Get rid of VEC(static_tracepoint_marker_p)
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 int i;
1012
1013 if (c->control_type == while_stepping_control)
1014 error (_("The 'while-stepping' command can "
1015 "only be used for tracepoints"));
1016
1017 for (i = 0; i < c->body_count; ++i)
1018 check_no_tracepoint_commands ((c->body_list)[i]);
1019
1020 /* Not that command parsing removes leading whitespace and comment
1021 lines and also empty lines. So, we only need to check for
1022 command directly. */
1023 if (strstr (c->line, "collect ") == c->line)
1024 error (_("The 'collect' command can only be used for tracepoints"));
1025
1026 if (strstr (c->line, "teval ") == c->line)
1027 error (_("The 'teval' command can only be used for tracepoints"));
1028 }
1029 }
1030
1031 struct longjmp_breakpoint : public breakpoint
1032 {
1033 ~longjmp_breakpoint () override;
1034 };
1035
1036 /* Encapsulate tests for different types of tracepoints. */
1037
1038 static bool
1039 is_tracepoint_type (bptype type)
1040 {
1041 return (type == bp_tracepoint
1042 || type == bp_fast_tracepoint
1043 || type == bp_static_tracepoint);
1044 }
1045
1046 static bool
1047 is_longjmp_type (bptype type)
1048 {
1049 return type == bp_longjmp || type == bp_exception;
1050 }
1051
1052 int
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_count == 1);
1130 c2 = while_stepping->body_list[0];
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 VEC(breakpoint_p) *
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 VEC(breakpoint_p) *found = 0;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 VEC_safe_push(breakpoint_p, found, b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 command_line_up &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 gdb::observers::breakpoint_modified.notify (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 gdb::observers::breakpoint_modified.notify (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 gdb::observers::breakpoint_modified.notify (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 gdb::observers::breakpoint_modified.notify (b);
1216 }
1217
1218 void
1219 check_tracepoint_command (char *line, void *closure)
1220 {
1221 struct breakpoint *b = (struct breakpoint *) closure;
1222
1223 validate_actionline (line, b);
1224 }
1225
1226 static void
1227 commands_command_1 (const char *arg, int from_tty,
1228 struct command_line *control)
1229 {
1230 counted_command_line cmd;
1231
1232 std::string new_arg;
1233
1234 if (arg == NULL || !*arg)
1235 {
1236 if (breakpoint_count - prev_breakpoint_count > 1)
1237 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1238 breakpoint_count);
1239 else if (breakpoint_count > 0)
1240 new_arg = string_printf ("%d", breakpoint_count);
1241 arg = new_arg.c_str ();
1242 }
1243
1244 map_breakpoint_numbers
1245 (arg, [&] (breakpoint *b)
1246 {
1247 if (cmd == NULL)
1248 {
1249 if (control != NULL)
1250 cmd = copy_command_lines (control->body_list[0]);
1251 else
1252 {
1253 std::string str
1254 = string_printf (_("Type commands for breakpoint(s) "
1255 "%s, one per line."),
1256 arg);
1257
1258 cmd = read_command_lines (&str[0],
1259 from_tty, 1,
1260 (is_tracepoint (b)
1261 ? check_tracepoint_command : 0),
1262 b);
1263 }
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (ptid_equal (b->watchpoint_thread, null_ptid)
1553 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1554 && !is_executing (inferior_ptid))));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 value_free (b->val);
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 struct value *val_chain, *v, *result, *next;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 {
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 if (v != NULL)
1798 release_value (v);
1799 }
1800 b->val = v;
1801 b->val_valid = 1;
1802 }
1803
1804 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1805
1806 /* Look at each value on the value chain. */
1807 for (v = val_chain; v; v = value_next (v))
1808 {
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 for (v = val_chain; v; v = next)
1971 {
1972 next = value_next (v);
1973 if (v != b->val)
1974 value_free (v);
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->type == bp_watchpoint && b->loc == NULL)
1982 software_watchpoint_add_no_memory_location (b, frame_pspace);
1983 }
1984 else if (!within_current_scope)
1985 {
1986 printf_filtered (_("\
1987 Watchpoint %d deleted because the program has left the block\n\
1988 in which its expression is valid.\n"),
1989 b->number);
1990 watchpoint_del_at_next_stop (b);
1991 }
1992
1993 /* Restore the selected frame. */
1994 if (frame_saved)
1995 select_frame (frame_find_by_id (saved_frame_id));
1996 }
1997
1998
1999 /* Returns 1 iff breakpoint location should be
2000 inserted in the inferior. We don't differentiate the type of BL's owner
2001 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2002 breakpoint_ops is not defined, because in insert_bp_location,
2003 tracepoint's insert_location will not be called. */
2004 static int
2005 should_be_inserted (struct bp_location *bl)
2006 {
2007 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2008 return 0;
2009
2010 if (bl->owner->disposition == disp_del_at_next_stop)
2011 return 0;
2012
2013 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2014 return 0;
2015
2016 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2017 return 0;
2018
2019 /* This is set for example, when we're attached to the parent of a
2020 vfork, and have detached from the child. The child is running
2021 free, and we expect it to do an exec or exit, at which point the
2022 OS makes the parent schedulable again (and the target reports
2023 that the vfork is done). Until the child is done with the shared
2024 memory region, do not insert breakpoints in the parent, otherwise
2025 the child could still trip on the parent's breakpoints. Since
2026 the parent is blocked anyway, it won't miss any breakpoint. */
2027 if (bl->pspace->breakpoints_not_allowed)
2028 return 0;
2029
2030 /* Don't insert a breakpoint if we're trying to step past its
2031 location, except if the breakpoint is a single-step breakpoint,
2032 and the breakpoint's thread is the thread which is stepping past
2033 a breakpoint. */
2034 if ((bl->loc_type == bp_loc_software_breakpoint
2035 || bl->loc_type == bp_loc_hardware_breakpoint)
2036 && stepping_past_instruction_at (bl->pspace->aspace,
2037 bl->address)
2038 /* The single-step breakpoint may be inserted at the location
2039 we're trying to step if the instruction branches to itself.
2040 However, the instruction won't be executed at all and it may
2041 break the semantics of the instruction, for example, the
2042 instruction is a conditional branch or updates some flags.
2043 We can't fix it unless GDB is able to emulate the instruction
2044 or switch to displaced stepping. */
2045 && !(bl->owner->type == bp_single_step
2046 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2047 {
2048 if (debug_infrun)
2049 {
2050 fprintf_unfiltered (gdb_stdlog,
2051 "infrun: skipping breakpoint: "
2052 "stepping past insn at: %s\n",
2053 paddress (bl->gdbarch, bl->address));
2054 }
2055 return 0;
2056 }
2057
2058 /* Don't insert watchpoints if we're trying to step past the
2059 instruction that triggered one. */
2060 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2061 && stepping_past_nonsteppable_watchpoint ())
2062 {
2063 if (debug_infrun)
2064 {
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: stepping past non-steppable watchpoint. "
2067 "skipping watchpoint at %s:%d\n",
2068 paddress (bl->gdbarch, bl->address),
2069 bl->length);
2070 }
2071 return 0;
2072 }
2073
2074 return 1;
2075 }
2076
2077 /* Same as should_be_inserted but does the check assuming
2078 that the location is not duplicated. */
2079
2080 static int
2081 unduplicated_should_be_inserted (struct bp_location *bl)
2082 {
2083 int result;
2084 const int save_duplicate = bl->duplicate;
2085
2086 bl->duplicate = 0;
2087 result = should_be_inserted (bl);
2088 bl->duplicate = save_duplicate;
2089 return result;
2090 }
2091
2092 /* Parses a conditional described by an expression COND into an
2093 agent expression bytecode suitable for evaluation
2094 by the bytecode interpreter. Return NULL if there was
2095 any error during parsing. */
2096
2097 static agent_expr_up
2098 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2099 {
2100 if (cond == NULL)
2101 return NULL;
2102
2103 agent_expr_up aexpr;
2104
2105 /* We don't want to stop processing, so catch any errors
2106 that may show up. */
2107 TRY
2108 {
2109 aexpr = gen_eval_for_expr (scope, cond);
2110 }
2111
2112 CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 /* If we got here, it means the condition could not be parsed to a valid
2115 bytecode expression and thus can't be evaluated on the target's side.
2116 It's no use iterating through the conditions. */
2117 }
2118 END_CATCH
2119
2120 /* We have a valid agent expression. */
2121 return aexpr;
2122 }
2123
2124 /* Based on location BL, create a list of breakpoint conditions to be
2125 passed on to the target. If we have duplicated locations with different
2126 conditions, we will add such conditions to the list. The idea is that the
2127 target will evaluate the list of conditions and will only notify GDB when
2128 one of them is true. */
2129
2130 static void
2131 build_target_condition_list (struct bp_location *bl)
2132 {
2133 struct bp_location **locp = NULL, **loc2p;
2134 int null_condition_or_parse_error = 0;
2135 int modified = bl->needs_update;
2136 struct bp_location *loc;
2137
2138 /* Release conditions left over from a previous insert. */
2139 bl->target_info.conditions.clear ();
2140
2141 /* This is only meaningful if the target is
2142 evaluating conditions and if the user has
2143 opted for condition evaluation on the target's
2144 side. */
2145 if (gdb_evaluates_breakpoint_condition_p ()
2146 || !target_supports_evaluation_of_breakpoint_conditions ())
2147 return;
2148
2149 /* Do a first pass to check for locations with no assigned
2150 conditions or conditions that fail to parse to a valid agent expression
2151 bytecode. If any of these happen, then it's no use to send conditions
2152 to the target since this location will always trigger and generate a
2153 response back to GDB. */
2154 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2155 {
2156 loc = (*loc2p);
2157 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2158 {
2159 if (modified)
2160 {
2161 /* Re-parse the conditions since something changed. In that
2162 case we already freed the condition bytecodes (see
2163 force_breakpoint_reinsertion). We just
2164 need to parse the condition to bytecodes again. */
2165 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2166 loc->cond.get ());
2167 }
2168
2169 /* If we have a NULL bytecode expression, it means something
2170 went wrong or we have a null condition expression. */
2171 if (!loc->cond_bytecode)
2172 {
2173 null_condition_or_parse_error = 1;
2174 break;
2175 }
2176 }
2177 }
2178
2179 /* If any of these happened, it means we will have to evaluate the conditions
2180 for the location's address on gdb's side. It is no use keeping bytecodes
2181 for all the other duplicate locations, thus we free all of them here.
2182
2183 This is so we have a finer control over which locations' conditions are
2184 being evaluated by GDB or the remote stub. */
2185 if (null_condition_or_parse_error)
2186 {
2187 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2188 {
2189 loc = (*loc2p);
2190 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2191 {
2192 /* Only go as far as the first NULL bytecode is
2193 located. */
2194 if (!loc->cond_bytecode)
2195 return;
2196
2197 loc->cond_bytecode.reset ();
2198 }
2199 }
2200 }
2201
2202 /* No NULL conditions or failed bytecode generation. Build a condition list
2203 for this location's address. */
2204 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2205 {
2206 loc = (*loc2p);
2207 if (loc->cond
2208 && is_breakpoint (loc->owner)
2209 && loc->pspace->num == bl->pspace->num
2210 && loc->owner->enable_state == bp_enabled
2211 && loc->enabled)
2212 {
2213 /* Add the condition to the vector. This will be used later
2214 to send the conditions to the target. */
2215 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2216 }
2217 }
2218
2219 return;
2220 }
2221
2222 /* Parses a command described by string CMD into an agent expression
2223 bytecode suitable for evaluation by the bytecode interpreter.
2224 Return NULL if there was any error during parsing. */
2225
2226 static agent_expr_up
2227 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2228 {
2229 const char *cmdrest;
2230 const char *format_start, *format_end;
2231 struct gdbarch *gdbarch = get_current_arch ();
2232
2233 if (cmd == NULL)
2234 return NULL;
2235
2236 cmdrest = cmd;
2237
2238 if (*cmdrest == ',')
2239 ++cmdrest;
2240 cmdrest = skip_spaces (cmdrest);
2241
2242 if (*cmdrest++ != '"')
2243 error (_("No format string following the location"));
2244
2245 format_start = cmdrest;
2246
2247 format_pieces fpieces (&cmdrest);
2248
2249 format_end = cmdrest;
2250
2251 if (*cmdrest++ != '"')
2252 error (_("Bad format string, non-terminated '\"'."));
2253
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2257 error (_("Invalid argument syntax"));
2258
2259 if (*cmdrest == ',')
2260 cmdrest++;
2261 cmdrest = skip_spaces (cmdrest);
2262
2263 /* For each argument, make an expression. */
2264
2265 std::vector<struct expression *> argvec;
2266 while (*cmdrest != '\0')
2267 {
2268 const char *cmd1;
2269
2270 cmd1 = cmdrest;
2271 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2272 argvec.push_back (expr.release ());
2273 cmdrest = cmd1;
2274 if (*cmdrest == ',')
2275 ++cmdrest;
2276 }
2277
2278 agent_expr_up aexpr;
2279
2280 /* We don't want to stop processing, so catch any errors
2281 that may show up. */
2282 TRY
2283 {
2284 aexpr = gen_printf (scope, gdbarch, 0, 0,
2285 format_start, format_end - format_start,
2286 argvec.size (), argvec.data ());
2287 }
2288 CATCH (ex, RETURN_MASK_ERROR)
2289 {
2290 /* If we got here, it means the command could not be parsed to a valid
2291 bytecode expression and thus can't be evaluated on the target's side.
2292 It's no use iterating through the other commands. */
2293 }
2294 END_CATCH
2295
2296 /* We have a valid agent expression, return it. */
2297 return aexpr;
2298 }
2299
2300 /* Based on location BL, create a list of breakpoint commands to be
2301 passed on to the target. If we have duplicated locations with
2302 different commands, we will add any such to the list. */
2303
2304 static void
2305 build_target_command_list (struct bp_location *bl)
2306 {
2307 struct bp_location **locp = NULL, **loc2p;
2308 int null_command_or_parse_error = 0;
2309 int modified = bl->needs_update;
2310 struct bp_location *loc;
2311
2312 /* Clear commands left over from a previous insert. */
2313 bl->target_info.tcommands.clear ();
2314
2315 if (!target_can_run_breakpoint_commands ())
2316 return;
2317
2318 /* For now, limit to agent-style dprintf breakpoints. */
2319 if (dprintf_style != dprintf_style_agent)
2320 return;
2321
2322 /* For now, if we have any duplicate location that isn't a dprintf,
2323 don't install the target-side commands, as that would make the
2324 breakpoint not be reported to the core, and we'd lose
2325 control. */
2326 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2327 {
2328 loc = (*loc2p);
2329 if (is_breakpoint (loc->owner)
2330 && loc->pspace->num == bl->pspace->num
2331 && loc->owner->type != bp_dprintf)
2332 return;
2333 }
2334
2335 /* Do a first pass to check for locations with no assigned
2336 conditions or conditions that fail to parse to a valid agent expression
2337 bytecode. If any of these happen, then it's no use to send conditions
2338 to the target since this location will always trigger and generate a
2339 response back to GDB. */
2340 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2341 {
2342 loc = (*loc2p);
2343 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2344 {
2345 if (modified)
2346 {
2347 /* Re-parse the commands since something changed. In that
2348 case we already freed the command bytecodes (see
2349 force_breakpoint_reinsertion). We just
2350 need to parse the command to bytecodes again. */
2351 loc->cmd_bytecode
2352 = parse_cmd_to_aexpr (bl->address,
2353 loc->owner->extra_string);
2354 }
2355
2356 /* If we have a NULL bytecode expression, it means something
2357 went wrong or we have a null command expression. */
2358 if (!loc->cmd_bytecode)
2359 {
2360 null_command_or_parse_error = 1;
2361 break;
2362 }
2363 }
2364 }
2365
2366 /* If anything failed, then we're not doing target-side commands,
2367 and so clean up. */
2368 if (null_command_or_parse_error)
2369 {
2370 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2371 {
2372 loc = (*loc2p);
2373 if (is_breakpoint (loc->owner)
2374 && loc->pspace->num == bl->pspace->num)
2375 {
2376 /* Only go as far as the first NULL bytecode is
2377 located. */
2378 if (loc->cmd_bytecode == NULL)
2379 return;
2380
2381 loc->cmd_bytecode.reset ();
2382 }
2383 }
2384 }
2385
2386 /* No NULL commands or failed bytecode generation. Build a command list
2387 for this location's address. */
2388 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2389 {
2390 loc = (*loc2p);
2391 if (loc->owner->extra_string
2392 && is_breakpoint (loc->owner)
2393 && loc->pspace->num == bl->pspace->num
2394 && loc->owner->enable_state == bp_enabled
2395 && loc->enabled)
2396 {
2397 /* Add the command to the vector. This will be used later
2398 to send the commands to the target. */
2399 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2400 }
2401 }
2402
2403 bl->target_info.persist = 0;
2404 /* Maybe flag this location as persistent. */
2405 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2406 bl->target_info.persist = 1;
2407 }
2408
2409 /* Return the kind of breakpoint on address *ADDR. Get the kind
2410 of breakpoint according to ADDR except single-step breakpoint.
2411 Get the kind of single-step breakpoint according to the current
2412 registers state. */
2413
2414 static int
2415 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2416 {
2417 if (bl->owner->type == bp_single_step)
2418 {
2419 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2420 struct regcache *regcache;
2421
2422 regcache = get_thread_regcache (thr->ptid);
2423
2424 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2425 regcache, addr);
2426 }
2427 else
2428 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2429 }
2430
2431 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2432 location. Any error messages are printed to TMP_ERROR_STREAM; and
2433 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2434 Returns 0 for success, 1 if the bp_location type is not supported or
2435 -1 for failure.
2436
2437 NOTE drow/2003-09-09: This routine could be broken down to an
2438 object-style method for each breakpoint or catchpoint type. */
2439 static int
2440 insert_bp_location (struct bp_location *bl,
2441 struct ui_file *tmp_error_stream,
2442 int *disabled_breaks,
2443 int *hw_breakpoint_error,
2444 int *hw_bp_error_explained_already)
2445 {
2446 gdb_exception bp_excpt = exception_none;
2447
2448 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2449 return 0;
2450
2451 /* Note we don't initialize bl->target_info, as that wipes out
2452 the breakpoint location's shadow_contents if the breakpoint
2453 is still inserted at that location. This in turn breaks
2454 target_read_memory which depends on these buffers when
2455 a memory read is requested at the breakpoint location:
2456 Once the target_info has been wiped, we fail to see that
2457 we have a breakpoint inserted at that address and thus
2458 read the breakpoint instead of returning the data saved in
2459 the breakpoint location's shadow contents. */
2460 bl->target_info.reqstd_address = bl->address;
2461 bl->target_info.placed_address_space = bl->pspace->aspace;
2462 bl->target_info.length = bl->length;
2463
2464 /* When working with target-side conditions, we must pass all the conditions
2465 for the same breakpoint address down to the target since GDB will not
2466 insert those locations. With a list of breakpoint conditions, the target
2467 can decide when to stop and notify GDB. */
2468
2469 if (is_breakpoint (bl->owner))
2470 {
2471 build_target_condition_list (bl);
2472 build_target_command_list (bl);
2473 /* Reset the modification marker. */
2474 bl->needs_update = 0;
2475 }
2476
2477 if (bl->loc_type == bp_loc_software_breakpoint
2478 || bl->loc_type == bp_loc_hardware_breakpoint)
2479 {
2480 if (bl->owner->type != bp_hardware_breakpoint)
2481 {
2482 /* If the explicitly specified breakpoint type
2483 is not hardware breakpoint, check the memory map to see
2484 if the breakpoint address is in read only memory or not.
2485
2486 Two important cases are:
2487 - location type is not hardware breakpoint, memory
2488 is readonly. We change the type of the location to
2489 hardware breakpoint.
2490 - location type is hardware breakpoint, memory is
2491 read-write. This means we've previously made the
2492 location hardware one, but then the memory map changed,
2493 so we undo.
2494
2495 When breakpoints are removed, remove_breakpoints will use
2496 location types we've just set here, the only possible
2497 problem is that memory map has changed during running
2498 program, but it's not going to work anyway with current
2499 gdb. */
2500 struct mem_region *mr
2501 = lookup_mem_region (bl->target_info.reqstd_address);
2502
2503 if (mr)
2504 {
2505 if (automatic_hardware_breakpoints)
2506 {
2507 enum bp_loc_type new_type;
2508
2509 if (mr->attrib.mode != MEM_RW)
2510 new_type = bp_loc_hardware_breakpoint;
2511 else
2512 new_type = bp_loc_software_breakpoint;
2513
2514 if (new_type != bl->loc_type)
2515 {
2516 static int said = 0;
2517
2518 bl->loc_type = new_type;
2519 if (!said)
2520 {
2521 fprintf_filtered (gdb_stdout,
2522 _("Note: automatically using "
2523 "hardware breakpoints for "
2524 "read-only addresses.\n"));
2525 said = 1;
2526 }
2527 }
2528 }
2529 else if (bl->loc_type == bp_loc_software_breakpoint
2530 && mr->attrib.mode != MEM_RW)
2531 {
2532 fprintf_unfiltered (tmp_error_stream,
2533 _("Cannot insert breakpoint %d.\n"
2534 "Cannot set software breakpoint "
2535 "at read-only address %s\n"),
2536 bl->owner->number,
2537 paddress (bl->gdbarch, bl->address));
2538 return 1;
2539 }
2540 }
2541 }
2542
2543 /* First check to see if we have to handle an overlay. */
2544 if (overlay_debugging == ovly_off
2545 || bl->section == NULL
2546 || !(section_is_overlay (bl->section)))
2547 {
2548 /* No overlay handling: just set the breakpoint. */
2549 TRY
2550 {
2551 int val;
2552
2553 val = bl->owner->ops->insert_location (bl);
2554 if (val)
2555 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2556 }
2557 CATCH (e, RETURN_MASK_ALL)
2558 {
2559 bp_excpt = e;
2560 }
2561 END_CATCH
2562 }
2563 else
2564 {
2565 /* This breakpoint is in an overlay section.
2566 Shall we set a breakpoint at the LMA? */
2567 if (!overlay_events_enabled)
2568 {
2569 /* Yes -- overlay event support is not active,
2570 so we must try to set a breakpoint at the LMA.
2571 This will not work for a hardware breakpoint. */
2572 if (bl->loc_type == bp_loc_hardware_breakpoint)
2573 warning (_("hardware breakpoint %d not supported in overlay!"),
2574 bl->owner->number);
2575 else
2576 {
2577 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2578 bl->section);
2579 /* Set a software (trap) breakpoint at the LMA. */
2580 bl->overlay_target_info = bl->target_info;
2581 bl->overlay_target_info.reqstd_address = addr;
2582
2583 /* No overlay handling: just set the breakpoint. */
2584 TRY
2585 {
2586 int val;
2587
2588 bl->overlay_target_info.kind
2589 = breakpoint_kind (bl, &addr);
2590 bl->overlay_target_info.placed_address = addr;
2591 val = target_insert_breakpoint (bl->gdbarch,
2592 &bl->overlay_target_info);
2593 if (val)
2594 bp_excpt
2595 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2596 }
2597 CATCH (e, RETURN_MASK_ALL)
2598 {
2599 bp_excpt = e;
2600 }
2601 END_CATCH
2602
2603 if (bp_excpt.reason != 0)
2604 fprintf_unfiltered (tmp_error_stream,
2605 "Overlay breakpoint %d "
2606 "failed: in ROM?\n",
2607 bl->owner->number);
2608 }
2609 }
2610 /* Shall we set a breakpoint at the VMA? */
2611 if (section_is_mapped (bl->section))
2612 {
2613 /* Yes. This overlay section is mapped into memory. */
2614 TRY
2615 {
2616 int val;
2617
2618 val = bl->owner->ops->insert_location (bl);
2619 if (val)
2620 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2621 }
2622 CATCH (e, RETURN_MASK_ALL)
2623 {
2624 bp_excpt = e;
2625 }
2626 END_CATCH
2627 }
2628 else
2629 {
2630 /* No. This breakpoint will not be inserted.
2631 No error, but do not mark the bp as 'inserted'. */
2632 return 0;
2633 }
2634 }
2635
2636 if (bp_excpt.reason != 0)
2637 {
2638 /* Can't set the breakpoint. */
2639
2640 /* In some cases, we might not be able to insert a
2641 breakpoint in a shared library that has already been
2642 removed, but we have not yet processed the shlib unload
2643 event. Unfortunately, some targets that implement
2644 breakpoint insertion themselves can't tell why the
2645 breakpoint insertion failed (e.g., the remote target
2646 doesn't define error codes), so we must treat generic
2647 errors as memory errors. */
2648 if (bp_excpt.reason == RETURN_ERROR
2649 && (bp_excpt.error == GENERIC_ERROR
2650 || bp_excpt.error == MEMORY_ERROR)
2651 && bl->loc_type == bp_loc_software_breakpoint
2652 && (solib_name_from_address (bl->pspace, bl->address)
2653 || shared_objfile_contains_address_p (bl->pspace,
2654 bl->address)))
2655 {
2656 /* See also: disable_breakpoints_in_shlibs. */
2657 bl->shlib_disabled = 1;
2658 gdb::observers::breakpoint_modified.notify (bl->owner);
2659 if (!*disabled_breaks)
2660 {
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Cannot insert breakpoint %d.\n",
2663 bl->owner->number);
2664 fprintf_unfiltered (tmp_error_stream,
2665 "Temporarily disabling shared "
2666 "library breakpoints:\n");
2667 }
2668 *disabled_breaks = 1;
2669 fprintf_unfiltered (tmp_error_stream,
2670 "breakpoint #%d\n", bl->owner->number);
2671 return 0;
2672 }
2673 else
2674 {
2675 if (bl->loc_type == bp_loc_hardware_breakpoint)
2676 {
2677 *hw_breakpoint_error = 1;
2678 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert hardware breakpoint %d%s",
2681 bl->owner->number,
2682 bp_excpt.message ? ":" : ".\n");
2683 if (bp_excpt.message != NULL)
2684 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2685 bp_excpt.message);
2686 }
2687 else
2688 {
2689 if (bp_excpt.message == NULL)
2690 {
2691 std::string message
2692 = memory_error_message (TARGET_XFER_E_IO,
2693 bl->gdbarch, bl->address);
2694
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d.\n"
2697 "%s\n",
2698 bl->owner->number, message.c_str ());
2699 }
2700 else
2701 {
2702 fprintf_unfiltered (tmp_error_stream,
2703 "Cannot insert breakpoint %d: %s\n",
2704 bl->owner->number,
2705 bp_excpt.message);
2706 }
2707 }
2708 return 1;
2709
2710 }
2711 }
2712 else
2713 bl->inserted = 1;
2714
2715 return 0;
2716 }
2717
2718 else if (bl->loc_type == bp_loc_hardware_watchpoint
2719 /* NOTE drow/2003-09-08: This state only exists for removing
2720 watchpoints. It's not clear that it's necessary... */
2721 && bl->owner->disposition != disp_del_at_next_stop)
2722 {
2723 int val;
2724
2725 gdb_assert (bl->owner->ops != NULL
2726 && bl->owner->ops->insert_location != NULL);
2727
2728 val = bl->owner->ops->insert_location (bl);
2729
2730 /* If trying to set a read-watchpoint, and it turns out it's not
2731 supported, try emulating one with an access watchpoint. */
2732 if (val == 1 && bl->watchpoint_type == hw_read)
2733 {
2734 struct bp_location *loc, **loc_temp;
2735
2736 /* But don't try to insert it, if there's already another
2737 hw_access location that would be considered a duplicate
2738 of this one. */
2739 ALL_BP_LOCATIONS (loc, loc_temp)
2740 if (loc != bl
2741 && loc->watchpoint_type == hw_access
2742 && watchpoint_locations_match (bl, loc))
2743 {
2744 bl->duplicate = 1;
2745 bl->inserted = 1;
2746 bl->target_info = loc->target_info;
2747 bl->watchpoint_type = hw_access;
2748 val = 0;
2749 break;
2750 }
2751
2752 if (val == 1)
2753 {
2754 bl->watchpoint_type = hw_access;
2755 val = bl->owner->ops->insert_location (bl);
2756
2757 if (val)
2758 /* Back to the original value. */
2759 bl->watchpoint_type = hw_read;
2760 }
2761 }
2762
2763 bl->inserted = (val == 0);
2764 }
2765
2766 else if (bl->owner->type == bp_catchpoint)
2767 {
2768 int val;
2769
2770 gdb_assert (bl->owner->ops != NULL
2771 && bl->owner->ops->insert_location != NULL);
2772
2773 val = bl->owner->ops->insert_location (bl);
2774 if (val)
2775 {
2776 bl->owner->enable_state = bp_disabled;
2777
2778 if (val == 1)
2779 warning (_("\
2780 Error inserting catchpoint %d: Your system does not support this type\n\
2781 of catchpoint."), bl->owner->number);
2782 else
2783 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2784 }
2785
2786 bl->inserted = (val == 0);
2787
2788 /* We've already printed an error message if there was a problem
2789 inserting this catchpoint, and we've disabled the catchpoint,
2790 so just return success. */
2791 return 0;
2792 }
2793
2794 return 0;
2795 }
2796
2797 /* This function is called when program space PSPACE is about to be
2798 deleted. It takes care of updating breakpoints to not reference
2799 PSPACE anymore. */
2800
2801 void
2802 breakpoint_program_space_exit (struct program_space *pspace)
2803 {
2804 struct breakpoint *b, *b_temp;
2805 struct bp_location *loc, **loc_temp;
2806
2807 /* Remove any breakpoint that was set through this program space. */
2808 ALL_BREAKPOINTS_SAFE (b, b_temp)
2809 {
2810 if (b->pspace == pspace)
2811 delete_breakpoint (b);
2812 }
2813
2814 /* Breakpoints set through other program spaces could have locations
2815 bound to PSPACE as well. Remove those. */
2816 ALL_BP_LOCATIONS (loc, loc_temp)
2817 {
2818 struct bp_location *tmp;
2819
2820 if (loc->pspace == pspace)
2821 {
2822 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2823 if (loc->owner->loc == loc)
2824 loc->owner->loc = loc->next;
2825 else
2826 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2827 if (tmp->next == loc)
2828 {
2829 tmp->next = loc->next;
2830 break;
2831 }
2832 }
2833 }
2834
2835 /* Now update the global location list to permanently delete the
2836 removed locations above. */
2837 update_global_location_list (UGLL_DONT_INSERT);
2838 }
2839
2840 /* Make sure all breakpoints are inserted in inferior.
2841 Throws exception on any error.
2842 A breakpoint that is already inserted won't be inserted
2843 again, so calling this function twice is safe. */
2844 void
2845 insert_breakpoints (void)
2846 {
2847 struct breakpoint *bpt;
2848
2849 ALL_BREAKPOINTS (bpt)
2850 if (is_hardware_watchpoint (bpt))
2851 {
2852 struct watchpoint *w = (struct watchpoint *) bpt;
2853
2854 update_watchpoint (w, 0 /* don't reparse. */);
2855 }
2856
2857 /* Updating watchpoints creates new locations, so update the global
2858 location list. Explicitly tell ugll to insert locations and
2859 ignore breakpoints_always_inserted_mode. */
2860 update_global_location_list (UGLL_INSERT);
2861 }
2862
2863 /* Invoke CALLBACK for each of bp_location. */
2864
2865 void
2866 iterate_over_bp_locations (walk_bp_location_callback callback)
2867 {
2868 struct bp_location *loc, **loc_tmp;
2869
2870 ALL_BP_LOCATIONS (loc, loc_tmp)
2871 {
2872 callback (loc, NULL);
2873 }
2874 }
2875
2876 /* This is used when we need to synch breakpoint conditions between GDB and the
2877 target. It is the case with deleting and disabling of breakpoints when using
2878 always-inserted mode. */
2879
2880 static void
2881 update_inserted_breakpoint_locations (void)
2882 {
2883 struct bp_location *bl, **blp_tmp;
2884 int error_flag = 0;
2885 int val = 0;
2886 int disabled_breaks = 0;
2887 int hw_breakpoint_error = 0;
2888 int hw_bp_details_reported = 0;
2889
2890 string_file tmp_error_stream;
2891
2892 /* Explicitly mark the warning -- this will only be printed if
2893 there was an error. */
2894 tmp_error_stream.puts ("Warning:\n");
2895
2896 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2897
2898 ALL_BP_LOCATIONS (bl, blp_tmp)
2899 {
2900 /* We only want to update software breakpoints and hardware
2901 breakpoints. */
2902 if (!is_breakpoint (bl->owner))
2903 continue;
2904
2905 /* We only want to update locations that are already inserted
2906 and need updating. This is to avoid unwanted insertion during
2907 deletion of breakpoints. */
2908 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2909 continue;
2910
2911 switch_to_program_space_and_thread (bl->pspace);
2912
2913 /* For targets that support global breakpoints, there's no need
2914 to select an inferior to insert breakpoint to. In fact, even
2915 if we aren't attached to any process yet, we should still
2916 insert breakpoints. */
2917 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2918 && ptid_equal (inferior_ptid, null_ptid))
2919 continue;
2920
2921 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2922 &hw_breakpoint_error, &hw_bp_details_reported);
2923 if (val)
2924 error_flag = val;
2925 }
2926
2927 if (error_flag)
2928 {
2929 target_terminal::ours_for_output ();
2930 error_stream (tmp_error_stream);
2931 }
2932 }
2933
2934 /* Used when starting or continuing the program. */
2935
2936 static void
2937 insert_breakpoint_locations (void)
2938 {
2939 struct breakpoint *bpt;
2940 struct bp_location *bl, **blp_tmp;
2941 int error_flag = 0;
2942 int val = 0;
2943 int disabled_breaks = 0;
2944 int hw_breakpoint_error = 0;
2945 int hw_bp_error_explained_already = 0;
2946
2947 string_file tmp_error_stream;
2948
2949 /* Explicitly mark the warning -- this will only be printed if
2950 there was an error. */
2951 tmp_error_stream.puts ("Warning:\n");
2952
2953 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2954
2955 ALL_BP_LOCATIONS (bl, blp_tmp)
2956 {
2957 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2958 continue;
2959
2960 /* There is no point inserting thread-specific breakpoints if
2961 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2962 has BL->OWNER always non-NULL. */
2963 if (bl->owner->thread != -1
2964 && !valid_global_thread_id (bl->owner->thread))
2965 continue;
2966
2967 switch_to_program_space_and_thread (bl->pspace);
2968
2969 /* For targets that support global breakpoints, there's no need
2970 to select an inferior to insert breakpoint to. In fact, even
2971 if we aren't attached to any process yet, we should still
2972 insert breakpoints. */
2973 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2974 && ptid_equal (inferior_ptid, null_ptid))
2975 continue;
2976
2977 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2978 &hw_breakpoint_error, &hw_bp_error_explained_already);
2979 if (val)
2980 error_flag = val;
2981 }
2982
2983 /* If we failed to insert all locations of a watchpoint, remove
2984 them, as half-inserted watchpoint is of limited use. */
2985 ALL_BREAKPOINTS (bpt)
2986 {
2987 int some_failed = 0;
2988 struct bp_location *loc;
2989
2990 if (!is_hardware_watchpoint (bpt))
2991 continue;
2992
2993 if (!breakpoint_enabled (bpt))
2994 continue;
2995
2996 if (bpt->disposition == disp_del_at_next_stop)
2997 continue;
2998
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (!loc->inserted && should_be_inserted (loc))
3001 {
3002 some_failed = 1;
3003 break;
3004 }
3005 if (some_failed)
3006 {
3007 for (loc = bpt->loc; loc; loc = loc->next)
3008 if (loc->inserted)
3009 remove_breakpoint (loc);
3010
3011 hw_breakpoint_error = 1;
3012 tmp_error_stream.printf ("Could not insert "
3013 "hardware watchpoint %d.\n",
3014 bpt->number);
3015 error_flag = -1;
3016 }
3017 }
3018
3019 if (error_flag)
3020 {
3021 /* If a hardware breakpoint or watchpoint was inserted, add a
3022 message about possibly exhausted resources. */
3023 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3024 {
3025 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3026 You may have requested too many hardware breakpoints/watchpoints.\n");
3027 }
3028 target_terminal::ours_for_output ();
3029 error_stream (tmp_error_stream);
3030 }
3031 }
3032
3033 /* Used when the program stops.
3034 Returns zero if successful, or non-zero if there was a problem
3035 removing a breakpoint location. */
3036
3037 int
3038 remove_breakpoints (void)
3039 {
3040 struct bp_location *bl, **blp_tmp;
3041 int val = 0;
3042
3043 ALL_BP_LOCATIONS (bl, blp_tmp)
3044 {
3045 if (bl->inserted && !is_tracepoint (bl->owner))
3046 val |= remove_breakpoint (bl);
3047 }
3048 return val;
3049 }
3050
3051 /* When a thread exits, remove breakpoints that are related to
3052 that thread. */
3053
3054 static void
3055 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3056 {
3057 struct breakpoint *b, *b_tmp;
3058
3059 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3060 {
3061 if (b->thread == tp->global_num && user_breakpoint_p (b))
3062 {
3063 b->disposition = disp_del_at_next_stop;
3064
3065 printf_filtered (_("\
3066 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3067 b->number, print_thread_id (tp));
3068
3069 /* Hide it from the user. */
3070 b->number = 0;
3071 }
3072 }
3073 }
3074
3075 /* Remove breakpoints of process PID. */
3076
3077 int
3078 remove_breakpoints_pid (int pid)
3079 {
3080 struct bp_location *bl, **blp_tmp;
3081 int val;
3082 struct inferior *inf = find_inferior_pid (pid);
3083
3084 ALL_BP_LOCATIONS (bl, blp_tmp)
3085 {
3086 if (bl->pspace != inf->pspace)
3087 continue;
3088
3089 if (bl->inserted && !bl->target_info.persist)
3090 {
3091 val = remove_breakpoint (bl);
3092 if (val != 0)
3093 return val;
3094 }
3095 }
3096 return 0;
3097 }
3098
3099 static int internal_breakpoint_number = -1;
3100
3101 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3102 If INTERNAL is non-zero, the breakpoint number will be populated
3103 from internal_breakpoint_number and that variable decremented.
3104 Otherwise the breakpoint number will be populated from
3105 breakpoint_count and that value incremented. Internal breakpoints
3106 do not set the internal var bpnum. */
3107 static void
3108 set_breakpoint_number (int internal, struct breakpoint *b)
3109 {
3110 if (internal)
3111 b->number = internal_breakpoint_number--;
3112 else
3113 {
3114 set_breakpoint_count (breakpoint_count + 1);
3115 b->number = breakpoint_count;
3116 }
3117 }
3118
3119 static struct breakpoint *
3120 create_internal_breakpoint (struct gdbarch *gdbarch,
3121 CORE_ADDR address, enum bptype type,
3122 const struct breakpoint_ops *ops)
3123 {
3124 symtab_and_line sal;
3125 sal.pc = address;
3126 sal.section = find_pc_overlay (sal.pc);
3127 sal.pspace = current_program_space;
3128
3129 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3130 b->number = internal_breakpoint_number--;
3131 b->disposition = disp_donttouch;
3132
3133 return b;
3134 }
3135
3136 static const char *const longjmp_names[] =
3137 {
3138 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3139 };
3140 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3141
3142 /* Per-objfile data private to breakpoint.c. */
3143 struct breakpoint_objfile_data
3144 {
3145 /* Minimal symbol for "_ovly_debug_event" (if any). */
3146 struct bound_minimal_symbol overlay_msym {};
3147
3148 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3149 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3150
3151 /* True if we have looked for longjmp probes. */
3152 int longjmp_searched = 0;
3153
3154 /* SystemTap probe points for longjmp (if any). These are non-owning
3155 references. */
3156 std::vector<probe *> longjmp_probes;
3157
3158 /* Minimal symbol for "std::terminate()" (if any). */
3159 struct bound_minimal_symbol terminate_msym {};
3160
3161 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3162 struct bound_minimal_symbol exception_msym {};
3163
3164 /* True if we have looked for exception probes. */
3165 int exception_searched = 0;
3166
3167 /* SystemTap probe points for unwinding (if any). These are non-owning
3168 references. */
3169 std::vector<probe *> exception_probes;
3170 };
3171
3172 static const struct objfile_data *breakpoint_objfile_key;
3173
3174 /* Minimal symbol not found sentinel. */
3175 static struct minimal_symbol msym_not_found;
3176
3177 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3178
3179 static int
3180 msym_not_found_p (const struct minimal_symbol *msym)
3181 {
3182 return msym == &msym_not_found;
3183 }
3184
3185 /* Return per-objfile data needed by breakpoint.c.
3186 Allocate the data if necessary. */
3187
3188 static struct breakpoint_objfile_data *
3189 get_breakpoint_objfile_data (struct objfile *objfile)
3190 {
3191 struct breakpoint_objfile_data *bp_objfile_data;
3192
3193 bp_objfile_data = ((struct breakpoint_objfile_data *)
3194 objfile_data (objfile, breakpoint_objfile_key));
3195 if (bp_objfile_data == NULL)
3196 {
3197 bp_objfile_data = new breakpoint_objfile_data ();
3198 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3199 }
3200 return bp_objfile_data;
3201 }
3202
3203 static void
3204 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3205 {
3206 struct breakpoint_objfile_data *bp_objfile_data
3207 = (struct breakpoint_objfile_data *) data;
3208
3209 delete bp_objfile_data;
3210 }
3211
3212 static void
3213 create_overlay_event_breakpoint (void)
3214 {
3215 struct objfile *objfile;
3216 const char *const func_name = "_ovly_debug_event";
3217
3218 ALL_OBJFILES (objfile)
3219 {
3220 struct breakpoint *b;
3221 struct breakpoint_objfile_data *bp_objfile_data;
3222 CORE_ADDR addr;
3223 struct explicit_location explicit_loc;
3224
3225 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3226
3227 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3228 continue;
3229
3230 if (bp_objfile_data->overlay_msym.minsym == NULL)
3231 {
3232 struct bound_minimal_symbol m;
3233
3234 m = lookup_minimal_symbol_text (func_name, objfile);
3235 if (m.minsym == NULL)
3236 {
3237 /* Avoid future lookups in this objfile. */
3238 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3239 continue;
3240 }
3241 bp_objfile_data->overlay_msym = m;
3242 }
3243
3244 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3245 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3246 bp_overlay_event,
3247 &internal_breakpoint_ops);
3248 initialize_explicit_location (&explicit_loc);
3249 explicit_loc.function_name = ASTRDUP (func_name);
3250 b->location = new_explicit_location (&explicit_loc);
3251
3252 if (overlay_debugging == ovly_auto)
3253 {
3254 b->enable_state = bp_enabled;
3255 overlay_events_enabled = 1;
3256 }
3257 else
3258 {
3259 b->enable_state = bp_disabled;
3260 overlay_events_enabled = 0;
3261 }
3262 }
3263 }
3264
3265 static void
3266 create_longjmp_master_breakpoint (void)
3267 {
3268 struct program_space *pspace;
3269
3270 scoped_restore_current_program_space restore_pspace;
3271
3272 ALL_PSPACES (pspace)
3273 {
3274 struct objfile *objfile;
3275
3276 set_current_program_space (pspace);
3277
3278 ALL_OBJFILES (objfile)
3279 {
3280 int i;
3281 struct gdbarch *gdbarch;
3282 struct breakpoint_objfile_data *bp_objfile_data;
3283
3284 gdbarch = get_objfile_arch (objfile);
3285
3286 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3287
3288 if (!bp_objfile_data->longjmp_searched)
3289 {
3290 std::vector<probe *> ret
3291 = find_probes_in_objfile (objfile, "libc", "longjmp");
3292
3293 if (!ret.empty ())
3294 {
3295 /* We are only interested in checking one element. */
3296 probe *p = ret[0];
3297
3298 if (!p->can_evaluate_arguments ())
3299 {
3300 /* We cannot use the probe interface here, because it does
3301 not know how to evaluate arguments. */
3302 ret.clear ();
3303 }
3304 }
3305 bp_objfile_data->longjmp_probes = ret;
3306 bp_objfile_data->longjmp_searched = 1;
3307 }
3308
3309 if (!bp_objfile_data->longjmp_probes.empty ())
3310 {
3311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3312
3313 for (probe *p : bp_objfile_data->longjmp_probes)
3314 {
3315 struct breakpoint *b;
3316
3317 b = create_internal_breakpoint (gdbarch,
3318 p->get_relocated_address (objfile),
3319 bp_longjmp_master,
3320 &internal_breakpoint_ops);
3321 b->location = new_probe_location ("-probe-stap libc:longjmp");
3322 b->enable_state = bp_disabled;
3323 }
3324
3325 continue;
3326 }
3327
3328 if (!gdbarch_get_longjmp_target_p (gdbarch))
3329 continue;
3330
3331 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3332 {
3333 struct breakpoint *b;
3334 const char *func_name;
3335 CORE_ADDR addr;
3336 struct explicit_location explicit_loc;
3337
3338 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3339 continue;
3340
3341 func_name = longjmp_names[i];
3342 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3343 {
3344 struct bound_minimal_symbol m;
3345
3346 m = lookup_minimal_symbol_text (func_name, objfile);
3347 if (m.minsym == NULL)
3348 {
3349 /* Prevent future lookups in this objfile. */
3350 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3351 continue;
3352 }
3353 bp_objfile_data->longjmp_msym[i] = m;
3354 }
3355
3356 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3357 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3358 &internal_breakpoint_ops);
3359 initialize_explicit_location (&explicit_loc);
3360 explicit_loc.function_name = ASTRDUP (func_name);
3361 b->location = new_explicit_location (&explicit_loc);
3362 b->enable_state = bp_disabled;
3363 }
3364 }
3365 }
3366 }
3367
3368 /* Create a master std::terminate breakpoint. */
3369 static void
3370 create_std_terminate_master_breakpoint (void)
3371 {
3372 struct program_space *pspace;
3373 const char *const func_name = "std::terminate()";
3374
3375 scoped_restore_current_program_space restore_pspace;
3376
3377 ALL_PSPACES (pspace)
3378 {
3379 struct objfile *objfile;
3380 CORE_ADDR addr;
3381
3382 set_current_program_space (pspace);
3383
3384 ALL_OBJFILES (objfile)
3385 {
3386 struct breakpoint *b;
3387 struct breakpoint_objfile_data *bp_objfile_data;
3388 struct explicit_location explicit_loc;
3389
3390 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3391
3392 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3393 continue;
3394
3395 if (bp_objfile_data->terminate_msym.minsym == NULL)
3396 {
3397 struct bound_minimal_symbol m;
3398
3399 m = lookup_minimal_symbol (func_name, NULL, objfile);
3400 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3401 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3402 {
3403 /* Prevent future lookups in this objfile. */
3404 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3405 continue;
3406 }
3407 bp_objfile_data->terminate_msym = m;
3408 }
3409
3410 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3411 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3412 bp_std_terminate_master,
3413 &internal_breakpoint_ops);
3414 initialize_explicit_location (&explicit_loc);
3415 explicit_loc.function_name = ASTRDUP (func_name);
3416 b->location = new_explicit_location (&explicit_loc);
3417 b->enable_state = bp_disabled;
3418 }
3419 }
3420 }
3421
3422 /* Install a master breakpoint on the unwinder's debug hook. */
3423
3424 static void
3425 create_exception_master_breakpoint (void)
3426 {
3427 struct objfile *objfile;
3428 const char *const func_name = "_Unwind_DebugHook";
3429
3430 ALL_OBJFILES (objfile)
3431 {
3432 struct breakpoint *b;
3433 struct gdbarch *gdbarch;
3434 struct breakpoint_objfile_data *bp_objfile_data;
3435 CORE_ADDR addr;
3436 struct explicit_location explicit_loc;
3437
3438 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3439
3440 /* We prefer the SystemTap probe point if it exists. */
3441 if (!bp_objfile_data->exception_searched)
3442 {
3443 std::vector<probe *> ret
3444 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3445
3446 if (!ret.empty ())
3447 {
3448 /* We are only interested in checking one element. */
3449 probe *p = ret[0];
3450
3451 if (!p->can_evaluate_arguments ())
3452 {
3453 /* We cannot use the probe interface here, because it does
3454 not know how to evaluate arguments. */
3455 ret.clear ();
3456 }
3457 }
3458 bp_objfile_data->exception_probes = ret;
3459 bp_objfile_data->exception_searched = 1;
3460 }
3461
3462 if (!bp_objfile_data->exception_probes.empty ())
3463 {
3464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3465
3466 for (probe *p : bp_objfile_data->exception_probes)
3467 {
3468 struct breakpoint *b;
3469
3470 b = create_internal_breakpoint (gdbarch,
3471 p->get_relocated_address (objfile),
3472 bp_exception_master,
3473 &internal_breakpoint_ops);
3474 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3475 b->enable_state = bp_disabled;
3476 }
3477
3478 continue;
3479 }
3480
3481 /* Otherwise, try the hook function. */
3482
3483 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3484 continue;
3485
3486 gdbarch = get_objfile_arch (objfile);
3487
3488 if (bp_objfile_data->exception_msym.minsym == NULL)
3489 {
3490 struct bound_minimal_symbol debug_hook;
3491
3492 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3493 if (debug_hook.minsym == NULL)
3494 {
3495 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3496 continue;
3497 }
3498
3499 bp_objfile_data->exception_msym = debug_hook;
3500 }
3501
3502 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3503 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3504 &current_target);
3505 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3506 &internal_breakpoint_ops);
3507 initialize_explicit_location (&explicit_loc);
3508 explicit_loc.function_name = ASTRDUP (func_name);
3509 b->location = new_explicit_location (&explicit_loc);
3510 b->enable_state = bp_disabled;
3511 }
3512 }
3513
3514 /* Does B have a location spec? */
3515
3516 static int
3517 breakpoint_event_location_empty_p (const struct breakpoint *b)
3518 {
3519 return b->location != NULL && event_location_empty_p (b->location.get ());
3520 }
3521
3522 void
3523 update_breakpoints_after_exec (void)
3524 {
3525 struct breakpoint *b, *b_tmp;
3526 struct bp_location *bploc, **bplocp_tmp;
3527
3528 /* We're about to delete breakpoints from GDB's lists. If the
3529 INSERTED flag is true, GDB will try to lift the breakpoints by
3530 writing the breakpoints' "shadow contents" back into memory. The
3531 "shadow contents" are NOT valid after an exec, so GDB should not
3532 do that. Instead, the target is responsible from marking
3533 breakpoints out as soon as it detects an exec. We don't do that
3534 here instead, because there may be other attempts to delete
3535 breakpoints after detecting an exec and before reaching here. */
3536 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3537 if (bploc->pspace == current_program_space)
3538 gdb_assert (!bploc->inserted);
3539
3540 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3541 {
3542 if (b->pspace != current_program_space)
3543 continue;
3544
3545 /* Solib breakpoints must be explicitly reset after an exec(). */
3546 if (b->type == bp_shlib_event)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* JIT breakpoints must be explicitly reset after an exec(). */
3553 if (b->type == bp_jit_event)
3554 {
3555 delete_breakpoint (b);
3556 continue;
3557 }
3558
3559 /* Thread event breakpoints must be set anew after an exec(),
3560 as must overlay event and longjmp master breakpoints. */
3561 if (b->type == bp_thread_event || b->type == bp_overlay_event
3562 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3563 || b->type == bp_exception_master)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Step-resume breakpoints are meaningless after an exec(). */
3570 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 /* Just like single-step breakpoints. */
3577 if (b->type == bp_single_step)
3578 {
3579 delete_breakpoint (b);
3580 continue;
3581 }
3582
3583 /* Longjmp and longjmp-resume breakpoints are also meaningless
3584 after an exec. */
3585 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3586 || b->type == bp_longjmp_call_dummy
3587 || b->type == bp_exception || b->type == bp_exception_resume)
3588 {
3589 delete_breakpoint (b);
3590 continue;
3591 }
3592
3593 if (b->type == bp_catchpoint)
3594 {
3595 /* For now, none of the bp_catchpoint breakpoints need to
3596 do anything at this point. In the future, if some of
3597 the catchpoints need to something, we will need to add
3598 a new method, and call this method from here. */
3599 continue;
3600 }
3601
3602 /* bp_finish is a special case. The only way we ought to be able
3603 to see one of these when an exec() has happened, is if the user
3604 caught a vfork, and then said "finish". Ordinarily a finish just
3605 carries them to the call-site of the current callee, by setting
3606 a temporary bp there and resuming. But in this case, the finish
3607 will carry them entirely through the vfork & exec.
3608
3609 We don't want to allow a bp_finish to remain inserted now. But
3610 we can't safely delete it, 'cause finish_command has a handle to
3611 the bp on a bpstat, and will later want to delete it. There's a
3612 chance (and I've seen it happen) that if we delete the bp_finish
3613 here, that its storage will get reused by the time finish_command
3614 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3615 We really must allow finish_command to delete a bp_finish.
3616
3617 In the absence of a general solution for the "how do we know
3618 it's safe to delete something others may have handles to?"
3619 problem, what we'll do here is just uninsert the bp_finish, and
3620 let finish_command delete it.
3621
3622 (We know the bp_finish is "doomed" in the sense that it's
3623 momentary, and will be deleted as soon as finish_command sees
3624 the inferior stopped. So it doesn't matter that the bp's
3625 address is probably bogus in the new a.out, unlike e.g., the
3626 solib breakpoints.) */
3627
3628 if (b->type == bp_finish)
3629 {
3630 continue;
3631 }
3632
3633 /* Without a symbolic address, we have little hope of the
3634 pre-exec() address meaning the same thing in the post-exec()
3635 a.out. */
3636 if (breakpoint_event_location_empty_p (b))
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641 }
3642 }
3643
3644 int
3645 detach_breakpoints (ptid_t ptid)
3646 {
3647 struct bp_location *bl, **blp_tmp;
3648 int val = 0;
3649 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3650 struct inferior *inf = current_inferior ();
3651
3652 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3653 error (_("Cannot detach breakpoints of inferior_ptid"));
3654
3655 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3656 inferior_ptid = ptid;
3657 ALL_BP_LOCATIONS (bl, blp_tmp)
3658 {
3659 if (bl->pspace != inf->pspace)
3660 continue;
3661
3662 /* This function must physically remove breakpoints locations
3663 from the specified ptid, without modifying the breakpoint
3664 package's state. Locations of type bp_loc_other are only
3665 maintained at GDB side. So, there is no need to remove
3666 these bp_loc_other locations. Moreover, removing these
3667 would modify the breakpoint package's state. */
3668 if (bl->loc_type == bp_loc_other)
3669 continue;
3670
3671 if (bl->inserted)
3672 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3673 }
3674
3675 return val;
3676 }
3677
3678 /* Remove the breakpoint location BL from the current address space.
3679 Note that this is used to detach breakpoints from a child fork.
3680 When we get here, the child isn't in the inferior list, and neither
3681 do we have objects to represent its address space --- we should
3682 *not* look at bl->pspace->aspace here. */
3683
3684 static int
3685 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3686 {
3687 int val;
3688
3689 /* BL is never in moribund_locations by our callers. */
3690 gdb_assert (bl->owner != NULL);
3691
3692 /* The type of none suggests that owner is actually deleted.
3693 This should not ever happen. */
3694 gdb_assert (bl->owner->type != bp_none);
3695
3696 if (bl->loc_type == bp_loc_software_breakpoint
3697 || bl->loc_type == bp_loc_hardware_breakpoint)
3698 {
3699 /* "Normal" instruction breakpoint: either the standard
3700 trap-instruction bp (bp_breakpoint), or a
3701 bp_hardware_breakpoint. */
3702
3703 /* First check to see if we have to handle an overlay. */
3704 if (overlay_debugging == ovly_off
3705 || bl->section == NULL
3706 || !(section_is_overlay (bl->section)))
3707 {
3708 /* No overlay handling: just remove the breakpoint. */
3709
3710 /* If we're trying to uninsert a memory breakpoint that we
3711 know is set in a dynamic object that is marked
3712 shlib_disabled, then either the dynamic object was
3713 removed with "remove-symbol-file" or with
3714 "nosharedlibrary". In the former case, we don't know
3715 whether another dynamic object might have loaded over the
3716 breakpoint's address -- the user might well let us know
3717 about it next with add-symbol-file (the whole point of
3718 add-symbol-file is letting the user manually maintain a
3719 list of dynamically loaded objects). If we have the
3720 breakpoint's shadow memory, that is, this is a software
3721 breakpoint managed by GDB, check whether the breakpoint
3722 is still inserted in memory, to avoid overwriting wrong
3723 code with stale saved shadow contents. Note that HW
3724 breakpoints don't have shadow memory, as they're
3725 implemented using a mechanism that is not dependent on
3726 being able to modify the target's memory, and as such
3727 they should always be removed. */
3728 if (bl->shlib_disabled
3729 && bl->target_info.shadow_len != 0
3730 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3731 val = 0;
3732 else
3733 val = bl->owner->ops->remove_location (bl, reason);
3734 }
3735 else
3736 {
3737 /* This breakpoint is in an overlay section.
3738 Did we set a breakpoint at the LMA? */
3739 if (!overlay_events_enabled)
3740 {
3741 /* Yes -- overlay event support is not active, so we
3742 should have set a breakpoint at the LMA. Remove it.
3743 */
3744 /* Ignore any failures: if the LMA is in ROM, we will
3745 have already warned when we failed to insert it. */
3746 if (bl->loc_type == bp_loc_hardware_breakpoint)
3747 target_remove_hw_breakpoint (bl->gdbarch,
3748 &bl->overlay_target_info);
3749 else
3750 target_remove_breakpoint (bl->gdbarch,
3751 &bl->overlay_target_info,
3752 reason);
3753 }
3754 /* Did we set a breakpoint at the VMA?
3755 If so, we will have marked the breakpoint 'inserted'. */
3756 if (bl->inserted)
3757 {
3758 /* Yes -- remove it. Previously we did not bother to
3759 remove the breakpoint if the section had been
3760 unmapped, but let's not rely on that being safe. We
3761 don't know what the overlay manager might do. */
3762
3763 /* However, we should remove *software* breakpoints only
3764 if the section is still mapped, or else we overwrite
3765 wrong code with the saved shadow contents. */
3766 if (bl->loc_type == bp_loc_hardware_breakpoint
3767 || section_is_mapped (bl->section))
3768 val = bl->owner->ops->remove_location (bl, reason);
3769 else
3770 val = 0;
3771 }
3772 else
3773 {
3774 /* No -- not inserted, so no need to remove. No error. */
3775 val = 0;
3776 }
3777 }
3778
3779 /* In some cases, we might not be able to remove a breakpoint in
3780 a shared library that has already been removed, but we have
3781 not yet processed the shlib unload event. Similarly for an
3782 unloaded add-symbol-file object - the user might not yet have
3783 had the chance to remove-symbol-file it. shlib_disabled will
3784 be set if the library/object has already been removed, but
3785 the breakpoint hasn't been uninserted yet, e.g., after
3786 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3787 always-inserted mode. */
3788 if (val
3789 && (bl->loc_type == bp_loc_software_breakpoint
3790 && (bl->shlib_disabled
3791 || solib_name_from_address (bl->pspace, bl->address)
3792 || shared_objfile_contains_address_p (bl->pspace,
3793 bl->address))))
3794 val = 0;
3795
3796 if (val)
3797 return val;
3798 bl->inserted = (reason == DETACH_BREAKPOINT);
3799 }
3800 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3801 {
3802 gdb_assert (bl->owner->ops != NULL
3803 && bl->owner->ops->remove_location != NULL);
3804
3805 bl->inserted = (reason == DETACH_BREAKPOINT);
3806 bl->owner->ops->remove_location (bl, reason);
3807
3808 /* Failure to remove any of the hardware watchpoints comes here. */
3809 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3810 warning (_("Could not remove hardware watchpoint %d."),
3811 bl->owner->number);
3812 }
3813 else if (bl->owner->type == bp_catchpoint
3814 && breakpoint_enabled (bl->owner)
3815 && !bl->duplicate)
3816 {
3817 gdb_assert (bl->owner->ops != NULL
3818 && bl->owner->ops->remove_location != NULL);
3819
3820 val = bl->owner->ops->remove_location (bl, reason);
3821 if (val)
3822 return val;
3823
3824 bl->inserted = (reason == DETACH_BREAKPOINT);
3825 }
3826
3827 return 0;
3828 }
3829
3830 static int
3831 remove_breakpoint (struct bp_location *bl)
3832 {
3833 /* BL is never in moribund_locations by our callers. */
3834 gdb_assert (bl->owner != NULL);
3835
3836 /* The type of none suggests that owner is actually deleted.
3837 This should not ever happen. */
3838 gdb_assert (bl->owner->type != bp_none);
3839
3840 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3841
3842 switch_to_program_space_and_thread (bl->pspace);
3843
3844 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints. */
3848
3849 void
3850 mark_breakpoints_out (void)
3851 {
3852 struct bp_location *bl, **blp_tmp;
3853
3854 ALL_BP_LOCATIONS (bl, blp_tmp)
3855 if (bl->pspace == current_program_space)
3856 bl->inserted = 0;
3857 }
3858
3859 /* Clear the "inserted" flag in all breakpoints and delete any
3860 breakpoints which should go away between runs of the program.
3861
3862 Plus other such housekeeping that has to be done for breakpoints
3863 between runs.
3864
3865 Note: this function gets called at the end of a run (by
3866 generic_mourn_inferior) and when a run begins (by
3867 init_wait_for_inferior). */
3868
3869
3870
3871 void
3872 breakpoint_init_inferior (enum inf_context context)
3873 {
3874 struct breakpoint *b, *b_tmp;
3875 struct bp_location *bl;
3876 int ix;
3877 struct program_space *pspace = current_program_space;
3878
3879 /* If breakpoint locations are shared across processes, then there's
3880 nothing to do. */
3881 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3882 return;
3883
3884 mark_breakpoints_out ();
3885
3886 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3887 {
3888 if (b->loc && b->loc->pspace != pspace)
3889 continue;
3890
3891 switch (b->type)
3892 {
3893 case bp_call_dummy:
3894 case bp_longjmp_call_dummy:
3895
3896 /* If the call dummy breakpoint is at the entry point it will
3897 cause problems when the inferior is rerun, so we better get
3898 rid of it. */
3899
3900 case bp_watchpoint_scope:
3901
3902 /* Also get rid of scope breakpoints. */
3903
3904 case bp_shlib_event:
3905
3906 /* Also remove solib event breakpoints. Their addresses may
3907 have changed since the last time we ran the program.
3908 Actually we may now be debugging against different target;
3909 and so the solib backend that installed this breakpoint may
3910 not be used in by the target. E.g.,
3911
3912 (gdb) file prog-linux
3913 (gdb) run # native linux target
3914 ...
3915 (gdb) kill
3916 (gdb) file prog-win.exe
3917 (gdb) tar rem :9999 # remote Windows gdbserver.
3918 */
3919
3920 case bp_step_resume:
3921
3922 /* Also remove step-resume breakpoints. */
3923
3924 case bp_single_step:
3925
3926 /* Also remove single-step breakpoints. */
3927
3928 delete_breakpoint (b);
3929 break;
3930
3931 case bp_watchpoint:
3932 case bp_hardware_watchpoint:
3933 case bp_read_watchpoint:
3934 case bp_access_watchpoint:
3935 {
3936 struct watchpoint *w = (struct watchpoint *) b;
3937
3938 /* Likewise for watchpoints on local expressions. */
3939 if (w->exp_valid_block != NULL)
3940 delete_breakpoint (b);
3941 else
3942 {
3943 /* Get rid of existing locations, which are no longer
3944 valid. New ones will be created in
3945 update_watchpoint, when the inferior is restarted.
3946 The next update_global_location_list call will
3947 garbage collect them. */
3948 b->loc = NULL;
3949
3950 if (context == inf_starting)
3951 {
3952 /* Reset val field to force reread of starting value in
3953 insert_breakpoints. */
3954 if (w->val)
3955 value_free (w->val);
3956 w->val = NULL;
3957 w->val_valid = 0;
3958 }
3959 }
3960 }
3961 break;
3962 default:
3963 break;
3964 }
3965 }
3966
3967 /* Get rid of the moribund locations. */
3968 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3969 decref_bp_location (&bl);
3970 VEC_free (bp_location_p, moribund_locations);
3971 }
3972
3973 /* These functions concern about actual breakpoints inserted in the
3974 target --- to e.g. check if we need to do decr_pc adjustment or if
3975 we need to hop over the bkpt --- so we check for address space
3976 match, not program space. */
3977
3978 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3979 exists at PC. It returns ordinary_breakpoint_here if it's an
3980 ordinary breakpoint, or permanent_breakpoint_here if it's a
3981 permanent breakpoint.
3982 - When continuing from a location with an ordinary breakpoint, we
3983 actually single step once before calling insert_breakpoints.
3984 - When continuing from a location with a permanent breakpoint, we
3985 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3986 the target, to advance the PC past the breakpoint. */
3987
3988 enum breakpoint_here
3989 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3990 {
3991 struct bp_location *bl, **blp_tmp;
3992 int any_breakpoint_here = 0;
3993
3994 ALL_BP_LOCATIONS (bl, blp_tmp)
3995 {
3996 if (bl->loc_type != bp_loc_software_breakpoint
3997 && bl->loc_type != bp_loc_hardware_breakpoint)
3998 continue;
3999
4000 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4001 if ((breakpoint_enabled (bl->owner)
4002 || bl->permanent)
4003 && breakpoint_location_address_match (bl, aspace, pc))
4004 {
4005 if (overlay_debugging
4006 && section_is_overlay (bl->section)
4007 && !section_is_mapped (bl->section))
4008 continue; /* unmapped overlay -- can't be a match */
4009 else if (bl->permanent)
4010 return permanent_breakpoint_here;
4011 else
4012 any_breakpoint_here = 1;
4013 }
4014 }
4015
4016 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4017 }
4018
4019 /* See breakpoint.h. */
4020
4021 int
4022 breakpoint_in_range_p (const address_space *aspace,
4023 CORE_ADDR addr, ULONGEST len)
4024 {
4025 struct bp_location *bl, **blp_tmp;
4026
4027 ALL_BP_LOCATIONS (bl, blp_tmp)
4028 {
4029 if (bl->loc_type != bp_loc_software_breakpoint
4030 && bl->loc_type != bp_loc_hardware_breakpoint)
4031 continue;
4032
4033 if ((breakpoint_enabled (bl->owner)
4034 || bl->permanent)
4035 && breakpoint_location_address_range_overlap (bl, aspace,
4036 addr, len))
4037 {
4038 if (overlay_debugging
4039 && section_is_overlay (bl->section)
4040 && !section_is_mapped (bl->section))
4041 {
4042 /* Unmapped overlay -- can't be a match. */
4043 continue;
4044 }
4045
4046 return 1;
4047 }
4048 }
4049
4050 return 0;
4051 }
4052
4053 /* Return true if there's a moribund breakpoint at PC. */
4054
4055 int
4056 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4057 {
4058 struct bp_location *loc;
4059 int ix;
4060
4061 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4062 if (breakpoint_location_address_match (loc, aspace, pc))
4063 return 1;
4064
4065 return 0;
4066 }
4067
4068 /* Returns non-zero iff BL is inserted at PC, in address space
4069 ASPACE. */
4070
4071 static int
4072 bp_location_inserted_here_p (struct bp_location *bl,
4073 const address_space *aspace, CORE_ADDR pc)
4074 {
4075 if (bl->inserted
4076 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4077 aspace, pc))
4078 {
4079 if (overlay_debugging
4080 && section_is_overlay (bl->section)
4081 && !section_is_mapped (bl->section))
4082 return 0; /* unmapped overlay -- can't be a match */
4083 else
4084 return 1;
4085 }
4086 return 0;
4087 }
4088
4089 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4090
4091 int
4092 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4093 {
4094 struct bp_location **blp, **blp_tmp = NULL;
4095
4096 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4097 {
4098 struct bp_location *bl = *blp;
4099
4100 if (bl->loc_type != bp_loc_software_breakpoint
4101 && bl->loc_type != bp_loc_hardware_breakpoint)
4102 continue;
4103
4104 if (bp_location_inserted_here_p (bl, aspace, pc))
4105 return 1;
4106 }
4107 return 0;
4108 }
4109
4110 /* This function returns non-zero iff there is a software breakpoint
4111 inserted at PC. */
4112
4113 int
4114 software_breakpoint_inserted_here_p (const address_space *aspace,
4115 CORE_ADDR pc)
4116 {
4117 struct bp_location **blp, **blp_tmp = NULL;
4118
4119 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4120 {
4121 struct bp_location *bl = *blp;
4122
4123 if (bl->loc_type != bp_loc_software_breakpoint)
4124 continue;
4125
4126 if (bp_location_inserted_here_p (bl, aspace, pc))
4127 return 1;
4128 }
4129
4130 return 0;
4131 }
4132
4133 /* See breakpoint.h. */
4134
4135 int
4136 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4137 CORE_ADDR pc)
4138 {
4139 struct bp_location **blp, **blp_tmp = NULL;
4140
4141 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4142 {
4143 struct bp_location *bl = *blp;
4144
4145 if (bl->loc_type != bp_loc_hardware_breakpoint)
4146 continue;
4147
4148 if (bp_location_inserted_here_p (bl, aspace, pc))
4149 return 1;
4150 }
4151
4152 return 0;
4153 }
4154
4155 int
4156 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4157 CORE_ADDR addr, ULONGEST len)
4158 {
4159 struct breakpoint *bpt;
4160
4161 ALL_BREAKPOINTS (bpt)
4162 {
4163 struct bp_location *loc;
4164
4165 if (bpt->type != bp_hardware_watchpoint
4166 && bpt->type != bp_access_watchpoint)
4167 continue;
4168
4169 if (!breakpoint_enabled (bpt))
4170 continue;
4171
4172 for (loc = bpt->loc; loc; loc = loc->next)
4173 if (loc->pspace->aspace == aspace && loc->inserted)
4174 {
4175 CORE_ADDR l, h;
4176
4177 /* Check for intersection. */
4178 l = std::max<CORE_ADDR> (loc->address, addr);
4179 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4180 if (l < h)
4181 return 1;
4182 }
4183 }
4184 return 0;
4185 }
4186 \f
4187
4188 /* bpstat stuff. External routines' interfaces are documented
4189 in breakpoint.h. */
4190
4191 int
4192 is_catchpoint (struct breakpoint *ep)
4193 {
4194 return (ep->type == bp_catchpoint);
4195 }
4196
4197 /* Frees any storage that is part of a bpstat. Does not walk the
4198 'next' chain. */
4199
4200 bpstats::~bpstats ()
4201 {
4202 if (old_val != NULL)
4203 value_free (old_val);
4204 if (bp_location_at != NULL)
4205 decref_bp_location (&bp_location_at);
4206 }
4207
4208 /* Clear a bpstat so that it says we are not at any breakpoint.
4209 Also free any storage that is part of a bpstat. */
4210
4211 void
4212 bpstat_clear (bpstat *bsp)
4213 {
4214 bpstat p;
4215 bpstat q;
4216
4217 if (bsp == 0)
4218 return;
4219 p = *bsp;
4220 while (p != NULL)
4221 {
4222 q = p->next;
4223 delete p;
4224 p = q;
4225 }
4226 *bsp = NULL;
4227 }
4228
4229 bpstats::bpstats (const bpstats &other)
4230 : next (NULL),
4231 bp_location_at (other.bp_location_at),
4232 breakpoint_at (other.breakpoint_at),
4233 commands (other.commands),
4234 old_val (other.old_val),
4235 print (other.print),
4236 stop (other.stop),
4237 print_it (other.print_it)
4238 {
4239 if (old_val != NULL)
4240 {
4241 old_val = value_copy (old_val);
4242 release_value (old_val);
4243 }
4244 incref_bp_location (bp_location_at);
4245 }
4246
4247 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4248 is part of the bpstat is copied as well. */
4249
4250 bpstat
4251 bpstat_copy (bpstat bs)
4252 {
4253 bpstat p = NULL;
4254 bpstat tmp;
4255 bpstat retval = NULL;
4256
4257 if (bs == NULL)
4258 return bs;
4259
4260 for (; bs != NULL; bs = bs->next)
4261 {
4262 tmp = new bpstats (*bs);
4263
4264 if (p == NULL)
4265 /* This is the first thing in the chain. */
4266 retval = tmp;
4267 else
4268 p->next = tmp;
4269 p = tmp;
4270 }
4271 p->next = NULL;
4272 return retval;
4273 }
4274
4275 /* Find the bpstat associated with this breakpoint. */
4276
4277 bpstat
4278 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4279 {
4280 if (bsp == NULL)
4281 return NULL;
4282
4283 for (; bsp != NULL; bsp = bsp->next)
4284 {
4285 if (bsp->breakpoint_at == breakpoint)
4286 return bsp;
4287 }
4288 return NULL;
4289 }
4290
4291 /* See breakpoint.h. */
4292
4293 int
4294 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4295 {
4296 for (; bsp != NULL; bsp = bsp->next)
4297 {
4298 if (bsp->breakpoint_at == NULL)
4299 {
4300 /* A moribund location can never explain a signal other than
4301 GDB_SIGNAL_TRAP. */
4302 if (sig == GDB_SIGNAL_TRAP)
4303 return 1;
4304 }
4305 else
4306 {
4307 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4308 sig))
4309 return 1;
4310 }
4311 }
4312
4313 return 0;
4314 }
4315
4316 /* Put in *NUM the breakpoint number of the first breakpoint we are
4317 stopped at. *BSP upon return is a bpstat which points to the
4318 remaining breakpoints stopped at (but which is not guaranteed to be
4319 good for anything but further calls to bpstat_num).
4320
4321 Return 0 if passed a bpstat which does not indicate any breakpoints.
4322 Return -1 if stopped at a breakpoint that has been deleted since
4323 we set it.
4324 Return 1 otherwise. */
4325
4326 int
4327 bpstat_num (bpstat *bsp, int *num)
4328 {
4329 struct breakpoint *b;
4330
4331 if ((*bsp) == NULL)
4332 return 0; /* No more breakpoint values */
4333
4334 /* We assume we'll never have several bpstats that correspond to a
4335 single breakpoint -- otherwise, this function might return the
4336 same number more than once and this will look ugly. */
4337 b = (*bsp)->breakpoint_at;
4338 *bsp = (*bsp)->next;
4339 if (b == NULL)
4340 return -1; /* breakpoint that's been deleted since */
4341
4342 *num = b->number; /* We have its number */
4343 return 1;
4344 }
4345
4346 /* See breakpoint.h. */
4347
4348 void
4349 bpstat_clear_actions (void)
4350 {
4351 struct thread_info *tp;
4352 bpstat bs;
4353
4354 if (ptid_equal (inferior_ptid, null_ptid))
4355 return;
4356
4357 tp = find_thread_ptid (inferior_ptid);
4358 if (tp == NULL)
4359 return;
4360
4361 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4362 {
4363 bs->commands = NULL;
4364
4365 if (bs->old_val != NULL)
4366 {
4367 value_free (bs->old_val);
4368 bs->old_val = NULL;
4369 }
4370 }
4371 }
4372
4373 /* Called when a command is about to proceed the inferior. */
4374
4375 static void
4376 breakpoint_about_to_proceed (void)
4377 {
4378 if (!ptid_equal (inferior_ptid, null_ptid))
4379 {
4380 struct thread_info *tp = inferior_thread ();
4381
4382 /* Allow inferior function calls in breakpoint commands to not
4383 interrupt the command list. When the call finishes
4384 successfully, the inferior will be standing at the same
4385 breakpoint as if nothing happened. */
4386 if (tp->control.in_infcall)
4387 return;
4388 }
4389
4390 breakpoint_proceeded = 1;
4391 }
4392
4393 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4394 or its equivalent. */
4395
4396 static int
4397 command_line_is_silent (struct command_line *cmd)
4398 {
4399 return cmd && (strcmp ("silent", cmd->line) == 0);
4400 }
4401
4402 /* Execute all the commands associated with all the breakpoints at
4403 this location. Any of these commands could cause the process to
4404 proceed beyond this point, etc. We look out for such changes by
4405 checking the global "breakpoint_proceeded" after each command.
4406
4407 Returns true if a breakpoint command resumed the inferior. In that
4408 case, it is the caller's responsibility to recall it again with the
4409 bpstat of the current thread. */
4410
4411 static int
4412 bpstat_do_actions_1 (bpstat *bsp)
4413 {
4414 bpstat bs;
4415 int again = 0;
4416
4417 /* Avoid endless recursion if a `source' command is contained
4418 in bs->commands. */
4419 if (executing_breakpoint_commands)
4420 return 0;
4421
4422 scoped_restore save_executing
4423 = make_scoped_restore (&executing_breakpoint_commands, 1);
4424
4425 scoped_restore preventer = prevent_dont_repeat ();
4426
4427 /* This pointer will iterate over the list of bpstat's. */
4428 bs = *bsp;
4429
4430 breakpoint_proceeded = 0;
4431 for (; bs != NULL; bs = bs->next)
4432 {
4433 struct command_line *cmd = NULL;
4434
4435 /* Take ownership of the BSP's command tree, if it has one.
4436
4437 The command tree could legitimately contain commands like
4438 'step' and 'next', which call clear_proceed_status, which
4439 frees stop_bpstat's command tree. To make sure this doesn't
4440 free the tree we're executing out from under us, we need to
4441 take ownership of the tree ourselves. Since a given bpstat's
4442 commands are only executed once, we don't need to copy it; we
4443 can clear the pointer in the bpstat, and make sure we free
4444 the tree when we're done. */
4445 counted_command_line ccmd = bs->commands;
4446 bs->commands = NULL;
4447 if (ccmd != NULL)
4448 cmd = ccmd.get ();
4449 if (command_line_is_silent (cmd))
4450 {
4451 /* The action has been already done by bpstat_stop_status. */
4452 cmd = cmd->next;
4453 }
4454
4455 while (cmd != NULL)
4456 {
4457 execute_control_command (cmd);
4458
4459 if (breakpoint_proceeded)
4460 break;
4461 else
4462 cmd = cmd->next;
4463 }
4464
4465 if (breakpoint_proceeded)
4466 {
4467 if (current_ui->async)
4468 /* If we are in async mode, then the target might be still
4469 running, not stopped at any breakpoint, so nothing for
4470 us to do here -- just return to the event loop. */
4471 ;
4472 else
4473 /* In sync mode, when execute_control_command returns
4474 we're already standing on the next breakpoint.
4475 Breakpoint commands for that stop were not run, since
4476 execute_command does not run breakpoint commands --
4477 only command_line_handler does, but that one is not
4478 involved in execution of breakpoint commands. So, we
4479 can now execute breakpoint commands. It should be
4480 noted that making execute_command do bpstat actions is
4481 not an option -- in this case we'll have recursive
4482 invocation of bpstat for each breakpoint with a
4483 command, and can easily blow up GDB stack. Instead, we
4484 return true, which will trigger the caller to recall us
4485 with the new stop_bpstat. */
4486 again = 1;
4487 break;
4488 }
4489 }
4490 return again;
4491 }
4492
4493 void
4494 bpstat_do_actions (void)
4495 {
4496 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4497
4498 /* Do any commands attached to breakpoint we are stopped at. */
4499 while (!ptid_equal (inferior_ptid, null_ptid)
4500 && target_has_execution
4501 && !is_exited (inferior_ptid)
4502 && !is_executing (inferior_ptid))
4503 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4504 and only return when it is stopped at the next breakpoint, we
4505 keep doing breakpoint actions until it returns false to
4506 indicate the inferior was not resumed. */
4507 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4508 break;
4509
4510 discard_cleanups (cleanup_if_error);
4511 }
4512
4513 /* Print out the (old or new) value associated with a watchpoint. */
4514
4515 static void
4516 watchpoint_value_print (struct value *val, struct ui_file *stream)
4517 {
4518 if (val == NULL)
4519 fprintf_unfiltered (stream, _("<unreadable>"));
4520 else
4521 {
4522 struct value_print_options opts;
4523 get_user_print_options (&opts);
4524 value_print (val, stream, &opts);
4525 }
4526 }
4527
4528 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4529 debugging multiple threads. */
4530
4531 void
4532 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4533 {
4534 if (uiout->is_mi_like_p ())
4535 return;
4536
4537 uiout->text ("\n");
4538
4539 if (show_thread_that_caused_stop ())
4540 {
4541 const char *name;
4542 struct thread_info *thr = inferior_thread ();
4543
4544 uiout->text ("Thread ");
4545 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4546
4547 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4548 if (name != NULL)
4549 {
4550 uiout->text (" \"");
4551 uiout->field_fmt ("name", "%s", name);
4552 uiout->text ("\"");
4553 }
4554
4555 uiout->text (" hit ");
4556 }
4557 }
4558
4559 /* Generic routine for printing messages indicating why we
4560 stopped. The behavior of this function depends on the value
4561 'print_it' in the bpstat structure. Under some circumstances we
4562 may decide not to print anything here and delegate the task to
4563 normal_stop(). */
4564
4565 static enum print_stop_action
4566 print_bp_stop_message (bpstat bs)
4567 {
4568 switch (bs->print_it)
4569 {
4570 case print_it_noop:
4571 /* Nothing should be printed for this bpstat entry. */
4572 return PRINT_UNKNOWN;
4573 break;
4574
4575 case print_it_done:
4576 /* We still want to print the frame, but we already printed the
4577 relevant messages. */
4578 return PRINT_SRC_AND_LOC;
4579 break;
4580
4581 case print_it_normal:
4582 {
4583 struct breakpoint *b = bs->breakpoint_at;
4584
4585 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4586 which has since been deleted. */
4587 if (b == NULL)
4588 return PRINT_UNKNOWN;
4589
4590 /* Normal case. Call the breakpoint's print_it method. */
4591 return b->ops->print_it (bs);
4592 }
4593 break;
4594
4595 default:
4596 internal_error (__FILE__, __LINE__,
4597 _("print_bp_stop_message: unrecognized enum value"));
4598 break;
4599 }
4600 }
4601
4602 /* A helper function that prints a shared library stopped event. */
4603
4604 static void
4605 print_solib_event (int is_catchpoint)
4606 {
4607 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4608 int any_added
4609 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4610
4611 if (!is_catchpoint)
4612 {
4613 if (any_added || any_deleted)
4614 current_uiout->text (_("Stopped due to shared library event:\n"));
4615 else
4616 current_uiout->text (_("Stopped due to shared library event (no "
4617 "libraries added or removed)\n"));
4618 }
4619
4620 if (current_uiout->is_mi_like_p ())
4621 current_uiout->field_string ("reason",
4622 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4623
4624 if (any_deleted)
4625 {
4626 current_uiout->text (_(" Inferior unloaded "));
4627 ui_out_emit_list list_emitter (current_uiout, "removed");
4628 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4629 {
4630 const std::string &name = current_program_space->deleted_solibs[ix];
4631
4632 if (ix > 0)
4633 current_uiout->text (" ");
4634 current_uiout->field_string ("library", name);
4635 current_uiout->text ("\n");
4636 }
4637 }
4638
4639 if (any_added)
4640 {
4641 struct so_list *iter;
4642 int ix;
4643
4644 current_uiout->text (_(" Inferior loaded "));
4645 ui_out_emit_list list_emitter (current_uiout, "added");
4646 for (ix = 0;
4647 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4648 ix, iter);
4649 ++ix)
4650 {
4651 if (ix > 0)
4652 current_uiout->text (" ");
4653 current_uiout->field_string ("library", iter->so_name);
4654 current_uiout->text ("\n");
4655 }
4656 }
4657 }
4658
4659 /* Print a message indicating what happened. This is called from
4660 normal_stop(). The input to this routine is the head of the bpstat
4661 list - a list of the eventpoints that caused this stop. KIND is
4662 the target_waitkind for the stopping event. This
4663 routine calls the generic print routine for printing a message
4664 about reasons for stopping. This will print (for example) the
4665 "Breakpoint n," part of the output. The return value of this
4666 routine is one of:
4667
4668 PRINT_UNKNOWN: Means we printed nothing.
4669 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4670 code to print the location. An example is
4671 "Breakpoint 1, " which should be followed by
4672 the location.
4673 PRINT_SRC_ONLY: Means we printed something, but there is no need
4674 to also print the location part of the message.
4675 An example is the catch/throw messages, which
4676 don't require a location appended to the end.
4677 PRINT_NOTHING: We have done some printing and we don't need any
4678 further info to be printed. */
4679
4680 enum print_stop_action
4681 bpstat_print (bpstat bs, int kind)
4682 {
4683 enum print_stop_action val;
4684
4685 /* Maybe another breakpoint in the chain caused us to stop.
4686 (Currently all watchpoints go on the bpstat whether hit or not.
4687 That probably could (should) be changed, provided care is taken
4688 with respect to bpstat_explains_signal). */
4689 for (; bs; bs = bs->next)
4690 {
4691 val = print_bp_stop_message (bs);
4692 if (val == PRINT_SRC_ONLY
4693 || val == PRINT_SRC_AND_LOC
4694 || val == PRINT_NOTHING)
4695 return val;
4696 }
4697
4698 /* If we had hit a shared library event breakpoint,
4699 print_bp_stop_message would print out this message. If we hit an
4700 OS-level shared library event, do the same thing. */
4701 if (kind == TARGET_WAITKIND_LOADED)
4702 {
4703 print_solib_event (0);
4704 return PRINT_NOTHING;
4705 }
4706
4707 /* We reached the end of the chain, or we got a null BS to start
4708 with and nothing was printed. */
4709 return PRINT_UNKNOWN;
4710 }
4711
4712 /* Evaluate the boolean expression EXP and return the result. */
4713
4714 static bool
4715 breakpoint_cond_eval (expression *exp)
4716 {
4717 struct value *mark = value_mark ();
4718 bool res = value_true (evaluate_expression (exp));
4719
4720 value_free_to_mark (mark);
4721 return res;
4722 }
4723
4724 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4725
4726 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4727 : next (NULL),
4728 bp_location_at (bl),
4729 breakpoint_at (bl->owner),
4730 commands (NULL),
4731 old_val (NULL),
4732 print (0),
4733 stop (0),
4734 print_it (print_it_normal)
4735 {
4736 incref_bp_location (bl);
4737 **bs_link_pointer = this;
4738 *bs_link_pointer = &next;
4739 }
4740
4741 bpstats::bpstats ()
4742 : next (NULL),
4743 bp_location_at (NULL),
4744 breakpoint_at (NULL),
4745 commands (NULL),
4746 old_val (NULL),
4747 print (0),
4748 stop (0),
4749 print_it (print_it_normal)
4750 {
4751 }
4752 \f
4753 /* The target has stopped with waitstatus WS. Check if any hardware
4754 watchpoints have triggered, according to the target. */
4755
4756 int
4757 watchpoints_triggered (struct target_waitstatus *ws)
4758 {
4759 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4760 CORE_ADDR addr;
4761 struct breakpoint *b;
4762
4763 if (!stopped_by_watchpoint)
4764 {
4765 /* We were not stopped by a watchpoint. Mark all watchpoints
4766 as not triggered. */
4767 ALL_BREAKPOINTS (b)
4768 if (is_hardware_watchpoint (b))
4769 {
4770 struct watchpoint *w = (struct watchpoint *) b;
4771
4772 w->watchpoint_triggered = watch_triggered_no;
4773 }
4774
4775 return 0;
4776 }
4777
4778 if (!target_stopped_data_address (&current_target, &addr))
4779 {
4780 /* We were stopped by a watchpoint, but we don't know where.
4781 Mark all watchpoints as unknown. */
4782 ALL_BREAKPOINTS (b)
4783 if (is_hardware_watchpoint (b))
4784 {
4785 struct watchpoint *w = (struct watchpoint *) b;
4786
4787 w->watchpoint_triggered = watch_triggered_unknown;
4788 }
4789
4790 return 1;
4791 }
4792
4793 /* The target could report the data address. Mark watchpoints
4794 affected by this data address as triggered, and all others as not
4795 triggered. */
4796
4797 ALL_BREAKPOINTS (b)
4798 if (is_hardware_watchpoint (b))
4799 {
4800 struct watchpoint *w = (struct watchpoint *) b;
4801 struct bp_location *loc;
4802
4803 w->watchpoint_triggered = watch_triggered_no;
4804 for (loc = b->loc; loc; loc = loc->next)
4805 {
4806 if (is_masked_watchpoint (b))
4807 {
4808 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4809 CORE_ADDR start = loc->address & w->hw_wp_mask;
4810
4811 if (newaddr == start)
4812 {
4813 w->watchpoint_triggered = watch_triggered_yes;
4814 break;
4815 }
4816 }
4817 /* Exact match not required. Within range is sufficient. */
4818 else if (target_watchpoint_addr_within_range (&current_target,
4819 addr, loc->address,
4820 loc->length))
4821 {
4822 w->watchpoint_triggered = watch_triggered_yes;
4823 break;
4824 }
4825 }
4826 }
4827
4828 return 1;
4829 }
4830
4831 /* Possible return values for watchpoint_check. */
4832 enum wp_check_result
4833 {
4834 /* The watchpoint has been deleted. */
4835 WP_DELETED = 1,
4836
4837 /* The value has changed. */
4838 WP_VALUE_CHANGED = 2,
4839
4840 /* The value has not changed. */
4841 WP_VALUE_NOT_CHANGED = 3,
4842
4843 /* Ignore this watchpoint, no matter if the value changed or not. */
4844 WP_IGNORE = 4,
4845 };
4846
4847 #define BP_TEMPFLAG 1
4848 #define BP_HARDWAREFLAG 2
4849
4850 /* Evaluate watchpoint condition expression and check if its value
4851 changed. */
4852
4853 static wp_check_result
4854 watchpoint_check (bpstat bs)
4855 {
4856 struct watchpoint *b;
4857 struct frame_info *fr;
4858 int within_current_scope;
4859
4860 /* BS is built from an existing struct breakpoint. */
4861 gdb_assert (bs->breakpoint_at != NULL);
4862 b = (struct watchpoint *) bs->breakpoint_at;
4863
4864 /* If this is a local watchpoint, we only want to check if the
4865 watchpoint frame is in scope if the current thread is the thread
4866 that was used to create the watchpoint. */
4867 if (!watchpoint_in_thread_scope (b))
4868 return WP_IGNORE;
4869
4870 if (b->exp_valid_block == NULL)
4871 within_current_scope = 1;
4872 else
4873 {
4874 struct frame_info *frame = get_current_frame ();
4875 struct gdbarch *frame_arch = get_frame_arch (frame);
4876 CORE_ADDR frame_pc = get_frame_pc (frame);
4877
4878 /* stack_frame_destroyed_p() returns a non-zero value if we're
4879 still in the function but the stack frame has already been
4880 invalidated. Since we can't rely on the values of local
4881 variables after the stack has been destroyed, we are treating
4882 the watchpoint in that state as `not changed' without further
4883 checking. Don't mark watchpoints as changed if the current
4884 frame is in an epilogue - even if they are in some other
4885 frame, our view of the stack is likely to be wrong and
4886 frame_find_by_id could error out. */
4887 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4888 return WP_IGNORE;
4889
4890 fr = frame_find_by_id (b->watchpoint_frame);
4891 within_current_scope = (fr != NULL);
4892
4893 /* If we've gotten confused in the unwinder, we might have
4894 returned a frame that can't describe this variable. */
4895 if (within_current_scope)
4896 {
4897 struct symbol *function;
4898
4899 function = get_frame_function (fr);
4900 if (function == NULL
4901 || !contained_in (b->exp_valid_block,
4902 SYMBOL_BLOCK_VALUE (function)))
4903 within_current_scope = 0;
4904 }
4905
4906 if (within_current_scope)
4907 /* If we end up stopping, the current frame will get selected
4908 in normal_stop. So this call to select_frame won't affect
4909 the user. */
4910 select_frame (fr);
4911 }
4912
4913 if (within_current_scope)
4914 {
4915 /* We use value_{,free_to_}mark because it could be a *long*
4916 time before we return to the command level and call
4917 free_all_values. We can't call free_all_values because we
4918 might be in the middle of evaluating a function call. */
4919
4920 int pc = 0;
4921 struct value *mark;
4922 struct value *new_val;
4923
4924 if (is_masked_watchpoint (b))
4925 /* Since we don't know the exact trigger address (from
4926 stopped_data_address), just tell the user we've triggered
4927 a mask watchpoint. */
4928 return WP_VALUE_CHANGED;
4929
4930 mark = value_mark ();
4931 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4932
4933 if (b->val_bitsize != 0)
4934 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4935
4936 /* We use value_equal_contents instead of value_equal because
4937 the latter coerces an array to a pointer, thus comparing just
4938 the address of the array instead of its contents. This is
4939 not what we want. */
4940 if ((b->val != NULL) != (new_val != NULL)
4941 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4942 {
4943 if (new_val != NULL)
4944 {
4945 release_value (new_val);
4946 value_free_to_mark (mark);
4947 }
4948 bs->old_val = b->val;
4949 b->val = new_val;
4950 b->val_valid = 1;
4951 return WP_VALUE_CHANGED;
4952 }
4953 else
4954 {
4955 /* Nothing changed. */
4956 value_free_to_mark (mark);
4957 return WP_VALUE_NOT_CHANGED;
4958 }
4959 }
4960 else
4961 {
4962 /* This seems like the only logical thing to do because
4963 if we temporarily ignored the watchpoint, then when
4964 we reenter the block in which it is valid it contains
4965 garbage (in the case of a function, it may have two
4966 garbage values, one before and one after the prologue).
4967 So we can't even detect the first assignment to it and
4968 watch after that (since the garbage may or may not equal
4969 the first value assigned). */
4970 /* We print all the stop information in
4971 breakpoint_ops->print_it, but in this case, by the time we
4972 call breakpoint_ops->print_it this bp will be deleted
4973 already. So we have no choice but print the information
4974 here. */
4975
4976 SWITCH_THRU_ALL_UIS ()
4977 {
4978 struct ui_out *uiout = current_uiout;
4979
4980 if (uiout->is_mi_like_p ())
4981 uiout->field_string
4982 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4983 uiout->text ("\nWatchpoint ");
4984 uiout->field_int ("wpnum", b->number);
4985 uiout->text (" deleted because the program has left the block in\n"
4986 "which its expression is valid.\n");
4987 }
4988
4989 /* Make sure the watchpoint's commands aren't executed. */
4990 b->commands = NULL;
4991 watchpoint_del_at_next_stop (b);
4992
4993 return WP_DELETED;
4994 }
4995 }
4996
4997 /* Return true if it looks like target has stopped due to hitting
4998 breakpoint location BL. This function does not check if we should
4999 stop, only if BL explains the stop. */
5000
5001 static int
5002 bpstat_check_location (const struct bp_location *bl,
5003 const address_space *aspace, CORE_ADDR bp_addr,
5004 const struct target_waitstatus *ws)
5005 {
5006 struct breakpoint *b = bl->owner;
5007
5008 /* BL is from an existing breakpoint. */
5009 gdb_assert (b != NULL);
5010
5011 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5012 }
5013
5014 /* Determine if the watched values have actually changed, and we
5015 should stop. If not, set BS->stop to 0. */
5016
5017 static void
5018 bpstat_check_watchpoint (bpstat bs)
5019 {
5020 const struct bp_location *bl;
5021 struct watchpoint *b;
5022
5023 /* BS is built for existing struct breakpoint. */
5024 bl = bs->bp_location_at;
5025 gdb_assert (bl != NULL);
5026 b = (struct watchpoint *) bs->breakpoint_at;
5027 gdb_assert (b != NULL);
5028
5029 {
5030 int must_check_value = 0;
5031
5032 if (b->type == bp_watchpoint)
5033 /* For a software watchpoint, we must always check the
5034 watched value. */
5035 must_check_value = 1;
5036 else if (b->watchpoint_triggered == watch_triggered_yes)
5037 /* We have a hardware watchpoint (read, write, or access)
5038 and the target earlier reported an address watched by
5039 this watchpoint. */
5040 must_check_value = 1;
5041 else if (b->watchpoint_triggered == watch_triggered_unknown
5042 && b->type == bp_hardware_watchpoint)
5043 /* We were stopped by a hardware watchpoint, but the target could
5044 not report the data address. We must check the watchpoint's
5045 value. Access and read watchpoints are out of luck; without
5046 a data address, we can't figure it out. */
5047 must_check_value = 1;
5048
5049 if (must_check_value)
5050 {
5051 wp_check_result e;
5052
5053 TRY
5054 {
5055 e = watchpoint_check (bs);
5056 }
5057 CATCH (ex, RETURN_MASK_ALL)
5058 {
5059 exception_fprintf (gdb_stderr, ex,
5060 "Error evaluating expression "
5061 "for watchpoint %d\n",
5062 b->number);
5063
5064 SWITCH_THRU_ALL_UIS ()
5065 {
5066 printf_filtered (_("Watchpoint %d deleted.\n"),
5067 b->number);
5068 }
5069 watchpoint_del_at_next_stop (b);
5070 e = WP_DELETED;
5071 }
5072 END_CATCH
5073
5074 switch (e)
5075 {
5076 case WP_DELETED:
5077 /* We've already printed what needs to be printed. */
5078 bs->print_it = print_it_done;
5079 /* Stop. */
5080 break;
5081 case WP_IGNORE:
5082 bs->print_it = print_it_noop;
5083 bs->stop = 0;
5084 break;
5085 case WP_VALUE_CHANGED:
5086 if (b->type == bp_read_watchpoint)
5087 {
5088 /* There are two cases to consider here:
5089
5090 1. We're watching the triggered memory for reads.
5091 In that case, trust the target, and always report
5092 the watchpoint hit to the user. Even though
5093 reads don't cause value changes, the value may
5094 have changed since the last time it was read, and
5095 since we're not trapping writes, we will not see
5096 those, and as such we should ignore our notion of
5097 old value.
5098
5099 2. We're watching the triggered memory for both
5100 reads and writes. There are two ways this may
5101 happen:
5102
5103 2.1. This is a target that can't break on data
5104 reads only, but can break on accesses (reads or
5105 writes), such as e.g., x86. We detect this case
5106 at the time we try to insert read watchpoints.
5107
5108 2.2. Otherwise, the target supports read
5109 watchpoints, but, the user set an access or write
5110 watchpoint watching the same memory as this read
5111 watchpoint.
5112
5113 If we're watching memory writes as well as reads,
5114 ignore watchpoint hits when we find that the
5115 value hasn't changed, as reads don't cause
5116 changes. This still gives false positives when
5117 the program writes the same value to memory as
5118 what there was already in memory (we will confuse
5119 it for a read), but it's much better than
5120 nothing. */
5121
5122 int other_write_watchpoint = 0;
5123
5124 if (bl->watchpoint_type == hw_read)
5125 {
5126 struct breakpoint *other_b;
5127
5128 ALL_BREAKPOINTS (other_b)
5129 if (other_b->type == bp_hardware_watchpoint
5130 || other_b->type == bp_access_watchpoint)
5131 {
5132 struct watchpoint *other_w =
5133 (struct watchpoint *) other_b;
5134
5135 if (other_w->watchpoint_triggered
5136 == watch_triggered_yes)
5137 {
5138 other_write_watchpoint = 1;
5139 break;
5140 }
5141 }
5142 }
5143
5144 if (other_write_watchpoint
5145 || bl->watchpoint_type == hw_access)
5146 {
5147 /* We're watching the same memory for writes,
5148 and the value changed since the last time we
5149 updated it, so this trap must be for a write.
5150 Ignore it. */
5151 bs->print_it = print_it_noop;
5152 bs->stop = 0;
5153 }
5154 }
5155 break;
5156 case WP_VALUE_NOT_CHANGED:
5157 if (b->type == bp_hardware_watchpoint
5158 || b->type == bp_watchpoint)
5159 {
5160 /* Don't stop: write watchpoints shouldn't fire if
5161 the value hasn't changed. */
5162 bs->print_it = print_it_noop;
5163 bs->stop = 0;
5164 }
5165 /* Stop. */
5166 break;
5167 default:
5168 /* Can't happen. */
5169 break;
5170 }
5171 }
5172 else /* must_check_value == 0 */
5173 {
5174 /* This is a case where some watchpoint(s) triggered, but
5175 not at the address of this watchpoint, or else no
5176 watchpoint triggered after all. So don't print
5177 anything for this watchpoint. */
5178 bs->print_it = print_it_noop;
5179 bs->stop = 0;
5180 }
5181 }
5182 }
5183
5184 /* For breakpoints that are currently marked as telling gdb to stop,
5185 check conditions (condition proper, frame, thread and ignore count)
5186 of breakpoint referred to by BS. If we should not stop for this
5187 breakpoint, set BS->stop to 0. */
5188
5189 static void
5190 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5191 {
5192 const struct bp_location *bl;
5193 struct breakpoint *b;
5194 /* Assume stop. */
5195 bool condition_result = true;
5196 struct expression *cond;
5197
5198 gdb_assert (bs->stop);
5199
5200 /* BS is built for existing struct breakpoint. */
5201 bl = bs->bp_location_at;
5202 gdb_assert (bl != NULL);
5203 b = bs->breakpoint_at;
5204 gdb_assert (b != NULL);
5205
5206 /* Even if the target evaluated the condition on its end and notified GDB, we
5207 need to do so again since GDB does not know if we stopped due to a
5208 breakpoint or a single step breakpoint. */
5209
5210 if (frame_id_p (b->frame_id)
5211 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5212 {
5213 bs->stop = 0;
5214 return;
5215 }
5216
5217 /* If this is a thread/task-specific breakpoint, don't waste cpu
5218 evaluating the condition if this isn't the specified
5219 thread/task. */
5220 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5221 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5222
5223 {
5224 bs->stop = 0;
5225 return;
5226 }
5227
5228 /* Evaluate extension language breakpoints that have a "stop" method
5229 implemented. */
5230 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5231
5232 if (is_watchpoint (b))
5233 {
5234 struct watchpoint *w = (struct watchpoint *) b;
5235
5236 cond = w->cond_exp.get ();
5237 }
5238 else
5239 cond = bl->cond.get ();
5240
5241 if (cond && b->disposition != disp_del_at_next_stop)
5242 {
5243 int within_current_scope = 1;
5244 struct watchpoint * w;
5245
5246 /* We use value_mark and value_free_to_mark because it could
5247 be a long time before we return to the command level and
5248 call free_all_values. We can't call free_all_values
5249 because we might be in the middle of evaluating a
5250 function call. */
5251 struct value *mark = value_mark ();
5252
5253 if (is_watchpoint (b))
5254 w = (struct watchpoint *) b;
5255 else
5256 w = NULL;
5257
5258 /* Need to select the frame, with all that implies so that
5259 the conditions will have the right context. Because we
5260 use the frame, we will not see an inlined function's
5261 variables when we arrive at a breakpoint at the start
5262 of the inlined function; the current frame will be the
5263 call site. */
5264 if (w == NULL || w->cond_exp_valid_block == NULL)
5265 select_frame (get_current_frame ());
5266 else
5267 {
5268 struct frame_info *frame;
5269
5270 /* For local watchpoint expressions, which particular
5271 instance of a local is being watched matters, so we
5272 keep track of the frame to evaluate the expression
5273 in. To evaluate the condition however, it doesn't
5274 really matter which instantiation of the function
5275 where the condition makes sense triggers the
5276 watchpoint. This allows an expression like "watch
5277 global if q > 10" set in `func', catch writes to
5278 global on all threads that call `func', or catch
5279 writes on all recursive calls of `func' by a single
5280 thread. We simply always evaluate the condition in
5281 the innermost frame that's executing where it makes
5282 sense to evaluate the condition. It seems
5283 intuitive. */
5284 frame = block_innermost_frame (w->cond_exp_valid_block);
5285 if (frame != NULL)
5286 select_frame (frame);
5287 else
5288 within_current_scope = 0;
5289 }
5290 if (within_current_scope)
5291 {
5292 TRY
5293 {
5294 condition_result = breakpoint_cond_eval (cond);
5295 }
5296 CATCH (ex, RETURN_MASK_ALL)
5297 {
5298 exception_fprintf (gdb_stderr, ex,
5299 "Error in testing breakpoint condition:\n");
5300 }
5301 END_CATCH
5302 }
5303 else
5304 {
5305 warning (_("Watchpoint condition cannot be tested "
5306 "in the current scope"));
5307 /* If we failed to set the right context for this
5308 watchpoint, unconditionally report it. */
5309 }
5310 /* FIXME-someday, should give breakpoint #. */
5311 value_free_to_mark (mark);
5312 }
5313
5314 if (cond && !condition_result)
5315 {
5316 bs->stop = 0;
5317 }
5318 else if (b->ignore_count > 0)
5319 {
5320 b->ignore_count--;
5321 bs->stop = 0;
5322 /* Increase the hit count even though we don't stop. */
5323 ++(b->hit_count);
5324 gdb::observers::breakpoint_modified.notify (b);
5325 }
5326 }
5327
5328 /* Returns true if we need to track moribund locations of LOC's type
5329 on the current target. */
5330
5331 static int
5332 need_moribund_for_location_type (struct bp_location *loc)
5333 {
5334 return ((loc->loc_type == bp_loc_software_breakpoint
5335 && !target_supports_stopped_by_sw_breakpoint ())
5336 || (loc->loc_type == bp_loc_hardware_breakpoint
5337 && !target_supports_stopped_by_hw_breakpoint ()));
5338 }
5339
5340
5341 /* Get a bpstat associated with having just stopped at address
5342 BP_ADDR in thread PTID.
5343
5344 Determine whether we stopped at a breakpoint, etc, or whether we
5345 don't understand this stop. Result is a chain of bpstat's such
5346 that:
5347
5348 if we don't understand the stop, the result is a null pointer.
5349
5350 if we understand why we stopped, the result is not null.
5351
5352 Each element of the chain refers to a particular breakpoint or
5353 watchpoint at which we have stopped. (We may have stopped for
5354 several reasons concurrently.)
5355
5356 Each element of the chain has valid next, breakpoint_at,
5357 commands, FIXME??? fields. */
5358
5359 bpstat
5360 bpstat_stop_status (const address_space *aspace,
5361 CORE_ADDR bp_addr, ptid_t ptid,
5362 const struct target_waitstatus *ws)
5363 {
5364 struct breakpoint *b = NULL;
5365 struct bp_location *bl;
5366 struct bp_location *loc;
5367 /* First item of allocated bpstat's. */
5368 bpstat bs_head = NULL, *bs_link = &bs_head;
5369 /* Pointer to the last thing in the chain currently. */
5370 bpstat bs;
5371 int ix;
5372 int need_remove_insert;
5373 int removed_any;
5374
5375 /* First, build the bpstat chain with locations that explain a
5376 target stop, while being careful to not set the target running,
5377 as that may invalidate locations (in particular watchpoint
5378 locations are recreated). Resuming will happen here with
5379 breakpoint conditions or watchpoint expressions that include
5380 inferior function calls. */
5381
5382 ALL_BREAKPOINTS (b)
5383 {
5384 if (!breakpoint_enabled (b))
5385 continue;
5386
5387 for (bl = b->loc; bl != NULL; bl = bl->next)
5388 {
5389 /* For hardware watchpoints, we look only at the first
5390 location. The watchpoint_check function will work on the
5391 entire expression, not the individual locations. For
5392 read watchpoints, the watchpoints_triggered function has
5393 checked all locations already. */
5394 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5395 break;
5396
5397 if (!bl->enabled || bl->shlib_disabled)
5398 continue;
5399
5400 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5401 continue;
5402
5403 /* Come here if it's a watchpoint, or if the break address
5404 matches. */
5405
5406 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5407 explain stop. */
5408
5409 /* Assume we stop. Should we find a watchpoint that is not
5410 actually triggered, or if the condition of the breakpoint
5411 evaluates as false, we'll reset 'stop' to 0. */
5412 bs->stop = 1;
5413 bs->print = 1;
5414
5415 /* If this is a scope breakpoint, mark the associated
5416 watchpoint as triggered so that we will handle the
5417 out-of-scope event. We'll get to the watchpoint next
5418 iteration. */
5419 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5420 {
5421 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5422
5423 w->watchpoint_triggered = watch_triggered_yes;
5424 }
5425 }
5426 }
5427
5428 /* Check if a moribund breakpoint explains the stop. */
5429 if (!target_supports_stopped_by_sw_breakpoint ()
5430 || !target_supports_stopped_by_hw_breakpoint ())
5431 {
5432 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5433 {
5434 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5435 && need_moribund_for_location_type (loc))
5436 {
5437 bs = new bpstats (loc, &bs_link);
5438 /* For hits of moribund locations, we should just proceed. */
5439 bs->stop = 0;
5440 bs->print = 0;
5441 bs->print_it = print_it_noop;
5442 }
5443 }
5444 }
5445
5446 /* A bit of special processing for shlib breakpoints. We need to
5447 process solib loading here, so that the lists of loaded and
5448 unloaded libraries are correct before we handle "catch load" and
5449 "catch unload". */
5450 for (bs = bs_head; bs != NULL; bs = bs->next)
5451 {
5452 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5453 {
5454 handle_solib_event ();
5455 break;
5456 }
5457 }
5458
5459 /* Now go through the locations that caused the target to stop, and
5460 check whether we're interested in reporting this stop to higher
5461 layers, or whether we should resume the target transparently. */
5462
5463 removed_any = 0;
5464
5465 for (bs = bs_head; bs != NULL; bs = bs->next)
5466 {
5467 if (!bs->stop)
5468 continue;
5469
5470 b = bs->breakpoint_at;
5471 b->ops->check_status (bs);
5472 if (bs->stop)
5473 {
5474 bpstat_check_breakpoint_conditions (bs, ptid);
5475
5476 if (bs->stop)
5477 {
5478 ++(b->hit_count);
5479 gdb::observers::breakpoint_modified.notify (b);
5480
5481 /* We will stop here. */
5482 if (b->disposition == disp_disable)
5483 {
5484 --(b->enable_count);
5485 if (b->enable_count <= 0)
5486 b->enable_state = bp_disabled;
5487 removed_any = 1;
5488 }
5489 if (b->silent)
5490 bs->print = 0;
5491 bs->commands = b->commands;
5492 if (command_line_is_silent (bs->commands
5493 ? bs->commands.get () : NULL))
5494 bs->print = 0;
5495
5496 b->ops->after_condition_true (bs);
5497 }
5498
5499 }
5500
5501 /* Print nothing for this entry if we don't stop or don't
5502 print. */
5503 if (!bs->stop || !bs->print)
5504 bs->print_it = print_it_noop;
5505 }
5506
5507 /* If we aren't stopping, the value of some hardware watchpoint may
5508 not have changed, but the intermediate memory locations we are
5509 watching may have. Don't bother if we're stopping; this will get
5510 done later. */
5511 need_remove_insert = 0;
5512 if (! bpstat_causes_stop (bs_head))
5513 for (bs = bs_head; bs != NULL; bs = bs->next)
5514 if (!bs->stop
5515 && bs->breakpoint_at
5516 && is_hardware_watchpoint (bs->breakpoint_at))
5517 {
5518 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5519
5520 update_watchpoint (w, 0 /* don't reparse. */);
5521 need_remove_insert = 1;
5522 }
5523
5524 if (need_remove_insert)
5525 update_global_location_list (UGLL_MAY_INSERT);
5526 else if (removed_any)
5527 update_global_location_list (UGLL_DONT_INSERT);
5528
5529 return bs_head;
5530 }
5531
5532 static void
5533 handle_jit_event (void)
5534 {
5535 struct frame_info *frame;
5536 struct gdbarch *gdbarch;
5537
5538 if (debug_infrun)
5539 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5540
5541 /* Switch terminal for any messages produced by
5542 breakpoint_re_set. */
5543 target_terminal::ours_for_output ();
5544
5545 frame = get_current_frame ();
5546 gdbarch = get_frame_arch (frame);
5547
5548 jit_event_handler (gdbarch);
5549
5550 target_terminal::inferior ();
5551 }
5552
5553 /* Prepare WHAT final decision for infrun. */
5554
5555 /* Decide what infrun needs to do with this bpstat. */
5556
5557 struct bpstat_what
5558 bpstat_what (bpstat bs_head)
5559 {
5560 struct bpstat_what retval;
5561 bpstat bs;
5562
5563 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5564 retval.call_dummy = STOP_NONE;
5565 retval.is_longjmp = 0;
5566
5567 for (bs = bs_head; bs != NULL; bs = bs->next)
5568 {
5569 /* Extract this BS's action. After processing each BS, we check
5570 if its action overrides all we've seem so far. */
5571 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5572 enum bptype bptype;
5573
5574 if (bs->breakpoint_at == NULL)
5575 {
5576 /* I suspect this can happen if it was a momentary
5577 breakpoint which has since been deleted. */
5578 bptype = bp_none;
5579 }
5580 else
5581 bptype = bs->breakpoint_at->type;
5582
5583 switch (bptype)
5584 {
5585 case bp_none:
5586 break;
5587 case bp_breakpoint:
5588 case bp_hardware_breakpoint:
5589 case bp_single_step:
5590 case bp_until:
5591 case bp_finish:
5592 case bp_shlib_event:
5593 if (bs->stop)
5594 {
5595 if (bs->print)
5596 this_action = BPSTAT_WHAT_STOP_NOISY;
5597 else
5598 this_action = BPSTAT_WHAT_STOP_SILENT;
5599 }
5600 else
5601 this_action = BPSTAT_WHAT_SINGLE;
5602 break;
5603 case bp_watchpoint:
5604 case bp_hardware_watchpoint:
5605 case bp_read_watchpoint:
5606 case bp_access_watchpoint:
5607 if (bs->stop)
5608 {
5609 if (bs->print)
5610 this_action = BPSTAT_WHAT_STOP_NOISY;
5611 else
5612 this_action = BPSTAT_WHAT_STOP_SILENT;
5613 }
5614 else
5615 {
5616 /* There was a watchpoint, but we're not stopping.
5617 This requires no further action. */
5618 }
5619 break;
5620 case bp_longjmp:
5621 case bp_longjmp_call_dummy:
5622 case bp_exception:
5623 if (bs->stop)
5624 {
5625 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5626 retval.is_longjmp = bptype != bp_exception;
5627 }
5628 else
5629 this_action = BPSTAT_WHAT_SINGLE;
5630 break;
5631 case bp_longjmp_resume:
5632 case bp_exception_resume:
5633 if (bs->stop)
5634 {
5635 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5636 retval.is_longjmp = bptype == bp_longjmp_resume;
5637 }
5638 else
5639 this_action = BPSTAT_WHAT_SINGLE;
5640 break;
5641 case bp_step_resume:
5642 if (bs->stop)
5643 this_action = BPSTAT_WHAT_STEP_RESUME;
5644 else
5645 {
5646 /* It is for the wrong frame. */
5647 this_action = BPSTAT_WHAT_SINGLE;
5648 }
5649 break;
5650 case bp_hp_step_resume:
5651 if (bs->stop)
5652 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5653 else
5654 {
5655 /* It is for the wrong frame. */
5656 this_action = BPSTAT_WHAT_SINGLE;
5657 }
5658 break;
5659 case bp_watchpoint_scope:
5660 case bp_thread_event:
5661 case bp_overlay_event:
5662 case bp_longjmp_master:
5663 case bp_std_terminate_master:
5664 case bp_exception_master:
5665 this_action = BPSTAT_WHAT_SINGLE;
5666 break;
5667 case bp_catchpoint:
5668 if (bs->stop)
5669 {
5670 if (bs->print)
5671 this_action = BPSTAT_WHAT_STOP_NOISY;
5672 else
5673 this_action = BPSTAT_WHAT_STOP_SILENT;
5674 }
5675 else
5676 {
5677 /* There was a catchpoint, but we're not stopping.
5678 This requires no further action. */
5679 }
5680 break;
5681 case bp_jit_event:
5682 this_action = BPSTAT_WHAT_SINGLE;
5683 break;
5684 case bp_call_dummy:
5685 /* Make sure the action is stop (silent or noisy),
5686 so infrun.c pops the dummy frame. */
5687 retval.call_dummy = STOP_STACK_DUMMY;
5688 this_action = BPSTAT_WHAT_STOP_SILENT;
5689 break;
5690 case bp_std_terminate:
5691 /* Make sure the action is stop (silent or noisy),
5692 so infrun.c pops the dummy frame. */
5693 retval.call_dummy = STOP_STD_TERMINATE;
5694 this_action = BPSTAT_WHAT_STOP_SILENT;
5695 break;
5696 case bp_tracepoint:
5697 case bp_fast_tracepoint:
5698 case bp_static_tracepoint:
5699 /* Tracepoint hits should not be reported back to GDB, and
5700 if one got through somehow, it should have been filtered
5701 out already. */
5702 internal_error (__FILE__, __LINE__,
5703 _("bpstat_what: tracepoint encountered"));
5704 break;
5705 case bp_gnu_ifunc_resolver:
5706 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5707 this_action = BPSTAT_WHAT_SINGLE;
5708 break;
5709 case bp_gnu_ifunc_resolver_return:
5710 /* The breakpoint will be removed, execution will restart from the
5711 PC of the former breakpoint. */
5712 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5713 break;
5714
5715 case bp_dprintf:
5716 if (bs->stop)
5717 this_action = BPSTAT_WHAT_STOP_SILENT;
5718 else
5719 this_action = BPSTAT_WHAT_SINGLE;
5720 break;
5721
5722 default:
5723 internal_error (__FILE__, __LINE__,
5724 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5725 }
5726
5727 retval.main_action = std::max (retval.main_action, this_action);
5728 }
5729
5730 return retval;
5731 }
5732
5733 void
5734 bpstat_run_callbacks (bpstat bs_head)
5735 {
5736 bpstat bs;
5737
5738 for (bs = bs_head; bs != NULL; bs = bs->next)
5739 {
5740 struct breakpoint *b = bs->breakpoint_at;
5741
5742 if (b == NULL)
5743 continue;
5744 switch (b->type)
5745 {
5746 case bp_jit_event:
5747 handle_jit_event ();
5748 break;
5749 case bp_gnu_ifunc_resolver:
5750 gnu_ifunc_resolver_stop (b);
5751 break;
5752 case bp_gnu_ifunc_resolver_return:
5753 gnu_ifunc_resolver_return_stop (b);
5754 break;
5755 }
5756 }
5757 }
5758
5759 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5760 without hardware support). This isn't related to a specific bpstat,
5761 just to things like whether watchpoints are set. */
5762
5763 int
5764 bpstat_should_step (void)
5765 {
5766 struct breakpoint *b;
5767
5768 ALL_BREAKPOINTS (b)
5769 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5770 return 1;
5771 return 0;
5772 }
5773
5774 int
5775 bpstat_causes_stop (bpstat bs)
5776 {
5777 for (; bs != NULL; bs = bs->next)
5778 if (bs->stop)
5779 return 1;
5780
5781 return 0;
5782 }
5783
5784 \f
5785
5786 /* Compute a string of spaces suitable to indent the next line
5787 so it starts at the position corresponding to the table column
5788 named COL_NAME in the currently active table of UIOUT. */
5789
5790 static char *
5791 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5792 {
5793 static char wrap_indent[80];
5794 int i, total_width, width, align;
5795 const char *text;
5796
5797 total_width = 0;
5798 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5799 {
5800 if (strcmp (text, col_name) == 0)
5801 {
5802 gdb_assert (total_width < sizeof wrap_indent);
5803 memset (wrap_indent, ' ', total_width);
5804 wrap_indent[total_width] = 0;
5805
5806 return wrap_indent;
5807 }
5808
5809 total_width += width + 1;
5810 }
5811
5812 return NULL;
5813 }
5814
5815 /* Determine if the locations of this breakpoint will have their conditions
5816 evaluated by the target, host or a mix of both. Returns the following:
5817
5818 "host": Host evals condition.
5819 "host or target": Host or Target evals condition.
5820 "target": Target evals condition.
5821 */
5822
5823 static const char *
5824 bp_condition_evaluator (struct breakpoint *b)
5825 {
5826 struct bp_location *bl;
5827 char host_evals = 0;
5828 char target_evals = 0;
5829
5830 if (!b)
5831 return NULL;
5832
5833 if (!is_breakpoint (b))
5834 return NULL;
5835
5836 if (gdb_evaluates_breakpoint_condition_p ()
5837 || !target_supports_evaluation_of_breakpoint_conditions ())
5838 return condition_evaluation_host;
5839
5840 for (bl = b->loc; bl; bl = bl->next)
5841 {
5842 if (bl->cond_bytecode)
5843 target_evals++;
5844 else
5845 host_evals++;
5846 }
5847
5848 if (host_evals && target_evals)
5849 return condition_evaluation_both;
5850 else if (target_evals)
5851 return condition_evaluation_target;
5852 else
5853 return condition_evaluation_host;
5854 }
5855
5856 /* Determine the breakpoint location's condition evaluator. This is
5857 similar to bp_condition_evaluator, but for locations. */
5858
5859 static const char *
5860 bp_location_condition_evaluator (struct bp_location *bl)
5861 {
5862 if (bl && !is_breakpoint (bl->owner))
5863 return NULL;
5864
5865 if (gdb_evaluates_breakpoint_condition_p ()
5866 || !target_supports_evaluation_of_breakpoint_conditions ())
5867 return condition_evaluation_host;
5868
5869 if (bl && bl->cond_bytecode)
5870 return condition_evaluation_target;
5871 else
5872 return condition_evaluation_host;
5873 }
5874
5875 /* Print the LOC location out of the list of B->LOC locations. */
5876
5877 static void
5878 print_breakpoint_location (struct breakpoint *b,
5879 struct bp_location *loc)
5880 {
5881 struct ui_out *uiout = current_uiout;
5882
5883 scoped_restore_current_program_space restore_pspace;
5884
5885 if (loc != NULL && loc->shlib_disabled)
5886 loc = NULL;
5887
5888 if (loc != NULL)
5889 set_current_program_space (loc->pspace);
5890
5891 if (b->display_canonical)
5892 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5893 else if (loc && loc->symtab)
5894 {
5895 const struct symbol *sym = loc->symbol;
5896
5897 if (sym == NULL)
5898 sym = find_pc_sect_function (loc->address, loc->section);
5899
5900 if (sym)
5901 {
5902 uiout->text ("in ");
5903 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5904 uiout->text (" ");
5905 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5906 uiout->text ("at ");
5907 }
5908 uiout->field_string ("file",
5909 symtab_to_filename_for_display (loc->symtab));
5910 uiout->text (":");
5911
5912 if (uiout->is_mi_like_p ())
5913 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5914
5915 uiout->field_int ("line", loc->line_number);
5916 }
5917 else if (loc)
5918 {
5919 string_file stb;
5920
5921 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5922 demangle, "");
5923 uiout->field_stream ("at", stb);
5924 }
5925 else
5926 {
5927 uiout->field_string ("pending",
5928 event_location_to_string (b->location.get ()));
5929 /* If extra_string is available, it could be holding a condition
5930 or dprintf arguments. In either case, make sure it is printed,
5931 too, but only for non-MI streams. */
5932 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5933 {
5934 if (b->type == bp_dprintf)
5935 uiout->text (",");
5936 else
5937 uiout->text (" ");
5938 uiout->text (b->extra_string);
5939 }
5940 }
5941
5942 if (loc && is_breakpoint (b)
5943 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5944 && bp_condition_evaluator (b) == condition_evaluation_both)
5945 {
5946 uiout->text (" (");
5947 uiout->field_string ("evaluated-by",
5948 bp_location_condition_evaluator (loc));
5949 uiout->text (")");
5950 }
5951 }
5952
5953 static const char *
5954 bptype_string (enum bptype type)
5955 {
5956 struct ep_type_description
5957 {
5958 enum bptype type;
5959 const char *description;
5960 };
5961 static struct ep_type_description bptypes[] =
5962 {
5963 {bp_none, "?deleted?"},
5964 {bp_breakpoint, "breakpoint"},
5965 {bp_hardware_breakpoint, "hw breakpoint"},
5966 {bp_single_step, "sw single-step"},
5967 {bp_until, "until"},
5968 {bp_finish, "finish"},
5969 {bp_watchpoint, "watchpoint"},
5970 {bp_hardware_watchpoint, "hw watchpoint"},
5971 {bp_read_watchpoint, "read watchpoint"},
5972 {bp_access_watchpoint, "acc watchpoint"},
5973 {bp_longjmp, "longjmp"},
5974 {bp_longjmp_resume, "longjmp resume"},
5975 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5976 {bp_exception, "exception"},
5977 {bp_exception_resume, "exception resume"},
5978 {bp_step_resume, "step resume"},
5979 {bp_hp_step_resume, "high-priority step resume"},
5980 {bp_watchpoint_scope, "watchpoint scope"},
5981 {bp_call_dummy, "call dummy"},
5982 {bp_std_terminate, "std::terminate"},
5983 {bp_shlib_event, "shlib events"},
5984 {bp_thread_event, "thread events"},
5985 {bp_overlay_event, "overlay events"},
5986 {bp_longjmp_master, "longjmp master"},
5987 {bp_std_terminate_master, "std::terminate master"},
5988 {bp_exception_master, "exception master"},
5989 {bp_catchpoint, "catchpoint"},
5990 {bp_tracepoint, "tracepoint"},
5991 {bp_fast_tracepoint, "fast tracepoint"},
5992 {bp_static_tracepoint, "static tracepoint"},
5993 {bp_dprintf, "dprintf"},
5994 {bp_jit_event, "jit events"},
5995 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5996 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5997 };
5998
5999 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6000 || ((int) type != bptypes[(int) type].type))
6001 internal_error (__FILE__, __LINE__,
6002 _("bptypes table does not describe type #%d."),
6003 (int) type);
6004
6005 return bptypes[(int) type].description;
6006 }
6007
6008 /* For MI, output a field named 'thread-groups' with a list as the value.
6009 For CLI, prefix the list with the string 'inf'. */
6010
6011 static void
6012 output_thread_groups (struct ui_out *uiout,
6013 const char *field_name,
6014 const std::vector<int> &inf_nums,
6015 int mi_only)
6016 {
6017 int is_mi = uiout->is_mi_like_p ();
6018
6019 /* For backward compatibility, don't display inferiors in CLI unless
6020 there are several. Always display them for MI. */
6021 if (!is_mi && mi_only)
6022 return;
6023
6024 ui_out_emit_list list_emitter (uiout, field_name);
6025
6026 for (size_t i = 0; i < inf_nums.size (); i++)
6027 {
6028 if (is_mi)
6029 {
6030 char mi_group[10];
6031
6032 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6033 uiout->field_string (NULL, mi_group);
6034 }
6035 else
6036 {
6037 if (i == 0)
6038 uiout->text (" inf ");
6039 else
6040 uiout->text (", ");
6041
6042 uiout->text (plongest (inf_nums[i]));
6043 }
6044 }
6045 }
6046
6047 /* Print B to gdb_stdout. */
6048
6049 static void
6050 print_one_breakpoint_location (struct breakpoint *b,
6051 struct bp_location *loc,
6052 int loc_number,
6053 struct bp_location **last_loc,
6054 int allflag)
6055 {
6056 struct command_line *l;
6057 static char bpenables[] = "nynny";
6058
6059 struct ui_out *uiout = current_uiout;
6060 int header_of_multiple = 0;
6061 int part_of_multiple = (loc != NULL);
6062 struct value_print_options opts;
6063
6064 get_user_print_options (&opts);
6065
6066 gdb_assert (!loc || loc_number != 0);
6067 /* See comment in print_one_breakpoint concerning treatment of
6068 breakpoints with single disabled location. */
6069 if (loc == NULL
6070 && (b->loc != NULL
6071 && (b->loc->next != NULL || !b->loc->enabled)))
6072 header_of_multiple = 1;
6073 if (loc == NULL)
6074 loc = b->loc;
6075
6076 annotate_record ();
6077
6078 /* 1 */
6079 annotate_field (0);
6080 if (part_of_multiple)
6081 {
6082 char *formatted;
6083 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6084 uiout->field_string ("number", formatted);
6085 xfree (formatted);
6086 }
6087 else
6088 {
6089 uiout->field_int ("number", b->number);
6090 }
6091
6092 /* 2 */
6093 annotate_field (1);
6094 if (part_of_multiple)
6095 uiout->field_skip ("type");
6096 else
6097 uiout->field_string ("type", bptype_string (b->type));
6098
6099 /* 3 */
6100 annotate_field (2);
6101 if (part_of_multiple)
6102 uiout->field_skip ("disp");
6103 else
6104 uiout->field_string ("disp", bpdisp_text (b->disposition));
6105
6106
6107 /* 4 */
6108 annotate_field (3);
6109 if (part_of_multiple)
6110 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6111 else
6112 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6113 uiout->spaces (2);
6114
6115
6116 /* 5 and 6 */
6117 if (b->ops != NULL && b->ops->print_one != NULL)
6118 {
6119 /* Although the print_one can possibly print all locations,
6120 calling it here is not likely to get any nice result. So,
6121 make sure there's just one location. */
6122 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6123 b->ops->print_one (b, last_loc);
6124 }
6125 else
6126 switch (b->type)
6127 {
6128 case bp_none:
6129 internal_error (__FILE__, __LINE__,
6130 _("print_one_breakpoint: bp_none encountered\n"));
6131 break;
6132
6133 case bp_watchpoint:
6134 case bp_hardware_watchpoint:
6135 case bp_read_watchpoint:
6136 case bp_access_watchpoint:
6137 {
6138 struct watchpoint *w = (struct watchpoint *) b;
6139
6140 /* Field 4, the address, is omitted (which makes the columns
6141 not line up too nicely with the headers, but the effect
6142 is relatively readable). */
6143 if (opts.addressprint)
6144 uiout->field_skip ("addr");
6145 annotate_field (5);
6146 uiout->field_string ("what", w->exp_string);
6147 }
6148 break;
6149
6150 case bp_breakpoint:
6151 case bp_hardware_breakpoint:
6152 case bp_single_step:
6153 case bp_until:
6154 case bp_finish:
6155 case bp_longjmp:
6156 case bp_longjmp_resume:
6157 case bp_longjmp_call_dummy:
6158 case bp_exception:
6159 case bp_exception_resume:
6160 case bp_step_resume:
6161 case bp_hp_step_resume:
6162 case bp_watchpoint_scope:
6163 case bp_call_dummy:
6164 case bp_std_terminate:
6165 case bp_shlib_event:
6166 case bp_thread_event:
6167 case bp_overlay_event:
6168 case bp_longjmp_master:
6169 case bp_std_terminate_master:
6170 case bp_exception_master:
6171 case bp_tracepoint:
6172 case bp_fast_tracepoint:
6173 case bp_static_tracepoint:
6174 case bp_dprintf:
6175 case bp_jit_event:
6176 case bp_gnu_ifunc_resolver:
6177 case bp_gnu_ifunc_resolver_return:
6178 if (opts.addressprint)
6179 {
6180 annotate_field (4);
6181 if (header_of_multiple)
6182 uiout->field_string ("addr", "<MULTIPLE>");
6183 else if (b->loc == NULL || loc->shlib_disabled)
6184 uiout->field_string ("addr", "<PENDING>");
6185 else
6186 uiout->field_core_addr ("addr",
6187 loc->gdbarch, loc->address);
6188 }
6189 annotate_field (5);
6190 if (!header_of_multiple)
6191 print_breakpoint_location (b, loc);
6192 if (b->loc)
6193 *last_loc = b->loc;
6194 break;
6195 }
6196
6197
6198 if (loc != NULL && !header_of_multiple)
6199 {
6200 struct inferior *inf;
6201 std::vector<int> inf_nums;
6202 int mi_only = 1;
6203
6204 ALL_INFERIORS (inf)
6205 {
6206 if (inf->pspace == loc->pspace)
6207 inf_nums.push_back (inf->num);
6208 }
6209
6210 /* For backward compatibility, don't display inferiors in CLI unless
6211 there are several. Always display for MI. */
6212 if (allflag
6213 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6214 && (number_of_program_spaces () > 1
6215 || number_of_inferiors () > 1)
6216 /* LOC is for existing B, it cannot be in
6217 moribund_locations and thus having NULL OWNER. */
6218 && loc->owner->type != bp_catchpoint))
6219 mi_only = 0;
6220 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6221 }
6222
6223 if (!part_of_multiple)
6224 {
6225 if (b->thread != -1)
6226 {
6227 /* FIXME: This seems to be redundant and lost here; see the
6228 "stop only in" line a little further down. */
6229 uiout->text (" thread ");
6230 uiout->field_int ("thread", b->thread);
6231 }
6232 else if (b->task != 0)
6233 {
6234 uiout->text (" task ");
6235 uiout->field_int ("task", b->task);
6236 }
6237 }
6238
6239 uiout->text ("\n");
6240
6241 if (!part_of_multiple)
6242 b->ops->print_one_detail (b, uiout);
6243
6244 if (part_of_multiple && frame_id_p (b->frame_id))
6245 {
6246 annotate_field (6);
6247 uiout->text ("\tstop only in stack frame at ");
6248 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6249 the frame ID. */
6250 uiout->field_core_addr ("frame",
6251 b->gdbarch, b->frame_id.stack_addr);
6252 uiout->text ("\n");
6253 }
6254
6255 if (!part_of_multiple && b->cond_string)
6256 {
6257 annotate_field (7);
6258 if (is_tracepoint (b))
6259 uiout->text ("\ttrace only if ");
6260 else
6261 uiout->text ("\tstop only if ");
6262 uiout->field_string ("cond", b->cond_string);
6263
6264 /* Print whether the target is doing the breakpoint's condition
6265 evaluation. If GDB is doing the evaluation, don't print anything. */
6266 if (is_breakpoint (b)
6267 && breakpoint_condition_evaluation_mode ()
6268 == condition_evaluation_target)
6269 {
6270 uiout->text (" (");
6271 uiout->field_string ("evaluated-by",
6272 bp_condition_evaluator (b));
6273 uiout->text (" evals)");
6274 }
6275 uiout->text ("\n");
6276 }
6277
6278 if (!part_of_multiple && b->thread != -1)
6279 {
6280 /* FIXME should make an annotation for this. */
6281 uiout->text ("\tstop only in thread ");
6282 if (uiout->is_mi_like_p ())
6283 uiout->field_int ("thread", b->thread);
6284 else
6285 {
6286 struct thread_info *thr = find_thread_global_id (b->thread);
6287
6288 uiout->field_string ("thread", print_thread_id (thr));
6289 }
6290 uiout->text ("\n");
6291 }
6292
6293 if (!part_of_multiple)
6294 {
6295 if (b->hit_count)
6296 {
6297 /* FIXME should make an annotation for this. */
6298 if (is_catchpoint (b))
6299 uiout->text ("\tcatchpoint");
6300 else if (is_tracepoint (b))
6301 uiout->text ("\ttracepoint");
6302 else
6303 uiout->text ("\tbreakpoint");
6304 uiout->text (" already hit ");
6305 uiout->field_int ("times", b->hit_count);
6306 if (b->hit_count == 1)
6307 uiout->text (" time\n");
6308 else
6309 uiout->text (" times\n");
6310 }
6311 else
6312 {
6313 /* Output the count also if it is zero, but only if this is mi. */
6314 if (uiout->is_mi_like_p ())
6315 uiout->field_int ("times", b->hit_count);
6316 }
6317 }
6318
6319 if (!part_of_multiple && b->ignore_count)
6320 {
6321 annotate_field (8);
6322 uiout->text ("\tignore next ");
6323 uiout->field_int ("ignore", b->ignore_count);
6324 uiout->text (" hits\n");
6325 }
6326
6327 /* Note that an enable count of 1 corresponds to "enable once"
6328 behavior, which is reported by the combination of enablement and
6329 disposition, so we don't need to mention it here. */
6330 if (!part_of_multiple && b->enable_count > 1)
6331 {
6332 annotate_field (8);
6333 uiout->text ("\tdisable after ");
6334 /* Tweak the wording to clarify that ignore and enable counts
6335 are distinct, and have additive effect. */
6336 if (b->ignore_count)
6337 uiout->text ("additional ");
6338 else
6339 uiout->text ("next ");
6340 uiout->field_int ("enable", b->enable_count);
6341 uiout->text (" hits\n");
6342 }
6343
6344 if (!part_of_multiple && is_tracepoint (b))
6345 {
6346 struct tracepoint *tp = (struct tracepoint *) b;
6347
6348 if (tp->traceframe_usage)
6349 {
6350 uiout->text ("\ttrace buffer usage ");
6351 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6352 uiout->text (" bytes\n");
6353 }
6354 }
6355
6356 l = b->commands ? b->commands.get () : NULL;
6357 if (!part_of_multiple && l)
6358 {
6359 annotate_field (9);
6360 ui_out_emit_tuple tuple_emitter (uiout, "script");
6361 print_command_lines (uiout, l, 4);
6362 }
6363
6364 if (is_tracepoint (b))
6365 {
6366 struct tracepoint *t = (struct tracepoint *) b;
6367
6368 if (!part_of_multiple && t->pass_count)
6369 {
6370 annotate_field (10);
6371 uiout->text ("\tpass count ");
6372 uiout->field_int ("pass", t->pass_count);
6373 uiout->text (" \n");
6374 }
6375
6376 /* Don't display it when tracepoint or tracepoint location is
6377 pending. */
6378 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6379 {
6380 annotate_field (11);
6381
6382 if (uiout->is_mi_like_p ())
6383 uiout->field_string ("installed",
6384 loc->inserted ? "y" : "n");
6385 else
6386 {
6387 if (loc->inserted)
6388 uiout->text ("\t");
6389 else
6390 uiout->text ("\tnot ");
6391 uiout->text ("installed on target\n");
6392 }
6393 }
6394 }
6395
6396 if (uiout->is_mi_like_p () && !part_of_multiple)
6397 {
6398 if (is_watchpoint (b))
6399 {
6400 struct watchpoint *w = (struct watchpoint *) b;
6401
6402 uiout->field_string ("original-location", w->exp_string);
6403 }
6404 else if (b->location != NULL
6405 && event_location_to_string (b->location.get ()) != NULL)
6406 uiout->field_string ("original-location",
6407 event_location_to_string (b->location.get ()));
6408 }
6409 }
6410
6411 static void
6412 print_one_breakpoint (struct breakpoint *b,
6413 struct bp_location **last_loc,
6414 int allflag)
6415 {
6416 struct ui_out *uiout = current_uiout;
6417
6418 {
6419 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6420
6421 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6422 }
6423
6424 /* If this breakpoint has custom print function,
6425 it's already printed. Otherwise, print individual
6426 locations, if any. */
6427 if (b->ops == NULL || b->ops->print_one == NULL)
6428 {
6429 /* If breakpoint has a single location that is disabled, we
6430 print it as if it had several locations, since otherwise it's
6431 hard to represent "breakpoint enabled, location disabled"
6432 situation.
6433
6434 Note that while hardware watchpoints have several locations
6435 internally, that's not a property exposed to user. */
6436 if (b->loc
6437 && !is_hardware_watchpoint (b)
6438 && (b->loc->next || !b->loc->enabled))
6439 {
6440 struct bp_location *loc;
6441 int n = 1;
6442
6443 for (loc = b->loc; loc; loc = loc->next, ++n)
6444 {
6445 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6446 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6447 }
6448 }
6449 }
6450 }
6451
6452 static int
6453 breakpoint_address_bits (struct breakpoint *b)
6454 {
6455 int print_address_bits = 0;
6456 struct bp_location *loc;
6457
6458 /* Software watchpoints that aren't watching memory don't have an
6459 address to print. */
6460 if (is_no_memory_software_watchpoint (b))
6461 return 0;
6462
6463 for (loc = b->loc; loc; loc = loc->next)
6464 {
6465 int addr_bit;
6466
6467 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6468 if (addr_bit > print_address_bits)
6469 print_address_bits = addr_bit;
6470 }
6471
6472 return print_address_bits;
6473 }
6474
6475 /* See breakpoint.h. */
6476
6477 void
6478 print_breakpoint (breakpoint *b)
6479 {
6480 struct bp_location *dummy_loc = NULL;
6481 print_one_breakpoint (b, &dummy_loc, 0);
6482 }
6483
6484 /* Return true if this breakpoint was set by the user, false if it is
6485 internal or momentary. */
6486
6487 int
6488 user_breakpoint_p (struct breakpoint *b)
6489 {
6490 return b->number > 0;
6491 }
6492
6493 /* See breakpoint.h. */
6494
6495 int
6496 pending_breakpoint_p (struct breakpoint *b)
6497 {
6498 return b->loc == NULL;
6499 }
6500
6501 /* Print information on user settable breakpoint (watchpoint, etc)
6502 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6503 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6504 FILTER is non-NULL, call it on each breakpoint and only include the
6505 ones for which it returns non-zero. Return the total number of
6506 breakpoints listed. */
6507
6508 static int
6509 breakpoint_1 (const char *args, int allflag,
6510 int (*filter) (const struct breakpoint *))
6511 {
6512 struct breakpoint *b;
6513 struct bp_location *last_loc = NULL;
6514 int nr_printable_breakpoints;
6515 struct value_print_options opts;
6516 int print_address_bits = 0;
6517 int print_type_col_width = 14;
6518 struct ui_out *uiout = current_uiout;
6519
6520 get_user_print_options (&opts);
6521
6522 /* Compute the number of rows in the table, as well as the size
6523 required for address fields. */
6524 nr_printable_breakpoints = 0;
6525 ALL_BREAKPOINTS (b)
6526 {
6527 /* If we have a filter, only list the breakpoints it accepts. */
6528 if (filter && !filter (b))
6529 continue;
6530
6531 /* If we have an "args" string, it is a list of breakpoints to
6532 accept. Skip the others. */
6533 if (args != NULL && *args != '\0')
6534 {
6535 if (allflag && parse_and_eval_long (args) != b->number)
6536 continue;
6537 if (!allflag && !number_is_in_list (args, b->number))
6538 continue;
6539 }
6540
6541 if (allflag || user_breakpoint_p (b))
6542 {
6543 int addr_bit, type_len;
6544
6545 addr_bit = breakpoint_address_bits (b);
6546 if (addr_bit > print_address_bits)
6547 print_address_bits = addr_bit;
6548
6549 type_len = strlen (bptype_string (b->type));
6550 if (type_len > print_type_col_width)
6551 print_type_col_width = type_len;
6552
6553 nr_printable_breakpoints++;
6554 }
6555 }
6556
6557 {
6558 ui_out_emit_table table_emitter (uiout,
6559 opts.addressprint ? 6 : 5,
6560 nr_printable_breakpoints,
6561 "BreakpointTable");
6562
6563 if (nr_printable_breakpoints > 0)
6564 annotate_breakpoints_headers ();
6565 if (nr_printable_breakpoints > 0)
6566 annotate_field (0);
6567 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6568 if (nr_printable_breakpoints > 0)
6569 annotate_field (1);
6570 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6571 if (nr_printable_breakpoints > 0)
6572 annotate_field (2);
6573 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6574 if (nr_printable_breakpoints > 0)
6575 annotate_field (3);
6576 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6577 if (opts.addressprint)
6578 {
6579 if (nr_printable_breakpoints > 0)
6580 annotate_field (4);
6581 if (print_address_bits <= 32)
6582 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6583 else
6584 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6585 }
6586 if (nr_printable_breakpoints > 0)
6587 annotate_field (5);
6588 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6589 uiout->table_body ();
6590 if (nr_printable_breakpoints > 0)
6591 annotate_breakpoints_table ();
6592
6593 ALL_BREAKPOINTS (b)
6594 {
6595 QUIT;
6596 /* If we have a filter, only list the breakpoints it accepts. */
6597 if (filter && !filter (b))
6598 continue;
6599
6600 /* If we have an "args" string, it is a list of breakpoints to
6601 accept. Skip the others. */
6602
6603 if (args != NULL && *args != '\0')
6604 {
6605 if (allflag) /* maintenance info breakpoint */
6606 {
6607 if (parse_and_eval_long (args) != b->number)
6608 continue;
6609 }
6610 else /* all others */
6611 {
6612 if (!number_is_in_list (args, b->number))
6613 continue;
6614 }
6615 }
6616 /* We only print out user settable breakpoints unless the
6617 allflag is set. */
6618 if (allflag || user_breakpoint_p (b))
6619 print_one_breakpoint (b, &last_loc, allflag);
6620 }
6621 }
6622
6623 if (nr_printable_breakpoints == 0)
6624 {
6625 /* If there's a filter, let the caller decide how to report
6626 empty list. */
6627 if (!filter)
6628 {
6629 if (args == NULL || *args == '\0')
6630 uiout->message ("No breakpoints or watchpoints.\n");
6631 else
6632 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6633 args);
6634 }
6635 }
6636 else
6637 {
6638 if (last_loc && !server_command)
6639 set_next_address (last_loc->gdbarch, last_loc->address);
6640 }
6641
6642 /* FIXME? Should this be moved up so that it is only called when
6643 there have been breakpoints? */
6644 annotate_breakpoints_table_end ();
6645
6646 return nr_printable_breakpoints;
6647 }
6648
6649 /* Display the value of default-collect in a way that is generally
6650 compatible with the breakpoint list. */
6651
6652 static void
6653 default_collect_info (void)
6654 {
6655 struct ui_out *uiout = current_uiout;
6656
6657 /* If it has no value (which is frequently the case), say nothing; a
6658 message like "No default-collect." gets in user's face when it's
6659 not wanted. */
6660 if (!*default_collect)
6661 return;
6662
6663 /* The following phrase lines up nicely with per-tracepoint collect
6664 actions. */
6665 uiout->text ("default collect ");
6666 uiout->field_string ("default-collect", default_collect);
6667 uiout->text (" \n");
6668 }
6669
6670 static void
6671 info_breakpoints_command (const char *args, int from_tty)
6672 {
6673 breakpoint_1 (args, 0, NULL);
6674
6675 default_collect_info ();
6676 }
6677
6678 static void
6679 info_watchpoints_command (const char *args, int from_tty)
6680 {
6681 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6682 struct ui_out *uiout = current_uiout;
6683
6684 if (num_printed == 0)
6685 {
6686 if (args == NULL || *args == '\0')
6687 uiout->message ("No watchpoints.\n");
6688 else
6689 uiout->message ("No watchpoint matching '%s'.\n", args);
6690 }
6691 }
6692
6693 static void
6694 maintenance_info_breakpoints (const char *args, int from_tty)
6695 {
6696 breakpoint_1 (args, 1, NULL);
6697
6698 default_collect_info ();
6699 }
6700
6701 static int
6702 breakpoint_has_pc (struct breakpoint *b,
6703 struct program_space *pspace,
6704 CORE_ADDR pc, struct obj_section *section)
6705 {
6706 struct bp_location *bl = b->loc;
6707
6708 for (; bl; bl = bl->next)
6709 {
6710 if (bl->pspace == pspace
6711 && bl->address == pc
6712 && (!overlay_debugging || bl->section == section))
6713 return 1;
6714 }
6715 return 0;
6716 }
6717
6718 /* Print a message describing any user-breakpoints set at PC. This
6719 concerns with logical breakpoints, so we match program spaces, not
6720 address spaces. */
6721
6722 static void
6723 describe_other_breakpoints (struct gdbarch *gdbarch,
6724 struct program_space *pspace, CORE_ADDR pc,
6725 struct obj_section *section, int thread)
6726 {
6727 int others = 0;
6728 struct breakpoint *b;
6729
6730 ALL_BREAKPOINTS (b)
6731 others += (user_breakpoint_p (b)
6732 && breakpoint_has_pc (b, pspace, pc, section));
6733 if (others > 0)
6734 {
6735 if (others == 1)
6736 printf_filtered (_("Note: breakpoint "));
6737 else /* if (others == ???) */
6738 printf_filtered (_("Note: breakpoints "));
6739 ALL_BREAKPOINTS (b)
6740 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6741 {
6742 others--;
6743 printf_filtered ("%d", b->number);
6744 if (b->thread == -1 && thread != -1)
6745 printf_filtered (" (all threads)");
6746 else if (b->thread != -1)
6747 printf_filtered (" (thread %d)", b->thread);
6748 printf_filtered ("%s%s ",
6749 ((b->enable_state == bp_disabled
6750 || b->enable_state == bp_call_disabled)
6751 ? " (disabled)"
6752 : ""),
6753 (others > 1) ? ","
6754 : ((others == 1) ? " and" : ""));
6755 }
6756 printf_filtered (_("also set at pc "));
6757 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6758 printf_filtered (".\n");
6759 }
6760 }
6761 \f
6762
6763 /* Return true iff it is meaningful to use the address member of
6764 BPT locations. For some breakpoint types, the locations' address members
6765 are irrelevant and it makes no sense to attempt to compare them to other
6766 addresses (or use them for any other purpose either).
6767
6768 More specifically, each of the following breakpoint types will
6769 always have a zero valued location address and we don't want to mark
6770 breakpoints of any of these types to be a duplicate of an actual
6771 breakpoint location at address zero:
6772
6773 bp_watchpoint
6774 bp_catchpoint
6775
6776 */
6777
6778 static int
6779 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6780 {
6781 enum bptype type = bpt->type;
6782
6783 return (type != bp_watchpoint && type != bp_catchpoint);
6784 }
6785
6786 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6787 true if LOC1 and LOC2 represent the same watchpoint location. */
6788
6789 static int
6790 watchpoint_locations_match (struct bp_location *loc1,
6791 struct bp_location *loc2)
6792 {
6793 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6794 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6795
6796 /* Both of them must exist. */
6797 gdb_assert (w1 != NULL);
6798 gdb_assert (w2 != NULL);
6799
6800 /* If the target can evaluate the condition expression in hardware,
6801 then we we need to insert both watchpoints even if they are at
6802 the same place. Otherwise the watchpoint will only trigger when
6803 the condition of whichever watchpoint was inserted evaluates to
6804 true, not giving a chance for GDB to check the condition of the
6805 other watchpoint. */
6806 if ((w1->cond_exp
6807 && target_can_accel_watchpoint_condition (loc1->address,
6808 loc1->length,
6809 loc1->watchpoint_type,
6810 w1->cond_exp.get ()))
6811 || (w2->cond_exp
6812 && target_can_accel_watchpoint_condition (loc2->address,
6813 loc2->length,
6814 loc2->watchpoint_type,
6815 w2->cond_exp.get ())))
6816 return 0;
6817
6818 /* Note that this checks the owner's type, not the location's. In
6819 case the target does not support read watchpoints, but does
6820 support access watchpoints, we'll have bp_read_watchpoint
6821 watchpoints with hw_access locations. Those should be considered
6822 duplicates of hw_read locations. The hw_read locations will
6823 become hw_access locations later. */
6824 return (loc1->owner->type == loc2->owner->type
6825 && loc1->pspace->aspace == loc2->pspace->aspace
6826 && loc1->address == loc2->address
6827 && loc1->length == loc2->length);
6828 }
6829
6830 /* See breakpoint.h. */
6831
6832 int
6833 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6834 const address_space *aspace2, CORE_ADDR addr2)
6835 {
6836 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6837 || aspace1 == aspace2)
6838 && addr1 == addr2);
6839 }
6840
6841 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6842 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6843 matches ASPACE2. On targets that have global breakpoints, the address
6844 space doesn't really matter. */
6845
6846 static int
6847 breakpoint_address_match_range (const address_space *aspace1,
6848 CORE_ADDR addr1,
6849 int len1, const address_space *aspace2,
6850 CORE_ADDR addr2)
6851 {
6852 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6853 || aspace1 == aspace2)
6854 && addr2 >= addr1 && addr2 < addr1 + len1);
6855 }
6856
6857 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6858 a ranged breakpoint. In most targets, a match happens only if ASPACE
6859 matches the breakpoint's address space. On targets that have global
6860 breakpoints, the address space doesn't really matter. */
6861
6862 static int
6863 breakpoint_location_address_match (struct bp_location *bl,
6864 const address_space *aspace,
6865 CORE_ADDR addr)
6866 {
6867 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6868 aspace, addr)
6869 || (bl->length
6870 && breakpoint_address_match_range (bl->pspace->aspace,
6871 bl->address, bl->length,
6872 aspace, addr)));
6873 }
6874
6875 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6876 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6877 match happens only if ASPACE matches the breakpoint's address
6878 space. On targets that have global breakpoints, the address space
6879 doesn't really matter. */
6880
6881 static int
6882 breakpoint_location_address_range_overlap (struct bp_location *bl,
6883 const address_space *aspace,
6884 CORE_ADDR addr, int len)
6885 {
6886 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6887 || bl->pspace->aspace == aspace)
6888 {
6889 int bl_len = bl->length != 0 ? bl->length : 1;
6890
6891 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6892 return 1;
6893 }
6894 return 0;
6895 }
6896
6897 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6898 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6899 true, otherwise returns false. */
6900
6901 static int
6902 tracepoint_locations_match (struct bp_location *loc1,
6903 struct bp_location *loc2)
6904 {
6905 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6906 /* Since tracepoint locations are never duplicated with others', tracepoint
6907 locations at the same address of different tracepoints are regarded as
6908 different locations. */
6909 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6910 else
6911 return 0;
6912 }
6913
6914 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6915 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6916 represent the same location. */
6917
6918 static int
6919 breakpoint_locations_match (struct bp_location *loc1,
6920 struct bp_location *loc2)
6921 {
6922 int hw_point1, hw_point2;
6923
6924 /* Both of them must not be in moribund_locations. */
6925 gdb_assert (loc1->owner != NULL);
6926 gdb_assert (loc2->owner != NULL);
6927
6928 hw_point1 = is_hardware_watchpoint (loc1->owner);
6929 hw_point2 = is_hardware_watchpoint (loc2->owner);
6930
6931 if (hw_point1 != hw_point2)
6932 return 0;
6933 else if (hw_point1)
6934 return watchpoint_locations_match (loc1, loc2);
6935 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6936 return tracepoint_locations_match (loc1, loc2);
6937 else
6938 /* We compare bp_location.length in order to cover ranged breakpoints. */
6939 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6940 loc2->pspace->aspace, loc2->address)
6941 && loc1->length == loc2->length);
6942 }
6943
6944 static void
6945 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6946 int bnum, int have_bnum)
6947 {
6948 /* The longest string possibly returned by hex_string_custom
6949 is 50 chars. These must be at least that big for safety. */
6950 char astr1[64];
6951 char astr2[64];
6952
6953 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6954 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6955 if (have_bnum)
6956 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6957 bnum, astr1, astr2);
6958 else
6959 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6960 }
6961
6962 /* Adjust a breakpoint's address to account for architectural
6963 constraints on breakpoint placement. Return the adjusted address.
6964 Note: Very few targets require this kind of adjustment. For most
6965 targets, this function is simply the identity function. */
6966
6967 static CORE_ADDR
6968 adjust_breakpoint_address (struct gdbarch *gdbarch,
6969 CORE_ADDR bpaddr, enum bptype bptype)
6970 {
6971 if (bptype == bp_watchpoint
6972 || bptype == bp_hardware_watchpoint
6973 || bptype == bp_read_watchpoint
6974 || bptype == bp_access_watchpoint
6975 || bptype == bp_catchpoint)
6976 {
6977 /* Watchpoints and the various bp_catch_* eventpoints should not
6978 have their addresses modified. */
6979 return bpaddr;
6980 }
6981 else if (bptype == bp_single_step)
6982 {
6983 /* Single-step breakpoints should not have their addresses
6984 modified. If there's any architectural constrain that
6985 applies to this address, then it should have already been
6986 taken into account when the breakpoint was created in the
6987 first place. If we didn't do this, stepping through e.g.,
6988 Thumb-2 IT blocks would break. */
6989 return bpaddr;
6990 }
6991 else
6992 {
6993 CORE_ADDR adjusted_bpaddr = bpaddr;
6994
6995 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6996 {
6997 /* Some targets have architectural constraints on the placement
6998 of breakpoint instructions. Obtain the adjusted address. */
6999 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7000 }
7001
7002 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
7003
7004 /* An adjusted breakpoint address can significantly alter
7005 a user's expectations. Print a warning if an adjustment
7006 is required. */
7007 if (adjusted_bpaddr != bpaddr)
7008 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7009
7010 return adjusted_bpaddr;
7011 }
7012 }
7013
7014 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7015 {
7016 bp_location *loc = this;
7017
7018 gdb_assert (ops != NULL);
7019
7020 loc->ops = ops;
7021 loc->owner = owner;
7022 loc->cond_bytecode = NULL;
7023 loc->shlib_disabled = 0;
7024 loc->enabled = 1;
7025
7026 switch (owner->type)
7027 {
7028 case bp_breakpoint:
7029 case bp_single_step:
7030 case bp_until:
7031 case bp_finish:
7032 case bp_longjmp:
7033 case bp_longjmp_resume:
7034 case bp_longjmp_call_dummy:
7035 case bp_exception:
7036 case bp_exception_resume:
7037 case bp_step_resume:
7038 case bp_hp_step_resume:
7039 case bp_watchpoint_scope:
7040 case bp_call_dummy:
7041 case bp_std_terminate:
7042 case bp_shlib_event:
7043 case bp_thread_event:
7044 case bp_overlay_event:
7045 case bp_jit_event:
7046 case bp_longjmp_master:
7047 case bp_std_terminate_master:
7048 case bp_exception_master:
7049 case bp_gnu_ifunc_resolver:
7050 case bp_gnu_ifunc_resolver_return:
7051 case bp_dprintf:
7052 loc->loc_type = bp_loc_software_breakpoint;
7053 mark_breakpoint_location_modified (loc);
7054 break;
7055 case bp_hardware_breakpoint:
7056 loc->loc_type = bp_loc_hardware_breakpoint;
7057 mark_breakpoint_location_modified (loc);
7058 break;
7059 case bp_hardware_watchpoint:
7060 case bp_read_watchpoint:
7061 case bp_access_watchpoint:
7062 loc->loc_type = bp_loc_hardware_watchpoint;
7063 break;
7064 case bp_watchpoint:
7065 case bp_catchpoint:
7066 case bp_tracepoint:
7067 case bp_fast_tracepoint:
7068 case bp_static_tracepoint:
7069 loc->loc_type = bp_loc_other;
7070 break;
7071 default:
7072 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7073 }
7074
7075 loc->refc = 1;
7076 }
7077
7078 /* Allocate a struct bp_location. */
7079
7080 static struct bp_location *
7081 allocate_bp_location (struct breakpoint *bpt)
7082 {
7083 return bpt->ops->allocate_location (bpt);
7084 }
7085
7086 static void
7087 free_bp_location (struct bp_location *loc)
7088 {
7089 loc->ops->dtor (loc);
7090 delete loc;
7091 }
7092
7093 /* Increment reference count. */
7094
7095 static void
7096 incref_bp_location (struct bp_location *bl)
7097 {
7098 ++bl->refc;
7099 }
7100
7101 /* Decrement reference count. If the reference count reaches 0,
7102 destroy the bp_location. Sets *BLP to NULL. */
7103
7104 static void
7105 decref_bp_location (struct bp_location **blp)
7106 {
7107 gdb_assert ((*blp)->refc > 0);
7108
7109 if (--(*blp)->refc == 0)
7110 free_bp_location (*blp);
7111 *blp = NULL;
7112 }
7113
7114 /* Add breakpoint B at the end of the global breakpoint chain. */
7115
7116 static breakpoint *
7117 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7118 {
7119 struct breakpoint *b1;
7120 struct breakpoint *result = b.get ();
7121
7122 /* Add this breakpoint to the end of the chain so that a list of
7123 breakpoints will come out in order of increasing numbers. */
7124
7125 b1 = breakpoint_chain;
7126 if (b1 == 0)
7127 breakpoint_chain = b.release ();
7128 else
7129 {
7130 while (b1->next)
7131 b1 = b1->next;
7132 b1->next = b.release ();
7133 }
7134
7135 return result;
7136 }
7137
7138 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7139
7140 static void
7141 init_raw_breakpoint_without_location (struct breakpoint *b,
7142 struct gdbarch *gdbarch,
7143 enum bptype bptype,
7144 const struct breakpoint_ops *ops)
7145 {
7146 gdb_assert (ops != NULL);
7147
7148 b->ops = ops;
7149 b->type = bptype;
7150 b->gdbarch = gdbarch;
7151 b->language = current_language->la_language;
7152 b->input_radix = input_radix;
7153 b->related_breakpoint = b;
7154 }
7155
7156 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7157 that has type BPTYPE and has no locations as yet. */
7158
7159 static struct breakpoint *
7160 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7161 enum bptype bptype,
7162 const struct breakpoint_ops *ops)
7163 {
7164 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7165
7166 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7167 return add_to_breakpoint_chain (std::move (b));
7168 }
7169
7170 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7171 resolutions should be made as the user specified the location explicitly
7172 enough. */
7173
7174 static void
7175 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7176 {
7177 gdb_assert (loc->owner != NULL);
7178
7179 if (loc->owner->type == bp_breakpoint
7180 || loc->owner->type == bp_hardware_breakpoint
7181 || is_tracepoint (loc->owner))
7182 {
7183 int is_gnu_ifunc;
7184 const char *function_name;
7185 CORE_ADDR func_addr;
7186
7187 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7188 &func_addr, NULL, &is_gnu_ifunc);
7189
7190 if (is_gnu_ifunc && !explicit_loc)
7191 {
7192 struct breakpoint *b = loc->owner;
7193
7194 gdb_assert (loc->pspace == current_program_space);
7195 if (gnu_ifunc_resolve_name (function_name,
7196 &loc->requested_address))
7197 {
7198 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7199 loc->address = adjust_breakpoint_address (loc->gdbarch,
7200 loc->requested_address,
7201 b->type);
7202 }
7203 else if (b->type == bp_breakpoint && b->loc == loc
7204 && loc->next == NULL && b->related_breakpoint == b)
7205 {
7206 /* Create only the whole new breakpoint of this type but do not
7207 mess more complicated breakpoints with multiple locations. */
7208 b->type = bp_gnu_ifunc_resolver;
7209 /* Remember the resolver's address for use by the return
7210 breakpoint. */
7211 loc->related_address = func_addr;
7212 }
7213 }
7214
7215 if (function_name)
7216 loc->function_name = xstrdup (function_name);
7217 }
7218 }
7219
7220 /* Attempt to determine architecture of location identified by SAL. */
7221 struct gdbarch *
7222 get_sal_arch (struct symtab_and_line sal)
7223 {
7224 if (sal.section)
7225 return get_objfile_arch (sal.section->objfile);
7226 if (sal.symtab)
7227 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7228
7229 return NULL;
7230 }
7231
7232 /* Low level routine for partially initializing a breakpoint of type
7233 BPTYPE. The newly created breakpoint's address, section, source
7234 file name, and line number are provided by SAL.
7235
7236 It is expected that the caller will complete the initialization of
7237 the newly created breakpoint struct as well as output any status
7238 information regarding the creation of a new breakpoint. */
7239
7240 static void
7241 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7242 struct symtab_and_line sal, enum bptype bptype,
7243 const struct breakpoint_ops *ops)
7244 {
7245 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7246
7247 add_location_to_breakpoint (b, &sal);
7248
7249 if (bptype != bp_catchpoint)
7250 gdb_assert (sal.pspace != NULL);
7251
7252 /* Store the program space that was used to set the breakpoint,
7253 except for ordinary breakpoints, which are independent of the
7254 program space. */
7255 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7256 b->pspace = sal.pspace;
7257 }
7258
7259 /* set_raw_breakpoint is a low level routine for allocating and
7260 partially initializing a breakpoint of type BPTYPE. The newly
7261 created breakpoint's address, section, source file name, and line
7262 number are provided by SAL. The newly created and partially
7263 initialized breakpoint is added to the breakpoint chain and
7264 is also returned as the value of this function.
7265
7266 It is expected that the caller will complete the initialization of
7267 the newly created breakpoint struct as well as output any status
7268 information regarding the creation of a new breakpoint. In
7269 particular, set_raw_breakpoint does NOT set the breakpoint
7270 number! Care should be taken to not allow an error to occur
7271 prior to completing the initialization of the breakpoint. If this
7272 should happen, a bogus breakpoint will be left on the chain. */
7273
7274 struct breakpoint *
7275 set_raw_breakpoint (struct gdbarch *gdbarch,
7276 struct symtab_and_line sal, enum bptype bptype,
7277 const struct breakpoint_ops *ops)
7278 {
7279 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7280
7281 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7282 return add_to_breakpoint_chain (std::move (b));
7283 }
7284
7285 /* Call this routine when stepping and nexting to enable a breakpoint
7286 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7287 initiated the operation. */
7288
7289 void
7290 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7291 {
7292 struct breakpoint *b, *b_tmp;
7293 int thread = tp->global_num;
7294
7295 /* To avoid having to rescan all objfile symbols at every step,
7296 we maintain a list of continually-inserted but always disabled
7297 longjmp "master" breakpoints. Here, we simply create momentary
7298 clones of those and enable them for the requested thread. */
7299 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7300 if (b->pspace == current_program_space
7301 && (b->type == bp_longjmp_master
7302 || b->type == bp_exception_master))
7303 {
7304 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7305 struct breakpoint *clone;
7306
7307 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7308 after their removal. */
7309 clone = momentary_breakpoint_from_master (b, type,
7310 &momentary_breakpoint_ops, 1);
7311 clone->thread = thread;
7312 }
7313
7314 tp->initiating_frame = frame;
7315 }
7316
7317 /* Delete all longjmp breakpoints from THREAD. */
7318 void
7319 delete_longjmp_breakpoint (int thread)
7320 {
7321 struct breakpoint *b, *b_tmp;
7322
7323 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7324 if (b->type == bp_longjmp || b->type == bp_exception)
7325 {
7326 if (b->thread == thread)
7327 delete_breakpoint (b);
7328 }
7329 }
7330
7331 void
7332 delete_longjmp_breakpoint_at_next_stop (int thread)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->type == bp_longjmp || b->type == bp_exception)
7338 {
7339 if (b->thread == thread)
7340 b->disposition = disp_del_at_next_stop;
7341 }
7342 }
7343
7344 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7345 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7346 pointer to any of them. Return NULL if this system cannot place longjmp
7347 breakpoints. */
7348
7349 struct breakpoint *
7350 set_longjmp_breakpoint_for_call_dummy (void)
7351 {
7352 struct breakpoint *b, *retval = NULL;
7353
7354 ALL_BREAKPOINTS (b)
7355 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7356 {
7357 struct breakpoint *new_b;
7358
7359 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7360 &momentary_breakpoint_ops,
7361 1);
7362 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7363
7364 /* Link NEW_B into the chain of RETVAL breakpoints. */
7365
7366 gdb_assert (new_b->related_breakpoint == new_b);
7367 if (retval == NULL)
7368 retval = new_b;
7369 new_b->related_breakpoint = retval;
7370 while (retval->related_breakpoint != new_b->related_breakpoint)
7371 retval = retval->related_breakpoint;
7372 retval->related_breakpoint = new_b;
7373 }
7374
7375 return retval;
7376 }
7377
7378 /* Verify all existing dummy frames and their associated breakpoints for
7379 TP. Remove those which can no longer be found in the current frame
7380 stack.
7381
7382 You should call this function only at places where it is safe to currently
7383 unwind the whole stack. Failed stack unwind would discard live dummy
7384 frames. */
7385
7386 void
7387 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7388 {
7389 struct breakpoint *b, *b_tmp;
7390
7391 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7392 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7393 {
7394 struct breakpoint *dummy_b = b->related_breakpoint;
7395
7396 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7397 dummy_b = dummy_b->related_breakpoint;
7398 if (dummy_b->type != bp_call_dummy
7399 || frame_find_by_id (dummy_b->frame_id) != NULL)
7400 continue;
7401
7402 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7403
7404 while (b->related_breakpoint != b)
7405 {
7406 if (b_tmp == b->related_breakpoint)
7407 b_tmp = b->related_breakpoint->next;
7408 delete_breakpoint (b->related_breakpoint);
7409 }
7410 delete_breakpoint (b);
7411 }
7412 }
7413
7414 void
7415 enable_overlay_breakpoints (void)
7416 {
7417 struct breakpoint *b;
7418
7419 ALL_BREAKPOINTS (b)
7420 if (b->type == bp_overlay_event)
7421 {
7422 b->enable_state = bp_enabled;
7423 update_global_location_list (UGLL_MAY_INSERT);
7424 overlay_events_enabled = 1;
7425 }
7426 }
7427
7428 void
7429 disable_overlay_breakpoints (void)
7430 {
7431 struct breakpoint *b;
7432
7433 ALL_BREAKPOINTS (b)
7434 if (b->type == bp_overlay_event)
7435 {
7436 b->enable_state = bp_disabled;
7437 update_global_location_list (UGLL_DONT_INSERT);
7438 overlay_events_enabled = 0;
7439 }
7440 }
7441
7442 /* Set an active std::terminate breakpoint for each std::terminate
7443 master breakpoint. */
7444 void
7445 set_std_terminate_breakpoint (void)
7446 {
7447 struct breakpoint *b, *b_tmp;
7448
7449 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7450 if (b->pspace == current_program_space
7451 && b->type == bp_std_terminate_master)
7452 {
7453 momentary_breakpoint_from_master (b, bp_std_terminate,
7454 &momentary_breakpoint_ops, 1);
7455 }
7456 }
7457
7458 /* Delete all the std::terminate breakpoints. */
7459 void
7460 delete_std_terminate_breakpoint (void)
7461 {
7462 struct breakpoint *b, *b_tmp;
7463
7464 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7465 if (b->type == bp_std_terminate)
7466 delete_breakpoint (b);
7467 }
7468
7469 struct breakpoint *
7470 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7471 {
7472 struct breakpoint *b;
7473
7474 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7475 &internal_breakpoint_ops);
7476
7477 b->enable_state = bp_enabled;
7478 /* location has to be used or breakpoint_re_set will delete me. */
7479 b->location = new_address_location (b->loc->address, NULL, 0);
7480
7481 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7482
7483 return b;
7484 }
7485
7486 struct lang_and_radix
7487 {
7488 enum language lang;
7489 int radix;
7490 };
7491
7492 /* Create a breakpoint for JIT code registration and unregistration. */
7493
7494 struct breakpoint *
7495 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7496 {
7497 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7498 &internal_breakpoint_ops);
7499 }
7500
7501 /* Remove JIT code registration and unregistration breakpoint(s). */
7502
7503 void
7504 remove_jit_event_breakpoints (void)
7505 {
7506 struct breakpoint *b, *b_tmp;
7507
7508 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7509 if (b->type == bp_jit_event
7510 && b->loc->pspace == current_program_space)
7511 delete_breakpoint (b);
7512 }
7513
7514 void
7515 remove_solib_event_breakpoints (void)
7516 {
7517 struct breakpoint *b, *b_tmp;
7518
7519 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7520 if (b->type == bp_shlib_event
7521 && b->loc->pspace == current_program_space)
7522 delete_breakpoint (b);
7523 }
7524
7525 /* See breakpoint.h. */
7526
7527 void
7528 remove_solib_event_breakpoints_at_next_stop (void)
7529 {
7530 struct breakpoint *b, *b_tmp;
7531
7532 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7533 if (b->type == bp_shlib_event
7534 && b->loc->pspace == current_program_space)
7535 b->disposition = disp_del_at_next_stop;
7536 }
7537
7538 /* Helper for create_solib_event_breakpoint /
7539 create_and_insert_solib_event_breakpoint. Allows specifying which
7540 INSERT_MODE to pass through to update_global_location_list. */
7541
7542 static struct breakpoint *
7543 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7544 enum ugll_insert_mode insert_mode)
7545 {
7546 struct breakpoint *b;
7547
7548 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7549 &internal_breakpoint_ops);
7550 update_global_location_list_nothrow (insert_mode);
7551 return b;
7552 }
7553
7554 struct breakpoint *
7555 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7556 {
7557 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7558 }
7559
7560 /* See breakpoint.h. */
7561
7562 struct breakpoint *
7563 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7564 {
7565 struct breakpoint *b;
7566
7567 /* Explicitly tell update_global_location_list to insert
7568 locations. */
7569 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7570 if (!b->loc->inserted)
7571 {
7572 delete_breakpoint (b);
7573 return NULL;
7574 }
7575 return b;
7576 }
7577
7578 /* Disable any breakpoints that are on code in shared libraries. Only
7579 apply to enabled breakpoints, disabled ones can just stay disabled. */
7580
7581 void
7582 disable_breakpoints_in_shlibs (void)
7583 {
7584 struct bp_location *loc, **locp_tmp;
7585
7586 ALL_BP_LOCATIONS (loc, locp_tmp)
7587 {
7588 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7589 struct breakpoint *b = loc->owner;
7590
7591 /* We apply the check to all breakpoints, including disabled for
7592 those with loc->duplicate set. This is so that when breakpoint
7593 becomes enabled, or the duplicate is removed, gdb will try to
7594 insert all breakpoints. If we don't set shlib_disabled here,
7595 we'll try to insert those breakpoints and fail. */
7596 if (((b->type == bp_breakpoint)
7597 || (b->type == bp_jit_event)
7598 || (b->type == bp_hardware_breakpoint)
7599 || (is_tracepoint (b)))
7600 && loc->pspace == current_program_space
7601 && !loc->shlib_disabled
7602 && solib_name_from_address (loc->pspace, loc->address)
7603 )
7604 {
7605 loc->shlib_disabled = 1;
7606 }
7607 }
7608 }
7609
7610 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7611 notification of unloaded_shlib. Only apply to enabled breakpoints,
7612 disabled ones can just stay disabled. */
7613
7614 static void
7615 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7616 {
7617 struct bp_location *loc, **locp_tmp;
7618 int disabled_shlib_breaks = 0;
7619
7620 ALL_BP_LOCATIONS (loc, locp_tmp)
7621 {
7622 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7623 struct breakpoint *b = loc->owner;
7624
7625 if (solib->pspace == loc->pspace
7626 && !loc->shlib_disabled
7627 && (((b->type == bp_breakpoint
7628 || b->type == bp_jit_event
7629 || b->type == bp_hardware_breakpoint)
7630 && (loc->loc_type == bp_loc_hardware_breakpoint
7631 || loc->loc_type == bp_loc_software_breakpoint))
7632 || is_tracepoint (b))
7633 && solib_contains_address_p (solib, loc->address))
7634 {
7635 loc->shlib_disabled = 1;
7636 /* At this point, we cannot rely on remove_breakpoint
7637 succeeding so we must mark the breakpoint as not inserted
7638 to prevent future errors occurring in remove_breakpoints. */
7639 loc->inserted = 0;
7640
7641 /* This may cause duplicate notifications for the same breakpoint. */
7642 gdb::observers::breakpoint_modified.notify (b);
7643
7644 if (!disabled_shlib_breaks)
7645 {
7646 target_terminal::ours_for_output ();
7647 warning (_("Temporarily disabling breakpoints "
7648 "for unloaded shared library \"%s\""),
7649 solib->so_name);
7650 }
7651 disabled_shlib_breaks = 1;
7652 }
7653 }
7654 }
7655
7656 /* Disable any breakpoints and tracepoints in OBJFILE upon
7657 notification of free_objfile. Only apply to enabled breakpoints,
7658 disabled ones can just stay disabled. */
7659
7660 static void
7661 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7662 {
7663 struct breakpoint *b;
7664
7665 if (objfile == NULL)
7666 return;
7667
7668 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7669 managed by the user with add-symbol-file/remove-symbol-file.
7670 Similarly to how breakpoints in shared libraries are handled in
7671 response to "nosharedlibrary", mark breakpoints in such modules
7672 shlib_disabled so they end up uninserted on the next global
7673 location list update. Shared libraries not loaded by the user
7674 aren't handled here -- they're already handled in
7675 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7676 solib_unloaded observer. We skip objfiles that are not
7677 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7678 main objfile). */
7679 if ((objfile->flags & OBJF_SHARED) == 0
7680 || (objfile->flags & OBJF_USERLOADED) == 0)
7681 return;
7682
7683 ALL_BREAKPOINTS (b)
7684 {
7685 struct bp_location *loc;
7686 int bp_modified = 0;
7687
7688 if (!is_breakpoint (b) && !is_tracepoint (b))
7689 continue;
7690
7691 for (loc = b->loc; loc != NULL; loc = loc->next)
7692 {
7693 CORE_ADDR loc_addr = loc->address;
7694
7695 if (loc->loc_type != bp_loc_hardware_breakpoint
7696 && loc->loc_type != bp_loc_software_breakpoint)
7697 continue;
7698
7699 if (loc->shlib_disabled != 0)
7700 continue;
7701
7702 if (objfile->pspace != loc->pspace)
7703 continue;
7704
7705 if (loc->loc_type != bp_loc_hardware_breakpoint
7706 && loc->loc_type != bp_loc_software_breakpoint)
7707 continue;
7708
7709 if (is_addr_in_objfile (loc_addr, objfile))
7710 {
7711 loc->shlib_disabled = 1;
7712 /* At this point, we don't know whether the object was
7713 unmapped from the inferior or not, so leave the
7714 inserted flag alone. We'll handle failure to
7715 uninsert quietly, in case the object was indeed
7716 unmapped. */
7717
7718 mark_breakpoint_location_modified (loc);
7719
7720 bp_modified = 1;
7721 }
7722 }
7723
7724 if (bp_modified)
7725 gdb::observers::breakpoint_modified.notify (b);
7726 }
7727 }
7728
7729 /* FORK & VFORK catchpoints. */
7730
7731 /* An instance of this type is used to represent a fork or vfork
7732 catchpoint. A breakpoint is really of this type iff its ops pointer points
7733 to CATCH_FORK_BREAKPOINT_OPS. */
7734
7735 struct fork_catchpoint : public breakpoint
7736 {
7737 /* Process id of a child process whose forking triggered this
7738 catchpoint. This field is only valid immediately after this
7739 catchpoint has triggered. */
7740 ptid_t forked_inferior_pid;
7741 };
7742
7743 /* Implement the "insert" breakpoint_ops method for fork
7744 catchpoints. */
7745
7746 static int
7747 insert_catch_fork (struct bp_location *bl)
7748 {
7749 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7750 }
7751
7752 /* Implement the "remove" breakpoint_ops method for fork
7753 catchpoints. */
7754
7755 static int
7756 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7757 {
7758 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7759 }
7760
7761 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7762 catchpoints. */
7763
7764 static int
7765 breakpoint_hit_catch_fork (const struct bp_location *bl,
7766 const address_space *aspace, CORE_ADDR bp_addr,
7767 const struct target_waitstatus *ws)
7768 {
7769 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7770
7771 if (ws->kind != TARGET_WAITKIND_FORKED)
7772 return 0;
7773
7774 c->forked_inferior_pid = ws->value.related_pid;
7775 return 1;
7776 }
7777
7778 /* Implement the "print_it" breakpoint_ops method for fork
7779 catchpoints. */
7780
7781 static enum print_stop_action
7782 print_it_catch_fork (bpstat bs)
7783 {
7784 struct ui_out *uiout = current_uiout;
7785 struct breakpoint *b = bs->breakpoint_at;
7786 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7787
7788 annotate_catchpoint (b->number);
7789 maybe_print_thread_hit_breakpoint (uiout);
7790 if (b->disposition == disp_del)
7791 uiout->text ("Temporary catchpoint ");
7792 else
7793 uiout->text ("Catchpoint ");
7794 if (uiout->is_mi_like_p ())
7795 {
7796 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7797 uiout->field_string ("disp", bpdisp_text (b->disposition));
7798 }
7799 uiout->field_int ("bkptno", b->number);
7800 uiout->text (" (forked process ");
7801 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7802 uiout->text ("), ");
7803 return PRINT_SRC_AND_LOC;
7804 }
7805
7806 /* Implement the "print_one" breakpoint_ops method for fork
7807 catchpoints. */
7808
7809 static void
7810 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7811 {
7812 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7813 struct value_print_options opts;
7814 struct ui_out *uiout = current_uiout;
7815
7816 get_user_print_options (&opts);
7817
7818 /* Field 4, the address, is omitted (which makes the columns not
7819 line up too nicely with the headers, but the effect is relatively
7820 readable). */
7821 if (opts.addressprint)
7822 uiout->field_skip ("addr");
7823 annotate_field (5);
7824 uiout->text ("fork");
7825 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7826 {
7827 uiout->text (", process ");
7828 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7829 uiout->spaces (1);
7830 }
7831
7832 if (uiout->is_mi_like_p ())
7833 uiout->field_string ("catch-type", "fork");
7834 }
7835
7836 /* Implement the "print_mention" breakpoint_ops method for fork
7837 catchpoints. */
7838
7839 static void
7840 print_mention_catch_fork (struct breakpoint *b)
7841 {
7842 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7843 }
7844
7845 /* Implement the "print_recreate" breakpoint_ops method for fork
7846 catchpoints. */
7847
7848 static void
7849 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7850 {
7851 fprintf_unfiltered (fp, "catch fork");
7852 print_recreate_thread (b, fp);
7853 }
7854
7855 /* The breakpoint_ops structure to be used in fork catchpoints. */
7856
7857 static struct breakpoint_ops catch_fork_breakpoint_ops;
7858
7859 /* Implement the "insert" breakpoint_ops method for vfork
7860 catchpoints. */
7861
7862 static int
7863 insert_catch_vfork (struct bp_location *bl)
7864 {
7865 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7866 }
7867
7868 /* Implement the "remove" breakpoint_ops method for vfork
7869 catchpoints. */
7870
7871 static int
7872 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7873 {
7874 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7875 }
7876
7877 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7878 catchpoints. */
7879
7880 static int
7881 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7882 const address_space *aspace, CORE_ADDR bp_addr,
7883 const struct target_waitstatus *ws)
7884 {
7885 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7886
7887 if (ws->kind != TARGET_WAITKIND_VFORKED)
7888 return 0;
7889
7890 c->forked_inferior_pid = ws->value.related_pid;
7891 return 1;
7892 }
7893
7894 /* Implement the "print_it" breakpoint_ops method for vfork
7895 catchpoints. */
7896
7897 static enum print_stop_action
7898 print_it_catch_vfork (bpstat bs)
7899 {
7900 struct ui_out *uiout = current_uiout;
7901 struct breakpoint *b = bs->breakpoint_at;
7902 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7903
7904 annotate_catchpoint (b->number);
7905 maybe_print_thread_hit_breakpoint (uiout);
7906 if (b->disposition == disp_del)
7907 uiout->text ("Temporary catchpoint ");
7908 else
7909 uiout->text ("Catchpoint ");
7910 if (uiout->is_mi_like_p ())
7911 {
7912 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7913 uiout->field_string ("disp", bpdisp_text (b->disposition));
7914 }
7915 uiout->field_int ("bkptno", b->number);
7916 uiout->text (" (vforked process ");
7917 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7918 uiout->text ("), ");
7919 return PRINT_SRC_AND_LOC;
7920 }
7921
7922 /* Implement the "print_one" breakpoint_ops method for vfork
7923 catchpoints. */
7924
7925 static void
7926 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7927 {
7928 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7929 struct value_print_options opts;
7930 struct ui_out *uiout = current_uiout;
7931
7932 get_user_print_options (&opts);
7933 /* Field 4, the address, is omitted (which makes the columns not
7934 line up too nicely with the headers, but the effect is relatively
7935 readable). */
7936 if (opts.addressprint)
7937 uiout->field_skip ("addr");
7938 annotate_field (5);
7939 uiout->text ("vfork");
7940 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7941 {
7942 uiout->text (", process ");
7943 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7944 uiout->spaces (1);
7945 }
7946
7947 if (uiout->is_mi_like_p ())
7948 uiout->field_string ("catch-type", "vfork");
7949 }
7950
7951 /* Implement the "print_mention" breakpoint_ops method for vfork
7952 catchpoints. */
7953
7954 static void
7955 print_mention_catch_vfork (struct breakpoint *b)
7956 {
7957 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7958 }
7959
7960 /* Implement the "print_recreate" breakpoint_ops method for vfork
7961 catchpoints. */
7962
7963 static void
7964 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7965 {
7966 fprintf_unfiltered (fp, "catch vfork");
7967 print_recreate_thread (b, fp);
7968 }
7969
7970 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7971
7972 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7973
7974 /* An instance of this type is used to represent an solib catchpoint.
7975 A breakpoint is really of this type iff its ops pointer points to
7976 CATCH_SOLIB_BREAKPOINT_OPS. */
7977
7978 struct solib_catchpoint : public breakpoint
7979 {
7980 ~solib_catchpoint () override;
7981
7982 /* True for "catch load", false for "catch unload". */
7983 unsigned char is_load;
7984
7985 /* Regular expression to match, if any. COMPILED is only valid when
7986 REGEX is non-NULL. */
7987 char *regex;
7988 std::unique_ptr<compiled_regex> compiled;
7989 };
7990
7991 solib_catchpoint::~solib_catchpoint ()
7992 {
7993 xfree (this->regex);
7994 }
7995
7996 static int
7997 insert_catch_solib (struct bp_location *ignore)
7998 {
7999 return 0;
8000 }
8001
8002 static int
8003 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8004 {
8005 return 0;
8006 }
8007
8008 static int
8009 breakpoint_hit_catch_solib (const struct bp_location *bl,
8010 const address_space *aspace,
8011 CORE_ADDR bp_addr,
8012 const struct target_waitstatus *ws)
8013 {
8014 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8015 struct breakpoint *other;
8016
8017 if (ws->kind == TARGET_WAITKIND_LOADED)
8018 return 1;
8019
8020 ALL_BREAKPOINTS (other)
8021 {
8022 struct bp_location *other_bl;
8023
8024 if (other == bl->owner)
8025 continue;
8026
8027 if (other->type != bp_shlib_event)
8028 continue;
8029
8030 if (self->pspace != NULL && other->pspace != self->pspace)
8031 continue;
8032
8033 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8034 {
8035 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8036 return 1;
8037 }
8038 }
8039
8040 return 0;
8041 }
8042
8043 static void
8044 check_status_catch_solib (struct bpstats *bs)
8045 {
8046 struct solib_catchpoint *self
8047 = (struct solib_catchpoint *) bs->breakpoint_at;
8048
8049 if (self->is_load)
8050 {
8051 struct so_list *iter;
8052
8053 for (int ix = 0;
8054 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8055 ix, iter);
8056 ++ix)
8057 {
8058 if (!self->regex
8059 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8060 return;
8061 }
8062 }
8063 else
8064 {
8065 for (const std::string &iter : current_program_space->deleted_solibs)
8066 {
8067 if (!self->regex
8068 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8069 return;
8070 }
8071 }
8072
8073 bs->stop = 0;
8074 bs->print_it = print_it_noop;
8075 }
8076
8077 static enum print_stop_action
8078 print_it_catch_solib (bpstat bs)
8079 {
8080 struct breakpoint *b = bs->breakpoint_at;
8081 struct ui_out *uiout = current_uiout;
8082
8083 annotate_catchpoint (b->number);
8084 maybe_print_thread_hit_breakpoint (uiout);
8085 if (b->disposition == disp_del)
8086 uiout->text ("Temporary catchpoint ");
8087 else
8088 uiout->text ("Catchpoint ");
8089 uiout->field_int ("bkptno", b->number);
8090 uiout->text ("\n");
8091 if (uiout->is_mi_like_p ())
8092 uiout->field_string ("disp", bpdisp_text (b->disposition));
8093 print_solib_event (1);
8094 return PRINT_SRC_AND_LOC;
8095 }
8096
8097 static void
8098 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8099 {
8100 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8101 struct value_print_options opts;
8102 struct ui_out *uiout = current_uiout;
8103 char *msg;
8104
8105 get_user_print_options (&opts);
8106 /* Field 4, the address, is omitted (which makes the columns not
8107 line up too nicely with the headers, but the effect is relatively
8108 readable). */
8109 if (opts.addressprint)
8110 {
8111 annotate_field (4);
8112 uiout->field_skip ("addr");
8113 }
8114
8115 annotate_field (5);
8116 if (self->is_load)
8117 {
8118 if (self->regex)
8119 msg = xstrprintf (_("load of library matching %s"), self->regex);
8120 else
8121 msg = xstrdup (_("load of library"));
8122 }
8123 else
8124 {
8125 if (self->regex)
8126 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8127 else
8128 msg = xstrdup (_("unload of library"));
8129 }
8130 uiout->field_string ("what", msg);
8131 xfree (msg);
8132
8133 if (uiout->is_mi_like_p ())
8134 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8135 }
8136
8137 static void
8138 print_mention_catch_solib (struct breakpoint *b)
8139 {
8140 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8141
8142 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8143 self->is_load ? "load" : "unload");
8144 }
8145
8146 static void
8147 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8148 {
8149 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8150
8151 fprintf_unfiltered (fp, "%s %s",
8152 b->disposition == disp_del ? "tcatch" : "catch",
8153 self->is_load ? "load" : "unload");
8154 if (self->regex)
8155 fprintf_unfiltered (fp, " %s", self->regex);
8156 fprintf_unfiltered (fp, "\n");
8157 }
8158
8159 static struct breakpoint_ops catch_solib_breakpoint_ops;
8160
8161 /* Shared helper function (MI and CLI) for creating and installing
8162 a shared object event catchpoint. If IS_LOAD is non-zero then
8163 the events to be caught are load events, otherwise they are
8164 unload events. If IS_TEMP is non-zero the catchpoint is a
8165 temporary one. If ENABLED is non-zero the catchpoint is
8166 created in an enabled state. */
8167
8168 void
8169 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8170 {
8171 struct gdbarch *gdbarch = get_current_arch ();
8172
8173 if (!arg)
8174 arg = "";
8175 arg = skip_spaces (arg);
8176
8177 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8178
8179 if (*arg != '\0')
8180 {
8181 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8182 _("Invalid regexp")));
8183 c->regex = xstrdup (arg);
8184 }
8185
8186 c->is_load = is_load;
8187 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8188 &catch_solib_breakpoint_ops);
8189
8190 c->enable_state = enabled ? bp_enabled : bp_disabled;
8191
8192 install_breakpoint (0, std::move (c), 1);
8193 }
8194
8195 /* A helper function that does all the work for "catch load" and
8196 "catch unload". */
8197
8198 static void
8199 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8200 struct cmd_list_element *command)
8201 {
8202 int tempflag;
8203 const int enabled = 1;
8204
8205 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8206
8207 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8208 }
8209
8210 static void
8211 catch_load_command_1 (const char *arg, int from_tty,
8212 struct cmd_list_element *command)
8213 {
8214 catch_load_or_unload (arg, from_tty, 1, command);
8215 }
8216
8217 static void
8218 catch_unload_command_1 (const char *arg, int from_tty,
8219 struct cmd_list_element *command)
8220 {
8221 catch_load_or_unload (arg, from_tty, 0, command);
8222 }
8223
8224 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8225 is non-zero, then make the breakpoint temporary. If COND_STRING is
8226 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8227 the breakpoint_ops structure associated to the catchpoint. */
8228
8229 void
8230 init_catchpoint (struct breakpoint *b,
8231 struct gdbarch *gdbarch, int tempflag,
8232 const char *cond_string,
8233 const struct breakpoint_ops *ops)
8234 {
8235 symtab_and_line sal;
8236 sal.pspace = current_program_space;
8237
8238 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8239
8240 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8241 b->disposition = tempflag ? disp_del : disp_donttouch;
8242 }
8243
8244 void
8245 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8246 {
8247 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8248 set_breakpoint_number (internal, b);
8249 if (is_tracepoint (b))
8250 set_tracepoint_count (breakpoint_count);
8251 if (!internal)
8252 mention (b);
8253 gdb::observers::breakpoint_created.notify (b);
8254
8255 if (update_gll)
8256 update_global_location_list (UGLL_MAY_INSERT);
8257 }
8258
8259 static void
8260 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8261 int tempflag, const char *cond_string,
8262 const struct breakpoint_ops *ops)
8263 {
8264 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8265
8266 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8267
8268 c->forked_inferior_pid = null_ptid;
8269
8270 install_breakpoint (0, std::move (c), 1);
8271 }
8272
8273 /* Exec catchpoints. */
8274
8275 /* An instance of this type is used to represent an exec catchpoint.
8276 A breakpoint is really of this type iff its ops pointer points to
8277 CATCH_EXEC_BREAKPOINT_OPS. */
8278
8279 struct exec_catchpoint : public breakpoint
8280 {
8281 ~exec_catchpoint () override;
8282
8283 /* Filename of a program whose exec triggered this catchpoint.
8284 This field is only valid immediately after this catchpoint has
8285 triggered. */
8286 char *exec_pathname;
8287 };
8288
8289 /* Exec catchpoint destructor. */
8290
8291 exec_catchpoint::~exec_catchpoint ()
8292 {
8293 xfree (this->exec_pathname);
8294 }
8295
8296 static int
8297 insert_catch_exec (struct bp_location *bl)
8298 {
8299 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8300 }
8301
8302 static int
8303 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8304 {
8305 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8306 }
8307
8308 static int
8309 breakpoint_hit_catch_exec (const struct bp_location *bl,
8310 const address_space *aspace, CORE_ADDR bp_addr,
8311 const struct target_waitstatus *ws)
8312 {
8313 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8314
8315 if (ws->kind != TARGET_WAITKIND_EXECD)
8316 return 0;
8317
8318 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8319 return 1;
8320 }
8321
8322 static enum print_stop_action
8323 print_it_catch_exec (bpstat bs)
8324 {
8325 struct ui_out *uiout = current_uiout;
8326 struct breakpoint *b = bs->breakpoint_at;
8327 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8328
8329 annotate_catchpoint (b->number);
8330 maybe_print_thread_hit_breakpoint (uiout);
8331 if (b->disposition == disp_del)
8332 uiout->text ("Temporary catchpoint ");
8333 else
8334 uiout->text ("Catchpoint ");
8335 if (uiout->is_mi_like_p ())
8336 {
8337 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8338 uiout->field_string ("disp", bpdisp_text (b->disposition));
8339 }
8340 uiout->field_int ("bkptno", b->number);
8341 uiout->text (" (exec'd ");
8342 uiout->field_string ("new-exec", c->exec_pathname);
8343 uiout->text ("), ");
8344
8345 return PRINT_SRC_AND_LOC;
8346 }
8347
8348 static void
8349 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8350 {
8351 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8352 struct value_print_options opts;
8353 struct ui_out *uiout = current_uiout;
8354
8355 get_user_print_options (&opts);
8356
8357 /* Field 4, the address, is omitted (which makes the columns
8358 not line up too nicely with the headers, but the effect
8359 is relatively readable). */
8360 if (opts.addressprint)
8361 uiout->field_skip ("addr");
8362 annotate_field (5);
8363 uiout->text ("exec");
8364 if (c->exec_pathname != NULL)
8365 {
8366 uiout->text (", program \"");
8367 uiout->field_string ("what", c->exec_pathname);
8368 uiout->text ("\" ");
8369 }
8370
8371 if (uiout->is_mi_like_p ())
8372 uiout->field_string ("catch-type", "exec");
8373 }
8374
8375 static void
8376 print_mention_catch_exec (struct breakpoint *b)
8377 {
8378 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8379 }
8380
8381 /* Implement the "print_recreate" breakpoint_ops method for exec
8382 catchpoints. */
8383
8384 static void
8385 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8386 {
8387 fprintf_unfiltered (fp, "catch exec");
8388 print_recreate_thread (b, fp);
8389 }
8390
8391 static struct breakpoint_ops catch_exec_breakpoint_ops;
8392
8393 static int
8394 hw_breakpoint_used_count (void)
8395 {
8396 int i = 0;
8397 struct breakpoint *b;
8398 struct bp_location *bl;
8399
8400 ALL_BREAKPOINTS (b)
8401 {
8402 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8403 for (bl = b->loc; bl; bl = bl->next)
8404 {
8405 /* Special types of hardware breakpoints may use more than
8406 one register. */
8407 i += b->ops->resources_needed (bl);
8408 }
8409 }
8410
8411 return i;
8412 }
8413
8414 /* Returns the resources B would use if it were a hardware
8415 watchpoint. */
8416
8417 static int
8418 hw_watchpoint_use_count (struct breakpoint *b)
8419 {
8420 int i = 0;
8421 struct bp_location *bl;
8422
8423 if (!breakpoint_enabled (b))
8424 return 0;
8425
8426 for (bl = b->loc; bl; bl = bl->next)
8427 {
8428 /* Special types of hardware watchpoints may use more than
8429 one register. */
8430 i += b->ops->resources_needed (bl);
8431 }
8432
8433 return i;
8434 }
8435
8436 /* Returns the sum the used resources of all hardware watchpoints of
8437 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8438 the sum of the used resources of all hardware watchpoints of other
8439 types _not_ TYPE. */
8440
8441 static int
8442 hw_watchpoint_used_count_others (struct breakpoint *except,
8443 enum bptype type, int *other_type_used)
8444 {
8445 int i = 0;
8446 struct breakpoint *b;
8447
8448 *other_type_used = 0;
8449 ALL_BREAKPOINTS (b)
8450 {
8451 if (b == except)
8452 continue;
8453 if (!breakpoint_enabled (b))
8454 continue;
8455
8456 if (b->type == type)
8457 i += hw_watchpoint_use_count (b);
8458 else if (is_hardware_watchpoint (b))
8459 *other_type_used = 1;
8460 }
8461
8462 return i;
8463 }
8464
8465 void
8466 disable_watchpoints_before_interactive_call_start (void)
8467 {
8468 struct breakpoint *b;
8469
8470 ALL_BREAKPOINTS (b)
8471 {
8472 if (is_watchpoint (b) && breakpoint_enabled (b))
8473 {
8474 b->enable_state = bp_call_disabled;
8475 update_global_location_list (UGLL_DONT_INSERT);
8476 }
8477 }
8478 }
8479
8480 void
8481 enable_watchpoints_after_interactive_call_stop (void)
8482 {
8483 struct breakpoint *b;
8484
8485 ALL_BREAKPOINTS (b)
8486 {
8487 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8488 {
8489 b->enable_state = bp_enabled;
8490 update_global_location_list (UGLL_MAY_INSERT);
8491 }
8492 }
8493 }
8494
8495 void
8496 disable_breakpoints_before_startup (void)
8497 {
8498 current_program_space->executing_startup = 1;
8499 update_global_location_list (UGLL_DONT_INSERT);
8500 }
8501
8502 void
8503 enable_breakpoints_after_startup (void)
8504 {
8505 current_program_space->executing_startup = 0;
8506 breakpoint_re_set ();
8507 }
8508
8509 /* Create a new single-step breakpoint for thread THREAD, with no
8510 locations. */
8511
8512 static struct breakpoint *
8513 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8514 {
8515 std::unique_ptr<breakpoint> b (new breakpoint ());
8516
8517 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8518 &momentary_breakpoint_ops);
8519
8520 b->disposition = disp_donttouch;
8521 b->frame_id = null_frame_id;
8522
8523 b->thread = thread;
8524 gdb_assert (b->thread != 0);
8525
8526 return add_to_breakpoint_chain (std::move (b));
8527 }
8528
8529 /* Set a momentary breakpoint of type TYPE at address specified by
8530 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8531 frame. */
8532
8533 breakpoint_up
8534 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8535 struct frame_id frame_id, enum bptype type)
8536 {
8537 struct breakpoint *b;
8538
8539 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8540 tail-called one. */
8541 gdb_assert (!frame_id_artificial_p (frame_id));
8542
8543 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8544 b->enable_state = bp_enabled;
8545 b->disposition = disp_donttouch;
8546 b->frame_id = frame_id;
8547
8548 /* If we're debugging a multi-threaded program, then we want
8549 momentary breakpoints to be active in only a single thread of
8550 control. */
8551 if (in_thread_list (inferior_ptid))
8552 b->thread = ptid_to_global_thread_id (inferior_ptid);
8553
8554 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8555
8556 return breakpoint_up (b);
8557 }
8558
8559 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8560 The new breakpoint will have type TYPE, use OPS as its
8561 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8562
8563 static struct breakpoint *
8564 momentary_breakpoint_from_master (struct breakpoint *orig,
8565 enum bptype type,
8566 const struct breakpoint_ops *ops,
8567 int loc_enabled)
8568 {
8569 struct breakpoint *copy;
8570
8571 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8572 copy->loc = allocate_bp_location (copy);
8573 set_breakpoint_location_function (copy->loc, 1);
8574
8575 copy->loc->gdbarch = orig->loc->gdbarch;
8576 copy->loc->requested_address = orig->loc->requested_address;
8577 copy->loc->address = orig->loc->address;
8578 copy->loc->section = orig->loc->section;
8579 copy->loc->pspace = orig->loc->pspace;
8580 copy->loc->probe = orig->loc->probe;
8581 copy->loc->line_number = orig->loc->line_number;
8582 copy->loc->symtab = orig->loc->symtab;
8583 copy->loc->enabled = loc_enabled;
8584 copy->frame_id = orig->frame_id;
8585 copy->thread = orig->thread;
8586 copy->pspace = orig->pspace;
8587
8588 copy->enable_state = bp_enabled;
8589 copy->disposition = disp_donttouch;
8590 copy->number = internal_breakpoint_number--;
8591
8592 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8593 return copy;
8594 }
8595
8596 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8597 ORIG is NULL. */
8598
8599 struct breakpoint *
8600 clone_momentary_breakpoint (struct breakpoint *orig)
8601 {
8602 /* If there's nothing to clone, then return nothing. */
8603 if (orig == NULL)
8604 return NULL;
8605
8606 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8607 }
8608
8609 breakpoint_up
8610 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8611 enum bptype type)
8612 {
8613 struct symtab_and_line sal;
8614
8615 sal = find_pc_line (pc, 0);
8616 sal.pc = pc;
8617 sal.section = find_pc_overlay (pc);
8618 sal.explicit_pc = 1;
8619
8620 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8621 }
8622 \f
8623
8624 /* Tell the user we have just set a breakpoint B. */
8625
8626 static void
8627 mention (struct breakpoint *b)
8628 {
8629 b->ops->print_mention (b);
8630 if (current_uiout->is_mi_like_p ())
8631 return;
8632 printf_filtered ("\n");
8633 }
8634 \f
8635
8636 static int bp_loc_is_permanent (struct bp_location *loc);
8637
8638 static struct bp_location *
8639 add_location_to_breakpoint (struct breakpoint *b,
8640 const struct symtab_and_line *sal)
8641 {
8642 struct bp_location *loc, **tmp;
8643 CORE_ADDR adjusted_address;
8644 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8645
8646 if (loc_gdbarch == NULL)
8647 loc_gdbarch = b->gdbarch;
8648
8649 /* Adjust the breakpoint's address prior to allocating a location.
8650 Once we call allocate_bp_location(), that mostly uninitialized
8651 location will be placed on the location chain. Adjustment of the
8652 breakpoint may cause target_read_memory() to be called and we do
8653 not want its scan of the location chain to find a breakpoint and
8654 location that's only been partially initialized. */
8655 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8656 sal->pc, b->type);
8657
8658 /* Sort the locations by their ADDRESS. */
8659 loc = allocate_bp_location (b);
8660 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8661 tmp = &((*tmp)->next))
8662 ;
8663 loc->next = *tmp;
8664 *tmp = loc;
8665
8666 loc->requested_address = sal->pc;
8667 loc->address = adjusted_address;
8668 loc->pspace = sal->pspace;
8669 loc->probe.prob = sal->prob;
8670 loc->probe.objfile = sal->objfile;
8671 gdb_assert (loc->pspace != NULL);
8672 loc->section = sal->section;
8673 loc->gdbarch = loc_gdbarch;
8674 loc->line_number = sal->line;
8675 loc->symtab = sal->symtab;
8676 loc->symbol = sal->symbol;
8677
8678 set_breakpoint_location_function (loc,
8679 sal->explicit_pc || sal->explicit_line);
8680
8681 /* While by definition, permanent breakpoints are already present in the
8682 code, we don't mark the location as inserted. Normally one would expect
8683 that GDB could rely on that breakpoint instruction to stop the program,
8684 thus removing the need to insert its own breakpoint, except that executing
8685 the breakpoint instruction can kill the target instead of reporting a
8686 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8687 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8688 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8689 breakpoint be inserted normally results in QEMU knowing about the GDB
8690 breakpoint, and thus trap before the breakpoint instruction is executed.
8691 (If GDB later needs to continue execution past the permanent breakpoint,
8692 it manually increments the PC, thus avoiding executing the breakpoint
8693 instruction.) */
8694 if (bp_loc_is_permanent (loc))
8695 loc->permanent = 1;
8696
8697 return loc;
8698 }
8699 \f
8700
8701 /* See breakpoint.h. */
8702
8703 int
8704 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8705 {
8706 int len;
8707 CORE_ADDR addr;
8708 const gdb_byte *bpoint;
8709 gdb_byte *target_mem;
8710
8711 addr = address;
8712 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8713
8714 /* Software breakpoints unsupported? */
8715 if (bpoint == NULL)
8716 return 0;
8717
8718 target_mem = (gdb_byte *) alloca (len);
8719
8720 /* Enable the automatic memory restoration from breakpoints while
8721 we read the memory. Otherwise we could say about our temporary
8722 breakpoints they are permanent. */
8723 scoped_restore restore_memory
8724 = make_scoped_restore_show_memory_breakpoints (0);
8725
8726 if (target_read_memory (address, target_mem, len) == 0
8727 && memcmp (target_mem, bpoint, len) == 0)
8728 return 1;
8729
8730 return 0;
8731 }
8732
8733 /* Return 1 if LOC is pointing to a permanent breakpoint,
8734 return 0 otherwise. */
8735
8736 static int
8737 bp_loc_is_permanent (struct bp_location *loc)
8738 {
8739 gdb_assert (loc != NULL);
8740
8741 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8742 attempt to read from the addresses the locations of these breakpoint types
8743 point to. program_breakpoint_here_p, below, will attempt to read
8744 memory. */
8745 if (!breakpoint_address_is_meaningful (loc->owner))
8746 return 0;
8747
8748 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8749 switch_to_program_space_and_thread (loc->pspace);
8750 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8751 }
8752
8753 /* Build a command list for the dprintf corresponding to the current
8754 settings of the dprintf style options. */
8755
8756 static void
8757 update_dprintf_command_list (struct breakpoint *b)
8758 {
8759 char *dprintf_args = b->extra_string;
8760 char *printf_line = NULL;
8761
8762 if (!dprintf_args)
8763 return;
8764
8765 dprintf_args = skip_spaces (dprintf_args);
8766
8767 /* Allow a comma, as it may have terminated a location, but don't
8768 insist on it. */
8769 if (*dprintf_args == ',')
8770 ++dprintf_args;
8771 dprintf_args = skip_spaces (dprintf_args);
8772
8773 if (*dprintf_args != '"')
8774 error (_("Bad format string, missing '\"'."));
8775
8776 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8777 printf_line = xstrprintf ("printf %s", dprintf_args);
8778 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8779 {
8780 if (!dprintf_function)
8781 error (_("No function supplied for dprintf call"));
8782
8783 if (dprintf_channel && strlen (dprintf_channel) > 0)
8784 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8785 dprintf_function,
8786 dprintf_channel,
8787 dprintf_args);
8788 else
8789 printf_line = xstrprintf ("call (void) %s (%s)",
8790 dprintf_function,
8791 dprintf_args);
8792 }
8793 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8794 {
8795 if (target_can_run_breakpoint_commands ())
8796 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8797 else
8798 {
8799 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8800 printf_line = xstrprintf ("printf %s", dprintf_args);
8801 }
8802 }
8803 else
8804 internal_error (__FILE__, __LINE__,
8805 _("Invalid dprintf style."));
8806
8807 gdb_assert (printf_line != NULL);
8808 /* Manufacture a printf sequence. */
8809 {
8810 struct command_line *printf_cmd_line = XNEW (struct command_line);
8811
8812 printf_cmd_line->control_type = simple_control;
8813 printf_cmd_line->body_count = 0;
8814 printf_cmd_line->body_list = NULL;
8815 printf_cmd_line->next = NULL;
8816 printf_cmd_line->line = printf_line;
8817
8818 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8819 }
8820 }
8821
8822 /* Update all dprintf commands, making their command lists reflect
8823 current style settings. */
8824
8825 static void
8826 update_dprintf_commands (const char *args, int from_tty,
8827 struct cmd_list_element *c)
8828 {
8829 struct breakpoint *b;
8830
8831 ALL_BREAKPOINTS (b)
8832 {
8833 if (b->type == bp_dprintf)
8834 update_dprintf_command_list (b);
8835 }
8836 }
8837
8838 /* Create a breakpoint with SAL as location. Use LOCATION
8839 as a description of the location, and COND_STRING
8840 as condition expression. If LOCATION is NULL then create an
8841 "address location" from the address in the SAL. */
8842
8843 static void
8844 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8845 gdb::array_view<const symtab_and_line> sals,
8846 event_location_up &&location,
8847 gdb::unique_xmalloc_ptr<char> filter,
8848 gdb::unique_xmalloc_ptr<char> cond_string,
8849 gdb::unique_xmalloc_ptr<char> extra_string,
8850 enum bptype type, enum bpdisp disposition,
8851 int thread, int task, int ignore_count,
8852 const struct breakpoint_ops *ops, int from_tty,
8853 int enabled, int internal, unsigned flags,
8854 int display_canonical)
8855 {
8856 int i;
8857
8858 if (type == bp_hardware_breakpoint)
8859 {
8860 int target_resources_ok;
8861
8862 i = hw_breakpoint_used_count ();
8863 target_resources_ok =
8864 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8865 i + 1, 0);
8866 if (target_resources_ok == 0)
8867 error (_("No hardware breakpoint support in the target."));
8868 else if (target_resources_ok < 0)
8869 error (_("Hardware breakpoints used exceeds limit."));
8870 }
8871
8872 gdb_assert (!sals.empty ());
8873
8874 for (const auto &sal : sals)
8875 {
8876 struct bp_location *loc;
8877
8878 if (from_tty)
8879 {
8880 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8881 if (!loc_gdbarch)
8882 loc_gdbarch = gdbarch;
8883
8884 describe_other_breakpoints (loc_gdbarch,
8885 sal.pspace, sal.pc, sal.section, thread);
8886 }
8887
8888 if (&sal == &sals[0])
8889 {
8890 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8891 b->thread = thread;
8892 b->task = task;
8893
8894 b->cond_string = cond_string.release ();
8895 b->extra_string = extra_string.release ();
8896 b->ignore_count = ignore_count;
8897 b->enable_state = enabled ? bp_enabled : bp_disabled;
8898 b->disposition = disposition;
8899
8900 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8901 b->loc->inserted = 1;
8902
8903 if (type == bp_static_tracepoint)
8904 {
8905 struct tracepoint *t = (struct tracepoint *) b;
8906 struct static_tracepoint_marker marker;
8907
8908 if (strace_marker_p (b))
8909 {
8910 /* We already know the marker exists, otherwise, we
8911 wouldn't see a sal for it. */
8912 const char *p
8913 = &event_location_to_string (b->location.get ())[3];
8914 const char *endp;
8915
8916 p = skip_spaces (p);
8917
8918 endp = skip_to_space (p);
8919
8920 t->static_trace_marker_id.assign (p, endp - p);
8921
8922 printf_filtered (_("Probed static tracepoint "
8923 "marker \"%s\"\n"),
8924 t->static_trace_marker_id.c_str ());
8925 }
8926 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8927 {
8928 t->static_trace_marker_id = std::move (marker.str_id);
8929
8930 printf_filtered (_("Probed static tracepoint "
8931 "marker \"%s\"\n"),
8932 t->static_trace_marker_id.c_str ());
8933 }
8934 else
8935 warning (_("Couldn't determine the static "
8936 "tracepoint marker to probe"));
8937 }
8938
8939 loc = b->loc;
8940 }
8941 else
8942 {
8943 loc = add_location_to_breakpoint (b, &sal);
8944 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8945 loc->inserted = 1;
8946 }
8947
8948 if (b->cond_string)
8949 {
8950 const char *arg = b->cond_string;
8951
8952 loc->cond = parse_exp_1 (&arg, loc->address,
8953 block_for_pc (loc->address), 0);
8954 if (*arg)
8955 error (_("Garbage '%s' follows condition"), arg);
8956 }
8957
8958 /* Dynamic printf requires and uses additional arguments on the
8959 command line, otherwise it's an error. */
8960 if (type == bp_dprintf)
8961 {
8962 if (b->extra_string)
8963 update_dprintf_command_list (b);
8964 else
8965 error (_("Format string required"));
8966 }
8967 else if (b->extra_string)
8968 error (_("Garbage '%s' at end of command"), b->extra_string);
8969 }
8970
8971 b->display_canonical = display_canonical;
8972 if (location != NULL)
8973 b->location = std::move (location);
8974 else
8975 b->location = new_address_location (b->loc->address, NULL, 0);
8976 b->filter = filter.release ();
8977 }
8978
8979 static void
8980 create_breakpoint_sal (struct gdbarch *gdbarch,
8981 gdb::array_view<const symtab_and_line> sals,
8982 event_location_up &&location,
8983 gdb::unique_xmalloc_ptr<char> filter,
8984 gdb::unique_xmalloc_ptr<char> cond_string,
8985 gdb::unique_xmalloc_ptr<char> extra_string,
8986 enum bptype type, enum bpdisp disposition,
8987 int thread, int task, int ignore_count,
8988 const struct breakpoint_ops *ops, int from_tty,
8989 int enabled, int internal, unsigned flags,
8990 int display_canonical)
8991 {
8992 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8993
8994 init_breakpoint_sal (b.get (), gdbarch,
8995 sals, std::move (location),
8996 std::move (filter),
8997 std::move (cond_string),
8998 std::move (extra_string),
8999 type, disposition,
9000 thread, task, ignore_count,
9001 ops, from_tty,
9002 enabled, internal, flags,
9003 display_canonical);
9004
9005 install_breakpoint (internal, std::move (b), 0);
9006 }
9007
9008 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9009 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9010 value. COND_STRING, if not NULL, specified the condition to be
9011 used for all breakpoints. Essentially the only case where
9012 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9013 function. In that case, it's still not possible to specify
9014 separate conditions for different overloaded functions, so
9015 we take just a single condition string.
9016
9017 NOTE: If the function succeeds, the caller is expected to cleanup
9018 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9019 array contents). If the function fails (error() is called), the
9020 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9021 COND and SALS arrays and each of those arrays contents. */
9022
9023 static void
9024 create_breakpoints_sal (struct gdbarch *gdbarch,
9025 struct linespec_result *canonical,
9026 gdb::unique_xmalloc_ptr<char> cond_string,
9027 gdb::unique_xmalloc_ptr<char> extra_string,
9028 enum bptype type, enum bpdisp disposition,
9029 int thread, int task, int ignore_count,
9030 const struct breakpoint_ops *ops, int from_tty,
9031 int enabled, int internal, unsigned flags)
9032 {
9033 if (canonical->pre_expanded)
9034 gdb_assert (canonical->lsals.size () == 1);
9035
9036 for (const auto &lsal : canonical->lsals)
9037 {
9038 /* Note that 'location' can be NULL in the case of a plain
9039 'break', without arguments. */
9040 event_location_up location
9041 = (canonical->location != NULL
9042 ? copy_event_location (canonical->location.get ()) : NULL);
9043 gdb::unique_xmalloc_ptr<char> filter_string
9044 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9045
9046 create_breakpoint_sal (gdbarch, lsal.sals,
9047 std::move (location),
9048 std::move (filter_string),
9049 std::move (cond_string),
9050 std::move (extra_string),
9051 type, disposition,
9052 thread, task, ignore_count, ops,
9053 from_tty, enabled, internal, flags,
9054 canonical->special_display);
9055 }
9056 }
9057
9058 /* Parse LOCATION which is assumed to be a SAL specification possibly
9059 followed by conditionals. On return, SALS contains an array of SAL
9060 addresses found. LOCATION points to the end of the SAL (for
9061 linespec locations).
9062
9063 The array and the line spec strings are allocated on the heap, it is
9064 the caller's responsibility to free them. */
9065
9066 static void
9067 parse_breakpoint_sals (const struct event_location *location,
9068 struct linespec_result *canonical)
9069 {
9070 struct symtab_and_line cursal;
9071
9072 if (event_location_type (location) == LINESPEC_LOCATION)
9073 {
9074 const char *spec = get_linespec_location (location)->spec_string;
9075
9076 if (spec == NULL)
9077 {
9078 /* The last displayed codepoint, if it's valid, is our default
9079 breakpoint address. */
9080 if (last_displayed_sal_is_valid ())
9081 {
9082 /* Set sal's pspace, pc, symtab, and line to the values
9083 corresponding to the last call to print_frame_info.
9084 Be sure to reinitialize LINE with NOTCURRENT == 0
9085 as the breakpoint line number is inappropriate otherwise.
9086 find_pc_line would adjust PC, re-set it back. */
9087 symtab_and_line sal = get_last_displayed_sal ();
9088 CORE_ADDR pc = sal.pc;
9089
9090 sal = find_pc_line (pc, 0);
9091
9092 /* "break" without arguments is equivalent to "break *PC"
9093 where PC is the last displayed codepoint's address. So
9094 make sure to set sal.explicit_pc to prevent GDB from
9095 trying to expand the list of sals to include all other
9096 instances with the same symtab and line. */
9097 sal.pc = pc;
9098 sal.explicit_pc = 1;
9099
9100 struct linespec_sals lsal;
9101 lsal.sals = {sal};
9102 lsal.canonical = NULL;
9103
9104 canonical->lsals.push_back (std::move (lsal));
9105 return;
9106 }
9107 else
9108 error (_("No default breakpoint address now."));
9109 }
9110 }
9111
9112 /* Force almost all breakpoints to be in terms of the
9113 current_source_symtab (which is decode_line_1's default).
9114 This should produce the results we want almost all of the
9115 time while leaving default_breakpoint_* alone.
9116
9117 ObjC: However, don't match an Objective-C method name which
9118 may have a '+' or '-' succeeded by a '['. */
9119 cursal = get_current_source_symtab_and_line ();
9120 if (last_displayed_sal_is_valid ())
9121 {
9122 const char *spec = NULL;
9123
9124 if (event_location_type (location) == LINESPEC_LOCATION)
9125 spec = get_linespec_location (location)->spec_string;
9126
9127 if (!cursal.symtab
9128 || (spec != NULL
9129 && strchr ("+-", spec[0]) != NULL
9130 && spec[1] != '['))
9131 {
9132 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9133 get_last_displayed_symtab (),
9134 get_last_displayed_line (),
9135 canonical, NULL, NULL);
9136 return;
9137 }
9138 }
9139
9140 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9141 cursal.symtab, cursal.line, canonical, NULL, NULL);
9142 }
9143
9144
9145 /* Convert each SAL into a real PC. Verify that the PC can be
9146 inserted as a breakpoint. If it can't throw an error. */
9147
9148 static void
9149 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9150 {
9151 for (auto &sal : sals)
9152 resolve_sal_pc (&sal);
9153 }
9154
9155 /* Fast tracepoints may have restrictions on valid locations. For
9156 instance, a fast tracepoint using a jump instead of a trap will
9157 likely have to overwrite more bytes than a trap would, and so can
9158 only be placed where the instruction is longer than the jump, or a
9159 multi-instruction sequence does not have a jump into the middle of
9160 it, etc. */
9161
9162 static void
9163 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9164 gdb::array_view<const symtab_and_line> sals)
9165 {
9166 for (const auto &sal : sals)
9167 {
9168 struct gdbarch *sarch;
9169
9170 sarch = get_sal_arch (sal);
9171 /* We fall back to GDBARCH if there is no architecture
9172 associated with SAL. */
9173 if (sarch == NULL)
9174 sarch = gdbarch;
9175 std::string msg;
9176 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9177 error (_("May not have a fast tracepoint at %s%s"),
9178 paddress (sarch, sal.pc), msg.c_str ());
9179 }
9180 }
9181
9182 /* Given TOK, a string specification of condition and thread, as
9183 accepted by the 'break' command, extract the condition
9184 string and thread number and set *COND_STRING and *THREAD.
9185 PC identifies the context at which the condition should be parsed.
9186 If no condition is found, *COND_STRING is set to NULL.
9187 If no thread is found, *THREAD is set to -1. */
9188
9189 static void
9190 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9191 char **cond_string, int *thread, int *task,
9192 char **rest)
9193 {
9194 *cond_string = NULL;
9195 *thread = -1;
9196 *task = 0;
9197 *rest = NULL;
9198
9199 while (tok && *tok)
9200 {
9201 const char *end_tok;
9202 int toklen;
9203 const char *cond_start = NULL;
9204 const char *cond_end = NULL;
9205
9206 tok = skip_spaces (tok);
9207
9208 if ((*tok == '"' || *tok == ',') && rest)
9209 {
9210 *rest = savestring (tok, strlen (tok));
9211 return;
9212 }
9213
9214 end_tok = skip_to_space (tok);
9215
9216 toklen = end_tok - tok;
9217
9218 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9219 {
9220 tok = cond_start = end_tok + 1;
9221 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9222 cond_end = tok;
9223 *cond_string = savestring (cond_start, cond_end - cond_start);
9224 }
9225 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9226 {
9227 const char *tmptok;
9228 struct thread_info *thr;
9229
9230 tok = end_tok + 1;
9231 thr = parse_thread_id (tok, &tmptok);
9232 if (tok == tmptok)
9233 error (_("Junk after thread keyword."));
9234 *thread = thr->global_num;
9235 tok = tmptok;
9236 }
9237 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9238 {
9239 char *tmptok;
9240
9241 tok = end_tok + 1;
9242 *task = strtol (tok, &tmptok, 0);
9243 if (tok == tmptok)
9244 error (_("Junk after task keyword."));
9245 if (!valid_task_id (*task))
9246 error (_("Unknown task %d."), *task);
9247 tok = tmptok;
9248 }
9249 else if (rest)
9250 {
9251 *rest = savestring (tok, strlen (tok));
9252 return;
9253 }
9254 else
9255 error (_("Junk at end of arguments."));
9256 }
9257 }
9258
9259 /* Decode a static tracepoint marker spec. */
9260
9261 static std::vector<symtab_and_line>
9262 decode_static_tracepoint_spec (const char **arg_p)
9263 {
9264 const char *p = &(*arg_p)[3];
9265 const char *endp;
9266
9267 p = skip_spaces (p);
9268
9269 endp = skip_to_space (p);
9270
9271 std::string marker_str (p, endp - p);
9272
9273 std::vector<static_tracepoint_marker> markers
9274 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9275 if (markers.empty ())
9276 error (_("No known static tracepoint marker named %s"),
9277 marker_str.c_str ());
9278
9279 std::vector<symtab_and_line> sals;
9280 sals.reserve (markers.size ());
9281
9282 for (const static_tracepoint_marker &marker : markers)
9283 {
9284 symtab_and_line sal = find_pc_line (marker.address, 0);
9285 sal.pc = marker.address;
9286 sals.push_back (sal);
9287 }
9288
9289 *arg_p = endp;
9290 return sals;
9291 }
9292
9293 /* See breakpoint.h. */
9294
9295 int
9296 create_breakpoint (struct gdbarch *gdbarch,
9297 const struct event_location *location,
9298 const char *cond_string,
9299 int thread, const char *extra_string,
9300 int parse_extra,
9301 int tempflag, enum bptype type_wanted,
9302 int ignore_count,
9303 enum auto_boolean pending_break_support,
9304 const struct breakpoint_ops *ops,
9305 int from_tty, int enabled, int internal,
9306 unsigned flags)
9307 {
9308 struct linespec_result canonical;
9309 struct cleanup *bkpt_chain = NULL;
9310 int pending = 0;
9311 int task = 0;
9312 int prev_bkpt_count = breakpoint_count;
9313
9314 gdb_assert (ops != NULL);
9315
9316 /* If extra_string isn't useful, set it to NULL. */
9317 if (extra_string != NULL && *extra_string == '\0')
9318 extra_string = NULL;
9319
9320 TRY
9321 {
9322 ops->create_sals_from_location (location, &canonical, type_wanted);
9323 }
9324 CATCH (e, RETURN_MASK_ERROR)
9325 {
9326 /* If caller is interested in rc value from parse, set
9327 value. */
9328 if (e.error == NOT_FOUND_ERROR)
9329 {
9330 /* If pending breakpoint support is turned off, throw
9331 error. */
9332
9333 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9334 throw_exception (e);
9335
9336 exception_print (gdb_stderr, e);
9337
9338 /* If pending breakpoint support is auto query and the user
9339 selects no, then simply return the error code. */
9340 if (pending_break_support == AUTO_BOOLEAN_AUTO
9341 && !nquery (_("Make %s pending on future shared library load? "),
9342 bptype_string (type_wanted)))
9343 return 0;
9344
9345 /* At this point, either the user was queried about setting
9346 a pending breakpoint and selected yes, or pending
9347 breakpoint behavior is on and thus a pending breakpoint
9348 is defaulted on behalf of the user. */
9349 pending = 1;
9350 }
9351 else
9352 throw_exception (e);
9353 }
9354 END_CATCH
9355
9356 if (!pending && canonical.lsals.empty ())
9357 return 0;
9358
9359 /* ----------------------------- SNIP -----------------------------
9360 Anything added to the cleanup chain beyond this point is assumed
9361 to be part of a breakpoint. If the breakpoint create succeeds
9362 then the memory is not reclaimed. */
9363 bkpt_chain = make_cleanup (null_cleanup, 0);
9364
9365 /* Resolve all line numbers to PC's and verify that the addresses
9366 are ok for the target. */
9367 if (!pending)
9368 {
9369 for (auto &lsal : canonical.lsals)
9370 breakpoint_sals_to_pc (lsal.sals);
9371 }
9372
9373 /* Fast tracepoints may have additional restrictions on location. */
9374 if (!pending && type_wanted == bp_fast_tracepoint)
9375 {
9376 for (const auto &lsal : canonical.lsals)
9377 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9378 }
9379
9380 /* Verify that condition can be parsed, before setting any
9381 breakpoints. Allocate a separate condition expression for each
9382 breakpoint. */
9383 if (!pending)
9384 {
9385 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9386 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9387
9388 if (parse_extra)
9389 {
9390 char *rest;
9391 char *cond;
9392
9393 const linespec_sals &lsal = canonical.lsals[0];
9394
9395 /* Here we only parse 'arg' to separate condition
9396 from thread number, so parsing in context of first
9397 sal is OK. When setting the breakpoint we'll
9398 re-parse it in context of each sal. */
9399
9400 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9401 &cond, &thread, &task, &rest);
9402 cond_string_copy.reset (cond);
9403 extra_string_copy.reset (rest);
9404 }
9405 else
9406 {
9407 if (type_wanted != bp_dprintf
9408 && extra_string != NULL && *extra_string != '\0')
9409 error (_("Garbage '%s' at end of location"), extra_string);
9410
9411 /* Create a private copy of condition string. */
9412 if (cond_string)
9413 cond_string_copy.reset (xstrdup (cond_string));
9414 /* Create a private copy of any extra string. */
9415 if (extra_string)
9416 extra_string_copy.reset (xstrdup (extra_string));
9417 }
9418
9419 ops->create_breakpoints_sal (gdbarch, &canonical,
9420 std::move (cond_string_copy),
9421 std::move (extra_string_copy),
9422 type_wanted,
9423 tempflag ? disp_del : disp_donttouch,
9424 thread, task, ignore_count, ops,
9425 from_tty, enabled, internal, flags);
9426 }
9427 else
9428 {
9429 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9430
9431 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9432 b->location = copy_event_location (location);
9433
9434 if (parse_extra)
9435 b->cond_string = NULL;
9436 else
9437 {
9438 /* Create a private copy of condition string. */
9439 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9440 b->thread = thread;
9441 }
9442
9443 /* Create a private copy of any extra string. */
9444 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9445 b->ignore_count = ignore_count;
9446 b->disposition = tempflag ? disp_del : disp_donttouch;
9447 b->condition_not_parsed = 1;
9448 b->enable_state = enabled ? bp_enabled : bp_disabled;
9449 if ((type_wanted != bp_breakpoint
9450 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9451 b->pspace = current_program_space;
9452
9453 install_breakpoint (internal, std::move (b), 0);
9454 }
9455
9456 if (canonical.lsals.size () > 1)
9457 {
9458 warning (_("Multiple breakpoints were set.\nUse the "
9459 "\"delete\" command to delete unwanted breakpoints."));
9460 prev_breakpoint_count = prev_bkpt_count;
9461 }
9462
9463 /* That's it. Discard the cleanups for data inserted into the
9464 breakpoint. */
9465 discard_cleanups (bkpt_chain);
9466
9467 /* error call may happen here - have BKPT_CHAIN already discarded. */
9468 update_global_location_list (UGLL_MAY_INSERT);
9469
9470 return 1;
9471 }
9472
9473 /* Set a breakpoint.
9474 ARG is a string describing breakpoint address,
9475 condition, and thread.
9476 FLAG specifies if a breakpoint is hardware on,
9477 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9478 and BP_TEMPFLAG. */
9479
9480 static void
9481 break_command_1 (const char *arg, int flag, int from_tty)
9482 {
9483 int tempflag = flag & BP_TEMPFLAG;
9484 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9485 ? bp_hardware_breakpoint
9486 : bp_breakpoint);
9487 struct breakpoint_ops *ops;
9488
9489 event_location_up location = string_to_event_location (&arg, current_language);
9490
9491 /* Matching breakpoints on probes. */
9492 if (location != NULL
9493 && event_location_type (location.get ()) == PROBE_LOCATION)
9494 ops = &bkpt_probe_breakpoint_ops;
9495 else
9496 ops = &bkpt_breakpoint_ops;
9497
9498 create_breakpoint (get_current_arch (),
9499 location.get (),
9500 NULL, 0, arg, 1 /* parse arg */,
9501 tempflag, type_wanted,
9502 0 /* Ignore count */,
9503 pending_break_support,
9504 ops,
9505 from_tty,
9506 1 /* enabled */,
9507 0 /* internal */,
9508 0);
9509 }
9510
9511 /* Helper function for break_command_1 and disassemble_command. */
9512
9513 void
9514 resolve_sal_pc (struct symtab_and_line *sal)
9515 {
9516 CORE_ADDR pc;
9517
9518 if (sal->pc == 0 && sal->symtab != NULL)
9519 {
9520 if (!find_line_pc (sal->symtab, sal->line, &pc))
9521 error (_("No line %d in file \"%s\"."),
9522 sal->line, symtab_to_filename_for_display (sal->symtab));
9523 sal->pc = pc;
9524
9525 /* If this SAL corresponds to a breakpoint inserted using a line
9526 number, then skip the function prologue if necessary. */
9527 if (sal->explicit_line)
9528 skip_prologue_sal (sal);
9529 }
9530
9531 if (sal->section == 0 && sal->symtab != NULL)
9532 {
9533 const struct blockvector *bv;
9534 const struct block *b;
9535 struct symbol *sym;
9536
9537 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9538 SYMTAB_COMPUNIT (sal->symtab));
9539 if (bv != NULL)
9540 {
9541 sym = block_linkage_function (b);
9542 if (sym != NULL)
9543 {
9544 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9545 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9546 sym);
9547 }
9548 else
9549 {
9550 /* It really is worthwhile to have the section, so we'll
9551 just have to look harder. This case can be executed
9552 if we have line numbers but no functions (as can
9553 happen in assembly source). */
9554
9555 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9556 switch_to_program_space_and_thread (sal->pspace);
9557
9558 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9559 if (msym.minsym)
9560 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9561 }
9562 }
9563 }
9564 }
9565
9566 void
9567 break_command (const char *arg, int from_tty)
9568 {
9569 break_command_1 (arg, 0, from_tty);
9570 }
9571
9572 void
9573 tbreak_command (const char *arg, int from_tty)
9574 {
9575 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9576 }
9577
9578 static void
9579 hbreak_command (const char *arg, int from_tty)
9580 {
9581 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9582 }
9583
9584 static void
9585 thbreak_command (const char *arg, int from_tty)
9586 {
9587 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9588 }
9589
9590 static void
9591 stop_command (const char *arg, int from_tty)
9592 {
9593 printf_filtered (_("Specify the type of breakpoint to set.\n\
9594 Usage: stop in <function | address>\n\
9595 stop at <line>\n"));
9596 }
9597
9598 static void
9599 stopin_command (const char *arg, int from_tty)
9600 {
9601 int badInput = 0;
9602
9603 if (arg == (char *) NULL)
9604 badInput = 1;
9605 else if (*arg != '*')
9606 {
9607 const char *argptr = arg;
9608 int hasColon = 0;
9609
9610 /* Look for a ':'. If this is a line number specification, then
9611 say it is bad, otherwise, it should be an address or
9612 function/method name. */
9613 while (*argptr && !hasColon)
9614 {
9615 hasColon = (*argptr == ':');
9616 argptr++;
9617 }
9618
9619 if (hasColon)
9620 badInput = (*argptr != ':'); /* Not a class::method */
9621 else
9622 badInput = isdigit (*arg); /* a simple line number */
9623 }
9624
9625 if (badInput)
9626 printf_filtered (_("Usage: stop in <function | address>\n"));
9627 else
9628 break_command_1 (arg, 0, from_tty);
9629 }
9630
9631 static void
9632 stopat_command (const char *arg, int from_tty)
9633 {
9634 int badInput = 0;
9635
9636 if (arg == (char *) NULL || *arg == '*') /* no line number */
9637 badInput = 1;
9638 else
9639 {
9640 const char *argptr = arg;
9641 int hasColon = 0;
9642
9643 /* Look for a ':'. If there is a '::' then get out, otherwise
9644 it is probably a line number. */
9645 while (*argptr && !hasColon)
9646 {
9647 hasColon = (*argptr == ':');
9648 argptr++;
9649 }
9650
9651 if (hasColon)
9652 badInput = (*argptr == ':'); /* we have class::method */
9653 else
9654 badInput = !isdigit (*arg); /* not a line number */
9655 }
9656
9657 if (badInput)
9658 printf_filtered (_("Usage: stop at <line>\n"));
9659 else
9660 break_command_1 (arg, 0, from_tty);
9661 }
9662
9663 /* The dynamic printf command is mostly like a regular breakpoint, but
9664 with a prewired command list consisting of a single output command,
9665 built from extra arguments supplied on the dprintf command
9666 line. */
9667
9668 static void
9669 dprintf_command (const char *arg, int from_tty)
9670 {
9671 event_location_up location = string_to_event_location (&arg, current_language);
9672
9673 /* If non-NULL, ARG should have been advanced past the location;
9674 the next character must be ','. */
9675 if (arg != NULL)
9676 {
9677 if (arg[0] != ',' || arg[1] == '\0')
9678 error (_("Format string required"));
9679 else
9680 {
9681 /* Skip the comma. */
9682 ++arg;
9683 }
9684 }
9685
9686 create_breakpoint (get_current_arch (),
9687 location.get (),
9688 NULL, 0, arg, 1 /* parse arg */,
9689 0, bp_dprintf,
9690 0 /* Ignore count */,
9691 pending_break_support,
9692 &dprintf_breakpoint_ops,
9693 from_tty,
9694 1 /* enabled */,
9695 0 /* internal */,
9696 0);
9697 }
9698
9699 static void
9700 agent_printf_command (const char *arg, int from_tty)
9701 {
9702 error (_("May only run agent-printf on the target"));
9703 }
9704
9705 /* Implement the "breakpoint_hit" breakpoint_ops method for
9706 ranged breakpoints. */
9707
9708 static int
9709 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9710 const address_space *aspace,
9711 CORE_ADDR bp_addr,
9712 const struct target_waitstatus *ws)
9713 {
9714 if (ws->kind != TARGET_WAITKIND_STOPPED
9715 || ws->value.sig != GDB_SIGNAL_TRAP)
9716 return 0;
9717
9718 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9719 bl->length, aspace, bp_addr);
9720 }
9721
9722 /* Implement the "resources_needed" breakpoint_ops method for
9723 ranged breakpoints. */
9724
9725 static int
9726 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9727 {
9728 return target_ranged_break_num_registers ();
9729 }
9730
9731 /* Implement the "print_it" breakpoint_ops method for
9732 ranged breakpoints. */
9733
9734 static enum print_stop_action
9735 print_it_ranged_breakpoint (bpstat bs)
9736 {
9737 struct breakpoint *b = bs->breakpoint_at;
9738 struct bp_location *bl = b->loc;
9739 struct ui_out *uiout = current_uiout;
9740
9741 gdb_assert (b->type == bp_hardware_breakpoint);
9742
9743 /* Ranged breakpoints have only one location. */
9744 gdb_assert (bl && bl->next == NULL);
9745
9746 annotate_breakpoint (b->number);
9747
9748 maybe_print_thread_hit_breakpoint (uiout);
9749
9750 if (b->disposition == disp_del)
9751 uiout->text ("Temporary ranged breakpoint ");
9752 else
9753 uiout->text ("Ranged breakpoint ");
9754 if (uiout->is_mi_like_p ())
9755 {
9756 uiout->field_string ("reason",
9757 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9758 uiout->field_string ("disp", bpdisp_text (b->disposition));
9759 }
9760 uiout->field_int ("bkptno", b->number);
9761 uiout->text (", ");
9762
9763 return PRINT_SRC_AND_LOC;
9764 }
9765
9766 /* Implement the "print_one" breakpoint_ops method for
9767 ranged breakpoints. */
9768
9769 static void
9770 print_one_ranged_breakpoint (struct breakpoint *b,
9771 struct bp_location **last_loc)
9772 {
9773 struct bp_location *bl = b->loc;
9774 struct value_print_options opts;
9775 struct ui_out *uiout = current_uiout;
9776
9777 /* Ranged breakpoints have only one location. */
9778 gdb_assert (bl && bl->next == NULL);
9779
9780 get_user_print_options (&opts);
9781
9782 if (opts.addressprint)
9783 /* We don't print the address range here, it will be printed later
9784 by print_one_detail_ranged_breakpoint. */
9785 uiout->field_skip ("addr");
9786 annotate_field (5);
9787 print_breakpoint_location (b, bl);
9788 *last_loc = bl;
9789 }
9790
9791 /* Implement the "print_one_detail" breakpoint_ops method for
9792 ranged breakpoints. */
9793
9794 static void
9795 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9796 struct ui_out *uiout)
9797 {
9798 CORE_ADDR address_start, address_end;
9799 struct bp_location *bl = b->loc;
9800 string_file stb;
9801
9802 gdb_assert (bl);
9803
9804 address_start = bl->address;
9805 address_end = address_start + bl->length - 1;
9806
9807 uiout->text ("\taddress range: ");
9808 stb.printf ("[%s, %s]",
9809 print_core_address (bl->gdbarch, address_start),
9810 print_core_address (bl->gdbarch, address_end));
9811 uiout->field_stream ("addr", stb);
9812 uiout->text ("\n");
9813 }
9814
9815 /* Implement the "print_mention" breakpoint_ops method for
9816 ranged breakpoints. */
9817
9818 static void
9819 print_mention_ranged_breakpoint (struct breakpoint *b)
9820 {
9821 struct bp_location *bl = b->loc;
9822 struct ui_out *uiout = current_uiout;
9823
9824 gdb_assert (bl);
9825 gdb_assert (b->type == bp_hardware_breakpoint);
9826
9827 if (uiout->is_mi_like_p ())
9828 return;
9829
9830 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9831 b->number, paddress (bl->gdbarch, bl->address),
9832 paddress (bl->gdbarch, bl->address + bl->length - 1));
9833 }
9834
9835 /* Implement the "print_recreate" breakpoint_ops method for
9836 ranged breakpoints. */
9837
9838 static void
9839 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9840 {
9841 fprintf_unfiltered (fp, "break-range %s, %s",
9842 event_location_to_string (b->location.get ()),
9843 event_location_to_string (b->location_range_end.get ()));
9844 print_recreate_thread (b, fp);
9845 }
9846
9847 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9848
9849 static struct breakpoint_ops ranged_breakpoint_ops;
9850
9851 /* Find the address where the end of the breakpoint range should be
9852 placed, given the SAL of the end of the range. This is so that if
9853 the user provides a line number, the end of the range is set to the
9854 last instruction of the given line. */
9855
9856 static CORE_ADDR
9857 find_breakpoint_range_end (struct symtab_and_line sal)
9858 {
9859 CORE_ADDR end;
9860
9861 /* If the user provided a PC value, use it. Otherwise,
9862 find the address of the end of the given location. */
9863 if (sal.explicit_pc)
9864 end = sal.pc;
9865 else
9866 {
9867 int ret;
9868 CORE_ADDR start;
9869
9870 ret = find_line_pc_range (sal, &start, &end);
9871 if (!ret)
9872 error (_("Could not find location of the end of the range."));
9873
9874 /* find_line_pc_range returns the start of the next line. */
9875 end--;
9876 }
9877
9878 return end;
9879 }
9880
9881 /* Implement the "break-range" CLI command. */
9882
9883 static void
9884 break_range_command (const char *arg, int from_tty)
9885 {
9886 const char *arg_start;
9887 struct linespec_result canonical_start, canonical_end;
9888 int bp_count, can_use_bp, length;
9889 CORE_ADDR end;
9890 struct breakpoint *b;
9891
9892 /* We don't support software ranged breakpoints. */
9893 if (target_ranged_break_num_registers () < 0)
9894 error (_("This target does not support hardware ranged breakpoints."));
9895
9896 bp_count = hw_breakpoint_used_count ();
9897 bp_count += target_ranged_break_num_registers ();
9898 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9899 bp_count, 0);
9900 if (can_use_bp < 0)
9901 error (_("Hardware breakpoints used exceeds limit."));
9902
9903 arg = skip_spaces (arg);
9904 if (arg == NULL || arg[0] == '\0')
9905 error(_("No address range specified."));
9906
9907 arg_start = arg;
9908 event_location_up start_location = string_to_event_location (&arg,
9909 current_language);
9910 parse_breakpoint_sals (start_location.get (), &canonical_start);
9911
9912 if (arg[0] != ',')
9913 error (_("Too few arguments."));
9914 else if (canonical_start.lsals.empty ())
9915 error (_("Could not find location of the beginning of the range."));
9916
9917 const linespec_sals &lsal_start = canonical_start.lsals[0];
9918
9919 if (canonical_start.lsals.size () > 1
9920 || lsal_start.sals.size () != 1)
9921 error (_("Cannot create a ranged breakpoint with multiple locations."));
9922
9923 const symtab_and_line &sal_start = lsal_start.sals[0];
9924 std::string addr_string_start (arg_start, arg - arg_start);
9925
9926 arg++; /* Skip the comma. */
9927 arg = skip_spaces (arg);
9928
9929 /* Parse the end location. */
9930
9931 arg_start = arg;
9932
9933 /* We call decode_line_full directly here instead of using
9934 parse_breakpoint_sals because we need to specify the start location's
9935 symtab and line as the default symtab and line for the end of the
9936 range. This makes it possible to have ranges like "foo.c:27, +14",
9937 where +14 means 14 lines from the start location. */
9938 event_location_up end_location = string_to_event_location (&arg,
9939 current_language);
9940 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9941 sal_start.symtab, sal_start.line,
9942 &canonical_end, NULL, NULL);
9943
9944 if (canonical_end.lsals.empty ())
9945 error (_("Could not find location of the end of the range."));
9946
9947 const linespec_sals &lsal_end = canonical_end.lsals[0];
9948 if (canonical_end.lsals.size () > 1
9949 || lsal_end.sals.size () != 1)
9950 error (_("Cannot create a ranged breakpoint with multiple locations."));
9951
9952 const symtab_and_line &sal_end = lsal_end.sals[0];
9953
9954 end = find_breakpoint_range_end (sal_end);
9955 if (sal_start.pc > end)
9956 error (_("Invalid address range, end precedes start."));
9957
9958 length = end - sal_start.pc + 1;
9959 if (length < 0)
9960 /* Length overflowed. */
9961 error (_("Address range too large."));
9962 else if (length == 1)
9963 {
9964 /* This range is simple enough to be handled by
9965 the `hbreak' command. */
9966 hbreak_command (&addr_string_start[0], 1);
9967
9968 return;
9969 }
9970
9971 /* Now set up the breakpoint. */
9972 b = set_raw_breakpoint (get_current_arch (), sal_start,
9973 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9974 set_breakpoint_count (breakpoint_count + 1);
9975 b->number = breakpoint_count;
9976 b->disposition = disp_donttouch;
9977 b->location = std::move (start_location);
9978 b->location_range_end = std::move (end_location);
9979 b->loc->length = length;
9980
9981 mention (b);
9982 gdb::observers::breakpoint_created.notify (b);
9983 update_global_location_list (UGLL_MAY_INSERT);
9984 }
9985
9986 /* Return non-zero if EXP is verified as constant. Returned zero
9987 means EXP is variable. Also the constant detection may fail for
9988 some constant expressions and in such case still falsely return
9989 zero. */
9990
9991 static int
9992 watchpoint_exp_is_const (const struct expression *exp)
9993 {
9994 int i = exp->nelts;
9995
9996 while (i > 0)
9997 {
9998 int oplenp, argsp;
9999
10000 /* We are only interested in the descriptor of each element. */
10001 operator_length (exp, i, &oplenp, &argsp);
10002 i -= oplenp;
10003
10004 switch (exp->elts[i].opcode)
10005 {
10006 case BINOP_ADD:
10007 case BINOP_SUB:
10008 case BINOP_MUL:
10009 case BINOP_DIV:
10010 case BINOP_REM:
10011 case BINOP_MOD:
10012 case BINOP_LSH:
10013 case BINOP_RSH:
10014 case BINOP_LOGICAL_AND:
10015 case BINOP_LOGICAL_OR:
10016 case BINOP_BITWISE_AND:
10017 case BINOP_BITWISE_IOR:
10018 case BINOP_BITWISE_XOR:
10019 case BINOP_EQUAL:
10020 case BINOP_NOTEQUAL:
10021 case BINOP_LESS:
10022 case BINOP_GTR:
10023 case BINOP_LEQ:
10024 case BINOP_GEQ:
10025 case BINOP_REPEAT:
10026 case BINOP_COMMA:
10027 case BINOP_EXP:
10028 case BINOP_MIN:
10029 case BINOP_MAX:
10030 case BINOP_INTDIV:
10031 case BINOP_CONCAT:
10032 case TERNOP_COND:
10033 case TERNOP_SLICE:
10034
10035 case OP_LONG:
10036 case OP_FLOAT:
10037 case OP_LAST:
10038 case OP_COMPLEX:
10039 case OP_STRING:
10040 case OP_ARRAY:
10041 case OP_TYPE:
10042 case OP_TYPEOF:
10043 case OP_DECLTYPE:
10044 case OP_TYPEID:
10045 case OP_NAME:
10046 case OP_OBJC_NSSTRING:
10047
10048 case UNOP_NEG:
10049 case UNOP_LOGICAL_NOT:
10050 case UNOP_COMPLEMENT:
10051 case UNOP_ADDR:
10052 case UNOP_HIGH:
10053 case UNOP_CAST:
10054
10055 case UNOP_CAST_TYPE:
10056 case UNOP_REINTERPRET_CAST:
10057 case UNOP_DYNAMIC_CAST:
10058 /* Unary, binary and ternary operators: We have to check
10059 their operands. If they are constant, then so is the
10060 result of that operation. For instance, if A and B are
10061 determined to be constants, then so is "A + B".
10062
10063 UNOP_IND is one exception to the rule above, because the
10064 value of *ADDR is not necessarily a constant, even when
10065 ADDR is. */
10066 break;
10067
10068 case OP_VAR_VALUE:
10069 /* Check whether the associated symbol is a constant.
10070
10071 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10072 possible that a buggy compiler could mark a variable as
10073 constant even when it is not, and TYPE_CONST would return
10074 true in this case, while SYMBOL_CLASS wouldn't.
10075
10076 We also have to check for function symbols because they
10077 are always constant. */
10078 {
10079 struct symbol *s = exp->elts[i + 2].symbol;
10080
10081 if (SYMBOL_CLASS (s) != LOC_BLOCK
10082 && SYMBOL_CLASS (s) != LOC_CONST
10083 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10084 return 0;
10085 break;
10086 }
10087
10088 /* The default action is to return 0 because we are using
10089 the optimistic approach here: If we don't know something,
10090 then it is not a constant. */
10091 default:
10092 return 0;
10093 }
10094 }
10095
10096 return 1;
10097 }
10098
10099 /* Watchpoint destructor. */
10100
10101 watchpoint::~watchpoint ()
10102 {
10103 xfree (this->exp_string);
10104 xfree (this->exp_string_reparse);
10105 value_free (this->val);
10106 }
10107
10108 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10109
10110 static void
10111 re_set_watchpoint (struct breakpoint *b)
10112 {
10113 struct watchpoint *w = (struct watchpoint *) b;
10114
10115 /* Watchpoint can be either on expression using entirely global
10116 variables, or it can be on local variables.
10117
10118 Watchpoints of the first kind are never auto-deleted, and even
10119 persist across program restarts. Since they can use variables
10120 from shared libraries, we need to reparse expression as libraries
10121 are loaded and unloaded.
10122
10123 Watchpoints on local variables can also change meaning as result
10124 of solib event. For example, if a watchpoint uses both a local
10125 and a global variables in expression, it's a local watchpoint,
10126 but unloading of a shared library will make the expression
10127 invalid. This is not a very common use case, but we still
10128 re-evaluate expression, to avoid surprises to the user.
10129
10130 Note that for local watchpoints, we re-evaluate it only if
10131 watchpoints frame id is still valid. If it's not, it means the
10132 watchpoint is out of scope and will be deleted soon. In fact,
10133 I'm not sure we'll ever be called in this case.
10134
10135 If a local watchpoint's frame id is still valid, then
10136 w->exp_valid_block is likewise valid, and we can safely use it.
10137
10138 Don't do anything about disabled watchpoints, since they will be
10139 reevaluated again when enabled. */
10140 update_watchpoint (w, 1 /* reparse */);
10141 }
10142
10143 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10144
10145 static int
10146 insert_watchpoint (struct bp_location *bl)
10147 {
10148 struct watchpoint *w = (struct watchpoint *) bl->owner;
10149 int length = w->exact ? 1 : bl->length;
10150
10151 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10152 w->cond_exp.get ());
10153 }
10154
10155 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10156
10157 static int
10158 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10159 {
10160 struct watchpoint *w = (struct watchpoint *) bl->owner;
10161 int length = w->exact ? 1 : bl->length;
10162
10163 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10164 w->cond_exp.get ());
10165 }
10166
10167 static int
10168 breakpoint_hit_watchpoint (const struct bp_location *bl,
10169 const address_space *aspace, CORE_ADDR bp_addr,
10170 const struct target_waitstatus *ws)
10171 {
10172 struct breakpoint *b = bl->owner;
10173 struct watchpoint *w = (struct watchpoint *) b;
10174
10175 /* Continuable hardware watchpoints are treated as non-existent if the
10176 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10177 some data address). Otherwise gdb won't stop on a break instruction
10178 in the code (not from a breakpoint) when a hardware watchpoint has
10179 been defined. Also skip watchpoints which we know did not trigger
10180 (did not match the data address). */
10181 if (is_hardware_watchpoint (b)
10182 && w->watchpoint_triggered == watch_triggered_no)
10183 return 0;
10184
10185 return 1;
10186 }
10187
10188 static void
10189 check_status_watchpoint (bpstat bs)
10190 {
10191 gdb_assert (is_watchpoint (bs->breakpoint_at));
10192
10193 bpstat_check_watchpoint (bs);
10194 }
10195
10196 /* Implement the "resources_needed" breakpoint_ops method for
10197 hardware watchpoints. */
10198
10199 static int
10200 resources_needed_watchpoint (const struct bp_location *bl)
10201 {
10202 struct watchpoint *w = (struct watchpoint *) bl->owner;
10203 int length = w->exact? 1 : bl->length;
10204
10205 return target_region_ok_for_hw_watchpoint (bl->address, length);
10206 }
10207
10208 /* Implement the "works_in_software_mode" breakpoint_ops method for
10209 hardware watchpoints. */
10210
10211 static int
10212 works_in_software_mode_watchpoint (const struct breakpoint *b)
10213 {
10214 /* Read and access watchpoints only work with hardware support. */
10215 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10216 }
10217
10218 static enum print_stop_action
10219 print_it_watchpoint (bpstat bs)
10220 {
10221 struct breakpoint *b;
10222 enum print_stop_action result;
10223 struct watchpoint *w;
10224 struct ui_out *uiout = current_uiout;
10225
10226 gdb_assert (bs->bp_location_at != NULL);
10227
10228 b = bs->breakpoint_at;
10229 w = (struct watchpoint *) b;
10230
10231 annotate_watchpoint (b->number);
10232 maybe_print_thread_hit_breakpoint (uiout);
10233
10234 string_file stb;
10235
10236 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10237 switch (b->type)
10238 {
10239 case bp_watchpoint:
10240 case bp_hardware_watchpoint:
10241 if (uiout->is_mi_like_p ())
10242 uiout->field_string
10243 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10244 mention (b);
10245 tuple_emitter.emplace (uiout, "value");
10246 uiout->text ("\nOld value = ");
10247 watchpoint_value_print (bs->old_val, &stb);
10248 uiout->field_stream ("old", stb);
10249 uiout->text ("\nNew value = ");
10250 watchpoint_value_print (w->val, &stb);
10251 uiout->field_stream ("new", stb);
10252 uiout->text ("\n");
10253 /* More than one watchpoint may have been triggered. */
10254 result = PRINT_UNKNOWN;
10255 break;
10256
10257 case bp_read_watchpoint:
10258 if (uiout->is_mi_like_p ())
10259 uiout->field_string
10260 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10261 mention (b);
10262 tuple_emitter.emplace (uiout, "value");
10263 uiout->text ("\nValue = ");
10264 watchpoint_value_print (w->val, &stb);
10265 uiout->field_stream ("value", stb);
10266 uiout->text ("\n");
10267 result = PRINT_UNKNOWN;
10268 break;
10269
10270 case bp_access_watchpoint:
10271 if (bs->old_val != NULL)
10272 {
10273 if (uiout->is_mi_like_p ())
10274 uiout->field_string
10275 ("reason",
10276 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10277 mention (b);
10278 tuple_emitter.emplace (uiout, "value");
10279 uiout->text ("\nOld value = ");
10280 watchpoint_value_print (bs->old_val, &stb);
10281 uiout->field_stream ("old", stb);
10282 uiout->text ("\nNew value = ");
10283 }
10284 else
10285 {
10286 mention (b);
10287 if (uiout->is_mi_like_p ())
10288 uiout->field_string
10289 ("reason",
10290 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10291 tuple_emitter.emplace (uiout, "value");
10292 uiout->text ("\nValue = ");
10293 }
10294 watchpoint_value_print (w->val, &stb);
10295 uiout->field_stream ("new", stb);
10296 uiout->text ("\n");
10297 result = PRINT_UNKNOWN;
10298 break;
10299 default:
10300 result = PRINT_UNKNOWN;
10301 }
10302
10303 return result;
10304 }
10305
10306 /* Implement the "print_mention" breakpoint_ops method for hardware
10307 watchpoints. */
10308
10309 static void
10310 print_mention_watchpoint (struct breakpoint *b)
10311 {
10312 struct watchpoint *w = (struct watchpoint *) b;
10313 struct ui_out *uiout = current_uiout;
10314 const char *tuple_name;
10315
10316 switch (b->type)
10317 {
10318 case bp_watchpoint:
10319 uiout->text ("Watchpoint ");
10320 tuple_name = "wpt";
10321 break;
10322 case bp_hardware_watchpoint:
10323 uiout->text ("Hardware watchpoint ");
10324 tuple_name = "wpt";
10325 break;
10326 case bp_read_watchpoint:
10327 uiout->text ("Hardware read watchpoint ");
10328 tuple_name = "hw-rwpt";
10329 break;
10330 case bp_access_watchpoint:
10331 uiout->text ("Hardware access (read/write) watchpoint ");
10332 tuple_name = "hw-awpt";
10333 break;
10334 default:
10335 internal_error (__FILE__, __LINE__,
10336 _("Invalid hardware watchpoint type."));
10337 }
10338
10339 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10340 uiout->field_int ("number", b->number);
10341 uiout->text (": ");
10342 uiout->field_string ("exp", w->exp_string);
10343 }
10344
10345 /* Implement the "print_recreate" breakpoint_ops method for
10346 watchpoints. */
10347
10348 static void
10349 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10350 {
10351 struct watchpoint *w = (struct watchpoint *) b;
10352
10353 switch (b->type)
10354 {
10355 case bp_watchpoint:
10356 case bp_hardware_watchpoint:
10357 fprintf_unfiltered (fp, "watch");
10358 break;
10359 case bp_read_watchpoint:
10360 fprintf_unfiltered (fp, "rwatch");
10361 break;
10362 case bp_access_watchpoint:
10363 fprintf_unfiltered (fp, "awatch");
10364 break;
10365 default:
10366 internal_error (__FILE__, __LINE__,
10367 _("Invalid watchpoint type."));
10368 }
10369
10370 fprintf_unfiltered (fp, " %s", w->exp_string);
10371 print_recreate_thread (b, fp);
10372 }
10373
10374 /* Implement the "explains_signal" breakpoint_ops method for
10375 watchpoints. */
10376
10377 static int
10378 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10379 {
10380 /* A software watchpoint cannot cause a signal other than
10381 GDB_SIGNAL_TRAP. */
10382 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10383 return 0;
10384
10385 return 1;
10386 }
10387
10388 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10389
10390 static struct breakpoint_ops watchpoint_breakpoint_ops;
10391
10392 /* Implement the "insert" breakpoint_ops method for
10393 masked hardware watchpoints. */
10394
10395 static int
10396 insert_masked_watchpoint (struct bp_location *bl)
10397 {
10398 struct watchpoint *w = (struct watchpoint *) bl->owner;
10399
10400 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10401 bl->watchpoint_type);
10402 }
10403
10404 /* Implement the "remove" breakpoint_ops method for
10405 masked hardware watchpoints. */
10406
10407 static int
10408 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10409 {
10410 struct watchpoint *w = (struct watchpoint *) bl->owner;
10411
10412 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10413 bl->watchpoint_type);
10414 }
10415
10416 /* Implement the "resources_needed" breakpoint_ops method for
10417 masked hardware watchpoints. */
10418
10419 static int
10420 resources_needed_masked_watchpoint (const struct bp_location *bl)
10421 {
10422 struct watchpoint *w = (struct watchpoint *) bl->owner;
10423
10424 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10425 }
10426
10427 /* Implement the "works_in_software_mode" breakpoint_ops method for
10428 masked hardware watchpoints. */
10429
10430 static int
10431 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10432 {
10433 return 0;
10434 }
10435
10436 /* Implement the "print_it" breakpoint_ops method for
10437 masked hardware watchpoints. */
10438
10439 static enum print_stop_action
10440 print_it_masked_watchpoint (bpstat bs)
10441 {
10442 struct breakpoint *b = bs->breakpoint_at;
10443 struct ui_out *uiout = current_uiout;
10444
10445 /* Masked watchpoints have only one location. */
10446 gdb_assert (b->loc && b->loc->next == NULL);
10447
10448 annotate_watchpoint (b->number);
10449 maybe_print_thread_hit_breakpoint (uiout);
10450
10451 switch (b->type)
10452 {
10453 case bp_hardware_watchpoint:
10454 if (uiout->is_mi_like_p ())
10455 uiout->field_string
10456 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10457 break;
10458
10459 case bp_read_watchpoint:
10460 if (uiout->is_mi_like_p ())
10461 uiout->field_string
10462 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10463 break;
10464
10465 case bp_access_watchpoint:
10466 if (uiout->is_mi_like_p ())
10467 uiout->field_string
10468 ("reason",
10469 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10470 break;
10471 default:
10472 internal_error (__FILE__, __LINE__,
10473 _("Invalid hardware watchpoint type."));
10474 }
10475
10476 mention (b);
10477 uiout->text (_("\n\
10478 Check the underlying instruction at PC for the memory\n\
10479 address and value which triggered this watchpoint.\n"));
10480 uiout->text ("\n");
10481
10482 /* More than one watchpoint may have been triggered. */
10483 return PRINT_UNKNOWN;
10484 }
10485
10486 /* Implement the "print_one_detail" breakpoint_ops method for
10487 masked hardware watchpoints. */
10488
10489 static void
10490 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10491 struct ui_out *uiout)
10492 {
10493 struct watchpoint *w = (struct watchpoint *) b;
10494
10495 /* Masked watchpoints have only one location. */
10496 gdb_assert (b->loc && b->loc->next == NULL);
10497
10498 uiout->text ("\tmask ");
10499 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10500 uiout->text ("\n");
10501 }
10502
10503 /* Implement the "print_mention" breakpoint_ops method for
10504 masked hardware watchpoints. */
10505
10506 static void
10507 print_mention_masked_watchpoint (struct breakpoint *b)
10508 {
10509 struct watchpoint *w = (struct watchpoint *) b;
10510 struct ui_out *uiout = current_uiout;
10511 const char *tuple_name;
10512
10513 switch (b->type)
10514 {
10515 case bp_hardware_watchpoint:
10516 uiout->text ("Masked hardware watchpoint ");
10517 tuple_name = "wpt";
10518 break;
10519 case bp_read_watchpoint:
10520 uiout->text ("Masked hardware read watchpoint ");
10521 tuple_name = "hw-rwpt";
10522 break;
10523 case bp_access_watchpoint:
10524 uiout->text ("Masked hardware access (read/write) watchpoint ");
10525 tuple_name = "hw-awpt";
10526 break;
10527 default:
10528 internal_error (__FILE__, __LINE__,
10529 _("Invalid hardware watchpoint type."));
10530 }
10531
10532 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10533 uiout->field_int ("number", b->number);
10534 uiout->text (": ");
10535 uiout->field_string ("exp", w->exp_string);
10536 }
10537
10538 /* Implement the "print_recreate" breakpoint_ops method for
10539 masked hardware watchpoints. */
10540
10541 static void
10542 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10543 {
10544 struct watchpoint *w = (struct watchpoint *) b;
10545 char tmp[40];
10546
10547 switch (b->type)
10548 {
10549 case bp_hardware_watchpoint:
10550 fprintf_unfiltered (fp, "watch");
10551 break;
10552 case bp_read_watchpoint:
10553 fprintf_unfiltered (fp, "rwatch");
10554 break;
10555 case bp_access_watchpoint:
10556 fprintf_unfiltered (fp, "awatch");
10557 break;
10558 default:
10559 internal_error (__FILE__, __LINE__,
10560 _("Invalid hardware watchpoint type."));
10561 }
10562
10563 sprintf_vma (tmp, w->hw_wp_mask);
10564 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10565 print_recreate_thread (b, fp);
10566 }
10567
10568 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10569
10570 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10571
10572 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10573
10574 static int
10575 is_masked_watchpoint (const struct breakpoint *b)
10576 {
10577 return b->ops == &masked_watchpoint_breakpoint_ops;
10578 }
10579
10580 /* accessflag: hw_write: watch write,
10581 hw_read: watch read,
10582 hw_access: watch access (read or write) */
10583 static void
10584 watch_command_1 (const char *arg, int accessflag, int from_tty,
10585 int just_location, int internal)
10586 {
10587 struct breakpoint *scope_breakpoint = NULL;
10588 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10589 struct value *val, *mark, *result;
10590 int saved_bitpos = 0, saved_bitsize = 0;
10591 const char *exp_start = NULL;
10592 const char *exp_end = NULL;
10593 const char *tok, *end_tok;
10594 int toklen = -1;
10595 const char *cond_start = NULL;
10596 const char *cond_end = NULL;
10597 enum bptype bp_type;
10598 int thread = -1;
10599 int pc = 0;
10600 /* Flag to indicate whether we are going to use masks for
10601 the hardware watchpoint. */
10602 int use_mask = 0;
10603 CORE_ADDR mask = 0;
10604
10605 /* Make sure that we actually have parameters to parse. */
10606 if (arg != NULL && arg[0] != '\0')
10607 {
10608 const char *value_start;
10609
10610 exp_end = arg + strlen (arg);
10611
10612 /* Look for "parameter value" pairs at the end
10613 of the arguments string. */
10614 for (tok = exp_end - 1; tok > arg; tok--)
10615 {
10616 /* Skip whitespace at the end of the argument list. */
10617 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10618 tok--;
10619
10620 /* Find the beginning of the last token.
10621 This is the value of the parameter. */
10622 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10623 tok--;
10624 value_start = tok + 1;
10625
10626 /* Skip whitespace. */
10627 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10628 tok--;
10629
10630 end_tok = tok;
10631
10632 /* Find the beginning of the second to last token.
10633 This is the parameter itself. */
10634 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10635 tok--;
10636 tok++;
10637 toklen = end_tok - tok + 1;
10638
10639 if (toklen == 6 && startswith (tok, "thread"))
10640 {
10641 struct thread_info *thr;
10642 /* At this point we've found a "thread" token, which means
10643 the user is trying to set a watchpoint that triggers
10644 only in a specific thread. */
10645 const char *endp;
10646
10647 if (thread != -1)
10648 error(_("You can specify only one thread."));
10649
10650 /* Extract the thread ID from the next token. */
10651 thr = parse_thread_id (value_start, &endp);
10652
10653 /* Check if the user provided a valid thread ID. */
10654 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10655 invalid_thread_id_error (value_start);
10656
10657 thread = thr->global_num;
10658 }
10659 else if (toklen == 4 && startswith (tok, "mask"))
10660 {
10661 /* We've found a "mask" token, which means the user wants to
10662 create a hardware watchpoint that is going to have the mask
10663 facility. */
10664 struct value *mask_value, *mark;
10665
10666 if (use_mask)
10667 error(_("You can specify only one mask."));
10668
10669 use_mask = just_location = 1;
10670
10671 mark = value_mark ();
10672 mask_value = parse_to_comma_and_eval (&value_start);
10673 mask = value_as_address (mask_value);
10674 value_free_to_mark (mark);
10675 }
10676 else
10677 /* We didn't recognize what we found. We should stop here. */
10678 break;
10679
10680 /* Truncate the string and get rid of the "parameter value" pair before
10681 the arguments string is parsed by the parse_exp_1 function. */
10682 exp_end = tok;
10683 }
10684 }
10685 else
10686 exp_end = arg;
10687
10688 /* Parse the rest of the arguments. From here on out, everything
10689 is in terms of a newly allocated string instead of the original
10690 ARG. */
10691 innermost_block.reset ();
10692 std::string expression (arg, exp_end - arg);
10693 exp_start = arg = expression.c_str ();
10694 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10695 exp_end = arg;
10696 /* Remove trailing whitespace from the expression before saving it.
10697 This makes the eventual display of the expression string a bit
10698 prettier. */
10699 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10700 --exp_end;
10701
10702 /* Checking if the expression is not constant. */
10703 if (watchpoint_exp_is_const (exp.get ()))
10704 {
10705 int len;
10706
10707 len = exp_end - exp_start;
10708 while (len > 0 && isspace (exp_start[len - 1]))
10709 len--;
10710 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10711 }
10712
10713 exp_valid_block = innermost_block.block ();
10714 mark = value_mark ();
10715 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10716
10717 if (val != NULL && just_location)
10718 {
10719 saved_bitpos = value_bitpos (val);
10720 saved_bitsize = value_bitsize (val);
10721 }
10722
10723 if (just_location)
10724 {
10725 int ret;
10726
10727 exp_valid_block = NULL;
10728 val = value_addr (result);
10729 release_value (val);
10730 value_free_to_mark (mark);
10731
10732 if (use_mask)
10733 {
10734 ret = target_masked_watch_num_registers (value_as_address (val),
10735 mask);
10736 if (ret == -1)
10737 error (_("This target does not support masked watchpoints."));
10738 else if (ret == -2)
10739 error (_("Invalid mask or memory region."));
10740 }
10741 }
10742 else if (val != NULL)
10743 release_value (val);
10744
10745 tok = skip_spaces (arg);
10746 end_tok = skip_to_space (tok);
10747
10748 toklen = end_tok - tok;
10749 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10750 {
10751 innermost_block.reset ();
10752 tok = cond_start = end_tok + 1;
10753 parse_exp_1 (&tok, 0, 0, 0);
10754
10755 /* The watchpoint expression may not be local, but the condition
10756 may still be. E.g.: `watch global if local > 0'. */
10757 cond_exp_valid_block = innermost_block.block ();
10758
10759 cond_end = tok;
10760 }
10761 if (*tok)
10762 error (_("Junk at end of command."));
10763
10764 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10765
10766 /* Save this because create_internal_breakpoint below invalidates
10767 'wp_frame'. */
10768 frame_id watchpoint_frame = get_frame_id (wp_frame);
10769
10770 /* If the expression is "local", then set up a "watchpoint scope"
10771 breakpoint at the point where we've left the scope of the watchpoint
10772 expression. Create the scope breakpoint before the watchpoint, so
10773 that we will encounter it first in bpstat_stop_status. */
10774 if (exp_valid_block != NULL && wp_frame != NULL)
10775 {
10776 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10777
10778 if (frame_id_p (caller_frame_id))
10779 {
10780 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10781 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10782
10783 scope_breakpoint
10784 = create_internal_breakpoint (caller_arch, caller_pc,
10785 bp_watchpoint_scope,
10786 &momentary_breakpoint_ops);
10787
10788 /* create_internal_breakpoint could invalidate WP_FRAME. */
10789 wp_frame = NULL;
10790
10791 scope_breakpoint->enable_state = bp_enabled;
10792
10793 /* Automatically delete the breakpoint when it hits. */
10794 scope_breakpoint->disposition = disp_del;
10795
10796 /* Only break in the proper frame (help with recursion). */
10797 scope_breakpoint->frame_id = caller_frame_id;
10798
10799 /* Set the address at which we will stop. */
10800 scope_breakpoint->loc->gdbarch = caller_arch;
10801 scope_breakpoint->loc->requested_address = caller_pc;
10802 scope_breakpoint->loc->address
10803 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10804 scope_breakpoint->loc->requested_address,
10805 scope_breakpoint->type);
10806 }
10807 }
10808
10809 /* Now set up the breakpoint. We create all watchpoints as hardware
10810 watchpoints here even if hardware watchpoints are turned off, a call
10811 to update_watchpoint later in this function will cause the type to
10812 drop back to bp_watchpoint (software watchpoint) if required. */
10813
10814 if (accessflag == hw_read)
10815 bp_type = bp_read_watchpoint;
10816 else if (accessflag == hw_access)
10817 bp_type = bp_access_watchpoint;
10818 else
10819 bp_type = bp_hardware_watchpoint;
10820
10821 std::unique_ptr<watchpoint> w (new watchpoint ());
10822
10823 if (use_mask)
10824 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10825 &masked_watchpoint_breakpoint_ops);
10826 else
10827 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10828 &watchpoint_breakpoint_ops);
10829 w->thread = thread;
10830 w->disposition = disp_donttouch;
10831 w->pspace = current_program_space;
10832 w->exp = std::move (exp);
10833 w->exp_valid_block = exp_valid_block;
10834 w->cond_exp_valid_block = cond_exp_valid_block;
10835 if (just_location)
10836 {
10837 struct type *t = value_type (val);
10838 CORE_ADDR addr = value_as_address (val);
10839
10840 w->exp_string_reparse
10841 = current_language->la_watch_location_expression (t, addr).release ();
10842
10843 w->exp_string = xstrprintf ("-location %.*s",
10844 (int) (exp_end - exp_start), exp_start);
10845 }
10846 else
10847 w->exp_string = savestring (exp_start, exp_end - exp_start);
10848
10849 if (use_mask)
10850 {
10851 w->hw_wp_mask = mask;
10852 }
10853 else
10854 {
10855 w->val = val;
10856 w->val_bitpos = saved_bitpos;
10857 w->val_bitsize = saved_bitsize;
10858 w->val_valid = 1;
10859 }
10860
10861 if (cond_start)
10862 w->cond_string = savestring (cond_start, cond_end - cond_start);
10863 else
10864 w->cond_string = 0;
10865
10866 if (frame_id_p (watchpoint_frame))
10867 {
10868 w->watchpoint_frame = watchpoint_frame;
10869 w->watchpoint_thread = inferior_ptid;
10870 }
10871 else
10872 {
10873 w->watchpoint_frame = null_frame_id;
10874 w->watchpoint_thread = null_ptid;
10875 }
10876
10877 if (scope_breakpoint != NULL)
10878 {
10879 /* The scope breakpoint is related to the watchpoint. We will
10880 need to act on them together. */
10881 w->related_breakpoint = scope_breakpoint;
10882 scope_breakpoint->related_breakpoint = w.get ();
10883 }
10884
10885 if (!just_location)
10886 value_free_to_mark (mark);
10887
10888 /* Finally update the new watchpoint. This creates the locations
10889 that should be inserted. */
10890 update_watchpoint (w.get (), 1);
10891
10892 install_breakpoint (internal, std::move (w), 1);
10893 }
10894
10895 /* Return count of debug registers needed to watch the given expression.
10896 If the watchpoint cannot be handled in hardware return zero. */
10897
10898 static int
10899 can_use_hardware_watchpoint (struct value *v)
10900 {
10901 int found_memory_cnt = 0;
10902 struct value *head = v;
10903
10904 /* Did the user specifically forbid us to use hardware watchpoints? */
10905 if (!can_use_hw_watchpoints)
10906 return 0;
10907
10908 /* Make sure that the value of the expression depends only upon
10909 memory contents, and values computed from them within GDB. If we
10910 find any register references or function calls, we can't use a
10911 hardware watchpoint.
10912
10913 The idea here is that evaluating an expression generates a series
10914 of values, one holding the value of every subexpression. (The
10915 expression a*b+c has five subexpressions: a, b, a*b, c, and
10916 a*b+c.) GDB's values hold almost enough information to establish
10917 the criteria given above --- they identify memory lvalues,
10918 register lvalues, computed values, etcetera. So we can evaluate
10919 the expression, and then scan the chain of values that leaves
10920 behind to decide whether we can detect any possible change to the
10921 expression's final value using only hardware watchpoints.
10922
10923 However, I don't think that the values returned by inferior
10924 function calls are special in any way. So this function may not
10925 notice that an expression involving an inferior function call
10926 can't be watched with hardware watchpoints. FIXME. */
10927 for (; v; v = value_next (v))
10928 {
10929 if (VALUE_LVAL (v) == lval_memory)
10930 {
10931 if (v != head && value_lazy (v))
10932 /* A lazy memory lvalue in the chain is one that GDB never
10933 needed to fetch; we either just used its address (e.g.,
10934 `a' in `a.b') or we never needed it at all (e.g., `a'
10935 in `a,b'). This doesn't apply to HEAD; if that is
10936 lazy then it was not readable, but watch it anyway. */
10937 ;
10938 else
10939 {
10940 /* Ahh, memory we actually used! Check if we can cover
10941 it with hardware watchpoints. */
10942 struct type *vtype = check_typedef (value_type (v));
10943
10944 /* We only watch structs and arrays if user asked for it
10945 explicitly, never if they just happen to appear in a
10946 middle of some value chain. */
10947 if (v == head
10948 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10949 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10950 {
10951 CORE_ADDR vaddr = value_address (v);
10952 int len;
10953 int num_regs;
10954
10955 len = (target_exact_watchpoints
10956 && is_scalar_type_recursive (vtype))?
10957 1 : TYPE_LENGTH (value_type (v));
10958
10959 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10960 if (!num_regs)
10961 return 0;
10962 else
10963 found_memory_cnt += num_regs;
10964 }
10965 }
10966 }
10967 else if (VALUE_LVAL (v) != not_lval
10968 && deprecated_value_modifiable (v) == 0)
10969 return 0; /* These are values from the history (e.g., $1). */
10970 else if (VALUE_LVAL (v) == lval_register)
10971 return 0; /* Cannot watch a register with a HW watchpoint. */
10972 }
10973
10974 /* The expression itself looks suitable for using a hardware
10975 watchpoint, but give the target machine a chance to reject it. */
10976 return found_memory_cnt;
10977 }
10978
10979 void
10980 watch_command_wrapper (const char *arg, int from_tty, int internal)
10981 {
10982 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10983 }
10984
10985 /* A helper function that looks for the "-location" argument and then
10986 calls watch_command_1. */
10987
10988 static void
10989 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10990 {
10991 int just_location = 0;
10992
10993 if (arg
10994 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10995 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10996 {
10997 arg = skip_spaces (arg);
10998 just_location = 1;
10999 }
11000
11001 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11002 }
11003
11004 static void
11005 watch_command (const char *arg, int from_tty)
11006 {
11007 watch_maybe_just_location (arg, hw_write, from_tty);
11008 }
11009
11010 void
11011 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11012 {
11013 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11014 }
11015
11016 static void
11017 rwatch_command (const char *arg, int from_tty)
11018 {
11019 watch_maybe_just_location (arg, hw_read, from_tty);
11020 }
11021
11022 void
11023 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11024 {
11025 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11026 }
11027
11028 static void
11029 awatch_command (const char *arg, int from_tty)
11030 {
11031 watch_maybe_just_location (arg, hw_access, from_tty);
11032 }
11033 \f
11034
11035 /* Data for the FSM that manages the until(location)/advance commands
11036 in infcmd.c. Here because it uses the mechanisms of
11037 breakpoints. */
11038
11039 struct until_break_fsm
11040 {
11041 /* The base class. */
11042 struct thread_fsm thread_fsm;
11043
11044 /* The thread that as current when the command was executed. */
11045 int thread;
11046
11047 /* The breakpoint set at the destination location. */
11048 struct breakpoint *location_breakpoint;
11049
11050 /* Breakpoint set at the return address in the caller frame. May be
11051 NULL. */
11052 struct breakpoint *caller_breakpoint;
11053 };
11054
11055 static void until_break_fsm_clean_up (struct thread_fsm *self,
11056 struct thread_info *thread);
11057 static int until_break_fsm_should_stop (struct thread_fsm *self,
11058 struct thread_info *thread);
11059 static enum async_reply_reason
11060 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11061
11062 /* until_break_fsm's vtable. */
11063
11064 static struct thread_fsm_ops until_break_fsm_ops =
11065 {
11066 NULL, /* dtor */
11067 until_break_fsm_clean_up,
11068 until_break_fsm_should_stop,
11069 NULL, /* return_value */
11070 until_break_fsm_async_reply_reason,
11071 };
11072
11073 /* Allocate a new until_break_command_fsm. */
11074
11075 static struct until_break_fsm *
11076 new_until_break_fsm (struct interp *cmd_interp, int thread,
11077 breakpoint_up &&location_breakpoint,
11078 breakpoint_up &&caller_breakpoint)
11079 {
11080 struct until_break_fsm *sm;
11081
11082 sm = XCNEW (struct until_break_fsm);
11083 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11084
11085 sm->thread = thread;
11086 sm->location_breakpoint = location_breakpoint.release ();
11087 sm->caller_breakpoint = caller_breakpoint.release ();
11088
11089 return sm;
11090 }
11091
11092 /* Implementation of the 'should_stop' FSM method for the
11093 until(location)/advance commands. */
11094
11095 static int
11096 until_break_fsm_should_stop (struct thread_fsm *self,
11097 struct thread_info *tp)
11098 {
11099 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11100
11101 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11102 sm->location_breakpoint) != NULL
11103 || (sm->caller_breakpoint != NULL
11104 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11105 sm->caller_breakpoint) != NULL))
11106 thread_fsm_set_finished (self);
11107
11108 return 1;
11109 }
11110
11111 /* Implementation of the 'clean_up' FSM method for the
11112 until(location)/advance commands. */
11113
11114 static void
11115 until_break_fsm_clean_up (struct thread_fsm *self,
11116 struct thread_info *thread)
11117 {
11118 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11119
11120 /* Clean up our temporary breakpoints. */
11121 if (sm->location_breakpoint != NULL)
11122 {
11123 delete_breakpoint (sm->location_breakpoint);
11124 sm->location_breakpoint = NULL;
11125 }
11126 if (sm->caller_breakpoint != NULL)
11127 {
11128 delete_breakpoint (sm->caller_breakpoint);
11129 sm->caller_breakpoint = NULL;
11130 }
11131 delete_longjmp_breakpoint (sm->thread);
11132 }
11133
11134 /* Implementation of the 'async_reply_reason' FSM method for the
11135 until(location)/advance commands. */
11136
11137 static enum async_reply_reason
11138 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11139 {
11140 return EXEC_ASYNC_LOCATION_REACHED;
11141 }
11142
11143 void
11144 until_break_command (const char *arg, int from_tty, int anywhere)
11145 {
11146 struct frame_info *frame;
11147 struct gdbarch *frame_gdbarch;
11148 struct frame_id stack_frame_id;
11149 struct frame_id caller_frame_id;
11150 struct cleanup *old_chain;
11151 int thread;
11152 struct thread_info *tp;
11153 struct until_break_fsm *sm;
11154
11155 clear_proceed_status (0);
11156
11157 /* Set a breakpoint where the user wants it and at return from
11158 this function. */
11159
11160 event_location_up location = string_to_event_location (&arg, current_language);
11161
11162 std::vector<symtab_and_line> sals
11163 = (last_displayed_sal_is_valid ()
11164 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11165 get_last_displayed_symtab (),
11166 get_last_displayed_line ())
11167 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11168 NULL, (struct symtab *) NULL, 0));
11169
11170 if (sals.size () != 1)
11171 error (_("Couldn't get information on specified line."));
11172
11173 symtab_and_line &sal = sals[0];
11174
11175 if (*arg)
11176 error (_("Junk at end of arguments."));
11177
11178 resolve_sal_pc (&sal);
11179
11180 tp = inferior_thread ();
11181 thread = tp->global_num;
11182
11183 old_chain = make_cleanup (null_cleanup, NULL);
11184
11185 /* Note linespec handling above invalidates the frame chain.
11186 Installing a breakpoint also invalidates the frame chain (as it
11187 may need to switch threads), so do any frame handling before
11188 that. */
11189
11190 frame = get_selected_frame (NULL);
11191 frame_gdbarch = get_frame_arch (frame);
11192 stack_frame_id = get_stack_frame_id (frame);
11193 caller_frame_id = frame_unwind_caller_id (frame);
11194
11195 /* Keep within the current frame, or in frames called by the current
11196 one. */
11197
11198 breakpoint_up caller_breakpoint;
11199 if (frame_id_p (caller_frame_id))
11200 {
11201 struct symtab_and_line sal2;
11202 struct gdbarch *caller_gdbarch;
11203
11204 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11205 sal2.pc = frame_unwind_caller_pc (frame);
11206 caller_gdbarch = frame_unwind_caller_arch (frame);
11207 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11208 sal2,
11209 caller_frame_id,
11210 bp_until);
11211
11212 set_longjmp_breakpoint (tp, caller_frame_id);
11213 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11214 }
11215
11216 /* set_momentary_breakpoint could invalidate FRAME. */
11217 frame = NULL;
11218
11219 breakpoint_up location_breakpoint;
11220 if (anywhere)
11221 /* If the user told us to continue until a specified location,
11222 we don't specify a frame at which we need to stop. */
11223 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11224 null_frame_id, bp_until);
11225 else
11226 /* Otherwise, specify the selected frame, because we want to stop
11227 only at the very same frame. */
11228 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11229 stack_frame_id, bp_until);
11230
11231 sm = new_until_break_fsm (command_interp (), tp->global_num,
11232 std::move (location_breakpoint),
11233 std::move (caller_breakpoint));
11234 tp->thread_fsm = &sm->thread_fsm;
11235
11236 discard_cleanups (old_chain);
11237
11238 proceed (-1, GDB_SIGNAL_DEFAULT);
11239 }
11240
11241 /* This function attempts to parse an optional "if <cond>" clause
11242 from the arg string. If one is not found, it returns NULL.
11243
11244 Else, it returns a pointer to the condition string. (It does not
11245 attempt to evaluate the string against a particular block.) And,
11246 it updates arg to point to the first character following the parsed
11247 if clause in the arg string. */
11248
11249 const char *
11250 ep_parse_optional_if_clause (const char **arg)
11251 {
11252 const char *cond_string;
11253
11254 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11255 return NULL;
11256
11257 /* Skip the "if" keyword. */
11258 (*arg) += 2;
11259
11260 /* Skip any extra leading whitespace, and record the start of the
11261 condition string. */
11262 *arg = skip_spaces (*arg);
11263 cond_string = *arg;
11264
11265 /* Assume that the condition occupies the remainder of the arg
11266 string. */
11267 (*arg) += strlen (cond_string);
11268
11269 return cond_string;
11270 }
11271
11272 /* Commands to deal with catching events, such as signals, exceptions,
11273 process start/exit, etc. */
11274
11275 typedef enum
11276 {
11277 catch_fork_temporary, catch_vfork_temporary,
11278 catch_fork_permanent, catch_vfork_permanent
11279 }
11280 catch_fork_kind;
11281
11282 static void
11283 catch_fork_command_1 (const char *arg, int from_tty,
11284 struct cmd_list_element *command)
11285 {
11286 struct gdbarch *gdbarch = get_current_arch ();
11287 const char *cond_string = NULL;
11288 catch_fork_kind fork_kind;
11289 int tempflag;
11290
11291 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11292 tempflag = (fork_kind == catch_fork_temporary
11293 || fork_kind == catch_vfork_temporary);
11294
11295 if (!arg)
11296 arg = "";
11297 arg = skip_spaces (arg);
11298
11299 /* The allowed syntax is:
11300 catch [v]fork
11301 catch [v]fork if <cond>
11302
11303 First, check if there's an if clause. */
11304 cond_string = ep_parse_optional_if_clause (&arg);
11305
11306 if ((*arg != '\0') && !isspace (*arg))
11307 error (_("Junk at end of arguments."));
11308
11309 /* If this target supports it, create a fork or vfork catchpoint
11310 and enable reporting of such events. */
11311 switch (fork_kind)
11312 {
11313 case catch_fork_temporary:
11314 case catch_fork_permanent:
11315 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11316 &catch_fork_breakpoint_ops);
11317 break;
11318 case catch_vfork_temporary:
11319 case catch_vfork_permanent:
11320 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11321 &catch_vfork_breakpoint_ops);
11322 break;
11323 default:
11324 error (_("unsupported or unknown fork kind; cannot catch it"));
11325 break;
11326 }
11327 }
11328
11329 static void
11330 catch_exec_command_1 (const char *arg, int from_tty,
11331 struct cmd_list_element *command)
11332 {
11333 struct gdbarch *gdbarch = get_current_arch ();
11334 int tempflag;
11335 const char *cond_string = NULL;
11336
11337 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11338
11339 if (!arg)
11340 arg = "";
11341 arg = skip_spaces (arg);
11342
11343 /* The allowed syntax is:
11344 catch exec
11345 catch exec if <cond>
11346
11347 First, check if there's an if clause. */
11348 cond_string = ep_parse_optional_if_clause (&arg);
11349
11350 if ((*arg != '\0') && !isspace (*arg))
11351 error (_("Junk at end of arguments."));
11352
11353 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11354 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11355 &catch_exec_breakpoint_ops);
11356 c->exec_pathname = NULL;
11357
11358 install_breakpoint (0, std::move (c), 1);
11359 }
11360
11361 void
11362 init_ada_exception_breakpoint (struct breakpoint *b,
11363 struct gdbarch *gdbarch,
11364 struct symtab_and_line sal,
11365 const char *addr_string,
11366 const struct breakpoint_ops *ops,
11367 int tempflag,
11368 int enabled,
11369 int from_tty)
11370 {
11371 if (from_tty)
11372 {
11373 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11374 if (!loc_gdbarch)
11375 loc_gdbarch = gdbarch;
11376
11377 describe_other_breakpoints (loc_gdbarch,
11378 sal.pspace, sal.pc, sal.section, -1);
11379 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11380 version for exception catchpoints, because two catchpoints
11381 used for different exception names will use the same address.
11382 In this case, a "breakpoint ... also set at..." warning is
11383 unproductive. Besides, the warning phrasing is also a bit
11384 inappropriate, we should use the word catchpoint, and tell
11385 the user what type of catchpoint it is. The above is good
11386 enough for now, though. */
11387 }
11388
11389 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11390
11391 b->enable_state = enabled ? bp_enabled : bp_disabled;
11392 b->disposition = tempflag ? disp_del : disp_donttouch;
11393 b->location = string_to_event_location (&addr_string,
11394 language_def (language_ada));
11395 b->language = language_ada;
11396 }
11397
11398 static void
11399 catch_command (const char *arg, int from_tty)
11400 {
11401 error (_("Catch requires an event name."));
11402 }
11403 \f
11404
11405 static void
11406 tcatch_command (const char *arg, int from_tty)
11407 {
11408 error (_("Catch requires an event name."));
11409 }
11410
11411 /* Compare two breakpoints and return a strcmp-like result. */
11412
11413 static int
11414 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11415 {
11416 uintptr_t ua = (uintptr_t) a;
11417 uintptr_t ub = (uintptr_t) b;
11418
11419 if (a->number < b->number)
11420 return -1;
11421 else if (a->number > b->number)
11422 return 1;
11423
11424 /* Now sort by address, in case we see, e..g, two breakpoints with
11425 the number 0. */
11426 if (ua < ub)
11427 return -1;
11428 return ua > ub ? 1 : 0;
11429 }
11430
11431 /* Delete breakpoints by address or line. */
11432
11433 static void
11434 clear_command (const char *arg, int from_tty)
11435 {
11436 struct breakpoint *b;
11437 int default_match;
11438
11439 std::vector<symtab_and_line> decoded_sals;
11440 symtab_and_line last_sal;
11441 gdb::array_view<symtab_and_line> sals;
11442 if (arg)
11443 {
11444 decoded_sals
11445 = decode_line_with_current_source (arg,
11446 (DECODE_LINE_FUNFIRSTLINE
11447 | DECODE_LINE_LIST_MODE));
11448 default_match = 0;
11449 sals = decoded_sals;
11450 }
11451 else
11452 {
11453 /* Set sal's line, symtab, pc, and pspace to the values
11454 corresponding to the last call to print_frame_info. If the
11455 codepoint is not valid, this will set all the fields to 0. */
11456 last_sal = get_last_displayed_sal ();
11457 if (last_sal.symtab == 0)
11458 error (_("No source file specified."));
11459
11460 default_match = 1;
11461 sals = last_sal;
11462 }
11463
11464 /* We don't call resolve_sal_pc here. That's not as bad as it
11465 seems, because all existing breakpoints typically have both
11466 file/line and pc set. So, if clear is given file/line, we can
11467 match this to existing breakpoint without obtaining pc at all.
11468
11469 We only support clearing given the address explicitly
11470 present in breakpoint table. Say, we've set breakpoint
11471 at file:line. There were several PC values for that file:line,
11472 due to optimization, all in one block.
11473
11474 We've picked one PC value. If "clear" is issued with another
11475 PC corresponding to the same file:line, the breakpoint won't
11476 be cleared. We probably can still clear the breakpoint, but
11477 since the other PC value is never presented to user, user
11478 can only find it by guessing, and it does not seem important
11479 to support that. */
11480
11481 /* For each line spec given, delete bps which correspond to it. Do
11482 it in two passes, solely to preserve the current behavior that
11483 from_tty is forced true if we delete more than one
11484 breakpoint. */
11485
11486 std::vector<struct breakpoint *> found;
11487 for (const auto &sal : sals)
11488 {
11489 const char *sal_fullname;
11490
11491 /* If exact pc given, clear bpts at that pc.
11492 If line given (pc == 0), clear all bpts on specified line.
11493 If defaulting, clear all bpts on default line
11494 or at default pc.
11495
11496 defaulting sal.pc != 0 tests to do
11497
11498 0 1 pc
11499 1 1 pc _and_ line
11500 0 0 line
11501 1 0 <can't happen> */
11502
11503 sal_fullname = (sal.symtab == NULL
11504 ? NULL : symtab_to_fullname (sal.symtab));
11505
11506 /* Find all matching breakpoints and add them to 'found'. */
11507 ALL_BREAKPOINTS (b)
11508 {
11509 int match = 0;
11510 /* Are we going to delete b? */
11511 if (b->type != bp_none && !is_watchpoint (b))
11512 {
11513 struct bp_location *loc = b->loc;
11514 for (; loc; loc = loc->next)
11515 {
11516 /* If the user specified file:line, don't allow a PC
11517 match. This matches historical gdb behavior. */
11518 int pc_match = (!sal.explicit_line
11519 && sal.pc
11520 && (loc->pspace == sal.pspace)
11521 && (loc->address == sal.pc)
11522 && (!section_is_overlay (loc->section)
11523 || loc->section == sal.section));
11524 int line_match = 0;
11525
11526 if ((default_match || sal.explicit_line)
11527 && loc->symtab != NULL
11528 && sal_fullname != NULL
11529 && sal.pspace == loc->pspace
11530 && loc->line_number == sal.line
11531 && filename_cmp (symtab_to_fullname (loc->symtab),
11532 sal_fullname) == 0)
11533 line_match = 1;
11534
11535 if (pc_match || line_match)
11536 {
11537 match = 1;
11538 break;
11539 }
11540 }
11541 }
11542
11543 if (match)
11544 found.push_back (b);
11545 }
11546 }
11547
11548 /* Now go thru the 'found' chain and delete them. */
11549 if (found.empty ())
11550 {
11551 if (arg)
11552 error (_("No breakpoint at %s."), arg);
11553 else
11554 error (_("No breakpoint at this line."));
11555 }
11556
11557 /* Remove duplicates from the vec. */
11558 std::sort (found.begin (), found.end (),
11559 [] (const breakpoint *a, const breakpoint *b)
11560 {
11561 return compare_breakpoints (a, b) < 0;
11562 });
11563 found.erase (std::unique (found.begin (), found.end (),
11564 [] (const breakpoint *a, const breakpoint *b)
11565 {
11566 return compare_breakpoints (a, b) == 0;
11567 }),
11568 found.end ());
11569
11570 if (found.size () > 1)
11571 from_tty = 1; /* Always report if deleted more than one. */
11572 if (from_tty)
11573 {
11574 if (found.size () == 1)
11575 printf_unfiltered (_("Deleted breakpoint "));
11576 else
11577 printf_unfiltered (_("Deleted breakpoints "));
11578 }
11579
11580 for (breakpoint *iter : found)
11581 {
11582 if (from_tty)
11583 printf_unfiltered ("%d ", iter->number);
11584 delete_breakpoint (iter);
11585 }
11586 if (from_tty)
11587 putchar_unfiltered ('\n');
11588 }
11589 \f
11590 /* Delete breakpoint in BS if they are `delete' breakpoints and
11591 all breakpoints that are marked for deletion, whether hit or not.
11592 This is called after any breakpoint is hit, or after errors. */
11593
11594 void
11595 breakpoint_auto_delete (bpstat bs)
11596 {
11597 struct breakpoint *b, *b_tmp;
11598
11599 for (; bs; bs = bs->next)
11600 if (bs->breakpoint_at
11601 && bs->breakpoint_at->disposition == disp_del
11602 && bs->stop)
11603 delete_breakpoint (bs->breakpoint_at);
11604
11605 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11606 {
11607 if (b->disposition == disp_del_at_next_stop)
11608 delete_breakpoint (b);
11609 }
11610 }
11611
11612 /* A comparison function for bp_location AP and BP being interfaced to
11613 qsort. Sort elements primarily by their ADDRESS (no matter what
11614 does breakpoint_address_is_meaningful say for its OWNER),
11615 secondarily by ordering first permanent elements and
11616 terciarily just ensuring the array is sorted stable way despite
11617 qsort being an unstable algorithm. */
11618
11619 static int
11620 bp_locations_compare (const void *ap, const void *bp)
11621 {
11622 const struct bp_location *a = *(const struct bp_location **) ap;
11623 const struct bp_location *b = *(const struct bp_location **) bp;
11624
11625 if (a->address != b->address)
11626 return (a->address > b->address) - (a->address < b->address);
11627
11628 /* Sort locations at the same address by their pspace number, keeping
11629 locations of the same inferior (in a multi-inferior environment)
11630 grouped. */
11631
11632 if (a->pspace->num != b->pspace->num)
11633 return ((a->pspace->num > b->pspace->num)
11634 - (a->pspace->num < b->pspace->num));
11635
11636 /* Sort permanent breakpoints first. */
11637 if (a->permanent != b->permanent)
11638 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11639
11640 /* Make the internal GDB representation stable across GDB runs
11641 where A and B memory inside GDB can differ. Breakpoint locations of
11642 the same type at the same address can be sorted in arbitrary order. */
11643
11644 if (a->owner->number != b->owner->number)
11645 return ((a->owner->number > b->owner->number)
11646 - (a->owner->number < b->owner->number));
11647
11648 return (a > b) - (a < b);
11649 }
11650
11651 /* Set bp_locations_placed_address_before_address_max and
11652 bp_locations_shadow_len_after_address_max according to the current
11653 content of the bp_locations array. */
11654
11655 static void
11656 bp_locations_target_extensions_update (void)
11657 {
11658 struct bp_location *bl, **blp_tmp;
11659
11660 bp_locations_placed_address_before_address_max = 0;
11661 bp_locations_shadow_len_after_address_max = 0;
11662
11663 ALL_BP_LOCATIONS (bl, blp_tmp)
11664 {
11665 CORE_ADDR start, end, addr;
11666
11667 if (!bp_location_has_shadow (bl))
11668 continue;
11669
11670 start = bl->target_info.placed_address;
11671 end = start + bl->target_info.shadow_len;
11672
11673 gdb_assert (bl->address >= start);
11674 addr = bl->address - start;
11675 if (addr > bp_locations_placed_address_before_address_max)
11676 bp_locations_placed_address_before_address_max = addr;
11677
11678 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11679
11680 gdb_assert (bl->address < end);
11681 addr = end - bl->address;
11682 if (addr > bp_locations_shadow_len_after_address_max)
11683 bp_locations_shadow_len_after_address_max = addr;
11684 }
11685 }
11686
11687 /* Download tracepoint locations if they haven't been. */
11688
11689 static void
11690 download_tracepoint_locations (void)
11691 {
11692 struct breakpoint *b;
11693 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11694
11695 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11696
11697 ALL_TRACEPOINTS (b)
11698 {
11699 struct bp_location *bl;
11700 struct tracepoint *t;
11701 int bp_location_downloaded = 0;
11702
11703 if ((b->type == bp_fast_tracepoint
11704 ? !may_insert_fast_tracepoints
11705 : !may_insert_tracepoints))
11706 continue;
11707
11708 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11709 {
11710 if (target_can_download_tracepoint ())
11711 can_download_tracepoint = TRIBOOL_TRUE;
11712 else
11713 can_download_tracepoint = TRIBOOL_FALSE;
11714 }
11715
11716 if (can_download_tracepoint == TRIBOOL_FALSE)
11717 break;
11718
11719 for (bl = b->loc; bl; bl = bl->next)
11720 {
11721 /* In tracepoint, locations are _never_ duplicated, so
11722 should_be_inserted is equivalent to
11723 unduplicated_should_be_inserted. */
11724 if (!should_be_inserted (bl) || bl->inserted)
11725 continue;
11726
11727 switch_to_program_space_and_thread (bl->pspace);
11728
11729 target_download_tracepoint (bl);
11730
11731 bl->inserted = 1;
11732 bp_location_downloaded = 1;
11733 }
11734 t = (struct tracepoint *) b;
11735 t->number_on_target = b->number;
11736 if (bp_location_downloaded)
11737 gdb::observers::breakpoint_modified.notify (b);
11738 }
11739 }
11740
11741 /* Swap the insertion/duplication state between two locations. */
11742
11743 static void
11744 swap_insertion (struct bp_location *left, struct bp_location *right)
11745 {
11746 const int left_inserted = left->inserted;
11747 const int left_duplicate = left->duplicate;
11748 const int left_needs_update = left->needs_update;
11749 const struct bp_target_info left_target_info = left->target_info;
11750
11751 /* Locations of tracepoints can never be duplicated. */
11752 if (is_tracepoint (left->owner))
11753 gdb_assert (!left->duplicate);
11754 if (is_tracepoint (right->owner))
11755 gdb_assert (!right->duplicate);
11756
11757 left->inserted = right->inserted;
11758 left->duplicate = right->duplicate;
11759 left->needs_update = right->needs_update;
11760 left->target_info = right->target_info;
11761 right->inserted = left_inserted;
11762 right->duplicate = left_duplicate;
11763 right->needs_update = left_needs_update;
11764 right->target_info = left_target_info;
11765 }
11766
11767 /* Force the re-insertion of the locations at ADDRESS. This is called
11768 once a new/deleted/modified duplicate location is found and we are evaluating
11769 conditions on the target's side. Such conditions need to be updated on
11770 the target. */
11771
11772 static void
11773 force_breakpoint_reinsertion (struct bp_location *bl)
11774 {
11775 struct bp_location **locp = NULL, **loc2p;
11776 struct bp_location *loc;
11777 CORE_ADDR address = 0;
11778 int pspace_num;
11779
11780 address = bl->address;
11781 pspace_num = bl->pspace->num;
11782
11783 /* This is only meaningful if the target is
11784 evaluating conditions and if the user has
11785 opted for condition evaluation on the target's
11786 side. */
11787 if (gdb_evaluates_breakpoint_condition_p ()
11788 || !target_supports_evaluation_of_breakpoint_conditions ())
11789 return;
11790
11791 /* Flag all breakpoint locations with this address and
11792 the same program space as the location
11793 as "its condition has changed". We need to
11794 update the conditions on the target's side. */
11795 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11796 {
11797 loc = *loc2p;
11798
11799 if (!is_breakpoint (loc->owner)
11800 || pspace_num != loc->pspace->num)
11801 continue;
11802
11803 /* Flag the location appropriately. We use a different state to
11804 let everyone know that we already updated the set of locations
11805 with addr bl->address and program space bl->pspace. This is so
11806 we don't have to keep calling these functions just to mark locations
11807 that have already been marked. */
11808 loc->condition_changed = condition_updated;
11809
11810 /* Free the agent expression bytecode as well. We will compute
11811 it later on. */
11812 loc->cond_bytecode.reset ();
11813 }
11814 }
11815 /* Called whether new breakpoints are created, or existing breakpoints
11816 deleted, to update the global location list and recompute which
11817 locations are duplicate of which.
11818
11819 The INSERT_MODE flag determines whether locations may not, may, or
11820 shall be inserted now. See 'enum ugll_insert_mode' for more
11821 info. */
11822
11823 static void
11824 update_global_location_list (enum ugll_insert_mode insert_mode)
11825 {
11826 struct breakpoint *b;
11827 struct bp_location **locp, *loc;
11828 /* Last breakpoint location address that was marked for update. */
11829 CORE_ADDR last_addr = 0;
11830 /* Last breakpoint location program space that was marked for update. */
11831 int last_pspace_num = -1;
11832
11833 /* Used in the duplicates detection below. When iterating over all
11834 bp_locations, points to the first bp_location of a given address.
11835 Breakpoints and watchpoints of different types are never
11836 duplicates of each other. Keep one pointer for each type of
11837 breakpoint/watchpoint, so we only need to loop over all locations
11838 once. */
11839 struct bp_location *bp_loc_first; /* breakpoint */
11840 struct bp_location *wp_loc_first; /* hardware watchpoint */
11841 struct bp_location *awp_loc_first; /* access watchpoint */
11842 struct bp_location *rwp_loc_first; /* read watchpoint */
11843
11844 /* Saved former bp_locations array which we compare against the newly
11845 built bp_locations from the current state of ALL_BREAKPOINTS. */
11846 struct bp_location **old_locp;
11847 unsigned old_locations_count;
11848 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11849
11850 old_locations_count = bp_locations_count;
11851 bp_locations = NULL;
11852 bp_locations_count = 0;
11853
11854 ALL_BREAKPOINTS (b)
11855 for (loc = b->loc; loc; loc = loc->next)
11856 bp_locations_count++;
11857
11858 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11859 locp = bp_locations;
11860 ALL_BREAKPOINTS (b)
11861 for (loc = b->loc; loc; loc = loc->next)
11862 *locp++ = loc;
11863 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11864 bp_locations_compare);
11865
11866 bp_locations_target_extensions_update ();
11867
11868 /* Identify bp_location instances that are no longer present in the
11869 new list, and therefore should be freed. Note that it's not
11870 necessary that those locations should be removed from inferior --
11871 if there's another location at the same address (previously
11872 marked as duplicate), we don't need to remove/insert the
11873 location.
11874
11875 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11876 and former bp_location array state respectively. */
11877
11878 locp = bp_locations;
11879 for (old_locp = old_locations.get ();
11880 old_locp < old_locations.get () + old_locations_count;
11881 old_locp++)
11882 {
11883 struct bp_location *old_loc = *old_locp;
11884 struct bp_location **loc2p;
11885
11886 /* Tells if 'old_loc' is found among the new locations. If
11887 not, we have to free it. */
11888 int found_object = 0;
11889 /* Tells if the location should remain inserted in the target. */
11890 int keep_in_target = 0;
11891 int removed = 0;
11892
11893 /* Skip LOCP entries which will definitely never be needed.
11894 Stop either at or being the one matching OLD_LOC. */
11895 while (locp < bp_locations + bp_locations_count
11896 && (*locp)->address < old_loc->address)
11897 locp++;
11898
11899 for (loc2p = locp;
11900 (loc2p < bp_locations + bp_locations_count
11901 && (*loc2p)->address == old_loc->address);
11902 loc2p++)
11903 {
11904 /* Check if this is a new/duplicated location or a duplicated
11905 location that had its condition modified. If so, we want to send
11906 its condition to the target if evaluation of conditions is taking
11907 place there. */
11908 if ((*loc2p)->condition_changed == condition_modified
11909 && (last_addr != old_loc->address
11910 || last_pspace_num != old_loc->pspace->num))
11911 {
11912 force_breakpoint_reinsertion (*loc2p);
11913 last_pspace_num = old_loc->pspace->num;
11914 }
11915
11916 if (*loc2p == old_loc)
11917 found_object = 1;
11918 }
11919
11920 /* We have already handled this address, update it so that we don't
11921 have to go through updates again. */
11922 last_addr = old_loc->address;
11923
11924 /* Target-side condition evaluation: Handle deleted locations. */
11925 if (!found_object)
11926 force_breakpoint_reinsertion (old_loc);
11927
11928 /* If this location is no longer present, and inserted, look if
11929 there's maybe a new location at the same address. If so,
11930 mark that one inserted, and don't remove this one. This is
11931 needed so that we don't have a time window where a breakpoint
11932 at certain location is not inserted. */
11933
11934 if (old_loc->inserted)
11935 {
11936 /* If the location is inserted now, we might have to remove
11937 it. */
11938
11939 if (found_object && should_be_inserted (old_loc))
11940 {
11941 /* The location is still present in the location list,
11942 and still should be inserted. Don't do anything. */
11943 keep_in_target = 1;
11944 }
11945 else
11946 {
11947 /* This location still exists, but it won't be kept in the
11948 target since it may have been disabled. We proceed to
11949 remove its target-side condition. */
11950
11951 /* The location is either no longer present, or got
11952 disabled. See if there's another location at the
11953 same address, in which case we don't need to remove
11954 this one from the target. */
11955
11956 /* OLD_LOC comes from existing struct breakpoint. */
11957 if (breakpoint_address_is_meaningful (old_loc->owner))
11958 {
11959 for (loc2p = locp;
11960 (loc2p < bp_locations + bp_locations_count
11961 && (*loc2p)->address == old_loc->address);
11962 loc2p++)
11963 {
11964 struct bp_location *loc2 = *loc2p;
11965
11966 if (breakpoint_locations_match (loc2, old_loc))
11967 {
11968 /* Read watchpoint locations are switched to
11969 access watchpoints, if the former are not
11970 supported, but the latter are. */
11971 if (is_hardware_watchpoint (old_loc->owner))
11972 {
11973 gdb_assert (is_hardware_watchpoint (loc2->owner));
11974 loc2->watchpoint_type = old_loc->watchpoint_type;
11975 }
11976
11977 /* loc2 is a duplicated location. We need to check
11978 if it should be inserted in case it will be
11979 unduplicated. */
11980 if (loc2 != old_loc
11981 && unduplicated_should_be_inserted (loc2))
11982 {
11983 swap_insertion (old_loc, loc2);
11984 keep_in_target = 1;
11985 break;
11986 }
11987 }
11988 }
11989 }
11990 }
11991
11992 if (!keep_in_target)
11993 {
11994 if (remove_breakpoint (old_loc))
11995 {
11996 /* This is just about all we can do. We could keep
11997 this location on the global list, and try to
11998 remove it next time, but there's no particular
11999 reason why we will succeed next time.
12000
12001 Note that at this point, old_loc->owner is still
12002 valid, as delete_breakpoint frees the breakpoint
12003 only after calling us. */
12004 printf_filtered (_("warning: Error removing "
12005 "breakpoint %d\n"),
12006 old_loc->owner->number);
12007 }
12008 removed = 1;
12009 }
12010 }
12011
12012 if (!found_object)
12013 {
12014 if (removed && target_is_non_stop_p ()
12015 && need_moribund_for_location_type (old_loc))
12016 {
12017 /* This location was removed from the target. In
12018 non-stop mode, a race condition is possible where
12019 we've removed a breakpoint, but stop events for that
12020 breakpoint are already queued and will arrive later.
12021 We apply an heuristic to be able to distinguish such
12022 SIGTRAPs from other random SIGTRAPs: we keep this
12023 breakpoint location for a bit, and will retire it
12024 after we see some number of events. The theory here
12025 is that reporting of events should, "on the average",
12026 be fair, so after a while we'll see events from all
12027 threads that have anything of interest, and no longer
12028 need to keep this breakpoint location around. We
12029 don't hold locations forever so to reduce chances of
12030 mistaking a non-breakpoint SIGTRAP for a breakpoint
12031 SIGTRAP.
12032
12033 The heuristic failing can be disastrous on
12034 decr_pc_after_break targets.
12035
12036 On decr_pc_after_break targets, like e.g., x86-linux,
12037 if we fail to recognize a late breakpoint SIGTRAP,
12038 because events_till_retirement has reached 0 too
12039 soon, we'll fail to do the PC adjustment, and report
12040 a random SIGTRAP to the user. When the user resumes
12041 the inferior, it will most likely immediately crash
12042 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12043 corrupted, because of being resumed e.g., in the
12044 middle of a multi-byte instruction, or skipped a
12045 one-byte instruction. This was actually seen happen
12046 on native x86-linux, and should be less rare on
12047 targets that do not support new thread events, like
12048 remote, due to the heuristic depending on
12049 thread_count.
12050
12051 Mistaking a random SIGTRAP for a breakpoint trap
12052 causes similar symptoms (PC adjustment applied when
12053 it shouldn't), but then again, playing with SIGTRAPs
12054 behind the debugger's back is asking for trouble.
12055
12056 Since hardware watchpoint traps are always
12057 distinguishable from other traps, so we don't need to
12058 apply keep hardware watchpoint moribund locations
12059 around. We simply always ignore hardware watchpoint
12060 traps we can no longer explain. */
12061
12062 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12063 old_loc->owner = NULL;
12064
12065 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12066 }
12067 else
12068 {
12069 old_loc->owner = NULL;
12070 decref_bp_location (&old_loc);
12071 }
12072 }
12073 }
12074
12075 /* Rescan breakpoints at the same address and section, marking the
12076 first one as "first" and any others as "duplicates". This is so
12077 that the bpt instruction is only inserted once. If we have a
12078 permanent breakpoint at the same place as BPT, make that one the
12079 official one, and the rest as duplicates. Permanent breakpoints
12080 are sorted first for the same address.
12081
12082 Do the same for hardware watchpoints, but also considering the
12083 watchpoint's type (regular/access/read) and length. */
12084
12085 bp_loc_first = NULL;
12086 wp_loc_first = NULL;
12087 awp_loc_first = NULL;
12088 rwp_loc_first = NULL;
12089 ALL_BP_LOCATIONS (loc, locp)
12090 {
12091 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12092 non-NULL. */
12093 struct bp_location **loc_first_p;
12094 b = loc->owner;
12095
12096 if (!unduplicated_should_be_inserted (loc)
12097 || !breakpoint_address_is_meaningful (b)
12098 /* Don't detect duplicate for tracepoint locations because they are
12099 never duplicated. See the comments in field `duplicate' of
12100 `struct bp_location'. */
12101 || is_tracepoint (b))
12102 {
12103 /* Clear the condition modification flag. */
12104 loc->condition_changed = condition_unchanged;
12105 continue;
12106 }
12107
12108 if (b->type == bp_hardware_watchpoint)
12109 loc_first_p = &wp_loc_first;
12110 else if (b->type == bp_read_watchpoint)
12111 loc_first_p = &rwp_loc_first;
12112 else if (b->type == bp_access_watchpoint)
12113 loc_first_p = &awp_loc_first;
12114 else
12115 loc_first_p = &bp_loc_first;
12116
12117 if (*loc_first_p == NULL
12118 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12119 || !breakpoint_locations_match (loc, *loc_first_p))
12120 {
12121 *loc_first_p = loc;
12122 loc->duplicate = 0;
12123
12124 if (is_breakpoint (loc->owner) && loc->condition_changed)
12125 {
12126 loc->needs_update = 1;
12127 /* Clear the condition modification flag. */
12128 loc->condition_changed = condition_unchanged;
12129 }
12130 continue;
12131 }
12132
12133
12134 /* This and the above ensure the invariant that the first location
12135 is not duplicated, and is the inserted one.
12136 All following are marked as duplicated, and are not inserted. */
12137 if (loc->inserted)
12138 swap_insertion (loc, *loc_first_p);
12139 loc->duplicate = 1;
12140
12141 /* Clear the condition modification flag. */
12142 loc->condition_changed = condition_unchanged;
12143 }
12144
12145 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12146 {
12147 if (insert_mode != UGLL_DONT_INSERT)
12148 insert_breakpoint_locations ();
12149 else
12150 {
12151 /* Even though the caller told us to not insert new
12152 locations, we may still need to update conditions on the
12153 target's side of breakpoints that were already inserted
12154 if the target is evaluating breakpoint conditions. We
12155 only update conditions for locations that are marked
12156 "needs_update". */
12157 update_inserted_breakpoint_locations ();
12158 }
12159 }
12160
12161 if (insert_mode != UGLL_DONT_INSERT)
12162 download_tracepoint_locations ();
12163 }
12164
12165 void
12166 breakpoint_retire_moribund (void)
12167 {
12168 struct bp_location *loc;
12169 int ix;
12170
12171 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12172 if (--(loc->events_till_retirement) == 0)
12173 {
12174 decref_bp_location (&loc);
12175 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12176 --ix;
12177 }
12178 }
12179
12180 static void
12181 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12182 {
12183
12184 TRY
12185 {
12186 update_global_location_list (insert_mode);
12187 }
12188 CATCH (e, RETURN_MASK_ERROR)
12189 {
12190 }
12191 END_CATCH
12192 }
12193
12194 /* Clear BKP from a BPS. */
12195
12196 static void
12197 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12198 {
12199 bpstat bs;
12200
12201 for (bs = bps; bs; bs = bs->next)
12202 if (bs->breakpoint_at == bpt)
12203 {
12204 bs->breakpoint_at = NULL;
12205 bs->old_val = NULL;
12206 /* bs->commands will be freed later. */
12207 }
12208 }
12209
12210 /* Callback for iterate_over_threads. */
12211 static int
12212 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12213 {
12214 struct breakpoint *bpt = (struct breakpoint *) data;
12215
12216 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12217 return 0;
12218 }
12219
12220 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12221 callbacks. */
12222
12223 static void
12224 say_where (struct breakpoint *b)
12225 {
12226 struct value_print_options opts;
12227
12228 get_user_print_options (&opts);
12229
12230 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12231 single string. */
12232 if (b->loc == NULL)
12233 {
12234 /* For pending locations, the output differs slightly based
12235 on b->extra_string. If this is non-NULL, it contains either
12236 a condition or dprintf arguments. */
12237 if (b->extra_string == NULL)
12238 {
12239 printf_filtered (_(" (%s) pending."),
12240 event_location_to_string (b->location.get ()));
12241 }
12242 else if (b->type == bp_dprintf)
12243 {
12244 printf_filtered (_(" (%s,%s) pending."),
12245 event_location_to_string (b->location.get ()),
12246 b->extra_string);
12247 }
12248 else
12249 {
12250 printf_filtered (_(" (%s %s) pending."),
12251 event_location_to_string (b->location.get ()),
12252 b->extra_string);
12253 }
12254 }
12255 else
12256 {
12257 if (opts.addressprint || b->loc->symtab == NULL)
12258 {
12259 printf_filtered (" at ");
12260 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12261 gdb_stdout);
12262 }
12263 if (b->loc->symtab != NULL)
12264 {
12265 /* If there is a single location, we can print the location
12266 more nicely. */
12267 if (b->loc->next == NULL)
12268 printf_filtered (": file %s, line %d.",
12269 symtab_to_filename_for_display (b->loc->symtab),
12270 b->loc->line_number);
12271 else
12272 /* This is not ideal, but each location may have a
12273 different file name, and this at least reflects the
12274 real situation somewhat. */
12275 printf_filtered (": %s.",
12276 event_location_to_string (b->location.get ()));
12277 }
12278
12279 if (b->loc->next)
12280 {
12281 struct bp_location *loc = b->loc;
12282 int n = 0;
12283 for (; loc; loc = loc->next)
12284 ++n;
12285 printf_filtered (" (%d locations)", n);
12286 }
12287 }
12288 }
12289
12290 /* Default bp_location_ops methods. */
12291
12292 static void
12293 bp_location_dtor (struct bp_location *self)
12294 {
12295 xfree (self->function_name);
12296 }
12297
12298 static const struct bp_location_ops bp_location_ops =
12299 {
12300 bp_location_dtor
12301 };
12302
12303 /* Destructor for the breakpoint base class. */
12304
12305 breakpoint::~breakpoint ()
12306 {
12307 xfree (this->cond_string);
12308 xfree (this->extra_string);
12309 xfree (this->filter);
12310 }
12311
12312 static struct bp_location *
12313 base_breakpoint_allocate_location (struct breakpoint *self)
12314 {
12315 return new bp_location (&bp_location_ops, self);
12316 }
12317
12318 static void
12319 base_breakpoint_re_set (struct breakpoint *b)
12320 {
12321 /* Nothing to re-set. */
12322 }
12323
12324 #define internal_error_pure_virtual_called() \
12325 gdb_assert_not_reached ("pure virtual function called")
12326
12327 static int
12328 base_breakpoint_insert_location (struct bp_location *bl)
12329 {
12330 internal_error_pure_virtual_called ();
12331 }
12332
12333 static int
12334 base_breakpoint_remove_location (struct bp_location *bl,
12335 enum remove_bp_reason reason)
12336 {
12337 internal_error_pure_virtual_called ();
12338 }
12339
12340 static int
12341 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12342 const address_space *aspace,
12343 CORE_ADDR bp_addr,
12344 const struct target_waitstatus *ws)
12345 {
12346 internal_error_pure_virtual_called ();
12347 }
12348
12349 static void
12350 base_breakpoint_check_status (bpstat bs)
12351 {
12352 /* Always stop. */
12353 }
12354
12355 /* A "works_in_software_mode" breakpoint_ops method that just internal
12356 errors. */
12357
12358 static int
12359 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12360 {
12361 internal_error_pure_virtual_called ();
12362 }
12363
12364 /* A "resources_needed" breakpoint_ops method that just internal
12365 errors. */
12366
12367 static int
12368 base_breakpoint_resources_needed (const struct bp_location *bl)
12369 {
12370 internal_error_pure_virtual_called ();
12371 }
12372
12373 static enum print_stop_action
12374 base_breakpoint_print_it (bpstat bs)
12375 {
12376 internal_error_pure_virtual_called ();
12377 }
12378
12379 static void
12380 base_breakpoint_print_one_detail (const struct breakpoint *self,
12381 struct ui_out *uiout)
12382 {
12383 /* nothing */
12384 }
12385
12386 static void
12387 base_breakpoint_print_mention (struct breakpoint *b)
12388 {
12389 internal_error_pure_virtual_called ();
12390 }
12391
12392 static void
12393 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12394 {
12395 internal_error_pure_virtual_called ();
12396 }
12397
12398 static void
12399 base_breakpoint_create_sals_from_location
12400 (const struct event_location *location,
12401 struct linespec_result *canonical,
12402 enum bptype type_wanted)
12403 {
12404 internal_error_pure_virtual_called ();
12405 }
12406
12407 static void
12408 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12409 struct linespec_result *c,
12410 gdb::unique_xmalloc_ptr<char> cond_string,
12411 gdb::unique_xmalloc_ptr<char> extra_string,
12412 enum bptype type_wanted,
12413 enum bpdisp disposition,
12414 int thread,
12415 int task, int ignore_count,
12416 const struct breakpoint_ops *o,
12417 int from_tty, int enabled,
12418 int internal, unsigned flags)
12419 {
12420 internal_error_pure_virtual_called ();
12421 }
12422
12423 static std::vector<symtab_and_line>
12424 base_breakpoint_decode_location (struct breakpoint *b,
12425 const struct event_location *location,
12426 struct program_space *search_pspace)
12427 {
12428 internal_error_pure_virtual_called ();
12429 }
12430
12431 /* The default 'explains_signal' method. */
12432
12433 static int
12434 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12435 {
12436 return 1;
12437 }
12438
12439 /* The default "after_condition_true" method. */
12440
12441 static void
12442 base_breakpoint_after_condition_true (struct bpstats *bs)
12443 {
12444 /* Nothing to do. */
12445 }
12446
12447 struct breakpoint_ops base_breakpoint_ops =
12448 {
12449 base_breakpoint_allocate_location,
12450 base_breakpoint_re_set,
12451 base_breakpoint_insert_location,
12452 base_breakpoint_remove_location,
12453 base_breakpoint_breakpoint_hit,
12454 base_breakpoint_check_status,
12455 base_breakpoint_resources_needed,
12456 base_breakpoint_works_in_software_mode,
12457 base_breakpoint_print_it,
12458 NULL,
12459 base_breakpoint_print_one_detail,
12460 base_breakpoint_print_mention,
12461 base_breakpoint_print_recreate,
12462 base_breakpoint_create_sals_from_location,
12463 base_breakpoint_create_breakpoints_sal,
12464 base_breakpoint_decode_location,
12465 base_breakpoint_explains_signal,
12466 base_breakpoint_after_condition_true,
12467 };
12468
12469 /* Default breakpoint_ops methods. */
12470
12471 static void
12472 bkpt_re_set (struct breakpoint *b)
12473 {
12474 /* FIXME: is this still reachable? */
12475 if (breakpoint_event_location_empty_p (b))
12476 {
12477 /* Anything without a location can't be re-set. */
12478 delete_breakpoint (b);
12479 return;
12480 }
12481
12482 breakpoint_re_set_default (b);
12483 }
12484
12485 static int
12486 bkpt_insert_location (struct bp_location *bl)
12487 {
12488 CORE_ADDR addr = bl->target_info.reqstd_address;
12489
12490 bl->target_info.kind = breakpoint_kind (bl, &addr);
12491 bl->target_info.placed_address = addr;
12492
12493 if (bl->loc_type == bp_loc_hardware_breakpoint)
12494 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12495 else
12496 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12497 }
12498
12499 static int
12500 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12501 {
12502 if (bl->loc_type == bp_loc_hardware_breakpoint)
12503 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12504 else
12505 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12506 }
12507
12508 static int
12509 bkpt_breakpoint_hit (const struct bp_location *bl,
12510 const address_space *aspace, CORE_ADDR bp_addr,
12511 const struct target_waitstatus *ws)
12512 {
12513 if (ws->kind != TARGET_WAITKIND_STOPPED
12514 || ws->value.sig != GDB_SIGNAL_TRAP)
12515 return 0;
12516
12517 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12518 aspace, bp_addr))
12519 return 0;
12520
12521 if (overlay_debugging /* unmapped overlay section */
12522 && section_is_overlay (bl->section)
12523 && !section_is_mapped (bl->section))
12524 return 0;
12525
12526 return 1;
12527 }
12528
12529 static int
12530 dprintf_breakpoint_hit (const struct bp_location *bl,
12531 const address_space *aspace, CORE_ADDR bp_addr,
12532 const struct target_waitstatus *ws)
12533 {
12534 if (dprintf_style == dprintf_style_agent
12535 && target_can_run_breakpoint_commands ())
12536 {
12537 /* An agent-style dprintf never causes a stop. If we see a trap
12538 for this address it must be for a breakpoint that happens to
12539 be set at the same address. */
12540 return 0;
12541 }
12542
12543 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12544 }
12545
12546 static int
12547 bkpt_resources_needed (const struct bp_location *bl)
12548 {
12549 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12550
12551 return 1;
12552 }
12553
12554 static enum print_stop_action
12555 bkpt_print_it (bpstat bs)
12556 {
12557 struct breakpoint *b;
12558 const struct bp_location *bl;
12559 int bp_temp;
12560 struct ui_out *uiout = current_uiout;
12561
12562 gdb_assert (bs->bp_location_at != NULL);
12563
12564 bl = bs->bp_location_at;
12565 b = bs->breakpoint_at;
12566
12567 bp_temp = b->disposition == disp_del;
12568 if (bl->address != bl->requested_address)
12569 breakpoint_adjustment_warning (bl->requested_address,
12570 bl->address,
12571 b->number, 1);
12572 annotate_breakpoint (b->number);
12573 maybe_print_thread_hit_breakpoint (uiout);
12574
12575 if (bp_temp)
12576 uiout->text ("Temporary breakpoint ");
12577 else
12578 uiout->text ("Breakpoint ");
12579 if (uiout->is_mi_like_p ())
12580 {
12581 uiout->field_string ("reason",
12582 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12583 uiout->field_string ("disp", bpdisp_text (b->disposition));
12584 }
12585 uiout->field_int ("bkptno", b->number);
12586 uiout->text (", ");
12587
12588 return PRINT_SRC_AND_LOC;
12589 }
12590
12591 static void
12592 bkpt_print_mention (struct breakpoint *b)
12593 {
12594 if (current_uiout->is_mi_like_p ())
12595 return;
12596
12597 switch (b->type)
12598 {
12599 case bp_breakpoint:
12600 case bp_gnu_ifunc_resolver:
12601 if (b->disposition == disp_del)
12602 printf_filtered (_("Temporary breakpoint"));
12603 else
12604 printf_filtered (_("Breakpoint"));
12605 printf_filtered (_(" %d"), b->number);
12606 if (b->type == bp_gnu_ifunc_resolver)
12607 printf_filtered (_(" at gnu-indirect-function resolver"));
12608 break;
12609 case bp_hardware_breakpoint:
12610 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12611 break;
12612 case bp_dprintf:
12613 printf_filtered (_("Dprintf %d"), b->number);
12614 break;
12615 }
12616
12617 say_where (b);
12618 }
12619
12620 static void
12621 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12622 {
12623 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12624 fprintf_unfiltered (fp, "tbreak");
12625 else if (tp->type == bp_breakpoint)
12626 fprintf_unfiltered (fp, "break");
12627 else if (tp->type == bp_hardware_breakpoint
12628 && tp->disposition == disp_del)
12629 fprintf_unfiltered (fp, "thbreak");
12630 else if (tp->type == bp_hardware_breakpoint)
12631 fprintf_unfiltered (fp, "hbreak");
12632 else
12633 internal_error (__FILE__, __LINE__,
12634 _("unhandled breakpoint type %d"), (int) tp->type);
12635
12636 fprintf_unfiltered (fp, " %s",
12637 event_location_to_string (tp->location.get ()));
12638
12639 /* Print out extra_string if this breakpoint is pending. It might
12640 contain, for example, conditions that were set by the user. */
12641 if (tp->loc == NULL && tp->extra_string != NULL)
12642 fprintf_unfiltered (fp, " %s", tp->extra_string);
12643
12644 print_recreate_thread (tp, fp);
12645 }
12646
12647 static void
12648 bkpt_create_sals_from_location (const struct event_location *location,
12649 struct linespec_result *canonical,
12650 enum bptype type_wanted)
12651 {
12652 create_sals_from_location_default (location, canonical, type_wanted);
12653 }
12654
12655 static void
12656 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12657 struct linespec_result *canonical,
12658 gdb::unique_xmalloc_ptr<char> cond_string,
12659 gdb::unique_xmalloc_ptr<char> extra_string,
12660 enum bptype type_wanted,
12661 enum bpdisp disposition,
12662 int thread,
12663 int task, int ignore_count,
12664 const struct breakpoint_ops *ops,
12665 int from_tty, int enabled,
12666 int internal, unsigned flags)
12667 {
12668 create_breakpoints_sal_default (gdbarch, canonical,
12669 std::move (cond_string),
12670 std::move (extra_string),
12671 type_wanted,
12672 disposition, thread, task,
12673 ignore_count, ops, from_tty,
12674 enabled, internal, flags);
12675 }
12676
12677 static std::vector<symtab_and_line>
12678 bkpt_decode_location (struct breakpoint *b,
12679 const struct event_location *location,
12680 struct program_space *search_pspace)
12681 {
12682 return decode_location_default (b, location, search_pspace);
12683 }
12684
12685 /* Virtual table for internal breakpoints. */
12686
12687 static void
12688 internal_bkpt_re_set (struct breakpoint *b)
12689 {
12690 switch (b->type)
12691 {
12692 /* Delete overlay event and longjmp master breakpoints; they
12693 will be reset later by breakpoint_re_set. */
12694 case bp_overlay_event:
12695 case bp_longjmp_master:
12696 case bp_std_terminate_master:
12697 case bp_exception_master:
12698 delete_breakpoint (b);
12699 break;
12700
12701 /* This breakpoint is special, it's set up when the inferior
12702 starts and we really don't want to touch it. */
12703 case bp_shlib_event:
12704
12705 /* Like bp_shlib_event, this breakpoint type is special. Once
12706 it is set up, we do not want to touch it. */
12707 case bp_thread_event:
12708 break;
12709 }
12710 }
12711
12712 static void
12713 internal_bkpt_check_status (bpstat bs)
12714 {
12715 if (bs->breakpoint_at->type == bp_shlib_event)
12716 {
12717 /* If requested, stop when the dynamic linker notifies GDB of
12718 events. This allows the user to get control and place
12719 breakpoints in initializer routines for dynamically loaded
12720 objects (among other things). */
12721 bs->stop = stop_on_solib_events;
12722 bs->print = stop_on_solib_events;
12723 }
12724 else
12725 bs->stop = 0;
12726 }
12727
12728 static enum print_stop_action
12729 internal_bkpt_print_it (bpstat bs)
12730 {
12731 struct breakpoint *b;
12732
12733 b = bs->breakpoint_at;
12734
12735 switch (b->type)
12736 {
12737 case bp_shlib_event:
12738 /* Did we stop because the user set the stop_on_solib_events
12739 variable? (If so, we report this as a generic, "Stopped due
12740 to shlib event" message.) */
12741 print_solib_event (0);
12742 break;
12743
12744 case bp_thread_event:
12745 /* Not sure how we will get here.
12746 GDB should not stop for these breakpoints. */
12747 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12748 break;
12749
12750 case bp_overlay_event:
12751 /* By analogy with the thread event, GDB should not stop for these. */
12752 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12753 break;
12754
12755 case bp_longjmp_master:
12756 /* These should never be enabled. */
12757 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12758 break;
12759
12760 case bp_std_terminate_master:
12761 /* These should never be enabled. */
12762 printf_filtered (_("std::terminate Master Breakpoint: "
12763 "gdb should not stop!\n"));
12764 break;
12765
12766 case bp_exception_master:
12767 /* These should never be enabled. */
12768 printf_filtered (_("Exception Master Breakpoint: "
12769 "gdb should not stop!\n"));
12770 break;
12771 }
12772
12773 return PRINT_NOTHING;
12774 }
12775
12776 static void
12777 internal_bkpt_print_mention (struct breakpoint *b)
12778 {
12779 /* Nothing to mention. These breakpoints are internal. */
12780 }
12781
12782 /* Virtual table for momentary breakpoints */
12783
12784 static void
12785 momentary_bkpt_re_set (struct breakpoint *b)
12786 {
12787 /* Keep temporary breakpoints, which can be encountered when we step
12788 over a dlopen call and solib_add is resetting the breakpoints.
12789 Otherwise these should have been blown away via the cleanup chain
12790 or by breakpoint_init_inferior when we rerun the executable. */
12791 }
12792
12793 static void
12794 momentary_bkpt_check_status (bpstat bs)
12795 {
12796 /* Nothing. The point of these breakpoints is causing a stop. */
12797 }
12798
12799 static enum print_stop_action
12800 momentary_bkpt_print_it (bpstat bs)
12801 {
12802 return PRINT_UNKNOWN;
12803 }
12804
12805 static void
12806 momentary_bkpt_print_mention (struct breakpoint *b)
12807 {
12808 /* Nothing to mention. These breakpoints are internal. */
12809 }
12810
12811 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12812
12813 It gets cleared already on the removal of the first one of such placed
12814 breakpoints. This is OK as they get all removed altogether. */
12815
12816 longjmp_breakpoint::~longjmp_breakpoint ()
12817 {
12818 thread_info *tp = find_thread_global_id (this->thread);
12819
12820 if (tp != NULL)
12821 tp->initiating_frame = null_frame_id;
12822 }
12823
12824 /* Specific methods for probe breakpoints. */
12825
12826 static int
12827 bkpt_probe_insert_location (struct bp_location *bl)
12828 {
12829 int v = bkpt_insert_location (bl);
12830
12831 if (v == 0)
12832 {
12833 /* The insertion was successful, now let's set the probe's semaphore
12834 if needed. */
12835 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12836 }
12837
12838 return v;
12839 }
12840
12841 static int
12842 bkpt_probe_remove_location (struct bp_location *bl,
12843 enum remove_bp_reason reason)
12844 {
12845 /* Let's clear the semaphore before removing the location. */
12846 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12847
12848 return bkpt_remove_location (bl, reason);
12849 }
12850
12851 static void
12852 bkpt_probe_create_sals_from_location (const struct event_location *location,
12853 struct linespec_result *canonical,
12854 enum bptype type_wanted)
12855 {
12856 struct linespec_sals lsal;
12857
12858 lsal.sals = parse_probes (location, NULL, canonical);
12859 lsal.canonical
12860 = xstrdup (event_location_to_string (canonical->location.get ()));
12861 canonical->lsals.push_back (std::move (lsal));
12862 }
12863
12864 static std::vector<symtab_and_line>
12865 bkpt_probe_decode_location (struct breakpoint *b,
12866 const struct event_location *location,
12867 struct program_space *search_pspace)
12868 {
12869 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12870 if (sals.empty ())
12871 error (_("probe not found"));
12872 return sals;
12873 }
12874
12875 /* The breakpoint_ops structure to be used in tracepoints. */
12876
12877 static void
12878 tracepoint_re_set (struct breakpoint *b)
12879 {
12880 breakpoint_re_set_default (b);
12881 }
12882
12883 static int
12884 tracepoint_breakpoint_hit (const struct bp_location *bl,
12885 const address_space *aspace, CORE_ADDR bp_addr,
12886 const struct target_waitstatus *ws)
12887 {
12888 /* By definition, the inferior does not report stops at
12889 tracepoints. */
12890 return 0;
12891 }
12892
12893 static void
12894 tracepoint_print_one_detail (const struct breakpoint *self,
12895 struct ui_out *uiout)
12896 {
12897 struct tracepoint *tp = (struct tracepoint *) self;
12898 if (!tp->static_trace_marker_id.empty ())
12899 {
12900 gdb_assert (self->type == bp_static_tracepoint);
12901
12902 uiout->text ("\tmarker id is ");
12903 uiout->field_string ("static-tracepoint-marker-string-id",
12904 tp->static_trace_marker_id);
12905 uiout->text ("\n");
12906 }
12907 }
12908
12909 static void
12910 tracepoint_print_mention (struct breakpoint *b)
12911 {
12912 if (current_uiout->is_mi_like_p ())
12913 return;
12914
12915 switch (b->type)
12916 {
12917 case bp_tracepoint:
12918 printf_filtered (_("Tracepoint"));
12919 printf_filtered (_(" %d"), b->number);
12920 break;
12921 case bp_fast_tracepoint:
12922 printf_filtered (_("Fast tracepoint"));
12923 printf_filtered (_(" %d"), b->number);
12924 break;
12925 case bp_static_tracepoint:
12926 printf_filtered (_("Static tracepoint"));
12927 printf_filtered (_(" %d"), b->number);
12928 break;
12929 default:
12930 internal_error (__FILE__, __LINE__,
12931 _("unhandled tracepoint type %d"), (int) b->type);
12932 }
12933
12934 say_where (b);
12935 }
12936
12937 static void
12938 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12939 {
12940 struct tracepoint *tp = (struct tracepoint *) self;
12941
12942 if (self->type == bp_fast_tracepoint)
12943 fprintf_unfiltered (fp, "ftrace");
12944 else if (self->type == bp_static_tracepoint)
12945 fprintf_unfiltered (fp, "strace");
12946 else if (self->type == bp_tracepoint)
12947 fprintf_unfiltered (fp, "trace");
12948 else
12949 internal_error (__FILE__, __LINE__,
12950 _("unhandled tracepoint type %d"), (int) self->type);
12951
12952 fprintf_unfiltered (fp, " %s",
12953 event_location_to_string (self->location.get ()));
12954 print_recreate_thread (self, fp);
12955
12956 if (tp->pass_count)
12957 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12958 }
12959
12960 static void
12961 tracepoint_create_sals_from_location (const struct event_location *location,
12962 struct linespec_result *canonical,
12963 enum bptype type_wanted)
12964 {
12965 create_sals_from_location_default (location, canonical, type_wanted);
12966 }
12967
12968 static void
12969 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12970 struct linespec_result *canonical,
12971 gdb::unique_xmalloc_ptr<char> cond_string,
12972 gdb::unique_xmalloc_ptr<char> extra_string,
12973 enum bptype type_wanted,
12974 enum bpdisp disposition,
12975 int thread,
12976 int task, int ignore_count,
12977 const struct breakpoint_ops *ops,
12978 int from_tty, int enabled,
12979 int internal, unsigned flags)
12980 {
12981 create_breakpoints_sal_default (gdbarch, canonical,
12982 std::move (cond_string),
12983 std::move (extra_string),
12984 type_wanted,
12985 disposition, thread, task,
12986 ignore_count, ops, from_tty,
12987 enabled, internal, flags);
12988 }
12989
12990 static std::vector<symtab_and_line>
12991 tracepoint_decode_location (struct breakpoint *b,
12992 const struct event_location *location,
12993 struct program_space *search_pspace)
12994 {
12995 return decode_location_default (b, location, search_pspace);
12996 }
12997
12998 struct breakpoint_ops tracepoint_breakpoint_ops;
12999
13000 /* The breakpoint_ops structure to be use on tracepoints placed in a
13001 static probe. */
13002
13003 static void
13004 tracepoint_probe_create_sals_from_location
13005 (const struct event_location *location,
13006 struct linespec_result *canonical,
13007 enum bptype type_wanted)
13008 {
13009 /* We use the same method for breakpoint on probes. */
13010 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13011 }
13012
13013 static std::vector<symtab_and_line>
13014 tracepoint_probe_decode_location (struct breakpoint *b,
13015 const struct event_location *location,
13016 struct program_space *search_pspace)
13017 {
13018 /* We use the same method for breakpoint on probes. */
13019 return bkpt_probe_decode_location (b, location, search_pspace);
13020 }
13021
13022 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13023
13024 /* Dprintf breakpoint_ops methods. */
13025
13026 static void
13027 dprintf_re_set (struct breakpoint *b)
13028 {
13029 breakpoint_re_set_default (b);
13030
13031 /* extra_string should never be non-NULL for dprintf. */
13032 gdb_assert (b->extra_string != NULL);
13033
13034 /* 1 - connect to target 1, that can run breakpoint commands.
13035 2 - create a dprintf, which resolves fine.
13036 3 - disconnect from target 1
13037 4 - connect to target 2, that can NOT run breakpoint commands.
13038
13039 After steps #3/#4, you'll want the dprintf command list to
13040 be updated, because target 1 and 2 may well return different
13041 answers for target_can_run_breakpoint_commands().
13042 Given absence of finer grained resetting, we get to do
13043 it all the time. */
13044 if (b->extra_string != NULL)
13045 update_dprintf_command_list (b);
13046 }
13047
13048 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13049
13050 static void
13051 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13052 {
13053 fprintf_unfiltered (fp, "dprintf %s,%s",
13054 event_location_to_string (tp->location.get ()),
13055 tp->extra_string);
13056 print_recreate_thread (tp, fp);
13057 }
13058
13059 /* Implement the "after_condition_true" breakpoint_ops method for
13060 dprintf.
13061
13062 dprintf's are implemented with regular commands in their command
13063 list, but we run the commands here instead of before presenting the
13064 stop to the user, as dprintf's don't actually cause a stop. This
13065 also makes it so that the commands of multiple dprintfs at the same
13066 address are all handled. */
13067
13068 static void
13069 dprintf_after_condition_true (struct bpstats *bs)
13070 {
13071 struct bpstats tmp_bs;
13072 struct bpstats *tmp_bs_p = &tmp_bs;
13073
13074 /* dprintf's never cause a stop. This wasn't set in the
13075 check_status hook instead because that would make the dprintf's
13076 condition not be evaluated. */
13077 bs->stop = 0;
13078
13079 /* Run the command list here. Take ownership of it instead of
13080 copying. We never want these commands to run later in
13081 bpstat_do_actions, if a breakpoint that causes a stop happens to
13082 be set at same address as this dprintf, or even if running the
13083 commands here throws. */
13084 tmp_bs.commands = bs->commands;
13085 bs->commands = NULL;
13086
13087 bpstat_do_actions_1 (&tmp_bs_p);
13088
13089 /* 'tmp_bs.commands' will usually be NULL by now, but
13090 bpstat_do_actions_1 may return early without processing the whole
13091 list. */
13092 }
13093
13094 /* The breakpoint_ops structure to be used on static tracepoints with
13095 markers (`-m'). */
13096
13097 static void
13098 strace_marker_create_sals_from_location (const struct event_location *location,
13099 struct linespec_result *canonical,
13100 enum bptype type_wanted)
13101 {
13102 struct linespec_sals lsal;
13103 const char *arg_start, *arg;
13104
13105 arg = arg_start = get_linespec_location (location)->spec_string;
13106 lsal.sals = decode_static_tracepoint_spec (&arg);
13107
13108 std::string str (arg_start, arg - arg_start);
13109 const char *ptr = str.c_str ();
13110 canonical->location
13111 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13112
13113 lsal.canonical
13114 = xstrdup (event_location_to_string (canonical->location.get ()));
13115 canonical->lsals.push_back (std::move (lsal));
13116 }
13117
13118 static void
13119 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13120 struct linespec_result *canonical,
13121 gdb::unique_xmalloc_ptr<char> cond_string,
13122 gdb::unique_xmalloc_ptr<char> extra_string,
13123 enum bptype type_wanted,
13124 enum bpdisp disposition,
13125 int thread,
13126 int task, int ignore_count,
13127 const struct breakpoint_ops *ops,
13128 int from_tty, int enabled,
13129 int internal, unsigned flags)
13130 {
13131 const linespec_sals &lsal = canonical->lsals[0];
13132
13133 /* If the user is creating a static tracepoint by marker id
13134 (strace -m MARKER_ID), then store the sals index, so that
13135 breakpoint_re_set can try to match up which of the newly
13136 found markers corresponds to this one, and, don't try to
13137 expand multiple locations for each sal, given than SALS
13138 already should contain all sals for MARKER_ID. */
13139
13140 for (size_t i = 0; i < lsal.sals.size (); i++)
13141 {
13142 event_location_up location
13143 = copy_event_location (canonical->location.get ());
13144
13145 std::unique_ptr<tracepoint> tp (new tracepoint ());
13146 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13147 std::move (location), NULL,
13148 std::move (cond_string),
13149 std::move (extra_string),
13150 type_wanted, disposition,
13151 thread, task, ignore_count, ops,
13152 from_tty, enabled, internal, flags,
13153 canonical->special_display);
13154 /* Given that its possible to have multiple markers with
13155 the same string id, if the user is creating a static
13156 tracepoint by marker id ("strace -m MARKER_ID"), then
13157 store the sals index, so that breakpoint_re_set can
13158 try to match up which of the newly found markers
13159 corresponds to this one */
13160 tp->static_trace_marker_id_idx = i;
13161
13162 install_breakpoint (internal, std::move (tp), 0);
13163 }
13164 }
13165
13166 static std::vector<symtab_and_line>
13167 strace_marker_decode_location (struct breakpoint *b,
13168 const struct event_location *location,
13169 struct program_space *search_pspace)
13170 {
13171 struct tracepoint *tp = (struct tracepoint *) b;
13172 const char *s = get_linespec_location (location)->spec_string;
13173
13174 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13175 if (sals.size () > tp->static_trace_marker_id_idx)
13176 {
13177 sals[0] = sals[tp->static_trace_marker_id_idx];
13178 sals.resize (1);
13179 return sals;
13180 }
13181 else
13182 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13183 }
13184
13185 static struct breakpoint_ops strace_marker_breakpoint_ops;
13186
13187 static int
13188 strace_marker_p (struct breakpoint *b)
13189 {
13190 return b->ops == &strace_marker_breakpoint_ops;
13191 }
13192
13193 /* Delete a breakpoint and clean up all traces of it in the data
13194 structures. */
13195
13196 void
13197 delete_breakpoint (struct breakpoint *bpt)
13198 {
13199 struct breakpoint *b;
13200
13201 gdb_assert (bpt != NULL);
13202
13203 /* Has this bp already been deleted? This can happen because
13204 multiple lists can hold pointers to bp's. bpstat lists are
13205 especial culprits.
13206
13207 One example of this happening is a watchpoint's scope bp. When
13208 the scope bp triggers, we notice that the watchpoint is out of
13209 scope, and delete it. We also delete its scope bp. But the
13210 scope bp is marked "auto-deleting", and is already on a bpstat.
13211 That bpstat is then checked for auto-deleting bp's, which are
13212 deleted.
13213
13214 A real solution to this problem might involve reference counts in
13215 bp's, and/or giving them pointers back to their referencing
13216 bpstat's, and teaching delete_breakpoint to only free a bp's
13217 storage when no more references were extent. A cheaper bandaid
13218 was chosen. */
13219 if (bpt->type == bp_none)
13220 return;
13221
13222 /* At least avoid this stale reference until the reference counting
13223 of breakpoints gets resolved. */
13224 if (bpt->related_breakpoint != bpt)
13225 {
13226 struct breakpoint *related;
13227 struct watchpoint *w;
13228
13229 if (bpt->type == bp_watchpoint_scope)
13230 w = (struct watchpoint *) bpt->related_breakpoint;
13231 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13232 w = (struct watchpoint *) bpt;
13233 else
13234 w = NULL;
13235 if (w != NULL)
13236 watchpoint_del_at_next_stop (w);
13237
13238 /* Unlink bpt from the bpt->related_breakpoint ring. */
13239 for (related = bpt; related->related_breakpoint != bpt;
13240 related = related->related_breakpoint);
13241 related->related_breakpoint = bpt->related_breakpoint;
13242 bpt->related_breakpoint = bpt;
13243 }
13244
13245 /* watch_command_1 creates a watchpoint but only sets its number if
13246 update_watchpoint succeeds in creating its bp_locations. If there's
13247 a problem in that process, we'll be asked to delete the half-created
13248 watchpoint. In that case, don't announce the deletion. */
13249 if (bpt->number)
13250 gdb::observers::breakpoint_deleted.notify (bpt);
13251
13252 if (breakpoint_chain == bpt)
13253 breakpoint_chain = bpt->next;
13254
13255 ALL_BREAKPOINTS (b)
13256 if (b->next == bpt)
13257 {
13258 b->next = bpt->next;
13259 break;
13260 }
13261
13262 /* Be sure no bpstat's are pointing at the breakpoint after it's
13263 been freed. */
13264 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13265 in all threads for now. Note that we cannot just remove bpstats
13266 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13267 commands are associated with the bpstat; if we remove it here,
13268 then the later call to bpstat_do_actions (&stop_bpstat); in
13269 event-top.c won't do anything, and temporary breakpoints with
13270 commands won't work. */
13271
13272 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13273
13274 /* Now that breakpoint is removed from breakpoint list, update the
13275 global location list. This will remove locations that used to
13276 belong to this breakpoint. Do this before freeing the breakpoint
13277 itself, since remove_breakpoint looks at location's owner. It
13278 might be better design to have location completely
13279 self-contained, but it's not the case now. */
13280 update_global_location_list (UGLL_DONT_INSERT);
13281
13282 /* On the chance that someone will soon try again to delete this
13283 same bp, we mark it as deleted before freeing its storage. */
13284 bpt->type = bp_none;
13285 delete bpt;
13286 }
13287
13288 /* Iterator function to call a user-provided callback function once
13289 for each of B and its related breakpoints. */
13290
13291 static void
13292 iterate_over_related_breakpoints (struct breakpoint *b,
13293 gdb::function_view<void (breakpoint *)> function)
13294 {
13295 struct breakpoint *related;
13296
13297 related = b;
13298 do
13299 {
13300 struct breakpoint *next;
13301
13302 /* FUNCTION may delete RELATED. */
13303 next = related->related_breakpoint;
13304
13305 if (next == related)
13306 {
13307 /* RELATED is the last ring entry. */
13308 function (related);
13309
13310 /* FUNCTION may have deleted it, so we'd never reach back to
13311 B. There's nothing left to do anyway, so just break
13312 out. */
13313 break;
13314 }
13315 else
13316 function (related);
13317
13318 related = next;
13319 }
13320 while (related != b);
13321 }
13322
13323 static void
13324 delete_command (const char *arg, int from_tty)
13325 {
13326 struct breakpoint *b, *b_tmp;
13327
13328 dont_repeat ();
13329
13330 if (arg == 0)
13331 {
13332 int breaks_to_delete = 0;
13333
13334 /* Delete all breakpoints if no argument. Do not delete
13335 internal breakpoints, these have to be deleted with an
13336 explicit breakpoint number argument. */
13337 ALL_BREAKPOINTS (b)
13338 if (user_breakpoint_p (b))
13339 {
13340 breaks_to_delete = 1;
13341 break;
13342 }
13343
13344 /* Ask user only if there are some breakpoints to delete. */
13345 if (!from_tty
13346 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13347 {
13348 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13349 if (user_breakpoint_p (b))
13350 delete_breakpoint (b);
13351 }
13352 }
13353 else
13354 map_breakpoint_numbers
13355 (arg, [&] (breakpoint *b)
13356 {
13357 iterate_over_related_breakpoints (b, delete_breakpoint);
13358 });
13359 }
13360
13361 /* Return true if all locations of B bound to PSPACE are pending. If
13362 PSPACE is NULL, all locations of all program spaces are
13363 considered. */
13364
13365 static int
13366 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13367 {
13368 struct bp_location *loc;
13369
13370 for (loc = b->loc; loc != NULL; loc = loc->next)
13371 if ((pspace == NULL
13372 || loc->pspace == pspace)
13373 && !loc->shlib_disabled
13374 && !loc->pspace->executing_startup)
13375 return 0;
13376 return 1;
13377 }
13378
13379 /* Subroutine of update_breakpoint_locations to simplify it.
13380 Return non-zero if multiple fns in list LOC have the same name.
13381 Null names are ignored. */
13382
13383 static int
13384 ambiguous_names_p (struct bp_location *loc)
13385 {
13386 struct bp_location *l;
13387 htab_t htab = htab_create_alloc (13, htab_hash_string,
13388 (int (*) (const void *,
13389 const void *)) streq,
13390 NULL, xcalloc, xfree);
13391
13392 for (l = loc; l != NULL; l = l->next)
13393 {
13394 const char **slot;
13395 const char *name = l->function_name;
13396
13397 /* Allow for some names to be NULL, ignore them. */
13398 if (name == NULL)
13399 continue;
13400
13401 slot = (const char **) htab_find_slot (htab, (const void *) name,
13402 INSERT);
13403 /* NOTE: We can assume slot != NULL here because xcalloc never
13404 returns NULL. */
13405 if (*slot != NULL)
13406 {
13407 htab_delete (htab);
13408 return 1;
13409 }
13410 *slot = name;
13411 }
13412
13413 htab_delete (htab);
13414 return 0;
13415 }
13416
13417 /* When symbols change, it probably means the sources changed as well,
13418 and it might mean the static tracepoint markers are no longer at
13419 the same address or line numbers they used to be at last we
13420 checked. Losing your static tracepoints whenever you rebuild is
13421 undesirable. This function tries to resync/rematch gdb static
13422 tracepoints with the markers on the target, for static tracepoints
13423 that have not been set by marker id. Static tracepoint that have
13424 been set by marker id are reset by marker id in breakpoint_re_set.
13425 The heuristic is:
13426
13427 1) For a tracepoint set at a specific address, look for a marker at
13428 the old PC. If one is found there, assume to be the same marker.
13429 If the name / string id of the marker found is different from the
13430 previous known name, assume that means the user renamed the marker
13431 in the sources, and output a warning.
13432
13433 2) For a tracepoint set at a given line number, look for a marker
13434 at the new address of the old line number. If one is found there,
13435 assume to be the same marker. If the name / string id of the
13436 marker found is different from the previous known name, assume that
13437 means the user renamed the marker in the sources, and output a
13438 warning.
13439
13440 3) If a marker is no longer found at the same address or line, it
13441 may mean the marker no longer exists. But it may also just mean
13442 the code changed a bit. Maybe the user added a few lines of code
13443 that made the marker move up or down (in line number terms). Ask
13444 the target for info about the marker with the string id as we knew
13445 it. If found, update line number and address in the matching
13446 static tracepoint. This will get confused if there's more than one
13447 marker with the same ID (possible in UST, although unadvised
13448 precisely because it confuses tools). */
13449
13450 static struct symtab_and_line
13451 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13452 {
13453 struct tracepoint *tp = (struct tracepoint *) b;
13454 struct static_tracepoint_marker marker;
13455 CORE_ADDR pc;
13456
13457 pc = sal.pc;
13458 if (sal.line)
13459 find_line_pc (sal.symtab, sal.line, &pc);
13460
13461 if (target_static_tracepoint_marker_at (pc, &marker))
13462 {
13463 if (tp->static_trace_marker_id != marker.str_id)
13464 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13465 b->number, tp->static_trace_marker_id.c_str (),
13466 marker.str_id.c_str ());
13467
13468 tp->static_trace_marker_id = std::move (marker.str_id);
13469
13470 return sal;
13471 }
13472
13473 /* Old marker wasn't found on target at lineno. Try looking it up
13474 by string ID. */
13475 if (!sal.explicit_pc
13476 && sal.line != 0
13477 && sal.symtab != NULL
13478 && !tp->static_trace_marker_id.empty ())
13479 {
13480 std::vector<static_tracepoint_marker> markers
13481 = target_static_tracepoint_markers_by_strid
13482 (tp->static_trace_marker_id.c_str ());
13483
13484 if (!markers.empty ())
13485 {
13486 struct symbol *sym;
13487 struct static_tracepoint_marker *tpmarker;
13488 struct ui_out *uiout = current_uiout;
13489 struct explicit_location explicit_loc;
13490
13491 tpmarker = &markers[0];
13492
13493 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13494
13495 warning (_("marker for static tracepoint %d (%s) not "
13496 "found at previous line number"),
13497 b->number, tp->static_trace_marker_id.c_str ());
13498
13499 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13500 sym = find_pc_sect_function (tpmarker->address, NULL);
13501 uiout->text ("Now in ");
13502 if (sym)
13503 {
13504 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13505 uiout->text (" at ");
13506 }
13507 uiout->field_string ("file",
13508 symtab_to_filename_for_display (sal2.symtab));
13509 uiout->text (":");
13510
13511 if (uiout->is_mi_like_p ())
13512 {
13513 const char *fullname = symtab_to_fullname (sal2.symtab);
13514
13515 uiout->field_string ("fullname", fullname);
13516 }
13517
13518 uiout->field_int ("line", sal2.line);
13519 uiout->text ("\n");
13520
13521 b->loc->line_number = sal2.line;
13522 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13523
13524 b->location.reset (NULL);
13525 initialize_explicit_location (&explicit_loc);
13526 explicit_loc.source_filename
13527 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13528 explicit_loc.line_offset.offset = b->loc->line_number;
13529 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13530 b->location = new_explicit_location (&explicit_loc);
13531
13532 /* Might be nice to check if function changed, and warn if
13533 so. */
13534 }
13535 }
13536 return sal;
13537 }
13538
13539 /* Returns 1 iff locations A and B are sufficiently same that
13540 we don't need to report breakpoint as changed. */
13541
13542 static int
13543 locations_are_equal (struct bp_location *a, struct bp_location *b)
13544 {
13545 while (a && b)
13546 {
13547 if (a->address != b->address)
13548 return 0;
13549
13550 if (a->shlib_disabled != b->shlib_disabled)
13551 return 0;
13552
13553 if (a->enabled != b->enabled)
13554 return 0;
13555
13556 a = a->next;
13557 b = b->next;
13558 }
13559
13560 if ((a == NULL) != (b == NULL))
13561 return 0;
13562
13563 return 1;
13564 }
13565
13566 /* Split all locations of B that are bound to PSPACE out of B's
13567 location list to a separate list and return that list's head. If
13568 PSPACE is NULL, hoist out all locations of B. */
13569
13570 static struct bp_location *
13571 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13572 {
13573 struct bp_location head;
13574 struct bp_location *i = b->loc;
13575 struct bp_location **i_link = &b->loc;
13576 struct bp_location *hoisted = &head;
13577
13578 if (pspace == NULL)
13579 {
13580 i = b->loc;
13581 b->loc = NULL;
13582 return i;
13583 }
13584
13585 head.next = NULL;
13586
13587 while (i != NULL)
13588 {
13589 if (i->pspace == pspace)
13590 {
13591 *i_link = i->next;
13592 i->next = NULL;
13593 hoisted->next = i;
13594 hoisted = i;
13595 }
13596 else
13597 i_link = &i->next;
13598 i = *i_link;
13599 }
13600
13601 return head.next;
13602 }
13603
13604 /* Create new breakpoint locations for B (a hardware or software
13605 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13606 zero, then B is a ranged breakpoint. Only recreates locations for
13607 FILTER_PSPACE. Locations of other program spaces are left
13608 untouched. */
13609
13610 void
13611 update_breakpoint_locations (struct breakpoint *b,
13612 struct program_space *filter_pspace,
13613 gdb::array_view<const symtab_and_line> sals,
13614 gdb::array_view<const symtab_and_line> sals_end)
13615 {
13616 struct bp_location *existing_locations;
13617
13618 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13619 {
13620 /* Ranged breakpoints have only one start location and one end
13621 location. */
13622 b->enable_state = bp_disabled;
13623 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13624 "multiple locations found\n"),
13625 b->number);
13626 return;
13627 }
13628
13629 /* If there's no new locations, and all existing locations are
13630 pending, don't do anything. This optimizes the common case where
13631 all locations are in the same shared library, that was unloaded.
13632 We'd like to retain the location, so that when the library is
13633 loaded again, we don't loose the enabled/disabled status of the
13634 individual locations. */
13635 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13636 return;
13637
13638 existing_locations = hoist_existing_locations (b, filter_pspace);
13639
13640 for (const auto &sal : sals)
13641 {
13642 struct bp_location *new_loc;
13643
13644 switch_to_program_space_and_thread (sal.pspace);
13645
13646 new_loc = add_location_to_breakpoint (b, &sal);
13647
13648 /* Reparse conditions, they might contain references to the
13649 old symtab. */
13650 if (b->cond_string != NULL)
13651 {
13652 const char *s;
13653
13654 s = b->cond_string;
13655 TRY
13656 {
13657 new_loc->cond = parse_exp_1 (&s, sal.pc,
13658 block_for_pc (sal.pc),
13659 0);
13660 }
13661 CATCH (e, RETURN_MASK_ERROR)
13662 {
13663 warning (_("failed to reevaluate condition "
13664 "for breakpoint %d: %s"),
13665 b->number, e.message);
13666 new_loc->enabled = 0;
13667 }
13668 END_CATCH
13669 }
13670
13671 if (!sals_end.empty ())
13672 {
13673 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13674
13675 new_loc->length = end - sals[0].pc + 1;
13676 }
13677 }
13678
13679 /* If possible, carry over 'disable' status from existing
13680 breakpoints. */
13681 {
13682 struct bp_location *e = existing_locations;
13683 /* If there are multiple breakpoints with the same function name,
13684 e.g. for inline functions, comparing function names won't work.
13685 Instead compare pc addresses; this is just a heuristic as things
13686 may have moved, but in practice it gives the correct answer
13687 often enough until a better solution is found. */
13688 int have_ambiguous_names = ambiguous_names_p (b->loc);
13689
13690 for (; e; e = e->next)
13691 {
13692 if (!e->enabled && e->function_name)
13693 {
13694 struct bp_location *l = b->loc;
13695 if (have_ambiguous_names)
13696 {
13697 for (; l; l = l->next)
13698 if (breakpoint_locations_match (e, l))
13699 {
13700 l->enabled = 0;
13701 break;
13702 }
13703 }
13704 else
13705 {
13706 for (; l; l = l->next)
13707 if (l->function_name
13708 && strcmp (e->function_name, l->function_name) == 0)
13709 {
13710 l->enabled = 0;
13711 break;
13712 }
13713 }
13714 }
13715 }
13716 }
13717
13718 if (!locations_are_equal (existing_locations, b->loc))
13719 gdb::observers::breakpoint_modified.notify (b);
13720 }
13721
13722 /* Find the SaL locations corresponding to the given LOCATION.
13723 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13724
13725 static std::vector<symtab_and_line>
13726 location_to_sals (struct breakpoint *b, struct event_location *location,
13727 struct program_space *search_pspace, int *found)
13728 {
13729 struct gdb_exception exception = exception_none;
13730
13731 gdb_assert (b->ops != NULL);
13732
13733 std::vector<symtab_and_line> sals;
13734
13735 TRY
13736 {
13737 sals = b->ops->decode_location (b, location, search_pspace);
13738 }
13739 CATCH (e, RETURN_MASK_ERROR)
13740 {
13741 int not_found_and_ok = 0;
13742
13743 exception = e;
13744
13745 /* For pending breakpoints, it's expected that parsing will
13746 fail until the right shared library is loaded. User has
13747 already told to create pending breakpoints and don't need
13748 extra messages. If breakpoint is in bp_shlib_disabled
13749 state, then user already saw the message about that
13750 breakpoint being disabled, and don't want to see more
13751 errors. */
13752 if (e.error == NOT_FOUND_ERROR
13753 && (b->condition_not_parsed
13754 || (b->loc != NULL
13755 && search_pspace != NULL
13756 && b->loc->pspace != search_pspace)
13757 || (b->loc && b->loc->shlib_disabled)
13758 || (b->loc && b->loc->pspace->executing_startup)
13759 || b->enable_state == bp_disabled))
13760 not_found_and_ok = 1;
13761
13762 if (!not_found_and_ok)
13763 {
13764 /* We surely don't want to warn about the same breakpoint
13765 10 times. One solution, implemented here, is disable
13766 the breakpoint on error. Another solution would be to
13767 have separate 'warning emitted' flag. Since this
13768 happens only when a binary has changed, I don't know
13769 which approach is better. */
13770 b->enable_state = bp_disabled;
13771 throw_exception (e);
13772 }
13773 }
13774 END_CATCH
13775
13776 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13777 {
13778 for (auto &sal : sals)
13779 resolve_sal_pc (&sal);
13780 if (b->condition_not_parsed && b->extra_string != NULL)
13781 {
13782 char *cond_string, *extra_string;
13783 int thread, task;
13784
13785 find_condition_and_thread (b->extra_string, sals[0].pc,
13786 &cond_string, &thread, &task,
13787 &extra_string);
13788 gdb_assert (b->cond_string == NULL);
13789 if (cond_string)
13790 b->cond_string = cond_string;
13791 b->thread = thread;
13792 b->task = task;
13793 if (extra_string)
13794 {
13795 xfree (b->extra_string);
13796 b->extra_string = extra_string;
13797 }
13798 b->condition_not_parsed = 0;
13799 }
13800
13801 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13802 sals[0] = update_static_tracepoint (b, sals[0]);
13803
13804 *found = 1;
13805 }
13806 else
13807 *found = 0;
13808
13809 return sals;
13810 }
13811
13812 /* The default re_set method, for typical hardware or software
13813 breakpoints. Reevaluate the breakpoint and recreate its
13814 locations. */
13815
13816 static void
13817 breakpoint_re_set_default (struct breakpoint *b)
13818 {
13819 struct program_space *filter_pspace = current_program_space;
13820 std::vector<symtab_and_line> expanded, expanded_end;
13821
13822 int found;
13823 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13824 filter_pspace, &found);
13825 if (found)
13826 expanded = std::move (sals);
13827
13828 if (b->location_range_end != NULL)
13829 {
13830 std::vector<symtab_and_line> sals_end
13831 = location_to_sals (b, b->location_range_end.get (),
13832 filter_pspace, &found);
13833 if (found)
13834 expanded_end = std::move (sals_end);
13835 }
13836
13837 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13838 }
13839
13840 /* Default method for creating SALs from an address string. It basically
13841 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13842
13843 static void
13844 create_sals_from_location_default (const struct event_location *location,
13845 struct linespec_result *canonical,
13846 enum bptype type_wanted)
13847 {
13848 parse_breakpoint_sals (location, canonical);
13849 }
13850
13851 /* Call create_breakpoints_sal for the given arguments. This is the default
13852 function for the `create_breakpoints_sal' method of
13853 breakpoint_ops. */
13854
13855 static void
13856 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13857 struct linespec_result *canonical,
13858 gdb::unique_xmalloc_ptr<char> cond_string,
13859 gdb::unique_xmalloc_ptr<char> extra_string,
13860 enum bptype type_wanted,
13861 enum bpdisp disposition,
13862 int thread,
13863 int task, int ignore_count,
13864 const struct breakpoint_ops *ops,
13865 int from_tty, int enabled,
13866 int internal, unsigned flags)
13867 {
13868 create_breakpoints_sal (gdbarch, canonical,
13869 std::move (cond_string),
13870 std::move (extra_string),
13871 type_wanted, disposition,
13872 thread, task, ignore_count, ops, from_tty,
13873 enabled, internal, flags);
13874 }
13875
13876 /* Decode the line represented by S by calling decode_line_full. This is the
13877 default function for the `decode_location' method of breakpoint_ops. */
13878
13879 static std::vector<symtab_and_line>
13880 decode_location_default (struct breakpoint *b,
13881 const struct event_location *location,
13882 struct program_space *search_pspace)
13883 {
13884 struct linespec_result canonical;
13885
13886 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13887 (struct symtab *) NULL, 0,
13888 &canonical, multiple_symbols_all,
13889 b->filter);
13890
13891 /* We should get 0 or 1 resulting SALs. */
13892 gdb_assert (canonical.lsals.size () < 2);
13893
13894 if (!canonical.lsals.empty ())
13895 {
13896 const linespec_sals &lsal = canonical.lsals[0];
13897 return std::move (lsal.sals);
13898 }
13899 return {};
13900 }
13901
13902 /* Reset a breakpoint. */
13903
13904 static void
13905 breakpoint_re_set_one (breakpoint *b)
13906 {
13907 input_radix = b->input_radix;
13908 set_language (b->language);
13909
13910 b->ops->re_set (b);
13911 }
13912
13913 /* Re-set breakpoint locations for the current program space.
13914 Locations bound to other program spaces are left untouched. */
13915
13916 void
13917 breakpoint_re_set (void)
13918 {
13919 struct breakpoint *b, *b_tmp;
13920
13921 {
13922 scoped_restore_current_language save_language;
13923 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13924 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13925
13926 /* Note: we must not try to insert locations until after all
13927 breakpoints have been re-set. Otherwise, e.g., when re-setting
13928 breakpoint 1, we'd insert the locations of breakpoint 2, which
13929 hadn't been re-set yet, and thus may have stale locations. */
13930
13931 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13932 {
13933 TRY
13934 {
13935 breakpoint_re_set_one (b);
13936 }
13937 CATCH (ex, RETURN_MASK_ALL)
13938 {
13939 exception_fprintf (gdb_stderr, ex,
13940 "Error in re-setting breakpoint %d: ",
13941 b->number);
13942 }
13943 END_CATCH
13944 }
13945
13946 jit_breakpoint_re_set ();
13947 }
13948
13949 create_overlay_event_breakpoint ();
13950 create_longjmp_master_breakpoint ();
13951 create_std_terminate_master_breakpoint ();
13952 create_exception_master_breakpoint ();
13953
13954 /* Now we can insert. */
13955 update_global_location_list (UGLL_MAY_INSERT);
13956 }
13957 \f
13958 /* Reset the thread number of this breakpoint:
13959
13960 - If the breakpoint is for all threads, leave it as-is.
13961 - Else, reset it to the current thread for inferior_ptid. */
13962 void
13963 breakpoint_re_set_thread (struct breakpoint *b)
13964 {
13965 if (b->thread != -1)
13966 {
13967 if (in_thread_list (inferior_ptid))
13968 b->thread = ptid_to_global_thread_id (inferior_ptid);
13969
13970 /* We're being called after following a fork. The new fork is
13971 selected as current, and unless this was a vfork will have a
13972 different program space from the original thread. Reset that
13973 as well. */
13974 b->loc->pspace = current_program_space;
13975 }
13976 }
13977
13978 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13979 If from_tty is nonzero, it prints a message to that effect,
13980 which ends with a period (no newline). */
13981
13982 void
13983 set_ignore_count (int bptnum, int count, int from_tty)
13984 {
13985 struct breakpoint *b;
13986
13987 if (count < 0)
13988 count = 0;
13989
13990 ALL_BREAKPOINTS (b)
13991 if (b->number == bptnum)
13992 {
13993 if (is_tracepoint (b))
13994 {
13995 if (from_tty && count != 0)
13996 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13997 bptnum);
13998 return;
13999 }
14000
14001 b->ignore_count = count;
14002 if (from_tty)
14003 {
14004 if (count == 0)
14005 printf_filtered (_("Will stop next time "
14006 "breakpoint %d is reached."),
14007 bptnum);
14008 else if (count == 1)
14009 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14010 bptnum);
14011 else
14012 printf_filtered (_("Will ignore next %d "
14013 "crossings of breakpoint %d."),
14014 count, bptnum);
14015 }
14016 gdb::observers::breakpoint_modified.notify (b);
14017 return;
14018 }
14019
14020 error (_("No breakpoint number %d."), bptnum);
14021 }
14022
14023 /* Command to set ignore-count of breakpoint N to COUNT. */
14024
14025 static void
14026 ignore_command (const char *args, int from_tty)
14027 {
14028 const char *p = args;
14029 int num;
14030
14031 if (p == 0)
14032 error_no_arg (_("a breakpoint number"));
14033
14034 num = get_number (&p);
14035 if (num == 0)
14036 error (_("bad breakpoint number: '%s'"), args);
14037 if (*p == 0)
14038 error (_("Second argument (specified ignore-count) is missing."));
14039
14040 set_ignore_count (num,
14041 longest_to_int (value_as_long (parse_and_eval (p))),
14042 from_tty);
14043 if (from_tty)
14044 printf_filtered ("\n");
14045 }
14046 \f
14047
14048 /* Call FUNCTION on each of the breakpoints with numbers in the range
14049 defined by BP_NUM_RANGE (an inclusive range). */
14050
14051 static void
14052 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14053 gdb::function_view<void (breakpoint *)> function)
14054 {
14055 if (bp_num_range.first == 0)
14056 {
14057 warning (_("bad breakpoint number at or near '%d'"),
14058 bp_num_range.first);
14059 }
14060 else
14061 {
14062 struct breakpoint *b, *tmp;
14063
14064 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14065 {
14066 bool match = false;
14067
14068 ALL_BREAKPOINTS_SAFE (b, tmp)
14069 if (b->number == i)
14070 {
14071 match = true;
14072 function (b);
14073 break;
14074 }
14075 if (!match)
14076 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14077 }
14078 }
14079 }
14080
14081 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14082 ARGS. */
14083
14084 static void
14085 map_breakpoint_numbers (const char *args,
14086 gdb::function_view<void (breakpoint *)> function)
14087 {
14088 if (args == NULL || *args == '\0')
14089 error_no_arg (_("one or more breakpoint numbers"));
14090
14091 number_or_range_parser parser (args);
14092
14093 while (!parser.finished ())
14094 {
14095 int num = parser.get_number ();
14096 map_breakpoint_number_range (std::make_pair (num, num), function);
14097 }
14098 }
14099
14100 /* Return the breakpoint location structure corresponding to the
14101 BP_NUM and LOC_NUM values. */
14102
14103 static struct bp_location *
14104 find_location_by_number (int bp_num, int loc_num)
14105 {
14106 struct breakpoint *b;
14107
14108 ALL_BREAKPOINTS (b)
14109 if (b->number == bp_num)
14110 {
14111 break;
14112 }
14113
14114 if (!b || b->number != bp_num)
14115 error (_("Bad breakpoint number '%d'"), bp_num);
14116
14117 if (loc_num == 0)
14118 error (_("Bad breakpoint location number '%d'"), loc_num);
14119
14120 int n = 0;
14121 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14122 if (++n == loc_num)
14123 return loc;
14124
14125 error (_("Bad breakpoint location number '%d'"), loc_num);
14126 }
14127
14128 /* Modes of operation for extract_bp_num. */
14129 enum class extract_bp_kind
14130 {
14131 /* Extracting a breakpoint number. */
14132 bp,
14133
14134 /* Extracting a location number. */
14135 loc,
14136 };
14137
14138 /* Extract a breakpoint or location number (as determined by KIND)
14139 from the string starting at START. TRAILER is a character which
14140 can be found after the number. If you don't want a trailer, use
14141 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14142 string. This always returns a positive integer. */
14143
14144 static int
14145 extract_bp_num (extract_bp_kind kind, const char *start,
14146 int trailer, const char **end_out = NULL)
14147 {
14148 const char *end = start;
14149 int num = get_number_trailer (&end, trailer);
14150 if (num < 0)
14151 error (kind == extract_bp_kind::bp
14152 ? _("Negative breakpoint number '%.*s'")
14153 : _("Negative breakpoint location number '%.*s'"),
14154 int (end - start), start);
14155 if (num == 0)
14156 error (kind == extract_bp_kind::bp
14157 ? _("Bad breakpoint number '%.*s'")
14158 : _("Bad breakpoint location number '%.*s'"),
14159 int (end - start), start);
14160
14161 if (end_out != NULL)
14162 *end_out = end;
14163 return num;
14164 }
14165
14166 /* Extract a breakpoint or location range (as determined by KIND) in
14167 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14168 representing the (inclusive) range. The returned pair's elements
14169 are always positive integers. */
14170
14171 static std::pair<int, int>
14172 extract_bp_or_bp_range (extract_bp_kind kind,
14173 const std::string &arg,
14174 std::string::size_type arg_offset)
14175 {
14176 std::pair<int, int> range;
14177 const char *bp_loc = &arg[arg_offset];
14178 std::string::size_type dash = arg.find ('-', arg_offset);
14179 if (dash != std::string::npos)
14180 {
14181 /* bp_loc is a range (x-z). */
14182 if (arg.length () == dash + 1)
14183 error (kind == extract_bp_kind::bp
14184 ? _("Bad breakpoint number at or near: '%s'")
14185 : _("Bad breakpoint location number at or near: '%s'"),
14186 bp_loc);
14187
14188 const char *end;
14189 const char *start_first = bp_loc;
14190 const char *start_second = &arg[dash + 1];
14191 range.first = extract_bp_num (kind, start_first, '-');
14192 range.second = extract_bp_num (kind, start_second, '\0', &end);
14193
14194 if (range.first > range.second)
14195 error (kind == extract_bp_kind::bp
14196 ? _("Inverted breakpoint range at '%.*s'")
14197 : _("Inverted breakpoint location range at '%.*s'"),
14198 int (end - start_first), start_first);
14199 }
14200 else
14201 {
14202 /* bp_loc is a single value. */
14203 range.first = extract_bp_num (kind, bp_loc, '\0');
14204 range.second = range.first;
14205 }
14206 return range;
14207 }
14208
14209 /* Extract the breakpoint/location range specified by ARG. Returns
14210 the breakpoint range in BP_NUM_RANGE, and the location range in
14211 BP_LOC_RANGE.
14212
14213 ARG may be in any of the following forms:
14214
14215 x where 'x' is a breakpoint number.
14216 x-y where 'x' and 'y' specify a breakpoint numbers range.
14217 x.y where 'x' is a breakpoint number and 'y' a location number.
14218 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14219 location number range.
14220 */
14221
14222 static void
14223 extract_bp_number_and_location (const std::string &arg,
14224 std::pair<int, int> &bp_num_range,
14225 std::pair<int, int> &bp_loc_range)
14226 {
14227 std::string::size_type dot = arg.find ('.');
14228
14229 if (dot != std::string::npos)
14230 {
14231 /* Handle 'x.y' and 'x.y-z' cases. */
14232
14233 if (arg.length () == dot + 1 || dot == 0)
14234 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14235
14236 bp_num_range.first
14237 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14238 bp_num_range.second = bp_num_range.first;
14239
14240 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14241 arg, dot + 1);
14242 }
14243 else
14244 {
14245 /* Handle x and x-y cases. */
14246
14247 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14248 bp_loc_range.first = 0;
14249 bp_loc_range.second = 0;
14250 }
14251 }
14252
14253 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14254 specifies whether to enable or disable. */
14255
14256 static void
14257 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14258 {
14259 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14260 if (loc != NULL)
14261 {
14262 if (loc->enabled != enable)
14263 {
14264 loc->enabled = enable;
14265 mark_breakpoint_location_modified (loc);
14266 }
14267 if (target_supports_enable_disable_tracepoint ()
14268 && current_trace_status ()->running && loc->owner
14269 && is_tracepoint (loc->owner))
14270 target_disable_tracepoint (loc);
14271 }
14272 update_global_location_list (UGLL_DONT_INSERT);
14273 }
14274
14275 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14276 number of the breakpoint, and BP_LOC_RANGE specifies the
14277 (inclusive) range of location numbers of that breakpoint to
14278 enable/disable. ENABLE specifies whether to enable or disable the
14279 location. */
14280
14281 static void
14282 enable_disable_breakpoint_location_range (int bp_num,
14283 std::pair<int, int> &bp_loc_range,
14284 bool enable)
14285 {
14286 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14287 enable_disable_bp_num_loc (bp_num, i, enable);
14288 }
14289
14290 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14291 If from_tty is nonzero, it prints a message to that effect,
14292 which ends with a period (no newline). */
14293
14294 void
14295 disable_breakpoint (struct breakpoint *bpt)
14296 {
14297 /* Never disable a watchpoint scope breakpoint; we want to
14298 hit them when we leave scope so we can delete both the
14299 watchpoint and its scope breakpoint at that time. */
14300 if (bpt->type == bp_watchpoint_scope)
14301 return;
14302
14303 bpt->enable_state = bp_disabled;
14304
14305 /* Mark breakpoint locations modified. */
14306 mark_breakpoint_modified (bpt);
14307
14308 if (target_supports_enable_disable_tracepoint ()
14309 && current_trace_status ()->running && is_tracepoint (bpt))
14310 {
14311 struct bp_location *location;
14312
14313 for (location = bpt->loc; location; location = location->next)
14314 target_disable_tracepoint (location);
14315 }
14316
14317 update_global_location_list (UGLL_DONT_INSERT);
14318
14319 gdb::observers::breakpoint_modified.notify (bpt);
14320 }
14321
14322 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14323 specified in ARGS. ARGS may be in any of the formats handled by
14324 extract_bp_number_and_location. ENABLE specifies whether to enable
14325 or disable the breakpoints/locations. */
14326
14327 static void
14328 enable_disable_command (const char *args, int from_tty, bool enable)
14329 {
14330 if (args == 0)
14331 {
14332 struct breakpoint *bpt;
14333
14334 ALL_BREAKPOINTS (bpt)
14335 if (user_breakpoint_p (bpt))
14336 {
14337 if (enable)
14338 enable_breakpoint (bpt);
14339 else
14340 disable_breakpoint (bpt);
14341 }
14342 }
14343 else
14344 {
14345 std::string num = extract_arg (&args);
14346
14347 while (!num.empty ())
14348 {
14349 std::pair<int, int> bp_num_range, bp_loc_range;
14350
14351 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14352
14353 if (bp_loc_range.first == bp_loc_range.second
14354 && bp_loc_range.first == 0)
14355 {
14356 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14357 map_breakpoint_number_range (bp_num_range,
14358 enable
14359 ? enable_breakpoint
14360 : disable_breakpoint);
14361 }
14362 else
14363 {
14364 /* Handle breakpoint ids with formats 'x.y' or
14365 'x.y-z'. */
14366 enable_disable_breakpoint_location_range
14367 (bp_num_range.first, bp_loc_range, enable);
14368 }
14369 num = extract_arg (&args);
14370 }
14371 }
14372 }
14373
14374 /* The disable command disables the specified breakpoints/locations
14375 (or all defined breakpoints) so they're no longer effective in
14376 stopping the inferior. ARGS may be in any of the forms defined in
14377 extract_bp_number_and_location. */
14378
14379 static void
14380 disable_command (const char *args, int from_tty)
14381 {
14382 enable_disable_command (args, from_tty, false);
14383 }
14384
14385 static void
14386 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14387 int count)
14388 {
14389 int target_resources_ok;
14390
14391 if (bpt->type == bp_hardware_breakpoint)
14392 {
14393 int i;
14394 i = hw_breakpoint_used_count ();
14395 target_resources_ok =
14396 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14397 i + 1, 0);
14398 if (target_resources_ok == 0)
14399 error (_("No hardware breakpoint support in the target."));
14400 else if (target_resources_ok < 0)
14401 error (_("Hardware breakpoints used exceeds limit."));
14402 }
14403
14404 if (is_watchpoint (bpt))
14405 {
14406 /* Initialize it just to avoid a GCC false warning. */
14407 enum enable_state orig_enable_state = bp_disabled;
14408
14409 TRY
14410 {
14411 struct watchpoint *w = (struct watchpoint *) bpt;
14412
14413 orig_enable_state = bpt->enable_state;
14414 bpt->enable_state = bp_enabled;
14415 update_watchpoint (w, 1 /* reparse */);
14416 }
14417 CATCH (e, RETURN_MASK_ALL)
14418 {
14419 bpt->enable_state = orig_enable_state;
14420 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14421 bpt->number);
14422 return;
14423 }
14424 END_CATCH
14425 }
14426
14427 bpt->enable_state = bp_enabled;
14428
14429 /* Mark breakpoint locations modified. */
14430 mark_breakpoint_modified (bpt);
14431
14432 if (target_supports_enable_disable_tracepoint ()
14433 && current_trace_status ()->running && is_tracepoint (bpt))
14434 {
14435 struct bp_location *location;
14436
14437 for (location = bpt->loc; location; location = location->next)
14438 target_enable_tracepoint (location);
14439 }
14440
14441 bpt->disposition = disposition;
14442 bpt->enable_count = count;
14443 update_global_location_list (UGLL_MAY_INSERT);
14444
14445 gdb::observers::breakpoint_modified.notify (bpt);
14446 }
14447
14448
14449 void
14450 enable_breakpoint (struct breakpoint *bpt)
14451 {
14452 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14453 }
14454
14455 /* The enable command enables the specified breakpoints/locations (or
14456 all defined breakpoints) so they once again become (or continue to
14457 be) effective in stopping the inferior. ARGS may be in any of the
14458 forms defined in extract_bp_number_and_location. */
14459
14460 static void
14461 enable_command (const char *args, int from_tty)
14462 {
14463 enable_disable_command (args, from_tty, true);
14464 }
14465
14466 static void
14467 enable_once_command (const char *args, int from_tty)
14468 {
14469 map_breakpoint_numbers
14470 (args, [&] (breakpoint *b)
14471 {
14472 iterate_over_related_breakpoints
14473 (b, [&] (breakpoint *bpt)
14474 {
14475 enable_breakpoint_disp (bpt, disp_disable, 1);
14476 });
14477 });
14478 }
14479
14480 static void
14481 enable_count_command (const char *args, int from_tty)
14482 {
14483 int count;
14484
14485 if (args == NULL)
14486 error_no_arg (_("hit count"));
14487
14488 count = get_number (&args);
14489
14490 map_breakpoint_numbers
14491 (args, [&] (breakpoint *b)
14492 {
14493 iterate_over_related_breakpoints
14494 (b, [&] (breakpoint *bpt)
14495 {
14496 enable_breakpoint_disp (bpt, disp_disable, count);
14497 });
14498 });
14499 }
14500
14501 static void
14502 enable_delete_command (const char *args, int from_tty)
14503 {
14504 map_breakpoint_numbers
14505 (args, [&] (breakpoint *b)
14506 {
14507 iterate_over_related_breakpoints
14508 (b, [&] (breakpoint *bpt)
14509 {
14510 enable_breakpoint_disp (bpt, disp_del, 1);
14511 });
14512 });
14513 }
14514 \f
14515 static void
14516 set_breakpoint_cmd (const char *args, int from_tty)
14517 {
14518 }
14519
14520 static void
14521 show_breakpoint_cmd (const char *args, int from_tty)
14522 {
14523 }
14524
14525 /* Invalidate last known value of any hardware watchpoint if
14526 the memory which that value represents has been written to by
14527 GDB itself. */
14528
14529 static void
14530 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14531 CORE_ADDR addr, ssize_t len,
14532 const bfd_byte *data)
14533 {
14534 struct breakpoint *bp;
14535
14536 ALL_BREAKPOINTS (bp)
14537 if (bp->enable_state == bp_enabled
14538 && bp->type == bp_hardware_watchpoint)
14539 {
14540 struct watchpoint *wp = (struct watchpoint *) bp;
14541
14542 if (wp->val_valid && wp->val)
14543 {
14544 struct bp_location *loc;
14545
14546 for (loc = bp->loc; loc != NULL; loc = loc->next)
14547 if (loc->loc_type == bp_loc_hardware_watchpoint
14548 && loc->address + loc->length > addr
14549 && addr + len > loc->address)
14550 {
14551 value_free (wp->val);
14552 wp->val = NULL;
14553 wp->val_valid = 0;
14554 }
14555 }
14556 }
14557 }
14558
14559 /* Create and insert a breakpoint for software single step. */
14560
14561 void
14562 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14563 const address_space *aspace,
14564 CORE_ADDR next_pc)
14565 {
14566 struct thread_info *tp = inferior_thread ();
14567 struct symtab_and_line sal;
14568 CORE_ADDR pc = next_pc;
14569
14570 if (tp->control.single_step_breakpoints == NULL)
14571 {
14572 tp->control.single_step_breakpoints
14573 = new_single_step_breakpoint (tp->global_num, gdbarch);
14574 }
14575
14576 sal = find_pc_line (pc, 0);
14577 sal.pc = pc;
14578 sal.section = find_pc_overlay (pc);
14579 sal.explicit_pc = 1;
14580 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14581
14582 update_global_location_list (UGLL_INSERT);
14583 }
14584
14585 /* Insert single step breakpoints according to the current state. */
14586
14587 int
14588 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14589 {
14590 struct regcache *regcache = get_current_regcache ();
14591 std::vector<CORE_ADDR> next_pcs;
14592
14593 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14594
14595 if (!next_pcs.empty ())
14596 {
14597 struct frame_info *frame = get_current_frame ();
14598 const address_space *aspace = get_frame_address_space (frame);
14599
14600 for (CORE_ADDR pc : next_pcs)
14601 insert_single_step_breakpoint (gdbarch, aspace, pc);
14602
14603 return 1;
14604 }
14605 else
14606 return 0;
14607 }
14608
14609 /* See breakpoint.h. */
14610
14611 int
14612 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14613 const address_space *aspace,
14614 CORE_ADDR pc)
14615 {
14616 struct bp_location *loc;
14617
14618 for (loc = bp->loc; loc != NULL; loc = loc->next)
14619 if (loc->inserted
14620 && breakpoint_location_address_match (loc, aspace, pc))
14621 return 1;
14622
14623 return 0;
14624 }
14625
14626 /* Check whether a software single-step breakpoint is inserted at
14627 PC. */
14628
14629 int
14630 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14631 CORE_ADDR pc)
14632 {
14633 struct breakpoint *bpt;
14634
14635 ALL_BREAKPOINTS (bpt)
14636 {
14637 if (bpt->type == bp_single_step
14638 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14639 return 1;
14640 }
14641 return 0;
14642 }
14643
14644 /* Tracepoint-specific operations. */
14645
14646 /* Set tracepoint count to NUM. */
14647 static void
14648 set_tracepoint_count (int num)
14649 {
14650 tracepoint_count = num;
14651 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14652 }
14653
14654 static void
14655 trace_command (const char *arg, int from_tty)
14656 {
14657 struct breakpoint_ops *ops;
14658
14659 event_location_up location = string_to_event_location (&arg,
14660 current_language);
14661 if (location != NULL
14662 && event_location_type (location.get ()) == PROBE_LOCATION)
14663 ops = &tracepoint_probe_breakpoint_ops;
14664 else
14665 ops = &tracepoint_breakpoint_ops;
14666
14667 create_breakpoint (get_current_arch (),
14668 location.get (),
14669 NULL, 0, arg, 1 /* parse arg */,
14670 0 /* tempflag */,
14671 bp_tracepoint /* type_wanted */,
14672 0 /* Ignore count */,
14673 pending_break_support,
14674 ops,
14675 from_tty,
14676 1 /* enabled */,
14677 0 /* internal */, 0);
14678 }
14679
14680 static void
14681 ftrace_command (const char *arg, int from_tty)
14682 {
14683 event_location_up location = string_to_event_location (&arg,
14684 current_language);
14685 create_breakpoint (get_current_arch (),
14686 location.get (),
14687 NULL, 0, arg, 1 /* parse arg */,
14688 0 /* tempflag */,
14689 bp_fast_tracepoint /* type_wanted */,
14690 0 /* Ignore count */,
14691 pending_break_support,
14692 &tracepoint_breakpoint_ops,
14693 from_tty,
14694 1 /* enabled */,
14695 0 /* internal */, 0);
14696 }
14697
14698 /* strace command implementation. Creates a static tracepoint. */
14699
14700 static void
14701 strace_command (const char *arg, int from_tty)
14702 {
14703 struct breakpoint_ops *ops;
14704 event_location_up location;
14705
14706 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14707 or with a normal static tracepoint. */
14708 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14709 {
14710 ops = &strace_marker_breakpoint_ops;
14711 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14712 }
14713 else
14714 {
14715 ops = &tracepoint_breakpoint_ops;
14716 location = string_to_event_location (&arg, current_language);
14717 }
14718
14719 create_breakpoint (get_current_arch (),
14720 location.get (),
14721 NULL, 0, arg, 1 /* parse arg */,
14722 0 /* tempflag */,
14723 bp_static_tracepoint /* type_wanted */,
14724 0 /* Ignore count */,
14725 pending_break_support,
14726 ops,
14727 from_tty,
14728 1 /* enabled */,
14729 0 /* internal */, 0);
14730 }
14731
14732 /* Set up a fake reader function that gets command lines from a linked
14733 list that was acquired during tracepoint uploading. */
14734
14735 static struct uploaded_tp *this_utp;
14736 static int next_cmd;
14737
14738 static char *
14739 read_uploaded_action (void)
14740 {
14741 char *rslt;
14742
14743 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14744
14745 next_cmd++;
14746
14747 return rslt;
14748 }
14749
14750 /* Given information about a tracepoint as recorded on a target (which
14751 can be either a live system or a trace file), attempt to create an
14752 equivalent GDB tracepoint. This is not a reliable process, since
14753 the target does not necessarily have all the information used when
14754 the tracepoint was originally defined. */
14755
14756 struct tracepoint *
14757 create_tracepoint_from_upload (struct uploaded_tp *utp)
14758 {
14759 const char *addr_str;
14760 char small_buf[100];
14761 struct tracepoint *tp;
14762
14763 if (utp->at_string)
14764 addr_str = utp->at_string;
14765 else
14766 {
14767 /* In the absence of a source location, fall back to raw
14768 address. Since there is no way to confirm that the address
14769 means the same thing as when the trace was started, warn the
14770 user. */
14771 warning (_("Uploaded tracepoint %d has no "
14772 "source location, using raw address"),
14773 utp->number);
14774 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14775 addr_str = small_buf;
14776 }
14777
14778 /* There's not much we can do with a sequence of bytecodes. */
14779 if (utp->cond && !utp->cond_string)
14780 warning (_("Uploaded tracepoint %d condition "
14781 "has no source form, ignoring it"),
14782 utp->number);
14783
14784 event_location_up location = string_to_event_location (&addr_str,
14785 current_language);
14786 if (!create_breakpoint (get_current_arch (),
14787 location.get (),
14788 utp->cond_string, -1, addr_str,
14789 0 /* parse cond/thread */,
14790 0 /* tempflag */,
14791 utp->type /* type_wanted */,
14792 0 /* Ignore count */,
14793 pending_break_support,
14794 &tracepoint_breakpoint_ops,
14795 0 /* from_tty */,
14796 utp->enabled /* enabled */,
14797 0 /* internal */,
14798 CREATE_BREAKPOINT_FLAGS_INSERTED))
14799 return NULL;
14800
14801 /* Get the tracepoint we just created. */
14802 tp = get_tracepoint (tracepoint_count);
14803 gdb_assert (tp != NULL);
14804
14805 if (utp->pass > 0)
14806 {
14807 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14808 tp->number);
14809
14810 trace_pass_command (small_buf, 0);
14811 }
14812
14813 /* If we have uploaded versions of the original commands, set up a
14814 special-purpose "reader" function and call the usual command line
14815 reader, then pass the result to the breakpoint command-setting
14816 function. */
14817 if (!VEC_empty (char_ptr, utp->cmd_strings))
14818 {
14819 command_line_up cmd_list;
14820
14821 this_utp = utp;
14822 next_cmd = 0;
14823
14824 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14825
14826 breakpoint_set_commands (tp, std::move (cmd_list));
14827 }
14828 else if (!VEC_empty (char_ptr, utp->actions)
14829 || !VEC_empty (char_ptr, utp->step_actions))
14830 warning (_("Uploaded tracepoint %d actions "
14831 "have no source form, ignoring them"),
14832 utp->number);
14833
14834 /* Copy any status information that might be available. */
14835 tp->hit_count = utp->hit_count;
14836 tp->traceframe_usage = utp->traceframe_usage;
14837
14838 return tp;
14839 }
14840
14841 /* Print information on tracepoint number TPNUM_EXP, or all if
14842 omitted. */
14843
14844 static void
14845 info_tracepoints_command (const char *args, int from_tty)
14846 {
14847 struct ui_out *uiout = current_uiout;
14848 int num_printed;
14849
14850 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14851
14852 if (num_printed == 0)
14853 {
14854 if (args == NULL || *args == '\0')
14855 uiout->message ("No tracepoints.\n");
14856 else
14857 uiout->message ("No tracepoint matching '%s'.\n", args);
14858 }
14859
14860 default_collect_info ();
14861 }
14862
14863 /* The 'enable trace' command enables tracepoints.
14864 Not supported by all targets. */
14865 static void
14866 enable_trace_command (const char *args, int from_tty)
14867 {
14868 enable_command (args, from_tty);
14869 }
14870
14871 /* The 'disable trace' command disables tracepoints.
14872 Not supported by all targets. */
14873 static void
14874 disable_trace_command (const char *args, int from_tty)
14875 {
14876 disable_command (args, from_tty);
14877 }
14878
14879 /* Remove a tracepoint (or all if no argument). */
14880 static void
14881 delete_trace_command (const char *arg, int from_tty)
14882 {
14883 struct breakpoint *b, *b_tmp;
14884
14885 dont_repeat ();
14886
14887 if (arg == 0)
14888 {
14889 int breaks_to_delete = 0;
14890
14891 /* Delete all breakpoints if no argument.
14892 Do not delete internal or call-dummy breakpoints, these
14893 have to be deleted with an explicit breakpoint number
14894 argument. */
14895 ALL_TRACEPOINTS (b)
14896 if (is_tracepoint (b) && user_breakpoint_p (b))
14897 {
14898 breaks_to_delete = 1;
14899 break;
14900 }
14901
14902 /* Ask user only if there are some breakpoints to delete. */
14903 if (!from_tty
14904 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14905 {
14906 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14907 if (is_tracepoint (b) && user_breakpoint_p (b))
14908 delete_breakpoint (b);
14909 }
14910 }
14911 else
14912 map_breakpoint_numbers
14913 (arg, [&] (breakpoint *b)
14914 {
14915 iterate_over_related_breakpoints (b, delete_breakpoint);
14916 });
14917 }
14918
14919 /* Helper function for trace_pass_command. */
14920
14921 static void
14922 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14923 {
14924 tp->pass_count = count;
14925 gdb::observers::breakpoint_modified.notify (tp);
14926 if (from_tty)
14927 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14928 tp->number, count);
14929 }
14930
14931 /* Set passcount for tracepoint.
14932
14933 First command argument is passcount, second is tracepoint number.
14934 If tracepoint number omitted, apply to most recently defined.
14935 Also accepts special argument "all". */
14936
14937 static void
14938 trace_pass_command (const char *args, int from_tty)
14939 {
14940 struct tracepoint *t1;
14941 ULONGEST count;
14942
14943 if (args == 0 || *args == 0)
14944 error (_("passcount command requires an "
14945 "argument (count + optional TP num)"));
14946
14947 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14948
14949 args = skip_spaces (args);
14950 if (*args && strncasecmp (args, "all", 3) == 0)
14951 {
14952 struct breakpoint *b;
14953
14954 args += 3; /* Skip special argument "all". */
14955 if (*args)
14956 error (_("Junk at end of arguments."));
14957
14958 ALL_TRACEPOINTS (b)
14959 {
14960 t1 = (struct tracepoint *) b;
14961 trace_pass_set_count (t1, count, from_tty);
14962 }
14963 }
14964 else if (*args == '\0')
14965 {
14966 t1 = get_tracepoint_by_number (&args, NULL);
14967 if (t1)
14968 trace_pass_set_count (t1, count, from_tty);
14969 }
14970 else
14971 {
14972 number_or_range_parser parser (args);
14973 while (!parser.finished ())
14974 {
14975 t1 = get_tracepoint_by_number (&args, &parser);
14976 if (t1)
14977 trace_pass_set_count (t1, count, from_tty);
14978 }
14979 }
14980 }
14981
14982 struct tracepoint *
14983 get_tracepoint (int num)
14984 {
14985 struct breakpoint *t;
14986
14987 ALL_TRACEPOINTS (t)
14988 if (t->number == num)
14989 return (struct tracepoint *) t;
14990
14991 return NULL;
14992 }
14993
14994 /* Find the tracepoint with the given target-side number (which may be
14995 different from the tracepoint number after disconnecting and
14996 reconnecting). */
14997
14998 struct tracepoint *
14999 get_tracepoint_by_number_on_target (int num)
15000 {
15001 struct breakpoint *b;
15002
15003 ALL_TRACEPOINTS (b)
15004 {
15005 struct tracepoint *t = (struct tracepoint *) b;
15006
15007 if (t->number_on_target == num)
15008 return t;
15009 }
15010
15011 return NULL;
15012 }
15013
15014 /* Utility: parse a tracepoint number and look it up in the list.
15015 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15016 If the argument is missing, the most recent tracepoint
15017 (tracepoint_count) is returned. */
15018
15019 struct tracepoint *
15020 get_tracepoint_by_number (const char **arg,
15021 number_or_range_parser *parser)
15022 {
15023 struct breakpoint *t;
15024 int tpnum;
15025 const char *instring = arg == NULL ? NULL : *arg;
15026
15027 if (parser != NULL)
15028 {
15029 gdb_assert (!parser->finished ());
15030 tpnum = parser->get_number ();
15031 }
15032 else if (arg == NULL || *arg == NULL || ! **arg)
15033 tpnum = tracepoint_count;
15034 else
15035 tpnum = get_number (arg);
15036
15037 if (tpnum <= 0)
15038 {
15039 if (instring && *instring)
15040 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15041 instring);
15042 else
15043 printf_filtered (_("No previous tracepoint\n"));
15044 return NULL;
15045 }
15046
15047 ALL_TRACEPOINTS (t)
15048 if (t->number == tpnum)
15049 {
15050 return (struct tracepoint *) t;
15051 }
15052
15053 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15054 return NULL;
15055 }
15056
15057 void
15058 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15059 {
15060 if (b->thread != -1)
15061 fprintf_unfiltered (fp, " thread %d", b->thread);
15062
15063 if (b->task != 0)
15064 fprintf_unfiltered (fp, " task %d", b->task);
15065
15066 fprintf_unfiltered (fp, "\n");
15067 }
15068
15069 /* Save information on user settable breakpoints (watchpoints, etc) to
15070 a new script file named FILENAME. If FILTER is non-NULL, call it
15071 on each breakpoint and only include the ones for which it returns
15072 non-zero. */
15073
15074 static void
15075 save_breakpoints (const char *filename, int from_tty,
15076 int (*filter) (const struct breakpoint *))
15077 {
15078 struct breakpoint *tp;
15079 int any = 0;
15080 int extra_trace_bits = 0;
15081
15082 if (filename == 0 || *filename == 0)
15083 error (_("Argument required (file name in which to save)"));
15084
15085 /* See if we have anything to save. */
15086 ALL_BREAKPOINTS (tp)
15087 {
15088 /* Skip internal and momentary breakpoints. */
15089 if (!user_breakpoint_p (tp))
15090 continue;
15091
15092 /* If we have a filter, only save the breakpoints it accepts. */
15093 if (filter && !filter (tp))
15094 continue;
15095
15096 any = 1;
15097
15098 if (is_tracepoint (tp))
15099 {
15100 extra_trace_bits = 1;
15101
15102 /* We can stop searching. */
15103 break;
15104 }
15105 }
15106
15107 if (!any)
15108 {
15109 warning (_("Nothing to save."));
15110 return;
15111 }
15112
15113 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15114
15115 stdio_file fp;
15116
15117 if (!fp.open (expanded_filename.get (), "w"))
15118 error (_("Unable to open file '%s' for saving (%s)"),
15119 expanded_filename.get (), safe_strerror (errno));
15120
15121 if (extra_trace_bits)
15122 save_trace_state_variables (&fp);
15123
15124 ALL_BREAKPOINTS (tp)
15125 {
15126 /* Skip internal and momentary breakpoints. */
15127 if (!user_breakpoint_p (tp))
15128 continue;
15129
15130 /* If we have a filter, only save the breakpoints it accepts. */
15131 if (filter && !filter (tp))
15132 continue;
15133
15134 tp->ops->print_recreate (tp, &fp);
15135
15136 /* Note, we can't rely on tp->number for anything, as we can't
15137 assume the recreated breakpoint numbers will match. Use $bpnum
15138 instead. */
15139
15140 if (tp->cond_string)
15141 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15142
15143 if (tp->ignore_count)
15144 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15145
15146 if (tp->type != bp_dprintf && tp->commands)
15147 {
15148 fp.puts (" commands\n");
15149
15150 current_uiout->redirect (&fp);
15151 TRY
15152 {
15153 print_command_lines (current_uiout, tp->commands.get (), 2);
15154 }
15155 CATCH (ex, RETURN_MASK_ALL)
15156 {
15157 current_uiout->redirect (NULL);
15158 throw_exception (ex);
15159 }
15160 END_CATCH
15161
15162 current_uiout->redirect (NULL);
15163 fp.puts (" end\n");
15164 }
15165
15166 if (tp->enable_state == bp_disabled)
15167 fp.puts ("disable $bpnum\n");
15168
15169 /* If this is a multi-location breakpoint, check if the locations
15170 should be individually disabled. Watchpoint locations are
15171 special, and not user visible. */
15172 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15173 {
15174 struct bp_location *loc;
15175 int n = 1;
15176
15177 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15178 if (!loc->enabled)
15179 fp.printf ("disable $bpnum.%d\n", n);
15180 }
15181 }
15182
15183 if (extra_trace_bits && *default_collect)
15184 fp.printf ("set default-collect %s\n", default_collect);
15185
15186 if (from_tty)
15187 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15188 }
15189
15190 /* The `save breakpoints' command. */
15191
15192 static void
15193 save_breakpoints_command (const char *args, int from_tty)
15194 {
15195 save_breakpoints (args, from_tty, NULL);
15196 }
15197
15198 /* The `save tracepoints' command. */
15199
15200 static void
15201 save_tracepoints_command (const char *args, int from_tty)
15202 {
15203 save_breakpoints (args, from_tty, is_tracepoint);
15204 }
15205
15206 /* Create a vector of all tracepoints. */
15207
15208 VEC(breakpoint_p) *
15209 all_tracepoints (void)
15210 {
15211 VEC(breakpoint_p) *tp_vec = 0;
15212 struct breakpoint *tp;
15213
15214 ALL_TRACEPOINTS (tp)
15215 {
15216 VEC_safe_push (breakpoint_p, tp_vec, tp);
15217 }
15218
15219 return tp_vec;
15220 }
15221
15222 \f
15223 /* This help string is used to consolidate all the help string for specifying
15224 locations used by several commands. */
15225
15226 #define LOCATION_HELP_STRING \
15227 "Linespecs are colon-separated lists of location parameters, such as\n\
15228 source filename, function name, label name, and line number.\n\
15229 Example: To specify the start of a label named \"the_top\" in the\n\
15230 function \"fact\" in the file \"factorial.c\", use\n\
15231 \"factorial.c:fact:the_top\".\n\
15232 \n\
15233 Address locations begin with \"*\" and specify an exact address in the\n\
15234 program. Example: To specify the fourth byte past the start function\n\
15235 \"main\", use \"*main + 4\".\n\
15236 \n\
15237 Explicit locations are similar to linespecs but use an option/argument\n\
15238 syntax to specify location parameters.\n\
15239 Example: To specify the start of the label named \"the_top\" in the\n\
15240 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15241 -function fact -label the_top\".\n\
15242 \n\
15243 By default, a specified function is matched against the program's\n\
15244 functions in all scopes. For C++, this means in all namespaces and\n\
15245 classes. For Ada, this means in all packages. E.g., in C++,\n\
15246 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15247 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15248 specified name as a complete fully-qualified name instead.\n"
15249
15250 /* This help string is used for the break, hbreak, tbreak and thbreak
15251 commands. It is defined as a macro to prevent duplication.
15252 COMMAND should be a string constant containing the name of the
15253 command. */
15254
15255 #define BREAK_ARGS_HELP(command) \
15256 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15257 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15258 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15259 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15260 `-probe-dtrace' (for a DTrace probe).\n\
15261 LOCATION may be a linespec, address, or explicit location as described\n\
15262 below.\n\
15263 \n\
15264 With no LOCATION, uses current execution address of the selected\n\
15265 stack frame. This is useful for breaking on return to a stack frame.\n\
15266 \n\
15267 THREADNUM is the number from \"info threads\".\n\
15268 CONDITION is a boolean expression.\n\
15269 \n" LOCATION_HELP_STRING "\n\
15270 Multiple breakpoints at one place are permitted, and useful if their\n\
15271 conditions are different.\n\
15272 \n\
15273 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15274
15275 /* List of subcommands for "catch". */
15276 static struct cmd_list_element *catch_cmdlist;
15277
15278 /* List of subcommands for "tcatch". */
15279 static struct cmd_list_element *tcatch_cmdlist;
15280
15281 void
15282 add_catch_command (const char *name, const char *docstring,
15283 cmd_const_sfunc_ftype *sfunc,
15284 completer_ftype *completer,
15285 void *user_data_catch,
15286 void *user_data_tcatch)
15287 {
15288 struct cmd_list_element *command;
15289
15290 command = add_cmd (name, class_breakpoint, docstring,
15291 &catch_cmdlist);
15292 set_cmd_sfunc (command, sfunc);
15293 set_cmd_context (command, user_data_catch);
15294 set_cmd_completer (command, completer);
15295
15296 command = add_cmd (name, class_breakpoint, docstring,
15297 &tcatch_cmdlist);
15298 set_cmd_sfunc (command, sfunc);
15299 set_cmd_context (command, user_data_tcatch);
15300 set_cmd_completer (command, completer);
15301 }
15302
15303 static void
15304 save_command (const char *arg, int from_tty)
15305 {
15306 printf_unfiltered (_("\"save\" must be followed by "
15307 "the name of a save subcommand.\n"));
15308 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15309 }
15310
15311 struct breakpoint *
15312 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15313 void *data)
15314 {
15315 struct breakpoint *b, *b_tmp;
15316
15317 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15318 {
15319 if ((*callback) (b, data))
15320 return b;
15321 }
15322
15323 return NULL;
15324 }
15325
15326 /* Zero if any of the breakpoint's locations could be a location where
15327 functions have been inlined, nonzero otherwise. */
15328
15329 static int
15330 is_non_inline_function (struct breakpoint *b)
15331 {
15332 /* The shared library event breakpoint is set on the address of a
15333 non-inline function. */
15334 if (b->type == bp_shlib_event)
15335 return 1;
15336
15337 return 0;
15338 }
15339
15340 /* Nonzero if the specified PC cannot be a location where functions
15341 have been inlined. */
15342
15343 int
15344 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15345 const struct target_waitstatus *ws)
15346 {
15347 struct breakpoint *b;
15348 struct bp_location *bl;
15349
15350 ALL_BREAKPOINTS (b)
15351 {
15352 if (!is_non_inline_function (b))
15353 continue;
15354
15355 for (bl = b->loc; bl != NULL; bl = bl->next)
15356 {
15357 if (!bl->shlib_disabled
15358 && bpstat_check_location (bl, aspace, pc, ws))
15359 return 1;
15360 }
15361 }
15362
15363 return 0;
15364 }
15365
15366 /* Remove any references to OBJFILE which is going to be freed. */
15367
15368 void
15369 breakpoint_free_objfile (struct objfile *objfile)
15370 {
15371 struct bp_location **locp, *loc;
15372
15373 ALL_BP_LOCATIONS (loc, locp)
15374 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15375 loc->symtab = NULL;
15376 }
15377
15378 void
15379 initialize_breakpoint_ops (void)
15380 {
15381 static int initialized = 0;
15382
15383 struct breakpoint_ops *ops;
15384
15385 if (initialized)
15386 return;
15387 initialized = 1;
15388
15389 /* The breakpoint_ops structure to be inherit by all kinds of
15390 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15391 internal and momentary breakpoints, etc.). */
15392 ops = &bkpt_base_breakpoint_ops;
15393 *ops = base_breakpoint_ops;
15394 ops->re_set = bkpt_re_set;
15395 ops->insert_location = bkpt_insert_location;
15396 ops->remove_location = bkpt_remove_location;
15397 ops->breakpoint_hit = bkpt_breakpoint_hit;
15398 ops->create_sals_from_location = bkpt_create_sals_from_location;
15399 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15400 ops->decode_location = bkpt_decode_location;
15401
15402 /* The breakpoint_ops structure to be used in regular breakpoints. */
15403 ops = &bkpt_breakpoint_ops;
15404 *ops = bkpt_base_breakpoint_ops;
15405 ops->re_set = bkpt_re_set;
15406 ops->resources_needed = bkpt_resources_needed;
15407 ops->print_it = bkpt_print_it;
15408 ops->print_mention = bkpt_print_mention;
15409 ops->print_recreate = bkpt_print_recreate;
15410
15411 /* Ranged breakpoints. */
15412 ops = &ranged_breakpoint_ops;
15413 *ops = bkpt_breakpoint_ops;
15414 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15415 ops->resources_needed = resources_needed_ranged_breakpoint;
15416 ops->print_it = print_it_ranged_breakpoint;
15417 ops->print_one = print_one_ranged_breakpoint;
15418 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15419 ops->print_mention = print_mention_ranged_breakpoint;
15420 ops->print_recreate = print_recreate_ranged_breakpoint;
15421
15422 /* Internal breakpoints. */
15423 ops = &internal_breakpoint_ops;
15424 *ops = bkpt_base_breakpoint_ops;
15425 ops->re_set = internal_bkpt_re_set;
15426 ops->check_status = internal_bkpt_check_status;
15427 ops->print_it = internal_bkpt_print_it;
15428 ops->print_mention = internal_bkpt_print_mention;
15429
15430 /* Momentary breakpoints. */
15431 ops = &momentary_breakpoint_ops;
15432 *ops = bkpt_base_breakpoint_ops;
15433 ops->re_set = momentary_bkpt_re_set;
15434 ops->check_status = momentary_bkpt_check_status;
15435 ops->print_it = momentary_bkpt_print_it;
15436 ops->print_mention = momentary_bkpt_print_mention;
15437
15438 /* Probe breakpoints. */
15439 ops = &bkpt_probe_breakpoint_ops;
15440 *ops = bkpt_breakpoint_ops;
15441 ops->insert_location = bkpt_probe_insert_location;
15442 ops->remove_location = bkpt_probe_remove_location;
15443 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15444 ops->decode_location = bkpt_probe_decode_location;
15445
15446 /* Watchpoints. */
15447 ops = &watchpoint_breakpoint_ops;
15448 *ops = base_breakpoint_ops;
15449 ops->re_set = re_set_watchpoint;
15450 ops->insert_location = insert_watchpoint;
15451 ops->remove_location = remove_watchpoint;
15452 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15453 ops->check_status = check_status_watchpoint;
15454 ops->resources_needed = resources_needed_watchpoint;
15455 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15456 ops->print_it = print_it_watchpoint;
15457 ops->print_mention = print_mention_watchpoint;
15458 ops->print_recreate = print_recreate_watchpoint;
15459 ops->explains_signal = explains_signal_watchpoint;
15460
15461 /* Masked watchpoints. */
15462 ops = &masked_watchpoint_breakpoint_ops;
15463 *ops = watchpoint_breakpoint_ops;
15464 ops->insert_location = insert_masked_watchpoint;
15465 ops->remove_location = remove_masked_watchpoint;
15466 ops->resources_needed = resources_needed_masked_watchpoint;
15467 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15468 ops->print_it = print_it_masked_watchpoint;
15469 ops->print_one_detail = print_one_detail_masked_watchpoint;
15470 ops->print_mention = print_mention_masked_watchpoint;
15471 ops->print_recreate = print_recreate_masked_watchpoint;
15472
15473 /* Tracepoints. */
15474 ops = &tracepoint_breakpoint_ops;
15475 *ops = base_breakpoint_ops;
15476 ops->re_set = tracepoint_re_set;
15477 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15478 ops->print_one_detail = tracepoint_print_one_detail;
15479 ops->print_mention = tracepoint_print_mention;
15480 ops->print_recreate = tracepoint_print_recreate;
15481 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15482 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15483 ops->decode_location = tracepoint_decode_location;
15484
15485 /* Probe tracepoints. */
15486 ops = &tracepoint_probe_breakpoint_ops;
15487 *ops = tracepoint_breakpoint_ops;
15488 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15489 ops->decode_location = tracepoint_probe_decode_location;
15490
15491 /* Static tracepoints with marker (`-m'). */
15492 ops = &strace_marker_breakpoint_ops;
15493 *ops = tracepoint_breakpoint_ops;
15494 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15495 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15496 ops->decode_location = strace_marker_decode_location;
15497
15498 /* Fork catchpoints. */
15499 ops = &catch_fork_breakpoint_ops;
15500 *ops = base_breakpoint_ops;
15501 ops->insert_location = insert_catch_fork;
15502 ops->remove_location = remove_catch_fork;
15503 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15504 ops->print_it = print_it_catch_fork;
15505 ops->print_one = print_one_catch_fork;
15506 ops->print_mention = print_mention_catch_fork;
15507 ops->print_recreate = print_recreate_catch_fork;
15508
15509 /* Vfork catchpoints. */
15510 ops = &catch_vfork_breakpoint_ops;
15511 *ops = base_breakpoint_ops;
15512 ops->insert_location = insert_catch_vfork;
15513 ops->remove_location = remove_catch_vfork;
15514 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15515 ops->print_it = print_it_catch_vfork;
15516 ops->print_one = print_one_catch_vfork;
15517 ops->print_mention = print_mention_catch_vfork;
15518 ops->print_recreate = print_recreate_catch_vfork;
15519
15520 /* Exec catchpoints. */
15521 ops = &catch_exec_breakpoint_ops;
15522 *ops = base_breakpoint_ops;
15523 ops->insert_location = insert_catch_exec;
15524 ops->remove_location = remove_catch_exec;
15525 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15526 ops->print_it = print_it_catch_exec;
15527 ops->print_one = print_one_catch_exec;
15528 ops->print_mention = print_mention_catch_exec;
15529 ops->print_recreate = print_recreate_catch_exec;
15530
15531 /* Solib-related catchpoints. */
15532 ops = &catch_solib_breakpoint_ops;
15533 *ops = base_breakpoint_ops;
15534 ops->insert_location = insert_catch_solib;
15535 ops->remove_location = remove_catch_solib;
15536 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15537 ops->check_status = check_status_catch_solib;
15538 ops->print_it = print_it_catch_solib;
15539 ops->print_one = print_one_catch_solib;
15540 ops->print_mention = print_mention_catch_solib;
15541 ops->print_recreate = print_recreate_catch_solib;
15542
15543 ops = &dprintf_breakpoint_ops;
15544 *ops = bkpt_base_breakpoint_ops;
15545 ops->re_set = dprintf_re_set;
15546 ops->resources_needed = bkpt_resources_needed;
15547 ops->print_it = bkpt_print_it;
15548 ops->print_mention = bkpt_print_mention;
15549 ops->print_recreate = dprintf_print_recreate;
15550 ops->after_condition_true = dprintf_after_condition_true;
15551 ops->breakpoint_hit = dprintf_breakpoint_hit;
15552 }
15553
15554 /* Chain containing all defined "enable breakpoint" subcommands. */
15555
15556 static struct cmd_list_element *enablebreaklist = NULL;
15557
15558 void
15559 _initialize_breakpoint (void)
15560 {
15561 struct cmd_list_element *c;
15562
15563 initialize_breakpoint_ops ();
15564
15565 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15566 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15567 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15568
15569 breakpoint_objfile_key
15570 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15571
15572 breakpoint_chain = 0;
15573 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15574 before a breakpoint is set. */
15575 breakpoint_count = 0;
15576
15577 tracepoint_count = 0;
15578
15579 add_com ("ignore", class_breakpoint, ignore_command, _("\
15580 Set ignore-count of breakpoint number N to COUNT.\n\
15581 Usage is `ignore N COUNT'."));
15582
15583 add_com ("commands", class_breakpoint, commands_command, _("\
15584 Set commands to be executed when the given breakpoints are hit.\n\
15585 Give a space-separated breakpoint list as argument after \"commands\".\n\
15586 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15587 (e.g. `5-7').\n\
15588 With no argument, the targeted breakpoint is the last one set.\n\
15589 The commands themselves follow starting on the next line.\n\
15590 Type a line containing \"end\" to indicate the end of them.\n\
15591 Give \"silent\" as the first line to make the breakpoint silent;\n\
15592 then no output is printed when it is hit, except what the commands print."));
15593
15594 c = add_com ("condition", class_breakpoint, condition_command, _("\
15595 Specify breakpoint number N to break only if COND is true.\n\
15596 Usage is `condition N COND', where N is an integer and COND is an\n\
15597 expression to be evaluated whenever breakpoint N is reached."));
15598 set_cmd_completer (c, condition_completer);
15599
15600 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15601 Set a temporary breakpoint.\n\
15602 Like \"break\" except the breakpoint is only temporary,\n\
15603 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15604 by using \"enable delete\" on the breakpoint number.\n\
15605 \n"
15606 BREAK_ARGS_HELP ("tbreak")));
15607 set_cmd_completer (c, location_completer);
15608
15609 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15610 Set a hardware assisted breakpoint.\n\
15611 Like \"break\" except the breakpoint requires hardware support,\n\
15612 some target hardware may not have this support.\n\
15613 \n"
15614 BREAK_ARGS_HELP ("hbreak")));
15615 set_cmd_completer (c, location_completer);
15616
15617 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15618 Set a temporary hardware assisted breakpoint.\n\
15619 Like \"hbreak\" except the breakpoint is only temporary,\n\
15620 so it will be deleted when hit.\n\
15621 \n"
15622 BREAK_ARGS_HELP ("thbreak")));
15623 set_cmd_completer (c, location_completer);
15624
15625 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15626 Enable some breakpoints.\n\
15627 Give breakpoint numbers (separated by spaces) as arguments.\n\
15628 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15629 This is used to cancel the effect of the \"disable\" command.\n\
15630 With a subcommand you can enable temporarily."),
15631 &enablelist, "enable ", 1, &cmdlist);
15632
15633 add_com_alias ("en", "enable", class_breakpoint, 1);
15634
15635 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15636 Enable some breakpoints.\n\
15637 Give breakpoint numbers (separated by spaces) as arguments.\n\
15638 This is used to cancel the effect of the \"disable\" command.\n\
15639 May be abbreviated to simply \"enable\".\n"),
15640 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15641
15642 add_cmd ("once", no_class, enable_once_command, _("\
15643 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15644 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15645 &enablebreaklist);
15646
15647 add_cmd ("delete", no_class, enable_delete_command, _("\
15648 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15649 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15650 &enablebreaklist);
15651
15652 add_cmd ("count", no_class, enable_count_command, _("\
15653 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15654 If a breakpoint is hit while enabled in this fashion,\n\
15655 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15656 &enablebreaklist);
15657
15658 add_cmd ("delete", no_class, enable_delete_command, _("\
15659 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15660 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15661 &enablelist);
15662
15663 add_cmd ("once", no_class, enable_once_command, _("\
15664 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15665 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15666 &enablelist);
15667
15668 add_cmd ("count", no_class, enable_count_command, _("\
15669 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15670 If a breakpoint is hit while enabled in this fashion,\n\
15671 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15672 &enablelist);
15673
15674 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15675 Disable some breakpoints.\n\
15676 Arguments are breakpoint numbers with spaces in between.\n\
15677 To disable all breakpoints, give no argument.\n\
15678 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15679 &disablelist, "disable ", 1, &cmdlist);
15680 add_com_alias ("dis", "disable", class_breakpoint, 1);
15681 add_com_alias ("disa", "disable", class_breakpoint, 1);
15682
15683 add_cmd ("breakpoints", class_alias, disable_command, _("\
15684 Disable some breakpoints.\n\
15685 Arguments are breakpoint numbers with spaces in between.\n\
15686 To disable all breakpoints, give no argument.\n\
15687 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15688 This command may be abbreviated \"disable\"."),
15689 &disablelist);
15690
15691 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15692 Delete some breakpoints or auto-display expressions.\n\
15693 Arguments are breakpoint numbers with spaces in between.\n\
15694 To delete all breakpoints, give no argument.\n\
15695 \n\
15696 Also a prefix command for deletion of other GDB objects.\n\
15697 The \"unset\" command is also an alias for \"delete\"."),
15698 &deletelist, "delete ", 1, &cmdlist);
15699 add_com_alias ("d", "delete", class_breakpoint, 1);
15700 add_com_alias ("del", "delete", class_breakpoint, 1);
15701
15702 add_cmd ("breakpoints", class_alias, delete_command, _("\
15703 Delete some breakpoints or auto-display expressions.\n\
15704 Arguments are breakpoint numbers with spaces in between.\n\
15705 To delete all breakpoints, give no argument.\n\
15706 This command may be abbreviated \"delete\"."),
15707 &deletelist);
15708
15709 add_com ("clear", class_breakpoint, clear_command, _("\
15710 Clear breakpoint at specified location.\n\
15711 Argument may be a linespec, explicit, or address location as described below.\n\
15712 \n\
15713 With no argument, clears all breakpoints in the line that the selected frame\n\
15714 is executing in.\n"
15715 "\n" LOCATION_HELP_STRING "\n\
15716 See also the \"delete\" command which clears breakpoints by number."));
15717 add_com_alias ("cl", "clear", class_breakpoint, 1);
15718
15719 c = add_com ("break", class_breakpoint, break_command, _("\
15720 Set breakpoint at specified location.\n"
15721 BREAK_ARGS_HELP ("break")));
15722 set_cmd_completer (c, location_completer);
15723
15724 add_com_alias ("b", "break", class_run, 1);
15725 add_com_alias ("br", "break", class_run, 1);
15726 add_com_alias ("bre", "break", class_run, 1);
15727 add_com_alias ("brea", "break", class_run, 1);
15728
15729 if (dbx_commands)
15730 {
15731 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15732 Break in function/address or break at a line in the current file."),
15733 &stoplist, "stop ", 1, &cmdlist);
15734 add_cmd ("in", class_breakpoint, stopin_command,
15735 _("Break in function or address."), &stoplist);
15736 add_cmd ("at", class_breakpoint, stopat_command,
15737 _("Break at a line in the current file."), &stoplist);
15738 add_com ("status", class_info, info_breakpoints_command, _("\
15739 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15740 The \"Type\" column indicates one of:\n\
15741 \tbreakpoint - normal breakpoint\n\
15742 \twatchpoint - watchpoint\n\
15743 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15744 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15745 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15746 address and file/line number respectively.\n\
15747 \n\
15748 Convenience variable \"$_\" and default examine address for \"x\"\n\
15749 are set to the address of the last breakpoint listed unless the command\n\
15750 is prefixed with \"server \".\n\n\
15751 Convenience variable \"$bpnum\" contains the number of the last\n\
15752 breakpoint set."));
15753 }
15754
15755 add_info ("breakpoints", info_breakpoints_command, _("\
15756 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15757 The \"Type\" column indicates one of:\n\
15758 \tbreakpoint - normal breakpoint\n\
15759 \twatchpoint - watchpoint\n\
15760 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15761 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15762 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15763 address and file/line number respectively.\n\
15764 \n\
15765 Convenience variable \"$_\" and default examine address for \"x\"\n\
15766 are set to the address of the last breakpoint listed unless the command\n\
15767 is prefixed with \"server \".\n\n\
15768 Convenience variable \"$bpnum\" contains the number of the last\n\
15769 breakpoint set."));
15770
15771 add_info_alias ("b", "breakpoints", 1);
15772
15773 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15774 Status of all breakpoints, or breakpoint number NUMBER.\n\
15775 The \"Type\" column indicates one of:\n\
15776 \tbreakpoint - normal breakpoint\n\
15777 \twatchpoint - watchpoint\n\
15778 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15779 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15780 \tuntil - internal breakpoint used by the \"until\" command\n\
15781 \tfinish - internal breakpoint used by the \"finish\" command\n\
15782 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15783 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15784 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15785 address and file/line number respectively.\n\
15786 \n\
15787 Convenience variable \"$_\" and default examine address for \"x\"\n\
15788 are set to the address of the last breakpoint listed unless the command\n\
15789 is prefixed with \"server \".\n\n\
15790 Convenience variable \"$bpnum\" contains the number of the last\n\
15791 breakpoint set."),
15792 &maintenanceinfolist);
15793
15794 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15795 Set catchpoints to catch events."),
15796 &catch_cmdlist, "catch ",
15797 0/*allow-unknown*/, &cmdlist);
15798
15799 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15800 Set temporary catchpoints to catch events."),
15801 &tcatch_cmdlist, "tcatch ",
15802 0/*allow-unknown*/, &cmdlist);
15803
15804 add_catch_command ("fork", _("Catch calls to fork."),
15805 catch_fork_command_1,
15806 NULL,
15807 (void *) (uintptr_t) catch_fork_permanent,
15808 (void *) (uintptr_t) catch_fork_temporary);
15809 add_catch_command ("vfork", _("Catch calls to vfork."),
15810 catch_fork_command_1,
15811 NULL,
15812 (void *) (uintptr_t) catch_vfork_permanent,
15813 (void *) (uintptr_t) catch_vfork_temporary);
15814 add_catch_command ("exec", _("Catch calls to exec."),
15815 catch_exec_command_1,
15816 NULL,
15817 CATCH_PERMANENT,
15818 CATCH_TEMPORARY);
15819 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15820 Usage: catch load [REGEX]\n\
15821 If REGEX is given, only stop for libraries matching the regular expression."),
15822 catch_load_command_1,
15823 NULL,
15824 CATCH_PERMANENT,
15825 CATCH_TEMPORARY);
15826 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15827 Usage: catch unload [REGEX]\n\
15828 If REGEX is given, only stop for libraries matching the regular expression."),
15829 catch_unload_command_1,
15830 NULL,
15831 CATCH_PERMANENT,
15832 CATCH_TEMPORARY);
15833
15834 c = add_com ("watch", class_breakpoint, watch_command, _("\
15835 Set a watchpoint for an expression.\n\
15836 Usage: watch [-l|-location] EXPRESSION\n\
15837 A watchpoint stops execution of your program whenever the value of\n\
15838 an expression changes.\n\
15839 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15840 the memory to which it refers."));
15841 set_cmd_completer (c, expression_completer);
15842
15843 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15844 Set a read watchpoint for an expression.\n\
15845 Usage: rwatch [-l|-location] EXPRESSION\n\
15846 A watchpoint stops execution of your program whenever the value of\n\
15847 an expression is read.\n\
15848 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15849 the memory to which it refers."));
15850 set_cmd_completer (c, expression_completer);
15851
15852 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15853 Set a watchpoint for an expression.\n\
15854 Usage: awatch [-l|-location] EXPRESSION\n\
15855 A watchpoint stops execution of your program whenever the value of\n\
15856 an expression is either read or written.\n\
15857 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15858 the memory to which it refers."));
15859 set_cmd_completer (c, expression_completer);
15860
15861 add_info ("watchpoints", info_watchpoints_command, _("\
15862 Status of specified watchpoints (all watchpoints if no argument)."));
15863
15864 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15865 respond to changes - contrary to the description. */
15866 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15867 &can_use_hw_watchpoints, _("\
15868 Set debugger's willingness to use watchpoint hardware."), _("\
15869 Show debugger's willingness to use watchpoint hardware."), _("\
15870 If zero, gdb will not use hardware for new watchpoints, even if\n\
15871 such is available. (However, any hardware watchpoints that were\n\
15872 created before setting this to nonzero, will continue to use watchpoint\n\
15873 hardware.)"),
15874 NULL,
15875 show_can_use_hw_watchpoints,
15876 &setlist, &showlist);
15877
15878 can_use_hw_watchpoints = 1;
15879
15880 /* Tracepoint manipulation commands. */
15881
15882 c = add_com ("trace", class_breakpoint, trace_command, _("\
15883 Set a tracepoint at specified location.\n\
15884 \n"
15885 BREAK_ARGS_HELP ("trace") "\n\
15886 Do \"help tracepoints\" for info on other tracepoint commands."));
15887 set_cmd_completer (c, location_completer);
15888
15889 add_com_alias ("tp", "trace", class_alias, 0);
15890 add_com_alias ("tr", "trace", class_alias, 1);
15891 add_com_alias ("tra", "trace", class_alias, 1);
15892 add_com_alias ("trac", "trace", class_alias, 1);
15893
15894 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15895 Set a fast tracepoint at specified location.\n\
15896 \n"
15897 BREAK_ARGS_HELP ("ftrace") "\n\
15898 Do \"help tracepoints\" for info on other tracepoint commands."));
15899 set_cmd_completer (c, location_completer);
15900
15901 c = add_com ("strace", class_breakpoint, strace_command, _("\
15902 Set a static tracepoint at location or marker.\n\
15903 \n\
15904 strace [LOCATION] [if CONDITION]\n\
15905 LOCATION may be a linespec, explicit, or address location (described below) \n\
15906 or -m MARKER_ID.\n\n\
15907 If a marker id is specified, probe the marker with that name. With\n\
15908 no LOCATION, uses current execution address of the selected stack frame.\n\
15909 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15910 This collects arbitrary user data passed in the probe point call to the\n\
15911 tracing library. You can inspect it when analyzing the trace buffer,\n\
15912 by printing the $_sdata variable like any other convenience variable.\n\
15913 \n\
15914 CONDITION is a boolean expression.\n\
15915 \n" LOCATION_HELP_STRING "\n\
15916 Multiple tracepoints at one place are permitted, and useful if their\n\
15917 conditions are different.\n\
15918 \n\
15919 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15920 Do \"help tracepoints\" for info on other tracepoint commands."));
15921 set_cmd_completer (c, location_completer);
15922
15923 add_info ("tracepoints", info_tracepoints_command, _("\
15924 Status of specified tracepoints (all tracepoints if no argument).\n\
15925 Convenience variable \"$tpnum\" contains the number of the\n\
15926 last tracepoint set."));
15927
15928 add_info_alias ("tp", "tracepoints", 1);
15929
15930 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15931 Delete specified tracepoints.\n\
15932 Arguments are tracepoint numbers, separated by spaces.\n\
15933 No argument means delete all tracepoints."),
15934 &deletelist);
15935 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15936
15937 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15938 Disable specified tracepoints.\n\
15939 Arguments are tracepoint numbers, separated by spaces.\n\
15940 No argument means disable all tracepoints."),
15941 &disablelist);
15942 deprecate_cmd (c, "disable");
15943
15944 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15945 Enable specified tracepoints.\n\
15946 Arguments are tracepoint numbers, separated by spaces.\n\
15947 No argument means enable all tracepoints."),
15948 &enablelist);
15949 deprecate_cmd (c, "enable");
15950
15951 add_com ("passcount", class_trace, trace_pass_command, _("\
15952 Set the passcount for a tracepoint.\n\
15953 The trace will end when the tracepoint has been passed 'count' times.\n\
15954 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15955 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15956
15957 add_prefix_cmd ("save", class_breakpoint, save_command,
15958 _("Save breakpoint definitions as a script."),
15959 &save_cmdlist, "save ",
15960 0/*allow-unknown*/, &cmdlist);
15961
15962 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15963 Save current breakpoint definitions as a script.\n\
15964 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15965 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15966 session to restore them."),
15967 &save_cmdlist);
15968 set_cmd_completer (c, filename_completer);
15969
15970 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15971 Save current tracepoint definitions as a script.\n\
15972 Use the 'source' command in another debug session to restore them."),
15973 &save_cmdlist);
15974 set_cmd_completer (c, filename_completer);
15975
15976 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15977 deprecate_cmd (c, "save tracepoints");
15978
15979 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15980 Breakpoint specific settings\n\
15981 Configure various breakpoint-specific variables such as\n\
15982 pending breakpoint behavior"),
15983 &breakpoint_set_cmdlist, "set breakpoint ",
15984 0/*allow-unknown*/, &setlist);
15985 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15986 Breakpoint specific settings\n\
15987 Configure various breakpoint-specific variables such as\n\
15988 pending breakpoint behavior"),
15989 &breakpoint_show_cmdlist, "show breakpoint ",
15990 0/*allow-unknown*/, &showlist);
15991
15992 add_setshow_auto_boolean_cmd ("pending", no_class,
15993 &pending_break_support, _("\
15994 Set debugger's behavior regarding pending breakpoints."), _("\
15995 Show debugger's behavior regarding pending breakpoints."), _("\
15996 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15997 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15998 an error. If auto, an unrecognized breakpoint location results in a\n\
15999 user-query to see if a pending breakpoint should be created."),
16000 NULL,
16001 show_pending_break_support,
16002 &breakpoint_set_cmdlist,
16003 &breakpoint_show_cmdlist);
16004
16005 pending_break_support = AUTO_BOOLEAN_AUTO;
16006
16007 add_setshow_boolean_cmd ("auto-hw", no_class,
16008 &automatic_hardware_breakpoints, _("\
16009 Set automatic usage of hardware breakpoints."), _("\
16010 Show automatic usage of hardware breakpoints."), _("\
16011 If set, the debugger will automatically use hardware breakpoints for\n\
16012 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16013 a warning will be emitted for such breakpoints."),
16014 NULL,
16015 show_automatic_hardware_breakpoints,
16016 &breakpoint_set_cmdlist,
16017 &breakpoint_show_cmdlist);
16018
16019 add_setshow_boolean_cmd ("always-inserted", class_support,
16020 &always_inserted_mode, _("\
16021 Set mode for inserting breakpoints."), _("\
16022 Show mode for inserting breakpoints."), _("\
16023 When this mode is on, breakpoints are inserted immediately as soon as\n\
16024 they're created, kept inserted even when execution stops, and removed\n\
16025 only when the user deletes them. When this mode is off (the default),\n\
16026 breakpoints are inserted only when execution continues, and removed\n\
16027 when execution stops."),
16028 NULL,
16029 &show_always_inserted_mode,
16030 &breakpoint_set_cmdlist,
16031 &breakpoint_show_cmdlist);
16032
16033 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16034 condition_evaluation_enums,
16035 &condition_evaluation_mode_1, _("\
16036 Set mode of breakpoint condition evaluation."), _("\
16037 Show mode of breakpoint condition evaluation."), _("\
16038 When this is set to \"host\", breakpoint conditions will be\n\
16039 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16040 breakpoint conditions will be downloaded to the target (if the target\n\
16041 supports such feature) and conditions will be evaluated on the target's side.\n\
16042 If this is set to \"auto\" (default), this will be automatically set to\n\
16043 \"target\" if it supports condition evaluation, otherwise it will\n\
16044 be set to \"gdb\""),
16045 &set_condition_evaluation_mode,
16046 &show_condition_evaluation_mode,
16047 &breakpoint_set_cmdlist,
16048 &breakpoint_show_cmdlist);
16049
16050 add_com ("break-range", class_breakpoint, break_range_command, _("\
16051 Set a breakpoint for an address range.\n\
16052 break-range START-LOCATION, END-LOCATION\n\
16053 where START-LOCATION and END-LOCATION can be one of the following:\n\
16054 LINENUM, for that line in the current file,\n\
16055 FILE:LINENUM, for that line in that file,\n\
16056 +OFFSET, for that number of lines after the current line\n\
16057 or the start of the range\n\
16058 FUNCTION, for the first line in that function,\n\
16059 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16060 *ADDRESS, for the instruction at that address.\n\
16061 \n\
16062 The breakpoint will stop execution of the inferior whenever it executes\n\
16063 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16064 range (including START-LOCATION and END-LOCATION)."));
16065
16066 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16067 Set a dynamic printf at specified location.\n\
16068 dprintf location,format string,arg1,arg2,...\n\
16069 location may be a linespec, explicit, or address location.\n"
16070 "\n" LOCATION_HELP_STRING));
16071 set_cmd_completer (c, location_completer);
16072
16073 add_setshow_enum_cmd ("dprintf-style", class_support,
16074 dprintf_style_enums, &dprintf_style, _("\
16075 Set the style of usage for dynamic printf."), _("\
16076 Show the style of usage for dynamic printf."), _("\
16077 This setting chooses how GDB will do a dynamic printf.\n\
16078 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16079 console, as with the \"printf\" command.\n\
16080 If the value is \"call\", the print is done by calling a function in your\n\
16081 program; by default printf(), but you can choose a different function or\n\
16082 output stream by setting dprintf-function and dprintf-channel."),
16083 update_dprintf_commands, NULL,
16084 &setlist, &showlist);
16085
16086 dprintf_function = xstrdup ("printf");
16087 add_setshow_string_cmd ("dprintf-function", class_support,
16088 &dprintf_function, _("\
16089 Set the function to use for dynamic printf"), _("\
16090 Show the function to use for dynamic printf"), NULL,
16091 update_dprintf_commands, NULL,
16092 &setlist, &showlist);
16093
16094 dprintf_channel = xstrdup ("");
16095 add_setshow_string_cmd ("dprintf-channel", class_support,
16096 &dprintf_channel, _("\
16097 Set the channel to use for dynamic printf"), _("\
16098 Show the channel to use for dynamic printf"), NULL,
16099 update_dprintf_commands, NULL,
16100 &setlist, &showlist);
16101
16102 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16103 &disconnected_dprintf, _("\
16104 Set whether dprintf continues after GDB disconnects."), _("\
16105 Show whether dprintf continues after GDB disconnects."), _("\
16106 Use this to let dprintf commands continue to hit and produce output\n\
16107 even if GDB disconnects or detaches from the target."),
16108 NULL,
16109 NULL,
16110 &setlist, &showlist);
16111
16112 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16113 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16114 (target agent only) This is useful for formatted output in user-defined commands."));
16115
16116 automatic_hardware_breakpoints = 1;
16117
16118 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16119 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16120 }
This page took 1.542011 seconds and 5 git commands to generate.