Simple unused variable removals
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 static std::vector<bp_location *> moribund_locations;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 if (c->control_type == while_stepping_control)
1013 error (_("The 'while-stepping' command can "
1014 "only be used for tracepoints"));
1015
1016 check_no_tracepoint_commands (c->body_list_0.get ());
1017 check_no_tracepoint_commands (c->body_list_1.get ());
1018
1019 /* Not that command parsing removes leading whitespace and comment
1020 lines and also empty lines. So, we only need to check for
1021 command directly. */
1022 if (strstr (c->line, "collect ") == c->line)
1023 error (_("The 'collect' command can only be used for tracepoints"));
1024
1025 if (strstr (c->line, "teval ") == c->line)
1026 error (_("The 'teval' command can only be used for tracepoints"));
1027 }
1028 }
1029
1030 struct longjmp_breakpoint : public breakpoint
1031 {
1032 ~longjmp_breakpoint () override;
1033 };
1034
1035 /* Encapsulate tests for different types of tracepoints. */
1036
1037 static bool
1038 is_tracepoint_type (bptype type)
1039 {
1040 return (type == bp_tracepoint
1041 || type == bp_fast_tracepoint
1042 || type == bp_static_tracepoint);
1043 }
1044
1045 static bool
1046 is_longjmp_type (bptype type)
1047 {
1048 return type == bp_longjmp || type == bp_exception;
1049 }
1050
1051 int
1052 is_tracepoint (const struct breakpoint *b)
1053 {
1054 return is_tracepoint_type (b->type);
1055 }
1056
1057 /* Factory function to create an appropriate instance of breakpoint given
1058 TYPE. */
1059
1060 static std::unique_ptr<breakpoint>
1061 new_breakpoint_from_type (bptype type)
1062 {
1063 breakpoint *b;
1064
1065 if (is_tracepoint_type (type))
1066 b = new tracepoint ();
1067 else if (is_longjmp_type (type))
1068 b = new longjmp_breakpoint ();
1069 else
1070 b = new breakpoint ();
1071
1072 return std::unique_ptr<breakpoint> (b);
1073 }
1074
1075 /* A helper function that validates that COMMANDS are valid for a
1076 breakpoint. This function will throw an exception if a problem is
1077 found. */
1078
1079 static void
1080 validate_commands_for_breakpoint (struct breakpoint *b,
1081 struct command_line *commands)
1082 {
1083 if (is_tracepoint (b))
1084 {
1085 struct tracepoint *t = (struct tracepoint *) b;
1086 struct command_line *c;
1087 struct command_line *while_stepping = 0;
1088
1089 /* Reset the while-stepping step count. The previous commands
1090 might have included a while-stepping action, while the new
1091 ones might not. */
1092 t->step_count = 0;
1093
1094 /* We need to verify that each top-level element of commands is
1095 valid for tracepoints, that there's at most one
1096 while-stepping element, and that the while-stepping's body
1097 has valid tracing commands excluding nested while-stepping.
1098 We also need to validate the tracepoint action line in the
1099 context of the tracepoint --- validate_actionline actually
1100 has side effects, like setting the tracepoint's
1101 while-stepping STEP_COUNT, in addition to checking if the
1102 collect/teval actions parse and make sense in the
1103 tracepoint's context. */
1104 for (c = commands; c; c = c->next)
1105 {
1106 if (c->control_type == while_stepping_control)
1107 {
1108 if (b->type == bp_fast_tracepoint)
1109 error (_("The 'while-stepping' command "
1110 "cannot be used for fast tracepoint"));
1111 else if (b->type == bp_static_tracepoint)
1112 error (_("The 'while-stepping' command "
1113 "cannot be used for static tracepoint"));
1114
1115 if (while_stepping)
1116 error (_("The 'while-stepping' command "
1117 "can be used only once"));
1118 else
1119 while_stepping = c;
1120 }
1121
1122 validate_actionline (c->line, b);
1123 }
1124 if (while_stepping)
1125 {
1126 struct command_line *c2;
1127
1128 gdb_assert (while_stepping->body_list_1 == nullptr);
1129 c2 = while_stepping->body_list_0.get ();
1130 for (; c2; c2 = c2->next)
1131 {
1132 if (c2->control_type == while_stepping_control)
1133 error (_("The 'while-stepping' command cannot be nested"));
1134 }
1135 }
1136 }
1137 else
1138 {
1139 check_no_tracepoint_commands (commands);
1140 }
1141 }
1142
1143 /* Return a vector of all the static tracepoints set at ADDR. The
1144 caller is responsible for releasing the vector. */
1145
1146 std::vector<breakpoint *>
1147 static_tracepoints_here (CORE_ADDR addr)
1148 {
1149 struct breakpoint *b;
1150 std::vector<breakpoint *> found;
1151 struct bp_location *loc;
1152
1153 ALL_BREAKPOINTS (b)
1154 if (b->type == bp_static_tracepoint)
1155 {
1156 for (loc = b->loc; loc; loc = loc->next)
1157 if (loc->address == addr)
1158 found.push_back (b);
1159 }
1160
1161 return found;
1162 }
1163
1164 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1165 validate that only allowed commands are included. */
1166
1167 void
1168 breakpoint_set_commands (struct breakpoint *b,
1169 counted_command_line &&commands)
1170 {
1171 validate_commands_for_breakpoint (b, commands.get ());
1172
1173 b->commands = std::move (commands);
1174 gdb::observers::breakpoint_modified.notify (b);
1175 }
1176
1177 /* Set the internal `silent' flag on the breakpoint. Note that this
1178 is not the same as the "silent" that may appear in the breakpoint's
1179 commands. */
1180
1181 void
1182 breakpoint_set_silent (struct breakpoint *b, int silent)
1183 {
1184 int old_silent = b->silent;
1185
1186 b->silent = silent;
1187 if (old_silent != silent)
1188 gdb::observers::breakpoint_modified.notify (b);
1189 }
1190
1191 /* Set the thread for this breakpoint. If THREAD is -1, make the
1192 breakpoint work for any thread. */
1193
1194 void
1195 breakpoint_set_thread (struct breakpoint *b, int thread)
1196 {
1197 int old_thread = b->thread;
1198
1199 b->thread = thread;
1200 if (old_thread != thread)
1201 gdb::observers::breakpoint_modified.notify (b);
1202 }
1203
1204 /* Set the task for this breakpoint. If TASK is 0, make the
1205 breakpoint work for any task. */
1206
1207 void
1208 breakpoint_set_task (struct breakpoint *b, int task)
1209 {
1210 int old_task = b->task;
1211
1212 b->task = task;
1213 if (old_task != task)
1214 gdb::observers::breakpoint_modified.notify (b);
1215 }
1216
1217 static void
1218 commands_command_1 (const char *arg, int from_tty,
1219 struct command_line *control)
1220 {
1221 counted_command_line cmd;
1222
1223 std::string new_arg;
1224
1225 if (arg == NULL || !*arg)
1226 {
1227 if (breakpoint_count - prev_breakpoint_count > 1)
1228 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1229 breakpoint_count);
1230 else if (breakpoint_count > 0)
1231 new_arg = string_printf ("%d", breakpoint_count);
1232 arg = new_arg.c_str ();
1233 }
1234
1235 map_breakpoint_numbers
1236 (arg, [&] (breakpoint *b)
1237 {
1238 if (cmd == NULL)
1239 {
1240 if (control != NULL)
1241 cmd = control->body_list_0;
1242 else
1243 {
1244 std::string str
1245 = string_printf (_("Type commands for breakpoint(s) "
1246 "%s, one per line."),
1247 arg);
1248
1249 auto do_validate = [=] (const char *line)
1250 {
1251 validate_actionline (line, b);
1252 };
1253 gdb::function_view<void (const char *)> validator;
1254 if (is_tracepoint (b))
1255 validator = do_validate;
1256
1257 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1258 }
1259 }
1260
1261 /* If a breakpoint was on the list more than once, we don't need to
1262 do anything. */
1263 if (b->commands != cmd)
1264 {
1265 validate_commands_for_breakpoint (b, cmd.get ());
1266 b->commands = cmd;
1267 gdb::observers::breakpoint_modified.notify (b);
1268 }
1269 });
1270 }
1271
1272 static void
1273 commands_command (const char *arg, int from_tty)
1274 {
1275 commands_command_1 (arg, from_tty, NULL);
1276 }
1277
1278 /* Like commands_command, but instead of reading the commands from
1279 input stream, takes them from an already parsed command structure.
1280
1281 This is used by cli-script.c to DTRT with breakpoint commands
1282 that are part of if and while bodies. */
1283 enum command_control_type
1284 commands_from_control_command (const char *arg, struct command_line *cmd)
1285 {
1286 commands_command_1 (arg, 0, cmd);
1287 return simple_control;
1288 }
1289
1290 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1291
1292 static int
1293 bp_location_has_shadow (struct bp_location *bl)
1294 {
1295 if (bl->loc_type != bp_loc_software_breakpoint)
1296 return 0;
1297 if (!bl->inserted)
1298 return 0;
1299 if (bl->target_info.shadow_len == 0)
1300 /* BL isn't valid, or doesn't shadow memory. */
1301 return 0;
1302 return 1;
1303 }
1304
1305 /* Update BUF, which is LEN bytes read from the target address
1306 MEMADDR, by replacing a memory breakpoint with its shadowed
1307 contents.
1308
1309 If READBUF is not NULL, this buffer must not overlap with the of
1310 the breakpoint location's shadow_contents buffer. Otherwise, a
1311 failed assertion internal error will be raised. */
1312
1313 static void
1314 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1315 const gdb_byte *writebuf_org,
1316 ULONGEST memaddr, LONGEST len,
1317 struct bp_target_info *target_info,
1318 struct gdbarch *gdbarch)
1319 {
1320 /* Now do full processing of the found relevant range of elements. */
1321 CORE_ADDR bp_addr = 0;
1322 int bp_size = 0;
1323 int bptoffset = 0;
1324
1325 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1326 current_program_space->aspace, 0))
1327 {
1328 /* The breakpoint is inserted in a different address space. */
1329 return;
1330 }
1331
1332 /* Addresses and length of the part of the breakpoint that
1333 we need to copy. */
1334 bp_addr = target_info->placed_address;
1335 bp_size = target_info->shadow_len;
1336
1337 if (bp_addr + bp_size <= memaddr)
1338 {
1339 /* The breakpoint is entirely before the chunk of memory we are
1340 reading. */
1341 return;
1342 }
1343
1344 if (bp_addr >= memaddr + len)
1345 {
1346 /* The breakpoint is entirely after the chunk of memory we are
1347 reading. */
1348 return;
1349 }
1350
1351 /* Offset within shadow_contents. */
1352 if (bp_addr < memaddr)
1353 {
1354 /* Only copy the second part of the breakpoint. */
1355 bp_size -= memaddr - bp_addr;
1356 bptoffset = memaddr - bp_addr;
1357 bp_addr = memaddr;
1358 }
1359
1360 if (bp_addr + bp_size > memaddr + len)
1361 {
1362 /* Only copy the first part of the breakpoint. */
1363 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1364 }
1365
1366 if (readbuf != NULL)
1367 {
1368 /* Verify that the readbuf buffer does not overlap with the
1369 shadow_contents buffer. */
1370 gdb_assert (target_info->shadow_contents >= readbuf + len
1371 || readbuf >= (target_info->shadow_contents
1372 + target_info->shadow_len));
1373
1374 /* Update the read buffer with this inserted breakpoint's
1375 shadow. */
1376 memcpy (readbuf + bp_addr - memaddr,
1377 target_info->shadow_contents + bptoffset, bp_size);
1378 }
1379 else
1380 {
1381 const unsigned char *bp;
1382 CORE_ADDR addr = target_info->reqstd_address;
1383 int placed_size;
1384
1385 /* Update the shadow with what we want to write to memory. */
1386 memcpy (target_info->shadow_contents + bptoffset,
1387 writebuf_org + bp_addr - memaddr, bp_size);
1388
1389 /* Determine appropriate breakpoint contents and size for this
1390 address. */
1391 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1392
1393 /* Update the final write buffer with this inserted
1394 breakpoint's INSN. */
1395 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1396 }
1397 }
1398
1399 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1400 by replacing any memory breakpoints with their shadowed contents.
1401
1402 If READBUF is not NULL, this buffer must not overlap with any of
1403 the breakpoint location's shadow_contents buffers. Otherwise,
1404 a failed assertion internal error will be raised.
1405
1406 The range of shadowed area by each bp_location is:
1407 bl->address - bp_locations_placed_address_before_address_max
1408 up to bl->address + bp_locations_shadow_len_after_address_max
1409 The range we were requested to resolve shadows for is:
1410 memaddr ... memaddr + len
1411 Thus the safe cutoff boundaries for performance optimization are
1412 memaddr + len <= (bl->address
1413 - bp_locations_placed_address_before_address_max)
1414 and:
1415 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1416
1417 void
1418 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1419 const gdb_byte *writebuf_org,
1420 ULONGEST memaddr, LONGEST len)
1421 {
1422 /* Left boundary, right boundary and median element of our binary
1423 search. */
1424 unsigned bc_l, bc_r, bc;
1425
1426 /* Find BC_L which is a leftmost element which may affect BUF
1427 content. It is safe to report lower value but a failure to
1428 report higher one. */
1429
1430 bc_l = 0;
1431 bc_r = bp_locations_count;
1432 while (bc_l + 1 < bc_r)
1433 {
1434 struct bp_location *bl;
1435
1436 bc = (bc_l + bc_r) / 2;
1437 bl = bp_locations[bc];
1438
1439 /* Check first BL->ADDRESS will not overflow due to the added
1440 constant. Then advance the left boundary only if we are sure
1441 the BC element can in no way affect the BUF content (MEMADDR
1442 to MEMADDR + LEN range).
1443
1444 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1445 offset so that we cannot miss a breakpoint with its shadow
1446 range tail still reaching MEMADDR. */
1447
1448 if ((bl->address + bp_locations_shadow_len_after_address_max
1449 >= bl->address)
1450 && (bl->address + bp_locations_shadow_len_after_address_max
1451 <= memaddr))
1452 bc_l = bc;
1453 else
1454 bc_r = bc;
1455 }
1456
1457 /* Due to the binary search above, we need to make sure we pick the
1458 first location that's at BC_L's address. E.g., if there are
1459 multiple locations at the same address, BC_L may end up pointing
1460 at a duplicate location, and miss the "master"/"inserted"
1461 location. Say, given locations L1, L2 and L3 at addresses A and
1462 B:
1463
1464 L1@A, L2@A, L3@B, ...
1465
1466 BC_L could end up pointing at location L2, while the "master"
1467 location could be L1. Since the `loc->inserted' flag is only set
1468 on "master" locations, we'd forget to restore the shadow of L1
1469 and L2. */
1470 while (bc_l > 0
1471 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1472 bc_l--;
1473
1474 /* Now do full processing of the found relevant range of elements. */
1475
1476 for (bc = bc_l; bc < bp_locations_count; bc++)
1477 {
1478 struct bp_location *bl = bp_locations[bc];
1479
1480 /* bp_location array has BL->OWNER always non-NULL. */
1481 if (bl->owner->type == bp_none)
1482 warning (_("reading through apparently deleted breakpoint #%d?"),
1483 bl->owner->number);
1484
1485 /* Performance optimization: any further element can no longer affect BUF
1486 content. */
1487
1488 if (bl->address >= bp_locations_placed_address_before_address_max
1489 && memaddr + len <= (bl->address
1490 - bp_locations_placed_address_before_address_max))
1491 break;
1492
1493 if (!bp_location_has_shadow (bl))
1494 continue;
1495
1496 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1497 memaddr, len, &bl->target_info, bl->gdbarch);
1498 }
1499 }
1500
1501 \f
1502
1503 /* Return true if BPT is either a software breakpoint or a hardware
1504 breakpoint. */
1505
1506 int
1507 is_breakpoint (const struct breakpoint *bpt)
1508 {
1509 return (bpt->type == bp_breakpoint
1510 || bpt->type == bp_hardware_breakpoint
1511 || bpt->type == bp_dprintf);
1512 }
1513
1514 /* Return true if BPT is of any hardware watchpoint kind. */
1515
1516 static int
1517 is_hardware_watchpoint (const struct breakpoint *bpt)
1518 {
1519 return (bpt->type == bp_hardware_watchpoint
1520 || bpt->type == bp_read_watchpoint
1521 || bpt->type == bp_access_watchpoint);
1522 }
1523
1524 /* Return true if BPT is of any watchpoint kind, hardware or
1525 software. */
1526
1527 int
1528 is_watchpoint (const struct breakpoint *bpt)
1529 {
1530 return (is_hardware_watchpoint (bpt)
1531 || bpt->type == bp_watchpoint);
1532 }
1533
1534 /* Returns true if the current thread and its running state are safe
1535 to evaluate or update watchpoint B. Watchpoints on local
1536 expressions need to be evaluated in the context of the thread that
1537 was current when the watchpoint was created, and, that thread needs
1538 to be stopped to be able to select the correct frame context.
1539 Watchpoints on global expressions can be evaluated on any thread,
1540 and in any state. It is presently left to the target allowing
1541 memory accesses when threads are running. */
1542
1543 static int
1544 watchpoint_in_thread_scope (struct watchpoint *b)
1545 {
1546 return (b->pspace == current_program_space
1547 && (b->watchpoint_thread == null_ptid
1548 || (inferior_ptid == b->watchpoint_thread
1549 && !inferior_thread ()->executing)));
1550 }
1551
1552 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1553 associated bp_watchpoint_scope breakpoint. */
1554
1555 static void
1556 watchpoint_del_at_next_stop (struct watchpoint *w)
1557 {
1558 if (w->related_breakpoint != w)
1559 {
1560 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1561 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1562 w->related_breakpoint->disposition = disp_del_at_next_stop;
1563 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1564 w->related_breakpoint = w;
1565 }
1566 w->disposition = disp_del_at_next_stop;
1567 }
1568
1569 /* Extract a bitfield value from value VAL using the bit parameters contained in
1570 watchpoint W. */
1571
1572 static struct value *
1573 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1574 {
1575 struct value *bit_val;
1576
1577 if (val == NULL)
1578 return NULL;
1579
1580 bit_val = allocate_value (value_type (val));
1581
1582 unpack_value_bitfield (bit_val,
1583 w->val_bitpos,
1584 w->val_bitsize,
1585 value_contents_for_printing (val),
1586 value_offset (val),
1587 val);
1588
1589 return bit_val;
1590 }
1591
1592 /* Allocate a dummy location and add it to B, which must be a software
1593 watchpoint. This is required because even if a software watchpoint
1594 is not watching any memory, bpstat_stop_status requires a location
1595 to be able to report stops. */
1596
1597 static void
1598 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1599 struct program_space *pspace)
1600 {
1601 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1602
1603 b->loc = allocate_bp_location (b);
1604 b->loc->pspace = pspace;
1605 b->loc->address = -1;
1606 b->loc->length = -1;
1607 }
1608
1609 /* Returns true if B is a software watchpoint that is not watching any
1610 memory (e.g., "watch $pc"). */
1611
1612 static int
1613 is_no_memory_software_watchpoint (struct breakpoint *b)
1614 {
1615 return (b->type == bp_watchpoint
1616 && b->loc != NULL
1617 && b->loc->next == NULL
1618 && b->loc->address == -1
1619 && b->loc->length == -1);
1620 }
1621
1622 /* Assuming that B is a watchpoint:
1623 - Reparse watchpoint expression, if REPARSE is non-zero
1624 - Evaluate expression and store the result in B->val
1625 - Evaluate the condition if there is one, and store the result
1626 in b->loc->cond.
1627 - Update the list of values that must be watched in B->loc.
1628
1629 If the watchpoint disposition is disp_del_at_next_stop, then do
1630 nothing. If this is local watchpoint that is out of scope, delete
1631 it.
1632
1633 Even with `set breakpoint always-inserted on' the watchpoints are
1634 removed + inserted on each stop here. Normal breakpoints must
1635 never be removed because they might be missed by a running thread
1636 when debugging in non-stop mode. On the other hand, hardware
1637 watchpoints (is_hardware_watchpoint; processed here) are specific
1638 to each LWP since they are stored in each LWP's hardware debug
1639 registers. Therefore, such LWP must be stopped first in order to
1640 be able to modify its hardware watchpoints.
1641
1642 Hardware watchpoints must be reset exactly once after being
1643 presented to the user. It cannot be done sooner, because it would
1644 reset the data used to present the watchpoint hit to the user. And
1645 it must not be done later because it could display the same single
1646 watchpoint hit during multiple GDB stops. Note that the latter is
1647 relevant only to the hardware watchpoint types bp_read_watchpoint
1648 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1649 not user-visible - its hit is suppressed if the memory content has
1650 not changed.
1651
1652 The following constraints influence the location where we can reset
1653 hardware watchpoints:
1654
1655 * target_stopped_by_watchpoint and target_stopped_data_address are
1656 called several times when GDB stops.
1657
1658 [linux]
1659 * Multiple hardware watchpoints can be hit at the same time,
1660 causing GDB to stop. GDB only presents one hardware watchpoint
1661 hit at a time as the reason for stopping, and all the other hits
1662 are presented later, one after the other, each time the user
1663 requests the execution to be resumed. Execution is not resumed
1664 for the threads still having pending hit event stored in
1665 LWP_INFO->STATUS. While the watchpoint is already removed from
1666 the inferior on the first stop the thread hit event is kept being
1667 reported from its cached value by linux_nat_stopped_data_address
1668 until the real thread resume happens after the watchpoint gets
1669 presented and thus its LWP_INFO->STATUS gets reset.
1670
1671 Therefore the hardware watchpoint hit can get safely reset on the
1672 watchpoint removal from inferior. */
1673
1674 static void
1675 update_watchpoint (struct watchpoint *b, int reparse)
1676 {
1677 int within_current_scope;
1678 struct frame_id saved_frame_id;
1679 int frame_saved;
1680
1681 /* If this is a local watchpoint, we only want to check if the
1682 watchpoint frame is in scope if the current thread is the thread
1683 that was used to create the watchpoint. */
1684 if (!watchpoint_in_thread_scope (b))
1685 return;
1686
1687 if (b->disposition == disp_del_at_next_stop)
1688 return;
1689
1690 frame_saved = 0;
1691
1692 /* Determine if the watchpoint is within scope. */
1693 if (b->exp_valid_block == NULL)
1694 within_current_scope = 1;
1695 else
1696 {
1697 struct frame_info *fi = get_current_frame ();
1698 struct gdbarch *frame_arch = get_frame_arch (fi);
1699 CORE_ADDR frame_pc = get_frame_pc (fi);
1700
1701 /* If we're at a point where the stack has been destroyed
1702 (e.g. in a function epilogue), unwinding may not work
1703 properly. Do not attempt to recreate locations at this
1704 point. See similar comments in watchpoint_check. */
1705 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1706 return;
1707
1708 /* Save the current frame's ID so we can restore it after
1709 evaluating the watchpoint expression on its own frame. */
1710 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1711 took a frame parameter, so that we didn't have to change the
1712 selected frame. */
1713 frame_saved = 1;
1714 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1715
1716 fi = frame_find_by_id (b->watchpoint_frame);
1717 within_current_scope = (fi != NULL);
1718 if (within_current_scope)
1719 select_frame (fi);
1720 }
1721
1722 /* We don't free locations. They are stored in the bp_location array
1723 and update_global_location_list will eventually delete them and
1724 remove breakpoints if needed. */
1725 b->loc = NULL;
1726
1727 if (within_current_scope && reparse)
1728 {
1729 const char *s;
1730
1731 b->exp.reset ();
1732 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1733 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1734 /* If the meaning of expression itself changed, the old value is
1735 no longer relevant. We don't want to report a watchpoint hit
1736 to the user when the old value and the new value may actually
1737 be completely different objects. */
1738 b->val = NULL;
1739 b->val_valid = 0;
1740
1741 /* Note that unlike with breakpoints, the watchpoint's condition
1742 expression is stored in the breakpoint object, not in the
1743 locations (re)created below. */
1744 if (b->cond_string != NULL)
1745 {
1746 b->cond_exp.reset ();
1747
1748 s = b->cond_string;
1749 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1750 }
1751 }
1752
1753 /* If we failed to parse the expression, for example because
1754 it refers to a global variable in a not-yet-loaded shared library,
1755 don't try to insert watchpoint. We don't automatically delete
1756 such watchpoint, though, since failure to parse expression
1757 is different from out-of-scope watchpoint. */
1758 if (!target_has_execution)
1759 {
1760 /* Without execution, memory can't change. No use to try and
1761 set watchpoint locations. The watchpoint will be reset when
1762 the target gains execution, through breakpoint_re_set. */
1763 if (!can_use_hw_watchpoints)
1764 {
1765 if (b->ops->works_in_software_mode (b))
1766 b->type = bp_watchpoint;
1767 else
1768 error (_("Can't set read/access watchpoint when "
1769 "hardware watchpoints are disabled."));
1770 }
1771 }
1772 else if (within_current_scope && b->exp)
1773 {
1774 int pc = 0;
1775 std::vector<value_ref_ptr> val_chain;
1776 struct value *v, *result;
1777 struct program_space *frame_pspace;
1778
1779 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1780
1781 /* Avoid setting b->val if it's already set. The meaning of
1782 b->val is 'the last value' user saw, and we should update
1783 it only if we reported that last value to user. As it
1784 happens, the code that reports it updates b->val directly.
1785 We don't keep track of the memory value for masked
1786 watchpoints. */
1787 if (!b->val_valid && !is_masked_watchpoint (b))
1788 {
1789 if (b->val_bitsize != 0)
1790 v = extract_bitfield_from_watchpoint_value (b, v);
1791 b->val = release_value (v);
1792 b->val_valid = 1;
1793 }
1794
1795 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1796
1797 /* Look at each value on the value chain. */
1798 gdb_assert (!val_chain.empty ());
1799 for (const value_ref_ptr &iter : val_chain)
1800 {
1801 v = iter.get ();
1802
1803 /* If it's a memory location, and GDB actually needed
1804 its contents to evaluate the expression, then we
1805 must watch it. If the first value returned is
1806 still lazy, that means an error occurred reading it;
1807 watch it anyway in case it becomes readable. */
1808 if (VALUE_LVAL (v) == lval_memory
1809 && (v == val_chain[0] || ! value_lazy (v)))
1810 {
1811 struct type *vtype = check_typedef (value_type (v));
1812
1813 /* We only watch structs and arrays if user asked
1814 for it explicitly, never if they just happen to
1815 appear in the middle of some value chain. */
1816 if (v == result
1817 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1818 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1819 {
1820 CORE_ADDR addr;
1821 enum target_hw_bp_type type;
1822 struct bp_location *loc, **tmp;
1823 int bitpos = 0, bitsize = 0;
1824
1825 if (value_bitsize (v) != 0)
1826 {
1827 /* Extract the bit parameters out from the bitfield
1828 sub-expression. */
1829 bitpos = value_bitpos (v);
1830 bitsize = value_bitsize (v);
1831 }
1832 else if (v == result && b->val_bitsize != 0)
1833 {
1834 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1835 lvalue whose bit parameters are saved in the fields
1836 VAL_BITPOS and VAL_BITSIZE. */
1837 bitpos = b->val_bitpos;
1838 bitsize = b->val_bitsize;
1839 }
1840
1841 addr = value_address (v);
1842 if (bitsize != 0)
1843 {
1844 /* Skip the bytes that don't contain the bitfield. */
1845 addr += bitpos / 8;
1846 }
1847
1848 type = hw_write;
1849 if (b->type == bp_read_watchpoint)
1850 type = hw_read;
1851 else if (b->type == bp_access_watchpoint)
1852 type = hw_access;
1853
1854 loc = allocate_bp_location (b);
1855 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1856 ;
1857 *tmp = loc;
1858 loc->gdbarch = get_type_arch (value_type (v));
1859
1860 loc->pspace = frame_pspace;
1861 loc->address = address_significant (loc->gdbarch, addr);
1862
1863 if (bitsize != 0)
1864 {
1865 /* Just cover the bytes that make up the bitfield. */
1866 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1867 }
1868 else
1869 loc->length = TYPE_LENGTH (value_type (v));
1870
1871 loc->watchpoint_type = type;
1872 }
1873 }
1874 }
1875
1876 /* Change the type of breakpoint between hardware assisted or
1877 an ordinary watchpoint depending on the hardware support
1878 and free hardware slots. REPARSE is set when the inferior
1879 is started. */
1880 if (reparse)
1881 {
1882 int reg_cnt;
1883 enum bp_loc_type loc_type;
1884 struct bp_location *bl;
1885
1886 reg_cnt = can_use_hardware_watchpoint (val_chain);
1887
1888 if (reg_cnt)
1889 {
1890 int i, target_resources_ok, other_type_used;
1891 enum bptype type;
1892
1893 /* Use an exact watchpoint when there's only one memory region to be
1894 watched, and only one debug register is needed to watch it. */
1895 b->exact = target_exact_watchpoints && reg_cnt == 1;
1896
1897 /* We need to determine how many resources are already
1898 used for all other hardware watchpoints plus this one
1899 to see if we still have enough resources to also fit
1900 this watchpoint in as well. */
1901
1902 /* If this is a software watchpoint, we try to turn it
1903 to a hardware one -- count resources as if B was of
1904 hardware watchpoint type. */
1905 type = b->type;
1906 if (type == bp_watchpoint)
1907 type = bp_hardware_watchpoint;
1908
1909 /* This watchpoint may or may not have been placed on
1910 the list yet at this point (it won't be in the list
1911 if we're trying to create it for the first time,
1912 through watch_command), so always account for it
1913 manually. */
1914
1915 /* Count resources used by all watchpoints except B. */
1916 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1917
1918 /* Add in the resources needed for B. */
1919 i += hw_watchpoint_use_count (b);
1920
1921 target_resources_ok
1922 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1923 if (target_resources_ok <= 0)
1924 {
1925 int sw_mode = b->ops->works_in_software_mode (b);
1926
1927 if (target_resources_ok == 0 && !sw_mode)
1928 error (_("Target does not support this type of "
1929 "hardware watchpoint."));
1930 else if (target_resources_ok < 0 && !sw_mode)
1931 error (_("There are not enough available hardware "
1932 "resources for this watchpoint."));
1933
1934 /* Downgrade to software watchpoint. */
1935 b->type = bp_watchpoint;
1936 }
1937 else
1938 {
1939 /* If this was a software watchpoint, we've just
1940 found we have enough resources to turn it to a
1941 hardware watchpoint. Otherwise, this is a
1942 nop. */
1943 b->type = type;
1944 }
1945 }
1946 else if (!b->ops->works_in_software_mode (b))
1947 {
1948 if (!can_use_hw_watchpoints)
1949 error (_("Can't set read/access watchpoint when "
1950 "hardware watchpoints are disabled."));
1951 else
1952 error (_("Expression cannot be implemented with "
1953 "read/access watchpoint."));
1954 }
1955 else
1956 b->type = bp_watchpoint;
1957
1958 loc_type = (b->type == bp_watchpoint? bp_loc_other
1959 : bp_loc_hardware_watchpoint);
1960 for (bl = b->loc; bl; bl = bl->next)
1961 bl->loc_type = loc_type;
1962 }
1963
1964 /* If a software watchpoint is not watching any memory, then the
1965 above left it without any location set up. But,
1966 bpstat_stop_status requires a location to be able to report
1967 stops, so make sure there's at least a dummy one. */
1968 if (b->type == bp_watchpoint && b->loc == NULL)
1969 software_watchpoint_add_no_memory_location (b, frame_pspace);
1970 }
1971 else if (!within_current_scope)
1972 {
1973 printf_filtered (_("\
1974 Watchpoint %d deleted because the program has left the block\n\
1975 in which its expression is valid.\n"),
1976 b->number);
1977 watchpoint_del_at_next_stop (b);
1978 }
1979
1980 /* Restore the selected frame. */
1981 if (frame_saved)
1982 select_frame (frame_find_by_id (saved_frame_id));
1983 }
1984
1985
1986 /* Returns 1 iff breakpoint location should be
1987 inserted in the inferior. We don't differentiate the type of BL's owner
1988 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1989 breakpoint_ops is not defined, because in insert_bp_location,
1990 tracepoint's insert_location will not be called. */
1991 static int
1992 should_be_inserted (struct bp_location *bl)
1993 {
1994 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1995 return 0;
1996
1997 if (bl->owner->disposition == disp_del_at_next_stop)
1998 return 0;
1999
2000 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2001 return 0;
2002
2003 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2004 return 0;
2005
2006 /* This is set for example, when we're attached to the parent of a
2007 vfork, and have detached from the child. The child is running
2008 free, and we expect it to do an exec or exit, at which point the
2009 OS makes the parent schedulable again (and the target reports
2010 that the vfork is done). Until the child is done with the shared
2011 memory region, do not insert breakpoints in the parent, otherwise
2012 the child could still trip on the parent's breakpoints. Since
2013 the parent is blocked anyway, it won't miss any breakpoint. */
2014 if (bl->pspace->breakpoints_not_allowed)
2015 return 0;
2016
2017 /* Don't insert a breakpoint if we're trying to step past its
2018 location, except if the breakpoint is a single-step breakpoint,
2019 and the breakpoint's thread is the thread which is stepping past
2020 a breakpoint. */
2021 if ((bl->loc_type == bp_loc_software_breakpoint
2022 || bl->loc_type == bp_loc_hardware_breakpoint)
2023 && stepping_past_instruction_at (bl->pspace->aspace,
2024 bl->address)
2025 /* The single-step breakpoint may be inserted at the location
2026 we're trying to step if the instruction branches to itself.
2027 However, the instruction won't be executed at all and it may
2028 break the semantics of the instruction, for example, the
2029 instruction is a conditional branch or updates some flags.
2030 We can't fix it unless GDB is able to emulate the instruction
2031 or switch to displaced stepping. */
2032 && !(bl->owner->type == bp_single_step
2033 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2034 {
2035 if (debug_infrun)
2036 {
2037 fprintf_unfiltered (gdb_stdlog,
2038 "infrun: skipping breakpoint: "
2039 "stepping past insn at: %s\n",
2040 paddress (bl->gdbarch, bl->address));
2041 }
2042 return 0;
2043 }
2044
2045 /* Don't insert watchpoints if we're trying to step past the
2046 instruction that triggered one. */
2047 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2048 && stepping_past_nonsteppable_watchpoint ())
2049 {
2050 if (debug_infrun)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "infrun: stepping past non-steppable watchpoint. "
2054 "skipping watchpoint at %s:%d\n",
2055 paddress (bl->gdbarch, bl->address),
2056 bl->length);
2057 }
2058 return 0;
2059 }
2060
2061 return 1;
2062 }
2063
2064 /* Same as should_be_inserted but does the check assuming
2065 that the location is not duplicated. */
2066
2067 static int
2068 unduplicated_should_be_inserted (struct bp_location *bl)
2069 {
2070 int result;
2071 const int save_duplicate = bl->duplicate;
2072
2073 bl->duplicate = 0;
2074 result = should_be_inserted (bl);
2075 bl->duplicate = save_duplicate;
2076 return result;
2077 }
2078
2079 /* Parses a conditional described by an expression COND into an
2080 agent expression bytecode suitable for evaluation
2081 by the bytecode interpreter. Return NULL if there was
2082 any error during parsing. */
2083
2084 static agent_expr_up
2085 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2086 {
2087 if (cond == NULL)
2088 return NULL;
2089
2090 agent_expr_up aexpr;
2091
2092 /* We don't want to stop processing, so catch any errors
2093 that may show up. */
2094 TRY
2095 {
2096 aexpr = gen_eval_for_expr (scope, cond);
2097 }
2098
2099 CATCH (ex, RETURN_MASK_ERROR)
2100 {
2101 /* If we got here, it means the condition could not be parsed to a valid
2102 bytecode expression and thus can't be evaluated on the target's side.
2103 It's no use iterating through the conditions. */
2104 }
2105 END_CATCH
2106
2107 /* We have a valid agent expression. */
2108 return aexpr;
2109 }
2110
2111 /* Based on location BL, create a list of breakpoint conditions to be
2112 passed on to the target. If we have duplicated locations with different
2113 conditions, we will add such conditions to the list. The idea is that the
2114 target will evaluate the list of conditions and will only notify GDB when
2115 one of them is true. */
2116
2117 static void
2118 build_target_condition_list (struct bp_location *bl)
2119 {
2120 struct bp_location **locp = NULL, **loc2p;
2121 int null_condition_or_parse_error = 0;
2122 int modified = bl->needs_update;
2123 struct bp_location *loc;
2124
2125 /* Release conditions left over from a previous insert. */
2126 bl->target_info.conditions.clear ();
2127
2128 /* This is only meaningful if the target is
2129 evaluating conditions and if the user has
2130 opted for condition evaluation on the target's
2131 side. */
2132 if (gdb_evaluates_breakpoint_condition_p ()
2133 || !target_supports_evaluation_of_breakpoint_conditions ())
2134 return;
2135
2136 /* Do a first pass to check for locations with no assigned
2137 conditions or conditions that fail to parse to a valid agent expression
2138 bytecode. If any of these happen, then it's no use to send conditions
2139 to the target since this location will always trigger and generate a
2140 response back to GDB. */
2141 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2142 {
2143 loc = (*loc2p);
2144 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2145 {
2146 if (modified)
2147 {
2148 /* Re-parse the conditions since something changed. In that
2149 case we already freed the condition bytecodes (see
2150 force_breakpoint_reinsertion). We just
2151 need to parse the condition to bytecodes again. */
2152 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2153 loc->cond.get ());
2154 }
2155
2156 /* If we have a NULL bytecode expression, it means something
2157 went wrong or we have a null condition expression. */
2158 if (!loc->cond_bytecode)
2159 {
2160 null_condition_or_parse_error = 1;
2161 break;
2162 }
2163 }
2164 }
2165
2166 /* If any of these happened, it means we will have to evaluate the conditions
2167 for the location's address on gdb's side. It is no use keeping bytecodes
2168 for all the other duplicate locations, thus we free all of them here.
2169
2170 This is so we have a finer control over which locations' conditions are
2171 being evaluated by GDB or the remote stub. */
2172 if (null_condition_or_parse_error)
2173 {
2174 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2175 {
2176 loc = (*loc2p);
2177 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2178 {
2179 /* Only go as far as the first NULL bytecode is
2180 located. */
2181 if (!loc->cond_bytecode)
2182 return;
2183
2184 loc->cond_bytecode.reset ();
2185 }
2186 }
2187 }
2188
2189 /* No NULL conditions or failed bytecode generation. Build a condition list
2190 for this location's address. */
2191 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2192 {
2193 loc = (*loc2p);
2194 if (loc->cond
2195 && is_breakpoint (loc->owner)
2196 && loc->pspace->num == bl->pspace->num
2197 && loc->owner->enable_state == bp_enabled
2198 && loc->enabled)
2199 {
2200 /* Add the condition to the vector. This will be used later
2201 to send the conditions to the target. */
2202 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2203 }
2204 }
2205
2206 return;
2207 }
2208
2209 /* Parses a command described by string CMD into an agent expression
2210 bytecode suitable for evaluation by the bytecode interpreter.
2211 Return NULL if there was any error during parsing. */
2212
2213 static agent_expr_up
2214 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2215 {
2216 const char *cmdrest;
2217 const char *format_start, *format_end;
2218 struct gdbarch *gdbarch = get_current_arch ();
2219
2220 if (cmd == NULL)
2221 return NULL;
2222
2223 cmdrest = cmd;
2224
2225 if (*cmdrest == ',')
2226 ++cmdrest;
2227 cmdrest = skip_spaces (cmdrest);
2228
2229 if (*cmdrest++ != '"')
2230 error (_("No format string following the location"));
2231
2232 format_start = cmdrest;
2233
2234 format_pieces fpieces (&cmdrest);
2235
2236 format_end = cmdrest;
2237
2238 if (*cmdrest++ != '"')
2239 error (_("Bad format string, non-terminated '\"'."));
2240
2241 cmdrest = skip_spaces (cmdrest);
2242
2243 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2244 error (_("Invalid argument syntax"));
2245
2246 if (*cmdrest == ',')
2247 cmdrest++;
2248 cmdrest = skip_spaces (cmdrest);
2249
2250 /* For each argument, make an expression. */
2251
2252 std::vector<struct expression *> argvec;
2253 while (*cmdrest != '\0')
2254 {
2255 const char *cmd1;
2256
2257 cmd1 = cmdrest;
2258 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2259 argvec.push_back (expr.release ());
2260 cmdrest = cmd1;
2261 if (*cmdrest == ',')
2262 ++cmdrest;
2263 }
2264
2265 agent_expr_up aexpr;
2266
2267 /* We don't want to stop processing, so catch any errors
2268 that may show up. */
2269 TRY
2270 {
2271 aexpr = gen_printf (scope, gdbarch, 0, 0,
2272 format_start, format_end - format_start,
2273 argvec.size (), argvec.data ());
2274 }
2275 CATCH (ex, RETURN_MASK_ERROR)
2276 {
2277 /* If we got here, it means the command could not be parsed to a valid
2278 bytecode expression and thus can't be evaluated on the target's side.
2279 It's no use iterating through the other commands. */
2280 }
2281 END_CATCH
2282
2283 /* We have a valid agent expression, return it. */
2284 return aexpr;
2285 }
2286
2287 /* Based on location BL, create a list of breakpoint commands to be
2288 passed on to the target. If we have duplicated locations with
2289 different commands, we will add any such to the list. */
2290
2291 static void
2292 build_target_command_list (struct bp_location *bl)
2293 {
2294 struct bp_location **locp = NULL, **loc2p;
2295 int null_command_or_parse_error = 0;
2296 int modified = bl->needs_update;
2297 struct bp_location *loc;
2298
2299 /* Clear commands left over from a previous insert. */
2300 bl->target_info.tcommands.clear ();
2301
2302 if (!target_can_run_breakpoint_commands ())
2303 return;
2304
2305 /* For now, limit to agent-style dprintf breakpoints. */
2306 if (dprintf_style != dprintf_style_agent)
2307 return;
2308
2309 /* For now, if we have any duplicate location that isn't a dprintf,
2310 don't install the target-side commands, as that would make the
2311 breakpoint not be reported to the core, and we'd lose
2312 control. */
2313 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2314 {
2315 loc = (*loc2p);
2316 if (is_breakpoint (loc->owner)
2317 && loc->pspace->num == bl->pspace->num
2318 && loc->owner->type != bp_dprintf)
2319 return;
2320 }
2321
2322 /* Do a first pass to check for locations with no assigned
2323 conditions or conditions that fail to parse to a valid agent expression
2324 bytecode. If any of these happen, then it's no use to send conditions
2325 to the target since this location will always trigger and generate a
2326 response back to GDB. */
2327 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2328 {
2329 loc = (*loc2p);
2330 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2331 {
2332 if (modified)
2333 {
2334 /* Re-parse the commands since something changed. In that
2335 case we already freed the command bytecodes (see
2336 force_breakpoint_reinsertion). We just
2337 need to parse the command to bytecodes again. */
2338 loc->cmd_bytecode
2339 = parse_cmd_to_aexpr (bl->address,
2340 loc->owner->extra_string);
2341 }
2342
2343 /* If we have a NULL bytecode expression, it means something
2344 went wrong or we have a null command expression. */
2345 if (!loc->cmd_bytecode)
2346 {
2347 null_command_or_parse_error = 1;
2348 break;
2349 }
2350 }
2351 }
2352
2353 /* If anything failed, then we're not doing target-side commands,
2354 and so clean up. */
2355 if (null_command_or_parse_error)
2356 {
2357 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2358 {
2359 loc = (*loc2p);
2360 if (is_breakpoint (loc->owner)
2361 && loc->pspace->num == bl->pspace->num)
2362 {
2363 /* Only go as far as the first NULL bytecode is
2364 located. */
2365 if (loc->cmd_bytecode == NULL)
2366 return;
2367
2368 loc->cmd_bytecode.reset ();
2369 }
2370 }
2371 }
2372
2373 /* No NULL commands or failed bytecode generation. Build a command list
2374 for this location's address. */
2375 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2376 {
2377 loc = (*loc2p);
2378 if (loc->owner->extra_string
2379 && is_breakpoint (loc->owner)
2380 && loc->pspace->num == bl->pspace->num
2381 && loc->owner->enable_state == bp_enabled
2382 && loc->enabled)
2383 {
2384 /* Add the command to the vector. This will be used later
2385 to send the commands to the target. */
2386 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2387 }
2388 }
2389
2390 bl->target_info.persist = 0;
2391 /* Maybe flag this location as persistent. */
2392 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2393 bl->target_info.persist = 1;
2394 }
2395
2396 /* Return the kind of breakpoint on address *ADDR. Get the kind
2397 of breakpoint according to ADDR except single-step breakpoint.
2398 Get the kind of single-step breakpoint according to the current
2399 registers state. */
2400
2401 static int
2402 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2403 {
2404 if (bl->owner->type == bp_single_step)
2405 {
2406 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2407 struct regcache *regcache;
2408
2409 regcache = get_thread_regcache (thr);
2410
2411 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2412 regcache, addr);
2413 }
2414 else
2415 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2416 }
2417
2418 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2419 location. Any error messages are printed to TMP_ERROR_STREAM; and
2420 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2421 Returns 0 for success, 1 if the bp_location type is not supported or
2422 -1 for failure.
2423
2424 NOTE drow/2003-09-09: This routine could be broken down to an
2425 object-style method for each breakpoint or catchpoint type. */
2426 static int
2427 insert_bp_location (struct bp_location *bl,
2428 struct ui_file *tmp_error_stream,
2429 int *disabled_breaks,
2430 int *hw_breakpoint_error,
2431 int *hw_bp_error_explained_already)
2432 {
2433 gdb_exception bp_excpt = exception_none;
2434
2435 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2436 return 0;
2437
2438 /* Note we don't initialize bl->target_info, as that wipes out
2439 the breakpoint location's shadow_contents if the breakpoint
2440 is still inserted at that location. This in turn breaks
2441 target_read_memory which depends on these buffers when
2442 a memory read is requested at the breakpoint location:
2443 Once the target_info has been wiped, we fail to see that
2444 we have a breakpoint inserted at that address and thus
2445 read the breakpoint instead of returning the data saved in
2446 the breakpoint location's shadow contents. */
2447 bl->target_info.reqstd_address = bl->address;
2448 bl->target_info.placed_address_space = bl->pspace->aspace;
2449 bl->target_info.length = bl->length;
2450
2451 /* When working with target-side conditions, we must pass all the conditions
2452 for the same breakpoint address down to the target since GDB will not
2453 insert those locations. With a list of breakpoint conditions, the target
2454 can decide when to stop and notify GDB. */
2455
2456 if (is_breakpoint (bl->owner))
2457 {
2458 build_target_condition_list (bl);
2459 build_target_command_list (bl);
2460 /* Reset the modification marker. */
2461 bl->needs_update = 0;
2462 }
2463
2464 if (bl->loc_type == bp_loc_software_breakpoint
2465 || bl->loc_type == bp_loc_hardware_breakpoint)
2466 {
2467 if (bl->owner->type != bp_hardware_breakpoint)
2468 {
2469 /* If the explicitly specified breakpoint type
2470 is not hardware breakpoint, check the memory map to see
2471 if the breakpoint address is in read only memory or not.
2472
2473 Two important cases are:
2474 - location type is not hardware breakpoint, memory
2475 is readonly. We change the type of the location to
2476 hardware breakpoint.
2477 - location type is hardware breakpoint, memory is
2478 read-write. This means we've previously made the
2479 location hardware one, but then the memory map changed,
2480 so we undo.
2481
2482 When breakpoints are removed, remove_breakpoints will use
2483 location types we've just set here, the only possible
2484 problem is that memory map has changed during running
2485 program, but it's not going to work anyway with current
2486 gdb. */
2487 struct mem_region *mr
2488 = lookup_mem_region (bl->target_info.reqstd_address);
2489
2490 if (mr)
2491 {
2492 if (automatic_hardware_breakpoints)
2493 {
2494 enum bp_loc_type new_type;
2495
2496 if (mr->attrib.mode != MEM_RW)
2497 new_type = bp_loc_hardware_breakpoint;
2498 else
2499 new_type = bp_loc_software_breakpoint;
2500
2501 if (new_type != bl->loc_type)
2502 {
2503 static int said = 0;
2504
2505 bl->loc_type = new_type;
2506 if (!said)
2507 {
2508 fprintf_filtered (gdb_stdout,
2509 _("Note: automatically using "
2510 "hardware breakpoints for "
2511 "read-only addresses.\n"));
2512 said = 1;
2513 }
2514 }
2515 }
2516 else if (bl->loc_type == bp_loc_software_breakpoint
2517 && mr->attrib.mode != MEM_RW)
2518 {
2519 fprintf_unfiltered (tmp_error_stream,
2520 _("Cannot insert breakpoint %d.\n"
2521 "Cannot set software breakpoint "
2522 "at read-only address %s\n"),
2523 bl->owner->number,
2524 paddress (bl->gdbarch, bl->address));
2525 return 1;
2526 }
2527 }
2528 }
2529
2530 /* First check to see if we have to handle an overlay. */
2531 if (overlay_debugging == ovly_off
2532 || bl->section == NULL
2533 || !(section_is_overlay (bl->section)))
2534 {
2535 /* No overlay handling: just set the breakpoint. */
2536 TRY
2537 {
2538 int val;
2539
2540 val = bl->owner->ops->insert_location (bl);
2541 if (val)
2542 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2543 }
2544 CATCH (e, RETURN_MASK_ALL)
2545 {
2546 bp_excpt = e;
2547 }
2548 END_CATCH
2549 }
2550 else
2551 {
2552 /* This breakpoint is in an overlay section.
2553 Shall we set a breakpoint at the LMA? */
2554 if (!overlay_events_enabled)
2555 {
2556 /* Yes -- overlay event support is not active,
2557 so we must try to set a breakpoint at the LMA.
2558 This will not work for a hardware breakpoint. */
2559 if (bl->loc_type == bp_loc_hardware_breakpoint)
2560 warning (_("hardware breakpoint %d not supported in overlay!"),
2561 bl->owner->number);
2562 else
2563 {
2564 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2565 bl->section);
2566 /* Set a software (trap) breakpoint at the LMA. */
2567 bl->overlay_target_info = bl->target_info;
2568 bl->overlay_target_info.reqstd_address = addr;
2569
2570 /* No overlay handling: just set the breakpoint. */
2571 TRY
2572 {
2573 int val;
2574
2575 bl->overlay_target_info.kind
2576 = breakpoint_kind (bl, &addr);
2577 bl->overlay_target_info.placed_address = addr;
2578 val = target_insert_breakpoint (bl->gdbarch,
2579 &bl->overlay_target_info);
2580 if (val)
2581 bp_excpt
2582 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2583 }
2584 CATCH (e, RETURN_MASK_ALL)
2585 {
2586 bp_excpt = e;
2587 }
2588 END_CATCH
2589
2590 if (bp_excpt.reason != 0)
2591 fprintf_unfiltered (tmp_error_stream,
2592 "Overlay breakpoint %d "
2593 "failed: in ROM?\n",
2594 bl->owner->number);
2595 }
2596 }
2597 /* Shall we set a breakpoint at the VMA? */
2598 if (section_is_mapped (bl->section))
2599 {
2600 /* Yes. This overlay section is mapped into memory. */
2601 TRY
2602 {
2603 int val;
2604
2605 val = bl->owner->ops->insert_location (bl);
2606 if (val)
2607 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2608 }
2609 CATCH (e, RETURN_MASK_ALL)
2610 {
2611 bp_excpt = e;
2612 }
2613 END_CATCH
2614 }
2615 else
2616 {
2617 /* No. This breakpoint will not be inserted.
2618 No error, but do not mark the bp as 'inserted'. */
2619 return 0;
2620 }
2621 }
2622
2623 if (bp_excpt.reason != 0)
2624 {
2625 /* Can't set the breakpoint. */
2626
2627 /* In some cases, we might not be able to insert a
2628 breakpoint in a shared library that has already been
2629 removed, but we have not yet processed the shlib unload
2630 event. Unfortunately, some targets that implement
2631 breakpoint insertion themselves can't tell why the
2632 breakpoint insertion failed (e.g., the remote target
2633 doesn't define error codes), so we must treat generic
2634 errors as memory errors. */
2635 if (bp_excpt.reason == RETURN_ERROR
2636 && (bp_excpt.error == GENERIC_ERROR
2637 || bp_excpt.error == MEMORY_ERROR)
2638 && bl->loc_type == bp_loc_software_breakpoint
2639 && (solib_name_from_address (bl->pspace, bl->address)
2640 || shared_objfile_contains_address_p (bl->pspace,
2641 bl->address)))
2642 {
2643 /* See also: disable_breakpoints_in_shlibs. */
2644 bl->shlib_disabled = 1;
2645 gdb::observers::breakpoint_modified.notify (bl->owner);
2646 if (!*disabled_breaks)
2647 {
2648 fprintf_unfiltered (tmp_error_stream,
2649 "Cannot insert breakpoint %d.\n",
2650 bl->owner->number);
2651 fprintf_unfiltered (tmp_error_stream,
2652 "Temporarily disabling shared "
2653 "library breakpoints:\n");
2654 }
2655 *disabled_breaks = 1;
2656 fprintf_unfiltered (tmp_error_stream,
2657 "breakpoint #%d\n", bl->owner->number);
2658 return 0;
2659 }
2660 else
2661 {
2662 if (bl->loc_type == bp_loc_hardware_breakpoint)
2663 {
2664 *hw_breakpoint_error = 1;
2665 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2666 fprintf_unfiltered (tmp_error_stream,
2667 "Cannot insert hardware breakpoint %d%s",
2668 bl->owner->number,
2669 bp_excpt.message ? ":" : ".\n");
2670 if (bp_excpt.message != NULL)
2671 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2672 bp_excpt.message);
2673 }
2674 else
2675 {
2676 if (bp_excpt.message == NULL)
2677 {
2678 std::string message
2679 = memory_error_message (TARGET_XFER_E_IO,
2680 bl->gdbarch, bl->address);
2681
2682 fprintf_unfiltered (tmp_error_stream,
2683 "Cannot insert breakpoint %d.\n"
2684 "%s\n",
2685 bl->owner->number, message.c_str ());
2686 }
2687 else
2688 {
2689 fprintf_unfiltered (tmp_error_stream,
2690 "Cannot insert breakpoint %d: %s\n",
2691 bl->owner->number,
2692 bp_excpt.message);
2693 }
2694 }
2695 return 1;
2696
2697 }
2698 }
2699 else
2700 bl->inserted = 1;
2701
2702 return 0;
2703 }
2704
2705 else if (bl->loc_type == bp_loc_hardware_watchpoint
2706 /* NOTE drow/2003-09-08: This state only exists for removing
2707 watchpoints. It's not clear that it's necessary... */
2708 && bl->owner->disposition != disp_del_at_next_stop)
2709 {
2710 int val;
2711
2712 gdb_assert (bl->owner->ops != NULL
2713 && bl->owner->ops->insert_location != NULL);
2714
2715 val = bl->owner->ops->insert_location (bl);
2716
2717 /* If trying to set a read-watchpoint, and it turns out it's not
2718 supported, try emulating one with an access watchpoint. */
2719 if (val == 1 && bl->watchpoint_type == hw_read)
2720 {
2721 struct bp_location *loc, **loc_temp;
2722
2723 /* But don't try to insert it, if there's already another
2724 hw_access location that would be considered a duplicate
2725 of this one. */
2726 ALL_BP_LOCATIONS (loc, loc_temp)
2727 if (loc != bl
2728 && loc->watchpoint_type == hw_access
2729 && watchpoint_locations_match (bl, loc))
2730 {
2731 bl->duplicate = 1;
2732 bl->inserted = 1;
2733 bl->target_info = loc->target_info;
2734 bl->watchpoint_type = hw_access;
2735 val = 0;
2736 break;
2737 }
2738
2739 if (val == 1)
2740 {
2741 bl->watchpoint_type = hw_access;
2742 val = bl->owner->ops->insert_location (bl);
2743
2744 if (val)
2745 /* Back to the original value. */
2746 bl->watchpoint_type = hw_read;
2747 }
2748 }
2749
2750 bl->inserted = (val == 0);
2751 }
2752
2753 else if (bl->owner->type == bp_catchpoint)
2754 {
2755 int val;
2756
2757 gdb_assert (bl->owner->ops != NULL
2758 && bl->owner->ops->insert_location != NULL);
2759
2760 val = bl->owner->ops->insert_location (bl);
2761 if (val)
2762 {
2763 bl->owner->enable_state = bp_disabled;
2764
2765 if (val == 1)
2766 warning (_("\
2767 Error inserting catchpoint %d: Your system does not support this type\n\
2768 of catchpoint."), bl->owner->number);
2769 else
2770 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2771 }
2772
2773 bl->inserted = (val == 0);
2774
2775 /* We've already printed an error message if there was a problem
2776 inserting this catchpoint, and we've disabled the catchpoint,
2777 so just return success. */
2778 return 0;
2779 }
2780
2781 return 0;
2782 }
2783
2784 /* This function is called when program space PSPACE is about to be
2785 deleted. It takes care of updating breakpoints to not reference
2786 PSPACE anymore. */
2787
2788 void
2789 breakpoint_program_space_exit (struct program_space *pspace)
2790 {
2791 struct breakpoint *b, *b_temp;
2792 struct bp_location *loc, **loc_temp;
2793
2794 /* Remove any breakpoint that was set through this program space. */
2795 ALL_BREAKPOINTS_SAFE (b, b_temp)
2796 {
2797 if (b->pspace == pspace)
2798 delete_breakpoint (b);
2799 }
2800
2801 /* Breakpoints set through other program spaces could have locations
2802 bound to PSPACE as well. Remove those. */
2803 ALL_BP_LOCATIONS (loc, loc_temp)
2804 {
2805 struct bp_location *tmp;
2806
2807 if (loc->pspace == pspace)
2808 {
2809 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2810 if (loc->owner->loc == loc)
2811 loc->owner->loc = loc->next;
2812 else
2813 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2814 if (tmp->next == loc)
2815 {
2816 tmp->next = loc->next;
2817 break;
2818 }
2819 }
2820 }
2821
2822 /* Now update the global location list to permanently delete the
2823 removed locations above. */
2824 update_global_location_list (UGLL_DONT_INSERT);
2825 }
2826
2827 /* Make sure all breakpoints are inserted in inferior.
2828 Throws exception on any error.
2829 A breakpoint that is already inserted won't be inserted
2830 again, so calling this function twice is safe. */
2831 void
2832 insert_breakpoints (void)
2833 {
2834 struct breakpoint *bpt;
2835
2836 ALL_BREAKPOINTS (bpt)
2837 if (is_hardware_watchpoint (bpt))
2838 {
2839 struct watchpoint *w = (struct watchpoint *) bpt;
2840
2841 update_watchpoint (w, 0 /* don't reparse. */);
2842 }
2843
2844 /* Updating watchpoints creates new locations, so update the global
2845 location list. Explicitly tell ugll to insert locations and
2846 ignore breakpoints_always_inserted_mode. */
2847 update_global_location_list (UGLL_INSERT);
2848 }
2849
2850 /* Invoke CALLBACK for each of bp_location. */
2851
2852 void
2853 iterate_over_bp_locations (walk_bp_location_callback callback)
2854 {
2855 struct bp_location *loc, **loc_tmp;
2856
2857 ALL_BP_LOCATIONS (loc, loc_tmp)
2858 {
2859 callback (loc, NULL);
2860 }
2861 }
2862
2863 /* This is used when we need to synch breakpoint conditions between GDB and the
2864 target. It is the case with deleting and disabling of breakpoints when using
2865 always-inserted mode. */
2866
2867 static void
2868 update_inserted_breakpoint_locations (void)
2869 {
2870 struct bp_location *bl, **blp_tmp;
2871 int error_flag = 0;
2872 int val = 0;
2873 int disabled_breaks = 0;
2874 int hw_breakpoint_error = 0;
2875 int hw_bp_details_reported = 0;
2876
2877 string_file tmp_error_stream;
2878
2879 /* Explicitly mark the warning -- this will only be printed if
2880 there was an error. */
2881 tmp_error_stream.puts ("Warning:\n");
2882
2883 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2884
2885 ALL_BP_LOCATIONS (bl, blp_tmp)
2886 {
2887 /* We only want to update software breakpoints and hardware
2888 breakpoints. */
2889 if (!is_breakpoint (bl->owner))
2890 continue;
2891
2892 /* We only want to update locations that are already inserted
2893 and need updating. This is to avoid unwanted insertion during
2894 deletion of breakpoints. */
2895 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2896 continue;
2897
2898 switch_to_program_space_and_thread (bl->pspace);
2899
2900 /* For targets that support global breakpoints, there's no need
2901 to select an inferior to insert breakpoint to. In fact, even
2902 if we aren't attached to any process yet, we should still
2903 insert breakpoints. */
2904 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2905 && inferior_ptid == null_ptid)
2906 continue;
2907
2908 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2909 &hw_breakpoint_error, &hw_bp_details_reported);
2910 if (val)
2911 error_flag = val;
2912 }
2913
2914 if (error_flag)
2915 {
2916 target_terminal::ours_for_output ();
2917 error_stream (tmp_error_stream);
2918 }
2919 }
2920
2921 /* Used when starting or continuing the program. */
2922
2923 static void
2924 insert_breakpoint_locations (void)
2925 {
2926 struct breakpoint *bpt;
2927 struct bp_location *bl, **blp_tmp;
2928 int error_flag = 0;
2929 int val = 0;
2930 int disabled_breaks = 0;
2931 int hw_breakpoint_error = 0;
2932 int hw_bp_error_explained_already = 0;
2933
2934 string_file tmp_error_stream;
2935
2936 /* Explicitly mark the warning -- this will only be printed if
2937 there was an error. */
2938 tmp_error_stream.puts ("Warning:\n");
2939
2940 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2941
2942 ALL_BP_LOCATIONS (bl, blp_tmp)
2943 {
2944 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2945 continue;
2946
2947 /* There is no point inserting thread-specific breakpoints if
2948 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2949 has BL->OWNER always non-NULL. */
2950 if (bl->owner->thread != -1
2951 && !valid_global_thread_id (bl->owner->thread))
2952 continue;
2953
2954 switch_to_program_space_and_thread (bl->pspace);
2955
2956 /* For targets that support global breakpoints, there's no need
2957 to select an inferior to insert breakpoint to. In fact, even
2958 if we aren't attached to any process yet, we should still
2959 insert breakpoints. */
2960 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2961 && inferior_ptid == null_ptid)
2962 continue;
2963
2964 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2965 &hw_breakpoint_error, &hw_bp_error_explained_already);
2966 if (val)
2967 error_flag = val;
2968 }
2969
2970 /* If we failed to insert all locations of a watchpoint, remove
2971 them, as half-inserted watchpoint is of limited use. */
2972 ALL_BREAKPOINTS (bpt)
2973 {
2974 int some_failed = 0;
2975 struct bp_location *loc;
2976
2977 if (!is_hardware_watchpoint (bpt))
2978 continue;
2979
2980 if (!breakpoint_enabled (bpt))
2981 continue;
2982
2983 if (bpt->disposition == disp_del_at_next_stop)
2984 continue;
2985
2986 for (loc = bpt->loc; loc; loc = loc->next)
2987 if (!loc->inserted && should_be_inserted (loc))
2988 {
2989 some_failed = 1;
2990 break;
2991 }
2992 if (some_failed)
2993 {
2994 for (loc = bpt->loc; loc; loc = loc->next)
2995 if (loc->inserted)
2996 remove_breakpoint (loc);
2997
2998 hw_breakpoint_error = 1;
2999 tmp_error_stream.printf ("Could not insert "
3000 "hardware watchpoint %d.\n",
3001 bpt->number);
3002 error_flag = -1;
3003 }
3004 }
3005
3006 if (error_flag)
3007 {
3008 /* If a hardware breakpoint or watchpoint was inserted, add a
3009 message about possibly exhausted resources. */
3010 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3011 {
3012 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3013 You may have requested too many hardware breakpoints/watchpoints.\n");
3014 }
3015 target_terminal::ours_for_output ();
3016 error_stream (tmp_error_stream);
3017 }
3018 }
3019
3020 /* Used when the program stops.
3021 Returns zero if successful, or non-zero if there was a problem
3022 removing a breakpoint location. */
3023
3024 int
3025 remove_breakpoints (void)
3026 {
3027 struct bp_location *bl, **blp_tmp;
3028 int val = 0;
3029
3030 ALL_BP_LOCATIONS (bl, blp_tmp)
3031 {
3032 if (bl->inserted && !is_tracepoint (bl->owner))
3033 val |= remove_breakpoint (bl);
3034 }
3035 return val;
3036 }
3037
3038 /* When a thread exits, remove breakpoints that are related to
3039 that thread. */
3040
3041 static void
3042 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3043 {
3044 struct breakpoint *b, *b_tmp;
3045
3046 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3047 {
3048 if (b->thread == tp->global_num && user_breakpoint_p (b))
3049 {
3050 b->disposition = disp_del_at_next_stop;
3051
3052 printf_filtered (_("\
3053 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3054 b->number, print_thread_id (tp));
3055
3056 /* Hide it from the user. */
3057 b->number = 0;
3058 }
3059 }
3060 }
3061
3062 /* Remove breakpoints of inferior INF. */
3063
3064 int
3065 remove_breakpoints_inf (inferior *inf)
3066 {
3067 struct bp_location *bl, **blp_tmp;
3068 int val;
3069
3070 ALL_BP_LOCATIONS (bl, blp_tmp)
3071 {
3072 if (bl->pspace != inf->pspace)
3073 continue;
3074
3075 if (bl->inserted && !bl->target_info.persist)
3076 {
3077 val = remove_breakpoint (bl);
3078 if (val != 0)
3079 return val;
3080 }
3081 }
3082 return 0;
3083 }
3084
3085 static int internal_breakpoint_number = -1;
3086
3087 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3088 If INTERNAL is non-zero, the breakpoint number will be populated
3089 from internal_breakpoint_number and that variable decremented.
3090 Otherwise the breakpoint number will be populated from
3091 breakpoint_count and that value incremented. Internal breakpoints
3092 do not set the internal var bpnum. */
3093 static void
3094 set_breakpoint_number (int internal, struct breakpoint *b)
3095 {
3096 if (internal)
3097 b->number = internal_breakpoint_number--;
3098 else
3099 {
3100 set_breakpoint_count (breakpoint_count + 1);
3101 b->number = breakpoint_count;
3102 }
3103 }
3104
3105 static struct breakpoint *
3106 create_internal_breakpoint (struct gdbarch *gdbarch,
3107 CORE_ADDR address, enum bptype type,
3108 const struct breakpoint_ops *ops)
3109 {
3110 symtab_and_line sal;
3111 sal.pc = address;
3112 sal.section = find_pc_overlay (sal.pc);
3113 sal.pspace = current_program_space;
3114
3115 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3116 b->number = internal_breakpoint_number--;
3117 b->disposition = disp_donttouch;
3118
3119 return b;
3120 }
3121
3122 static const char *const longjmp_names[] =
3123 {
3124 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3125 };
3126 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3127
3128 /* Per-objfile data private to breakpoint.c. */
3129 struct breakpoint_objfile_data
3130 {
3131 /* Minimal symbol for "_ovly_debug_event" (if any). */
3132 struct bound_minimal_symbol overlay_msym {};
3133
3134 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3135 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3136
3137 /* True if we have looked for longjmp probes. */
3138 int longjmp_searched = 0;
3139
3140 /* SystemTap probe points for longjmp (if any). These are non-owning
3141 references. */
3142 std::vector<probe *> longjmp_probes;
3143
3144 /* Minimal symbol for "std::terminate()" (if any). */
3145 struct bound_minimal_symbol terminate_msym {};
3146
3147 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3148 struct bound_minimal_symbol exception_msym {};
3149
3150 /* True if we have looked for exception probes. */
3151 int exception_searched = 0;
3152
3153 /* SystemTap probe points for unwinding (if any). These are non-owning
3154 references. */
3155 std::vector<probe *> exception_probes;
3156 };
3157
3158 static const struct objfile_data *breakpoint_objfile_key;
3159
3160 /* Minimal symbol not found sentinel. */
3161 static struct minimal_symbol msym_not_found;
3162
3163 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3164
3165 static int
3166 msym_not_found_p (const struct minimal_symbol *msym)
3167 {
3168 return msym == &msym_not_found;
3169 }
3170
3171 /* Return per-objfile data needed by breakpoint.c.
3172 Allocate the data if necessary. */
3173
3174 static struct breakpoint_objfile_data *
3175 get_breakpoint_objfile_data (struct objfile *objfile)
3176 {
3177 struct breakpoint_objfile_data *bp_objfile_data;
3178
3179 bp_objfile_data = ((struct breakpoint_objfile_data *)
3180 objfile_data (objfile, breakpoint_objfile_key));
3181 if (bp_objfile_data == NULL)
3182 {
3183 bp_objfile_data = new breakpoint_objfile_data ();
3184 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3185 }
3186 return bp_objfile_data;
3187 }
3188
3189 static void
3190 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3191 {
3192 struct breakpoint_objfile_data *bp_objfile_data
3193 = (struct breakpoint_objfile_data *) data;
3194
3195 delete bp_objfile_data;
3196 }
3197
3198 static void
3199 create_overlay_event_breakpoint (void)
3200 {
3201 struct objfile *objfile;
3202 const char *const func_name = "_ovly_debug_event";
3203
3204 ALL_OBJFILES (objfile)
3205 {
3206 struct breakpoint *b;
3207 struct breakpoint_objfile_data *bp_objfile_data;
3208 CORE_ADDR addr;
3209 struct explicit_location explicit_loc;
3210
3211 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3212
3213 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3214 continue;
3215
3216 if (bp_objfile_data->overlay_msym.minsym == NULL)
3217 {
3218 struct bound_minimal_symbol m;
3219
3220 m = lookup_minimal_symbol_text (func_name, objfile);
3221 if (m.minsym == NULL)
3222 {
3223 /* Avoid future lookups in this objfile. */
3224 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3225 continue;
3226 }
3227 bp_objfile_data->overlay_msym = m;
3228 }
3229
3230 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3231 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3232 bp_overlay_event,
3233 &internal_breakpoint_ops);
3234 initialize_explicit_location (&explicit_loc);
3235 explicit_loc.function_name = ASTRDUP (func_name);
3236 b->location = new_explicit_location (&explicit_loc);
3237
3238 if (overlay_debugging == ovly_auto)
3239 {
3240 b->enable_state = bp_enabled;
3241 overlay_events_enabled = 1;
3242 }
3243 else
3244 {
3245 b->enable_state = bp_disabled;
3246 overlay_events_enabled = 0;
3247 }
3248 }
3249 }
3250
3251 static void
3252 create_longjmp_master_breakpoint (void)
3253 {
3254 struct program_space *pspace;
3255
3256 scoped_restore_current_program_space restore_pspace;
3257
3258 ALL_PSPACES (pspace)
3259 {
3260 struct objfile *objfile;
3261
3262 set_current_program_space (pspace);
3263
3264 ALL_OBJFILES (objfile)
3265 {
3266 int i;
3267 struct gdbarch *gdbarch;
3268 struct breakpoint_objfile_data *bp_objfile_data;
3269
3270 gdbarch = get_objfile_arch (objfile);
3271
3272 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3273
3274 if (!bp_objfile_data->longjmp_searched)
3275 {
3276 std::vector<probe *> ret
3277 = find_probes_in_objfile (objfile, "libc", "longjmp");
3278
3279 if (!ret.empty ())
3280 {
3281 /* We are only interested in checking one element. */
3282 probe *p = ret[0];
3283
3284 if (!p->can_evaluate_arguments ())
3285 {
3286 /* We cannot use the probe interface here, because it does
3287 not know how to evaluate arguments. */
3288 ret.clear ();
3289 }
3290 }
3291 bp_objfile_data->longjmp_probes = ret;
3292 bp_objfile_data->longjmp_searched = 1;
3293 }
3294
3295 if (!bp_objfile_data->longjmp_probes.empty ())
3296 {
3297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3298
3299 for (probe *p : bp_objfile_data->longjmp_probes)
3300 {
3301 struct breakpoint *b;
3302
3303 b = create_internal_breakpoint (gdbarch,
3304 p->get_relocated_address (objfile),
3305 bp_longjmp_master,
3306 &internal_breakpoint_ops);
3307 b->location = new_probe_location ("-probe-stap libc:longjmp");
3308 b->enable_state = bp_disabled;
3309 }
3310
3311 continue;
3312 }
3313
3314 if (!gdbarch_get_longjmp_target_p (gdbarch))
3315 continue;
3316
3317 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3318 {
3319 struct breakpoint *b;
3320 const char *func_name;
3321 CORE_ADDR addr;
3322 struct explicit_location explicit_loc;
3323
3324 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3325 continue;
3326
3327 func_name = longjmp_names[i];
3328 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3329 {
3330 struct bound_minimal_symbol m;
3331
3332 m = lookup_minimal_symbol_text (func_name, objfile);
3333 if (m.minsym == NULL)
3334 {
3335 /* Prevent future lookups in this objfile. */
3336 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3337 continue;
3338 }
3339 bp_objfile_data->longjmp_msym[i] = m;
3340 }
3341
3342 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3343 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3344 &internal_breakpoint_ops);
3345 initialize_explicit_location (&explicit_loc);
3346 explicit_loc.function_name = ASTRDUP (func_name);
3347 b->location = new_explicit_location (&explicit_loc);
3348 b->enable_state = bp_disabled;
3349 }
3350 }
3351 }
3352 }
3353
3354 /* Create a master std::terminate breakpoint. */
3355 static void
3356 create_std_terminate_master_breakpoint (void)
3357 {
3358 struct program_space *pspace;
3359 const char *const func_name = "std::terminate()";
3360
3361 scoped_restore_current_program_space restore_pspace;
3362
3363 ALL_PSPACES (pspace)
3364 {
3365 struct objfile *objfile;
3366 CORE_ADDR addr;
3367
3368 set_current_program_space (pspace);
3369
3370 ALL_OBJFILES (objfile)
3371 {
3372 struct breakpoint *b;
3373 struct breakpoint_objfile_data *bp_objfile_data;
3374 struct explicit_location explicit_loc;
3375
3376 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3377
3378 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3379 continue;
3380
3381 if (bp_objfile_data->terminate_msym.minsym == NULL)
3382 {
3383 struct bound_minimal_symbol m;
3384
3385 m = lookup_minimal_symbol (func_name, NULL, objfile);
3386 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3387 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3388 {
3389 /* Prevent future lookups in this objfile. */
3390 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3391 continue;
3392 }
3393 bp_objfile_data->terminate_msym = m;
3394 }
3395
3396 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3397 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3398 bp_std_terminate_master,
3399 &internal_breakpoint_ops);
3400 initialize_explicit_location (&explicit_loc);
3401 explicit_loc.function_name = ASTRDUP (func_name);
3402 b->location = new_explicit_location (&explicit_loc);
3403 b->enable_state = bp_disabled;
3404 }
3405 }
3406 }
3407
3408 /* Install a master breakpoint on the unwinder's debug hook. */
3409
3410 static void
3411 create_exception_master_breakpoint (void)
3412 {
3413 struct objfile *objfile;
3414 const char *const func_name = "_Unwind_DebugHook";
3415
3416 ALL_OBJFILES (objfile)
3417 {
3418 struct breakpoint *b;
3419 struct gdbarch *gdbarch;
3420 struct breakpoint_objfile_data *bp_objfile_data;
3421 CORE_ADDR addr;
3422 struct explicit_location explicit_loc;
3423
3424 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3425
3426 /* We prefer the SystemTap probe point if it exists. */
3427 if (!bp_objfile_data->exception_searched)
3428 {
3429 std::vector<probe *> ret
3430 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3431
3432 if (!ret.empty ())
3433 {
3434 /* We are only interested in checking one element. */
3435 probe *p = ret[0];
3436
3437 if (!p->can_evaluate_arguments ())
3438 {
3439 /* We cannot use the probe interface here, because it does
3440 not know how to evaluate arguments. */
3441 ret.clear ();
3442 }
3443 }
3444 bp_objfile_data->exception_probes = ret;
3445 bp_objfile_data->exception_searched = 1;
3446 }
3447
3448 if (!bp_objfile_data->exception_probes.empty ())
3449 {
3450 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3451
3452 for (probe *p : bp_objfile_data->exception_probes)
3453 {
3454 struct breakpoint *b;
3455
3456 b = create_internal_breakpoint (gdbarch,
3457 p->get_relocated_address (objfile),
3458 bp_exception_master,
3459 &internal_breakpoint_ops);
3460 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3461 b->enable_state = bp_disabled;
3462 }
3463
3464 continue;
3465 }
3466
3467 /* Otherwise, try the hook function. */
3468
3469 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3470 continue;
3471
3472 gdbarch = get_objfile_arch (objfile);
3473
3474 if (bp_objfile_data->exception_msym.minsym == NULL)
3475 {
3476 struct bound_minimal_symbol debug_hook;
3477
3478 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3479 if (debug_hook.minsym == NULL)
3480 {
3481 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3482 continue;
3483 }
3484
3485 bp_objfile_data->exception_msym = debug_hook;
3486 }
3487
3488 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3489 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3490 current_top_target ());
3491 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3492 &internal_breakpoint_ops);
3493 initialize_explicit_location (&explicit_loc);
3494 explicit_loc.function_name = ASTRDUP (func_name);
3495 b->location = new_explicit_location (&explicit_loc);
3496 b->enable_state = bp_disabled;
3497 }
3498 }
3499
3500 /* Does B have a location spec? */
3501
3502 static int
3503 breakpoint_event_location_empty_p (const struct breakpoint *b)
3504 {
3505 return b->location != NULL && event_location_empty_p (b->location.get ());
3506 }
3507
3508 void
3509 update_breakpoints_after_exec (void)
3510 {
3511 struct breakpoint *b, *b_tmp;
3512 struct bp_location *bploc, **bplocp_tmp;
3513
3514 /* We're about to delete breakpoints from GDB's lists. If the
3515 INSERTED flag is true, GDB will try to lift the breakpoints by
3516 writing the breakpoints' "shadow contents" back into memory. The
3517 "shadow contents" are NOT valid after an exec, so GDB should not
3518 do that. Instead, the target is responsible from marking
3519 breakpoints out as soon as it detects an exec. We don't do that
3520 here instead, because there may be other attempts to delete
3521 breakpoints after detecting an exec and before reaching here. */
3522 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3523 if (bploc->pspace == current_program_space)
3524 gdb_assert (!bploc->inserted);
3525
3526 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3527 {
3528 if (b->pspace != current_program_space)
3529 continue;
3530
3531 /* Solib breakpoints must be explicitly reset after an exec(). */
3532 if (b->type == bp_shlib_event)
3533 {
3534 delete_breakpoint (b);
3535 continue;
3536 }
3537
3538 /* JIT breakpoints must be explicitly reset after an exec(). */
3539 if (b->type == bp_jit_event)
3540 {
3541 delete_breakpoint (b);
3542 continue;
3543 }
3544
3545 /* Thread event breakpoints must be set anew after an exec(),
3546 as must overlay event and longjmp master breakpoints. */
3547 if (b->type == bp_thread_event || b->type == bp_overlay_event
3548 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3549 || b->type == bp_exception_master)
3550 {
3551 delete_breakpoint (b);
3552 continue;
3553 }
3554
3555 /* Step-resume breakpoints are meaningless after an exec(). */
3556 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3557 {
3558 delete_breakpoint (b);
3559 continue;
3560 }
3561
3562 /* Just like single-step breakpoints. */
3563 if (b->type == bp_single_step)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Longjmp and longjmp-resume breakpoints are also meaningless
3570 after an exec. */
3571 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3572 || b->type == bp_longjmp_call_dummy
3573 || b->type == bp_exception || b->type == bp_exception_resume)
3574 {
3575 delete_breakpoint (b);
3576 continue;
3577 }
3578
3579 if (b->type == bp_catchpoint)
3580 {
3581 /* For now, none of the bp_catchpoint breakpoints need to
3582 do anything at this point. In the future, if some of
3583 the catchpoints need to something, we will need to add
3584 a new method, and call this method from here. */
3585 continue;
3586 }
3587
3588 /* bp_finish is a special case. The only way we ought to be able
3589 to see one of these when an exec() has happened, is if the user
3590 caught a vfork, and then said "finish". Ordinarily a finish just
3591 carries them to the call-site of the current callee, by setting
3592 a temporary bp there and resuming. But in this case, the finish
3593 will carry them entirely through the vfork & exec.
3594
3595 We don't want to allow a bp_finish to remain inserted now. But
3596 we can't safely delete it, 'cause finish_command has a handle to
3597 the bp on a bpstat, and will later want to delete it. There's a
3598 chance (and I've seen it happen) that if we delete the bp_finish
3599 here, that its storage will get reused by the time finish_command
3600 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3601 We really must allow finish_command to delete a bp_finish.
3602
3603 In the absence of a general solution for the "how do we know
3604 it's safe to delete something others may have handles to?"
3605 problem, what we'll do here is just uninsert the bp_finish, and
3606 let finish_command delete it.
3607
3608 (We know the bp_finish is "doomed" in the sense that it's
3609 momentary, and will be deleted as soon as finish_command sees
3610 the inferior stopped. So it doesn't matter that the bp's
3611 address is probably bogus in the new a.out, unlike e.g., the
3612 solib breakpoints.) */
3613
3614 if (b->type == bp_finish)
3615 {
3616 continue;
3617 }
3618
3619 /* Without a symbolic address, we have little hope of the
3620 pre-exec() address meaning the same thing in the post-exec()
3621 a.out. */
3622 if (breakpoint_event_location_empty_p (b))
3623 {
3624 delete_breakpoint (b);
3625 continue;
3626 }
3627 }
3628 }
3629
3630 int
3631 detach_breakpoints (ptid_t ptid)
3632 {
3633 struct bp_location *bl, **blp_tmp;
3634 int val = 0;
3635 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3636 struct inferior *inf = current_inferior ();
3637
3638 if (ptid.pid () == inferior_ptid.pid ())
3639 error (_("Cannot detach breakpoints of inferior_ptid"));
3640
3641 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3642 inferior_ptid = ptid;
3643 ALL_BP_LOCATIONS (bl, blp_tmp)
3644 {
3645 if (bl->pspace != inf->pspace)
3646 continue;
3647
3648 /* This function must physically remove breakpoints locations
3649 from the specified ptid, without modifying the breakpoint
3650 package's state. Locations of type bp_loc_other are only
3651 maintained at GDB side. So, there is no need to remove
3652 these bp_loc_other locations. Moreover, removing these
3653 would modify the breakpoint package's state. */
3654 if (bl->loc_type == bp_loc_other)
3655 continue;
3656
3657 if (bl->inserted)
3658 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3659 }
3660
3661 return val;
3662 }
3663
3664 /* Remove the breakpoint location BL from the current address space.
3665 Note that this is used to detach breakpoints from a child fork.
3666 When we get here, the child isn't in the inferior list, and neither
3667 do we have objects to represent its address space --- we should
3668 *not* look at bl->pspace->aspace here. */
3669
3670 static int
3671 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3672 {
3673 int val;
3674
3675 /* BL is never in moribund_locations by our callers. */
3676 gdb_assert (bl->owner != NULL);
3677
3678 /* The type of none suggests that owner is actually deleted.
3679 This should not ever happen. */
3680 gdb_assert (bl->owner->type != bp_none);
3681
3682 if (bl->loc_type == bp_loc_software_breakpoint
3683 || bl->loc_type == bp_loc_hardware_breakpoint)
3684 {
3685 /* "Normal" instruction breakpoint: either the standard
3686 trap-instruction bp (bp_breakpoint), or a
3687 bp_hardware_breakpoint. */
3688
3689 /* First check to see if we have to handle an overlay. */
3690 if (overlay_debugging == ovly_off
3691 || bl->section == NULL
3692 || !(section_is_overlay (bl->section)))
3693 {
3694 /* No overlay handling: just remove the breakpoint. */
3695
3696 /* If we're trying to uninsert a memory breakpoint that we
3697 know is set in a dynamic object that is marked
3698 shlib_disabled, then either the dynamic object was
3699 removed with "remove-symbol-file" or with
3700 "nosharedlibrary". In the former case, we don't know
3701 whether another dynamic object might have loaded over the
3702 breakpoint's address -- the user might well let us know
3703 about it next with add-symbol-file (the whole point of
3704 add-symbol-file is letting the user manually maintain a
3705 list of dynamically loaded objects). If we have the
3706 breakpoint's shadow memory, that is, this is a software
3707 breakpoint managed by GDB, check whether the breakpoint
3708 is still inserted in memory, to avoid overwriting wrong
3709 code with stale saved shadow contents. Note that HW
3710 breakpoints don't have shadow memory, as they're
3711 implemented using a mechanism that is not dependent on
3712 being able to modify the target's memory, and as such
3713 they should always be removed. */
3714 if (bl->shlib_disabled
3715 && bl->target_info.shadow_len != 0
3716 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3717 val = 0;
3718 else
3719 val = bl->owner->ops->remove_location (bl, reason);
3720 }
3721 else
3722 {
3723 /* This breakpoint is in an overlay section.
3724 Did we set a breakpoint at the LMA? */
3725 if (!overlay_events_enabled)
3726 {
3727 /* Yes -- overlay event support is not active, so we
3728 should have set a breakpoint at the LMA. Remove it.
3729 */
3730 /* Ignore any failures: if the LMA is in ROM, we will
3731 have already warned when we failed to insert it. */
3732 if (bl->loc_type == bp_loc_hardware_breakpoint)
3733 target_remove_hw_breakpoint (bl->gdbarch,
3734 &bl->overlay_target_info);
3735 else
3736 target_remove_breakpoint (bl->gdbarch,
3737 &bl->overlay_target_info,
3738 reason);
3739 }
3740 /* Did we set a breakpoint at the VMA?
3741 If so, we will have marked the breakpoint 'inserted'. */
3742 if (bl->inserted)
3743 {
3744 /* Yes -- remove it. Previously we did not bother to
3745 remove the breakpoint if the section had been
3746 unmapped, but let's not rely on that being safe. We
3747 don't know what the overlay manager might do. */
3748
3749 /* However, we should remove *software* breakpoints only
3750 if the section is still mapped, or else we overwrite
3751 wrong code with the saved shadow contents. */
3752 if (bl->loc_type == bp_loc_hardware_breakpoint
3753 || section_is_mapped (bl->section))
3754 val = bl->owner->ops->remove_location (bl, reason);
3755 else
3756 val = 0;
3757 }
3758 else
3759 {
3760 /* No -- not inserted, so no need to remove. No error. */
3761 val = 0;
3762 }
3763 }
3764
3765 /* In some cases, we might not be able to remove a breakpoint in
3766 a shared library that has already been removed, but we have
3767 not yet processed the shlib unload event. Similarly for an
3768 unloaded add-symbol-file object - the user might not yet have
3769 had the chance to remove-symbol-file it. shlib_disabled will
3770 be set if the library/object has already been removed, but
3771 the breakpoint hasn't been uninserted yet, e.g., after
3772 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3773 always-inserted mode. */
3774 if (val
3775 && (bl->loc_type == bp_loc_software_breakpoint
3776 && (bl->shlib_disabled
3777 || solib_name_from_address (bl->pspace, bl->address)
3778 || shared_objfile_contains_address_p (bl->pspace,
3779 bl->address))))
3780 val = 0;
3781
3782 if (val)
3783 return val;
3784 bl->inserted = (reason == DETACH_BREAKPOINT);
3785 }
3786 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3787 {
3788 gdb_assert (bl->owner->ops != NULL
3789 && bl->owner->ops->remove_location != NULL);
3790
3791 bl->inserted = (reason == DETACH_BREAKPOINT);
3792 bl->owner->ops->remove_location (bl, reason);
3793
3794 /* Failure to remove any of the hardware watchpoints comes here. */
3795 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3796 warning (_("Could not remove hardware watchpoint %d."),
3797 bl->owner->number);
3798 }
3799 else if (bl->owner->type == bp_catchpoint
3800 && breakpoint_enabled (bl->owner)
3801 && !bl->duplicate)
3802 {
3803 gdb_assert (bl->owner->ops != NULL
3804 && bl->owner->ops->remove_location != NULL);
3805
3806 val = bl->owner->ops->remove_location (bl, reason);
3807 if (val)
3808 return val;
3809
3810 bl->inserted = (reason == DETACH_BREAKPOINT);
3811 }
3812
3813 return 0;
3814 }
3815
3816 static int
3817 remove_breakpoint (struct bp_location *bl)
3818 {
3819 /* BL is never in moribund_locations by our callers. */
3820 gdb_assert (bl->owner != NULL);
3821
3822 /* The type of none suggests that owner is actually deleted.
3823 This should not ever happen. */
3824 gdb_assert (bl->owner->type != bp_none);
3825
3826 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3827
3828 switch_to_program_space_and_thread (bl->pspace);
3829
3830 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3831 }
3832
3833 /* Clear the "inserted" flag in all breakpoints. */
3834
3835 void
3836 mark_breakpoints_out (void)
3837 {
3838 struct bp_location *bl, **blp_tmp;
3839
3840 ALL_BP_LOCATIONS (bl, blp_tmp)
3841 if (bl->pspace == current_program_space)
3842 bl->inserted = 0;
3843 }
3844
3845 /* Clear the "inserted" flag in all breakpoints and delete any
3846 breakpoints which should go away between runs of the program.
3847
3848 Plus other such housekeeping that has to be done for breakpoints
3849 between runs.
3850
3851 Note: this function gets called at the end of a run (by
3852 generic_mourn_inferior) and when a run begins (by
3853 init_wait_for_inferior). */
3854
3855
3856
3857 void
3858 breakpoint_init_inferior (enum inf_context context)
3859 {
3860 struct breakpoint *b, *b_tmp;
3861 struct program_space *pspace = current_program_space;
3862
3863 /* If breakpoint locations are shared across processes, then there's
3864 nothing to do. */
3865 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3866 return;
3867
3868 mark_breakpoints_out ();
3869
3870 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3871 {
3872 if (b->loc && b->loc->pspace != pspace)
3873 continue;
3874
3875 switch (b->type)
3876 {
3877 case bp_call_dummy:
3878 case bp_longjmp_call_dummy:
3879
3880 /* If the call dummy breakpoint is at the entry point it will
3881 cause problems when the inferior is rerun, so we better get
3882 rid of it. */
3883
3884 case bp_watchpoint_scope:
3885
3886 /* Also get rid of scope breakpoints. */
3887
3888 case bp_shlib_event:
3889
3890 /* Also remove solib event breakpoints. Their addresses may
3891 have changed since the last time we ran the program.
3892 Actually we may now be debugging against different target;
3893 and so the solib backend that installed this breakpoint may
3894 not be used in by the target. E.g.,
3895
3896 (gdb) file prog-linux
3897 (gdb) run # native linux target
3898 ...
3899 (gdb) kill
3900 (gdb) file prog-win.exe
3901 (gdb) tar rem :9999 # remote Windows gdbserver.
3902 */
3903
3904 case bp_step_resume:
3905
3906 /* Also remove step-resume breakpoints. */
3907
3908 case bp_single_step:
3909
3910 /* Also remove single-step breakpoints. */
3911
3912 delete_breakpoint (b);
3913 break;
3914
3915 case bp_watchpoint:
3916 case bp_hardware_watchpoint:
3917 case bp_read_watchpoint:
3918 case bp_access_watchpoint:
3919 {
3920 struct watchpoint *w = (struct watchpoint *) b;
3921
3922 /* Likewise for watchpoints on local expressions. */
3923 if (w->exp_valid_block != NULL)
3924 delete_breakpoint (b);
3925 else
3926 {
3927 /* Get rid of existing locations, which are no longer
3928 valid. New ones will be created in
3929 update_watchpoint, when the inferior is restarted.
3930 The next update_global_location_list call will
3931 garbage collect them. */
3932 b->loc = NULL;
3933
3934 if (context == inf_starting)
3935 {
3936 /* Reset val field to force reread of starting value in
3937 insert_breakpoints. */
3938 w->val.reset (nullptr);
3939 w->val_valid = 0;
3940 }
3941 }
3942 }
3943 break;
3944 default:
3945 break;
3946 }
3947 }
3948
3949 /* Get rid of the moribund locations. */
3950 for (bp_location *bl : moribund_locations)
3951 decref_bp_location (&bl);
3952 moribund_locations.clear ();
3953 }
3954
3955 /* These functions concern about actual breakpoints inserted in the
3956 target --- to e.g. check if we need to do decr_pc adjustment or if
3957 we need to hop over the bkpt --- so we check for address space
3958 match, not program space. */
3959
3960 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3961 exists at PC. It returns ordinary_breakpoint_here if it's an
3962 ordinary breakpoint, or permanent_breakpoint_here if it's a
3963 permanent breakpoint.
3964 - When continuing from a location with an ordinary breakpoint, we
3965 actually single step once before calling insert_breakpoints.
3966 - When continuing from a location with a permanent breakpoint, we
3967 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3968 the target, to advance the PC past the breakpoint. */
3969
3970 enum breakpoint_here
3971 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3972 {
3973 struct bp_location *bl, **blp_tmp;
3974 int any_breakpoint_here = 0;
3975
3976 ALL_BP_LOCATIONS (bl, blp_tmp)
3977 {
3978 if (bl->loc_type != bp_loc_software_breakpoint
3979 && bl->loc_type != bp_loc_hardware_breakpoint)
3980 continue;
3981
3982 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_match (bl, aspace, pc))
3986 {
3987 if (overlay_debugging
3988 && section_is_overlay (bl->section)
3989 && !section_is_mapped (bl->section))
3990 continue; /* unmapped overlay -- can't be a match */
3991 else if (bl->permanent)
3992 return permanent_breakpoint_here;
3993 else
3994 any_breakpoint_here = 1;
3995 }
3996 }
3997
3998 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3999 }
4000
4001 /* See breakpoint.h. */
4002
4003 int
4004 breakpoint_in_range_p (const address_space *aspace,
4005 CORE_ADDR addr, ULONGEST len)
4006 {
4007 struct bp_location *bl, **blp_tmp;
4008
4009 ALL_BP_LOCATIONS (bl, blp_tmp)
4010 {
4011 if (bl->loc_type != bp_loc_software_breakpoint
4012 && bl->loc_type != bp_loc_hardware_breakpoint)
4013 continue;
4014
4015 if ((breakpoint_enabled (bl->owner)
4016 || bl->permanent)
4017 && breakpoint_location_address_range_overlap (bl, aspace,
4018 addr, len))
4019 {
4020 if (overlay_debugging
4021 && section_is_overlay (bl->section)
4022 && !section_is_mapped (bl->section))
4023 {
4024 /* Unmapped overlay -- can't be a match. */
4025 continue;
4026 }
4027
4028 return 1;
4029 }
4030 }
4031
4032 return 0;
4033 }
4034
4035 /* Return true if there's a moribund breakpoint at PC. */
4036
4037 int
4038 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4039 {
4040 for (bp_location *loc : moribund_locations)
4041 if (breakpoint_location_address_match (loc, aspace, pc))
4042 return 1;
4043
4044 return 0;
4045 }
4046
4047 /* Returns non-zero iff BL is inserted at PC, in address space
4048 ASPACE. */
4049
4050 static int
4051 bp_location_inserted_here_p (struct bp_location *bl,
4052 const address_space *aspace, CORE_ADDR pc)
4053 {
4054 if (bl->inserted
4055 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4056 aspace, pc))
4057 {
4058 if (overlay_debugging
4059 && section_is_overlay (bl->section)
4060 && !section_is_mapped (bl->section))
4061 return 0; /* unmapped overlay -- can't be a match */
4062 else
4063 return 1;
4064 }
4065 return 0;
4066 }
4067
4068 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4069
4070 int
4071 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4072 {
4073 struct bp_location **blp, **blp_tmp = NULL;
4074
4075 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4076 {
4077 struct bp_location *bl = *blp;
4078
4079 if (bl->loc_type != bp_loc_software_breakpoint
4080 && bl->loc_type != bp_loc_hardware_breakpoint)
4081 continue;
4082
4083 if (bp_location_inserted_here_p (bl, aspace, pc))
4084 return 1;
4085 }
4086 return 0;
4087 }
4088
4089 /* This function returns non-zero iff there is a software breakpoint
4090 inserted at PC. */
4091
4092 int
4093 software_breakpoint_inserted_here_p (const address_space *aspace,
4094 CORE_ADDR pc)
4095 {
4096 struct bp_location **blp, **blp_tmp = NULL;
4097
4098 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4099 {
4100 struct bp_location *bl = *blp;
4101
4102 if (bl->loc_type != bp_loc_software_breakpoint)
4103 continue;
4104
4105 if (bp_location_inserted_here_p (bl, aspace, pc))
4106 return 1;
4107 }
4108
4109 return 0;
4110 }
4111
4112 /* See breakpoint.h. */
4113
4114 int
4115 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4116 CORE_ADDR pc)
4117 {
4118 struct bp_location **blp, **blp_tmp = NULL;
4119
4120 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4121 {
4122 struct bp_location *bl = *blp;
4123
4124 if (bl->loc_type != bp_loc_hardware_breakpoint)
4125 continue;
4126
4127 if (bp_location_inserted_here_p (bl, aspace, pc))
4128 return 1;
4129 }
4130
4131 return 0;
4132 }
4133
4134 int
4135 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4136 CORE_ADDR addr, ULONGEST len)
4137 {
4138 struct breakpoint *bpt;
4139
4140 ALL_BREAKPOINTS (bpt)
4141 {
4142 struct bp_location *loc;
4143
4144 if (bpt->type != bp_hardware_watchpoint
4145 && bpt->type != bp_access_watchpoint)
4146 continue;
4147
4148 if (!breakpoint_enabled (bpt))
4149 continue;
4150
4151 for (loc = bpt->loc; loc; loc = loc->next)
4152 if (loc->pspace->aspace == aspace && loc->inserted)
4153 {
4154 CORE_ADDR l, h;
4155
4156 /* Check for intersection. */
4157 l = std::max<CORE_ADDR> (loc->address, addr);
4158 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4159 if (l < h)
4160 return 1;
4161 }
4162 }
4163 return 0;
4164 }
4165 \f
4166
4167 /* bpstat stuff. External routines' interfaces are documented
4168 in breakpoint.h. */
4169
4170 int
4171 is_catchpoint (struct breakpoint *ep)
4172 {
4173 return (ep->type == bp_catchpoint);
4174 }
4175
4176 /* Frees any storage that is part of a bpstat. Does not walk the
4177 'next' chain. */
4178
4179 bpstats::~bpstats ()
4180 {
4181 if (bp_location_at != NULL)
4182 decref_bp_location (&bp_location_at);
4183 }
4184
4185 /* Clear a bpstat so that it says we are not at any breakpoint.
4186 Also free any storage that is part of a bpstat. */
4187
4188 void
4189 bpstat_clear (bpstat *bsp)
4190 {
4191 bpstat p;
4192 bpstat q;
4193
4194 if (bsp == 0)
4195 return;
4196 p = *bsp;
4197 while (p != NULL)
4198 {
4199 q = p->next;
4200 delete p;
4201 p = q;
4202 }
4203 *bsp = NULL;
4204 }
4205
4206 bpstats::bpstats (const bpstats &other)
4207 : next (NULL),
4208 bp_location_at (other.bp_location_at),
4209 breakpoint_at (other.breakpoint_at),
4210 commands (other.commands),
4211 print (other.print),
4212 stop (other.stop),
4213 print_it (other.print_it)
4214 {
4215 if (other.old_val != NULL)
4216 old_val = release_value (value_copy (other.old_val.get ()));
4217 incref_bp_location (bp_location_at);
4218 }
4219
4220 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4221 is part of the bpstat is copied as well. */
4222
4223 bpstat
4224 bpstat_copy (bpstat bs)
4225 {
4226 bpstat p = NULL;
4227 bpstat tmp;
4228 bpstat retval = NULL;
4229
4230 if (bs == NULL)
4231 return bs;
4232
4233 for (; bs != NULL; bs = bs->next)
4234 {
4235 tmp = new bpstats (*bs);
4236
4237 if (p == NULL)
4238 /* This is the first thing in the chain. */
4239 retval = tmp;
4240 else
4241 p->next = tmp;
4242 p = tmp;
4243 }
4244 p->next = NULL;
4245 return retval;
4246 }
4247
4248 /* Find the bpstat associated with this breakpoint. */
4249
4250 bpstat
4251 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4252 {
4253 if (bsp == NULL)
4254 return NULL;
4255
4256 for (; bsp != NULL; bsp = bsp->next)
4257 {
4258 if (bsp->breakpoint_at == breakpoint)
4259 return bsp;
4260 }
4261 return NULL;
4262 }
4263
4264 /* See breakpoint.h. */
4265
4266 int
4267 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4268 {
4269 for (; bsp != NULL; bsp = bsp->next)
4270 {
4271 if (bsp->breakpoint_at == NULL)
4272 {
4273 /* A moribund location can never explain a signal other than
4274 GDB_SIGNAL_TRAP. */
4275 if (sig == GDB_SIGNAL_TRAP)
4276 return 1;
4277 }
4278 else
4279 {
4280 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4281 sig))
4282 return 1;
4283 }
4284 }
4285
4286 return 0;
4287 }
4288
4289 /* Put in *NUM the breakpoint number of the first breakpoint we are
4290 stopped at. *BSP upon return is a bpstat which points to the
4291 remaining breakpoints stopped at (but which is not guaranteed to be
4292 good for anything but further calls to bpstat_num).
4293
4294 Return 0 if passed a bpstat which does not indicate any breakpoints.
4295 Return -1 if stopped at a breakpoint that has been deleted since
4296 we set it.
4297 Return 1 otherwise. */
4298
4299 int
4300 bpstat_num (bpstat *bsp, int *num)
4301 {
4302 struct breakpoint *b;
4303
4304 if ((*bsp) == NULL)
4305 return 0; /* No more breakpoint values */
4306
4307 /* We assume we'll never have several bpstats that correspond to a
4308 single breakpoint -- otherwise, this function might return the
4309 same number more than once and this will look ugly. */
4310 b = (*bsp)->breakpoint_at;
4311 *bsp = (*bsp)->next;
4312 if (b == NULL)
4313 return -1; /* breakpoint that's been deleted since */
4314
4315 *num = b->number; /* We have its number */
4316 return 1;
4317 }
4318
4319 /* See breakpoint.h. */
4320
4321 void
4322 bpstat_clear_actions (void)
4323 {
4324 bpstat bs;
4325
4326 if (inferior_ptid == null_ptid)
4327 return;
4328
4329 thread_info *tp = inferior_thread ();
4330 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4331 {
4332 bs->commands = NULL;
4333 bs->old_val.reset (nullptr);
4334 }
4335 }
4336
4337 /* Called when a command is about to proceed the inferior. */
4338
4339 static void
4340 breakpoint_about_to_proceed (void)
4341 {
4342 if (inferior_ptid != null_ptid)
4343 {
4344 struct thread_info *tp = inferior_thread ();
4345
4346 /* Allow inferior function calls in breakpoint commands to not
4347 interrupt the command list. When the call finishes
4348 successfully, the inferior will be standing at the same
4349 breakpoint as if nothing happened. */
4350 if (tp->control.in_infcall)
4351 return;
4352 }
4353
4354 breakpoint_proceeded = 1;
4355 }
4356
4357 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4358 or its equivalent. */
4359
4360 static int
4361 command_line_is_silent (struct command_line *cmd)
4362 {
4363 return cmd && (strcmp ("silent", cmd->line) == 0);
4364 }
4365
4366 /* Execute all the commands associated with all the breakpoints at
4367 this location. Any of these commands could cause the process to
4368 proceed beyond this point, etc. We look out for such changes by
4369 checking the global "breakpoint_proceeded" after each command.
4370
4371 Returns true if a breakpoint command resumed the inferior. In that
4372 case, it is the caller's responsibility to recall it again with the
4373 bpstat of the current thread. */
4374
4375 static int
4376 bpstat_do_actions_1 (bpstat *bsp)
4377 {
4378 bpstat bs;
4379 int again = 0;
4380
4381 /* Avoid endless recursion if a `source' command is contained
4382 in bs->commands. */
4383 if (executing_breakpoint_commands)
4384 return 0;
4385
4386 scoped_restore save_executing
4387 = make_scoped_restore (&executing_breakpoint_commands, 1);
4388
4389 scoped_restore preventer = prevent_dont_repeat ();
4390
4391 /* This pointer will iterate over the list of bpstat's. */
4392 bs = *bsp;
4393
4394 breakpoint_proceeded = 0;
4395 for (; bs != NULL; bs = bs->next)
4396 {
4397 struct command_line *cmd = NULL;
4398
4399 /* Take ownership of the BSP's command tree, if it has one.
4400
4401 The command tree could legitimately contain commands like
4402 'step' and 'next', which call clear_proceed_status, which
4403 frees stop_bpstat's command tree. To make sure this doesn't
4404 free the tree we're executing out from under us, we need to
4405 take ownership of the tree ourselves. Since a given bpstat's
4406 commands are only executed once, we don't need to copy it; we
4407 can clear the pointer in the bpstat, and make sure we free
4408 the tree when we're done. */
4409 counted_command_line ccmd = bs->commands;
4410 bs->commands = NULL;
4411 if (ccmd != NULL)
4412 cmd = ccmd.get ();
4413 if (command_line_is_silent (cmd))
4414 {
4415 /* The action has been already done by bpstat_stop_status. */
4416 cmd = cmd->next;
4417 }
4418
4419 while (cmd != NULL)
4420 {
4421 execute_control_command (cmd);
4422
4423 if (breakpoint_proceeded)
4424 break;
4425 else
4426 cmd = cmd->next;
4427 }
4428
4429 if (breakpoint_proceeded)
4430 {
4431 if (current_ui->async)
4432 /* If we are in async mode, then the target might be still
4433 running, not stopped at any breakpoint, so nothing for
4434 us to do here -- just return to the event loop. */
4435 ;
4436 else
4437 /* In sync mode, when execute_control_command returns
4438 we're already standing on the next breakpoint.
4439 Breakpoint commands for that stop were not run, since
4440 execute_command does not run breakpoint commands --
4441 only command_line_handler does, but that one is not
4442 involved in execution of breakpoint commands. So, we
4443 can now execute breakpoint commands. It should be
4444 noted that making execute_command do bpstat actions is
4445 not an option -- in this case we'll have recursive
4446 invocation of bpstat for each breakpoint with a
4447 command, and can easily blow up GDB stack. Instead, we
4448 return true, which will trigger the caller to recall us
4449 with the new stop_bpstat. */
4450 again = 1;
4451 break;
4452 }
4453 }
4454 return again;
4455 }
4456
4457 /* Helper for bpstat_do_actions. Get the current thread, if there's
4458 one, is alive and has execution. Return NULL otherwise. */
4459
4460 static thread_info *
4461 get_bpstat_thread ()
4462 {
4463 if (inferior_ptid == null_ptid || !target_has_execution)
4464 return NULL;
4465
4466 thread_info *tp = inferior_thread ();
4467 if (tp->state == THREAD_EXITED || tp->executing)
4468 return NULL;
4469 return tp;
4470 }
4471
4472 void
4473 bpstat_do_actions (void)
4474 {
4475 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4476 thread_info *tp;
4477
4478 /* Do any commands attached to breakpoint we are stopped at. */
4479 while ((tp = get_bpstat_thread ()) != NULL)
4480 {
4481 /* Since in sync mode, bpstat_do_actions may resume the
4482 inferior, and only return when it is stopped at the next
4483 breakpoint, we keep doing breakpoint actions until it returns
4484 false to indicate the inferior was not resumed. */
4485 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4486 break;
4487 }
4488
4489 discard_cleanups (cleanup_if_error);
4490 }
4491
4492 /* Print out the (old or new) value associated with a watchpoint. */
4493
4494 static void
4495 watchpoint_value_print (struct value *val, struct ui_file *stream)
4496 {
4497 if (val == NULL)
4498 fprintf_unfiltered (stream, _("<unreadable>"));
4499 else
4500 {
4501 struct value_print_options opts;
4502 get_user_print_options (&opts);
4503 value_print (val, stream, &opts);
4504 }
4505 }
4506
4507 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4508 debugging multiple threads. */
4509
4510 void
4511 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4512 {
4513 if (uiout->is_mi_like_p ())
4514 return;
4515
4516 uiout->text ("\n");
4517
4518 if (show_thread_that_caused_stop ())
4519 {
4520 const char *name;
4521 struct thread_info *thr = inferior_thread ();
4522
4523 uiout->text ("Thread ");
4524 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4525
4526 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4527 if (name != NULL)
4528 {
4529 uiout->text (" \"");
4530 uiout->field_fmt ("name", "%s", name);
4531 uiout->text ("\"");
4532 }
4533
4534 uiout->text (" hit ");
4535 }
4536 }
4537
4538 /* Generic routine for printing messages indicating why we
4539 stopped. The behavior of this function depends on the value
4540 'print_it' in the bpstat structure. Under some circumstances we
4541 may decide not to print anything here and delegate the task to
4542 normal_stop(). */
4543
4544 static enum print_stop_action
4545 print_bp_stop_message (bpstat bs)
4546 {
4547 switch (bs->print_it)
4548 {
4549 case print_it_noop:
4550 /* Nothing should be printed for this bpstat entry. */
4551 return PRINT_UNKNOWN;
4552 break;
4553
4554 case print_it_done:
4555 /* We still want to print the frame, but we already printed the
4556 relevant messages. */
4557 return PRINT_SRC_AND_LOC;
4558 break;
4559
4560 case print_it_normal:
4561 {
4562 struct breakpoint *b = bs->breakpoint_at;
4563
4564 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4565 which has since been deleted. */
4566 if (b == NULL)
4567 return PRINT_UNKNOWN;
4568
4569 /* Normal case. Call the breakpoint's print_it method. */
4570 return b->ops->print_it (bs);
4571 }
4572 break;
4573
4574 default:
4575 internal_error (__FILE__, __LINE__,
4576 _("print_bp_stop_message: unrecognized enum value"));
4577 break;
4578 }
4579 }
4580
4581 /* A helper function that prints a shared library stopped event. */
4582
4583 static void
4584 print_solib_event (int is_catchpoint)
4585 {
4586 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4587 bool any_added = !current_program_space->added_solibs.empty ();
4588
4589 if (!is_catchpoint)
4590 {
4591 if (any_added || any_deleted)
4592 current_uiout->text (_("Stopped due to shared library event:\n"));
4593 else
4594 current_uiout->text (_("Stopped due to shared library event (no "
4595 "libraries added or removed)\n"));
4596 }
4597
4598 if (current_uiout->is_mi_like_p ())
4599 current_uiout->field_string ("reason",
4600 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4601
4602 if (any_deleted)
4603 {
4604 current_uiout->text (_(" Inferior unloaded "));
4605 ui_out_emit_list list_emitter (current_uiout, "removed");
4606 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4607 {
4608 const std::string &name = current_program_space->deleted_solibs[ix];
4609
4610 if (ix > 0)
4611 current_uiout->text (" ");
4612 current_uiout->field_string ("library", name);
4613 current_uiout->text ("\n");
4614 }
4615 }
4616
4617 if (any_added)
4618 {
4619 current_uiout->text (_(" Inferior loaded "));
4620 ui_out_emit_list list_emitter (current_uiout, "added");
4621 bool first = true;
4622 for (so_list *iter : current_program_space->added_solibs)
4623 {
4624 if (!first)
4625 current_uiout->text (" ");
4626 first = false;
4627 current_uiout->field_string ("library", iter->so_name);
4628 current_uiout->text ("\n");
4629 }
4630 }
4631 }
4632
4633 /* Print a message indicating what happened. This is called from
4634 normal_stop(). The input to this routine is the head of the bpstat
4635 list - a list of the eventpoints that caused this stop. KIND is
4636 the target_waitkind for the stopping event. This
4637 routine calls the generic print routine for printing a message
4638 about reasons for stopping. This will print (for example) the
4639 "Breakpoint n," part of the output. The return value of this
4640 routine is one of:
4641
4642 PRINT_UNKNOWN: Means we printed nothing.
4643 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4644 code to print the location. An example is
4645 "Breakpoint 1, " which should be followed by
4646 the location.
4647 PRINT_SRC_ONLY: Means we printed something, but there is no need
4648 to also print the location part of the message.
4649 An example is the catch/throw messages, which
4650 don't require a location appended to the end.
4651 PRINT_NOTHING: We have done some printing and we don't need any
4652 further info to be printed. */
4653
4654 enum print_stop_action
4655 bpstat_print (bpstat bs, int kind)
4656 {
4657 enum print_stop_action val;
4658
4659 /* Maybe another breakpoint in the chain caused us to stop.
4660 (Currently all watchpoints go on the bpstat whether hit or not.
4661 That probably could (should) be changed, provided care is taken
4662 with respect to bpstat_explains_signal). */
4663 for (; bs; bs = bs->next)
4664 {
4665 val = print_bp_stop_message (bs);
4666 if (val == PRINT_SRC_ONLY
4667 || val == PRINT_SRC_AND_LOC
4668 || val == PRINT_NOTHING)
4669 return val;
4670 }
4671
4672 /* If we had hit a shared library event breakpoint,
4673 print_bp_stop_message would print out this message. If we hit an
4674 OS-level shared library event, do the same thing. */
4675 if (kind == TARGET_WAITKIND_LOADED)
4676 {
4677 print_solib_event (0);
4678 return PRINT_NOTHING;
4679 }
4680
4681 /* We reached the end of the chain, or we got a null BS to start
4682 with and nothing was printed. */
4683 return PRINT_UNKNOWN;
4684 }
4685
4686 /* Evaluate the boolean expression EXP and return the result. */
4687
4688 static bool
4689 breakpoint_cond_eval (expression *exp)
4690 {
4691 struct value *mark = value_mark ();
4692 bool res = value_true (evaluate_expression (exp));
4693
4694 value_free_to_mark (mark);
4695 return res;
4696 }
4697
4698 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4699
4700 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4701 : next (NULL),
4702 bp_location_at (bl),
4703 breakpoint_at (bl->owner),
4704 commands (NULL),
4705 print (0),
4706 stop (0),
4707 print_it (print_it_normal)
4708 {
4709 incref_bp_location (bl);
4710 **bs_link_pointer = this;
4711 *bs_link_pointer = &next;
4712 }
4713
4714 bpstats::bpstats ()
4715 : next (NULL),
4716 bp_location_at (NULL),
4717 breakpoint_at (NULL),
4718 commands (NULL),
4719 print (0),
4720 stop (0),
4721 print_it (print_it_normal)
4722 {
4723 }
4724 \f
4725 /* The target has stopped with waitstatus WS. Check if any hardware
4726 watchpoints have triggered, according to the target. */
4727
4728 int
4729 watchpoints_triggered (struct target_waitstatus *ws)
4730 {
4731 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4732 CORE_ADDR addr;
4733 struct breakpoint *b;
4734
4735 if (!stopped_by_watchpoint)
4736 {
4737 /* We were not stopped by a watchpoint. Mark all watchpoints
4738 as not triggered. */
4739 ALL_BREAKPOINTS (b)
4740 if (is_hardware_watchpoint (b))
4741 {
4742 struct watchpoint *w = (struct watchpoint *) b;
4743
4744 w->watchpoint_triggered = watch_triggered_no;
4745 }
4746
4747 return 0;
4748 }
4749
4750 if (!target_stopped_data_address (current_top_target (), &addr))
4751 {
4752 /* We were stopped by a watchpoint, but we don't know where.
4753 Mark all watchpoints as unknown. */
4754 ALL_BREAKPOINTS (b)
4755 if (is_hardware_watchpoint (b))
4756 {
4757 struct watchpoint *w = (struct watchpoint *) b;
4758
4759 w->watchpoint_triggered = watch_triggered_unknown;
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* The target could report the data address. Mark watchpoints
4766 affected by this data address as triggered, and all others as not
4767 triggered. */
4768
4769 ALL_BREAKPOINTS (b)
4770 if (is_hardware_watchpoint (b))
4771 {
4772 struct watchpoint *w = (struct watchpoint *) b;
4773 struct bp_location *loc;
4774
4775 w->watchpoint_triggered = watch_triggered_no;
4776 for (loc = b->loc; loc; loc = loc->next)
4777 {
4778 if (is_masked_watchpoint (b))
4779 {
4780 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4781 CORE_ADDR start = loc->address & w->hw_wp_mask;
4782
4783 if (newaddr == start)
4784 {
4785 w->watchpoint_triggered = watch_triggered_yes;
4786 break;
4787 }
4788 }
4789 /* Exact match not required. Within range is sufficient. */
4790 else if (target_watchpoint_addr_within_range (current_top_target (),
4791 addr, loc->address,
4792 loc->length))
4793 {
4794 w->watchpoint_triggered = watch_triggered_yes;
4795 break;
4796 }
4797 }
4798 }
4799
4800 return 1;
4801 }
4802
4803 /* Possible return values for watchpoint_check. */
4804 enum wp_check_result
4805 {
4806 /* The watchpoint has been deleted. */
4807 WP_DELETED = 1,
4808
4809 /* The value has changed. */
4810 WP_VALUE_CHANGED = 2,
4811
4812 /* The value has not changed. */
4813 WP_VALUE_NOT_CHANGED = 3,
4814
4815 /* Ignore this watchpoint, no matter if the value changed or not. */
4816 WP_IGNORE = 4,
4817 };
4818
4819 #define BP_TEMPFLAG 1
4820 #define BP_HARDWAREFLAG 2
4821
4822 /* Evaluate watchpoint condition expression and check if its value
4823 changed. */
4824
4825 static wp_check_result
4826 watchpoint_check (bpstat bs)
4827 {
4828 struct watchpoint *b;
4829 struct frame_info *fr;
4830 int within_current_scope;
4831
4832 /* BS is built from an existing struct breakpoint. */
4833 gdb_assert (bs->breakpoint_at != NULL);
4834 b = (struct watchpoint *) bs->breakpoint_at;
4835
4836 /* If this is a local watchpoint, we only want to check if the
4837 watchpoint frame is in scope if the current thread is the thread
4838 that was used to create the watchpoint. */
4839 if (!watchpoint_in_thread_scope (b))
4840 return WP_IGNORE;
4841
4842 if (b->exp_valid_block == NULL)
4843 within_current_scope = 1;
4844 else
4845 {
4846 struct frame_info *frame = get_current_frame ();
4847 struct gdbarch *frame_arch = get_frame_arch (frame);
4848 CORE_ADDR frame_pc = get_frame_pc (frame);
4849
4850 /* stack_frame_destroyed_p() returns a non-zero value if we're
4851 still in the function but the stack frame has already been
4852 invalidated. Since we can't rely on the values of local
4853 variables after the stack has been destroyed, we are treating
4854 the watchpoint in that state as `not changed' without further
4855 checking. Don't mark watchpoints as changed if the current
4856 frame is in an epilogue - even if they are in some other
4857 frame, our view of the stack is likely to be wrong and
4858 frame_find_by_id could error out. */
4859 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4860 return WP_IGNORE;
4861
4862 fr = frame_find_by_id (b->watchpoint_frame);
4863 within_current_scope = (fr != NULL);
4864
4865 /* If we've gotten confused in the unwinder, we might have
4866 returned a frame that can't describe this variable. */
4867 if (within_current_scope)
4868 {
4869 struct symbol *function;
4870
4871 function = get_frame_function (fr);
4872 if (function == NULL
4873 || !contained_in (b->exp_valid_block,
4874 SYMBOL_BLOCK_VALUE (function)))
4875 within_current_scope = 0;
4876 }
4877
4878 if (within_current_scope)
4879 /* If we end up stopping, the current frame will get selected
4880 in normal_stop. So this call to select_frame won't affect
4881 the user. */
4882 select_frame (fr);
4883 }
4884
4885 if (within_current_scope)
4886 {
4887 /* We use value_{,free_to_}mark because it could be a *long*
4888 time before we return to the command level and call
4889 free_all_values. We can't call free_all_values because we
4890 might be in the middle of evaluating a function call. */
4891
4892 int pc = 0;
4893 struct value *mark;
4894 struct value *new_val;
4895
4896 if (is_masked_watchpoint (b))
4897 /* Since we don't know the exact trigger address (from
4898 stopped_data_address), just tell the user we've triggered
4899 a mask watchpoint. */
4900 return WP_VALUE_CHANGED;
4901
4902 mark = value_mark ();
4903 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4904
4905 if (b->val_bitsize != 0)
4906 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4907
4908 /* We use value_equal_contents instead of value_equal because
4909 the latter coerces an array to a pointer, thus comparing just
4910 the address of the array instead of its contents. This is
4911 not what we want. */
4912 if ((b->val != NULL) != (new_val != NULL)
4913 || (b->val != NULL && !value_equal_contents (b->val.get (),
4914 new_val)))
4915 {
4916 bs->old_val = b->val;
4917 b->val = release_value (new_val);
4918 b->val_valid = 1;
4919 if (new_val != NULL)
4920 value_free_to_mark (mark);
4921 return WP_VALUE_CHANGED;
4922 }
4923 else
4924 {
4925 /* Nothing changed. */
4926 value_free_to_mark (mark);
4927 return WP_VALUE_NOT_CHANGED;
4928 }
4929 }
4930 else
4931 {
4932 /* This seems like the only logical thing to do because
4933 if we temporarily ignored the watchpoint, then when
4934 we reenter the block in which it is valid it contains
4935 garbage (in the case of a function, it may have two
4936 garbage values, one before and one after the prologue).
4937 So we can't even detect the first assignment to it and
4938 watch after that (since the garbage may or may not equal
4939 the first value assigned). */
4940 /* We print all the stop information in
4941 breakpoint_ops->print_it, but in this case, by the time we
4942 call breakpoint_ops->print_it this bp will be deleted
4943 already. So we have no choice but print the information
4944 here. */
4945
4946 SWITCH_THRU_ALL_UIS ()
4947 {
4948 struct ui_out *uiout = current_uiout;
4949
4950 if (uiout->is_mi_like_p ())
4951 uiout->field_string
4952 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4953 uiout->text ("\nWatchpoint ");
4954 uiout->field_int ("wpnum", b->number);
4955 uiout->text (" deleted because the program has left the block in\n"
4956 "which its expression is valid.\n");
4957 }
4958
4959 /* Make sure the watchpoint's commands aren't executed. */
4960 b->commands = NULL;
4961 watchpoint_del_at_next_stop (b);
4962
4963 return WP_DELETED;
4964 }
4965 }
4966
4967 /* Return true if it looks like target has stopped due to hitting
4968 breakpoint location BL. This function does not check if we should
4969 stop, only if BL explains the stop. */
4970
4971 static int
4972 bpstat_check_location (const struct bp_location *bl,
4973 const address_space *aspace, CORE_ADDR bp_addr,
4974 const struct target_waitstatus *ws)
4975 {
4976 struct breakpoint *b = bl->owner;
4977
4978 /* BL is from an existing breakpoint. */
4979 gdb_assert (b != NULL);
4980
4981 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4982 }
4983
4984 /* Determine if the watched values have actually changed, and we
4985 should stop. If not, set BS->stop to 0. */
4986
4987 static void
4988 bpstat_check_watchpoint (bpstat bs)
4989 {
4990 const struct bp_location *bl;
4991 struct watchpoint *b;
4992
4993 /* BS is built for existing struct breakpoint. */
4994 bl = bs->bp_location_at;
4995 gdb_assert (bl != NULL);
4996 b = (struct watchpoint *) bs->breakpoint_at;
4997 gdb_assert (b != NULL);
4998
4999 {
5000 int must_check_value = 0;
5001
5002 if (b->type == bp_watchpoint)
5003 /* For a software watchpoint, we must always check the
5004 watched value. */
5005 must_check_value = 1;
5006 else if (b->watchpoint_triggered == watch_triggered_yes)
5007 /* We have a hardware watchpoint (read, write, or access)
5008 and the target earlier reported an address watched by
5009 this watchpoint. */
5010 must_check_value = 1;
5011 else if (b->watchpoint_triggered == watch_triggered_unknown
5012 && b->type == bp_hardware_watchpoint)
5013 /* We were stopped by a hardware watchpoint, but the target could
5014 not report the data address. We must check the watchpoint's
5015 value. Access and read watchpoints are out of luck; without
5016 a data address, we can't figure it out. */
5017 must_check_value = 1;
5018
5019 if (must_check_value)
5020 {
5021 wp_check_result e;
5022
5023 TRY
5024 {
5025 e = watchpoint_check (bs);
5026 }
5027 CATCH (ex, RETURN_MASK_ALL)
5028 {
5029 exception_fprintf (gdb_stderr, ex,
5030 "Error evaluating expression "
5031 "for watchpoint %d\n",
5032 b->number);
5033
5034 SWITCH_THRU_ALL_UIS ()
5035 {
5036 printf_filtered (_("Watchpoint %d deleted.\n"),
5037 b->number);
5038 }
5039 watchpoint_del_at_next_stop (b);
5040 e = WP_DELETED;
5041 }
5042 END_CATCH
5043
5044 switch (e)
5045 {
5046 case WP_DELETED:
5047 /* We've already printed what needs to be printed. */
5048 bs->print_it = print_it_done;
5049 /* Stop. */
5050 break;
5051 case WP_IGNORE:
5052 bs->print_it = print_it_noop;
5053 bs->stop = 0;
5054 break;
5055 case WP_VALUE_CHANGED:
5056 if (b->type == bp_read_watchpoint)
5057 {
5058 /* There are two cases to consider here:
5059
5060 1. We're watching the triggered memory for reads.
5061 In that case, trust the target, and always report
5062 the watchpoint hit to the user. Even though
5063 reads don't cause value changes, the value may
5064 have changed since the last time it was read, and
5065 since we're not trapping writes, we will not see
5066 those, and as such we should ignore our notion of
5067 old value.
5068
5069 2. We're watching the triggered memory for both
5070 reads and writes. There are two ways this may
5071 happen:
5072
5073 2.1. This is a target that can't break on data
5074 reads only, but can break on accesses (reads or
5075 writes), such as e.g., x86. We detect this case
5076 at the time we try to insert read watchpoints.
5077
5078 2.2. Otherwise, the target supports read
5079 watchpoints, but, the user set an access or write
5080 watchpoint watching the same memory as this read
5081 watchpoint.
5082
5083 If we're watching memory writes as well as reads,
5084 ignore watchpoint hits when we find that the
5085 value hasn't changed, as reads don't cause
5086 changes. This still gives false positives when
5087 the program writes the same value to memory as
5088 what there was already in memory (we will confuse
5089 it for a read), but it's much better than
5090 nothing. */
5091
5092 int other_write_watchpoint = 0;
5093
5094 if (bl->watchpoint_type == hw_read)
5095 {
5096 struct breakpoint *other_b;
5097
5098 ALL_BREAKPOINTS (other_b)
5099 if (other_b->type == bp_hardware_watchpoint
5100 || other_b->type == bp_access_watchpoint)
5101 {
5102 struct watchpoint *other_w =
5103 (struct watchpoint *) other_b;
5104
5105 if (other_w->watchpoint_triggered
5106 == watch_triggered_yes)
5107 {
5108 other_write_watchpoint = 1;
5109 break;
5110 }
5111 }
5112 }
5113
5114 if (other_write_watchpoint
5115 || bl->watchpoint_type == hw_access)
5116 {
5117 /* We're watching the same memory for writes,
5118 and the value changed since the last time we
5119 updated it, so this trap must be for a write.
5120 Ignore it. */
5121 bs->print_it = print_it_noop;
5122 bs->stop = 0;
5123 }
5124 }
5125 break;
5126 case WP_VALUE_NOT_CHANGED:
5127 if (b->type == bp_hardware_watchpoint
5128 || b->type == bp_watchpoint)
5129 {
5130 /* Don't stop: write watchpoints shouldn't fire if
5131 the value hasn't changed. */
5132 bs->print_it = print_it_noop;
5133 bs->stop = 0;
5134 }
5135 /* Stop. */
5136 break;
5137 default:
5138 /* Can't happen. */
5139 break;
5140 }
5141 }
5142 else /* must_check_value == 0 */
5143 {
5144 /* This is a case where some watchpoint(s) triggered, but
5145 not at the address of this watchpoint, or else no
5146 watchpoint triggered after all. So don't print
5147 anything for this watchpoint. */
5148 bs->print_it = print_it_noop;
5149 bs->stop = 0;
5150 }
5151 }
5152 }
5153
5154 /* For breakpoints that are currently marked as telling gdb to stop,
5155 check conditions (condition proper, frame, thread and ignore count)
5156 of breakpoint referred to by BS. If we should not stop for this
5157 breakpoint, set BS->stop to 0. */
5158
5159 static void
5160 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5161 {
5162 const struct bp_location *bl;
5163 struct breakpoint *b;
5164 /* Assume stop. */
5165 bool condition_result = true;
5166 struct expression *cond;
5167
5168 gdb_assert (bs->stop);
5169
5170 /* BS is built for existing struct breakpoint. */
5171 bl = bs->bp_location_at;
5172 gdb_assert (bl != NULL);
5173 b = bs->breakpoint_at;
5174 gdb_assert (b != NULL);
5175
5176 /* Even if the target evaluated the condition on its end and notified GDB, we
5177 need to do so again since GDB does not know if we stopped due to a
5178 breakpoint or a single step breakpoint. */
5179
5180 if (frame_id_p (b->frame_id)
5181 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5182 {
5183 bs->stop = 0;
5184 return;
5185 }
5186
5187 /* If this is a thread/task-specific breakpoint, don't waste cpu
5188 evaluating the condition if this isn't the specified
5189 thread/task. */
5190 if ((b->thread != -1 && b->thread != thread->global_num)
5191 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5192 {
5193 bs->stop = 0;
5194 return;
5195 }
5196
5197 /* Evaluate extension language breakpoints that have a "stop" method
5198 implemented. */
5199 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5200
5201 if (is_watchpoint (b))
5202 {
5203 struct watchpoint *w = (struct watchpoint *) b;
5204
5205 cond = w->cond_exp.get ();
5206 }
5207 else
5208 cond = bl->cond.get ();
5209
5210 if (cond && b->disposition != disp_del_at_next_stop)
5211 {
5212 int within_current_scope = 1;
5213 struct watchpoint * w;
5214
5215 /* We use value_mark and value_free_to_mark because it could
5216 be a long time before we return to the command level and
5217 call free_all_values. We can't call free_all_values
5218 because we might be in the middle of evaluating a
5219 function call. */
5220 struct value *mark = value_mark ();
5221
5222 if (is_watchpoint (b))
5223 w = (struct watchpoint *) b;
5224 else
5225 w = NULL;
5226
5227 /* Need to select the frame, with all that implies so that
5228 the conditions will have the right context. Because we
5229 use the frame, we will not see an inlined function's
5230 variables when we arrive at a breakpoint at the start
5231 of the inlined function; the current frame will be the
5232 call site. */
5233 if (w == NULL || w->cond_exp_valid_block == NULL)
5234 select_frame (get_current_frame ());
5235 else
5236 {
5237 struct frame_info *frame;
5238
5239 /* For local watchpoint expressions, which particular
5240 instance of a local is being watched matters, so we
5241 keep track of the frame to evaluate the expression
5242 in. To evaluate the condition however, it doesn't
5243 really matter which instantiation of the function
5244 where the condition makes sense triggers the
5245 watchpoint. This allows an expression like "watch
5246 global if q > 10" set in `func', catch writes to
5247 global on all threads that call `func', or catch
5248 writes on all recursive calls of `func' by a single
5249 thread. We simply always evaluate the condition in
5250 the innermost frame that's executing where it makes
5251 sense to evaluate the condition. It seems
5252 intuitive. */
5253 frame = block_innermost_frame (w->cond_exp_valid_block);
5254 if (frame != NULL)
5255 select_frame (frame);
5256 else
5257 within_current_scope = 0;
5258 }
5259 if (within_current_scope)
5260 {
5261 TRY
5262 {
5263 condition_result = breakpoint_cond_eval (cond);
5264 }
5265 CATCH (ex, RETURN_MASK_ALL)
5266 {
5267 exception_fprintf (gdb_stderr, ex,
5268 "Error in testing breakpoint condition:\n");
5269 }
5270 END_CATCH
5271 }
5272 else
5273 {
5274 warning (_("Watchpoint condition cannot be tested "
5275 "in the current scope"));
5276 /* If we failed to set the right context for this
5277 watchpoint, unconditionally report it. */
5278 }
5279 /* FIXME-someday, should give breakpoint #. */
5280 value_free_to_mark (mark);
5281 }
5282
5283 if (cond && !condition_result)
5284 {
5285 bs->stop = 0;
5286 }
5287 else if (b->ignore_count > 0)
5288 {
5289 b->ignore_count--;
5290 bs->stop = 0;
5291 /* Increase the hit count even though we don't stop. */
5292 ++(b->hit_count);
5293 gdb::observers::breakpoint_modified.notify (b);
5294 }
5295 }
5296
5297 /* Returns true if we need to track moribund locations of LOC's type
5298 on the current target. */
5299
5300 static int
5301 need_moribund_for_location_type (struct bp_location *loc)
5302 {
5303 return ((loc->loc_type == bp_loc_software_breakpoint
5304 && !target_supports_stopped_by_sw_breakpoint ())
5305 || (loc->loc_type == bp_loc_hardware_breakpoint
5306 && !target_supports_stopped_by_hw_breakpoint ()));
5307 }
5308
5309 /* See breakpoint.h. */
5310
5311 bpstat
5312 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5313 const struct target_waitstatus *ws)
5314 {
5315 struct breakpoint *b;
5316 bpstat bs_head = NULL, *bs_link = &bs_head;
5317
5318 ALL_BREAKPOINTS (b)
5319 {
5320 if (!breakpoint_enabled (b))
5321 continue;
5322
5323 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5324 {
5325 /* For hardware watchpoints, we look only at the first
5326 location. The watchpoint_check function will work on the
5327 entire expression, not the individual locations. For
5328 read watchpoints, the watchpoints_triggered function has
5329 checked all locations already. */
5330 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5331 break;
5332
5333 if (!bl->enabled || bl->shlib_disabled)
5334 continue;
5335
5336 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5337 continue;
5338
5339 /* Come here if it's a watchpoint, or if the break address
5340 matches. */
5341
5342 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5343 explain stop. */
5344
5345 /* Assume we stop. Should we find a watchpoint that is not
5346 actually triggered, or if the condition of the breakpoint
5347 evaluates as false, we'll reset 'stop' to 0. */
5348 bs->stop = 1;
5349 bs->print = 1;
5350
5351 /* If this is a scope breakpoint, mark the associated
5352 watchpoint as triggered so that we will handle the
5353 out-of-scope event. We'll get to the watchpoint next
5354 iteration. */
5355 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5356 {
5357 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5358
5359 w->watchpoint_triggered = watch_triggered_yes;
5360 }
5361 }
5362 }
5363
5364 /* Check if a moribund breakpoint explains the stop. */
5365 if (!target_supports_stopped_by_sw_breakpoint ()
5366 || !target_supports_stopped_by_hw_breakpoint ())
5367 {
5368 for (bp_location *loc : moribund_locations)
5369 {
5370 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5371 && need_moribund_for_location_type (loc))
5372 {
5373 bpstat bs = new bpstats (loc, &bs_link);
5374 /* For hits of moribund locations, we should just proceed. */
5375 bs->stop = 0;
5376 bs->print = 0;
5377 bs->print_it = print_it_noop;
5378 }
5379 }
5380 }
5381
5382 return bs_head;
5383 }
5384
5385 /* See breakpoint.h. */
5386
5387 bpstat
5388 bpstat_stop_status (const address_space *aspace,
5389 CORE_ADDR bp_addr, thread_info *thread,
5390 const struct target_waitstatus *ws,
5391 bpstat stop_chain)
5392 {
5393 struct breakpoint *b = NULL;
5394 /* First item of allocated bpstat's. */
5395 bpstat bs_head = stop_chain;
5396 bpstat bs;
5397 int need_remove_insert;
5398 int removed_any;
5399
5400 /* First, build the bpstat chain with locations that explain a
5401 target stop, while being careful to not set the target running,
5402 as that may invalidate locations (in particular watchpoint
5403 locations are recreated). Resuming will happen here with
5404 breakpoint conditions or watchpoint expressions that include
5405 inferior function calls. */
5406 if (bs_head == NULL)
5407 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5408
5409 /* A bit of special processing for shlib breakpoints. We need to
5410 process solib loading here, so that the lists of loaded and
5411 unloaded libraries are correct before we handle "catch load" and
5412 "catch unload". */
5413 for (bs = bs_head; bs != NULL; bs = bs->next)
5414 {
5415 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5416 {
5417 handle_solib_event ();
5418 break;
5419 }
5420 }
5421
5422 /* Now go through the locations that caused the target to stop, and
5423 check whether we're interested in reporting this stop to higher
5424 layers, or whether we should resume the target transparently. */
5425
5426 removed_any = 0;
5427
5428 for (bs = bs_head; bs != NULL; bs = bs->next)
5429 {
5430 if (!bs->stop)
5431 continue;
5432
5433 b = bs->breakpoint_at;
5434 b->ops->check_status (bs);
5435 if (bs->stop)
5436 {
5437 bpstat_check_breakpoint_conditions (bs, thread);
5438
5439 if (bs->stop)
5440 {
5441 ++(b->hit_count);
5442 gdb::observers::breakpoint_modified.notify (b);
5443
5444 /* We will stop here. */
5445 if (b->disposition == disp_disable)
5446 {
5447 --(b->enable_count);
5448 if (b->enable_count <= 0)
5449 b->enable_state = bp_disabled;
5450 removed_any = 1;
5451 }
5452 if (b->silent)
5453 bs->print = 0;
5454 bs->commands = b->commands;
5455 if (command_line_is_silent (bs->commands
5456 ? bs->commands.get () : NULL))
5457 bs->print = 0;
5458
5459 b->ops->after_condition_true (bs);
5460 }
5461
5462 }
5463
5464 /* Print nothing for this entry if we don't stop or don't
5465 print. */
5466 if (!bs->stop || !bs->print)
5467 bs->print_it = print_it_noop;
5468 }
5469
5470 /* If we aren't stopping, the value of some hardware watchpoint may
5471 not have changed, but the intermediate memory locations we are
5472 watching may have. Don't bother if we're stopping; this will get
5473 done later. */
5474 need_remove_insert = 0;
5475 if (! bpstat_causes_stop (bs_head))
5476 for (bs = bs_head; bs != NULL; bs = bs->next)
5477 if (!bs->stop
5478 && bs->breakpoint_at
5479 && is_hardware_watchpoint (bs->breakpoint_at))
5480 {
5481 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5482
5483 update_watchpoint (w, 0 /* don't reparse. */);
5484 need_remove_insert = 1;
5485 }
5486
5487 if (need_remove_insert)
5488 update_global_location_list (UGLL_MAY_INSERT);
5489 else if (removed_any)
5490 update_global_location_list (UGLL_DONT_INSERT);
5491
5492 return bs_head;
5493 }
5494
5495 static void
5496 handle_jit_event (void)
5497 {
5498 struct frame_info *frame;
5499 struct gdbarch *gdbarch;
5500
5501 if (debug_infrun)
5502 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5503
5504 /* Switch terminal for any messages produced by
5505 breakpoint_re_set. */
5506 target_terminal::ours_for_output ();
5507
5508 frame = get_current_frame ();
5509 gdbarch = get_frame_arch (frame);
5510
5511 jit_event_handler (gdbarch);
5512
5513 target_terminal::inferior ();
5514 }
5515
5516 /* Prepare WHAT final decision for infrun. */
5517
5518 /* Decide what infrun needs to do with this bpstat. */
5519
5520 struct bpstat_what
5521 bpstat_what (bpstat bs_head)
5522 {
5523 struct bpstat_what retval;
5524 bpstat bs;
5525
5526 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5527 retval.call_dummy = STOP_NONE;
5528 retval.is_longjmp = 0;
5529
5530 for (bs = bs_head; bs != NULL; bs = bs->next)
5531 {
5532 /* Extract this BS's action. After processing each BS, we check
5533 if its action overrides all we've seem so far. */
5534 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5535 enum bptype bptype;
5536
5537 if (bs->breakpoint_at == NULL)
5538 {
5539 /* I suspect this can happen if it was a momentary
5540 breakpoint which has since been deleted. */
5541 bptype = bp_none;
5542 }
5543 else
5544 bptype = bs->breakpoint_at->type;
5545
5546 switch (bptype)
5547 {
5548 case bp_none:
5549 break;
5550 case bp_breakpoint:
5551 case bp_hardware_breakpoint:
5552 case bp_single_step:
5553 case bp_until:
5554 case bp_finish:
5555 case bp_shlib_event:
5556 if (bs->stop)
5557 {
5558 if (bs->print)
5559 this_action = BPSTAT_WHAT_STOP_NOISY;
5560 else
5561 this_action = BPSTAT_WHAT_STOP_SILENT;
5562 }
5563 else
5564 this_action = BPSTAT_WHAT_SINGLE;
5565 break;
5566 case bp_watchpoint:
5567 case bp_hardware_watchpoint:
5568 case bp_read_watchpoint:
5569 case bp_access_watchpoint:
5570 if (bs->stop)
5571 {
5572 if (bs->print)
5573 this_action = BPSTAT_WHAT_STOP_NOISY;
5574 else
5575 this_action = BPSTAT_WHAT_STOP_SILENT;
5576 }
5577 else
5578 {
5579 /* There was a watchpoint, but we're not stopping.
5580 This requires no further action. */
5581 }
5582 break;
5583 case bp_longjmp:
5584 case bp_longjmp_call_dummy:
5585 case bp_exception:
5586 if (bs->stop)
5587 {
5588 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5589 retval.is_longjmp = bptype != bp_exception;
5590 }
5591 else
5592 this_action = BPSTAT_WHAT_SINGLE;
5593 break;
5594 case bp_longjmp_resume:
5595 case bp_exception_resume:
5596 if (bs->stop)
5597 {
5598 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5599 retval.is_longjmp = bptype == bp_longjmp_resume;
5600 }
5601 else
5602 this_action = BPSTAT_WHAT_SINGLE;
5603 break;
5604 case bp_step_resume:
5605 if (bs->stop)
5606 this_action = BPSTAT_WHAT_STEP_RESUME;
5607 else
5608 {
5609 /* It is for the wrong frame. */
5610 this_action = BPSTAT_WHAT_SINGLE;
5611 }
5612 break;
5613 case bp_hp_step_resume:
5614 if (bs->stop)
5615 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5616 else
5617 {
5618 /* It is for the wrong frame. */
5619 this_action = BPSTAT_WHAT_SINGLE;
5620 }
5621 break;
5622 case bp_watchpoint_scope:
5623 case bp_thread_event:
5624 case bp_overlay_event:
5625 case bp_longjmp_master:
5626 case bp_std_terminate_master:
5627 case bp_exception_master:
5628 this_action = BPSTAT_WHAT_SINGLE;
5629 break;
5630 case bp_catchpoint:
5631 if (bs->stop)
5632 {
5633 if (bs->print)
5634 this_action = BPSTAT_WHAT_STOP_NOISY;
5635 else
5636 this_action = BPSTAT_WHAT_STOP_SILENT;
5637 }
5638 else
5639 {
5640 /* There was a catchpoint, but we're not stopping.
5641 This requires no further action. */
5642 }
5643 break;
5644 case bp_jit_event:
5645 this_action = BPSTAT_WHAT_SINGLE;
5646 break;
5647 case bp_call_dummy:
5648 /* Make sure the action is stop (silent or noisy),
5649 so infrun.c pops the dummy frame. */
5650 retval.call_dummy = STOP_STACK_DUMMY;
5651 this_action = BPSTAT_WHAT_STOP_SILENT;
5652 break;
5653 case bp_std_terminate:
5654 /* Make sure the action is stop (silent or noisy),
5655 so infrun.c pops the dummy frame. */
5656 retval.call_dummy = STOP_STD_TERMINATE;
5657 this_action = BPSTAT_WHAT_STOP_SILENT;
5658 break;
5659 case bp_tracepoint:
5660 case bp_fast_tracepoint:
5661 case bp_static_tracepoint:
5662 /* Tracepoint hits should not be reported back to GDB, and
5663 if one got through somehow, it should have been filtered
5664 out already. */
5665 internal_error (__FILE__, __LINE__,
5666 _("bpstat_what: tracepoint encountered"));
5667 break;
5668 case bp_gnu_ifunc_resolver:
5669 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5670 this_action = BPSTAT_WHAT_SINGLE;
5671 break;
5672 case bp_gnu_ifunc_resolver_return:
5673 /* The breakpoint will be removed, execution will restart from the
5674 PC of the former breakpoint. */
5675 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5676 break;
5677
5678 case bp_dprintf:
5679 if (bs->stop)
5680 this_action = BPSTAT_WHAT_STOP_SILENT;
5681 else
5682 this_action = BPSTAT_WHAT_SINGLE;
5683 break;
5684
5685 default:
5686 internal_error (__FILE__, __LINE__,
5687 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5688 }
5689
5690 retval.main_action = std::max (retval.main_action, this_action);
5691 }
5692
5693 return retval;
5694 }
5695
5696 void
5697 bpstat_run_callbacks (bpstat bs_head)
5698 {
5699 bpstat bs;
5700
5701 for (bs = bs_head; bs != NULL; bs = bs->next)
5702 {
5703 struct breakpoint *b = bs->breakpoint_at;
5704
5705 if (b == NULL)
5706 continue;
5707 switch (b->type)
5708 {
5709 case bp_jit_event:
5710 handle_jit_event ();
5711 break;
5712 case bp_gnu_ifunc_resolver:
5713 gnu_ifunc_resolver_stop (b);
5714 break;
5715 case bp_gnu_ifunc_resolver_return:
5716 gnu_ifunc_resolver_return_stop (b);
5717 break;
5718 }
5719 }
5720 }
5721
5722 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5723 without hardware support). This isn't related to a specific bpstat,
5724 just to things like whether watchpoints are set. */
5725
5726 int
5727 bpstat_should_step (void)
5728 {
5729 struct breakpoint *b;
5730
5731 ALL_BREAKPOINTS (b)
5732 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5733 return 1;
5734 return 0;
5735 }
5736
5737 int
5738 bpstat_causes_stop (bpstat bs)
5739 {
5740 for (; bs != NULL; bs = bs->next)
5741 if (bs->stop)
5742 return 1;
5743
5744 return 0;
5745 }
5746
5747 \f
5748
5749 /* Compute a string of spaces suitable to indent the next line
5750 so it starts at the position corresponding to the table column
5751 named COL_NAME in the currently active table of UIOUT. */
5752
5753 static char *
5754 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5755 {
5756 static char wrap_indent[80];
5757 int i, total_width, width, align;
5758 const char *text;
5759
5760 total_width = 0;
5761 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5762 {
5763 if (strcmp (text, col_name) == 0)
5764 {
5765 gdb_assert (total_width < sizeof wrap_indent);
5766 memset (wrap_indent, ' ', total_width);
5767 wrap_indent[total_width] = 0;
5768
5769 return wrap_indent;
5770 }
5771
5772 total_width += width + 1;
5773 }
5774
5775 return NULL;
5776 }
5777
5778 /* Determine if the locations of this breakpoint will have their conditions
5779 evaluated by the target, host or a mix of both. Returns the following:
5780
5781 "host": Host evals condition.
5782 "host or target": Host or Target evals condition.
5783 "target": Target evals condition.
5784 */
5785
5786 static const char *
5787 bp_condition_evaluator (struct breakpoint *b)
5788 {
5789 struct bp_location *bl;
5790 char host_evals = 0;
5791 char target_evals = 0;
5792
5793 if (!b)
5794 return NULL;
5795
5796 if (!is_breakpoint (b))
5797 return NULL;
5798
5799 if (gdb_evaluates_breakpoint_condition_p ()
5800 || !target_supports_evaluation_of_breakpoint_conditions ())
5801 return condition_evaluation_host;
5802
5803 for (bl = b->loc; bl; bl = bl->next)
5804 {
5805 if (bl->cond_bytecode)
5806 target_evals++;
5807 else
5808 host_evals++;
5809 }
5810
5811 if (host_evals && target_evals)
5812 return condition_evaluation_both;
5813 else if (target_evals)
5814 return condition_evaluation_target;
5815 else
5816 return condition_evaluation_host;
5817 }
5818
5819 /* Determine the breakpoint location's condition evaluator. This is
5820 similar to bp_condition_evaluator, but for locations. */
5821
5822 static const char *
5823 bp_location_condition_evaluator (struct bp_location *bl)
5824 {
5825 if (bl && !is_breakpoint (bl->owner))
5826 return NULL;
5827
5828 if (gdb_evaluates_breakpoint_condition_p ()
5829 || !target_supports_evaluation_of_breakpoint_conditions ())
5830 return condition_evaluation_host;
5831
5832 if (bl && bl->cond_bytecode)
5833 return condition_evaluation_target;
5834 else
5835 return condition_evaluation_host;
5836 }
5837
5838 /* Print the LOC location out of the list of B->LOC locations. */
5839
5840 static void
5841 print_breakpoint_location (struct breakpoint *b,
5842 struct bp_location *loc)
5843 {
5844 struct ui_out *uiout = current_uiout;
5845
5846 scoped_restore_current_program_space restore_pspace;
5847
5848 if (loc != NULL && loc->shlib_disabled)
5849 loc = NULL;
5850
5851 if (loc != NULL)
5852 set_current_program_space (loc->pspace);
5853
5854 if (b->display_canonical)
5855 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5856 else if (loc && loc->symtab)
5857 {
5858 const struct symbol *sym = loc->symbol;
5859
5860 if (sym)
5861 {
5862 uiout->text ("in ");
5863 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5864 uiout->text (" ");
5865 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5866 uiout->text ("at ");
5867 }
5868 uiout->field_string ("file",
5869 symtab_to_filename_for_display (loc->symtab));
5870 uiout->text (":");
5871
5872 if (uiout->is_mi_like_p ())
5873 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5874
5875 uiout->field_int ("line", loc->line_number);
5876 }
5877 else if (loc)
5878 {
5879 string_file stb;
5880
5881 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5882 demangle, "");
5883 uiout->field_stream ("at", stb);
5884 }
5885 else
5886 {
5887 uiout->field_string ("pending",
5888 event_location_to_string (b->location.get ()));
5889 /* If extra_string is available, it could be holding a condition
5890 or dprintf arguments. In either case, make sure it is printed,
5891 too, but only for non-MI streams. */
5892 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5893 {
5894 if (b->type == bp_dprintf)
5895 uiout->text (",");
5896 else
5897 uiout->text (" ");
5898 uiout->text (b->extra_string);
5899 }
5900 }
5901
5902 if (loc && is_breakpoint (b)
5903 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5904 && bp_condition_evaluator (b) == condition_evaluation_both)
5905 {
5906 uiout->text (" (");
5907 uiout->field_string ("evaluated-by",
5908 bp_location_condition_evaluator (loc));
5909 uiout->text (")");
5910 }
5911 }
5912
5913 static const char *
5914 bptype_string (enum bptype type)
5915 {
5916 struct ep_type_description
5917 {
5918 enum bptype type;
5919 const char *description;
5920 };
5921 static struct ep_type_description bptypes[] =
5922 {
5923 {bp_none, "?deleted?"},
5924 {bp_breakpoint, "breakpoint"},
5925 {bp_hardware_breakpoint, "hw breakpoint"},
5926 {bp_single_step, "sw single-step"},
5927 {bp_until, "until"},
5928 {bp_finish, "finish"},
5929 {bp_watchpoint, "watchpoint"},
5930 {bp_hardware_watchpoint, "hw watchpoint"},
5931 {bp_read_watchpoint, "read watchpoint"},
5932 {bp_access_watchpoint, "acc watchpoint"},
5933 {bp_longjmp, "longjmp"},
5934 {bp_longjmp_resume, "longjmp resume"},
5935 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5936 {bp_exception, "exception"},
5937 {bp_exception_resume, "exception resume"},
5938 {bp_step_resume, "step resume"},
5939 {bp_hp_step_resume, "high-priority step resume"},
5940 {bp_watchpoint_scope, "watchpoint scope"},
5941 {bp_call_dummy, "call dummy"},
5942 {bp_std_terminate, "std::terminate"},
5943 {bp_shlib_event, "shlib events"},
5944 {bp_thread_event, "thread events"},
5945 {bp_overlay_event, "overlay events"},
5946 {bp_longjmp_master, "longjmp master"},
5947 {bp_std_terminate_master, "std::terminate master"},
5948 {bp_exception_master, "exception master"},
5949 {bp_catchpoint, "catchpoint"},
5950 {bp_tracepoint, "tracepoint"},
5951 {bp_fast_tracepoint, "fast tracepoint"},
5952 {bp_static_tracepoint, "static tracepoint"},
5953 {bp_dprintf, "dprintf"},
5954 {bp_jit_event, "jit events"},
5955 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5956 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5957 };
5958
5959 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5960 || ((int) type != bptypes[(int) type].type))
5961 internal_error (__FILE__, __LINE__,
5962 _("bptypes table does not describe type #%d."),
5963 (int) type);
5964
5965 return bptypes[(int) type].description;
5966 }
5967
5968 /* For MI, output a field named 'thread-groups' with a list as the value.
5969 For CLI, prefix the list with the string 'inf'. */
5970
5971 static void
5972 output_thread_groups (struct ui_out *uiout,
5973 const char *field_name,
5974 const std::vector<int> &inf_nums,
5975 int mi_only)
5976 {
5977 int is_mi = uiout->is_mi_like_p ();
5978
5979 /* For backward compatibility, don't display inferiors in CLI unless
5980 there are several. Always display them for MI. */
5981 if (!is_mi && mi_only)
5982 return;
5983
5984 ui_out_emit_list list_emitter (uiout, field_name);
5985
5986 for (size_t i = 0; i < inf_nums.size (); i++)
5987 {
5988 if (is_mi)
5989 {
5990 char mi_group[10];
5991
5992 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5993 uiout->field_string (NULL, mi_group);
5994 }
5995 else
5996 {
5997 if (i == 0)
5998 uiout->text (" inf ");
5999 else
6000 uiout->text (", ");
6001
6002 uiout->text (plongest (inf_nums[i]));
6003 }
6004 }
6005 }
6006
6007 /* Print B to gdb_stdout. */
6008
6009 static void
6010 print_one_breakpoint_location (struct breakpoint *b,
6011 struct bp_location *loc,
6012 int loc_number,
6013 struct bp_location **last_loc,
6014 int allflag)
6015 {
6016 struct command_line *l;
6017 static char bpenables[] = "nynny";
6018
6019 struct ui_out *uiout = current_uiout;
6020 int header_of_multiple = 0;
6021 int part_of_multiple = (loc != NULL);
6022 struct value_print_options opts;
6023
6024 get_user_print_options (&opts);
6025
6026 gdb_assert (!loc || loc_number != 0);
6027 /* See comment in print_one_breakpoint concerning treatment of
6028 breakpoints with single disabled location. */
6029 if (loc == NULL
6030 && (b->loc != NULL
6031 && (b->loc->next != NULL || !b->loc->enabled)))
6032 header_of_multiple = 1;
6033 if (loc == NULL)
6034 loc = b->loc;
6035
6036 annotate_record ();
6037
6038 /* 1 */
6039 annotate_field (0);
6040 if (part_of_multiple)
6041 {
6042 char *formatted;
6043 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6044 uiout->field_string ("number", formatted);
6045 xfree (formatted);
6046 }
6047 else
6048 {
6049 uiout->field_int ("number", b->number);
6050 }
6051
6052 /* 2 */
6053 annotate_field (1);
6054 if (part_of_multiple)
6055 uiout->field_skip ("type");
6056 else
6057 uiout->field_string ("type", bptype_string (b->type));
6058
6059 /* 3 */
6060 annotate_field (2);
6061 if (part_of_multiple)
6062 uiout->field_skip ("disp");
6063 else
6064 uiout->field_string ("disp", bpdisp_text (b->disposition));
6065
6066
6067 /* 4 */
6068 annotate_field (3);
6069 if (part_of_multiple)
6070 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6071 else
6072 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6073 uiout->spaces (2);
6074
6075
6076 /* 5 and 6 */
6077 if (b->ops != NULL && b->ops->print_one != NULL)
6078 {
6079 /* Although the print_one can possibly print all locations,
6080 calling it here is not likely to get any nice result. So,
6081 make sure there's just one location. */
6082 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6083 b->ops->print_one (b, last_loc);
6084 }
6085 else
6086 switch (b->type)
6087 {
6088 case bp_none:
6089 internal_error (__FILE__, __LINE__,
6090 _("print_one_breakpoint: bp_none encountered\n"));
6091 break;
6092
6093 case bp_watchpoint:
6094 case bp_hardware_watchpoint:
6095 case bp_read_watchpoint:
6096 case bp_access_watchpoint:
6097 {
6098 struct watchpoint *w = (struct watchpoint *) b;
6099
6100 /* Field 4, the address, is omitted (which makes the columns
6101 not line up too nicely with the headers, but the effect
6102 is relatively readable). */
6103 if (opts.addressprint)
6104 uiout->field_skip ("addr");
6105 annotate_field (5);
6106 uiout->field_string ("what", w->exp_string);
6107 }
6108 break;
6109
6110 case bp_breakpoint:
6111 case bp_hardware_breakpoint:
6112 case bp_single_step:
6113 case bp_until:
6114 case bp_finish:
6115 case bp_longjmp:
6116 case bp_longjmp_resume:
6117 case bp_longjmp_call_dummy:
6118 case bp_exception:
6119 case bp_exception_resume:
6120 case bp_step_resume:
6121 case bp_hp_step_resume:
6122 case bp_watchpoint_scope:
6123 case bp_call_dummy:
6124 case bp_std_terminate:
6125 case bp_shlib_event:
6126 case bp_thread_event:
6127 case bp_overlay_event:
6128 case bp_longjmp_master:
6129 case bp_std_terminate_master:
6130 case bp_exception_master:
6131 case bp_tracepoint:
6132 case bp_fast_tracepoint:
6133 case bp_static_tracepoint:
6134 case bp_dprintf:
6135 case bp_jit_event:
6136 case bp_gnu_ifunc_resolver:
6137 case bp_gnu_ifunc_resolver_return:
6138 if (opts.addressprint)
6139 {
6140 annotate_field (4);
6141 if (header_of_multiple)
6142 uiout->field_string ("addr", "<MULTIPLE>");
6143 else if (b->loc == NULL || loc->shlib_disabled)
6144 uiout->field_string ("addr", "<PENDING>");
6145 else
6146 uiout->field_core_addr ("addr",
6147 loc->gdbarch, loc->address);
6148 }
6149 annotate_field (5);
6150 if (!header_of_multiple)
6151 print_breakpoint_location (b, loc);
6152 if (b->loc)
6153 *last_loc = b->loc;
6154 break;
6155 }
6156
6157
6158 if (loc != NULL && !header_of_multiple)
6159 {
6160 struct inferior *inf;
6161 std::vector<int> inf_nums;
6162 int mi_only = 1;
6163
6164 ALL_INFERIORS (inf)
6165 {
6166 if (inf->pspace == loc->pspace)
6167 inf_nums.push_back (inf->num);
6168 }
6169
6170 /* For backward compatibility, don't display inferiors in CLI unless
6171 there are several. Always display for MI. */
6172 if (allflag
6173 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6174 && (number_of_program_spaces () > 1
6175 || number_of_inferiors () > 1)
6176 /* LOC is for existing B, it cannot be in
6177 moribund_locations and thus having NULL OWNER. */
6178 && loc->owner->type != bp_catchpoint))
6179 mi_only = 0;
6180 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6181 }
6182
6183 if (!part_of_multiple)
6184 {
6185 if (b->thread != -1)
6186 {
6187 /* FIXME: This seems to be redundant and lost here; see the
6188 "stop only in" line a little further down. */
6189 uiout->text (" thread ");
6190 uiout->field_int ("thread", b->thread);
6191 }
6192 else if (b->task != 0)
6193 {
6194 uiout->text (" task ");
6195 uiout->field_int ("task", b->task);
6196 }
6197 }
6198
6199 uiout->text ("\n");
6200
6201 if (!part_of_multiple)
6202 b->ops->print_one_detail (b, uiout);
6203
6204 if (part_of_multiple && frame_id_p (b->frame_id))
6205 {
6206 annotate_field (6);
6207 uiout->text ("\tstop only in stack frame at ");
6208 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6209 the frame ID. */
6210 uiout->field_core_addr ("frame",
6211 b->gdbarch, b->frame_id.stack_addr);
6212 uiout->text ("\n");
6213 }
6214
6215 if (!part_of_multiple && b->cond_string)
6216 {
6217 annotate_field (7);
6218 if (is_tracepoint (b))
6219 uiout->text ("\ttrace only if ");
6220 else
6221 uiout->text ("\tstop only if ");
6222 uiout->field_string ("cond", b->cond_string);
6223
6224 /* Print whether the target is doing the breakpoint's condition
6225 evaluation. If GDB is doing the evaluation, don't print anything. */
6226 if (is_breakpoint (b)
6227 && breakpoint_condition_evaluation_mode ()
6228 == condition_evaluation_target)
6229 {
6230 uiout->text (" (");
6231 uiout->field_string ("evaluated-by",
6232 bp_condition_evaluator (b));
6233 uiout->text (" evals)");
6234 }
6235 uiout->text ("\n");
6236 }
6237
6238 if (!part_of_multiple && b->thread != -1)
6239 {
6240 /* FIXME should make an annotation for this. */
6241 uiout->text ("\tstop only in thread ");
6242 if (uiout->is_mi_like_p ())
6243 uiout->field_int ("thread", b->thread);
6244 else
6245 {
6246 struct thread_info *thr = find_thread_global_id (b->thread);
6247
6248 uiout->field_string ("thread", print_thread_id (thr));
6249 }
6250 uiout->text ("\n");
6251 }
6252
6253 if (!part_of_multiple)
6254 {
6255 if (b->hit_count)
6256 {
6257 /* FIXME should make an annotation for this. */
6258 if (is_catchpoint (b))
6259 uiout->text ("\tcatchpoint");
6260 else if (is_tracepoint (b))
6261 uiout->text ("\ttracepoint");
6262 else
6263 uiout->text ("\tbreakpoint");
6264 uiout->text (" already hit ");
6265 uiout->field_int ("times", b->hit_count);
6266 if (b->hit_count == 1)
6267 uiout->text (" time\n");
6268 else
6269 uiout->text (" times\n");
6270 }
6271 else
6272 {
6273 /* Output the count also if it is zero, but only if this is mi. */
6274 if (uiout->is_mi_like_p ())
6275 uiout->field_int ("times", b->hit_count);
6276 }
6277 }
6278
6279 if (!part_of_multiple && b->ignore_count)
6280 {
6281 annotate_field (8);
6282 uiout->text ("\tignore next ");
6283 uiout->field_int ("ignore", b->ignore_count);
6284 uiout->text (" hits\n");
6285 }
6286
6287 /* Note that an enable count of 1 corresponds to "enable once"
6288 behavior, which is reported by the combination of enablement and
6289 disposition, so we don't need to mention it here. */
6290 if (!part_of_multiple && b->enable_count > 1)
6291 {
6292 annotate_field (8);
6293 uiout->text ("\tdisable after ");
6294 /* Tweak the wording to clarify that ignore and enable counts
6295 are distinct, and have additive effect. */
6296 if (b->ignore_count)
6297 uiout->text ("additional ");
6298 else
6299 uiout->text ("next ");
6300 uiout->field_int ("enable", b->enable_count);
6301 uiout->text (" hits\n");
6302 }
6303
6304 if (!part_of_multiple && is_tracepoint (b))
6305 {
6306 struct tracepoint *tp = (struct tracepoint *) b;
6307
6308 if (tp->traceframe_usage)
6309 {
6310 uiout->text ("\ttrace buffer usage ");
6311 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6312 uiout->text (" bytes\n");
6313 }
6314 }
6315
6316 l = b->commands ? b->commands.get () : NULL;
6317 if (!part_of_multiple && l)
6318 {
6319 annotate_field (9);
6320 ui_out_emit_tuple tuple_emitter (uiout, "script");
6321 print_command_lines (uiout, l, 4);
6322 }
6323
6324 if (is_tracepoint (b))
6325 {
6326 struct tracepoint *t = (struct tracepoint *) b;
6327
6328 if (!part_of_multiple && t->pass_count)
6329 {
6330 annotate_field (10);
6331 uiout->text ("\tpass count ");
6332 uiout->field_int ("pass", t->pass_count);
6333 uiout->text (" \n");
6334 }
6335
6336 /* Don't display it when tracepoint or tracepoint location is
6337 pending. */
6338 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6339 {
6340 annotate_field (11);
6341
6342 if (uiout->is_mi_like_p ())
6343 uiout->field_string ("installed",
6344 loc->inserted ? "y" : "n");
6345 else
6346 {
6347 if (loc->inserted)
6348 uiout->text ("\t");
6349 else
6350 uiout->text ("\tnot ");
6351 uiout->text ("installed on target\n");
6352 }
6353 }
6354 }
6355
6356 if (uiout->is_mi_like_p () && !part_of_multiple)
6357 {
6358 if (is_watchpoint (b))
6359 {
6360 struct watchpoint *w = (struct watchpoint *) b;
6361
6362 uiout->field_string ("original-location", w->exp_string);
6363 }
6364 else if (b->location != NULL
6365 && event_location_to_string (b->location.get ()) != NULL)
6366 uiout->field_string ("original-location",
6367 event_location_to_string (b->location.get ()));
6368 }
6369 }
6370
6371 static void
6372 print_one_breakpoint (struct breakpoint *b,
6373 struct bp_location **last_loc,
6374 int allflag)
6375 {
6376 struct ui_out *uiout = current_uiout;
6377
6378 {
6379 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6380
6381 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6382 }
6383
6384 /* If this breakpoint has custom print function,
6385 it's already printed. Otherwise, print individual
6386 locations, if any. */
6387 if (b->ops == NULL || b->ops->print_one == NULL)
6388 {
6389 /* If breakpoint has a single location that is disabled, we
6390 print it as if it had several locations, since otherwise it's
6391 hard to represent "breakpoint enabled, location disabled"
6392 situation.
6393
6394 Note that while hardware watchpoints have several locations
6395 internally, that's not a property exposed to user. */
6396 if (b->loc
6397 && !is_hardware_watchpoint (b)
6398 && (b->loc->next || !b->loc->enabled))
6399 {
6400 struct bp_location *loc;
6401 int n = 1;
6402
6403 for (loc = b->loc; loc; loc = loc->next, ++n)
6404 {
6405 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6406 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6407 }
6408 }
6409 }
6410 }
6411
6412 static int
6413 breakpoint_address_bits (struct breakpoint *b)
6414 {
6415 int print_address_bits = 0;
6416 struct bp_location *loc;
6417
6418 /* Software watchpoints that aren't watching memory don't have an
6419 address to print. */
6420 if (is_no_memory_software_watchpoint (b))
6421 return 0;
6422
6423 for (loc = b->loc; loc; loc = loc->next)
6424 {
6425 int addr_bit;
6426
6427 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6428 if (addr_bit > print_address_bits)
6429 print_address_bits = addr_bit;
6430 }
6431
6432 return print_address_bits;
6433 }
6434
6435 /* See breakpoint.h. */
6436
6437 void
6438 print_breakpoint (breakpoint *b)
6439 {
6440 struct bp_location *dummy_loc = NULL;
6441 print_one_breakpoint (b, &dummy_loc, 0);
6442 }
6443
6444 /* Return true if this breakpoint was set by the user, false if it is
6445 internal or momentary. */
6446
6447 int
6448 user_breakpoint_p (struct breakpoint *b)
6449 {
6450 return b->number > 0;
6451 }
6452
6453 /* See breakpoint.h. */
6454
6455 int
6456 pending_breakpoint_p (struct breakpoint *b)
6457 {
6458 return b->loc == NULL;
6459 }
6460
6461 /* Print information on user settable breakpoint (watchpoint, etc)
6462 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6463 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6464 FILTER is non-NULL, call it on each breakpoint and only include the
6465 ones for which it returns non-zero. Return the total number of
6466 breakpoints listed. */
6467
6468 static int
6469 breakpoint_1 (const char *args, int allflag,
6470 int (*filter) (const struct breakpoint *))
6471 {
6472 struct breakpoint *b;
6473 struct bp_location *last_loc = NULL;
6474 int nr_printable_breakpoints;
6475 struct value_print_options opts;
6476 int print_address_bits = 0;
6477 int print_type_col_width = 14;
6478 struct ui_out *uiout = current_uiout;
6479
6480 get_user_print_options (&opts);
6481
6482 /* Compute the number of rows in the table, as well as the size
6483 required for address fields. */
6484 nr_printable_breakpoints = 0;
6485 ALL_BREAKPOINTS (b)
6486 {
6487 /* If we have a filter, only list the breakpoints it accepts. */
6488 if (filter && !filter (b))
6489 continue;
6490
6491 /* If we have an "args" string, it is a list of breakpoints to
6492 accept. Skip the others. */
6493 if (args != NULL && *args != '\0')
6494 {
6495 if (allflag && parse_and_eval_long (args) != b->number)
6496 continue;
6497 if (!allflag && !number_is_in_list (args, b->number))
6498 continue;
6499 }
6500
6501 if (allflag || user_breakpoint_p (b))
6502 {
6503 int addr_bit, type_len;
6504
6505 addr_bit = breakpoint_address_bits (b);
6506 if (addr_bit > print_address_bits)
6507 print_address_bits = addr_bit;
6508
6509 type_len = strlen (bptype_string (b->type));
6510 if (type_len > print_type_col_width)
6511 print_type_col_width = type_len;
6512
6513 nr_printable_breakpoints++;
6514 }
6515 }
6516
6517 {
6518 ui_out_emit_table table_emitter (uiout,
6519 opts.addressprint ? 6 : 5,
6520 nr_printable_breakpoints,
6521 "BreakpointTable");
6522
6523 if (nr_printable_breakpoints > 0)
6524 annotate_breakpoints_headers ();
6525 if (nr_printable_breakpoints > 0)
6526 annotate_field (0);
6527 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6528 if (nr_printable_breakpoints > 0)
6529 annotate_field (1);
6530 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6531 if (nr_printable_breakpoints > 0)
6532 annotate_field (2);
6533 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6534 if (nr_printable_breakpoints > 0)
6535 annotate_field (3);
6536 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6537 if (opts.addressprint)
6538 {
6539 if (nr_printable_breakpoints > 0)
6540 annotate_field (4);
6541 if (print_address_bits <= 32)
6542 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6543 else
6544 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6545 }
6546 if (nr_printable_breakpoints > 0)
6547 annotate_field (5);
6548 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6549 uiout->table_body ();
6550 if (nr_printable_breakpoints > 0)
6551 annotate_breakpoints_table ();
6552
6553 ALL_BREAKPOINTS (b)
6554 {
6555 QUIT;
6556 /* If we have a filter, only list the breakpoints it accepts. */
6557 if (filter && !filter (b))
6558 continue;
6559
6560 /* If we have an "args" string, it is a list of breakpoints to
6561 accept. Skip the others. */
6562
6563 if (args != NULL && *args != '\0')
6564 {
6565 if (allflag) /* maintenance info breakpoint */
6566 {
6567 if (parse_and_eval_long (args) != b->number)
6568 continue;
6569 }
6570 else /* all others */
6571 {
6572 if (!number_is_in_list (args, b->number))
6573 continue;
6574 }
6575 }
6576 /* We only print out user settable breakpoints unless the
6577 allflag is set. */
6578 if (allflag || user_breakpoint_p (b))
6579 print_one_breakpoint (b, &last_loc, allflag);
6580 }
6581 }
6582
6583 if (nr_printable_breakpoints == 0)
6584 {
6585 /* If there's a filter, let the caller decide how to report
6586 empty list. */
6587 if (!filter)
6588 {
6589 if (args == NULL || *args == '\0')
6590 uiout->message ("No breakpoints or watchpoints.\n");
6591 else
6592 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6593 args);
6594 }
6595 }
6596 else
6597 {
6598 if (last_loc && !server_command)
6599 set_next_address (last_loc->gdbarch, last_loc->address);
6600 }
6601
6602 /* FIXME? Should this be moved up so that it is only called when
6603 there have been breakpoints? */
6604 annotate_breakpoints_table_end ();
6605
6606 return nr_printable_breakpoints;
6607 }
6608
6609 /* Display the value of default-collect in a way that is generally
6610 compatible with the breakpoint list. */
6611
6612 static void
6613 default_collect_info (void)
6614 {
6615 struct ui_out *uiout = current_uiout;
6616
6617 /* If it has no value (which is frequently the case), say nothing; a
6618 message like "No default-collect." gets in user's face when it's
6619 not wanted. */
6620 if (!*default_collect)
6621 return;
6622
6623 /* The following phrase lines up nicely with per-tracepoint collect
6624 actions. */
6625 uiout->text ("default collect ");
6626 uiout->field_string ("default-collect", default_collect);
6627 uiout->text (" \n");
6628 }
6629
6630 static void
6631 info_breakpoints_command (const char *args, int from_tty)
6632 {
6633 breakpoint_1 (args, 0, NULL);
6634
6635 default_collect_info ();
6636 }
6637
6638 static void
6639 info_watchpoints_command (const char *args, int from_tty)
6640 {
6641 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6642 struct ui_out *uiout = current_uiout;
6643
6644 if (num_printed == 0)
6645 {
6646 if (args == NULL || *args == '\0')
6647 uiout->message ("No watchpoints.\n");
6648 else
6649 uiout->message ("No watchpoint matching '%s'.\n", args);
6650 }
6651 }
6652
6653 static void
6654 maintenance_info_breakpoints (const char *args, int from_tty)
6655 {
6656 breakpoint_1 (args, 1, NULL);
6657
6658 default_collect_info ();
6659 }
6660
6661 static int
6662 breakpoint_has_pc (struct breakpoint *b,
6663 struct program_space *pspace,
6664 CORE_ADDR pc, struct obj_section *section)
6665 {
6666 struct bp_location *bl = b->loc;
6667
6668 for (; bl; bl = bl->next)
6669 {
6670 if (bl->pspace == pspace
6671 && bl->address == pc
6672 && (!overlay_debugging || bl->section == section))
6673 return 1;
6674 }
6675 return 0;
6676 }
6677
6678 /* Print a message describing any user-breakpoints set at PC. This
6679 concerns with logical breakpoints, so we match program spaces, not
6680 address spaces. */
6681
6682 static void
6683 describe_other_breakpoints (struct gdbarch *gdbarch,
6684 struct program_space *pspace, CORE_ADDR pc,
6685 struct obj_section *section, int thread)
6686 {
6687 int others = 0;
6688 struct breakpoint *b;
6689
6690 ALL_BREAKPOINTS (b)
6691 others += (user_breakpoint_p (b)
6692 && breakpoint_has_pc (b, pspace, pc, section));
6693 if (others > 0)
6694 {
6695 if (others == 1)
6696 printf_filtered (_("Note: breakpoint "));
6697 else /* if (others == ???) */
6698 printf_filtered (_("Note: breakpoints "));
6699 ALL_BREAKPOINTS (b)
6700 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6701 {
6702 others--;
6703 printf_filtered ("%d", b->number);
6704 if (b->thread == -1 && thread != -1)
6705 printf_filtered (" (all threads)");
6706 else if (b->thread != -1)
6707 printf_filtered (" (thread %d)", b->thread);
6708 printf_filtered ("%s%s ",
6709 ((b->enable_state == bp_disabled
6710 || b->enable_state == bp_call_disabled)
6711 ? " (disabled)"
6712 : ""),
6713 (others > 1) ? ","
6714 : ((others == 1) ? " and" : ""));
6715 }
6716 printf_filtered (_("also set at pc "));
6717 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6718 printf_filtered (".\n");
6719 }
6720 }
6721 \f
6722
6723 /* Return true iff it is meaningful to use the address member of
6724 BPT locations. For some breakpoint types, the locations' address members
6725 are irrelevant and it makes no sense to attempt to compare them to other
6726 addresses (or use them for any other purpose either).
6727
6728 More specifically, each of the following breakpoint types will
6729 always have a zero valued location address and we don't want to mark
6730 breakpoints of any of these types to be a duplicate of an actual
6731 breakpoint location at address zero:
6732
6733 bp_watchpoint
6734 bp_catchpoint
6735
6736 */
6737
6738 static int
6739 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6740 {
6741 enum bptype type = bpt->type;
6742
6743 return (type != bp_watchpoint && type != bp_catchpoint);
6744 }
6745
6746 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6747 true if LOC1 and LOC2 represent the same watchpoint location. */
6748
6749 static int
6750 watchpoint_locations_match (struct bp_location *loc1,
6751 struct bp_location *loc2)
6752 {
6753 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6754 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6755
6756 /* Both of them must exist. */
6757 gdb_assert (w1 != NULL);
6758 gdb_assert (w2 != NULL);
6759
6760 /* If the target can evaluate the condition expression in hardware,
6761 then we we need to insert both watchpoints even if they are at
6762 the same place. Otherwise the watchpoint will only trigger when
6763 the condition of whichever watchpoint was inserted evaluates to
6764 true, not giving a chance for GDB to check the condition of the
6765 other watchpoint. */
6766 if ((w1->cond_exp
6767 && target_can_accel_watchpoint_condition (loc1->address,
6768 loc1->length,
6769 loc1->watchpoint_type,
6770 w1->cond_exp.get ()))
6771 || (w2->cond_exp
6772 && target_can_accel_watchpoint_condition (loc2->address,
6773 loc2->length,
6774 loc2->watchpoint_type,
6775 w2->cond_exp.get ())))
6776 return 0;
6777
6778 /* Note that this checks the owner's type, not the location's. In
6779 case the target does not support read watchpoints, but does
6780 support access watchpoints, we'll have bp_read_watchpoint
6781 watchpoints with hw_access locations. Those should be considered
6782 duplicates of hw_read locations. The hw_read locations will
6783 become hw_access locations later. */
6784 return (loc1->owner->type == loc2->owner->type
6785 && loc1->pspace->aspace == loc2->pspace->aspace
6786 && loc1->address == loc2->address
6787 && loc1->length == loc2->length);
6788 }
6789
6790 /* See breakpoint.h. */
6791
6792 int
6793 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6794 const address_space *aspace2, CORE_ADDR addr2)
6795 {
6796 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6797 || aspace1 == aspace2)
6798 && addr1 == addr2);
6799 }
6800
6801 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6802 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6803 matches ASPACE2. On targets that have global breakpoints, the address
6804 space doesn't really matter. */
6805
6806 static int
6807 breakpoint_address_match_range (const address_space *aspace1,
6808 CORE_ADDR addr1,
6809 int len1, const address_space *aspace2,
6810 CORE_ADDR addr2)
6811 {
6812 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6813 || aspace1 == aspace2)
6814 && addr2 >= addr1 && addr2 < addr1 + len1);
6815 }
6816
6817 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6818 a ranged breakpoint. In most targets, a match happens only if ASPACE
6819 matches the breakpoint's address space. On targets that have global
6820 breakpoints, the address space doesn't really matter. */
6821
6822 static int
6823 breakpoint_location_address_match (struct bp_location *bl,
6824 const address_space *aspace,
6825 CORE_ADDR addr)
6826 {
6827 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6828 aspace, addr)
6829 || (bl->length
6830 && breakpoint_address_match_range (bl->pspace->aspace,
6831 bl->address, bl->length,
6832 aspace, addr)));
6833 }
6834
6835 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6836 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6837 match happens only if ASPACE matches the breakpoint's address
6838 space. On targets that have global breakpoints, the address space
6839 doesn't really matter. */
6840
6841 static int
6842 breakpoint_location_address_range_overlap (struct bp_location *bl,
6843 const address_space *aspace,
6844 CORE_ADDR addr, int len)
6845 {
6846 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6847 || bl->pspace->aspace == aspace)
6848 {
6849 int bl_len = bl->length != 0 ? bl->length : 1;
6850
6851 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6852 return 1;
6853 }
6854 return 0;
6855 }
6856
6857 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6858 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6859 true, otherwise returns false. */
6860
6861 static int
6862 tracepoint_locations_match (struct bp_location *loc1,
6863 struct bp_location *loc2)
6864 {
6865 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6866 /* Since tracepoint locations are never duplicated with others', tracepoint
6867 locations at the same address of different tracepoints are regarded as
6868 different locations. */
6869 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6870 else
6871 return 0;
6872 }
6873
6874 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6875 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6876 represent the same location. */
6877
6878 static int
6879 breakpoint_locations_match (struct bp_location *loc1,
6880 struct bp_location *loc2)
6881 {
6882 int hw_point1, hw_point2;
6883
6884 /* Both of them must not be in moribund_locations. */
6885 gdb_assert (loc1->owner != NULL);
6886 gdb_assert (loc2->owner != NULL);
6887
6888 hw_point1 = is_hardware_watchpoint (loc1->owner);
6889 hw_point2 = is_hardware_watchpoint (loc2->owner);
6890
6891 if (hw_point1 != hw_point2)
6892 return 0;
6893 else if (hw_point1)
6894 return watchpoint_locations_match (loc1, loc2);
6895 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6896 return tracepoint_locations_match (loc1, loc2);
6897 else
6898 /* We compare bp_location.length in order to cover ranged breakpoints. */
6899 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6900 loc2->pspace->aspace, loc2->address)
6901 && loc1->length == loc2->length);
6902 }
6903
6904 static void
6905 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6906 int bnum, int have_bnum)
6907 {
6908 /* The longest string possibly returned by hex_string_custom
6909 is 50 chars. These must be at least that big for safety. */
6910 char astr1[64];
6911 char astr2[64];
6912
6913 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6914 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6915 if (have_bnum)
6916 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6917 bnum, astr1, astr2);
6918 else
6919 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6920 }
6921
6922 /* Adjust a breakpoint's address to account for architectural
6923 constraints on breakpoint placement. Return the adjusted address.
6924 Note: Very few targets require this kind of adjustment. For most
6925 targets, this function is simply the identity function. */
6926
6927 static CORE_ADDR
6928 adjust_breakpoint_address (struct gdbarch *gdbarch,
6929 CORE_ADDR bpaddr, enum bptype bptype)
6930 {
6931 if (bptype == bp_watchpoint
6932 || bptype == bp_hardware_watchpoint
6933 || bptype == bp_read_watchpoint
6934 || bptype == bp_access_watchpoint
6935 || bptype == bp_catchpoint)
6936 {
6937 /* Watchpoints and the various bp_catch_* eventpoints should not
6938 have their addresses modified. */
6939 return bpaddr;
6940 }
6941 else if (bptype == bp_single_step)
6942 {
6943 /* Single-step breakpoints should not have their addresses
6944 modified. If there's any architectural constrain that
6945 applies to this address, then it should have already been
6946 taken into account when the breakpoint was created in the
6947 first place. If we didn't do this, stepping through e.g.,
6948 Thumb-2 IT blocks would break. */
6949 return bpaddr;
6950 }
6951 else
6952 {
6953 CORE_ADDR adjusted_bpaddr = bpaddr;
6954
6955 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6956 {
6957 /* Some targets have architectural constraints on the placement
6958 of breakpoint instructions. Obtain the adjusted address. */
6959 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6960 }
6961
6962 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6963
6964 /* An adjusted breakpoint address can significantly alter
6965 a user's expectations. Print a warning if an adjustment
6966 is required. */
6967 if (adjusted_bpaddr != bpaddr)
6968 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6969
6970 return adjusted_bpaddr;
6971 }
6972 }
6973
6974 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6975 {
6976 bp_location *loc = this;
6977
6978 gdb_assert (ops != NULL);
6979
6980 loc->ops = ops;
6981 loc->owner = owner;
6982 loc->cond_bytecode = NULL;
6983 loc->shlib_disabled = 0;
6984 loc->enabled = 1;
6985
6986 switch (owner->type)
6987 {
6988 case bp_breakpoint:
6989 case bp_single_step:
6990 case bp_until:
6991 case bp_finish:
6992 case bp_longjmp:
6993 case bp_longjmp_resume:
6994 case bp_longjmp_call_dummy:
6995 case bp_exception:
6996 case bp_exception_resume:
6997 case bp_step_resume:
6998 case bp_hp_step_resume:
6999 case bp_watchpoint_scope:
7000 case bp_call_dummy:
7001 case bp_std_terminate:
7002 case bp_shlib_event:
7003 case bp_thread_event:
7004 case bp_overlay_event:
7005 case bp_jit_event:
7006 case bp_longjmp_master:
7007 case bp_std_terminate_master:
7008 case bp_exception_master:
7009 case bp_gnu_ifunc_resolver:
7010 case bp_gnu_ifunc_resolver_return:
7011 case bp_dprintf:
7012 loc->loc_type = bp_loc_software_breakpoint;
7013 mark_breakpoint_location_modified (loc);
7014 break;
7015 case bp_hardware_breakpoint:
7016 loc->loc_type = bp_loc_hardware_breakpoint;
7017 mark_breakpoint_location_modified (loc);
7018 break;
7019 case bp_hardware_watchpoint:
7020 case bp_read_watchpoint:
7021 case bp_access_watchpoint:
7022 loc->loc_type = bp_loc_hardware_watchpoint;
7023 break;
7024 case bp_watchpoint:
7025 case bp_catchpoint:
7026 case bp_tracepoint:
7027 case bp_fast_tracepoint:
7028 case bp_static_tracepoint:
7029 loc->loc_type = bp_loc_other;
7030 break;
7031 default:
7032 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7033 }
7034
7035 loc->refc = 1;
7036 }
7037
7038 /* Allocate a struct bp_location. */
7039
7040 static struct bp_location *
7041 allocate_bp_location (struct breakpoint *bpt)
7042 {
7043 return bpt->ops->allocate_location (bpt);
7044 }
7045
7046 static void
7047 free_bp_location (struct bp_location *loc)
7048 {
7049 loc->ops->dtor (loc);
7050 delete loc;
7051 }
7052
7053 /* Increment reference count. */
7054
7055 static void
7056 incref_bp_location (struct bp_location *bl)
7057 {
7058 ++bl->refc;
7059 }
7060
7061 /* Decrement reference count. If the reference count reaches 0,
7062 destroy the bp_location. Sets *BLP to NULL. */
7063
7064 static void
7065 decref_bp_location (struct bp_location **blp)
7066 {
7067 gdb_assert ((*blp)->refc > 0);
7068
7069 if (--(*blp)->refc == 0)
7070 free_bp_location (*blp);
7071 *blp = NULL;
7072 }
7073
7074 /* Add breakpoint B at the end of the global breakpoint chain. */
7075
7076 static breakpoint *
7077 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7078 {
7079 struct breakpoint *b1;
7080 struct breakpoint *result = b.get ();
7081
7082 /* Add this breakpoint to the end of the chain so that a list of
7083 breakpoints will come out in order of increasing numbers. */
7084
7085 b1 = breakpoint_chain;
7086 if (b1 == 0)
7087 breakpoint_chain = b.release ();
7088 else
7089 {
7090 while (b1->next)
7091 b1 = b1->next;
7092 b1->next = b.release ();
7093 }
7094
7095 return result;
7096 }
7097
7098 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7099
7100 static void
7101 init_raw_breakpoint_without_location (struct breakpoint *b,
7102 struct gdbarch *gdbarch,
7103 enum bptype bptype,
7104 const struct breakpoint_ops *ops)
7105 {
7106 gdb_assert (ops != NULL);
7107
7108 b->ops = ops;
7109 b->type = bptype;
7110 b->gdbarch = gdbarch;
7111 b->language = current_language->la_language;
7112 b->input_radix = input_radix;
7113 b->related_breakpoint = b;
7114 }
7115
7116 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7117 that has type BPTYPE and has no locations as yet. */
7118
7119 static struct breakpoint *
7120 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7121 enum bptype bptype,
7122 const struct breakpoint_ops *ops)
7123 {
7124 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7125
7126 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7127 return add_to_breakpoint_chain (std::move (b));
7128 }
7129
7130 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7131 resolutions should be made as the user specified the location explicitly
7132 enough. */
7133
7134 static void
7135 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7136 {
7137 gdb_assert (loc->owner != NULL);
7138
7139 if (loc->owner->type == bp_breakpoint
7140 || loc->owner->type == bp_hardware_breakpoint
7141 || is_tracepoint (loc->owner))
7142 {
7143 const char *function_name;
7144
7145 if (loc->msymbol != NULL
7146 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7147 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7148 && !explicit_loc)
7149 {
7150 struct breakpoint *b = loc->owner;
7151
7152 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7153
7154 if (b->type == bp_breakpoint && b->loc == loc
7155 && loc->next == NULL && b->related_breakpoint == b)
7156 {
7157 /* Create only the whole new breakpoint of this type but do not
7158 mess more complicated breakpoints with multiple locations. */
7159 b->type = bp_gnu_ifunc_resolver;
7160 /* Remember the resolver's address for use by the return
7161 breakpoint. */
7162 loc->related_address = loc->address;
7163 }
7164 }
7165 else
7166 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7167
7168 if (function_name)
7169 loc->function_name = xstrdup (function_name);
7170 }
7171 }
7172
7173 /* Attempt to determine architecture of location identified by SAL. */
7174 struct gdbarch *
7175 get_sal_arch (struct symtab_and_line sal)
7176 {
7177 if (sal.section)
7178 return get_objfile_arch (sal.section->objfile);
7179 if (sal.symtab)
7180 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7181
7182 return NULL;
7183 }
7184
7185 /* Low level routine for partially initializing a breakpoint of type
7186 BPTYPE. The newly created breakpoint's address, section, source
7187 file name, and line number are provided by SAL.
7188
7189 It is expected that the caller will complete the initialization of
7190 the newly created breakpoint struct as well as output any status
7191 information regarding the creation of a new breakpoint. */
7192
7193 static void
7194 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7195 struct symtab_and_line sal, enum bptype bptype,
7196 const struct breakpoint_ops *ops)
7197 {
7198 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7199
7200 add_location_to_breakpoint (b, &sal);
7201
7202 if (bptype != bp_catchpoint)
7203 gdb_assert (sal.pspace != NULL);
7204
7205 /* Store the program space that was used to set the breakpoint,
7206 except for ordinary breakpoints, which are independent of the
7207 program space. */
7208 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7209 b->pspace = sal.pspace;
7210 }
7211
7212 /* set_raw_breakpoint is a low level routine for allocating and
7213 partially initializing a breakpoint of type BPTYPE. The newly
7214 created breakpoint's address, section, source file name, and line
7215 number are provided by SAL. The newly created and partially
7216 initialized breakpoint is added to the breakpoint chain and
7217 is also returned as the value of this function.
7218
7219 It is expected that the caller will complete the initialization of
7220 the newly created breakpoint struct as well as output any status
7221 information regarding the creation of a new breakpoint. In
7222 particular, set_raw_breakpoint does NOT set the breakpoint
7223 number! Care should be taken to not allow an error to occur
7224 prior to completing the initialization of the breakpoint. If this
7225 should happen, a bogus breakpoint will be left on the chain. */
7226
7227 struct breakpoint *
7228 set_raw_breakpoint (struct gdbarch *gdbarch,
7229 struct symtab_and_line sal, enum bptype bptype,
7230 const struct breakpoint_ops *ops)
7231 {
7232 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7233
7234 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7235 return add_to_breakpoint_chain (std::move (b));
7236 }
7237
7238 /* Call this routine when stepping and nexting to enable a breakpoint
7239 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7240 initiated the operation. */
7241
7242 void
7243 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7244 {
7245 struct breakpoint *b, *b_tmp;
7246 int thread = tp->global_num;
7247
7248 /* To avoid having to rescan all objfile symbols at every step,
7249 we maintain a list of continually-inserted but always disabled
7250 longjmp "master" breakpoints. Here, we simply create momentary
7251 clones of those and enable them for the requested thread. */
7252 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7253 if (b->pspace == current_program_space
7254 && (b->type == bp_longjmp_master
7255 || b->type == bp_exception_master))
7256 {
7257 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7258 struct breakpoint *clone;
7259
7260 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7261 after their removal. */
7262 clone = momentary_breakpoint_from_master (b, type,
7263 &momentary_breakpoint_ops, 1);
7264 clone->thread = thread;
7265 }
7266
7267 tp->initiating_frame = frame;
7268 }
7269
7270 /* Delete all longjmp breakpoints from THREAD. */
7271 void
7272 delete_longjmp_breakpoint (int thread)
7273 {
7274 struct breakpoint *b, *b_tmp;
7275
7276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7277 if (b->type == bp_longjmp || b->type == bp_exception)
7278 {
7279 if (b->thread == thread)
7280 delete_breakpoint (b);
7281 }
7282 }
7283
7284 void
7285 delete_longjmp_breakpoint_at_next_stop (int thread)
7286 {
7287 struct breakpoint *b, *b_tmp;
7288
7289 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7290 if (b->type == bp_longjmp || b->type == bp_exception)
7291 {
7292 if (b->thread == thread)
7293 b->disposition = disp_del_at_next_stop;
7294 }
7295 }
7296
7297 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7298 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7299 pointer to any of them. Return NULL if this system cannot place longjmp
7300 breakpoints. */
7301
7302 struct breakpoint *
7303 set_longjmp_breakpoint_for_call_dummy (void)
7304 {
7305 struct breakpoint *b, *retval = NULL;
7306
7307 ALL_BREAKPOINTS (b)
7308 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7309 {
7310 struct breakpoint *new_b;
7311
7312 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7313 &momentary_breakpoint_ops,
7314 1);
7315 new_b->thread = inferior_thread ()->global_num;
7316
7317 /* Link NEW_B into the chain of RETVAL breakpoints. */
7318
7319 gdb_assert (new_b->related_breakpoint == new_b);
7320 if (retval == NULL)
7321 retval = new_b;
7322 new_b->related_breakpoint = retval;
7323 while (retval->related_breakpoint != new_b->related_breakpoint)
7324 retval = retval->related_breakpoint;
7325 retval->related_breakpoint = new_b;
7326 }
7327
7328 return retval;
7329 }
7330
7331 /* Verify all existing dummy frames and their associated breakpoints for
7332 TP. Remove those which can no longer be found in the current frame
7333 stack.
7334
7335 You should call this function only at places where it is safe to currently
7336 unwind the whole stack. Failed stack unwind would discard live dummy
7337 frames. */
7338
7339 void
7340 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7341 {
7342 struct breakpoint *b, *b_tmp;
7343
7344 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7345 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7346 {
7347 struct breakpoint *dummy_b = b->related_breakpoint;
7348
7349 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7350 dummy_b = dummy_b->related_breakpoint;
7351 if (dummy_b->type != bp_call_dummy
7352 || frame_find_by_id (dummy_b->frame_id) != NULL)
7353 continue;
7354
7355 dummy_frame_discard (dummy_b->frame_id, tp);
7356
7357 while (b->related_breakpoint != b)
7358 {
7359 if (b_tmp == b->related_breakpoint)
7360 b_tmp = b->related_breakpoint->next;
7361 delete_breakpoint (b->related_breakpoint);
7362 }
7363 delete_breakpoint (b);
7364 }
7365 }
7366
7367 void
7368 enable_overlay_breakpoints (void)
7369 {
7370 struct breakpoint *b;
7371
7372 ALL_BREAKPOINTS (b)
7373 if (b->type == bp_overlay_event)
7374 {
7375 b->enable_state = bp_enabled;
7376 update_global_location_list (UGLL_MAY_INSERT);
7377 overlay_events_enabled = 1;
7378 }
7379 }
7380
7381 void
7382 disable_overlay_breakpoints (void)
7383 {
7384 struct breakpoint *b;
7385
7386 ALL_BREAKPOINTS (b)
7387 if (b->type == bp_overlay_event)
7388 {
7389 b->enable_state = bp_disabled;
7390 update_global_location_list (UGLL_DONT_INSERT);
7391 overlay_events_enabled = 0;
7392 }
7393 }
7394
7395 /* Set an active std::terminate breakpoint for each std::terminate
7396 master breakpoint. */
7397 void
7398 set_std_terminate_breakpoint (void)
7399 {
7400 struct breakpoint *b, *b_tmp;
7401
7402 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7403 if (b->pspace == current_program_space
7404 && b->type == bp_std_terminate_master)
7405 {
7406 momentary_breakpoint_from_master (b, bp_std_terminate,
7407 &momentary_breakpoint_ops, 1);
7408 }
7409 }
7410
7411 /* Delete all the std::terminate breakpoints. */
7412 void
7413 delete_std_terminate_breakpoint (void)
7414 {
7415 struct breakpoint *b, *b_tmp;
7416
7417 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7418 if (b->type == bp_std_terminate)
7419 delete_breakpoint (b);
7420 }
7421
7422 struct breakpoint *
7423 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7424 {
7425 struct breakpoint *b;
7426
7427 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7428 &internal_breakpoint_ops);
7429
7430 b->enable_state = bp_enabled;
7431 /* location has to be used or breakpoint_re_set will delete me. */
7432 b->location = new_address_location (b->loc->address, NULL, 0);
7433
7434 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7435
7436 return b;
7437 }
7438
7439 struct lang_and_radix
7440 {
7441 enum language lang;
7442 int radix;
7443 };
7444
7445 /* Create a breakpoint for JIT code registration and unregistration. */
7446
7447 struct breakpoint *
7448 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7449 {
7450 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7451 &internal_breakpoint_ops);
7452 }
7453
7454 /* Remove JIT code registration and unregistration breakpoint(s). */
7455
7456 void
7457 remove_jit_event_breakpoints (void)
7458 {
7459 struct breakpoint *b, *b_tmp;
7460
7461 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7462 if (b->type == bp_jit_event
7463 && b->loc->pspace == current_program_space)
7464 delete_breakpoint (b);
7465 }
7466
7467 void
7468 remove_solib_event_breakpoints (void)
7469 {
7470 struct breakpoint *b, *b_tmp;
7471
7472 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7473 if (b->type == bp_shlib_event
7474 && b->loc->pspace == current_program_space)
7475 delete_breakpoint (b);
7476 }
7477
7478 /* See breakpoint.h. */
7479
7480 void
7481 remove_solib_event_breakpoints_at_next_stop (void)
7482 {
7483 struct breakpoint *b, *b_tmp;
7484
7485 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7486 if (b->type == bp_shlib_event
7487 && b->loc->pspace == current_program_space)
7488 b->disposition = disp_del_at_next_stop;
7489 }
7490
7491 /* Helper for create_solib_event_breakpoint /
7492 create_and_insert_solib_event_breakpoint. Allows specifying which
7493 INSERT_MODE to pass through to update_global_location_list. */
7494
7495 static struct breakpoint *
7496 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7497 enum ugll_insert_mode insert_mode)
7498 {
7499 struct breakpoint *b;
7500
7501 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7502 &internal_breakpoint_ops);
7503 update_global_location_list_nothrow (insert_mode);
7504 return b;
7505 }
7506
7507 struct breakpoint *
7508 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7509 {
7510 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7511 }
7512
7513 /* See breakpoint.h. */
7514
7515 struct breakpoint *
7516 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7517 {
7518 struct breakpoint *b;
7519
7520 /* Explicitly tell update_global_location_list to insert
7521 locations. */
7522 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7523 if (!b->loc->inserted)
7524 {
7525 delete_breakpoint (b);
7526 return NULL;
7527 }
7528 return b;
7529 }
7530
7531 /* Disable any breakpoints that are on code in shared libraries. Only
7532 apply to enabled breakpoints, disabled ones can just stay disabled. */
7533
7534 void
7535 disable_breakpoints_in_shlibs (void)
7536 {
7537 struct bp_location *loc, **locp_tmp;
7538
7539 ALL_BP_LOCATIONS (loc, locp_tmp)
7540 {
7541 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7542 struct breakpoint *b = loc->owner;
7543
7544 /* We apply the check to all breakpoints, including disabled for
7545 those with loc->duplicate set. This is so that when breakpoint
7546 becomes enabled, or the duplicate is removed, gdb will try to
7547 insert all breakpoints. If we don't set shlib_disabled here,
7548 we'll try to insert those breakpoints and fail. */
7549 if (((b->type == bp_breakpoint)
7550 || (b->type == bp_jit_event)
7551 || (b->type == bp_hardware_breakpoint)
7552 || (is_tracepoint (b)))
7553 && loc->pspace == current_program_space
7554 && !loc->shlib_disabled
7555 && solib_name_from_address (loc->pspace, loc->address)
7556 )
7557 {
7558 loc->shlib_disabled = 1;
7559 }
7560 }
7561 }
7562
7563 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7564 notification of unloaded_shlib. Only apply to enabled breakpoints,
7565 disabled ones can just stay disabled. */
7566
7567 static void
7568 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7569 {
7570 struct bp_location *loc, **locp_tmp;
7571 int disabled_shlib_breaks = 0;
7572
7573 ALL_BP_LOCATIONS (loc, locp_tmp)
7574 {
7575 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7576 struct breakpoint *b = loc->owner;
7577
7578 if (solib->pspace == loc->pspace
7579 && !loc->shlib_disabled
7580 && (((b->type == bp_breakpoint
7581 || b->type == bp_jit_event
7582 || b->type == bp_hardware_breakpoint)
7583 && (loc->loc_type == bp_loc_hardware_breakpoint
7584 || loc->loc_type == bp_loc_software_breakpoint))
7585 || is_tracepoint (b))
7586 && solib_contains_address_p (solib, loc->address))
7587 {
7588 loc->shlib_disabled = 1;
7589 /* At this point, we cannot rely on remove_breakpoint
7590 succeeding so we must mark the breakpoint as not inserted
7591 to prevent future errors occurring in remove_breakpoints. */
7592 loc->inserted = 0;
7593
7594 /* This may cause duplicate notifications for the same breakpoint. */
7595 gdb::observers::breakpoint_modified.notify (b);
7596
7597 if (!disabled_shlib_breaks)
7598 {
7599 target_terminal::ours_for_output ();
7600 warning (_("Temporarily disabling breakpoints "
7601 "for unloaded shared library \"%s\""),
7602 solib->so_name);
7603 }
7604 disabled_shlib_breaks = 1;
7605 }
7606 }
7607 }
7608
7609 /* Disable any breakpoints and tracepoints in OBJFILE upon
7610 notification of free_objfile. Only apply to enabled breakpoints,
7611 disabled ones can just stay disabled. */
7612
7613 static void
7614 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7615 {
7616 struct breakpoint *b;
7617
7618 if (objfile == NULL)
7619 return;
7620
7621 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7622 managed by the user with add-symbol-file/remove-symbol-file.
7623 Similarly to how breakpoints in shared libraries are handled in
7624 response to "nosharedlibrary", mark breakpoints in such modules
7625 shlib_disabled so they end up uninserted on the next global
7626 location list update. Shared libraries not loaded by the user
7627 aren't handled here -- they're already handled in
7628 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7629 solib_unloaded observer. We skip objfiles that are not
7630 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7631 main objfile). */
7632 if ((objfile->flags & OBJF_SHARED) == 0
7633 || (objfile->flags & OBJF_USERLOADED) == 0)
7634 return;
7635
7636 ALL_BREAKPOINTS (b)
7637 {
7638 struct bp_location *loc;
7639 int bp_modified = 0;
7640
7641 if (!is_breakpoint (b) && !is_tracepoint (b))
7642 continue;
7643
7644 for (loc = b->loc; loc != NULL; loc = loc->next)
7645 {
7646 CORE_ADDR loc_addr = loc->address;
7647
7648 if (loc->loc_type != bp_loc_hardware_breakpoint
7649 && loc->loc_type != bp_loc_software_breakpoint)
7650 continue;
7651
7652 if (loc->shlib_disabled != 0)
7653 continue;
7654
7655 if (objfile->pspace != loc->pspace)
7656 continue;
7657
7658 if (loc->loc_type != bp_loc_hardware_breakpoint
7659 && loc->loc_type != bp_loc_software_breakpoint)
7660 continue;
7661
7662 if (is_addr_in_objfile (loc_addr, objfile))
7663 {
7664 loc->shlib_disabled = 1;
7665 /* At this point, we don't know whether the object was
7666 unmapped from the inferior or not, so leave the
7667 inserted flag alone. We'll handle failure to
7668 uninsert quietly, in case the object was indeed
7669 unmapped. */
7670
7671 mark_breakpoint_location_modified (loc);
7672
7673 bp_modified = 1;
7674 }
7675 }
7676
7677 if (bp_modified)
7678 gdb::observers::breakpoint_modified.notify (b);
7679 }
7680 }
7681
7682 /* FORK & VFORK catchpoints. */
7683
7684 /* An instance of this type is used to represent a fork or vfork
7685 catchpoint. A breakpoint is really of this type iff its ops pointer points
7686 to CATCH_FORK_BREAKPOINT_OPS. */
7687
7688 struct fork_catchpoint : public breakpoint
7689 {
7690 /* Process id of a child process whose forking triggered this
7691 catchpoint. This field is only valid immediately after this
7692 catchpoint has triggered. */
7693 ptid_t forked_inferior_pid;
7694 };
7695
7696 /* Implement the "insert" breakpoint_ops method for fork
7697 catchpoints. */
7698
7699 static int
7700 insert_catch_fork (struct bp_location *bl)
7701 {
7702 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7703 }
7704
7705 /* Implement the "remove" breakpoint_ops method for fork
7706 catchpoints. */
7707
7708 static int
7709 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7710 {
7711 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7712 }
7713
7714 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7715 catchpoints. */
7716
7717 static int
7718 breakpoint_hit_catch_fork (const struct bp_location *bl,
7719 const address_space *aspace, CORE_ADDR bp_addr,
7720 const struct target_waitstatus *ws)
7721 {
7722 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7723
7724 if (ws->kind != TARGET_WAITKIND_FORKED)
7725 return 0;
7726
7727 c->forked_inferior_pid = ws->value.related_pid;
7728 return 1;
7729 }
7730
7731 /* Implement the "print_it" breakpoint_ops method for fork
7732 catchpoints. */
7733
7734 static enum print_stop_action
7735 print_it_catch_fork (bpstat bs)
7736 {
7737 struct ui_out *uiout = current_uiout;
7738 struct breakpoint *b = bs->breakpoint_at;
7739 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7740
7741 annotate_catchpoint (b->number);
7742 maybe_print_thread_hit_breakpoint (uiout);
7743 if (b->disposition == disp_del)
7744 uiout->text ("Temporary catchpoint ");
7745 else
7746 uiout->text ("Catchpoint ");
7747 if (uiout->is_mi_like_p ())
7748 {
7749 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7750 uiout->field_string ("disp", bpdisp_text (b->disposition));
7751 }
7752 uiout->field_int ("bkptno", b->number);
7753 uiout->text (" (forked process ");
7754 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7755 uiout->text ("), ");
7756 return PRINT_SRC_AND_LOC;
7757 }
7758
7759 /* Implement the "print_one" breakpoint_ops method for fork
7760 catchpoints. */
7761
7762 static void
7763 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7764 {
7765 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7766 struct value_print_options opts;
7767 struct ui_out *uiout = current_uiout;
7768
7769 get_user_print_options (&opts);
7770
7771 /* Field 4, the address, is omitted (which makes the columns not
7772 line up too nicely with the headers, but the effect is relatively
7773 readable). */
7774 if (opts.addressprint)
7775 uiout->field_skip ("addr");
7776 annotate_field (5);
7777 uiout->text ("fork");
7778 if (c->forked_inferior_pid != null_ptid)
7779 {
7780 uiout->text (", process ");
7781 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7782 uiout->spaces (1);
7783 }
7784
7785 if (uiout->is_mi_like_p ())
7786 uiout->field_string ("catch-type", "fork");
7787 }
7788
7789 /* Implement the "print_mention" breakpoint_ops method for fork
7790 catchpoints. */
7791
7792 static void
7793 print_mention_catch_fork (struct breakpoint *b)
7794 {
7795 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7796 }
7797
7798 /* Implement the "print_recreate" breakpoint_ops method for fork
7799 catchpoints. */
7800
7801 static void
7802 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7803 {
7804 fprintf_unfiltered (fp, "catch fork");
7805 print_recreate_thread (b, fp);
7806 }
7807
7808 /* The breakpoint_ops structure to be used in fork catchpoints. */
7809
7810 static struct breakpoint_ops catch_fork_breakpoint_ops;
7811
7812 /* Implement the "insert" breakpoint_ops method for vfork
7813 catchpoints. */
7814
7815 static int
7816 insert_catch_vfork (struct bp_location *bl)
7817 {
7818 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7819 }
7820
7821 /* Implement the "remove" breakpoint_ops method for vfork
7822 catchpoints. */
7823
7824 static int
7825 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7826 {
7827 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7828 }
7829
7830 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7831 catchpoints. */
7832
7833 static int
7834 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7835 const address_space *aspace, CORE_ADDR bp_addr,
7836 const struct target_waitstatus *ws)
7837 {
7838 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7839
7840 if (ws->kind != TARGET_WAITKIND_VFORKED)
7841 return 0;
7842
7843 c->forked_inferior_pid = ws->value.related_pid;
7844 return 1;
7845 }
7846
7847 /* Implement the "print_it" breakpoint_ops method for vfork
7848 catchpoints. */
7849
7850 static enum print_stop_action
7851 print_it_catch_vfork (bpstat bs)
7852 {
7853 struct ui_out *uiout = current_uiout;
7854 struct breakpoint *b = bs->breakpoint_at;
7855 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7856
7857 annotate_catchpoint (b->number);
7858 maybe_print_thread_hit_breakpoint (uiout);
7859 if (b->disposition == disp_del)
7860 uiout->text ("Temporary catchpoint ");
7861 else
7862 uiout->text ("Catchpoint ");
7863 if (uiout->is_mi_like_p ())
7864 {
7865 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7866 uiout->field_string ("disp", bpdisp_text (b->disposition));
7867 }
7868 uiout->field_int ("bkptno", b->number);
7869 uiout->text (" (vforked process ");
7870 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7871 uiout->text ("), ");
7872 return PRINT_SRC_AND_LOC;
7873 }
7874
7875 /* Implement the "print_one" breakpoint_ops method for vfork
7876 catchpoints. */
7877
7878 static void
7879 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7880 {
7881 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7882 struct value_print_options opts;
7883 struct ui_out *uiout = current_uiout;
7884
7885 get_user_print_options (&opts);
7886 /* Field 4, the address, is omitted (which makes the columns not
7887 line up too nicely with the headers, but the effect is relatively
7888 readable). */
7889 if (opts.addressprint)
7890 uiout->field_skip ("addr");
7891 annotate_field (5);
7892 uiout->text ("vfork");
7893 if (c->forked_inferior_pid != null_ptid)
7894 {
7895 uiout->text (", process ");
7896 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7897 uiout->spaces (1);
7898 }
7899
7900 if (uiout->is_mi_like_p ())
7901 uiout->field_string ("catch-type", "vfork");
7902 }
7903
7904 /* Implement the "print_mention" breakpoint_ops method for vfork
7905 catchpoints. */
7906
7907 static void
7908 print_mention_catch_vfork (struct breakpoint *b)
7909 {
7910 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7911 }
7912
7913 /* Implement the "print_recreate" breakpoint_ops method for vfork
7914 catchpoints. */
7915
7916 static void
7917 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7918 {
7919 fprintf_unfiltered (fp, "catch vfork");
7920 print_recreate_thread (b, fp);
7921 }
7922
7923 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7924
7925 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7926
7927 /* An instance of this type is used to represent an solib catchpoint.
7928 A breakpoint is really of this type iff its ops pointer points to
7929 CATCH_SOLIB_BREAKPOINT_OPS. */
7930
7931 struct solib_catchpoint : public breakpoint
7932 {
7933 ~solib_catchpoint () override;
7934
7935 /* True for "catch load", false for "catch unload". */
7936 unsigned char is_load;
7937
7938 /* Regular expression to match, if any. COMPILED is only valid when
7939 REGEX is non-NULL. */
7940 char *regex;
7941 std::unique_ptr<compiled_regex> compiled;
7942 };
7943
7944 solib_catchpoint::~solib_catchpoint ()
7945 {
7946 xfree (this->regex);
7947 }
7948
7949 static int
7950 insert_catch_solib (struct bp_location *ignore)
7951 {
7952 return 0;
7953 }
7954
7955 static int
7956 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7957 {
7958 return 0;
7959 }
7960
7961 static int
7962 breakpoint_hit_catch_solib (const struct bp_location *bl,
7963 const address_space *aspace,
7964 CORE_ADDR bp_addr,
7965 const struct target_waitstatus *ws)
7966 {
7967 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7968 struct breakpoint *other;
7969
7970 if (ws->kind == TARGET_WAITKIND_LOADED)
7971 return 1;
7972
7973 ALL_BREAKPOINTS (other)
7974 {
7975 struct bp_location *other_bl;
7976
7977 if (other == bl->owner)
7978 continue;
7979
7980 if (other->type != bp_shlib_event)
7981 continue;
7982
7983 if (self->pspace != NULL && other->pspace != self->pspace)
7984 continue;
7985
7986 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7987 {
7988 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7989 return 1;
7990 }
7991 }
7992
7993 return 0;
7994 }
7995
7996 static void
7997 check_status_catch_solib (struct bpstats *bs)
7998 {
7999 struct solib_catchpoint *self
8000 = (struct solib_catchpoint *) bs->breakpoint_at;
8001
8002 if (self->is_load)
8003 {
8004 for (so_list *iter : current_program_space->added_solibs)
8005 {
8006 if (!self->regex
8007 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8008 return;
8009 }
8010 }
8011 else
8012 {
8013 for (const std::string &iter : current_program_space->deleted_solibs)
8014 {
8015 if (!self->regex
8016 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8017 return;
8018 }
8019 }
8020
8021 bs->stop = 0;
8022 bs->print_it = print_it_noop;
8023 }
8024
8025 static enum print_stop_action
8026 print_it_catch_solib (bpstat bs)
8027 {
8028 struct breakpoint *b = bs->breakpoint_at;
8029 struct ui_out *uiout = current_uiout;
8030
8031 annotate_catchpoint (b->number);
8032 maybe_print_thread_hit_breakpoint (uiout);
8033 if (b->disposition == disp_del)
8034 uiout->text ("Temporary catchpoint ");
8035 else
8036 uiout->text ("Catchpoint ");
8037 uiout->field_int ("bkptno", b->number);
8038 uiout->text ("\n");
8039 if (uiout->is_mi_like_p ())
8040 uiout->field_string ("disp", bpdisp_text (b->disposition));
8041 print_solib_event (1);
8042 return PRINT_SRC_AND_LOC;
8043 }
8044
8045 static void
8046 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8047 {
8048 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8049 struct value_print_options opts;
8050 struct ui_out *uiout = current_uiout;
8051 char *msg;
8052
8053 get_user_print_options (&opts);
8054 /* Field 4, the address, is omitted (which makes the columns not
8055 line up too nicely with the headers, but the effect is relatively
8056 readable). */
8057 if (opts.addressprint)
8058 {
8059 annotate_field (4);
8060 uiout->field_skip ("addr");
8061 }
8062
8063 annotate_field (5);
8064 if (self->is_load)
8065 {
8066 if (self->regex)
8067 msg = xstrprintf (_("load of library matching %s"), self->regex);
8068 else
8069 msg = xstrdup (_("load of library"));
8070 }
8071 else
8072 {
8073 if (self->regex)
8074 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8075 else
8076 msg = xstrdup (_("unload of library"));
8077 }
8078 uiout->field_string ("what", msg);
8079 xfree (msg);
8080
8081 if (uiout->is_mi_like_p ())
8082 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8083 }
8084
8085 static void
8086 print_mention_catch_solib (struct breakpoint *b)
8087 {
8088 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8089
8090 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8091 self->is_load ? "load" : "unload");
8092 }
8093
8094 static void
8095 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8096 {
8097 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8098
8099 fprintf_unfiltered (fp, "%s %s",
8100 b->disposition == disp_del ? "tcatch" : "catch",
8101 self->is_load ? "load" : "unload");
8102 if (self->regex)
8103 fprintf_unfiltered (fp, " %s", self->regex);
8104 fprintf_unfiltered (fp, "\n");
8105 }
8106
8107 static struct breakpoint_ops catch_solib_breakpoint_ops;
8108
8109 /* Shared helper function (MI and CLI) for creating and installing
8110 a shared object event catchpoint. If IS_LOAD is non-zero then
8111 the events to be caught are load events, otherwise they are
8112 unload events. If IS_TEMP is non-zero the catchpoint is a
8113 temporary one. If ENABLED is non-zero the catchpoint is
8114 created in an enabled state. */
8115
8116 void
8117 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8118 {
8119 struct gdbarch *gdbarch = get_current_arch ();
8120
8121 if (!arg)
8122 arg = "";
8123 arg = skip_spaces (arg);
8124
8125 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8126
8127 if (*arg != '\0')
8128 {
8129 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8130 _("Invalid regexp")));
8131 c->regex = xstrdup (arg);
8132 }
8133
8134 c->is_load = is_load;
8135 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8136 &catch_solib_breakpoint_ops);
8137
8138 c->enable_state = enabled ? bp_enabled : bp_disabled;
8139
8140 install_breakpoint (0, std::move (c), 1);
8141 }
8142
8143 /* A helper function that does all the work for "catch load" and
8144 "catch unload". */
8145
8146 static void
8147 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8148 struct cmd_list_element *command)
8149 {
8150 int tempflag;
8151 const int enabled = 1;
8152
8153 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8154
8155 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8156 }
8157
8158 static void
8159 catch_load_command_1 (const char *arg, int from_tty,
8160 struct cmd_list_element *command)
8161 {
8162 catch_load_or_unload (arg, from_tty, 1, command);
8163 }
8164
8165 static void
8166 catch_unload_command_1 (const char *arg, int from_tty,
8167 struct cmd_list_element *command)
8168 {
8169 catch_load_or_unload (arg, from_tty, 0, command);
8170 }
8171
8172 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8173 is non-zero, then make the breakpoint temporary. If COND_STRING is
8174 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8175 the breakpoint_ops structure associated to the catchpoint. */
8176
8177 void
8178 init_catchpoint (struct breakpoint *b,
8179 struct gdbarch *gdbarch, int tempflag,
8180 const char *cond_string,
8181 const struct breakpoint_ops *ops)
8182 {
8183 symtab_and_line sal;
8184 sal.pspace = current_program_space;
8185
8186 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8187
8188 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8189 b->disposition = tempflag ? disp_del : disp_donttouch;
8190 }
8191
8192 void
8193 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8194 {
8195 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8196 set_breakpoint_number (internal, b);
8197 if (is_tracepoint (b))
8198 set_tracepoint_count (breakpoint_count);
8199 if (!internal)
8200 mention (b);
8201 gdb::observers::breakpoint_created.notify (b);
8202
8203 if (update_gll)
8204 update_global_location_list (UGLL_MAY_INSERT);
8205 }
8206
8207 static void
8208 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8209 int tempflag, const char *cond_string,
8210 const struct breakpoint_ops *ops)
8211 {
8212 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8213
8214 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8215
8216 c->forked_inferior_pid = null_ptid;
8217
8218 install_breakpoint (0, std::move (c), 1);
8219 }
8220
8221 /* Exec catchpoints. */
8222
8223 /* An instance of this type is used to represent an exec catchpoint.
8224 A breakpoint is really of this type iff its ops pointer points to
8225 CATCH_EXEC_BREAKPOINT_OPS. */
8226
8227 struct exec_catchpoint : public breakpoint
8228 {
8229 ~exec_catchpoint () override;
8230
8231 /* Filename of a program whose exec triggered this catchpoint.
8232 This field is only valid immediately after this catchpoint has
8233 triggered. */
8234 char *exec_pathname;
8235 };
8236
8237 /* Exec catchpoint destructor. */
8238
8239 exec_catchpoint::~exec_catchpoint ()
8240 {
8241 xfree (this->exec_pathname);
8242 }
8243
8244 static int
8245 insert_catch_exec (struct bp_location *bl)
8246 {
8247 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8248 }
8249
8250 static int
8251 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8252 {
8253 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8254 }
8255
8256 static int
8257 breakpoint_hit_catch_exec (const struct bp_location *bl,
8258 const address_space *aspace, CORE_ADDR bp_addr,
8259 const struct target_waitstatus *ws)
8260 {
8261 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8262
8263 if (ws->kind != TARGET_WAITKIND_EXECD)
8264 return 0;
8265
8266 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8267 return 1;
8268 }
8269
8270 static enum print_stop_action
8271 print_it_catch_exec (bpstat bs)
8272 {
8273 struct ui_out *uiout = current_uiout;
8274 struct breakpoint *b = bs->breakpoint_at;
8275 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8276
8277 annotate_catchpoint (b->number);
8278 maybe_print_thread_hit_breakpoint (uiout);
8279 if (b->disposition == disp_del)
8280 uiout->text ("Temporary catchpoint ");
8281 else
8282 uiout->text ("Catchpoint ");
8283 if (uiout->is_mi_like_p ())
8284 {
8285 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8286 uiout->field_string ("disp", bpdisp_text (b->disposition));
8287 }
8288 uiout->field_int ("bkptno", b->number);
8289 uiout->text (" (exec'd ");
8290 uiout->field_string ("new-exec", c->exec_pathname);
8291 uiout->text ("), ");
8292
8293 return PRINT_SRC_AND_LOC;
8294 }
8295
8296 static void
8297 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8298 {
8299 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8300 struct value_print_options opts;
8301 struct ui_out *uiout = current_uiout;
8302
8303 get_user_print_options (&opts);
8304
8305 /* Field 4, the address, is omitted (which makes the columns
8306 not line up too nicely with the headers, but the effect
8307 is relatively readable). */
8308 if (opts.addressprint)
8309 uiout->field_skip ("addr");
8310 annotate_field (5);
8311 uiout->text ("exec");
8312 if (c->exec_pathname != NULL)
8313 {
8314 uiout->text (", program \"");
8315 uiout->field_string ("what", c->exec_pathname);
8316 uiout->text ("\" ");
8317 }
8318
8319 if (uiout->is_mi_like_p ())
8320 uiout->field_string ("catch-type", "exec");
8321 }
8322
8323 static void
8324 print_mention_catch_exec (struct breakpoint *b)
8325 {
8326 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8327 }
8328
8329 /* Implement the "print_recreate" breakpoint_ops method for exec
8330 catchpoints. */
8331
8332 static void
8333 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8334 {
8335 fprintf_unfiltered (fp, "catch exec");
8336 print_recreate_thread (b, fp);
8337 }
8338
8339 static struct breakpoint_ops catch_exec_breakpoint_ops;
8340
8341 static int
8342 hw_breakpoint_used_count (void)
8343 {
8344 int i = 0;
8345 struct breakpoint *b;
8346 struct bp_location *bl;
8347
8348 ALL_BREAKPOINTS (b)
8349 {
8350 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8351 for (bl = b->loc; bl; bl = bl->next)
8352 {
8353 /* Special types of hardware breakpoints may use more than
8354 one register. */
8355 i += b->ops->resources_needed (bl);
8356 }
8357 }
8358
8359 return i;
8360 }
8361
8362 /* Returns the resources B would use if it were a hardware
8363 watchpoint. */
8364
8365 static int
8366 hw_watchpoint_use_count (struct breakpoint *b)
8367 {
8368 int i = 0;
8369 struct bp_location *bl;
8370
8371 if (!breakpoint_enabled (b))
8372 return 0;
8373
8374 for (bl = b->loc; bl; bl = bl->next)
8375 {
8376 /* Special types of hardware watchpoints may use more than
8377 one register. */
8378 i += b->ops->resources_needed (bl);
8379 }
8380
8381 return i;
8382 }
8383
8384 /* Returns the sum the used resources of all hardware watchpoints of
8385 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8386 the sum of the used resources of all hardware watchpoints of other
8387 types _not_ TYPE. */
8388
8389 static int
8390 hw_watchpoint_used_count_others (struct breakpoint *except,
8391 enum bptype type, int *other_type_used)
8392 {
8393 int i = 0;
8394 struct breakpoint *b;
8395
8396 *other_type_used = 0;
8397 ALL_BREAKPOINTS (b)
8398 {
8399 if (b == except)
8400 continue;
8401 if (!breakpoint_enabled (b))
8402 continue;
8403
8404 if (b->type == type)
8405 i += hw_watchpoint_use_count (b);
8406 else if (is_hardware_watchpoint (b))
8407 *other_type_used = 1;
8408 }
8409
8410 return i;
8411 }
8412
8413 void
8414 disable_watchpoints_before_interactive_call_start (void)
8415 {
8416 struct breakpoint *b;
8417
8418 ALL_BREAKPOINTS (b)
8419 {
8420 if (is_watchpoint (b) && breakpoint_enabled (b))
8421 {
8422 b->enable_state = bp_call_disabled;
8423 update_global_location_list (UGLL_DONT_INSERT);
8424 }
8425 }
8426 }
8427
8428 void
8429 enable_watchpoints_after_interactive_call_stop (void)
8430 {
8431 struct breakpoint *b;
8432
8433 ALL_BREAKPOINTS (b)
8434 {
8435 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8436 {
8437 b->enable_state = bp_enabled;
8438 update_global_location_list (UGLL_MAY_INSERT);
8439 }
8440 }
8441 }
8442
8443 void
8444 disable_breakpoints_before_startup (void)
8445 {
8446 current_program_space->executing_startup = 1;
8447 update_global_location_list (UGLL_DONT_INSERT);
8448 }
8449
8450 void
8451 enable_breakpoints_after_startup (void)
8452 {
8453 current_program_space->executing_startup = 0;
8454 breakpoint_re_set ();
8455 }
8456
8457 /* Create a new single-step breakpoint for thread THREAD, with no
8458 locations. */
8459
8460 static struct breakpoint *
8461 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8462 {
8463 std::unique_ptr<breakpoint> b (new breakpoint ());
8464
8465 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8466 &momentary_breakpoint_ops);
8467
8468 b->disposition = disp_donttouch;
8469 b->frame_id = null_frame_id;
8470
8471 b->thread = thread;
8472 gdb_assert (b->thread != 0);
8473
8474 return add_to_breakpoint_chain (std::move (b));
8475 }
8476
8477 /* Set a momentary breakpoint of type TYPE at address specified by
8478 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8479 frame. */
8480
8481 breakpoint_up
8482 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8483 struct frame_id frame_id, enum bptype type)
8484 {
8485 struct breakpoint *b;
8486
8487 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8488 tail-called one. */
8489 gdb_assert (!frame_id_artificial_p (frame_id));
8490
8491 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8492 b->enable_state = bp_enabled;
8493 b->disposition = disp_donttouch;
8494 b->frame_id = frame_id;
8495
8496 b->thread = inferior_thread ()->global_num;
8497
8498 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8499
8500 return breakpoint_up (b);
8501 }
8502
8503 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8504 The new breakpoint will have type TYPE, use OPS as its
8505 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8506
8507 static struct breakpoint *
8508 momentary_breakpoint_from_master (struct breakpoint *orig,
8509 enum bptype type,
8510 const struct breakpoint_ops *ops,
8511 int loc_enabled)
8512 {
8513 struct breakpoint *copy;
8514
8515 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8516 copy->loc = allocate_bp_location (copy);
8517 set_breakpoint_location_function (copy->loc, 1);
8518
8519 copy->loc->gdbarch = orig->loc->gdbarch;
8520 copy->loc->requested_address = orig->loc->requested_address;
8521 copy->loc->address = orig->loc->address;
8522 copy->loc->section = orig->loc->section;
8523 copy->loc->pspace = orig->loc->pspace;
8524 copy->loc->probe = orig->loc->probe;
8525 copy->loc->line_number = orig->loc->line_number;
8526 copy->loc->symtab = orig->loc->symtab;
8527 copy->loc->enabled = loc_enabled;
8528 copy->frame_id = orig->frame_id;
8529 copy->thread = orig->thread;
8530 copy->pspace = orig->pspace;
8531
8532 copy->enable_state = bp_enabled;
8533 copy->disposition = disp_donttouch;
8534 copy->number = internal_breakpoint_number--;
8535
8536 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8537 return copy;
8538 }
8539
8540 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8541 ORIG is NULL. */
8542
8543 struct breakpoint *
8544 clone_momentary_breakpoint (struct breakpoint *orig)
8545 {
8546 /* If there's nothing to clone, then return nothing. */
8547 if (orig == NULL)
8548 return NULL;
8549
8550 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8551 }
8552
8553 breakpoint_up
8554 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8555 enum bptype type)
8556 {
8557 struct symtab_and_line sal;
8558
8559 sal = find_pc_line (pc, 0);
8560 sal.pc = pc;
8561 sal.section = find_pc_overlay (pc);
8562 sal.explicit_pc = 1;
8563
8564 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8565 }
8566 \f
8567
8568 /* Tell the user we have just set a breakpoint B. */
8569
8570 static void
8571 mention (struct breakpoint *b)
8572 {
8573 b->ops->print_mention (b);
8574 current_uiout->text ("\n");
8575 }
8576 \f
8577
8578 static int bp_loc_is_permanent (struct bp_location *loc);
8579
8580 static struct bp_location *
8581 add_location_to_breakpoint (struct breakpoint *b,
8582 const struct symtab_and_line *sal)
8583 {
8584 struct bp_location *loc, **tmp;
8585 CORE_ADDR adjusted_address;
8586 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8587
8588 if (loc_gdbarch == NULL)
8589 loc_gdbarch = b->gdbarch;
8590
8591 /* Adjust the breakpoint's address prior to allocating a location.
8592 Once we call allocate_bp_location(), that mostly uninitialized
8593 location will be placed on the location chain. Adjustment of the
8594 breakpoint may cause target_read_memory() to be called and we do
8595 not want its scan of the location chain to find a breakpoint and
8596 location that's only been partially initialized. */
8597 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8598 sal->pc, b->type);
8599
8600 /* Sort the locations by their ADDRESS. */
8601 loc = allocate_bp_location (b);
8602 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8603 tmp = &((*tmp)->next))
8604 ;
8605 loc->next = *tmp;
8606 *tmp = loc;
8607
8608 loc->requested_address = sal->pc;
8609 loc->address = adjusted_address;
8610 loc->pspace = sal->pspace;
8611 loc->probe.prob = sal->prob;
8612 loc->probe.objfile = sal->objfile;
8613 gdb_assert (loc->pspace != NULL);
8614 loc->section = sal->section;
8615 loc->gdbarch = loc_gdbarch;
8616 loc->line_number = sal->line;
8617 loc->symtab = sal->symtab;
8618 loc->symbol = sal->symbol;
8619 loc->msymbol = sal->msymbol;
8620 loc->objfile = sal->objfile;
8621
8622 set_breakpoint_location_function (loc,
8623 sal->explicit_pc || sal->explicit_line);
8624
8625 /* While by definition, permanent breakpoints are already present in the
8626 code, we don't mark the location as inserted. Normally one would expect
8627 that GDB could rely on that breakpoint instruction to stop the program,
8628 thus removing the need to insert its own breakpoint, except that executing
8629 the breakpoint instruction can kill the target instead of reporting a
8630 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8631 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8632 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8633 breakpoint be inserted normally results in QEMU knowing about the GDB
8634 breakpoint, and thus trap before the breakpoint instruction is executed.
8635 (If GDB later needs to continue execution past the permanent breakpoint,
8636 it manually increments the PC, thus avoiding executing the breakpoint
8637 instruction.) */
8638 if (bp_loc_is_permanent (loc))
8639 loc->permanent = 1;
8640
8641 return loc;
8642 }
8643 \f
8644
8645 /* See breakpoint.h. */
8646
8647 int
8648 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8649 {
8650 int len;
8651 CORE_ADDR addr;
8652 const gdb_byte *bpoint;
8653 gdb_byte *target_mem;
8654
8655 addr = address;
8656 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8657
8658 /* Software breakpoints unsupported? */
8659 if (bpoint == NULL)
8660 return 0;
8661
8662 target_mem = (gdb_byte *) alloca (len);
8663
8664 /* Enable the automatic memory restoration from breakpoints while
8665 we read the memory. Otherwise we could say about our temporary
8666 breakpoints they are permanent. */
8667 scoped_restore restore_memory
8668 = make_scoped_restore_show_memory_breakpoints (0);
8669
8670 if (target_read_memory (address, target_mem, len) == 0
8671 && memcmp (target_mem, bpoint, len) == 0)
8672 return 1;
8673
8674 return 0;
8675 }
8676
8677 /* Return 1 if LOC is pointing to a permanent breakpoint,
8678 return 0 otherwise. */
8679
8680 static int
8681 bp_loc_is_permanent (struct bp_location *loc)
8682 {
8683 gdb_assert (loc != NULL);
8684
8685 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8686 attempt to read from the addresses the locations of these breakpoint types
8687 point to. program_breakpoint_here_p, below, will attempt to read
8688 memory. */
8689 if (!breakpoint_address_is_meaningful (loc->owner))
8690 return 0;
8691
8692 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8693 switch_to_program_space_and_thread (loc->pspace);
8694 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8695 }
8696
8697 /* Build a command list for the dprintf corresponding to the current
8698 settings of the dprintf style options. */
8699
8700 static void
8701 update_dprintf_command_list (struct breakpoint *b)
8702 {
8703 char *dprintf_args = b->extra_string;
8704 char *printf_line = NULL;
8705
8706 if (!dprintf_args)
8707 return;
8708
8709 dprintf_args = skip_spaces (dprintf_args);
8710
8711 /* Allow a comma, as it may have terminated a location, but don't
8712 insist on it. */
8713 if (*dprintf_args == ',')
8714 ++dprintf_args;
8715 dprintf_args = skip_spaces (dprintf_args);
8716
8717 if (*dprintf_args != '"')
8718 error (_("Bad format string, missing '\"'."));
8719
8720 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8721 printf_line = xstrprintf ("printf %s", dprintf_args);
8722 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8723 {
8724 if (!dprintf_function)
8725 error (_("No function supplied for dprintf call"));
8726
8727 if (dprintf_channel && strlen (dprintf_channel) > 0)
8728 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8729 dprintf_function,
8730 dprintf_channel,
8731 dprintf_args);
8732 else
8733 printf_line = xstrprintf ("call (void) %s (%s)",
8734 dprintf_function,
8735 dprintf_args);
8736 }
8737 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8738 {
8739 if (target_can_run_breakpoint_commands ())
8740 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8741 else
8742 {
8743 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8744 printf_line = xstrprintf ("printf %s", dprintf_args);
8745 }
8746 }
8747 else
8748 internal_error (__FILE__, __LINE__,
8749 _("Invalid dprintf style."));
8750
8751 gdb_assert (printf_line != NULL);
8752
8753 /* Manufacture a printf sequence. */
8754 struct command_line *printf_cmd_line
8755 = new struct command_line (simple_control, printf_line);
8756 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8757 command_lines_deleter ()));
8758 }
8759
8760 /* Update all dprintf commands, making their command lists reflect
8761 current style settings. */
8762
8763 static void
8764 update_dprintf_commands (const char *args, int from_tty,
8765 struct cmd_list_element *c)
8766 {
8767 struct breakpoint *b;
8768
8769 ALL_BREAKPOINTS (b)
8770 {
8771 if (b->type == bp_dprintf)
8772 update_dprintf_command_list (b);
8773 }
8774 }
8775
8776 /* Create a breakpoint with SAL as location. Use LOCATION
8777 as a description of the location, and COND_STRING
8778 as condition expression. If LOCATION is NULL then create an
8779 "address location" from the address in the SAL. */
8780
8781 static void
8782 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8783 gdb::array_view<const symtab_and_line> sals,
8784 event_location_up &&location,
8785 gdb::unique_xmalloc_ptr<char> filter,
8786 gdb::unique_xmalloc_ptr<char> cond_string,
8787 gdb::unique_xmalloc_ptr<char> extra_string,
8788 enum bptype type, enum bpdisp disposition,
8789 int thread, int task, int ignore_count,
8790 const struct breakpoint_ops *ops, int from_tty,
8791 int enabled, int internal, unsigned flags,
8792 int display_canonical)
8793 {
8794 int i;
8795
8796 if (type == bp_hardware_breakpoint)
8797 {
8798 int target_resources_ok;
8799
8800 i = hw_breakpoint_used_count ();
8801 target_resources_ok =
8802 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8803 i + 1, 0);
8804 if (target_resources_ok == 0)
8805 error (_("No hardware breakpoint support in the target."));
8806 else if (target_resources_ok < 0)
8807 error (_("Hardware breakpoints used exceeds limit."));
8808 }
8809
8810 gdb_assert (!sals.empty ());
8811
8812 for (const auto &sal : sals)
8813 {
8814 struct bp_location *loc;
8815
8816 if (from_tty)
8817 {
8818 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8819 if (!loc_gdbarch)
8820 loc_gdbarch = gdbarch;
8821
8822 describe_other_breakpoints (loc_gdbarch,
8823 sal.pspace, sal.pc, sal.section, thread);
8824 }
8825
8826 if (&sal == &sals[0])
8827 {
8828 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8829 b->thread = thread;
8830 b->task = task;
8831
8832 b->cond_string = cond_string.release ();
8833 b->extra_string = extra_string.release ();
8834 b->ignore_count = ignore_count;
8835 b->enable_state = enabled ? bp_enabled : bp_disabled;
8836 b->disposition = disposition;
8837
8838 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8839 b->loc->inserted = 1;
8840
8841 if (type == bp_static_tracepoint)
8842 {
8843 struct tracepoint *t = (struct tracepoint *) b;
8844 struct static_tracepoint_marker marker;
8845
8846 if (strace_marker_p (b))
8847 {
8848 /* We already know the marker exists, otherwise, we
8849 wouldn't see a sal for it. */
8850 const char *p
8851 = &event_location_to_string (b->location.get ())[3];
8852 const char *endp;
8853
8854 p = skip_spaces (p);
8855
8856 endp = skip_to_space (p);
8857
8858 t->static_trace_marker_id.assign (p, endp - p);
8859
8860 printf_filtered (_("Probed static tracepoint "
8861 "marker \"%s\"\n"),
8862 t->static_trace_marker_id.c_str ());
8863 }
8864 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8865 {
8866 t->static_trace_marker_id = std::move (marker.str_id);
8867
8868 printf_filtered (_("Probed static tracepoint "
8869 "marker \"%s\"\n"),
8870 t->static_trace_marker_id.c_str ());
8871 }
8872 else
8873 warning (_("Couldn't determine the static "
8874 "tracepoint marker to probe"));
8875 }
8876
8877 loc = b->loc;
8878 }
8879 else
8880 {
8881 loc = add_location_to_breakpoint (b, &sal);
8882 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8883 loc->inserted = 1;
8884 }
8885
8886 if (b->cond_string)
8887 {
8888 const char *arg = b->cond_string;
8889
8890 loc->cond = parse_exp_1 (&arg, loc->address,
8891 block_for_pc (loc->address), 0);
8892 if (*arg)
8893 error (_("Garbage '%s' follows condition"), arg);
8894 }
8895
8896 /* Dynamic printf requires and uses additional arguments on the
8897 command line, otherwise it's an error. */
8898 if (type == bp_dprintf)
8899 {
8900 if (b->extra_string)
8901 update_dprintf_command_list (b);
8902 else
8903 error (_("Format string required"));
8904 }
8905 else if (b->extra_string)
8906 error (_("Garbage '%s' at end of command"), b->extra_string);
8907 }
8908
8909 b->display_canonical = display_canonical;
8910 if (location != NULL)
8911 b->location = std::move (location);
8912 else
8913 b->location = new_address_location (b->loc->address, NULL, 0);
8914 b->filter = filter.release ();
8915 }
8916
8917 static void
8918 create_breakpoint_sal (struct gdbarch *gdbarch,
8919 gdb::array_view<const symtab_and_line> sals,
8920 event_location_up &&location,
8921 gdb::unique_xmalloc_ptr<char> filter,
8922 gdb::unique_xmalloc_ptr<char> cond_string,
8923 gdb::unique_xmalloc_ptr<char> extra_string,
8924 enum bptype type, enum bpdisp disposition,
8925 int thread, int task, int ignore_count,
8926 const struct breakpoint_ops *ops, int from_tty,
8927 int enabled, int internal, unsigned flags,
8928 int display_canonical)
8929 {
8930 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8931
8932 init_breakpoint_sal (b.get (), gdbarch,
8933 sals, std::move (location),
8934 std::move (filter),
8935 std::move (cond_string),
8936 std::move (extra_string),
8937 type, disposition,
8938 thread, task, ignore_count,
8939 ops, from_tty,
8940 enabled, internal, flags,
8941 display_canonical);
8942
8943 install_breakpoint (internal, std::move (b), 0);
8944 }
8945
8946 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8947 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8948 value. COND_STRING, if not NULL, specified the condition to be
8949 used for all breakpoints. Essentially the only case where
8950 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8951 function. In that case, it's still not possible to specify
8952 separate conditions for different overloaded functions, so
8953 we take just a single condition string.
8954
8955 NOTE: If the function succeeds, the caller is expected to cleanup
8956 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8957 array contents). If the function fails (error() is called), the
8958 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8959 COND and SALS arrays and each of those arrays contents. */
8960
8961 static void
8962 create_breakpoints_sal (struct gdbarch *gdbarch,
8963 struct linespec_result *canonical,
8964 gdb::unique_xmalloc_ptr<char> cond_string,
8965 gdb::unique_xmalloc_ptr<char> extra_string,
8966 enum bptype type, enum bpdisp disposition,
8967 int thread, int task, int ignore_count,
8968 const struct breakpoint_ops *ops, int from_tty,
8969 int enabled, int internal, unsigned flags)
8970 {
8971 if (canonical->pre_expanded)
8972 gdb_assert (canonical->lsals.size () == 1);
8973
8974 for (const auto &lsal : canonical->lsals)
8975 {
8976 /* Note that 'location' can be NULL in the case of a plain
8977 'break', without arguments. */
8978 event_location_up location
8979 = (canonical->location != NULL
8980 ? copy_event_location (canonical->location.get ()) : NULL);
8981 gdb::unique_xmalloc_ptr<char> filter_string
8982 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8983
8984 create_breakpoint_sal (gdbarch, lsal.sals,
8985 std::move (location),
8986 std::move (filter_string),
8987 std::move (cond_string),
8988 std::move (extra_string),
8989 type, disposition,
8990 thread, task, ignore_count, ops,
8991 from_tty, enabled, internal, flags,
8992 canonical->special_display);
8993 }
8994 }
8995
8996 /* Parse LOCATION which is assumed to be a SAL specification possibly
8997 followed by conditionals. On return, SALS contains an array of SAL
8998 addresses found. LOCATION points to the end of the SAL (for
8999 linespec locations).
9000
9001 The array and the line spec strings are allocated on the heap, it is
9002 the caller's responsibility to free them. */
9003
9004 static void
9005 parse_breakpoint_sals (const struct event_location *location,
9006 struct linespec_result *canonical)
9007 {
9008 struct symtab_and_line cursal;
9009
9010 if (event_location_type (location) == LINESPEC_LOCATION)
9011 {
9012 const char *spec = get_linespec_location (location)->spec_string;
9013
9014 if (spec == NULL)
9015 {
9016 /* The last displayed codepoint, if it's valid, is our default
9017 breakpoint address. */
9018 if (last_displayed_sal_is_valid ())
9019 {
9020 /* Set sal's pspace, pc, symtab, and line to the values
9021 corresponding to the last call to print_frame_info.
9022 Be sure to reinitialize LINE with NOTCURRENT == 0
9023 as the breakpoint line number is inappropriate otherwise.
9024 find_pc_line would adjust PC, re-set it back. */
9025 symtab_and_line sal = get_last_displayed_sal ();
9026 CORE_ADDR pc = sal.pc;
9027
9028 sal = find_pc_line (pc, 0);
9029
9030 /* "break" without arguments is equivalent to "break *PC"
9031 where PC is the last displayed codepoint's address. So
9032 make sure to set sal.explicit_pc to prevent GDB from
9033 trying to expand the list of sals to include all other
9034 instances with the same symtab and line. */
9035 sal.pc = pc;
9036 sal.explicit_pc = 1;
9037
9038 struct linespec_sals lsal;
9039 lsal.sals = {sal};
9040 lsal.canonical = NULL;
9041
9042 canonical->lsals.push_back (std::move (lsal));
9043 return;
9044 }
9045 else
9046 error (_("No default breakpoint address now."));
9047 }
9048 }
9049
9050 /* Force almost all breakpoints to be in terms of the
9051 current_source_symtab (which is decode_line_1's default).
9052 This should produce the results we want almost all of the
9053 time while leaving default_breakpoint_* alone.
9054
9055 ObjC: However, don't match an Objective-C method name which
9056 may have a '+' or '-' succeeded by a '['. */
9057 cursal = get_current_source_symtab_and_line ();
9058 if (last_displayed_sal_is_valid ())
9059 {
9060 const char *spec = NULL;
9061
9062 if (event_location_type (location) == LINESPEC_LOCATION)
9063 spec = get_linespec_location (location)->spec_string;
9064
9065 if (!cursal.symtab
9066 || (spec != NULL
9067 && strchr ("+-", spec[0]) != NULL
9068 && spec[1] != '['))
9069 {
9070 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9071 get_last_displayed_symtab (),
9072 get_last_displayed_line (),
9073 canonical, NULL, NULL);
9074 return;
9075 }
9076 }
9077
9078 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9079 cursal.symtab, cursal.line, canonical, NULL, NULL);
9080 }
9081
9082
9083 /* Convert each SAL into a real PC. Verify that the PC can be
9084 inserted as a breakpoint. If it can't throw an error. */
9085
9086 static void
9087 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9088 {
9089 for (auto &sal : sals)
9090 resolve_sal_pc (&sal);
9091 }
9092
9093 /* Fast tracepoints may have restrictions on valid locations. For
9094 instance, a fast tracepoint using a jump instead of a trap will
9095 likely have to overwrite more bytes than a trap would, and so can
9096 only be placed where the instruction is longer than the jump, or a
9097 multi-instruction sequence does not have a jump into the middle of
9098 it, etc. */
9099
9100 static void
9101 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9102 gdb::array_view<const symtab_and_line> sals)
9103 {
9104 for (const auto &sal : sals)
9105 {
9106 struct gdbarch *sarch;
9107
9108 sarch = get_sal_arch (sal);
9109 /* We fall back to GDBARCH if there is no architecture
9110 associated with SAL. */
9111 if (sarch == NULL)
9112 sarch = gdbarch;
9113 std::string msg;
9114 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9115 error (_("May not have a fast tracepoint at %s%s"),
9116 paddress (sarch, sal.pc), msg.c_str ());
9117 }
9118 }
9119
9120 /* Given TOK, a string specification of condition and thread, as
9121 accepted by the 'break' command, extract the condition
9122 string and thread number and set *COND_STRING and *THREAD.
9123 PC identifies the context at which the condition should be parsed.
9124 If no condition is found, *COND_STRING is set to NULL.
9125 If no thread is found, *THREAD is set to -1. */
9126
9127 static void
9128 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9129 char **cond_string, int *thread, int *task,
9130 char **rest)
9131 {
9132 *cond_string = NULL;
9133 *thread = -1;
9134 *task = 0;
9135 *rest = NULL;
9136
9137 while (tok && *tok)
9138 {
9139 const char *end_tok;
9140 int toklen;
9141 const char *cond_start = NULL;
9142 const char *cond_end = NULL;
9143
9144 tok = skip_spaces (tok);
9145
9146 if ((*tok == '"' || *tok == ',') && rest)
9147 {
9148 *rest = savestring (tok, strlen (tok));
9149 return;
9150 }
9151
9152 end_tok = skip_to_space (tok);
9153
9154 toklen = end_tok - tok;
9155
9156 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9157 {
9158 tok = cond_start = end_tok + 1;
9159 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9160 cond_end = tok;
9161 *cond_string = savestring (cond_start, cond_end - cond_start);
9162 }
9163 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9164 {
9165 const char *tmptok;
9166 struct thread_info *thr;
9167
9168 tok = end_tok + 1;
9169 thr = parse_thread_id (tok, &tmptok);
9170 if (tok == tmptok)
9171 error (_("Junk after thread keyword."));
9172 *thread = thr->global_num;
9173 tok = tmptok;
9174 }
9175 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9176 {
9177 char *tmptok;
9178
9179 tok = end_tok + 1;
9180 *task = strtol (tok, &tmptok, 0);
9181 if (tok == tmptok)
9182 error (_("Junk after task keyword."));
9183 if (!valid_task_id (*task))
9184 error (_("Unknown task %d."), *task);
9185 tok = tmptok;
9186 }
9187 else if (rest)
9188 {
9189 *rest = savestring (tok, strlen (tok));
9190 return;
9191 }
9192 else
9193 error (_("Junk at end of arguments."));
9194 }
9195 }
9196
9197 /* Decode a static tracepoint marker spec. */
9198
9199 static std::vector<symtab_and_line>
9200 decode_static_tracepoint_spec (const char **arg_p)
9201 {
9202 const char *p = &(*arg_p)[3];
9203 const char *endp;
9204
9205 p = skip_spaces (p);
9206
9207 endp = skip_to_space (p);
9208
9209 std::string marker_str (p, endp - p);
9210
9211 std::vector<static_tracepoint_marker> markers
9212 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9213 if (markers.empty ())
9214 error (_("No known static tracepoint marker named %s"),
9215 marker_str.c_str ());
9216
9217 std::vector<symtab_and_line> sals;
9218 sals.reserve (markers.size ());
9219
9220 for (const static_tracepoint_marker &marker : markers)
9221 {
9222 symtab_and_line sal = find_pc_line (marker.address, 0);
9223 sal.pc = marker.address;
9224 sals.push_back (sal);
9225 }
9226
9227 *arg_p = endp;
9228 return sals;
9229 }
9230
9231 /* See breakpoint.h. */
9232
9233 int
9234 create_breakpoint (struct gdbarch *gdbarch,
9235 const struct event_location *location,
9236 const char *cond_string,
9237 int thread, const char *extra_string,
9238 int parse_extra,
9239 int tempflag, enum bptype type_wanted,
9240 int ignore_count,
9241 enum auto_boolean pending_break_support,
9242 const struct breakpoint_ops *ops,
9243 int from_tty, int enabled, int internal,
9244 unsigned flags)
9245 {
9246 struct linespec_result canonical;
9247 struct cleanup *bkpt_chain = NULL;
9248 int pending = 0;
9249 int task = 0;
9250 int prev_bkpt_count = breakpoint_count;
9251
9252 gdb_assert (ops != NULL);
9253
9254 /* If extra_string isn't useful, set it to NULL. */
9255 if (extra_string != NULL && *extra_string == '\0')
9256 extra_string = NULL;
9257
9258 TRY
9259 {
9260 ops->create_sals_from_location (location, &canonical, type_wanted);
9261 }
9262 CATCH (e, RETURN_MASK_ERROR)
9263 {
9264 /* If caller is interested in rc value from parse, set
9265 value. */
9266 if (e.error == NOT_FOUND_ERROR)
9267 {
9268 /* If pending breakpoint support is turned off, throw
9269 error. */
9270
9271 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9272 throw_exception (e);
9273
9274 exception_print (gdb_stderr, e);
9275
9276 /* If pending breakpoint support is auto query and the user
9277 selects no, then simply return the error code. */
9278 if (pending_break_support == AUTO_BOOLEAN_AUTO
9279 && !nquery (_("Make %s pending on future shared library load? "),
9280 bptype_string (type_wanted)))
9281 return 0;
9282
9283 /* At this point, either the user was queried about setting
9284 a pending breakpoint and selected yes, or pending
9285 breakpoint behavior is on and thus a pending breakpoint
9286 is defaulted on behalf of the user. */
9287 pending = 1;
9288 }
9289 else
9290 throw_exception (e);
9291 }
9292 END_CATCH
9293
9294 if (!pending && canonical.lsals.empty ())
9295 return 0;
9296
9297 /* ----------------------------- SNIP -----------------------------
9298 Anything added to the cleanup chain beyond this point is assumed
9299 to be part of a breakpoint. If the breakpoint create succeeds
9300 then the memory is not reclaimed. */
9301 bkpt_chain = make_cleanup (null_cleanup, 0);
9302
9303 /* Resolve all line numbers to PC's and verify that the addresses
9304 are ok for the target. */
9305 if (!pending)
9306 {
9307 for (auto &lsal : canonical.lsals)
9308 breakpoint_sals_to_pc (lsal.sals);
9309 }
9310
9311 /* Fast tracepoints may have additional restrictions on location. */
9312 if (!pending && type_wanted == bp_fast_tracepoint)
9313 {
9314 for (const auto &lsal : canonical.lsals)
9315 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9316 }
9317
9318 /* Verify that condition can be parsed, before setting any
9319 breakpoints. Allocate a separate condition expression for each
9320 breakpoint. */
9321 if (!pending)
9322 {
9323 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9324 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9325
9326 if (parse_extra)
9327 {
9328 char *rest;
9329 char *cond;
9330
9331 const linespec_sals &lsal = canonical.lsals[0];
9332
9333 /* Here we only parse 'arg' to separate condition
9334 from thread number, so parsing in context of first
9335 sal is OK. When setting the breakpoint we'll
9336 re-parse it in context of each sal. */
9337
9338 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9339 &cond, &thread, &task, &rest);
9340 cond_string_copy.reset (cond);
9341 extra_string_copy.reset (rest);
9342 }
9343 else
9344 {
9345 if (type_wanted != bp_dprintf
9346 && extra_string != NULL && *extra_string != '\0')
9347 error (_("Garbage '%s' at end of location"), extra_string);
9348
9349 /* Create a private copy of condition string. */
9350 if (cond_string)
9351 cond_string_copy.reset (xstrdup (cond_string));
9352 /* Create a private copy of any extra string. */
9353 if (extra_string)
9354 extra_string_copy.reset (xstrdup (extra_string));
9355 }
9356
9357 ops->create_breakpoints_sal (gdbarch, &canonical,
9358 std::move (cond_string_copy),
9359 std::move (extra_string_copy),
9360 type_wanted,
9361 tempflag ? disp_del : disp_donttouch,
9362 thread, task, ignore_count, ops,
9363 from_tty, enabled, internal, flags);
9364 }
9365 else
9366 {
9367 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9368
9369 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9370 b->location = copy_event_location (location);
9371
9372 if (parse_extra)
9373 b->cond_string = NULL;
9374 else
9375 {
9376 /* Create a private copy of condition string. */
9377 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9378 b->thread = thread;
9379 }
9380
9381 /* Create a private copy of any extra string. */
9382 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9383 b->ignore_count = ignore_count;
9384 b->disposition = tempflag ? disp_del : disp_donttouch;
9385 b->condition_not_parsed = 1;
9386 b->enable_state = enabled ? bp_enabled : bp_disabled;
9387 if ((type_wanted != bp_breakpoint
9388 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9389 b->pspace = current_program_space;
9390
9391 install_breakpoint (internal, std::move (b), 0);
9392 }
9393
9394 if (canonical.lsals.size () > 1)
9395 {
9396 warning (_("Multiple breakpoints were set.\nUse the "
9397 "\"delete\" command to delete unwanted breakpoints."));
9398 prev_breakpoint_count = prev_bkpt_count;
9399 }
9400
9401 /* That's it. Discard the cleanups for data inserted into the
9402 breakpoint. */
9403 discard_cleanups (bkpt_chain);
9404
9405 /* error call may happen here - have BKPT_CHAIN already discarded. */
9406 update_global_location_list (UGLL_MAY_INSERT);
9407
9408 return 1;
9409 }
9410
9411 /* Set a breakpoint.
9412 ARG is a string describing breakpoint address,
9413 condition, and thread.
9414 FLAG specifies if a breakpoint is hardware on,
9415 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9416 and BP_TEMPFLAG. */
9417
9418 static void
9419 break_command_1 (const char *arg, int flag, int from_tty)
9420 {
9421 int tempflag = flag & BP_TEMPFLAG;
9422 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9423 ? bp_hardware_breakpoint
9424 : bp_breakpoint);
9425 struct breakpoint_ops *ops;
9426
9427 event_location_up location = string_to_event_location (&arg, current_language);
9428
9429 /* Matching breakpoints on probes. */
9430 if (location != NULL
9431 && event_location_type (location.get ()) == PROBE_LOCATION)
9432 ops = &bkpt_probe_breakpoint_ops;
9433 else
9434 ops = &bkpt_breakpoint_ops;
9435
9436 create_breakpoint (get_current_arch (),
9437 location.get (),
9438 NULL, 0, arg, 1 /* parse arg */,
9439 tempflag, type_wanted,
9440 0 /* Ignore count */,
9441 pending_break_support,
9442 ops,
9443 from_tty,
9444 1 /* enabled */,
9445 0 /* internal */,
9446 0);
9447 }
9448
9449 /* Helper function for break_command_1 and disassemble_command. */
9450
9451 void
9452 resolve_sal_pc (struct symtab_and_line *sal)
9453 {
9454 CORE_ADDR pc;
9455
9456 if (sal->pc == 0 && sal->symtab != NULL)
9457 {
9458 if (!find_line_pc (sal->symtab, sal->line, &pc))
9459 error (_("No line %d in file \"%s\"."),
9460 sal->line, symtab_to_filename_for_display (sal->symtab));
9461 sal->pc = pc;
9462
9463 /* If this SAL corresponds to a breakpoint inserted using a line
9464 number, then skip the function prologue if necessary. */
9465 if (sal->explicit_line)
9466 skip_prologue_sal (sal);
9467 }
9468
9469 if (sal->section == 0 && sal->symtab != NULL)
9470 {
9471 const struct blockvector *bv;
9472 const struct block *b;
9473 struct symbol *sym;
9474
9475 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9476 SYMTAB_COMPUNIT (sal->symtab));
9477 if (bv != NULL)
9478 {
9479 sym = block_linkage_function (b);
9480 if (sym != NULL)
9481 {
9482 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9483 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9484 sym);
9485 }
9486 else
9487 {
9488 /* It really is worthwhile to have the section, so we'll
9489 just have to look harder. This case can be executed
9490 if we have line numbers but no functions (as can
9491 happen in assembly source). */
9492
9493 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9494 switch_to_program_space_and_thread (sal->pspace);
9495
9496 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9497 if (msym.minsym)
9498 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9499 }
9500 }
9501 }
9502 }
9503
9504 void
9505 break_command (const char *arg, int from_tty)
9506 {
9507 break_command_1 (arg, 0, from_tty);
9508 }
9509
9510 void
9511 tbreak_command (const char *arg, int from_tty)
9512 {
9513 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9514 }
9515
9516 static void
9517 hbreak_command (const char *arg, int from_tty)
9518 {
9519 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9520 }
9521
9522 static void
9523 thbreak_command (const char *arg, int from_tty)
9524 {
9525 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9526 }
9527
9528 static void
9529 stop_command (const char *arg, int from_tty)
9530 {
9531 printf_filtered (_("Specify the type of breakpoint to set.\n\
9532 Usage: stop in <function | address>\n\
9533 stop at <line>\n"));
9534 }
9535
9536 static void
9537 stopin_command (const char *arg, int from_tty)
9538 {
9539 int badInput = 0;
9540
9541 if (arg == (char *) NULL)
9542 badInput = 1;
9543 else if (*arg != '*')
9544 {
9545 const char *argptr = arg;
9546 int hasColon = 0;
9547
9548 /* Look for a ':'. If this is a line number specification, then
9549 say it is bad, otherwise, it should be an address or
9550 function/method name. */
9551 while (*argptr && !hasColon)
9552 {
9553 hasColon = (*argptr == ':');
9554 argptr++;
9555 }
9556
9557 if (hasColon)
9558 badInput = (*argptr != ':'); /* Not a class::method */
9559 else
9560 badInput = isdigit (*arg); /* a simple line number */
9561 }
9562
9563 if (badInput)
9564 printf_filtered (_("Usage: stop in <function | address>\n"));
9565 else
9566 break_command_1 (arg, 0, from_tty);
9567 }
9568
9569 static void
9570 stopat_command (const char *arg, int from_tty)
9571 {
9572 int badInput = 0;
9573
9574 if (arg == (char *) NULL || *arg == '*') /* no line number */
9575 badInput = 1;
9576 else
9577 {
9578 const char *argptr = arg;
9579 int hasColon = 0;
9580
9581 /* Look for a ':'. If there is a '::' then get out, otherwise
9582 it is probably a line number. */
9583 while (*argptr && !hasColon)
9584 {
9585 hasColon = (*argptr == ':');
9586 argptr++;
9587 }
9588
9589 if (hasColon)
9590 badInput = (*argptr == ':'); /* we have class::method */
9591 else
9592 badInput = !isdigit (*arg); /* not a line number */
9593 }
9594
9595 if (badInput)
9596 printf_filtered (_("Usage: stop at <line>\n"));
9597 else
9598 break_command_1 (arg, 0, from_tty);
9599 }
9600
9601 /* The dynamic printf command is mostly like a regular breakpoint, but
9602 with a prewired command list consisting of a single output command,
9603 built from extra arguments supplied on the dprintf command
9604 line. */
9605
9606 static void
9607 dprintf_command (const char *arg, int from_tty)
9608 {
9609 event_location_up location = string_to_event_location (&arg, current_language);
9610
9611 /* If non-NULL, ARG should have been advanced past the location;
9612 the next character must be ','. */
9613 if (arg != NULL)
9614 {
9615 if (arg[0] != ',' || arg[1] == '\0')
9616 error (_("Format string required"));
9617 else
9618 {
9619 /* Skip the comma. */
9620 ++arg;
9621 }
9622 }
9623
9624 create_breakpoint (get_current_arch (),
9625 location.get (),
9626 NULL, 0, arg, 1 /* parse arg */,
9627 0, bp_dprintf,
9628 0 /* Ignore count */,
9629 pending_break_support,
9630 &dprintf_breakpoint_ops,
9631 from_tty,
9632 1 /* enabled */,
9633 0 /* internal */,
9634 0);
9635 }
9636
9637 static void
9638 agent_printf_command (const char *arg, int from_tty)
9639 {
9640 error (_("May only run agent-printf on the target"));
9641 }
9642
9643 /* Implement the "breakpoint_hit" breakpoint_ops method for
9644 ranged breakpoints. */
9645
9646 static int
9647 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9648 const address_space *aspace,
9649 CORE_ADDR bp_addr,
9650 const struct target_waitstatus *ws)
9651 {
9652 if (ws->kind != TARGET_WAITKIND_STOPPED
9653 || ws->value.sig != GDB_SIGNAL_TRAP)
9654 return 0;
9655
9656 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9657 bl->length, aspace, bp_addr);
9658 }
9659
9660 /* Implement the "resources_needed" breakpoint_ops method for
9661 ranged breakpoints. */
9662
9663 static int
9664 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9665 {
9666 return target_ranged_break_num_registers ();
9667 }
9668
9669 /* Implement the "print_it" breakpoint_ops method for
9670 ranged breakpoints. */
9671
9672 static enum print_stop_action
9673 print_it_ranged_breakpoint (bpstat bs)
9674 {
9675 struct breakpoint *b = bs->breakpoint_at;
9676 struct bp_location *bl = b->loc;
9677 struct ui_out *uiout = current_uiout;
9678
9679 gdb_assert (b->type == bp_hardware_breakpoint);
9680
9681 /* Ranged breakpoints have only one location. */
9682 gdb_assert (bl && bl->next == NULL);
9683
9684 annotate_breakpoint (b->number);
9685
9686 maybe_print_thread_hit_breakpoint (uiout);
9687
9688 if (b->disposition == disp_del)
9689 uiout->text ("Temporary ranged breakpoint ");
9690 else
9691 uiout->text ("Ranged breakpoint ");
9692 if (uiout->is_mi_like_p ())
9693 {
9694 uiout->field_string ("reason",
9695 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9696 uiout->field_string ("disp", bpdisp_text (b->disposition));
9697 }
9698 uiout->field_int ("bkptno", b->number);
9699 uiout->text (", ");
9700
9701 return PRINT_SRC_AND_LOC;
9702 }
9703
9704 /* Implement the "print_one" breakpoint_ops method for
9705 ranged breakpoints. */
9706
9707 static void
9708 print_one_ranged_breakpoint (struct breakpoint *b,
9709 struct bp_location **last_loc)
9710 {
9711 struct bp_location *bl = b->loc;
9712 struct value_print_options opts;
9713 struct ui_out *uiout = current_uiout;
9714
9715 /* Ranged breakpoints have only one location. */
9716 gdb_assert (bl && bl->next == NULL);
9717
9718 get_user_print_options (&opts);
9719
9720 if (opts.addressprint)
9721 /* We don't print the address range here, it will be printed later
9722 by print_one_detail_ranged_breakpoint. */
9723 uiout->field_skip ("addr");
9724 annotate_field (5);
9725 print_breakpoint_location (b, bl);
9726 *last_loc = bl;
9727 }
9728
9729 /* Implement the "print_one_detail" breakpoint_ops method for
9730 ranged breakpoints. */
9731
9732 static void
9733 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9734 struct ui_out *uiout)
9735 {
9736 CORE_ADDR address_start, address_end;
9737 struct bp_location *bl = b->loc;
9738 string_file stb;
9739
9740 gdb_assert (bl);
9741
9742 address_start = bl->address;
9743 address_end = address_start + bl->length - 1;
9744
9745 uiout->text ("\taddress range: ");
9746 stb.printf ("[%s, %s]",
9747 print_core_address (bl->gdbarch, address_start),
9748 print_core_address (bl->gdbarch, address_end));
9749 uiout->field_stream ("addr", stb);
9750 uiout->text ("\n");
9751 }
9752
9753 /* Implement the "print_mention" breakpoint_ops method for
9754 ranged breakpoints. */
9755
9756 static void
9757 print_mention_ranged_breakpoint (struct breakpoint *b)
9758 {
9759 struct bp_location *bl = b->loc;
9760 struct ui_out *uiout = current_uiout;
9761
9762 gdb_assert (bl);
9763 gdb_assert (b->type == bp_hardware_breakpoint);
9764
9765 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9766 b->number, paddress (bl->gdbarch, bl->address),
9767 paddress (bl->gdbarch, bl->address + bl->length - 1));
9768 }
9769
9770 /* Implement the "print_recreate" breakpoint_ops method for
9771 ranged breakpoints. */
9772
9773 static void
9774 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9775 {
9776 fprintf_unfiltered (fp, "break-range %s, %s",
9777 event_location_to_string (b->location.get ()),
9778 event_location_to_string (b->location_range_end.get ()));
9779 print_recreate_thread (b, fp);
9780 }
9781
9782 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9783
9784 static struct breakpoint_ops ranged_breakpoint_ops;
9785
9786 /* Find the address where the end of the breakpoint range should be
9787 placed, given the SAL of the end of the range. This is so that if
9788 the user provides a line number, the end of the range is set to the
9789 last instruction of the given line. */
9790
9791 static CORE_ADDR
9792 find_breakpoint_range_end (struct symtab_and_line sal)
9793 {
9794 CORE_ADDR end;
9795
9796 /* If the user provided a PC value, use it. Otherwise,
9797 find the address of the end of the given location. */
9798 if (sal.explicit_pc)
9799 end = sal.pc;
9800 else
9801 {
9802 int ret;
9803 CORE_ADDR start;
9804
9805 ret = find_line_pc_range (sal, &start, &end);
9806 if (!ret)
9807 error (_("Could not find location of the end of the range."));
9808
9809 /* find_line_pc_range returns the start of the next line. */
9810 end--;
9811 }
9812
9813 return end;
9814 }
9815
9816 /* Implement the "break-range" CLI command. */
9817
9818 static void
9819 break_range_command (const char *arg, int from_tty)
9820 {
9821 const char *arg_start;
9822 struct linespec_result canonical_start, canonical_end;
9823 int bp_count, can_use_bp, length;
9824 CORE_ADDR end;
9825 struct breakpoint *b;
9826
9827 /* We don't support software ranged breakpoints. */
9828 if (target_ranged_break_num_registers () < 0)
9829 error (_("This target does not support hardware ranged breakpoints."));
9830
9831 bp_count = hw_breakpoint_used_count ();
9832 bp_count += target_ranged_break_num_registers ();
9833 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9834 bp_count, 0);
9835 if (can_use_bp < 0)
9836 error (_("Hardware breakpoints used exceeds limit."));
9837
9838 arg = skip_spaces (arg);
9839 if (arg == NULL || arg[0] == '\0')
9840 error(_("No address range specified."));
9841
9842 arg_start = arg;
9843 event_location_up start_location = string_to_event_location (&arg,
9844 current_language);
9845 parse_breakpoint_sals (start_location.get (), &canonical_start);
9846
9847 if (arg[0] != ',')
9848 error (_("Too few arguments."));
9849 else if (canonical_start.lsals.empty ())
9850 error (_("Could not find location of the beginning of the range."));
9851
9852 const linespec_sals &lsal_start = canonical_start.lsals[0];
9853
9854 if (canonical_start.lsals.size () > 1
9855 || lsal_start.sals.size () != 1)
9856 error (_("Cannot create a ranged breakpoint with multiple locations."));
9857
9858 const symtab_and_line &sal_start = lsal_start.sals[0];
9859 std::string addr_string_start (arg_start, arg - arg_start);
9860
9861 arg++; /* Skip the comma. */
9862 arg = skip_spaces (arg);
9863
9864 /* Parse the end location. */
9865
9866 arg_start = arg;
9867
9868 /* We call decode_line_full directly here instead of using
9869 parse_breakpoint_sals because we need to specify the start location's
9870 symtab and line as the default symtab and line for the end of the
9871 range. This makes it possible to have ranges like "foo.c:27, +14",
9872 where +14 means 14 lines from the start location. */
9873 event_location_up end_location = string_to_event_location (&arg,
9874 current_language);
9875 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9876 sal_start.symtab, sal_start.line,
9877 &canonical_end, NULL, NULL);
9878
9879 if (canonical_end.lsals.empty ())
9880 error (_("Could not find location of the end of the range."));
9881
9882 const linespec_sals &lsal_end = canonical_end.lsals[0];
9883 if (canonical_end.lsals.size () > 1
9884 || lsal_end.sals.size () != 1)
9885 error (_("Cannot create a ranged breakpoint with multiple locations."));
9886
9887 const symtab_and_line &sal_end = lsal_end.sals[0];
9888
9889 end = find_breakpoint_range_end (sal_end);
9890 if (sal_start.pc > end)
9891 error (_("Invalid address range, end precedes start."));
9892
9893 length = end - sal_start.pc + 1;
9894 if (length < 0)
9895 /* Length overflowed. */
9896 error (_("Address range too large."));
9897 else if (length == 1)
9898 {
9899 /* This range is simple enough to be handled by
9900 the `hbreak' command. */
9901 hbreak_command (&addr_string_start[0], 1);
9902
9903 return;
9904 }
9905
9906 /* Now set up the breakpoint. */
9907 b = set_raw_breakpoint (get_current_arch (), sal_start,
9908 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9909 set_breakpoint_count (breakpoint_count + 1);
9910 b->number = breakpoint_count;
9911 b->disposition = disp_donttouch;
9912 b->location = std::move (start_location);
9913 b->location_range_end = std::move (end_location);
9914 b->loc->length = length;
9915
9916 mention (b);
9917 gdb::observers::breakpoint_created.notify (b);
9918 update_global_location_list (UGLL_MAY_INSERT);
9919 }
9920
9921 /* Return non-zero if EXP is verified as constant. Returned zero
9922 means EXP is variable. Also the constant detection may fail for
9923 some constant expressions and in such case still falsely return
9924 zero. */
9925
9926 static int
9927 watchpoint_exp_is_const (const struct expression *exp)
9928 {
9929 int i = exp->nelts;
9930
9931 while (i > 0)
9932 {
9933 int oplenp, argsp;
9934
9935 /* We are only interested in the descriptor of each element. */
9936 operator_length (exp, i, &oplenp, &argsp);
9937 i -= oplenp;
9938
9939 switch (exp->elts[i].opcode)
9940 {
9941 case BINOP_ADD:
9942 case BINOP_SUB:
9943 case BINOP_MUL:
9944 case BINOP_DIV:
9945 case BINOP_REM:
9946 case BINOP_MOD:
9947 case BINOP_LSH:
9948 case BINOP_RSH:
9949 case BINOP_LOGICAL_AND:
9950 case BINOP_LOGICAL_OR:
9951 case BINOP_BITWISE_AND:
9952 case BINOP_BITWISE_IOR:
9953 case BINOP_BITWISE_XOR:
9954 case BINOP_EQUAL:
9955 case BINOP_NOTEQUAL:
9956 case BINOP_LESS:
9957 case BINOP_GTR:
9958 case BINOP_LEQ:
9959 case BINOP_GEQ:
9960 case BINOP_REPEAT:
9961 case BINOP_COMMA:
9962 case BINOP_EXP:
9963 case BINOP_MIN:
9964 case BINOP_MAX:
9965 case BINOP_INTDIV:
9966 case BINOP_CONCAT:
9967 case TERNOP_COND:
9968 case TERNOP_SLICE:
9969
9970 case OP_LONG:
9971 case OP_FLOAT:
9972 case OP_LAST:
9973 case OP_COMPLEX:
9974 case OP_STRING:
9975 case OP_ARRAY:
9976 case OP_TYPE:
9977 case OP_TYPEOF:
9978 case OP_DECLTYPE:
9979 case OP_TYPEID:
9980 case OP_NAME:
9981 case OP_OBJC_NSSTRING:
9982
9983 case UNOP_NEG:
9984 case UNOP_LOGICAL_NOT:
9985 case UNOP_COMPLEMENT:
9986 case UNOP_ADDR:
9987 case UNOP_HIGH:
9988 case UNOP_CAST:
9989
9990 case UNOP_CAST_TYPE:
9991 case UNOP_REINTERPRET_CAST:
9992 case UNOP_DYNAMIC_CAST:
9993 /* Unary, binary and ternary operators: We have to check
9994 their operands. If they are constant, then so is the
9995 result of that operation. For instance, if A and B are
9996 determined to be constants, then so is "A + B".
9997
9998 UNOP_IND is one exception to the rule above, because the
9999 value of *ADDR is not necessarily a constant, even when
10000 ADDR is. */
10001 break;
10002
10003 case OP_VAR_VALUE:
10004 /* Check whether the associated symbol is a constant.
10005
10006 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10007 possible that a buggy compiler could mark a variable as
10008 constant even when it is not, and TYPE_CONST would return
10009 true in this case, while SYMBOL_CLASS wouldn't.
10010
10011 We also have to check for function symbols because they
10012 are always constant. */
10013 {
10014 struct symbol *s = exp->elts[i + 2].symbol;
10015
10016 if (SYMBOL_CLASS (s) != LOC_BLOCK
10017 && SYMBOL_CLASS (s) != LOC_CONST
10018 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10019 return 0;
10020 break;
10021 }
10022
10023 /* The default action is to return 0 because we are using
10024 the optimistic approach here: If we don't know something,
10025 then it is not a constant. */
10026 default:
10027 return 0;
10028 }
10029 }
10030
10031 return 1;
10032 }
10033
10034 /* Watchpoint destructor. */
10035
10036 watchpoint::~watchpoint ()
10037 {
10038 xfree (this->exp_string);
10039 xfree (this->exp_string_reparse);
10040 }
10041
10042 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10043
10044 static void
10045 re_set_watchpoint (struct breakpoint *b)
10046 {
10047 struct watchpoint *w = (struct watchpoint *) b;
10048
10049 /* Watchpoint can be either on expression using entirely global
10050 variables, or it can be on local variables.
10051
10052 Watchpoints of the first kind are never auto-deleted, and even
10053 persist across program restarts. Since they can use variables
10054 from shared libraries, we need to reparse expression as libraries
10055 are loaded and unloaded.
10056
10057 Watchpoints on local variables can also change meaning as result
10058 of solib event. For example, if a watchpoint uses both a local
10059 and a global variables in expression, it's a local watchpoint,
10060 but unloading of a shared library will make the expression
10061 invalid. This is not a very common use case, but we still
10062 re-evaluate expression, to avoid surprises to the user.
10063
10064 Note that for local watchpoints, we re-evaluate it only if
10065 watchpoints frame id is still valid. If it's not, it means the
10066 watchpoint is out of scope and will be deleted soon. In fact,
10067 I'm not sure we'll ever be called in this case.
10068
10069 If a local watchpoint's frame id is still valid, then
10070 w->exp_valid_block is likewise valid, and we can safely use it.
10071
10072 Don't do anything about disabled watchpoints, since they will be
10073 reevaluated again when enabled. */
10074 update_watchpoint (w, 1 /* reparse */);
10075 }
10076
10077 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10078
10079 static int
10080 insert_watchpoint (struct bp_location *bl)
10081 {
10082 struct watchpoint *w = (struct watchpoint *) bl->owner;
10083 int length = w->exact ? 1 : bl->length;
10084
10085 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10086 w->cond_exp.get ());
10087 }
10088
10089 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10090
10091 static int
10092 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10093 {
10094 struct watchpoint *w = (struct watchpoint *) bl->owner;
10095 int length = w->exact ? 1 : bl->length;
10096
10097 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10098 w->cond_exp.get ());
10099 }
10100
10101 static int
10102 breakpoint_hit_watchpoint (const struct bp_location *bl,
10103 const address_space *aspace, CORE_ADDR bp_addr,
10104 const struct target_waitstatus *ws)
10105 {
10106 struct breakpoint *b = bl->owner;
10107 struct watchpoint *w = (struct watchpoint *) b;
10108
10109 /* Continuable hardware watchpoints are treated as non-existent if the
10110 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10111 some data address). Otherwise gdb won't stop on a break instruction
10112 in the code (not from a breakpoint) when a hardware watchpoint has
10113 been defined. Also skip watchpoints which we know did not trigger
10114 (did not match the data address). */
10115 if (is_hardware_watchpoint (b)
10116 && w->watchpoint_triggered == watch_triggered_no)
10117 return 0;
10118
10119 return 1;
10120 }
10121
10122 static void
10123 check_status_watchpoint (bpstat bs)
10124 {
10125 gdb_assert (is_watchpoint (bs->breakpoint_at));
10126
10127 bpstat_check_watchpoint (bs);
10128 }
10129
10130 /* Implement the "resources_needed" breakpoint_ops method for
10131 hardware watchpoints. */
10132
10133 static int
10134 resources_needed_watchpoint (const struct bp_location *bl)
10135 {
10136 struct watchpoint *w = (struct watchpoint *) bl->owner;
10137 int length = w->exact? 1 : bl->length;
10138
10139 return target_region_ok_for_hw_watchpoint (bl->address, length);
10140 }
10141
10142 /* Implement the "works_in_software_mode" breakpoint_ops method for
10143 hardware watchpoints. */
10144
10145 static int
10146 works_in_software_mode_watchpoint (const struct breakpoint *b)
10147 {
10148 /* Read and access watchpoints only work with hardware support. */
10149 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10150 }
10151
10152 static enum print_stop_action
10153 print_it_watchpoint (bpstat bs)
10154 {
10155 struct breakpoint *b;
10156 enum print_stop_action result;
10157 struct watchpoint *w;
10158 struct ui_out *uiout = current_uiout;
10159
10160 gdb_assert (bs->bp_location_at != NULL);
10161
10162 b = bs->breakpoint_at;
10163 w = (struct watchpoint *) b;
10164
10165 annotate_watchpoint (b->number);
10166 maybe_print_thread_hit_breakpoint (uiout);
10167
10168 string_file stb;
10169
10170 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10171 switch (b->type)
10172 {
10173 case bp_watchpoint:
10174 case bp_hardware_watchpoint:
10175 if (uiout->is_mi_like_p ())
10176 uiout->field_string
10177 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10178 mention (b);
10179 tuple_emitter.emplace (uiout, "value");
10180 uiout->text ("\nOld value = ");
10181 watchpoint_value_print (bs->old_val.get (), &stb);
10182 uiout->field_stream ("old", stb);
10183 uiout->text ("\nNew value = ");
10184 watchpoint_value_print (w->val.get (), &stb);
10185 uiout->field_stream ("new", stb);
10186 uiout->text ("\n");
10187 /* More than one watchpoint may have been triggered. */
10188 result = PRINT_UNKNOWN;
10189 break;
10190
10191 case bp_read_watchpoint:
10192 if (uiout->is_mi_like_p ())
10193 uiout->field_string
10194 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10195 mention (b);
10196 tuple_emitter.emplace (uiout, "value");
10197 uiout->text ("\nValue = ");
10198 watchpoint_value_print (w->val.get (), &stb);
10199 uiout->field_stream ("value", stb);
10200 uiout->text ("\n");
10201 result = PRINT_UNKNOWN;
10202 break;
10203
10204 case bp_access_watchpoint:
10205 if (bs->old_val != NULL)
10206 {
10207 if (uiout->is_mi_like_p ())
10208 uiout->field_string
10209 ("reason",
10210 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10211 mention (b);
10212 tuple_emitter.emplace (uiout, "value");
10213 uiout->text ("\nOld value = ");
10214 watchpoint_value_print (bs->old_val.get (), &stb);
10215 uiout->field_stream ("old", stb);
10216 uiout->text ("\nNew value = ");
10217 }
10218 else
10219 {
10220 mention (b);
10221 if (uiout->is_mi_like_p ())
10222 uiout->field_string
10223 ("reason",
10224 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10225 tuple_emitter.emplace (uiout, "value");
10226 uiout->text ("\nValue = ");
10227 }
10228 watchpoint_value_print (w->val.get (), &stb);
10229 uiout->field_stream ("new", stb);
10230 uiout->text ("\n");
10231 result = PRINT_UNKNOWN;
10232 break;
10233 default:
10234 result = PRINT_UNKNOWN;
10235 }
10236
10237 return result;
10238 }
10239
10240 /* Implement the "print_mention" breakpoint_ops method for hardware
10241 watchpoints. */
10242
10243 static void
10244 print_mention_watchpoint (struct breakpoint *b)
10245 {
10246 struct watchpoint *w = (struct watchpoint *) b;
10247 struct ui_out *uiout = current_uiout;
10248 const char *tuple_name;
10249
10250 switch (b->type)
10251 {
10252 case bp_watchpoint:
10253 uiout->text ("Watchpoint ");
10254 tuple_name = "wpt";
10255 break;
10256 case bp_hardware_watchpoint:
10257 uiout->text ("Hardware watchpoint ");
10258 tuple_name = "wpt";
10259 break;
10260 case bp_read_watchpoint:
10261 uiout->text ("Hardware read watchpoint ");
10262 tuple_name = "hw-rwpt";
10263 break;
10264 case bp_access_watchpoint:
10265 uiout->text ("Hardware access (read/write) watchpoint ");
10266 tuple_name = "hw-awpt";
10267 break;
10268 default:
10269 internal_error (__FILE__, __LINE__,
10270 _("Invalid hardware watchpoint type."));
10271 }
10272
10273 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10274 uiout->field_int ("number", b->number);
10275 uiout->text (": ");
10276 uiout->field_string ("exp", w->exp_string);
10277 }
10278
10279 /* Implement the "print_recreate" breakpoint_ops method for
10280 watchpoints. */
10281
10282 static void
10283 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10284 {
10285 struct watchpoint *w = (struct watchpoint *) b;
10286
10287 switch (b->type)
10288 {
10289 case bp_watchpoint:
10290 case bp_hardware_watchpoint:
10291 fprintf_unfiltered (fp, "watch");
10292 break;
10293 case bp_read_watchpoint:
10294 fprintf_unfiltered (fp, "rwatch");
10295 break;
10296 case bp_access_watchpoint:
10297 fprintf_unfiltered (fp, "awatch");
10298 break;
10299 default:
10300 internal_error (__FILE__, __LINE__,
10301 _("Invalid watchpoint type."));
10302 }
10303
10304 fprintf_unfiltered (fp, " %s", w->exp_string);
10305 print_recreate_thread (b, fp);
10306 }
10307
10308 /* Implement the "explains_signal" breakpoint_ops method for
10309 watchpoints. */
10310
10311 static int
10312 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10313 {
10314 /* A software watchpoint cannot cause a signal other than
10315 GDB_SIGNAL_TRAP. */
10316 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10317 return 0;
10318
10319 return 1;
10320 }
10321
10322 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10323
10324 static struct breakpoint_ops watchpoint_breakpoint_ops;
10325
10326 /* Implement the "insert" breakpoint_ops method for
10327 masked hardware watchpoints. */
10328
10329 static int
10330 insert_masked_watchpoint (struct bp_location *bl)
10331 {
10332 struct watchpoint *w = (struct watchpoint *) bl->owner;
10333
10334 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10335 bl->watchpoint_type);
10336 }
10337
10338 /* Implement the "remove" breakpoint_ops method for
10339 masked hardware watchpoints. */
10340
10341 static int
10342 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10343 {
10344 struct watchpoint *w = (struct watchpoint *) bl->owner;
10345
10346 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10347 bl->watchpoint_type);
10348 }
10349
10350 /* Implement the "resources_needed" breakpoint_ops method for
10351 masked hardware watchpoints. */
10352
10353 static int
10354 resources_needed_masked_watchpoint (const struct bp_location *bl)
10355 {
10356 struct watchpoint *w = (struct watchpoint *) bl->owner;
10357
10358 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10359 }
10360
10361 /* Implement the "works_in_software_mode" breakpoint_ops method for
10362 masked hardware watchpoints. */
10363
10364 static int
10365 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10366 {
10367 return 0;
10368 }
10369
10370 /* Implement the "print_it" breakpoint_ops method for
10371 masked hardware watchpoints. */
10372
10373 static enum print_stop_action
10374 print_it_masked_watchpoint (bpstat bs)
10375 {
10376 struct breakpoint *b = bs->breakpoint_at;
10377 struct ui_out *uiout = current_uiout;
10378
10379 /* Masked watchpoints have only one location. */
10380 gdb_assert (b->loc && b->loc->next == NULL);
10381
10382 annotate_watchpoint (b->number);
10383 maybe_print_thread_hit_breakpoint (uiout);
10384
10385 switch (b->type)
10386 {
10387 case bp_hardware_watchpoint:
10388 if (uiout->is_mi_like_p ())
10389 uiout->field_string
10390 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10391 break;
10392
10393 case bp_read_watchpoint:
10394 if (uiout->is_mi_like_p ())
10395 uiout->field_string
10396 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10397 break;
10398
10399 case bp_access_watchpoint:
10400 if (uiout->is_mi_like_p ())
10401 uiout->field_string
10402 ("reason",
10403 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10404 break;
10405 default:
10406 internal_error (__FILE__, __LINE__,
10407 _("Invalid hardware watchpoint type."));
10408 }
10409
10410 mention (b);
10411 uiout->text (_("\n\
10412 Check the underlying instruction at PC for the memory\n\
10413 address and value which triggered this watchpoint.\n"));
10414 uiout->text ("\n");
10415
10416 /* More than one watchpoint may have been triggered. */
10417 return PRINT_UNKNOWN;
10418 }
10419
10420 /* Implement the "print_one_detail" breakpoint_ops method for
10421 masked hardware watchpoints. */
10422
10423 static void
10424 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10425 struct ui_out *uiout)
10426 {
10427 struct watchpoint *w = (struct watchpoint *) b;
10428
10429 /* Masked watchpoints have only one location. */
10430 gdb_assert (b->loc && b->loc->next == NULL);
10431
10432 uiout->text ("\tmask ");
10433 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10434 uiout->text ("\n");
10435 }
10436
10437 /* Implement the "print_mention" breakpoint_ops method for
10438 masked hardware watchpoints. */
10439
10440 static void
10441 print_mention_masked_watchpoint (struct breakpoint *b)
10442 {
10443 struct watchpoint *w = (struct watchpoint *) b;
10444 struct ui_out *uiout = current_uiout;
10445 const char *tuple_name;
10446
10447 switch (b->type)
10448 {
10449 case bp_hardware_watchpoint:
10450 uiout->text ("Masked hardware watchpoint ");
10451 tuple_name = "wpt";
10452 break;
10453 case bp_read_watchpoint:
10454 uiout->text ("Masked hardware read watchpoint ");
10455 tuple_name = "hw-rwpt";
10456 break;
10457 case bp_access_watchpoint:
10458 uiout->text ("Masked hardware access (read/write) watchpoint ");
10459 tuple_name = "hw-awpt";
10460 break;
10461 default:
10462 internal_error (__FILE__, __LINE__,
10463 _("Invalid hardware watchpoint type."));
10464 }
10465
10466 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10467 uiout->field_int ("number", b->number);
10468 uiout->text (": ");
10469 uiout->field_string ("exp", w->exp_string);
10470 }
10471
10472 /* Implement the "print_recreate" breakpoint_ops method for
10473 masked hardware watchpoints. */
10474
10475 static void
10476 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10477 {
10478 struct watchpoint *w = (struct watchpoint *) b;
10479 char tmp[40];
10480
10481 switch (b->type)
10482 {
10483 case bp_hardware_watchpoint:
10484 fprintf_unfiltered (fp, "watch");
10485 break;
10486 case bp_read_watchpoint:
10487 fprintf_unfiltered (fp, "rwatch");
10488 break;
10489 case bp_access_watchpoint:
10490 fprintf_unfiltered (fp, "awatch");
10491 break;
10492 default:
10493 internal_error (__FILE__, __LINE__,
10494 _("Invalid hardware watchpoint type."));
10495 }
10496
10497 sprintf_vma (tmp, w->hw_wp_mask);
10498 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10499 print_recreate_thread (b, fp);
10500 }
10501
10502 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10503
10504 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10505
10506 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10507
10508 static int
10509 is_masked_watchpoint (const struct breakpoint *b)
10510 {
10511 return b->ops == &masked_watchpoint_breakpoint_ops;
10512 }
10513
10514 /* accessflag: hw_write: watch write,
10515 hw_read: watch read,
10516 hw_access: watch access (read or write) */
10517 static void
10518 watch_command_1 (const char *arg, int accessflag, int from_tty,
10519 int just_location, int internal)
10520 {
10521 struct breakpoint *scope_breakpoint = NULL;
10522 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10523 struct value *mark, *result;
10524 int saved_bitpos = 0, saved_bitsize = 0;
10525 const char *exp_start = NULL;
10526 const char *exp_end = NULL;
10527 const char *tok, *end_tok;
10528 int toklen = -1;
10529 const char *cond_start = NULL;
10530 const char *cond_end = NULL;
10531 enum bptype bp_type;
10532 int thread = -1;
10533 int pc = 0;
10534 /* Flag to indicate whether we are going to use masks for
10535 the hardware watchpoint. */
10536 int use_mask = 0;
10537 CORE_ADDR mask = 0;
10538
10539 /* Make sure that we actually have parameters to parse. */
10540 if (arg != NULL && arg[0] != '\0')
10541 {
10542 const char *value_start;
10543
10544 exp_end = arg + strlen (arg);
10545
10546 /* Look for "parameter value" pairs at the end
10547 of the arguments string. */
10548 for (tok = exp_end - 1; tok > arg; tok--)
10549 {
10550 /* Skip whitespace at the end of the argument list. */
10551 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10552 tok--;
10553
10554 /* Find the beginning of the last token.
10555 This is the value of the parameter. */
10556 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10557 tok--;
10558 value_start = tok + 1;
10559
10560 /* Skip whitespace. */
10561 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10562 tok--;
10563
10564 end_tok = tok;
10565
10566 /* Find the beginning of the second to last token.
10567 This is the parameter itself. */
10568 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10569 tok--;
10570 tok++;
10571 toklen = end_tok - tok + 1;
10572
10573 if (toklen == 6 && startswith (tok, "thread"))
10574 {
10575 struct thread_info *thr;
10576 /* At this point we've found a "thread" token, which means
10577 the user is trying to set a watchpoint that triggers
10578 only in a specific thread. */
10579 const char *endp;
10580
10581 if (thread != -1)
10582 error(_("You can specify only one thread."));
10583
10584 /* Extract the thread ID from the next token. */
10585 thr = parse_thread_id (value_start, &endp);
10586
10587 /* Check if the user provided a valid thread ID. */
10588 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10589 invalid_thread_id_error (value_start);
10590
10591 thread = thr->global_num;
10592 }
10593 else if (toklen == 4 && startswith (tok, "mask"))
10594 {
10595 /* We've found a "mask" token, which means the user wants to
10596 create a hardware watchpoint that is going to have the mask
10597 facility. */
10598 struct value *mask_value, *mark;
10599
10600 if (use_mask)
10601 error(_("You can specify only one mask."));
10602
10603 use_mask = just_location = 1;
10604
10605 mark = value_mark ();
10606 mask_value = parse_to_comma_and_eval (&value_start);
10607 mask = value_as_address (mask_value);
10608 value_free_to_mark (mark);
10609 }
10610 else
10611 /* We didn't recognize what we found. We should stop here. */
10612 break;
10613
10614 /* Truncate the string and get rid of the "parameter value" pair before
10615 the arguments string is parsed by the parse_exp_1 function. */
10616 exp_end = tok;
10617 }
10618 }
10619 else
10620 exp_end = arg;
10621
10622 /* Parse the rest of the arguments. From here on out, everything
10623 is in terms of a newly allocated string instead of the original
10624 ARG. */
10625 innermost_block.reset ();
10626 std::string expression (arg, exp_end - arg);
10627 exp_start = arg = expression.c_str ();
10628 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10629 exp_end = arg;
10630 /* Remove trailing whitespace from the expression before saving it.
10631 This makes the eventual display of the expression string a bit
10632 prettier. */
10633 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10634 --exp_end;
10635
10636 /* Checking if the expression is not constant. */
10637 if (watchpoint_exp_is_const (exp.get ()))
10638 {
10639 int len;
10640
10641 len = exp_end - exp_start;
10642 while (len > 0 && isspace (exp_start[len - 1]))
10643 len--;
10644 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10645 }
10646
10647 exp_valid_block = innermost_block.block ();
10648 mark = value_mark ();
10649 struct value *val_as_value = nullptr;
10650 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10651 just_location);
10652
10653 if (val_as_value != NULL && just_location)
10654 {
10655 saved_bitpos = value_bitpos (val_as_value);
10656 saved_bitsize = value_bitsize (val_as_value);
10657 }
10658
10659 value_ref_ptr val;
10660 if (just_location)
10661 {
10662 int ret;
10663
10664 exp_valid_block = NULL;
10665 val = release_value (value_addr (result));
10666 value_free_to_mark (mark);
10667
10668 if (use_mask)
10669 {
10670 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10671 mask);
10672 if (ret == -1)
10673 error (_("This target does not support masked watchpoints."));
10674 else if (ret == -2)
10675 error (_("Invalid mask or memory region."));
10676 }
10677 }
10678 else if (val_as_value != NULL)
10679 val = release_value (val_as_value);
10680
10681 tok = skip_spaces (arg);
10682 end_tok = skip_to_space (tok);
10683
10684 toklen = end_tok - tok;
10685 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10686 {
10687 innermost_block.reset ();
10688 tok = cond_start = end_tok + 1;
10689 parse_exp_1 (&tok, 0, 0, 0);
10690
10691 /* The watchpoint expression may not be local, but the condition
10692 may still be. E.g.: `watch global if local > 0'. */
10693 cond_exp_valid_block = innermost_block.block ();
10694
10695 cond_end = tok;
10696 }
10697 if (*tok)
10698 error (_("Junk at end of command."));
10699
10700 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10701
10702 /* Save this because create_internal_breakpoint below invalidates
10703 'wp_frame'. */
10704 frame_id watchpoint_frame = get_frame_id (wp_frame);
10705
10706 /* If the expression is "local", then set up a "watchpoint scope"
10707 breakpoint at the point where we've left the scope of the watchpoint
10708 expression. Create the scope breakpoint before the watchpoint, so
10709 that we will encounter it first in bpstat_stop_status. */
10710 if (exp_valid_block != NULL && wp_frame != NULL)
10711 {
10712 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10713
10714 if (frame_id_p (caller_frame_id))
10715 {
10716 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10717 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10718
10719 scope_breakpoint
10720 = create_internal_breakpoint (caller_arch, caller_pc,
10721 bp_watchpoint_scope,
10722 &momentary_breakpoint_ops);
10723
10724 /* create_internal_breakpoint could invalidate WP_FRAME. */
10725 wp_frame = NULL;
10726
10727 scope_breakpoint->enable_state = bp_enabled;
10728
10729 /* Automatically delete the breakpoint when it hits. */
10730 scope_breakpoint->disposition = disp_del;
10731
10732 /* Only break in the proper frame (help with recursion). */
10733 scope_breakpoint->frame_id = caller_frame_id;
10734
10735 /* Set the address at which we will stop. */
10736 scope_breakpoint->loc->gdbarch = caller_arch;
10737 scope_breakpoint->loc->requested_address = caller_pc;
10738 scope_breakpoint->loc->address
10739 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10740 scope_breakpoint->loc->requested_address,
10741 scope_breakpoint->type);
10742 }
10743 }
10744
10745 /* Now set up the breakpoint. We create all watchpoints as hardware
10746 watchpoints here even if hardware watchpoints are turned off, a call
10747 to update_watchpoint later in this function will cause the type to
10748 drop back to bp_watchpoint (software watchpoint) if required. */
10749
10750 if (accessflag == hw_read)
10751 bp_type = bp_read_watchpoint;
10752 else if (accessflag == hw_access)
10753 bp_type = bp_access_watchpoint;
10754 else
10755 bp_type = bp_hardware_watchpoint;
10756
10757 std::unique_ptr<watchpoint> w (new watchpoint ());
10758
10759 if (use_mask)
10760 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10761 &masked_watchpoint_breakpoint_ops);
10762 else
10763 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10764 &watchpoint_breakpoint_ops);
10765 w->thread = thread;
10766 w->disposition = disp_donttouch;
10767 w->pspace = current_program_space;
10768 w->exp = std::move (exp);
10769 w->exp_valid_block = exp_valid_block;
10770 w->cond_exp_valid_block = cond_exp_valid_block;
10771 if (just_location)
10772 {
10773 struct type *t = value_type (val.get ());
10774 CORE_ADDR addr = value_as_address (val.get ());
10775
10776 w->exp_string_reparse
10777 = current_language->la_watch_location_expression (t, addr).release ();
10778
10779 w->exp_string = xstrprintf ("-location %.*s",
10780 (int) (exp_end - exp_start), exp_start);
10781 }
10782 else
10783 w->exp_string = savestring (exp_start, exp_end - exp_start);
10784
10785 if (use_mask)
10786 {
10787 w->hw_wp_mask = mask;
10788 }
10789 else
10790 {
10791 w->val = val;
10792 w->val_bitpos = saved_bitpos;
10793 w->val_bitsize = saved_bitsize;
10794 w->val_valid = 1;
10795 }
10796
10797 if (cond_start)
10798 w->cond_string = savestring (cond_start, cond_end - cond_start);
10799 else
10800 w->cond_string = 0;
10801
10802 if (frame_id_p (watchpoint_frame))
10803 {
10804 w->watchpoint_frame = watchpoint_frame;
10805 w->watchpoint_thread = inferior_ptid;
10806 }
10807 else
10808 {
10809 w->watchpoint_frame = null_frame_id;
10810 w->watchpoint_thread = null_ptid;
10811 }
10812
10813 if (scope_breakpoint != NULL)
10814 {
10815 /* The scope breakpoint is related to the watchpoint. We will
10816 need to act on them together. */
10817 w->related_breakpoint = scope_breakpoint;
10818 scope_breakpoint->related_breakpoint = w.get ();
10819 }
10820
10821 if (!just_location)
10822 value_free_to_mark (mark);
10823
10824 /* Finally update the new watchpoint. This creates the locations
10825 that should be inserted. */
10826 update_watchpoint (w.get (), 1);
10827
10828 install_breakpoint (internal, std::move (w), 1);
10829 }
10830
10831 /* Return count of debug registers needed to watch the given expression.
10832 If the watchpoint cannot be handled in hardware return zero. */
10833
10834 static int
10835 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10836 {
10837 int found_memory_cnt = 0;
10838
10839 /* Did the user specifically forbid us to use hardware watchpoints? */
10840 if (!can_use_hw_watchpoints)
10841 return 0;
10842
10843 gdb_assert (!vals.empty ());
10844 struct value *head = vals[0].get ();
10845
10846 /* Make sure that the value of the expression depends only upon
10847 memory contents, and values computed from them within GDB. If we
10848 find any register references or function calls, we can't use a
10849 hardware watchpoint.
10850
10851 The idea here is that evaluating an expression generates a series
10852 of values, one holding the value of every subexpression. (The
10853 expression a*b+c has five subexpressions: a, b, a*b, c, and
10854 a*b+c.) GDB's values hold almost enough information to establish
10855 the criteria given above --- they identify memory lvalues,
10856 register lvalues, computed values, etcetera. So we can evaluate
10857 the expression, and then scan the chain of values that leaves
10858 behind to decide whether we can detect any possible change to the
10859 expression's final value using only hardware watchpoints.
10860
10861 However, I don't think that the values returned by inferior
10862 function calls are special in any way. So this function may not
10863 notice that an expression involving an inferior function call
10864 can't be watched with hardware watchpoints. FIXME. */
10865 for (const value_ref_ptr &iter : vals)
10866 {
10867 struct value *v = iter.get ();
10868
10869 if (VALUE_LVAL (v) == lval_memory)
10870 {
10871 if (v != head && value_lazy (v))
10872 /* A lazy memory lvalue in the chain is one that GDB never
10873 needed to fetch; we either just used its address (e.g.,
10874 `a' in `a.b') or we never needed it at all (e.g., `a'
10875 in `a,b'). This doesn't apply to HEAD; if that is
10876 lazy then it was not readable, but watch it anyway. */
10877 ;
10878 else
10879 {
10880 /* Ahh, memory we actually used! Check if we can cover
10881 it with hardware watchpoints. */
10882 struct type *vtype = check_typedef (value_type (v));
10883
10884 /* We only watch structs and arrays if user asked for it
10885 explicitly, never if they just happen to appear in a
10886 middle of some value chain. */
10887 if (v == head
10888 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10889 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10890 {
10891 CORE_ADDR vaddr = value_address (v);
10892 int len;
10893 int num_regs;
10894
10895 len = (target_exact_watchpoints
10896 && is_scalar_type_recursive (vtype))?
10897 1 : TYPE_LENGTH (value_type (v));
10898
10899 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10900 if (!num_regs)
10901 return 0;
10902 else
10903 found_memory_cnt += num_regs;
10904 }
10905 }
10906 }
10907 else if (VALUE_LVAL (v) != not_lval
10908 && deprecated_value_modifiable (v) == 0)
10909 return 0; /* These are values from the history (e.g., $1). */
10910 else if (VALUE_LVAL (v) == lval_register)
10911 return 0; /* Cannot watch a register with a HW watchpoint. */
10912 }
10913
10914 /* The expression itself looks suitable for using a hardware
10915 watchpoint, but give the target machine a chance to reject it. */
10916 return found_memory_cnt;
10917 }
10918
10919 void
10920 watch_command_wrapper (const char *arg, int from_tty, int internal)
10921 {
10922 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10923 }
10924
10925 /* A helper function that looks for the "-location" argument and then
10926 calls watch_command_1. */
10927
10928 static void
10929 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10930 {
10931 int just_location = 0;
10932
10933 if (arg
10934 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10935 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10936 {
10937 arg = skip_spaces (arg);
10938 just_location = 1;
10939 }
10940
10941 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10942 }
10943
10944 static void
10945 watch_command (const char *arg, int from_tty)
10946 {
10947 watch_maybe_just_location (arg, hw_write, from_tty);
10948 }
10949
10950 void
10951 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10952 {
10953 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10954 }
10955
10956 static void
10957 rwatch_command (const char *arg, int from_tty)
10958 {
10959 watch_maybe_just_location (arg, hw_read, from_tty);
10960 }
10961
10962 void
10963 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10964 {
10965 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10966 }
10967
10968 static void
10969 awatch_command (const char *arg, int from_tty)
10970 {
10971 watch_maybe_just_location (arg, hw_access, from_tty);
10972 }
10973 \f
10974
10975 /* Data for the FSM that manages the until(location)/advance commands
10976 in infcmd.c. Here because it uses the mechanisms of
10977 breakpoints. */
10978
10979 struct until_break_fsm
10980 {
10981 /* The base class. */
10982 struct thread_fsm thread_fsm;
10983
10984 /* The thread that as current when the command was executed. */
10985 int thread;
10986
10987 /* The breakpoint set at the destination location. */
10988 struct breakpoint *location_breakpoint;
10989
10990 /* Breakpoint set at the return address in the caller frame. May be
10991 NULL. */
10992 struct breakpoint *caller_breakpoint;
10993 };
10994
10995 static void until_break_fsm_clean_up (struct thread_fsm *self,
10996 struct thread_info *thread);
10997 static int until_break_fsm_should_stop (struct thread_fsm *self,
10998 struct thread_info *thread);
10999 static enum async_reply_reason
11000 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11001
11002 /* until_break_fsm's vtable. */
11003
11004 static struct thread_fsm_ops until_break_fsm_ops =
11005 {
11006 NULL, /* dtor */
11007 until_break_fsm_clean_up,
11008 until_break_fsm_should_stop,
11009 NULL, /* return_value */
11010 until_break_fsm_async_reply_reason,
11011 };
11012
11013 /* Allocate a new until_break_command_fsm. */
11014
11015 static struct until_break_fsm *
11016 new_until_break_fsm (struct interp *cmd_interp, int thread,
11017 breakpoint_up &&location_breakpoint,
11018 breakpoint_up &&caller_breakpoint)
11019 {
11020 struct until_break_fsm *sm;
11021
11022 sm = XCNEW (struct until_break_fsm);
11023 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11024
11025 sm->thread = thread;
11026 sm->location_breakpoint = location_breakpoint.release ();
11027 sm->caller_breakpoint = caller_breakpoint.release ();
11028
11029 return sm;
11030 }
11031
11032 /* Implementation of the 'should_stop' FSM method for the
11033 until(location)/advance commands. */
11034
11035 static int
11036 until_break_fsm_should_stop (struct thread_fsm *self,
11037 struct thread_info *tp)
11038 {
11039 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11040
11041 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11042 sm->location_breakpoint) != NULL
11043 || (sm->caller_breakpoint != NULL
11044 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11045 sm->caller_breakpoint) != NULL))
11046 thread_fsm_set_finished (self);
11047
11048 return 1;
11049 }
11050
11051 /* Implementation of the 'clean_up' FSM method for the
11052 until(location)/advance commands. */
11053
11054 static void
11055 until_break_fsm_clean_up (struct thread_fsm *self,
11056 struct thread_info *thread)
11057 {
11058 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11059
11060 /* Clean up our temporary breakpoints. */
11061 if (sm->location_breakpoint != NULL)
11062 {
11063 delete_breakpoint (sm->location_breakpoint);
11064 sm->location_breakpoint = NULL;
11065 }
11066 if (sm->caller_breakpoint != NULL)
11067 {
11068 delete_breakpoint (sm->caller_breakpoint);
11069 sm->caller_breakpoint = NULL;
11070 }
11071 delete_longjmp_breakpoint (sm->thread);
11072 }
11073
11074 /* Implementation of the 'async_reply_reason' FSM method for the
11075 until(location)/advance commands. */
11076
11077 static enum async_reply_reason
11078 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11079 {
11080 return EXEC_ASYNC_LOCATION_REACHED;
11081 }
11082
11083 void
11084 until_break_command (const char *arg, int from_tty, int anywhere)
11085 {
11086 struct frame_info *frame;
11087 struct gdbarch *frame_gdbarch;
11088 struct frame_id stack_frame_id;
11089 struct frame_id caller_frame_id;
11090 struct cleanup *old_chain;
11091 int thread;
11092 struct thread_info *tp;
11093 struct until_break_fsm *sm;
11094
11095 clear_proceed_status (0);
11096
11097 /* Set a breakpoint where the user wants it and at return from
11098 this function. */
11099
11100 event_location_up location = string_to_event_location (&arg, current_language);
11101
11102 std::vector<symtab_and_line> sals
11103 = (last_displayed_sal_is_valid ()
11104 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11105 get_last_displayed_symtab (),
11106 get_last_displayed_line ())
11107 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11108 NULL, (struct symtab *) NULL, 0));
11109
11110 if (sals.size () != 1)
11111 error (_("Couldn't get information on specified line."));
11112
11113 symtab_and_line &sal = sals[0];
11114
11115 if (*arg)
11116 error (_("Junk at end of arguments."));
11117
11118 resolve_sal_pc (&sal);
11119
11120 tp = inferior_thread ();
11121 thread = tp->global_num;
11122
11123 old_chain = make_cleanup (null_cleanup, NULL);
11124
11125 /* Note linespec handling above invalidates the frame chain.
11126 Installing a breakpoint also invalidates the frame chain (as it
11127 may need to switch threads), so do any frame handling before
11128 that. */
11129
11130 frame = get_selected_frame (NULL);
11131 frame_gdbarch = get_frame_arch (frame);
11132 stack_frame_id = get_stack_frame_id (frame);
11133 caller_frame_id = frame_unwind_caller_id (frame);
11134
11135 /* Keep within the current frame, or in frames called by the current
11136 one. */
11137
11138 breakpoint_up caller_breakpoint;
11139 if (frame_id_p (caller_frame_id))
11140 {
11141 struct symtab_and_line sal2;
11142 struct gdbarch *caller_gdbarch;
11143
11144 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11145 sal2.pc = frame_unwind_caller_pc (frame);
11146 caller_gdbarch = frame_unwind_caller_arch (frame);
11147 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11148 sal2,
11149 caller_frame_id,
11150 bp_until);
11151
11152 set_longjmp_breakpoint (tp, caller_frame_id);
11153 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11154 }
11155
11156 /* set_momentary_breakpoint could invalidate FRAME. */
11157 frame = NULL;
11158
11159 breakpoint_up location_breakpoint;
11160 if (anywhere)
11161 /* If the user told us to continue until a specified location,
11162 we don't specify a frame at which we need to stop. */
11163 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11164 null_frame_id, bp_until);
11165 else
11166 /* Otherwise, specify the selected frame, because we want to stop
11167 only at the very same frame. */
11168 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11169 stack_frame_id, bp_until);
11170
11171 sm = new_until_break_fsm (command_interp (), tp->global_num,
11172 std::move (location_breakpoint),
11173 std::move (caller_breakpoint));
11174 tp->thread_fsm = &sm->thread_fsm;
11175
11176 discard_cleanups (old_chain);
11177
11178 proceed (-1, GDB_SIGNAL_DEFAULT);
11179 }
11180
11181 /* This function attempts to parse an optional "if <cond>" clause
11182 from the arg string. If one is not found, it returns NULL.
11183
11184 Else, it returns a pointer to the condition string. (It does not
11185 attempt to evaluate the string against a particular block.) And,
11186 it updates arg to point to the first character following the parsed
11187 if clause in the arg string. */
11188
11189 const char *
11190 ep_parse_optional_if_clause (const char **arg)
11191 {
11192 const char *cond_string;
11193
11194 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11195 return NULL;
11196
11197 /* Skip the "if" keyword. */
11198 (*arg) += 2;
11199
11200 /* Skip any extra leading whitespace, and record the start of the
11201 condition string. */
11202 *arg = skip_spaces (*arg);
11203 cond_string = *arg;
11204
11205 /* Assume that the condition occupies the remainder of the arg
11206 string. */
11207 (*arg) += strlen (cond_string);
11208
11209 return cond_string;
11210 }
11211
11212 /* Commands to deal with catching events, such as signals, exceptions,
11213 process start/exit, etc. */
11214
11215 typedef enum
11216 {
11217 catch_fork_temporary, catch_vfork_temporary,
11218 catch_fork_permanent, catch_vfork_permanent
11219 }
11220 catch_fork_kind;
11221
11222 static void
11223 catch_fork_command_1 (const char *arg, int from_tty,
11224 struct cmd_list_element *command)
11225 {
11226 struct gdbarch *gdbarch = get_current_arch ();
11227 const char *cond_string = NULL;
11228 catch_fork_kind fork_kind;
11229 int tempflag;
11230
11231 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11232 tempflag = (fork_kind == catch_fork_temporary
11233 || fork_kind == catch_vfork_temporary);
11234
11235 if (!arg)
11236 arg = "";
11237 arg = skip_spaces (arg);
11238
11239 /* The allowed syntax is:
11240 catch [v]fork
11241 catch [v]fork if <cond>
11242
11243 First, check if there's an if clause. */
11244 cond_string = ep_parse_optional_if_clause (&arg);
11245
11246 if ((*arg != '\0') && !isspace (*arg))
11247 error (_("Junk at end of arguments."));
11248
11249 /* If this target supports it, create a fork or vfork catchpoint
11250 and enable reporting of such events. */
11251 switch (fork_kind)
11252 {
11253 case catch_fork_temporary:
11254 case catch_fork_permanent:
11255 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11256 &catch_fork_breakpoint_ops);
11257 break;
11258 case catch_vfork_temporary:
11259 case catch_vfork_permanent:
11260 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11261 &catch_vfork_breakpoint_ops);
11262 break;
11263 default:
11264 error (_("unsupported or unknown fork kind; cannot catch it"));
11265 break;
11266 }
11267 }
11268
11269 static void
11270 catch_exec_command_1 (const char *arg, int from_tty,
11271 struct cmd_list_element *command)
11272 {
11273 struct gdbarch *gdbarch = get_current_arch ();
11274 int tempflag;
11275 const char *cond_string = NULL;
11276
11277 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11278
11279 if (!arg)
11280 arg = "";
11281 arg = skip_spaces (arg);
11282
11283 /* The allowed syntax is:
11284 catch exec
11285 catch exec if <cond>
11286
11287 First, check if there's an if clause. */
11288 cond_string = ep_parse_optional_if_clause (&arg);
11289
11290 if ((*arg != '\0') && !isspace (*arg))
11291 error (_("Junk at end of arguments."));
11292
11293 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11294 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11295 &catch_exec_breakpoint_ops);
11296 c->exec_pathname = NULL;
11297
11298 install_breakpoint (0, std::move (c), 1);
11299 }
11300
11301 void
11302 init_ada_exception_breakpoint (struct breakpoint *b,
11303 struct gdbarch *gdbarch,
11304 struct symtab_and_line sal,
11305 const char *addr_string,
11306 const struct breakpoint_ops *ops,
11307 int tempflag,
11308 int enabled,
11309 int from_tty)
11310 {
11311 if (from_tty)
11312 {
11313 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11314 if (!loc_gdbarch)
11315 loc_gdbarch = gdbarch;
11316
11317 describe_other_breakpoints (loc_gdbarch,
11318 sal.pspace, sal.pc, sal.section, -1);
11319 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11320 version for exception catchpoints, because two catchpoints
11321 used for different exception names will use the same address.
11322 In this case, a "breakpoint ... also set at..." warning is
11323 unproductive. Besides, the warning phrasing is also a bit
11324 inappropriate, we should use the word catchpoint, and tell
11325 the user what type of catchpoint it is. The above is good
11326 enough for now, though. */
11327 }
11328
11329 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11330
11331 b->enable_state = enabled ? bp_enabled : bp_disabled;
11332 b->disposition = tempflag ? disp_del : disp_donttouch;
11333 b->location = string_to_event_location (&addr_string,
11334 language_def (language_ada));
11335 b->language = language_ada;
11336 }
11337
11338 static void
11339 catch_command (const char *arg, int from_tty)
11340 {
11341 error (_("Catch requires an event name."));
11342 }
11343 \f
11344
11345 static void
11346 tcatch_command (const char *arg, int from_tty)
11347 {
11348 error (_("Catch requires an event name."));
11349 }
11350
11351 /* Compare two breakpoints and return a strcmp-like result. */
11352
11353 static int
11354 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11355 {
11356 uintptr_t ua = (uintptr_t) a;
11357 uintptr_t ub = (uintptr_t) b;
11358
11359 if (a->number < b->number)
11360 return -1;
11361 else if (a->number > b->number)
11362 return 1;
11363
11364 /* Now sort by address, in case we see, e..g, two breakpoints with
11365 the number 0. */
11366 if (ua < ub)
11367 return -1;
11368 return ua > ub ? 1 : 0;
11369 }
11370
11371 /* Delete breakpoints by address or line. */
11372
11373 static void
11374 clear_command (const char *arg, int from_tty)
11375 {
11376 struct breakpoint *b;
11377 int default_match;
11378
11379 std::vector<symtab_and_line> decoded_sals;
11380 symtab_and_line last_sal;
11381 gdb::array_view<symtab_and_line> sals;
11382 if (arg)
11383 {
11384 decoded_sals
11385 = decode_line_with_current_source (arg,
11386 (DECODE_LINE_FUNFIRSTLINE
11387 | DECODE_LINE_LIST_MODE));
11388 default_match = 0;
11389 sals = decoded_sals;
11390 }
11391 else
11392 {
11393 /* Set sal's line, symtab, pc, and pspace to the values
11394 corresponding to the last call to print_frame_info. If the
11395 codepoint is not valid, this will set all the fields to 0. */
11396 last_sal = get_last_displayed_sal ();
11397 if (last_sal.symtab == 0)
11398 error (_("No source file specified."));
11399
11400 default_match = 1;
11401 sals = last_sal;
11402 }
11403
11404 /* We don't call resolve_sal_pc here. That's not as bad as it
11405 seems, because all existing breakpoints typically have both
11406 file/line and pc set. So, if clear is given file/line, we can
11407 match this to existing breakpoint without obtaining pc at all.
11408
11409 We only support clearing given the address explicitly
11410 present in breakpoint table. Say, we've set breakpoint
11411 at file:line. There were several PC values for that file:line,
11412 due to optimization, all in one block.
11413
11414 We've picked one PC value. If "clear" is issued with another
11415 PC corresponding to the same file:line, the breakpoint won't
11416 be cleared. We probably can still clear the breakpoint, but
11417 since the other PC value is never presented to user, user
11418 can only find it by guessing, and it does not seem important
11419 to support that. */
11420
11421 /* For each line spec given, delete bps which correspond to it. Do
11422 it in two passes, solely to preserve the current behavior that
11423 from_tty is forced true if we delete more than one
11424 breakpoint. */
11425
11426 std::vector<struct breakpoint *> found;
11427 for (const auto &sal : sals)
11428 {
11429 const char *sal_fullname;
11430
11431 /* If exact pc given, clear bpts at that pc.
11432 If line given (pc == 0), clear all bpts on specified line.
11433 If defaulting, clear all bpts on default line
11434 or at default pc.
11435
11436 defaulting sal.pc != 0 tests to do
11437
11438 0 1 pc
11439 1 1 pc _and_ line
11440 0 0 line
11441 1 0 <can't happen> */
11442
11443 sal_fullname = (sal.symtab == NULL
11444 ? NULL : symtab_to_fullname (sal.symtab));
11445
11446 /* Find all matching breakpoints and add them to 'found'. */
11447 ALL_BREAKPOINTS (b)
11448 {
11449 int match = 0;
11450 /* Are we going to delete b? */
11451 if (b->type != bp_none && !is_watchpoint (b))
11452 {
11453 struct bp_location *loc = b->loc;
11454 for (; loc; loc = loc->next)
11455 {
11456 /* If the user specified file:line, don't allow a PC
11457 match. This matches historical gdb behavior. */
11458 int pc_match = (!sal.explicit_line
11459 && sal.pc
11460 && (loc->pspace == sal.pspace)
11461 && (loc->address == sal.pc)
11462 && (!section_is_overlay (loc->section)
11463 || loc->section == sal.section));
11464 int line_match = 0;
11465
11466 if ((default_match || sal.explicit_line)
11467 && loc->symtab != NULL
11468 && sal_fullname != NULL
11469 && sal.pspace == loc->pspace
11470 && loc->line_number == sal.line
11471 && filename_cmp (symtab_to_fullname (loc->symtab),
11472 sal_fullname) == 0)
11473 line_match = 1;
11474
11475 if (pc_match || line_match)
11476 {
11477 match = 1;
11478 break;
11479 }
11480 }
11481 }
11482
11483 if (match)
11484 found.push_back (b);
11485 }
11486 }
11487
11488 /* Now go thru the 'found' chain and delete them. */
11489 if (found.empty ())
11490 {
11491 if (arg)
11492 error (_("No breakpoint at %s."), arg);
11493 else
11494 error (_("No breakpoint at this line."));
11495 }
11496
11497 /* Remove duplicates from the vec. */
11498 std::sort (found.begin (), found.end (),
11499 [] (const breakpoint *a, const breakpoint *b)
11500 {
11501 return compare_breakpoints (a, b) < 0;
11502 });
11503 found.erase (std::unique (found.begin (), found.end (),
11504 [] (const breakpoint *a, const breakpoint *b)
11505 {
11506 return compare_breakpoints (a, b) == 0;
11507 }),
11508 found.end ());
11509
11510 if (found.size () > 1)
11511 from_tty = 1; /* Always report if deleted more than one. */
11512 if (from_tty)
11513 {
11514 if (found.size () == 1)
11515 printf_unfiltered (_("Deleted breakpoint "));
11516 else
11517 printf_unfiltered (_("Deleted breakpoints "));
11518 }
11519
11520 for (breakpoint *iter : found)
11521 {
11522 if (from_tty)
11523 printf_unfiltered ("%d ", iter->number);
11524 delete_breakpoint (iter);
11525 }
11526 if (from_tty)
11527 putchar_unfiltered ('\n');
11528 }
11529 \f
11530 /* Delete breakpoint in BS if they are `delete' breakpoints and
11531 all breakpoints that are marked for deletion, whether hit or not.
11532 This is called after any breakpoint is hit, or after errors. */
11533
11534 void
11535 breakpoint_auto_delete (bpstat bs)
11536 {
11537 struct breakpoint *b, *b_tmp;
11538
11539 for (; bs; bs = bs->next)
11540 if (bs->breakpoint_at
11541 && bs->breakpoint_at->disposition == disp_del
11542 && bs->stop)
11543 delete_breakpoint (bs->breakpoint_at);
11544
11545 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11546 {
11547 if (b->disposition == disp_del_at_next_stop)
11548 delete_breakpoint (b);
11549 }
11550 }
11551
11552 /* A comparison function for bp_location AP and BP being interfaced to
11553 qsort. Sort elements primarily by their ADDRESS (no matter what
11554 does breakpoint_address_is_meaningful say for its OWNER),
11555 secondarily by ordering first permanent elements and
11556 terciarily just ensuring the array is sorted stable way despite
11557 qsort being an unstable algorithm. */
11558
11559 static int
11560 bp_locations_compare (const void *ap, const void *bp)
11561 {
11562 const struct bp_location *a = *(const struct bp_location **) ap;
11563 const struct bp_location *b = *(const struct bp_location **) bp;
11564
11565 if (a->address != b->address)
11566 return (a->address > b->address) - (a->address < b->address);
11567
11568 /* Sort locations at the same address by their pspace number, keeping
11569 locations of the same inferior (in a multi-inferior environment)
11570 grouped. */
11571
11572 if (a->pspace->num != b->pspace->num)
11573 return ((a->pspace->num > b->pspace->num)
11574 - (a->pspace->num < b->pspace->num));
11575
11576 /* Sort permanent breakpoints first. */
11577 if (a->permanent != b->permanent)
11578 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11579
11580 /* Make the internal GDB representation stable across GDB runs
11581 where A and B memory inside GDB can differ. Breakpoint locations of
11582 the same type at the same address can be sorted in arbitrary order. */
11583
11584 if (a->owner->number != b->owner->number)
11585 return ((a->owner->number > b->owner->number)
11586 - (a->owner->number < b->owner->number));
11587
11588 return (a > b) - (a < b);
11589 }
11590
11591 /* Set bp_locations_placed_address_before_address_max and
11592 bp_locations_shadow_len_after_address_max according to the current
11593 content of the bp_locations array. */
11594
11595 static void
11596 bp_locations_target_extensions_update (void)
11597 {
11598 struct bp_location *bl, **blp_tmp;
11599
11600 bp_locations_placed_address_before_address_max = 0;
11601 bp_locations_shadow_len_after_address_max = 0;
11602
11603 ALL_BP_LOCATIONS (bl, blp_tmp)
11604 {
11605 CORE_ADDR start, end, addr;
11606
11607 if (!bp_location_has_shadow (bl))
11608 continue;
11609
11610 start = bl->target_info.placed_address;
11611 end = start + bl->target_info.shadow_len;
11612
11613 gdb_assert (bl->address >= start);
11614 addr = bl->address - start;
11615 if (addr > bp_locations_placed_address_before_address_max)
11616 bp_locations_placed_address_before_address_max = addr;
11617
11618 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11619
11620 gdb_assert (bl->address < end);
11621 addr = end - bl->address;
11622 if (addr > bp_locations_shadow_len_after_address_max)
11623 bp_locations_shadow_len_after_address_max = addr;
11624 }
11625 }
11626
11627 /* Download tracepoint locations if they haven't been. */
11628
11629 static void
11630 download_tracepoint_locations (void)
11631 {
11632 struct breakpoint *b;
11633 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11634
11635 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11636
11637 ALL_TRACEPOINTS (b)
11638 {
11639 struct bp_location *bl;
11640 struct tracepoint *t;
11641 int bp_location_downloaded = 0;
11642
11643 if ((b->type == bp_fast_tracepoint
11644 ? !may_insert_fast_tracepoints
11645 : !may_insert_tracepoints))
11646 continue;
11647
11648 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11649 {
11650 if (target_can_download_tracepoint ())
11651 can_download_tracepoint = TRIBOOL_TRUE;
11652 else
11653 can_download_tracepoint = TRIBOOL_FALSE;
11654 }
11655
11656 if (can_download_tracepoint == TRIBOOL_FALSE)
11657 break;
11658
11659 for (bl = b->loc; bl; bl = bl->next)
11660 {
11661 /* In tracepoint, locations are _never_ duplicated, so
11662 should_be_inserted is equivalent to
11663 unduplicated_should_be_inserted. */
11664 if (!should_be_inserted (bl) || bl->inserted)
11665 continue;
11666
11667 switch_to_program_space_and_thread (bl->pspace);
11668
11669 target_download_tracepoint (bl);
11670
11671 bl->inserted = 1;
11672 bp_location_downloaded = 1;
11673 }
11674 t = (struct tracepoint *) b;
11675 t->number_on_target = b->number;
11676 if (bp_location_downloaded)
11677 gdb::observers::breakpoint_modified.notify (b);
11678 }
11679 }
11680
11681 /* Swap the insertion/duplication state between two locations. */
11682
11683 static void
11684 swap_insertion (struct bp_location *left, struct bp_location *right)
11685 {
11686 const int left_inserted = left->inserted;
11687 const int left_duplicate = left->duplicate;
11688 const int left_needs_update = left->needs_update;
11689 const struct bp_target_info left_target_info = left->target_info;
11690
11691 /* Locations of tracepoints can never be duplicated. */
11692 if (is_tracepoint (left->owner))
11693 gdb_assert (!left->duplicate);
11694 if (is_tracepoint (right->owner))
11695 gdb_assert (!right->duplicate);
11696
11697 left->inserted = right->inserted;
11698 left->duplicate = right->duplicate;
11699 left->needs_update = right->needs_update;
11700 left->target_info = right->target_info;
11701 right->inserted = left_inserted;
11702 right->duplicate = left_duplicate;
11703 right->needs_update = left_needs_update;
11704 right->target_info = left_target_info;
11705 }
11706
11707 /* Force the re-insertion of the locations at ADDRESS. This is called
11708 once a new/deleted/modified duplicate location is found and we are evaluating
11709 conditions on the target's side. Such conditions need to be updated on
11710 the target. */
11711
11712 static void
11713 force_breakpoint_reinsertion (struct bp_location *bl)
11714 {
11715 struct bp_location **locp = NULL, **loc2p;
11716 struct bp_location *loc;
11717 CORE_ADDR address = 0;
11718 int pspace_num;
11719
11720 address = bl->address;
11721 pspace_num = bl->pspace->num;
11722
11723 /* This is only meaningful if the target is
11724 evaluating conditions and if the user has
11725 opted for condition evaluation on the target's
11726 side. */
11727 if (gdb_evaluates_breakpoint_condition_p ()
11728 || !target_supports_evaluation_of_breakpoint_conditions ())
11729 return;
11730
11731 /* Flag all breakpoint locations with this address and
11732 the same program space as the location
11733 as "its condition has changed". We need to
11734 update the conditions on the target's side. */
11735 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11736 {
11737 loc = *loc2p;
11738
11739 if (!is_breakpoint (loc->owner)
11740 || pspace_num != loc->pspace->num)
11741 continue;
11742
11743 /* Flag the location appropriately. We use a different state to
11744 let everyone know that we already updated the set of locations
11745 with addr bl->address and program space bl->pspace. This is so
11746 we don't have to keep calling these functions just to mark locations
11747 that have already been marked. */
11748 loc->condition_changed = condition_updated;
11749
11750 /* Free the agent expression bytecode as well. We will compute
11751 it later on. */
11752 loc->cond_bytecode.reset ();
11753 }
11754 }
11755 /* Called whether new breakpoints are created, or existing breakpoints
11756 deleted, to update the global location list and recompute which
11757 locations are duplicate of which.
11758
11759 The INSERT_MODE flag determines whether locations may not, may, or
11760 shall be inserted now. See 'enum ugll_insert_mode' for more
11761 info. */
11762
11763 static void
11764 update_global_location_list (enum ugll_insert_mode insert_mode)
11765 {
11766 struct breakpoint *b;
11767 struct bp_location **locp, *loc;
11768 /* Last breakpoint location address that was marked for update. */
11769 CORE_ADDR last_addr = 0;
11770 /* Last breakpoint location program space that was marked for update. */
11771 int last_pspace_num = -1;
11772
11773 /* Used in the duplicates detection below. When iterating over all
11774 bp_locations, points to the first bp_location of a given address.
11775 Breakpoints and watchpoints of different types are never
11776 duplicates of each other. Keep one pointer for each type of
11777 breakpoint/watchpoint, so we only need to loop over all locations
11778 once. */
11779 struct bp_location *bp_loc_first; /* breakpoint */
11780 struct bp_location *wp_loc_first; /* hardware watchpoint */
11781 struct bp_location *awp_loc_first; /* access watchpoint */
11782 struct bp_location *rwp_loc_first; /* read watchpoint */
11783
11784 /* Saved former bp_locations array which we compare against the newly
11785 built bp_locations from the current state of ALL_BREAKPOINTS. */
11786 struct bp_location **old_locp;
11787 unsigned old_locations_count;
11788 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11789
11790 old_locations_count = bp_locations_count;
11791 bp_locations = NULL;
11792 bp_locations_count = 0;
11793
11794 ALL_BREAKPOINTS (b)
11795 for (loc = b->loc; loc; loc = loc->next)
11796 bp_locations_count++;
11797
11798 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11799 locp = bp_locations;
11800 ALL_BREAKPOINTS (b)
11801 for (loc = b->loc; loc; loc = loc->next)
11802 *locp++ = loc;
11803 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11804 bp_locations_compare);
11805
11806 bp_locations_target_extensions_update ();
11807
11808 /* Identify bp_location instances that are no longer present in the
11809 new list, and therefore should be freed. Note that it's not
11810 necessary that those locations should be removed from inferior --
11811 if there's another location at the same address (previously
11812 marked as duplicate), we don't need to remove/insert the
11813 location.
11814
11815 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11816 and former bp_location array state respectively. */
11817
11818 locp = bp_locations;
11819 for (old_locp = old_locations.get ();
11820 old_locp < old_locations.get () + old_locations_count;
11821 old_locp++)
11822 {
11823 struct bp_location *old_loc = *old_locp;
11824 struct bp_location **loc2p;
11825
11826 /* Tells if 'old_loc' is found among the new locations. If
11827 not, we have to free it. */
11828 int found_object = 0;
11829 /* Tells if the location should remain inserted in the target. */
11830 int keep_in_target = 0;
11831 int removed = 0;
11832
11833 /* Skip LOCP entries which will definitely never be needed.
11834 Stop either at or being the one matching OLD_LOC. */
11835 while (locp < bp_locations + bp_locations_count
11836 && (*locp)->address < old_loc->address)
11837 locp++;
11838
11839 for (loc2p = locp;
11840 (loc2p < bp_locations + bp_locations_count
11841 && (*loc2p)->address == old_loc->address);
11842 loc2p++)
11843 {
11844 /* Check if this is a new/duplicated location or a duplicated
11845 location that had its condition modified. If so, we want to send
11846 its condition to the target if evaluation of conditions is taking
11847 place there. */
11848 if ((*loc2p)->condition_changed == condition_modified
11849 && (last_addr != old_loc->address
11850 || last_pspace_num != old_loc->pspace->num))
11851 {
11852 force_breakpoint_reinsertion (*loc2p);
11853 last_pspace_num = old_loc->pspace->num;
11854 }
11855
11856 if (*loc2p == old_loc)
11857 found_object = 1;
11858 }
11859
11860 /* We have already handled this address, update it so that we don't
11861 have to go through updates again. */
11862 last_addr = old_loc->address;
11863
11864 /* Target-side condition evaluation: Handle deleted locations. */
11865 if (!found_object)
11866 force_breakpoint_reinsertion (old_loc);
11867
11868 /* If this location is no longer present, and inserted, look if
11869 there's maybe a new location at the same address. If so,
11870 mark that one inserted, and don't remove this one. This is
11871 needed so that we don't have a time window where a breakpoint
11872 at certain location is not inserted. */
11873
11874 if (old_loc->inserted)
11875 {
11876 /* If the location is inserted now, we might have to remove
11877 it. */
11878
11879 if (found_object && should_be_inserted (old_loc))
11880 {
11881 /* The location is still present in the location list,
11882 and still should be inserted. Don't do anything. */
11883 keep_in_target = 1;
11884 }
11885 else
11886 {
11887 /* This location still exists, but it won't be kept in the
11888 target since it may have been disabled. We proceed to
11889 remove its target-side condition. */
11890
11891 /* The location is either no longer present, or got
11892 disabled. See if there's another location at the
11893 same address, in which case we don't need to remove
11894 this one from the target. */
11895
11896 /* OLD_LOC comes from existing struct breakpoint. */
11897 if (breakpoint_address_is_meaningful (old_loc->owner))
11898 {
11899 for (loc2p = locp;
11900 (loc2p < bp_locations + bp_locations_count
11901 && (*loc2p)->address == old_loc->address);
11902 loc2p++)
11903 {
11904 struct bp_location *loc2 = *loc2p;
11905
11906 if (breakpoint_locations_match (loc2, old_loc))
11907 {
11908 /* Read watchpoint locations are switched to
11909 access watchpoints, if the former are not
11910 supported, but the latter are. */
11911 if (is_hardware_watchpoint (old_loc->owner))
11912 {
11913 gdb_assert (is_hardware_watchpoint (loc2->owner));
11914 loc2->watchpoint_type = old_loc->watchpoint_type;
11915 }
11916
11917 /* loc2 is a duplicated location. We need to check
11918 if it should be inserted in case it will be
11919 unduplicated. */
11920 if (loc2 != old_loc
11921 && unduplicated_should_be_inserted (loc2))
11922 {
11923 swap_insertion (old_loc, loc2);
11924 keep_in_target = 1;
11925 break;
11926 }
11927 }
11928 }
11929 }
11930 }
11931
11932 if (!keep_in_target)
11933 {
11934 if (remove_breakpoint (old_loc))
11935 {
11936 /* This is just about all we can do. We could keep
11937 this location on the global list, and try to
11938 remove it next time, but there's no particular
11939 reason why we will succeed next time.
11940
11941 Note that at this point, old_loc->owner is still
11942 valid, as delete_breakpoint frees the breakpoint
11943 only after calling us. */
11944 printf_filtered (_("warning: Error removing "
11945 "breakpoint %d\n"),
11946 old_loc->owner->number);
11947 }
11948 removed = 1;
11949 }
11950 }
11951
11952 if (!found_object)
11953 {
11954 if (removed && target_is_non_stop_p ()
11955 && need_moribund_for_location_type (old_loc))
11956 {
11957 /* This location was removed from the target. In
11958 non-stop mode, a race condition is possible where
11959 we've removed a breakpoint, but stop events for that
11960 breakpoint are already queued and will arrive later.
11961 We apply an heuristic to be able to distinguish such
11962 SIGTRAPs from other random SIGTRAPs: we keep this
11963 breakpoint location for a bit, and will retire it
11964 after we see some number of events. The theory here
11965 is that reporting of events should, "on the average",
11966 be fair, so after a while we'll see events from all
11967 threads that have anything of interest, and no longer
11968 need to keep this breakpoint location around. We
11969 don't hold locations forever so to reduce chances of
11970 mistaking a non-breakpoint SIGTRAP for a breakpoint
11971 SIGTRAP.
11972
11973 The heuristic failing can be disastrous on
11974 decr_pc_after_break targets.
11975
11976 On decr_pc_after_break targets, like e.g., x86-linux,
11977 if we fail to recognize a late breakpoint SIGTRAP,
11978 because events_till_retirement has reached 0 too
11979 soon, we'll fail to do the PC adjustment, and report
11980 a random SIGTRAP to the user. When the user resumes
11981 the inferior, it will most likely immediately crash
11982 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11983 corrupted, because of being resumed e.g., in the
11984 middle of a multi-byte instruction, or skipped a
11985 one-byte instruction. This was actually seen happen
11986 on native x86-linux, and should be less rare on
11987 targets that do not support new thread events, like
11988 remote, due to the heuristic depending on
11989 thread_count.
11990
11991 Mistaking a random SIGTRAP for a breakpoint trap
11992 causes similar symptoms (PC adjustment applied when
11993 it shouldn't), but then again, playing with SIGTRAPs
11994 behind the debugger's back is asking for trouble.
11995
11996 Since hardware watchpoint traps are always
11997 distinguishable from other traps, so we don't need to
11998 apply keep hardware watchpoint moribund locations
11999 around. We simply always ignore hardware watchpoint
12000 traps we can no longer explain. */
12001
12002 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12003 old_loc->owner = NULL;
12004
12005 moribund_locations.push_back (old_loc);
12006 }
12007 else
12008 {
12009 old_loc->owner = NULL;
12010 decref_bp_location (&old_loc);
12011 }
12012 }
12013 }
12014
12015 /* Rescan breakpoints at the same address and section, marking the
12016 first one as "first" and any others as "duplicates". This is so
12017 that the bpt instruction is only inserted once. If we have a
12018 permanent breakpoint at the same place as BPT, make that one the
12019 official one, and the rest as duplicates. Permanent breakpoints
12020 are sorted first for the same address.
12021
12022 Do the same for hardware watchpoints, but also considering the
12023 watchpoint's type (regular/access/read) and length. */
12024
12025 bp_loc_first = NULL;
12026 wp_loc_first = NULL;
12027 awp_loc_first = NULL;
12028 rwp_loc_first = NULL;
12029 ALL_BP_LOCATIONS (loc, locp)
12030 {
12031 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12032 non-NULL. */
12033 struct bp_location **loc_first_p;
12034 b = loc->owner;
12035
12036 if (!unduplicated_should_be_inserted (loc)
12037 || !breakpoint_address_is_meaningful (b)
12038 /* Don't detect duplicate for tracepoint locations because they are
12039 never duplicated. See the comments in field `duplicate' of
12040 `struct bp_location'. */
12041 || is_tracepoint (b))
12042 {
12043 /* Clear the condition modification flag. */
12044 loc->condition_changed = condition_unchanged;
12045 continue;
12046 }
12047
12048 if (b->type == bp_hardware_watchpoint)
12049 loc_first_p = &wp_loc_first;
12050 else if (b->type == bp_read_watchpoint)
12051 loc_first_p = &rwp_loc_first;
12052 else if (b->type == bp_access_watchpoint)
12053 loc_first_p = &awp_loc_first;
12054 else
12055 loc_first_p = &bp_loc_first;
12056
12057 if (*loc_first_p == NULL
12058 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12059 || !breakpoint_locations_match (loc, *loc_first_p))
12060 {
12061 *loc_first_p = loc;
12062 loc->duplicate = 0;
12063
12064 if (is_breakpoint (loc->owner) && loc->condition_changed)
12065 {
12066 loc->needs_update = 1;
12067 /* Clear the condition modification flag. */
12068 loc->condition_changed = condition_unchanged;
12069 }
12070 continue;
12071 }
12072
12073
12074 /* This and the above ensure the invariant that the first location
12075 is not duplicated, and is the inserted one.
12076 All following are marked as duplicated, and are not inserted. */
12077 if (loc->inserted)
12078 swap_insertion (loc, *loc_first_p);
12079 loc->duplicate = 1;
12080
12081 /* Clear the condition modification flag. */
12082 loc->condition_changed = condition_unchanged;
12083 }
12084
12085 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12086 {
12087 if (insert_mode != UGLL_DONT_INSERT)
12088 insert_breakpoint_locations ();
12089 else
12090 {
12091 /* Even though the caller told us to not insert new
12092 locations, we may still need to update conditions on the
12093 target's side of breakpoints that were already inserted
12094 if the target is evaluating breakpoint conditions. We
12095 only update conditions for locations that are marked
12096 "needs_update". */
12097 update_inserted_breakpoint_locations ();
12098 }
12099 }
12100
12101 if (insert_mode != UGLL_DONT_INSERT)
12102 download_tracepoint_locations ();
12103 }
12104
12105 void
12106 breakpoint_retire_moribund (void)
12107 {
12108 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12109 {
12110 struct bp_location *loc = moribund_locations[ix];
12111 if (--(loc->events_till_retirement) == 0)
12112 {
12113 decref_bp_location (&loc);
12114 unordered_remove (moribund_locations, ix);
12115 --ix;
12116 }
12117 }
12118 }
12119
12120 static void
12121 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12122 {
12123
12124 TRY
12125 {
12126 update_global_location_list (insert_mode);
12127 }
12128 CATCH (e, RETURN_MASK_ERROR)
12129 {
12130 }
12131 END_CATCH
12132 }
12133
12134 /* Clear BKP from a BPS. */
12135
12136 static void
12137 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12138 {
12139 bpstat bs;
12140
12141 for (bs = bps; bs; bs = bs->next)
12142 if (bs->breakpoint_at == bpt)
12143 {
12144 bs->breakpoint_at = NULL;
12145 bs->old_val = NULL;
12146 /* bs->commands will be freed later. */
12147 }
12148 }
12149
12150 /* Callback for iterate_over_threads. */
12151 static int
12152 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12153 {
12154 struct breakpoint *bpt = (struct breakpoint *) data;
12155
12156 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12157 return 0;
12158 }
12159
12160 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12161 callbacks. */
12162
12163 static void
12164 say_where (struct breakpoint *b)
12165 {
12166 struct value_print_options opts;
12167
12168 get_user_print_options (&opts);
12169
12170 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12171 single string. */
12172 if (b->loc == NULL)
12173 {
12174 /* For pending locations, the output differs slightly based
12175 on b->extra_string. If this is non-NULL, it contains either
12176 a condition or dprintf arguments. */
12177 if (b->extra_string == NULL)
12178 {
12179 printf_filtered (_(" (%s) pending."),
12180 event_location_to_string (b->location.get ()));
12181 }
12182 else if (b->type == bp_dprintf)
12183 {
12184 printf_filtered (_(" (%s,%s) pending."),
12185 event_location_to_string (b->location.get ()),
12186 b->extra_string);
12187 }
12188 else
12189 {
12190 printf_filtered (_(" (%s %s) pending."),
12191 event_location_to_string (b->location.get ()),
12192 b->extra_string);
12193 }
12194 }
12195 else
12196 {
12197 if (opts.addressprint || b->loc->symtab == NULL)
12198 {
12199 printf_filtered (" at ");
12200 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12201 gdb_stdout);
12202 }
12203 if (b->loc->symtab != NULL)
12204 {
12205 /* If there is a single location, we can print the location
12206 more nicely. */
12207 if (b->loc->next == NULL)
12208 printf_filtered (": file %s, line %d.",
12209 symtab_to_filename_for_display (b->loc->symtab),
12210 b->loc->line_number);
12211 else
12212 /* This is not ideal, but each location may have a
12213 different file name, and this at least reflects the
12214 real situation somewhat. */
12215 printf_filtered (": %s.",
12216 event_location_to_string (b->location.get ()));
12217 }
12218
12219 if (b->loc->next)
12220 {
12221 struct bp_location *loc = b->loc;
12222 int n = 0;
12223 for (; loc; loc = loc->next)
12224 ++n;
12225 printf_filtered (" (%d locations)", n);
12226 }
12227 }
12228 }
12229
12230 /* Default bp_location_ops methods. */
12231
12232 static void
12233 bp_location_dtor (struct bp_location *self)
12234 {
12235 xfree (self->function_name);
12236 }
12237
12238 static const struct bp_location_ops bp_location_ops =
12239 {
12240 bp_location_dtor
12241 };
12242
12243 /* Destructor for the breakpoint base class. */
12244
12245 breakpoint::~breakpoint ()
12246 {
12247 xfree (this->cond_string);
12248 xfree (this->extra_string);
12249 xfree (this->filter);
12250 }
12251
12252 static struct bp_location *
12253 base_breakpoint_allocate_location (struct breakpoint *self)
12254 {
12255 return new bp_location (&bp_location_ops, self);
12256 }
12257
12258 static void
12259 base_breakpoint_re_set (struct breakpoint *b)
12260 {
12261 /* Nothing to re-set. */
12262 }
12263
12264 #define internal_error_pure_virtual_called() \
12265 gdb_assert_not_reached ("pure virtual function called")
12266
12267 static int
12268 base_breakpoint_insert_location (struct bp_location *bl)
12269 {
12270 internal_error_pure_virtual_called ();
12271 }
12272
12273 static int
12274 base_breakpoint_remove_location (struct bp_location *bl,
12275 enum remove_bp_reason reason)
12276 {
12277 internal_error_pure_virtual_called ();
12278 }
12279
12280 static int
12281 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12282 const address_space *aspace,
12283 CORE_ADDR bp_addr,
12284 const struct target_waitstatus *ws)
12285 {
12286 internal_error_pure_virtual_called ();
12287 }
12288
12289 static void
12290 base_breakpoint_check_status (bpstat bs)
12291 {
12292 /* Always stop. */
12293 }
12294
12295 /* A "works_in_software_mode" breakpoint_ops method that just internal
12296 errors. */
12297
12298 static int
12299 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12300 {
12301 internal_error_pure_virtual_called ();
12302 }
12303
12304 /* A "resources_needed" breakpoint_ops method that just internal
12305 errors. */
12306
12307 static int
12308 base_breakpoint_resources_needed (const struct bp_location *bl)
12309 {
12310 internal_error_pure_virtual_called ();
12311 }
12312
12313 static enum print_stop_action
12314 base_breakpoint_print_it (bpstat bs)
12315 {
12316 internal_error_pure_virtual_called ();
12317 }
12318
12319 static void
12320 base_breakpoint_print_one_detail (const struct breakpoint *self,
12321 struct ui_out *uiout)
12322 {
12323 /* nothing */
12324 }
12325
12326 static void
12327 base_breakpoint_print_mention (struct breakpoint *b)
12328 {
12329 internal_error_pure_virtual_called ();
12330 }
12331
12332 static void
12333 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12334 {
12335 internal_error_pure_virtual_called ();
12336 }
12337
12338 static void
12339 base_breakpoint_create_sals_from_location
12340 (const struct event_location *location,
12341 struct linespec_result *canonical,
12342 enum bptype type_wanted)
12343 {
12344 internal_error_pure_virtual_called ();
12345 }
12346
12347 static void
12348 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12349 struct linespec_result *c,
12350 gdb::unique_xmalloc_ptr<char> cond_string,
12351 gdb::unique_xmalloc_ptr<char> extra_string,
12352 enum bptype type_wanted,
12353 enum bpdisp disposition,
12354 int thread,
12355 int task, int ignore_count,
12356 const struct breakpoint_ops *o,
12357 int from_tty, int enabled,
12358 int internal, unsigned flags)
12359 {
12360 internal_error_pure_virtual_called ();
12361 }
12362
12363 static std::vector<symtab_and_line>
12364 base_breakpoint_decode_location (struct breakpoint *b,
12365 const struct event_location *location,
12366 struct program_space *search_pspace)
12367 {
12368 internal_error_pure_virtual_called ();
12369 }
12370
12371 /* The default 'explains_signal' method. */
12372
12373 static int
12374 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12375 {
12376 return 1;
12377 }
12378
12379 /* The default "after_condition_true" method. */
12380
12381 static void
12382 base_breakpoint_after_condition_true (struct bpstats *bs)
12383 {
12384 /* Nothing to do. */
12385 }
12386
12387 struct breakpoint_ops base_breakpoint_ops =
12388 {
12389 base_breakpoint_allocate_location,
12390 base_breakpoint_re_set,
12391 base_breakpoint_insert_location,
12392 base_breakpoint_remove_location,
12393 base_breakpoint_breakpoint_hit,
12394 base_breakpoint_check_status,
12395 base_breakpoint_resources_needed,
12396 base_breakpoint_works_in_software_mode,
12397 base_breakpoint_print_it,
12398 NULL,
12399 base_breakpoint_print_one_detail,
12400 base_breakpoint_print_mention,
12401 base_breakpoint_print_recreate,
12402 base_breakpoint_create_sals_from_location,
12403 base_breakpoint_create_breakpoints_sal,
12404 base_breakpoint_decode_location,
12405 base_breakpoint_explains_signal,
12406 base_breakpoint_after_condition_true,
12407 };
12408
12409 /* Default breakpoint_ops methods. */
12410
12411 static void
12412 bkpt_re_set (struct breakpoint *b)
12413 {
12414 /* FIXME: is this still reachable? */
12415 if (breakpoint_event_location_empty_p (b))
12416 {
12417 /* Anything without a location can't be re-set. */
12418 delete_breakpoint (b);
12419 return;
12420 }
12421
12422 breakpoint_re_set_default (b);
12423 }
12424
12425 static int
12426 bkpt_insert_location (struct bp_location *bl)
12427 {
12428 CORE_ADDR addr = bl->target_info.reqstd_address;
12429
12430 bl->target_info.kind = breakpoint_kind (bl, &addr);
12431 bl->target_info.placed_address = addr;
12432
12433 if (bl->loc_type == bp_loc_hardware_breakpoint)
12434 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12435 else
12436 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12437 }
12438
12439 static int
12440 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12441 {
12442 if (bl->loc_type == bp_loc_hardware_breakpoint)
12443 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12444 else
12445 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12446 }
12447
12448 static int
12449 bkpt_breakpoint_hit (const struct bp_location *bl,
12450 const address_space *aspace, CORE_ADDR bp_addr,
12451 const struct target_waitstatus *ws)
12452 {
12453 if (ws->kind != TARGET_WAITKIND_STOPPED
12454 || ws->value.sig != GDB_SIGNAL_TRAP)
12455 return 0;
12456
12457 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12458 aspace, bp_addr))
12459 return 0;
12460
12461 if (overlay_debugging /* unmapped overlay section */
12462 && section_is_overlay (bl->section)
12463 && !section_is_mapped (bl->section))
12464 return 0;
12465
12466 return 1;
12467 }
12468
12469 static int
12470 dprintf_breakpoint_hit (const struct bp_location *bl,
12471 const address_space *aspace, CORE_ADDR bp_addr,
12472 const struct target_waitstatus *ws)
12473 {
12474 if (dprintf_style == dprintf_style_agent
12475 && target_can_run_breakpoint_commands ())
12476 {
12477 /* An agent-style dprintf never causes a stop. If we see a trap
12478 for this address it must be for a breakpoint that happens to
12479 be set at the same address. */
12480 return 0;
12481 }
12482
12483 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12484 }
12485
12486 static int
12487 bkpt_resources_needed (const struct bp_location *bl)
12488 {
12489 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12490
12491 return 1;
12492 }
12493
12494 static enum print_stop_action
12495 bkpt_print_it (bpstat bs)
12496 {
12497 struct breakpoint *b;
12498 const struct bp_location *bl;
12499 int bp_temp;
12500 struct ui_out *uiout = current_uiout;
12501
12502 gdb_assert (bs->bp_location_at != NULL);
12503
12504 bl = bs->bp_location_at;
12505 b = bs->breakpoint_at;
12506
12507 bp_temp = b->disposition == disp_del;
12508 if (bl->address != bl->requested_address)
12509 breakpoint_adjustment_warning (bl->requested_address,
12510 bl->address,
12511 b->number, 1);
12512 annotate_breakpoint (b->number);
12513 maybe_print_thread_hit_breakpoint (uiout);
12514
12515 if (bp_temp)
12516 uiout->text ("Temporary breakpoint ");
12517 else
12518 uiout->text ("Breakpoint ");
12519 if (uiout->is_mi_like_p ())
12520 {
12521 uiout->field_string ("reason",
12522 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12523 uiout->field_string ("disp", bpdisp_text (b->disposition));
12524 }
12525 uiout->field_int ("bkptno", b->number);
12526 uiout->text (", ");
12527
12528 return PRINT_SRC_AND_LOC;
12529 }
12530
12531 static void
12532 bkpt_print_mention (struct breakpoint *b)
12533 {
12534 if (current_uiout->is_mi_like_p ())
12535 return;
12536
12537 switch (b->type)
12538 {
12539 case bp_breakpoint:
12540 case bp_gnu_ifunc_resolver:
12541 if (b->disposition == disp_del)
12542 printf_filtered (_("Temporary breakpoint"));
12543 else
12544 printf_filtered (_("Breakpoint"));
12545 printf_filtered (_(" %d"), b->number);
12546 if (b->type == bp_gnu_ifunc_resolver)
12547 printf_filtered (_(" at gnu-indirect-function resolver"));
12548 break;
12549 case bp_hardware_breakpoint:
12550 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12551 break;
12552 case bp_dprintf:
12553 printf_filtered (_("Dprintf %d"), b->number);
12554 break;
12555 }
12556
12557 say_where (b);
12558 }
12559
12560 static void
12561 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12562 {
12563 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12564 fprintf_unfiltered (fp, "tbreak");
12565 else if (tp->type == bp_breakpoint)
12566 fprintf_unfiltered (fp, "break");
12567 else if (tp->type == bp_hardware_breakpoint
12568 && tp->disposition == disp_del)
12569 fprintf_unfiltered (fp, "thbreak");
12570 else if (tp->type == bp_hardware_breakpoint)
12571 fprintf_unfiltered (fp, "hbreak");
12572 else
12573 internal_error (__FILE__, __LINE__,
12574 _("unhandled breakpoint type %d"), (int) tp->type);
12575
12576 fprintf_unfiltered (fp, " %s",
12577 event_location_to_string (tp->location.get ()));
12578
12579 /* Print out extra_string if this breakpoint is pending. It might
12580 contain, for example, conditions that were set by the user. */
12581 if (tp->loc == NULL && tp->extra_string != NULL)
12582 fprintf_unfiltered (fp, " %s", tp->extra_string);
12583
12584 print_recreate_thread (tp, fp);
12585 }
12586
12587 static void
12588 bkpt_create_sals_from_location (const struct event_location *location,
12589 struct linespec_result *canonical,
12590 enum bptype type_wanted)
12591 {
12592 create_sals_from_location_default (location, canonical, type_wanted);
12593 }
12594
12595 static void
12596 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12597 struct linespec_result *canonical,
12598 gdb::unique_xmalloc_ptr<char> cond_string,
12599 gdb::unique_xmalloc_ptr<char> extra_string,
12600 enum bptype type_wanted,
12601 enum bpdisp disposition,
12602 int thread,
12603 int task, int ignore_count,
12604 const struct breakpoint_ops *ops,
12605 int from_tty, int enabled,
12606 int internal, unsigned flags)
12607 {
12608 create_breakpoints_sal_default (gdbarch, canonical,
12609 std::move (cond_string),
12610 std::move (extra_string),
12611 type_wanted,
12612 disposition, thread, task,
12613 ignore_count, ops, from_tty,
12614 enabled, internal, flags);
12615 }
12616
12617 static std::vector<symtab_and_line>
12618 bkpt_decode_location (struct breakpoint *b,
12619 const struct event_location *location,
12620 struct program_space *search_pspace)
12621 {
12622 return decode_location_default (b, location, search_pspace);
12623 }
12624
12625 /* Virtual table for internal breakpoints. */
12626
12627 static void
12628 internal_bkpt_re_set (struct breakpoint *b)
12629 {
12630 switch (b->type)
12631 {
12632 /* Delete overlay event and longjmp master breakpoints; they
12633 will be reset later by breakpoint_re_set. */
12634 case bp_overlay_event:
12635 case bp_longjmp_master:
12636 case bp_std_terminate_master:
12637 case bp_exception_master:
12638 delete_breakpoint (b);
12639 break;
12640
12641 /* This breakpoint is special, it's set up when the inferior
12642 starts and we really don't want to touch it. */
12643 case bp_shlib_event:
12644
12645 /* Like bp_shlib_event, this breakpoint type is special. Once
12646 it is set up, we do not want to touch it. */
12647 case bp_thread_event:
12648 break;
12649 }
12650 }
12651
12652 static void
12653 internal_bkpt_check_status (bpstat bs)
12654 {
12655 if (bs->breakpoint_at->type == bp_shlib_event)
12656 {
12657 /* If requested, stop when the dynamic linker notifies GDB of
12658 events. This allows the user to get control and place
12659 breakpoints in initializer routines for dynamically loaded
12660 objects (among other things). */
12661 bs->stop = stop_on_solib_events;
12662 bs->print = stop_on_solib_events;
12663 }
12664 else
12665 bs->stop = 0;
12666 }
12667
12668 static enum print_stop_action
12669 internal_bkpt_print_it (bpstat bs)
12670 {
12671 struct breakpoint *b;
12672
12673 b = bs->breakpoint_at;
12674
12675 switch (b->type)
12676 {
12677 case bp_shlib_event:
12678 /* Did we stop because the user set the stop_on_solib_events
12679 variable? (If so, we report this as a generic, "Stopped due
12680 to shlib event" message.) */
12681 print_solib_event (0);
12682 break;
12683
12684 case bp_thread_event:
12685 /* Not sure how we will get here.
12686 GDB should not stop for these breakpoints. */
12687 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12688 break;
12689
12690 case bp_overlay_event:
12691 /* By analogy with the thread event, GDB should not stop for these. */
12692 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12693 break;
12694
12695 case bp_longjmp_master:
12696 /* These should never be enabled. */
12697 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12698 break;
12699
12700 case bp_std_terminate_master:
12701 /* These should never be enabled. */
12702 printf_filtered (_("std::terminate Master Breakpoint: "
12703 "gdb should not stop!\n"));
12704 break;
12705
12706 case bp_exception_master:
12707 /* These should never be enabled. */
12708 printf_filtered (_("Exception Master Breakpoint: "
12709 "gdb should not stop!\n"));
12710 break;
12711 }
12712
12713 return PRINT_NOTHING;
12714 }
12715
12716 static void
12717 internal_bkpt_print_mention (struct breakpoint *b)
12718 {
12719 /* Nothing to mention. These breakpoints are internal. */
12720 }
12721
12722 /* Virtual table for momentary breakpoints */
12723
12724 static void
12725 momentary_bkpt_re_set (struct breakpoint *b)
12726 {
12727 /* Keep temporary breakpoints, which can be encountered when we step
12728 over a dlopen call and solib_add is resetting the breakpoints.
12729 Otherwise these should have been blown away via the cleanup chain
12730 or by breakpoint_init_inferior when we rerun the executable. */
12731 }
12732
12733 static void
12734 momentary_bkpt_check_status (bpstat bs)
12735 {
12736 /* Nothing. The point of these breakpoints is causing a stop. */
12737 }
12738
12739 static enum print_stop_action
12740 momentary_bkpt_print_it (bpstat bs)
12741 {
12742 return PRINT_UNKNOWN;
12743 }
12744
12745 static void
12746 momentary_bkpt_print_mention (struct breakpoint *b)
12747 {
12748 /* Nothing to mention. These breakpoints are internal. */
12749 }
12750
12751 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12752
12753 It gets cleared already on the removal of the first one of such placed
12754 breakpoints. This is OK as they get all removed altogether. */
12755
12756 longjmp_breakpoint::~longjmp_breakpoint ()
12757 {
12758 thread_info *tp = find_thread_global_id (this->thread);
12759
12760 if (tp != NULL)
12761 tp->initiating_frame = null_frame_id;
12762 }
12763
12764 /* Specific methods for probe breakpoints. */
12765
12766 static int
12767 bkpt_probe_insert_location (struct bp_location *bl)
12768 {
12769 int v = bkpt_insert_location (bl);
12770
12771 if (v == 0)
12772 {
12773 /* The insertion was successful, now let's set the probe's semaphore
12774 if needed. */
12775 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12776 }
12777
12778 return v;
12779 }
12780
12781 static int
12782 bkpt_probe_remove_location (struct bp_location *bl,
12783 enum remove_bp_reason reason)
12784 {
12785 /* Let's clear the semaphore before removing the location. */
12786 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12787
12788 return bkpt_remove_location (bl, reason);
12789 }
12790
12791 static void
12792 bkpt_probe_create_sals_from_location (const struct event_location *location,
12793 struct linespec_result *canonical,
12794 enum bptype type_wanted)
12795 {
12796 struct linespec_sals lsal;
12797
12798 lsal.sals = parse_probes (location, NULL, canonical);
12799 lsal.canonical
12800 = xstrdup (event_location_to_string (canonical->location.get ()));
12801 canonical->lsals.push_back (std::move (lsal));
12802 }
12803
12804 static std::vector<symtab_and_line>
12805 bkpt_probe_decode_location (struct breakpoint *b,
12806 const struct event_location *location,
12807 struct program_space *search_pspace)
12808 {
12809 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12810 if (sals.empty ())
12811 error (_("probe not found"));
12812 return sals;
12813 }
12814
12815 /* The breakpoint_ops structure to be used in tracepoints. */
12816
12817 static void
12818 tracepoint_re_set (struct breakpoint *b)
12819 {
12820 breakpoint_re_set_default (b);
12821 }
12822
12823 static int
12824 tracepoint_breakpoint_hit (const struct bp_location *bl,
12825 const address_space *aspace, CORE_ADDR bp_addr,
12826 const struct target_waitstatus *ws)
12827 {
12828 /* By definition, the inferior does not report stops at
12829 tracepoints. */
12830 return 0;
12831 }
12832
12833 static void
12834 tracepoint_print_one_detail (const struct breakpoint *self,
12835 struct ui_out *uiout)
12836 {
12837 struct tracepoint *tp = (struct tracepoint *) self;
12838 if (!tp->static_trace_marker_id.empty ())
12839 {
12840 gdb_assert (self->type == bp_static_tracepoint);
12841
12842 uiout->text ("\tmarker id is ");
12843 uiout->field_string ("static-tracepoint-marker-string-id",
12844 tp->static_trace_marker_id);
12845 uiout->text ("\n");
12846 }
12847 }
12848
12849 static void
12850 tracepoint_print_mention (struct breakpoint *b)
12851 {
12852 if (current_uiout->is_mi_like_p ())
12853 return;
12854
12855 switch (b->type)
12856 {
12857 case bp_tracepoint:
12858 printf_filtered (_("Tracepoint"));
12859 printf_filtered (_(" %d"), b->number);
12860 break;
12861 case bp_fast_tracepoint:
12862 printf_filtered (_("Fast tracepoint"));
12863 printf_filtered (_(" %d"), b->number);
12864 break;
12865 case bp_static_tracepoint:
12866 printf_filtered (_("Static tracepoint"));
12867 printf_filtered (_(" %d"), b->number);
12868 break;
12869 default:
12870 internal_error (__FILE__, __LINE__,
12871 _("unhandled tracepoint type %d"), (int) b->type);
12872 }
12873
12874 say_where (b);
12875 }
12876
12877 static void
12878 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12879 {
12880 struct tracepoint *tp = (struct tracepoint *) self;
12881
12882 if (self->type == bp_fast_tracepoint)
12883 fprintf_unfiltered (fp, "ftrace");
12884 else if (self->type == bp_static_tracepoint)
12885 fprintf_unfiltered (fp, "strace");
12886 else if (self->type == bp_tracepoint)
12887 fprintf_unfiltered (fp, "trace");
12888 else
12889 internal_error (__FILE__, __LINE__,
12890 _("unhandled tracepoint type %d"), (int) self->type);
12891
12892 fprintf_unfiltered (fp, " %s",
12893 event_location_to_string (self->location.get ()));
12894 print_recreate_thread (self, fp);
12895
12896 if (tp->pass_count)
12897 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12898 }
12899
12900 static void
12901 tracepoint_create_sals_from_location (const struct event_location *location,
12902 struct linespec_result *canonical,
12903 enum bptype type_wanted)
12904 {
12905 create_sals_from_location_default (location, canonical, type_wanted);
12906 }
12907
12908 static void
12909 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12910 struct linespec_result *canonical,
12911 gdb::unique_xmalloc_ptr<char> cond_string,
12912 gdb::unique_xmalloc_ptr<char> extra_string,
12913 enum bptype type_wanted,
12914 enum bpdisp disposition,
12915 int thread,
12916 int task, int ignore_count,
12917 const struct breakpoint_ops *ops,
12918 int from_tty, int enabled,
12919 int internal, unsigned flags)
12920 {
12921 create_breakpoints_sal_default (gdbarch, canonical,
12922 std::move (cond_string),
12923 std::move (extra_string),
12924 type_wanted,
12925 disposition, thread, task,
12926 ignore_count, ops, from_tty,
12927 enabled, internal, flags);
12928 }
12929
12930 static std::vector<symtab_and_line>
12931 tracepoint_decode_location (struct breakpoint *b,
12932 const struct event_location *location,
12933 struct program_space *search_pspace)
12934 {
12935 return decode_location_default (b, location, search_pspace);
12936 }
12937
12938 struct breakpoint_ops tracepoint_breakpoint_ops;
12939
12940 /* The breakpoint_ops structure to be use on tracepoints placed in a
12941 static probe. */
12942
12943 static void
12944 tracepoint_probe_create_sals_from_location
12945 (const struct event_location *location,
12946 struct linespec_result *canonical,
12947 enum bptype type_wanted)
12948 {
12949 /* We use the same method for breakpoint on probes. */
12950 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12951 }
12952
12953 static std::vector<symtab_and_line>
12954 tracepoint_probe_decode_location (struct breakpoint *b,
12955 const struct event_location *location,
12956 struct program_space *search_pspace)
12957 {
12958 /* We use the same method for breakpoint on probes. */
12959 return bkpt_probe_decode_location (b, location, search_pspace);
12960 }
12961
12962 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12963
12964 /* Dprintf breakpoint_ops methods. */
12965
12966 static void
12967 dprintf_re_set (struct breakpoint *b)
12968 {
12969 breakpoint_re_set_default (b);
12970
12971 /* extra_string should never be non-NULL for dprintf. */
12972 gdb_assert (b->extra_string != NULL);
12973
12974 /* 1 - connect to target 1, that can run breakpoint commands.
12975 2 - create a dprintf, which resolves fine.
12976 3 - disconnect from target 1
12977 4 - connect to target 2, that can NOT run breakpoint commands.
12978
12979 After steps #3/#4, you'll want the dprintf command list to
12980 be updated, because target 1 and 2 may well return different
12981 answers for target_can_run_breakpoint_commands().
12982 Given absence of finer grained resetting, we get to do
12983 it all the time. */
12984 if (b->extra_string != NULL)
12985 update_dprintf_command_list (b);
12986 }
12987
12988 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12989
12990 static void
12991 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12992 {
12993 fprintf_unfiltered (fp, "dprintf %s,%s",
12994 event_location_to_string (tp->location.get ()),
12995 tp->extra_string);
12996 print_recreate_thread (tp, fp);
12997 }
12998
12999 /* Implement the "after_condition_true" breakpoint_ops method for
13000 dprintf.
13001
13002 dprintf's are implemented with regular commands in their command
13003 list, but we run the commands here instead of before presenting the
13004 stop to the user, as dprintf's don't actually cause a stop. This
13005 also makes it so that the commands of multiple dprintfs at the same
13006 address are all handled. */
13007
13008 static void
13009 dprintf_after_condition_true (struct bpstats *bs)
13010 {
13011 struct bpstats tmp_bs;
13012 struct bpstats *tmp_bs_p = &tmp_bs;
13013
13014 /* dprintf's never cause a stop. This wasn't set in the
13015 check_status hook instead because that would make the dprintf's
13016 condition not be evaluated. */
13017 bs->stop = 0;
13018
13019 /* Run the command list here. Take ownership of it instead of
13020 copying. We never want these commands to run later in
13021 bpstat_do_actions, if a breakpoint that causes a stop happens to
13022 be set at same address as this dprintf, or even if running the
13023 commands here throws. */
13024 tmp_bs.commands = bs->commands;
13025 bs->commands = NULL;
13026
13027 bpstat_do_actions_1 (&tmp_bs_p);
13028
13029 /* 'tmp_bs.commands' will usually be NULL by now, but
13030 bpstat_do_actions_1 may return early without processing the whole
13031 list. */
13032 }
13033
13034 /* The breakpoint_ops structure to be used on static tracepoints with
13035 markers (`-m'). */
13036
13037 static void
13038 strace_marker_create_sals_from_location (const struct event_location *location,
13039 struct linespec_result *canonical,
13040 enum bptype type_wanted)
13041 {
13042 struct linespec_sals lsal;
13043 const char *arg_start, *arg;
13044
13045 arg = arg_start = get_linespec_location (location)->spec_string;
13046 lsal.sals = decode_static_tracepoint_spec (&arg);
13047
13048 std::string str (arg_start, arg - arg_start);
13049 const char *ptr = str.c_str ();
13050 canonical->location
13051 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13052
13053 lsal.canonical
13054 = xstrdup (event_location_to_string (canonical->location.get ()));
13055 canonical->lsals.push_back (std::move (lsal));
13056 }
13057
13058 static void
13059 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13060 struct linespec_result *canonical,
13061 gdb::unique_xmalloc_ptr<char> cond_string,
13062 gdb::unique_xmalloc_ptr<char> extra_string,
13063 enum bptype type_wanted,
13064 enum bpdisp disposition,
13065 int thread,
13066 int task, int ignore_count,
13067 const struct breakpoint_ops *ops,
13068 int from_tty, int enabled,
13069 int internal, unsigned flags)
13070 {
13071 const linespec_sals &lsal = canonical->lsals[0];
13072
13073 /* If the user is creating a static tracepoint by marker id
13074 (strace -m MARKER_ID), then store the sals index, so that
13075 breakpoint_re_set can try to match up which of the newly
13076 found markers corresponds to this one, and, don't try to
13077 expand multiple locations for each sal, given than SALS
13078 already should contain all sals for MARKER_ID. */
13079
13080 for (size_t i = 0; i < lsal.sals.size (); i++)
13081 {
13082 event_location_up location
13083 = copy_event_location (canonical->location.get ());
13084
13085 std::unique_ptr<tracepoint> tp (new tracepoint ());
13086 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13087 std::move (location), NULL,
13088 std::move (cond_string),
13089 std::move (extra_string),
13090 type_wanted, disposition,
13091 thread, task, ignore_count, ops,
13092 from_tty, enabled, internal, flags,
13093 canonical->special_display);
13094 /* Given that its possible to have multiple markers with
13095 the same string id, if the user is creating a static
13096 tracepoint by marker id ("strace -m MARKER_ID"), then
13097 store the sals index, so that breakpoint_re_set can
13098 try to match up which of the newly found markers
13099 corresponds to this one */
13100 tp->static_trace_marker_id_idx = i;
13101
13102 install_breakpoint (internal, std::move (tp), 0);
13103 }
13104 }
13105
13106 static std::vector<symtab_and_line>
13107 strace_marker_decode_location (struct breakpoint *b,
13108 const struct event_location *location,
13109 struct program_space *search_pspace)
13110 {
13111 struct tracepoint *tp = (struct tracepoint *) b;
13112 const char *s = get_linespec_location (location)->spec_string;
13113
13114 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13115 if (sals.size () > tp->static_trace_marker_id_idx)
13116 {
13117 sals[0] = sals[tp->static_trace_marker_id_idx];
13118 sals.resize (1);
13119 return sals;
13120 }
13121 else
13122 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13123 }
13124
13125 static struct breakpoint_ops strace_marker_breakpoint_ops;
13126
13127 static int
13128 strace_marker_p (struct breakpoint *b)
13129 {
13130 return b->ops == &strace_marker_breakpoint_ops;
13131 }
13132
13133 /* Delete a breakpoint and clean up all traces of it in the data
13134 structures. */
13135
13136 void
13137 delete_breakpoint (struct breakpoint *bpt)
13138 {
13139 struct breakpoint *b;
13140
13141 gdb_assert (bpt != NULL);
13142
13143 /* Has this bp already been deleted? This can happen because
13144 multiple lists can hold pointers to bp's. bpstat lists are
13145 especial culprits.
13146
13147 One example of this happening is a watchpoint's scope bp. When
13148 the scope bp triggers, we notice that the watchpoint is out of
13149 scope, and delete it. We also delete its scope bp. But the
13150 scope bp is marked "auto-deleting", and is already on a bpstat.
13151 That bpstat is then checked for auto-deleting bp's, which are
13152 deleted.
13153
13154 A real solution to this problem might involve reference counts in
13155 bp's, and/or giving them pointers back to their referencing
13156 bpstat's, and teaching delete_breakpoint to only free a bp's
13157 storage when no more references were extent. A cheaper bandaid
13158 was chosen. */
13159 if (bpt->type == bp_none)
13160 return;
13161
13162 /* At least avoid this stale reference until the reference counting
13163 of breakpoints gets resolved. */
13164 if (bpt->related_breakpoint != bpt)
13165 {
13166 struct breakpoint *related;
13167 struct watchpoint *w;
13168
13169 if (bpt->type == bp_watchpoint_scope)
13170 w = (struct watchpoint *) bpt->related_breakpoint;
13171 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13172 w = (struct watchpoint *) bpt;
13173 else
13174 w = NULL;
13175 if (w != NULL)
13176 watchpoint_del_at_next_stop (w);
13177
13178 /* Unlink bpt from the bpt->related_breakpoint ring. */
13179 for (related = bpt; related->related_breakpoint != bpt;
13180 related = related->related_breakpoint);
13181 related->related_breakpoint = bpt->related_breakpoint;
13182 bpt->related_breakpoint = bpt;
13183 }
13184
13185 /* watch_command_1 creates a watchpoint but only sets its number if
13186 update_watchpoint succeeds in creating its bp_locations. If there's
13187 a problem in that process, we'll be asked to delete the half-created
13188 watchpoint. In that case, don't announce the deletion. */
13189 if (bpt->number)
13190 gdb::observers::breakpoint_deleted.notify (bpt);
13191
13192 if (breakpoint_chain == bpt)
13193 breakpoint_chain = bpt->next;
13194
13195 ALL_BREAKPOINTS (b)
13196 if (b->next == bpt)
13197 {
13198 b->next = bpt->next;
13199 break;
13200 }
13201
13202 /* Be sure no bpstat's are pointing at the breakpoint after it's
13203 been freed. */
13204 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13205 in all threads for now. Note that we cannot just remove bpstats
13206 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13207 commands are associated with the bpstat; if we remove it here,
13208 then the later call to bpstat_do_actions (&stop_bpstat); in
13209 event-top.c won't do anything, and temporary breakpoints with
13210 commands won't work. */
13211
13212 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13213
13214 /* Now that breakpoint is removed from breakpoint list, update the
13215 global location list. This will remove locations that used to
13216 belong to this breakpoint. Do this before freeing the breakpoint
13217 itself, since remove_breakpoint looks at location's owner. It
13218 might be better design to have location completely
13219 self-contained, but it's not the case now. */
13220 update_global_location_list (UGLL_DONT_INSERT);
13221
13222 /* On the chance that someone will soon try again to delete this
13223 same bp, we mark it as deleted before freeing its storage. */
13224 bpt->type = bp_none;
13225 delete bpt;
13226 }
13227
13228 /* Iterator function to call a user-provided callback function once
13229 for each of B and its related breakpoints. */
13230
13231 static void
13232 iterate_over_related_breakpoints (struct breakpoint *b,
13233 gdb::function_view<void (breakpoint *)> function)
13234 {
13235 struct breakpoint *related;
13236
13237 related = b;
13238 do
13239 {
13240 struct breakpoint *next;
13241
13242 /* FUNCTION may delete RELATED. */
13243 next = related->related_breakpoint;
13244
13245 if (next == related)
13246 {
13247 /* RELATED is the last ring entry. */
13248 function (related);
13249
13250 /* FUNCTION may have deleted it, so we'd never reach back to
13251 B. There's nothing left to do anyway, so just break
13252 out. */
13253 break;
13254 }
13255 else
13256 function (related);
13257
13258 related = next;
13259 }
13260 while (related != b);
13261 }
13262
13263 static void
13264 delete_command (const char *arg, int from_tty)
13265 {
13266 struct breakpoint *b, *b_tmp;
13267
13268 dont_repeat ();
13269
13270 if (arg == 0)
13271 {
13272 int breaks_to_delete = 0;
13273
13274 /* Delete all breakpoints if no argument. Do not delete
13275 internal breakpoints, these have to be deleted with an
13276 explicit breakpoint number argument. */
13277 ALL_BREAKPOINTS (b)
13278 if (user_breakpoint_p (b))
13279 {
13280 breaks_to_delete = 1;
13281 break;
13282 }
13283
13284 /* Ask user only if there are some breakpoints to delete. */
13285 if (!from_tty
13286 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13287 {
13288 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13289 if (user_breakpoint_p (b))
13290 delete_breakpoint (b);
13291 }
13292 }
13293 else
13294 map_breakpoint_numbers
13295 (arg, [&] (breakpoint *b)
13296 {
13297 iterate_over_related_breakpoints (b, delete_breakpoint);
13298 });
13299 }
13300
13301 /* Return true if all locations of B bound to PSPACE are pending. If
13302 PSPACE is NULL, all locations of all program spaces are
13303 considered. */
13304
13305 static int
13306 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13307 {
13308 struct bp_location *loc;
13309
13310 for (loc = b->loc; loc != NULL; loc = loc->next)
13311 if ((pspace == NULL
13312 || loc->pspace == pspace)
13313 && !loc->shlib_disabled
13314 && !loc->pspace->executing_startup)
13315 return 0;
13316 return 1;
13317 }
13318
13319 /* Subroutine of update_breakpoint_locations to simplify it.
13320 Return non-zero if multiple fns in list LOC have the same name.
13321 Null names are ignored. */
13322
13323 static int
13324 ambiguous_names_p (struct bp_location *loc)
13325 {
13326 struct bp_location *l;
13327 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13328 xcalloc, xfree);
13329
13330 for (l = loc; l != NULL; l = l->next)
13331 {
13332 const char **slot;
13333 const char *name = l->function_name;
13334
13335 /* Allow for some names to be NULL, ignore them. */
13336 if (name == NULL)
13337 continue;
13338
13339 slot = (const char **) htab_find_slot (htab, (const void *) name,
13340 INSERT);
13341 /* NOTE: We can assume slot != NULL here because xcalloc never
13342 returns NULL. */
13343 if (*slot != NULL)
13344 {
13345 htab_delete (htab);
13346 return 1;
13347 }
13348 *slot = name;
13349 }
13350
13351 htab_delete (htab);
13352 return 0;
13353 }
13354
13355 /* When symbols change, it probably means the sources changed as well,
13356 and it might mean the static tracepoint markers are no longer at
13357 the same address or line numbers they used to be at last we
13358 checked. Losing your static tracepoints whenever you rebuild is
13359 undesirable. This function tries to resync/rematch gdb static
13360 tracepoints with the markers on the target, for static tracepoints
13361 that have not been set by marker id. Static tracepoint that have
13362 been set by marker id are reset by marker id in breakpoint_re_set.
13363 The heuristic is:
13364
13365 1) For a tracepoint set at a specific address, look for a marker at
13366 the old PC. If one is found there, assume to be the same marker.
13367 If the name / string id of the marker found is different from the
13368 previous known name, assume that means the user renamed the marker
13369 in the sources, and output a warning.
13370
13371 2) For a tracepoint set at a given line number, look for a marker
13372 at the new address of the old line number. If one is found there,
13373 assume to be the same marker. If the name / string id of the
13374 marker found is different from the previous known name, assume that
13375 means the user renamed the marker in the sources, and output a
13376 warning.
13377
13378 3) If a marker is no longer found at the same address or line, it
13379 may mean the marker no longer exists. But it may also just mean
13380 the code changed a bit. Maybe the user added a few lines of code
13381 that made the marker move up or down (in line number terms). Ask
13382 the target for info about the marker with the string id as we knew
13383 it. If found, update line number and address in the matching
13384 static tracepoint. This will get confused if there's more than one
13385 marker with the same ID (possible in UST, although unadvised
13386 precisely because it confuses tools). */
13387
13388 static struct symtab_and_line
13389 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13390 {
13391 struct tracepoint *tp = (struct tracepoint *) b;
13392 struct static_tracepoint_marker marker;
13393 CORE_ADDR pc;
13394
13395 pc = sal.pc;
13396 if (sal.line)
13397 find_line_pc (sal.symtab, sal.line, &pc);
13398
13399 if (target_static_tracepoint_marker_at (pc, &marker))
13400 {
13401 if (tp->static_trace_marker_id != marker.str_id)
13402 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13403 b->number, tp->static_trace_marker_id.c_str (),
13404 marker.str_id.c_str ());
13405
13406 tp->static_trace_marker_id = std::move (marker.str_id);
13407
13408 return sal;
13409 }
13410
13411 /* Old marker wasn't found on target at lineno. Try looking it up
13412 by string ID. */
13413 if (!sal.explicit_pc
13414 && sal.line != 0
13415 && sal.symtab != NULL
13416 && !tp->static_trace_marker_id.empty ())
13417 {
13418 std::vector<static_tracepoint_marker> markers
13419 = target_static_tracepoint_markers_by_strid
13420 (tp->static_trace_marker_id.c_str ());
13421
13422 if (!markers.empty ())
13423 {
13424 struct symbol *sym;
13425 struct static_tracepoint_marker *tpmarker;
13426 struct ui_out *uiout = current_uiout;
13427 struct explicit_location explicit_loc;
13428
13429 tpmarker = &markers[0];
13430
13431 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13432
13433 warning (_("marker for static tracepoint %d (%s) not "
13434 "found at previous line number"),
13435 b->number, tp->static_trace_marker_id.c_str ());
13436
13437 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13438 sym = find_pc_sect_function (tpmarker->address, NULL);
13439 uiout->text ("Now in ");
13440 if (sym)
13441 {
13442 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13443 uiout->text (" at ");
13444 }
13445 uiout->field_string ("file",
13446 symtab_to_filename_for_display (sal2.symtab));
13447 uiout->text (":");
13448
13449 if (uiout->is_mi_like_p ())
13450 {
13451 const char *fullname = symtab_to_fullname (sal2.symtab);
13452
13453 uiout->field_string ("fullname", fullname);
13454 }
13455
13456 uiout->field_int ("line", sal2.line);
13457 uiout->text ("\n");
13458
13459 b->loc->line_number = sal2.line;
13460 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13461
13462 b->location.reset (NULL);
13463 initialize_explicit_location (&explicit_loc);
13464 explicit_loc.source_filename
13465 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13466 explicit_loc.line_offset.offset = b->loc->line_number;
13467 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13468 b->location = new_explicit_location (&explicit_loc);
13469
13470 /* Might be nice to check if function changed, and warn if
13471 so. */
13472 }
13473 }
13474 return sal;
13475 }
13476
13477 /* Returns 1 iff locations A and B are sufficiently same that
13478 we don't need to report breakpoint as changed. */
13479
13480 static int
13481 locations_are_equal (struct bp_location *a, struct bp_location *b)
13482 {
13483 while (a && b)
13484 {
13485 if (a->address != b->address)
13486 return 0;
13487
13488 if (a->shlib_disabled != b->shlib_disabled)
13489 return 0;
13490
13491 if (a->enabled != b->enabled)
13492 return 0;
13493
13494 a = a->next;
13495 b = b->next;
13496 }
13497
13498 if ((a == NULL) != (b == NULL))
13499 return 0;
13500
13501 return 1;
13502 }
13503
13504 /* Split all locations of B that are bound to PSPACE out of B's
13505 location list to a separate list and return that list's head. If
13506 PSPACE is NULL, hoist out all locations of B. */
13507
13508 static struct bp_location *
13509 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13510 {
13511 struct bp_location head;
13512 struct bp_location *i = b->loc;
13513 struct bp_location **i_link = &b->loc;
13514 struct bp_location *hoisted = &head;
13515
13516 if (pspace == NULL)
13517 {
13518 i = b->loc;
13519 b->loc = NULL;
13520 return i;
13521 }
13522
13523 head.next = NULL;
13524
13525 while (i != NULL)
13526 {
13527 if (i->pspace == pspace)
13528 {
13529 *i_link = i->next;
13530 i->next = NULL;
13531 hoisted->next = i;
13532 hoisted = i;
13533 }
13534 else
13535 i_link = &i->next;
13536 i = *i_link;
13537 }
13538
13539 return head.next;
13540 }
13541
13542 /* Create new breakpoint locations for B (a hardware or software
13543 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13544 zero, then B is a ranged breakpoint. Only recreates locations for
13545 FILTER_PSPACE. Locations of other program spaces are left
13546 untouched. */
13547
13548 void
13549 update_breakpoint_locations (struct breakpoint *b,
13550 struct program_space *filter_pspace,
13551 gdb::array_view<const symtab_and_line> sals,
13552 gdb::array_view<const symtab_and_line> sals_end)
13553 {
13554 struct bp_location *existing_locations;
13555
13556 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13557 {
13558 /* Ranged breakpoints have only one start location and one end
13559 location. */
13560 b->enable_state = bp_disabled;
13561 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13562 "multiple locations found\n"),
13563 b->number);
13564 return;
13565 }
13566
13567 /* If there's no new locations, and all existing locations are
13568 pending, don't do anything. This optimizes the common case where
13569 all locations are in the same shared library, that was unloaded.
13570 We'd like to retain the location, so that when the library is
13571 loaded again, we don't loose the enabled/disabled status of the
13572 individual locations. */
13573 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13574 return;
13575
13576 existing_locations = hoist_existing_locations (b, filter_pspace);
13577
13578 for (const auto &sal : sals)
13579 {
13580 struct bp_location *new_loc;
13581
13582 switch_to_program_space_and_thread (sal.pspace);
13583
13584 new_loc = add_location_to_breakpoint (b, &sal);
13585
13586 /* Reparse conditions, they might contain references to the
13587 old symtab. */
13588 if (b->cond_string != NULL)
13589 {
13590 const char *s;
13591
13592 s = b->cond_string;
13593 TRY
13594 {
13595 new_loc->cond = parse_exp_1 (&s, sal.pc,
13596 block_for_pc (sal.pc),
13597 0);
13598 }
13599 CATCH (e, RETURN_MASK_ERROR)
13600 {
13601 warning (_("failed to reevaluate condition "
13602 "for breakpoint %d: %s"),
13603 b->number, e.message);
13604 new_loc->enabled = 0;
13605 }
13606 END_CATCH
13607 }
13608
13609 if (!sals_end.empty ())
13610 {
13611 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13612
13613 new_loc->length = end - sals[0].pc + 1;
13614 }
13615 }
13616
13617 /* If possible, carry over 'disable' status from existing
13618 breakpoints. */
13619 {
13620 struct bp_location *e = existing_locations;
13621 /* If there are multiple breakpoints with the same function name,
13622 e.g. for inline functions, comparing function names won't work.
13623 Instead compare pc addresses; this is just a heuristic as things
13624 may have moved, but in practice it gives the correct answer
13625 often enough until a better solution is found. */
13626 int have_ambiguous_names = ambiguous_names_p (b->loc);
13627
13628 for (; e; e = e->next)
13629 {
13630 if (!e->enabled && e->function_name)
13631 {
13632 struct bp_location *l = b->loc;
13633 if (have_ambiguous_names)
13634 {
13635 for (; l; l = l->next)
13636 if (breakpoint_locations_match (e, l))
13637 {
13638 l->enabled = 0;
13639 break;
13640 }
13641 }
13642 else
13643 {
13644 for (; l; l = l->next)
13645 if (l->function_name
13646 && strcmp (e->function_name, l->function_name) == 0)
13647 {
13648 l->enabled = 0;
13649 break;
13650 }
13651 }
13652 }
13653 }
13654 }
13655
13656 if (!locations_are_equal (existing_locations, b->loc))
13657 gdb::observers::breakpoint_modified.notify (b);
13658 }
13659
13660 /* Find the SaL locations corresponding to the given LOCATION.
13661 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13662
13663 static std::vector<symtab_and_line>
13664 location_to_sals (struct breakpoint *b, struct event_location *location,
13665 struct program_space *search_pspace, int *found)
13666 {
13667 struct gdb_exception exception = exception_none;
13668
13669 gdb_assert (b->ops != NULL);
13670
13671 std::vector<symtab_and_line> sals;
13672
13673 TRY
13674 {
13675 sals = b->ops->decode_location (b, location, search_pspace);
13676 }
13677 CATCH (e, RETURN_MASK_ERROR)
13678 {
13679 int not_found_and_ok = 0;
13680
13681 exception = e;
13682
13683 /* For pending breakpoints, it's expected that parsing will
13684 fail until the right shared library is loaded. User has
13685 already told to create pending breakpoints and don't need
13686 extra messages. If breakpoint is in bp_shlib_disabled
13687 state, then user already saw the message about that
13688 breakpoint being disabled, and don't want to see more
13689 errors. */
13690 if (e.error == NOT_FOUND_ERROR
13691 && (b->condition_not_parsed
13692 || (b->loc != NULL
13693 && search_pspace != NULL
13694 && b->loc->pspace != search_pspace)
13695 || (b->loc && b->loc->shlib_disabled)
13696 || (b->loc && b->loc->pspace->executing_startup)
13697 || b->enable_state == bp_disabled))
13698 not_found_and_ok = 1;
13699
13700 if (!not_found_and_ok)
13701 {
13702 /* We surely don't want to warn about the same breakpoint
13703 10 times. One solution, implemented here, is disable
13704 the breakpoint on error. Another solution would be to
13705 have separate 'warning emitted' flag. Since this
13706 happens only when a binary has changed, I don't know
13707 which approach is better. */
13708 b->enable_state = bp_disabled;
13709 throw_exception (e);
13710 }
13711 }
13712 END_CATCH
13713
13714 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13715 {
13716 for (auto &sal : sals)
13717 resolve_sal_pc (&sal);
13718 if (b->condition_not_parsed && b->extra_string != NULL)
13719 {
13720 char *cond_string, *extra_string;
13721 int thread, task;
13722
13723 find_condition_and_thread (b->extra_string, sals[0].pc,
13724 &cond_string, &thread, &task,
13725 &extra_string);
13726 gdb_assert (b->cond_string == NULL);
13727 if (cond_string)
13728 b->cond_string = cond_string;
13729 b->thread = thread;
13730 b->task = task;
13731 if (extra_string)
13732 {
13733 xfree (b->extra_string);
13734 b->extra_string = extra_string;
13735 }
13736 b->condition_not_parsed = 0;
13737 }
13738
13739 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13740 sals[0] = update_static_tracepoint (b, sals[0]);
13741
13742 *found = 1;
13743 }
13744 else
13745 *found = 0;
13746
13747 return sals;
13748 }
13749
13750 /* The default re_set method, for typical hardware or software
13751 breakpoints. Reevaluate the breakpoint and recreate its
13752 locations. */
13753
13754 static void
13755 breakpoint_re_set_default (struct breakpoint *b)
13756 {
13757 struct program_space *filter_pspace = current_program_space;
13758 std::vector<symtab_and_line> expanded, expanded_end;
13759
13760 int found;
13761 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13762 filter_pspace, &found);
13763 if (found)
13764 expanded = std::move (sals);
13765
13766 if (b->location_range_end != NULL)
13767 {
13768 std::vector<symtab_and_line> sals_end
13769 = location_to_sals (b, b->location_range_end.get (),
13770 filter_pspace, &found);
13771 if (found)
13772 expanded_end = std::move (sals_end);
13773 }
13774
13775 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13776 }
13777
13778 /* Default method for creating SALs from an address string. It basically
13779 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13780
13781 static void
13782 create_sals_from_location_default (const struct event_location *location,
13783 struct linespec_result *canonical,
13784 enum bptype type_wanted)
13785 {
13786 parse_breakpoint_sals (location, canonical);
13787 }
13788
13789 /* Call create_breakpoints_sal for the given arguments. This is the default
13790 function for the `create_breakpoints_sal' method of
13791 breakpoint_ops. */
13792
13793 static void
13794 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13795 struct linespec_result *canonical,
13796 gdb::unique_xmalloc_ptr<char> cond_string,
13797 gdb::unique_xmalloc_ptr<char> extra_string,
13798 enum bptype type_wanted,
13799 enum bpdisp disposition,
13800 int thread,
13801 int task, int ignore_count,
13802 const struct breakpoint_ops *ops,
13803 int from_tty, int enabled,
13804 int internal, unsigned flags)
13805 {
13806 create_breakpoints_sal (gdbarch, canonical,
13807 std::move (cond_string),
13808 std::move (extra_string),
13809 type_wanted, disposition,
13810 thread, task, ignore_count, ops, from_tty,
13811 enabled, internal, flags);
13812 }
13813
13814 /* Decode the line represented by S by calling decode_line_full. This is the
13815 default function for the `decode_location' method of breakpoint_ops. */
13816
13817 static std::vector<symtab_and_line>
13818 decode_location_default (struct breakpoint *b,
13819 const struct event_location *location,
13820 struct program_space *search_pspace)
13821 {
13822 struct linespec_result canonical;
13823
13824 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13825 (struct symtab *) NULL, 0,
13826 &canonical, multiple_symbols_all,
13827 b->filter);
13828
13829 /* We should get 0 or 1 resulting SALs. */
13830 gdb_assert (canonical.lsals.size () < 2);
13831
13832 if (!canonical.lsals.empty ())
13833 {
13834 const linespec_sals &lsal = canonical.lsals[0];
13835 return std::move (lsal.sals);
13836 }
13837 return {};
13838 }
13839
13840 /* Reset a breakpoint. */
13841
13842 static void
13843 breakpoint_re_set_one (breakpoint *b)
13844 {
13845 input_radix = b->input_radix;
13846 set_language (b->language);
13847
13848 b->ops->re_set (b);
13849 }
13850
13851 /* Re-set breakpoint locations for the current program space.
13852 Locations bound to other program spaces are left untouched. */
13853
13854 void
13855 breakpoint_re_set (void)
13856 {
13857 struct breakpoint *b, *b_tmp;
13858
13859 {
13860 scoped_restore_current_language save_language;
13861 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13862 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13863
13864 /* breakpoint_re_set_one sets the current_language to the language
13865 of the breakpoint it is resetting (see prepare_re_set_context)
13866 before re-evaluating the breakpoint's location. This change can
13867 unfortunately get undone by accident if the language_mode is set
13868 to auto, and we either switch frames, or more likely in this context,
13869 we select the current frame.
13870
13871 We prevent this by temporarily turning the language_mode to
13872 language_mode_manual. We restore it once all breakpoints
13873 have been reset. */
13874 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13875 language_mode = language_mode_manual;
13876
13877 /* Note: we must not try to insert locations until after all
13878 breakpoints have been re-set. Otherwise, e.g., when re-setting
13879 breakpoint 1, we'd insert the locations of breakpoint 2, which
13880 hadn't been re-set yet, and thus may have stale locations. */
13881
13882 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13883 {
13884 TRY
13885 {
13886 breakpoint_re_set_one (b);
13887 }
13888 CATCH (ex, RETURN_MASK_ALL)
13889 {
13890 exception_fprintf (gdb_stderr, ex,
13891 "Error in re-setting breakpoint %d: ",
13892 b->number);
13893 }
13894 END_CATCH
13895 }
13896
13897 jit_breakpoint_re_set ();
13898 }
13899
13900 create_overlay_event_breakpoint ();
13901 create_longjmp_master_breakpoint ();
13902 create_std_terminate_master_breakpoint ();
13903 create_exception_master_breakpoint ();
13904
13905 /* Now we can insert. */
13906 update_global_location_list (UGLL_MAY_INSERT);
13907 }
13908 \f
13909 /* Reset the thread number of this breakpoint:
13910
13911 - If the breakpoint is for all threads, leave it as-is.
13912 - Else, reset it to the current thread for inferior_ptid. */
13913 void
13914 breakpoint_re_set_thread (struct breakpoint *b)
13915 {
13916 if (b->thread != -1)
13917 {
13918 b->thread = inferior_thread ()->global_num;
13919
13920 /* We're being called after following a fork. The new fork is
13921 selected as current, and unless this was a vfork will have a
13922 different program space from the original thread. Reset that
13923 as well. */
13924 b->loc->pspace = current_program_space;
13925 }
13926 }
13927
13928 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13929 If from_tty is nonzero, it prints a message to that effect,
13930 which ends with a period (no newline). */
13931
13932 void
13933 set_ignore_count (int bptnum, int count, int from_tty)
13934 {
13935 struct breakpoint *b;
13936
13937 if (count < 0)
13938 count = 0;
13939
13940 ALL_BREAKPOINTS (b)
13941 if (b->number == bptnum)
13942 {
13943 if (is_tracepoint (b))
13944 {
13945 if (from_tty && count != 0)
13946 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13947 bptnum);
13948 return;
13949 }
13950
13951 b->ignore_count = count;
13952 if (from_tty)
13953 {
13954 if (count == 0)
13955 printf_filtered (_("Will stop next time "
13956 "breakpoint %d is reached."),
13957 bptnum);
13958 else if (count == 1)
13959 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13960 bptnum);
13961 else
13962 printf_filtered (_("Will ignore next %d "
13963 "crossings of breakpoint %d."),
13964 count, bptnum);
13965 }
13966 gdb::observers::breakpoint_modified.notify (b);
13967 return;
13968 }
13969
13970 error (_("No breakpoint number %d."), bptnum);
13971 }
13972
13973 /* Command to set ignore-count of breakpoint N to COUNT. */
13974
13975 static void
13976 ignore_command (const char *args, int from_tty)
13977 {
13978 const char *p = args;
13979 int num;
13980
13981 if (p == 0)
13982 error_no_arg (_("a breakpoint number"));
13983
13984 num = get_number (&p);
13985 if (num == 0)
13986 error (_("bad breakpoint number: '%s'"), args);
13987 if (*p == 0)
13988 error (_("Second argument (specified ignore-count) is missing."));
13989
13990 set_ignore_count (num,
13991 longest_to_int (value_as_long (parse_and_eval (p))),
13992 from_tty);
13993 if (from_tty)
13994 printf_filtered ("\n");
13995 }
13996 \f
13997
13998 /* Call FUNCTION on each of the breakpoints with numbers in the range
13999 defined by BP_NUM_RANGE (an inclusive range). */
14000
14001 static void
14002 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14003 gdb::function_view<void (breakpoint *)> function)
14004 {
14005 if (bp_num_range.first == 0)
14006 {
14007 warning (_("bad breakpoint number at or near '%d'"),
14008 bp_num_range.first);
14009 }
14010 else
14011 {
14012 struct breakpoint *b, *tmp;
14013
14014 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14015 {
14016 bool match = false;
14017
14018 ALL_BREAKPOINTS_SAFE (b, tmp)
14019 if (b->number == i)
14020 {
14021 match = true;
14022 function (b);
14023 break;
14024 }
14025 if (!match)
14026 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14027 }
14028 }
14029 }
14030
14031 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14032 ARGS. */
14033
14034 static void
14035 map_breakpoint_numbers (const char *args,
14036 gdb::function_view<void (breakpoint *)> function)
14037 {
14038 if (args == NULL || *args == '\0')
14039 error_no_arg (_("one or more breakpoint numbers"));
14040
14041 number_or_range_parser parser (args);
14042
14043 while (!parser.finished ())
14044 {
14045 int num = parser.get_number ();
14046 map_breakpoint_number_range (std::make_pair (num, num), function);
14047 }
14048 }
14049
14050 /* Return the breakpoint location structure corresponding to the
14051 BP_NUM and LOC_NUM values. */
14052
14053 static struct bp_location *
14054 find_location_by_number (int bp_num, int loc_num)
14055 {
14056 struct breakpoint *b;
14057
14058 ALL_BREAKPOINTS (b)
14059 if (b->number == bp_num)
14060 {
14061 break;
14062 }
14063
14064 if (!b || b->number != bp_num)
14065 error (_("Bad breakpoint number '%d'"), bp_num);
14066
14067 if (loc_num == 0)
14068 error (_("Bad breakpoint location number '%d'"), loc_num);
14069
14070 int n = 0;
14071 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14072 if (++n == loc_num)
14073 return loc;
14074
14075 error (_("Bad breakpoint location number '%d'"), loc_num);
14076 }
14077
14078 /* Modes of operation for extract_bp_num. */
14079 enum class extract_bp_kind
14080 {
14081 /* Extracting a breakpoint number. */
14082 bp,
14083
14084 /* Extracting a location number. */
14085 loc,
14086 };
14087
14088 /* Extract a breakpoint or location number (as determined by KIND)
14089 from the string starting at START. TRAILER is a character which
14090 can be found after the number. If you don't want a trailer, use
14091 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14092 string. This always returns a positive integer. */
14093
14094 static int
14095 extract_bp_num (extract_bp_kind kind, const char *start,
14096 int trailer, const char **end_out = NULL)
14097 {
14098 const char *end = start;
14099 int num = get_number_trailer (&end, trailer);
14100 if (num < 0)
14101 error (kind == extract_bp_kind::bp
14102 ? _("Negative breakpoint number '%.*s'")
14103 : _("Negative breakpoint location number '%.*s'"),
14104 int (end - start), start);
14105 if (num == 0)
14106 error (kind == extract_bp_kind::bp
14107 ? _("Bad breakpoint number '%.*s'")
14108 : _("Bad breakpoint location number '%.*s'"),
14109 int (end - start), start);
14110
14111 if (end_out != NULL)
14112 *end_out = end;
14113 return num;
14114 }
14115
14116 /* Extract a breakpoint or location range (as determined by KIND) in
14117 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14118 representing the (inclusive) range. The returned pair's elements
14119 are always positive integers. */
14120
14121 static std::pair<int, int>
14122 extract_bp_or_bp_range (extract_bp_kind kind,
14123 const std::string &arg,
14124 std::string::size_type arg_offset)
14125 {
14126 std::pair<int, int> range;
14127 const char *bp_loc = &arg[arg_offset];
14128 std::string::size_type dash = arg.find ('-', arg_offset);
14129 if (dash != std::string::npos)
14130 {
14131 /* bp_loc is a range (x-z). */
14132 if (arg.length () == dash + 1)
14133 error (kind == extract_bp_kind::bp
14134 ? _("Bad breakpoint number at or near: '%s'")
14135 : _("Bad breakpoint location number at or near: '%s'"),
14136 bp_loc);
14137
14138 const char *end;
14139 const char *start_first = bp_loc;
14140 const char *start_second = &arg[dash + 1];
14141 range.first = extract_bp_num (kind, start_first, '-');
14142 range.second = extract_bp_num (kind, start_second, '\0', &end);
14143
14144 if (range.first > range.second)
14145 error (kind == extract_bp_kind::bp
14146 ? _("Inverted breakpoint range at '%.*s'")
14147 : _("Inverted breakpoint location range at '%.*s'"),
14148 int (end - start_first), start_first);
14149 }
14150 else
14151 {
14152 /* bp_loc is a single value. */
14153 range.first = extract_bp_num (kind, bp_loc, '\0');
14154 range.second = range.first;
14155 }
14156 return range;
14157 }
14158
14159 /* Extract the breakpoint/location range specified by ARG. Returns
14160 the breakpoint range in BP_NUM_RANGE, and the location range in
14161 BP_LOC_RANGE.
14162
14163 ARG may be in any of the following forms:
14164
14165 x where 'x' is a breakpoint number.
14166 x-y where 'x' and 'y' specify a breakpoint numbers range.
14167 x.y where 'x' is a breakpoint number and 'y' a location number.
14168 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14169 location number range.
14170 */
14171
14172 static void
14173 extract_bp_number_and_location (const std::string &arg,
14174 std::pair<int, int> &bp_num_range,
14175 std::pair<int, int> &bp_loc_range)
14176 {
14177 std::string::size_type dot = arg.find ('.');
14178
14179 if (dot != std::string::npos)
14180 {
14181 /* Handle 'x.y' and 'x.y-z' cases. */
14182
14183 if (arg.length () == dot + 1 || dot == 0)
14184 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14185
14186 bp_num_range.first
14187 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14188 bp_num_range.second = bp_num_range.first;
14189
14190 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14191 arg, dot + 1);
14192 }
14193 else
14194 {
14195 /* Handle x and x-y cases. */
14196
14197 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14198 bp_loc_range.first = 0;
14199 bp_loc_range.second = 0;
14200 }
14201 }
14202
14203 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14204 specifies whether to enable or disable. */
14205
14206 static void
14207 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14208 {
14209 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14210 if (loc != NULL)
14211 {
14212 if (loc->enabled != enable)
14213 {
14214 loc->enabled = enable;
14215 mark_breakpoint_location_modified (loc);
14216 }
14217 if (target_supports_enable_disable_tracepoint ()
14218 && current_trace_status ()->running && loc->owner
14219 && is_tracepoint (loc->owner))
14220 target_disable_tracepoint (loc);
14221 }
14222 update_global_location_list (UGLL_DONT_INSERT);
14223 }
14224
14225 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14226 number of the breakpoint, and BP_LOC_RANGE specifies the
14227 (inclusive) range of location numbers of that breakpoint to
14228 enable/disable. ENABLE specifies whether to enable or disable the
14229 location. */
14230
14231 static void
14232 enable_disable_breakpoint_location_range (int bp_num,
14233 std::pair<int, int> &bp_loc_range,
14234 bool enable)
14235 {
14236 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14237 enable_disable_bp_num_loc (bp_num, i, enable);
14238 }
14239
14240 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14241 If from_tty is nonzero, it prints a message to that effect,
14242 which ends with a period (no newline). */
14243
14244 void
14245 disable_breakpoint (struct breakpoint *bpt)
14246 {
14247 /* Never disable a watchpoint scope breakpoint; we want to
14248 hit them when we leave scope so we can delete both the
14249 watchpoint and its scope breakpoint at that time. */
14250 if (bpt->type == bp_watchpoint_scope)
14251 return;
14252
14253 bpt->enable_state = bp_disabled;
14254
14255 /* Mark breakpoint locations modified. */
14256 mark_breakpoint_modified (bpt);
14257
14258 if (target_supports_enable_disable_tracepoint ()
14259 && current_trace_status ()->running && is_tracepoint (bpt))
14260 {
14261 struct bp_location *location;
14262
14263 for (location = bpt->loc; location; location = location->next)
14264 target_disable_tracepoint (location);
14265 }
14266
14267 update_global_location_list (UGLL_DONT_INSERT);
14268
14269 gdb::observers::breakpoint_modified.notify (bpt);
14270 }
14271
14272 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14273 specified in ARGS. ARGS may be in any of the formats handled by
14274 extract_bp_number_and_location. ENABLE specifies whether to enable
14275 or disable the breakpoints/locations. */
14276
14277 static void
14278 enable_disable_command (const char *args, int from_tty, bool enable)
14279 {
14280 if (args == 0)
14281 {
14282 struct breakpoint *bpt;
14283
14284 ALL_BREAKPOINTS (bpt)
14285 if (user_breakpoint_p (bpt))
14286 {
14287 if (enable)
14288 enable_breakpoint (bpt);
14289 else
14290 disable_breakpoint (bpt);
14291 }
14292 }
14293 else
14294 {
14295 std::string num = extract_arg (&args);
14296
14297 while (!num.empty ())
14298 {
14299 std::pair<int, int> bp_num_range, bp_loc_range;
14300
14301 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14302
14303 if (bp_loc_range.first == bp_loc_range.second
14304 && bp_loc_range.first == 0)
14305 {
14306 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14307 map_breakpoint_number_range (bp_num_range,
14308 enable
14309 ? enable_breakpoint
14310 : disable_breakpoint);
14311 }
14312 else
14313 {
14314 /* Handle breakpoint ids with formats 'x.y' or
14315 'x.y-z'. */
14316 enable_disable_breakpoint_location_range
14317 (bp_num_range.first, bp_loc_range, enable);
14318 }
14319 num = extract_arg (&args);
14320 }
14321 }
14322 }
14323
14324 /* The disable command disables the specified breakpoints/locations
14325 (or all defined breakpoints) so they're no longer effective in
14326 stopping the inferior. ARGS may be in any of the forms defined in
14327 extract_bp_number_and_location. */
14328
14329 static void
14330 disable_command (const char *args, int from_tty)
14331 {
14332 enable_disable_command (args, from_tty, false);
14333 }
14334
14335 static void
14336 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14337 int count)
14338 {
14339 int target_resources_ok;
14340
14341 if (bpt->type == bp_hardware_breakpoint)
14342 {
14343 int i;
14344 i = hw_breakpoint_used_count ();
14345 target_resources_ok =
14346 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14347 i + 1, 0);
14348 if (target_resources_ok == 0)
14349 error (_("No hardware breakpoint support in the target."));
14350 else if (target_resources_ok < 0)
14351 error (_("Hardware breakpoints used exceeds limit."));
14352 }
14353
14354 if (is_watchpoint (bpt))
14355 {
14356 /* Initialize it just to avoid a GCC false warning. */
14357 enum enable_state orig_enable_state = bp_disabled;
14358
14359 TRY
14360 {
14361 struct watchpoint *w = (struct watchpoint *) bpt;
14362
14363 orig_enable_state = bpt->enable_state;
14364 bpt->enable_state = bp_enabled;
14365 update_watchpoint (w, 1 /* reparse */);
14366 }
14367 CATCH (e, RETURN_MASK_ALL)
14368 {
14369 bpt->enable_state = orig_enable_state;
14370 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14371 bpt->number);
14372 return;
14373 }
14374 END_CATCH
14375 }
14376
14377 bpt->enable_state = bp_enabled;
14378
14379 /* Mark breakpoint locations modified. */
14380 mark_breakpoint_modified (bpt);
14381
14382 if (target_supports_enable_disable_tracepoint ()
14383 && current_trace_status ()->running && is_tracepoint (bpt))
14384 {
14385 struct bp_location *location;
14386
14387 for (location = bpt->loc; location; location = location->next)
14388 target_enable_tracepoint (location);
14389 }
14390
14391 bpt->disposition = disposition;
14392 bpt->enable_count = count;
14393 update_global_location_list (UGLL_MAY_INSERT);
14394
14395 gdb::observers::breakpoint_modified.notify (bpt);
14396 }
14397
14398
14399 void
14400 enable_breakpoint (struct breakpoint *bpt)
14401 {
14402 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14403 }
14404
14405 /* The enable command enables the specified breakpoints/locations (or
14406 all defined breakpoints) so they once again become (or continue to
14407 be) effective in stopping the inferior. ARGS may be in any of the
14408 forms defined in extract_bp_number_and_location. */
14409
14410 static void
14411 enable_command (const char *args, int from_tty)
14412 {
14413 enable_disable_command (args, from_tty, true);
14414 }
14415
14416 static void
14417 enable_once_command (const char *args, int from_tty)
14418 {
14419 map_breakpoint_numbers
14420 (args, [&] (breakpoint *b)
14421 {
14422 iterate_over_related_breakpoints
14423 (b, [&] (breakpoint *bpt)
14424 {
14425 enable_breakpoint_disp (bpt, disp_disable, 1);
14426 });
14427 });
14428 }
14429
14430 static void
14431 enable_count_command (const char *args, int from_tty)
14432 {
14433 int count;
14434
14435 if (args == NULL)
14436 error_no_arg (_("hit count"));
14437
14438 count = get_number (&args);
14439
14440 map_breakpoint_numbers
14441 (args, [&] (breakpoint *b)
14442 {
14443 iterate_over_related_breakpoints
14444 (b, [&] (breakpoint *bpt)
14445 {
14446 enable_breakpoint_disp (bpt, disp_disable, count);
14447 });
14448 });
14449 }
14450
14451 static void
14452 enable_delete_command (const char *args, int from_tty)
14453 {
14454 map_breakpoint_numbers
14455 (args, [&] (breakpoint *b)
14456 {
14457 iterate_over_related_breakpoints
14458 (b, [&] (breakpoint *bpt)
14459 {
14460 enable_breakpoint_disp (bpt, disp_del, 1);
14461 });
14462 });
14463 }
14464 \f
14465 static void
14466 set_breakpoint_cmd (const char *args, int from_tty)
14467 {
14468 }
14469
14470 static void
14471 show_breakpoint_cmd (const char *args, int from_tty)
14472 {
14473 }
14474
14475 /* Invalidate last known value of any hardware watchpoint if
14476 the memory which that value represents has been written to by
14477 GDB itself. */
14478
14479 static void
14480 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14481 CORE_ADDR addr, ssize_t len,
14482 const bfd_byte *data)
14483 {
14484 struct breakpoint *bp;
14485
14486 ALL_BREAKPOINTS (bp)
14487 if (bp->enable_state == bp_enabled
14488 && bp->type == bp_hardware_watchpoint)
14489 {
14490 struct watchpoint *wp = (struct watchpoint *) bp;
14491
14492 if (wp->val_valid && wp->val != nullptr)
14493 {
14494 struct bp_location *loc;
14495
14496 for (loc = bp->loc; loc != NULL; loc = loc->next)
14497 if (loc->loc_type == bp_loc_hardware_watchpoint
14498 && loc->address + loc->length > addr
14499 && addr + len > loc->address)
14500 {
14501 wp->val = NULL;
14502 wp->val_valid = 0;
14503 }
14504 }
14505 }
14506 }
14507
14508 /* Create and insert a breakpoint for software single step. */
14509
14510 void
14511 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14512 const address_space *aspace,
14513 CORE_ADDR next_pc)
14514 {
14515 struct thread_info *tp = inferior_thread ();
14516 struct symtab_and_line sal;
14517 CORE_ADDR pc = next_pc;
14518
14519 if (tp->control.single_step_breakpoints == NULL)
14520 {
14521 tp->control.single_step_breakpoints
14522 = new_single_step_breakpoint (tp->global_num, gdbarch);
14523 }
14524
14525 sal = find_pc_line (pc, 0);
14526 sal.pc = pc;
14527 sal.section = find_pc_overlay (pc);
14528 sal.explicit_pc = 1;
14529 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14530
14531 update_global_location_list (UGLL_INSERT);
14532 }
14533
14534 /* Insert single step breakpoints according to the current state. */
14535
14536 int
14537 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14538 {
14539 struct regcache *regcache = get_current_regcache ();
14540 std::vector<CORE_ADDR> next_pcs;
14541
14542 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14543
14544 if (!next_pcs.empty ())
14545 {
14546 struct frame_info *frame = get_current_frame ();
14547 const address_space *aspace = get_frame_address_space (frame);
14548
14549 for (CORE_ADDR pc : next_pcs)
14550 insert_single_step_breakpoint (gdbarch, aspace, pc);
14551
14552 return 1;
14553 }
14554 else
14555 return 0;
14556 }
14557
14558 /* See breakpoint.h. */
14559
14560 int
14561 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14562 const address_space *aspace,
14563 CORE_ADDR pc)
14564 {
14565 struct bp_location *loc;
14566
14567 for (loc = bp->loc; loc != NULL; loc = loc->next)
14568 if (loc->inserted
14569 && breakpoint_location_address_match (loc, aspace, pc))
14570 return 1;
14571
14572 return 0;
14573 }
14574
14575 /* Check whether a software single-step breakpoint is inserted at
14576 PC. */
14577
14578 int
14579 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14580 CORE_ADDR pc)
14581 {
14582 struct breakpoint *bpt;
14583
14584 ALL_BREAKPOINTS (bpt)
14585 {
14586 if (bpt->type == bp_single_step
14587 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14588 return 1;
14589 }
14590 return 0;
14591 }
14592
14593 /* Tracepoint-specific operations. */
14594
14595 /* Set tracepoint count to NUM. */
14596 static void
14597 set_tracepoint_count (int num)
14598 {
14599 tracepoint_count = num;
14600 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14601 }
14602
14603 static void
14604 trace_command (const char *arg, int from_tty)
14605 {
14606 struct breakpoint_ops *ops;
14607
14608 event_location_up location = string_to_event_location (&arg,
14609 current_language);
14610 if (location != NULL
14611 && event_location_type (location.get ()) == PROBE_LOCATION)
14612 ops = &tracepoint_probe_breakpoint_ops;
14613 else
14614 ops = &tracepoint_breakpoint_ops;
14615
14616 create_breakpoint (get_current_arch (),
14617 location.get (),
14618 NULL, 0, arg, 1 /* parse arg */,
14619 0 /* tempflag */,
14620 bp_tracepoint /* type_wanted */,
14621 0 /* Ignore count */,
14622 pending_break_support,
14623 ops,
14624 from_tty,
14625 1 /* enabled */,
14626 0 /* internal */, 0);
14627 }
14628
14629 static void
14630 ftrace_command (const char *arg, int from_tty)
14631 {
14632 event_location_up location = string_to_event_location (&arg,
14633 current_language);
14634 create_breakpoint (get_current_arch (),
14635 location.get (),
14636 NULL, 0, arg, 1 /* parse arg */,
14637 0 /* tempflag */,
14638 bp_fast_tracepoint /* type_wanted */,
14639 0 /* Ignore count */,
14640 pending_break_support,
14641 &tracepoint_breakpoint_ops,
14642 from_tty,
14643 1 /* enabled */,
14644 0 /* internal */, 0);
14645 }
14646
14647 /* strace command implementation. Creates a static tracepoint. */
14648
14649 static void
14650 strace_command (const char *arg, int from_tty)
14651 {
14652 struct breakpoint_ops *ops;
14653 event_location_up location;
14654
14655 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14656 or with a normal static tracepoint. */
14657 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14658 {
14659 ops = &strace_marker_breakpoint_ops;
14660 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14661 }
14662 else
14663 {
14664 ops = &tracepoint_breakpoint_ops;
14665 location = string_to_event_location (&arg, current_language);
14666 }
14667
14668 create_breakpoint (get_current_arch (),
14669 location.get (),
14670 NULL, 0, arg, 1 /* parse arg */,
14671 0 /* tempflag */,
14672 bp_static_tracepoint /* type_wanted */,
14673 0 /* Ignore count */,
14674 pending_break_support,
14675 ops,
14676 from_tty,
14677 1 /* enabled */,
14678 0 /* internal */, 0);
14679 }
14680
14681 /* Set up a fake reader function that gets command lines from a linked
14682 list that was acquired during tracepoint uploading. */
14683
14684 static struct uploaded_tp *this_utp;
14685 static int next_cmd;
14686
14687 static char *
14688 read_uploaded_action (void)
14689 {
14690 char *rslt = nullptr;
14691
14692 if (next_cmd < this_utp->cmd_strings.size ())
14693 {
14694 rslt = this_utp->cmd_strings[next_cmd];
14695 next_cmd++;
14696 }
14697
14698 return rslt;
14699 }
14700
14701 /* Given information about a tracepoint as recorded on a target (which
14702 can be either a live system or a trace file), attempt to create an
14703 equivalent GDB tracepoint. This is not a reliable process, since
14704 the target does not necessarily have all the information used when
14705 the tracepoint was originally defined. */
14706
14707 struct tracepoint *
14708 create_tracepoint_from_upload (struct uploaded_tp *utp)
14709 {
14710 const char *addr_str;
14711 char small_buf[100];
14712 struct tracepoint *tp;
14713
14714 if (utp->at_string)
14715 addr_str = utp->at_string;
14716 else
14717 {
14718 /* In the absence of a source location, fall back to raw
14719 address. Since there is no way to confirm that the address
14720 means the same thing as when the trace was started, warn the
14721 user. */
14722 warning (_("Uploaded tracepoint %d has no "
14723 "source location, using raw address"),
14724 utp->number);
14725 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14726 addr_str = small_buf;
14727 }
14728
14729 /* There's not much we can do with a sequence of bytecodes. */
14730 if (utp->cond && !utp->cond_string)
14731 warning (_("Uploaded tracepoint %d condition "
14732 "has no source form, ignoring it"),
14733 utp->number);
14734
14735 event_location_up location = string_to_event_location (&addr_str,
14736 current_language);
14737 if (!create_breakpoint (get_current_arch (),
14738 location.get (),
14739 utp->cond_string, -1, addr_str,
14740 0 /* parse cond/thread */,
14741 0 /* tempflag */,
14742 utp->type /* type_wanted */,
14743 0 /* Ignore count */,
14744 pending_break_support,
14745 &tracepoint_breakpoint_ops,
14746 0 /* from_tty */,
14747 utp->enabled /* enabled */,
14748 0 /* internal */,
14749 CREATE_BREAKPOINT_FLAGS_INSERTED))
14750 return NULL;
14751
14752 /* Get the tracepoint we just created. */
14753 tp = get_tracepoint (tracepoint_count);
14754 gdb_assert (tp != NULL);
14755
14756 if (utp->pass > 0)
14757 {
14758 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14759 tp->number);
14760
14761 trace_pass_command (small_buf, 0);
14762 }
14763
14764 /* If we have uploaded versions of the original commands, set up a
14765 special-purpose "reader" function and call the usual command line
14766 reader, then pass the result to the breakpoint command-setting
14767 function. */
14768 if (!utp->cmd_strings.empty ())
14769 {
14770 counted_command_line cmd_list;
14771
14772 this_utp = utp;
14773 next_cmd = 0;
14774
14775 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14776
14777 breakpoint_set_commands (tp, std::move (cmd_list));
14778 }
14779 else if (!utp->actions.empty ()
14780 || !utp->step_actions.empty ())
14781 warning (_("Uploaded tracepoint %d actions "
14782 "have no source form, ignoring them"),
14783 utp->number);
14784
14785 /* Copy any status information that might be available. */
14786 tp->hit_count = utp->hit_count;
14787 tp->traceframe_usage = utp->traceframe_usage;
14788
14789 return tp;
14790 }
14791
14792 /* Print information on tracepoint number TPNUM_EXP, or all if
14793 omitted. */
14794
14795 static void
14796 info_tracepoints_command (const char *args, int from_tty)
14797 {
14798 struct ui_out *uiout = current_uiout;
14799 int num_printed;
14800
14801 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14802
14803 if (num_printed == 0)
14804 {
14805 if (args == NULL || *args == '\0')
14806 uiout->message ("No tracepoints.\n");
14807 else
14808 uiout->message ("No tracepoint matching '%s'.\n", args);
14809 }
14810
14811 default_collect_info ();
14812 }
14813
14814 /* The 'enable trace' command enables tracepoints.
14815 Not supported by all targets. */
14816 static void
14817 enable_trace_command (const char *args, int from_tty)
14818 {
14819 enable_command (args, from_tty);
14820 }
14821
14822 /* The 'disable trace' command disables tracepoints.
14823 Not supported by all targets. */
14824 static void
14825 disable_trace_command (const char *args, int from_tty)
14826 {
14827 disable_command (args, from_tty);
14828 }
14829
14830 /* Remove a tracepoint (or all if no argument). */
14831 static void
14832 delete_trace_command (const char *arg, int from_tty)
14833 {
14834 struct breakpoint *b, *b_tmp;
14835
14836 dont_repeat ();
14837
14838 if (arg == 0)
14839 {
14840 int breaks_to_delete = 0;
14841
14842 /* Delete all breakpoints if no argument.
14843 Do not delete internal or call-dummy breakpoints, these
14844 have to be deleted with an explicit breakpoint number
14845 argument. */
14846 ALL_TRACEPOINTS (b)
14847 if (is_tracepoint (b) && user_breakpoint_p (b))
14848 {
14849 breaks_to_delete = 1;
14850 break;
14851 }
14852
14853 /* Ask user only if there are some breakpoints to delete. */
14854 if (!from_tty
14855 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14856 {
14857 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14858 if (is_tracepoint (b) && user_breakpoint_p (b))
14859 delete_breakpoint (b);
14860 }
14861 }
14862 else
14863 map_breakpoint_numbers
14864 (arg, [&] (breakpoint *b)
14865 {
14866 iterate_over_related_breakpoints (b, delete_breakpoint);
14867 });
14868 }
14869
14870 /* Helper function for trace_pass_command. */
14871
14872 static void
14873 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14874 {
14875 tp->pass_count = count;
14876 gdb::observers::breakpoint_modified.notify (tp);
14877 if (from_tty)
14878 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14879 tp->number, count);
14880 }
14881
14882 /* Set passcount for tracepoint.
14883
14884 First command argument is passcount, second is tracepoint number.
14885 If tracepoint number omitted, apply to most recently defined.
14886 Also accepts special argument "all". */
14887
14888 static void
14889 trace_pass_command (const char *args, int from_tty)
14890 {
14891 struct tracepoint *t1;
14892 ULONGEST count;
14893
14894 if (args == 0 || *args == 0)
14895 error (_("passcount command requires an "
14896 "argument (count + optional TP num)"));
14897
14898 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14899
14900 args = skip_spaces (args);
14901 if (*args && strncasecmp (args, "all", 3) == 0)
14902 {
14903 struct breakpoint *b;
14904
14905 args += 3; /* Skip special argument "all". */
14906 if (*args)
14907 error (_("Junk at end of arguments."));
14908
14909 ALL_TRACEPOINTS (b)
14910 {
14911 t1 = (struct tracepoint *) b;
14912 trace_pass_set_count (t1, count, from_tty);
14913 }
14914 }
14915 else if (*args == '\0')
14916 {
14917 t1 = get_tracepoint_by_number (&args, NULL);
14918 if (t1)
14919 trace_pass_set_count (t1, count, from_tty);
14920 }
14921 else
14922 {
14923 number_or_range_parser parser (args);
14924 while (!parser.finished ())
14925 {
14926 t1 = get_tracepoint_by_number (&args, &parser);
14927 if (t1)
14928 trace_pass_set_count (t1, count, from_tty);
14929 }
14930 }
14931 }
14932
14933 struct tracepoint *
14934 get_tracepoint (int num)
14935 {
14936 struct breakpoint *t;
14937
14938 ALL_TRACEPOINTS (t)
14939 if (t->number == num)
14940 return (struct tracepoint *) t;
14941
14942 return NULL;
14943 }
14944
14945 /* Find the tracepoint with the given target-side number (which may be
14946 different from the tracepoint number after disconnecting and
14947 reconnecting). */
14948
14949 struct tracepoint *
14950 get_tracepoint_by_number_on_target (int num)
14951 {
14952 struct breakpoint *b;
14953
14954 ALL_TRACEPOINTS (b)
14955 {
14956 struct tracepoint *t = (struct tracepoint *) b;
14957
14958 if (t->number_on_target == num)
14959 return t;
14960 }
14961
14962 return NULL;
14963 }
14964
14965 /* Utility: parse a tracepoint number and look it up in the list.
14966 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14967 If the argument is missing, the most recent tracepoint
14968 (tracepoint_count) is returned. */
14969
14970 struct tracepoint *
14971 get_tracepoint_by_number (const char **arg,
14972 number_or_range_parser *parser)
14973 {
14974 struct breakpoint *t;
14975 int tpnum;
14976 const char *instring = arg == NULL ? NULL : *arg;
14977
14978 if (parser != NULL)
14979 {
14980 gdb_assert (!parser->finished ());
14981 tpnum = parser->get_number ();
14982 }
14983 else if (arg == NULL || *arg == NULL || ! **arg)
14984 tpnum = tracepoint_count;
14985 else
14986 tpnum = get_number (arg);
14987
14988 if (tpnum <= 0)
14989 {
14990 if (instring && *instring)
14991 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14992 instring);
14993 else
14994 printf_filtered (_("No previous tracepoint\n"));
14995 return NULL;
14996 }
14997
14998 ALL_TRACEPOINTS (t)
14999 if (t->number == tpnum)
15000 {
15001 return (struct tracepoint *) t;
15002 }
15003
15004 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15005 return NULL;
15006 }
15007
15008 void
15009 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15010 {
15011 if (b->thread != -1)
15012 fprintf_unfiltered (fp, " thread %d", b->thread);
15013
15014 if (b->task != 0)
15015 fprintf_unfiltered (fp, " task %d", b->task);
15016
15017 fprintf_unfiltered (fp, "\n");
15018 }
15019
15020 /* Save information on user settable breakpoints (watchpoints, etc) to
15021 a new script file named FILENAME. If FILTER is non-NULL, call it
15022 on each breakpoint and only include the ones for which it returns
15023 non-zero. */
15024
15025 static void
15026 save_breakpoints (const char *filename, int from_tty,
15027 int (*filter) (const struct breakpoint *))
15028 {
15029 struct breakpoint *tp;
15030 int any = 0;
15031 int extra_trace_bits = 0;
15032
15033 if (filename == 0 || *filename == 0)
15034 error (_("Argument required (file name in which to save)"));
15035
15036 /* See if we have anything to save. */
15037 ALL_BREAKPOINTS (tp)
15038 {
15039 /* Skip internal and momentary breakpoints. */
15040 if (!user_breakpoint_p (tp))
15041 continue;
15042
15043 /* If we have a filter, only save the breakpoints it accepts. */
15044 if (filter && !filter (tp))
15045 continue;
15046
15047 any = 1;
15048
15049 if (is_tracepoint (tp))
15050 {
15051 extra_trace_bits = 1;
15052
15053 /* We can stop searching. */
15054 break;
15055 }
15056 }
15057
15058 if (!any)
15059 {
15060 warning (_("Nothing to save."));
15061 return;
15062 }
15063
15064 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15065
15066 stdio_file fp;
15067
15068 if (!fp.open (expanded_filename.get (), "w"))
15069 error (_("Unable to open file '%s' for saving (%s)"),
15070 expanded_filename.get (), safe_strerror (errno));
15071
15072 if (extra_trace_bits)
15073 save_trace_state_variables (&fp);
15074
15075 ALL_BREAKPOINTS (tp)
15076 {
15077 /* Skip internal and momentary breakpoints. */
15078 if (!user_breakpoint_p (tp))
15079 continue;
15080
15081 /* If we have a filter, only save the breakpoints it accepts. */
15082 if (filter && !filter (tp))
15083 continue;
15084
15085 tp->ops->print_recreate (tp, &fp);
15086
15087 /* Note, we can't rely on tp->number for anything, as we can't
15088 assume the recreated breakpoint numbers will match. Use $bpnum
15089 instead. */
15090
15091 if (tp->cond_string)
15092 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15093
15094 if (tp->ignore_count)
15095 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15096
15097 if (tp->type != bp_dprintf && tp->commands)
15098 {
15099 fp.puts (" commands\n");
15100
15101 current_uiout->redirect (&fp);
15102 TRY
15103 {
15104 print_command_lines (current_uiout, tp->commands.get (), 2);
15105 }
15106 CATCH (ex, RETURN_MASK_ALL)
15107 {
15108 current_uiout->redirect (NULL);
15109 throw_exception (ex);
15110 }
15111 END_CATCH
15112
15113 current_uiout->redirect (NULL);
15114 fp.puts (" end\n");
15115 }
15116
15117 if (tp->enable_state == bp_disabled)
15118 fp.puts ("disable $bpnum\n");
15119
15120 /* If this is a multi-location breakpoint, check if the locations
15121 should be individually disabled. Watchpoint locations are
15122 special, and not user visible. */
15123 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15124 {
15125 struct bp_location *loc;
15126 int n = 1;
15127
15128 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15129 if (!loc->enabled)
15130 fp.printf ("disable $bpnum.%d\n", n);
15131 }
15132 }
15133
15134 if (extra_trace_bits && *default_collect)
15135 fp.printf ("set default-collect %s\n", default_collect);
15136
15137 if (from_tty)
15138 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15139 }
15140
15141 /* The `save breakpoints' command. */
15142
15143 static void
15144 save_breakpoints_command (const char *args, int from_tty)
15145 {
15146 save_breakpoints (args, from_tty, NULL);
15147 }
15148
15149 /* The `save tracepoints' command. */
15150
15151 static void
15152 save_tracepoints_command (const char *args, int from_tty)
15153 {
15154 save_breakpoints (args, from_tty, is_tracepoint);
15155 }
15156
15157 /* Create a vector of all tracepoints. */
15158
15159 std::vector<breakpoint *>
15160 all_tracepoints (void)
15161 {
15162 std::vector<breakpoint *> tp_vec;
15163 struct breakpoint *tp;
15164
15165 ALL_TRACEPOINTS (tp)
15166 {
15167 tp_vec.push_back (tp);
15168 }
15169
15170 return tp_vec;
15171 }
15172
15173 \f
15174 /* This help string is used to consolidate all the help string for specifying
15175 locations used by several commands. */
15176
15177 #define LOCATION_HELP_STRING \
15178 "Linespecs are colon-separated lists of location parameters, such as\n\
15179 source filename, function name, label name, and line number.\n\
15180 Example: To specify the start of a label named \"the_top\" in the\n\
15181 function \"fact\" in the file \"factorial.c\", use\n\
15182 \"factorial.c:fact:the_top\".\n\
15183 \n\
15184 Address locations begin with \"*\" and specify an exact address in the\n\
15185 program. Example: To specify the fourth byte past the start function\n\
15186 \"main\", use \"*main + 4\".\n\
15187 \n\
15188 Explicit locations are similar to linespecs but use an option/argument\n\
15189 syntax to specify location parameters.\n\
15190 Example: To specify the start of the label named \"the_top\" in the\n\
15191 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15192 -function fact -label the_top\".\n\
15193 \n\
15194 By default, a specified function is matched against the program's\n\
15195 functions in all scopes. For C++, this means in all namespaces and\n\
15196 classes. For Ada, this means in all packages. E.g., in C++,\n\
15197 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15198 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15199 specified name as a complete fully-qualified name instead.\n"
15200
15201 /* This help string is used for the break, hbreak, tbreak and thbreak
15202 commands. It is defined as a macro to prevent duplication.
15203 COMMAND should be a string constant containing the name of the
15204 command. */
15205
15206 #define BREAK_ARGS_HELP(command) \
15207 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15208 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15209 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15210 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15211 `-probe-dtrace' (for a DTrace probe).\n\
15212 LOCATION may be a linespec, address, or explicit location as described\n\
15213 below.\n\
15214 \n\
15215 With no LOCATION, uses current execution address of the selected\n\
15216 stack frame. This is useful for breaking on return to a stack frame.\n\
15217 \n\
15218 THREADNUM is the number from \"info threads\".\n\
15219 CONDITION is a boolean expression.\n\
15220 \n" LOCATION_HELP_STRING "\n\
15221 Multiple breakpoints at one place are permitted, and useful if their\n\
15222 conditions are different.\n\
15223 \n\
15224 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15225
15226 /* List of subcommands for "catch". */
15227 static struct cmd_list_element *catch_cmdlist;
15228
15229 /* List of subcommands for "tcatch". */
15230 static struct cmd_list_element *tcatch_cmdlist;
15231
15232 void
15233 add_catch_command (const char *name, const char *docstring,
15234 cmd_const_sfunc_ftype *sfunc,
15235 completer_ftype *completer,
15236 void *user_data_catch,
15237 void *user_data_tcatch)
15238 {
15239 struct cmd_list_element *command;
15240
15241 command = add_cmd (name, class_breakpoint, docstring,
15242 &catch_cmdlist);
15243 set_cmd_sfunc (command, sfunc);
15244 set_cmd_context (command, user_data_catch);
15245 set_cmd_completer (command, completer);
15246
15247 command = add_cmd (name, class_breakpoint, docstring,
15248 &tcatch_cmdlist);
15249 set_cmd_sfunc (command, sfunc);
15250 set_cmd_context (command, user_data_tcatch);
15251 set_cmd_completer (command, completer);
15252 }
15253
15254 static void
15255 save_command (const char *arg, int from_tty)
15256 {
15257 printf_unfiltered (_("\"save\" must be followed by "
15258 "the name of a save subcommand.\n"));
15259 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15260 }
15261
15262 struct breakpoint *
15263 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15264 void *data)
15265 {
15266 struct breakpoint *b, *b_tmp;
15267
15268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15269 {
15270 if ((*callback) (b, data))
15271 return b;
15272 }
15273
15274 return NULL;
15275 }
15276
15277 /* Zero if any of the breakpoint's locations could be a location where
15278 functions have been inlined, nonzero otherwise. */
15279
15280 static int
15281 is_non_inline_function (struct breakpoint *b)
15282 {
15283 /* The shared library event breakpoint is set on the address of a
15284 non-inline function. */
15285 if (b->type == bp_shlib_event)
15286 return 1;
15287
15288 return 0;
15289 }
15290
15291 /* Nonzero if the specified PC cannot be a location where functions
15292 have been inlined. */
15293
15294 int
15295 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15296 const struct target_waitstatus *ws)
15297 {
15298 struct breakpoint *b;
15299 struct bp_location *bl;
15300
15301 ALL_BREAKPOINTS (b)
15302 {
15303 if (!is_non_inline_function (b))
15304 continue;
15305
15306 for (bl = b->loc; bl != NULL; bl = bl->next)
15307 {
15308 if (!bl->shlib_disabled
15309 && bpstat_check_location (bl, aspace, pc, ws))
15310 return 1;
15311 }
15312 }
15313
15314 return 0;
15315 }
15316
15317 /* Remove any references to OBJFILE which is going to be freed. */
15318
15319 void
15320 breakpoint_free_objfile (struct objfile *objfile)
15321 {
15322 struct bp_location **locp, *loc;
15323
15324 ALL_BP_LOCATIONS (loc, locp)
15325 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15326 loc->symtab = NULL;
15327 }
15328
15329 void
15330 initialize_breakpoint_ops (void)
15331 {
15332 static int initialized = 0;
15333
15334 struct breakpoint_ops *ops;
15335
15336 if (initialized)
15337 return;
15338 initialized = 1;
15339
15340 /* The breakpoint_ops structure to be inherit by all kinds of
15341 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15342 internal and momentary breakpoints, etc.). */
15343 ops = &bkpt_base_breakpoint_ops;
15344 *ops = base_breakpoint_ops;
15345 ops->re_set = bkpt_re_set;
15346 ops->insert_location = bkpt_insert_location;
15347 ops->remove_location = bkpt_remove_location;
15348 ops->breakpoint_hit = bkpt_breakpoint_hit;
15349 ops->create_sals_from_location = bkpt_create_sals_from_location;
15350 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15351 ops->decode_location = bkpt_decode_location;
15352
15353 /* The breakpoint_ops structure to be used in regular breakpoints. */
15354 ops = &bkpt_breakpoint_ops;
15355 *ops = bkpt_base_breakpoint_ops;
15356 ops->re_set = bkpt_re_set;
15357 ops->resources_needed = bkpt_resources_needed;
15358 ops->print_it = bkpt_print_it;
15359 ops->print_mention = bkpt_print_mention;
15360 ops->print_recreate = bkpt_print_recreate;
15361
15362 /* Ranged breakpoints. */
15363 ops = &ranged_breakpoint_ops;
15364 *ops = bkpt_breakpoint_ops;
15365 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15366 ops->resources_needed = resources_needed_ranged_breakpoint;
15367 ops->print_it = print_it_ranged_breakpoint;
15368 ops->print_one = print_one_ranged_breakpoint;
15369 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15370 ops->print_mention = print_mention_ranged_breakpoint;
15371 ops->print_recreate = print_recreate_ranged_breakpoint;
15372
15373 /* Internal breakpoints. */
15374 ops = &internal_breakpoint_ops;
15375 *ops = bkpt_base_breakpoint_ops;
15376 ops->re_set = internal_bkpt_re_set;
15377 ops->check_status = internal_bkpt_check_status;
15378 ops->print_it = internal_bkpt_print_it;
15379 ops->print_mention = internal_bkpt_print_mention;
15380
15381 /* Momentary breakpoints. */
15382 ops = &momentary_breakpoint_ops;
15383 *ops = bkpt_base_breakpoint_ops;
15384 ops->re_set = momentary_bkpt_re_set;
15385 ops->check_status = momentary_bkpt_check_status;
15386 ops->print_it = momentary_bkpt_print_it;
15387 ops->print_mention = momentary_bkpt_print_mention;
15388
15389 /* Probe breakpoints. */
15390 ops = &bkpt_probe_breakpoint_ops;
15391 *ops = bkpt_breakpoint_ops;
15392 ops->insert_location = bkpt_probe_insert_location;
15393 ops->remove_location = bkpt_probe_remove_location;
15394 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15395 ops->decode_location = bkpt_probe_decode_location;
15396
15397 /* Watchpoints. */
15398 ops = &watchpoint_breakpoint_ops;
15399 *ops = base_breakpoint_ops;
15400 ops->re_set = re_set_watchpoint;
15401 ops->insert_location = insert_watchpoint;
15402 ops->remove_location = remove_watchpoint;
15403 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15404 ops->check_status = check_status_watchpoint;
15405 ops->resources_needed = resources_needed_watchpoint;
15406 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15407 ops->print_it = print_it_watchpoint;
15408 ops->print_mention = print_mention_watchpoint;
15409 ops->print_recreate = print_recreate_watchpoint;
15410 ops->explains_signal = explains_signal_watchpoint;
15411
15412 /* Masked watchpoints. */
15413 ops = &masked_watchpoint_breakpoint_ops;
15414 *ops = watchpoint_breakpoint_ops;
15415 ops->insert_location = insert_masked_watchpoint;
15416 ops->remove_location = remove_masked_watchpoint;
15417 ops->resources_needed = resources_needed_masked_watchpoint;
15418 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15419 ops->print_it = print_it_masked_watchpoint;
15420 ops->print_one_detail = print_one_detail_masked_watchpoint;
15421 ops->print_mention = print_mention_masked_watchpoint;
15422 ops->print_recreate = print_recreate_masked_watchpoint;
15423
15424 /* Tracepoints. */
15425 ops = &tracepoint_breakpoint_ops;
15426 *ops = base_breakpoint_ops;
15427 ops->re_set = tracepoint_re_set;
15428 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15429 ops->print_one_detail = tracepoint_print_one_detail;
15430 ops->print_mention = tracepoint_print_mention;
15431 ops->print_recreate = tracepoint_print_recreate;
15432 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15433 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15434 ops->decode_location = tracepoint_decode_location;
15435
15436 /* Probe tracepoints. */
15437 ops = &tracepoint_probe_breakpoint_ops;
15438 *ops = tracepoint_breakpoint_ops;
15439 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15440 ops->decode_location = tracepoint_probe_decode_location;
15441
15442 /* Static tracepoints with marker (`-m'). */
15443 ops = &strace_marker_breakpoint_ops;
15444 *ops = tracepoint_breakpoint_ops;
15445 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15446 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15447 ops->decode_location = strace_marker_decode_location;
15448
15449 /* Fork catchpoints. */
15450 ops = &catch_fork_breakpoint_ops;
15451 *ops = base_breakpoint_ops;
15452 ops->insert_location = insert_catch_fork;
15453 ops->remove_location = remove_catch_fork;
15454 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15455 ops->print_it = print_it_catch_fork;
15456 ops->print_one = print_one_catch_fork;
15457 ops->print_mention = print_mention_catch_fork;
15458 ops->print_recreate = print_recreate_catch_fork;
15459
15460 /* Vfork catchpoints. */
15461 ops = &catch_vfork_breakpoint_ops;
15462 *ops = base_breakpoint_ops;
15463 ops->insert_location = insert_catch_vfork;
15464 ops->remove_location = remove_catch_vfork;
15465 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15466 ops->print_it = print_it_catch_vfork;
15467 ops->print_one = print_one_catch_vfork;
15468 ops->print_mention = print_mention_catch_vfork;
15469 ops->print_recreate = print_recreate_catch_vfork;
15470
15471 /* Exec catchpoints. */
15472 ops = &catch_exec_breakpoint_ops;
15473 *ops = base_breakpoint_ops;
15474 ops->insert_location = insert_catch_exec;
15475 ops->remove_location = remove_catch_exec;
15476 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15477 ops->print_it = print_it_catch_exec;
15478 ops->print_one = print_one_catch_exec;
15479 ops->print_mention = print_mention_catch_exec;
15480 ops->print_recreate = print_recreate_catch_exec;
15481
15482 /* Solib-related catchpoints. */
15483 ops = &catch_solib_breakpoint_ops;
15484 *ops = base_breakpoint_ops;
15485 ops->insert_location = insert_catch_solib;
15486 ops->remove_location = remove_catch_solib;
15487 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15488 ops->check_status = check_status_catch_solib;
15489 ops->print_it = print_it_catch_solib;
15490 ops->print_one = print_one_catch_solib;
15491 ops->print_mention = print_mention_catch_solib;
15492 ops->print_recreate = print_recreate_catch_solib;
15493
15494 ops = &dprintf_breakpoint_ops;
15495 *ops = bkpt_base_breakpoint_ops;
15496 ops->re_set = dprintf_re_set;
15497 ops->resources_needed = bkpt_resources_needed;
15498 ops->print_it = bkpt_print_it;
15499 ops->print_mention = bkpt_print_mention;
15500 ops->print_recreate = dprintf_print_recreate;
15501 ops->after_condition_true = dprintf_after_condition_true;
15502 ops->breakpoint_hit = dprintf_breakpoint_hit;
15503 }
15504
15505 /* Chain containing all defined "enable breakpoint" subcommands. */
15506
15507 static struct cmd_list_element *enablebreaklist = NULL;
15508
15509 void
15510 _initialize_breakpoint (void)
15511 {
15512 struct cmd_list_element *c;
15513
15514 initialize_breakpoint_ops ();
15515
15516 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15517 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15518 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15519
15520 breakpoint_objfile_key
15521 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15522
15523 breakpoint_chain = 0;
15524 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15525 before a breakpoint is set. */
15526 breakpoint_count = 0;
15527
15528 tracepoint_count = 0;
15529
15530 add_com ("ignore", class_breakpoint, ignore_command, _("\
15531 Set ignore-count of breakpoint number N to COUNT.\n\
15532 Usage is `ignore N COUNT'."));
15533
15534 add_com ("commands", class_breakpoint, commands_command, _("\
15535 Set commands to be executed when the given breakpoints are hit.\n\
15536 Give a space-separated breakpoint list as argument after \"commands\".\n\
15537 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15538 (e.g. `5-7').\n\
15539 With no argument, the targeted breakpoint is the last one set.\n\
15540 The commands themselves follow starting on the next line.\n\
15541 Type a line containing \"end\" to indicate the end of them.\n\
15542 Give \"silent\" as the first line to make the breakpoint silent;\n\
15543 then no output is printed when it is hit, except what the commands print."));
15544
15545 c = add_com ("condition", class_breakpoint, condition_command, _("\
15546 Specify breakpoint number N to break only if COND is true.\n\
15547 Usage is `condition N COND', where N is an integer and COND is an\n\
15548 expression to be evaluated whenever breakpoint N is reached."));
15549 set_cmd_completer (c, condition_completer);
15550
15551 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15552 Set a temporary breakpoint.\n\
15553 Like \"break\" except the breakpoint is only temporary,\n\
15554 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15555 by using \"enable delete\" on the breakpoint number.\n\
15556 \n"
15557 BREAK_ARGS_HELP ("tbreak")));
15558 set_cmd_completer (c, location_completer);
15559
15560 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15561 Set a hardware assisted breakpoint.\n\
15562 Like \"break\" except the breakpoint requires hardware support,\n\
15563 some target hardware may not have this support.\n\
15564 \n"
15565 BREAK_ARGS_HELP ("hbreak")));
15566 set_cmd_completer (c, location_completer);
15567
15568 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15569 Set a temporary hardware assisted breakpoint.\n\
15570 Like \"hbreak\" except the breakpoint is only temporary,\n\
15571 so it will be deleted when hit.\n\
15572 \n"
15573 BREAK_ARGS_HELP ("thbreak")));
15574 set_cmd_completer (c, location_completer);
15575
15576 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15577 Enable some breakpoints.\n\
15578 Give breakpoint numbers (separated by spaces) as arguments.\n\
15579 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15580 This is used to cancel the effect of the \"disable\" command.\n\
15581 With a subcommand you can enable temporarily."),
15582 &enablelist, "enable ", 1, &cmdlist);
15583
15584 add_com_alias ("en", "enable", class_breakpoint, 1);
15585
15586 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15587 Enable some breakpoints.\n\
15588 Give breakpoint numbers (separated by spaces) as arguments.\n\
15589 This is used to cancel the effect of the \"disable\" command.\n\
15590 May be abbreviated to simply \"enable\".\n"),
15591 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15592
15593 add_cmd ("once", no_class, enable_once_command, _("\
15594 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15595 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15596 &enablebreaklist);
15597
15598 add_cmd ("delete", no_class, enable_delete_command, _("\
15599 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15601 &enablebreaklist);
15602
15603 add_cmd ("count", no_class, enable_count_command, _("\
15604 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15605 If a breakpoint is hit while enabled in this fashion,\n\
15606 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15607 &enablebreaklist);
15608
15609 add_cmd ("delete", no_class, enable_delete_command, _("\
15610 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15611 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15612 &enablelist);
15613
15614 add_cmd ("once", no_class, enable_once_command, _("\
15615 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15616 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15617 &enablelist);
15618
15619 add_cmd ("count", no_class, enable_count_command, _("\
15620 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15621 If a breakpoint is hit while enabled in this fashion,\n\
15622 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15623 &enablelist);
15624
15625 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15626 Disable some breakpoints.\n\
15627 Arguments are breakpoint numbers with spaces in between.\n\
15628 To disable all breakpoints, give no argument.\n\
15629 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15630 &disablelist, "disable ", 1, &cmdlist);
15631 add_com_alias ("dis", "disable", class_breakpoint, 1);
15632 add_com_alias ("disa", "disable", class_breakpoint, 1);
15633
15634 add_cmd ("breakpoints", class_alias, disable_command, _("\
15635 Disable some breakpoints.\n\
15636 Arguments are breakpoint numbers with spaces in between.\n\
15637 To disable all breakpoints, give no argument.\n\
15638 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15639 This command may be abbreviated \"disable\"."),
15640 &disablelist);
15641
15642 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15643 Delete some breakpoints or auto-display expressions.\n\
15644 Arguments are breakpoint numbers with spaces in between.\n\
15645 To delete all breakpoints, give no argument.\n\
15646 \n\
15647 Also a prefix command for deletion of other GDB objects.\n\
15648 The \"unset\" command is also an alias for \"delete\"."),
15649 &deletelist, "delete ", 1, &cmdlist);
15650 add_com_alias ("d", "delete", class_breakpoint, 1);
15651 add_com_alias ("del", "delete", class_breakpoint, 1);
15652
15653 add_cmd ("breakpoints", class_alias, delete_command, _("\
15654 Delete some breakpoints or auto-display expressions.\n\
15655 Arguments are breakpoint numbers with spaces in between.\n\
15656 To delete all breakpoints, give no argument.\n\
15657 This command may be abbreviated \"delete\"."),
15658 &deletelist);
15659
15660 add_com ("clear", class_breakpoint, clear_command, _("\
15661 Clear breakpoint at specified location.\n\
15662 Argument may be a linespec, explicit, or address location as described below.\n\
15663 \n\
15664 With no argument, clears all breakpoints in the line that the selected frame\n\
15665 is executing in.\n"
15666 "\n" LOCATION_HELP_STRING "\n\
15667 See also the \"delete\" command which clears breakpoints by number."));
15668 add_com_alias ("cl", "clear", class_breakpoint, 1);
15669
15670 c = add_com ("break", class_breakpoint, break_command, _("\
15671 Set breakpoint at specified location.\n"
15672 BREAK_ARGS_HELP ("break")));
15673 set_cmd_completer (c, location_completer);
15674
15675 add_com_alias ("b", "break", class_run, 1);
15676 add_com_alias ("br", "break", class_run, 1);
15677 add_com_alias ("bre", "break", class_run, 1);
15678 add_com_alias ("brea", "break", class_run, 1);
15679
15680 if (dbx_commands)
15681 {
15682 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15683 Break in function/address or break at a line in the current file."),
15684 &stoplist, "stop ", 1, &cmdlist);
15685 add_cmd ("in", class_breakpoint, stopin_command,
15686 _("Break in function or address."), &stoplist);
15687 add_cmd ("at", class_breakpoint, stopat_command,
15688 _("Break at a line in the current file."), &stoplist);
15689 add_com ("status", class_info, info_breakpoints_command, _("\
15690 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15691 The \"Type\" column indicates one of:\n\
15692 \tbreakpoint - normal breakpoint\n\
15693 \twatchpoint - watchpoint\n\
15694 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15695 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15696 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15697 address and file/line number respectively.\n\
15698 \n\
15699 Convenience variable \"$_\" and default examine address for \"x\"\n\
15700 are set to the address of the last breakpoint listed unless the command\n\
15701 is prefixed with \"server \".\n\n\
15702 Convenience variable \"$bpnum\" contains the number of the last\n\
15703 breakpoint set."));
15704 }
15705
15706 add_info ("breakpoints", info_breakpoints_command, _("\
15707 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15708 The \"Type\" column indicates one of:\n\
15709 \tbreakpoint - normal breakpoint\n\
15710 \twatchpoint - watchpoint\n\
15711 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15712 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15713 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15714 address and file/line number respectively.\n\
15715 \n\
15716 Convenience variable \"$_\" and default examine address for \"x\"\n\
15717 are set to the address of the last breakpoint listed unless the command\n\
15718 is prefixed with \"server \".\n\n\
15719 Convenience variable \"$bpnum\" contains the number of the last\n\
15720 breakpoint set."));
15721
15722 add_info_alias ("b", "breakpoints", 1);
15723
15724 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15725 Status of all breakpoints, or breakpoint number NUMBER.\n\
15726 The \"Type\" column indicates one of:\n\
15727 \tbreakpoint - normal breakpoint\n\
15728 \twatchpoint - watchpoint\n\
15729 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15730 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15731 \tuntil - internal breakpoint used by the \"until\" command\n\
15732 \tfinish - internal breakpoint used by the \"finish\" command\n\
15733 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15734 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15735 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15736 address and file/line number respectively.\n\
15737 \n\
15738 Convenience variable \"$_\" and default examine address for \"x\"\n\
15739 are set to the address of the last breakpoint listed unless the command\n\
15740 is prefixed with \"server \".\n\n\
15741 Convenience variable \"$bpnum\" contains the number of the last\n\
15742 breakpoint set."),
15743 &maintenanceinfolist);
15744
15745 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15746 Set catchpoints to catch events."),
15747 &catch_cmdlist, "catch ",
15748 0/*allow-unknown*/, &cmdlist);
15749
15750 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15751 Set temporary catchpoints to catch events."),
15752 &tcatch_cmdlist, "tcatch ",
15753 0/*allow-unknown*/, &cmdlist);
15754
15755 add_catch_command ("fork", _("Catch calls to fork."),
15756 catch_fork_command_1,
15757 NULL,
15758 (void *) (uintptr_t) catch_fork_permanent,
15759 (void *) (uintptr_t) catch_fork_temporary);
15760 add_catch_command ("vfork", _("Catch calls to vfork."),
15761 catch_fork_command_1,
15762 NULL,
15763 (void *) (uintptr_t) catch_vfork_permanent,
15764 (void *) (uintptr_t) catch_vfork_temporary);
15765 add_catch_command ("exec", _("Catch calls to exec."),
15766 catch_exec_command_1,
15767 NULL,
15768 CATCH_PERMANENT,
15769 CATCH_TEMPORARY);
15770 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15771 Usage: catch load [REGEX]\n\
15772 If REGEX is given, only stop for libraries matching the regular expression."),
15773 catch_load_command_1,
15774 NULL,
15775 CATCH_PERMANENT,
15776 CATCH_TEMPORARY);
15777 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15778 Usage: catch unload [REGEX]\n\
15779 If REGEX is given, only stop for libraries matching the regular expression."),
15780 catch_unload_command_1,
15781 NULL,
15782 CATCH_PERMANENT,
15783 CATCH_TEMPORARY);
15784
15785 c = add_com ("watch", class_breakpoint, watch_command, _("\
15786 Set a watchpoint for an expression.\n\
15787 Usage: watch [-l|-location] EXPRESSION\n\
15788 A watchpoint stops execution of your program whenever the value of\n\
15789 an expression changes.\n\
15790 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15791 the memory to which it refers."));
15792 set_cmd_completer (c, expression_completer);
15793
15794 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15795 Set a read watchpoint for an expression.\n\
15796 Usage: rwatch [-l|-location] EXPRESSION\n\
15797 A watchpoint stops execution of your program whenever the value of\n\
15798 an expression is read.\n\
15799 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15800 the memory to which it refers."));
15801 set_cmd_completer (c, expression_completer);
15802
15803 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15804 Set a watchpoint for an expression.\n\
15805 Usage: awatch [-l|-location] EXPRESSION\n\
15806 A watchpoint stops execution of your program whenever the value of\n\
15807 an expression is either read or written.\n\
15808 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15809 the memory to which it refers."));
15810 set_cmd_completer (c, expression_completer);
15811
15812 add_info ("watchpoints", info_watchpoints_command, _("\
15813 Status of specified watchpoints (all watchpoints if no argument)."));
15814
15815 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15816 respond to changes - contrary to the description. */
15817 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15818 &can_use_hw_watchpoints, _("\
15819 Set debugger's willingness to use watchpoint hardware."), _("\
15820 Show debugger's willingness to use watchpoint hardware."), _("\
15821 If zero, gdb will not use hardware for new watchpoints, even if\n\
15822 such is available. (However, any hardware watchpoints that were\n\
15823 created before setting this to nonzero, will continue to use watchpoint\n\
15824 hardware.)"),
15825 NULL,
15826 show_can_use_hw_watchpoints,
15827 &setlist, &showlist);
15828
15829 can_use_hw_watchpoints = 1;
15830
15831 /* Tracepoint manipulation commands. */
15832
15833 c = add_com ("trace", class_breakpoint, trace_command, _("\
15834 Set a tracepoint at specified location.\n\
15835 \n"
15836 BREAK_ARGS_HELP ("trace") "\n\
15837 Do \"help tracepoints\" for info on other tracepoint commands."));
15838 set_cmd_completer (c, location_completer);
15839
15840 add_com_alias ("tp", "trace", class_alias, 0);
15841 add_com_alias ("tr", "trace", class_alias, 1);
15842 add_com_alias ("tra", "trace", class_alias, 1);
15843 add_com_alias ("trac", "trace", class_alias, 1);
15844
15845 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15846 Set a fast tracepoint at specified location.\n\
15847 \n"
15848 BREAK_ARGS_HELP ("ftrace") "\n\
15849 Do \"help tracepoints\" for info on other tracepoint commands."));
15850 set_cmd_completer (c, location_completer);
15851
15852 c = add_com ("strace", class_breakpoint, strace_command, _("\
15853 Set a static tracepoint at location or marker.\n\
15854 \n\
15855 strace [LOCATION] [if CONDITION]\n\
15856 LOCATION may be a linespec, explicit, or address location (described below) \n\
15857 or -m MARKER_ID.\n\n\
15858 If a marker id is specified, probe the marker with that name. With\n\
15859 no LOCATION, uses current execution address of the selected stack frame.\n\
15860 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15861 This collects arbitrary user data passed in the probe point call to the\n\
15862 tracing library. You can inspect it when analyzing the trace buffer,\n\
15863 by printing the $_sdata variable like any other convenience variable.\n\
15864 \n\
15865 CONDITION is a boolean expression.\n\
15866 \n" LOCATION_HELP_STRING "\n\
15867 Multiple tracepoints at one place are permitted, and useful if their\n\
15868 conditions are different.\n\
15869 \n\
15870 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15871 Do \"help tracepoints\" for info on other tracepoint commands."));
15872 set_cmd_completer (c, location_completer);
15873
15874 add_info ("tracepoints", info_tracepoints_command, _("\
15875 Status of specified tracepoints (all tracepoints if no argument).\n\
15876 Convenience variable \"$tpnum\" contains the number of the\n\
15877 last tracepoint set."));
15878
15879 add_info_alias ("tp", "tracepoints", 1);
15880
15881 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15882 Delete specified tracepoints.\n\
15883 Arguments are tracepoint numbers, separated by spaces.\n\
15884 No argument means delete all tracepoints."),
15885 &deletelist);
15886 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15887
15888 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15889 Disable specified tracepoints.\n\
15890 Arguments are tracepoint numbers, separated by spaces.\n\
15891 No argument means disable all tracepoints."),
15892 &disablelist);
15893 deprecate_cmd (c, "disable");
15894
15895 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15896 Enable specified tracepoints.\n\
15897 Arguments are tracepoint numbers, separated by spaces.\n\
15898 No argument means enable all tracepoints."),
15899 &enablelist);
15900 deprecate_cmd (c, "enable");
15901
15902 add_com ("passcount", class_trace, trace_pass_command, _("\
15903 Set the passcount for a tracepoint.\n\
15904 The trace will end when the tracepoint has been passed 'count' times.\n\
15905 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15906 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15907
15908 add_prefix_cmd ("save", class_breakpoint, save_command,
15909 _("Save breakpoint definitions as a script."),
15910 &save_cmdlist, "save ",
15911 0/*allow-unknown*/, &cmdlist);
15912
15913 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15914 Save current breakpoint definitions as a script.\n\
15915 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15916 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15917 session to restore them."),
15918 &save_cmdlist);
15919 set_cmd_completer (c, filename_completer);
15920
15921 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15922 Save current tracepoint definitions as a script.\n\
15923 Use the 'source' command in another debug session to restore them."),
15924 &save_cmdlist);
15925 set_cmd_completer (c, filename_completer);
15926
15927 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15928 deprecate_cmd (c, "save tracepoints");
15929
15930 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15931 Breakpoint specific settings\n\
15932 Configure various breakpoint-specific variables such as\n\
15933 pending breakpoint behavior"),
15934 &breakpoint_set_cmdlist, "set breakpoint ",
15935 0/*allow-unknown*/, &setlist);
15936 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15937 Breakpoint specific settings\n\
15938 Configure various breakpoint-specific variables such as\n\
15939 pending breakpoint behavior"),
15940 &breakpoint_show_cmdlist, "show breakpoint ",
15941 0/*allow-unknown*/, &showlist);
15942
15943 add_setshow_auto_boolean_cmd ("pending", no_class,
15944 &pending_break_support, _("\
15945 Set debugger's behavior regarding pending breakpoints."), _("\
15946 Show debugger's behavior regarding pending breakpoints."), _("\
15947 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15948 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15949 an error. If auto, an unrecognized breakpoint location results in a\n\
15950 user-query to see if a pending breakpoint should be created."),
15951 NULL,
15952 show_pending_break_support,
15953 &breakpoint_set_cmdlist,
15954 &breakpoint_show_cmdlist);
15955
15956 pending_break_support = AUTO_BOOLEAN_AUTO;
15957
15958 add_setshow_boolean_cmd ("auto-hw", no_class,
15959 &automatic_hardware_breakpoints, _("\
15960 Set automatic usage of hardware breakpoints."), _("\
15961 Show automatic usage of hardware breakpoints."), _("\
15962 If set, the debugger will automatically use hardware breakpoints for\n\
15963 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15964 a warning will be emitted for such breakpoints."),
15965 NULL,
15966 show_automatic_hardware_breakpoints,
15967 &breakpoint_set_cmdlist,
15968 &breakpoint_show_cmdlist);
15969
15970 add_setshow_boolean_cmd ("always-inserted", class_support,
15971 &always_inserted_mode, _("\
15972 Set mode for inserting breakpoints."), _("\
15973 Show mode for inserting breakpoints."), _("\
15974 When this mode is on, breakpoints are inserted immediately as soon as\n\
15975 they're created, kept inserted even when execution stops, and removed\n\
15976 only when the user deletes them. When this mode is off (the default),\n\
15977 breakpoints are inserted only when execution continues, and removed\n\
15978 when execution stops."),
15979 NULL,
15980 &show_always_inserted_mode,
15981 &breakpoint_set_cmdlist,
15982 &breakpoint_show_cmdlist);
15983
15984 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15985 condition_evaluation_enums,
15986 &condition_evaluation_mode_1, _("\
15987 Set mode of breakpoint condition evaluation."), _("\
15988 Show mode of breakpoint condition evaluation."), _("\
15989 When this is set to \"host\", breakpoint conditions will be\n\
15990 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15991 breakpoint conditions will be downloaded to the target (if the target\n\
15992 supports such feature) and conditions will be evaluated on the target's side.\n\
15993 If this is set to \"auto\" (default), this will be automatically set to\n\
15994 \"target\" if it supports condition evaluation, otherwise it will\n\
15995 be set to \"gdb\""),
15996 &set_condition_evaluation_mode,
15997 &show_condition_evaluation_mode,
15998 &breakpoint_set_cmdlist,
15999 &breakpoint_show_cmdlist);
16000
16001 add_com ("break-range", class_breakpoint, break_range_command, _("\
16002 Set a breakpoint for an address range.\n\
16003 break-range START-LOCATION, END-LOCATION\n\
16004 where START-LOCATION and END-LOCATION can be one of the following:\n\
16005 LINENUM, for that line in the current file,\n\
16006 FILE:LINENUM, for that line in that file,\n\
16007 +OFFSET, for that number of lines after the current line\n\
16008 or the start of the range\n\
16009 FUNCTION, for the first line in that function,\n\
16010 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16011 *ADDRESS, for the instruction at that address.\n\
16012 \n\
16013 The breakpoint will stop execution of the inferior whenever it executes\n\
16014 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16015 range (including START-LOCATION and END-LOCATION)."));
16016
16017 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16018 Set a dynamic printf at specified location.\n\
16019 dprintf location,format string,arg1,arg2,...\n\
16020 location may be a linespec, explicit, or address location.\n"
16021 "\n" LOCATION_HELP_STRING));
16022 set_cmd_completer (c, location_completer);
16023
16024 add_setshow_enum_cmd ("dprintf-style", class_support,
16025 dprintf_style_enums, &dprintf_style, _("\
16026 Set the style of usage for dynamic printf."), _("\
16027 Show the style of usage for dynamic printf."), _("\
16028 This setting chooses how GDB will do a dynamic printf.\n\
16029 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16030 console, as with the \"printf\" command.\n\
16031 If the value is \"call\", the print is done by calling a function in your\n\
16032 program; by default printf(), but you can choose a different function or\n\
16033 output stream by setting dprintf-function and dprintf-channel."),
16034 update_dprintf_commands, NULL,
16035 &setlist, &showlist);
16036
16037 dprintf_function = xstrdup ("printf");
16038 add_setshow_string_cmd ("dprintf-function", class_support,
16039 &dprintf_function, _("\
16040 Set the function to use for dynamic printf"), _("\
16041 Show the function to use for dynamic printf"), NULL,
16042 update_dprintf_commands, NULL,
16043 &setlist, &showlist);
16044
16045 dprintf_channel = xstrdup ("");
16046 add_setshow_string_cmd ("dprintf-channel", class_support,
16047 &dprintf_channel, _("\
16048 Set the channel to use for dynamic printf"), _("\
16049 Show the channel to use for dynamic printf"), NULL,
16050 update_dprintf_commands, NULL,
16051 &setlist, &showlist);
16052
16053 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16054 &disconnected_dprintf, _("\
16055 Set whether dprintf continues after GDB disconnects."), _("\
16056 Show whether dprintf continues after GDB disconnects."), _("\
16057 Use this to let dprintf commands continue to hit and produce output\n\
16058 even if GDB disconnects or detaches from the target."),
16059 NULL,
16060 NULL,
16061 &setlist, &showlist);
16062
16063 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16064 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16065 (target agent only) This is useful for formatted output in user-defined commands."));
16066
16067 automatic_hardware_breakpoints = 1;
16068
16069 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16070 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16071 }
This page took 0.675846 seconds and 5 git commands to generate.