 }
9507
9508 static void
9509 stop_command (const char *arg, int from_tty)
9510 {
9511 printf_filtered (_("Specify the type of breakpoint to set.\n\
9512 Usage: stop in <function | address>\n\
9513 stop at <line>\n"));
9514 }
9515
9516 static void
9517 stopin_command (const char *arg, int from_tty)
9518 {
9519 int badInput = 0;
9520
9521 if (arg == (char *) NULL)
9522 badInput = 1;
9523 else if (*arg != '*')
9524 {
9525 const char *argptr = arg;
9526 int hasColon = 0;
9527
9528 /* Look for a ':'. If this is a line number specification, then
9529 say it is bad, otherwise, it should be an address or
9530 function/method name. */
9531 while (*argptr && !hasColon)
9532 {
9533 hasColon = (*argptr == ':');
9534 argptr++;
9535 }
9536
9537 if (hasColon)
9538 badInput = (*argptr != ':'); /* Not a class::method */
9539 else
9540 badInput = isdigit (*arg); /* a simple line number */
9541 }
9542
9543 if (badInput)
9544 printf_filtered (_("Usage: stop in <function | address>\n"));
9545 else
9546 break_command_1 (arg, 0, from_tty);
9547 }
9548
9549 static void
9550 stopat_command (const char *arg, int from_tty)
9551 {
9552 int badInput = 0;
9553
9554 if (arg == (char *) NULL || *arg == '*') /* no line number */
9555 badInput = 1;
9556 else
9557 {
9558 const char *argptr = arg;
9559 int hasColon = 0;
9560
9561 /* Look for a ':'. If there is a '::' then get out, otherwise
9562 it is probably a line number. */
9563 while (*argptr && !hasColon)
9564 {
9565 hasColon = (*argptr == ':');
9566 argptr++;
9567 }
9568
9569 if (hasColon)
9570 badInput = (*argptr == ':'); /* we have class::method */
9571 else
9572 badInput = !isdigit (*arg); /* not a line number */
9573 }
9574
9575 if (badInput)
9576 printf_filtered (_("Usage: stop at LINE\n"));
9577 else
9578 break_command_1 (arg, 0, from_tty);
9579 }
9580
9581 /* The dynamic printf command is mostly like a regular breakpoint, but
9582 with a prewired command list consisting of a single output command,
9583 built from extra arguments supplied on the dprintf command
9584 line. */
9585
9586 static void
9587 dprintf_command (const char *arg, int from_tty)
9588 {
9589 event_location_up location = string_to_event_location (&arg, current_language);
9590
9591 /* If non-NULL, ARG should have been advanced past the location;
9592 the next character must be ','. */
9593 if (arg != NULL)
9594 {
9595 if (arg[0] != ',' || arg[1] == '\0')
9596 error (_("Format string required"));
9597 else
9598 {
9599 /* Skip the comma. */
9600 ++arg;
9601 }
9602 }
9603
9604 create_breakpoint (get_current_arch (),
9605 location.get (),
9606 NULL, 0, arg, 1 /* parse arg */,
9607 0, bp_dprintf,
9608 0 /* Ignore count */,
9609 pending_break_support,
9610 &dprintf_breakpoint_ops,
9611 from_tty,
9612 1 /* enabled */,
9613 0 /* internal */,
9614 0);
9615 }
9616
9617 static void
9618 agent_printf_command (const char *arg, int from_tty)
9619 {
9620 error (_("May only run agent-printf on the target"));
9621 }
9622
9623 /* Implement the "breakpoint_hit" breakpoint_ops method for
9624 ranged breakpoints. */
9625
9626 static int
9627 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9628 const address_space *aspace,
9629 CORE_ADDR bp_addr,
9630 const struct target_waitstatus *ws)
9631 {
9632 if (ws->kind != TARGET_WAITKIND_STOPPED
9633 || ws->value.sig != GDB_SIGNAL_TRAP)
9634 return 0;
9635
9636 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9637 bl->length, aspace, bp_addr);
9638 }
9639
9640 /* Implement the "resources_needed" breakpoint_ops method for
9641 ranged breakpoints. */
9642
9643 static int
9644 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9645 {
9646 return target_ranged_break_num_registers ();
9647 }
9648
9649 /* Implement the "print_it" breakpoint_ops method for
9650 ranged breakpoints. */
9651
9652 static enum print_stop_action
9653 print_it_ranged_breakpoint (bpstat bs)
9654 {
9655 struct breakpoint *b = bs->breakpoint_at;
9656 struct bp_location *bl = b->loc;
9657 struct ui_out *uiout = current_uiout;
9658
9659 gdb_assert (b->type == bp_hardware_breakpoint);
9660
9661 /* Ranged breakpoints have only one location. */
9662 gdb_assert (bl && bl->next == NULL);
9663
9664 annotate_breakpoint (b->number);
9665
9666 maybe_print_thread_hit_breakpoint (uiout);
9667
9668 if (b->disposition == disp_del)
9669 uiout->text ("Temporary ranged breakpoint ");
9670 else
9671 uiout->text ("Ranged breakpoint ");
9672 if (uiout->is_mi_like_p ())
9673 {
9674 uiout->field_string ("reason",
9675 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9676 uiout->field_string ("disp", bpdisp_text (b->disposition));
9677 }
9678 uiout->field_int ("bkptno", b->number);
9679 uiout->text (", ");
9680
9681 return PRINT_SRC_AND_LOC;
9682 }
9683
9684 /* Implement the "print_one" breakpoint_ops method for
9685 ranged breakpoints. */
9686
9687 static void
9688 print_one_ranged_breakpoint (struct breakpoint *b,
9689 struct bp_location **last_loc)
9690 {
9691 struct bp_location *bl = b->loc;
9692 struct value_print_options opts;
9693 struct ui_out *uiout = current_uiout;
9694
9695 /* Ranged breakpoints have only one location. */
9696 gdb_assert (bl && bl->next == NULL);
9697
9698 get_user_print_options (&opts);
9699
9700 if (opts.addressprint)
9701 /* We don't print the address range here, it will be printed later
9702 by print_one_detail_ranged_breakpoint. */
9703 uiout->field_skip ("addr");
9704 annotate_field (5);
9705 print_breakpoint_location (b, bl);
9706 *last_loc = bl;
9707 }
9708
9709 /* Implement the "print_one_detail" breakpoint_ops method for
9710 ranged breakpoints. */
9711
9712 static void
9713 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9714 struct ui_out *uiout)
9715 {
9716 CORE_ADDR address_start, address_end;
9717 struct bp_location *bl = b->loc;
9718 string_file stb;
9719
9720 gdb_assert (bl);
9721
9722 address_start = bl->address;
9723 address_end = address_start + bl->length - 1;
9724
9725 uiout->text ("\taddress range: ");
9726 stb.printf ("[%s, %s]",
9727 print_core_address (bl->gdbarch, address_start),
9728 print_core_address (bl->gdbarch, address_end));
9729 uiout->field_stream ("addr", stb);
9730 uiout->text ("\n");
9731 }
9732
9733 /* Implement the "print_mention" breakpoint_ops method for
9734 ranged breakpoints. */
9735
9736 static void
9737 print_mention_ranged_breakpoint (struct breakpoint *b)
9738 {
9739 struct bp_location *bl = b->loc;
9740 struct ui_out *uiout = current_uiout;
9741
9742 gdb_assert (bl);
9743 gdb_assert (b->type == bp_hardware_breakpoint);
9744
9745 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9746 b->number, paddress (bl->gdbarch, bl->address),
9747 paddress (bl->gdbarch, bl->address + bl->length - 1));
9748 }
9749
9750 /* Implement the "print_recreate" breakpoint_ops method for
9751 ranged breakpoints. */
9752
9753 static void
9754 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9755 {
9756 fprintf_unfiltered (fp, "break-range %s, %s",
9757 event_location_to_string (b->location.get ()),
9758 event_location_to_string (b->location_range_end.get ()));
9759 print_recreate_thread (b, fp);
9760 }
9761
9762 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9763
9764 static struct breakpoint_ops ranged_breakpoint_ops;
9765
9766 /* Find the address where the end of the breakpoint range should be
9767 placed, given the SAL of the end of the range. This is so that if
9768 the user provides a line number, the end of the range is set to the
9769 last instruction of the given line. */
9770
9771 static CORE_ADDR
9772 find_breakpoint_range_end (struct symtab_and_line sal)
9773 {
9774 CORE_ADDR end;
9775
9776 /* If the user provided a PC value, use it. Otherwise,
9777 find the address of the end of the given location. */
9778 if (sal.explicit_pc)
9779 end = sal.pc;
9780 else
9781 {
9782 int ret;
9783 CORE_ADDR start;
9784
9785 ret = find_line_pc_range (sal, &start, &end);
9786 if (!ret)
9787 error (_("Could not find location of the end of the range."));
9788
9789 /* find_line_pc_range returns the start of the next line. */
9790 end--;
9791 }
9792
9793 return end;
9794 }
9795
9796 /* Implement the "break-range" CLI command. */
9797
9798 static void
9799 break_range_command (const char *arg, int from_tty)
9800 {
9801 const char *arg_start;
9802 struct linespec_result canonical_start, canonical_end;
9803 int bp_count, can_use_bp, length;
9804 CORE_ADDR end;
9805 struct breakpoint *b;
9806
9807 /* We don't support software ranged breakpoints. */
9808 if (target_ranged_break_num_registers () < 0)
9809 error (_("This target does not support hardware ranged breakpoints."));
9810
9811 bp_count = hw_breakpoint_used_count ();
9812 bp_count += target_ranged_break_num_registers ();
9813 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9814 bp_count, 0);
9815 if (can_use_bp < 0)
9816 error (_("Hardware breakpoints used exceeds limit."));
9817
9818 arg = skip_spaces (arg);
9819 if (arg == NULL || arg[0] == '\0')
9820 error(_("No address range specified."));
9821
9822 arg_start = arg;
9823 event_location_up start_location = string_to_event_location (&arg,
9824 current_language);
9825 parse_breakpoint_sals (start_location.get (), &canonical_start);
9826
9827 if (arg[0] != ',')
9828 error (_("Too few arguments."));
9829 else if (canonical_start.lsals.empty ())
9830 error (_("Could not find location of the beginning of the range."));
9831
9832 const linespec_sals &lsal_start = canonical_start.lsals[0];
9833
9834 if (canonical_start.lsals.size () > 1
9835 || lsal_start.sals.size () != 1)
9836 error (_("Cannot create a ranged breakpoint with multiple locations."));
9837
9838 const symtab_and_line &sal_start = lsal_start.sals[0];
9839 std::string addr_string_start (arg_start, arg - arg_start);
9840
9841 arg++; /* Skip the comma. */
9842 arg = skip_spaces (arg);
9843
9844 /* Parse the end location. */
9845
9846 arg_start = arg;
9847
9848 /* We call decode_line_full directly here instead of using
9849 parse_breakpoint_sals because we need to specify the start location's
9850 symtab and line as the default symtab and line for the end of the
9851 range. This makes it possible to have ranges like "foo.c:27, +14",
9852 where +14 means 14 lines from the start location. */
9853 event_location_up end_location = string_to_event_location (&arg,
9854 current_language);
9855 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9856 sal_start.symtab, sal_start.line,
9857 &canonical_end, NULL, NULL);
9858
9859 if (canonical_end.lsals.empty ())
9860 error (_("Could not find location of the end of the range."));
9861
9862 const linespec_sals &lsal_end = canonical_end.lsals[0];
9863 if (canonical_end.lsals.size () > 1
9864 || lsal_end.sals.size () != 1)
9865 error (_("Cannot create a ranged breakpoint with multiple locations."));
9866
9867 const symtab_and_line &sal_end = lsal_end.sals[0];
9868
9869 end = find_breakpoint_range_end (sal_end);
9870 if (sal_start.pc > end)
9871 error (_("Invalid address range, end precedes start."));
9872
9873 length = end - sal_start.pc + 1;
9874 if (length < 0)
9875 /* Length overflowed. */
9876 error (_("Address range too large."));
9877 else if (length == 1)
9878 {
9879 /* This range is simple enough to be handled by
9880 the `hbreak' command. */
9881 hbreak_command (&addr_string_start[0], 1);
9882
9883 return;
9884 }
9885
9886 /* Now set up the breakpoint. */
9887 b = set_raw_breakpoint (get_current_arch (), sal_start,
9888 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9889 set_breakpoint_count (breakpoint_count + 1);
9890 b->number = breakpoint_count;
9891 b->disposition = disp_donttouch;
9892 b->location = std::move (start_location);
9893 b->location_range_end = std::move (end_location);
9894 b->loc->length = length;
9895
9896 mention (b);
9897 gdb::observers::breakpoint_created.notify (b);
9898 update_global_location_list (UGLL_MAY_INSERT);
9899 }
9900
9901 /* Return non-zero if EXP is verified as constant. Returned zero
9902 means EXP is variable. Also the constant detection may fail for
9903 some constant expressions and in such case still falsely return
9904 zero. */
9905
9906 static int
9907 watchpoint_exp_is_const (const struct expression *exp)
9908 {
9909 int i = exp->nelts;
9910
9911 while (i > 0)
9912 {
9913 int oplenp, argsp;
9914
9915 /* We are only interested in the descriptor of each element. */
9916 operator_length (exp, i, &oplenp, &argsp);
9917 i -= oplenp;
9918
9919 switch (exp->elts[i].opcode)
9920 {
9921 case BINOP_ADD:
9922 case BINOP_SUB:
9923 case BINOP_MUL:
9924 case BINOP_DIV:
9925 case BINOP_REM:
9926 case BINOP_MOD:
9927 case BINOP_LSH:
9928 case BINOP_RSH:
9929 case BINOP_LOGICAL_AND:
9930 case BINOP_LOGICAL_OR:
9931 case BINOP_BITWISE_AND:
9932 case BINOP_BITWISE_IOR:
9933 case BINOP_BITWISE_XOR:
9934 case BINOP_EQUAL:
9935 case BINOP_NOTEQUAL:
9936 case BINOP_LESS:
9937 case BINOP_GTR:
9938 case BINOP_LEQ:
9939 case BINOP_GEQ:
9940 case BINOP_REPEAT:
9941 case BINOP_COMMA:
9942 case BINOP_EXP:
9943 case BINOP_MIN:
9944 case BINOP_MAX:
9945 case BINOP_INTDIV:
9946 case BINOP_CONCAT:
9947 case TERNOP_COND:
9948 case TERNOP_SLICE:
9949
9950 case OP_LONG:
9951 case OP_FLOAT:
9952 case OP_LAST:
9953 case OP_COMPLEX:
9954 case OP_STRING:
9955 case OP_ARRAY:
9956 case OP_TYPE:
9957 case OP_TYPEOF:
9958 case OP_DECLTYPE:
9959 case OP_TYPEID:
9960 case OP_NAME:
9961 case OP_OBJC_NSSTRING:
9962
9963 case UNOP_NEG:
9964 case UNOP_LOGICAL_NOT:
9965 case UNOP_COMPLEMENT:
9966 case UNOP_ADDR:
9967 case UNOP_HIGH:
9968 case UNOP_CAST:
9969
9970 case UNOP_CAST_TYPE:
9971 case UNOP_REINTERPRET_CAST:
9972 case UNOP_DYNAMIC_CAST:
9973 /* Unary, binary and ternary operators: We have to check
9974 their operands. If they are constant, then so is the
9975 result of that operation. For instance, if A and B are
9976 determined to be constants, then so is "A + B".
9977
9978 UNOP_IND is one exception to the rule above, because the
9979 value of *ADDR is not necessarily a constant, even when
9980 ADDR is. */
9981 break;
9982
9983 case OP_VAR_VALUE:
9984 /* Check whether the associated symbol is a constant.
9985
9986 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9987 possible that a buggy compiler could mark a variable as
9988 constant even when it is not, and TYPE_CONST would return
9989 true in this case, while SYMBOL_CLASS wouldn't.
9990
9991 We also have to check for function symbols because they
9992 are always constant. */
9993 {
9994 struct symbol *s = exp->elts[i + 2].symbol;
9995
9996 if (SYMBOL_CLASS (s) != LOC_BLOCK
9997 && SYMBOL_CLASS (s) != LOC_CONST
9998 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9999 return 0;
10000 break;
10001 }
10002
10003 /* The default action is to return 0 because we are using
10004 the optimistic approach here: If we don't know something,
10005 then it is not a constant. */
10006 default:
10007 return 0;
10008 }
10009 }
10010
10011 return 1;
10012 }
10013
10014 /* Watchpoint destructor. */
10015
10016 watchpoint::~watchpoint ()
10017 {
10018 xfree (this->exp_string);
10019 xfree (this->exp_string_reparse);
10020 }
10021
10022 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10023
10024 static void
10025 re_set_watchpoint (struct breakpoint *b)
10026 {
10027 struct watchpoint *w = (struct watchpoint *) b;
10028
10029 /* Watchpoint can be either on expression using entirely global
10030 variables, or it can be on local variables.
10031
10032 Watchpoints of the first kind are never auto-deleted, and even
10033 persist across program restarts. Since they can use variables
10034 from shared libraries, we need to reparse expression as libraries
10035 are loaded and unloaded.
10036
10037 Watchpoints on local variables can also change meaning as result
10038 of solib event. For example, if a watchpoint uses both a local
10039 and a global variables in expression, it's a local watchpoint,
10040 but unloading of a shared library will make the expression
10041 invalid. This is not a very common use case, but we still
10042 re-evaluate expression, to avoid surprises to the user.
10043
10044 Note that for local watchpoints, we re-evaluate it only if
10045 watchpoints frame id is still valid. If it's not, it means the
10046 watchpoint is out of scope and will be deleted soon. In fact,
10047 I'm not sure we'll ever be called in this case.
10048
10049 If a local watchpoint's frame id is still valid, then
10050 w->exp_valid_block is likewise valid, and we can safely use it.
10051
10052 Don't do anything about disabled watchpoints, since they will be
10053 reevaluated again when enabled. */
10054 update_watchpoint (w, 1 /* reparse */);
10055 }
10056
10057 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10058
10059 static int
10060 insert_watchpoint (struct bp_location *bl)
10061 {
10062 struct watchpoint *w = (struct watchpoint *) bl->owner;
10063 int length = w->exact ? 1 : bl->length;
10064
10065 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10066 w->cond_exp.get ());
10067 }
10068
10069 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10070
10071 static int
10072 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10073 {
10074 struct watchpoint *w = (struct watchpoint *) bl->owner;
10075 int length = w->exact ? 1 : bl->length;
10076
10077 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10078 w->cond_exp.get ());
10079 }
10080
10081 static int
10082 breakpoint_hit_watchpoint (const struct bp_location *bl,
10083 const address_space *aspace, CORE_ADDR bp_addr,
10084 const struct target_waitstatus *ws)
10085 {
10086 struct breakpoint *b = bl->owner;
10087 struct watchpoint *w = (struct watchpoint *) b;
10088
10089 /* Continuable hardware watchpoints are treated as non-existent if the
10090 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10091 some data address). Otherwise gdb won't stop on a break instruction
10092 in the code (not from a breakpoint) when a hardware watchpoint has
10093 been defined. Also skip watchpoints which we know did not trigger
10094 (did not match the data address). */
10095 if (is_hardware_watchpoint (b)
10096 && w->watchpoint_triggered == watch_triggered_no)
10097 return 0;
10098
10099 return 1;
10100 }
10101
10102 static void
10103 check_status_watchpoint (bpstat bs)
10104 {
10105 gdb_assert (is_watchpoint (bs->breakpoint_at));
10106
10107 bpstat_check_watchpoint (bs);
10108 }
10109
10110 /* Implement the "resources_needed" breakpoint_ops method for
10111 hardware watchpoints. */
10112
10113 static int
10114 resources_needed_watchpoint (const struct bp_location *bl)
10115 {
10116 struct watchpoint *w = (struct watchpoint *) bl->owner;
10117 int length = w->exact? 1 : bl->length;
10118
10119 return target_region_ok_for_hw_watchpoint (bl->address, length);
10120 }
10121
10122 /* Implement the "works_in_software_mode" breakpoint_ops method for
10123 hardware watchpoints. */
10124
10125 static int
10126 works_in_software_mode_watchpoint (const struct breakpoint *b)
10127 {
10128 /* Read and access watchpoints only work with hardware support. */
10129 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10130 }
10131
10132 static enum print_stop_action
10133 print_it_watchpoint (bpstat bs)
10134 {
10135 struct breakpoint *b;
10136 enum print_stop_action result;
10137 struct watchpoint *w;
10138 struct ui_out *uiout = current_uiout;
10139
10140 gdb_assert (bs->bp_location_at != NULL);
10141
10142 b = bs->breakpoint_at;
10143 w = (struct watchpoint *) b;
10144
10145 annotate_watchpoint (b->number);
10146 maybe_print_thread_hit_breakpoint (uiout);
10147
10148 string_file stb;
10149
10150 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10151 switch (b->type)
10152 {
10153 case bp_watchpoint:
10154 case bp_hardware_watchpoint:
10155 if (uiout->is_mi_like_p ())
10156 uiout->field_string
10157 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10158 mention (b);
10159 tuple_emitter.emplace (uiout, "value");
10160 uiout->text ("\nOld value = ");
10161 watchpoint_value_print (bs->old_val.get (), &stb);
10162 uiout->field_stream ("old", stb);
10163 uiout->text ("\nNew value = ");
10164 watchpoint_value_print (w->val.get (), &stb);
10165 uiout->field_stream ("new", stb);
10166 uiout->text ("\n");
10167 /* More than one watchpoint may have been triggered. */
10168 result = PRINT_UNKNOWN;
10169 break;
10170
10171 case bp_read_watchpoint:
10172 if (uiout->is_mi_like_p ())
10173 uiout->field_string
10174 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10175 mention (b);
10176 tuple_emitter.emplace (uiout, "value");
10177 uiout->text ("\nValue = ");
10178 watchpoint_value_print (w->val.get (), &stb);
10179 uiout->field_stream ("value", stb);
10180 uiout->text ("\n");
10181 result = PRINT_UNKNOWN;
10182 break;
10183
10184 case bp_access_watchpoint:
10185 if (bs->old_val != NULL)
10186 {
10187 if (uiout->is_mi_like_p ())
10188 uiout->field_string
10189 ("reason",
10190 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10191 mention (b);
10192 tuple_emitter.emplace (uiout, "value");
10193 uiout->text ("\nOld value = ");
10194 watchpoint_value_print (bs->old_val.get (), &stb);
10195 uiout->field_stream ("old", stb);
10196 uiout->text ("\nNew value = ");
10197 }
10198 else
10199 {
10200 mention (b);
10201 if (uiout->is_mi_like_p ())
10202 uiout->field_string
10203 ("reason",
10204 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10205 tuple_emitter.emplace (uiout, "value");
10206 uiout->text ("\nValue = ");
10207 }
10208 watchpoint_value_print (w->val.get (), &stb);
10209 uiout->field_stream ("new", stb);
10210 uiout->text ("\n");
10211 result = PRINT_UNKNOWN;
10212 break;
10213 default:
10214 result = PRINT_UNKNOWN;
10215 }
10216
10217 return result;
10218 }
10219
10220 /* Implement the "print_mention" breakpoint_ops method for hardware
10221 watchpoints. */
10222
10223 static void
10224 print_mention_watchpoint (struct breakpoint *b)
10225 {
10226 struct watchpoint *w = (struct watchpoint *) b;
10227 struct ui_out *uiout = current_uiout;
10228 const char *tuple_name;
10229
10230 switch (b->type)
10231 {
10232 case bp_watchpoint:
10233 uiout->text ("Watchpoint ");
10234 tuple_name = "wpt";
10235 break;
10236 case bp_hardware_watchpoint:
10237 uiout->text ("Hardware watchpoint ");
10238 tuple_name = "wpt";
10239 break;
10240 case bp_read_watchpoint:
10241 uiout->text ("Hardware read watchpoint ");
10242 tuple_name = "hw-rwpt";
10243 break;
10244 case bp_access_watchpoint:
10245 uiout->text ("Hardware access (read/write) watchpoint ");
10246 tuple_name = "hw-awpt";
10247 break;
10248 default:
10249 internal_error (__FILE__, __LINE__,
10250 _("Invalid hardware watchpoint type."));
10251 }
10252
10253 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10254 uiout->field_int ("number", b->number);
10255 uiout->text (": ");
10256 uiout->field_string ("exp", w->exp_string);
10257 }
10258
10259 /* Implement the "print_recreate" breakpoint_ops method for
10260 watchpoints. */
10261
10262 static void
10263 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10264 {
10265 struct watchpoint *w = (struct watchpoint *) b;
10266
10267 switch (b->type)
10268 {
10269 case bp_watchpoint:
10270 case bp_hardware_watchpoint:
10271 fprintf_unfiltered (fp, "watch");
10272 break;
10273 case bp_read_watchpoint:
10274 fprintf_unfiltered (fp, "rwatch");
10275 break;
10276 case bp_access_watchpoint:
10277 fprintf_unfiltered (fp, "awatch");
10278 break;
10279 default:
10280 internal_error (__FILE__, __LINE__,
10281 _("Invalid watchpoint type."));
10282 }
10283
10284 fprintf_unfiltered (fp, " %s", w->exp_string);
10285 print_recreate_thread (b, fp);
10286 }
10287
10288 /* Implement the "explains_signal" breakpoint_ops method for
10289 watchpoints. */
10290
10291 static int
10292 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10293 {
10294 /* A software watchpoint cannot cause a signal other than
10295 GDB_SIGNAL_TRAP. */
10296 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10297 return 0;
10298
10299 return 1;
10300 }
10301
10302 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10303
10304 static struct breakpoint_ops watchpoint_breakpoint_ops;
10305
10306 /* Implement the "insert" breakpoint_ops method for
10307 masked hardware watchpoints. */
10308
10309 static int
10310 insert_masked_watchpoint (struct bp_location *bl)
10311 {
10312 struct watchpoint *w = (struct watchpoint *) bl->owner;
10313
10314 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10315 bl->watchpoint_type);
10316 }
10317
10318 /* Implement the "remove" breakpoint_ops method for
10319 masked hardware watchpoints. */
10320
10321 static int
10322 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10323 {
10324 struct watchpoint *w = (struct watchpoint *) bl->owner;
10325
10326 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10327 bl->watchpoint_type);
10328 }
10329
10330 /* Implement the "resources_needed" breakpoint_ops method for
10331 masked hardware watchpoints. */
10332
10333 static int
10334 resources_needed_masked_watchpoint (const struct bp_location *bl)
10335 {
10336 struct watchpoint *w = (struct watchpoint *) bl->owner;
10337
10338 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10339 }
10340
10341 /* Implement the "works_in_software_mode" breakpoint_ops method for
10342 masked hardware watchpoints. */
10343
10344 static int
10345 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10346 {
10347 return 0;
10348 }
10349
10350 /* Implement the "print_it" breakpoint_ops method for
10351 masked hardware watchpoints. */
10352
10353 static enum print_stop_action
10354 print_it_masked_watchpoint (bpstat bs)
10355 {
10356 struct breakpoint *b = bs->breakpoint_at;
10357 struct ui_out *uiout = current_uiout;
10358
10359 /* Masked watchpoints have only one location. */
10360 gdb_assert (b->loc && b->loc->next == NULL);
10361
10362 annotate_watchpoint (b->number);
10363 maybe_print_thread_hit_breakpoint (uiout);
10364
10365 switch (b->type)
10366 {
10367 case bp_hardware_watchpoint:
10368 if (uiout->is_mi_like_p ())
10369 uiout->field_string
10370 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10371 break;
10372
10373 case bp_read_watchpoint:
10374 if (uiout->is_mi_like_p ())
10375 uiout->field_string
10376 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10377 break;
10378
10379 case bp_access_watchpoint:
10380 if (uiout->is_mi_like_p ())
10381 uiout->field_string
10382 ("reason",
10383 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10384 break;
10385 default:
10386 internal_error (__FILE__, __LINE__,
10387 _("Invalid hardware watchpoint type."));
10388 }
10389
10390 mention (b);
10391 uiout->text (_("\n\
10392 Check the underlying instruction at PC for the memory\n\
10393 address and value which triggered this watchpoint.\n"));
10394 uiout->text ("\n");
10395
10396 /* More than one watchpoint may have been triggered. */
10397 return PRINT_UNKNOWN;
10398 }
10399
10400 /* Implement the "print_one_detail" breakpoint_ops method for
10401 masked hardware watchpoints. */
10402
10403 static void
10404 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10405 struct ui_out *uiout)
10406 {
10407 struct watchpoint *w = (struct watchpoint *) b;
10408
10409 /* Masked watchpoints have only one location. */
10410 gdb_assert (b->loc && b->loc->next == NULL);
10411
10412 uiout->text ("\tmask ");
10413 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10414 uiout->text ("\n");
10415 }
10416
10417 /* Implement the "print_mention" breakpoint_ops method for
10418 masked hardware watchpoints. */
10419
10420 static void
10421 print_mention_masked_watchpoint (struct breakpoint *b)
10422 {
10423 struct watchpoint *w = (struct watchpoint *) b;
10424 struct ui_out *uiout = current_uiout;
10425 const char *tuple_name;
10426
10427 switch (b->type)
10428 {
10429 case bp_hardware_watchpoint:
10430 uiout->text ("Masked hardware watchpoint ");
10431 tuple_name = "wpt";
10432 break;
10433 case bp_read_watchpoint:
10434 uiout->text ("Masked hardware read watchpoint ");
10435 tuple_name = "hw-rwpt";
10436 break;
10437 case bp_access_watchpoint:
10438 uiout->text ("Masked hardware access (read/write) watchpoint ");
10439 tuple_name = "hw-awpt";
10440 break;
10441 default:
10442 internal_error (__FILE__, __LINE__,
10443 _("Invalid hardware watchpoint type."));
10444 }
10445
10446 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10447 uiout->field_int ("number", b->number);
10448 uiout->text (": ");
10449 uiout->field_string ("exp", w->exp_string);
10450 }
10451
10452 /* Implement the "print_recreate" breakpoint_ops method for
10453 masked hardware watchpoints. */
10454
10455 static void
10456 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10457 {
10458 struct watchpoint *w = (struct watchpoint *) b;
10459 char tmp[40];
10460
10461 switch (b->type)
10462 {
10463 case bp_hardware_watchpoint:
10464 fprintf_unfiltered (fp, "watch");
10465 break;
10466 case bp_read_watchpoint:
10467 fprintf_unfiltered (fp, "rwatch");
10468 break;
10469 case bp_access_watchpoint:
10470 fprintf_unfiltered (fp, "awatch");
10471 break;
10472 default:
10473 internal_error (__FILE__, __LINE__,
10474 _("Invalid hardware watchpoint type."));
10475 }
10476
10477 sprintf_vma (tmp, w->hw_wp_mask);
10478 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10479 print_recreate_thread (b, fp);
10480 }
10481
10482 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10483
10484 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10485
10486 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10487
10488 static int
10489 is_masked_watchpoint (const struct breakpoint *b)
10490 {
10491 return b->ops == &masked_watchpoint_breakpoint_ops;
10492 }
10493
10494 /* accessflag: hw_write: watch write,
10495 hw_read: watch read,
10496 hw_access: watch access (read or write) */
10497 static void
10498 watch_command_1 (const char *arg, int accessflag, int from_tty,
10499 int just_location, int internal)
10500 {
10501 struct breakpoint *scope_breakpoint = NULL;
10502 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10503 struct value *result;
10504 int saved_bitpos = 0, saved_bitsize = 0;
10505 const char *exp_start = NULL;
10506 const char *exp_end = NULL;
10507 const char *tok, *end_tok;
10508 int toklen = -1;
10509 const char *cond_start = NULL;
10510 const char *cond_end = NULL;
10511 enum bptype bp_type;
10512 int thread = -1;
10513 int pc = 0;
10514 /* Flag to indicate whether we are going to use masks for
10515 the hardware watchpoint. */
10516 int use_mask = 0;
10517 CORE_ADDR mask = 0;
10518
10519 /* Make sure that we actually have parameters to parse. */
10520 if (arg != NULL && arg[0] != '\0')
10521 {
10522 const char *value_start;
10523
10524 exp_end = arg + strlen (arg);
10525
10526 /* Look for "parameter value" pairs at the end
10527 of the arguments string. */
10528 for (tok = exp_end - 1; tok > arg; tok--)
10529 {
10530 /* Skip whitespace at the end of the argument list. */
10531 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10532 tok--;
10533
10534 /* Find the beginning of the last token.
10535 This is the value of the parameter. */
10536 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10537 tok--;
10538 value_start = tok + 1;
10539
10540 /* Skip whitespace. */
10541 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10542 tok--;
10543
10544 end_tok = tok;
10545
10546 /* Find the beginning of the second to last token.
10547 This is the parameter itself. */
10548 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10549 tok--;
10550 tok++;
10551 toklen = end_tok - tok + 1;
10552
10553 if (toklen == 6 && startswith (tok, "thread"))
10554 {
10555 struct thread_info *thr;
10556 /* At this point we've found a "thread" token, which means
10557 the user is trying to set a watchpoint that triggers
10558 only in a specific thread. */
10559 const char *endp;
10560
10561 if (thread != -1)
10562 error(_("You can specify only one thread."));
10563
10564 /* Extract the thread ID from the next token. */
10565 thr = parse_thread_id (value_start, &endp);
10566
10567 /* Check if the user provided a valid thread ID. */
10568 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10569 invalid_thread_id_error (value_start);
10570
10571 thread = thr->global_num;
10572 }
10573 else if (toklen == 4 && startswith (tok, "mask"))
10574 {
10575 /* We've found a "mask" token, which means the user wants to
10576 create a hardware watchpoint that is going to have the mask
10577 facility. */
10578 struct value *mask_value, *mark;
10579
10580 if (use_mask)
10581 error(_("You can specify only one mask."));
10582
10583 use_mask = just_location = 1;
10584
10585 mark = value_mark ();
10586 mask_value = parse_to_comma_and_eval (&value_start);
10587 mask = value_as_address (mask_value);
10588 value_free_to_mark (mark);
10589 }
10590 else
10591 /* We didn't recognize what we found. We should stop here. */
10592 break;
10593
10594 /* Truncate the string and get rid of the "parameter value" pair before
10595 the arguments string is parsed by the parse_exp_1 function. */
10596 exp_end = tok;
10597 }
10598 }
10599 else
10600 exp_end = arg;
10601
10602 /* Parse the rest of the arguments. From here on out, everything
10603 is in terms of a newly allocated string instead of the original
10604 ARG. */
10605 std::string expression (arg, exp_end - arg);
10606 exp_start = arg = expression.c_str ();
10607 innermost_block_tracker tracker;
10608 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10609 exp_end = arg;
10610 /* Remove trailing whitespace from the expression before saving it.
10611 This makes the eventual display of the expression string a bit
10612 prettier. */
10613 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10614 --exp_end;
10615
10616 /* Checking if the expression is not constant. */
10617 if (watchpoint_exp_is_const (exp.get ()))
10618 {
10619 int len;
10620
10621 len = exp_end - exp_start;
10622 while (len > 0 && isspace (exp_start[len - 1]))
10623 len--;
10624 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10625 }
10626
10627 exp_valid_block = tracker.block ();
10628 struct value *mark = value_mark ();
10629 struct value *val_as_value = nullptr;
10630 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10631 just_location);
10632
10633 if (val_as_value != NULL && just_location)
10634 {
10635 saved_bitpos = value_bitpos (val_as_value);
10636 saved_bitsize = value_bitsize (val_as_value);
10637 }
10638
10639 value_ref_ptr val;
10640 if (just_location)
10641 {
10642 int ret;
10643
10644 exp_valid_block = NULL;
10645 val = release_value (value_addr (result));
10646 value_free_to_mark (mark);
10647
10648 if (use_mask)
10649 {
10650 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10651 mask);
10652 if (ret == -1)
10653 error (_("This target does not support masked watchpoints."));
10654 else if (ret == -2)
10655 error (_("Invalid mask or memory region."));
10656 }
10657 }
10658 else if (val_as_value != NULL)
10659 val = release_value (val_as_value);
10660
10661 tok = skip_spaces (arg);
10662 end_tok = skip_to_space (tok);
10663
10664 toklen = end_tok - tok;
10665 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10666 {
10667 tok = cond_start = end_tok + 1;
10668 innermost_block_tracker if_tracker;
10669 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10670
10671 /* The watchpoint expression may not be local, but the condition
10672 may still be. E.g.: `watch global if local > 0'. */
10673 cond_exp_valid_block = if_tracker.block ();
10674
10675 cond_end = tok;
10676 }
10677 if (*tok)
10678 error (_("Junk at end of command."));
10679
10680 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10681
10682 /* Save this because create_internal_breakpoint below invalidates
10683 'wp_frame'. */
10684 frame_id watchpoint_frame = get_frame_id (wp_frame);
10685
10686 /* If the expression is "local", then set up a "watchpoint scope"
10687 breakpoint at the point where we've left the scope of the watchpoint
10688 expression. Create the scope breakpoint before the watchpoint, so
10689 that we will encounter it first in bpstat_stop_status. */
10690 if (exp_valid_block != NULL && wp_frame != NULL)
10691 {
10692 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10693
10694 if (frame_id_p (caller_frame_id))
10695 {
10696 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10697 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10698
10699 scope_breakpoint
10700 = create_internal_breakpoint (caller_arch, caller_pc,
10701 bp_watchpoint_scope,
10702 &momentary_breakpoint_ops);
10703
10704 /* create_internal_breakpoint could invalidate WP_FRAME. */
10705 wp_frame = NULL;
10706
10707 scope_breakpoint->enable_state = bp_enabled;
10708
10709 /* Automatically delete the breakpoint when it hits. */
10710 scope_breakpoint->disposition = disp_del;
10711
10712 /* Only break in the proper frame (help with recursion). */
10713 scope_breakpoint->frame_id = caller_frame_id;
10714
10715 /* Set the address at which we will stop. */
10716 scope_breakpoint->loc->gdbarch = caller_arch;
10717 scope_breakpoint->loc->requested_address = caller_pc;
10718 scope_breakpoint->loc->address
10719 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10720 scope_breakpoint->loc->requested_address,
10721 scope_breakpoint->type);
10722 }
10723 }
10724
10725 /* Now set up the breakpoint. We create all watchpoints as hardware
10726 watchpoints here even if hardware watchpoints are turned off, a call
10727 to update_watchpoint later in this function will cause the type to
10728 drop back to bp_watchpoint (software watchpoint) if required. */
10729
10730 if (accessflag == hw_read)
10731 bp_type = bp_read_watchpoint;
10732 else if (accessflag == hw_access)
10733 bp_type = bp_access_watchpoint;
10734 else
10735 bp_type = bp_hardware_watchpoint;
10736
10737 std::unique_ptr<watchpoint> w (new watchpoint ());
10738
10739 if (use_mask)
10740 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10741 &masked_watchpoint_breakpoint_ops);
10742 else
10743 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10744 &watchpoint_breakpoint_ops);
10745 w->thread = thread;
10746 w->disposition = disp_donttouch;
10747 w->pspace = current_program_space;
10748 w->exp = std::move (exp);
10749 w->exp_valid_block = exp_valid_block;
10750 w->cond_exp_valid_block = cond_exp_valid_block;
10751 if (just_location)
10752 {
10753 struct type *t = value_type (val.get ());
10754 CORE_ADDR addr = value_as_address (val.get ());
10755
10756 w->exp_string_reparse
10757 = current_language->la_watch_location_expression (t, addr).release ();
10758
10759 w->exp_string = xstrprintf ("-location %.*s",
10760 (int) (exp_end - exp_start), exp_start);
10761 }
10762 else
10763 w->exp_string = savestring (exp_start, exp_end - exp_start);
10764
10765 if (use_mask)
10766 {
10767 w->hw_wp_mask = mask;
10768 }
10769 else
10770 {
10771 w->val = val;
10772 w->val_bitpos = saved_bitpos;
10773 w->val_bitsize = saved_bitsize;
10774 w->val_valid = 1;
10775 }
10776
10777 if (cond_start)
10778 w->cond_string = savestring (cond_start, cond_end - cond_start);
10779 else
10780 w->cond_string = 0;
10781
10782 if (frame_id_p (watchpoint_frame))
10783 {
10784 w->watchpoint_frame = watchpoint_frame;
10785 w->watchpoint_thread = inferior_ptid;
10786 }
10787 else
10788 {
10789 w->watchpoint_frame = null_frame_id;
10790 w->watchpoint_thread = null_ptid;
10791 }
10792
10793 if (scope_breakpoint != NULL)
10794 {
10795 /* The scope breakpoint is related to the watchpoint. We will
10796 need to act on them together. */
10797 w->related_breakpoint = scope_breakpoint;
10798 scope_breakpoint->related_breakpoint = w.get ();
10799 }
10800
10801 if (!just_location)
10802 value_free_to_mark (mark);
10803
10804 /* Finally update the new watchpoint. This creates the locations
10805 that should be inserted. */
10806 update_watchpoint (w.get (), 1);
10807
10808 install_breakpoint (internal, std::move (w), 1);
10809 }
10810
10811 /* Return count of debug registers needed to watch the given expression.
10812 If the watchpoint cannot be handled in hardware return zero. */
10813
10814 static int
10815 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10816 {
10817 int found_memory_cnt = 0;
10818
10819 /* Did the user specifically forbid us to use hardware watchpoints? */
10820 if (!can_use_hw_watchpoints)
10821 return 0;
10822
10823 gdb_assert (!vals.empty ());
10824 struct value *head = vals[0].get ();
10825
10826 /* Make sure that the value of the expression depends only upon
10827 memory contents, and values computed from them within GDB. If we
10828 find any register references or function calls, we can't use a
10829 hardware watchpoint.
10830
10831 The idea here is that evaluating an expression generates a series
10832 of values, one holding the value of every subexpression. (The
10833 expression a*b+c has five subexpressions: a, b, a*b, c, and
10834 a*b+c.) GDB's values hold almost enough information to establish
10835 the criteria given above --- they identify memory lvalues,
10836 register lvalues, computed values, etcetera. So we can evaluate
10837 the expression, and then scan the chain of values that leaves
10838 behind to decide whether we can detect any possible change to the
10839 expression's final value using only hardware watchpoints.
10840
10841 However, I don't think that the values returned by inferior
10842 function calls are special in any way. So this function may not
10843 notice that an expression involving an inferior function call
10844 can't be watched with hardware watchpoints. FIXME. */
10845 for (const value_ref_ptr &iter : vals)
10846 {
10847 struct value *v = iter.get ();
10848
10849 if (VALUE_LVAL (v) == lval_memory)
10850 {
10851 if (v != head && value_lazy (v))
10852 /* A lazy memory lvalue in the chain is one that GDB never
10853 needed to fetch; we either just used its address (e.g.,
10854 `a' in `a.b') or we never needed it at all (e.g., `a'
10855 in `a,b'). This doesn't apply to HEAD; if that is
10856 lazy then it was not readable, but watch it anyway. */
10857 ;
10858 else
10859 {
10860 /* Ahh, memory we actually used! Check if we can cover
10861 it with hardware watchpoints. */
10862 struct type *vtype = check_typedef (value_type (v));
10863
10864 /* We only watch structs and arrays if user asked for it
10865 explicitly, never if they just happen to appear in a
10866 middle of some value chain. */
10867 if (v == head
10868 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10869 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10870 {
10871 CORE_ADDR vaddr = value_address (v);
10872 int len;
10873 int num_regs;
10874
10875 len = (target_exact_watchpoints
10876 && is_scalar_type_recursive (vtype))?
10877 1 : TYPE_LENGTH (value_type (v));
10878
10879 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10880 if (!num_regs)
10881 return 0;
10882 else
10883 found_memory_cnt += num_regs;
10884 }
10885 }
10886 }
10887 else if (VALUE_LVAL (v) != not_lval
10888 && deprecated_value_modifiable (v) == 0)
10889 return 0; /* These are values from the history (e.g., $1). */
10890 else if (VALUE_LVAL (v) == lval_register)
10891 return 0; /* Cannot watch a register with a HW watchpoint. */
10892 }
10893
10894 /* The expression itself looks suitable for using a hardware
10895 watchpoint, but give the target machine a chance to reject it. */
10896 return found_memory_cnt;
10897 }
10898
10899 void
10900 watch_command_wrapper (const char *arg, int from_tty, int internal)
10901 {
10902 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10903 }
10904
10905 /* A helper function that looks for the "-location" argument and then
10906 calls watch_command_1. */
10907
10908 static void
10909 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10910 {
10911 int just_location = 0;
10912
10913 if (arg
10914 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10915 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10916 {
10917 arg = skip_spaces (arg);
10918 just_location = 1;
10919 }
10920
10921 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10922 }
10923
10924 static void
10925 watch_command (const char *arg, int from_tty)
10926 {
10927 watch_maybe_just_location (arg, hw_write, from_tty);
10928 }
10929
10930 void
10931 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10932 {
10933 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10934 }
10935
10936 static void
10937 rwatch_command (const char *arg, int from_tty)
10938 {
10939 watch_maybe_just_location (arg, hw_read, from_tty);
10940 }
10941
10942 void
10943 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10944 {
10945 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10946 }
10947
10948 static void
10949 awatch_command (const char *arg, int from_tty)
10950 {
10951 watch_maybe_just_location (arg, hw_access, from_tty);
10952 }
10953 \f
10954
10955 /* Data for the FSM that manages the until(location)/advance commands
10956 in infcmd.c. Here because it uses the mechanisms of
10957 breakpoints. */
10958
10959 struct until_break_fsm : public thread_fsm
10960 {
10961 /* The thread that was current when the command was executed. */
10962 int thread;
10963
10964 /* The breakpoint set at the destination location. */
10965 breakpoint_up location_breakpoint;
10966
10967 /* Breakpoint set at the return address in the caller frame. May be
10968 NULL. */
10969 breakpoint_up caller_breakpoint;
10970
10971 until_break_fsm (struct interp *cmd_interp, int thread,
10972 breakpoint_up &&location_breakpoint,
10973 breakpoint_up &&caller_breakpoint)
10974 : thread_fsm (cmd_interp),
10975 thread (thread),
10976 location_breakpoint (std::move (location_breakpoint)),
10977 caller_breakpoint (std::move (caller_breakpoint))
10978 {
10979 }
10980
10981 void clean_up (struct thread_info *thread) override;
10982 bool should_stop (struct thread_info *thread) override;
10983 enum async_reply_reason do_async_reply_reason () override;
10984 };
10985
10986 /* Implementation of the 'should_stop' FSM method for the
10987 until(location)/advance commands. */
10988
10989 bool
10990 until_break_fsm::should_stop (struct thread_info *tp)
10991 {
10992 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10993 location_breakpoint.get ()) != NULL
10994 || (caller_breakpoint != NULL
10995 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10996 caller_breakpoint.get ()) != NULL))
10997 set_finished ();
10998
10999 return true;
11000 }
11001
11002 /* Implementation of the 'clean_up' FSM method for the
11003 until(location)/advance commands. */
11004
11005 void
11006 until_break_fsm::clean_up (struct thread_info *)
11007 {
11008 /* Clean up our temporary breakpoints. */
11009 location_breakpoint.reset ();
11010 caller_breakpoint.reset ();
11011 delete_longjmp_breakpoint (thread);
11012 }
11013
11014 /* Implementation of the 'async_reply_reason' FSM method for the
11015 until(location)/advance commands. */
11016
11017 enum async_reply_reason
11018 until_break_fsm::do_async_reply_reason ()
11019 {
11020 return EXEC_ASYNC_LOCATION_REACHED;
11021 }
11022
11023 void
11024 until_break_command (const char *arg, int from_tty, int anywhere)
11025 {
11026 struct frame_info *frame;
11027 struct gdbarch *frame_gdbarch;
11028 struct frame_id stack_frame_id;
11029 struct frame_id caller_frame_id;
11030 int thread;
11031 struct thread_info *tp;
11032
11033 clear_proceed_status (0);
11034
11035 /* Set a breakpoint where the user wants it and at return from
11036 this function. */
11037
11038 event_location_up location = string_to_event_location (&arg, current_language);
11039
11040 std::vector<symtab_and_line> sals
11041 = (last_displayed_sal_is_valid ()
11042 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11043 get_last_displayed_symtab (),
11044 get_last_displayed_line ())
11045 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11046 NULL, (struct symtab *) NULL, 0));
11047
11048 if (sals.size () != 1)
11049 error (_("Couldn't get information on specified line."));
11050
11051 symtab_and_line &sal = sals[0];
11052
11053 if (*arg)
11054 error (_("Junk at end of arguments."));
11055
11056 resolve_sal_pc (&sal);
11057
11058 tp = inferior_thread ();
11059 thread = tp->global_num;
11060
11061 /* Note linespec handling above invalidates the frame chain.
11062 Installing a breakpoint also invalidates the frame chain (as it
11063 may need to switch threads), so do any frame handling before
11064 that. */
11065
11066 frame = get_selected_frame (NULL);
11067 frame_gdbarch = get_frame_arch (frame);
11068 stack_frame_id = get_stack_frame_id (frame);
11069 caller_frame_id = frame_unwind_caller_id (frame);
11070
11071 /* Keep within the current frame, or in frames called by the current
11072 one. */
11073
11074 breakpoint_up caller_breakpoint;
11075
11076 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11077
11078 if (frame_id_p (caller_frame_id))
11079 {
11080 struct symtab_and_line sal2;
11081 struct gdbarch *caller_gdbarch;
11082
11083 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11084 sal2.pc = frame_unwind_caller_pc (frame);
11085 caller_gdbarch = frame_unwind_caller_arch (frame);
11086 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11087 sal2,
11088 caller_frame_id,
11089 bp_until);
11090
11091 set_longjmp_breakpoint (tp, caller_frame_id);
11092 lj_deleter.emplace (thread);
11093 }
11094
11095 /* set_momentary_breakpoint could invalidate FRAME. */
11096 frame = NULL;
11097
11098 breakpoint_up location_breakpoint;
11099 if (anywhere)
11100 /* If the user told us to continue until a specified location,
11101 we don't specify a frame at which we need to stop. */
11102 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11103 null_frame_id, bp_until);
11104 else
11105 /* Otherwise, specify the selected frame, because we want to stop
11106 only at the very same frame. */
11107 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11108 stack_frame_id, bp_until);
11109
11110 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11111 std::move (location_breakpoint),
11112 std::move (caller_breakpoint));
11113
11114 if (lj_deleter)
11115 lj_deleter->release ();
11116
11117 proceed (-1, GDB_SIGNAL_DEFAULT);
11118 }
11119
11120 /* This function attempts to parse an optional "if <cond>" clause
11121 from the arg string. If one is not found, it returns NULL.
11122
11123 Else, it returns a pointer to the condition string. (It does not
11124 attempt to evaluate the string against a particular block.) And,
11125 it updates arg to point to the first character following the parsed
11126 if clause in the arg string. */
11127
11128 const char *
11129 ep_parse_optional_if_clause (const char **arg)
11130 {
11131 const char *cond_string;
11132
11133 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11134 return NULL;
11135
11136 /* Skip the "if" keyword. */
11137 (*arg) += 2;
11138
11139 /* Skip any extra leading whitespace, and record the start of the
11140 condition string. */
11141 *arg = skip_spaces (*arg);
11142 cond_string = *arg;
11143
11144 /* Assume that the condition occupies the remainder of the arg
11145 string. */
11146 (*arg) += strlen (cond_string);
11147
11148 return cond_string;
11149 }
11150
11151 /* Commands to deal with catching events, such as signals, exceptions,
11152 process start/exit, etc. */
11153
11154 typedef enum
11155 {
11156 catch_fork_temporary, catch_vfork_temporary,
11157 catch_fork_permanent, catch_vfork_permanent
11158 }
11159 catch_fork_kind;
11160
11161 static void
11162 catch_fork_command_1 (const char *arg, int from_tty,
11163 struct cmd_list_element *command)
11164 {
11165 struct gdbarch *gdbarch = get_current_arch ();
11166 const char *cond_string = NULL;
11167 catch_fork_kind fork_kind;
11168 int tempflag;
11169
11170 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11171 tempflag = (fork_kind == catch_fork_temporary
11172 || fork_kind == catch_vfork_temporary);
11173
11174 if (!arg)
11175 arg = "";
11176 arg = skip_spaces (arg);
11177
11178 /* The allowed syntax is:
11179 catch [v]fork
11180 catch [v]fork if <cond>
11181
11182 First, check if there's an if clause. */
11183 cond_string = ep_parse_optional_if_clause (&arg);
11184
11185 if ((*arg != '\0') && !isspace (*arg))
11186 error (_("Junk at end of arguments."));
11187
11188 /* If this target supports it, create a fork or vfork catchpoint
11189 and enable reporting of such events. */
11190 switch (fork_kind)
11191 {
11192 case catch_fork_temporary:
11193 case catch_fork_permanent:
11194 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11195 &catch_fork_breakpoint_ops);
11196 break;
11197 case catch_vfork_temporary:
11198 case catch_vfork_permanent:
11199 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11200 &catch_vfork_breakpoint_ops);
11201 break;
11202 default:
11203 error (_("unsupported or unknown fork kind; cannot catch it"));
11204 break;
11205 }
11206 }
11207
11208 static void
11209 catch_exec_command_1 (const char *arg, int from_tty,
11210 struct cmd_list_element *command)
11211 {
11212 struct gdbarch *gdbarch = get_current_arch ();
11213 int tempflag;
11214 const char *cond_string = NULL;
11215
11216 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11217
11218 if (!arg)
11219 arg = "";
11220 arg = skip_spaces (arg);
11221
11222 /* The allowed syntax is:
11223 catch exec
11224 catch exec if <cond>
11225
11226 First, check if there's an if clause. */
11227 cond_string = ep_parse_optional_if_clause (&arg);
11228
11229 if ((*arg != '\0') && !isspace (*arg))
11230 error (_("Junk at end of arguments."));
11231
11232 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11233 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11234 &catch_exec_breakpoint_ops);
11235 c->exec_pathname = NULL;
11236
11237 install_breakpoint (0, std::move (c), 1);
11238 }
11239
11240 void
11241 init_ada_exception_breakpoint (struct breakpoint *b,
11242 struct gdbarch *gdbarch,
11243 struct symtab_and_line sal,
11244 const char *addr_string,
11245 const struct breakpoint_ops *ops,
11246 int tempflag,
11247 int enabled,
11248 int from_tty)
11249 {
11250 if (from_tty)
11251 {
11252 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11253 if (!loc_gdbarch)
11254 loc_gdbarch = gdbarch;
11255
11256 describe_other_breakpoints (loc_gdbarch,
11257 sal.pspace, sal.pc, sal.section, -1);
11258 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11259 version for exception catchpoints, because two catchpoints
11260 used for different exception names will use the same address.
11261 In this case, a "breakpoint ... also set at..." warning is
11262 unproductive. Besides, the warning phrasing is also a bit
11263 inappropriate, we should use the word catchpoint, and tell
11264 the user what type of catchpoint it is. The above is good
11265 enough for now, though. */
11266 }
11267
11268 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11269
11270 b->enable_state = enabled ? bp_enabled : bp_disabled;
11271 b->disposition = tempflag ? disp_del : disp_donttouch;
11272 b->location = string_to_event_location (&addr_string,
11273 language_def (language_ada));
11274 b->language = language_ada;
11275 }
11276
11277 static void
11278 catch_command (const char *arg, int from_tty)
11279 {
11280 error (_("Catch requires an event name."));
11281 }
11282 \f
11283
11284 static void
11285 tcatch_command (const char *arg, int from_tty)
11286 {
11287 error (_("Catch requires an event name."));
11288 }
11289
11290 /* Compare two breakpoints and return a strcmp-like result. */
11291
11292 static int
11293 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11294 {
11295 uintptr_t ua = (uintptr_t) a;
11296 uintptr_t ub = (uintptr_t) b;
11297
11298 if (a->number < b->number)
11299 return -1;
11300 else if (a->number > b->number)
11301 return 1;
11302
11303 /* Now sort by address, in case we see, e..g, two breakpoints with
11304 the number 0. */
11305 if (ua < ub)
11306 return -1;
11307 return ua > ub ? 1 : 0;
11308 }
11309
11310 /* Delete breakpoints by address or line. */
11311
11312 static void
11313 clear_command (const char *arg, int from_tty)
11314 {
11315 struct breakpoint *b;
11316 int default_match;
11317
11318 std::vector<symtab_and_line> decoded_sals;
11319 symtab_and_line last_sal;
11320 gdb::array_view<symtab_and_line> sals;
11321 if (arg)
11322 {
11323 decoded_sals
11324 = decode_line_with_current_source (arg,
11325 (DECODE_LINE_FUNFIRSTLINE
11326 | DECODE_LINE_LIST_MODE));
11327 default_match = 0;
11328 sals = decoded_sals;
11329 }
11330 else
11331 {
11332 /* Set sal's line, symtab, pc, and pspace to the values
11333 corresponding to the last call to print_frame_info. If the
11334 codepoint is not valid, this will set all the fields to 0. */
11335 last_sal = get_last_displayed_sal ();
11336 if (last_sal.symtab == 0)
11337 error (_("No source file specified."));
11338
11339 default_match = 1;
11340 sals = last_sal;
11341 }
11342
11343 /* We don't call resolve_sal_pc here. That's not as bad as it
11344 seems, because all existing breakpoints typically have both
11345 file/line and pc set. So, if clear is given file/line, we can
11346 match this to existing breakpoint without obtaining pc at all.
11347
11348 We only support clearing given the address explicitly
11349 present in breakpoint table. Say, we've set breakpoint
11350 at file:line. There were several PC values for that file:line,
11351 due to optimization, all in one block.
11352
11353 We've picked one PC value. If "clear" is issued with another
11354 PC corresponding to the same file:line, the breakpoint won't
11355 be cleared. We probably can still clear the breakpoint, but
11356 since the other PC value is never presented to user, user
11357 can only find it by guessing, and it does not seem important
11358 to support that. */
11359
11360 /* For each line spec given, delete bps which correspond to it. Do
11361 it in two passes, solely to preserve the current behavior that
11362 from_tty is forced true if we delete more than one
11363 breakpoint. */
11364
11365 std::vector<struct breakpoint *> found;
11366 for (const auto &sal : sals)
11367 {
11368 const char *sal_fullname;
11369
11370 /* If exact pc given, clear bpts at that pc.
11371 If line given (pc == 0), clear all bpts on specified line.
11372 If defaulting, clear all bpts on default line
11373 or at default pc.
11374
11375 defaulting sal.pc != 0 tests to do
11376
11377 0 1 pc
11378 1 1 pc _and_ line
11379 0 0 line
11380 1 0 <can't happen> */
11381
11382 sal_fullname = (sal.symtab == NULL
11383 ? NULL : symtab_to_fullname (sal.symtab));
11384
11385 /* Find all matching breakpoints and add them to 'found'. */
11386 ALL_BREAKPOINTS (b)
11387 {
11388 int match = 0;
11389 /* Are we going to delete b? */
11390 if (b->type != bp_none && !is_watchpoint (b))
11391 {
11392 struct bp_location *loc = b->loc;
11393 for (; loc; loc = loc->next)
11394 {
11395 /* If the user specified file:line, don't allow a PC
11396 match. This matches historical gdb behavior. */
11397 int pc_match = (!sal.explicit_line
11398 && sal.pc
11399 && (loc->pspace == sal.pspace)
11400 && (loc->address == sal.pc)
11401 && (!section_is_overlay (loc->section)
11402 || loc->section == sal.section));
11403 int line_match = 0;
11404
11405 if ((default_match || sal.explicit_line)
11406 && loc->symtab != NULL
11407 && sal_fullname != NULL
11408 && sal.pspace == loc->pspace
11409 && loc->line_number == sal.line
11410 && filename_cmp (symtab_to_fullname (loc->symtab),
11411 sal_fullname) == 0)
11412 line_match = 1;
11413
11414 if (pc_match || line_match)
11415 {
11416 match = 1;
11417 break;
11418 }
11419 }
11420 }
11421
11422 if (match)
11423 found.push_back (b);
11424 }
11425 }
11426
11427 /* Now go thru the 'found' chain and delete them. */
11428 if (found.empty ())
11429 {
11430 if (arg)
11431 error (_("No breakpoint at %s."), arg);
11432 else
11433 error (_("No breakpoint at this line."));
11434 }
11435
11436 /* Remove duplicates from the vec. */
11437 std::sort (found.begin (), found.end (),
11438 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11439 {
11440 return compare_breakpoints (bp_a, bp_b) < 0;
11441 });
11442 found.erase (std::unique (found.begin (), found.end (),
11443 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11444 {
11445 return compare_breakpoints (bp_a, bp_b) == 0;
11446 }),
11447 found.end ());
11448
11449 if (found.size () > 1)
11450 from_tty = 1; /* Always report if deleted more than one. */
11451 if (from_tty)
11452 {
11453 if (found.size () == 1)
11454 printf_unfiltered (_("Deleted breakpoint "));
11455 else
11456 printf_unfiltered (_("Deleted breakpoints "));
11457 }
11458
11459 for (breakpoint *iter : found)
11460 {
11461 if (from_tty)
11462 printf_unfiltered ("%d ", iter->number);
11463 delete_breakpoint (iter);
11464 }
11465 if (from_tty)
11466 putchar_unfiltered ('\n');
11467 }
11468 \f
11469 /* Delete breakpoint in BS if they are `delete' breakpoints and
11470 all breakpoints that are marked for deletion, whether hit or not.
11471 This is called after any breakpoint is hit, or after errors. */
11472
11473 void
11474 breakpoint_auto_delete (bpstat bs)
11475 {
11476 struct breakpoint *b, *b_tmp;
11477
11478 for (; bs; bs = bs->next)
11479 if (bs->breakpoint_at
11480 && bs->breakpoint_at->disposition == disp_del
11481 && bs->stop)
11482 delete_breakpoint (bs->breakpoint_at);
11483
11484 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11485 {
11486 if (b->disposition == disp_del_at_next_stop)
11487 delete_breakpoint (b);
11488 }
11489 }
11490
11491 /* A comparison function for bp_location AP and BP being interfaced to
11492 qsort. Sort elements primarily by their ADDRESS (no matter what
11493 does breakpoint_address_is_meaningful say for its OWNER),
11494 secondarily by ordering first permanent elements and
11495 terciarily just ensuring the array is sorted stable way despite
11496 qsort being an unstable algorithm. */
11497
11498 static int
11499 bp_locations_compare (const void *ap, const void *bp)
11500 {
11501 const struct bp_location *a = *(const struct bp_location **) ap;
11502 const struct bp_location *b = *(const struct bp_location **) bp;
11503
11504 if (a->address != b->address)
11505 return (a->address > b->address) - (a->address < b->address);
11506
11507 /* Sort locations at the same address by their pspace number, keeping
11508 locations of the same inferior (in a multi-inferior environment)
11509 grouped. */
11510
11511 if (a->pspace->num != b->pspace->num)
11512 return ((a->pspace->num > b->pspace->num)
11513 - (a->pspace->num < b->pspace->num));
11514
11515 /* Sort permanent breakpoints first. */
11516 if (a->permanent != b->permanent)
11517 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11518
11519 /* Make the internal GDB representation stable across GDB runs
11520 where A and B memory inside GDB can differ. Breakpoint locations of
11521 the same type at the same address can be sorted in arbitrary order. */
11522
11523 if (a->owner->number != b->owner->number)
11524 return ((a->owner->number > b->owner->number)
11525 - (a->owner->number < b->owner->number));
11526
11527 return (a > b) - (a < b);
11528 }
11529
11530 /* Set bp_locations_placed_address_before_address_max and
11531 bp_locations_shadow_len_after_address_max according to the current
11532 content of the bp_locations array. */
11533
11534 static void
11535 bp_locations_target_extensions_update (void)
11536 {
11537 struct bp_location *bl, **blp_tmp;
11538
11539 bp_locations_placed_address_before_address_max = 0;
11540 bp_locations_shadow_len_after_address_max = 0;
11541
11542 ALL_BP_LOCATIONS (bl, blp_tmp)
11543 {
11544 CORE_ADDR start, end, addr;
11545
11546 if (!bp_location_has_shadow (bl))
11547 continue;
11548
11549 start = bl->target_info.placed_address;
11550 end = start + bl->target_info.shadow_len;
11551
11552 gdb_assert (bl->address >= start);
11553 addr = bl->address - start;
11554 if (addr > bp_locations_placed_address_before_address_max)
11555 bp_locations_placed_address_before_address_max = addr;
11556
11557 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11558
11559 gdb_assert (bl->address < end);
11560 addr = end - bl->address;
11561 if (addr > bp_locations_shadow_len_after_address_max)
11562 bp_locations_shadow_len_after_address_max = addr;
11563 }
11564 }
11565
11566 /* Download tracepoint locations if they haven't been. */
11567
11568 static void
11569 download_tracepoint_locations (void)
11570 {
11571 struct breakpoint *b;
11572 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11573
11574 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11575
11576 ALL_TRACEPOINTS (b)
11577 {
11578 struct bp_location *bl;
11579 struct tracepoint *t;
11580 int bp_location_downloaded = 0;
11581
11582 if ((b->type == bp_fast_tracepoint
11583 ? !may_insert_fast_tracepoints
11584 : !may_insert_tracepoints))
11585 continue;
11586
11587 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11588 {
11589 if (target_can_download_tracepoint ())
11590 can_download_tracepoint = TRIBOOL_TRUE;
11591 else
11592 can_download_tracepoint = TRIBOOL_FALSE;
11593 }
11594
11595 if (can_download_tracepoint == TRIBOOL_FALSE)
11596 break;
11597
11598 for (bl = b->loc; bl; bl = bl->next)
11599 {
11600 /* In tracepoint, locations are _never_ duplicated, so
11601 should_be_inserted is equivalent to
11602 unduplicated_should_be_inserted. */
11603 if (!should_be_inserted (bl) || bl->inserted)
11604 continue;
11605
11606 switch_to_program_space_and_thread (bl->pspace);
11607
11608 target_download_tracepoint (bl);
11609
11610 bl->inserted = 1;
11611 bp_location_downloaded = 1;
11612 }
11613 t = (struct tracepoint *) b;
11614 t->number_on_target = b->number;
11615 if (bp_location_downloaded)
11616 gdb::observers::breakpoint_modified.notify (b);
11617 }
11618 }
11619
11620 /* Swap the insertion/duplication state between two locations. */
11621
11622 static void
11623 swap_insertion (struct bp_location *left, struct bp_location *right)
11624 {
11625 const int left_inserted = left->inserted;
11626 const int left_duplicate = left->duplicate;
11627 const int left_needs_update = left->needs_update;
11628 const struct bp_target_info left_target_info = left->target_info;
11629
11630 /* Locations of tracepoints can never be duplicated. */
11631 if (is_tracepoint (left->owner))
11632 gdb_assert (!left->duplicate);
11633 if (is_tracepoint (right->owner))
11634 gdb_assert (!right->duplicate);
11635
11636 left->inserted = right->inserted;
11637 left->duplicate = right->duplicate;
11638 left->needs_update = right->needs_update;
11639 left->target_info = right->target_info;
11640 right->inserted = left_inserted;
11641 right->duplicate = left_duplicate;
11642 right->needs_update = left_needs_update;
11643 right->target_info = left_target_info;
11644 }
11645
11646 /* Force the re-insertion of the locations at ADDRESS. This is called
11647 once a new/deleted/modified duplicate location is found and we are evaluating
11648 conditions on the target's side. Such conditions need to be updated on
11649 the target. */
11650
11651 static void
11652 force_breakpoint_reinsertion (struct bp_location *bl)
11653 {
11654 struct bp_location **locp = NULL, **loc2p;
11655 struct bp_location *loc;
11656 CORE_ADDR address = 0;
11657 int pspace_num;
11658
11659 address = bl->address;
11660 pspace_num = bl->pspace->num;
11661
11662 /* This is only meaningful if the target is
11663 evaluating conditions and if the user has
11664 opted for condition evaluation on the target's
11665 side. */
11666 if (gdb_evaluates_breakpoint_condition_p ()
11667 || !target_supports_evaluation_of_breakpoint_conditions ())
11668 return;
11669
11670 /* Flag all breakpoint locations with this address and
11671 the same program space as the location
11672 as "its condition has changed". We need to
11673 update the conditions on the target's side. */
11674 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11675 {
11676 loc = *loc2p;
11677
11678 if (!is_breakpoint (loc->owner)
11679 || pspace_num != loc->pspace->num)
11680 continue;
11681
11682 /* Flag the location appropriately. We use a different state to
11683 let everyone know that we already updated the set of locations
11684 with addr bl->address and program space bl->pspace. This is so
11685 we don't have to keep calling these functions just to mark locations
11686 that have already been marked. */
11687 loc->condition_changed = condition_updated;
11688
11689 /* Free the agent expression bytecode as well. We will compute
11690 it later on. */
11691 loc->cond_bytecode.reset ();
11692 }
11693 }
11694 /* Called whether new breakpoints are created, or existing breakpoints
11695 deleted, to update the global location list and recompute which
11696 locations are duplicate of which.
11697
11698 The INSERT_MODE flag determines whether locations may not, may, or
11699 shall be inserted now. See 'enum ugll_insert_mode' for more
11700 info. */
11701
11702 static void
11703 update_global_location_list (enum ugll_insert_mode insert_mode)
11704 {
11705 struct breakpoint *b;
11706 struct bp_location **locp, *loc;
11707 /* Last breakpoint location address that was marked for update. */
11708 CORE_ADDR last_addr = 0;
11709 /* Last breakpoint location program space that was marked for update. */
11710 int last_pspace_num = -1;
11711
11712 /* Used in the duplicates detection below. When iterating over all
11713 bp_locations, points to the first bp_location of a given address.
11714 Breakpoints and watchpoints of different types are never
11715 duplicates of each other. Keep one pointer for each type of
11716 breakpoint/watchpoint, so we only need to loop over all locations
11717 once. */
11718 struct bp_location *bp_loc_first; /* breakpoint */
11719 struct bp_location *wp_loc_first; /* hardware watchpoint */
11720 struct bp_location *awp_loc_first; /* access watchpoint */
11721 struct bp_location *rwp_loc_first; /* read watchpoint */
11722
11723 /* Saved former bp_locations array which we compare against the newly
11724 built bp_locations from the current state of ALL_BREAKPOINTS. */
11725 struct bp_location **old_locp;
11726 unsigned old_locations_count;
11727 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11728
11729 old_locations_count = bp_locations_count;
11730 bp_locations = NULL;
11731 bp_locations_count = 0;
11732
11733 ALL_BREAKPOINTS (b)
11734 for (loc = b->loc; loc; loc = loc->next)
11735 bp_locations_count++;
11736
11737 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11738 locp = bp_locations;
11739 ALL_BREAKPOINTS (b)
11740 for (loc = b->loc; loc; loc = loc->next)
11741 *locp++ = loc;
11742 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11743 bp_locations_compare);
11744
11745 bp_locations_target_extensions_update ();
11746
11747 /* Identify bp_location instances that are no longer present in the
11748 new list, and therefore should be freed. Note that it's not
11749 necessary that those locations should be removed from inferior --
11750 if there's another location at the same address (previously
11751 marked as duplicate), we don't need to remove/insert the
11752 location.
11753
11754 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11755 and former bp_location array state respectively. */
11756
11757 locp = bp_locations;
11758 for (old_locp = old_locations.get ();
11759 old_locp < old_locations.get () + old_locations_count;
11760 old_locp++)
11761 {
11762 struct bp_location *old_loc = *old_locp;
11763 struct bp_location **loc2p;
11764
11765 /* Tells if 'old_loc' is found among the new locations. If
11766 not, we have to free it. */
11767 int found_object = 0;
11768 /* Tells if the location should remain inserted in the target. */
11769 int keep_in_target = 0;
11770 int removed = 0;
11771
11772 /* Skip LOCP entries which will definitely never be needed.
11773 Stop either at or being the one matching OLD_LOC. */
11774 while (locp < bp_locations + bp_locations_count
11775 && (*locp)->address < old_loc->address)
11776 locp++;
11777
11778 for (loc2p = locp;
11779 (loc2p < bp_locations + bp_locations_count
11780 && (*loc2p)->address == old_loc->address);
11781 loc2p++)
11782 {
11783 /* Check if this is a new/duplicated location or a duplicated
11784 location that had its condition modified. If so, we want to send
11785 its condition to the target if evaluation of conditions is taking
11786 place there. */
11787 if ((*loc2p)->condition_changed == condition_modified
11788 && (last_addr != old_loc->address
11789 || last_pspace_num != old_loc->pspace->num))
11790 {
11791 force_breakpoint_reinsertion (*loc2p);
11792 last_pspace_num = old_loc->pspace->num;
11793 }
11794
11795 if (*loc2p == old_loc)
11796 found_object = 1;
11797 }
11798
11799 /* We have already handled this address, update it so that we don't
11800 have to go through updates again. */
11801 last_addr = old_loc->address;
11802
11803 /* Target-side condition evaluation: Handle deleted locations. */
11804 if (!found_object)
11805 force_breakpoint_reinsertion (old_loc);
11806
11807 /* If this location is no longer present, and inserted, look if
11808 there's maybe a new location at the same address. If so,
11809 mark that one inserted, and don't remove this one. This is
11810 needed so that we don't have a time window where a breakpoint
11811 at certain location is not inserted. */
11812
11813 if (old_loc->inserted)
11814 {
11815 /* If the location is inserted now, we might have to remove
11816 it. */
11817
11818 if (found_object && should_be_inserted (old_loc))
11819 {
11820 /* The location is still present in the location list,
11821 and still should be inserted. Don't do anything. */
11822 keep_in_target = 1;
11823 }
11824 else
11825 {
11826 /* This location still exists, but it won't be kept in the
11827 target since it may have been disabled. We proceed to
11828 remove its target-side condition. */
11829
11830 /* The location is either no longer present, or got
11831 disabled. See if there's another location at the
11832 same address, in which case we don't need to remove
11833 this one from the target. */
11834
11835 /* OLD_LOC comes from existing struct breakpoint. */
11836 if (breakpoint_address_is_meaningful (old_loc->owner))
11837 {
11838 for (loc2p = locp;
11839 (loc2p < bp_locations + bp_locations_count
11840 && (*loc2p)->address == old_loc->address);
11841 loc2p++)
11842 {
11843 struct bp_location *loc2 = *loc2p;
11844
11845 if (breakpoint_locations_match (loc2, old_loc))
11846 {
11847 /* Read watchpoint locations are switched to
11848 access watchpoints, if the former are not
11849 supported, but the latter are. */
11850 if (is_hardware_watchpoint (old_loc->owner))
11851 {
11852 gdb_assert (is_hardware_watchpoint (loc2->owner));
11853 loc2->watchpoint_type = old_loc->watchpoint_type;
11854 }
11855
11856 /* loc2 is a duplicated location. We need to check
11857 if it should be inserted in case it will be
11858 unduplicated. */
11859 if (loc2 != old_loc
11860 && unduplicated_should_be_inserted (loc2))
11861 {
11862 swap_insertion (old_loc, loc2);
11863 keep_in_target = 1;
11864 break;
11865 }
11866 }
11867 }
11868 }
11869 }
11870
11871 if (!keep_in_target)
11872 {
11873 if (remove_breakpoint (old_loc))
11874 {
11875 /* This is just about all we can do. We could keep
11876 this location on the global list, and try to
11877 remove it next time, but there's no particular
11878 reason why we will succeed next time.
11879
11880 Note that at this point, old_loc->owner is still
11881 valid, as delete_breakpoint frees the breakpoint
11882 only after calling us. */
11883 printf_filtered (_("warning: Error removing "
11884 "breakpoint %d\n"),
11885 old_loc->owner->number);
11886 }
11887 removed = 1;
11888 }
11889 }
11890
11891 if (!found_object)
11892 {
11893 if (removed && target_is_non_stop_p ()
11894 && need_moribund_for_location_type (old_loc))
11895 {
11896 /* This location was removed from the target. In
11897 non-stop mode, a race condition is possible where
11898 we've removed a breakpoint, but stop events for that
11899 breakpoint are already queued and will arrive later.
11900 We apply an heuristic to be able to distinguish such
11901 SIGTRAPs from other random SIGTRAPs: we keep this
11902 breakpoint location for a bit, and will retire it
11903 after we see some number of events. The theory here
11904 is that reporting of events should, "on the average",
11905 be fair, so after a while we'll see events from all
11906 threads that have anything of interest, and no longer
11907 need to keep this breakpoint location around. We
11908 don't hold locations forever so to reduce chances of
11909 mistaking a non-breakpoint SIGTRAP for a breakpoint
11910 SIGTRAP.
11911
11912 The heuristic failing can be disastrous on
11913 decr_pc_after_break targets.
11914
11915 On decr_pc_after_break targets, like e.g., x86-linux,
11916 if we fail to recognize a late breakpoint SIGTRAP,
11917 because events_till_retirement has reached 0 too
11918 soon, we'll fail to do the PC adjustment, and report
11919 a random SIGTRAP to the user. When the user resumes
11920 the inferior, it will most likely immediately crash
11921 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11922 corrupted, because of being resumed e.g., in the
11923 middle of a multi-byte instruction, or skipped a
11924 one-byte instruction. This was actually seen happen
11925 on native x86-linux, and should be less rare on
11926 targets that do not support new thread events, like
11927 remote, due to the heuristic depending on
11928 thread_count.
11929
11930 Mistaking a random SIGTRAP for a breakpoint trap
11931 causes similar symptoms (PC adjustment applied when
11932 it shouldn't), but then again, playing with SIGTRAPs
11933 behind the debugger's back is asking for trouble.
11934
11935 Since hardware watchpoint traps are always
11936 distinguishable from other traps, so we don't need to
11937 apply keep hardware watchpoint moribund locations
11938 around. We simply always ignore hardware watchpoint
11939 traps we can no longer explain. */
11940
11941 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11942 old_loc->owner = NULL;
11943
11944 moribund_locations.push_back (old_loc);
11945 }
11946 else
11947 {
11948 old_loc->owner = NULL;
11949 decref_bp_location (&old_loc);
11950 }
11951 }
11952 }
11953
11954 /* Rescan breakpoints at the same address and section, marking the
11955 first one as "first" and any others as "duplicates". This is so
11956 that the bpt instruction is only inserted once. If we have a
11957 permanent breakpoint at the same place as BPT, make that one the
11958 official one, and the rest as duplicates. Permanent breakpoints
11959 are sorted first for the same address.
11960
11961 Do the same for hardware watchpoints, but also considering the
11962 watchpoint's type (regular/access/read) and length. */
11963
11964 bp_loc_first = NULL;
11965 wp_loc_first = NULL;
11966 awp_loc_first = NULL;
11967 rwp_loc_first = NULL;
11968 ALL_BP_LOCATIONS (loc, locp)
11969 {
11970 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11971 non-NULL. */
11972 struct bp_location **loc_first_p;
11973 b = loc->owner;
11974
11975 if (!unduplicated_should_be_inserted (loc)
11976 || !breakpoint_address_is_meaningful (b)
11977 /* Don't detect duplicate for tracepoint locations because they are
11978 never duplicated. See the comments in field `duplicate' of
11979 `struct bp_location'. */
11980 || is_tracepoint (b))
11981 {
11982 /* Clear the condition modification flag. */
11983 loc->condition_changed = condition_unchanged;
11984 continue;
11985 }
11986
11987 if (b->type == bp_hardware_watchpoint)
11988 loc_first_p = &wp_loc_first;
11989 else if (b->type == bp_read_watchpoint)
11990 loc_first_p = &rwp_loc_first;
11991 else if (b->type == bp_access_watchpoint)
11992 loc_first_p = &awp_loc_first;
11993 else
11994 loc_first_p = &bp_loc_first;
11995
11996 if (*loc_first_p == NULL
11997 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11998 || !breakpoint_locations_match (loc, *loc_first_p))
11999 {
12000 *loc_first_p = loc;
12001 loc->duplicate = 0;
12002
12003 if (is_breakpoint (loc->owner) && loc->condition_changed)
12004 {
12005 loc->needs_update = 1;
12006 /* Clear the condition modification flag. */
12007 loc->condition_changed = condition_unchanged;
12008 }
12009 continue;
12010 }
12011
12012
12013 /* This and the above ensure the invariant that the first location
12014 is not duplicated, and is the inserted one.
12015 All following are marked as duplicated, and are not inserted. */
12016 if (loc->inserted)
12017 swap_insertion (loc, *loc_first_p);
12018 loc->duplicate = 1;
12019
12020 /* Clear the condition modification flag. */
12021 loc->condition_changed = condition_unchanged;
12022 }
12023
12024 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12025 {
12026 if (insert_mode != UGLL_DONT_INSERT)
12027 insert_breakpoint_locations ();
12028 else
12029 {
12030 /* Even though the caller told us to not insert new
12031 locations, we may still need to update conditions on the
12032 target's side of breakpoints that were already inserted
12033 if the target is evaluating breakpoint conditions. We
12034 only update conditions for locations that are marked
12035 "needs_update". */
12036 update_inserted_breakpoint_locations ();
12037 }
12038 }
12039
12040 if (insert_mode != UGLL_DONT_INSERT)
12041 download_tracepoint_locations ();
12042 }
12043
12044 void
12045 breakpoint_retire_moribund (void)
12046 {
12047 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12048 {
12049 struct bp_location *loc = moribund_locations[ix];
12050 if (--(loc->events_till_retirement) == 0)
12051 {
12052 decref_bp_location (&loc);
12053 unordered_remove (moribund_locations, ix);
12054 --ix;
12055 }
12056 }
12057 }
12058
12059 static void
12060 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12061 {
12062
12063 TRY
12064 {
12065 update_global_location_list (insert_mode);
12066 }
12067 CATCH (e, RETURN_MASK_ERROR)
12068 {
12069 }
12070 END_CATCH
12071 }
12072
12073 /* Clear BKP from a BPS. */
12074
12075 static void
12076 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12077 {
12078 bpstat bs;
12079
12080 for (bs = bps; bs; bs = bs->next)
12081 if (bs->breakpoint_at == bpt)
12082 {
12083 bs->breakpoint_at = NULL;
12084 bs->old_val = NULL;
12085 /* bs->commands will be freed later. */
12086 }
12087 }
12088
12089 /* Callback for iterate_over_threads. */
12090 static int
12091 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12092 {
12093 struct breakpoint *bpt = (struct breakpoint *) data;
12094
12095 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12096 return 0;
12097 }
12098
12099 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12100 callbacks. */
12101
12102 static void
12103 say_where (struct breakpoint *b)
12104 {
12105 struct value_print_options opts;
12106
12107 get_user_print_options (&opts);
12108
12109 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12110 single string. */
12111 if (b->loc == NULL)
12112 {
12113 /* For pending locations, the output differs slightly based
12114 on b->extra_string. If this is non-NULL, it contains either
12115 a condition or dprintf arguments. */
12116 if (b->extra_string == NULL)
12117 {
12118 printf_filtered (_(" (%s) pending."),
12119 event_location_to_string (b->location.get ()));
12120 }
12121 else if (b->type == bp_dprintf)
12122 {
12123 printf_filtered (_(" (%s,%s) pending."),
12124 event_location_to_string (b->location.get ()),
12125 b->extra_string);
12126 }
12127 else
12128 {
12129 printf_filtered (_(" (%s %s) pending."),
12130 event_location_to_string (b->location.get ()),
12131 b->extra_string);
12132 }
12133 }
12134 else
12135 {
12136 if (opts.addressprint || b->loc->symtab == NULL)
12137 {
12138 printf_filtered (" at ");
12139 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12140 address_style.style (),
12141 gdb_stdout);
12142 }
12143 if (b->loc->symtab != NULL)
12144 {
12145 /* If there is a single location, we can print the location
12146 more nicely. */
12147 if (b->loc->next == NULL)
12148 {
12149 puts_filtered (": file ");
12150 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12151 file_name_style.style (),
12152 gdb_stdout);
12153 printf_filtered (", line %d.",
12154 b->loc->line_number);
12155 }
12156 else
12157 /* This is not ideal, but each location may have a
12158 different file name, and this at least reflects the
12159 real situation somewhat. */
12160 printf_filtered (": %s.",
12161 event_location_to_string (b->location.get ()));
12162 }
12163
12164 if (b->loc->next)
12165 {
12166 struct bp_location *loc = b->loc;
12167 int n = 0;
12168 for (; loc; loc = loc->next)
12169 ++n;
12170 printf_filtered (" (%d locations)", n);
12171 }
12172 }
12173 }
12174
12175 bp_location::~bp_location ()
12176 {
12177 xfree (function_name);
12178 }
12179
12180 /* Destructor for the breakpoint base class. */
12181
12182 breakpoint::~breakpoint ()
12183 {
12184 xfree (this->cond_string);
12185 xfree (this->extra_string);
12186 xfree (this->filter);
12187 }
12188
12189 static struct bp_location *
12190 base_breakpoint_allocate_location (struct breakpoint *self)
12191 {
12192 return new bp_location (self);
12193 }
12194
12195 static void
12196 base_breakpoint_re_set (struct breakpoint *b)
12197 {
12198 /* Nothing to re-set. */
12199 }
12200
12201 #define internal_error_pure_virtual_called() \
12202 gdb_assert_not_reached ("pure virtual function called")
12203
12204 static int
12205 base_breakpoint_insert_location (struct bp_location *bl)
12206 {
12207 internal_error_pure_virtual_called ();
12208 }
12209
12210 static int
12211 base_breakpoint_remove_location (struct bp_location *bl,
12212 enum remove_bp_reason reason)
12213 {
12214 internal_error_pure_virtual_called ();
12215 }
12216
12217 static int
12218 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12219 const address_space *aspace,
12220 CORE_ADDR bp_addr,
12221 const struct target_waitstatus *ws)
12222 {
12223 internal_error_pure_virtual_called ();
12224 }
12225
12226 static void
12227 base_breakpoint_check_status (bpstat bs)
12228 {
12229 /* Always stop. */
12230 }
12231
12232 /* A "works_in_software_mode" breakpoint_ops method that just internal
12233 errors. */
12234
12235 static int
12236 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12237 {
12238 internal_error_pure_virtual_called ();
12239 }
12240
12241 /* A "resources_needed" breakpoint_ops method that just internal
12242 errors. */
12243
12244 static int
12245 base_breakpoint_resources_needed (const struct bp_location *bl)
12246 {
12247 internal_error_pure_virtual_called ();
12248 }
12249
12250 static enum print_stop_action
12251 base_breakpoint_print_it (bpstat bs)
12252 {
12253 internal_error_pure_virtual_called ();
12254 }
12255
12256 static void
12257 base_breakpoint_print_one_detail (const struct breakpoint *self,
12258 struct ui_out *uiout)
12259 {
12260 /* nothing */
12261 }
12262
12263 static void
12264 base_breakpoint_print_mention (struct breakpoint *b)
12265 {
12266 internal_error_pure_virtual_called ();
12267 }
12268
12269 static void
12270 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12271 {
12272 internal_error_pure_virtual_called ();
12273 }
12274
12275 static void
12276 base_breakpoint_create_sals_from_location
12277 (const struct event_location *location,
12278 struct linespec_result *canonical,
12279 enum bptype type_wanted)
12280 {
12281 internal_error_pure_virtual_called ();
12282 }
12283
12284 static void
12285 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12286 struct linespec_result *c,
12287 gdb::unique_xmalloc_ptr<char> cond_string,
12288 gdb::unique_xmalloc_ptr<char> extra_string,
12289 enum bptype type_wanted,
12290 enum bpdisp disposition,
12291 int thread,
12292 int task, int ignore_count,
12293 const struct breakpoint_ops *o,
12294 int from_tty, int enabled,
12295 int internal, unsigned flags)
12296 {
12297 internal_error_pure_virtual_called ();
12298 }
12299
12300 static std::vector<symtab_and_line>
12301 base_breakpoint_decode_location (struct breakpoint *b,
12302 const struct event_location *location,
12303 struct program_space *search_pspace)
12304 {
12305 internal_error_pure_virtual_called ();
12306 }
12307
12308 /* The default 'explains_signal' method. */
12309
12310 static int
12311 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12312 {
12313 return 1;
12314 }
12315
12316 /* The default "after_condition_true" method. */
12317
12318 static void
12319 base_breakpoint_after_condition_true (struct bpstats *bs)
12320 {
12321 /* Nothing to do. */
12322 }
12323
12324 struct breakpoint_ops base_breakpoint_ops =
12325 {
12326 base_breakpoint_allocate_location,
12327 base_breakpoint_re_set,
12328 base_breakpoint_insert_location,
12329 base_breakpoint_remove_location,
12330 base_breakpoint_breakpoint_hit,
12331 base_breakpoint_check_status,
12332 base_breakpoint_resources_needed,
12333 base_breakpoint_works_in_software_mode,
12334 base_breakpoint_print_it,
12335 NULL,
12336 base_breakpoint_print_one_detail,
12337 base_breakpoint_print_mention,
12338 base_breakpoint_print_recreate,
12339 base_breakpoint_create_sals_from_location,
12340 base_breakpoint_create_breakpoints_sal,
12341 base_breakpoint_decode_location,
12342 base_breakpoint_explains_signal,
12343 base_breakpoint_after_condition_true,
12344 };
12345
12346 /* Default breakpoint_ops methods. */
12347
12348 static void
12349 bkpt_re_set (struct breakpoint *b)
12350 {
12351 /* FIXME: is this still reachable? */
12352 if (breakpoint_event_location_empty_p (b))
12353 {
12354 /* Anything without a location can't be re-set. */
12355 delete_breakpoint (b);
12356 return;
12357 }
12358
12359 breakpoint_re_set_default (b);
12360 }
12361
12362 static int
12363 bkpt_insert_location (struct bp_location *bl)
12364 {
12365 CORE_ADDR addr = bl->target_info.reqstd_address;
12366
12367 bl->target_info.kind = breakpoint_kind (bl, &addr);
12368 bl->target_info.placed_address = addr;
12369
12370 if (bl->loc_type == bp_loc_hardware_breakpoint)
12371 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12372 else
12373 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12374 }
12375
12376 static int
12377 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12378 {
12379 if (bl->loc_type == bp_loc_hardware_breakpoint)
12380 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12381 else
12382 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12383 }
12384
12385 static int
12386 bkpt_breakpoint_hit (const struct bp_location *bl,
12387 const address_space *aspace, CORE_ADDR bp_addr,
12388 const struct target_waitstatus *ws)
12389 {
12390 if (ws->kind != TARGET_WAITKIND_STOPPED
12391 || ws->value.sig != GDB_SIGNAL_TRAP)
12392 return 0;
12393
12394 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12395 aspace, bp_addr))
12396 return 0;
12397
12398 if (overlay_debugging /* unmapped overlay section */
12399 && section_is_overlay (bl->section)
12400 && !section_is_mapped (bl->section))
12401 return 0;
12402
12403 return 1;
12404 }
12405
12406 static int
12407 dprintf_breakpoint_hit (const struct bp_location *bl,
12408 const address_space *aspace, CORE_ADDR bp_addr,
12409 const struct target_waitstatus *ws)
12410 {
12411 if (dprintf_style == dprintf_style_agent
12412 && target_can_run_breakpoint_commands ())
12413 {
12414 /* An agent-style dprintf never causes a stop. If we see a trap
12415 for this address it must be for a breakpoint that happens to
12416 be set at the same address. */
12417 return 0;
12418 }
12419
12420 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12421 }
12422
12423 static int
12424 bkpt_resources_needed (const struct bp_location *bl)
12425 {
12426 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12427
12428 return 1;
12429 }
12430
12431 static enum print_stop_action
12432 bkpt_print_it (bpstat bs)
12433 {
12434 struct breakpoint *b;
12435 const struct bp_location *bl;
12436 int bp_temp;
12437 struct ui_out *uiout = current_uiout;
12438
12439 gdb_assert (bs->bp_location_at != NULL);
12440
12441 bl = bs->bp_location_at;
12442 b = bs->breakpoint_at;
12443
12444 bp_temp = b->disposition == disp_del;
12445 if (bl->address != bl->requested_address)
12446 breakpoint_adjustment_warning (bl->requested_address,
12447 bl->address,
12448 b->number, 1);
12449 annotate_breakpoint (b->number);
12450 maybe_print_thread_hit_breakpoint (uiout);
12451
12452 if (bp_temp)
12453 uiout->text ("Temporary breakpoint ");
12454 else
12455 uiout->text ("Breakpoint ");
12456 if (uiout->is_mi_like_p ())
12457 {
12458 uiout->field_string ("reason",
12459 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12460 uiout->field_string ("disp", bpdisp_text (b->disposition));
12461 }
12462 uiout->field_int ("bkptno", b->number);
12463 uiout->text (", ");
12464
12465 return PRINT_SRC_AND_LOC;
12466 }
12467
12468 static void
12469 bkpt_print_mention (struct breakpoint *b)
12470 {
12471 if (current_uiout->is_mi_like_p ())
12472 return;
12473
12474 switch (b->type)
12475 {
12476 case bp_breakpoint:
12477 case bp_gnu_ifunc_resolver:
12478 if (b->disposition == disp_del)
12479 printf_filtered (_("Temporary breakpoint"));
12480 else
12481 printf_filtered (_("Breakpoint"));
12482 printf_filtered (_(" %d"), b->number);
12483 if (b->type == bp_gnu_ifunc_resolver)
12484 printf_filtered (_(" at gnu-indirect-function resolver"));
12485 break;
12486 case bp_hardware_breakpoint:
12487 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12488 break;
12489 case bp_dprintf:
12490 printf_filtered (_("Dprintf %d"), b->number);
12491 break;
12492 }
12493
12494 say_where (b);
12495 }
12496
12497 static void
12498 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12499 {
12500 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12501 fprintf_unfiltered (fp, "tbreak");
12502 else if (tp->type == bp_breakpoint)
12503 fprintf_unfiltered (fp, "break");
12504 else if (tp->type == bp_hardware_breakpoint
12505 && tp->disposition == disp_del)
12506 fprintf_unfiltered (fp, "thbreak");
12507 else if (tp->type == bp_hardware_breakpoint)
12508 fprintf_unfiltered (fp, "hbreak");
12509 else
12510 internal_error (__FILE__, __LINE__,
12511 _("unhandled breakpoint type %d"), (int) tp->type);
12512
12513 fprintf_unfiltered (fp, " %s",
12514 event_location_to_string (tp->location.get ()));
12515
12516 /* Print out extra_string if this breakpoint is pending. It might
12517 contain, for example, conditions that were set by the user. */
12518 if (tp->loc == NULL && tp->extra_string != NULL)
12519 fprintf_unfiltered (fp, " %s", tp->extra_string);
12520
12521 print_recreate_thread (tp, fp);
12522 }
12523
12524 static void
12525 bkpt_create_sals_from_location (const struct event_location *location,
12526 struct linespec_result *canonical,
12527 enum bptype type_wanted)
12528 {
12529 create_sals_from_location_default (location, canonical, type_wanted);
12530 }
12531
12532 static void
12533 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12534 struct linespec_result *canonical,
12535 gdb::unique_xmalloc_ptr<char> cond_string,
12536 gdb::unique_xmalloc_ptr<char> extra_string,
12537 enum bptype type_wanted,
12538 enum bpdisp disposition,
12539 int thread,
12540 int task, int ignore_count,
12541 const struct breakpoint_ops *ops,
12542 int from_tty, int enabled,
12543 int internal, unsigned flags)
12544 {
12545 create_breakpoints_sal_default (gdbarch, canonical,
12546 std::move (cond_string),
12547 std::move (extra_string),
12548 type_wanted,
12549 disposition, thread, task,
12550 ignore_count, ops, from_tty,
12551 enabled, internal, flags);
12552 }
12553
12554 static std::vector<symtab_and_line>
12555 bkpt_decode_location (struct breakpoint *b,
12556 const struct event_location *location,
12557 struct program_space *search_pspace)
12558 {
12559 return decode_location_default (b, location, search_pspace);
12560 }
12561
12562 /* Virtual table for internal breakpoints. */
12563
12564 static void
12565 internal_bkpt_re_set (struct breakpoint *b)
12566 {
12567 switch (b->type)
12568 {
12569 /* Delete overlay event and longjmp master breakpoints; they
12570 will be reset later by breakpoint_re_set. */
12571 case bp_overlay_event:
12572 case bp_longjmp_master:
12573 case bp_std_terminate_master:
12574 case bp_exception_master:
12575 delete_breakpoint (b);
12576 break;
12577
12578 /* This breakpoint is special, it's set up when the inferior
12579 starts and we really don't want to touch it. */
12580 case bp_shlib_event:
12581
12582 /* Like bp_shlib_event, this breakpoint type is special. Once
12583 it is set up, we do not want to touch it. */
12584 case bp_thread_event:
12585 break;
12586 }
12587 }
12588
12589 static void
12590 internal_bkpt_check_status (bpstat bs)
12591 {
12592 if (bs->breakpoint_at->type == bp_shlib_event)
12593 {
12594 /* If requested, stop when the dynamic linker notifies GDB of
12595 events. This allows the user to get control and place
12596 breakpoints in initializer routines for dynamically loaded
12597 objects (among other things). */
12598 bs->stop = stop_on_solib_events;
12599 bs->print = stop_on_solib_events;
12600 }
12601 else
12602 bs->stop = 0;
12603 }
12604
12605 static enum print_stop_action
12606 internal_bkpt_print_it (bpstat bs)
12607 {
12608 struct breakpoint *b;
12609
12610 b = bs->breakpoint_at;
12611
12612 switch (b->type)
12613 {
12614 case bp_shlib_event:
12615 /* Did we stop because the user set the stop_on_solib_events
12616 variable? (If so, we report this as a generic, "Stopped due
12617 to shlib event" message.) */
12618 print_solib_event (0);
12619 break;
12620
12621 case bp_thread_event:
12622 /* Not sure how we will get here.
12623 GDB should not stop for these breakpoints. */
12624 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12625 break;
12626
12627 case bp_overlay_event:
12628 /* By analogy with the thread event, GDB should not stop for these. */
12629 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12630 break;
12631
12632 case bp_longjmp_master:
12633 /* These should never be enabled. */
12634 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12635 break;
12636
12637 case bp_std_terminate_master:
12638 /* These should never be enabled. */
12639 printf_filtered (_("std::terminate Master Breakpoint: "
12640 "gdb should not stop!\n"));
12641 break;
12642
12643 case bp_exception_master:
12644 /* These should never be enabled. */
12645 printf_filtered (_("Exception Master Breakpoint: "
12646 "gdb should not stop!\n"));
12647 break;
12648 }
12649
12650 return PRINT_NOTHING;
12651 }
12652
12653 static void
12654 internal_bkpt_print_mention (struct breakpoint *b)
12655 {
12656 /* Nothing to mention. These breakpoints are internal. */
12657 }
12658
12659 /* Virtual table for momentary breakpoints */
12660
12661 static void
12662 momentary_bkpt_re_set (struct breakpoint *b)
12663 {
12664 /* Keep temporary breakpoints, which can be encountered when we step
12665 over a dlopen call and solib_add is resetting the breakpoints.
12666 Otherwise these should have been blown away via the cleanup chain
12667 or by breakpoint_init_inferior when we rerun the executable. */
12668 }
12669
12670 static void
12671 momentary_bkpt_check_status (bpstat bs)
12672 {
12673 /* Nothing. The point of these breakpoints is causing a stop. */
12674 }
12675
12676 static enum print_stop_action
12677 momentary_bkpt_print_it (bpstat bs)
12678 {
12679 return PRINT_UNKNOWN;
12680 }
12681
12682 static void
12683 momentary_bkpt_print_mention (struct breakpoint *b)
12684 {
12685 /* Nothing to mention. These breakpoints are internal. */
12686 }
12687
12688 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12689
12690 It gets cleared already on the removal of the first one of such placed
12691 breakpoints. This is OK as they get all removed altogether. */
12692
12693 longjmp_breakpoint::~longjmp_breakpoint ()
12694 {
12695 thread_info *tp = find_thread_global_id (this->thread);
12696
12697 if (tp != NULL)
12698 tp->initiating_frame = null_frame_id;
12699 }
12700
12701 /* Specific methods for probe breakpoints. */
12702
12703 static int
12704 bkpt_probe_insert_location (struct bp_location *bl)
12705 {
12706 int v = bkpt_insert_location (bl);
12707
12708 if (v == 0)
12709 {
12710 /* The insertion was successful, now let's set the probe's semaphore
12711 if needed. */
12712 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12713 }
12714
12715 return v;
12716 }
12717
12718 static int
12719 bkpt_probe_remove_location (struct bp_location *bl,
12720 enum remove_bp_reason reason)
12721 {
12722 /* Let's clear the semaphore before removing the location. */
12723 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12724
12725 return bkpt_remove_location (bl, reason);
12726 }
12727
12728 static void
12729 bkpt_probe_create_sals_from_location (const struct event_location *location,
12730 struct linespec_result *canonical,
12731 enum bptype type_wanted)
12732 {
12733 struct linespec_sals lsal;
12734
12735 lsal.sals = parse_probes (location, NULL, canonical);
12736 lsal.canonical
12737 = xstrdup (event_location_to_string (canonical->location.get ()));
12738 canonical->lsals.push_back (std::move (lsal));
12739 }
12740
12741 static std::vector<symtab_and_line>
12742 bkpt_probe_decode_location (struct breakpoint *b,
12743 const struct event_location *location,
12744 struct program_space *search_pspace)
12745 {
12746 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12747 if (sals.empty ())
12748 error (_("probe not found"));
12749 return sals;
12750 }
12751
12752 /* The breakpoint_ops structure to be used in tracepoints. */
12753
12754 static void
12755 tracepoint_re_set (struct breakpoint *b)
12756 {
12757 breakpoint_re_set_default (b);
12758 }
12759
12760 static int
12761 tracepoint_breakpoint_hit (const struct bp_location *bl,
12762 const address_space *aspace, CORE_ADDR bp_addr,
12763 const struct target_waitstatus *ws)
12764 {
12765 /* By definition, the inferior does not report stops at
12766 tracepoints. */
12767 return 0;
12768 }
12769
12770 static void
12771 tracepoint_print_one_detail (const struct breakpoint *self,
12772 struct ui_out *uiout)
12773 {
12774 struct tracepoint *tp = (struct tracepoint *) self;
12775 if (!tp->static_trace_marker_id.empty ())
12776 {
12777 gdb_assert (self->type == bp_static_tracepoint);
12778
12779 uiout->text ("\tmarker id is ");
12780 uiout->field_string ("static-tracepoint-marker-string-id",
12781 tp->static_trace_marker_id);
12782 uiout->text ("\n");
12783 }
12784 }
12785
12786 static void
12787 tracepoint_print_mention (struct breakpoint *b)
12788 {
12789 if (current_uiout->is_mi_like_p ())
12790 return;
12791
12792 switch (b->type)
12793 {
12794 case bp_tracepoint:
12795 printf_filtered (_("Tracepoint"));
12796 printf_filtered (_(" %d"), b->number);
12797 break;
12798 case bp_fast_tracepoint:
12799 printf_filtered (_("Fast tracepoint"));
12800 printf_filtered (_(" %d"), b->number);
12801 break;
12802 case bp_static_tracepoint:
12803 printf_filtered (_("Static tracepoint"));
12804 printf_filtered (_(" %d"), b->number);
12805 break;
12806 default:
12807 internal_error (__FILE__, __LINE__,
12808 _("unhandled tracepoint type %d"), (int) b->type);
12809 }
12810
12811 say_where (b);
12812 }
12813
12814 static void
12815 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12816 {
12817 struct tracepoint *tp = (struct tracepoint *) self;
12818
12819 if (self->type == bp_fast_tracepoint)
12820 fprintf_unfiltered (fp, "ftrace");
12821 else if (self->type == bp_static_tracepoint)
12822 fprintf_unfiltered (fp, "strace");
12823 else if (self->type == bp_tracepoint)
12824 fprintf_unfiltered (fp, "trace");
12825 else
12826 internal_error (__FILE__, __LINE__,
12827 _("unhandled tracepoint type %d"), (int) self->type);
12828
12829 fprintf_unfiltered (fp, " %s",
12830 event_location_to_string (self->location.get ()));
12831 print_recreate_thread (self, fp);
12832
12833 if (tp->pass_count)
12834 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12835 }
12836
12837 static void
12838 tracepoint_create_sals_from_location (const struct event_location *location,
12839 struct linespec_result *canonical,
12840 enum bptype type_wanted)
12841 {
12842 create_sals_from_location_default (location, canonical, type_wanted);
12843 }
12844
12845 static void
12846 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12847 struct linespec_result *canonical,
12848 gdb::unique_xmalloc_ptr<char> cond_string,
12849 gdb::unique_xmalloc_ptr<char> extra_string,
12850 enum bptype type_wanted,
12851 enum bpdisp disposition,
12852 int thread,
12853 int task, int ignore_count,
12854 const struct breakpoint_ops *ops,
12855 int from_tty, int enabled,
12856 int internal, unsigned flags)
12857 {
12858 create_breakpoints_sal_default (gdbarch, canonical,
12859 std::move (cond_string),
12860 std::move (extra_string),
12861 type_wanted,
12862 disposition, thread, task,
12863 ignore_count, ops, from_tty,
12864 enabled, internal, flags);
12865 }
12866
12867 static std::vector<symtab_and_line>
12868 tracepoint_decode_location (struct breakpoint *b,
12869 const struct event_location *location,
12870 struct program_space *search_pspace)
12871 {
12872 return decode_location_default (b, location, search_pspace);
12873 }
12874
12875 struct breakpoint_ops tracepoint_breakpoint_ops;
12876
12877 /* The breakpoint_ops structure to be use on tracepoints placed in a
12878 static probe. */
12879
12880 static void
12881 tracepoint_probe_create_sals_from_location
12882 (const struct event_location *location,
12883 struct linespec_result *canonical,
12884 enum bptype type_wanted)
12885 {
12886 /* We use the same method for breakpoint on probes. */
12887 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12888 }
12889
12890 static std::vector<symtab_and_line>
12891 tracepoint_probe_decode_location (struct breakpoint *b,
12892 const struct event_location *location,
12893 struct program_space *search_pspace)
12894 {
12895 /* We use the same method for breakpoint on probes. */
12896 return bkpt_probe_decode_location (b, location, search_pspace);
12897 }
12898
12899 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12900
12901 /* Dprintf breakpoint_ops methods. */
12902
12903 static void
12904 dprintf_re_set (struct breakpoint *b)
12905 {
12906 breakpoint_re_set_default (b);
12907
12908 /* extra_string should never be non-NULL for dprintf. */
12909 gdb_assert (b->extra_string != NULL);
12910
12911 /* 1 - connect to target 1, that can run breakpoint commands.
12912 2 - create a dprintf, which resolves fine.
12913 3 - disconnect from target 1
12914 4 - connect to target 2, that can NOT run breakpoint commands.
12915
12916 After steps #3/#4, you'll want the dprintf command list to
12917 be updated, because target 1 and 2 may well return different
12918 answers for target_can_run_breakpoint_commands().
12919 Given absence of finer grained resetting, we get to do
12920 it all the time. */
12921 if (b->extra_string != NULL)
12922 update_dprintf_command_list (b);
12923 }
12924
12925 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12926
12927 static void
12928 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12929 {
12930 fprintf_unfiltered (fp, "dprintf %s,%s",
12931 event_location_to_string (tp->location.get ()),
12932 tp->extra_string);
12933 print_recreate_thread (tp, fp);
12934 }
12935
12936 /* Implement the "after_condition_true" breakpoint_ops method for
12937 dprintf.
12938
12939 dprintf's are implemented with regular commands in their command
12940 list, but we run the commands here instead of before presenting the
12941 stop to the user, as dprintf's don't actually cause a stop. This
12942 also makes it so that the commands of multiple dprintfs at the same
12943 address are all handled. */
12944
12945 static void
12946 dprintf_after_condition_true (struct bpstats *bs)
12947 {
12948 struct bpstats tmp_bs;
12949 struct bpstats *tmp_bs_p = &tmp_bs;
12950
12951 /* dprintf's never cause a stop. This wasn't set in the
12952 check_status hook instead because that would make the dprintf's
12953 condition not be evaluated. */
12954 bs->stop = 0;
12955
12956 /* Run the command list here. Take ownership of it instead of
12957 copying. We never want these commands to run later in
12958 bpstat_do_actions, if a breakpoint that causes a stop happens to
12959 be set at same address as this dprintf, or even if running the
12960 commands here throws. */
12961 tmp_bs.commands = bs->commands;
12962 bs->commands = NULL;
12963
12964 bpstat_do_actions_1 (&tmp_bs_p);
12965
12966 /* 'tmp_bs.commands' will usually be NULL by now, but
12967 bpstat_do_actions_1 may return early without processing the whole
12968 list. */
12969 }
12970
12971 /* The breakpoint_ops structure to be used on static tracepoints with
12972 markers (`-m'). */
12973
12974 static void
12975 strace_marker_create_sals_from_location (const struct event_location *location,
12976 struct linespec_result *canonical,
12977 enum bptype type_wanted)
12978 {
12979 struct linespec_sals lsal;
12980 const char *arg_start, *arg;
12981
12982 arg = arg_start = get_linespec_location (location)->spec_string;
12983 lsal.sals = decode_static_tracepoint_spec (&arg);
12984
12985 std::string str (arg_start, arg - arg_start);
12986 const char *ptr = str.c_str ();
12987 canonical->location
12988 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12989
12990 lsal.canonical
12991 = xstrdup (event_location_to_string (canonical->location.get ()));
12992 canonical->lsals.push_back (std::move (lsal));
12993 }
12994
12995 static void
12996 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12997 struct linespec_result *canonical,
12998 gdb::unique_xmalloc_ptr<char> cond_string,
12999 gdb::unique_xmalloc_ptr<char> extra_string,
13000 enum bptype type_wanted,
13001 enum bpdisp disposition,
13002 int thread,
13003 int task, int ignore_count,
13004 const struct breakpoint_ops *ops,
13005 int from_tty, int enabled,
13006 int internal, unsigned flags)
13007 {
13008 const linespec_sals &lsal = canonical->lsals[0];
13009
13010 /* If the user is creating a static tracepoint by marker id
13011 (strace -m MARKER_ID), then store the sals index, so that
13012 breakpoint_re_set can try to match up which of the newly
13013 found markers corresponds to this one, and, don't try to
13014 expand multiple locations for each sal, given than SALS
13015 already should contain all sals for MARKER_ID. */
13016
13017 for (size_t i = 0; i < lsal.sals.size (); i++)
13018 {
13019 event_location_up location
13020 = copy_event_location (canonical->location.get ());
13021
13022 std::unique_ptr<tracepoint> tp (new tracepoint ());
13023 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13024 std::move (location), NULL,
13025 std::move (cond_string),
13026 std::move (extra_string),
13027 type_wanted, disposition,
13028 thread, task, ignore_count, ops,
13029 from_tty, enabled, internal, flags,
13030 canonical->special_display);
13031 /* Given that its possible to have multiple markers with
13032 the same string id, if the user is creating a static
13033 tracepoint by marker id ("strace -m MARKER_ID"), then
13034 store the sals index, so that breakpoint_re_set can
13035 try to match up which of the newly found markers
13036 corresponds to this one */
13037 tp->static_trace_marker_id_idx = i;
13038
13039 install_breakpoint (internal, std::move (tp), 0);
13040 }
13041 }
13042
13043 static std::vector<symtab_and_line>
13044 strace_marker_decode_location (struct breakpoint *b,
13045 const struct event_location *location,
13046 struct program_space *search_pspace)
13047 {
13048 struct tracepoint *tp = (struct tracepoint *) b;
13049 const char *s = get_linespec_location (location)->spec_string;
13050
13051 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13052 if (sals.size () > tp->static_trace_marker_id_idx)
13053 {
13054 sals[0] = sals[tp->static_trace_marker_id_idx];
13055 sals.resize (1);
13056 return sals;
13057 }
13058 else
13059 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13060 }
13061
13062 static struct breakpoint_ops strace_marker_breakpoint_ops;
13063
13064 static int
13065 strace_marker_p (struct breakpoint *b)
13066 {
13067 return b->ops == &strace_marker_breakpoint_ops;
13068 }
13069
13070 /* Delete a breakpoint and clean up all traces of it in the data
13071 structures. */
13072
13073 void
13074 delete_breakpoint (struct breakpoint *bpt)
13075 {
13076 struct breakpoint *b;
13077
13078 gdb_assert (bpt != NULL);
13079
13080 /* Has this bp already been deleted? This can happen because
13081 multiple lists can hold pointers to bp's. bpstat lists are
13082 especial culprits.
13083
13084 One example of this happening is a watchpoint's scope bp. When
13085 the scope bp triggers, we notice that the watchpoint is out of
13086 scope, and delete it. We also delete its scope bp. But the
13087 scope bp is marked "auto-deleting", and is already on a bpstat.
13088 That bpstat is then checked for auto-deleting bp's, which are
13089 deleted.
13090
13091 A real solution to this problem might involve reference counts in
13092 bp's, and/or giving them pointers back to their referencing
13093 bpstat's, and teaching delete_breakpoint to only free a bp's
13094 storage when no more references were extent. A cheaper bandaid
13095 was chosen. */
13096 if (bpt->type == bp_none)
13097 return;
13098
13099 /* At least avoid this stale reference until the reference counting
13100 of breakpoints gets resolved. */
13101 if (bpt->related_breakpoint != bpt)
13102 {
13103 struct breakpoint *related;
13104 struct watchpoint *w;
13105
13106 if (bpt->type == bp_watchpoint_scope)
13107 w = (struct watchpoint *) bpt->related_breakpoint;
13108 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13109 w = (struct watchpoint *) bpt;
13110 else
13111 w = NULL;
13112 if (w != NULL)
13113 watchpoint_del_at_next_stop (w);
13114
13115 /* Unlink bpt from the bpt->related_breakpoint ring. */
13116 for (related = bpt; related->related_breakpoint != bpt;
13117 related = related->related_breakpoint);
13118 related->related_breakpoint = bpt->related_breakpoint;
13119 bpt->related_breakpoint = bpt;
13120 }
13121
13122 /* watch_command_1 creates a watchpoint but only sets its number if
13123 update_watchpoint succeeds in creating its bp_locations. If there's
13124 a problem in that process, we'll be asked to delete the half-created
13125 watchpoint. In that case, don't announce the deletion. */
13126 if (bpt->number)
13127 gdb::observers::breakpoint_deleted.notify (bpt);
13128
13129 if (breakpoint_chain == bpt)
13130 breakpoint_chain = bpt->next;
13131
13132 ALL_BREAKPOINTS (b)
13133 if (b->next == bpt)
13134 {
13135 b->next = bpt->next;
13136 break;
13137 }
13138
13139 /* Be sure no bpstat's are pointing at the breakpoint after it's
13140 been freed. */
13141 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13142 in all threads for now. Note that we cannot just remove bpstats
13143 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13144 commands are associated with the bpstat; if we remove it here,
13145 then the later call to bpstat_do_actions (&stop_bpstat); in
13146 event-top.c won't do anything, and temporary breakpoints with
13147 commands won't work. */
13148
13149 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13150
13151 /* Now that breakpoint is removed from breakpoint list, update the
13152 global location list. This will remove locations that used to
13153 belong to this breakpoint. Do this before freeing the breakpoint
13154 itself, since remove_breakpoint looks at location's owner. It
13155 might be better design to have location completely
13156 self-contained, but it's not the case now. */
13157 update_global_location_list (UGLL_DONT_INSERT);
13158
13159 /* On the chance that someone will soon try again to delete this
13160 same bp, we mark it as deleted before freeing its storage. */
13161 bpt->type = bp_none;
13162 delete bpt;
13163 }
13164
13165 /* Iterator function to call a user-provided callback function once
13166 for each of B and its related breakpoints. */
13167
13168 static void
13169 iterate_over_related_breakpoints (struct breakpoint *b,
13170 gdb::function_view<void (breakpoint *)> function)
13171 {
13172 struct breakpoint *related;
13173
13174 related = b;
13175 do
13176 {
13177 struct breakpoint *next;
13178
13179 /* FUNCTION may delete RELATED. */
13180 next = related->related_breakpoint;
13181
13182 if (next == related)
13183 {
13184 /* RELATED is the last ring entry. */
13185 function (related);
13186
13187 /* FUNCTION may have deleted it, so we'd never reach back to
13188 B. There's nothing left to do anyway, so just break
13189 out. */
13190 break;
13191 }
13192 else
13193 function (related);
13194
13195 related = next;
13196 }
13197 while (related != b);
13198 }
13199
13200 static void
13201 delete_command (const char *arg, int from_tty)
13202 {
13203 struct breakpoint *b, *b_tmp;
13204
13205 dont_repeat ();
13206
13207 if (arg == 0)
13208 {
13209 int breaks_to_delete = 0;
13210
13211 /* Delete all breakpoints if no argument. Do not delete
13212 internal breakpoints, these have to be deleted with an
13213 explicit breakpoint number argument. */
13214 ALL_BREAKPOINTS (b)
13215 if (user_breakpoint_p (b))
13216 {
13217 breaks_to_delete = 1;
13218 break;
13219 }
13220
13221 /* Ask user only if there are some breakpoints to delete. */
13222 if (!from_tty
13223 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13224 {
13225 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13226 if (user_breakpoint_p (b))
13227 delete_breakpoint (b);
13228 }
13229 }
13230 else
13231 map_breakpoint_numbers
13232 (arg, [&] (breakpoint *br)
13233 {
13234 iterate_over_related_breakpoints (br, delete_breakpoint);
13235 });
13236 }
13237
13238 /* Return true if all locations of B bound to PSPACE are pending. If
13239 PSPACE is NULL, all locations of all program spaces are
13240 considered. */
13241
13242 static int
13243 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13244 {
13245 struct bp_location *loc;
13246
13247 for (loc = b->loc; loc != NULL; loc = loc->next)
13248 if ((pspace == NULL
13249 || loc->pspace == pspace)
13250 && !loc->shlib_disabled
13251 && !loc->pspace->executing_startup)
13252 return 0;
13253 return 1;
13254 }
13255
13256 /* Subroutine of update_breakpoint_locations to simplify it.
13257 Return non-zero if multiple fns in list LOC have the same name.
13258 Null names are ignored. */
13259
13260 static int
13261 ambiguous_names_p (struct bp_location *loc)
13262 {
13263 struct bp_location *l;
13264 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13265 xcalloc, xfree);
13266
13267 for (l = loc; l != NULL; l = l->next)
13268 {
13269 const char **slot;
13270 const char *name = l->function_name;
13271
13272 /* Allow for some names to be NULL, ignore them. */
13273 if (name == NULL)
13274 continue;
13275
13276 slot = (const char **) htab_find_slot (htab, (const void *) name,
13277 INSERT);
13278 /* NOTE: We can assume slot != NULL here because xcalloc never
13279 returns NULL. */
13280 if (*slot != NULL)
13281 {
13282 htab_delete (htab);
13283 return 1;
13284 }
13285 *slot = name;
13286 }
13287
13288 htab_delete (htab);
13289 return 0;
13290 }
13291
13292 /* When symbols change, it probably means the sources changed as well,
13293 and it might mean the static tracepoint markers are no longer at
13294 the same address or line numbers they used to be at last we
13295 checked. Losing your static tracepoints whenever you rebuild is
13296 undesirable. This function tries to resync/rematch gdb static
13297 tracepoints with the markers on the target, for static tracepoints
13298 that have not been set by marker id. Static tracepoint that have
13299 been set by marker id are reset by marker id in breakpoint_re_set.
13300 The heuristic is:
13301
13302 1) For a tracepoint set at a specific address, look for a marker at
13303 the old PC. If one is found there, assume to be the same marker.
13304 If the name / string id of the marker found is different from the
13305 previous known name, assume that means the user renamed the marker
13306 in the sources, and output a warning.
13307
13308 2) For a tracepoint set at a given line number, look for a marker
13309 at the new address of the old line number. If one is found there,
13310 assume to be the same marker. If the name / string id of the
13311 marker found is different from the previous known name, assume that
13312 means the user renamed the marker in the sources, and output a
13313 warning.
13314
13315 3) If a marker is no longer found at the same address or line, it
13316 may mean the marker no longer exists. But it may also just mean
13317 the code changed a bit. Maybe the user added a few lines of code
13318 that made the marker move up or down (in line number terms). Ask
13319 the target for info about the marker with the string id as we knew
13320 it. If found, update line number and address in the matching
13321 static tracepoint. This will get confused if there's more than one
13322 marker with the same ID (possible in UST, although unadvised
13323 precisely because it confuses tools). */
13324
13325 static struct symtab_and_line
13326 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13327 {
13328 struct tracepoint *tp = (struct tracepoint *) b;
13329 struct static_tracepoint_marker marker;
13330 CORE_ADDR pc;
13331
13332 pc = sal.pc;
13333 if (sal.line)
13334 find_line_pc (sal.symtab, sal.line, &pc);
13335
13336 if (target_static_tracepoint_marker_at (pc, &marker))
13337 {
13338 if (tp->static_trace_marker_id != marker.str_id)
13339 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13340 b->number, tp->static_trace_marker_id.c_str (),
13341 marker.str_id.c_str ());
13342
13343 tp->static_trace_marker_id = std::move (marker.str_id);
13344
13345 return sal;
13346 }
13347
13348 /* Old marker wasn't found on target at lineno. Try looking it up
13349 by string ID. */
13350 if (!sal.explicit_pc
13351 && sal.line != 0
13352 && sal.symtab != NULL
13353 && !tp->static_trace_marker_id.empty ())
13354 {
13355 std::vector<static_tracepoint_marker> markers
13356 = target_static_tracepoint_markers_by_strid
13357 (tp->static_trace_marker_id.c_str ());
13358
13359 if (!markers.empty ())
13360 {
13361 struct symbol *sym;
13362 struct static_tracepoint_marker *tpmarker;
13363 struct ui_out *uiout = current_uiout;
13364 struct explicit_location explicit_loc;
13365
13366 tpmarker = &markers[0];
13367
13368 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13369
13370 warning (_("marker for static tracepoint %d (%s) not "
13371 "found at previous line number"),
13372 b->number, tp->static_trace_marker_id.c_str ());
13373
13374 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13375 sym = find_pc_sect_function (tpmarker->address, NULL);
13376 uiout->text ("Now in ");
13377 if (sym)
13378 {
13379 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13380 ui_out_style_kind::FUNCTION);
13381 uiout->text (" at ");
13382 }
13383 uiout->field_string ("file",
13384 symtab_to_filename_for_display (sal2.symtab),
13385 ui_out_style_kind::FILE);
13386 uiout->text (":");
13387
13388 if (uiout->is_mi_like_p ())
13389 {
13390 const char *fullname = symtab_to_fullname (sal2.symtab);
13391
13392 uiout->field_string ("fullname", fullname);
13393 }
13394
13395 uiout->field_int ("line", sal2.line);
13396 uiout->text ("\n");
13397
13398 b->loc->line_number = sal2.line;
13399 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13400
13401 b->location.reset (NULL);
13402 initialize_explicit_location (&explicit_loc);
13403 explicit_loc.source_filename
13404 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13405 explicit_loc.line_offset.offset = b->loc->line_number;
13406 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13407 b->location = new_explicit_location (&explicit_loc);
13408
13409 /* Might be nice to check if function changed, and warn if
13410 so. */
13411 }
13412 }
13413 return sal;
13414 }
13415
13416 /* Returns 1 iff locations A and B are sufficiently same that
13417 we don't need to report breakpoint as changed. */
13418
13419 static int
13420 locations_are_equal (struct bp_location *a, struct bp_location *b)
13421 {
13422 while (a && b)
13423 {
13424 if (a->address != b->address)
13425 return 0;
13426
13427 if (a->shlib_disabled != b->shlib_disabled)
13428 return 0;
13429
13430 if (a->enabled != b->enabled)
13431 return 0;
13432
13433 a = a->next;
13434 b = b->next;
13435 }
13436
13437 if ((a == NULL) != (b == NULL))
13438 return 0;
13439
13440 return 1;
13441 }
13442
13443 /* Split all locations of B that are bound to PSPACE out of B's
13444 location list to a separate list and return that list's head. If
13445 PSPACE is NULL, hoist out all locations of B. */
13446
13447 static struct bp_location *
13448 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13449 {
13450 struct bp_location head;
13451 struct bp_location *i = b->loc;
13452 struct bp_location **i_link = &b->loc;
13453 struct bp_location *hoisted = &head;
13454
13455 if (pspace == NULL)
13456 {
13457 i = b->loc;
13458 b->loc = NULL;
13459 return i;
13460 }
13461
13462 head.next = NULL;
13463
13464 while (i != NULL)
13465 {
13466 if (i->pspace == pspace)
13467 {
13468 *i_link = i->next;
13469 i->next = NULL;
13470 hoisted->next = i;
13471 hoisted = i;
13472 }
13473 else
13474 i_link = &i->next;
13475 i = *i_link;
13476 }
13477
13478 return head.next;
13479 }
13480
13481 /* Create new breakpoint locations for B (a hardware or software
13482 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13483 zero, then B is a ranged breakpoint. Only recreates locations for
13484 FILTER_PSPACE. Locations of other program spaces are left
13485 untouched. */
13486
13487 void
13488 update_breakpoint_locations (struct breakpoint *b,
13489 struct program_space *filter_pspace,
13490 gdb::array_view<const symtab_and_line> sals,
13491 gdb::array_view<const symtab_and_line> sals_end)
13492 {
13493 struct bp_location *existing_locations;
13494
13495 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13496 {
13497 /* Ranged breakpoints have only one start location and one end
13498 location. */
13499 b->enable_state = bp_disabled;
13500 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13501 "multiple locations found\n"),
13502 b->number);
13503 return;
13504 }
13505
13506 /* If there's no new locations, and all existing locations are
13507 pending, don't do anything. This optimizes the common case where
13508 all locations are in the same shared library, that was unloaded.
13509 We'd like to retain the location, so that when the library is
13510 loaded again, we don't loose the enabled/disabled status of the
13511 individual locations. */
13512 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13513 return;
13514
13515 existing_locations = hoist_existing_locations (b, filter_pspace);
13516
13517 for (const auto &sal : sals)
13518 {
13519 struct bp_location *new_loc;
13520
13521 switch_to_program_space_and_thread (sal.pspace);
13522
13523 new_loc = add_location_to_breakpoint (b, &sal);
13524
13525 /* Reparse conditions, they might contain references to the
13526 old symtab. */
13527 if (b->cond_string != NULL)
13528 {
13529 const char *s;
13530
13531 s = b->cond_string;
13532 TRY
13533 {
13534 new_loc->cond = parse_exp_1 (&s, sal.pc,
13535 block_for_pc (sal.pc),
13536 0);
13537 }
13538 CATCH (e, RETURN_MASK_ERROR)
13539 {
13540 warning (_("failed to reevaluate condition "
13541 "for breakpoint %d: %s"),
13542 b->number, e.message);
13543 new_loc->enabled = 0;
13544 }
13545 END_CATCH
13546 }
13547
13548 if (!sals_end.empty ())
13549 {
13550 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13551
13552 new_loc->length = end - sals[0].pc + 1;
13553 }
13554 }
13555
13556 /* If possible, carry over 'disable' status from existing
13557 breakpoints. */
13558 {
13559 struct bp_location *e = existing_locations;
13560 /* If there are multiple breakpoints with the same function name,
13561 e.g. for inline functions, comparing function names won't work.
13562 Instead compare pc addresses; this is just a heuristic as things
13563 may have moved, but in practice it gives the correct answer
13564 often enough until a better solution is found. */
13565 int have_ambiguous_names = ambiguous_names_p (b->loc);
13566
13567 for (; e; e = e->next)
13568 {
13569 if (!e->enabled && e->function_name)
13570 {
13571 struct bp_location *l = b->loc;
13572 if (have_ambiguous_names)
13573 {
13574 for (; l; l = l->next)
13575 if (breakpoint_locations_match (e, l))
13576 {
13577 l->enabled = 0;
13578 break;
13579 }
13580 }
13581 else
13582 {
13583 for (; l; l = l->next)
13584 if (l->function_name
13585 && strcmp (e->function_name, l->function_name) == 0)
13586 {
13587 l->enabled = 0;
13588 break;
13589 }
13590 }
13591 }
13592 }
13593 }
13594
13595 if (!locations_are_equal (existing_locations, b->loc))
13596 gdb::observers::breakpoint_modified.notify (b);
13597 }
13598
13599 /* Find the SaL locations corresponding to the given LOCATION.
13600 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13601
13602 static std::vector<symtab_and_line>
13603 location_to_sals (struct breakpoint *b, struct event_location *location,
13604 struct program_space *search_pspace, int *found)
13605 {
13606 struct gdb_exception exception = exception_none;
13607
13608 gdb_assert (b->ops != NULL);
13609
13610 std::vector<symtab_and_line> sals;
13611
13612 TRY
13613 {
13614 sals = b->ops->decode_location (b, location, search_pspace);
13615 }
13616 CATCH (e, RETURN_MASK_ERROR)
13617 {
13618 int not_found_and_ok = 0;
13619
13620 exception = e;
13621
13622 /* For pending breakpoints, it's expected that parsing will
13623 fail until the right shared library is loaded. User has
13624 already told to create pending breakpoints and don't need
13625 extra messages. If breakpoint is in bp_shlib_disabled
13626 state, then user already saw the message about that
13627 breakpoint being disabled, and don't want to see more
13628 errors. */
13629 if (e.error == NOT_FOUND_ERROR
13630 && (b->condition_not_parsed
13631 || (b->loc != NULL
13632 && search_pspace != NULL
13633 && b->loc->pspace != search_pspace)
13634 || (b->loc && b->loc->shlib_disabled)
13635 || (b->loc && b->loc->pspace->executing_startup)
13636 || b->enable_state == bp_disabled))
13637 not_found_and_ok = 1;
13638
13639 if (!not_found_and_ok)
13640 {
13641 /* We surely don't want to warn about the same breakpoint
13642 10 times. One solution, implemented here, is disable
13643 the breakpoint on error. Another solution would be to
13644 have separate 'warning emitted' flag. Since this
13645 happens only when a binary has changed, I don't know
13646 which approach is better. */
13647 b->enable_state = bp_disabled;
13648 throw_exception (e);
13649 }
13650 }
13651 END_CATCH
13652
13653 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13654 {
13655 for (auto &sal : sals)
13656 resolve_sal_pc (&sal);
13657 if (b->condition_not_parsed && b->extra_string != NULL)
13658 {
13659 char *cond_string, *extra_string;
13660 int thread, task;
13661
13662 find_condition_and_thread (b->extra_string, sals[0].pc,
13663 &cond_string, &thread, &task,
13664 &extra_string);
13665 gdb_assert (b->cond_string == NULL);
13666 if (cond_string)
13667 b->cond_string = cond_string;
13668 b->thread = thread;
13669 b->task = task;
13670 if (extra_string)
13671 {
13672 xfree (b->extra_string);
13673 b->extra_string = extra_string;
13674 }
13675 b->condition_not_parsed = 0;
13676 }
13677
13678 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13679 sals[0] = update_static_tracepoint (b, sals[0]);
13680
13681 *found = 1;
13682 }
13683 else
13684 *found = 0;
13685
13686 return sals;
13687 }
13688
13689 /* The default re_set method, for typical hardware or software
13690 breakpoints. Reevaluate the breakpoint and recreate its
13691 locations. */
13692
13693 static void
13694 breakpoint_re_set_default (struct breakpoint *b)
13695 {
13696 struct program_space *filter_pspace = current_program_space;
13697 std::vector<symtab_and_line> expanded, expanded_end;
13698
13699 int found;
13700 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13701 filter_pspace, &found);
13702 if (found)
13703 expanded = std::move (sals);
13704
13705 if (b->location_range_end != NULL)
13706 {
13707 std::vector<symtab_and_line> sals_end
13708 = location_to_sals (b, b->location_range_end.get (),
13709 filter_pspace, &found);
13710 if (found)
13711 expanded_end = std::move (sals_end);
13712 }
13713
13714 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13715 }
13716
13717 /* Default method for creating SALs from an address string. It basically
13718 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13719
13720 static void
13721 create_sals_from_location_default (const struct event_location *location,
13722 struct linespec_result *canonical,
13723 enum bptype type_wanted)
13724 {
13725 parse_breakpoint_sals (location, canonical);
13726 }
13727
13728 /* Call create_breakpoints_sal for the given arguments. This is the default
13729 function for the `create_breakpoints_sal' method of
13730 breakpoint_ops. */
13731
13732 static void
13733 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13734 struct linespec_result *canonical,
13735 gdb::unique_xmalloc_ptr<char> cond_string,
13736 gdb::unique_xmalloc_ptr<char> extra_string,
13737 enum bptype type_wanted,
13738 enum bpdisp disposition,
13739 int thread,
13740 int task, int ignore_count,
13741 const struct breakpoint_ops *ops,
13742 int from_tty, int enabled,
13743 int internal, unsigned flags)
13744 {
13745 create_breakpoints_sal (gdbarch, canonical,
13746 std::move (cond_string),
13747 std::move (extra_string),
13748 type_wanted, disposition,
13749 thread, task, ignore_count, ops, from_tty,
13750 enabled, internal, flags);
13751 }
13752
13753 /* Decode the line represented by S by calling decode_line_full. This is the
13754 default function for the `decode_location' method of breakpoint_ops. */
13755
13756 static std::vector<symtab_and_line>
13757 decode_location_default (struct breakpoint *b,
13758 const struct event_location *location,
13759 struct program_space *search_pspace)
13760 {
13761 struct linespec_result canonical;
13762
13763 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13764 (struct symtab *) NULL, 0,
13765 &canonical, multiple_symbols_all,
13766 b->filter);
13767
13768 /* We should get 0 or 1 resulting SALs. */
13769 gdb_assert (canonical.lsals.size () < 2);
13770
13771 if (!canonical.lsals.empty ())
13772 {
13773 const linespec_sals &lsal = canonical.lsals[0];
13774 return std::move (lsal.sals);
13775 }
13776 return {};
13777 }
13778
13779 /* Reset a breakpoint. */
13780
13781 static void
13782 breakpoint_re_set_one (breakpoint *b)
13783 {
13784 input_radix = b->input_radix;
13785 set_language (b->language);
13786
13787 b->ops->re_set (b);
13788 }
13789
13790 /* Re-set breakpoint locations for the current program space.
13791 Locations bound to other program spaces are left untouched. */
13792
13793 void
13794 breakpoint_re_set (void)
13795 {
13796 struct breakpoint *b, *b_tmp;
13797
13798 {
13799 scoped_restore_current_language save_language;
13800 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13801 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13802
13803 /* breakpoint_re_set_one sets the current_language to the language
13804 of the breakpoint it is resetting (see prepare_re_set_context)
13805 before re-evaluating the breakpoint's location. This change can
13806 unfortunately get undone by accident if the language_mode is set
13807 to auto, and we either switch frames, or more likely in this context,
13808 we select the current frame.
13809
13810 We prevent this by temporarily turning the language_mode to
13811 language_mode_manual. We restore it once all breakpoints
13812 have been reset. */
13813 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13814 language_mode = language_mode_manual;
13815
13816 /* Note: we must not try to insert locations until after all
13817 breakpoints have been re-set. Otherwise, e.g., when re-setting
13818 breakpoint 1, we'd insert the locations of breakpoint 2, which
13819 hadn't been re-set yet, and thus may have stale locations. */
13820
13821 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13822 {
13823 TRY
13824 {
13825 breakpoint_re_set_one (b);
13826 }
13827 CATCH (ex, RETURN_MASK_ALL)
13828 {
13829 exception_fprintf (gdb_stderr, ex,
13830 "Error in re-setting breakpoint %d: ",
13831 b->number);
13832 }
13833 END_CATCH
13834 }
13835
13836 jit_breakpoint_re_set ();
13837 }
13838
13839 create_overlay_event_breakpoint ();
13840 create_longjmp_master_breakpoint ();
13841 create_std_terminate_master_breakpoint ();
13842 create_exception_master_breakpoint ();
13843
13844 /* Now we can insert. */
13845 update_global_location_list (UGLL_MAY_INSERT);
13846 }
13847 \f
13848 /* Reset the thread number of this breakpoint:
13849
13850 - If the breakpoint is for all threads, leave it as-is.
13851 - Else, reset it to the current thread for inferior_ptid. */
13852 void
13853 breakpoint_re_set_thread (struct breakpoint *b)
13854 {
13855 if (b->thread != -1)
13856 {
13857 b->thread = inferior_thread ()->global_num;
13858
13859 /* We're being called after following a fork. The new fork is
13860 selected as current, and unless this was a vfork will have a
13861 different program space from the original thread. Reset that
13862 as well. */
13863 b->loc->pspace = current_program_space;
13864 }
13865 }
13866
13867 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13868 If from_tty is nonzero, it prints a message to that effect,
13869 which ends with a period (no newline). */
13870
13871 void
13872 set_ignore_count (int bptnum, int count, int from_tty)
13873 {
13874 struct breakpoint *b;
13875
13876 if (count < 0)
13877 count = 0;
13878
13879 ALL_BREAKPOINTS (b)
13880 if (b->number == bptnum)
13881 {
13882 if (is_tracepoint (b))
13883 {
13884 if (from_tty && count != 0)
13885 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13886 bptnum);
13887 return;
13888 }
13889
13890 b->ignore_count = count;
13891 if (from_tty)
13892 {
13893 if (count == 0)
13894 printf_filtered (_("Will stop next time "
13895 "breakpoint %d is reached."),
13896 bptnum);
13897 else if (count == 1)
13898 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13899 bptnum);
13900 else
13901 printf_filtered (_("Will ignore next %d "
13902 "crossings of breakpoint %d."),
13903 count, bptnum);
13904 }
13905 gdb::observers::breakpoint_modified.notify (b);
13906 return;
13907 }
13908
13909 error (_("No breakpoint number %d."), bptnum);
13910 }
13911
13912 /* Command to set ignore-count of breakpoint N to COUNT. */
13913
13914 static void
13915 ignore_command (const char *args, int from_tty)
13916 {
13917 const char *p = args;
13918 int num;
13919
13920 if (p == 0)
13921 error_no_arg (_("a breakpoint number"));
13922
13923 num = get_number (&p);
13924 if (num == 0)
13925 error (_("bad breakpoint number: '%s'"), args);
13926 if (*p == 0)
13927 error (_("Second argument (specified ignore-count) is missing."));
13928
13929 set_ignore_count (num,
13930 longest_to_int (value_as_long (parse_and_eval (p))),
13931 from_tty);
13932 if (from_tty)
13933 printf_filtered ("\n");
13934 }
13935 \f
13936
13937 /* Call FUNCTION on each of the breakpoints with numbers in the range
13938 defined by BP_NUM_RANGE (an inclusive range). */
13939
13940 static void
13941 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13942 gdb::function_view<void (breakpoint *)> function)
13943 {
13944 if (bp_num_range.first == 0)
13945 {
13946 warning (_("bad breakpoint number at or near '%d'"),
13947 bp_num_range.first);
13948 }
13949 else
13950 {
13951 struct breakpoint *b, *tmp;
13952
13953 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13954 {
13955 bool match = false;
13956
13957 ALL_BREAKPOINTS_SAFE (b, tmp)
13958 if (b->number == i)
13959 {
13960 match = true;
13961 function (b);
13962 break;
13963 }
13964 if (!match)
13965 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13966 }
13967 }
13968 }
13969
13970 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13971 ARGS. */
13972
13973 static void
13974 map_breakpoint_numbers (const char *args,
13975 gdb::function_view<void (breakpoint *)> function)
13976 {
13977 if (args == NULL || *args == '\0')
13978 error_no_arg (_("one or more breakpoint numbers"));
13979
13980 number_or_range_parser parser (args);
13981
13982 while (!parser.finished ())
13983 {
13984 int num = parser.get_number ();
13985 map_breakpoint_number_range (std::make_pair (num, num), function);
13986 }
13987 }
13988
13989 /* Return the breakpoint location structure corresponding to the
13990 BP_NUM and LOC_NUM values. */
13991
13992 static struct bp_location *
13993 find_location_by_number (int bp_num, int loc_num)
13994 {
13995 struct breakpoint *b;
13996
13997 ALL_BREAKPOINTS (b)
13998 if (b->number == bp_num)
13999 {
14000 break;
14001 }
14002
14003 if (!b || b->number != bp_num)
14004 error (_("Bad breakpoint number '%d'"), bp_num);
14005
14006 if (loc_num == 0)
14007 error (_("Bad breakpoint location number '%d'"), loc_num);
14008
14009 int n = 0;
14010 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14011 if (++n == loc_num)
14012 return loc;
14013
14014 error (_("Bad breakpoint location number '%d'"), loc_num);
14015 }
14016
14017 /* Modes of operation for extract_bp_num. */
14018 enum class extract_bp_kind
14019 {
14020 /* Extracting a breakpoint number. */
14021 bp,
14022
14023 /* Extracting a location number. */
14024 loc,
14025 };
14026
14027 /* Extract a breakpoint or location number (as determined by KIND)
14028 from the string starting at START. TRAILER is a character which
14029 can be found after the number. If you don't want a trailer, use
14030 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14031 string. This always returns a positive integer. */
14032
14033 static int
14034 extract_bp_num (extract_bp_kind kind, const char *start,
14035 int trailer, const char **end_out = NULL)
14036 {
14037 const char *end = start;
14038 int num = get_number_trailer (&end, trailer);
14039 if (num < 0)
14040 error (kind == extract_bp_kind::bp
14041 ? _("Negative breakpoint number '%.*s'")
14042 : _("Negative breakpoint location number '%.*s'"),
14043 int (end - start), start);
14044 if (num == 0)
14045 error (kind == extract_bp_kind::bp
14046 ? _("Bad breakpoint number '%.*s'")
14047 : _("Bad breakpoint location number '%.*s'"),
14048 int (end - start), start);
14049
14050 if (end_out != NULL)
14051 *end_out = end;
14052 return num;
14053 }
14054
14055 /* Extract a breakpoint or location range (as determined by KIND) in
14056 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14057 representing the (inclusive) range. The returned pair's elements
14058 are always positive integers. */
14059
14060 static std::pair<int, int>
14061 extract_bp_or_bp_range (extract_bp_kind kind,
14062 const std::string &arg,
14063 std::string::size_type arg_offset)
14064 {
14065 std::pair<int, int> range;
14066 const char *bp_loc = &arg[arg_offset];
14067 std::string::size_type dash = arg.find ('-', arg_offset);
14068 if (dash != std::string::npos)
14069 {
14070 /* bp_loc is a range (x-z). */
14071 if (arg.length () == dash + 1)
14072 error (kind == extract_bp_kind::bp
14073 ? _("Bad breakpoint number at or near: '%s'")
14074 : _("Bad breakpoint location number at or near: '%s'"),
14075 bp_loc);
14076
14077 const char *end;
14078 const char *start_first = bp_loc;
14079 const char *start_second = &arg[dash + 1];
14080 range.first = extract_bp_num (kind, start_first, '-');
14081 range.second = extract_bp_num (kind, start_second, '\0', &end);
14082
14083 if (range.first > range.second)
14084 error (kind == extract_bp_kind::bp
14085 ? _("Inverted breakpoint range at '%.*s'")
14086 : _("Inverted breakpoint location range at '%.*s'"),
14087 int (end - start_first), start_first);
14088 }
14089 else
14090 {
14091 /* bp_loc is a single value. */
14092 range.first = extract_bp_num (kind, bp_loc, '\0');
14093 range.second = range.first;
14094 }
14095 return range;
14096 }
14097
14098 /* Extract the breakpoint/location range specified by ARG. Returns
14099 the breakpoint range in BP_NUM_RANGE, and the location range in
14100 BP_LOC_RANGE.
14101
14102 ARG may be in any of the following forms:
14103
14104 x where 'x' is a breakpoint number.
14105 x-y where 'x' and 'y' specify a breakpoint numbers range.
14106 x.y where 'x' is a breakpoint number and 'y' a location number.
14107 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14108 location number range.
14109 */
14110
14111 static void
14112 extract_bp_number_and_location (const std::string &arg,
14113 std::pair<int, int> &bp_num_range,
14114 std::pair<int, int> &bp_loc_range)
14115 {
14116 std::string::size_type dot = arg.find ('.');
14117
14118 if (dot != std::string::npos)
14119 {
14120 /* Handle 'x.y' and 'x.y-z' cases. */
14121
14122 if (arg.length () == dot + 1 || dot == 0)
14123 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14124
14125 bp_num_range.first
14126 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14127 bp_num_range.second = bp_num_range.first;
14128
14129 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14130 arg, dot + 1);
14131 }
14132 else
14133 {
14134 /* Handle x and x-y cases. */
14135
14136 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14137 bp_loc_range.first = 0;
14138 bp_loc_range.second = 0;
14139 }
14140 }
14141
14142 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14143 specifies whether to enable or disable. */
14144
14145 static void
14146 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14147 {
14148 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14149 if (loc != NULL)
14150 {
14151 if (loc->enabled != enable)
14152 {
14153 loc->enabled = enable;
14154 mark_breakpoint_location_modified (loc);
14155 }
14156 if (target_supports_enable_disable_tracepoint ()
14157 && current_trace_status ()->running && loc->owner
14158 && is_tracepoint (loc->owner))
14159 target_disable_tracepoint (loc);
14160 }
14161 update_global_location_list (UGLL_DONT_INSERT);
14162
14163 gdb::observers::breakpoint_modified.notify (loc->owner);
14164 }
14165
14166 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14167 number of the breakpoint, and BP_LOC_RANGE specifies the
14168 (inclusive) range of location numbers of that breakpoint to
14169 enable/disable. ENABLE specifies whether to enable or disable the
14170 location. */
14171
14172 static void
14173 enable_disable_breakpoint_location_range (int bp_num,
14174 std::pair<int, int> &bp_loc_range,
14175 bool enable)
14176 {
14177 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14178 enable_disable_bp_num_loc (bp_num, i, enable);
14179 }
14180
14181 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14182 If from_tty is nonzero, it prints a message to that effect,
14183 which ends with a period (no newline). */
14184
14185 void
14186 disable_breakpoint (struct breakpoint *bpt)
14187 {
14188 /* Never disable a watchpoint scope breakpoint; we want to
14189 hit them when we leave scope so we can delete both the
14190 watchpoint and its scope breakpoint at that time. */
14191 if (bpt->type == bp_watchpoint_scope)
14192 return;
14193
14194 bpt->enable_state = bp_disabled;
14195
14196 /* Mark breakpoint locations modified. */
14197 mark_breakpoint_modified (bpt);
14198
14199 if (target_supports_enable_disable_tracepoint ()
14200 && current_trace_status ()->running && is_tracepoint (bpt))
14201 {
14202 struct bp_location *location;
14203
14204 for (location = bpt->loc; location; location = location->next)
14205 target_disable_tracepoint (location);
14206 }
14207
14208 update_global_location_list (UGLL_DONT_INSERT);
14209
14210 gdb::observers::breakpoint_modified.notify (bpt);
14211 }
14212
14213 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14214 specified in ARGS. ARGS may be in any of the formats handled by
14215 extract_bp_number_and_location. ENABLE specifies whether to enable
14216 or disable the breakpoints/locations. */
14217
14218 static void
14219 enable_disable_command (const char *args, int from_tty, bool enable)
14220 {
14221 if (args == 0)
14222 {
14223 struct breakpoint *bpt;
14224
14225 ALL_BREAKPOINTS (bpt)
14226 if (user_breakpoint_p (bpt))
14227 {
14228 if (enable)
14229 enable_breakpoint (bpt);
14230 else
14231 disable_breakpoint (bpt);
14232 }
14233 }
14234 else
14235 {
14236 std::string num = extract_arg (&args);
14237
14238 while (!num.empty ())
14239 {
14240 std::pair<int, int> bp_num_range, bp_loc_range;
14241
14242 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14243
14244 if (bp_loc_range.first == bp_loc_range.second
14245 && bp_loc_range.first == 0)
14246 {
14247 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14248 map_breakpoint_number_range (bp_num_range,
14249 enable
14250 ? enable_breakpoint
14251 : disable_breakpoint);
14252 }
14253 else
14254 {
14255 /* Handle breakpoint ids with formats 'x.y' or
14256 'x.y-z'. */
14257 enable_disable_breakpoint_location_range
14258 (bp_num_range.first, bp_loc_range, enable);
14259 }
14260 num = extract_arg (&args);
14261 }
14262 }
14263 }
14264
14265 /* The disable command disables the specified breakpoints/locations
14266 (or all defined breakpoints) so they're no longer effective in
14267 stopping the inferior. ARGS may be in any of the forms defined in
14268 extract_bp_number_and_location. */
14269
14270 static void
14271 disable_command (const char *args, int from_tty)
14272 {
14273 enable_disable_command (args, from_tty, false);
14274 }
14275
14276 static void
14277 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14278 int count)
14279 {
14280 int target_resources_ok;
14281
14282 if (bpt->type == bp_hardware_breakpoint)
14283 {
14284 int i;
14285 i = hw_breakpoint_used_count ();
14286 target_resources_ok =
14287 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14288 i + 1, 0);
14289 if (target_resources_ok == 0)
14290 error (_("No hardware breakpoint support in the target."));
14291 else if (target_resources_ok < 0)
14292 error (_("Hardware breakpoints used exceeds limit."));
14293 }
14294
14295 if (is_watchpoint (bpt))
14296 {
14297 /* Initialize it just to avoid a GCC false warning. */
14298 enum enable_state orig_enable_state = bp_disabled;
14299
14300 TRY
14301 {
14302 struct watchpoint *w = (struct watchpoint *) bpt;
14303
14304 orig_enable_state = bpt->enable_state;
14305 bpt->enable_state = bp_enabled;
14306 update_watchpoint (w, 1 /* reparse */);
14307 }
14308 CATCH (e, RETURN_MASK_ALL)
14309 {
14310 bpt->enable_state = orig_enable_state;
14311 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14312 bpt->number);
14313 return;
14314 }
14315 END_CATCH
14316 }
14317
14318 bpt->enable_state = bp_enabled;
14319
14320 /* Mark breakpoint locations modified. */
14321 mark_breakpoint_modified (bpt);
14322
14323 if (target_supports_enable_disable_tracepoint ()
14324 && current_trace_status ()->running && is_tracepoint (bpt))
14325 {
14326 struct bp_location *location;
14327
14328 for (location = bpt->loc; location; location = location->next)
14329 target_enable_tracepoint (location);
14330 }
14331
14332 bpt->disposition = disposition;
14333 bpt->enable_count = count;
14334 update_global_location_list (UGLL_MAY_INSERT);
14335
14336 gdb::observers::breakpoint_modified.notify (bpt);
14337 }
14338
14339
14340 void
14341 enable_breakpoint (struct breakpoint *bpt)
14342 {
14343 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14344 }
14345
14346 /* The enable command enables the specified breakpoints/locations (or
14347 all defined breakpoints) so they once again become (or continue to
14348 be) effective in stopping the inferior. ARGS may be in any of the
14349 forms defined in extract_bp_number_and_location. */
14350
14351 static void
14352 enable_command (const char *args, int from_tty)
14353 {
14354 enable_disable_command (args, from_tty, true);
14355 }
14356
14357 static void
14358 enable_once_command (const char *args, int from_tty)
14359 {
14360 map_breakpoint_numbers
14361 (args, [&] (breakpoint *b)
14362 {
14363 iterate_over_related_breakpoints
14364 (b, [&] (breakpoint *bpt)
14365 {
14366 enable_breakpoint_disp (bpt, disp_disable, 1);
14367 });
14368 });
14369 }
14370
14371 static void
14372 enable_count_command (const char *args, int from_tty)
14373 {
14374 int count;
14375
14376 if (args == NULL)
14377 error_no_arg (_("hit count"));
14378
14379 count = get_number (&args);
14380
14381 map_breakpoint_numbers
14382 (args, [&] (breakpoint *b)
14383 {
14384 iterate_over_related_breakpoints
14385 (b, [&] (breakpoint *bpt)
14386 {
14387 enable_breakpoint_disp (bpt, disp_disable, count);
14388 });
14389 });
14390 }
14391
14392 static void
14393 enable_delete_command (const char *args, int from_tty)
14394 {
14395 map_breakpoint_numbers
14396 (args, [&] (breakpoint *b)
14397 {
14398 iterate_over_related_breakpoints
14399 (b, [&] (breakpoint *bpt)
14400 {
14401 enable_breakpoint_disp (bpt, disp_del, 1);
14402 });
14403 });
14404 }
14405 \f
14406 static void
14407 set_breakpoint_cmd (const char *args, int from_tty)
14408 {
14409 }
14410
14411 static void
14412 show_breakpoint_cmd (const char *args, int from_tty)
14413 {
14414 }
14415
14416 /* Invalidate last known value of any hardware watchpoint if
14417 the memory which that value represents has been written to by
14418 GDB itself. */
14419
14420 static void
14421 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14422 CORE_ADDR addr, ssize_t len,
14423 const bfd_byte *data)
14424 {
14425 struct breakpoint *bp;
14426
14427 ALL_BREAKPOINTS (bp)
14428 if (bp->enable_state == bp_enabled
14429 && bp->type == bp_hardware_watchpoint)
14430 {
14431 struct watchpoint *wp = (struct watchpoint *) bp;
14432
14433 if (wp->val_valid && wp->val != nullptr)
14434 {
14435 struct bp_location *loc;
14436
14437 for (loc = bp->loc; loc != NULL; loc = loc->next)
14438 if (loc->loc_type == bp_loc_hardware_watchpoint
14439 && loc->address + loc->length > addr
14440 && addr + len > loc->address)
14441 {
14442 wp->val = NULL;
14443 wp->val_valid = 0;
14444 }
14445 }
14446 }
14447 }
14448
14449 /* Create and insert a breakpoint for software single step. */
14450
14451 void
14452 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14453 const address_space *aspace,
14454 CORE_ADDR next_pc)
14455 {
14456 struct thread_info *tp = inferior_thread ();
14457 struct symtab_and_line sal;
14458 CORE_ADDR pc = next_pc;
14459
14460 if (tp->control.single_step_breakpoints == NULL)
14461 {
14462 tp->control.single_step_breakpoints
14463 = new_single_step_breakpoint (tp->global_num, gdbarch);
14464 }
14465
14466 sal = find_pc_line (pc, 0);
14467 sal.pc = pc;
14468 sal.section = find_pc_overlay (pc);
14469 sal.explicit_pc = 1;
14470 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14471
14472 update_global_location_list (UGLL_INSERT);
14473 }
14474
14475 /* Insert single step breakpoints according to the current state. */
14476
14477 int
14478 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14479 {
14480 struct regcache *regcache = get_current_regcache ();
14481 std::vector<CORE_ADDR> next_pcs;
14482
14483 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14484
14485 if (!next_pcs.empty ())
14486 {
14487 struct frame_info *frame = get_current_frame ();
14488 const address_space *aspace = get_frame_address_space (frame);
14489
14490 for (CORE_ADDR pc : next_pcs)
14491 insert_single_step_breakpoint (gdbarch, aspace, pc);
14492
14493 return 1;
14494 }
14495 else
14496 return 0;
14497 }
14498
14499 /* See breakpoint.h. */
14500
14501 int
14502 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14503 const address_space *aspace,
14504 CORE_ADDR pc)
14505 {
14506 struct bp_location *loc;
14507
14508 for (loc = bp->loc; loc != NULL; loc = loc->next)
14509 if (loc->inserted
14510 && breakpoint_location_address_match (loc, aspace, pc))
14511 return 1;
14512
14513 return 0;
14514 }
14515
14516 /* Check whether a software single-step breakpoint is inserted at
14517 PC. */
14518
14519 int
14520 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14521 CORE_ADDR pc)
14522 {
14523 struct breakpoint *bpt;
14524
14525 ALL_BREAKPOINTS (bpt)
14526 {
14527 if (bpt->type == bp_single_step
14528 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14529 return 1;
14530 }
14531 return 0;
14532 }
14533
14534 /* Tracepoint-specific operations. */
14535
14536 /* Set tracepoint count to NUM. */
14537 static void
14538 set_tracepoint_count (int num)
14539 {
14540 tracepoint_count = num;
14541 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14542 }
14543
14544 static void
14545 trace_command (const char *arg, int from_tty)
14546 {
14547 struct breakpoint_ops *ops;
14548
14549 event_location_up location = string_to_event_location (&arg,
14550 current_language);
14551 if (location != NULL
14552 && event_location_type (location.get ()) == PROBE_LOCATION)
14553 ops = &tracepoint_probe_breakpoint_ops;
14554 else
14555 ops = &tracepoint_breakpoint_ops;
14556
14557 create_breakpoint (get_current_arch (),
14558 location.get (),
14559 NULL, 0, arg, 1 /* parse arg */,
14560 0 /* tempflag */,
14561 bp_tracepoint /* type_wanted */,
14562 0 /* Ignore count */,
14563 pending_break_support,
14564 ops,
14565 from_tty,
14566 1 /* enabled */,
14567 0 /* internal */, 0);
14568 }
14569
14570 static void
14571 ftrace_command (const char *arg, int from_tty)
14572 {
14573 event_location_up location = string_to_event_location (&arg,
14574 current_language);
14575 create_breakpoint (get_current_arch (),
14576 location.get (),
14577 NULL, 0, arg, 1 /* parse arg */,
14578 0 /* tempflag */,
14579 bp_fast_tracepoint /* type_wanted */,
14580 0 /* Ignore count */,
14581 pending_break_support,
14582 &tracepoint_breakpoint_ops,
14583 from_tty,
14584 1 /* enabled */,
14585 0 /* internal */, 0);
14586 }
14587
14588 /* strace command implementation. Creates a static tracepoint. */
14589
14590 static void
14591 strace_command (const char *arg, int from_tty)
14592 {
14593 struct breakpoint_ops *ops;
14594 event_location_up location;
14595
14596 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14597 or with a normal static tracepoint. */
14598 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14599 {
14600 ops = &strace_marker_breakpoint_ops;
14601 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14602 }
14603 else
14604 {
14605 ops = &tracepoint_breakpoint_ops;
14606 location = string_to_event_location (&arg, current_language);
14607 }
14608
14609 create_breakpoint (get_current_arch (),
14610 location.get (),
14611 NULL, 0, arg, 1 /* parse arg */,
14612 0 /* tempflag */,
14613 bp_static_tracepoint /* type_wanted */,
14614 0 /* Ignore count */,
14615 pending_break_support,
14616 ops,
14617 from_tty,
14618 1 /* enabled */,
14619 0 /* internal */, 0);
14620 }
14621
14622 /* Set up a fake reader function that gets command lines from a linked
14623 list that was acquired during tracepoint uploading. */
14624
14625 static struct uploaded_tp *this_utp;
14626 static int next_cmd;
14627
14628 static char *
14629 read_uploaded_action (void)
14630 {
14631 char *rslt = nullptr;
14632
14633 if (next_cmd < this_utp->cmd_strings.size ())
14634 {
14635 rslt = this_utp->cmd_strings[next_cmd].get ();
14636 next_cmd++;
14637 }
14638
14639 return rslt;
14640 }
14641
14642 /* Given information about a tracepoint as recorded on a target (which
14643 can be either a live system or a trace file), attempt to create an
14644 equivalent GDB tracepoint. This is not a reliable process, since
14645 the target does not necessarily have all the information used when
14646 the tracepoint was originally defined. */
14647
14648 struct tracepoint *
14649 create_tracepoint_from_upload (struct uploaded_tp *utp)
14650 {
14651 const char *addr_str;
14652 char small_buf[100];
14653 struct tracepoint *tp;
14654
14655 if (utp->at_string)
14656 addr_str = utp->at_string.get ();
14657 else
14658 {
14659 /* In the absence of a source location, fall back to raw
14660 address. Since there is no way to confirm that the address
14661 means the same thing as when the trace was started, warn the
14662 user. */
14663 warning (_("Uploaded tracepoint %d has no "
14664 "source location, using raw address"),
14665 utp->number);
14666 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14667 addr_str = small_buf;
14668 }
14669
14670 /* There's not much we can do with a sequence of bytecodes. */
14671 if (utp->cond && !utp->cond_string)
14672 warning (_("Uploaded tracepoint %d condition "
14673 "has no source form, ignoring it"),
14674 utp->number);
14675
14676 event_location_up location = string_to_event_location (&addr_str,
14677 current_language);
14678 if (!create_breakpoint (get_current_arch (),
14679 location.get (),
14680 utp->cond_string.get (), -1, addr_str,
14681 0 /* parse cond/thread */,
14682 0 /* tempflag */,
14683 utp->type /* type_wanted */,
14684 0 /* Ignore count */,
14685 pending_break_support,
14686 &tracepoint_breakpoint_ops,
14687 0 /* from_tty */,
14688 utp->enabled /* enabled */,
14689 0 /* internal */,
14690 CREATE_BREAKPOINT_FLAGS_INSERTED))
14691 return NULL;
14692
14693 /* Get the tracepoint we just created. */
14694 tp = get_tracepoint (tracepoint_count);
14695 gdb_assert (tp != NULL);
14696
14697 if (utp->pass > 0)
14698 {
14699 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14700 tp->number);
14701
14702 trace_pass_command (small_buf, 0);
14703 }
14704
14705 /* If we have uploaded versions of the original commands, set up a
14706 special-purpose "reader" function and call the usual command line
14707 reader, then pass the result to the breakpoint command-setting
14708 function. */
14709 if (!utp->cmd_strings.empty ())
14710 {
14711 counted_command_line cmd_list;
14712
14713 this_utp = utp;
14714 next_cmd = 0;
14715
14716 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14717
14718 breakpoint_set_commands (tp, std::move (cmd_list));
14719 }
14720 else if (!utp->actions.empty ()
14721 || !utp->step_actions.empty ())
14722 warning (_("Uploaded tracepoint %d actions "
14723 "have no source form, ignoring them"),
14724 utp->number);
14725
14726 /* Copy any status information that might be available. */
14727 tp->hit_count = utp->hit_count;
14728 tp->traceframe_usage = utp->traceframe_usage;
14729
14730 return tp;
14731 }
14732
14733 /* Print information on tracepoint number TPNUM_EXP, or all if
14734 omitted. */
14735
14736 static void
14737 info_tracepoints_command (const char *args, int from_tty)
14738 {
14739 struct ui_out *uiout = current_uiout;
14740 int num_printed;
14741
14742 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14743
14744 if (num_printed == 0)
14745 {
14746 if (args == NULL || *args == '\0')
14747 uiout->message ("No tracepoints.\n");
14748 else
14749 uiout->message ("No tracepoint matching '%s'.\n", args);
14750 }
14751
14752 default_collect_info ();
14753 }
14754
14755 /* The 'enable trace' command enables tracepoints.
14756 Not supported by all targets. */
14757 static void
14758 enable_trace_command (const char *args, int from_tty)
14759 {
14760 enable_command (args, from_tty);
14761 }
14762
14763 /* The 'disable trace' command disables tracepoints.
14764 Not supported by all targets. */
14765 static void
14766 disable_trace_command (const char *args, int from_tty)
14767 {
14768 disable_command (args, from_tty);
14769 }
14770
14771 /* Remove a tracepoint (or all if no argument). */
14772 static void
14773 delete_trace_command (const char *arg, int from_tty)
14774 {
14775 struct breakpoint *b, *b_tmp;
14776
14777 dont_repeat ();
14778
14779 if (arg == 0)
14780 {
14781 int breaks_to_delete = 0;
14782
14783 /* Delete all breakpoints if no argument.
14784 Do not delete internal or call-dummy breakpoints, these
14785 have to be deleted with an explicit breakpoint number
14786 argument. */
14787 ALL_TRACEPOINTS (b)
14788 if (is_tracepoint (b) && user_breakpoint_p (b))
14789 {
14790 breaks_to_delete = 1;
14791 break;
14792 }
14793
14794 /* Ask user only if there are some breakpoints to delete. */
14795 if (!from_tty
14796 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14797 {
14798 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14799 if (is_tracepoint (b) && user_breakpoint_p (b))
14800 delete_breakpoint (b);
14801 }
14802 }
14803 else
14804 map_breakpoint_numbers
14805 (arg, [&] (breakpoint *br)
14806 {
14807 iterate_over_related_breakpoints (br, delete_breakpoint);
14808 });
14809 }
14810
14811 /* Helper function for trace_pass_command. */
14812
14813 static void
14814 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14815 {
14816 tp->pass_count = count;
14817 gdb::observers::breakpoint_modified.notify (tp);
14818 if (from_tty)
14819 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14820 tp->number, count);
14821 }
14822
14823 /* Set passcount for tracepoint.
14824
14825 First command argument is passcount, second is tracepoint number.
14826 If tracepoint number omitted, apply to most recently defined.
14827 Also accepts special argument "all". */
14828
14829 static void
14830 trace_pass_command (const char *args, int from_tty)
14831 {
14832 struct tracepoint *t1;
14833 ULONGEST count;
14834
14835 if (args == 0 || *args == 0)
14836 error (_("passcount command requires an "
14837 "argument (count + optional TP num)"));
14838
14839 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14840
14841 args = skip_spaces (args);
14842 if (*args && strncasecmp (args, "all", 3) == 0)
14843 {
14844 struct breakpoint *b;
14845
14846 args += 3; /* Skip special argument "all". */
14847 if (*args)
14848 error (_("Junk at end of arguments."));
14849
14850 ALL_TRACEPOINTS (b)
14851 {
14852 t1 = (struct tracepoint *) b;
14853 trace_pass_set_count (t1, count, from_tty);
14854 }
14855 }
14856 else if (*args == '\0')
14857 {
14858 t1 = get_tracepoint_by_number (&args, NULL);
14859 if (t1)
14860 trace_pass_set_count (t1, count, from_tty);
14861 }
14862 else
14863 {
14864 number_or_range_parser parser (args);
14865 while (!parser.finished ())
14866 {
14867 t1 = get_tracepoint_by_number (&args, &parser);
14868 if (t1)
14869 trace_pass_set_count (t1, count, from_tty);
14870 }
14871 }
14872 }
14873
14874 struct tracepoint *
14875 get_tracepoint (int num)
14876 {
14877 struct breakpoint *t;
14878
14879 ALL_TRACEPOINTS (t)
14880 if (t->number == num)
14881 return (struct tracepoint *) t;
14882
14883 return NULL;
14884 }
14885
14886 /* Find the tracepoint with the given target-side number (which may be
14887 different from the tracepoint number after disconnecting and
14888 reconnecting). */
14889
14890 struct tracepoint *
14891 get_tracepoint_by_number_on_target (int num)
14892 {
14893 struct breakpoint *b;
14894
14895 ALL_TRACEPOINTS (b)
14896 {
14897 struct tracepoint *t = (struct tracepoint *) b;
14898
14899 if (t->number_on_target == num)
14900 return t;
14901 }
14902
14903 return NULL;
14904 }
14905
14906 /* Utility: parse a tracepoint number and look it up in the list.
14907 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14908 If the argument is missing, the most recent tracepoint
14909 (tracepoint_count) is returned. */
14910
14911 struct tracepoint *
14912 get_tracepoint_by_number (const char **arg,
14913 number_or_range_parser *parser)
14914 {
14915 struct breakpoint *t;
14916 int tpnum;
14917 const char *instring = arg == NULL ? NULL : *arg;
14918
14919 if (parser != NULL)
14920 {
14921 gdb_assert (!parser->finished ());
14922 tpnum = parser->get_number ();
14923 }
14924 else if (arg == NULL || *arg == NULL || ! **arg)
14925 tpnum = tracepoint_count;
14926 else
14927 tpnum = get_number (arg);
14928
14929 if (tpnum <= 0)
14930 {
14931 if (instring && *instring)
14932 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14933 instring);
14934 else
14935 printf_filtered (_("No previous tracepoint\n"));
14936 return NULL;
14937 }
14938
14939 ALL_TRACEPOINTS (t)
14940 if (t->number == tpnum)
14941 {
14942 return (struct tracepoint *) t;
14943 }
14944
14945 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14946 return NULL;
14947 }
14948
14949 void
14950 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14951 {
14952 if (b->thread != -1)
14953 fprintf_unfiltered (fp, " thread %d", b->thread);
14954
14955 if (b->task != 0)
14956 fprintf_unfiltered (fp, " task %d", b->task);
14957
14958 fprintf_unfiltered (fp, "\n");
14959 }
14960
14961 /* Save information on user settable breakpoints (watchpoints, etc) to
14962 a new script file named FILENAME. If FILTER is non-NULL, call it
14963 on each breakpoint and only include the ones for which it returns
14964 non-zero. */
14965
14966 static void
14967 save_breakpoints (const char *filename, int from_tty,
14968 int (*filter) (const struct breakpoint *))
14969 {
14970 struct breakpoint *tp;
14971 int any = 0;
14972 int extra_trace_bits = 0;
14973
14974 if (filename == 0 || *filename == 0)
14975 error (_("Argument required (file name in which to save)"));
14976
14977 /* See if we have anything to save. */
14978 ALL_BREAKPOINTS (tp)
14979 {
14980 /* Skip internal and momentary breakpoints. */
14981 if (!user_breakpoint_p (tp))
14982 continue;
14983
14984 /* If we have a filter, only save the breakpoints it accepts. */
14985 if (filter && !filter (tp))
14986 continue;
14987
14988 any = 1;
14989
14990 if (is_tracepoint (tp))
14991 {
14992 extra_trace_bits = 1;
14993
14994 /* We can stop searching. */
14995 break;
14996 }
14997 }
14998
14999 if (!any)
15000 {
15001 warning (_("Nothing to save."));
15002 return;
15003 }
15004
15005 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15006
15007 stdio_file fp;
15008
15009 if (!fp.open (expanded_filename.get (), "w"))
15010 error (_("Unable to open file '%s' for saving (%s)"),
15011 expanded_filename.get (), safe_strerror (errno));
15012
15013 if (extra_trace_bits)
15014 save_trace_state_variables (&fp);
15015
15016 ALL_BREAKPOINTS (tp)
15017 {
15018 /* Skip internal and momentary breakpoints. */
15019 if (!user_breakpoint_p (tp))
15020 continue;
15021
15022 /* If we have a filter, only save the breakpoints it accepts. */
15023 if (filter && !filter (tp))
15024 continue;
15025
15026 tp->ops->print_recreate (tp, &fp);
15027
15028 /* Note, we can't rely on tp->number for anything, as we can't
15029 assume the recreated breakpoint numbers will match. Use $bpnum
15030 instead. */
15031
15032 if (tp->cond_string)
15033 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15034
15035 if (tp->ignore_count)
15036 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15037
15038 if (tp->type != bp_dprintf && tp->commands)
15039 {
15040 fp.puts (" commands\n");
15041
15042 current_uiout->redirect (&fp);
15043 TRY
15044 {
15045 print_command_lines (current_uiout, tp->commands.get (), 2);
15046 }
15047 CATCH (ex, RETURN_MASK_ALL)
15048 {
15049 current_uiout->redirect (NULL);
15050 throw_exception (ex);
15051 }
15052 END_CATCH
15053
15054 current_uiout->redirect (NULL);
15055 fp.puts (" end\n");
15056 }
15057
15058 if (tp->enable_state == bp_disabled)
15059 fp.puts ("disable $bpnum\n");
15060
15061 /* If this is a multi-location breakpoint, check if the locations
15062 should be individually disabled. Watchpoint locations are
15063 special, and not user visible. */
15064 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15065 {
15066 struct bp_location *loc;
15067 int n = 1;
15068
15069 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15070 if (!loc->enabled)
15071 fp.printf ("disable $bpnum.%d\n", n);
15072 }
15073 }
15074
15075 if (extra_trace_bits && *default_collect)
15076 fp.printf ("set default-collect %s\n", default_collect);
15077
15078 if (from_tty)
15079 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15080 }
15081
15082 /* The `save breakpoints' command. */
15083
15084 static void
15085 save_breakpoints_command (const char *args, int from_tty)
15086 {
15087 save_breakpoints (args, from_tty, NULL);
15088 }
15089
15090 /* The `save tracepoints' command. */
15091
15092 static void
15093 save_tracepoints_command (const char *args, int from_tty)
15094 {
15095 save_breakpoints (args, from_tty, is_tracepoint);
15096 }
15097
15098 /* Create a vector of all tracepoints. */
15099
15100 std::vector<breakpoint *>
15101 all_tracepoints (void)
15102 {
15103 std::vector<breakpoint *> tp_vec;
15104 struct breakpoint *tp;
15105
15106 ALL_TRACEPOINTS (tp)
15107 {
15108 tp_vec.push_back (tp);
15109 }
15110
15111 return tp_vec;
15112 }
15113
15114 \f
15115 /* This help string is used to consolidate all the help string for specifying
15116 locations used by several commands. */
15117
15118 #define LOCATION_HELP_STRING \
15119 "Linespecs are colon-separated lists of location parameters, such as\n\
15120 source filename, function name, label name, and line number.\n\
15121 Example: To specify the start of a label named \"the_top\" in the\n\
15122 function \"fact\" in the file \"factorial.c\", use\n\
15123 \"factorial.c:fact:the_top\".\n\
15124 \n\
15125 Address locations begin with \"*\" and specify an exact address in the\n\
15126 program. Example: To specify the fourth byte past the start function\n\
15127 \"main\", use \"*main + 4\".\n\
15128 \n\
15129 Explicit locations are similar to linespecs but use an option/argument\n\
15130 syntax to specify location parameters.\n\
15131 Example: To specify the start of the label named \"the_top\" in the\n\
15132 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15133 -function fact -label the_top\".\n\
15134 \n\
15135 By default, a specified function is matched against the program's\n\
15136 functions in all scopes. For C++, this means in all namespaces and\n\
15137 classes. For Ada, this means in all packages. E.g., in C++,\n\
15138 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15139 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15140 specified name as a complete fully-qualified name instead.\n"
15141
15142 /* This help string is used for the break, hbreak, tbreak and thbreak
15143 commands. It is defined as a macro to prevent duplication.
15144 COMMAND should be a string constant containing the name of the
15145 command. */
15146
15147 #define BREAK_ARGS_HELP(command) \
15148 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15149 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15150 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15151 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15152 `-probe-dtrace' (for a DTrace probe).\n\
15153 LOCATION may be a linespec, address, or explicit location as described\n\
15154 below.\n\
15155 \n\
15156 With no LOCATION, uses current execution address of the selected\n\
15157 stack frame. This is useful for breaking on return to a stack frame.\n\
15158 \n\
15159 THREADNUM is the number from \"info threads\".\n\
15160 CONDITION is a boolean expression.\n\
15161 \n" LOCATION_HELP_STRING "\n\
15162 Multiple breakpoints at one place are permitted, and useful if their\n\
15163 conditions are different.\n\
15164 \n\
15165 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15166
15167 /* List of subcommands for "catch". */
15168 static struct cmd_list_element *catch_cmdlist;
15169
15170 /* List of subcommands for "tcatch". */
15171 static struct cmd_list_element *tcatch_cmdlist;
15172
15173 void
15174 add_catch_command (const char *name, const char *docstring,
15175 cmd_const_sfunc_ftype *sfunc,
15176 completer_ftype *completer,
15177 void *user_data_catch,
15178 void *user_data_tcatch)
15179 {
15180 struct cmd_list_element *command;
15181
15182 command = add_cmd (name, class_breakpoint, docstring,
15183 &catch_cmdlist);
15184 set_cmd_sfunc (command, sfunc);
15185 set_cmd_context (command, user_data_catch);
15186 set_cmd_completer (command, completer);
15187
15188 command = add_cmd (name, class_breakpoint, docstring,
15189 &tcatch_cmdlist);
15190 set_cmd_sfunc (command, sfunc);
15191 set_cmd_context (command, user_data_tcatch);
15192 set_cmd_completer (command, completer);
15193 }
15194
15195 static void
15196 save_command (const char *arg, int from_tty)
15197 {
15198 printf_unfiltered (_("\"save\" must be followed by "
15199 "the name of a save subcommand.\n"));
15200 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15201 }
15202
15203 struct breakpoint *
15204 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15205 void *data)
15206 {
15207 struct breakpoint *b, *b_tmp;
15208
15209 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15210 {
15211 if ((*callback) (b, data))
15212 return b;
15213 }
15214
15215 return NULL;
15216 }
15217
15218 /* Zero if any of the breakpoint's locations could be a location where
15219 functions have been inlined, nonzero otherwise. */
15220
15221 static int
15222 is_non_inline_function (struct breakpoint *b)
15223 {
15224 /* The shared library event breakpoint is set on the address of a
15225 non-inline function. */
15226 if (b->type == bp_shlib_event)
15227 return 1;
15228
15229 return 0;
15230 }
15231
15232 /* Nonzero if the specified PC cannot be a location where functions
15233 have been inlined. */
15234
15235 int
15236 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15237 const struct target_waitstatus *ws)
15238 {
15239 struct breakpoint *b;
15240 struct bp_location *bl;
15241
15242 ALL_BREAKPOINTS (b)
15243 {
15244 if (!is_non_inline_function (b))
15245 continue;
15246
15247 for (bl = b->loc; bl != NULL; bl = bl->next)
15248 {
15249 if (!bl->shlib_disabled
15250 && bpstat_check_location (bl, aspace, pc, ws))
15251 return 1;
15252 }
15253 }
15254
15255 return 0;
15256 }
15257
15258 /* Remove any references to OBJFILE which is going to be freed. */
15259
15260 void
15261 breakpoint_free_objfile (struct objfile *objfile)
15262 {
15263 struct bp_location **locp, *loc;
15264
15265 ALL_BP_LOCATIONS (loc, locp)
15266 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15267 loc->symtab = NULL;
15268 }
15269
15270 void
15271 initialize_breakpoint_ops (void)
15272 {
15273 static int initialized = 0;
15274
15275 struct breakpoint_ops *ops;
15276
15277 if (initialized)
15278 return;
15279 initialized = 1;
15280
15281 /* The breakpoint_ops structure to be inherit by all kinds of
15282 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15283 internal and momentary breakpoints, etc.). */
15284 ops = &bkpt_base_breakpoint_ops;
15285 *ops = base_breakpoint_ops;
15286 ops->re_set = bkpt_re_set;
15287 ops->insert_location = bkpt_insert_location;
15288 ops->remove_location = bkpt_remove_location;
15289 ops->breakpoint_hit = bkpt_breakpoint_hit;
15290 ops->create_sals_from_location = bkpt_create_sals_from_location;
15291 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15292 ops->decode_location = bkpt_decode_location;
15293
15294 /* The breakpoint_ops structure to be used in regular breakpoints. */
15295 ops = &bkpt_breakpoint_ops;
15296 *ops = bkpt_base_breakpoint_ops;
15297 ops->re_set = bkpt_re_set;
15298 ops->resources_needed = bkpt_resources_needed;
15299 ops->print_it = bkpt_print_it;
15300 ops->print_mention = bkpt_print_mention;
15301 ops->print_recreate = bkpt_print_recreate;
15302
15303 /* Ranged breakpoints. */
15304 ops = &ranged_breakpoint_ops;
15305 *ops = bkpt_breakpoint_ops;
15306 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15307 ops->resources_needed = resources_needed_ranged_breakpoint;
15308 ops->print_it = print_it_ranged_breakpoint;
15309 ops->print_one = print_one_ranged_breakpoint;
15310 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15311 ops->print_mention = print_mention_ranged_breakpoint;
15312 ops->print_recreate = print_recreate_ranged_breakpoint;
15313
15314 /* Internal breakpoints. */
15315 ops = &internal_breakpoint_ops;
15316 *ops = bkpt_base_breakpoint_ops;
15317 ops->re_set = internal_bkpt_re_set;
15318 ops->check_status = internal_bkpt_check_status;
15319 ops->print_it = internal_bkpt_print_it;
15320 ops->print_mention = internal_bkpt_print_mention;
15321
15322 /* Momentary breakpoints. */
15323 ops = &momentary_breakpoint_ops;
15324 *ops = bkpt_base_breakpoint_ops;
15325 ops->re_set = momentary_bkpt_re_set;
15326 ops->check_status = momentary_bkpt_check_status;
15327 ops->print_it = momentary_bkpt_print_it;
15328 ops->print_mention = momentary_bkpt_print_mention;
15329
15330 /* Probe breakpoints. */
15331 ops = &bkpt_probe_breakpoint_ops;
15332 *ops = bkpt_breakpoint_ops;
15333 ops->insert_location = bkpt_probe_insert_location;
15334 ops->remove_location = bkpt_probe_remove_location;
15335 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15336 ops->decode_location = bkpt_probe_decode_location;
15337
15338 /* Watchpoints. */
15339 ops = &watchpoint_breakpoint_ops;
15340 *ops = base_breakpoint_ops;
15341 ops->re_set = re_set_watchpoint;
15342 ops->insert_location = insert_watchpoint;
15343 ops->remove_location = remove_watchpoint;
15344 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15345 ops->check_status = check_status_watchpoint;
15346 ops->resources_needed = resources_needed_watchpoint;
15347 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15348 ops->print_it = print_it_watchpoint;
15349 ops->print_mention = print_mention_watchpoint;
15350 ops->print_recreate = print_recreate_watchpoint;
15351 ops->explains_signal = explains_signal_watchpoint;
15352
15353 /* Masked watchpoints. */
15354 ops = &masked_watchpoint_breakpoint_ops;
15355 *ops = watchpoint_breakpoint_ops;
15356 ops->insert_location = insert_masked_watchpoint;
15357 ops->remove_location = remove_masked_watchpoint;
15358 ops->resources_needed = resources_needed_masked_watchpoint;
15359 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15360 ops->print_it = print_it_masked_watchpoint;
15361 ops->print_one_detail = print_one_detail_masked_watchpoint;
15362 ops->print_mention = print_mention_masked_watchpoint;
15363 ops->print_recreate = print_recreate_masked_watchpoint;
15364
15365 /* Tracepoints. */
15366 ops = &tracepoint_breakpoint_ops;
15367 *ops = base_breakpoint_ops;
15368 ops->re_set = tracepoint_re_set;
15369 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15370 ops->print_one_detail = tracepoint_print_one_detail;
15371 ops->print_mention = tracepoint_print_mention;
15372 ops->print_recreate = tracepoint_print_recreate;
15373 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15374 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15375 ops->decode_location = tracepoint_decode_location;
15376
15377 /* Probe tracepoints. */
15378 ops = &tracepoint_probe_breakpoint_ops;
15379 *ops = tracepoint_breakpoint_ops;
15380 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15381 ops->decode_location = tracepoint_probe_decode_location;
15382
15383 /* Static tracepoints with marker (`-m'). */
15384 ops = &strace_marker_breakpoint_ops;
15385 *ops = tracepoint_breakpoint_ops;
15386 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15387 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15388 ops->decode_location = strace_marker_decode_location;
15389
15390 /* Fork catchpoints. */
15391 ops = &catch_fork_breakpoint_ops;
15392 *ops = base_breakpoint_ops;
15393 ops->insert_location = insert_catch_fork;
15394 ops->remove_location = remove_catch_fork;
15395 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15396 ops->print_it = print_it_catch_fork;
15397 ops->print_one = print_one_catch_fork;
15398 ops->print_mention = print_mention_catch_fork;
15399 ops->print_recreate = print_recreate_catch_fork;
15400
15401 /* Vfork catchpoints. */
15402 ops = &catch_vfork_breakpoint_ops;
15403 *ops = base_breakpoint_ops;
15404 ops->insert_location = insert_catch_vfork;
15405 ops->remove_location = remove_catch_vfork;
15406 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15407 ops->print_it = print_it_catch_vfork;
15408 ops->print_one = print_one_catch_vfork;
15409 ops->print_mention = print_mention_catch_vfork;
15410 ops->print_recreate = print_recreate_catch_vfork;
15411
15412 /* Exec catchpoints. */
15413 ops = &catch_exec_breakpoint_ops;
15414 *ops = base_breakpoint_ops;
15415 ops->insert_location = insert_catch_exec;
15416 ops->remove_location = remove_catch_exec;
15417 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15418 ops->print_it = print_it_catch_exec;
15419 ops->print_one = print_one_catch_exec;
15420 ops->print_mention = print_mention_catch_exec;
15421 ops->print_recreate = print_recreate_catch_exec;
15422
15423 /* Solib-related catchpoints. */
15424 ops = &catch_solib_breakpoint_ops;
15425 *ops = base_breakpoint_ops;
15426 ops->insert_location = insert_catch_solib;
15427 ops->remove_location = remove_catch_solib;
15428 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15429 ops->check_status = check_status_catch_solib;
15430 ops->print_it = print_it_catch_solib;
15431 ops->print_one = print_one_catch_solib;
15432 ops->print_mention = print_mention_catch_solib;
15433 ops->print_recreate = print_recreate_catch_solib;
15434
15435 ops = &dprintf_breakpoint_ops;
15436 *ops = bkpt_base_breakpoint_ops;
15437 ops->re_set = dprintf_re_set;
15438 ops->resources_needed = bkpt_resources_needed;
15439 ops->print_it = bkpt_print_it;
15440 ops->print_mention = bkpt_print_mention;
15441 ops->print_recreate = dprintf_print_recreate;
15442 ops->after_condition_true = dprintf_after_condition_true;
15443 ops->breakpoint_hit = dprintf_breakpoint_hit;
15444 }
15445
15446 /* Chain containing all defined "enable breakpoint" subcommands. */
15447
15448 static struct cmd_list_element *enablebreaklist = NULL;
15449
15450 /* See breakpoint.h. */
15451
15452 cmd_list_element *commands_cmd_element = nullptr;
15453
15454 void
15455 _initialize_breakpoint (void)
15456 {
15457 struct cmd_list_element *c;
15458
15459 initialize_breakpoint_ops ();
15460
15461 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15462 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15463 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15464
15465 breakpoint_objfile_key
15466 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15467
15468 breakpoint_chain = 0;
15469 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15470 before a breakpoint is set. */
15471 breakpoint_count = 0;
15472
15473 tracepoint_count = 0;
15474
15475 add_com ("ignore", class_breakpoint, ignore_command, _("\
15476 Set ignore-count of breakpoint number N to COUNT.\n\
15477 Usage is `ignore N COUNT'."));
15478
15479 commands_cmd_element = add_com ("commands", class_breakpoint,
15480 commands_command, _("\
15481 Set commands to be executed when the given breakpoints are hit.\n\
15482 Give a space-separated breakpoint list as argument after \"commands\".\n\
15483 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15484 (e.g. `5-7').\n\
15485 With no argument, the targeted breakpoint is the last one set.\n\
15486 The commands themselves follow starting on the next line.\n\
15487 Type a line containing \"end\" to indicate the end of them.\n\
15488 Give \"silent\" as the first line to make the breakpoint silent;\n\
15489 then no output is printed when it is hit, except what the commands print."));
15490
15491 c = add_com ("condition", class_breakpoint, condition_command, _("\
15492 Specify breakpoint number N to break only if COND is true.\n\
15493 Usage is `condition N COND', where N is an integer and COND is an\n\
15494 expression to be evaluated whenever breakpoint N is reached."));
15495 set_cmd_completer (c, condition_completer);
15496
15497 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15498 Set a temporary breakpoint.\n\
15499 Like \"break\" except the breakpoint is only temporary,\n\
15500 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15501 by using \"enable delete\" on the breakpoint number.\n\
15502 \n"
15503 BREAK_ARGS_HELP ("tbreak")));
15504 set_cmd_completer (c, location_completer);
15505
15506 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15507 Set a hardware assisted breakpoint.\n\
15508 Like \"break\" except the breakpoint requires hardware support,\n\
15509 some target hardware may not have this support.\n\
15510 \n"
15511 BREAK_ARGS_HELP ("hbreak")));
15512 set_cmd_completer (c, location_completer);
15513
15514 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15515 Set a temporary hardware assisted breakpoint.\n\
15516 Like \"hbreak\" except the breakpoint is only temporary,\n\
15517 so it will be deleted when hit.\n\
15518 \n"
15519 BREAK_ARGS_HELP ("thbreak")));
15520 set_cmd_completer (c, location_completer);
15521
15522 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15523 Enable some breakpoints.\n\
15524 Give breakpoint numbers (separated by spaces) as arguments.\n\
15525 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15526 This is used to cancel the effect of the \"disable\" command.\n\
15527 With a subcommand you can enable temporarily."),
15528 &enablelist, "enable ", 1, &cmdlist);
15529
15530 add_com_alias ("en", "enable", class_breakpoint, 1);
15531
15532 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15533 Enable some breakpoints.\n\
15534 Give breakpoint numbers (separated by spaces) as arguments.\n\
15535 This is used to cancel the effect of the \"disable\" command.\n\
15536 May be abbreviated to simply \"enable\".\n"),
15537 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15538
15539 add_cmd ("once", no_class, enable_once_command, _("\
15540 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15541 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15542 &enablebreaklist);
15543
15544 add_cmd ("delete", no_class, enable_delete_command, _("\
15545 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15546 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15547 &enablebreaklist);
15548
15549 add_cmd ("count", no_class, enable_count_command, _("\
15550 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15551 If a breakpoint is hit while enabled in this fashion,\n\
15552 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15553 &enablebreaklist);
15554
15555 add_cmd ("delete", no_class, enable_delete_command, _("\
15556 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15557 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15558 &enablelist);
15559
15560 add_cmd ("once", no_class, enable_once_command, _("\
15561 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15562 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15563 &enablelist);
15564
15565 add_cmd ("count", no_class, enable_count_command, _("\
15566 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15567 If a breakpoint is hit while enabled in this fashion,\n\
15568 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15569 &enablelist);
15570
15571 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15572 Disable some breakpoints.\n\
15573 Arguments are breakpoint numbers with spaces in between.\n\
15574 To disable all breakpoints, give no argument.\n\
15575 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15576 &disablelist, "disable ", 1, &cmdlist);
15577 add_com_alias ("dis", "disable", class_breakpoint, 1);
15578 add_com_alias ("disa", "disable", class_breakpoint, 1);
15579
15580 add_cmd ("breakpoints", class_alias, disable_command, _("\
15581 Disable some breakpoints.\n\
15582 Arguments are breakpoint numbers with spaces in between.\n\
15583 To disable all breakpoints, give no argument.\n\
15584 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15585 This command may be abbreviated \"disable\"."),
15586 &disablelist);
15587
15588 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15589 Delete some breakpoints or auto-display expressions.\n\
15590 Arguments are breakpoint numbers with spaces in between.\n\
15591 To delete all breakpoints, give no argument.\n\
15592 \n\
15593 Also a prefix command for deletion of other GDB objects.\n\
15594 The \"unset\" command is also an alias for \"delete\"."),
15595 &deletelist, "delete ", 1, &cmdlist);
15596 add_com_alias ("d", "delete", class_breakpoint, 1);
15597 add_com_alias ("del", "delete", class_breakpoint, 1);
15598
15599 add_cmd ("breakpoints", class_alias, delete_command, _("\
15600 Delete some breakpoints or auto-display expressions.\n\
15601 Arguments are breakpoint numbers with spaces in between.\n\
15602 To delete all breakpoints, give no argument.\n\
15603 This command may be abbreviated \"delete\"."),
15604 &deletelist);
15605
15606 add_com ("clear", class_breakpoint, clear_command, _("\
15607 Clear breakpoint at specified location.\n\
15608 Argument may be a linespec, explicit, or address location as described below.\n\
15609 \n\
15610 With no argument, clears all breakpoints in the line that the selected frame\n\
15611 is executing in.\n"
15612 "\n" LOCATION_HELP_STRING "\n\
15613 See also the \"delete\" command which clears breakpoints by number."));
15614 add_com_alias ("cl", "clear", class_breakpoint, 1);
15615
15616 c = add_com ("break", class_breakpoint, break_command, _("\
15617 Set breakpoint at specified location.\n"
15618 BREAK_ARGS_HELP ("break")));
15619 set_cmd_completer (c, location_completer);
15620
15621 add_com_alias ("b", "break", class_run, 1);
15622 add_com_alias ("br", "break", class_run, 1);
15623 add_com_alias ("bre", "break", class_run, 1);
15624 add_com_alias ("brea", "break", class_run, 1);
15625
15626 if (dbx_commands)
15627 {
15628 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15629 Break in function/address or break at a line in the current file."),
15630 &stoplist, "stop ", 1, &cmdlist);
15631 add_cmd ("in", class_breakpoint, stopin_command,
15632 _("Break in function or address."), &stoplist);
15633 add_cmd ("at", class_breakpoint, stopat_command,
15634 _("Break at a line in the current file."), &stoplist);
15635 add_com ("status", class_info, info_breakpoints_command, _("\
15636 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15637 The \"Type\" column indicates one of:\n\
15638 \tbreakpoint - normal breakpoint\n\
15639 \twatchpoint - watchpoint\n\
15640 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15641 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15642 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15643 address and file/line number respectively.\n\
15644 \n\
15645 Convenience variable \"$_\" and default examine address for \"x\"\n\
15646 are set to the address of the last breakpoint listed unless the command\n\
15647 is prefixed with \"server \".\n\n\
15648 Convenience variable \"$bpnum\" contains the number of the last\n\
15649 breakpoint set."));
15650 }
15651
15652 add_info ("breakpoints", info_breakpoints_command, _("\
15653 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15654 The \"Type\" column indicates one of:\n\
15655 \tbreakpoint - normal breakpoint\n\
15656 \twatchpoint - watchpoint\n\
15657 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15658 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15659 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15660 address and file/line number respectively.\n\
15661 \n\
15662 Convenience variable \"$_\" and default examine address for \"x\"\n\
15663 are set to the address of the last breakpoint listed unless the command\n\
15664 is prefixed with \"server \".\n\n\
15665 Convenience variable \"$bpnum\" contains the number of the last\n\
15666 breakpoint set."));
15667
15668 add_info_alias ("b", "breakpoints", 1);
15669
15670 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15671 Status of all breakpoints, or breakpoint number NUMBER.\n\
15672 The \"Type\" column indicates one of:\n\
15673 \tbreakpoint - normal breakpoint\n\
15674 \twatchpoint - watchpoint\n\
15675 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15676 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15677 \tuntil - internal breakpoint used by the \"until\" command\n\
15678 \tfinish - internal breakpoint used by the \"finish\" command\n\
15679 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15680 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15681 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15682 address and file/line number respectively.\n\
15683 \n\
15684 Convenience variable \"$_\" and default examine address for \"x\"\n\
15685 are set to the address of the last breakpoint listed unless the command\n\
15686 is prefixed with \"server \".\n\n\
15687 Convenience variable \"$bpnum\" contains the number of the last\n\
15688 breakpoint set."),
15689 &maintenanceinfolist);
15690
15691 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15692 Set catchpoints to catch events."),
15693 &catch_cmdlist, "catch ",
15694 0/*allow-unknown*/, &cmdlist);
15695
15696 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15697 Set temporary catchpoints to catch events."),
15698 &tcatch_cmdlist, "tcatch ",
15699 0/*allow-unknown*/, &cmdlist);
15700
15701 add_catch_command ("fork", _("Catch calls to fork."),
15702 catch_fork_command_1,
15703 NULL,
15704 (void *) (uintptr_t) catch_fork_permanent,
15705 (void *) (uintptr_t) catch_fork_temporary);
15706 add_catch_command ("vfork", _("Catch calls to vfork."),
15707 catch_fork_command_1,
15708 NULL,
15709 (void *) (uintptr_t) catch_vfork_permanent,
15710 (void *) (uintptr_t) catch_vfork_temporary);
15711 add_catch_command ("exec", _("Catch calls to exec."),
15712 catch_exec_command_1,
15713 NULL,
15714 CATCH_PERMANENT,
15715 CATCH_TEMPORARY);
15716 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15717 Usage: catch load [REGEX]\n\
15718 If REGEX is given, only stop for libraries matching the regular expression."),
15719 catch_load_command_1,
15720 NULL,
15721 CATCH_PERMANENT,
15722 CATCH_TEMPORARY);
15723 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15724 Usage: catch unload [REGEX]\n\
15725 If REGEX is given, only stop for libraries matching the regular expression."),
15726 catch_unload_command_1,
15727 NULL,
15728 CATCH_PERMANENT,
15729 CATCH_TEMPORARY);
15730
15731 c = add_com ("watch", class_breakpoint, watch_command, _("\
15732 Set a watchpoint for an expression.\n\
15733 Usage: watch [-l|-location] EXPRESSION\n\
15734 A watchpoint stops execution of your program whenever the value of\n\
15735 an expression changes.\n\
15736 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15737 the memory to which it refers."));
15738 set_cmd_completer (c, expression_completer);
15739
15740 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15741 Set a read watchpoint for an expression.\n\
15742 Usage: rwatch [-l|-location] EXPRESSION\n\
15743 A watchpoint stops execution of your program whenever the value of\n\
15744 an expression is read.\n\
15745 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15746 the memory to which it refers."));
15747 set_cmd_completer (c, expression_completer);
15748
15749 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15750 Set a watchpoint for an expression.\n\
15751 Usage: awatch [-l|-location] EXPRESSION\n\
15752 A watchpoint stops execution of your program whenever the value of\n\
15753 an expression is either read or written.\n\
15754 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15755 the memory to which it refers."));
15756 set_cmd_completer (c, expression_completer);
15757
15758 add_info ("watchpoints", info_watchpoints_command, _("\
15759 Status of specified watchpoints (all watchpoints if no argument)."));
15760
15761 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15762 respond to changes - contrary to the description. */
15763 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15764 &can_use_hw_watchpoints, _("\
15765 Set debugger's willingness to use watchpoint hardware."), _("\
15766 Show debugger's willingness to use watchpoint hardware."), _("\
15767 If zero, gdb will not use hardware for new watchpoints, even if\n\
15768 such is available. (However, any hardware watchpoints that were\n\
15769 created before setting this to nonzero, will continue to use watchpoint\n\
15770 hardware.)"),
15771 NULL,
15772 show_can_use_hw_watchpoints,
15773 &setlist, &showlist);
15774
15775 can_use_hw_watchpoints = 1;
15776
15777 /* Tracepoint manipulation commands. */
15778
15779 c = add_com ("trace", class_breakpoint, trace_command, _("\
15780 Set a tracepoint at specified location.\n\
15781 \n"
15782 BREAK_ARGS_HELP ("trace") "\n\
15783 Do \"help tracepoints\" for info on other tracepoint commands."));
15784 set_cmd_completer (c, location_completer);
15785
15786 add_com_alias ("tp", "trace", class_alias, 0);
15787 add_com_alias ("tr", "trace", class_alias, 1);
15788 add_com_alias ("tra", "trace", class_alias, 1);
15789 add_com_alias ("trac", "trace", class_alias, 1);
15790
15791 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15792 Set a fast tracepoint at specified location.\n\
15793 \n"
15794 BREAK_ARGS_HELP ("ftrace") "\n\
15795 Do \"help tracepoints\" for info on other tracepoint commands."));
15796 set_cmd_completer (c, location_completer);
15797
15798 c = add_com ("strace", class_breakpoint, strace_command, _("\
15799 Set a static tracepoint at location or marker.\n\
15800 \n\
15801 strace [LOCATION] [if CONDITION]\n\
15802 LOCATION may be a linespec, explicit, or address location (described below) \n\
15803 or -m MARKER_ID.\n\n\
15804 If a marker id is specified, probe the marker with that name. With\n\
15805 no LOCATION, uses current execution address of the selected stack frame.\n\
15806 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15807 This collects arbitrary user data passed in the probe point call to the\n\
15808 tracing library. You can inspect it when analyzing the trace buffer,\n\
15809 by printing the $_sdata variable like any other convenience variable.\n\
15810 \n\
15811 CONDITION is a boolean expression.\n\
15812 \n" LOCATION_HELP_STRING "\n\
15813 Multiple tracepoints at one place are permitted, and useful if their\n\
15814 conditions are different.\n\
15815 \n\
15816 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15817 Do \"help tracepoints\" for info on other tracepoint commands."));
15818 set_cmd_completer (c, location_completer);
15819
15820 add_info ("tracepoints", info_tracepoints_command, _("\
15821 Status of specified tracepoints (all tracepoints if no argument).\n\
15822 Convenience variable \"$tpnum\" contains the number of the\n\
15823 last tracepoint set."));
15824
15825 add_info_alias ("tp", "tracepoints", 1);
15826
15827 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15828 Delete specified tracepoints.\n\
15829 Arguments are tracepoint numbers, separated by spaces.\n\
15830 No argument means delete all tracepoints."),
15831 &deletelist);
15832 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15833
15834 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15835 Disable specified tracepoints.\n\
15836 Arguments are tracepoint numbers, separated by spaces.\n\
15837 No argument means disable all tracepoints."),
15838 &disablelist);
15839 deprecate_cmd (c, "disable");
15840
15841 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15842 Enable specified tracepoints.\n\
15843 Arguments are tracepoint numbers, separated by spaces.\n\
15844 No argument means enable all tracepoints."),
15845 &enablelist);
15846 deprecate_cmd (c, "enable");
15847
15848 add_com ("passcount", class_trace, trace_pass_command, _("\
15849 Set the passcount for a tracepoint.\n\
15850 The trace will end when the tracepoint has been passed 'count' times.\n\
15851 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15852 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15853
15854 add_prefix_cmd ("save", class_breakpoint, save_command,
15855 _("Save breakpoint definitions as a script."),
15856 &save_cmdlist, "save ",
15857 0/*allow-unknown*/, &cmdlist);
15858
15859 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15860 Save current breakpoint definitions as a script.\n\
15861 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15862 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15863 session to restore them."),
15864 &save_cmdlist);
15865 set_cmd_completer (c, filename_completer);
15866
15867 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15868 Save current tracepoint definitions as a script.\n\
15869 Use the 'source' command in another debug session to restore them."),
15870 &save_cmdlist);
15871 set_cmd_completer (c, filename_completer);
15872
15873 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15874 deprecate_cmd (c, "save tracepoints");
15875
15876 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15877 Breakpoint specific settings\n\
15878 Configure various breakpoint-specific variables such as\n\
15879 pending breakpoint behavior"),
15880 &breakpoint_set_cmdlist, "set breakpoint ",
15881 0/*allow-unknown*/, &setlist);
15882 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15883 Breakpoint specific settings\n\
15884 Configure various breakpoint-specific variables such as\n\
15885 pending breakpoint behavior"),
15886 &breakpoint_show_cmdlist, "show breakpoint ",
15887 0/*allow-unknown*/, &showlist);
15888
15889 add_setshow_auto_boolean_cmd ("pending", no_class,
15890 &pending_break_support, _("\
15891 Set debugger's behavior regarding pending breakpoints."), _("\
15892 Show debugger's behavior regarding pending breakpoints."), _("\
15893 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15894 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15895 an error. If auto, an unrecognized breakpoint location results in a\n\
15896 user-query to see if a pending breakpoint should be created."),
15897 NULL,
15898 show_pending_break_support,
15899 &breakpoint_set_cmdlist,
15900 &breakpoint_show_cmdlist);
15901
15902 pending_break_support = AUTO_BOOLEAN_AUTO;
15903
15904 add_setshow_boolean_cmd ("auto-hw", no_class,
15905 &automatic_hardware_breakpoints, _("\
15906 Set automatic usage of hardware breakpoints."), _("\
15907 Show automatic usage of hardware breakpoints."), _("\
15908 If set, the debugger will automatically use hardware breakpoints for\n\
15909 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15910 a warning will be emitted for such breakpoints."),
15911 NULL,
15912 show_automatic_hardware_breakpoints,
15913 &breakpoint_set_cmdlist,
15914 &breakpoint_show_cmdlist);
15915
15916 add_setshow_boolean_cmd ("always-inserted", class_support,
15917 &always_inserted_mode, _("\
15918 Set mode for inserting breakpoints."), _("\
15919 Show mode for inserting breakpoints."), _("\
15920 When this mode is on, breakpoints are inserted immediately as soon as\n\
15921 they're created, kept inserted even when execution stops, and removed\n\
15922 only when the user deletes them. When this mode is off (the default),\n\
15923 breakpoints are inserted only when execution continues, and removed\n\
15924 when execution stops."),
15925 NULL,
15926 &show_always_inserted_mode,
15927 &breakpoint_set_cmdlist,
15928 &breakpoint_show_cmdlist);
15929
15930 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15931 condition_evaluation_enums,
15932 &condition_evaluation_mode_1, _("\
15933 Set mode of breakpoint condition evaluation."), _("\
15934 Show mode of breakpoint condition evaluation."), _("\
15935 When this is set to \"host\", breakpoint conditions will be\n\
15936 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15937 breakpoint conditions will be downloaded to the target (if the target\n\
15938 supports such feature) and conditions will be evaluated on the target's side.\n\
15939 If this is set to \"auto\" (default), this will be automatically set to\n\
15940 \"target\" if it supports condition evaluation, otherwise it will\n\
15941 be set to \"gdb\""),
15942 &set_condition_evaluation_mode,
15943 &show_condition_evaluation_mode,
15944 &breakpoint_set_cmdlist,
15945 &breakpoint_show_cmdlist);
15946
15947 add_com ("break-range", class_breakpoint, break_range_command, _("\
15948 Set a breakpoint for an address range.\n\
15949 break-range START-LOCATION, END-LOCATION\n\
15950 where START-LOCATION and END-LOCATION can be one of the following:\n\
15951 LINENUM, for that line in the current file,\n\
15952 FILE:LINENUM, for that line in that file,\n\
15953 +OFFSET, for that number of lines after the current line\n\
15954 or the start of the range\n\
15955 FUNCTION, for the first line in that function,\n\
15956 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15957 *ADDRESS, for the instruction at that address.\n\
15958 \n\
15959 The breakpoint will stop execution of the inferior whenever it executes\n\
15960 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15961 range (including START-LOCATION and END-LOCATION)."));
15962
15963 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15964 Set a dynamic printf at specified location.\n\
15965 dprintf location,format string,arg1,arg2,...\n\
15966 location may be a linespec, explicit, or address location.\n"
15967 "\n" LOCATION_HELP_STRING));
15968 set_cmd_completer (c, location_completer);
15969
15970 add_setshow_enum_cmd ("dprintf-style", class_support,
15971 dprintf_style_enums, &dprintf_style, _("\
15972 Set the style of usage for dynamic printf."), _("\
15973 Show the style of usage for dynamic printf."), _("\
15974 This setting chooses how GDB will do a dynamic printf.\n\
15975 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15976 console, as with the \"printf\" command.\n\
15977 If the value is \"call\", the print is done by calling a function in your\n\
15978 program; by default printf(), but you can choose a different function or\n\
15979 output stream by setting dprintf-function and dprintf-channel."),
15980 update_dprintf_commands, NULL,
15981 &setlist, &showlist);
15982
15983 dprintf_function = xstrdup ("printf");
15984 add_setshow_string_cmd ("dprintf-function", class_support,
15985 &dprintf_function, _("\
15986 Set the function to use for dynamic printf"), _("\
15987 Show the function to use for dynamic printf"), NULL,
15988 update_dprintf_commands, NULL,
15989 &setlist, &showlist);
15990
15991 dprintf_channel = xstrdup ("");
15992 add_setshow_string_cmd ("dprintf-channel", class_support,
15993 &dprintf_channel, _("\
15994 Set the channel to use for dynamic printf"), _("\
15995 Show the channel to use for dynamic printf"), NULL,
15996 update_dprintf_commands, NULL,
15997 &setlist, &showlist);
15998
15999 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16000 &disconnected_dprintf, _("\
16001 Set whether dprintf continues after GDB disconnects."), _("\
16002 Show whether dprintf continues after GDB disconnects."), _("\
16003 Use this to let dprintf commands continue to hit and produce output\n\
16004 even if GDB disconnects or detaches from the target."),
16005 NULL,
16006 NULL,
16007 &setlist, &showlist);
16008
16009 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16010 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16011 (target agent only) This is useful for formatted output in user-defined commands."));
16012
16013 automatic_hardware_breakpoints = 1;
16014
16015 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16016 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16017 }
This page took 0.524071 seconds and 5 git commands to generate.