Remove most uses of ALL_OBJFILES
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84 #include "common/array-view.h"
85 #include "common/gdb_optional.h"
86
87 /* Enums for exception-handling support. */
88 enum exception_event_kind
89 {
90 EX_EVENT_THROW,
91 EX_EVENT_RETHROW,
92 EX_EVENT_CATCH
93 };
94
95 /* Prototypes for local functions. */
96
97 static void map_breakpoint_numbers (const char *,
98 gdb::function_view<void (breakpoint *)>);
99
100 static void breakpoint_re_set_default (struct breakpoint *);
101
102 static void
103 create_sals_from_location_default (const struct event_location *location,
104 struct linespec_result *canonical,
105 enum bptype type_wanted);
106
107 static void create_breakpoints_sal_default (struct gdbarch *,
108 struct linespec_result *,
109 gdb::unique_xmalloc_ptr<char>,
110 gdb::unique_xmalloc_ptr<char>,
111 enum bptype,
112 enum bpdisp, int, int,
113 int,
114 const struct breakpoint_ops *,
115 int, int, int, unsigned);
116
117 static std::vector<symtab_and_line> decode_location_default
118 (struct breakpoint *b, const struct event_location *location,
119 struct program_space *search_pspace);
120
121 static int can_use_hardware_watchpoint
122 (const std::vector<value_ref_ptr> &vals);
123
124 static void mention (struct breakpoint *);
125
126 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
127 enum bptype,
128 const struct breakpoint_ops *);
129 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
130 const struct symtab_and_line *);
131
132 /* This function is used in gdbtk sources and thus can not be made
133 static. */
134 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
135 struct symtab_and_line,
136 enum bptype,
137 const struct breakpoint_ops *);
138
139 static struct breakpoint *
140 momentary_breakpoint_from_master (struct breakpoint *orig,
141 enum bptype type,
142 const struct breakpoint_ops *ops,
143 int loc_enabled);
144
145 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
146
147 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
148 CORE_ADDR bpaddr,
149 enum bptype bptype);
150
151 static void describe_other_breakpoints (struct gdbarch *,
152 struct program_space *, CORE_ADDR,
153 struct obj_section *, int);
154
155 static int watchpoint_locations_match (struct bp_location *loc1,
156 struct bp_location *loc2);
157
158 static int breakpoint_location_address_match (struct bp_location *bl,
159 const struct address_space *aspace,
160 CORE_ADDR addr);
161
162 static int breakpoint_location_address_range_overlap (struct bp_location *,
163 const address_space *,
164 CORE_ADDR, int);
165
166 static int remove_breakpoint (struct bp_location *);
167 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
168
169 static enum print_stop_action print_bp_stop_message (bpstat bs);
170
171 static int hw_breakpoint_used_count (void);
172
173 static int hw_watchpoint_use_count (struct breakpoint *);
174
175 static int hw_watchpoint_used_count_others (struct breakpoint *except,
176 enum bptype type,
177 int *other_type_used);
178
179 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
180 int count);
181
182 static void free_bp_location (struct bp_location *loc);
183 static void incref_bp_location (struct bp_location *loc);
184 static void decref_bp_location (struct bp_location **loc);
185
186 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
187
188 /* update_global_location_list's modes of operation wrt to whether to
189 insert locations now. */
190 enum ugll_insert_mode
191 {
192 /* Don't insert any breakpoint locations into the inferior, only
193 remove already-inserted locations that no longer should be
194 inserted. Functions that delete a breakpoint or breakpoints
195 should specify this mode, so that deleting a breakpoint doesn't
196 have the side effect of inserting the locations of other
197 breakpoints that are marked not-inserted, but should_be_inserted
198 returns true on them.
199
200 This behavior is useful is situations close to tear-down -- e.g.,
201 after an exec, while the target still has execution, but
202 breakpoint shadows of the previous executable image should *NOT*
203 be restored to the new image; or before detaching, where the
204 target still has execution and wants to delete breakpoints from
205 GDB's lists, and all breakpoints had already been removed from
206 the inferior. */
207 UGLL_DONT_INSERT,
208
209 /* May insert breakpoints iff breakpoints_should_be_inserted_now
210 claims breakpoints should be inserted now. */
211 UGLL_MAY_INSERT,
212
213 /* Insert locations now, irrespective of
214 breakpoints_should_be_inserted_now. E.g., say all threads are
215 stopped right now, and the user did "continue". We need to
216 insert breakpoints _before_ resuming the target, but
217 UGLL_MAY_INSERT wouldn't insert them, because
218 breakpoints_should_be_inserted_now returns false at that point,
219 as no thread is running yet. */
220 UGLL_INSERT
221 };
222
223 static void update_global_location_list (enum ugll_insert_mode);
224
225 static void update_global_location_list_nothrow (enum ugll_insert_mode);
226
227 static int is_hardware_watchpoint (const struct breakpoint *bpt);
228
229 static void insert_breakpoint_locations (void);
230
231 static void trace_pass_command (const char *, int);
232
233 static void set_tracepoint_count (int num);
234
235 static int is_masked_watchpoint (const struct breakpoint *b);
236
237 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
238
239 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
240 otherwise. */
241
242 static int strace_marker_p (struct breakpoint *b);
243
244 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
245 that are implemented on top of software or hardware breakpoints
246 (user breakpoints, internal and momentary breakpoints, etc.). */
247 static struct breakpoint_ops bkpt_base_breakpoint_ops;
248
249 /* Internal breakpoints class type. */
250 static struct breakpoint_ops internal_breakpoint_ops;
251
252 /* Momentary breakpoints class type. */
253 static struct breakpoint_ops momentary_breakpoint_ops;
254
255 /* The breakpoint_ops structure to be used in regular user created
256 breakpoints. */
257 struct breakpoint_ops bkpt_breakpoint_ops;
258
259 /* Breakpoints set on probes. */
260 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
261
262 /* Dynamic printf class type. */
263 struct breakpoint_ops dprintf_breakpoint_ops;
264
265 /* The style in which to perform a dynamic printf. This is a user
266 option because different output options have different tradeoffs;
267 if GDB does the printing, there is better error handling if there
268 is a problem with any of the arguments, but using an inferior
269 function lets you have special-purpose printers and sending of
270 output to the same place as compiled-in print functions. */
271
272 static const char dprintf_style_gdb[] = "gdb";
273 static const char dprintf_style_call[] = "call";
274 static const char dprintf_style_agent[] = "agent";
275 static const char *const dprintf_style_enums[] = {
276 dprintf_style_gdb,
277 dprintf_style_call,
278 dprintf_style_agent,
279 NULL
280 };
281 static const char *dprintf_style = dprintf_style_gdb;
282
283 /* The function to use for dynamic printf if the preferred style is to
284 call into the inferior. The value is simply a string that is
285 copied into the command, so it can be anything that GDB can
286 evaluate to a callable address, not necessarily a function name. */
287
288 static char *dprintf_function;
289
290 /* The channel to use for dynamic printf if the preferred style is to
291 call into the inferior; if a nonempty string, it will be passed to
292 the call as the first argument, with the format string as the
293 second. As with the dprintf function, this can be anything that
294 GDB knows how to evaluate, so in addition to common choices like
295 "stderr", this could be an app-specific expression like
296 "mystreams[curlogger]". */
297
298 static char *dprintf_channel;
299
300 /* True if dprintf commands should continue to operate even if GDB
301 has disconnected. */
302 static int disconnected_dprintf = 1;
303
304 struct command_line *
305 breakpoint_commands (struct breakpoint *b)
306 {
307 return b->commands ? b->commands.get () : NULL;
308 }
309
310 /* Flag indicating that a command has proceeded the inferior past the
311 current breakpoint. */
312
313 static int breakpoint_proceeded;
314
315 const char *
316 bpdisp_text (enum bpdisp disp)
317 {
318 /* NOTE: the following values are a part of MI protocol and
319 represent values of 'disp' field returned when inferior stops at
320 a breakpoint. */
321 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
322
323 return bpdisps[(int) disp];
324 }
325
326 /* Prototypes for exported functions. */
327 /* If FALSE, gdb will not use hardware support for watchpoints, even
328 if such is available. */
329 static int can_use_hw_watchpoints;
330
331 static void
332 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
333 struct cmd_list_element *c,
334 const char *value)
335 {
336 fprintf_filtered (file,
337 _("Debugger's willingness to use "
338 "watchpoint hardware is %s.\n"),
339 value);
340 }
341
342 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
343 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
344 for unrecognized breakpoint locations.
345 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
346 static enum auto_boolean pending_break_support;
347 static void
348 show_pending_break_support (struct ui_file *file, int from_tty,
349 struct cmd_list_element *c,
350 const char *value)
351 {
352 fprintf_filtered (file,
353 _("Debugger's behavior regarding "
354 "pending breakpoints is %s.\n"),
355 value);
356 }
357
358 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
359 set with "break" but falling in read-only memory.
360 If 0, gdb will warn about such breakpoints, but won't automatically
361 use hardware breakpoints. */
362 static int automatic_hardware_breakpoints;
363 static void
364 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c,
366 const char *value)
367 {
368 fprintf_filtered (file,
369 _("Automatic usage of hardware breakpoints is %s.\n"),
370 value);
371 }
372
373 /* If on, GDB keeps breakpoints inserted even if the inferior is
374 stopped, and immediately inserts any new breakpoints as soon as
375 they're created. If off (default), GDB keeps breakpoints off of
376 the target as long as possible. That is, it delays inserting
377 breakpoints until the next resume, and removes them again when the
378 target fully stops. This is a bit safer in case GDB crashes while
379 processing user input. */
380 static int always_inserted_mode = 0;
381
382 static void
383 show_always_inserted_mode (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
387 value);
388 }
389
390 /* See breakpoint.h. */
391
392 int
393 breakpoints_should_be_inserted_now (void)
394 {
395 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
396 {
397 /* If breakpoints are global, they should be inserted even if no
398 thread under gdb's control is running, or even if there are
399 no threads under GDB's control yet. */
400 return 1;
401 }
402 else if (target_has_execution)
403 {
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 for (thread_info *tp : all_non_exited_threads ())
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 static std::vector<bp_location *> moribund_locations;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 int
1051 is_tracepoint (const struct breakpoint *b)
1052 {
1053 return is_tracepoint_type (b->type);
1054 }
1055
1056 /* Factory function to create an appropriate instance of breakpoint given
1057 TYPE. */
1058
1059 static std::unique_ptr<breakpoint>
1060 new_breakpoint_from_type (bptype type)
1061 {
1062 breakpoint *b;
1063
1064 if (is_tracepoint_type (type))
1065 b = new tracepoint ();
1066 else if (is_longjmp_type (type))
1067 b = new longjmp_breakpoint ();
1068 else
1069 b = new breakpoint ();
1070
1071 return std::unique_ptr<breakpoint> (b);
1072 }
1073
1074 /* A helper function that validates that COMMANDS are valid for a
1075 breakpoint. This function will throw an exception if a problem is
1076 found. */
1077
1078 static void
1079 validate_commands_for_breakpoint (struct breakpoint *b,
1080 struct command_line *commands)
1081 {
1082 if (is_tracepoint (b))
1083 {
1084 struct tracepoint *t = (struct tracepoint *) b;
1085 struct command_line *c;
1086 struct command_line *while_stepping = 0;
1087
1088 /* Reset the while-stepping step count. The previous commands
1089 might have included a while-stepping action, while the new
1090 ones might not. */
1091 t->step_count = 0;
1092
1093 /* We need to verify that each top-level element of commands is
1094 valid for tracepoints, that there's at most one
1095 while-stepping element, and that the while-stepping's body
1096 has valid tracing commands excluding nested while-stepping.
1097 We also need to validate the tracepoint action line in the
1098 context of the tracepoint --- validate_actionline actually
1099 has side effects, like setting the tracepoint's
1100 while-stepping STEP_COUNT, in addition to checking if the
1101 collect/teval actions parse and make sense in the
1102 tracepoint's context. */
1103 for (c = commands; c; c = c->next)
1104 {
1105 if (c->control_type == while_stepping_control)
1106 {
1107 if (b->type == bp_fast_tracepoint)
1108 error (_("The 'while-stepping' command "
1109 "cannot be used for fast tracepoint"));
1110 else if (b->type == bp_static_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for static tracepoint"));
1113
1114 if (while_stepping)
1115 error (_("The 'while-stepping' command "
1116 "can be used only once"));
1117 else
1118 while_stepping = c;
1119 }
1120
1121 validate_actionline (c->line, b);
1122 }
1123 if (while_stepping)
1124 {
1125 struct command_line *c2;
1126
1127 gdb_assert (while_stepping->body_list_1 == nullptr);
1128 c2 = while_stepping->body_list_0.get ();
1129 for (; c2; c2 = c2->next)
1130 {
1131 if (c2->control_type == while_stepping_control)
1132 error (_("The 'while-stepping' command cannot be nested"));
1133 }
1134 }
1135 }
1136 else
1137 {
1138 check_no_tracepoint_commands (commands);
1139 }
1140 }
1141
1142 /* Return a vector of all the static tracepoints set at ADDR. The
1143 caller is responsible for releasing the vector. */
1144
1145 std::vector<breakpoint *>
1146 static_tracepoints_here (CORE_ADDR addr)
1147 {
1148 struct breakpoint *b;
1149 std::vector<breakpoint *> found;
1150 struct bp_location *loc;
1151
1152 ALL_BREAKPOINTS (b)
1153 if (b->type == bp_static_tracepoint)
1154 {
1155 for (loc = b->loc; loc; loc = loc->next)
1156 if (loc->address == addr)
1157 found.push_back (b);
1158 }
1159
1160 return found;
1161 }
1162
1163 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1164 validate that only allowed commands are included. */
1165
1166 void
1167 breakpoint_set_commands (struct breakpoint *b,
1168 counted_command_line &&commands)
1169 {
1170 validate_commands_for_breakpoint (b, commands.get ());
1171
1172 b->commands = std::move (commands);
1173 gdb::observers::breakpoint_modified.notify (b);
1174 }
1175
1176 /* Set the internal `silent' flag on the breakpoint. Note that this
1177 is not the same as the "silent" that may appear in the breakpoint's
1178 commands. */
1179
1180 void
1181 breakpoint_set_silent (struct breakpoint *b, int silent)
1182 {
1183 int old_silent = b->silent;
1184
1185 b->silent = silent;
1186 if (old_silent != silent)
1187 gdb::observers::breakpoint_modified.notify (b);
1188 }
1189
1190 /* Set the thread for this breakpoint. If THREAD is -1, make the
1191 breakpoint work for any thread. */
1192
1193 void
1194 breakpoint_set_thread (struct breakpoint *b, int thread)
1195 {
1196 int old_thread = b->thread;
1197
1198 b->thread = thread;
1199 if (old_thread != thread)
1200 gdb::observers::breakpoint_modified.notify (b);
1201 }
1202
1203 /* Set the task for this breakpoint. If TASK is 0, make the
1204 breakpoint work for any task. */
1205
1206 void
1207 breakpoint_set_task (struct breakpoint *b, int task)
1208 {
1209 int old_task = b->task;
1210
1211 b->task = task;
1212 if (old_task != task)
1213 gdb::observers::breakpoint_modified.notify (b);
1214 }
1215
1216 static void
1217 commands_command_1 (const char *arg, int from_tty,
1218 struct command_line *control)
1219 {
1220 counted_command_line cmd;
1221 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1222 NULL after the call to read_command_lines if the user provides an empty
1223 list of command by just typing "end". */
1224 bool cmd_read = false;
1225
1226 std::string new_arg;
1227
1228 if (arg == NULL || !*arg)
1229 {
1230 if (breakpoint_count - prev_breakpoint_count > 1)
1231 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1232 breakpoint_count);
1233 else if (breakpoint_count > 0)
1234 new_arg = string_printf ("%d", breakpoint_count);
1235 arg = new_arg.c_str ();
1236 }
1237
1238 map_breakpoint_numbers
1239 (arg, [&] (breakpoint *b)
1240 {
1241 if (!cmd_read)
1242 {
1243 gdb_assert (cmd == NULL);
1244 if (control != NULL)
1245 cmd = control->body_list_0;
1246 else
1247 {
1248 std::string str
1249 = string_printf (_("Type commands for breakpoint(s) "
1250 "%s, one per line."),
1251 arg);
1252
1253 auto do_validate = [=] (const char *line)
1254 {
1255 validate_actionline (line, b);
1256 };
1257 gdb::function_view<void (const char *)> validator;
1258 if (is_tracepoint (b))
1259 validator = do_validate;
1260
1261 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1262 }
1263 cmd_read = true;
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (b->watchpoint_thread == null_ptid
1553 || (inferior_ptid == b->watchpoint_thread
1554 && !inferior_thread ()->executing)));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 b->val = NULL;
1744 b->val_valid = 0;
1745
1746 /* Note that unlike with breakpoints, the watchpoint's condition
1747 expression is stored in the breakpoint object, not in the
1748 locations (re)created below. */
1749 if (b->cond_string != NULL)
1750 {
1751 b->cond_exp.reset ();
1752
1753 s = b->cond_string;
1754 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1755 }
1756 }
1757
1758 /* If we failed to parse the expression, for example because
1759 it refers to a global variable in a not-yet-loaded shared library,
1760 don't try to insert watchpoint. We don't automatically delete
1761 such watchpoint, though, since failure to parse expression
1762 is different from out-of-scope watchpoint. */
1763 if (!target_has_execution)
1764 {
1765 /* Without execution, memory can't change. No use to try and
1766 set watchpoint locations. The watchpoint will be reset when
1767 the target gains execution, through breakpoint_re_set. */
1768 if (!can_use_hw_watchpoints)
1769 {
1770 if (b->ops->works_in_software_mode (b))
1771 b->type = bp_watchpoint;
1772 else
1773 error (_("Can't set read/access watchpoint when "
1774 "hardware watchpoints are disabled."));
1775 }
1776 }
1777 else if (within_current_scope && b->exp)
1778 {
1779 int pc = 0;
1780 std::vector<value_ref_ptr> val_chain;
1781 struct value *v, *result;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 v = extract_bitfield_from_watchpoint_value (b, v);
1796 b->val = release_value (v);
1797 b->val_valid = 1;
1798 }
1799
1800 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1801
1802 /* Look at each value on the value chain. */
1803 gdb_assert (!val_chain.empty ());
1804 for (const value_ref_ptr &iter : val_chain)
1805 {
1806 v = iter.get ();
1807
1808 /* If it's a memory location, and GDB actually needed
1809 its contents to evaluate the expression, then we
1810 must watch it. If the first value returned is
1811 still lazy, that means an error occurred reading it;
1812 watch it anyway in case it becomes readable. */
1813 if (VALUE_LVAL (v) == lval_memory
1814 && (v == val_chain[0] || ! value_lazy (v)))
1815 {
1816 struct type *vtype = check_typedef (value_type (v));
1817
1818 /* We only watch structs and arrays if user asked
1819 for it explicitly, never if they just happen to
1820 appear in the middle of some value chain. */
1821 if (v == result
1822 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1823 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1824 {
1825 CORE_ADDR addr;
1826 enum target_hw_bp_type type;
1827 struct bp_location *loc, **tmp;
1828 int bitpos = 0, bitsize = 0;
1829
1830 if (value_bitsize (v) != 0)
1831 {
1832 /* Extract the bit parameters out from the bitfield
1833 sub-expression. */
1834 bitpos = value_bitpos (v);
1835 bitsize = value_bitsize (v);
1836 }
1837 else if (v == result && b->val_bitsize != 0)
1838 {
1839 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1840 lvalue whose bit parameters are saved in the fields
1841 VAL_BITPOS and VAL_BITSIZE. */
1842 bitpos = b->val_bitpos;
1843 bitsize = b->val_bitsize;
1844 }
1845
1846 addr = value_address (v);
1847 if (bitsize != 0)
1848 {
1849 /* Skip the bytes that don't contain the bitfield. */
1850 addr += bitpos / 8;
1851 }
1852
1853 type = hw_write;
1854 if (b->type == bp_read_watchpoint)
1855 type = hw_read;
1856 else if (b->type == bp_access_watchpoint)
1857 type = hw_access;
1858
1859 loc = allocate_bp_location (b);
1860 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1861 ;
1862 *tmp = loc;
1863 loc->gdbarch = get_type_arch (value_type (v));
1864
1865 loc->pspace = frame_pspace;
1866 loc->address = address_significant (loc->gdbarch, addr);
1867
1868 if (bitsize != 0)
1869 {
1870 /* Just cover the bytes that make up the bitfield. */
1871 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1872 }
1873 else
1874 loc->length = TYPE_LENGTH (value_type (v));
1875
1876 loc->watchpoint_type = type;
1877 }
1878 }
1879 }
1880
1881 /* Change the type of breakpoint between hardware assisted or
1882 an ordinary watchpoint depending on the hardware support
1883 and free hardware slots. REPARSE is set when the inferior
1884 is started. */
1885 if (reparse)
1886 {
1887 int reg_cnt;
1888 enum bp_loc_type loc_type;
1889 struct bp_location *bl;
1890
1891 reg_cnt = can_use_hardware_watchpoint (val_chain);
1892
1893 if (reg_cnt)
1894 {
1895 int i, target_resources_ok, other_type_used;
1896 enum bptype type;
1897
1898 /* Use an exact watchpoint when there's only one memory region to be
1899 watched, and only one debug register is needed to watch it. */
1900 b->exact = target_exact_watchpoints && reg_cnt == 1;
1901
1902 /* We need to determine how many resources are already
1903 used for all other hardware watchpoints plus this one
1904 to see if we still have enough resources to also fit
1905 this watchpoint in as well. */
1906
1907 /* If this is a software watchpoint, we try to turn it
1908 to a hardware one -- count resources as if B was of
1909 hardware watchpoint type. */
1910 type = b->type;
1911 if (type == bp_watchpoint)
1912 type = bp_hardware_watchpoint;
1913
1914 /* This watchpoint may or may not have been placed on
1915 the list yet at this point (it won't be in the list
1916 if we're trying to create it for the first time,
1917 through watch_command), so always account for it
1918 manually. */
1919
1920 /* Count resources used by all watchpoints except B. */
1921 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1922
1923 /* Add in the resources needed for B. */
1924 i += hw_watchpoint_use_count (b);
1925
1926 target_resources_ok
1927 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1928 if (target_resources_ok <= 0)
1929 {
1930 int sw_mode = b->ops->works_in_software_mode (b);
1931
1932 if (target_resources_ok == 0 && !sw_mode)
1933 error (_("Target does not support this type of "
1934 "hardware watchpoint."));
1935 else if (target_resources_ok < 0 && !sw_mode)
1936 error (_("There are not enough available hardware "
1937 "resources for this watchpoint."));
1938
1939 /* Downgrade to software watchpoint. */
1940 b->type = bp_watchpoint;
1941 }
1942 else
1943 {
1944 /* If this was a software watchpoint, we've just
1945 found we have enough resources to turn it to a
1946 hardware watchpoint. Otherwise, this is a
1947 nop. */
1948 b->type = type;
1949 }
1950 }
1951 else if (!b->ops->works_in_software_mode (b))
1952 {
1953 if (!can_use_hw_watchpoints)
1954 error (_("Can't set read/access watchpoint when "
1955 "hardware watchpoints are disabled."));
1956 else
1957 error (_("Expression cannot be implemented with "
1958 "read/access watchpoint."));
1959 }
1960 else
1961 b->type = bp_watchpoint;
1962
1963 loc_type = (b->type == bp_watchpoint? bp_loc_other
1964 : bp_loc_hardware_watchpoint);
1965 for (bl = b->loc; bl; bl = bl->next)
1966 bl->loc_type = loc_type;
1967 }
1968
1969 /* If a software watchpoint is not watching any memory, then the
1970 above left it without any location set up. But,
1971 bpstat_stop_status requires a location to be able to report
1972 stops, so make sure there's at least a dummy one. */
1973 if (b->type == bp_watchpoint && b->loc == NULL)
1974 software_watchpoint_add_no_memory_location (b, frame_pspace);
1975 }
1976 else if (!within_current_scope)
1977 {
1978 printf_filtered (_("\
1979 Watchpoint %d deleted because the program has left the block\n\
1980 in which its expression is valid.\n"),
1981 b->number);
1982 watchpoint_del_at_next_stop (b);
1983 }
1984
1985 /* Restore the selected frame. */
1986 if (frame_saved)
1987 select_frame (frame_find_by_id (saved_frame_id));
1988 }
1989
1990
1991 /* Returns 1 iff breakpoint location should be
1992 inserted in the inferior. We don't differentiate the type of BL's owner
1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1994 breakpoint_ops is not defined, because in insert_bp_location,
1995 tracepoint's insert_location will not be called. */
1996 static int
1997 should_be_inserted (struct bp_location *bl)
1998 {
1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2000 return 0;
2001
2002 if (bl->owner->disposition == disp_del_at_next_stop)
2003 return 0;
2004
2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2006 return 0;
2007
2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2009 return 0;
2010
2011 /* This is set for example, when we're attached to the parent of a
2012 vfork, and have detached from the child. The child is running
2013 free, and we expect it to do an exec or exit, at which point the
2014 OS makes the parent schedulable again (and the target reports
2015 that the vfork is done). Until the child is done with the shared
2016 memory region, do not insert breakpoints in the parent, otherwise
2017 the child could still trip on the parent's breakpoints. Since
2018 the parent is blocked anyway, it won't miss any breakpoint. */
2019 if (bl->pspace->breakpoints_not_allowed)
2020 return 0;
2021
2022 /* Don't insert a breakpoint if we're trying to step past its
2023 location, except if the breakpoint is a single-step breakpoint,
2024 and the breakpoint's thread is the thread which is stepping past
2025 a breakpoint. */
2026 if ((bl->loc_type == bp_loc_software_breakpoint
2027 || bl->loc_type == bp_loc_hardware_breakpoint)
2028 && stepping_past_instruction_at (bl->pspace->aspace,
2029 bl->address)
2030 /* The single-step breakpoint may be inserted at the location
2031 we're trying to step if the instruction branches to itself.
2032 However, the instruction won't be executed at all and it may
2033 break the semantics of the instruction, for example, the
2034 instruction is a conditional branch or updates some flags.
2035 We can't fix it unless GDB is able to emulate the instruction
2036 or switch to displaced stepping. */
2037 && !(bl->owner->type == bp_single_step
2038 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2039 {
2040 if (debug_infrun)
2041 {
2042 fprintf_unfiltered (gdb_stdlog,
2043 "infrun: skipping breakpoint: "
2044 "stepping past insn at: %s\n",
2045 paddress (bl->gdbarch, bl->address));
2046 }
2047 return 0;
2048 }
2049
2050 /* Don't insert watchpoints if we're trying to step past the
2051 instruction that triggered one. */
2052 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2053 && stepping_past_nonsteppable_watchpoint ())
2054 {
2055 if (debug_infrun)
2056 {
2057 fprintf_unfiltered (gdb_stdlog,
2058 "infrun: stepping past non-steppable watchpoint. "
2059 "skipping watchpoint at %s:%d\n",
2060 paddress (bl->gdbarch, bl->address),
2061 bl->length);
2062 }
2063 return 0;
2064 }
2065
2066 return 1;
2067 }
2068
2069 /* Same as should_be_inserted but does the check assuming
2070 that the location is not duplicated. */
2071
2072 static int
2073 unduplicated_should_be_inserted (struct bp_location *bl)
2074 {
2075 int result;
2076 const int save_duplicate = bl->duplicate;
2077
2078 bl->duplicate = 0;
2079 result = should_be_inserted (bl);
2080 bl->duplicate = save_duplicate;
2081 return result;
2082 }
2083
2084 /* Parses a conditional described by an expression COND into an
2085 agent expression bytecode suitable for evaluation
2086 by the bytecode interpreter. Return NULL if there was
2087 any error during parsing. */
2088
2089 static agent_expr_up
2090 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2091 {
2092 if (cond == NULL)
2093 return NULL;
2094
2095 agent_expr_up aexpr;
2096
2097 /* We don't want to stop processing, so catch any errors
2098 that may show up. */
2099 TRY
2100 {
2101 aexpr = gen_eval_for_expr (scope, cond);
2102 }
2103
2104 CATCH (ex, RETURN_MASK_ERROR)
2105 {
2106 /* If we got here, it means the condition could not be parsed to a valid
2107 bytecode expression and thus can't be evaluated on the target's side.
2108 It's no use iterating through the conditions. */
2109 }
2110 END_CATCH
2111
2112 /* We have a valid agent expression. */
2113 return aexpr;
2114 }
2115
2116 /* Based on location BL, create a list of breakpoint conditions to be
2117 passed on to the target. If we have duplicated locations with different
2118 conditions, we will add such conditions to the list. The idea is that the
2119 target will evaluate the list of conditions and will only notify GDB when
2120 one of them is true. */
2121
2122 static void
2123 build_target_condition_list (struct bp_location *bl)
2124 {
2125 struct bp_location **locp = NULL, **loc2p;
2126 int null_condition_or_parse_error = 0;
2127 int modified = bl->needs_update;
2128 struct bp_location *loc;
2129
2130 /* Release conditions left over from a previous insert. */
2131 bl->target_info.conditions.clear ();
2132
2133 /* This is only meaningful if the target is
2134 evaluating conditions and if the user has
2135 opted for condition evaluation on the target's
2136 side. */
2137 if (gdb_evaluates_breakpoint_condition_p ()
2138 || !target_supports_evaluation_of_breakpoint_conditions ())
2139 return;
2140
2141 /* Do a first pass to check for locations with no assigned
2142 conditions or conditions that fail to parse to a valid agent expression
2143 bytecode. If any of these happen, then it's no use to send conditions
2144 to the target since this location will always trigger and generate a
2145 response back to GDB. */
2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2147 {
2148 loc = (*loc2p);
2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2150 {
2151 if (modified)
2152 {
2153 /* Re-parse the conditions since something changed. In that
2154 case we already freed the condition bytecodes (see
2155 force_breakpoint_reinsertion). We just
2156 need to parse the condition to bytecodes again. */
2157 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2158 loc->cond.get ());
2159 }
2160
2161 /* If we have a NULL bytecode expression, it means something
2162 went wrong or we have a null condition expression. */
2163 if (!loc->cond_bytecode)
2164 {
2165 null_condition_or_parse_error = 1;
2166 break;
2167 }
2168 }
2169 }
2170
2171 /* If any of these happened, it means we will have to evaluate the conditions
2172 for the location's address on gdb's side. It is no use keeping bytecodes
2173 for all the other duplicate locations, thus we free all of them here.
2174
2175 This is so we have a finer control over which locations' conditions are
2176 being evaluated by GDB or the remote stub. */
2177 if (null_condition_or_parse_error)
2178 {
2179 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2180 {
2181 loc = (*loc2p);
2182 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2183 {
2184 /* Only go as far as the first NULL bytecode is
2185 located. */
2186 if (!loc->cond_bytecode)
2187 return;
2188
2189 loc->cond_bytecode.reset ();
2190 }
2191 }
2192 }
2193
2194 /* No NULL conditions or failed bytecode generation. Build a condition list
2195 for this location's address. */
2196 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2197 {
2198 loc = (*loc2p);
2199 if (loc->cond
2200 && is_breakpoint (loc->owner)
2201 && loc->pspace->num == bl->pspace->num
2202 && loc->owner->enable_state == bp_enabled
2203 && loc->enabled)
2204 {
2205 /* Add the condition to the vector. This will be used later
2206 to send the conditions to the target. */
2207 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 /* Parses a command described by string CMD into an agent expression
2215 bytecode suitable for evaluation by the bytecode interpreter.
2216 Return NULL if there was any error during parsing. */
2217
2218 static agent_expr_up
2219 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2220 {
2221 const char *cmdrest;
2222 const char *format_start, *format_end;
2223 struct gdbarch *gdbarch = get_current_arch ();
2224
2225 if (cmd == NULL)
2226 return NULL;
2227
2228 cmdrest = cmd;
2229
2230 if (*cmdrest == ',')
2231 ++cmdrest;
2232 cmdrest = skip_spaces (cmdrest);
2233
2234 if (*cmdrest++ != '"')
2235 error (_("No format string following the location"));
2236
2237 format_start = cmdrest;
2238
2239 format_pieces fpieces (&cmdrest);
2240
2241 format_end = cmdrest;
2242
2243 if (*cmdrest++ != '"')
2244 error (_("Bad format string, non-terminated '\"'."));
2245
2246 cmdrest = skip_spaces (cmdrest);
2247
2248 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2249 error (_("Invalid argument syntax"));
2250
2251 if (*cmdrest == ',')
2252 cmdrest++;
2253 cmdrest = skip_spaces (cmdrest);
2254
2255 /* For each argument, make an expression. */
2256
2257 std::vector<struct expression *> argvec;
2258 while (*cmdrest != '\0')
2259 {
2260 const char *cmd1;
2261
2262 cmd1 = cmdrest;
2263 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2264 argvec.push_back (expr.release ());
2265 cmdrest = cmd1;
2266 if (*cmdrest == ',')
2267 ++cmdrest;
2268 }
2269
2270 agent_expr_up aexpr;
2271
2272 /* We don't want to stop processing, so catch any errors
2273 that may show up. */
2274 TRY
2275 {
2276 aexpr = gen_printf (scope, gdbarch, 0, 0,
2277 format_start, format_end - format_start,
2278 argvec.size (), argvec.data ());
2279 }
2280 CATCH (ex, RETURN_MASK_ERROR)
2281 {
2282 /* If we got here, it means the command could not be parsed to a valid
2283 bytecode expression and thus can't be evaluated on the target's side.
2284 It's no use iterating through the other commands. */
2285 }
2286 END_CATCH
2287
2288 /* We have a valid agent expression, return it. */
2289 return aexpr;
2290 }
2291
2292 /* Based on location BL, create a list of breakpoint commands to be
2293 passed on to the target. If we have duplicated locations with
2294 different commands, we will add any such to the list. */
2295
2296 static void
2297 build_target_command_list (struct bp_location *bl)
2298 {
2299 struct bp_location **locp = NULL, **loc2p;
2300 int null_command_or_parse_error = 0;
2301 int modified = bl->needs_update;
2302 struct bp_location *loc;
2303
2304 /* Clear commands left over from a previous insert. */
2305 bl->target_info.tcommands.clear ();
2306
2307 if (!target_can_run_breakpoint_commands ())
2308 return;
2309
2310 /* For now, limit to agent-style dprintf breakpoints. */
2311 if (dprintf_style != dprintf_style_agent)
2312 return;
2313
2314 /* For now, if we have any duplicate location that isn't a dprintf,
2315 don't install the target-side commands, as that would make the
2316 breakpoint not be reported to the core, and we'd lose
2317 control. */
2318 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2319 {
2320 loc = (*loc2p);
2321 if (is_breakpoint (loc->owner)
2322 && loc->pspace->num == bl->pspace->num
2323 && loc->owner->type != bp_dprintf)
2324 return;
2325 }
2326
2327 /* Do a first pass to check for locations with no assigned
2328 conditions or conditions that fail to parse to a valid agent expression
2329 bytecode. If any of these happen, then it's no use to send conditions
2330 to the target since this location will always trigger and generate a
2331 response back to GDB. */
2332 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2333 {
2334 loc = (*loc2p);
2335 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2336 {
2337 if (modified)
2338 {
2339 /* Re-parse the commands since something changed. In that
2340 case we already freed the command bytecodes (see
2341 force_breakpoint_reinsertion). We just
2342 need to parse the command to bytecodes again. */
2343 loc->cmd_bytecode
2344 = parse_cmd_to_aexpr (bl->address,
2345 loc->owner->extra_string);
2346 }
2347
2348 /* If we have a NULL bytecode expression, it means something
2349 went wrong or we have a null command expression. */
2350 if (!loc->cmd_bytecode)
2351 {
2352 null_command_or_parse_error = 1;
2353 break;
2354 }
2355 }
2356 }
2357
2358 /* If anything failed, then we're not doing target-side commands,
2359 and so clean up. */
2360 if (null_command_or_parse_error)
2361 {
2362 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2363 {
2364 loc = (*loc2p);
2365 if (is_breakpoint (loc->owner)
2366 && loc->pspace->num == bl->pspace->num)
2367 {
2368 /* Only go as far as the first NULL bytecode is
2369 located. */
2370 if (loc->cmd_bytecode == NULL)
2371 return;
2372
2373 loc->cmd_bytecode.reset ();
2374 }
2375 }
2376 }
2377
2378 /* No NULL commands or failed bytecode generation. Build a command list
2379 for this location's address. */
2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2381 {
2382 loc = (*loc2p);
2383 if (loc->owner->extra_string
2384 && is_breakpoint (loc->owner)
2385 && loc->pspace->num == bl->pspace->num
2386 && loc->owner->enable_state == bp_enabled
2387 && loc->enabled)
2388 {
2389 /* Add the command to the vector. This will be used later
2390 to send the commands to the target. */
2391 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2392 }
2393 }
2394
2395 bl->target_info.persist = 0;
2396 /* Maybe flag this location as persistent. */
2397 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2398 bl->target_info.persist = 1;
2399 }
2400
2401 /* Return the kind of breakpoint on address *ADDR. Get the kind
2402 of breakpoint according to ADDR except single-step breakpoint.
2403 Get the kind of single-step breakpoint according to the current
2404 registers state. */
2405
2406 static int
2407 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2408 {
2409 if (bl->owner->type == bp_single_step)
2410 {
2411 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2412 struct regcache *regcache;
2413
2414 regcache = get_thread_regcache (thr);
2415
2416 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2417 regcache, addr);
2418 }
2419 else
2420 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2421 }
2422
2423 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2424 location. Any error messages are printed to TMP_ERROR_STREAM; and
2425 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2426 Returns 0 for success, 1 if the bp_location type is not supported or
2427 -1 for failure.
2428
2429 NOTE drow/2003-09-09: This routine could be broken down to an
2430 object-style method for each breakpoint or catchpoint type. */
2431 static int
2432 insert_bp_location (struct bp_location *bl,
2433 struct ui_file *tmp_error_stream,
2434 int *disabled_breaks,
2435 int *hw_breakpoint_error,
2436 int *hw_bp_error_explained_already)
2437 {
2438 gdb_exception bp_excpt = exception_none;
2439
2440 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2441 return 0;
2442
2443 /* Note we don't initialize bl->target_info, as that wipes out
2444 the breakpoint location's shadow_contents if the breakpoint
2445 is still inserted at that location. This in turn breaks
2446 target_read_memory which depends on these buffers when
2447 a memory read is requested at the breakpoint location:
2448 Once the target_info has been wiped, we fail to see that
2449 we have a breakpoint inserted at that address and thus
2450 read the breakpoint instead of returning the data saved in
2451 the breakpoint location's shadow contents. */
2452 bl->target_info.reqstd_address = bl->address;
2453 bl->target_info.placed_address_space = bl->pspace->aspace;
2454 bl->target_info.length = bl->length;
2455
2456 /* When working with target-side conditions, we must pass all the conditions
2457 for the same breakpoint address down to the target since GDB will not
2458 insert those locations. With a list of breakpoint conditions, the target
2459 can decide when to stop and notify GDB. */
2460
2461 if (is_breakpoint (bl->owner))
2462 {
2463 build_target_condition_list (bl);
2464 build_target_command_list (bl);
2465 /* Reset the modification marker. */
2466 bl->needs_update = 0;
2467 }
2468
2469 if (bl->loc_type == bp_loc_software_breakpoint
2470 || bl->loc_type == bp_loc_hardware_breakpoint)
2471 {
2472 if (bl->owner->type != bp_hardware_breakpoint)
2473 {
2474 /* If the explicitly specified breakpoint type
2475 is not hardware breakpoint, check the memory map to see
2476 if the breakpoint address is in read only memory or not.
2477
2478 Two important cases are:
2479 - location type is not hardware breakpoint, memory
2480 is readonly. We change the type of the location to
2481 hardware breakpoint.
2482 - location type is hardware breakpoint, memory is
2483 read-write. This means we've previously made the
2484 location hardware one, but then the memory map changed,
2485 so we undo.
2486
2487 When breakpoints are removed, remove_breakpoints will use
2488 location types we've just set here, the only possible
2489 problem is that memory map has changed during running
2490 program, but it's not going to work anyway with current
2491 gdb. */
2492 struct mem_region *mr
2493 = lookup_mem_region (bl->target_info.reqstd_address);
2494
2495 if (mr)
2496 {
2497 if (automatic_hardware_breakpoints)
2498 {
2499 enum bp_loc_type new_type;
2500
2501 if (mr->attrib.mode != MEM_RW)
2502 new_type = bp_loc_hardware_breakpoint;
2503 else
2504 new_type = bp_loc_software_breakpoint;
2505
2506 if (new_type != bl->loc_type)
2507 {
2508 static int said = 0;
2509
2510 bl->loc_type = new_type;
2511 if (!said)
2512 {
2513 fprintf_filtered (gdb_stdout,
2514 _("Note: automatically using "
2515 "hardware breakpoints for "
2516 "read-only addresses.\n"));
2517 said = 1;
2518 }
2519 }
2520 }
2521 else if (bl->loc_type == bp_loc_software_breakpoint
2522 && mr->attrib.mode != MEM_RW)
2523 {
2524 fprintf_unfiltered (tmp_error_stream,
2525 _("Cannot insert breakpoint %d.\n"
2526 "Cannot set software breakpoint "
2527 "at read-only address %s\n"),
2528 bl->owner->number,
2529 paddress (bl->gdbarch, bl->address));
2530 return 1;
2531 }
2532 }
2533 }
2534
2535 /* First check to see if we have to handle an overlay. */
2536 if (overlay_debugging == ovly_off
2537 || bl->section == NULL
2538 || !(section_is_overlay (bl->section)))
2539 {
2540 /* No overlay handling: just set the breakpoint. */
2541 TRY
2542 {
2543 int val;
2544
2545 val = bl->owner->ops->insert_location (bl);
2546 if (val)
2547 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2548 }
2549 CATCH (e, RETURN_MASK_ALL)
2550 {
2551 bp_excpt = e;
2552 }
2553 END_CATCH
2554 }
2555 else
2556 {
2557 /* This breakpoint is in an overlay section.
2558 Shall we set a breakpoint at the LMA? */
2559 if (!overlay_events_enabled)
2560 {
2561 /* Yes -- overlay event support is not active,
2562 so we must try to set a breakpoint at the LMA.
2563 This will not work for a hardware breakpoint. */
2564 if (bl->loc_type == bp_loc_hardware_breakpoint)
2565 warning (_("hardware breakpoint %d not supported in overlay!"),
2566 bl->owner->number);
2567 else
2568 {
2569 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2570 bl->section);
2571 /* Set a software (trap) breakpoint at the LMA. */
2572 bl->overlay_target_info = bl->target_info;
2573 bl->overlay_target_info.reqstd_address = addr;
2574
2575 /* No overlay handling: just set the breakpoint. */
2576 TRY
2577 {
2578 int val;
2579
2580 bl->overlay_target_info.kind
2581 = breakpoint_kind (bl, &addr);
2582 bl->overlay_target_info.placed_address = addr;
2583 val = target_insert_breakpoint (bl->gdbarch,
2584 &bl->overlay_target_info);
2585 if (val)
2586 bp_excpt
2587 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2588 }
2589 CATCH (e, RETURN_MASK_ALL)
2590 {
2591 bp_excpt = e;
2592 }
2593 END_CATCH
2594
2595 if (bp_excpt.reason != 0)
2596 fprintf_unfiltered (tmp_error_stream,
2597 "Overlay breakpoint %d "
2598 "failed: in ROM?\n",
2599 bl->owner->number);
2600 }
2601 }
2602 /* Shall we set a breakpoint at the VMA? */
2603 if (section_is_mapped (bl->section))
2604 {
2605 /* Yes. This overlay section is mapped into memory. */
2606 TRY
2607 {
2608 int val;
2609
2610 val = bl->owner->ops->insert_location (bl);
2611 if (val)
2612 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2613 }
2614 CATCH (e, RETURN_MASK_ALL)
2615 {
2616 bp_excpt = e;
2617 }
2618 END_CATCH
2619 }
2620 else
2621 {
2622 /* No. This breakpoint will not be inserted.
2623 No error, but do not mark the bp as 'inserted'. */
2624 return 0;
2625 }
2626 }
2627
2628 if (bp_excpt.reason != 0)
2629 {
2630 /* Can't set the breakpoint. */
2631
2632 /* In some cases, we might not be able to insert a
2633 breakpoint in a shared library that has already been
2634 removed, but we have not yet processed the shlib unload
2635 event. Unfortunately, some targets that implement
2636 breakpoint insertion themselves can't tell why the
2637 breakpoint insertion failed (e.g., the remote target
2638 doesn't define error codes), so we must treat generic
2639 errors as memory errors. */
2640 if (bp_excpt.reason == RETURN_ERROR
2641 && (bp_excpt.error == GENERIC_ERROR
2642 || bp_excpt.error == MEMORY_ERROR)
2643 && bl->loc_type == bp_loc_software_breakpoint
2644 && (solib_name_from_address (bl->pspace, bl->address)
2645 || shared_objfile_contains_address_p (bl->pspace,
2646 bl->address)))
2647 {
2648 /* See also: disable_breakpoints_in_shlibs. */
2649 bl->shlib_disabled = 1;
2650 gdb::observers::breakpoint_modified.notify (bl->owner);
2651 if (!*disabled_breaks)
2652 {
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Cannot insert breakpoint %d.\n",
2655 bl->owner->number);
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Temporarily disabling shared "
2658 "library breakpoints:\n");
2659 }
2660 *disabled_breaks = 1;
2661 fprintf_unfiltered (tmp_error_stream,
2662 "breakpoint #%d\n", bl->owner->number);
2663 return 0;
2664 }
2665 else
2666 {
2667 if (bl->loc_type == bp_loc_hardware_breakpoint)
2668 {
2669 *hw_breakpoint_error = 1;
2670 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2671 fprintf_unfiltered (tmp_error_stream,
2672 "Cannot insert hardware breakpoint %d%s",
2673 bl->owner->number,
2674 bp_excpt.message ? ":" : ".\n");
2675 if (bp_excpt.message != NULL)
2676 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2677 bp_excpt.message);
2678 }
2679 else
2680 {
2681 if (bp_excpt.message == NULL)
2682 {
2683 std::string message
2684 = memory_error_message (TARGET_XFER_E_IO,
2685 bl->gdbarch, bl->address);
2686
2687 fprintf_unfiltered (tmp_error_stream,
2688 "Cannot insert breakpoint %d.\n"
2689 "%s\n",
2690 bl->owner->number, message.c_str ());
2691 }
2692 else
2693 {
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert breakpoint %d: %s\n",
2696 bl->owner->number,
2697 bp_excpt.message);
2698 }
2699 }
2700 return 1;
2701
2702 }
2703 }
2704 else
2705 bl->inserted = 1;
2706
2707 return 0;
2708 }
2709
2710 else if (bl->loc_type == bp_loc_hardware_watchpoint
2711 /* NOTE drow/2003-09-08: This state only exists for removing
2712 watchpoints. It's not clear that it's necessary... */
2713 && bl->owner->disposition != disp_del_at_next_stop)
2714 {
2715 int val;
2716
2717 gdb_assert (bl->owner->ops != NULL
2718 && bl->owner->ops->insert_location != NULL);
2719
2720 val = bl->owner->ops->insert_location (bl);
2721
2722 /* If trying to set a read-watchpoint, and it turns out it's not
2723 supported, try emulating one with an access watchpoint. */
2724 if (val == 1 && bl->watchpoint_type == hw_read)
2725 {
2726 struct bp_location *loc, **loc_temp;
2727
2728 /* But don't try to insert it, if there's already another
2729 hw_access location that would be considered a duplicate
2730 of this one. */
2731 ALL_BP_LOCATIONS (loc, loc_temp)
2732 if (loc != bl
2733 && loc->watchpoint_type == hw_access
2734 && watchpoint_locations_match (bl, loc))
2735 {
2736 bl->duplicate = 1;
2737 bl->inserted = 1;
2738 bl->target_info = loc->target_info;
2739 bl->watchpoint_type = hw_access;
2740 val = 0;
2741 break;
2742 }
2743
2744 if (val == 1)
2745 {
2746 bl->watchpoint_type = hw_access;
2747 val = bl->owner->ops->insert_location (bl);
2748
2749 if (val)
2750 /* Back to the original value. */
2751 bl->watchpoint_type = hw_read;
2752 }
2753 }
2754
2755 bl->inserted = (val == 0);
2756 }
2757
2758 else if (bl->owner->type == bp_catchpoint)
2759 {
2760 int val;
2761
2762 gdb_assert (bl->owner->ops != NULL
2763 && bl->owner->ops->insert_location != NULL);
2764
2765 val = bl->owner->ops->insert_location (bl);
2766 if (val)
2767 {
2768 bl->owner->enable_state = bp_disabled;
2769
2770 if (val == 1)
2771 warning (_("\
2772 Error inserting catchpoint %d: Your system does not support this type\n\
2773 of catchpoint."), bl->owner->number);
2774 else
2775 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2776 }
2777
2778 bl->inserted = (val == 0);
2779
2780 /* We've already printed an error message if there was a problem
2781 inserting this catchpoint, and we've disabled the catchpoint,
2782 so just return success. */
2783 return 0;
2784 }
2785
2786 return 0;
2787 }
2788
2789 /* This function is called when program space PSPACE is about to be
2790 deleted. It takes care of updating breakpoints to not reference
2791 PSPACE anymore. */
2792
2793 void
2794 breakpoint_program_space_exit (struct program_space *pspace)
2795 {
2796 struct breakpoint *b, *b_temp;
2797 struct bp_location *loc, **loc_temp;
2798
2799 /* Remove any breakpoint that was set through this program space. */
2800 ALL_BREAKPOINTS_SAFE (b, b_temp)
2801 {
2802 if (b->pspace == pspace)
2803 delete_breakpoint (b);
2804 }
2805
2806 /* Breakpoints set through other program spaces could have locations
2807 bound to PSPACE as well. Remove those. */
2808 ALL_BP_LOCATIONS (loc, loc_temp)
2809 {
2810 struct bp_location *tmp;
2811
2812 if (loc->pspace == pspace)
2813 {
2814 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2815 if (loc->owner->loc == loc)
2816 loc->owner->loc = loc->next;
2817 else
2818 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2819 if (tmp->next == loc)
2820 {
2821 tmp->next = loc->next;
2822 break;
2823 }
2824 }
2825 }
2826
2827 /* Now update the global location list to permanently delete the
2828 removed locations above. */
2829 update_global_location_list (UGLL_DONT_INSERT);
2830 }
2831
2832 /* Make sure all breakpoints are inserted in inferior.
2833 Throws exception on any error.
2834 A breakpoint that is already inserted won't be inserted
2835 again, so calling this function twice is safe. */
2836 void
2837 insert_breakpoints (void)
2838 {
2839 struct breakpoint *bpt;
2840
2841 ALL_BREAKPOINTS (bpt)
2842 if (is_hardware_watchpoint (bpt))
2843 {
2844 struct watchpoint *w = (struct watchpoint *) bpt;
2845
2846 update_watchpoint (w, 0 /* don't reparse. */);
2847 }
2848
2849 /* Updating watchpoints creates new locations, so update the global
2850 location list. Explicitly tell ugll to insert locations and
2851 ignore breakpoints_always_inserted_mode. */
2852 update_global_location_list (UGLL_INSERT);
2853 }
2854
2855 /* Invoke CALLBACK for each of bp_location. */
2856
2857 void
2858 iterate_over_bp_locations (walk_bp_location_callback callback)
2859 {
2860 struct bp_location *loc, **loc_tmp;
2861
2862 ALL_BP_LOCATIONS (loc, loc_tmp)
2863 {
2864 callback (loc, NULL);
2865 }
2866 }
2867
2868 /* This is used when we need to synch breakpoint conditions between GDB and the
2869 target. It is the case with deleting and disabling of breakpoints when using
2870 always-inserted mode. */
2871
2872 static void
2873 update_inserted_breakpoint_locations (void)
2874 {
2875 struct bp_location *bl, **blp_tmp;
2876 int error_flag = 0;
2877 int val = 0;
2878 int disabled_breaks = 0;
2879 int hw_breakpoint_error = 0;
2880 int hw_bp_details_reported = 0;
2881
2882 string_file tmp_error_stream;
2883
2884 /* Explicitly mark the warning -- this will only be printed if
2885 there was an error. */
2886 tmp_error_stream.puts ("Warning:\n");
2887
2888 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2889
2890 ALL_BP_LOCATIONS (bl, blp_tmp)
2891 {
2892 /* We only want to update software breakpoints and hardware
2893 breakpoints. */
2894 if (!is_breakpoint (bl->owner))
2895 continue;
2896
2897 /* We only want to update locations that are already inserted
2898 and need updating. This is to avoid unwanted insertion during
2899 deletion of breakpoints. */
2900 if (!bl->inserted || !bl->needs_update)
2901 continue;
2902
2903 switch_to_program_space_and_thread (bl->pspace);
2904
2905 /* For targets that support global breakpoints, there's no need
2906 to select an inferior to insert breakpoint to. In fact, even
2907 if we aren't attached to any process yet, we should still
2908 insert breakpoints. */
2909 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2910 && inferior_ptid == null_ptid)
2911 continue;
2912
2913 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2914 &hw_breakpoint_error, &hw_bp_details_reported);
2915 if (val)
2916 error_flag = val;
2917 }
2918
2919 if (error_flag)
2920 {
2921 target_terminal::ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924 }
2925
2926 /* Used when starting or continuing the program. */
2927
2928 static void
2929 insert_breakpoint_locations (void)
2930 {
2931 struct breakpoint *bpt;
2932 struct bp_location *bl, **blp_tmp;
2933 int error_flag = 0;
2934 int val = 0;
2935 int disabled_breaks = 0;
2936 int hw_breakpoint_error = 0;
2937 int hw_bp_error_explained_already = 0;
2938
2939 string_file tmp_error_stream;
2940
2941 /* Explicitly mark the warning -- this will only be printed if
2942 there was an error. */
2943 tmp_error_stream.puts ("Warning:\n");
2944
2945 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2946
2947 ALL_BP_LOCATIONS (bl, blp_tmp)
2948 {
2949 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2950 continue;
2951
2952 /* There is no point inserting thread-specific breakpoints if
2953 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2954 has BL->OWNER always non-NULL. */
2955 if (bl->owner->thread != -1
2956 && !valid_global_thread_id (bl->owner->thread))
2957 continue;
2958
2959 switch_to_program_space_and_thread (bl->pspace);
2960
2961 /* For targets that support global breakpoints, there's no need
2962 to select an inferior to insert breakpoint to. In fact, even
2963 if we aren't attached to any process yet, we should still
2964 insert breakpoints. */
2965 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2966 && inferior_ptid == null_ptid)
2967 continue;
2968
2969 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2970 &hw_breakpoint_error, &hw_bp_error_explained_already);
2971 if (val)
2972 error_flag = val;
2973 }
2974
2975 /* If we failed to insert all locations of a watchpoint, remove
2976 them, as half-inserted watchpoint is of limited use. */
2977 ALL_BREAKPOINTS (bpt)
2978 {
2979 int some_failed = 0;
2980 struct bp_location *loc;
2981
2982 if (!is_hardware_watchpoint (bpt))
2983 continue;
2984
2985 if (!breakpoint_enabled (bpt))
2986 continue;
2987
2988 if (bpt->disposition == disp_del_at_next_stop)
2989 continue;
2990
2991 for (loc = bpt->loc; loc; loc = loc->next)
2992 if (!loc->inserted && should_be_inserted (loc))
2993 {
2994 some_failed = 1;
2995 break;
2996 }
2997 if (some_failed)
2998 {
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (loc->inserted)
3001 remove_breakpoint (loc);
3002
3003 hw_breakpoint_error = 1;
3004 tmp_error_stream.printf ("Could not insert "
3005 "hardware watchpoint %d.\n",
3006 bpt->number);
3007 error_flag = -1;
3008 }
3009 }
3010
3011 if (error_flag)
3012 {
3013 /* If a hardware breakpoint or watchpoint was inserted, add a
3014 message about possibly exhausted resources. */
3015 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3016 {
3017 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3018 You may have requested too many hardware breakpoints/watchpoints.\n");
3019 }
3020 target_terminal::ours_for_output ();
3021 error_stream (tmp_error_stream);
3022 }
3023 }
3024
3025 /* Used when the program stops.
3026 Returns zero if successful, or non-zero if there was a problem
3027 removing a breakpoint location. */
3028
3029 int
3030 remove_breakpoints (void)
3031 {
3032 struct bp_location *bl, **blp_tmp;
3033 int val = 0;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (bl->inserted && !is_tracepoint (bl->owner))
3038 val |= remove_breakpoint (bl);
3039 }
3040 return val;
3041 }
3042
3043 /* When a thread exits, remove breakpoints that are related to
3044 that thread. */
3045
3046 static void
3047 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3048 {
3049 struct breakpoint *b, *b_tmp;
3050
3051 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3052 {
3053 if (b->thread == tp->global_num && user_breakpoint_p (b))
3054 {
3055 b->disposition = disp_del_at_next_stop;
3056
3057 printf_filtered (_("\
3058 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3059 b->number, print_thread_id (tp));
3060
3061 /* Hide it from the user. */
3062 b->number = 0;
3063 }
3064 }
3065 }
3066
3067 /* Remove breakpoints of inferior INF. */
3068
3069 int
3070 remove_breakpoints_inf (inferior *inf)
3071 {
3072 struct bp_location *bl, **blp_tmp;
3073 int val;
3074
3075 ALL_BP_LOCATIONS (bl, blp_tmp)
3076 {
3077 if (bl->pspace != inf->pspace)
3078 continue;
3079
3080 if (bl->inserted && !bl->target_info.persist)
3081 {
3082 val = remove_breakpoint (bl);
3083 if (val != 0)
3084 return val;
3085 }
3086 }
3087 return 0;
3088 }
3089
3090 static int internal_breakpoint_number = -1;
3091
3092 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3093 If INTERNAL is non-zero, the breakpoint number will be populated
3094 from internal_breakpoint_number and that variable decremented.
3095 Otherwise the breakpoint number will be populated from
3096 breakpoint_count and that value incremented. Internal breakpoints
3097 do not set the internal var bpnum. */
3098 static void
3099 set_breakpoint_number (int internal, struct breakpoint *b)
3100 {
3101 if (internal)
3102 b->number = internal_breakpoint_number--;
3103 else
3104 {
3105 set_breakpoint_count (breakpoint_count + 1);
3106 b->number = breakpoint_count;
3107 }
3108 }
3109
3110 static struct breakpoint *
3111 create_internal_breakpoint (struct gdbarch *gdbarch,
3112 CORE_ADDR address, enum bptype type,
3113 const struct breakpoint_ops *ops)
3114 {
3115 symtab_and_line sal;
3116 sal.pc = address;
3117 sal.section = find_pc_overlay (sal.pc);
3118 sal.pspace = current_program_space;
3119
3120 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3121 b->number = internal_breakpoint_number--;
3122 b->disposition = disp_donttouch;
3123
3124 return b;
3125 }
3126
3127 static const char *const longjmp_names[] =
3128 {
3129 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3130 };
3131 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3132
3133 /* Per-objfile data private to breakpoint.c. */
3134 struct breakpoint_objfile_data
3135 {
3136 /* Minimal symbol for "_ovly_debug_event" (if any). */
3137 struct bound_minimal_symbol overlay_msym {};
3138
3139 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3140 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3141
3142 /* True if we have looked for longjmp probes. */
3143 int longjmp_searched = 0;
3144
3145 /* SystemTap probe points for longjmp (if any). These are non-owning
3146 references. */
3147 std::vector<probe *> longjmp_probes;
3148
3149 /* Minimal symbol for "std::terminate()" (if any). */
3150 struct bound_minimal_symbol terminate_msym {};
3151
3152 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3153 struct bound_minimal_symbol exception_msym {};
3154
3155 /* True if we have looked for exception probes. */
3156 int exception_searched = 0;
3157
3158 /* SystemTap probe points for unwinding (if any). These are non-owning
3159 references. */
3160 std::vector<probe *> exception_probes;
3161 };
3162
3163 static const struct objfile_data *breakpoint_objfile_key;
3164
3165 /* Minimal symbol not found sentinel. */
3166 static struct minimal_symbol msym_not_found;
3167
3168 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3169
3170 static int
3171 msym_not_found_p (const struct minimal_symbol *msym)
3172 {
3173 return msym == &msym_not_found;
3174 }
3175
3176 /* Return per-objfile data needed by breakpoint.c.
3177 Allocate the data if necessary. */
3178
3179 static struct breakpoint_objfile_data *
3180 get_breakpoint_objfile_data (struct objfile *objfile)
3181 {
3182 struct breakpoint_objfile_data *bp_objfile_data;
3183
3184 bp_objfile_data = ((struct breakpoint_objfile_data *)
3185 objfile_data (objfile, breakpoint_objfile_key));
3186 if (bp_objfile_data == NULL)
3187 {
3188 bp_objfile_data = new breakpoint_objfile_data ();
3189 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3190 }
3191 return bp_objfile_data;
3192 }
3193
3194 static void
3195 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3196 {
3197 struct breakpoint_objfile_data *bp_objfile_data
3198 = (struct breakpoint_objfile_data *) data;
3199
3200 delete bp_objfile_data;
3201 }
3202
3203 static void
3204 create_overlay_event_breakpoint (void)
3205 {
3206 const char *const func_name = "_ovly_debug_event";
3207
3208 for (objfile *objfile : all_objfiles (current_program_space))
3209 {
3210 struct breakpoint *b;
3211 struct breakpoint_objfile_data *bp_objfile_data;
3212 CORE_ADDR addr;
3213 struct explicit_location explicit_loc;
3214
3215 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3216
3217 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3218 continue;
3219
3220 if (bp_objfile_data->overlay_msym.minsym == NULL)
3221 {
3222 struct bound_minimal_symbol m;
3223
3224 m = lookup_minimal_symbol_text (func_name, objfile);
3225 if (m.minsym == NULL)
3226 {
3227 /* Avoid future lookups in this objfile. */
3228 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3229 continue;
3230 }
3231 bp_objfile_data->overlay_msym = m;
3232 }
3233
3234 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3235 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3236 bp_overlay_event,
3237 &internal_breakpoint_ops);
3238 initialize_explicit_location (&explicit_loc);
3239 explicit_loc.function_name = ASTRDUP (func_name);
3240 b->location = new_explicit_location (&explicit_loc);
3241
3242 if (overlay_debugging == ovly_auto)
3243 {
3244 b->enable_state = bp_enabled;
3245 overlay_events_enabled = 1;
3246 }
3247 else
3248 {
3249 b->enable_state = bp_disabled;
3250 overlay_events_enabled = 0;
3251 }
3252 }
3253 }
3254
3255 static void
3256 create_longjmp_master_breakpoint (void)
3257 {
3258 struct program_space *pspace;
3259
3260 scoped_restore_current_program_space restore_pspace;
3261
3262 ALL_PSPACES (pspace)
3263 {
3264 set_current_program_space (pspace);
3265
3266 for (objfile *objfile : all_objfiles (current_program_space))
3267 {
3268 int i;
3269 struct gdbarch *gdbarch;
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 gdbarch = get_objfile_arch (objfile);
3273
3274 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3275
3276 if (!bp_objfile_data->longjmp_searched)
3277 {
3278 std::vector<probe *> ret
3279 = find_probes_in_objfile (objfile, "libc", "longjmp");
3280
3281 if (!ret.empty ())
3282 {
3283 /* We are only interested in checking one element. */
3284 probe *p = ret[0];
3285
3286 if (!p->can_evaluate_arguments ())
3287 {
3288 /* We cannot use the probe interface here, because it does
3289 not know how to evaluate arguments. */
3290 ret.clear ();
3291 }
3292 }
3293 bp_objfile_data->longjmp_probes = ret;
3294 bp_objfile_data->longjmp_searched = 1;
3295 }
3296
3297 if (!bp_objfile_data->longjmp_probes.empty ())
3298 {
3299 for (probe *p : bp_objfile_data->longjmp_probes)
3300 {
3301 struct breakpoint *b;
3302
3303 b = create_internal_breakpoint (gdbarch,
3304 p->get_relocated_address (objfile),
3305 bp_longjmp_master,
3306 &internal_breakpoint_ops);
3307 b->location = new_probe_location ("-probe-stap libc:longjmp");
3308 b->enable_state = bp_disabled;
3309 }
3310
3311 continue;
3312 }
3313
3314 if (!gdbarch_get_longjmp_target_p (gdbarch))
3315 continue;
3316
3317 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3318 {
3319 struct breakpoint *b;
3320 const char *func_name;
3321 CORE_ADDR addr;
3322 struct explicit_location explicit_loc;
3323
3324 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3325 continue;
3326
3327 func_name = longjmp_names[i];
3328 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3329 {
3330 struct bound_minimal_symbol m;
3331
3332 m = lookup_minimal_symbol_text (func_name, objfile);
3333 if (m.minsym == NULL)
3334 {
3335 /* Prevent future lookups in this objfile. */
3336 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3337 continue;
3338 }
3339 bp_objfile_data->longjmp_msym[i] = m;
3340 }
3341
3342 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3343 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3344 &internal_breakpoint_ops);
3345 initialize_explicit_location (&explicit_loc);
3346 explicit_loc.function_name = ASTRDUP (func_name);
3347 b->location = new_explicit_location (&explicit_loc);
3348 b->enable_state = bp_disabled;
3349 }
3350 }
3351 }
3352 }
3353
3354 /* Create a master std::terminate breakpoint. */
3355 static void
3356 create_std_terminate_master_breakpoint (void)
3357 {
3358 struct program_space *pspace;
3359 const char *const func_name = "std::terminate()";
3360
3361 scoped_restore_current_program_space restore_pspace;
3362
3363 ALL_PSPACES (pspace)
3364 {
3365 CORE_ADDR addr;
3366
3367 set_current_program_space (pspace);
3368
3369 for (objfile *objfile : all_objfiles (current_program_space))
3370 {
3371 struct breakpoint *b;
3372 struct breakpoint_objfile_data *bp_objfile_data;
3373 struct explicit_location explicit_loc;
3374
3375 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3376
3377 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3378 continue;
3379
3380 if (bp_objfile_data->terminate_msym.minsym == NULL)
3381 {
3382 struct bound_minimal_symbol m;
3383
3384 m = lookup_minimal_symbol (func_name, NULL, objfile);
3385 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3386 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3387 {
3388 /* Prevent future lookups in this objfile. */
3389 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3390 continue;
3391 }
3392 bp_objfile_data->terminate_msym = m;
3393 }
3394
3395 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3396 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3397 bp_std_terminate_master,
3398 &internal_breakpoint_ops);
3399 initialize_explicit_location (&explicit_loc);
3400 explicit_loc.function_name = ASTRDUP (func_name);
3401 b->location = new_explicit_location (&explicit_loc);
3402 b->enable_state = bp_disabled;
3403 }
3404 }
3405 }
3406
3407 /* Install a master breakpoint on the unwinder's debug hook. */
3408
3409 static void
3410 create_exception_master_breakpoint (void)
3411 {
3412 const char *const func_name = "_Unwind_DebugHook";
3413
3414 for (objfile *objfile : all_objfiles (current_program_space))
3415 {
3416 struct breakpoint *b;
3417 struct gdbarch *gdbarch;
3418 struct breakpoint_objfile_data *bp_objfile_data;
3419 CORE_ADDR addr;
3420 struct explicit_location explicit_loc;
3421
3422 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3423
3424 /* We prefer the SystemTap probe point if it exists. */
3425 if (!bp_objfile_data->exception_searched)
3426 {
3427 std::vector<probe *> ret
3428 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3429
3430 if (!ret.empty ())
3431 {
3432 /* We are only interested in checking one element. */
3433 probe *p = ret[0];
3434
3435 if (!p->can_evaluate_arguments ())
3436 {
3437 /* We cannot use the probe interface here, because it does
3438 not know how to evaluate arguments. */
3439 ret.clear ();
3440 }
3441 }
3442 bp_objfile_data->exception_probes = ret;
3443 bp_objfile_data->exception_searched = 1;
3444 }
3445
3446 if (!bp_objfile_data->exception_probes.empty ())
3447 {
3448 gdbarch = get_objfile_arch (objfile);
3449
3450 for (probe *p : bp_objfile_data->exception_probes)
3451 {
3452 b = create_internal_breakpoint (gdbarch,
3453 p->get_relocated_address (objfile),
3454 bp_exception_master,
3455 &internal_breakpoint_ops);
3456 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3457 b->enable_state = bp_disabled;
3458 }
3459
3460 continue;
3461 }
3462
3463 /* Otherwise, try the hook function. */
3464
3465 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3466 continue;
3467
3468 gdbarch = get_objfile_arch (objfile);
3469
3470 if (bp_objfile_data->exception_msym.minsym == NULL)
3471 {
3472 struct bound_minimal_symbol debug_hook;
3473
3474 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3475 if (debug_hook.minsym == NULL)
3476 {
3477 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3478 continue;
3479 }
3480
3481 bp_objfile_data->exception_msym = debug_hook;
3482 }
3483
3484 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3485 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3486 current_top_target ());
3487 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3488 &internal_breakpoint_ops);
3489 initialize_explicit_location (&explicit_loc);
3490 explicit_loc.function_name = ASTRDUP (func_name);
3491 b->location = new_explicit_location (&explicit_loc);
3492 b->enable_state = bp_disabled;
3493 }
3494 }
3495
3496 /* Does B have a location spec? */
3497
3498 static int
3499 breakpoint_event_location_empty_p (const struct breakpoint *b)
3500 {
3501 return b->location != NULL && event_location_empty_p (b->location.get ());
3502 }
3503
3504 void
3505 update_breakpoints_after_exec (void)
3506 {
3507 struct breakpoint *b, *b_tmp;
3508 struct bp_location *bploc, **bplocp_tmp;
3509
3510 /* We're about to delete breakpoints from GDB's lists. If the
3511 INSERTED flag is true, GDB will try to lift the breakpoints by
3512 writing the breakpoints' "shadow contents" back into memory. The
3513 "shadow contents" are NOT valid after an exec, so GDB should not
3514 do that. Instead, the target is responsible from marking
3515 breakpoints out as soon as it detects an exec. We don't do that
3516 here instead, because there may be other attempts to delete
3517 breakpoints after detecting an exec and before reaching here. */
3518 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3519 if (bploc->pspace == current_program_space)
3520 gdb_assert (!bploc->inserted);
3521
3522 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3523 {
3524 if (b->pspace != current_program_space)
3525 continue;
3526
3527 /* Solib breakpoints must be explicitly reset after an exec(). */
3528 if (b->type == bp_shlib_event)
3529 {
3530 delete_breakpoint (b);
3531 continue;
3532 }
3533
3534 /* JIT breakpoints must be explicitly reset after an exec(). */
3535 if (b->type == bp_jit_event)
3536 {
3537 delete_breakpoint (b);
3538 continue;
3539 }
3540
3541 /* Thread event breakpoints must be set anew after an exec(),
3542 as must overlay event and longjmp master breakpoints. */
3543 if (b->type == bp_thread_event || b->type == bp_overlay_event
3544 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3545 || b->type == bp_exception_master)
3546 {
3547 delete_breakpoint (b);
3548 continue;
3549 }
3550
3551 /* Step-resume breakpoints are meaningless after an exec(). */
3552 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3553 {
3554 delete_breakpoint (b);
3555 continue;
3556 }
3557
3558 /* Just like single-step breakpoints. */
3559 if (b->type == bp_single_step)
3560 {
3561 delete_breakpoint (b);
3562 continue;
3563 }
3564
3565 /* Longjmp and longjmp-resume breakpoints are also meaningless
3566 after an exec. */
3567 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3568 || b->type == bp_longjmp_call_dummy
3569 || b->type == bp_exception || b->type == bp_exception_resume)
3570 {
3571 delete_breakpoint (b);
3572 continue;
3573 }
3574
3575 if (b->type == bp_catchpoint)
3576 {
3577 /* For now, none of the bp_catchpoint breakpoints need to
3578 do anything at this point. In the future, if some of
3579 the catchpoints need to something, we will need to add
3580 a new method, and call this method from here. */
3581 continue;
3582 }
3583
3584 /* bp_finish is a special case. The only way we ought to be able
3585 to see one of these when an exec() has happened, is if the user
3586 caught a vfork, and then said "finish". Ordinarily a finish just
3587 carries them to the call-site of the current callee, by setting
3588 a temporary bp there and resuming. But in this case, the finish
3589 will carry them entirely through the vfork & exec.
3590
3591 We don't want to allow a bp_finish to remain inserted now. But
3592 we can't safely delete it, 'cause finish_command has a handle to
3593 the bp on a bpstat, and will later want to delete it. There's a
3594 chance (and I've seen it happen) that if we delete the bp_finish
3595 here, that its storage will get reused by the time finish_command
3596 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3597 We really must allow finish_command to delete a bp_finish.
3598
3599 In the absence of a general solution for the "how do we know
3600 it's safe to delete something others may have handles to?"
3601 problem, what we'll do here is just uninsert the bp_finish, and
3602 let finish_command delete it.
3603
3604 (We know the bp_finish is "doomed" in the sense that it's
3605 momentary, and will be deleted as soon as finish_command sees
3606 the inferior stopped. So it doesn't matter that the bp's
3607 address is probably bogus in the new a.out, unlike e.g., the
3608 solib breakpoints.) */
3609
3610 if (b->type == bp_finish)
3611 {
3612 continue;
3613 }
3614
3615 /* Without a symbolic address, we have little hope of the
3616 pre-exec() address meaning the same thing in the post-exec()
3617 a.out. */
3618 if (breakpoint_event_location_empty_p (b))
3619 {
3620 delete_breakpoint (b);
3621 continue;
3622 }
3623 }
3624 }
3625
3626 int
3627 detach_breakpoints (ptid_t ptid)
3628 {
3629 struct bp_location *bl, **blp_tmp;
3630 int val = 0;
3631 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3632 struct inferior *inf = current_inferior ();
3633
3634 if (ptid.pid () == inferior_ptid.pid ())
3635 error (_("Cannot detach breakpoints of inferior_ptid"));
3636
3637 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3638 inferior_ptid = ptid;
3639 ALL_BP_LOCATIONS (bl, blp_tmp)
3640 {
3641 if (bl->pspace != inf->pspace)
3642 continue;
3643
3644 /* This function must physically remove breakpoints locations
3645 from the specified ptid, without modifying the breakpoint
3646 package's state. Locations of type bp_loc_other are only
3647 maintained at GDB side. So, there is no need to remove
3648 these bp_loc_other locations. Moreover, removing these
3649 would modify the breakpoint package's state. */
3650 if (bl->loc_type == bp_loc_other)
3651 continue;
3652
3653 if (bl->inserted)
3654 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3655 }
3656
3657 return val;
3658 }
3659
3660 /* Remove the breakpoint location BL from the current address space.
3661 Note that this is used to detach breakpoints from a child fork.
3662 When we get here, the child isn't in the inferior list, and neither
3663 do we have objects to represent its address space --- we should
3664 *not* look at bl->pspace->aspace here. */
3665
3666 static int
3667 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3668 {
3669 int val;
3670
3671 /* BL is never in moribund_locations by our callers. */
3672 gdb_assert (bl->owner != NULL);
3673
3674 /* The type of none suggests that owner is actually deleted.
3675 This should not ever happen. */
3676 gdb_assert (bl->owner->type != bp_none);
3677
3678 if (bl->loc_type == bp_loc_software_breakpoint
3679 || bl->loc_type == bp_loc_hardware_breakpoint)
3680 {
3681 /* "Normal" instruction breakpoint: either the standard
3682 trap-instruction bp (bp_breakpoint), or a
3683 bp_hardware_breakpoint. */
3684
3685 /* First check to see if we have to handle an overlay. */
3686 if (overlay_debugging == ovly_off
3687 || bl->section == NULL
3688 || !(section_is_overlay (bl->section)))
3689 {
3690 /* No overlay handling: just remove the breakpoint. */
3691
3692 /* If we're trying to uninsert a memory breakpoint that we
3693 know is set in a dynamic object that is marked
3694 shlib_disabled, then either the dynamic object was
3695 removed with "remove-symbol-file" or with
3696 "nosharedlibrary". In the former case, we don't know
3697 whether another dynamic object might have loaded over the
3698 breakpoint's address -- the user might well let us know
3699 about it next with add-symbol-file (the whole point of
3700 add-symbol-file is letting the user manually maintain a
3701 list of dynamically loaded objects). If we have the
3702 breakpoint's shadow memory, that is, this is a software
3703 breakpoint managed by GDB, check whether the breakpoint
3704 is still inserted in memory, to avoid overwriting wrong
3705 code with stale saved shadow contents. Note that HW
3706 breakpoints don't have shadow memory, as they're
3707 implemented using a mechanism that is not dependent on
3708 being able to modify the target's memory, and as such
3709 they should always be removed. */
3710 if (bl->shlib_disabled
3711 && bl->target_info.shadow_len != 0
3712 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3713 val = 0;
3714 else
3715 val = bl->owner->ops->remove_location (bl, reason);
3716 }
3717 else
3718 {
3719 /* This breakpoint is in an overlay section.
3720 Did we set a breakpoint at the LMA? */
3721 if (!overlay_events_enabled)
3722 {
3723 /* Yes -- overlay event support is not active, so we
3724 should have set a breakpoint at the LMA. Remove it.
3725 */
3726 /* Ignore any failures: if the LMA is in ROM, we will
3727 have already warned when we failed to insert it. */
3728 if (bl->loc_type == bp_loc_hardware_breakpoint)
3729 target_remove_hw_breakpoint (bl->gdbarch,
3730 &bl->overlay_target_info);
3731 else
3732 target_remove_breakpoint (bl->gdbarch,
3733 &bl->overlay_target_info,
3734 reason);
3735 }
3736 /* Did we set a breakpoint at the VMA?
3737 If so, we will have marked the breakpoint 'inserted'. */
3738 if (bl->inserted)
3739 {
3740 /* Yes -- remove it. Previously we did not bother to
3741 remove the breakpoint if the section had been
3742 unmapped, but let's not rely on that being safe. We
3743 don't know what the overlay manager might do. */
3744
3745 /* However, we should remove *software* breakpoints only
3746 if the section is still mapped, or else we overwrite
3747 wrong code with the saved shadow contents. */
3748 if (bl->loc_type == bp_loc_hardware_breakpoint
3749 || section_is_mapped (bl->section))
3750 val = bl->owner->ops->remove_location (bl, reason);
3751 else
3752 val = 0;
3753 }
3754 else
3755 {
3756 /* No -- not inserted, so no need to remove. No error. */
3757 val = 0;
3758 }
3759 }
3760
3761 /* In some cases, we might not be able to remove a breakpoint in
3762 a shared library that has already been removed, but we have
3763 not yet processed the shlib unload event. Similarly for an
3764 unloaded add-symbol-file object - the user might not yet have
3765 had the chance to remove-symbol-file it. shlib_disabled will
3766 be set if the library/object has already been removed, but
3767 the breakpoint hasn't been uninserted yet, e.g., after
3768 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3769 always-inserted mode. */
3770 if (val
3771 && (bl->loc_type == bp_loc_software_breakpoint
3772 && (bl->shlib_disabled
3773 || solib_name_from_address (bl->pspace, bl->address)
3774 || shared_objfile_contains_address_p (bl->pspace,
3775 bl->address))))
3776 val = 0;
3777
3778 if (val)
3779 return val;
3780 bl->inserted = (reason == DETACH_BREAKPOINT);
3781 }
3782 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3783 {
3784 gdb_assert (bl->owner->ops != NULL
3785 && bl->owner->ops->remove_location != NULL);
3786
3787 bl->inserted = (reason == DETACH_BREAKPOINT);
3788 bl->owner->ops->remove_location (bl, reason);
3789
3790 /* Failure to remove any of the hardware watchpoints comes here. */
3791 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3792 warning (_("Could not remove hardware watchpoint %d."),
3793 bl->owner->number);
3794 }
3795 else if (bl->owner->type == bp_catchpoint
3796 && breakpoint_enabled (bl->owner)
3797 && !bl->duplicate)
3798 {
3799 gdb_assert (bl->owner->ops != NULL
3800 && bl->owner->ops->remove_location != NULL);
3801
3802 val = bl->owner->ops->remove_location (bl, reason);
3803 if (val)
3804 return val;
3805
3806 bl->inserted = (reason == DETACH_BREAKPOINT);
3807 }
3808
3809 return 0;
3810 }
3811
3812 static int
3813 remove_breakpoint (struct bp_location *bl)
3814 {
3815 /* BL is never in moribund_locations by our callers. */
3816 gdb_assert (bl->owner != NULL);
3817
3818 /* The type of none suggests that owner is actually deleted.
3819 This should not ever happen. */
3820 gdb_assert (bl->owner->type != bp_none);
3821
3822 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3823
3824 switch_to_program_space_and_thread (bl->pspace);
3825
3826 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3827 }
3828
3829 /* Clear the "inserted" flag in all breakpoints. */
3830
3831 void
3832 mark_breakpoints_out (void)
3833 {
3834 struct bp_location *bl, **blp_tmp;
3835
3836 ALL_BP_LOCATIONS (bl, blp_tmp)
3837 if (bl->pspace == current_program_space)
3838 bl->inserted = 0;
3839 }
3840
3841 /* Clear the "inserted" flag in all breakpoints and delete any
3842 breakpoints which should go away between runs of the program.
3843
3844 Plus other such housekeeping that has to be done for breakpoints
3845 between runs.
3846
3847 Note: this function gets called at the end of a run (by
3848 generic_mourn_inferior) and when a run begins (by
3849 init_wait_for_inferior). */
3850
3851
3852
3853 void
3854 breakpoint_init_inferior (enum inf_context context)
3855 {
3856 struct breakpoint *b, *b_tmp;
3857 struct program_space *pspace = current_program_space;
3858
3859 /* If breakpoint locations are shared across processes, then there's
3860 nothing to do. */
3861 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3862 return;
3863
3864 mark_breakpoints_out ();
3865
3866 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3867 {
3868 if (b->loc && b->loc->pspace != pspace)
3869 continue;
3870
3871 switch (b->type)
3872 {
3873 case bp_call_dummy:
3874 case bp_longjmp_call_dummy:
3875
3876 /* If the call dummy breakpoint is at the entry point it will
3877 cause problems when the inferior is rerun, so we better get
3878 rid of it. */
3879
3880 case bp_watchpoint_scope:
3881
3882 /* Also get rid of scope breakpoints. */
3883
3884 case bp_shlib_event:
3885
3886 /* Also remove solib event breakpoints. Their addresses may
3887 have changed since the last time we ran the program.
3888 Actually we may now be debugging against different target;
3889 and so the solib backend that installed this breakpoint may
3890 not be used in by the target. E.g.,
3891
3892 (gdb) file prog-linux
3893 (gdb) run # native linux target
3894 ...
3895 (gdb) kill
3896 (gdb) file prog-win.exe
3897 (gdb) tar rem :9999 # remote Windows gdbserver.
3898 */
3899
3900 case bp_step_resume:
3901
3902 /* Also remove step-resume breakpoints. */
3903
3904 case bp_single_step:
3905
3906 /* Also remove single-step breakpoints. */
3907
3908 delete_breakpoint (b);
3909 break;
3910
3911 case bp_watchpoint:
3912 case bp_hardware_watchpoint:
3913 case bp_read_watchpoint:
3914 case bp_access_watchpoint:
3915 {
3916 struct watchpoint *w = (struct watchpoint *) b;
3917
3918 /* Likewise for watchpoints on local expressions. */
3919 if (w->exp_valid_block != NULL)
3920 delete_breakpoint (b);
3921 else
3922 {
3923 /* Get rid of existing locations, which are no longer
3924 valid. New ones will be created in
3925 update_watchpoint, when the inferior is restarted.
3926 The next update_global_location_list call will
3927 garbage collect them. */
3928 b->loc = NULL;
3929
3930 if (context == inf_starting)
3931 {
3932 /* Reset val field to force reread of starting value in
3933 insert_breakpoints. */
3934 w->val.reset (nullptr);
3935 w->val_valid = 0;
3936 }
3937 }
3938 }
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 /* Get rid of the moribund locations. */
3946 for (bp_location *bl : moribund_locations)
3947 decref_bp_location (&bl);
3948 moribund_locations.clear ();
3949 }
3950
3951 /* These functions concern about actual breakpoints inserted in the
3952 target --- to e.g. check if we need to do decr_pc adjustment or if
3953 we need to hop over the bkpt --- so we check for address space
3954 match, not program space. */
3955
3956 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3957 exists at PC. It returns ordinary_breakpoint_here if it's an
3958 ordinary breakpoint, or permanent_breakpoint_here if it's a
3959 permanent breakpoint.
3960 - When continuing from a location with an ordinary breakpoint, we
3961 actually single step once before calling insert_breakpoints.
3962 - When continuing from a location with a permanent breakpoint, we
3963 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3964 the target, to advance the PC past the breakpoint. */
3965
3966 enum breakpoint_here
3967 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3968 {
3969 struct bp_location *bl, **blp_tmp;
3970 int any_breakpoint_here = 0;
3971
3972 ALL_BP_LOCATIONS (bl, blp_tmp)
3973 {
3974 if (bl->loc_type != bp_loc_software_breakpoint
3975 && bl->loc_type != bp_loc_hardware_breakpoint)
3976 continue;
3977
3978 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3979 if ((breakpoint_enabled (bl->owner)
3980 || bl->permanent)
3981 && breakpoint_location_address_match (bl, aspace, pc))
3982 {
3983 if (overlay_debugging
3984 && section_is_overlay (bl->section)
3985 && !section_is_mapped (bl->section))
3986 continue; /* unmapped overlay -- can't be a match */
3987 else if (bl->permanent)
3988 return permanent_breakpoint_here;
3989 else
3990 any_breakpoint_here = 1;
3991 }
3992 }
3993
3994 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3995 }
3996
3997 /* See breakpoint.h. */
3998
3999 int
4000 breakpoint_in_range_p (const address_space *aspace,
4001 CORE_ADDR addr, ULONGEST len)
4002 {
4003 struct bp_location *bl, **blp_tmp;
4004
4005 ALL_BP_LOCATIONS (bl, blp_tmp)
4006 {
4007 if (bl->loc_type != bp_loc_software_breakpoint
4008 && bl->loc_type != bp_loc_hardware_breakpoint)
4009 continue;
4010
4011 if ((breakpoint_enabled (bl->owner)
4012 || bl->permanent)
4013 && breakpoint_location_address_range_overlap (bl, aspace,
4014 addr, len))
4015 {
4016 if (overlay_debugging
4017 && section_is_overlay (bl->section)
4018 && !section_is_mapped (bl->section))
4019 {
4020 /* Unmapped overlay -- can't be a match. */
4021 continue;
4022 }
4023
4024 return 1;
4025 }
4026 }
4027
4028 return 0;
4029 }
4030
4031 /* Return true if there's a moribund breakpoint at PC. */
4032
4033 int
4034 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4035 {
4036 for (bp_location *loc : moribund_locations)
4037 if (breakpoint_location_address_match (loc, aspace, pc))
4038 return 1;
4039
4040 return 0;
4041 }
4042
4043 /* Returns non-zero iff BL is inserted at PC, in address space
4044 ASPACE. */
4045
4046 static int
4047 bp_location_inserted_here_p (struct bp_location *bl,
4048 const address_space *aspace, CORE_ADDR pc)
4049 {
4050 if (bl->inserted
4051 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4052 aspace, pc))
4053 {
4054 if (overlay_debugging
4055 && section_is_overlay (bl->section)
4056 && !section_is_mapped (bl->section))
4057 return 0; /* unmapped overlay -- can't be a match */
4058 else
4059 return 1;
4060 }
4061 return 0;
4062 }
4063
4064 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4065
4066 int
4067 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4068 {
4069 struct bp_location **blp, **blp_tmp = NULL;
4070
4071 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4072 {
4073 struct bp_location *bl = *blp;
4074
4075 if (bl->loc_type != bp_loc_software_breakpoint
4076 && bl->loc_type != bp_loc_hardware_breakpoint)
4077 continue;
4078
4079 if (bp_location_inserted_here_p (bl, aspace, pc))
4080 return 1;
4081 }
4082 return 0;
4083 }
4084
4085 /* This function returns non-zero iff there is a software breakpoint
4086 inserted at PC. */
4087
4088 int
4089 software_breakpoint_inserted_here_p (const address_space *aspace,
4090 CORE_ADDR pc)
4091 {
4092 struct bp_location **blp, **blp_tmp = NULL;
4093
4094 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4095 {
4096 struct bp_location *bl = *blp;
4097
4098 if (bl->loc_type != bp_loc_software_breakpoint)
4099 continue;
4100
4101 if (bp_location_inserted_here_p (bl, aspace, pc))
4102 return 1;
4103 }
4104
4105 return 0;
4106 }
4107
4108 /* See breakpoint.h. */
4109
4110 int
4111 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4112 CORE_ADDR pc)
4113 {
4114 struct bp_location **blp, **blp_tmp = NULL;
4115
4116 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4117 {
4118 struct bp_location *bl = *blp;
4119
4120 if (bl->loc_type != bp_loc_hardware_breakpoint)
4121 continue;
4122
4123 if (bp_location_inserted_here_p (bl, aspace, pc))
4124 return 1;
4125 }
4126
4127 return 0;
4128 }
4129
4130 int
4131 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4132 CORE_ADDR addr, ULONGEST len)
4133 {
4134 struct breakpoint *bpt;
4135
4136 ALL_BREAKPOINTS (bpt)
4137 {
4138 struct bp_location *loc;
4139
4140 if (bpt->type != bp_hardware_watchpoint
4141 && bpt->type != bp_access_watchpoint)
4142 continue;
4143
4144 if (!breakpoint_enabled (bpt))
4145 continue;
4146
4147 for (loc = bpt->loc; loc; loc = loc->next)
4148 if (loc->pspace->aspace == aspace && loc->inserted)
4149 {
4150 CORE_ADDR l, h;
4151
4152 /* Check for intersection. */
4153 l = std::max<CORE_ADDR> (loc->address, addr);
4154 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4155 if (l < h)
4156 return 1;
4157 }
4158 }
4159 return 0;
4160 }
4161 \f
4162
4163 /* bpstat stuff. External routines' interfaces are documented
4164 in breakpoint.h. */
4165
4166 int
4167 is_catchpoint (struct breakpoint *ep)
4168 {
4169 return (ep->type == bp_catchpoint);
4170 }
4171
4172 /* Frees any storage that is part of a bpstat. Does not walk the
4173 'next' chain. */
4174
4175 bpstats::~bpstats ()
4176 {
4177 if (bp_location_at != NULL)
4178 decref_bp_location (&bp_location_at);
4179 }
4180
4181 /* Clear a bpstat so that it says we are not at any breakpoint.
4182 Also free any storage that is part of a bpstat. */
4183
4184 void
4185 bpstat_clear (bpstat *bsp)
4186 {
4187 bpstat p;
4188 bpstat q;
4189
4190 if (bsp == 0)
4191 return;
4192 p = *bsp;
4193 while (p != NULL)
4194 {
4195 q = p->next;
4196 delete p;
4197 p = q;
4198 }
4199 *bsp = NULL;
4200 }
4201
4202 bpstats::bpstats (const bpstats &other)
4203 : next (NULL),
4204 bp_location_at (other.bp_location_at),
4205 breakpoint_at (other.breakpoint_at),
4206 commands (other.commands),
4207 print (other.print),
4208 stop (other.stop),
4209 print_it (other.print_it)
4210 {
4211 if (other.old_val != NULL)
4212 old_val = release_value (value_copy (other.old_val.get ()));
4213 incref_bp_location (bp_location_at);
4214 }
4215
4216 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4217 is part of the bpstat is copied as well. */
4218
4219 bpstat
4220 bpstat_copy (bpstat bs)
4221 {
4222 bpstat p = NULL;
4223 bpstat tmp;
4224 bpstat retval = NULL;
4225
4226 if (bs == NULL)
4227 return bs;
4228
4229 for (; bs != NULL; bs = bs->next)
4230 {
4231 tmp = new bpstats (*bs);
4232
4233 if (p == NULL)
4234 /* This is the first thing in the chain. */
4235 retval = tmp;
4236 else
4237 p->next = tmp;
4238 p = tmp;
4239 }
4240 p->next = NULL;
4241 return retval;
4242 }
4243
4244 /* Find the bpstat associated with this breakpoint. */
4245
4246 bpstat
4247 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4248 {
4249 if (bsp == NULL)
4250 return NULL;
4251
4252 for (; bsp != NULL; bsp = bsp->next)
4253 {
4254 if (bsp->breakpoint_at == breakpoint)
4255 return bsp;
4256 }
4257 return NULL;
4258 }
4259
4260 /* See breakpoint.h. */
4261
4262 int
4263 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4264 {
4265 for (; bsp != NULL; bsp = bsp->next)
4266 {
4267 if (bsp->breakpoint_at == NULL)
4268 {
4269 /* A moribund location can never explain a signal other than
4270 GDB_SIGNAL_TRAP. */
4271 if (sig == GDB_SIGNAL_TRAP)
4272 return 1;
4273 }
4274 else
4275 {
4276 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4277 sig))
4278 return 1;
4279 }
4280 }
4281
4282 return 0;
4283 }
4284
4285 /* Put in *NUM the breakpoint number of the first breakpoint we are
4286 stopped at. *BSP upon return is a bpstat which points to the
4287 remaining breakpoints stopped at (but which is not guaranteed to be
4288 good for anything but further calls to bpstat_num).
4289
4290 Return 0 if passed a bpstat which does not indicate any breakpoints.
4291 Return -1 if stopped at a breakpoint that has been deleted since
4292 we set it.
4293 Return 1 otherwise. */
4294
4295 int
4296 bpstat_num (bpstat *bsp, int *num)
4297 {
4298 struct breakpoint *b;
4299
4300 if ((*bsp) == NULL)
4301 return 0; /* No more breakpoint values */
4302
4303 /* We assume we'll never have several bpstats that correspond to a
4304 single breakpoint -- otherwise, this function might return the
4305 same number more than once and this will look ugly. */
4306 b = (*bsp)->breakpoint_at;
4307 *bsp = (*bsp)->next;
4308 if (b == NULL)
4309 return -1; /* breakpoint that's been deleted since */
4310
4311 *num = b->number; /* We have its number */
4312 return 1;
4313 }
4314
4315 /* See breakpoint.h. */
4316
4317 void
4318 bpstat_clear_actions (void)
4319 {
4320 bpstat bs;
4321
4322 if (inferior_ptid == null_ptid)
4323 return;
4324
4325 thread_info *tp = inferior_thread ();
4326 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4327 {
4328 bs->commands = NULL;
4329 bs->old_val.reset (nullptr);
4330 }
4331 }
4332
4333 /* Called when a command is about to proceed the inferior. */
4334
4335 static void
4336 breakpoint_about_to_proceed (void)
4337 {
4338 if (inferior_ptid != null_ptid)
4339 {
4340 struct thread_info *tp = inferior_thread ();
4341
4342 /* Allow inferior function calls in breakpoint commands to not
4343 interrupt the command list. When the call finishes
4344 successfully, the inferior will be standing at the same
4345 breakpoint as if nothing happened. */
4346 if (tp->control.in_infcall)
4347 return;
4348 }
4349
4350 breakpoint_proceeded = 1;
4351 }
4352
4353 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4354 or its equivalent. */
4355
4356 static int
4357 command_line_is_silent (struct command_line *cmd)
4358 {
4359 return cmd && (strcmp ("silent", cmd->line) == 0);
4360 }
4361
4362 /* Execute all the commands associated with all the breakpoints at
4363 this location. Any of these commands could cause the process to
4364 proceed beyond this point, etc. We look out for such changes by
4365 checking the global "breakpoint_proceeded" after each command.
4366
4367 Returns true if a breakpoint command resumed the inferior. In that
4368 case, it is the caller's responsibility to recall it again with the
4369 bpstat of the current thread. */
4370
4371 static int
4372 bpstat_do_actions_1 (bpstat *bsp)
4373 {
4374 bpstat bs;
4375 int again = 0;
4376
4377 /* Avoid endless recursion if a `source' command is contained
4378 in bs->commands. */
4379 if (executing_breakpoint_commands)
4380 return 0;
4381
4382 scoped_restore save_executing
4383 = make_scoped_restore (&executing_breakpoint_commands, 1);
4384
4385 scoped_restore preventer = prevent_dont_repeat ();
4386
4387 /* This pointer will iterate over the list of bpstat's. */
4388 bs = *bsp;
4389
4390 breakpoint_proceeded = 0;
4391 for (; bs != NULL; bs = bs->next)
4392 {
4393 struct command_line *cmd = NULL;
4394
4395 /* Take ownership of the BSP's command tree, if it has one.
4396
4397 The command tree could legitimately contain commands like
4398 'step' and 'next', which call clear_proceed_status, which
4399 frees stop_bpstat's command tree. To make sure this doesn't
4400 free the tree we're executing out from under us, we need to
4401 take ownership of the tree ourselves. Since a given bpstat's
4402 commands are only executed once, we don't need to copy it; we
4403 can clear the pointer in the bpstat, and make sure we free
4404 the tree when we're done. */
4405 counted_command_line ccmd = bs->commands;
4406 bs->commands = NULL;
4407 if (ccmd != NULL)
4408 cmd = ccmd.get ();
4409 if (command_line_is_silent (cmd))
4410 {
4411 /* The action has been already done by bpstat_stop_status. */
4412 cmd = cmd->next;
4413 }
4414
4415 while (cmd != NULL)
4416 {
4417 execute_control_command (cmd);
4418
4419 if (breakpoint_proceeded)
4420 break;
4421 else
4422 cmd = cmd->next;
4423 }
4424
4425 if (breakpoint_proceeded)
4426 {
4427 if (current_ui->async)
4428 /* If we are in async mode, then the target might be still
4429 running, not stopped at any breakpoint, so nothing for
4430 us to do here -- just return to the event loop. */
4431 ;
4432 else
4433 /* In sync mode, when execute_control_command returns
4434 we're already standing on the next breakpoint.
4435 Breakpoint commands for that stop were not run, since
4436 execute_command does not run breakpoint commands --
4437 only command_line_handler does, but that one is not
4438 involved in execution of breakpoint commands. So, we
4439 can now execute breakpoint commands. It should be
4440 noted that making execute_command do bpstat actions is
4441 not an option -- in this case we'll have recursive
4442 invocation of bpstat for each breakpoint with a
4443 command, and can easily blow up GDB stack. Instead, we
4444 return true, which will trigger the caller to recall us
4445 with the new stop_bpstat. */
4446 again = 1;
4447 break;
4448 }
4449 }
4450 return again;
4451 }
4452
4453 /* Helper for bpstat_do_actions. Get the current thread, if there's
4454 one, is alive and has execution. Return NULL otherwise. */
4455
4456 static thread_info *
4457 get_bpstat_thread ()
4458 {
4459 if (inferior_ptid == null_ptid || !target_has_execution)
4460 return NULL;
4461
4462 thread_info *tp = inferior_thread ();
4463 if (tp->state == THREAD_EXITED || tp->executing)
4464 return NULL;
4465 return tp;
4466 }
4467
4468 void
4469 bpstat_do_actions (void)
4470 {
4471 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4472 thread_info *tp;
4473
4474 /* Do any commands attached to breakpoint we are stopped at. */
4475 while ((tp = get_bpstat_thread ()) != NULL)
4476 {
4477 /* Since in sync mode, bpstat_do_actions may resume the
4478 inferior, and only return when it is stopped at the next
4479 breakpoint, we keep doing breakpoint actions until it returns
4480 false to indicate the inferior was not resumed. */
4481 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4482 break;
4483 }
4484
4485 discard_cleanups (cleanup_if_error);
4486 }
4487
4488 /* Print out the (old or new) value associated with a watchpoint. */
4489
4490 static void
4491 watchpoint_value_print (struct value *val, struct ui_file *stream)
4492 {
4493 if (val == NULL)
4494 fprintf_unfiltered (stream, _("<unreadable>"));
4495 else
4496 {
4497 struct value_print_options opts;
4498 get_user_print_options (&opts);
4499 value_print (val, stream, &opts);
4500 }
4501 }
4502
4503 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4504 debugging multiple threads. */
4505
4506 void
4507 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4508 {
4509 if (uiout->is_mi_like_p ())
4510 return;
4511
4512 uiout->text ("\n");
4513
4514 if (show_thread_that_caused_stop ())
4515 {
4516 const char *name;
4517 struct thread_info *thr = inferior_thread ();
4518
4519 uiout->text ("Thread ");
4520 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4521
4522 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4523 if (name != NULL)
4524 {
4525 uiout->text (" \"");
4526 uiout->field_fmt ("name", "%s", name);
4527 uiout->text ("\"");
4528 }
4529
4530 uiout->text (" hit ");
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4583 bool any_added = !current_program_space->added_solibs.empty ();
4584
4585 if (!is_catchpoint)
4586 {
4587 if (any_added || any_deleted)
4588 current_uiout->text (_("Stopped due to shared library event:\n"));
4589 else
4590 current_uiout->text (_("Stopped due to shared library event (no "
4591 "libraries added or removed)\n"));
4592 }
4593
4594 if (current_uiout->is_mi_like_p ())
4595 current_uiout->field_string ("reason",
4596 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4597
4598 if (any_deleted)
4599 {
4600 current_uiout->text (_(" Inferior unloaded "));
4601 ui_out_emit_list list_emitter (current_uiout, "removed");
4602 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4603 {
4604 const std::string &name = current_program_space->deleted_solibs[ix];
4605
4606 if (ix > 0)
4607 current_uiout->text (" ");
4608 current_uiout->field_string ("library", name);
4609 current_uiout->text ("\n");
4610 }
4611 }
4612
4613 if (any_added)
4614 {
4615 current_uiout->text (_(" Inferior loaded "));
4616 ui_out_emit_list list_emitter (current_uiout, "added");
4617 bool first = true;
4618 for (so_list *iter : current_program_space->added_solibs)
4619 {
4620 if (!first)
4621 current_uiout->text (" ");
4622 first = false;
4623 current_uiout->field_string ("library", iter->so_name);
4624 current_uiout->text ("\n");
4625 }
4626 }
4627 }
4628
4629 /* Print a message indicating what happened. This is called from
4630 normal_stop(). The input to this routine is the head of the bpstat
4631 list - a list of the eventpoints that caused this stop. KIND is
4632 the target_waitkind for the stopping event. This
4633 routine calls the generic print routine for printing a message
4634 about reasons for stopping. This will print (for example) the
4635 "Breakpoint n," part of the output. The return value of this
4636 routine is one of:
4637
4638 PRINT_UNKNOWN: Means we printed nothing.
4639 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4640 code to print the location. An example is
4641 "Breakpoint 1, " which should be followed by
4642 the location.
4643 PRINT_SRC_ONLY: Means we printed something, but there is no need
4644 to also print the location part of the message.
4645 An example is the catch/throw messages, which
4646 don't require a location appended to the end.
4647 PRINT_NOTHING: We have done some printing and we don't need any
4648 further info to be printed. */
4649
4650 enum print_stop_action
4651 bpstat_print (bpstat bs, int kind)
4652 {
4653 enum print_stop_action val;
4654
4655 /* Maybe another breakpoint in the chain caused us to stop.
4656 (Currently all watchpoints go on the bpstat whether hit or not.
4657 That probably could (should) be changed, provided care is taken
4658 with respect to bpstat_explains_signal). */
4659 for (; bs; bs = bs->next)
4660 {
4661 val = print_bp_stop_message (bs);
4662 if (val == PRINT_SRC_ONLY
4663 || val == PRINT_SRC_AND_LOC
4664 || val == PRINT_NOTHING)
4665 return val;
4666 }
4667
4668 /* If we had hit a shared library event breakpoint,
4669 print_bp_stop_message would print out this message. If we hit an
4670 OS-level shared library event, do the same thing. */
4671 if (kind == TARGET_WAITKIND_LOADED)
4672 {
4673 print_solib_event (0);
4674 return PRINT_NOTHING;
4675 }
4676
4677 /* We reached the end of the chain, or we got a null BS to start
4678 with and nothing was printed. */
4679 return PRINT_UNKNOWN;
4680 }
4681
4682 /* Evaluate the boolean expression EXP and return the result. */
4683
4684 static bool
4685 breakpoint_cond_eval (expression *exp)
4686 {
4687 struct value *mark = value_mark ();
4688 bool res = value_true (evaluate_expression (exp));
4689
4690 value_free_to_mark (mark);
4691 return res;
4692 }
4693
4694 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4695
4696 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4697 : next (NULL),
4698 bp_location_at (bl),
4699 breakpoint_at (bl->owner),
4700 commands (NULL),
4701 print (0),
4702 stop (0),
4703 print_it (print_it_normal)
4704 {
4705 incref_bp_location (bl);
4706 **bs_link_pointer = this;
4707 *bs_link_pointer = &next;
4708 }
4709
4710 bpstats::bpstats ()
4711 : next (NULL),
4712 bp_location_at (NULL),
4713 breakpoint_at (NULL),
4714 commands (NULL),
4715 print (0),
4716 stop (0),
4717 print_it (print_it_normal)
4718 {
4719 }
4720 \f
4721 /* The target has stopped with waitstatus WS. Check if any hardware
4722 watchpoints have triggered, according to the target. */
4723
4724 int
4725 watchpoints_triggered (struct target_waitstatus *ws)
4726 {
4727 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4728 CORE_ADDR addr;
4729 struct breakpoint *b;
4730
4731 if (!stopped_by_watchpoint)
4732 {
4733 /* We were not stopped by a watchpoint. Mark all watchpoints
4734 as not triggered. */
4735 ALL_BREAKPOINTS (b)
4736 if (is_hardware_watchpoint (b))
4737 {
4738 struct watchpoint *w = (struct watchpoint *) b;
4739
4740 w->watchpoint_triggered = watch_triggered_no;
4741 }
4742
4743 return 0;
4744 }
4745
4746 if (!target_stopped_data_address (current_top_target (), &addr))
4747 {
4748 /* We were stopped by a watchpoint, but we don't know where.
4749 Mark all watchpoints as unknown. */
4750 ALL_BREAKPOINTS (b)
4751 if (is_hardware_watchpoint (b))
4752 {
4753 struct watchpoint *w = (struct watchpoint *) b;
4754
4755 w->watchpoint_triggered = watch_triggered_unknown;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* The target could report the data address. Mark watchpoints
4762 affected by this data address as triggered, and all others as not
4763 triggered. */
4764
4765 ALL_BREAKPOINTS (b)
4766 if (is_hardware_watchpoint (b))
4767 {
4768 struct watchpoint *w = (struct watchpoint *) b;
4769 struct bp_location *loc;
4770
4771 w->watchpoint_triggered = watch_triggered_no;
4772 for (loc = b->loc; loc; loc = loc->next)
4773 {
4774 if (is_masked_watchpoint (b))
4775 {
4776 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4777 CORE_ADDR start = loc->address & w->hw_wp_mask;
4778
4779 if (newaddr == start)
4780 {
4781 w->watchpoint_triggered = watch_triggered_yes;
4782 break;
4783 }
4784 }
4785 /* Exact match not required. Within range is sufficient. */
4786 else if (target_watchpoint_addr_within_range (current_top_target (),
4787 addr, loc->address,
4788 loc->length))
4789 {
4790 w->watchpoint_triggered = watch_triggered_yes;
4791 break;
4792 }
4793 }
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Possible return values for watchpoint_check. */
4800 enum wp_check_result
4801 {
4802 /* The watchpoint has been deleted. */
4803 WP_DELETED = 1,
4804
4805 /* The value has changed. */
4806 WP_VALUE_CHANGED = 2,
4807
4808 /* The value has not changed. */
4809 WP_VALUE_NOT_CHANGED = 3,
4810
4811 /* Ignore this watchpoint, no matter if the value changed or not. */
4812 WP_IGNORE = 4,
4813 };
4814
4815 #define BP_TEMPFLAG 1
4816 #define BP_HARDWAREFLAG 2
4817
4818 /* Evaluate watchpoint condition expression and check if its value
4819 changed. */
4820
4821 static wp_check_result
4822 watchpoint_check (bpstat bs)
4823 {
4824 struct watchpoint *b;
4825 struct frame_info *fr;
4826 int within_current_scope;
4827
4828 /* BS is built from an existing struct breakpoint. */
4829 gdb_assert (bs->breakpoint_at != NULL);
4830 b = (struct watchpoint *) bs->breakpoint_at;
4831
4832 /* If this is a local watchpoint, we only want to check if the
4833 watchpoint frame is in scope if the current thread is the thread
4834 that was used to create the watchpoint. */
4835 if (!watchpoint_in_thread_scope (b))
4836 return WP_IGNORE;
4837
4838 if (b->exp_valid_block == NULL)
4839 within_current_scope = 1;
4840 else
4841 {
4842 struct frame_info *frame = get_current_frame ();
4843 struct gdbarch *frame_arch = get_frame_arch (frame);
4844 CORE_ADDR frame_pc = get_frame_pc (frame);
4845
4846 /* stack_frame_destroyed_p() returns a non-zero value if we're
4847 still in the function but the stack frame has already been
4848 invalidated. Since we can't rely on the values of local
4849 variables after the stack has been destroyed, we are treating
4850 the watchpoint in that state as `not changed' without further
4851 checking. Don't mark watchpoints as changed if the current
4852 frame is in an epilogue - even if they are in some other
4853 frame, our view of the stack is likely to be wrong and
4854 frame_find_by_id could error out. */
4855 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4856 return WP_IGNORE;
4857
4858 fr = frame_find_by_id (b->watchpoint_frame);
4859 within_current_scope = (fr != NULL);
4860
4861 /* If we've gotten confused in the unwinder, we might have
4862 returned a frame that can't describe this variable. */
4863 if (within_current_scope)
4864 {
4865 struct symbol *function;
4866
4867 function = get_frame_function (fr);
4868 if (function == NULL
4869 || !contained_in (b->exp_valid_block,
4870 SYMBOL_BLOCK_VALUE (function)))
4871 within_current_scope = 0;
4872 }
4873
4874 if (within_current_scope)
4875 /* If we end up stopping, the current frame will get selected
4876 in normal_stop. So this call to select_frame won't affect
4877 the user. */
4878 select_frame (fr);
4879 }
4880
4881 if (within_current_scope)
4882 {
4883 /* We use value_{,free_to_}mark because it could be a *long*
4884 time before we return to the command level and call
4885 free_all_values. We can't call free_all_values because we
4886 might be in the middle of evaluating a function call. */
4887
4888 int pc = 0;
4889 struct value *mark;
4890 struct value *new_val;
4891
4892 if (is_masked_watchpoint (b))
4893 /* Since we don't know the exact trigger address (from
4894 stopped_data_address), just tell the user we've triggered
4895 a mask watchpoint. */
4896 return WP_VALUE_CHANGED;
4897
4898 mark = value_mark ();
4899 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4900
4901 if (b->val_bitsize != 0)
4902 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4903
4904 /* We use value_equal_contents instead of value_equal because
4905 the latter coerces an array to a pointer, thus comparing just
4906 the address of the array instead of its contents. This is
4907 not what we want. */
4908 if ((b->val != NULL) != (new_val != NULL)
4909 || (b->val != NULL && !value_equal_contents (b->val.get (),
4910 new_val)))
4911 {
4912 bs->old_val = b->val;
4913 b->val = release_value (new_val);
4914 b->val_valid = 1;
4915 if (new_val != NULL)
4916 value_free_to_mark (mark);
4917 return WP_VALUE_CHANGED;
4918 }
4919 else
4920 {
4921 /* Nothing changed. */
4922 value_free_to_mark (mark);
4923 return WP_VALUE_NOT_CHANGED;
4924 }
4925 }
4926 else
4927 {
4928 /* This seems like the only logical thing to do because
4929 if we temporarily ignored the watchpoint, then when
4930 we reenter the block in which it is valid it contains
4931 garbage (in the case of a function, it may have two
4932 garbage values, one before and one after the prologue).
4933 So we can't even detect the first assignment to it and
4934 watch after that (since the garbage may or may not equal
4935 the first value assigned). */
4936 /* We print all the stop information in
4937 breakpoint_ops->print_it, but in this case, by the time we
4938 call breakpoint_ops->print_it this bp will be deleted
4939 already. So we have no choice but print the information
4940 here. */
4941
4942 SWITCH_THRU_ALL_UIS ()
4943 {
4944 struct ui_out *uiout = current_uiout;
4945
4946 if (uiout->is_mi_like_p ())
4947 uiout->field_string
4948 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4949 uiout->text ("\nWatchpoint ");
4950 uiout->field_int ("wpnum", b->number);
4951 uiout->text (" deleted because the program has left the block in\n"
4952 "which its expression is valid.\n");
4953 }
4954
4955 /* Make sure the watchpoint's commands aren't executed. */
4956 b->commands = NULL;
4957 watchpoint_del_at_next_stop (b);
4958
4959 return WP_DELETED;
4960 }
4961 }
4962
4963 /* Return true if it looks like target has stopped due to hitting
4964 breakpoint location BL. This function does not check if we should
4965 stop, only if BL explains the stop. */
4966
4967 static int
4968 bpstat_check_location (const struct bp_location *bl,
4969 const address_space *aspace, CORE_ADDR bp_addr,
4970 const struct target_waitstatus *ws)
4971 {
4972 struct breakpoint *b = bl->owner;
4973
4974 /* BL is from an existing breakpoint. */
4975 gdb_assert (b != NULL);
4976
4977 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4978 }
4979
4980 /* Determine if the watched values have actually changed, and we
4981 should stop. If not, set BS->stop to 0. */
4982
4983 static void
4984 bpstat_check_watchpoint (bpstat bs)
4985 {
4986 const struct bp_location *bl;
4987 struct watchpoint *b;
4988
4989 /* BS is built for existing struct breakpoint. */
4990 bl = bs->bp_location_at;
4991 gdb_assert (bl != NULL);
4992 b = (struct watchpoint *) bs->breakpoint_at;
4993 gdb_assert (b != NULL);
4994
4995 {
4996 int must_check_value = 0;
4997
4998 if (b->type == bp_watchpoint)
4999 /* For a software watchpoint, we must always check the
5000 watched value. */
5001 must_check_value = 1;
5002 else if (b->watchpoint_triggered == watch_triggered_yes)
5003 /* We have a hardware watchpoint (read, write, or access)
5004 and the target earlier reported an address watched by
5005 this watchpoint. */
5006 must_check_value = 1;
5007 else if (b->watchpoint_triggered == watch_triggered_unknown
5008 && b->type == bp_hardware_watchpoint)
5009 /* We were stopped by a hardware watchpoint, but the target could
5010 not report the data address. We must check the watchpoint's
5011 value. Access and read watchpoints are out of luck; without
5012 a data address, we can't figure it out. */
5013 must_check_value = 1;
5014
5015 if (must_check_value)
5016 {
5017 wp_check_result e;
5018
5019 TRY
5020 {
5021 e = watchpoint_check (bs);
5022 }
5023 CATCH (ex, RETURN_MASK_ALL)
5024 {
5025 exception_fprintf (gdb_stderr, ex,
5026 "Error evaluating expression "
5027 "for watchpoint %d\n",
5028 b->number);
5029
5030 SWITCH_THRU_ALL_UIS ()
5031 {
5032 printf_filtered (_("Watchpoint %d deleted.\n"),
5033 b->number);
5034 }
5035 watchpoint_del_at_next_stop (b);
5036 e = WP_DELETED;
5037 }
5038 END_CATCH
5039
5040 switch (e)
5041 {
5042 case WP_DELETED:
5043 /* We've already printed what needs to be printed. */
5044 bs->print_it = print_it_done;
5045 /* Stop. */
5046 break;
5047 case WP_IGNORE:
5048 bs->print_it = print_it_noop;
5049 bs->stop = 0;
5050 break;
5051 case WP_VALUE_CHANGED:
5052 if (b->type == bp_read_watchpoint)
5053 {
5054 /* There are two cases to consider here:
5055
5056 1. We're watching the triggered memory for reads.
5057 In that case, trust the target, and always report
5058 the watchpoint hit to the user. Even though
5059 reads don't cause value changes, the value may
5060 have changed since the last time it was read, and
5061 since we're not trapping writes, we will not see
5062 those, and as such we should ignore our notion of
5063 old value.
5064
5065 2. We're watching the triggered memory for both
5066 reads and writes. There are two ways this may
5067 happen:
5068
5069 2.1. This is a target that can't break on data
5070 reads only, but can break on accesses (reads or
5071 writes), such as e.g., x86. We detect this case
5072 at the time we try to insert read watchpoints.
5073
5074 2.2. Otherwise, the target supports read
5075 watchpoints, but, the user set an access or write
5076 watchpoint watching the same memory as this read
5077 watchpoint.
5078
5079 If we're watching memory writes as well as reads,
5080 ignore watchpoint hits when we find that the
5081 value hasn't changed, as reads don't cause
5082 changes. This still gives false positives when
5083 the program writes the same value to memory as
5084 what there was already in memory (we will confuse
5085 it for a read), but it's much better than
5086 nothing. */
5087
5088 int other_write_watchpoint = 0;
5089
5090 if (bl->watchpoint_type == hw_read)
5091 {
5092 struct breakpoint *other_b;
5093
5094 ALL_BREAKPOINTS (other_b)
5095 if (other_b->type == bp_hardware_watchpoint
5096 || other_b->type == bp_access_watchpoint)
5097 {
5098 struct watchpoint *other_w =
5099 (struct watchpoint *) other_b;
5100
5101 if (other_w->watchpoint_triggered
5102 == watch_triggered_yes)
5103 {
5104 other_write_watchpoint = 1;
5105 break;
5106 }
5107 }
5108 }
5109
5110 if (other_write_watchpoint
5111 || bl->watchpoint_type == hw_access)
5112 {
5113 /* We're watching the same memory for writes,
5114 and the value changed since the last time we
5115 updated it, so this trap must be for a write.
5116 Ignore it. */
5117 bs->print_it = print_it_noop;
5118 bs->stop = 0;
5119 }
5120 }
5121 break;
5122 case WP_VALUE_NOT_CHANGED:
5123 if (b->type == bp_hardware_watchpoint
5124 || b->type == bp_watchpoint)
5125 {
5126 /* Don't stop: write watchpoints shouldn't fire if
5127 the value hasn't changed. */
5128 bs->print_it = print_it_noop;
5129 bs->stop = 0;
5130 }
5131 /* Stop. */
5132 break;
5133 default:
5134 /* Can't happen. */
5135 break;
5136 }
5137 }
5138 else /* must_check_value == 0 */
5139 {
5140 /* This is a case where some watchpoint(s) triggered, but
5141 not at the address of this watchpoint, or else no
5142 watchpoint triggered after all. So don't print
5143 anything for this watchpoint. */
5144 bs->print_it = print_it_noop;
5145 bs->stop = 0;
5146 }
5147 }
5148 }
5149
5150 /* For breakpoints that are currently marked as telling gdb to stop,
5151 check conditions (condition proper, frame, thread and ignore count)
5152 of breakpoint referred to by BS. If we should not stop for this
5153 breakpoint, set BS->stop to 0. */
5154
5155 static void
5156 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5157 {
5158 const struct bp_location *bl;
5159 struct breakpoint *b;
5160 /* Assume stop. */
5161 bool condition_result = true;
5162 struct expression *cond;
5163
5164 gdb_assert (bs->stop);
5165
5166 /* BS is built for existing struct breakpoint. */
5167 bl = bs->bp_location_at;
5168 gdb_assert (bl != NULL);
5169 b = bs->breakpoint_at;
5170 gdb_assert (b != NULL);
5171
5172 /* Even if the target evaluated the condition on its end and notified GDB, we
5173 need to do so again since GDB does not know if we stopped due to a
5174 breakpoint or a single step breakpoint. */
5175
5176 if (frame_id_p (b->frame_id)
5177 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5178 {
5179 bs->stop = 0;
5180 return;
5181 }
5182
5183 /* If this is a thread/task-specific breakpoint, don't waste cpu
5184 evaluating the condition if this isn't the specified
5185 thread/task. */
5186 if ((b->thread != -1 && b->thread != thread->global_num)
5187 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* Evaluate extension language breakpoints that have a "stop" method
5194 implemented. */
5195 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5196
5197 if (is_watchpoint (b))
5198 {
5199 struct watchpoint *w = (struct watchpoint *) b;
5200
5201 cond = w->cond_exp.get ();
5202 }
5203 else
5204 cond = bl->cond.get ();
5205
5206 if (cond && b->disposition != disp_del_at_next_stop)
5207 {
5208 int within_current_scope = 1;
5209 struct watchpoint * w;
5210
5211 /* We use value_mark and value_free_to_mark because it could
5212 be a long time before we return to the command level and
5213 call free_all_values. We can't call free_all_values
5214 because we might be in the middle of evaluating a
5215 function call. */
5216 struct value *mark = value_mark ();
5217
5218 if (is_watchpoint (b))
5219 w = (struct watchpoint *) b;
5220 else
5221 w = NULL;
5222
5223 /* Need to select the frame, with all that implies so that
5224 the conditions will have the right context. Because we
5225 use the frame, we will not see an inlined function's
5226 variables when we arrive at a breakpoint at the start
5227 of the inlined function; the current frame will be the
5228 call site. */
5229 if (w == NULL || w->cond_exp_valid_block == NULL)
5230 select_frame (get_current_frame ());
5231 else
5232 {
5233 struct frame_info *frame;
5234
5235 /* For local watchpoint expressions, which particular
5236 instance of a local is being watched matters, so we
5237 keep track of the frame to evaluate the expression
5238 in. To evaluate the condition however, it doesn't
5239 really matter which instantiation of the function
5240 where the condition makes sense triggers the
5241 watchpoint. This allows an expression like "watch
5242 global if q > 10" set in `func', catch writes to
5243 global on all threads that call `func', or catch
5244 writes on all recursive calls of `func' by a single
5245 thread. We simply always evaluate the condition in
5246 the innermost frame that's executing where it makes
5247 sense to evaluate the condition. It seems
5248 intuitive. */
5249 frame = block_innermost_frame (w->cond_exp_valid_block);
5250 if (frame != NULL)
5251 select_frame (frame);
5252 else
5253 within_current_scope = 0;
5254 }
5255 if (within_current_scope)
5256 {
5257 TRY
5258 {
5259 condition_result = breakpoint_cond_eval (cond);
5260 }
5261 CATCH (ex, RETURN_MASK_ALL)
5262 {
5263 exception_fprintf (gdb_stderr, ex,
5264 "Error in testing breakpoint condition:\n");
5265 }
5266 END_CATCH
5267 }
5268 else
5269 {
5270 warning (_("Watchpoint condition cannot be tested "
5271 "in the current scope"));
5272 /* If we failed to set the right context for this
5273 watchpoint, unconditionally report it. */
5274 }
5275 /* FIXME-someday, should give breakpoint #. */
5276 value_free_to_mark (mark);
5277 }
5278
5279 if (cond && !condition_result)
5280 {
5281 bs->stop = 0;
5282 }
5283 else if (b->ignore_count > 0)
5284 {
5285 b->ignore_count--;
5286 bs->stop = 0;
5287 /* Increase the hit count even though we don't stop. */
5288 ++(b->hit_count);
5289 gdb::observers::breakpoint_modified.notify (b);
5290 }
5291 }
5292
5293 /* Returns true if we need to track moribund locations of LOC's type
5294 on the current target. */
5295
5296 static int
5297 need_moribund_for_location_type (struct bp_location *loc)
5298 {
5299 return ((loc->loc_type == bp_loc_software_breakpoint
5300 && !target_supports_stopped_by_sw_breakpoint ())
5301 || (loc->loc_type == bp_loc_hardware_breakpoint
5302 && !target_supports_stopped_by_hw_breakpoint ()));
5303 }
5304
5305 /* See breakpoint.h. */
5306
5307 bpstat
5308 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5309 const struct target_waitstatus *ws)
5310 {
5311 struct breakpoint *b;
5312 bpstat bs_head = NULL, *bs_link = &bs_head;
5313
5314 ALL_BREAKPOINTS (b)
5315 {
5316 if (!breakpoint_enabled (b))
5317 continue;
5318
5319 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5320 {
5321 /* For hardware watchpoints, we look only at the first
5322 location. The watchpoint_check function will work on the
5323 entire expression, not the individual locations. For
5324 read watchpoints, the watchpoints_triggered function has
5325 checked all locations already. */
5326 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5327 break;
5328
5329 if (!bl->enabled || bl->shlib_disabled)
5330 continue;
5331
5332 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5333 continue;
5334
5335 /* Come here if it's a watchpoint, or if the break address
5336 matches. */
5337
5338 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5339 explain stop. */
5340
5341 /* Assume we stop. Should we find a watchpoint that is not
5342 actually triggered, or if the condition of the breakpoint
5343 evaluates as false, we'll reset 'stop' to 0. */
5344 bs->stop = 1;
5345 bs->print = 1;
5346
5347 /* If this is a scope breakpoint, mark the associated
5348 watchpoint as triggered so that we will handle the
5349 out-of-scope event. We'll get to the watchpoint next
5350 iteration. */
5351 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5352 {
5353 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5354
5355 w->watchpoint_triggered = watch_triggered_yes;
5356 }
5357 }
5358 }
5359
5360 /* Check if a moribund breakpoint explains the stop. */
5361 if (!target_supports_stopped_by_sw_breakpoint ()
5362 || !target_supports_stopped_by_hw_breakpoint ())
5363 {
5364 for (bp_location *loc : moribund_locations)
5365 {
5366 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5367 && need_moribund_for_location_type (loc))
5368 {
5369 bpstat bs = new bpstats (loc, &bs_link);
5370 /* For hits of moribund locations, we should just proceed. */
5371 bs->stop = 0;
5372 bs->print = 0;
5373 bs->print_it = print_it_noop;
5374 }
5375 }
5376 }
5377
5378 return bs_head;
5379 }
5380
5381 /* See breakpoint.h. */
5382
5383 bpstat
5384 bpstat_stop_status (const address_space *aspace,
5385 CORE_ADDR bp_addr, thread_info *thread,
5386 const struct target_waitstatus *ws,
5387 bpstat stop_chain)
5388 {
5389 struct breakpoint *b = NULL;
5390 /* First item of allocated bpstat's. */
5391 bpstat bs_head = stop_chain;
5392 bpstat bs;
5393 int need_remove_insert;
5394 int removed_any;
5395
5396 /* First, build the bpstat chain with locations that explain a
5397 target stop, while being careful to not set the target running,
5398 as that may invalidate locations (in particular watchpoint
5399 locations are recreated). Resuming will happen here with
5400 breakpoint conditions or watchpoint expressions that include
5401 inferior function calls. */
5402 if (bs_head == NULL)
5403 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5404
5405 /* A bit of special processing for shlib breakpoints. We need to
5406 process solib loading here, so that the lists of loaded and
5407 unloaded libraries are correct before we handle "catch load" and
5408 "catch unload". */
5409 for (bs = bs_head; bs != NULL; bs = bs->next)
5410 {
5411 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5412 {
5413 handle_solib_event ();
5414 break;
5415 }
5416 }
5417
5418 /* Now go through the locations that caused the target to stop, and
5419 check whether we're interested in reporting this stop to higher
5420 layers, or whether we should resume the target transparently. */
5421
5422 removed_any = 0;
5423
5424 for (bs = bs_head; bs != NULL; bs = bs->next)
5425 {
5426 if (!bs->stop)
5427 continue;
5428
5429 b = bs->breakpoint_at;
5430 b->ops->check_status (bs);
5431 if (bs->stop)
5432 {
5433 bpstat_check_breakpoint_conditions (bs, thread);
5434
5435 if (bs->stop)
5436 {
5437 ++(b->hit_count);
5438 gdb::observers::breakpoint_modified.notify (b);
5439
5440 /* We will stop here. */
5441 if (b->disposition == disp_disable)
5442 {
5443 --(b->enable_count);
5444 if (b->enable_count <= 0)
5445 b->enable_state = bp_disabled;
5446 removed_any = 1;
5447 }
5448 if (b->silent)
5449 bs->print = 0;
5450 bs->commands = b->commands;
5451 if (command_line_is_silent (bs->commands
5452 ? bs->commands.get () : NULL))
5453 bs->print = 0;
5454
5455 b->ops->after_condition_true (bs);
5456 }
5457
5458 }
5459
5460 /* Print nothing for this entry if we don't stop or don't
5461 print. */
5462 if (!bs->stop || !bs->print)
5463 bs->print_it = print_it_noop;
5464 }
5465
5466 /* If we aren't stopping, the value of some hardware watchpoint may
5467 not have changed, but the intermediate memory locations we are
5468 watching may have. Don't bother if we're stopping; this will get
5469 done later. */
5470 need_remove_insert = 0;
5471 if (! bpstat_causes_stop (bs_head))
5472 for (bs = bs_head; bs != NULL; bs = bs->next)
5473 if (!bs->stop
5474 && bs->breakpoint_at
5475 && is_hardware_watchpoint (bs->breakpoint_at))
5476 {
5477 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5478
5479 update_watchpoint (w, 0 /* don't reparse. */);
5480 need_remove_insert = 1;
5481 }
5482
5483 if (need_remove_insert)
5484 update_global_location_list (UGLL_MAY_INSERT);
5485 else if (removed_any)
5486 update_global_location_list (UGLL_DONT_INSERT);
5487
5488 return bs_head;
5489 }
5490
5491 static void
5492 handle_jit_event (void)
5493 {
5494 struct frame_info *frame;
5495 struct gdbarch *gdbarch;
5496
5497 if (debug_infrun)
5498 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5499
5500 /* Switch terminal for any messages produced by
5501 breakpoint_re_set. */
5502 target_terminal::ours_for_output ();
5503
5504 frame = get_current_frame ();
5505 gdbarch = get_frame_arch (frame);
5506
5507 jit_event_handler (gdbarch);
5508
5509 target_terminal::inferior ();
5510 }
5511
5512 /* Prepare WHAT final decision for infrun. */
5513
5514 /* Decide what infrun needs to do with this bpstat. */
5515
5516 struct bpstat_what
5517 bpstat_what (bpstat bs_head)
5518 {
5519 struct bpstat_what retval;
5520 bpstat bs;
5521
5522 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5523 retval.call_dummy = STOP_NONE;
5524 retval.is_longjmp = 0;
5525
5526 for (bs = bs_head; bs != NULL; bs = bs->next)
5527 {
5528 /* Extract this BS's action. After processing each BS, we check
5529 if its action overrides all we've seem so far. */
5530 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5531 enum bptype bptype;
5532
5533 if (bs->breakpoint_at == NULL)
5534 {
5535 /* I suspect this can happen if it was a momentary
5536 breakpoint which has since been deleted. */
5537 bptype = bp_none;
5538 }
5539 else
5540 bptype = bs->breakpoint_at->type;
5541
5542 switch (bptype)
5543 {
5544 case bp_none:
5545 break;
5546 case bp_breakpoint:
5547 case bp_hardware_breakpoint:
5548 case bp_single_step:
5549 case bp_until:
5550 case bp_finish:
5551 case bp_shlib_event:
5552 if (bs->stop)
5553 {
5554 if (bs->print)
5555 this_action = BPSTAT_WHAT_STOP_NOISY;
5556 else
5557 this_action = BPSTAT_WHAT_STOP_SILENT;
5558 }
5559 else
5560 this_action = BPSTAT_WHAT_SINGLE;
5561 break;
5562 case bp_watchpoint:
5563 case bp_hardware_watchpoint:
5564 case bp_read_watchpoint:
5565 case bp_access_watchpoint:
5566 if (bs->stop)
5567 {
5568 if (bs->print)
5569 this_action = BPSTAT_WHAT_STOP_NOISY;
5570 else
5571 this_action = BPSTAT_WHAT_STOP_SILENT;
5572 }
5573 else
5574 {
5575 /* There was a watchpoint, but we're not stopping.
5576 This requires no further action. */
5577 }
5578 break;
5579 case bp_longjmp:
5580 case bp_longjmp_call_dummy:
5581 case bp_exception:
5582 if (bs->stop)
5583 {
5584 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5585 retval.is_longjmp = bptype != bp_exception;
5586 }
5587 else
5588 this_action = BPSTAT_WHAT_SINGLE;
5589 break;
5590 case bp_longjmp_resume:
5591 case bp_exception_resume:
5592 if (bs->stop)
5593 {
5594 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5595 retval.is_longjmp = bptype == bp_longjmp_resume;
5596 }
5597 else
5598 this_action = BPSTAT_WHAT_SINGLE;
5599 break;
5600 case bp_step_resume:
5601 if (bs->stop)
5602 this_action = BPSTAT_WHAT_STEP_RESUME;
5603 else
5604 {
5605 /* It is for the wrong frame. */
5606 this_action = BPSTAT_WHAT_SINGLE;
5607 }
5608 break;
5609 case bp_hp_step_resume:
5610 if (bs->stop)
5611 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5612 else
5613 {
5614 /* It is for the wrong frame. */
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 }
5617 break;
5618 case bp_watchpoint_scope:
5619 case bp_thread_event:
5620 case bp_overlay_event:
5621 case bp_longjmp_master:
5622 case bp_std_terminate_master:
5623 case bp_exception_master:
5624 this_action = BPSTAT_WHAT_SINGLE;
5625 break;
5626 case bp_catchpoint:
5627 if (bs->stop)
5628 {
5629 if (bs->print)
5630 this_action = BPSTAT_WHAT_STOP_NOISY;
5631 else
5632 this_action = BPSTAT_WHAT_STOP_SILENT;
5633 }
5634 else
5635 {
5636 /* There was a catchpoint, but we're not stopping.
5637 This requires no further action. */
5638 }
5639 break;
5640 case bp_jit_event:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_call_dummy:
5644 /* Make sure the action is stop (silent or noisy),
5645 so infrun.c pops the dummy frame. */
5646 retval.call_dummy = STOP_STACK_DUMMY;
5647 this_action = BPSTAT_WHAT_STOP_SILENT;
5648 break;
5649 case bp_std_terminate:
5650 /* Make sure the action is stop (silent or noisy),
5651 so infrun.c pops the dummy frame. */
5652 retval.call_dummy = STOP_STD_TERMINATE;
5653 this_action = BPSTAT_WHAT_STOP_SILENT;
5654 break;
5655 case bp_tracepoint:
5656 case bp_fast_tracepoint:
5657 case bp_static_tracepoint:
5658 /* Tracepoint hits should not be reported back to GDB, and
5659 if one got through somehow, it should have been filtered
5660 out already. */
5661 internal_error (__FILE__, __LINE__,
5662 _("bpstat_what: tracepoint encountered"));
5663 break;
5664 case bp_gnu_ifunc_resolver:
5665 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 break;
5668 case bp_gnu_ifunc_resolver_return:
5669 /* The breakpoint will be removed, execution will restart from the
5670 PC of the former breakpoint. */
5671 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5672 break;
5673
5674 case bp_dprintf:
5675 if (bs->stop)
5676 this_action = BPSTAT_WHAT_STOP_SILENT;
5677 else
5678 this_action = BPSTAT_WHAT_SINGLE;
5679 break;
5680
5681 default:
5682 internal_error (__FILE__, __LINE__,
5683 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5684 }
5685
5686 retval.main_action = std::max (retval.main_action, this_action);
5687 }
5688
5689 return retval;
5690 }
5691
5692 void
5693 bpstat_run_callbacks (bpstat bs_head)
5694 {
5695 bpstat bs;
5696
5697 for (bs = bs_head; bs != NULL; bs = bs->next)
5698 {
5699 struct breakpoint *b = bs->breakpoint_at;
5700
5701 if (b == NULL)
5702 continue;
5703 switch (b->type)
5704 {
5705 case bp_jit_event:
5706 handle_jit_event ();
5707 break;
5708 case bp_gnu_ifunc_resolver:
5709 gnu_ifunc_resolver_stop (b);
5710 break;
5711 case bp_gnu_ifunc_resolver_return:
5712 gnu_ifunc_resolver_return_stop (b);
5713 break;
5714 }
5715 }
5716 }
5717
5718 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5719 without hardware support). This isn't related to a specific bpstat,
5720 just to things like whether watchpoints are set. */
5721
5722 int
5723 bpstat_should_step (void)
5724 {
5725 struct breakpoint *b;
5726
5727 ALL_BREAKPOINTS (b)
5728 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5729 return 1;
5730 return 0;
5731 }
5732
5733 int
5734 bpstat_causes_stop (bpstat bs)
5735 {
5736 for (; bs != NULL; bs = bs->next)
5737 if (bs->stop)
5738 return 1;
5739
5740 return 0;
5741 }
5742
5743 \f
5744
5745 /* Compute a string of spaces suitable to indent the next line
5746 so it starts at the position corresponding to the table column
5747 named COL_NAME in the currently active table of UIOUT. */
5748
5749 static char *
5750 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5751 {
5752 static char wrap_indent[80];
5753 int i, total_width, width, align;
5754 const char *text;
5755
5756 total_width = 0;
5757 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5758 {
5759 if (strcmp (text, col_name) == 0)
5760 {
5761 gdb_assert (total_width < sizeof wrap_indent);
5762 memset (wrap_indent, ' ', total_width);
5763 wrap_indent[total_width] = 0;
5764
5765 return wrap_indent;
5766 }
5767
5768 total_width += width + 1;
5769 }
5770
5771 return NULL;
5772 }
5773
5774 /* Determine if the locations of this breakpoint will have their conditions
5775 evaluated by the target, host or a mix of both. Returns the following:
5776
5777 "host": Host evals condition.
5778 "host or target": Host or Target evals condition.
5779 "target": Target evals condition.
5780 */
5781
5782 static const char *
5783 bp_condition_evaluator (struct breakpoint *b)
5784 {
5785 struct bp_location *bl;
5786 char host_evals = 0;
5787 char target_evals = 0;
5788
5789 if (!b)
5790 return NULL;
5791
5792 if (!is_breakpoint (b))
5793 return NULL;
5794
5795 if (gdb_evaluates_breakpoint_condition_p ()
5796 || !target_supports_evaluation_of_breakpoint_conditions ())
5797 return condition_evaluation_host;
5798
5799 for (bl = b->loc; bl; bl = bl->next)
5800 {
5801 if (bl->cond_bytecode)
5802 target_evals++;
5803 else
5804 host_evals++;
5805 }
5806
5807 if (host_evals && target_evals)
5808 return condition_evaluation_both;
5809 else if (target_evals)
5810 return condition_evaluation_target;
5811 else
5812 return condition_evaluation_host;
5813 }
5814
5815 /* Determine the breakpoint location's condition evaluator. This is
5816 similar to bp_condition_evaluator, but for locations. */
5817
5818 static const char *
5819 bp_location_condition_evaluator (struct bp_location *bl)
5820 {
5821 if (bl && !is_breakpoint (bl->owner))
5822 return NULL;
5823
5824 if (gdb_evaluates_breakpoint_condition_p ()
5825 || !target_supports_evaluation_of_breakpoint_conditions ())
5826 return condition_evaluation_host;
5827
5828 if (bl && bl->cond_bytecode)
5829 return condition_evaluation_target;
5830 else
5831 return condition_evaluation_host;
5832 }
5833
5834 /* Print the LOC location out of the list of B->LOC locations. */
5835
5836 static void
5837 print_breakpoint_location (struct breakpoint *b,
5838 struct bp_location *loc)
5839 {
5840 struct ui_out *uiout = current_uiout;
5841
5842 scoped_restore_current_program_space restore_pspace;
5843
5844 if (loc != NULL && loc->shlib_disabled)
5845 loc = NULL;
5846
5847 if (loc != NULL)
5848 set_current_program_space (loc->pspace);
5849
5850 if (b->display_canonical)
5851 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5852 else if (loc && loc->symtab)
5853 {
5854 const struct symbol *sym = loc->symbol;
5855
5856 if (sym)
5857 {
5858 uiout->text ("in ");
5859 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5860 ui_out_style_kind::FUNCTION);
5861 uiout->text (" ");
5862 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5863 uiout->text ("at ");
5864 }
5865 uiout->field_string ("file",
5866 symtab_to_filename_for_display (loc->symtab),
5867 ui_out_style_kind::FILE);
5868 uiout->text (":");
5869
5870 if (uiout->is_mi_like_p ())
5871 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5872
5873 uiout->field_int ("line", loc->line_number);
5874 }
5875 else if (loc)
5876 {
5877 string_file stb;
5878
5879 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5880 demangle, "");
5881 uiout->field_stream ("at", stb);
5882 }
5883 else
5884 {
5885 uiout->field_string ("pending",
5886 event_location_to_string (b->location.get ()));
5887 /* If extra_string is available, it could be holding a condition
5888 or dprintf arguments. In either case, make sure it is printed,
5889 too, but only for non-MI streams. */
5890 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5891 {
5892 if (b->type == bp_dprintf)
5893 uiout->text (",");
5894 else
5895 uiout->text (" ");
5896 uiout->text (b->extra_string);
5897 }
5898 }
5899
5900 if (loc && is_breakpoint (b)
5901 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5902 && bp_condition_evaluator (b) == condition_evaluation_both)
5903 {
5904 uiout->text (" (");
5905 uiout->field_string ("evaluated-by",
5906 bp_location_condition_evaluator (loc));
5907 uiout->text (")");
5908 }
5909 }
5910
5911 static const char *
5912 bptype_string (enum bptype type)
5913 {
5914 struct ep_type_description
5915 {
5916 enum bptype type;
5917 const char *description;
5918 };
5919 static struct ep_type_description bptypes[] =
5920 {
5921 {bp_none, "?deleted?"},
5922 {bp_breakpoint, "breakpoint"},
5923 {bp_hardware_breakpoint, "hw breakpoint"},
5924 {bp_single_step, "sw single-step"},
5925 {bp_until, "until"},
5926 {bp_finish, "finish"},
5927 {bp_watchpoint, "watchpoint"},
5928 {bp_hardware_watchpoint, "hw watchpoint"},
5929 {bp_read_watchpoint, "read watchpoint"},
5930 {bp_access_watchpoint, "acc watchpoint"},
5931 {bp_longjmp, "longjmp"},
5932 {bp_longjmp_resume, "longjmp resume"},
5933 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5934 {bp_exception, "exception"},
5935 {bp_exception_resume, "exception resume"},
5936 {bp_step_resume, "step resume"},
5937 {bp_hp_step_resume, "high-priority step resume"},
5938 {bp_watchpoint_scope, "watchpoint scope"},
5939 {bp_call_dummy, "call dummy"},
5940 {bp_std_terminate, "std::terminate"},
5941 {bp_shlib_event, "shlib events"},
5942 {bp_thread_event, "thread events"},
5943 {bp_overlay_event, "overlay events"},
5944 {bp_longjmp_master, "longjmp master"},
5945 {bp_std_terminate_master, "std::terminate master"},
5946 {bp_exception_master, "exception master"},
5947 {bp_catchpoint, "catchpoint"},
5948 {bp_tracepoint, "tracepoint"},
5949 {bp_fast_tracepoint, "fast tracepoint"},
5950 {bp_static_tracepoint, "static tracepoint"},
5951 {bp_dprintf, "dprintf"},
5952 {bp_jit_event, "jit events"},
5953 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5954 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5955 };
5956
5957 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5958 || ((int) type != bptypes[(int) type].type))
5959 internal_error (__FILE__, __LINE__,
5960 _("bptypes table does not describe type #%d."),
5961 (int) type);
5962
5963 return bptypes[(int) type].description;
5964 }
5965
5966 /* For MI, output a field named 'thread-groups' with a list as the value.
5967 For CLI, prefix the list with the string 'inf'. */
5968
5969 static void
5970 output_thread_groups (struct ui_out *uiout,
5971 const char *field_name,
5972 const std::vector<int> &inf_nums,
5973 int mi_only)
5974 {
5975 int is_mi = uiout->is_mi_like_p ();
5976
5977 /* For backward compatibility, don't display inferiors in CLI unless
5978 there are several. Always display them for MI. */
5979 if (!is_mi && mi_only)
5980 return;
5981
5982 ui_out_emit_list list_emitter (uiout, field_name);
5983
5984 for (size_t i = 0; i < inf_nums.size (); i++)
5985 {
5986 if (is_mi)
5987 {
5988 char mi_group[10];
5989
5990 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5991 uiout->field_string (NULL, mi_group);
5992 }
5993 else
5994 {
5995 if (i == 0)
5996 uiout->text (" inf ");
5997 else
5998 uiout->text (", ");
5999
6000 uiout->text (plongest (inf_nums[i]));
6001 }
6002 }
6003 }
6004
6005 /* Print B to gdb_stdout. */
6006
6007 static void
6008 print_one_breakpoint_location (struct breakpoint *b,
6009 struct bp_location *loc,
6010 int loc_number,
6011 struct bp_location **last_loc,
6012 int allflag)
6013 {
6014 struct command_line *l;
6015 static char bpenables[] = "nynny";
6016
6017 struct ui_out *uiout = current_uiout;
6018 int header_of_multiple = 0;
6019 int part_of_multiple = (loc != NULL);
6020 struct value_print_options opts;
6021
6022 get_user_print_options (&opts);
6023
6024 gdb_assert (!loc || loc_number != 0);
6025 /* See comment in print_one_breakpoint concerning treatment of
6026 breakpoints with single disabled location. */
6027 if (loc == NULL
6028 && (b->loc != NULL
6029 && (b->loc->next != NULL || !b->loc->enabled)))
6030 header_of_multiple = 1;
6031 if (loc == NULL)
6032 loc = b->loc;
6033
6034 annotate_record ();
6035
6036 /* 1 */
6037 annotate_field (0);
6038 if (part_of_multiple)
6039 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6040 else
6041 uiout->field_int ("number", b->number);
6042
6043 /* 2 */
6044 annotate_field (1);
6045 if (part_of_multiple)
6046 uiout->field_skip ("type");
6047 else
6048 uiout->field_string ("type", bptype_string (b->type));
6049
6050 /* 3 */
6051 annotate_field (2);
6052 if (part_of_multiple)
6053 uiout->field_skip ("disp");
6054 else
6055 uiout->field_string ("disp", bpdisp_text (b->disposition));
6056
6057 /* 4 */
6058 annotate_field (3);
6059 if (part_of_multiple)
6060 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6061 else
6062 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6063
6064 /* 5 and 6 */
6065 if (b->ops != NULL && b->ops->print_one != NULL)
6066 {
6067 /* Although the print_one can possibly print all locations,
6068 calling it here is not likely to get any nice result. So,
6069 make sure there's just one location. */
6070 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6071 b->ops->print_one (b, last_loc);
6072 }
6073 else
6074 switch (b->type)
6075 {
6076 case bp_none:
6077 internal_error (__FILE__, __LINE__,
6078 _("print_one_breakpoint: bp_none encountered\n"));
6079 break;
6080
6081 case bp_watchpoint:
6082 case bp_hardware_watchpoint:
6083 case bp_read_watchpoint:
6084 case bp_access_watchpoint:
6085 {
6086 struct watchpoint *w = (struct watchpoint *) b;
6087
6088 /* Field 4, the address, is omitted (which makes the columns
6089 not line up too nicely with the headers, but the effect
6090 is relatively readable). */
6091 if (opts.addressprint)
6092 uiout->field_skip ("addr");
6093 annotate_field (5);
6094 uiout->field_string ("what", w->exp_string);
6095 }
6096 break;
6097
6098 case bp_breakpoint:
6099 case bp_hardware_breakpoint:
6100 case bp_single_step:
6101 case bp_until:
6102 case bp_finish:
6103 case bp_longjmp:
6104 case bp_longjmp_resume:
6105 case bp_longjmp_call_dummy:
6106 case bp_exception:
6107 case bp_exception_resume:
6108 case bp_step_resume:
6109 case bp_hp_step_resume:
6110 case bp_watchpoint_scope:
6111 case bp_call_dummy:
6112 case bp_std_terminate:
6113 case bp_shlib_event:
6114 case bp_thread_event:
6115 case bp_overlay_event:
6116 case bp_longjmp_master:
6117 case bp_std_terminate_master:
6118 case bp_exception_master:
6119 case bp_tracepoint:
6120 case bp_fast_tracepoint:
6121 case bp_static_tracepoint:
6122 case bp_dprintf:
6123 case bp_jit_event:
6124 case bp_gnu_ifunc_resolver:
6125 case bp_gnu_ifunc_resolver_return:
6126 if (opts.addressprint)
6127 {
6128 annotate_field (4);
6129 if (header_of_multiple)
6130 uiout->field_string ("addr", "<MULTIPLE>");
6131 else if (b->loc == NULL || loc->shlib_disabled)
6132 uiout->field_string ("addr", "<PENDING>");
6133 else
6134 uiout->field_core_addr ("addr",
6135 loc->gdbarch, loc->address);
6136 }
6137 annotate_field (5);
6138 if (!header_of_multiple)
6139 print_breakpoint_location (b, loc);
6140 if (b->loc)
6141 *last_loc = b->loc;
6142 break;
6143 }
6144
6145
6146 if (loc != NULL && !header_of_multiple)
6147 {
6148 std::vector<int> inf_nums;
6149 int mi_only = 1;
6150
6151 for (inferior *inf : all_inferiors ())
6152 {
6153 if (inf->pspace == loc->pspace)
6154 inf_nums.push_back (inf->num);
6155 }
6156
6157 /* For backward compatibility, don't display inferiors in CLI unless
6158 there are several. Always display for MI. */
6159 if (allflag
6160 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6161 && (number_of_program_spaces () > 1
6162 || number_of_inferiors () > 1)
6163 /* LOC is for existing B, it cannot be in
6164 moribund_locations and thus having NULL OWNER. */
6165 && loc->owner->type != bp_catchpoint))
6166 mi_only = 0;
6167 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6168 }
6169
6170 if (!part_of_multiple)
6171 {
6172 if (b->thread != -1)
6173 {
6174 /* FIXME: This seems to be redundant and lost here; see the
6175 "stop only in" line a little further down. */
6176 uiout->text (" thread ");
6177 uiout->field_int ("thread", b->thread);
6178 }
6179 else if (b->task != 0)
6180 {
6181 uiout->text (" task ");
6182 uiout->field_int ("task", b->task);
6183 }
6184 }
6185
6186 uiout->text ("\n");
6187
6188 if (!part_of_multiple)
6189 b->ops->print_one_detail (b, uiout);
6190
6191 if (part_of_multiple && frame_id_p (b->frame_id))
6192 {
6193 annotate_field (6);
6194 uiout->text ("\tstop only in stack frame at ");
6195 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6196 the frame ID. */
6197 uiout->field_core_addr ("frame",
6198 b->gdbarch, b->frame_id.stack_addr);
6199 uiout->text ("\n");
6200 }
6201
6202 if (!part_of_multiple && b->cond_string)
6203 {
6204 annotate_field (7);
6205 if (is_tracepoint (b))
6206 uiout->text ("\ttrace only if ");
6207 else
6208 uiout->text ("\tstop only if ");
6209 uiout->field_string ("cond", b->cond_string);
6210
6211 /* Print whether the target is doing the breakpoint's condition
6212 evaluation. If GDB is doing the evaluation, don't print anything. */
6213 if (is_breakpoint (b)
6214 && breakpoint_condition_evaluation_mode ()
6215 == condition_evaluation_target)
6216 {
6217 uiout->text (" (");
6218 uiout->field_string ("evaluated-by",
6219 bp_condition_evaluator (b));
6220 uiout->text (" evals)");
6221 }
6222 uiout->text ("\n");
6223 }
6224
6225 if (!part_of_multiple && b->thread != -1)
6226 {
6227 /* FIXME should make an annotation for this. */
6228 uiout->text ("\tstop only in thread ");
6229 if (uiout->is_mi_like_p ())
6230 uiout->field_int ("thread", b->thread);
6231 else
6232 {
6233 struct thread_info *thr = find_thread_global_id (b->thread);
6234
6235 uiout->field_string ("thread", print_thread_id (thr));
6236 }
6237 uiout->text ("\n");
6238 }
6239
6240 if (!part_of_multiple)
6241 {
6242 if (b->hit_count)
6243 {
6244 /* FIXME should make an annotation for this. */
6245 if (is_catchpoint (b))
6246 uiout->text ("\tcatchpoint");
6247 else if (is_tracepoint (b))
6248 uiout->text ("\ttracepoint");
6249 else
6250 uiout->text ("\tbreakpoint");
6251 uiout->text (" already hit ");
6252 uiout->field_int ("times", b->hit_count);
6253 if (b->hit_count == 1)
6254 uiout->text (" time\n");
6255 else
6256 uiout->text (" times\n");
6257 }
6258 else
6259 {
6260 /* Output the count also if it is zero, but only if this is mi. */
6261 if (uiout->is_mi_like_p ())
6262 uiout->field_int ("times", b->hit_count);
6263 }
6264 }
6265
6266 if (!part_of_multiple && b->ignore_count)
6267 {
6268 annotate_field (8);
6269 uiout->text ("\tignore next ");
6270 uiout->field_int ("ignore", b->ignore_count);
6271 uiout->text (" hits\n");
6272 }
6273
6274 /* Note that an enable count of 1 corresponds to "enable once"
6275 behavior, which is reported by the combination of enablement and
6276 disposition, so we don't need to mention it here. */
6277 if (!part_of_multiple && b->enable_count > 1)
6278 {
6279 annotate_field (8);
6280 uiout->text ("\tdisable after ");
6281 /* Tweak the wording to clarify that ignore and enable counts
6282 are distinct, and have additive effect. */
6283 if (b->ignore_count)
6284 uiout->text ("additional ");
6285 else
6286 uiout->text ("next ");
6287 uiout->field_int ("enable", b->enable_count);
6288 uiout->text (" hits\n");
6289 }
6290
6291 if (!part_of_multiple && is_tracepoint (b))
6292 {
6293 struct tracepoint *tp = (struct tracepoint *) b;
6294
6295 if (tp->traceframe_usage)
6296 {
6297 uiout->text ("\ttrace buffer usage ");
6298 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6299 uiout->text (" bytes\n");
6300 }
6301 }
6302
6303 l = b->commands ? b->commands.get () : NULL;
6304 if (!part_of_multiple && l)
6305 {
6306 annotate_field (9);
6307 ui_out_emit_tuple tuple_emitter (uiout, "script");
6308 print_command_lines (uiout, l, 4);
6309 }
6310
6311 if (is_tracepoint (b))
6312 {
6313 struct tracepoint *t = (struct tracepoint *) b;
6314
6315 if (!part_of_multiple && t->pass_count)
6316 {
6317 annotate_field (10);
6318 uiout->text ("\tpass count ");
6319 uiout->field_int ("pass", t->pass_count);
6320 uiout->text (" \n");
6321 }
6322
6323 /* Don't display it when tracepoint or tracepoint location is
6324 pending. */
6325 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6326 {
6327 annotate_field (11);
6328
6329 if (uiout->is_mi_like_p ())
6330 uiout->field_string ("installed",
6331 loc->inserted ? "y" : "n");
6332 else
6333 {
6334 if (loc->inserted)
6335 uiout->text ("\t");
6336 else
6337 uiout->text ("\tnot ");
6338 uiout->text ("installed on target\n");
6339 }
6340 }
6341 }
6342
6343 if (uiout->is_mi_like_p () && !part_of_multiple)
6344 {
6345 if (is_watchpoint (b))
6346 {
6347 struct watchpoint *w = (struct watchpoint *) b;
6348
6349 uiout->field_string ("original-location", w->exp_string);
6350 }
6351 else if (b->location != NULL
6352 && event_location_to_string (b->location.get ()) != NULL)
6353 uiout->field_string ("original-location",
6354 event_location_to_string (b->location.get ()));
6355 }
6356 }
6357
6358 static void
6359 print_one_breakpoint (struct breakpoint *b,
6360 struct bp_location **last_loc,
6361 int allflag)
6362 {
6363 struct ui_out *uiout = current_uiout;
6364
6365 {
6366 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6367
6368 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6369 }
6370
6371 /* If this breakpoint has custom print function,
6372 it's already printed. Otherwise, print individual
6373 locations, if any. */
6374 if (b->ops == NULL || b->ops->print_one == NULL)
6375 {
6376 /* If breakpoint has a single location that is disabled, we
6377 print it as if it had several locations, since otherwise it's
6378 hard to represent "breakpoint enabled, location disabled"
6379 situation.
6380
6381 Note that while hardware watchpoints have several locations
6382 internally, that's not a property exposed to user. */
6383 if (b->loc
6384 && !is_hardware_watchpoint (b)
6385 && (b->loc->next || !b->loc->enabled))
6386 {
6387 struct bp_location *loc;
6388 int n = 1;
6389
6390 for (loc = b->loc; loc; loc = loc->next, ++n)
6391 {
6392 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6393 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6394 }
6395 }
6396 }
6397 }
6398
6399 static int
6400 breakpoint_address_bits (struct breakpoint *b)
6401 {
6402 int print_address_bits = 0;
6403 struct bp_location *loc;
6404
6405 /* Software watchpoints that aren't watching memory don't have an
6406 address to print. */
6407 if (is_no_memory_software_watchpoint (b))
6408 return 0;
6409
6410 for (loc = b->loc; loc; loc = loc->next)
6411 {
6412 int addr_bit;
6413
6414 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6415 if (addr_bit > print_address_bits)
6416 print_address_bits = addr_bit;
6417 }
6418
6419 return print_address_bits;
6420 }
6421
6422 /* See breakpoint.h. */
6423
6424 void
6425 print_breakpoint (breakpoint *b)
6426 {
6427 struct bp_location *dummy_loc = NULL;
6428 print_one_breakpoint (b, &dummy_loc, 0);
6429 }
6430
6431 /* Return true if this breakpoint was set by the user, false if it is
6432 internal or momentary. */
6433
6434 int
6435 user_breakpoint_p (struct breakpoint *b)
6436 {
6437 return b->number > 0;
6438 }
6439
6440 /* See breakpoint.h. */
6441
6442 int
6443 pending_breakpoint_p (struct breakpoint *b)
6444 {
6445 return b->loc == NULL;
6446 }
6447
6448 /* Print information on user settable breakpoint (watchpoint, etc)
6449 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6450 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6451 FILTER is non-NULL, call it on each breakpoint and only include the
6452 ones for which it returns non-zero. Return the total number of
6453 breakpoints listed. */
6454
6455 static int
6456 breakpoint_1 (const char *args, int allflag,
6457 int (*filter) (const struct breakpoint *))
6458 {
6459 struct breakpoint *b;
6460 struct bp_location *last_loc = NULL;
6461 int nr_printable_breakpoints;
6462 struct value_print_options opts;
6463 int print_address_bits = 0;
6464 int print_type_col_width = 14;
6465 struct ui_out *uiout = current_uiout;
6466
6467 get_user_print_options (&opts);
6468
6469 /* Compute the number of rows in the table, as well as the size
6470 required for address fields. */
6471 nr_printable_breakpoints = 0;
6472 ALL_BREAKPOINTS (b)
6473 {
6474 /* If we have a filter, only list the breakpoints it accepts. */
6475 if (filter && !filter (b))
6476 continue;
6477
6478 /* If we have an "args" string, it is a list of breakpoints to
6479 accept. Skip the others. */
6480 if (args != NULL && *args != '\0')
6481 {
6482 if (allflag && parse_and_eval_long (args) != b->number)
6483 continue;
6484 if (!allflag && !number_is_in_list (args, b->number))
6485 continue;
6486 }
6487
6488 if (allflag || user_breakpoint_p (b))
6489 {
6490 int addr_bit, type_len;
6491
6492 addr_bit = breakpoint_address_bits (b);
6493 if (addr_bit > print_address_bits)
6494 print_address_bits = addr_bit;
6495
6496 type_len = strlen (bptype_string (b->type));
6497 if (type_len > print_type_col_width)
6498 print_type_col_width = type_len;
6499
6500 nr_printable_breakpoints++;
6501 }
6502 }
6503
6504 {
6505 ui_out_emit_table table_emitter (uiout,
6506 opts.addressprint ? 6 : 5,
6507 nr_printable_breakpoints,
6508 "BreakpointTable");
6509
6510 if (nr_printable_breakpoints > 0)
6511 annotate_breakpoints_headers ();
6512 if (nr_printable_breakpoints > 0)
6513 annotate_field (0);
6514 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6515 if (nr_printable_breakpoints > 0)
6516 annotate_field (1);
6517 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6518 if (nr_printable_breakpoints > 0)
6519 annotate_field (2);
6520 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6521 if (nr_printable_breakpoints > 0)
6522 annotate_field (3);
6523 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6524 if (opts.addressprint)
6525 {
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (4);
6528 if (print_address_bits <= 32)
6529 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6530 else
6531 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6532 }
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (5);
6535 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6536 uiout->table_body ();
6537 if (nr_printable_breakpoints > 0)
6538 annotate_breakpoints_table ();
6539
6540 ALL_BREAKPOINTS (b)
6541 {
6542 QUIT;
6543 /* If we have a filter, only list the breakpoints it accepts. */
6544 if (filter && !filter (b))
6545 continue;
6546
6547 /* If we have an "args" string, it is a list of breakpoints to
6548 accept. Skip the others. */
6549
6550 if (args != NULL && *args != '\0')
6551 {
6552 if (allflag) /* maintenance info breakpoint */
6553 {
6554 if (parse_and_eval_long (args) != b->number)
6555 continue;
6556 }
6557 else /* all others */
6558 {
6559 if (!number_is_in_list (args, b->number))
6560 continue;
6561 }
6562 }
6563 /* We only print out user settable breakpoints unless the
6564 allflag is set. */
6565 if (allflag || user_breakpoint_p (b))
6566 print_one_breakpoint (b, &last_loc, allflag);
6567 }
6568 }
6569
6570 if (nr_printable_breakpoints == 0)
6571 {
6572 /* If there's a filter, let the caller decide how to report
6573 empty list. */
6574 if (!filter)
6575 {
6576 if (args == NULL || *args == '\0')
6577 uiout->message ("No breakpoints or watchpoints.\n");
6578 else
6579 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6580 args);
6581 }
6582 }
6583 else
6584 {
6585 if (last_loc && !server_command)
6586 set_next_address (last_loc->gdbarch, last_loc->address);
6587 }
6588
6589 /* FIXME? Should this be moved up so that it is only called when
6590 there have been breakpoints? */
6591 annotate_breakpoints_table_end ();
6592
6593 return nr_printable_breakpoints;
6594 }
6595
6596 /* Display the value of default-collect in a way that is generally
6597 compatible with the breakpoint list. */
6598
6599 static void
6600 default_collect_info (void)
6601 {
6602 struct ui_out *uiout = current_uiout;
6603
6604 /* If it has no value (which is frequently the case), say nothing; a
6605 message like "No default-collect." gets in user's face when it's
6606 not wanted. */
6607 if (!*default_collect)
6608 return;
6609
6610 /* The following phrase lines up nicely with per-tracepoint collect
6611 actions. */
6612 uiout->text ("default collect ");
6613 uiout->field_string ("default-collect", default_collect);
6614 uiout->text (" \n");
6615 }
6616
6617 static void
6618 info_breakpoints_command (const char *args, int from_tty)
6619 {
6620 breakpoint_1 (args, 0, NULL);
6621
6622 default_collect_info ();
6623 }
6624
6625 static void
6626 info_watchpoints_command (const char *args, int from_tty)
6627 {
6628 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6629 struct ui_out *uiout = current_uiout;
6630
6631 if (num_printed == 0)
6632 {
6633 if (args == NULL || *args == '\0')
6634 uiout->message ("No watchpoints.\n");
6635 else
6636 uiout->message ("No watchpoint matching '%s'.\n", args);
6637 }
6638 }
6639
6640 static void
6641 maintenance_info_breakpoints (const char *args, int from_tty)
6642 {
6643 breakpoint_1 (args, 1, NULL);
6644
6645 default_collect_info ();
6646 }
6647
6648 static int
6649 breakpoint_has_pc (struct breakpoint *b,
6650 struct program_space *pspace,
6651 CORE_ADDR pc, struct obj_section *section)
6652 {
6653 struct bp_location *bl = b->loc;
6654
6655 for (; bl; bl = bl->next)
6656 {
6657 if (bl->pspace == pspace
6658 && bl->address == pc
6659 && (!overlay_debugging || bl->section == section))
6660 return 1;
6661 }
6662 return 0;
6663 }
6664
6665 /* Print a message describing any user-breakpoints set at PC. This
6666 concerns with logical breakpoints, so we match program spaces, not
6667 address spaces. */
6668
6669 static void
6670 describe_other_breakpoints (struct gdbarch *gdbarch,
6671 struct program_space *pspace, CORE_ADDR pc,
6672 struct obj_section *section, int thread)
6673 {
6674 int others = 0;
6675 struct breakpoint *b;
6676
6677 ALL_BREAKPOINTS (b)
6678 others += (user_breakpoint_p (b)
6679 && breakpoint_has_pc (b, pspace, pc, section));
6680 if (others > 0)
6681 {
6682 if (others == 1)
6683 printf_filtered (_("Note: breakpoint "));
6684 else /* if (others == ???) */
6685 printf_filtered (_("Note: breakpoints "));
6686 ALL_BREAKPOINTS (b)
6687 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6688 {
6689 others--;
6690 printf_filtered ("%d", b->number);
6691 if (b->thread == -1 && thread != -1)
6692 printf_filtered (" (all threads)");
6693 else if (b->thread != -1)
6694 printf_filtered (" (thread %d)", b->thread);
6695 printf_filtered ("%s%s ",
6696 ((b->enable_state == bp_disabled
6697 || b->enable_state == bp_call_disabled)
6698 ? " (disabled)"
6699 : ""),
6700 (others > 1) ? ","
6701 : ((others == 1) ? " and" : ""));
6702 }
6703 printf_filtered (_("also set at pc "));
6704 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6705 printf_filtered (".\n");
6706 }
6707 }
6708 \f
6709
6710 /* Return true iff it is meaningful to use the address member of
6711 BPT locations. For some breakpoint types, the locations' address members
6712 are irrelevant and it makes no sense to attempt to compare them to other
6713 addresses (or use them for any other purpose either).
6714
6715 More specifically, each of the following breakpoint types will
6716 always have a zero valued location address and we don't want to mark
6717 breakpoints of any of these types to be a duplicate of an actual
6718 breakpoint location at address zero:
6719
6720 bp_watchpoint
6721 bp_catchpoint
6722
6723 */
6724
6725 static int
6726 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6727 {
6728 enum bptype type = bpt->type;
6729
6730 return (type != bp_watchpoint && type != bp_catchpoint);
6731 }
6732
6733 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6734 true if LOC1 and LOC2 represent the same watchpoint location. */
6735
6736 static int
6737 watchpoint_locations_match (struct bp_location *loc1,
6738 struct bp_location *loc2)
6739 {
6740 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6741 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6742
6743 /* Both of them must exist. */
6744 gdb_assert (w1 != NULL);
6745 gdb_assert (w2 != NULL);
6746
6747 /* If the target can evaluate the condition expression in hardware,
6748 then we we need to insert both watchpoints even if they are at
6749 the same place. Otherwise the watchpoint will only trigger when
6750 the condition of whichever watchpoint was inserted evaluates to
6751 true, not giving a chance for GDB to check the condition of the
6752 other watchpoint. */
6753 if ((w1->cond_exp
6754 && target_can_accel_watchpoint_condition (loc1->address,
6755 loc1->length,
6756 loc1->watchpoint_type,
6757 w1->cond_exp.get ()))
6758 || (w2->cond_exp
6759 && target_can_accel_watchpoint_condition (loc2->address,
6760 loc2->length,
6761 loc2->watchpoint_type,
6762 w2->cond_exp.get ())))
6763 return 0;
6764
6765 /* Note that this checks the owner's type, not the location's. In
6766 case the target does not support read watchpoints, but does
6767 support access watchpoints, we'll have bp_read_watchpoint
6768 watchpoints with hw_access locations. Those should be considered
6769 duplicates of hw_read locations. The hw_read locations will
6770 become hw_access locations later. */
6771 return (loc1->owner->type == loc2->owner->type
6772 && loc1->pspace->aspace == loc2->pspace->aspace
6773 && loc1->address == loc2->address
6774 && loc1->length == loc2->length);
6775 }
6776
6777 /* See breakpoint.h. */
6778
6779 int
6780 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6781 const address_space *aspace2, CORE_ADDR addr2)
6782 {
6783 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6784 || aspace1 == aspace2)
6785 && addr1 == addr2);
6786 }
6787
6788 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6789 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6790 matches ASPACE2. On targets that have global breakpoints, the address
6791 space doesn't really matter. */
6792
6793 static int
6794 breakpoint_address_match_range (const address_space *aspace1,
6795 CORE_ADDR addr1,
6796 int len1, const address_space *aspace2,
6797 CORE_ADDR addr2)
6798 {
6799 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6800 || aspace1 == aspace2)
6801 && addr2 >= addr1 && addr2 < addr1 + len1);
6802 }
6803
6804 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6805 a ranged breakpoint. In most targets, a match happens only if ASPACE
6806 matches the breakpoint's address space. On targets that have global
6807 breakpoints, the address space doesn't really matter. */
6808
6809 static int
6810 breakpoint_location_address_match (struct bp_location *bl,
6811 const address_space *aspace,
6812 CORE_ADDR addr)
6813 {
6814 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6815 aspace, addr)
6816 || (bl->length
6817 && breakpoint_address_match_range (bl->pspace->aspace,
6818 bl->address, bl->length,
6819 aspace, addr)));
6820 }
6821
6822 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6823 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6824 match happens only if ASPACE matches the breakpoint's address
6825 space. On targets that have global breakpoints, the address space
6826 doesn't really matter. */
6827
6828 static int
6829 breakpoint_location_address_range_overlap (struct bp_location *bl,
6830 const address_space *aspace,
6831 CORE_ADDR addr, int len)
6832 {
6833 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6834 || bl->pspace->aspace == aspace)
6835 {
6836 int bl_len = bl->length != 0 ? bl->length : 1;
6837
6838 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6839 return 1;
6840 }
6841 return 0;
6842 }
6843
6844 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6845 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6846 true, otherwise returns false. */
6847
6848 static int
6849 tracepoint_locations_match (struct bp_location *loc1,
6850 struct bp_location *loc2)
6851 {
6852 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6853 /* Since tracepoint locations are never duplicated with others', tracepoint
6854 locations at the same address of different tracepoints are regarded as
6855 different locations. */
6856 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6857 else
6858 return 0;
6859 }
6860
6861 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6862 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6863 represent the same location. */
6864
6865 static int
6866 breakpoint_locations_match (struct bp_location *loc1,
6867 struct bp_location *loc2)
6868 {
6869 int hw_point1, hw_point2;
6870
6871 /* Both of them must not be in moribund_locations. */
6872 gdb_assert (loc1->owner != NULL);
6873 gdb_assert (loc2->owner != NULL);
6874
6875 hw_point1 = is_hardware_watchpoint (loc1->owner);
6876 hw_point2 = is_hardware_watchpoint (loc2->owner);
6877
6878 if (hw_point1 != hw_point2)
6879 return 0;
6880 else if (hw_point1)
6881 return watchpoint_locations_match (loc1, loc2);
6882 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6883 return tracepoint_locations_match (loc1, loc2);
6884 else
6885 /* We compare bp_location.length in order to cover ranged breakpoints. */
6886 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6887 loc2->pspace->aspace, loc2->address)
6888 && loc1->length == loc2->length);
6889 }
6890
6891 static void
6892 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6893 int bnum, int have_bnum)
6894 {
6895 /* The longest string possibly returned by hex_string_custom
6896 is 50 chars. These must be at least that big for safety. */
6897 char astr1[64];
6898 char astr2[64];
6899
6900 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6901 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6902 if (have_bnum)
6903 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6904 bnum, astr1, astr2);
6905 else
6906 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6907 }
6908
6909 /* Adjust a breakpoint's address to account for architectural
6910 constraints on breakpoint placement. Return the adjusted address.
6911 Note: Very few targets require this kind of adjustment. For most
6912 targets, this function is simply the identity function. */
6913
6914 static CORE_ADDR
6915 adjust_breakpoint_address (struct gdbarch *gdbarch,
6916 CORE_ADDR bpaddr, enum bptype bptype)
6917 {
6918 if (bptype == bp_watchpoint
6919 || bptype == bp_hardware_watchpoint
6920 || bptype == bp_read_watchpoint
6921 || bptype == bp_access_watchpoint
6922 || bptype == bp_catchpoint)
6923 {
6924 /* Watchpoints and the various bp_catch_* eventpoints should not
6925 have their addresses modified. */
6926 return bpaddr;
6927 }
6928 else if (bptype == bp_single_step)
6929 {
6930 /* Single-step breakpoints should not have their addresses
6931 modified. If there's any architectural constrain that
6932 applies to this address, then it should have already been
6933 taken into account when the breakpoint was created in the
6934 first place. If we didn't do this, stepping through e.g.,
6935 Thumb-2 IT blocks would break. */
6936 return bpaddr;
6937 }
6938 else
6939 {
6940 CORE_ADDR adjusted_bpaddr = bpaddr;
6941
6942 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6943 {
6944 /* Some targets have architectural constraints on the placement
6945 of breakpoint instructions. Obtain the adjusted address. */
6946 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6947 }
6948
6949 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6950
6951 /* An adjusted breakpoint address can significantly alter
6952 a user's expectations. Print a warning if an adjustment
6953 is required. */
6954 if (adjusted_bpaddr != bpaddr)
6955 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6956
6957 return adjusted_bpaddr;
6958 }
6959 }
6960
6961 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6962 {
6963 bp_location *loc = this;
6964
6965 gdb_assert (ops != NULL);
6966
6967 loc->ops = ops;
6968 loc->owner = owner;
6969 loc->cond_bytecode = NULL;
6970 loc->shlib_disabled = 0;
6971 loc->enabled = 1;
6972
6973 switch (owner->type)
6974 {
6975 case bp_breakpoint:
6976 case bp_single_step:
6977 case bp_until:
6978 case bp_finish:
6979 case bp_longjmp:
6980 case bp_longjmp_resume:
6981 case bp_longjmp_call_dummy:
6982 case bp_exception:
6983 case bp_exception_resume:
6984 case bp_step_resume:
6985 case bp_hp_step_resume:
6986 case bp_watchpoint_scope:
6987 case bp_call_dummy:
6988 case bp_std_terminate:
6989 case bp_shlib_event:
6990 case bp_thread_event:
6991 case bp_overlay_event:
6992 case bp_jit_event:
6993 case bp_longjmp_master:
6994 case bp_std_terminate_master:
6995 case bp_exception_master:
6996 case bp_gnu_ifunc_resolver:
6997 case bp_gnu_ifunc_resolver_return:
6998 case bp_dprintf:
6999 loc->loc_type = bp_loc_software_breakpoint;
7000 mark_breakpoint_location_modified (loc);
7001 break;
7002 case bp_hardware_breakpoint:
7003 loc->loc_type = bp_loc_hardware_breakpoint;
7004 mark_breakpoint_location_modified (loc);
7005 break;
7006 case bp_hardware_watchpoint:
7007 case bp_read_watchpoint:
7008 case bp_access_watchpoint:
7009 loc->loc_type = bp_loc_hardware_watchpoint;
7010 break;
7011 case bp_watchpoint:
7012 case bp_catchpoint:
7013 case bp_tracepoint:
7014 case bp_fast_tracepoint:
7015 case bp_static_tracepoint:
7016 loc->loc_type = bp_loc_other;
7017 break;
7018 default:
7019 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7020 }
7021
7022 loc->refc = 1;
7023 }
7024
7025 /* Allocate a struct bp_location. */
7026
7027 static struct bp_location *
7028 allocate_bp_location (struct breakpoint *bpt)
7029 {
7030 return bpt->ops->allocate_location (bpt);
7031 }
7032
7033 static void
7034 free_bp_location (struct bp_location *loc)
7035 {
7036 loc->ops->dtor (loc);
7037 delete loc;
7038 }
7039
7040 /* Increment reference count. */
7041
7042 static void
7043 incref_bp_location (struct bp_location *bl)
7044 {
7045 ++bl->refc;
7046 }
7047
7048 /* Decrement reference count. If the reference count reaches 0,
7049 destroy the bp_location. Sets *BLP to NULL. */
7050
7051 static void
7052 decref_bp_location (struct bp_location **blp)
7053 {
7054 gdb_assert ((*blp)->refc > 0);
7055
7056 if (--(*blp)->refc == 0)
7057 free_bp_location (*blp);
7058 *blp = NULL;
7059 }
7060
7061 /* Add breakpoint B at the end of the global breakpoint chain. */
7062
7063 static breakpoint *
7064 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7065 {
7066 struct breakpoint *b1;
7067 struct breakpoint *result = b.get ();
7068
7069 /* Add this breakpoint to the end of the chain so that a list of
7070 breakpoints will come out in order of increasing numbers. */
7071
7072 b1 = breakpoint_chain;
7073 if (b1 == 0)
7074 breakpoint_chain = b.release ();
7075 else
7076 {
7077 while (b1->next)
7078 b1 = b1->next;
7079 b1->next = b.release ();
7080 }
7081
7082 return result;
7083 }
7084
7085 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7086
7087 static void
7088 init_raw_breakpoint_without_location (struct breakpoint *b,
7089 struct gdbarch *gdbarch,
7090 enum bptype bptype,
7091 const struct breakpoint_ops *ops)
7092 {
7093 gdb_assert (ops != NULL);
7094
7095 b->ops = ops;
7096 b->type = bptype;
7097 b->gdbarch = gdbarch;
7098 b->language = current_language->la_language;
7099 b->input_radix = input_radix;
7100 b->related_breakpoint = b;
7101 }
7102
7103 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7104 that has type BPTYPE and has no locations as yet. */
7105
7106 static struct breakpoint *
7107 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7108 enum bptype bptype,
7109 const struct breakpoint_ops *ops)
7110 {
7111 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7112
7113 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7114 return add_to_breakpoint_chain (std::move (b));
7115 }
7116
7117 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7118 resolutions should be made as the user specified the location explicitly
7119 enough. */
7120
7121 static void
7122 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7123 {
7124 gdb_assert (loc->owner != NULL);
7125
7126 if (loc->owner->type == bp_breakpoint
7127 || loc->owner->type == bp_hardware_breakpoint
7128 || is_tracepoint (loc->owner))
7129 {
7130 const char *function_name;
7131
7132 if (loc->msymbol != NULL
7133 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7134 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7135 && !explicit_loc)
7136 {
7137 struct breakpoint *b = loc->owner;
7138
7139 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7140
7141 if (b->type == bp_breakpoint && b->loc == loc
7142 && loc->next == NULL && b->related_breakpoint == b)
7143 {
7144 /* Create only the whole new breakpoint of this type but do not
7145 mess more complicated breakpoints with multiple locations. */
7146 b->type = bp_gnu_ifunc_resolver;
7147 /* Remember the resolver's address for use by the return
7148 breakpoint. */
7149 loc->related_address = loc->address;
7150 }
7151 }
7152 else
7153 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7154
7155 if (function_name)
7156 loc->function_name = xstrdup (function_name);
7157 }
7158 }
7159
7160 /* Attempt to determine architecture of location identified by SAL. */
7161 struct gdbarch *
7162 get_sal_arch (struct symtab_and_line sal)
7163 {
7164 if (sal.section)
7165 return get_objfile_arch (sal.section->objfile);
7166 if (sal.symtab)
7167 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7168
7169 return NULL;
7170 }
7171
7172 /* Low level routine for partially initializing a breakpoint of type
7173 BPTYPE. The newly created breakpoint's address, section, source
7174 file name, and line number are provided by SAL.
7175
7176 It is expected that the caller will complete the initialization of
7177 the newly created breakpoint struct as well as output any status
7178 information regarding the creation of a new breakpoint. */
7179
7180 static void
7181 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7182 struct symtab_and_line sal, enum bptype bptype,
7183 const struct breakpoint_ops *ops)
7184 {
7185 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7186
7187 add_location_to_breakpoint (b, &sal);
7188
7189 if (bptype != bp_catchpoint)
7190 gdb_assert (sal.pspace != NULL);
7191
7192 /* Store the program space that was used to set the breakpoint,
7193 except for ordinary breakpoints, which are independent of the
7194 program space. */
7195 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7196 b->pspace = sal.pspace;
7197 }
7198
7199 /* set_raw_breakpoint is a low level routine for allocating and
7200 partially initializing a breakpoint of type BPTYPE. The newly
7201 created breakpoint's address, section, source file name, and line
7202 number are provided by SAL. The newly created and partially
7203 initialized breakpoint is added to the breakpoint chain and
7204 is also returned as the value of this function.
7205
7206 It is expected that the caller will complete the initialization of
7207 the newly created breakpoint struct as well as output any status
7208 information regarding the creation of a new breakpoint. In
7209 particular, set_raw_breakpoint does NOT set the breakpoint
7210 number! Care should be taken to not allow an error to occur
7211 prior to completing the initialization of the breakpoint. If this
7212 should happen, a bogus breakpoint will be left on the chain. */
7213
7214 struct breakpoint *
7215 set_raw_breakpoint (struct gdbarch *gdbarch,
7216 struct symtab_and_line sal, enum bptype bptype,
7217 const struct breakpoint_ops *ops)
7218 {
7219 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7220
7221 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7222 return add_to_breakpoint_chain (std::move (b));
7223 }
7224
7225 /* Call this routine when stepping and nexting to enable a breakpoint
7226 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7227 initiated the operation. */
7228
7229 void
7230 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7231 {
7232 struct breakpoint *b, *b_tmp;
7233 int thread = tp->global_num;
7234
7235 /* To avoid having to rescan all objfile symbols at every step,
7236 we maintain a list of continually-inserted but always disabled
7237 longjmp "master" breakpoints. Here, we simply create momentary
7238 clones of those and enable them for the requested thread. */
7239 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7240 if (b->pspace == current_program_space
7241 && (b->type == bp_longjmp_master
7242 || b->type == bp_exception_master))
7243 {
7244 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7245 struct breakpoint *clone;
7246
7247 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7248 after their removal. */
7249 clone = momentary_breakpoint_from_master (b, type,
7250 &momentary_breakpoint_ops, 1);
7251 clone->thread = thread;
7252 }
7253
7254 tp->initiating_frame = frame;
7255 }
7256
7257 /* Delete all longjmp breakpoints from THREAD. */
7258 void
7259 delete_longjmp_breakpoint (int thread)
7260 {
7261 struct breakpoint *b, *b_tmp;
7262
7263 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7264 if (b->type == bp_longjmp || b->type == bp_exception)
7265 {
7266 if (b->thread == thread)
7267 delete_breakpoint (b);
7268 }
7269 }
7270
7271 void
7272 delete_longjmp_breakpoint_at_next_stop (int thread)
7273 {
7274 struct breakpoint *b, *b_tmp;
7275
7276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7277 if (b->type == bp_longjmp || b->type == bp_exception)
7278 {
7279 if (b->thread == thread)
7280 b->disposition = disp_del_at_next_stop;
7281 }
7282 }
7283
7284 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7285 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7286 pointer to any of them. Return NULL if this system cannot place longjmp
7287 breakpoints. */
7288
7289 struct breakpoint *
7290 set_longjmp_breakpoint_for_call_dummy (void)
7291 {
7292 struct breakpoint *b, *retval = NULL;
7293
7294 ALL_BREAKPOINTS (b)
7295 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7296 {
7297 struct breakpoint *new_b;
7298
7299 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7300 &momentary_breakpoint_ops,
7301 1);
7302 new_b->thread = inferior_thread ()->global_num;
7303
7304 /* Link NEW_B into the chain of RETVAL breakpoints. */
7305
7306 gdb_assert (new_b->related_breakpoint == new_b);
7307 if (retval == NULL)
7308 retval = new_b;
7309 new_b->related_breakpoint = retval;
7310 while (retval->related_breakpoint != new_b->related_breakpoint)
7311 retval = retval->related_breakpoint;
7312 retval->related_breakpoint = new_b;
7313 }
7314
7315 return retval;
7316 }
7317
7318 /* Verify all existing dummy frames and their associated breakpoints for
7319 TP. Remove those which can no longer be found in the current frame
7320 stack.
7321
7322 You should call this function only at places where it is safe to currently
7323 unwind the whole stack. Failed stack unwind would discard live dummy
7324 frames. */
7325
7326 void
7327 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7328 {
7329 struct breakpoint *b, *b_tmp;
7330
7331 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7332 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7333 {
7334 struct breakpoint *dummy_b = b->related_breakpoint;
7335
7336 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7337 dummy_b = dummy_b->related_breakpoint;
7338 if (dummy_b->type != bp_call_dummy
7339 || frame_find_by_id (dummy_b->frame_id) != NULL)
7340 continue;
7341
7342 dummy_frame_discard (dummy_b->frame_id, tp);
7343
7344 while (b->related_breakpoint != b)
7345 {
7346 if (b_tmp == b->related_breakpoint)
7347 b_tmp = b->related_breakpoint->next;
7348 delete_breakpoint (b->related_breakpoint);
7349 }
7350 delete_breakpoint (b);
7351 }
7352 }
7353
7354 void
7355 enable_overlay_breakpoints (void)
7356 {
7357 struct breakpoint *b;
7358
7359 ALL_BREAKPOINTS (b)
7360 if (b->type == bp_overlay_event)
7361 {
7362 b->enable_state = bp_enabled;
7363 update_global_location_list (UGLL_MAY_INSERT);
7364 overlay_events_enabled = 1;
7365 }
7366 }
7367
7368 void
7369 disable_overlay_breakpoints (void)
7370 {
7371 struct breakpoint *b;
7372
7373 ALL_BREAKPOINTS (b)
7374 if (b->type == bp_overlay_event)
7375 {
7376 b->enable_state = bp_disabled;
7377 update_global_location_list (UGLL_DONT_INSERT);
7378 overlay_events_enabled = 0;
7379 }
7380 }
7381
7382 /* Set an active std::terminate breakpoint for each std::terminate
7383 master breakpoint. */
7384 void
7385 set_std_terminate_breakpoint (void)
7386 {
7387 struct breakpoint *b, *b_tmp;
7388
7389 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7390 if (b->pspace == current_program_space
7391 && b->type == bp_std_terminate_master)
7392 {
7393 momentary_breakpoint_from_master (b, bp_std_terminate,
7394 &momentary_breakpoint_ops, 1);
7395 }
7396 }
7397
7398 /* Delete all the std::terminate breakpoints. */
7399 void
7400 delete_std_terminate_breakpoint (void)
7401 {
7402 struct breakpoint *b, *b_tmp;
7403
7404 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7405 if (b->type == bp_std_terminate)
7406 delete_breakpoint (b);
7407 }
7408
7409 struct breakpoint *
7410 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7411 {
7412 struct breakpoint *b;
7413
7414 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7415 &internal_breakpoint_ops);
7416
7417 b->enable_state = bp_enabled;
7418 /* location has to be used or breakpoint_re_set will delete me. */
7419 b->location = new_address_location (b->loc->address, NULL, 0);
7420
7421 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7422
7423 return b;
7424 }
7425
7426 struct lang_and_radix
7427 {
7428 enum language lang;
7429 int radix;
7430 };
7431
7432 /* Create a breakpoint for JIT code registration and unregistration. */
7433
7434 struct breakpoint *
7435 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7436 {
7437 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7438 &internal_breakpoint_ops);
7439 }
7440
7441 /* Remove JIT code registration and unregistration breakpoint(s). */
7442
7443 void
7444 remove_jit_event_breakpoints (void)
7445 {
7446 struct breakpoint *b, *b_tmp;
7447
7448 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7449 if (b->type == bp_jit_event
7450 && b->loc->pspace == current_program_space)
7451 delete_breakpoint (b);
7452 }
7453
7454 void
7455 remove_solib_event_breakpoints (void)
7456 {
7457 struct breakpoint *b, *b_tmp;
7458
7459 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7460 if (b->type == bp_shlib_event
7461 && b->loc->pspace == current_program_space)
7462 delete_breakpoint (b);
7463 }
7464
7465 /* See breakpoint.h. */
7466
7467 void
7468 remove_solib_event_breakpoints_at_next_stop (void)
7469 {
7470 struct breakpoint *b, *b_tmp;
7471
7472 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7473 if (b->type == bp_shlib_event
7474 && b->loc->pspace == current_program_space)
7475 b->disposition = disp_del_at_next_stop;
7476 }
7477
7478 /* Helper for create_solib_event_breakpoint /
7479 create_and_insert_solib_event_breakpoint. Allows specifying which
7480 INSERT_MODE to pass through to update_global_location_list. */
7481
7482 static struct breakpoint *
7483 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7484 enum ugll_insert_mode insert_mode)
7485 {
7486 struct breakpoint *b;
7487
7488 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7489 &internal_breakpoint_ops);
7490 update_global_location_list_nothrow (insert_mode);
7491 return b;
7492 }
7493
7494 struct breakpoint *
7495 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7496 {
7497 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7498 }
7499
7500 /* See breakpoint.h. */
7501
7502 struct breakpoint *
7503 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7504 {
7505 struct breakpoint *b;
7506
7507 /* Explicitly tell update_global_location_list to insert
7508 locations. */
7509 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7510 if (!b->loc->inserted)
7511 {
7512 delete_breakpoint (b);
7513 return NULL;
7514 }
7515 return b;
7516 }
7517
7518 /* Disable any breakpoints that are on code in shared libraries. Only
7519 apply to enabled breakpoints, disabled ones can just stay disabled. */
7520
7521 void
7522 disable_breakpoints_in_shlibs (void)
7523 {
7524 struct bp_location *loc, **locp_tmp;
7525
7526 ALL_BP_LOCATIONS (loc, locp_tmp)
7527 {
7528 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7529 struct breakpoint *b = loc->owner;
7530
7531 /* We apply the check to all breakpoints, including disabled for
7532 those with loc->duplicate set. This is so that when breakpoint
7533 becomes enabled, or the duplicate is removed, gdb will try to
7534 insert all breakpoints. If we don't set shlib_disabled here,
7535 we'll try to insert those breakpoints and fail. */
7536 if (((b->type == bp_breakpoint)
7537 || (b->type == bp_jit_event)
7538 || (b->type == bp_hardware_breakpoint)
7539 || (is_tracepoint (b)))
7540 && loc->pspace == current_program_space
7541 && !loc->shlib_disabled
7542 && solib_name_from_address (loc->pspace, loc->address)
7543 )
7544 {
7545 loc->shlib_disabled = 1;
7546 }
7547 }
7548 }
7549
7550 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7551 notification of unloaded_shlib. Only apply to enabled breakpoints,
7552 disabled ones can just stay disabled. */
7553
7554 static void
7555 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7556 {
7557 struct bp_location *loc, **locp_tmp;
7558 int disabled_shlib_breaks = 0;
7559
7560 ALL_BP_LOCATIONS (loc, locp_tmp)
7561 {
7562 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7563 struct breakpoint *b = loc->owner;
7564
7565 if (solib->pspace == loc->pspace
7566 && !loc->shlib_disabled
7567 && (((b->type == bp_breakpoint
7568 || b->type == bp_jit_event
7569 || b->type == bp_hardware_breakpoint)
7570 && (loc->loc_type == bp_loc_hardware_breakpoint
7571 || loc->loc_type == bp_loc_software_breakpoint))
7572 || is_tracepoint (b))
7573 && solib_contains_address_p (solib, loc->address))
7574 {
7575 loc->shlib_disabled = 1;
7576 /* At this point, we cannot rely on remove_breakpoint
7577 succeeding so we must mark the breakpoint as not inserted
7578 to prevent future errors occurring in remove_breakpoints. */
7579 loc->inserted = 0;
7580
7581 /* This may cause duplicate notifications for the same breakpoint. */
7582 gdb::observers::breakpoint_modified.notify (b);
7583
7584 if (!disabled_shlib_breaks)
7585 {
7586 target_terminal::ours_for_output ();
7587 warning (_("Temporarily disabling breakpoints "
7588 "for unloaded shared library \"%s\""),
7589 solib->so_name);
7590 }
7591 disabled_shlib_breaks = 1;
7592 }
7593 }
7594 }
7595
7596 /* Disable any breakpoints and tracepoints in OBJFILE upon
7597 notification of free_objfile. Only apply to enabled breakpoints,
7598 disabled ones can just stay disabled. */
7599
7600 static void
7601 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7602 {
7603 struct breakpoint *b;
7604
7605 if (objfile == NULL)
7606 return;
7607
7608 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7609 managed by the user with add-symbol-file/remove-symbol-file.
7610 Similarly to how breakpoints in shared libraries are handled in
7611 response to "nosharedlibrary", mark breakpoints in such modules
7612 shlib_disabled so they end up uninserted on the next global
7613 location list update. Shared libraries not loaded by the user
7614 aren't handled here -- they're already handled in
7615 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7616 solib_unloaded observer. We skip objfiles that are not
7617 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7618 main objfile). */
7619 if ((objfile->flags & OBJF_SHARED) == 0
7620 || (objfile->flags & OBJF_USERLOADED) == 0)
7621 return;
7622
7623 ALL_BREAKPOINTS (b)
7624 {
7625 struct bp_location *loc;
7626 int bp_modified = 0;
7627
7628 if (!is_breakpoint (b) && !is_tracepoint (b))
7629 continue;
7630
7631 for (loc = b->loc; loc != NULL; loc = loc->next)
7632 {
7633 CORE_ADDR loc_addr = loc->address;
7634
7635 if (loc->loc_type != bp_loc_hardware_breakpoint
7636 && loc->loc_type != bp_loc_software_breakpoint)
7637 continue;
7638
7639 if (loc->shlib_disabled != 0)
7640 continue;
7641
7642 if (objfile->pspace != loc->pspace)
7643 continue;
7644
7645 if (loc->loc_type != bp_loc_hardware_breakpoint
7646 && loc->loc_type != bp_loc_software_breakpoint)
7647 continue;
7648
7649 if (is_addr_in_objfile (loc_addr, objfile))
7650 {
7651 loc->shlib_disabled = 1;
7652 /* At this point, we don't know whether the object was
7653 unmapped from the inferior or not, so leave the
7654 inserted flag alone. We'll handle failure to
7655 uninsert quietly, in case the object was indeed
7656 unmapped. */
7657
7658 mark_breakpoint_location_modified (loc);
7659
7660 bp_modified = 1;
7661 }
7662 }
7663
7664 if (bp_modified)
7665 gdb::observers::breakpoint_modified.notify (b);
7666 }
7667 }
7668
7669 /* FORK & VFORK catchpoints. */
7670
7671 /* An instance of this type is used to represent a fork or vfork
7672 catchpoint. A breakpoint is really of this type iff its ops pointer points
7673 to CATCH_FORK_BREAKPOINT_OPS. */
7674
7675 struct fork_catchpoint : public breakpoint
7676 {
7677 /* Process id of a child process whose forking triggered this
7678 catchpoint. This field is only valid immediately after this
7679 catchpoint has triggered. */
7680 ptid_t forked_inferior_pid;
7681 };
7682
7683 /* Implement the "insert" breakpoint_ops method for fork
7684 catchpoints. */
7685
7686 static int
7687 insert_catch_fork (struct bp_location *bl)
7688 {
7689 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7690 }
7691
7692 /* Implement the "remove" breakpoint_ops method for fork
7693 catchpoints. */
7694
7695 static int
7696 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7697 {
7698 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7699 }
7700
7701 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7702 catchpoints. */
7703
7704 static int
7705 breakpoint_hit_catch_fork (const struct bp_location *bl,
7706 const address_space *aspace, CORE_ADDR bp_addr,
7707 const struct target_waitstatus *ws)
7708 {
7709 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7710
7711 if (ws->kind != TARGET_WAITKIND_FORKED)
7712 return 0;
7713
7714 c->forked_inferior_pid = ws->value.related_pid;
7715 return 1;
7716 }
7717
7718 /* Implement the "print_it" breakpoint_ops method for fork
7719 catchpoints. */
7720
7721 static enum print_stop_action
7722 print_it_catch_fork (bpstat bs)
7723 {
7724 struct ui_out *uiout = current_uiout;
7725 struct breakpoint *b = bs->breakpoint_at;
7726 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7727
7728 annotate_catchpoint (b->number);
7729 maybe_print_thread_hit_breakpoint (uiout);
7730 if (b->disposition == disp_del)
7731 uiout->text ("Temporary catchpoint ");
7732 else
7733 uiout->text ("Catchpoint ");
7734 if (uiout->is_mi_like_p ())
7735 {
7736 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7737 uiout->field_string ("disp", bpdisp_text (b->disposition));
7738 }
7739 uiout->field_int ("bkptno", b->number);
7740 uiout->text (" (forked process ");
7741 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7742 uiout->text ("), ");
7743 return PRINT_SRC_AND_LOC;
7744 }
7745
7746 /* Implement the "print_one" breakpoint_ops method for fork
7747 catchpoints. */
7748
7749 static void
7750 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7751 {
7752 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7753 struct value_print_options opts;
7754 struct ui_out *uiout = current_uiout;
7755
7756 get_user_print_options (&opts);
7757
7758 /* Field 4, the address, is omitted (which makes the columns not
7759 line up too nicely with the headers, but the effect is relatively
7760 readable). */
7761 if (opts.addressprint)
7762 uiout->field_skip ("addr");
7763 annotate_field (5);
7764 uiout->text ("fork");
7765 if (c->forked_inferior_pid != null_ptid)
7766 {
7767 uiout->text (", process ");
7768 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7769 uiout->spaces (1);
7770 }
7771
7772 if (uiout->is_mi_like_p ())
7773 uiout->field_string ("catch-type", "fork");
7774 }
7775
7776 /* Implement the "print_mention" breakpoint_ops method for fork
7777 catchpoints. */
7778
7779 static void
7780 print_mention_catch_fork (struct breakpoint *b)
7781 {
7782 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7783 }
7784
7785 /* Implement the "print_recreate" breakpoint_ops method for fork
7786 catchpoints. */
7787
7788 static void
7789 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7790 {
7791 fprintf_unfiltered (fp, "catch fork");
7792 print_recreate_thread (b, fp);
7793 }
7794
7795 /* The breakpoint_ops structure to be used in fork catchpoints. */
7796
7797 static struct breakpoint_ops catch_fork_breakpoint_ops;
7798
7799 /* Implement the "insert" breakpoint_ops method for vfork
7800 catchpoints. */
7801
7802 static int
7803 insert_catch_vfork (struct bp_location *bl)
7804 {
7805 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7806 }
7807
7808 /* Implement the "remove" breakpoint_ops method for vfork
7809 catchpoints. */
7810
7811 static int
7812 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7813 {
7814 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7815 }
7816
7817 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7818 catchpoints. */
7819
7820 static int
7821 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7822 const address_space *aspace, CORE_ADDR bp_addr,
7823 const struct target_waitstatus *ws)
7824 {
7825 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7826
7827 if (ws->kind != TARGET_WAITKIND_VFORKED)
7828 return 0;
7829
7830 c->forked_inferior_pid = ws->value.related_pid;
7831 return 1;
7832 }
7833
7834 /* Implement the "print_it" breakpoint_ops method for vfork
7835 catchpoints. */
7836
7837 static enum print_stop_action
7838 print_it_catch_vfork (bpstat bs)
7839 {
7840 struct ui_out *uiout = current_uiout;
7841 struct breakpoint *b = bs->breakpoint_at;
7842 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7843
7844 annotate_catchpoint (b->number);
7845 maybe_print_thread_hit_breakpoint (uiout);
7846 if (b->disposition == disp_del)
7847 uiout->text ("Temporary catchpoint ");
7848 else
7849 uiout->text ("Catchpoint ");
7850 if (uiout->is_mi_like_p ())
7851 {
7852 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7853 uiout->field_string ("disp", bpdisp_text (b->disposition));
7854 }
7855 uiout->field_int ("bkptno", b->number);
7856 uiout->text (" (vforked process ");
7857 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7858 uiout->text ("), ");
7859 return PRINT_SRC_AND_LOC;
7860 }
7861
7862 /* Implement the "print_one" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static void
7866 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7867 {
7868 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7869 struct value_print_options opts;
7870 struct ui_out *uiout = current_uiout;
7871
7872 get_user_print_options (&opts);
7873 /* Field 4, the address, is omitted (which makes the columns not
7874 line up too nicely with the headers, but the effect is relatively
7875 readable). */
7876 if (opts.addressprint)
7877 uiout->field_skip ("addr");
7878 annotate_field (5);
7879 uiout->text ("vfork");
7880 if (c->forked_inferior_pid != null_ptid)
7881 {
7882 uiout->text (", process ");
7883 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7884 uiout->spaces (1);
7885 }
7886
7887 if (uiout->is_mi_like_p ())
7888 uiout->field_string ("catch-type", "vfork");
7889 }
7890
7891 /* Implement the "print_mention" breakpoint_ops method for vfork
7892 catchpoints. */
7893
7894 static void
7895 print_mention_catch_vfork (struct breakpoint *b)
7896 {
7897 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7898 }
7899
7900 /* Implement the "print_recreate" breakpoint_ops method for vfork
7901 catchpoints. */
7902
7903 static void
7904 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7905 {
7906 fprintf_unfiltered (fp, "catch vfork");
7907 print_recreate_thread (b, fp);
7908 }
7909
7910 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7911
7912 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7913
7914 /* An instance of this type is used to represent an solib catchpoint.
7915 A breakpoint is really of this type iff its ops pointer points to
7916 CATCH_SOLIB_BREAKPOINT_OPS. */
7917
7918 struct solib_catchpoint : public breakpoint
7919 {
7920 ~solib_catchpoint () override;
7921
7922 /* True for "catch load", false for "catch unload". */
7923 unsigned char is_load;
7924
7925 /* Regular expression to match, if any. COMPILED is only valid when
7926 REGEX is non-NULL. */
7927 char *regex;
7928 std::unique_ptr<compiled_regex> compiled;
7929 };
7930
7931 solib_catchpoint::~solib_catchpoint ()
7932 {
7933 xfree (this->regex);
7934 }
7935
7936 static int
7937 insert_catch_solib (struct bp_location *ignore)
7938 {
7939 return 0;
7940 }
7941
7942 static int
7943 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7944 {
7945 return 0;
7946 }
7947
7948 static int
7949 breakpoint_hit_catch_solib (const struct bp_location *bl,
7950 const address_space *aspace,
7951 CORE_ADDR bp_addr,
7952 const struct target_waitstatus *ws)
7953 {
7954 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7955 struct breakpoint *other;
7956
7957 if (ws->kind == TARGET_WAITKIND_LOADED)
7958 return 1;
7959
7960 ALL_BREAKPOINTS (other)
7961 {
7962 struct bp_location *other_bl;
7963
7964 if (other == bl->owner)
7965 continue;
7966
7967 if (other->type != bp_shlib_event)
7968 continue;
7969
7970 if (self->pspace != NULL && other->pspace != self->pspace)
7971 continue;
7972
7973 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7974 {
7975 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7976 return 1;
7977 }
7978 }
7979
7980 return 0;
7981 }
7982
7983 static void
7984 check_status_catch_solib (struct bpstats *bs)
7985 {
7986 struct solib_catchpoint *self
7987 = (struct solib_catchpoint *) bs->breakpoint_at;
7988
7989 if (self->is_load)
7990 {
7991 for (so_list *iter : current_program_space->added_solibs)
7992 {
7993 if (!self->regex
7994 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7995 return;
7996 }
7997 }
7998 else
7999 {
8000 for (const std::string &iter : current_program_space->deleted_solibs)
8001 {
8002 if (!self->regex
8003 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8004 return;
8005 }
8006 }
8007
8008 bs->stop = 0;
8009 bs->print_it = print_it_noop;
8010 }
8011
8012 static enum print_stop_action
8013 print_it_catch_solib (bpstat bs)
8014 {
8015 struct breakpoint *b = bs->breakpoint_at;
8016 struct ui_out *uiout = current_uiout;
8017
8018 annotate_catchpoint (b->number);
8019 maybe_print_thread_hit_breakpoint (uiout);
8020 if (b->disposition == disp_del)
8021 uiout->text ("Temporary catchpoint ");
8022 else
8023 uiout->text ("Catchpoint ");
8024 uiout->field_int ("bkptno", b->number);
8025 uiout->text ("\n");
8026 if (uiout->is_mi_like_p ())
8027 uiout->field_string ("disp", bpdisp_text (b->disposition));
8028 print_solib_event (1);
8029 return PRINT_SRC_AND_LOC;
8030 }
8031
8032 static void
8033 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8034 {
8035 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8036 struct value_print_options opts;
8037 struct ui_out *uiout = current_uiout;
8038
8039 get_user_print_options (&opts);
8040 /* Field 4, the address, is omitted (which makes the columns not
8041 line up too nicely with the headers, but the effect is relatively
8042 readable). */
8043 if (opts.addressprint)
8044 {
8045 annotate_field (4);
8046 uiout->field_skip ("addr");
8047 }
8048
8049 std::string msg;
8050 annotate_field (5);
8051 if (self->is_load)
8052 {
8053 if (self->regex)
8054 msg = string_printf (_("load of library matching %s"), self->regex);
8055 else
8056 msg = _("load of library");
8057 }
8058 else
8059 {
8060 if (self->regex)
8061 msg = string_printf (_("unload of library matching %s"), self->regex);
8062 else
8063 msg = _("unload of library");
8064 }
8065 uiout->field_string ("what", msg);
8066
8067 if (uiout->is_mi_like_p ())
8068 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8069 }
8070
8071 static void
8072 print_mention_catch_solib (struct breakpoint *b)
8073 {
8074 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8075
8076 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8077 self->is_load ? "load" : "unload");
8078 }
8079
8080 static void
8081 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8082 {
8083 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8084
8085 fprintf_unfiltered (fp, "%s %s",
8086 b->disposition == disp_del ? "tcatch" : "catch",
8087 self->is_load ? "load" : "unload");
8088 if (self->regex)
8089 fprintf_unfiltered (fp, " %s", self->regex);
8090 fprintf_unfiltered (fp, "\n");
8091 }
8092
8093 static struct breakpoint_ops catch_solib_breakpoint_ops;
8094
8095 /* Shared helper function (MI and CLI) for creating and installing
8096 a shared object event catchpoint. If IS_LOAD is non-zero then
8097 the events to be caught are load events, otherwise they are
8098 unload events. If IS_TEMP is non-zero the catchpoint is a
8099 temporary one. If ENABLED is non-zero the catchpoint is
8100 created in an enabled state. */
8101
8102 void
8103 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8104 {
8105 struct gdbarch *gdbarch = get_current_arch ();
8106
8107 if (!arg)
8108 arg = "";
8109 arg = skip_spaces (arg);
8110
8111 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8112
8113 if (*arg != '\0')
8114 {
8115 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8116 _("Invalid regexp")));
8117 c->regex = xstrdup (arg);
8118 }
8119
8120 c->is_load = is_load;
8121 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8122 &catch_solib_breakpoint_ops);
8123
8124 c->enable_state = enabled ? bp_enabled : bp_disabled;
8125
8126 install_breakpoint (0, std::move (c), 1);
8127 }
8128
8129 /* A helper function that does all the work for "catch load" and
8130 "catch unload". */
8131
8132 static void
8133 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8134 struct cmd_list_element *command)
8135 {
8136 int tempflag;
8137 const int enabled = 1;
8138
8139 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8140
8141 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8142 }
8143
8144 static void
8145 catch_load_command_1 (const char *arg, int from_tty,
8146 struct cmd_list_element *command)
8147 {
8148 catch_load_or_unload (arg, from_tty, 1, command);
8149 }
8150
8151 static void
8152 catch_unload_command_1 (const char *arg, int from_tty,
8153 struct cmd_list_element *command)
8154 {
8155 catch_load_or_unload (arg, from_tty, 0, command);
8156 }
8157
8158 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8159 is non-zero, then make the breakpoint temporary. If COND_STRING is
8160 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8161 the breakpoint_ops structure associated to the catchpoint. */
8162
8163 void
8164 init_catchpoint (struct breakpoint *b,
8165 struct gdbarch *gdbarch, int tempflag,
8166 const char *cond_string,
8167 const struct breakpoint_ops *ops)
8168 {
8169 symtab_and_line sal;
8170 sal.pspace = current_program_space;
8171
8172 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8173
8174 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8175 b->disposition = tempflag ? disp_del : disp_donttouch;
8176 }
8177
8178 void
8179 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8180 {
8181 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8182 set_breakpoint_number (internal, b);
8183 if (is_tracepoint (b))
8184 set_tracepoint_count (breakpoint_count);
8185 if (!internal)
8186 mention (b);
8187 gdb::observers::breakpoint_created.notify (b);
8188
8189 if (update_gll)
8190 update_global_location_list (UGLL_MAY_INSERT);
8191 }
8192
8193 static void
8194 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8195 int tempflag, const char *cond_string,
8196 const struct breakpoint_ops *ops)
8197 {
8198 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8199
8200 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8201
8202 c->forked_inferior_pid = null_ptid;
8203
8204 install_breakpoint (0, std::move (c), 1);
8205 }
8206
8207 /* Exec catchpoints. */
8208
8209 /* An instance of this type is used to represent an exec catchpoint.
8210 A breakpoint is really of this type iff its ops pointer points to
8211 CATCH_EXEC_BREAKPOINT_OPS. */
8212
8213 struct exec_catchpoint : public breakpoint
8214 {
8215 ~exec_catchpoint () override;
8216
8217 /* Filename of a program whose exec triggered this catchpoint.
8218 This field is only valid immediately after this catchpoint has
8219 triggered. */
8220 char *exec_pathname;
8221 };
8222
8223 /* Exec catchpoint destructor. */
8224
8225 exec_catchpoint::~exec_catchpoint ()
8226 {
8227 xfree (this->exec_pathname);
8228 }
8229
8230 static int
8231 insert_catch_exec (struct bp_location *bl)
8232 {
8233 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8234 }
8235
8236 static int
8237 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8238 {
8239 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8240 }
8241
8242 static int
8243 breakpoint_hit_catch_exec (const struct bp_location *bl,
8244 const address_space *aspace, CORE_ADDR bp_addr,
8245 const struct target_waitstatus *ws)
8246 {
8247 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8248
8249 if (ws->kind != TARGET_WAITKIND_EXECD)
8250 return 0;
8251
8252 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8253 return 1;
8254 }
8255
8256 static enum print_stop_action
8257 print_it_catch_exec (bpstat bs)
8258 {
8259 struct ui_out *uiout = current_uiout;
8260 struct breakpoint *b = bs->breakpoint_at;
8261 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8262
8263 annotate_catchpoint (b->number);
8264 maybe_print_thread_hit_breakpoint (uiout);
8265 if (b->disposition == disp_del)
8266 uiout->text ("Temporary catchpoint ");
8267 else
8268 uiout->text ("Catchpoint ");
8269 if (uiout->is_mi_like_p ())
8270 {
8271 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8272 uiout->field_string ("disp", bpdisp_text (b->disposition));
8273 }
8274 uiout->field_int ("bkptno", b->number);
8275 uiout->text (" (exec'd ");
8276 uiout->field_string ("new-exec", c->exec_pathname);
8277 uiout->text ("), ");
8278
8279 return PRINT_SRC_AND_LOC;
8280 }
8281
8282 static void
8283 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8284 {
8285 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8286 struct value_print_options opts;
8287 struct ui_out *uiout = current_uiout;
8288
8289 get_user_print_options (&opts);
8290
8291 /* Field 4, the address, is omitted (which makes the columns
8292 not line up too nicely with the headers, but the effect
8293 is relatively readable). */
8294 if (opts.addressprint)
8295 uiout->field_skip ("addr");
8296 annotate_field (5);
8297 uiout->text ("exec");
8298 if (c->exec_pathname != NULL)
8299 {
8300 uiout->text (", program \"");
8301 uiout->field_string ("what", c->exec_pathname);
8302 uiout->text ("\" ");
8303 }
8304
8305 if (uiout->is_mi_like_p ())
8306 uiout->field_string ("catch-type", "exec");
8307 }
8308
8309 static void
8310 print_mention_catch_exec (struct breakpoint *b)
8311 {
8312 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8313 }
8314
8315 /* Implement the "print_recreate" breakpoint_ops method for exec
8316 catchpoints. */
8317
8318 static void
8319 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8320 {
8321 fprintf_unfiltered (fp, "catch exec");
8322 print_recreate_thread (b, fp);
8323 }
8324
8325 static struct breakpoint_ops catch_exec_breakpoint_ops;
8326
8327 static int
8328 hw_breakpoint_used_count (void)
8329 {
8330 int i = 0;
8331 struct breakpoint *b;
8332 struct bp_location *bl;
8333
8334 ALL_BREAKPOINTS (b)
8335 {
8336 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8337 for (bl = b->loc; bl; bl = bl->next)
8338 {
8339 /* Special types of hardware breakpoints may use more than
8340 one register. */
8341 i += b->ops->resources_needed (bl);
8342 }
8343 }
8344
8345 return i;
8346 }
8347
8348 /* Returns the resources B would use if it were a hardware
8349 watchpoint. */
8350
8351 static int
8352 hw_watchpoint_use_count (struct breakpoint *b)
8353 {
8354 int i = 0;
8355 struct bp_location *bl;
8356
8357 if (!breakpoint_enabled (b))
8358 return 0;
8359
8360 for (bl = b->loc; bl; bl = bl->next)
8361 {
8362 /* Special types of hardware watchpoints may use more than
8363 one register. */
8364 i += b->ops->resources_needed (bl);
8365 }
8366
8367 return i;
8368 }
8369
8370 /* Returns the sum the used resources of all hardware watchpoints of
8371 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8372 the sum of the used resources of all hardware watchpoints of other
8373 types _not_ TYPE. */
8374
8375 static int
8376 hw_watchpoint_used_count_others (struct breakpoint *except,
8377 enum bptype type, int *other_type_used)
8378 {
8379 int i = 0;
8380 struct breakpoint *b;
8381
8382 *other_type_used = 0;
8383 ALL_BREAKPOINTS (b)
8384 {
8385 if (b == except)
8386 continue;
8387 if (!breakpoint_enabled (b))
8388 continue;
8389
8390 if (b->type == type)
8391 i += hw_watchpoint_use_count (b);
8392 else if (is_hardware_watchpoint (b))
8393 *other_type_used = 1;
8394 }
8395
8396 return i;
8397 }
8398
8399 void
8400 disable_watchpoints_before_interactive_call_start (void)
8401 {
8402 struct breakpoint *b;
8403
8404 ALL_BREAKPOINTS (b)
8405 {
8406 if (is_watchpoint (b) && breakpoint_enabled (b))
8407 {
8408 b->enable_state = bp_call_disabled;
8409 update_global_location_list (UGLL_DONT_INSERT);
8410 }
8411 }
8412 }
8413
8414 void
8415 enable_watchpoints_after_interactive_call_stop (void)
8416 {
8417 struct breakpoint *b;
8418
8419 ALL_BREAKPOINTS (b)
8420 {
8421 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8422 {
8423 b->enable_state = bp_enabled;
8424 update_global_location_list (UGLL_MAY_INSERT);
8425 }
8426 }
8427 }
8428
8429 void
8430 disable_breakpoints_before_startup (void)
8431 {
8432 current_program_space->executing_startup = 1;
8433 update_global_location_list (UGLL_DONT_INSERT);
8434 }
8435
8436 void
8437 enable_breakpoints_after_startup (void)
8438 {
8439 current_program_space->executing_startup = 0;
8440 breakpoint_re_set ();
8441 }
8442
8443 /* Create a new single-step breakpoint for thread THREAD, with no
8444 locations. */
8445
8446 static struct breakpoint *
8447 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8448 {
8449 std::unique_ptr<breakpoint> b (new breakpoint ());
8450
8451 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8452 &momentary_breakpoint_ops);
8453
8454 b->disposition = disp_donttouch;
8455 b->frame_id = null_frame_id;
8456
8457 b->thread = thread;
8458 gdb_assert (b->thread != 0);
8459
8460 return add_to_breakpoint_chain (std::move (b));
8461 }
8462
8463 /* Set a momentary breakpoint of type TYPE at address specified by
8464 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8465 frame. */
8466
8467 breakpoint_up
8468 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8469 struct frame_id frame_id, enum bptype type)
8470 {
8471 struct breakpoint *b;
8472
8473 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8474 tail-called one. */
8475 gdb_assert (!frame_id_artificial_p (frame_id));
8476
8477 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8478 b->enable_state = bp_enabled;
8479 b->disposition = disp_donttouch;
8480 b->frame_id = frame_id;
8481
8482 b->thread = inferior_thread ()->global_num;
8483
8484 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8485
8486 return breakpoint_up (b);
8487 }
8488
8489 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8490 The new breakpoint will have type TYPE, use OPS as its
8491 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8492
8493 static struct breakpoint *
8494 momentary_breakpoint_from_master (struct breakpoint *orig,
8495 enum bptype type,
8496 const struct breakpoint_ops *ops,
8497 int loc_enabled)
8498 {
8499 struct breakpoint *copy;
8500
8501 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8502 copy->loc = allocate_bp_location (copy);
8503 set_breakpoint_location_function (copy->loc, 1);
8504
8505 copy->loc->gdbarch = orig->loc->gdbarch;
8506 copy->loc->requested_address = orig->loc->requested_address;
8507 copy->loc->address = orig->loc->address;
8508 copy->loc->section = orig->loc->section;
8509 copy->loc->pspace = orig->loc->pspace;
8510 copy->loc->probe = orig->loc->probe;
8511 copy->loc->line_number = orig->loc->line_number;
8512 copy->loc->symtab = orig->loc->symtab;
8513 copy->loc->enabled = loc_enabled;
8514 copy->frame_id = orig->frame_id;
8515 copy->thread = orig->thread;
8516 copy->pspace = orig->pspace;
8517
8518 copy->enable_state = bp_enabled;
8519 copy->disposition = disp_donttouch;
8520 copy->number = internal_breakpoint_number--;
8521
8522 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8523 return copy;
8524 }
8525
8526 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8527 ORIG is NULL. */
8528
8529 struct breakpoint *
8530 clone_momentary_breakpoint (struct breakpoint *orig)
8531 {
8532 /* If there's nothing to clone, then return nothing. */
8533 if (orig == NULL)
8534 return NULL;
8535
8536 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8537 }
8538
8539 breakpoint_up
8540 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8541 enum bptype type)
8542 {
8543 struct symtab_and_line sal;
8544
8545 sal = find_pc_line (pc, 0);
8546 sal.pc = pc;
8547 sal.section = find_pc_overlay (pc);
8548 sal.explicit_pc = 1;
8549
8550 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8551 }
8552 \f
8553
8554 /* Tell the user we have just set a breakpoint B. */
8555
8556 static void
8557 mention (struct breakpoint *b)
8558 {
8559 b->ops->print_mention (b);
8560 current_uiout->text ("\n");
8561 }
8562 \f
8563
8564 static int bp_loc_is_permanent (struct bp_location *loc);
8565
8566 static struct bp_location *
8567 add_location_to_breakpoint (struct breakpoint *b,
8568 const struct symtab_and_line *sal)
8569 {
8570 struct bp_location *loc, **tmp;
8571 CORE_ADDR adjusted_address;
8572 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8573
8574 if (loc_gdbarch == NULL)
8575 loc_gdbarch = b->gdbarch;
8576
8577 /* Adjust the breakpoint's address prior to allocating a location.
8578 Once we call allocate_bp_location(), that mostly uninitialized
8579 location will be placed on the location chain. Adjustment of the
8580 breakpoint may cause target_read_memory() to be called and we do
8581 not want its scan of the location chain to find a breakpoint and
8582 location that's only been partially initialized. */
8583 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8584 sal->pc, b->type);
8585
8586 /* Sort the locations by their ADDRESS. */
8587 loc = allocate_bp_location (b);
8588 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8589 tmp = &((*tmp)->next))
8590 ;
8591 loc->next = *tmp;
8592 *tmp = loc;
8593
8594 loc->requested_address = sal->pc;
8595 loc->address = adjusted_address;
8596 loc->pspace = sal->pspace;
8597 loc->probe.prob = sal->prob;
8598 loc->probe.objfile = sal->objfile;
8599 gdb_assert (loc->pspace != NULL);
8600 loc->section = sal->section;
8601 loc->gdbarch = loc_gdbarch;
8602 loc->line_number = sal->line;
8603 loc->symtab = sal->symtab;
8604 loc->symbol = sal->symbol;
8605 loc->msymbol = sal->msymbol;
8606 loc->objfile = sal->objfile;
8607
8608 set_breakpoint_location_function (loc,
8609 sal->explicit_pc || sal->explicit_line);
8610
8611 /* While by definition, permanent breakpoints are already present in the
8612 code, we don't mark the location as inserted. Normally one would expect
8613 that GDB could rely on that breakpoint instruction to stop the program,
8614 thus removing the need to insert its own breakpoint, except that executing
8615 the breakpoint instruction can kill the target instead of reporting a
8616 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8617 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8618 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8619 breakpoint be inserted normally results in QEMU knowing about the GDB
8620 breakpoint, and thus trap before the breakpoint instruction is executed.
8621 (If GDB later needs to continue execution past the permanent breakpoint,
8622 it manually increments the PC, thus avoiding executing the breakpoint
8623 instruction.) */
8624 if (bp_loc_is_permanent (loc))
8625 loc->permanent = 1;
8626
8627 return loc;
8628 }
8629 \f
8630
8631 /* See breakpoint.h. */
8632
8633 int
8634 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8635 {
8636 int len;
8637 CORE_ADDR addr;
8638 const gdb_byte *bpoint;
8639 gdb_byte *target_mem;
8640
8641 addr = address;
8642 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8643
8644 /* Software breakpoints unsupported? */
8645 if (bpoint == NULL)
8646 return 0;
8647
8648 target_mem = (gdb_byte *) alloca (len);
8649
8650 /* Enable the automatic memory restoration from breakpoints while
8651 we read the memory. Otherwise we could say about our temporary
8652 breakpoints they are permanent. */
8653 scoped_restore restore_memory
8654 = make_scoped_restore_show_memory_breakpoints (0);
8655
8656 if (target_read_memory (address, target_mem, len) == 0
8657 && memcmp (target_mem, bpoint, len) == 0)
8658 return 1;
8659
8660 return 0;
8661 }
8662
8663 /* Return 1 if LOC is pointing to a permanent breakpoint,
8664 return 0 otherwise. */
8665
8666 static int
8667 bp_loc_is_permanent (struct bp_location *loc)
8668 {
8669 gdb_assert (loc != NULL);
8670
8671 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8672 attempt to read from the addresses the locations of these breakpoint types
8673 point to. program_breakpoint_here_p, below, will attempt to read
8674 memory. */
8675 if (!breakpoint_address_is_meaningful (loc->owner))
8676 return 0;
8677
8678 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8679 switch_to_program_space_and_thread (loc->pspace);
8680 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8681 }
8682
8683 /* Build a command list for the dprintf corresponding to the current
8684 settings of the dprintf style options. */
8685
8686 static void
8687 update_dprintf_command_list (struct breakpoint *b)
8688 {
8689 char *dprintf_args = b->extra_string;
8690 char *printf_line = NULL;
8691
8692 if (!dprintf_args)
8693 return;
8694
8695 dprintf_args = skip_spaces (dprintf_args);
8696
8697 /* Allow a comma, as it may have terminated a location, but don't
8698 insist on it. */
8699 if (*dprintf_args == ',')
8700 ++dprintf_args;
8701 dprintf_args = skip_spaces (dprintf_args);
8702
8703 if (*dprintf_args != '"')
8704 error (_("Bad format string, missing '\"'."));
8705
8706 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8707 printf_line = xstrprintf ("printf %s", dprintf_args);
8708 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8709 {
8710 if (!dprintf_function)
8711 error (_("No function supplied for dprintf call"));
8712
8713 if (dprintf_channel && strlen (dprintf_channel) > 0)
8714 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8715 dprintf_function,
8716 dprintf_channel,
8717 dprintf_args);
8718 else
8719 printf_line = xstrprintf ("call (void) %s (%s)",
8720 dprintf_function,
8721 dprintf_args);
8722 }
8723 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8724 {
8725 if (target_can_run_breakpoint_commands ())
8726 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8727 else
8728 {
8729 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8730 printf_line = xstrprintf ("printf %s", dprintf_args);
8731 }
8732 }
8733 else
8734 internal_error (__FILE__, __LINE__,
8735 _("Invalid dprintf style."));
8736
8737 gdb_assert (printf_line != NULL);
8738
8739 /* Manufacture a printf sequence. */
8740 struct command_line *printf_cmd_line
8741 = new struct command_line (simple_control, printf_line);
8742 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8743 command_lines_deleter ()));
8744 }
8745
8746 /* Update all dprintf commands, making their command lists reflect
8747 current style settings. */
8748
8749 static void
8750 update_dprintf_commands (const char *args, int from_tty,
8751 struct cmd_list_element *c)
8752 {
8753 struct breakpoint *b;
8754
8755 ALL_BREAKPOINTS (b)
8756 {
8757 if (b->type == bp_dprintf)
8758 update_dprintf_command_list (b);
8759 }
8760 }
8761
8762 /* Create a breakpoint with SAL as location. Use LOCATION
8763 as a description of the location, and COND_STRING
8764 as condition expression. If LOCATION is NULL then create an
8765 "address location" from the address in the SAL. */
8766
8767 static void
8768 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8769 gdb::array_view<const symtab_and_line> sals,
8770 event_location_up &&location,
8771 gdb::unique_xmalloc_ptr<char> filter,
8772 gdb::unique_xmalloc_ptr<char> cond_string,
8773 gdb::unique_xmalloc_ptr<char> extra_string,
8774 enum bptype type, enum bpdisp disposition,
8775 int thread, int task, int ignore_count,
8776 const struct breakpoint_ops *ops, int from_tty,
8777 int enabled, int internal, unsigned flags,
8778 int display_canonical)
8779 {
8780 int i;
8781
8782 if (type == bp_hardware_breakpoint)
8783 {
8784 int target_resources_ok;
8785
8786 i = hw_breakpoint_used_count ();
8787 target_resources_ok =
8788 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8789 i + 1, 0);
8790 if (target_resources_ok == 0)
8791 error (_("No hardware breakpoint support in the target."));
8792 else if (target_resources_ok < 0)
8793 error (_("Hardware breakpoints used exceeds limit."));
8794 }
8795
8796 gdb_assert (!sals.empty ());
8797
8798 for (const auto &sal : sals)
8799 {
8800 struct bp_location *loc;
8801
8802 if (from_tty)
8803 {
8804 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8805 if (!loc_gdbarch)
8806 loc_gdbarch = gdbarch;
8807
8808 describe_other_breakpoints (loc_gdbarch,
8809 sal.pspace, sal.pc, sal.section, thread);
8810 }
8811
8812 if (&sal == &sals[0])
8813 {
8814 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8815 b->thread = thread;
8816 b->task = task;
8817
8818 b->cond_string = cond_string.release ();
8819 b->extra_string = extra_string.release ();
8820 b->ignore_count = ignore_count;
8821 b->enable_state = enabled ? bp_enabled : bp_disabled;
8822 b->disposition = disposition;
8823
8824 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8825 b->loc->inserted = 1;
8826
8827 if (type == bp_static_tracepoint)
8828 {
8829 struct tracepoint *t = (struct tracepoint *) b;
8830 struct static_tracepoint_marker marker;
8831
8832 if (strace_marker_p (b))
8833 {
8834 /* We already know the marker exists, otherwise, we
8835 wouldn't see a sal for it. */
8836 const char *p
8837 = &event_location_to_string (b->location.get ())[3];
8838 const char *endp;
8839
8840 p = skip_spaces (p);
8841
8842 endp = skip_to_space (p);
8843
8844 t->static_trace_marker_id.assign (p, endp - p);
8845
8846 printf_filtered (_("Probed static tracepoint "
8847 "marker \"%s\"\n"),
8848 t->static_trace_marker_id.c_str ());
8849 }
8850 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8851 {
8852 t->static_trace_marker_id = std::move (marker.str_id);
8853
8854 printf_filtered (_("Probed static tracepoint "
8855 "marker \"%s\"\n"),
8856 t->static_trace_marker_id.c_str ());
8857 }
8858 else
8859 warning (_("Couldn't determine the static "
8860 "tracepoint marker to probe"));
8861 }
8862
8863 loc = b->loc;
8864 }
8865 else
8866 {
8867 loc = add_location_to_breakpoint (b, &sal);
8868 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8869 loc->inserted = 1;
8870 }
8871
8872 if (b->cond_string)
8873 {
8874 const char *arg = b->cond_string;
8875
8876 loc->cond = parse_exp_1 (&arg, loc->address,
8877 block_for_pc (loc->address), 0);
8878 if (*arg)
8879 error (_("Garbage '%s' follows condition"), arg);
8880 }
8881
8882 /* Dynamic printf requires and uses additional arguments on the
8883 command line, otherwise it's an error. */
8884 if (type == bp_dprintf)
8885 {
8886 if (b->extra_string)
8887 update_dprintf_command_list (b);
8888 else
8889 error (_("Format string required"));
8890 }
8891 else if (b->extra_string)
8892 error (_("Garbage '%s' at end of command"), b->extra_string);
8893 }
8894
8895 b->display_canonical = display_canonical;
8896 if (location != NULL)
8897 b->location = std::move (location);
8898 else
8899 b->location = new_address_location (b->loc->address, NULL, 0);
8900 b->filter = filter.release ();
8901 }
8902
8903 static void
8904 create_breakpoint_sal (struct gdbarch *gdbarch,
8905 gdb::array_view<const symtab_and_line> sals,
8906 event_location_up &&location,
8907 gdb::unique_xmalloc_ptr<char> filter,
8908 gdb::unique_xmalloc_ptr<char> cond_string,
8909 gdb::unique_xmalloc_ptr<char> extra_string,
8910 enum bptype type, enum bpdisp disposition,
8911 int thread, int task, int ignore_count,
8912 const struct breakpoint_ops *ops, int from_tty,
8913 int enabled, int internal, unsigned flags,
8914 int display_canonical)
8915 {
8916 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8917
8918 init_breakpoint_sal (b.get (), gdbarch,
8919 sals, std::move (location),
8920 std::move (filter),
8921 std::move (cond_string),
8922 std::move (extra_string),
8923 type, disposition,
8924 thread, task, ignore_count,
8925 ops, from_tty,
8926 enabled, internal, flags,
8927 display_canonical);
8928
8929 install_breakpoint (internal, std::move (b), 0);
8930 }
8931
8932 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8933 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8934 value. COND_STRING, if not NULL, specified the condition to be
8935 used for all breakpoints. Essentially the only case where
8936 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8937 function. In that case, it's still not possible to specify
8938 separate conditions for different overloaded functions, so
8939 we take just a single condition string.
8940
8941 NOTE: If the function succeeds, the caller is expected to cleanup
8942 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8943 array contents). If the function fails (error() is called), the
8944 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8945 COND and SALS arrays and each of those arrays contents. */
8946
8947 static void
8948 create_breakpoints_sal (struct gdbarch *gdbarch,
8949 struct linespec_result *canonical,
8950 gdb::unique_xmalloc_ptr<char> cond_string,
8951 gdb::unique_xmalloc_ptr<char> extra_string,
8952 enum bptype type, enum bpdisp disposition,
8953 int thread, int task, int ignore_count,
8954 const struct breakpoint_ops *ops, int from_tty,
8955 int enabled, int internal, unsigned flags)
8956 {
8957 if (canonical->pre_expanded)
8958 gdb_assert (canonical->lsals.size () == 1);
8959
8960 for (const auto &lsal : canonical->lsals)
8961 {
8962 /* Note that 'location' can be NULL in the case of a plain
8963 'break', without arguments. */
8964 event_location_up location
8965 = (canonical->location != NULL
8966 ? copy_event_location (canonical->location.get ()) : NULL);
8967 gdb::unique_xmalloc_ptr<char> filter_string
8968 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8969
8970 create_breakpoint_sal (gdbarch, lsal.sals,
8971 std::move (location),
8972 std::move (filter_string),
8973 std::move (cond_string),
8974 std::move (extra_string),
8975 type, disposition,
8976 thread, task, ignore_count, ops,
8977 from_tty, enabled, internal, flags,
8978 canonical->special_display);
8979 }
8980 }
8981
8982 /* Parse LOCATION which is assumed to be a SAL specification possibly
8983 followed by conditionals. On return, SALS contains an array of SAL
8984 addresses found. LOCATION points to the end of the SAL (for
8985 linespec locations).
8986
8987 The array and the line spec strings are allocated on the heap, it is
8988 the caller's responsibility to free them. */
8989
8990 static void
8991 parse_breakpoint_sals (const struct event_location *location,
8992 struct linespec_result *canonical)
8993 {
8994 struct symtab_and_line cursal;
8995
8996 if (event_location_type (location) == LINESPEC_LOCATION)
8997 {
8998 const char *spec = get_linespec_location (location)->spec_string;
8999
9000 if (spec == NULL)
9001 {
9002 /* The last displayed codepoint, if it's valid, is our default
9003 breakpoint address. */
9004 if (last_displayed_sal_is_valid ())
9005 {
9006 /* Set sal's pspace, pc, symtab, and line to the values
9007 corresponding to the last call to print_frame_info.
9008 Be sure to reinitialize LINE with NOTCURRENT == 0
9009 as the breakpoint line number is inappropriate otherwise.
9010 find_pc_line would adjust PC, re-set it back. */
9011 symtab_and_line sal = get_last_displayed_sal ();
9012 CORE_ADDR pc = sal.pc;
9013
9014 sal = find_pc_line (pc, 0);
9015
9016 /* "break" without arguments is equivalent to "break *PC"
9017 where PC is the last displayed codepoint's address. So
9018 make sure to set sal.explicit_pc to prevent GDB from
9019 trying to expand the list of sals to include all other
9020 instances with the same symtab and line. */
9021 sal.pc = pc;
9022 sal.explicit_pc = 1;
9023
9024 struct linespec_sals lsal;
9025 lsal.sals = {sal};
9026 lsal.canonical = NULL;
9027
9028 canonical->lsals.push_back (std::move (lsal));
9029 return;
9030 }
9031 else
9032 error (_("No default breakpoint address now."));
9033 }
9034 }
9035
9036 /* Force almost all breakpoints to be in terms of the
9037 current_source_symtab (which is decode_line_1's default).
9038 This should produce the results we want almost all of the
9039 time while leaving default_breakpoint_* alone.
9040
9041 ObjC: However, don't match an Objective-C method name which
9042 may have a '+' or '-' succeeded by a '['. */
9043 cursal = get_current_source_symtab_and_line ();
9044 if (last_displayed_sal_is_valid ())
9045 {
9046 const char *spec = NULL;
9047
9048 if (event_location_type (location) == LINESPEC_LOCATION)
9049 spec = get_linespec_location (location)->spec_string;
9050
9051 if (!cursal.symtab
9052 || (spec != NULL
9053 && strchr ("+-", spec[0]) != NULL
9054 && spec[1] != '['))
9055 {
9056 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9057 get_last_displayed_symtab (),
9058 get_last_displayed_line (),
9059 canonical, NULL, NULL);
9060 return;
9061 }
9062 }
9063
9064 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9065 cursal.symtab, cursal.line, canonical, NULL, NULL);
9066 }
9067
9068
9069 /* Convert each SAL into a real PC. Verify that the PC can be
9070 inserted as a breakpoint. If it can't throw an error. */
9071
9072 static void
9073 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9074 {
9075 for (auto &sal : sals)
9076 resolve_sal_pc (&sal);
9077 }
9078
9079 /* Fast tracepoints may have restrictions on valid locations. For
9080 instance, a fast tracepoint using a jump instead of a trap will
9081 likely have to overwrite more bytes than a trap would, and so can
9082 only be placed where the instruction is longer than the jump, or a
9083 multi-instruction sequence does not have a jump into the middle of
9084 it, etc. */
9085
9086 static void
9087 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9088 gdb::array_view<const symtab_and_line> sals)
9089 {
9090 for (const auto &sal : sals)
9091 {
9092 struct gdbarch *sarch;
9093
9094 sarch = get_sal_arch (sal);
9095 /* We fall back to GDBARCH if there is no architecture
9096 associated with SAL. */
9097 if (sarch == NULL)
9098 sarch = gdbarch;
9099 std::string msg;
9100 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9101 error (_("May not have a fast tracepoint at %s%s"),
9102 paddress (sarch, sal.pc), msg.c_str ());
9103 }
9104 }
9105
9106 /* Given TOK, a string specification of condition and thread, as
9107 accepted by the 'break' command, extract the condition
9108 string and thread number and set *COND_STRING and *THREAD.
9109 PC identifies the context at which the condition should be parsed.
9110 If no condition is found, *COND_STRING is set to NULL.
9111 If no thread is found, *THREAD is set to -1. */
9112
9113 static void
9114 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9115 char **cond_string, int *thread, int *task,
9116 char **rest)
9117 {
9118 *cond_string = NULL;
9119 *thread = -1;
9120 *task = 0;
9121 *rest = NULL;
9122
9123 while (tok && *tok)
9124 {
9125 const char *end_tok;
9126 int toklen;
9127 const char *cond_start = NULL;
9128 const char *cond_end = NULL;
9129
9130 tok = skip_spaces (tok);
9131
9132 if ((*tok == '"' || *tok == ',') && rest)
9133 {
9134 *rest = savestring (tok, strlen (tok));
9135 return;
9136 }
9137
9138 end_tok = skip_to_space (tok);
9139
9140 toklen = end_tok - tok;
9141
9142 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9143 {
9144 tok = cond_start = end_tok + 1;
9145 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9146 cond_end = tok;
9147 *cond_string = savestring (cond_start, cond_end - cond_start);
9148 }
9149 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9150 {
9151 const char *tmptok;
9152 struct thread_info *thr;
9153
9154 tok = end_tok + 1;
9155 thr = parse_thread_id (tok, &tmptok);
9156 if (tok == tmptok)
9157 error (_("Junk after thread keyword."));
9158 *thread = thr->global_num;
9159 tok = tmptok;
9160 }
9161 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9162 {
9163 char *tmptok;
9164
9165 tok = end_tok + 1;
9166 *task = strtol (tok, &tmptok, 0);
9167 if (tok == tmptok)
9168 error (_("Junk after task keyword."));
9169 if (!valid_task_id (*task))
9170 error (_("Unknown task %d."), *task);
9171 tok = tmptok;
9172 }
9173 else if (rest)
9174 {
9175 *rest = savestring (tok, strlen (tok));
9176 return;
9177 }
9178 else
9179 error (_("Junk at end of arguments."));
9180 }
9181 }
9182
9183 /* Decode a static tracepoint marker spec. */
9184
9185 static std::vector<symtab_and_line>
9186 decode_static_tracepoint_spec (const char **arg_p)
9187 {
9188 const char *p = &(*arg_p)[3];
9189 const char *endp;
9190
9191 p = skip_spaces (p);
9192
9193 endp = skip_to_space (p);
9194
9195 std::string marker_str (p, endp - p);
9196
9197 std::vector<static_tracepoint_marker> markers
9198 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9199 if (markers.empty ())
9200 error (_("No known static tracepoint marker named %s"),
9201 marker_str.c_str ());
9202
9203 std::vector<symtab_and_line> sals;
9204 sals.reserve (markers.size ());
9205
9206 for (const static_tracepoint_marker &marker : markers)
9207 {
9208 symtab_and_line sal = find_pc_line (marker.address, 0);
9209 sal.pc = marker.address;
9210 sals.push_back (sal);
9211 }
9212
9213 *arg_p = endp;
9214 return sals;
9215 }
9216
9217 /* See breakpoint.h. */
9218
9219 int
9220 create_breakpoint (struct gdbarch *gdbarch,
9221 const struct event_location *location,
9222 const char *cond_string,
9223 int thread, const char *extra_string,
9224 int parse_extra,
9225 int tempflag, enum bptype type_wanted,
9226 int ignore_count,
9227 enum auto_boolean pending_break_support,
9228 const struct breakpoint_ops *ops,
9229 int from_tty, int enabled, int internal,
9230 unsigned flags)
9231 {
9232 struct linespec_result canonical;
9233 struct cleanup *bkpt_chain = NULL;
9234 int pending = 0;
9235 int task = 0;
9236 int prev_bkpt_count = breakpoint_count;
9237
9238 gdb_assert (ops != NULL);
9239
9240 /* If extra_string isn't useful, set it to NULL. */
9241 if (extra_string != NULL && *extra_string == '\0')
9242 extra_string = NULL;
9243
9244 TRY
9245 {
9246 ops->create_sals_from_location (location, &canonical, type_wanted);
9247 }
9248 CATCH (e, RETURN_MASK_ERROR)
9249 {
9250 /* If caller is interested in rc value from parse, set
9251 value. */
9252 if (e.error == NOT_FOUND_ERROR)
9253 {
9254 /* If pending breakpoint support is turned off, throw
9255 error. */
9256
9257 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9258 throw_exception (e);
9259
9260 exception_print (gdb_stderr, e);
9261
9262 /* If pending breakpoint support is auto query and the user
9263 selects no, then simply return the error code. */
9264 if (pending_break_support == AUTO_BOOLEAN_AUTO
9265 && !nquery (_("Make %s pending on future shared library load? "),
9266 bptype_string (type_wanted)))
9267 return 0;
9268
9269 /* At this point, either the user was queried about setting
9270 a pending breakpoint and selected yes, or pending
9271 breakpoint behavior is on and thus a pending breakpoint
9272 is defaulted on behalf of the user. */
9273 pending = 1;
9274 }
9275 else
9276 throw_exception (e);
9277 }
9278 END_CATCH
9279
9280 if (!pending && canonical.lsals.empty ())
9281 return 0;
9282
9283 /* ----------------------------- SNIP -----------------------------
9284 Anything added to the cleanup chain beyond this point is assumed
9285 to be part of a breakpoint. If the breakpoint create succeeds
9286 then the memory is not reclaimed. */
9287 bkpt_chain = make_cleanup (null_cleanup, 0);
9288
9289 /* Resolve all line numbers to PC's and verify that the addresses
9290 are ok for the target. */
9291 if (!pending)
9292 {
9293 for (auto &lsal : canonical.lsals)
9294 breakpoint_sals_to_pc (lsal.sals);
9295 }
9296
9297 /* Fast tracepoints may have additional restrictions on location. */
9298 if (!pending && type_wanted == bp_fast_tracepoint)
9299 {
9300 for (const auto &lsal : canonical.lsals)
9301 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9302 }
9303
9304 /* Verify that condition can be parsed, before setting any
9305 breakpoints. Allocate a separate condition expression for each
9306 breakpoint. */
9307 if (!pending)
9308 {
9309 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9310 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9311
9312 if (parse_extra)
9313 {
9314 char *rest;
9315 char *cond;
9316
9317 const linespec_sals &lsal = canonical.lsals[0];
9318
9319 /* Here we only parse 'arg' to separate condition
9320 from thread number, so parsing in context of first
9321 sal is OK. When setting the breakpoint we'll
9322 re-parse it in context of each sal. */
9323
9324 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9325 &cond, &thread, &task, &rest);
9326 cond_string_copy.reset (cond);
9327 extra_string_copy.reset (rest);
9328 }
9329 else
9330 {
9331 if (type_wanted != bp_dprintf
9332 && extra_string != NULL && *extra_string != '\0')
9333 error (_("Garbage '%s' at end of location"), extra_string);
9334
9335 /* Create a private copy of condition string. */
9336 if (cond_string)
9337 cond_string_copy.reset (xstrdup (cond_string));
9338 /* Create a private copy of any extra string. */
9339 if (extra_string)
9340 extra_string_copy.reset (xstrdup (extra_string));
9341 }
9342
9343 ops->create_breakpoints_sal (gdbarch, &canonical,
9344 std::move (cond_string_copy),
9345 std::move (extra_string_copy),
9346 type_wanted,
9347 tempflag ? disp_del : disp_donttouch,
9348 thread, task, ignore_count, ops,
9349 from_tty, enabled, internal, flags);
9350 }
9351 else
9352 {
9353 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9354
9355 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9356 b->location = copy_event_location (location);
9357
9358 if (parse_extra)
9359 b->cond_string = NULL;
9360 else
9361 {
9362 /* Create a private copy of condition string. */
9363 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9364 b->thread = thread;
9365 }
9366
9367 /* Create a private copy of any extra string. */
9368 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9369 b->ignore_count = ignore_count;
9370 b->disposition = tempflag ? disp_del : disp_donttouch;
9371 b->condition_not_parsed = 1;
9372 b->enable_state = enabled ? bp_enabled : bp_disabled;
9373 if ((type_wanted != bp_breakpoint
9374 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9375 b->pspace = current_program_space;
9376
9377 install_breakpoint (internal, std::move (b), 0);
9378 }
9379
9380 if (canonical.lsals.size () > 1)
9381 {
9382 warning (_("Multiple breakpoints were set.\nUse the "
9383 "\"delete\" command to delete unwanted breakpoints."));
9384 prev_breakpoint_count = prev_bkpt_count;
9385 }
9386
9387 /* That's it. Discard the cleanups for data inserted into the
9388 breakpoint. */
9389 discard_cleanups (bkpt_chain);
9390
9391 /* error call may happen here - have BKPT_CHAIN already discarded. */
9392 update_global_location_list (UGLL_MAY_INSERT);
9393
9394 return 1;
9395 }
9396
9397 /* Set a breakpoint.
9398 ARG is a string describing breakpoint address,
9399 condition, and thread.
9400 FLAG specifies if a breakpoint is hardware on,
9401 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9402 and BP_TEMPFLAG. */
9403
9404 static void
9405 break_command_1 (const char *arg, int flag, int from_tty)
9406 {
9407 int tempflag = flag & BP_TEMPFLAG;
9408 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9409 ? bp_hardware_breakpoint
9410 : bp_breakpoint);
9411 struct breakpoint_ops *ops;
9412
9413 event_location_up location = string_to_event_location (&arg, current_language);
9414
9415 /* Matching breakpoints on probes. */
9416 if (location != NULL
9417 && event_location_type (location.get ()) == PROBE_LOCATION)
9418 ops = &bkpt_probe_breakpoint_ops;
9419 else
9420 ops = &bkpt_breakpoint_ops;
9421
9422 create_breakpoint (get_current_arch (),
9423 location.get (),
9424 NULL, 0, arg, 1 /* parse arg */,
9425 tempflag, type_wanted,
9426 0 /* Ignore count */,
9427 pending_break_support,
9428 ops,
9429 from_tty,
9430 1 /* enabled */,
9431 0 /* internal */,
9432 0);
9433 }
9434
9435 /* Helper function for break_command_1 and disassemble_command. */
9436
9437 void
9438 resolve_sal_pc (struct symtab_and_line *sal)
9439 {
9440 CORE_ADDR pc;
9441
9442 if (sal->pc == 0 && sal->symtab != NULL)
9443 {
9444 if (!find_line_pc (sal->symtab, sal->line, &pc))
9445 error (_("No line %d in file \"%s\"."),
9446 sal->line, symtab_to_filename_for_display (sal->symtab));
9447 sal->pc = pc;
9448
9449 /* If this SAL corresponds to a breakpoint inserted using a line
9450 number, then skip the function prologue if necessary. */
9451 if (sal->explicit_line)
9452 skip_prologue_sal (sal);
9453 }
9454
9455 if (sal->section == 0 && sal->symtab != NULL)
9456 {
9457 const struct blockvector *bv;
9458 const struct block *b;
9459 struct symbol *sym;
9460
9461 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9462 SYMTAB_COMPUNIT (sal->symtab));
9463 if (bv != NULL)
9464 {
9465 sym = block_linkage_function (b);
9466 if (sym != NULL)
9467 {
9468 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9469 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9470 sym);
9471 }
9472 else
9473 {
9474 /* It really is worthwhile to have the section, so we'll
9475 just have to look harder. This case can be executed
9476 if we have line numbers but no functions (as can
9477 happen in assembly source). */
9478
9479 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9480 switch_to_program_space_and_thread (sal->pspace);
9481
9482 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9483 if (msym.minsym)
9484 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9485 }
9486 }
9487 }
9488 }
9489
9490 void
9491 break_command (const char *arg, int from_tty)
9492 {
9493 break_command_1 (arg, 0, from_tty);
9494 }
9495
9496 void
9497 tbreak_command (const char *arg, int from_tty)
9498 {
9499 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9500 }
9501
9502 static void
9503 hbreak_command (const char *arg, int from_tty)
9504 {
9505 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9506 }
9507
9508 static void
9509 thbreak_command (const char *arg, int from_tty)
9510 {
9511 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9512 }
9513
9514 static void
9515 stop_command (const char *arg, int from_tty)
9516 {
9517 printf_filtered (_("Specify the type of breakpoint to set.\n\
9518 Usage: stop in <function | address>\n\
9519 stop at <line>\n"));
9520 }
9521
9522 static void
9523 stopin_command (const char *arg, int from_tty)
9524 {
9525 int badInput = 0;
9526
9527 if (arg == (char *) NULL)
9528 badInput = 1;
9529 else if (*arg != '*')
9530 {
9531 const char *argptr = arg;
9532 int hasColon = 0;
9533
9534 /* Look for a ':'. If this is a line number specification, then
9535 say it is bad, otherwise, it should be an address or
9536 function/method name. */
9537 while (*argptr && !hasColon)
9538 {
9539 hasColon = (*argptr == ':');
9540 argptr++;
9541 }
9542
9543 if (hasColon)
9544 badInput = (*argptr != ':'); /* Not a class::method */
9545 else
9546 badInput = isdigit (*arg); /* a simple line number */
9547 }
9548
9549 if (badInput)
9550 printf_filtered (_("Usage: stop in <function | address>\n"));
9551 else
9552 break_command_1 (arg, 0, from_tty);
9553 }
9554
9555 static void
9556 stopat_command (const char *arg, int from_tty)
9557 {
9558 int badInput = 0;
9559
9560 if (arg == (char *) NULL || *arg == '*') /* no line number */
9561 badInput = 1;
9562 else
9563 {
9564 const char *argptr = arg;
9565 int hasColon = 0;
9566
9567 /* Look for a ':'. If there is a '::' then get out, otherwise
9568 it is probably a line number. */
9569 while (*argptr && !hasColon)
9570 {
9571 hasColon = (*argptr == ':');
9572 argptr++;
9573 }
9574
9575 if (hasColon)
9576 badInput = (*argptr == ':'); /* we have class::method */
9577 else
9578 badInput = !isdigit (*arg); /* not a line number */
9579 }
9580
9581 if (badInput)
9582 printf_filtered (_("Usage: stop at LINE\n"));
9583 else
9584 break_command_1 (arg, 0, from_tty);
9585 }
9586
9587 /* The dynamic printf command is mostly like a regular breakpoint, but
9588 with a prewired command list consisting of a single output command,
9589 built from extra arguments supplied on the dprintf command
9590 line. */
9591
9592 static void
9593 dprintf_command (const char *arg, int from_tty)
9594 {
9595 event_location_up location = string_to_event_location (&arg, current_language);
9596
9597 /* If non-NULL, ARG should have been advanced past the location;
9598 the next character must be ','. */
9599 if (arg != NULL)
9600 {
9601 if (arg[0] != ',' || arg[1] == '\0')
9602 error (_("Format string required"));
9603 else
9604 {
9605 /* Skip the comma. */
9606 ++arg;
9607 }
9608 }
9609
9610 create_breakpoint (get_current_arch (),
9611 location.get (),
9612 NULL, 0, arg, 1 /* parse arg */,
9613 0, bp_dprintf,
9614 0 /* Ignore count */,
9615 pending_break_support,
9616 &dprintf_breakpoint_ops,
9617 from_tty,
9618 1 /* enabled */,
9619 0 /* internal */,
9620 0);
9621 }
9622
9623 static void
9624 agent_printf_command (const char *arg, int from_tty)
9625 {
9626 error (_("May only run agent-printf on the target"));
9627 }
9628
9629 /* Implement the "breakpoint_hit" breakpoint_ops method for
9630 ranged breakpoints. */
9631
9632 static int
9633 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9634 const address_space *aspace,
9635 CORE_ADDR bp_addr,
9636 const struct target_waitstatus *ws)
9637 {
9638 if (ws->kind != TARGET_WAITKIND_STOPPED
9639 || ws->value.sig != GDB_SIGNAL_TRAP)
9640 return 0;
9641
9642 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9643 bl->length, aspace, bp_addr);
9644 }
9645
9646 /* Implement the "resources_needed" breakpoint_ops method for
9647 ranged breakpoints. */
9648
9649 static int
9650 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9651 {
9652 return target_ranged_break_num_registers ();
9653 }
9654
9655 /* Implement the "print_it" breakpoint_ops method for
9656 ranged breakpoints. */
9657
9658 static enum print_stop_action
9659 print_it_ranged_breakpoint (bpstat bs)
9660 {
9661 struct breakpoint *b = bs->breakpoint_at;
9662 struct bp_location *bl = b->loc;
9663 struct ui_out *uiout = current_uiout;
9664
9665 gdb_assert (b->type == bp_hardware_breakpoint);
9666
9667 /* Ranged breakpoints have only one location. */
9668 gdb_assert (bl && bl->next == NULL);
9669
9670 annotate_breakpoint (b->number);
9671
9672 maybe_print_thread_hit_breakpoint (uiout);
9673
9674 if (b->disposition == disp_del)
9675 uiout->text ("Temporary ranged breakpoint ");
9676 else
9677 uiout->text ("Ranged breakpoint ");
9678 if (uiout->is_mi_like_p ())
9679 {
9680 uiout->field_string ("reason",
9681 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9682 uiout->field_string ("disp", bpdisp_text (b->disposition));
9683 }
9684 uiout->field_int ("bkptno", b->number);
9685 uiout->text (", ");
9686
9687 return PRINT_SRC_AND_LOC;
9688 }
9689
9690 /* Implement the "print_one" breakpoint_ops method for
9691 ranged breakpoints. */
9692
9693 static void
9694 print_one_ranged_breakpoint (struct breakpoint *b,
9695 struct bp_location **last_loc)
9696 {
9697 struct bp_location *bl = b->loc;
9698 struct value_print_options opts;
9699 struct ui_out *uiout = current_uiout;
9700
9701 /* Ranged breakpoints have only one location. */
9702 gdb_assert (bl && bl->next == NULL);
9703
9704 get_user_print_options (&opts);
9705
9706 if (opts.addressprint)
9707 /* We don't print the address range here, it will be printed later
9708 by print_one_detail_ranged_breakpoint. */
9709 uiout->field_skip ("addr");
9710 annotate_field (5);
9711 print_breakpoint_location (b, bl);
9712 *last_loc = bl;
9713 }
9714
9715 /* Implement the "print_one_detail" breakpoint_ops method for
9716 ranged breakpoints. */
9717
9718 static void
9719 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9720 struct ui_out *uiout)
9721 {
9722 CORE_ADDR address_start, address_end;
9723 struct bp_location *bl = b->loc;
9724 string_file stb;
9725
9726 gdb_assert (bl);
9727
9728 address_start = bl->address;
9729 address_end = address_start + bl->length - 1;
9730
9731 uiout->text ("\taddress range: ");
9732 stb.printf ("[%s, %s]",
9733 print_core_address (bl->gdbarch, address_start),
9734 print_core_address (bl->gdbarch, address_end));
9735 uiout->field_stream ("addr", stb);
9736 uiout->text ("\n");
9737 }
9738
9739 /* Implement the "print_mention" breakpoint_ops method for
9740 ranged breakpoints. */
9741
9742 static void
9743 print_mention_ranged_breakpoint (struct breakpoint *b)
9744 {
9745 struct bp_location *bl = b->loc;
9746 struct ui_out *uiout = current_uiout;
9747
9748 gdb_assert (bl);
9749 gdb_assert (b->type == bp_hardware_breakpoint);
9750
9751 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9752 b->number, paddress (bl->gdbarch, bl->address),
9753 paddress (bl->gdbarch, bl->address + bl->length - 1));
9754 }
9755
9756 /* Implement the "print_recreate" breakpoint_ops method for
9757 ranged breakpoints. */
9758
9759 static void
9760 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9761 {
9762 fprintf_unfiltered (fp, "break-range %s, %s",
9763 event_location_to_string (b->location.get ()),
9764 event_location_to_string (b->location_range_end.get ()));
9765 print_recreate_thread (b, fp);
9766 }
9767
9768 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9769
9770 static struct breakpoint_ops ranged_breakpoint_ops;
9771
9772 /* Find the address where the end of the breakpoint range should be
9773 placed, given the SAL of the end of the range. This is so that if
9774 the user provides a line number, the end of the range is set to the
9775 last instruction of the given line. */
9776
9777 static CORE_ADDR
9778 find_breakpoint_range_end (struct symtab_and_line sal)
9779 {
9780 CORE_ADDR end;
9781
9782 /* If the user provided a PC value, use it. Otherwise,
9783 find the address of the end of the given location. */
9784 if (sal.explicit_pc)
9785 end = sal.pc;
9786 else
9787 {
9788 int ret;
9789 CORE_ADDR start;
9790
9791 ret = find_line_pc_range (sal, &start, &end);
9792 if (!ret)
9793 error (_("Could not find location of the end of the range."));
9794
9795 /* find_line_pc_range returns the start of the next line. */
9796 end--;
9797 }
9798
9799 return end;
9800 }
9801
9802 /* Implement the "break-range" CLI command. */
9803
9804 static void
9805 break_range_command (const char *arg, int from_tty)
9806 {
9807 const char *arg_start;
9808 struct linespec_result canonical_start, canonical_end;
9809 int bp_count, can_use_bp, length;
9810 CORE_ADDR end;
9811 struct breakpoint *b;
9812
9813 /* We don't support software ranged breakpoints. */
9814 if (target_ranged_break_num_registers () < 0)
9815 error (_("This target does not support hardware ranged breakpoints."));
9816
9817 bp_count = hw_breakpoint_used_count ();
9818 bp_count += target_ranged_break_num_registers ();
9819 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9820 bp_count, 0);
9821 if (can_use_bp < 0)
9822 error (_("Hardware breakpoints used exceeds limit."));
9823
9824 arg = skip_spaces (arg);
9825 if (arg == NULL || arg[0] == '\0')
9826 error(_("No address range specified."));
9827
9828 arg_start = arg;
9829 event_location_up start_location = string_to_event_location (&arg,
9830 current_language);
9831 parse_breakpoint_sals (start_location.get (), &canonical_start);
9832
9833 if (arg[0] != ',')
9834 error (_("Too few arguments."));
9835 else if (canonical_start.lsals.empty ())
9836 error (_("Could not find location of the beginning of the range."));
9837
9838 const linespec_sals &lsal_start = canonical_start.lsals[0];
9839
9840 if (canonical_start.lsals.size () > 1
9841 || lsal_start.sals.size () != 1)
9842 error (_("Cannot create a ranged breakpoint with multiple locations."));
9843
9844 const symtab_and_line &sal_start = lsal_start.sals[0];
9845 std::string addr_string_start (arg_start, arg - arg_start);
9846
9847 arg++; /* Skip the comma. */
9848 arg = skip_spaces (arg);
9849
9850 /* Parse the end location. */
9851
9852 arg_start = arg;
9853
9854 /* We call decode_line_full directly here instead of using
9855 parse_breakpoint_sals because we need to specify the start location's
9856 symtab and line as the default symtab and line for the end of the
9857 range. This makes it possible to have ranges like "foo.c:27, +14",
9858 where +14 means 14 lines from the start location. */
9859 event_location_up end_location = string_to_event_location (&arg,
9860 current_language);
9861 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9862 sal_start.symtab, sal_start.line,
9863 &canonical_end, NULL, NULL);
9864
9865 if (canonical_end.lsals.empty ())
9866 error (_("Could not find location of the end of the range."));
9867
9868 const linespec_sals &lsal_end = canonical_end.lsals[0];
9869 if (canonical_end.lsals.size () > 1
9870 || lsal_end.sals.size () != 1)
9871 error (_("Cannot create a ranged breakpoint with multiple locations."));
9872
9873 const symtab_and_line &sal_end = lsal_end.sals[0];
9874
9875 end = find_breakpoint_range_end (sal_end);
9876 if (sal_start.pc > end)
9877 error (_("Invalid address range, end precedes start."));
9878
9879 length = end - sal_start.pc + 1;
9880 if (length < 0)
9881 /* Length overflowed. */
9882 error (_("Address range too large."));
9883 else if (length == 1)
9884 {
9885 /* This range is simple enough to be handled by
9886 the `hbreak' command. */
9887 hbreak_command (&addr_string_start[0], 1);
9888
9889 return;
9890 }
9891
9892 /* Now set up the breakpoint. */
9893 b = set_raw_breakpoint (get_current_arch (), sal_start,
9894 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9895 set_breakpoint_count (breakpoint_count + 1);
9896 b->number = breakpoint_count;
9897 b->disposition = disp_donttouch;
9898 b->location = std::move (start_location);
9899 b->location_range_end = std::move (end_location);
9900 b->loc->length = length;
9901
9902 mention (b);
9903 gdb::observers::breakpoint_created.notify (b);
9904 update_global_location_list (UGLL_MAY_INSERT);
9905 }
9906
9907 /* Return non-zero if EXP is verified as constant. Returned zero
9908 means EXP is variable. Also the constant detection may fail for
9909 some constant expressions and in such case still falsely return
9910 zero. */
9911
9912 static int
9913 watchpoint_exp_is_const (const struct expression *exp)
9914 {
9915 int i = exp->nelts;
9916
9917 while (i > 0)
9918 {
9919 int oplenp, argsp;
9920
9921 /* We are only interested in the descriptor of each element. */
9922 operator_length (exp, i, &oplenp, &argsp);
9923 i -= oplenp;
9924
9925 switch (exp->elts[i].opcode)
9926 {
9927 case BINOP_ADD:
9928 case BINOP_SUB:
9929 case BINOP_MUL:
9930 case BINOP_DIV:
9931 case BINOP_REM:
9932 case BINOP_MOD:
9933 case BINOP_LSH:
9934 case BINOP_RSH:
9935 case BINOP_LOGICAL_AND:
9936 case BINOP_LOGICAL_OR:
9937 case BINOP_BITWISE_AND:
9938 case BINOP_BITWISE_IOR:
9939 case BINOP_BITWISE_XOR:
9940 case BINOP_EQUAL:
9941 case BINOP_NOTEQUAL:
9942 case BINOP_LESS:
9943 case BINOP_GTR:
9944 case BINOP_LEQ:
9945 case BINOP_GEQ:
9946 case BINOP_REPEAT:
9947 case BINOP_COMMA:
9948 case BINOP_EXP:
9949 case BINOP_MIN:
9950 case BINOP_MAX:
9951 case BINOP_INTDIV:
9952 case BINOP_CONCAT:
9953 case TERNOP_COND:
9954 case TERNOP_SLICE:
9955
9956 case OP_LONG:
9957 case OP_FLOAT:
9958 case OP_LAST:
9959 case OP_COMPLEX:
9960 case OP_STRING:
9961 case OP_ARRAY:
9962 case OP_TYPE:
9963 case OP_TYPEOF:
9964 case OP_DECLTYPE:
9965 case OP_TYPEID:
9966 case OP_NAME:
9967 case OP_OBJC_NSSTRING:
9968
9969 case UNOP_NEG:
9970 case UNOP_LOGICAL_NOT:
9971 case UNOP_COMPLEMENT:
9972 case UNOP_ADDR:
9973 case UNOP_HIGH:
9974 case UNOP_CAST:
9975
9976 case UNOP_CAST_TYPE:
9977 case UNOP_REINTERPRET_CAST:
9978 case UNOP_DYNAMIC_CAST:
9979 /* Unary, binary and ternary operators: We have to check
9980 their operands. If they are constant, then so is the
9981 result of that operation. For instance, if A and B are
9982 determined to be constants, then so is "A + B".
9983
9984 UNOP_IND is one exception to the rule above, because the
9985 value of *ADDR is not necessarily a constant, even when
9986 ADDR is. */
9987 break;
9988
9989 case OP_VAR_VALUE:
9990 /* Check whether the associated symbol is a constant.
9991
9992 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9993 possible that a buggy compiler could mark a variable as
9994 constant even when it is not, and TYPE_CONST would return
9995 true in this case, while SYMBOL_CLASS wouldn't.
9996
9997 We also have to check for function symbols because they
9998 are always constant. */
9999 {
10000 struct symbol *s = exp->elts[i + 2].symbol;
10001
10002 if (SYMBOL_CLASS (s) != LOC_BLOCK
10003 && SYMBOL_CLASS (s) != LOC_CONST
10004 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10005 return 0;
10006 break;
10007 }
10008
10009 /* The default action is to return 0 because we are using
10010 the optimistic approach here: If we don't know something,
10011 then it is not a constant. */
10012 default:
10013 return 0;
10014 }
10015 }
10016
10017 return 1;
10018 }
10019
10020 /* Watchpoint destructor. */
10021
10022 watchpoint::~watchpoint ()
10023 {
10024 xfree (this->exp_string);
10025 xfree (this->exp_string_reparse);
10026 }
10027
10028 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10029
10030 static void
10031 re_set_watchpoint (struct breakpoint *b)
10032 {
10033 struct watchpoint *w = (struct watchpoint *) b;
10034
10035 /* Watchpoint can be either on expression using entirely global
10036 variables, or it can be on local variables.
10037
10038 Watchpoints of the first kind are never auto-deleted, and even
10039 persist across program restarts. Since they can use variables
10040 from shared libraries, we need to reparse expression as libraries
10041 are loaded and unloaded.
10042
10043 Watchpoints on local variables can also change meaning as result
10044 of solib event. For example, if a watchpoint uses both a local
10045 and a global variables in expression, it's a local watchpoint,
10046 but unloading of a shared library will make the expression
10047 invalid. This is not a very common use case, but we still
10048 re-evaluate expression, to avoid surprises to the user.
10049
10050 Note that for local watchpoints, we re-evaluate it only if
10051 watchpoints frame id is still valid. If it's not, it means the
10052 watchpoint is out of scope and will be deleted soon. In fact,
10053 I'm not sure we'll ever be called in this case.
10054
10055 If a local watchpoint's frame id is still valid, then
10056 w->exp_valid_block is likewise valid, and we can safely use it.
10057
10058 Don't do anything about disabled watchpoints, since they will be
10059 reevaluated again when enabled. */
10060 update_watchpoint (w, 1 /* reparse */);
10061 }
10062
10063 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10064
10065 static int
10066 insert_watchpoint (struct bp_location *bl)
10067 {
10068 struct watchpoint *w = (struct watchpoint *) bl->owner;
10069 int length = w->exact ? 1 : bl->length;
10070
10071 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10072 w->cond_exp.get ());
10073 }
10074
10075 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10076
10077 static int
10078 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10079 {
10080 struct watchpoint *w = (struct watchpoint *) bl->owner;
10081 int length = w->exact ? 1 : bl->length;
10082
10083 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10084 w->cond_exp.get ());
10085 }
10086
10087 static int
10088 breakpoint_hit_watchpoint (const struct bp_location *bl,
10089 const address_space *aspace, CORE_ADDR bp_addr,
10090 const struct target_waitstatus *ws)
10091 {
10092 struct breakpoint *b = bl->owner;
10093 struct watchpoint *w = (struct watchpoint *) b;
10094
10095 /* Continuable hardware watchpoints are treated as non-existent if the
10096 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10097 some data address). Otherwise gdb won't stop on a break instruction
10098 in the code (not from a breakpoint) when a hardware watchpoint has
10099 been defined. Also skip watchpoints which we know did not trigger
10100 (did not match the data address). */
10101 if (is_hardware_watchpoint (b)
10102 && w->watchpoint_triggered == watch_triggered_no)
10103 return 0;
10104
10105 return 1;
10106 }
10107
10108 static void
10109 check_status_watchpoint (bpstat bs)
10110 {
10111 gdb_assert (is_watchpoint (bs->breakpoint_at));
10112
10113 bpstat_check_watchpoint (bs);
10114 }
10115
10116 /* Implement the "resources_needed" breakpoint_ops method for
10117 hardware watchpoints. */
10118
10119 static int
10120 resources_needed_watchpoint (const struct bp_location *bl)
10121 {
10122 struct watchpoint *w = (struct watchpoint *) bl->owner;
10123 int length = w->exact? 1 : bl->length;
10124
10125 return target_region_ok_for_hw_watchpoint (bl->address, length);
10126 }
10127
10128 /* Implement the "works_in_software_mode" breakpoint_ops method for
10129 hardware watchpoints. */
10130
10131 static int
10132 works_in_software_mode_watchpoint (const struct breakpoint *b)
10133 {
10134 /* Read and access watchpoints only work with hardware support. */
10135 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10136 }
10137
10138 static enum print_stop_action
10139 print_it_watchpoint (bpstat bs)
10140 {
10141 struct breakpoint *b;
10142 enum print_stop_action result;
10143 struct watchpoint *w;
10144 struct ui_out *uiout = current_uiout;
10145
10146 gdb_assert (bs->bp_location_at != NULL);
10147
10148 b = bs->breakpoint_at;
10149 w = (struct watchpoint *) b;
10150
10151 annotate_watchpoint (b->number);
10152 maybe_print_thread_hit_breakpoint (uiout);
10153
10154 string_file stb;
10155
10156 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10157 switch (b->type)
10158 {
10159 case bp_watchpoint:
10160 case bp_hardware_watchpoint:
10161 if (uiout->is_mi_like_p ())
10162 uiout->field_string
10163 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10164 mention (b);
10165 tuple_emitter.emplace (uiout, "value");
10166 uiout->text ("\nOld value = ");
10167 watchpoint_value_print (bs->old_val.get (), &stb);
10168 uiout->field_stream ("old", stb);
10169 uiout->text ("\nNew value = ");
10170 watchpoint_value_print (w->val.get (), &stb);
10171 uiout->field_stream ("new", stb);
10172 uiout->text ("\n");
10173 /* More than one watchpoint may have been triggered. */
10174 result = PRINT_UNKNOWN;
10175 break;
10176
10177 case bp_read_watchpoint:
10178 if (uiout->is_mi_like_p ())
10179 uiout->field_string
10180 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10181 mention (b);
10182 tuple_emitter.emplace (uiout, "value");
10183 uiout->text ("\nValue = ");
10184 watchpoint_value_print (w->val.get (), &stb);
10185 uiout->field_stream ("value", stb);
10186 uiout->text ("\n");
10187 result = PRINT_UNKNOWN;
10188 break;
10189
10190 case bp_access_watchpoint:
10191 if (bs->old_val != NULL)
10192 {
10193 if (uiout->is_mi_like_p ())
10194 uiout->field_string
10195 ("reason",
10196 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10197 mention (b);
10198 tuple_emitter.emplace (uiout, "value");
10199 uiout->text ("\nOld value = ");
10200 watchpoint_value_print (bs->old_val.get (), &stb);
10201 uiout->field_stream ("old", stb);
10202 uiout->text ("\nNew value = ");
10203 }
10204 else
10205 {
10206 mention (b);
10207 if (uiout->is_mi_like_p ())
10208 uiout->field_string
10209 ("reason",
10210 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10211 tuple_emitter.emplace (uiout, "value");
10212 uiout->text ("\nValue = ");
10213 }
10214 watchpoint_value_print (w->val.get (), &stb);
10215 uiout->field_stream ("new", stb);
10216 uiout->text ("\n");
10217 result = PRINT_UNKNOWN;
10218 break;
10219 default:
10220 result = PRINT_UNKNOWN;
10221 }
10222
10223 return result;
10224 }
10225
10226 /* Implement the "print_mention" breakpoint_ops method for hardware
10227 watchpoints. */
10228
10229 static void
10230 print_mention_watchpoint (struct breakpoint *b)
10231 {
10232 struct watchpoint *w = (struct watchpoint *) b;
10233 struct ui_out *uiout = current_uiout;
10234 const char *tuple_name;
10235
10236 switch (b->type)
10237 {
10238 case bp_watchpoint:
10239 uiout->text ("Watchpoint ");
10240 tuple_name = "wpt";
10241 break;
10242 case bp_hardware_watchpoint:
10243 uiout->text ("Hardware watchpoint ");
10244 tuple_name = "wpt";
10245 break;
10246 case bp_read_watchpoint:
10247 uiout->text ("Hardware read watchpoint ");
10248 tuple_name = "hw-rwpt";
10249 break;
10250 case bp_access_watchpoint:
10251 uiout->text ("Hardware access (read/write) watchpoint ");
10252 tuple_name = "hw-awpt";
10253 break;
10254 default:
10255 internal_error (__FILE__, __LINE__,
10256 _("Invalid hardware watchpoint type."));
10257 }
10258
10259 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10260 uiout->field_int ("number", b->number);
10261 uiout->text (": ");
10262 uiout->field_string ("exp", w->exp_string);
10263 }
10264
10265 /* Implement the "print_recreate" breakpoint_ops method for
10266 watchpoints. */
10267
10268 static void
10269 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10270 {
10271 struct watchpoint *w = (struct watchpoint *) b;
10272
10273 switch (b->type)
10274 {
10275 case bp_watchpoint:
10276 case bp_hardware_watchpoint:
10277 fprintf_unfiltered (fp, "watch");
10278 break;
10279 case bp_read_watchpoint:
10280 fprintf_unfiltered (fp, "rwatch");
10281 break;
10282 case bp_access_watchpoint:
10283 fprintf_unfiltered (fp, "awatch");
10284 break;
10285 default:
10286 internal_error (__FILE__, __LINE__,
10287 _("Invalid watchpoint type."));
10288 }
10289
10290 fprintf_unfiltered (fp, " %s", w->exp_string);
10291 print_recreate_thread (b, fp);
10292 }
10293
10294 /* Implement the "explains_signal" breakpoint_ops method for
10295 watchpoints. */
10296
10297 static int
10298 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10299 {
10300 /* A software watchpoint cannot cause a signal other than
10301 GDB_SIGNAL_TRAP. */
10302 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10303 return 0;
10304
10305 return 1;
10306 }
10307
10308 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10309
10310 static struct breakpoint_ops watchpoint_breakpoint_ops;
10311
10312 /* Implement the "insert" breakpoint_ops method for
10313 masked hardware watchpoints. */
10314
10315 static int
10316 insert_masked_watchpoint (struct bp_location *bl)
10317 {
10318 struct watchpoint *w = (struct watchpoint *) bl->owner;
10319
10320 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10321 bl->watchpoint_type);
10322 }
10323
10324 /* Implement the "remove" breakpoint_ops method for
10325 masked hardware watchpoints. */
10326
10327 static int
10328 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10329 {
10330 struct watchpoint *w = (struct watchpoint *) bl->owner;
10331
10332 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10333 bl->watchpoint_type);
10334 }
10335
10336 /* Implement the "resources_needed" breakpoint_ops method for
10337 masked hardware watchpoints. */
10338
10339 static int
10340 resources_needed_masked_watchpoint (const struct bp_location *bl)
10341 {
10342 struct watchpoint *w = (struct watchpoint *) bl->owner;
10343
10344 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10345 }
10346
10347 /* Implement the "works_in_software_mode" breakpoint_ops method for
10348 masked hardware watchpoints. */
10349
10350 static int
10351 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10352 {
10353 return 0;
10354 }
10355
10356 /* Implement the "print_it" breakpoint_ops method for
10357 masked hardware watchpoints. */
10358
10359 static enum print_stop_action
10360 print_it_masked_watchpoint (bpstat bs)
10361 {
10362 struct breakpoint *b = bs->breakpoint_at;
10363 struct ui_out *uiout = current_uiout;
10364
10365 /* Masked watchpoints have only one location. */
10366 gdb_assert (b->loc && b->loc->next == NULL);
10367
10368 annotate_watchpoint (b->number);
10369 maybe_print_thread_hit_breakpoint (uiout);
10370
10371 switch (b->type)
10372 {
10373 case bp_hardware_watchpoint:
10374 if (uiout->is_mi_like_p ())
10375 uiout->field_string
10376 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10377 break;
10378
10379 case bp_read_watchpoint:
10380 if (uiout->is_mi_like_p ())
10381 uiout->field_string
10382 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10383 break;
10384
10385 case bp_access_watchpoint:
10386 if (uiout->is_mi_like_p ())
10387 uiout->field_string
10388 ("reason",
10389 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10390 break;
10391 default:
10392 internal_error (__FILE__, __LINE__,
10393 _("Invalid hardware watchpoint type."));
10394 }
10395
10396 mention (b);
10397 uiout->text (_("\n\
10398 Check the underlying instruction at PC for the memory\n\
10399 address and value which triggered this watchpoint.\n"));
10400 uiout->text ("\n");
10401
10402 /* More than one watchpoint may have been triggered. */
10403 return PRINT_UNKNOWN;
10404 }
10405
10406 /* Implement the "print_one_detail" breakpoint_ops method for
10407 masked hardware watchpoints. */
10408
10409 static void
10410 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10411 struct ui_out *uiout)
10412 {
10413 struct watchpoint *w = (struct watchpoint *) b;
10414
10415 /* Masked watchpoints have only one location. */
10416 gdb_assert (b->loc && b->loc->next == NULL);
10417
10418 uiout->text ("\tmask ");
10419 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10420 uiout->text ("\n");
10421 }
10422
10423 /* Implement the "print_mention" breakpoint_ops method for
10424 masked hardware watchpoints. */
10425
10426 static void
10427 print_mention_masked_watchpoint (struct breakpoint *b)
10428 {
10429 struct watchpoint *w = (struct watchpoint *) b;
10430 struct ui_out *uiout = current_uiout;
10431 const char *tuple_name;
10432
10433 switch (b->type)
10434 {
10435 case bp_hardware_watchpoint:
10436 uiout->text ("Masked hardware watchpoint ");
10437 tuple_name = "wpt";
10438 break;
10439 case bp_read_watchpoint:
10440 uiout->text ("Masked hardware read watchpoint ");
10441 tuple_name = "hw-rwpt";
10442 break;
10443 case bp_access_watchpoint:
10444 uiout->text ("Masked hardware access (read/write) watchpoint ");
10445 tuple_name = "hw-awpt";
10446 break;
10447 default:
10448 internal_error (__FILE__, __LINE__,
10449 _("Invalid hardware watchpoint type."));
10450 }
10451
10452 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10453 uiout->field_int ("number", b->number);
10454 uiout->text (": ");
10455 uiout->field_string ("exp", w->exp_string);
10456 }
10457
10458 /* Implement the "print_recreate" breakpoint_ops method for
10459 masked hardware watchpoints. */
10460
10461 static void
10462 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10463 {
10464 struct watchpoint *w = (struct watchpoint *) b;
10465 char tmp[40];
10466
10467 switch (b->type)
10468 {
10469 case bp_hardware_watchpoint:
10470 fprintf_unfiltered (fp, "watch");
10471 break;
10472 case bp_read_watchpoint:
10473 fprintf_unfiltered (fp, "rwatch");
10474 break;
10475 case bp_access_watchpoint:
10476 fprintf_unfiltered (fp, "awatch");
10477 break;
10478 default:
10479 internal_error (__FILE__, __LINE__,
10480 _("Invalid hardware watchpoint type."));
10481 }
10482
10483 sprintf_vma (tmp, w->hw_wp_mask);
10484 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10485 print_recreate_thread (b, fp);
10486 }
10487
10488 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10489
10490 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10491
10492 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10493
10494 static int
10495 is_masked_watchpoint (const struct breakpoint *b)
10496 {
10497 return b->ops == &masked_watchpoint_breakpoint_ops;
10498 }
10499
10500 /* accessflag: hw_write: watch write,
10501 hw_read: watch read,
10502 hw_access: watch access (read or write) */
10503 static void
10504 watch_command_1 (const char *arg, int accessflag, int from_tty,
10505 int just_location, int internal)
10506 {
10507 struct breakpoint *scope_breakpoint = NULL;
10508 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10509 struct value *result;
10510 int saved_bitpos = 0, saved_bitsize = 0;
10511 const char *exp_start = NULL;
10512 const char *exp_end = NULL;
10513 const char *tok, *end_tok;
10514 int toklen = -1;
10515 const char *cond_start = NULL;
10516 const char *cond_end = NULL;
10517 enum bptype bp_type;
10518 int thread = -1;
10519 int pc = 0;
10520 /* Flag to indicate whether we are going to use masks for
10521 the hardware watchpoint. */
10522 int use_mask = 0;
10523 CORE_ADDR mask = 0;
10524
10525 /* Make sure that we actually have parameters to parse. */
10526 if (arg != NULL && arg[0] != '\0')
10527 {
10528 const char *value_start;
10529
10530 exp_end = arg + strlen (arg);
10531
10532 /* Look for "parameter value" pairs at the end
10533 of the arguments string. */
10534 for (tok = exp_end - 1; tok > arg; tok--)
10535 {
10536 /* Skip whitespace at the end of the argument list. */
10537 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10538 tok--;
10539
10540 /* Find the beginning of the last token.
10541 This is the value of the parameter. */
10542 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10543 tok--;
10544 value_start = tok + 1;
10545
10546 /* Skip whitespace. */
10547 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10548 tok--;
10549
10550 end_tok = tok;
10551
10552 /* Find the beginning of the second to last token.
10553 This is the parameter itself. */
10554 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10555 tok--;
10556 tok++;
10557 toklen = end_tok - tok + 1;
10558
10559 if (toklen == 6 && startswith (tok, "thread"))
10560 {
10561 struct thread_info *thr;
10562 /* At this point we've found a "thread" token, which means
10563 the user is trying to set a watchpoint that triggers
10564 only in a specific thread. */
10565 const char *endp;
10566
10567 if (thread != -1)
10568 error(_("You can specify only one thread."));
10569
10570 /* Extract the thread ID from the next token. */
10571 thr = parse_thread_id (value_start, &endp);
10572
10573 /* Check if the user provided a valid thread ID. */
10574 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10575 invalid_thread_id_error (value_start);
10576
10577 thread = thr->global_num;
10578 }
10579 else if (toklen == 4 && startswith (tok, "mask"))
10580 {
10581 /* We've found a "mask" token, which means the user wants to
10582 create a hardware watchpoint that is going to have the mask
10583 facility. */
10584 struct value *mask_value, *mark;
10585
10586 if (use_mask)
10587 error(_("You can specify only one mask."));
10588
10589 use_mask = just_location = 1;
10590
10591 mark = value_mark ();
10592 mask_value = parse_to_comma_and_eval (&value_start);
10593 mask = value_as_address (mask_value);
10594 value_free_to_mark (mark);
10595 }
10596 else
10597 /* We didn't recognize what we found. We should stop here. */
10598 break;
10599
10600 /* Truncate the string and get rid of the "parameter value" pair before
10601 the arguments string is parsed by the parse_exp_1 function. */
10602 exp_end = tok;
10603 }
10604 }
10605 else
10606 exp_end = arg;
10607
10608 /* Parse the rest of the arguments. From here on out, everything
10609 is in terms of a newly allocated string instead of the original
10610 ARG. */
10611 innermost_block.reset ();
10612 std::string expression (arg, exp_end - arg);
10613 exp_start = arg = expression.c_str ();
10614 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10615 exp_end = arg;
10616 /* Remove trailing whitespace from the expression before saving it.
10617 This makes the eventual display of the expression string a bit
10618 prettier. */
10619 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10620 --exp_end;
10621
10622 /* Checking if the expression is not constant. */
10623 if (watchpoint_exp_is_const (exp.get ()))
10624 {
10625 int len;
10626
10627 len = exp_end - exp_start;
10628 while (len > 0 && isspace (exp_start[len - 1]))
10629 len--;
10630 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10631 }
10632
10633 exp_valid_block = innermost_block.block ();
10634 struct value *mark = value_mark ();
10635 struct value *val_as_value = nullptr;
10636 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10637 just_location);
10638
10639 if (val_as_value != NULL && just_location)
10640 {
10641 saved_bitpos = value_bitpos (val_as_value);
10642 saved_bitsize = value_bitsize (val_as_value);
10643 }
10644
10645 value_ref_ptr val;
10646 if (just_location)
10647 {
10648 int ret;
10649
10650 exp_valid_block = NULL;
10651 val = release_value (value_addr (result));
10652 value_free_to_mark (mark);
10653
10654 if (use_mask)
10655 {
10656 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10657 mask);
10658 if (ret == -1)
10659 error (_("This target does not support masked watchpoints."));
10660 else if (ret == -2)
10661 error (_("Invalid mask or memory region."));
10662 }
10663 }
10664 else if (val_as_value != NULL)
10665 val = release_value (val_as_value);
10666
10667 tok = skip_spaces (arg);
10668 end_tok = skip_to_space (tok);
10669
10670 toklen = end_tok - tok;
10671 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10672 {
10673 innermost_block.reset ();
10674 tok = cond_start = end_tok + 1;
10675 parse_exp_1 (&tok, 0, 0, 0);
10676
10677 /* The watchpoint expression may not be local, but the condition
10678 may still be. E.g.: `watch global if local > 0'. */
10679 cond_exp_valid_block = innermost_block.block ();
10680
10681 cond_end = tok;
10682 }
10683 if (*tok)
10684 error (_("Junk at end of command."));
10685
10686 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10687
10688 /* Save this because create_internal_breakpoint below invalidates
10689 'wp_frame'. */
10690 frame_id watchpoint_frame = get_frame_id (wp_frame);
10691
10692 /* If the expression is "local", then set up a "watchpoint scope"
10693 breakpoint at the point where we've left the scope of the watchpoint
10694 expression. Create the scope breakpoint before the watchpoint, so
10695 that we will encounter it first in bpstat_stop_status. */
10696 if (exp_valid_block != NULL && wp_frame != NULL)
10697 {
10698 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10699
10700 if (frame_id_p (caller_frame_id))
10701 {
10702 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10703 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10704
10705 scope_breakpoint
10706 = create_internal_breakpoint (caller_arch, caller_pc,
10707 bp_watchpoint_scope,
10708 &momentary_breakpoint_ops);
10709
10710 /* create_internal_breakpoint could invalidate WP_FRAME. */
10711 wp_frame = NULL;
10712
10713 scope_breakpoint->enable_state = bp_enabled;
10714
10715 /* Automatically delete the breakpoint when it hits. */
10716 scope_breakpoint->disposition = disp_del;
10717
10718 /* Only break in the proper frame (help with recursion). */
10719 scope_breakpoint->frame_id = caller_frame_id;
10720
10721 /* Set the address at which we will stop. */
10722 scope_breakpoint->loc->gdbarch = caller_arch;
10723 scope_breakpoint->loc->requested_address = caller_pc;
10724 scope_breakpoint->loc->address
10725 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10726 scope_breakpoint->loc->requested_address,
10727 scope_breakpoint->type);
10728 }
10729 }
10730
10731 /* Now set up the breakpoint. We create all watchpoints as hardware
10732 watchpoints here even if hardware watchpoints are turned off, a call
10733 to update_watchpoint later in this function will cause the type to
10734 drop back to bp_watchpoint (software watchpoint) if required. */
10735
10736 if (accessflag == hw_read)
10737 bp_type = bp_read_watchpoint;
10738 else if (accessflag == hw_access)
10739 bp_type = bp_access_watchpoint;
10740 else
10741 bp_type = bp_hardware_watchpoint;
10742
10743 std::unique_ptr<watchpoint> w (new watchpoint ());
10744
10745 if (use_mask)
10746 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10747 &masked_watchpoint_breakpoint_ops);
10748 else
10749 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10750 &watchpoint_breakpoint_ops);
10751 w->thread = thread;
10752 w->disposition = disp_donttouch;
10753 w->pspace = current_program_space;
10754 w->exp = std::move (exp);
10755 w->exp_valid_block = exp_valid_block;
10756 w->cond_exp_valid_block = cond_exp_valid_block;
10757 if (just_location)
10758 {
10759 struct type *t = value_type (val.get ());
10760 CORE_ADDR addr = value_as_address (val.get ());
10761
10762 w->exp_string_reparse
10763 = current_language->la_watch_location_expression (t, addr).release ();
10764
10765 w->exp_string = xstrprintf ("-location %.*s",
10766 (int) (exp_end - exp_start), exp_start);
10767 }
10768 else
10769 w->exp_string = savestring (exp_start, exp_end - exp_start);
10770
10771 if (use_mask)
10772 {
10773 w->hw_wp_mask = mask;
10774 }
10775 else
10776 {
10777 w->val = val;
10778 w->val_bitpos = saved_bitpos;
10779 w->val_bitsize = saved_bitsize;
10780 w->val_valid = 1;
10781 }
10782
10783 if (cond_start)
10784 w->cond_string = savestring (cond_start, cond_end - cond_start);
10785 else
10786 w->cond_string = 0;
10787
10788 if (frame_id_p (watchpoint_frame))
10789 {
10790 w->watchpoint_frame = watchpoint_frame;
10791 w->watchpoint_thread = inferior_ptid;
10792 }
10793 else
10794 {
10795 w->watchpoint_frame = null_frame_id;
10796 w->watchpoint_thread = null_ptid;
10797 }
10798
10799 if (scope_breakpoint != NULL)
10800 {
10801 /* The scope breakpoint is related to the watchpoint. We will
10802 need to act on them together. */
10803 w->related_breakpoint = scope_breakpoint;
10804 scope_breakpoint->related_breakpoint = w.get ();
10805 }
10806
10807 if (!just_location)
10808 value_free_to_mark (mark);
10809
10810 /* Finally update the new watchpoint. This creates the locations
10811 that should be inserted. */
10812 update_watchpoint (w.get (), 1);
10813
10814 install_breakpoint (internal, std::move (w), 1);
10815 }
10816
10817 /* Return count of debug registers needed to watch the given expression.
10818 If the watchpoint cannot be handled in hardware return zero. */
10819
10820 static int
10821 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10822 {
10823 int found_memory_cnt = 0;
10824
10825 /* Did the user specifically forbid us to use hardware watchpoints? */
10826 if (!can_use_hw_watchpoints)
10827 return 0;
10828
10829 gdb_assert (!vals.empty ());
10830 struct value *head = vals[0].get ();
10831
10832 /* Make sure that the value of the expression depends only upon
10833 memory contents, and values computed from them within GDB. If we
10834 find any register references or function calls, we can't use a
10835 hardware watchpoint.
10836
10837 The idea here is that evaluating an expression generates a series
10838 of values, one holding the value of every subexpression. (The
10839 expression a*b+c has five subexpressions: a, b, a*b, c, and
10840 a*b+c.) GDB's values hold almost enough information to establish
10841 the criteria given above --- they identify memory lvalues,
10842 register lvalues, computed values, etcetera. So we can evaluate
10843 the expression, and then scan the chain of values that leaves
10844 behind to decide whether we can detect any possible change to the
10845 expression's final value using only hardware watchpoints.
10846
10847 However, I don't think that the values returned by inferior
10848 function calls are special in any way. So this function may not
10849 notice that an expression involving an inferior function call
10850 can't be watched with hardware watchpoints. FIXME. */
10851 for (const value_ref_ptr &iter : vals)
10852 {
10853 struct value *v = iter.get ();
10854
10855 if (VALUE_LVAL (v) == lval_memory)
10856 {
10857 if (v != head && value_lazy (v))
10858 /* A lazy memory lvalue in the chain is one that GDB never
10859 needed to fetch; we either just used its address (e.g.,
10860 `a' in `a.b') or we never needed it at all (e.g., `a'
10861 in `a,b'). This doesn't apply to HEAD; if that is
10862 lazy then it was not readable, but watch it anyway. */
10863 ;
10864 else
10865 {
10866 /* Ahh, memory we actually used! Check if we can cover
10867 it with hardware watchpoints. */
10868 struct type *vtype = check_typedef (value_type (v));
10869
10870 /* We only watch structs and arrays if user asked for it
10871 explicitly, never if they just happen to appear in a
10872 middle of some value chain. */
10873 if (v == head
10874 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10875 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10876 {
10877 CORE_ADDR vaddr = value_address (v);
10878 int len;
10879 int num_regs;
10880
10881 len = (target_exact_watchpoints
10882 && is_scalar_type_recursive (vtype))?
10883 1 : TYPE_LENGTH (value_type (v));
10884
10885 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10886 if (!num_regs)
10887 return 0;
10888 else
10889 found_memory_cnt += num_regs;
10890 }
10891 }
10892 }
10893 else if (VALUE_LVAL (v) != not_lval
10894 && deprecated_value_modifiable (v) == 0)
10895 return 0; /* These are values from the history (e.g., $1). */
10896 else if (VALUE_LVAL (v) == lval_register)
10897 return 0; /* Cannot watch a register with a HW watchpoint. */
10898 }
10899
10900 /* The expression itself looks suitable for using a hardware
10901 watchpoint, but give the target machine a chance to reject it. */
10902 return found_memory_cnt;
10903 }
10904
10905 void
10906 watch_command_wrapper (const char *arg, int from_tty, int internal)
10907 {
10908 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10909 }
10910
10911 /* A helper function that looks for the "-location" argument and then
10912 calls watch_command_1. */
10913
10914 static void
10915 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10916 {
10917 int just_location = 0;
10918
10919 if (arg
10920 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10921 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10922 {
10923 arg = skip_spaces (arg);
10924 just_location = 1;
10925 }
10926
10927 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10928 }
10929
10930 static void
10931 watch_command (const char *arg, int from_tty)
10932 {
10933 watch_maybe_just_location (arg, hw_write, from_tty);
10934 }
10935
10936 void
10937 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10938 {
10939 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10940 }
10941
10942 static void
10943 rwatch_command (const char *arg, int from_tty)
10944 {
10945 watch_maybe_just_location (arg, hw_read, from_tty);
10946 }
10947
10948 void
10949 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10950 {
10951 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10952 }
10953
10954 static void
10955 awatch_command (const char *arg, int from_tty)
10956 {
10957 watch_maybe_just_location (arg, hw_access, from_tty);
10958 }
10959 \f
10960
10961 /* Data for the FSM that manages the until(location)/advance commands
10962 in infcmd.c. Here because it uses the mechanisms of
10963 breakpoints. */
10964
10965 struct until_break_fsm
10966 {
10967 /* The base class. */
10968 struct thread_fsm thread_fsm;
10969
10970 /* The thread that as current when the command was executed. */
10971 int thread;
10972
10973 /* The breakpoint set at the destination location. */
10974 struct breakpoint *location_breakpoint;
10975
10976 /* Breakpoint set at the return address in the caller frame. May be
10977 NULL. */
10978 struct breakpoint *caller_breakpoint;
10979 };
10980
10981 static void until_break_fsm_clean_up (struct thread_fsm *self,
10982 struct thread_info *thread);
10983 static int until_break_fsm_should_stop (struct thread_fsm *self,
10984 struct thread_info *thread);
10985 static enum async_reply_reason
10986 until_break_fsm_async_reply_reason (struct thread_fsm *self);
10987
10988 /* until_break_fsm's vtable. */
10989
10990 static struct thread_fsm_ops until_break_fsm_ops =
10991 {
10992 NULL, /* dtor */
10993 until_break_fsm_clean_up,
10994 until_break_fsm_should_stop,
10995 NULL, /* return_value */
10996 until_break_fsm_async_reply_reason,
10997 };
10998
10999 /* Allocate a new until_break_command_fsm. */
11000
11001 static struct until_break_fsm *
11002 new_until_break_fsm (struct interp *cmd_interp, int thread,
11003 breakpoint_up &&location_breakpoint,
11004 breakpoint_up &&caller_breakpoint)
11005 {
11006 struct until_break_fsm *sm;
11007
11008 sm = XCNEW (struct until_break_fsm);
11009 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11010
11011 sm->thread = thread;
11012 sm->location_breakpoint = location_breakpoint.release ();
11013 sm->caller_breakpoint = caller_breakpoint.release ();
11014
11015 return sm;
11016 }
11017
11018 /* Implementation of the 'should_stop' FSM method for the
11019 until(location)/advance commands. */
11020
11021 static int
11022 until_break_fsm_should_stop (struct thread_fsm *self,
11023 struct thread_info *tp)
11024 {
11025 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11026
11027 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11028 sm->location_breakpoint) != NULL
11029 || (sm->caller_breakpoint != NULL
11030 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11031 sm->caller_breakpoint) != NULL))
11032 thread_fsm_set_finished (self);
11033
11034 return 1;
11035 }
11036
11037 /* Implementation of the 'clean_up' FSM method for the
11038 until(location)/advance commands. */
11039
11040 static void
11041 until_break_fsm_clean_up (struct thread_fsm *self,
11042 struct thread_info *thread)
11043 {
11044 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11045
11046 /* Clean up our temporary breakpoints. */
11047 if (sm->location_breakpoint != NULL)
11048 {
11049 delete_breakpoint (sm->location_breakpoint);
11050 sm->location_breakpoint = NULL;
11051 }
11052 if (sm->caller_breakpoint != NULL)
11053 {
11054 delete_breakpoint (sm->caller_breakpoint);
11055 sm->caller_breakpoint = NULL;
11056 }
11057 delete_longjmp_breakpoint (sm->thread);
11058 }
11059
11060 /* Implementation of the 'async_reply_reason' FSM method for the
11061 until(location)/advance commands. */
11062
11063 static enum async_reply_reason
11064 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11065 {
11066 return EXEC_ASYNC_LOCATION_REACHED;
11067 }
11068
11069 void
11070 until_break_command (const char *arg, int from_tty, int anywhere)
11071 {
11072 struct frame_info *frame;
11073 struct gdbarch *frame_gdbarch;
11074 struct frame_id stack_frame_id;
11075 struct frame_id caller_frame_id;
11076 struct cleanup *old_chain;
11077 int thread;
11078 struct thread_info *tp;
11079 struct until_break_fsm *sm;
11080
11081 clear_proceed_status (0);
11082
11083 /* Set a breakpoint where the user wants it and at return from
11084 this function. */
11085
11086 event_location_up location = string_to_event_location (&arg, current_language);
11087
11088 std::vector<symtab_and_line> sals
11089 = (last_displayed_sal_is_valid ()
11090 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11091 get_last_displayed_symtab (),
11092 get_last_displayed_line ())
11093 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11094 NULL, (struct symtab *) NULL, 0));
11095
11096 if (sals.size () != 1)
11097 error (_("Couldn't get information on specified line."));
11098
11099 symtab_and_line &sal = sals[0];
11100
11101 if (*arg)
11102 error (_("Junk at end of arguments."));
11103
11104 resolve_sal_pc (&sal);
11105
11106 tp = inferior_thread ();
11107 thread = tp->global_num;
11108
11109 old_chain = make_cleanup (null_cleanup, NULL);
11110
11111 /* Note linespec handling above invalidates the frame chain.
11112 Installing a breakpoint also invalidates the frame chain (as it
11113 may need to switch threads), so do any frame handling before
11114 that. */
11115
11116 frame = get_selected_frame (NULL);
11117 frame_gdbarch = get_frame_arch (frame);
11118 stack_frame_id = get_stack_frame_id (frame);
11119 caller_frame_id = frame_unwind_caller_id (frame);
11120
11121 /* Keep within the current frame, or in frames called by the current
11122 one. */
11123
11124 breakpoint_up caller_breakpoint;
11125 if (frame_id_p (caller_frame_id))
11126 {
11127 struct symtab_and_line sal2;
11128 struct gdbarch *caller_gdbarch;
11129
11130 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11131 sal2.pc = frame_unwind_caller_pc (frame);
11132 caller_gdbarch = frame_unwind_caller_arch (frame);
11133 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11134 sal2,
11135 caller_frame_id,
11136 bp_until);
11137
11138 set_longjmp_breakpoint (tp, caller_frame_id);
11139 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11140 }
11141
11142 /* set_momentary_breakpoint could invalidate FRAME. */
11143 frame = NULL;
11144
11145 breakpoint_up location_breakpoint;
11146 if (anywhere)
11147 /* If the user told us to continue until a specified location,
11148 we don't specify a frame at which we need to stop. */
11149 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11150 null_frame_id, bp_until);
11151 else
11152 /* Otherwise, specify the selected frame, because we want to stop
11153 only at the very same frame. */
11154 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11155 stack_frame_id, bp_until);
11156
11157 sm = new_until_break_fsm (command_interp (), tp->global_num,
11158 std::move (location_breakpoint),
11159 std::move (caller_breakpoint));
11160 tp->thread_fsm = &sm->thread_fsm;
11161
11162 discard_cleanups (old_chain);
11163
11164 proceed (-1, GDB_SIGNAL_DEFAULT);
11165 }
11166
11167 /* This function attempts to parse an optional "if <cond>" clause
11168 from the arg string. If one is not found, it returns NULL.
11169
11170 Else, it returns a pointer to the condition string. (It does not
11171 attempt to evaluate the string against a particular block.) And,
11172 it updates arg to point to the first character following the parsed
11173 if clause in the arg string. */
11174
11175 const char *
11176 ep_parse_optional_if_clause (const char **arg)
11177 {
11178 const char *cond_string;
11179
11180 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11181 return NULL;
11182
11183 /* Skip the "if" keyword. */
11184 (*arg) += 2;
11185
11186 /* Skip any extra leading whitespace, and record the start of the
11187 condition string. */
11188 *arg = skip_spaces (*arg);
11189 cond_string = *arg;
11190
11191 /* Assume that the condition occupies the remainder of the arg
11192 string. */
11193 (*arg) += strlen (cond_string);
11194
11195 return cond_string;
11196 }
11197
11198 /* Commands to deal with catching events, such as signals, exceptions,
11199 process start/exit, etc. */
11200
11201 typedef enum
11202 {
11203 catch_fork_temporary, catch_vfork_temporary,
11204 catch_fork_permanent, catch_vfork_permanent
11205 }
11206 catch_fork_kind;
11207
11208 static void
11209 catch_fork_command_1 (const char *arg, int from_tty,
11210 struct cmd_list_element *command)
11211 {
11212 struct gdbarch *gdbarch = get_current_arch ();
11213 const char *cond_string = NULL;
11214 catch_fork_kind fork_kind;
11215 int tempflag;
11216
11217 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11218 tempflag = (fork_kind == catch_fork_temporary
11219 || fork_kind == catch_vfork_temporary);
11220
11221 if (!arg)
11222 arg = "";
11223 arg = skip_spaces (arg);
11224
11225 /* The allowed syntax is:
11226 catch [v]fork
11227 catch [v]fork if <cond>
11228
11229 First, check if there's an if clause. */
11230 cond_string = ep_parse_optional_if_clause (&arg);
11231
11232 if ((*arg != '\0') && !isspace (*arg))
11233 error (_("Junk at end of arguments."));
11234
11235 /* If this target supports it, create a fork or vfork catchpoint
11236 and enable reporting of such events. */
11237 switch (fork_kind)
11238 {
11239 case catch_fork_temporary:
11240 case catch_fork_permanent:
11241 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11242 &catch_fork_breakpoint_ops);
11243 break;
11244 case catch_vfork_temporary:
11245 case catch_vfork_permanent:
11246 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11247 &catch_vfork_breakpoint_ops);
11248 break;
11249 default:
11250 error (_("unsupported or unknown fork kind; cannot catch it"));
11251 break;
11252 }
11253 }
11254
11255 static void
11256 catch_exec_command_1 (const char *arg, int from_tty,
11257 struct cmd_list_element *command)
11258 {
11259 struct gdbarch *gdbarch = get_current_arch ();
11260 int tempflag;
11261 const char *cond_string = NULL;
11262
11263 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11264
11265 if (!arg)
11266 arg = "";
11267 arg = skip_spaces (arg);
11268
11269 /* The allowed syntax is:
11270 catch exec
11271 catch exec if <cond>
11272
11273 First, check if there's an if clause. */
11274 cond_string = ep_parse_optional_if_clause (&arg);
11275
11276 if ((*arg != '\0') && !isspace (*arg))
11277 error (_("Junk at end of arguments."));
11278
11279 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11280 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11281 &catch_exec_breakpoint_ops);
11282 c->exec_pathname = NULL;
11283
11284 install_breakpoint (0, std::move (c), 1);
11285 }
11286
11287 void
11288 init_ada_exception_breakpoint (struct breakpoint *b,
11289 struct gdbarch *gdbarch,
11290 struct symtab_and_line sal,
11291 const char *addr_string,
11292 const struct breakpoint_ops *ops,
11293 int tempflag,
11294 int enabled,
11295 int from_tty)
11296 {
11297 if (from_tty)
11298 {
11299 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11300 if (!loc_gdbarch)
11301 loc_gdbarch = gdbarch;
11302
11303 describe_other_breakpoints (loc_gdbarch,
11304 sal.pspace, sal.pc, sal.section, -1);
11305 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11306 version for exception catchpoints, because two catchpoints
11307 used for different exception names will use the same address.
11308 In this case, a "breakpoint ... also set at..." warning is
11309 unproductive. Besides, the warning phrasing is also a bit
11310 inappropriate, we should use the word catchpoint, and tell
11311 the user what type of catchpoint it is. The above is good
11312 enough for now, though. */
11313 }
11314
11315 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11316
11317 b->enable_state = enabled ? bp_enabled : bp_disabled;
11318 b->disposition = tempflag ? disp_del : disp_donttouch;
11319 b->location = string_to_event_location (&addr_string,
11320 language_def (language_ada));
11321 b->language = language_ada;
11322 }
11323
11324 static void
11325 catch_command (const char *arg, int from_tty)
11326 {
11327 error (_("Catch requires an event name."));
11328 }
11329 \f
11330
11331 static void
11332 tcatch_command (const char *arg, int from_tty)
11333 {
11334 error (_("Catch requires an event name."));
11335 }
11336
11337 /* Compare two breakpoints and return a strcmp-like result. */
11338
11339 static int
11340 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11341 {
11342 uintptr_t ua = (uintptr_t) a;
11343 uintptr_t ub = (uintptr_t) b;
11344
11345 if (a->number < b->number)
11346 return -1;
11347 else if (a->number > b->number)
11348 return 1;
11349
11350 /* Now sort by address, in case we see, e..g, two breakpoints with
11351 the number 0. */
11352 if (ua < ub)
11353 return -1;
11354 return ua > ub ? 1 : 0;
11355 }
11356
11357 /* Delete breakpoints by address or line. */
11358
11359 static void
11360 clear_command (const char *arg, int from_tty)
11361 {
11362 struct breakpoint *b;
11363 int default_match;
11364
11365 std::vector<symtab_and_line> decoded_sals;
11366 symtab_and_line last_sal;
11367 gdb::array_view<symtab_and_line> sals;
11368 if (arg)
11369 {
11370 decoded_sals
11371 = decode_line_with_current_source (arg,
11372 (DECODE_LINE_FUNFIRSTLINE
11373 | DECODE_LINE_LIST_MODE));
11374 default_match = 0;
11375 sals = decoded_sals;
11376 }
11377 else
11378 {
11379 /* Set sal's line, symtab, pc, and pspace to the values
11380 corresponding to the last call to print_frame_info. If the
11381 codepoint is not valid, this will set all the fields to 0. */
11382 last_sal = get_last_displayed_sal ();
11383 if (last_sal.symtab == 0)
11384 error (_("No source file specified."));
11385
11386 default_match = 1;
11387 sals = last_sal;
11388 }
11389
11390 /* We don't call resolve_sal_pc here. That's not as bad as it
11391 seems, because all existing breakpoints typically have both
11392 file/line and pc set. So, if clear is given file/line, we can
11393 match this to existing breakpoint without obtaining pc at all.
11394
11395 We only support clearing given the address explicitly
11396 present in breakpoint table. Say, we've set breakpoint
11397 at file:line. There were several PC values for that file:line,
11398 due to optimization, all in one block.
11399
11400 We've picked one PC value. If "clear" is issued with another
11401 PC corresponding to the same file:line, the breakpoint won't
11402 be cleared. We probably can still clear the breakpoint, but
11403 since the other PC value is never presented to user, user
11404 can only find it by guessing, and it does not seem important
11405 to support that. */
11406
11407 /* For each line spec given, delete bps which correspond to it. Do
11408 it in two passes, solely to preserve the current behavior that
11409 from_tty is forced true if we delete more than one
11410 breakpoint. */
11411
11412 std::vector<struct breakpoint *> found;
11413 for (const auto &sal : sals)
11414 {
11415 const char *sal_fullname;
11416
11417 /* If exact pc given, clear bpts at that pc.
11418 If line given (pc == 0), clear all bpts on specified line.
11419 If defaulting, clear all bpts on default line
11420 or at default pc.
11421
11422 defaulting sal.pc != 0 tests to do
11423
11424 0 1 pc
11425 1 1 pc _and_ line
11426 0 0 line
11427 1 0 <can't happen> */
11428
11429 sal_fullname = (sal.symtab == NULL
11430 ? NULL : symtab_to_fullname (sal.symtab));
11431
11432 /* Find all matching breakpoints and add them to 'found'. */
11433 ALL_BREAKPOINTS (b)
11434 {
11435 int match = 0;
11436 /* Are we going to delete b? */
11437 if (b->type != bp_none && !is_watchpoint (b))
11438 {
11439 struct bp_location *loc = b->loc;
11440 for (; loc; loc = loc->next)
11441 {
11442 /* If the user specified file:line, don't allow a PC
11443 match. This matches historical gdb behavior. */
11444 int pc_match = (!sal.explicit_line
11445 && sal.pc
11446 && (loc->pspace == sal.pspace)
11447 && (loc->address == sal.pc)
11448 && (!section_is_overlay (loc->section)
11449 || loc->section == sal.section));
11450 int line_match = 0;
11451
11452 if ((default_match || sal.explicit_line)
11453 && loc->symtab != NULL
11454 && sal_fullname != NULL
11455 && sal.pspace == loc->pspace
11456 && loc->line_number == sal.line
11457 && filename_cmp (symtab_to_fullname (loc->symtab),
11458 sal_fullname) == 0)
11459 line_match = 1;
11460
11461 if (pc_match || line_match)
11462 {
11463 match = 1;
11464 break;
11465 }
11466 }
11467 }
11468
11469 if (match)
11470 found.push_back (b);
11471 }
11472 }
11473
11474 /* Now go thru the 'found' chain and delete them. */
11475 if (found.empty ())
11476 {
11477 if (arg)
11478 error (_("No breakpoint at %s."), arg);
11479 else
11480 error (_("No breakpoint at this line."));
11481 }
11482
11483 /* Remove duplicates from the vec. */
11484 std::sort (found.begin (), found.end (),
11485 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11486 {
11487 return compare_breakpoints (bp_a, bp_b) < 0;
11488 });
11489 found.erase (std::unique (found.begin (), found.end (),
11490 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11491 {
11492 return compare_breakpoints (bp_a, bp_b) == 0;
11493 }),
11494 found.end ());
11495
11496 if (found.size () > 1)
11497 from_tty = 1; /* Always report if deleted more than one. */
11498 if (from_tty)
11499 {
11500 if (found.size () == 1)
11501 printf_unfiltered (_("Deleted breakpoint "));
11502 else
11503 printf_unfiltered (_("Deleted breakpoints "));
11504 }
11505
11506 for (breakpoint *iter : found)
11507 {
11508 if (from_tty)
11509 printf_unfiltered ("%d ", iter->number);
11510 delete_breakpoint (iter);
11511 }
11512 if (from_tty)
11513 putchar_unfiltered ('\n');
11514 }
11515 \f
11516 /* Delete breakpoint in BS if they are `delete' breakpoints and
11517 all breakpoints that are marked for deletion, whether hit or not.
11518 This is called after any breakpoint is hit, or after errors. */
11519
11520 void
11521 breakpoint_auto_delete (bpstat bs)
11522 {
11523 struct breakpoint *b, *b_tmp;
11524
11525 for (; bs; bs = bs->next)
11526 if (bs->breakpoint_at
11527 && bs->breakpoint_at->disposition == disp_del
11528 && bs->stop)
11529 delete_breakpoint (bs->breakpoint_at);
11530
11531 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11532 {
11533 if (b->disposition == disp_del_at_next_stop)
11534 delete_breakpoint (b);
11535 }
11536 }
11537
11538 /* A comparison function for bp_location AP and BP being interfaced to
11539 qsort. Sort elements primarily by their ADDRESS (no matter what
11540 does breakpoint_address_is_meaningful say for its OWNER),
11541 secondarily by ordering first permanent elements and
11542 terciarily just ensuring the array is sorted stable way despite
11543 qsort being an unstable algorithm. */
11544
11545 static int
11546 bp_locations_compare (const void *ap, const void *bp)
11547 {
11548 const struct bp_location *a = *(const struct bp_location **) ap;
11549 const struct bp_location *b = *(const struct bp_location **) bp;
11550
11551 if (a->address != b->address)
11552 return (a->address > b->address) - (a->address < b->address);
11553
11554 /* Sort locations at the same address by their pspace number, keeping
11555 locations of the same inferior (in a multi-inferior environment)
11556 grouped. */
11557
11558 if (a->pspace->num != b->pspace->num)
11559 return ((a->pspace->num > b->pspace->num)
11560 - (a->pspace->num < b->pspace->num));
11561
11562 /* Sort permanent breakpoints first. */
11563 if (a->permanent != b->permanent)
11564 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11565
11566 /* Make the internal GDB representation stable across GDB runs
11567 where A and B memory inside GDB can differ. Breakpoint locations of
11568 the same type at the same address can be sorted in arbitrary order. */
11569
11570 if (a->owner->number != b->owner->number)
11571 return ((a->owner->number > b->owner->number)
11572 - (a->owner->number < b->owner->number));
11573
11574 return (a > b) - (a < b);
11575 }
11576
11577 /* Set bp_locations_placed_address_before_address_max and
11578 bp_locations_shadow_len_after_address_max according to the current
11579 content of the bp_locations array. */
11580
11581 static void
11582 bp_locations_target_extensions_update (void)
11583 {
11584 struct bp_location *bl, **blp_tmp;
11585
11586 bp_locations_placed_address_before_address_max = 0;
11587 bp_locations_shadow_len_after_address_max = 0;
11588
11589 ALL_BP_LOCATIONS (bl, blp_tmp)
11590 {
11591 CORE_ADDR start, end, addr;
11592
11593 if (!bp_location_has_shadow (bl))
11594 continue;
11595
11596 start = bl->target_info.placed_address;
11597 end = start + bl->target_info.shadow_len;
11598
11599 gdb_assert (bl->address >= start);
11600 addr = bl->address - start;
11601 if (addr > bp_locations_placed_address_before_address_max)
11602 bp_locations_placed_address_before_address_max = addr;
11603
11604 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11605
11606 gdb_assert (bl->address < end);
11607 addr = end - bl->address;
11608 if (addr > bp_locations_shadow_len_after_address_max)
11609 bp_locations_shadow_len_after_address_max = addr;
11610 }
11611 }
11612
11613 /* Download tracepoint locations if they haven't been. */
11614
11615 static void
11616 download_tracepoint_locations (void)
11617 {
11618 struct breakpoint *b;
11619 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11620
11621 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11622
11623 ALL_TRACEPOINTS (b)
11624 {
11625 struct bp_location *bl;
11626 struct tracepoint *t;
11627 int bp_location_downloaded = 0;
11628
11629 if ((b->type == bp_fast_tracepoint
11630 ? !may_insert_fast_tracepoints
11631 : !may_insert_tracepoints))
11632 continue;
11633
11634 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11635 {
11636 if (target_can_download_tracepoint ())
11637 can_download_tracepoint = TRIBOOL_TRUE;
11638 else
11639 can_download_tracepoint = TRIBOOL_FALSE;
11640 }
11641
11642 if (can_download_tracepoint == TRIBOOL_FALSE)
11643 break;
11644
11645 for (bl = b->loc; bl; bl = bl->next)
11646 {
11647 /* In tracepoint, locations are _never_ duplicated, so
11648 should_be_inserted is equivalent to
11649 unduplicated_should_be_inserted. */
11650 if (!should_be_inserted (bl) || bl->inserted)
11651 continue;
11652
11653 switch_to_program_space_and_thread (bl->pspace);
11654
11655 target_download_tracepoint (bl);
11656
11657 bl->inserted = 1;
11658 bp_location_downloaded = 1;
11659 }
11660 t = (struct tracepoint *) b;
11661 t->number_on_target = b->number;
11662 if (bp_location_downloaded)
11663 gdb::observers::breakpoint_modified.notify (b);
11664 }
11665 }
11666
11667 /* Swap the insertion/duplication state between two locations. */
11668
11669 static void
11670 swap_insertion (struct bp_location *left, struct bp_location *right)
11671 {
11672 const int left_inserted = left->inserted;
11673 const int left_duplicate = left->duplicate;
11674 const int left_needs_update = left->needs_update;
11675 const struct bp_target_info left_target_info = left->target_info;
11676
11677 /* Locations of tracepoints can never be duplicated. */
11678 if (is_tracepoint (left->owner))
11679 gdb_assert (!left->duplicate);
11680 if (is_tracepoint (right->owner))
11681 gdb_assert (!right->duplicate);
11682
11683 left->inserted = right->inserted;
11684 left->duplicate = right->duplicate;
11685 left->needs_update = right->needs_update;
11686 left->target_info = right->target_info;
11687 right->inserted = left_inserted;
11688 right->duplicate = left_duplicate;
11689 right->needs_update = left_needs_update;
11690 right->target_info = left_target_info;
11691 }
11692
11693 /* Force the re-insertion of the locations at ADDRESS. This is called
11694 once a new/deleted/modified duplicate location is found and we are evaluating
11695 conditions on the target's side. Such conditions need to be updated on
11696 the target. */
11697
11698 static void
11699 force_breakpoint_reinsertion (struct bp_location *bl)
11700 {
11701 struct bp_location **locp = NULL, **loc2p;
11702 struct bp_location *loc;
11703 CORE_ADDR address = 0;
11704 int pspace_num;
11705
11706 address = bl->address;
11707 pspace_num = bl->pspace->num;
11708
11709 /* This is only meaningful if the target is
11710 evaluating conditions and if the user has
11711 opted for condition evaluation on the target's
11712 side. */
11713 if (gdb_evaluates_breakpoint_condition_p ()
11714 || !target_supports_evaluation_of_breakpoint_conditions ())
11715 return;
11716
11717 /* Flag all breakpoint locations with this address and
11718 the same program space as the location
11719 as "its condition has changed". We need to
11720 update the conditions on the target's side. */
11721 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11722 {
11723 loc = *loc2p;
11724
11725 if (!is_breakpoint (loc->owner)
11726 || pspace_num != loc->pspace->num)
11727 continue;
11728
11729 /* Flag the location appropriately. We use a different state to
11730 let everyone know that we already updated the set of locations
11731 with addr bl->address and program space bl->pspace. This is so
11732 we don't have to keep calling these functions just to mark locations
11733 that have already been marked. */
11734 loc->condition_changed = condition_updated;
11735
11736 /* Free the agent expression bytecode as well. We will compute
11737 it later on. */
11738 loc->cond_bytecode.reset ();
11739 }
11740 }
11741 /* Called whether new breakpoints are created, or existing breakpoints
11742 deleted, to update the global location list and recompute which
11743 locations are duplicate of which.
11744
11745 The INSERT_MODE flag determines whether locations may not, may, or
11746 shall be inserted now. See 'enum ugll_insert_mode' for more
11747 info. */
11748
11749 static void
11750 update_global_location_list (enum ugll_insert_mode insert_mode)
11751 {
11752 struct breakpoint *b;
11753 struct bp_location **locp, *loc;
11754 /* Last breakpoint location address that was marked for update. */
11755 CORE_ADDR last_addr = 0;
11756 /* Last breakpoint location program space that was marked for update. */
11757 int last_pspace_num = -1;
11758
11759 /* Used in the duplicates detection below. When iterating over all
11760 bp_locations, points to the first bp_location of a given address.
11761 Breakpoints and watchpoints of different types are never
11762 duplicates of each other. Keep one pointer for each type of
11763 breakpoint/watchpoint, so we only need to loop over all locations
11764 once. */
11765 struct bp_location *bp_loc_first; /* breakpoint */
11766 struct bp_location *wp_loc_first; /* hardware watchpoint */
11767 struct bp_location *awp_loc_first; /* access watchpoint */
11768 struct bp_location *rwp_loc_first; /* read watchpoint */
11769
11770 /* Saved former bp_locations array which we compare against the newly
11771 built bp_locations from the current state of ALL_BREAKPOINTS. */
11772 struct bp_location **old_locp;
11773 unsigned old_locations_count;
11774 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11775
11776 old_locations_count = bp_locations_count;
11777 bp_locations = NULL;
11778 bp_locations_count = 0;
11779
11780 ALL_BREAKPOINTS (b)
11781 for (loc = b->loc; loc; loc = loc->next)
11782 bp_locations_count++;
11783
11784 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11785 locp = bp_locations;
11786 ALL_BREAKPOINTS (b)
11787 for (loc = b->loc; loc; loc = loc->next)
11788 *locp++ = loc;
11789 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11790 bp_locations_compare);
11791
11792 bp_locations_target_extensions_update ();
11793
11794 /* Identify bp_location instances that are no longer present in the
11795 new list, and therefore should be freed. Note that it's not
11796 necessary that those locations should be removed from inferior --
11797 if there's another location at the same address (previously
11798 marked as duplicate), we don't need to remove/insert the
11799 location.
11800
11801 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11802 and former bp_location array state respectively. */
11803
11804 locp = bp_locations;
11805 for (old_locp = old_locations.get ();
11806 old_locp < old_locations.get () + old_locations_count;
11807 old_locp++)
11808 {
11809 struct bp_location *old_loc = *old_locp;
11810 struct bp_location **loc2p;
11811
11812 /* Tells if 'old_loc' is found among the new locations. If
11813 not, we have to free it. */
11814 int found_object = 0;
11815 /* Tells if the location should remain inserted in the target. */
11816 int keep_in_target = 0;
11817 int removed = 0;
11818
11819 /* Skip LOCP entries which will definitely never be needed.
11820 Stop either at or being the one matching OLD_LOC. */
11821 while (locp < bp_locations + bp_locations_count
11822 && (*locp)->address < old_loc->address)
11823 locp++;
11824
11825 for (loc2p = locp;
11826 (loc2p < bp_locations + bp_locations_count
11827 && (*loc2p)->address == old_loc->address);
11828 loc2p++)
11829 {
11830 /* Check if this is a new/duplicated location or a duplicated
11831 location that had its condition modified. If so, we want to send
11832 its condition to the target if evaluation of conditions is taking
11833 place there. */
11834 if ((*loc2p)->condition_changed == condition_modified
11835 && (last_addr != old_loc->address
11836 || last_pspace_num != old_loc->pspace->num))
11837 {
11838 force_breakpoint_reinsertion (*loc2p);
11839 last_pspace_num = old_loc->pspace->num;
11840 }
11841
11842 if (*loc2p == old_loc)
11843 found_object = 1;
11844 }
11845
11846 /* We have already handled this address, update it so that we don't
11847 have to go through updates again. */
11848 last_addr = old_loc->address;
11849
11850 /* Target-side condition evaluation: Handle deleted locations. */
11851 if (!found_object)
11852 force_breakpoint_reinsertion (old_loc);
11853
11854 /* If this location is no longer present, and inserted, look if
11855 there's maybe a new location at the same address. If so,
11856 mark that one inserted, and don't remove this one. This is
11857 needed so that we don't have a time window where a breakpoint
11858 at certain location is not inserted. */
11859
11860 if (old_loc->inserted)
11861 {
11862 /* If the location is inserted now, we might have to remove
11863 it. */
11864
11865 if (found_object && should_be_inserted (old_loc))
11866 {
11867 /* The location is still present in the location list,
11868 and still should be inserted. Don't do anything. */
11869 keep_in_target = 1;
11870 }
11871 else
11872 {
11873 /* This location still exists, but it won't be kept in the
11874 target since it may have been disabled. We proceed to
11875 remove its target-side condition. */
11876
11877 /* The location is either no longer present, or got
11878 disabled. See if there's another location at the
11879 same address, in which case we don't need to remove
11880 this one from the target. */
11881
11882 /* OLD_LOC comes from existing struct breakpoint. */
11883 if (breakpoint_address_is_meaningful (old_loc->owner))
11884 {
11885 for (loc2p = locp;
11886 (loc2p < bp_locations + bp_locations_count
11887 && (*loc2p)->address == old_loc->address);
11888 loc2p++)
11889 {
11890 struct bp_location *loc2 = *loc2p;
11891
11892 if (breakpoint_locations_match (loc2, old_loc))
11893 {
11894 /* Read watchpoint locations are switched to
11895 access watchpoints, if the former are not
11896 supported, but the latter are. */
11897 if (is_hardware_watchpoint (old_loc->owner))
11898 {
11899 gdb_assert (is_hardware_watchpoint (loc2->owner));
11900 loc2->watchpoint_type = old_loc->watchpoint_type;
11901 }
11902
11903 /* loc2 is a duplicated location. We need to check
11904 if it should be inserted in case it will be
11905 unduplicated. */
11906 if (loc2 != old_loc
11907 && unduplicated_should_be_inserted (loc2))
11908 {
11909 swap_insertion (old_loc, loc2);
11910 keep_in_target = 1;
11911 break;
11912 }
11913 }
11914 }
11915 }
11916 }
11917
11918 if (!keep_in_target)
11919 {
11920 if (remove_breakpoint (old_loc))
11921 {
11922 /* This is just about all we can do. We could keep
11923 this location on the global list, and try to
11924 remove it next time, but there's no particular
11925 reason why we will succeed next time.
11926
11927 Note that at this point, old_loc->owner is still
11928 valid, as delete_breakpoint frees the breakpoint
11929 only after calling us. */
11930 printf_filtered (_("warning: Error removing "
11931 "breakpoint %d\n"),
11932 old_loc->owner->number);
11933 }
11934 removed = 1;
11935 }
11936 }
11937
11938 if (!found_object)
11939 {
11940 if (removed && target_is_non_stop_p ()
11941 && need_moribund_for_location_type (old_loc))
11942 {
11943 /* This location was removed from the target. In
11944 non-stop mode, a race condition is possible where
11945 we've removed a breakpoint, but stop events for that
11946 breakpoint are already queued and will arrive later.
11947 We apply an heuristic to be able to distinguish such
11948 SIGTRAPs from other random SIGTRAPs: we keep this
11949 breakpoint location for a bit, and will retire it
11950 after we see some number of events. The theory here
11951 is that reporting of events should, "on the average",
11952 be fair, so after a while we'll see events from all
11953 threads that have anything of interest, and no longer
11954 need to keep this breakpoint location around. We
11955 don't hold locations forever so to reduce chances of
11956 mistaking a non-breakpoint SIGTRAP for a breakpoint
11957 SIGTRAP.
11958
11959 The heuristic failing can be disastrous on
11960 decr_pc_after_break targets.
11961
11962 On decr_pc_after_break targets, like e.g., x86-linux,
11963 if we fail to recognize a late breakpoint SIGTRAP,
11964 because events_till_retirement has reached 0 too
11965 soon, we'll fail to do the PC adjustment, and report
11966 a random SIGTRAP to the user. When the user resumes
11967 the inferior, it will most likely immediately crash
11968 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11969 corrupted, because of being resumed e.g., in the
11970 middle of a multi-byte instruction, or skipped a
11971 one-byte instruction. This was actually seen happen
11972 on native x86-linux, and should be less rare on
11973 targets that do not support new thread events, like
11974 remote, due to the heuristic depending on
11975 thread_count.
11976
11977 Mistaking a random SIGTRAP for a breakpoint trap
11978 causes similar symptoms (PC adjustment applied when
11979 it shouldn't), but then again, playing with SIGTRAPs
11980 behind the debugger's back is asking for trouble.
11981
11982 Since hardware watchpoint traps are always
11983 distinguishable from other traps, so we don't need to
11984 apply keep hardware watchpoint moribund locations
11985 around. We simply always ignore hardware watchpoint
11986 traps we can no longer explain. */
11987
11988 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11989 old_loc->owner = NULL;
11990
11991 moribund_locations.push_back (old_loc);
11992 }
11993 else
11994 {
11995 old_loc->owner = NULL;
11996 decref_bp_location (&old_loc);
11997 }
11998 }
11999 }
12000
12001 /* Rescan breakpoints at the same address and section, marking the
12002 first one as "first" and any others as "duplicates". This is so
12003 that the bpt instruction is only inserted once. If we have a
12004 permanent breakpoint at the same place as BPT, make that one the
12005 official one, and the rest as duplicates. Permanent breakpoints
12006 are sorted first for the same address.
12007
12008 Do the same for hardware watchpoints, but also considering the
12009 watchpoint's type (regular/access/read) and length. */
12010
12011 bp_loc_first = NULL;
12012 wp_loc_first = NULL;
12013 awp_loc_first = NULL;
12014 rwp_loc_first = NULL;
12015 ALL_BP_LOCATIONS (loc, locp)
12016 {
12017 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12018 non-NULL. */
12019 struct bp_location **loc_first_p;
12020 b = loc->owner;
12021
12022 if (!unduplicated_should_be_inserted (loc)
12023 || !breakpoint_address_is_meaningful (b)
12024 /* Don't detect duplicate for tracepoint locations because they are
12025 never duplicated. See the comments in field `duplicate' of
12026 `struct bp_location'. */
12027 || is_tracepoint (b))
12028 {
12029 /* Clear the condition modification flag. */
12030 loc->condition_changed = condition_unchanged;
12031 continue;
12032 }
12033
12034 if (b->type == bp_hardware_watchpoint)
12035 loc_first_p = &wp_loc_first;
12036 else if (b->type == bp_read_watchpoint)
12037 loc_first_p = &rwp_loc_first;
12038 else if (b->type == bp_access_watchpoint)
12039 loc_first_p = &awp_loc_first;
12040 else
12041 loc_first_p = &bp_loc_first;
12042
12043 if (*loc_first_p == NULL
12044 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12045 || !breakpoint_locations_match (loc, *loc_first_p))
12046 {
12047 *loc_first_p = loc;
12048 loc->duplicate = 0;
12049
12050 if (is_breakpoint (loc->owner) && loc->condition_changed)
12051 {
12052 loc->needs_update = 1;
12053 /* Clear the condition modification flag. */
12054 loc->condition_changed = condition_unchanged;
12055 }
12056 continue;
12057 }
12058
12059
12060 /* This and the above ensure the invariant that the first location
12061 is not duplicated, and is the inserted one.
12062 All following are marked as duplicated, and are not inserted. */
12063 if (loc->inserted)
12064 swap_insertion (loc, *loc_first_p);
12065 loc->duplicate = 1;
12066
12067 /* Clear the condition modification flag. */
12068 loc->condition_changed = condition_unchanged;
12069 }
12070
12071 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12072 {
12073 if (insert_mode != UGLL_DONT_INSERT)
12074 insert_breakpoint_locations ();
12075 else
12076 {
12077 /* Even though the caller told us to not insert new
12078 locations, we may still need to update conditions on the
12079 target's side of breakpoints that were already inserted
12080 if the target is evaluating breakpoint conditions. We
12081 only update conditions for locations that are marked
12082 "needs_update". */
12083 update_inserted_breakpoint_locations ();
12084 }
12085 }
12086
12087 if (insert_mode != UGLL_DONT_INSERT)
12088 download_tracepoint_locations ();
12089 }
12090
12091 void
12092 breakpoint_retire_moribund (void)
12093 {
12094 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12095 {
12096 struct bp_location *loc = moribund_locations[ix];
12097 if (--(loc->events_till_retirement) == 0)
12098 {
12099 decref_bp_location (&loc);
12100 unordered_remove (moribund_locations, ix);
12101 --ix;
12102 }
12103 }
12104 }
12105
12106 static void
12107 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12108 {
12109
12110 TRY
12111 {
12112 update_global_location_list (insert_mode);
12113 }
12114 CATCH (e, RETURN_MASK_ERROR)
12115 {
12116 }
12117 END_CATCH
12118 }
12119
12120 /* Clear BKP from a BPS. */
12121
12122 static void
12123 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12124 {
12125 bpstat bs;
12126
12127 for (bs = bps; bs; bs = bs->next)
12128 if (bs->breakpoint_at == bpt)
12129 {
12130 bs->breakpoint_at = NULL;
12131 bs->old_val = NULL;
12132 /* bs->commands will be freed later. */
12133 }
12134 }
12135
12136 /* Callback for iterate_over_threads. */
12137 static int
12138 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12139 {
12140 struct breakpoint *bpt = (struct breakpoint *) data;
12141
12142 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12143 return 0;
12144 }
12145
12146 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12147 callbacks. */
12148
12149 static void
12150 say_where (struct breakpoint *b)
12151 {
12152 struct value_print_options opts;
12153
12154 get_user_print_options (&opts);
12155
12156 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12157 single string. */
12158 if (b->loc == NULL)
12159 {
12160 /* For pending locations, the output differs slightly based
12161 on b->extra_string. If this is non-NULL, it contains either
12162 a condition or dprintf arguments. */
12163 if (b->extra_string == NULL)
12164 {
12165 printf_filtered (_(" (%s) pending."),
12166 event_location_to_string (b->location.get ()));
12167 }
12168 else if (b->type == bp_dprintf)
12169 {
12170 printf_filtered (_(" (%s,%s) pending."),
12171 event_location_to_string (b->location.get ()),
12172 b->extra_string);
12173 }
12174 else
12175 {
12176 printf_filtered (_(" (%s %s) pending."),
12177 event_location_to_string (b->location.get ()),
12178 b->extra_string);
12179 }
12180 }
12181 else
12182 {
12183 if (opts.addressprint || b->loc->symtab == NULL)
12184 {
12185 printf_filtered (" at ");
12186 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12187 gdb_stdout);
12188 }
12189 if (b->loc->symtab != NULL)
12190 {
12191 /* If there is a single location, we can print the location
12192 more nicely. */
12193 if (b->loc->next == NULL)
12194 {
12195 puts_filtered (": file ");
12196 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12197 file_name_style.style (),
12198 gdb_stdout);
12199 printf_filtered (", line %d.",
12200 b->loc->line_number);
12201 }
12202 else
12203 /* This is not ideal, but each location may have a
12204 different file name, and this at least reflects the
12205 real situation somewhat. */
12206 printf_filtered (": %s.",
12207 event_location_to_string (b->location.get ()));
12208 }
12209
12210 if (b->loc->next)
12211 {
12212 struct bp_location *loc = b->loc;
12213 int n = 0;
12214 for (; loc; loc = loc->next)
12215 ++n;
12216 printf_filtered (" (%d locations)", n);
12217 }
12218 }
12219 }
12220
12221 /* Default bp_location_ops methods. */
12222
12223 static void
12224 bp_location_dtor (struct bp_location *self)
12225 {
12226 xfree (self->function_name);
12227 }
12228
12229 static const struct bp_location_ops bp_location_ops =
12230 {
12231 bp_location_dtor
12232 };
12233
12234 /* Destructor for the breakpoint base class. */
12235
12236 breakpoint::~breakpoint ()
12237 {
12238 xfree (this->cond_string);
12239 xfree (this->extra_string);
12240 xfree (this->filter);
12241 }
12242
12243 static struct bp_location *
12244 base_breakpoint_allocate_location (struct breakpoint *self)
12245 {
12246 return new bp_location (&bp_location_ops, self);
12247 }
12248
12249 static void
12250 base_breakpoint_re_set (struct breakpoint *b)
12251 {
12252 /* Nothing to re-set. */
12253 }
12254
12255 #define internal_error_pure_virtual_called() \
12256 gdb_assert_not_reached ("pure virtual function called")
12257
12258 static int
12259 base_breakpoint_insert_location (struct bp_location *bl)
12260 {
12261 internal_error_pure_virtual_called ();
12262 }
12263
12264 static int
12265 base_breakpoint_remove_location (struct bp_location *bl,
12266 enum remove_bp_reason reason)
12267 {
12268 internal_error_pure_virtual_called ();
12269 }
12270
12271 static int
12272 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12273 const address_space *aspace,
12274 CORE_ADDR bp_addr,
12275 const struct target_waitstatus *ws)
12276 {
12277 internal_error_pure_virtual_called ();
12278 }
12279
12280 static void
12281 base_breakpoint_check_status (bpstat bs)
12282 {
12283 /* Always stop. */
12284 }
12285
12286 /* A "works_in_software_mode" breakpoint_ops method that just internal
12287 errors. */
12288
12289 static int
12290 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12291 {
12292 internal_error_pure_virtual_called ();
12293 }
12294
12295 /* A "resources_needed" breakpoint_ops method that just internal
12296 errors. */
12297
12298 static int
12299 base_breakpoint_resources_needed (const struct bp_location *bl)
12300 {
12301 internal_error_pure_virtual_called ();
12302 }
12303
12304 static enum print_stop_action
12305 base_breakpoint_print_it (bpstat bs)
12306 {
12307 internal_error_pure_virtual_called ();
12308 }
12309
12310 static void
12311 base_breakpoint_print_one_detail (const struct breakpoint *self,
12312 struct ui_out *uiout)
12313 {
12314 /* nothing */
12315 }
12316
12317 static void
12318 base_breakpoint_print_mention (struct breakpoint *b)
12319 {
12320 internal_error_pure_virtual_called ();
12321 }
12322
12323 static void
12324 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12325 {
12326 internal_error_pure_virtual_called ();
12327 }
12328
12329 static void
12330 base_breakpoint_create_sals_from_location
12331 (const struct event_location *location,
12332 struct linespec_result *canonical,
12333 enum bptype type_wanted)
12334 {
12335 internal_error_pure_virtual_called ();
12336 }
12337
12338 static void
12339 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12340 struct linespec_result *c,
12341 gdb::unique_xmalloc_ptr<char> cond_string,
12342 gdb::unique_xmalloc_ptr<char> extra_string,
12343 enum bptype type_wanted,
12344 enum bpdisp disposition,
12345 int thread,
12346 int task, int ignore_count,
12347 const struct breakpoint_ops *o,
12348 int from_tty, int enabled,
12349 int internal, unsigned flags)
12350 {
12351 internal_error_pure_virtual_called ();
12352 }
12353
12354 static std::vector<symtab_and_line>
12355 base_breakpoint_decode_location (struct breakpoint *b,
12356 const struct event_location *location,
12357 struct program_space *search_pspace)
12358 {
12359 internal_error_pure_virtual_called ();
12360 }
12361
12362 /* The default 'explains_signal' method. */
12363
12364 static int
12365 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12366 {
12367 return 1;
12368 }
12369
12370 /* The default "after_condition_true" method. */
12371
12372 static void
12373 base_breakpoint_after_condition_true (struct bpstats *bs)
12374 {
12375 /* Nothing to do. */
12376 }
12377
12378 struct breakpoint_ops base_breakpoint_ops =
12379 {
12380 base_breakpoint_allocate_location,
12381 base_breakpoint_re_set,
12382 base_breakpoint_insert_location,
12383 base_breakpoint_remove_location,
12384 base_breakpoint_breakpoint_hit,
12385 base_breakpoint_check_status,
12386 base_breakpoint_resources_needed,
12387 base_breakpoint_works_in_software_mode,
12388 base_breakpoint_print_it,
12389 NULL,
12390 base_breakpoint_print_one_detail,
12391 base_breakpoint_print_mention,
12392 base_breakpoint_print_recreate,
12393 base_breakpoint_create_sals_from_location,
12394 base_breakpoint_create_breakpoints_sal,
12395 base_breakpoint_decode_location,
12396 base_breakpoint_explains_signal,
12397 base_breakpoint_after_condition_true,
12398 };
12399
12400 /* Default breakpoint_ops methods. */
12401
12402 static void
12403 bkpt_re_set (struct breakpoint *b)
12404 {
12405 /* FIXME: is this still reachable? */
12406 if (breakpoint_event_location_empty_p (b))
12407 {
12408 /* Anything without a location can't be re-set. */
12409 delete_breakpoint (b);
12410 return;
12411 }
12412
12413 breakpoint_re_set_default (b);
12414 }
12415
12416 static int
12417 bkpt_insert_location (struct bp_location *bl)
12418 {
12419 CORE_ADDR addr = bl->target_info.reqstd_address;
12420
12421 bl->target_info.kind = breakpoint_kind (bl, &addr);
12422 bl->target_info.placed_address = addr;
12423
12424 if (bl->loc_type == bp_loc_hardware_breakpoint)
12425 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12426 else
12427 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12428 }
12429
12430 static int
12431 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12432 {
12433 if (bl->loc_type == bp_loc_hardware_breakpoint)
12434 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12435 else
12436 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12437 }
12438
12439 static int
12440 bkpt_breakpoint_hit (const struct bp_location *bl,
12441 const address_space *aspace, CORE_ADDR bp_addr,
12442 const struct target_waitstatus *ws)
12443 {
12444 if (ws->kind != TARGET_WAITKIND_STOPPED
12445 || ws->value.sig != GDB_SIGNAL_TRAP)
12446 return 0;
12447
12448 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12449 aspace, bp_addr))
12450 return 0;
12451
12452 if (overlay_debugging /* unmapped overlay section */
12453 && section_is_overlay (bl->section)
12454 && !section_is_mapped (bl->section))
12455 return 0;
12456
12457 return 1;
12458 }
12459
12460 static int
12461 dprintf_breakpoint_hit (const struct bp_location *bl,
12462 const address_space *aspace, CORE_ADDR bp_addr,
12463 const struct target_waitstatus *ws)
12464 {
12465 if (dprintf_style == dprintf_style_agent
12466 && target_can_run_breakpoint_commands ())
12467 {
12468 /* An agent-style dprintf never causes a stop. If we see a trap
12469 for this address it must be for a breakpoint that happens to
12470 be set at the same address. */
12471 return 0;
12472 }
12473
12474 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12475 }
12476
12477 static int
12478 bkpt_resources_needed (const struct bp_location *bl)
12479 {
12480 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12481
12482 return 1;
12483 }
12484
12485 static enum print_stop_action
12486 bkpt_print_it (bpstat bs)
12487 {
12488 struct breakpoint *b;
12489 const struct bp_location *bl;
12490 int bp_temp;
12491 struct ui_out *uiout = current_uiout;
12492
12493 gdb_assert (bs->bp_location_at != NULL);
12494
12495 bl = bs->bp_location_at;
12496 b = bs->breakpoint_at;
12497
12498 bp_temp = b->disposition == disp_del;
12499 if (bl->address != bl->requested_address)
12500 breakpoint_adjustment_warning (bl->requested_address,
12501 bl->address,
12502 b->number, 1);
12503 annotate_breakpoint (b->number);
12504 maybe_print_thread_hit_breakpoint (uiout);
12505
12506 if (bp_temp)
12507 uiout->text ("Temporary breakpoint ");
12508 else
12509 uiout->text ("Breakpoint ");
12510 if (uiout->is_mi_like_p ())
12511 {
12512 uiout->field_string ("reason",
12513 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12514 uiout->field_string ("disp", bpdisp_text (b->disposition));
12515 }
12516 uiout->field_int ("bkptno", b->number);
12517 uiout->text (", ");
12518
12519 return PRINT_SRC_AND_LOC;
12520 }
12521
12522 static void
12523 bkpt_print_mention (struct breakpoint *b)
12524 {
12525 if (current_uiout->is_mi_like_p ())
12526 return;
12527
12528 switch (b->type)
12529 {
12530 case bp_breakpoint:
12531 case bp_gnu_ifunc_resolver:
12532 if (b->disposition == disp_del)
12533 printf_filtered (_("Temporary breakpoint"));
12534 else
12535 printf_filtered (_("Breakpoint"));
12536 printf_filtered (_(" %d"), b->number);
12537 if (b->type == bp_gnu_ifunc_resolver)
12538 printf_filtered (_(" at gnu-indirect-function resolver"));
12539 break;
12540 case bp_hardware_breakpoint:
12541 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12542 break;
12543 case bp_dprintf:
12544 printf_filtered (_("Dprintf %d"), b->number);
12545 break;
12546 }
12547
12548 say_where (b);
12549 }
12550
12551 static void
12552 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12553 {
12554 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12555 fprintf_unfiltered (fp, "tbreak");
12556 else if (tp->type == bp_breakpoint)
12557 fprintf_unfiltered (fp, "break");
12558 else if (tp->type == bp_hardware_breakpoint
12559 && tp->disposition == disp_del)
12560 fprintf_unfiltered (fp, "thbreak");
12561 else if (tp->type == bp_hardware_breakpoint)
12562 fprintf_unfiltered (fp, "hbreak");
12563 else
12564 internal_error (__FILE__, __LINE__,
12565 _("unhandled breakpoint type %d"), (int) tp->type);
12566
12567 fprintf_unfiltered (fp, " %s",
12568 event_location_to_string (tp->location.get ()));
12569
12570 /* Print out extra_string if this breakpoint is pending. It might
12571 contain, for example, conditions that were set by the user. */
12572 if (tp->loc == NULL && tp->extra_string != NULL)
12573 fprintf_unfiltered (fp, " %s", tp->extra_string);
12574
12575 print_recreate_thread (tp, fp);
12576 }
12577
12578 static void
12579 bkpt_create_sals_from_location (const struct event_location *location,
12580 struct linespec_result *canonical,
12581 enum bptype type_wanted)
12582 {
12583 create_sals_from_location_default (location, canonical, type_wanted);
12584 }
12585
12586 static void
12587 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12588 struct linespec_result *canonical,
12589 gdb::unique_xmalloc_ptr<char> cond_string,
12590 gdb::unique_xmalloc_ptr<char> extra_string,
12591 enum bptype type_wanted,
12592 enum bpdisp disposition,
12593 int thread,
12594 int task, int ignore_count,
12595 const struct breakpoint_ops *ops,
12596 int from_tty, int enabled,
12597 int internal, unsigned flags)
12598 {
12599 create_breakpoints_sal_default (gdbarch, canonical,
12600 std::move (cond_string),
12601 std::move (extra_string),
12602 type_wanted,
12603 disposition, thread, task,
12604 ignore_count, ops, from_tty,
12605 enabled, internal, flags);
12606 }
12607
12608 static std::vector<symtab_and_line>
12609 bkpt_decode_location (struct breakpoint *b,
12610 const struct event_location *location,
12611 struct program_space *search_pspace)
12612 {
12613 return decode_location_default (b, location, search_pspace);
12614 }
12615
12616 /* Virtual table for internal breakpoints. */
12617
12618 static void
12619 internal_bkpt_re_set (struct breakpoint *b)
12620 {
12621 switch (b->type)
12622 {
12623 /* Delete overlay event and longjmp master breakpoints; they
12624 will be reset later by breakpoint_re_set. */
12625 case bp_overlay_event:
12626 case bp_longjmp_master:
12627 case bp_std_terminate_master:
12628 case bp_exception_master:
12629 delete_breakpoint (b);
12630 break;
12631
12632 /* This breakpoint is special, it's set up when the inferior
12633 starts and we really don't want to touch it. */
12634 case bp_shlib_event:
12635
12636 /* Like bp_shlib_event, this breakpoint type is special. Once
12637 it is set up, we do not want to touch it. */
12638 case bp_thread_event:
12639 break;
12640 }
12641 }
12642
12643 static void
12644 internal_bkpt_check_status (bpstat bs)
12645 {
12646 if (bs->breakpoint_at->type == bp_shlib_event)
12647 {
12648 /* If requested, stop when the dynamic linker notifies GDB of
12649 events. This allows the user to get control and place
12650 breakpoints in initializer routines for dynamically loaded
12651 objects (among other things). */
12652 bs->stop = stop_on_solib_events;
12653 bs->print = stop_on_solib_events;
12654 }
12655 else
12656 bs->stop = 0;
12657 }
12658
12659 static enum print_stop_action
12660 internal_bkpt_print_it (bpstat bs)
12661 {
12662 struct breakpoint *b;
12663
12664 b = bs->breakpoint_at;
12665
12666 switch (b->type)
12667 {
12668 case bp_shlib_event:
12669 /* Did we stop because the user set the stop_on_solib_events
12670 variable? (If so, we report this as a generic, "Stopped due
12671 to shlib event" message.) */
12672 print_solib_event (0);
12673 break;
12674
12675 case bp_thread_event:
12676 /* Not sure how we will get here.
12677 GDB should not stop for these breakpoints. */
12678 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12679 break;
12680
12681 case bp_overlay_event:
12682 /* By analogy with the thread event, GDB should not stop for these. */
12683 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12684 break;
12685
12686 case bp_longjmp_master:
12687 /* These should never be enabled. */
12688 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12689 break;
12690
12691 case bp_std_terminate_master:
12692 /* These should never be enabled. */
12693 printf_filtered (_("std::terminate Master Breakpoint: "
12694 "gdb should not stop!\n"));
12695 break;
12696
12697 case bp_exception_master:
12698 /* These should never be enabled. */
12699 printf_filtered (_("Exception Master Breakpoint: "
12700 "gdb should not stop!\n"));
12701 break;
12702 }
12703
12704 return PRINT_NOTHING;
12705 }
12706
12707 static void
12708 internal_bkpt_print_mention (struct breakpoint *b)
12709 {
12710 /* Nothing to mention. These breakpoints are internal. */
12711 }
12712
12713 /* Virtual table for momentary breakpoints */
12714
12715 static void
12716 momentary_bkpt_re_set (struct breakpoint *b)
12717 {
12718 /* Keep temporary breakpoints, which can be encountered when we step
12719 over a dlopen call and solib_add is resetting the breakpoints.
12720 Otherwise these should have been blown away via the cleanup chain
12721 or by breakpoint_init_inferior when we rerun the executable. */
12722 }
12723
12724 static void
12725 momentary_bkpt_check_status (bpstat bs)
12726 {
12727 /* Nothing. The point of these breakpoints is causing a stop. */
12728 }
12729
12730 static enum print_stop_action
12731 momentary_bkpt_print_it (bpstat bs)
12732 {
12733 return PRINT_UNKNOWN;
12734 }
12735
12736 static void
12737 momentary_bkpt_print_mention (struct breakpoint *b)
12738 {
12739 /* Nothing to mention. These breakpoints are internal. */
12740 }
12741
12742 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12743
12744 It gets cleared already on the removal of the first one of such placed
12745 breakpoints. This is OK as they get all removed altogether. */
12746
12747 longjmp_breakpoint::~longjmp_breakpoint ()
12748 {
12749 thread_info *tp = find_thread_global_id (this->thread);
12750
12751 if (tp != NULL)
12752 tp->initiating_frame = null_frame_id;
12753 }
12754
12755 /* Specific methods for probe breakpoints. */
12756
12757 static int
12758 bkpt_probe_insert_location (struct bp_location *bl)
12759 {
12760 int v = bkpt_insert_location (bl);
12761
12762 if (v == 0)
12763 {
12764 /* The insertion was successful, now let's set the probe's semaphore
12765 if needed. */
12766 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12767 }
12768
12769 return v;
12770 }
12771
12772 static int
12773 bkpt_probe_remove_location (struct bp_location *bl,
12774 enum remove_bp_reason reason)
12775 {
12776 /* Let's clear the semaphore before removing the location. */
12777 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12778
12779 return bkpt_remove_location (bl, reason);
12780 }
12781
12782 static void
12783 bkpt_probe_create_sals_from_location (const struct event_location *location,
12784 struct linespec_result *canonical,
12785 enum bptype type_wanted)
12786 {
12787 struct linespec_sals lsal;
12788
12789 lsal.sals = parse_probes (location, NULL, canonical);
12790 lsal.canonical
12791 = xstrdup (event_location_to_string (canonical->location.get ()));
12792 canonical->lsals.push_back (std::move (lsal));
12793 }
12794
12795 static std::vector<symtab_and_line>
12796 bkpt_probe_decode_location (struct breakpoint *b,
12797 const struct event_location *location,
12798 struct program_space *search_pspace)
12799 {
12800 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12801 if (sals.empty ())
12802 error (_("probe not found"));
12803 return sals;
12804 }
12805
12806 /* The breakpoint_ops structure to be used in tracepoints. */
12807
12808 static void
12809 tracepoint_re_set (struct breakpoint *b)
12810 {
12811 breakpoint_re_set_default (b);
12812 }
12813
12814 static int
12815 tracepoint_breakpoint_hit (const struct bp_location *bl,
12816 const address_space *aspace, CORE_ADDR bp_addr,
12817 const struct target_waitstatus *ws)
12818 {
12819 /* By definition, the inferior does not report stops at
12820 tracepoints. */
12821 return 0;
12822 }
12823
12824 static void
12825 tracepoint_print_one_detail (const struct breakpoint *self,
12826 struct ui_out *uiout)
12827 {
12828 struct tracepoint *tp = (struct tracepoint *) self;
12829 if (!tp->static_trace_marker_id.empty ())
12830 {
12831 gdb_assert (self->type == bp_static_tracepoint);
12832
12833 uiout->text ("\tmarker id is ");
12834 uiout->field_string ("static-tracepoint-marker-string-id",
12835 tp->static_trace_marker_id);
12836 uiout->text ("\n");
12837 }
12838 }
12839
12840 static void
12841 tracepoint_print_mention (struct breakpoint *b)
12842 {
12843 if (current_uiout->is_mi_like_p ())
12844 return;
12845
12846 switch (b->type)
12847 {
12848 case bp_tracepoint:
12849 printf_filtered (_("Tracepoint"));
12850 printf_filtered (_(" %d"), b->number);
12851 break;
12852 case bp_fast_tracepoint:
12853 printf_filtered (_("Fast tracepoint"));
12854 printf_filtered (_(" %d"), b->number);
12855 break;
12856 case bp_static_tracepoint:
12857 printf_filtered (_("Static tracepoint"));
12858 printf_filtered (_(" %d"), b->number);
12859 break;
12860 default:
12861 internal_error (__FILE__, __LINE__,
12862 _("unhandled tracepoint type %d"), (int) b->type);
12863 }
12864
12865 say_where (b);
12866 }
12867
12868 static void
12869 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12870 {
12871 struct tracepoint *tp = (struct tracepoint *) self;
12872
12873 if (self->type == bp_fast_tracepoint)
12874 fprintf_unfiltered (fp, "ftrace");
12875 else if (self->type == bp_static_tracepoint)
12876 fprintf_unfiltered (fp, "strace");
12877 else if (self->type == bp_tracepoint)
12878 fprintf_unfiltered (fp, "trace");
12879 else
12880 internal_error (__FILE__, __LINE__,
12881 _("unhandled tracepoint type %d"), (int) self->type);
12882
12883 fprintf_unfiltered (fp, " %s",
12884 event_location_to_string (self->location.get ()));
12885 print_recreate_thread (self, fp);
12886
12887 if (tp->pass_count)
12888 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12889 }
12890
12891 static void
12892 tracepoint_create_sals_from_location (const struct event_location *location,
12893 struct linespec_result *canonical,
12894 enum bptype type_wanted)
12895 {
12896 create_sals_from_location_default (location, canonical, type_wanted);
12897 }
12898
12899 static void
12900 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12901 struct linespec_result *canonical,
12902 gdb::unique_xmalloc_ptr<char> cond_string,
12903 gdb::unique_xmalloc_ptr<char> extra_string,
12904 enum bptype type_wanted,
12905 enum bpdisp disposition,
12906 int thread,
12907 int task, int ignore_count,
12908 const struct breakpoint_ops *ops,
12909 int from_tty, int enabled,
12910 int internal, unsigned flags)
12911 {
12912 create_breakpoints_sal_default (gdbarch, canonical,
12913 std::move (cond_string),
12914 std::move (extra_string),
12915 type_wanted,
12916 disposition, thread, task,
12917 ignore_count, ops, from_tty,
12918 enabled, internal, flags);
12919 }
12920
12921 static std::vector<symtab_and_line>
12922 tracepoint_decode_location (struct breakpoint *b,
12923 const struct event_location *location,
12924 struct program_space *search_pspace)
12925 {
12926 return decode_location_default (b, location, search_pspace);
12927 }
12928
12929 struct breakpoint_ops tracepoint_breakpoint_ops;
12930
12931 /* The breakpoint_ops structure to be use on tracepoints placed in a
12932 static probe. */
12933
12934 static void
12935 tracepoint_probe_create_sals_from_location
12936 (const struct event_location *location,
12937 struct linespec_result *canonical,
12938 enum bptype type_wanted)
12939 {
12940 /* We use the same method for breakpoint on probes. */
12941 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12942 }
12943
12944 static std::vector<symtab_and_line>
12945 tracepoint_probe_decode_location (struct breakpoint *b,
12946 const struct event_location *location,
12947 struct program_space *search_pspace)
12948 {
12949 /* We use the same method for breakpoint on probes. */
12950 return bkpt_probe_decode_location (b, location, search_pspace);
12951 }
12952
12953 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12954
12955 /* Dprintf breakpoint_ops methods. */
12956
12957 static void
12958 dprintf_re_set (struct breakpoint *b)
12959 {
12960 breakpoint_re_set_default (b);
12961
12962 /* extra_string should never be non-NULL for dprintf. */
12963 gdb_assert (b->extra_string != NULL);
12964
12965 /* 1 - connect to target 1, that can run breakpoint commands.
12966 2 - create a dprintf, which resolves fine.
12967 3 - disconnect from target 1
12968 4 - connect to target 2, that can NOT run breakpoint commands.
12969
12970 After steps #3/#4, you'll want the dprintf command list to
12971 be updated, because target 1 and 2 may well return different
12972 answers for target_can_run_breakpoint_commands().
12973 Given absence of finer grained resetting, we get to do
12974 it all the time. */
12975 if (b->extra_string != NULL)
12976 update_dprintf_command_list (b);
12977 }
12978
12979 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12980
12981 static void
12982 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12983 {
12984 fprintf_unfiltered (fp, "dprintf %s,%s",
12985 event_location_to_string (tp->location.get ()),
12986 tp->extra_string);
12987 print_recreate_thread (tp, fp);
12988 }
12989
12990 /* Implement the "after_condition_true" breakpoint_ops method for
12991 dprintf.
12992
12993 dprintf's are implemented with regular commands in their command
12994 list, but we run the commands here instead of before presenting the
12995 stop to the user, as dprintf's don't actually cause a stop. This
12996 also makes it so that the commands of multiple dprintfs at the same
12997 address are all handled. */
12998
12999 static void
13000 dprintf_after_condition_true (struct bpstats *bs)
13001 {
13002 struct bpstats tmp_bs;
13003 struct bpstats *tmp_bs_p = &tmp_bs;
13004
13005 /* dprintf's never cause a stop. This wasn't set in the
13006 check_status hook instead because that would make the dprintf's
13007 condition not be evaluated. */
13008 bs->stop = 0;
13009
13010 /* Run the command list here. Take ownership of it instead of
13011 copying. We never want these commands to run later in
13012 bpstat_do_actions, if a breakpoint that causes a stop happens to
13013 be set at same address as this dprintf, or even if running the
13014 commands here throws. */
13015 tmp_bs.commands = bs->commands;
13016 bs->commands = NULL;
13017
13018 bpstat_do_actions_1 (&tmp_bs_p);
13019
13020 /* 'tmp_bs.commands' will usually be NULL by now, but
13021 bpstat_do_actions_1 may return early without processing the whole
13022 list. */
13023 }
13024
13025 /* The breakpoint_ops structure to be used on static tracepoints with
13026 markers (`-m'). */
13027
13028 static void
13029 strace_marker_create_sals_from_location (const struct event_location *location,
13030 struct linespec_result *canonical,
13031 enum bptype type_wanted)
13032 {
13033 struct linespec_sals lsal;
13034 const char *arg_start, *arg;
13035
13036 arg = arg_start = get_linespec_location (location)->spec_string;
13037 lsal.sals = decode_static_tracepoint_spec (&arg);
13038
13039 std::string str (arg_start, arg - arg_start);
13040 const char *ptr = str.c_str ();
13041 canonical->location
13042 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13043
13044 lsal.canonical
13045 = xstrdup (event_location_to_string (canonical->location.get ()));
13046 canonical->lsals.push_back (std::move (lsal));
13047 }
13048
13049 static void
13050 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13051 struct linespec_result *canonical,
13052 gdb::unique_xmalloc_ptr<char> cond_string,
13053 gdb::unique_xmalloc_ptr<char> extra_string,
13054 enum bptype type_wanted,
13055 enum bpdisp disposition,
13056 int thread,
13057 int task, int ignore_count,
13058 const struct breakpoint_ops *ops,
13059 int from_tty, int enabled,
13060 int internal, unsigned flags)
13061 {
13062 const linespec_sals &lsal = canonical->lsals[0];
13063
13064 /* If the user is creating a static tracepoint by marker id
13065 (strace -m MARKER_ID), then store the sals index, so that
13066 breakpoint_re_set can try to match up which of the newly
13067 found markers corresponds to this one, and, don't try to
13068 expand multiple locations for each sal, given than SALS
13069 already should contain all sals for MARKER_ID. */
13070
13071 for (size_t i = 0; i < lsal.sals.size (); i++)
13072 {
13073 event_location_up location
13074 = copy_event_location (canonical->location.get ());
13075
13076 std::unique_ptr<tracepoint> tp (new tracepoint ());
13077 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13078 std::move (location), NULL,
13079 std::move (cond_string),
13080 std::move (extra_string),
13081 type_wanted, disposition,
13082 thread, task, ignore_count, ops,
13083 from_tty, enabled, internal, flags,
13084 canonical->special_display);
13085 /* Given that its possible to have multiple markers with
13086 the same string id, if the user is creating a static
13087 tracepoint by marker id ("strace -m MARKER_ID"), then
13088 store the sals index, so that breakpoint_re_set can
13089 try to match up which of the newly found markers
13090 corresponds to this one */
13091 tp->static_trace_marker_id_idx = i;
13092
13093 install_breakpoint (internal, std::move (tp), 0);
13094 }
13095 }
13096
13097 static std::vector<symtab_and_line>
13098 strace_marker_decode_location (struct breakpoint *b,
13099 const struct event_location *location,
13100 struct program_space *search_pspace)
13101 {
13102 struct tracepoint *tp = (struct tracepoint *) b;
13103 const char *s = get_linespec_location (location)->spec_string;
13104
13105 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13106 if (sals.size () > tp->static_trace_marker_id_idx)
13107 {
13108 sals[0] = sals[tp->static_trace_marker_id_idx];
13109 sals.resize (1);
13110 return sals;
13111 }
13112 else
13113 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13114 }
13115
13116 static struct breakpoint_ops strace_marker_breakpoint_ops;
13117
13118 static int
13119 strace_marker_p (struct breakpoint *b)
13120 {
13121 return b->ops == &strace_marker_breakpoint_ops;
13122 }
13123
13124 /* Delete a breakpoint and clean up all traces of it in the data
13125 structures. */
13126
13127 void
13128 delete_breakpoint (struct breakpoint *bpt)
13129 {
13130 struct breakpoint *b;
13131
13132 gdb_assert (bpt != NULL);
13133
13134 /* Has this bp already been deleted? This can happen because
13135 multiple lists can hold pointers to bp's. bpstat lists are
13136 especial culprits.
13137
13138 One example of this happening is a watchpoint's scope bp. When
13139 the scope bp triggers, we notice that the watchpoint is out of
13140 scope, and delete it. We also delete its scope bp. But the
13141 scope bp is marked "auto-deleting", and is already on a bpstat.
13142 That bpstat is then checked for auto-deleting bp's, which are
13143 deleted.
13144
13145 A real solution to this problem might involve reference counts in
13146 bp's, and/or giving them pointers back to their referencing
13147 bpstat's, and teaching delete_breakpoint to only free a bp's
13148 storage when no more references were extent. A cheaper bandaid
13149 was chosen. */
13150 if (bpt->type == bp_none)
13151 return;
13152
13153 /* At least avoid this stale reference until the reference counting
13154 of breakpoints gets resolved. */
13155 if (bpt->related_breakpoint != bpt)
13156 {
13157 struct breakpoint *related;
13158 struct watchpoint *w;
13159
13160 if (bpt->type == bp_watchpoint_scope)
13161 w = (struct watchpoint *) bpt->related_breakpoint;
13162 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13163 w = (struct watchpoint *) bpt;
13164 else
13165 w = NULL;
13166 if (w != NULL)
13167 watchpoint_del_at_next_stop (w);
13168
13169 /* Unlink bpt from the bpt->related_breakpoint ring. */
13170 for (related = bpt; related->related_breakpoint != bpt;
13171 related = related->related_breakpoint);
13172 related->related_breakpoint = bpt->related_breakpoint;
13173 bpt->related_breakpoint = bpt;
13174 }
13175
13176 /* watch_command_1 creates a watchpoint but only sets its number if
13177 update_watchpoint succeeds in creating its bp_locations. If there's
13178 a problem in that process, we'll be asked to delete the half-created
13179 watchpoint. In that case, don't announce the deletion. */
13180 if (bpt->number)
13181 gdb::observers::breakpoint_deleted.notify (bpt);
13182
13183 if (breakpoint_chain == bpt)
13184 breakpoint_chain = bpt->next;
13185
13186 ALL_BREAKPOINTS (b)
13187 if (b->next == bpt)
13188 {
13189 b->next = bpt->next;
13190 break;
13191 }
13192
13193 /* Be sure no bpstat's are pointing at the breakpoint after it's
13194 been freed. */
13195 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13196 in all threads for now. Note that we cannot just remove bpstats
13197 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13198 commands are associated with the bpstat; if we remove it here,
13199 then the later call to bpstat_do_actions (&stop_bpstat); in
13200 event-top.c won't do anything, and temporary breakpoints with
13201 commands won't work. */
13202
13203 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13204
13205 /* Now that breakpoint is removed from breakpoint list, update the
13206 global location list. This will remove locations that used to
13207 belong to this breakpoint. Do this before freeing the breakpoint
13208 itself, since remove_breakpoint looks at location's owner. It
13209 might be better design to have location completely
13210 self-contained, but it's not the case now. */
13211 update_global_location_list (UGLL_DONT_INSERT);
13212
13213 /* On the chance that someone will soon try again to delete this
13214 same bp, we mark it as deleted before freeing its storage. */
13215 bpt->type = bp_none;
13216 delete bpt;
13217 }
13218
13219 /* Iterator function to call a user-provided callback function once
13220 for each of B and its related breakpoints. */
13221
13222 static void
13223 iterate_over_related_breakpoints (struct breakpoint *b,
13224 gdb::function_view<void (breakpoint *)> function)
13225 {
13226 struct breakpoint *related;
13227
13228 related = b;
13229 do
13230 {
13231 struct breakpoint *next;
13232
13233 /* FUNCTION may delete RELATED. */
13234 next = related->related_breakpoint;
13235
13236 if (next == related)
13237 {
13238 /* RELATED is the last ring entry. */
13239 function (related);
13240
13241 /* FUNCTION may have deleted it, so we'd never reach back to
13242 B. There's nothing left to do anyway, so just break
13243 out. */
13244 break;
13245 }
13246 else
13247 function (related);
13248
13249 related = next;
13250 }
13251 while (related != b);
13252 }
13253
13254 static void
13255 delete_command (const char *arg, int from_tty)
13256 {
13257 struct breakpoint *b, *b_tmp;
13258
13259 dont_repeat ();
13260
13261 if (arg == 0)
13262 {
13263 int breaks_to_delete = 0;
13264
13265 /* Delete all breakpoints if no argument. Do not delete
13266 internal breakpoints, these have to be deleted with an
13267 explicit breakpoint number argument. */
13268 ALL_BREAKPOINTS (b)
13269 if (user_breakpoint_p (b))
13270 {
13271 breaks_to_delete = 1;
13272 break;
13273 }
13274
13275 /* Ask user only if there are some breakpoints to delete. */
13276 if (!from_tty
13277 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13278 {
13279 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13280 if (user_breakpoint_p (b))
13281 delete_breakpoint (b);
13282 }
13283 }
13284 else
13285 map_breakpoint_numbers
13286 (arg, [&] (breakpoint *br)
13287 {
13288 iterate_over_related_breakpoints (br, delete_breakpoint);
13289 });
13290 }
13291
13292 /* Return true if all locations of B bound to PSPACE are pending. If
13293 PSPACE is NULL, all locations of all program spaces are
13294 considered. */
13295
13296 static int
13297 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13298 {
13299 struct bp_location *loc;
13300
13301 for (loc = b->loc; loc != NULL; loc = loc->next)
13302 if ((pspace == NULL
13303 || loc->pspace == pspace)
13304 && !loc->shlib_disabled
13305 && !loc->pspace->executing_startup)
13306 return 0;
13307 return 1;
13308 }
13309
13310 /* Subroutine of update_breakpoint_locations to simplify it.
13311 Return non-zero if multiple fns in list LOC have the same name.
13312 Null names are ignored. */
13313
13314 static int
13315 ambiguous_names_p (struct bp_location *loc)
13316 {
13317 struct bp_location *l;
13318 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13319 xcalloc, xfree);
13320
13321 for (l = loc; l != NULL; l = l->next)
13322 {
13323 const char **slot;
13324 const char *name = l->function_name;
13325
13326 /* Allow for some names to be NULL, ignore them. */
13327 if (name == NULL)
13328 continue;
13329
13330 slot = (const char **) htab_find_slot (htab, (const void *) name,
13331 INSERT);
13332 /* NOTE: We can assume slot != NULL here because xcalloc never
13333 returns NULL. */
13334 if (*slot != NULL)
13335 {
13336 htab_delete (htab);
13337 return 1;
13338 }
13339 *slot = name;
13340 }
13341
13342 htab_delete (htab);
13343 return 0;
13344 }
13345
13346 /* When symbols change, it probably means the sources changed as well,
13347 and it might mean the static tracepoint markers are no longer at
13348 the same address or line numbers they used to be at last we
13349 checked. Losing your static tracepoints whenever you rebuild is
13350 undesirable. This function tries to resync/rematch gdb static
13351 tracepoints with the markers on the target, for static tracepoints
13352 that have not been set by marker id. Static tracepoint that have
13353 been set by marker id are reset by marker id in breakpoint_re_set.
13354 The heuristic is:
13355
13356 1) For a tracepoint set at a specific address, look for a marker at
13357 the old PC. If one is found there, assume to be the same marker.
13358 If the name / string id of the marker found is different from the
13359 previous known name, assume that means the user renamed the marker
13360 in the sources, and output a warning.
13361
13362 2) For a tracepoint set at a given line number, look for a marker
13363 at the new address of the old line number. If one is found there,
13364 assume to be the same marker. If the name / string id of the
13365 marker found is different from the previous known name, assume that
13366 means the user renamed the marker in the sources, and output a
13367 warning.
13368
13369 3) If a marker is no longer found at the same address or line, it
13370 may mean the marker no longer exists. But it may also just mean
13371 the code changed a bit. Maybe the user added a few lines of code
13372 that made the marker move up or down (in line number terms). Ask
13373 the target for info about the marker with the string id as we knew
13374 it. If found, update line number and address in the matching
13375 static tracepoint. This will get confused if there's more than one
13376 marker with the same ID (possible in UST, although unadvised
13377 precisely because it confuses tools). */
13378
13379 static struct symtab_and_line
13380 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13381 {
13382 struct tracepoint *tp = (struct tracepoint *) b;
13383 struct static_tracepoint_marker marker;
13384 CORE_ADDR pc;
13385
13386 pc = sal.pc;
13387 if (sal.line)
13388 find_line_pc (sal.symtab, sal.line, &pc);
13389
13390 if (target_static_tracepoint_marker_at (pc, &marker))
13391 {
13392 if (tp->static_trace_marker_id != marker.str_id)
13393 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13394 b->number, tp->static_trace_marker_id.c_str (),
13395 marker.str_id.c_str ());
13396
13397 tp->static_trace_marker_id = std::move (marker.str_id);
13398
13399 return sal;
13400 }
13401
13402 /* Old marker wasn't found on target at lineno. Try looking it up
13403 by string ID. */
13404 if (!sal.explicit_pc
13405 && sal.line != 0
13406 && sal.symtab != NULL
13407 && !tp->static_trace_marker_id.empty ())
13408 {
13409 std::vector<static_tracepoint_marker> markers
13410 = target_static_tracepoint_markers_by_strid
13411 (tp->static_trace_marker_id.c_str ());
13412
13413 if (!markers.empty ())
13414 {
13415 struct symbol *sym;
13416 struct static_tracepoint_marker *tpmarker;
13417 struct ui_out *uiout = current_uiout;
13418 struct explicit_location explicit_loc;
13419
13420 tpmarker = &markers[0];
13421
13422 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13423
13424 warning (_("marker for static tracepoint %d (%s) not "
13425 "found at previous line number"),
13426 b->number, tp->static_trace_marker_id.c_str ());
13427
13428 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13429 sym = find_pc_sect_function (tpmarker->address, NULL);
13430 uiout->text ("Now in ");
13431 if (sym)
13432 {
13433 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13434 ui_out_style_kind::FUNCTION);
13435 uiout->text (" at ");
13436 }
13437 uiout->field_string ("file",
13438 symtab_to_filename_for_display (sal2.symtab),
13439 ui_out_style_kind::FILE);
13440 uiout->text (":");
13441
13442 if (uiout->is_mi_like_p ())
13443 {
13444 const char *fullname = symtab_to_fullname (sal2.symtab);
13445
13446 uiout->field_string ("fullname", fullname);
13447 }
13448
13449 uiout->field_int ("line", sal2.line);
13450 uiout->text ("\n");
13451
13452 b->loc->line_number = sal2.line;
13453 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13454
13455 b->location.reset (NULL);
13456 initialize_explicit_location (&explicit_loc);
13457 explicit_loc.source_filename
13458 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13459 explicit_loc.line_offset.offset = b->loc->line_number;
13460 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13461 b->location = new_explicit_location (&explicit_loc);
13462
13463 /* Might be nice to check if function changed, and warn if
13464 so. */
13465 }
13466 }
13467 return sal;
13468 }
13469
13470 /* Returns 1 iff locations A and B are sufficiently same that
13471 we don't need to report breakpoint as changed. */
13472
13473 static int
13474 locations_are_equal (struct bp_location *a, struct bp_location *b)
13475 {
13476 while (a && b)
13477 {
13478 if (a->address != b->address)
13479 return 0;
13480
13481 if (a->shlib_disabled != b->shlib_disabled)
13482 return 0;
13483
13484 if (a->enabled != b->enabled)
13485 return 0;
13486
13487 a = a->next;
13488 b = b->next;
13489 }
13490
13491 if ((a == NULL) != (b == NULL))
13492 return 0;
13493
13494 return 1;
13495 }
13496
13497 /* Split all locations of B that are bound to PSPACE out of B's
13498 location list to a separate list and return that list's head. If
13499 PSPACE is NULL, hoist out all locations of B. */
13500
13501 static struct bp_location *
13502 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13503 {
13504 struct bp_location head;
13505 struct bp_location *i = b->loc;
13506 struct bp_location **i_link = &b->loc;
13507 struct bp_location *hoisted = &head;
13508
13509 if (pspace == NULL)
13510 {
13511 i = b->loc;
13512 b->loc = NULL;
13513 return i;
13514 }
13515
13516 head.next = NULL;
13517
13518 while (i != NULL)
13519 {
13520 if (i->pspace == pspace)
13521 {
13522 *i_link = i->next;
13523 i->next = NULL;
13524 hoisted->next = i;
13525 hoisted = i;
13526 }
13527 else
13528 i_link = &i->next;
13529 i = *i_link;
13530 }
13531
13532 return head.next;
13533 }
13534
13535 /* Create new breakpoint locations for B (a hardware or software
13536 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13537 zero, then B is a ranged breakpoint. Only recreates locations for
13538 FILTER_PSPACE. Locations of other program spaces are left
13539 untouched. */
13540
13541 void
13542 update_breakpoint_locations (struct breakpoint *b,
13543 struct program_space *filter_pspace,
13544 gdb::array_view<const symtab_and_line> sals,
13545 gdb::array_view<const symtab_and_line> sals_end)
13546 {
13547 struct bp_location *existing_locations;
13548
13549 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13550 {
13551 /* Ranged breakpoints have only one start location and one end
13552 location. */
13553 b->enable_state = bp_disabled;
13554 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13555 "multiple locations found\n"),
13556 b->number);
13557 return;
13558 }
13559
13560 /* If there's no new locations, and all existing locations are
13561 pending, don't do anything. This optimizes the common case where
13562 all locations are in the same shared library, that was unloaded.
13563 We'd like to retain the location, so that when the library is
13564 loaded again, we don't loose the enabled/disabled status of the
13565 individual locations. */
13566 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13567 return;
13568
13569 existing_locations = hoist_existing_locations (b, filter_pspace);
13570
13571 for (const auto &sal : sals)
13572 {
13573 struct bp_location *new_loc;
13574
13575 switch_to_program_space_and_thread (sal.pspace);
13576
13577 new_loc = add_location_to_breakpoint (b, &sal);
13578
13579 /* Reparse conditions, they might contain references to the
13580 old symtab. */
13581 if (b->cond_string != NULL)
13582 {
13583 const char *s;
13584
13585 s = b->cond_string;
13586 TRY
13587 {
13588 new_loc->cond = parse_exp_1 (&s, sal.pc,
13589 block_for_pc (sal.pc),
13590 0);
13591 }
13592 CATCH (e, RETURN_MASK_ERROR)
13593 {
13594 warning (_("failed to reevaluate condition "
13595 "for breakpoint %d: %s"),
13596 b->number, e.message);
13597 new_loc->enabled = 0;
13598 }
13599 END_CATCH
13600 }
13601
13602 if (!sals_end.empty ())
13603 {
13604 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13605
13606 new_loc->length = end - sals[0].pc + 1;
13607 }
13608 }
13609
13610 /* If possible, carry over 'disable' status from existing
13611 breakpoints. */
13612 {
13613 struct bp_location *e = existing_locations;
13614 /* If there are multiple breakpoints with the same function name,
13615 e.g. for inline functions, comparing function names won't work.
13616 Instead compare pc addresses; this is just a heuristic as things
13617 may have moved, but in practice it gives the correct answer
13618 often enough until a better solution is found. */
13619 int have_ambiguous_names = ambiguous_names_p (b->loc);
13620
13621 for (; e; e = e->next)
13622 {
13623 if (!e->enabled && e->function_name)
13624 {
13625 struct bp_location *l = b->loc;
13626 if (have_ambiguous_names)
13627 {
13628 for (; l; l = l->next)
13629 if (breakpoint_locations_match (e, l))
13630 {
13631 l->enabled = 0;
13632 break;
13633 }
13634 }
13635 else
13636 {
13637 for (; l; l = l->next)
13638 if (l->function_name
13639 && strcmp (e->function_name, l->function_name) == 0)
13640 {
13641 l->enabled = 0;
13642 break;
13643 }
13644 }
13645 }
13646 }
13647 }
13648
13649 if (!locations_are_equal (existing_locations, b->loc))
13650 gdb::observers::breakpoint_modified.notify (b);
13651 }
13652
13653 /* Find the SaL locations corresponding to the given LOCATION.
13654 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13655
13656 static std::vector<symtab_and_line>
13657 location_to_sals (struct breakpoint *b, struct event_location *location,
13658 struct program_space *search_pspace, int *found)
13659 {
13660 struct gdb_exception exception = exception_none;
13661
13662 gdb_assert (b->ops != NULL);
13663
13664 std::vector<symtab_and_line> sals;
13665
13666 TRY
13667 {
13668 sals = b->ops->decode_location (b, location, search_pspace);
13669 }
13670 CATCH (e, RETURN_MASK_ERROR)
13671 {
13672 int not_found_and_ok = 0;
13673
13674 exception = e;
13675
13676 /* For pending breakpoints, it's expected that parsing will
13677 fail until the right shared library is loaded. User has
13678 already told to create pending breakpoints and don't need
13679 extra messages. If breakpoint is in bp_shlib_disabled
13680 state, then user already saw the message about that
13681 breakpoint being disabled, and don't want to see more
13682 errors. */
13683 if (e.error == NOT_FOUND_ERROR
13684 && (b->condition_not_parsed
13685 || (b->loc != NULL
13686 && search_pspace != NULL
13687 && b->loc->pspace != search_pspace)
13688 || (b->loc && b->loc->shlib_disabled)
13689 || (b->loc && b->loc->pspace->executing_startup)
13690 || b->enable_state == bp_disabled))
13691 not_found_and_ok = 1;
13692
13693 if (!not_found_and_ok)
13694 {
13695 /* We surely don't want to warn about the same breakpoint
13696 10 times. One solution, implemented here, is disable
13697 the breakpoint on error. Another solution would be to
13698 have separate 'warning emitted' flag. Since this
13699 happens only when a binary has changed, I don't know
13700 which approach is better. */
13701 b->enable_state = bp_disabled;
13702 throw_exception (e);
13703 }
13704 }
13705 END_CATCH
13706
13707 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13708 {
13709 for (auto &sal : sals)
13710 resolve_sal_pc (&sal);
13711 if (b->condition_not_parsed && b->extra_string != NULL)
13712 {
13713 char *cond_string, *extra_string;
13714 int thread, task;
13715
13716 find_condition_and_thread (b->extra_string, sals[0].pc,
13717 &cond_string, &thread, &task,
13718 &extra_string);
13719 gdb_assert (b->cond_string == NULL);
13720 if (cond_string)
13721 b->cond_string = cond_string;
13722 b->thread = thread;
13723 b->task = task;
13724 if (extra_string)
13725 {
13726 xfree (b->extra_string);
13727 b->extra_string = extra_string;
13728 }
13729 b->condition_not_parsed = 0;
13730 }
13731
13732 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13733 sals[0] = update_static_tracepoint (b, sals[0]);
13734
13735 *found = 1;
13736 }
13737 else
13738 *found = 0;
13739
13740 return sals;
13741 }
13742
13743 /* The default re_set method, for typical hardware or software
13744 breakpoints. Reevaluate the breakpoint and recreate its
13745 locations. */
13746
13747 static void
13748 breakpoint_re_set_default (struct breakpoint *b)
13749 {
13750 struct program_space *filter_pspace = current_program_space;
13751 std::vector<symtab_and_line> expanded, expanded_end;
13752
13753 int found;
13754 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13755 filter_pspace, &found);
13756 if (found)
13757 expanded = std::move (sals);
13758
13759 if (b->location_range_end != NULL)
13760 {
13761 std::vector<symtab_and_line> sals_end
13762 = location_to_sals (b, b->location_range_end.get (),
13763 filter_pspace, &found);
13764 if (found)
13765 expanded_end = std::move (sals_end);
13766 }
13767
13768 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13769 }
13770
13771 /* Default method for creating SALs from an address string. It basically
13772 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13773
13774 static void
13775 create_sals_from_location_default (const struct event_location *location,
13776 struct linespec_result *canonical,
13777 enum bptype type_wanted)
13778 {
13779 parse_breakpoint_sals (location, canonical);
13780 }
13781
13782 /* Call create_breakpoints_sal for the given arguments. This is the default
13783 function for the `create_breakpoints_sal' method of
13784 breakpoint_ops. */
13785
13786 static void
13787 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13788 struct linespec_result *canonical,
13789 gdb::unique_xmalloc_ptr<char> cond_string,
13790 gdb::unique_xmalloc_ptr<char> extra_string,
13791 enum bptype type_wanted,
13792 enum bpdisp disposition,
13793 int thread,
13794 int task, int ignore_count,
13795 const struct breakpoint_ops *ops,
13796 int from_tty, int enabled,
13797 int internal, unsigned flags)
13798 {
13799 create_breakpoints_sal (gdbarch, canonical,
13800 std::move (cond_string),
13801 std::move (extra_string),
13802 type_wanted, disposition,
13803 thread, task, ignore_count, ops, from_tty,
13804 enabled, internal, flags);
13805 }
13806
13807 /* Decode the line represented by S by calling decode_line_full. This is the
13808 default function for the `decode_location' method of breakpoint_ops. */
13809
13810 static std::vector<symtab_and_line>
13811 decode_location_default (struct breakpoint *b,
13812 const struct event_location *location,
13813 struct program_space *search_pspace)
13814 {
13815 struct linespec_result canonical;
13816
13817 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13818 (struct symtab *) NULL, 0,
13819 &canonical, multiple_symbols_all,
13820 b->filter);
13821
13822 /* We should get 0 or 1 resulting SALs. */
13823 gdb_assert (canonical.lsals.size () < 2);
13824
13825 if (!canonical.lsals.empty ())
13826 {
13827 const linespec_sals &lsal = canonical.lsals[0];
13828 return std::move (lsal.sals);
13829 }
13830 return {};
13831 }
13832
13833 /* Reset a breakpoint. */
13834
13835 static void
13836 breakpoint_re_set_one (breakpoint *b)
13837 {
13838 input_radix = b->input_radix;
13839 set_language (b->language);
13840
13841 b->ops->re_set (b);
13842 }
13843
13844 /* Re-set breakpoint locations for the current program space.
13845 Locations bound to other program spaces are left untouched. */
13846
13847 void
13848 breakpoint_re_set (void)
13849 {
13850 struct breakpoint *b, *b_tmp;
13851
13852 {
13853 scoped_restore_current_language save_language;
13854 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13855 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13856
13857 /* breakpoint_re_set_one sets the current_language to the language
13858 of the breakpoint it is resetting (see prepare_re_set_context)
13859 before re-evaluating the breakpoint's location. This change can
13860 unfortunately get undone by accident if the language_mode is set
13861 to auto, and we either switch frames, or more likely in this context,
13862 we select the current frame.
13863
13864 We prevent this by temporarily turning the language_mode to
13865 language_mode_manual. We restore it once all breakpoints
13866 have been reset. */
13867 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13868 language_mode = language_mode_manual;
13869
13870 /* Note: we must not try to insert locations until after all
13871 breakpoints have been re-set. Otherwise, e.g., when re-setting
13872 breakpoint 1, we'd insert the locations of breakpoint 2, which
13873 hadn't been re-set yet, and thus may have stale locations. */
13874
13875 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13876 {
13877 TRY
13878 {
13879 breakpoint_re_set_one (b);
13880 }
13881 CATCH (ex, RETURN_MASK_ALL)
13882 {
13883 exception_fprintf (gdb_stderr, ex,
13884 "Error in re-setting breakpoint %d: ",
13885 b->number);
13886 }
13887 END_CATCH
13888 }
13889
13890 jit_breakpoint_re_set ();
13891 }
13892
13893 create_overlay_event_breakpoint ();
13894 create_longjmp_master_breakpoint ();
13895 create_std_terminate_master_breakpoint ();
13896 create_exception_master_breakpoint ();
13897
13898 /* Now we can insert. */
13899 update_global_location_list (UGLL_MAY_INSERT);
13900 }
13901 \f
13902 /* Reset the thread number of this breakpoint:
13903
13904 - If the breakpoint is for all threads, leave it as-is.
13905 - Else, reset it to the current thread for inferior_ptid. */
13906 void
13907 breakpoint_re_set_thread (struct breakpoint *b)
13908 {
13909 if (b->thread != -1)
13910 {
13911 b->thread = inferior_thread ()->global_num;
13912
13913 /* We're being called after following a fork. The new fork is
13914 selected as current, and unless this was a vfork will have a
13915 different program space from the original thread. Reset that
13916 as well. */
13917 b->loc->pspace = current_program_space;
13918 }
13919 }
13920
13921 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13922 If from_tty is nonzero, it prints a message to that effect,
13923 which ends with a period (no newline). */
13924
13925 void
13926 set_ignore_count (int bptnum, int count, int from_tty)
13927 {
13928 struct breakpoint *b;
13929
13930 if (count < 0)
13931 count = 0;
13932
13933 ALL_BREAKPOINTS (b)
13934 if (b->number == bptnum)
13935 {
13936 if (is_tracepoint (b))
13937 {
13938 if (from_tty && count != 0)
13939 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13940 bptnum);
13941 return;
13942 }
13943
13944 b->ignore_count = count;
13945 if (from_tty)
13946 {
13947 if (count == 0)
13948 printf_filtered (_("Will stop next time "
13949 "breakpoint %d is reached."),
13950 bptnum);
13951 else if (count == 1)
13952 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13953 bptnum);
13954 else
13955 printf_filtered (_("Will ignore next %d "
13956 "crossings of breakpoint %d."),
13957 count, bptnum);
13958 }
13959 gdb::observers::breakpoint_modified.notify (b);
13960 return;
13961 }
13962
13963 error (_("No breakpoint number %d."), bptnum);
13964 }
13965
13966 /* Command to set ignore-count of breakpoint N to COUNT. */
13967
13968 static void
13969 ignore_command (const char *args, int from_tty)
13970 {
13971 const char *p = args;
13972 int num;
13973
13974 if (p == 0)
13975 error_no_arg (_("a breakpoint number"));
13976
13977 num = get_number (&p);
13978 if (num == 0)
13979 error (_("bad breakpoint number: '%s'"), args);
13980 if (*p == 0)
13981 error (_("Second argument (specified ignore-count) is missing."));
13982
13983 set_ignore_count (num,
13984 longest_to_int (value_as_long (parse_and_eval (p))),
13985 from_tty);
13986 if (from_tty)
13987 printf_filtered ("\n");
13988 }
13989 \f
13990
13991 /* Call FUNCTION on each of the breakpoints with numbers in the range
13992 defined by BP_NUM_RANGE (an inclusive range). */
13993
13994 static void
13995 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13996 gdb::function_view<void (breakpoint *)> function)
13997 {
13998 if (bp_num_range.first == 0)
13999 {
14000 warning (_("bad breakpoint number at or near '%d'"),
14001 bp_num_range.first);
14002 }
14003 else
14004 {
14005 struct breakpoint *b, *tmp;
14006
14007 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14008 {
14009 bool match = false;
14010
14011 ALL_BREAKPOINTS_SAFE (b, tmp)
14012 if (b->number == i)
14013 {
14014 match = true;
14015 function (b);
14016 break;
14017 }
14018 if (!match)
14019 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14020 }
14021 }
14022 }
14023
14024 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14025 ARGS. */
14026
14027 static void
14028 map_breakpoint_numbers (const char *args,
14029 gdb::function_view<void (breakpoint *)> function)
14030 {
14031 if (args == NULL || *args == '\0')
14032 error_no_arg (_("one or more breakpoint numbers"));
14033
14034 number_or_range_parser parser (args);
14035
14036 while (!parser.finished ())
14037 {
14038 int num = parser.get_number ();
14039 map_breakpoint_number_range (std::make_pair (num, num), function);
14040 }
14041 }
14042
14043 /* Return the breakpoint location structure corresponding to the
14044 BP_NUM and LOC_NUM values. */
14045
14046 static struct bp_location *
14047 find_location_by_number (int bp_num, int loc_num)
14048 {
14049 struct breakpoint *b;
14050
14051 ALL_BREAKPOINTS (b)
14052 if (b->number == bp_num)
14053 {
14054 break;
14055 }
14056
14057 if (!b || b->number != bp_num)
14058 error (_("Bad breakpoint number '%d'"), bp_num);
14059
14060 if (loc_num == 0)
14061 error (_("Bad breakpoint location number '%d'"), loc_num);
14062
14063 int n = 0;
14064 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14065 if (++n == loc_num)
14066 return loc;
14067
14068 error (_("Bad breakpoint location number '%d'"), loc_num);
14069 }
14070
14071 /* Modes of operation for extract_bp_num. */
14072 enum class extract_bp_kind
14073 {
14074 /* Extracting a breakpoint number. */
14075 bp,
14076
14077 /* Extracting a location number. */
14078 loc,
14079 };
14080
14081 /* Extract a breakpoint or location number (as determined by KIND)
14082 from the string starting at START. TRAILER is a character which
14083 can be found after the number. If you don't want a trailer, use
14084 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14085 string. This always returns a positive integer. */
14086
14087 static int
14088 extract_bp_num (extract_bp_kind kind, const char *start,
14089 int trailer, const char **end_out = NULL)
14090 {
14091 const char *end = start;
14092 int num = get_number_trailer (&end, trailer);
14093 if (num < 0)
14094 error (kind == extract_bp_kind::bp
14095 ? _("Negative breakpoint number '%.*s'")
14096 : _("Negative breakpoint location number '%.*s'"),
14097 int (end - start), start);
14098 if (num == 0)
14099 error (kind == extract_bp_kind::bp
14100 ? _("Bad breakpoint number '%.*s'")
14101 : _("Bad breakpoint location number '%.*s'"),
14102 int (end - start), start);
14103
14104 if (end_out != NULL)
14105 *end_out = end;
14106 return num;
14107 }
14108
14109 /* Extract a breakpoint or location range (as determined by KIND) in
14110 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14111 representing the (inclusive) range. The returned pair's elements
14112 are always positive integers. */
14113
14114 static std::pair<int, int>
14115 extract_bp_or_bp_range (extract_bp_kind kind,
14116 const std::string &arg,
14117 std::string::size_type arg_offset)
14118 {
14119 std::pair<int, int> range;
14120 const char *bp_loc = &arg[arg_offset];
14121 std::string::size_type dash = arg.find ('-', arg_offset);
14122 if (dash != std::string::npos)
14123 {
14124 /* bp_loc is a range (x-z). */
14125 if (arg.length () == dash + 1)
14126 error (kind == extract_bp_kind::bp
14127 ? _("Bad breakpoint number at or near: '%s'")
14128 : _("Bad breakpoint location number at or near: '%s'"),
14129 bp_loc);
14130
14131 const char *end;
14132 const char *start_first = bp_loc;
14133 const char *start_second = &arg[dash + 1];
14134 range.first = extract_bp_num (kind, start_first, '-');
14135 range.second = extract_bp_num (kind, start_second, '\0', &end);
14136
14137 if (range.first > range.second)
14138 error (kind == extract_bp_kind::bp
14139 ? _("Inverted breakpoint range at '%.*s'")
14140 : _("Inverted breakpoint location range at '%.*s'"),
14141 int (end - start_first), start_first);
14142 }
14143 else
14144 {
14145 /* bp_loc is a single value. */
14146 range.first = extract_bp_num (kind, bp_loc, '\0');
14147 range.second = range.first;
14148 }
14149 return range;
14150 }
14151
14152 /* Extract the breakpoint/location range specified by ARG. Returns
14153 the breakpoint range in BP_NUM_RANGE, and the location range in
14154 BP_LOC_RANGE.
14155
14156 ARG may be in any of the following forms:
14157
14158 x where 'x' is a breakpoint number.
14159 x-y where 'x' and 'y' specify a breakpoint numbers range.
14160 x.y where 'x' is a breakpoint number and 'y' a location number.
14161 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14162 location number range.
14163 */
14164
14165 static void
14166 extract_bp_number_and_location (const std::string &arg,
14167 std::pair<int, int> &bp_num_range,
14168 std::pair<int, int> &bp_loc_range)
14169 {
14170 std::string::size_type dot = arg.find ('.');
14171
14172 if (dot != std::string::npos)
14173 {
14174 /* Handle 'x.y' and 'x.y-z' cases. */
14175
14176 if (arg.length () == dot + 1 || dot == 0)
14177 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14178
14179 bp_num_range.first
14180 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14181 bp_num_range.second = bp_num_range.first;
14182
14183 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14184 arg, dot + 1);
14185 }
14186 else
14187 {
14188 /* Handle x and x-y cases. */
14189
14190 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14191 bp_loc_range.first = 0;
14192 bp_loc_range.second = 0;
14193 }
14194 }
14195
14196 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14197 specifies whether to enable or disable. */
14198
14199 static void
14200 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14201 {
14202 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14203 if (loc != NULL)
14204 {
14205 if (loc->enabled != enable)
14206 {
14207 loc->enabled = enable;
14208 mark_breakpoint_location_modified (loc);
14209 }
14210 if (target_supports_enable_disable_tracepoint ()
14211 && current_trace_status ()->running && loc->owner
14212 && is_tracepoint (loc->owner))
14213 target_disable_tracepoint (loc);
14214 }
14215 update_global_location_list (UGLL_DONT_INSERT);
14216
14217 gdb::observers::breakpoint_modified.notify (loc->owner);
14218 }
14219
14220 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14221 number of the breakpoint, and BP_LOC_RANGE specifies the
14222 (inclusive) range of location numbers of that breakpoint to
14223 enable/disable. ENABLE specifies whether to enable or disable the
14224 location. */
14225
14226 static void
14227 enable_disable_breakpoint_location_range (int bp_num,
14228 std::pair<int, int> &bp_loc_range,
14229 bool enable)
14230 {
14231 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14232 enable_disable_bp_num_loc (bp_num, i, enable);
14233 }
14234
14235 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14236 If from_tty is nonzero, it prints a message to that effect,
14237 which ends with a period (no newline). */
14238
14239 void
14240 disable_breakpoint (struct breakpoint *bpt)
14241 {
14242 /* Never disable a watchpoint scope breakpoint; we want to
14243 hit them when we leave scope so we can delete both the
14244 watchpoint and its scope breakpoint at that time. */
14245 if (bpt->type == bp_watchpoint_scope)
14246 return;
14247
14248 bpt->enable_state = bp_disabled;
14249
14250 /* Mark breakpoint locations modified. */
14251 mark_breakpoint_modified (bpt);
14252
14253 if (target_supports_enable_disable_tracepoint ()
14254 && current_trace_status ()->running && is_tracepoint (bpt))
14255 {
14256 struct bp_location *location;
14257
14258 for (location = bpt->loc; location; location = location->next)
14259 target_disable_tracepoint (location);
14260 }
14261
14262 update_global_location_list (UGLL_DONT_INSERT);
14263
14264 gdb::observers::breakpoint_modified.notify (bpt);
14265 }
14266
14267 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14268 specified in ARGS. ARGS may be in any of the formats handled by
14269 extract_bp_number_and_location. ENABLE specifies whether to enable
14270 or disable the breakpoints/locations. */
14271
14272 static void
14273 enable_disable_command (const char *args, int from_tty, bool enable)
14274 {
14275 if (args == 0)
14276 {
14277 struct breakpoint *bpt;
14278
14279 ALL_BREAKPOINTS (bpt)
14280 if (user_breakpoint_p (bpt))
14281 {
14282 if (enable)
14283 enable_breakpoint (bpt);
14284 else
14285 disable_breakpoint (bpt);
14286 }
14287 }
14288 else
14289 {
14290 std::string num = extract_arg (&args);
14291
14292 while (!num.empty ())
14293 {
14294 std::pair<int, int> bp_num_range, bp_loc_range;
14295
14296 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14297
14298 if (bp_loc_range.first == bp_loc_range.second
14299 && bp_loc_range.first == 0)
14300 {
14301 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14302 map_breakpoint_number_range (bp_num_range,
14303 enable
14304 ? enable_breakpoint
14305 : disable_breakpoint);
14306 }
14307 else
14308 {
14309 /* Handle breakpoint ids with formats 'x.y' or
14310 'x.y-z'. */
14311 enable_disable_breakpoint_location_range
14312 (bp_num_range.first, bp_loc_range, enable);
14313 }
14314 num = extract_arg (&args);
14315 }
14316 }
14317 }
14318
14319 /* The disable command disables the specified breakpoints/locations
14320 (or all defined breakpoints) so they're no longer effective in
14321 stopping the inferior. ARGS may be in any of the forms defined in
14322 extract_bp_number_and_location. */
14323
14324 static void
14325 disable_command (const char *args, int from_tty)
14326 {
14327 enable_disable_command (args, from_tty, false);
14328 }
14329
14330 static void
14331 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14332 int count)
14333 {
14334 int target_resources_ok;
14335
14336 if (bpt->type == bp_hardware_breakpoint)
14337 {
14338 int i;
14339 i = hw_breakpoint_used_count ();
14340 target_resources_ok =
14341 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14342 i + 1, 0);
14343 if (target_resources_ok == 0)
14344 error (_("No hardware breakpoint support in the target."));
14345 else if (target_resources_ok < 0)
14346 error (_("Hardware breakpoints used exceeds limit."));
14347 }
14348
14349 if (is_watchpoint (bpt))
14350 {
14351 /* Initialize it just to avoid a GCC false warning. */
14352 enum enable_state orig_enable_state = bp_disabled;
14353
14354 TRY
14355 {
14356 struct watchpoint *w = (struct watchpoint *) bpt;
14357
14358 orig_enable_state = bpt->enable_state;
14359 bpt->enable_state = bp_enabled;
14360 update_watchpoint (w, 1 /* reparse */);
14361 }
14362 CATCH (e, RETURN_MASK_ALL)
14363 {
14364 bpt->enable_state = orig_enable_state;
14365 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14366 bpt->number);
14367 return;
14368 }
14369 END_CATCH
14370 }
14371
14372 bpt->enable_state = bp_enabled;
14373
14374 /* Mark breakpoint locations modified. */
14375 mark_breakpoint_modified (bpt);
14376
14377 if (target_supports_enable_disable_tracepoint ()
14378 && current_trace_status ()->running && is_tracepoint (bpt))
14379 {
14380 struct bp_location *location;
14381
14382 for (location = bpt->loc; location; location = location->next)
14383 target_enable_tracepoint (location);
14384 }
14385
14386 bpt->disposition = disposition;
14387 bpt->enable_count = count;
14388 update_global_location_list (UGLL_MAY_INSERT);
14389
14390 gdb::observers::breakpoint_modified.notify (bpt);
14391 }
14392
14393
14394 void
14395 enable_breakpoint (struct breakpoint *bpt)
14396 {
14397 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14398 }
14399
14400 /* The enable command enables the specified breakpoints/locations (or
14401 all defined breakpoints) so they once again become (or continue to
14402 be) effective in stopping the inferior. ARGS may be in any of the
14403 forms defined in extract_bp_number_and_location. */
14404
14405 static void
14406 enable_command (const char *args, int from_tty)
14407 {
14408 enable_disable_command (args, from_tty, true);
14409 }
14410
14411 static void
14412 enable_once_command (const char *args, int from_tty)
14413 {
14414 map_breakpoint_numbers
14415 (args, [&] (breakpoint *b)
14416 {
14417 iterate_over_related_breakpoints
14418 (b, [&] (breakpoint *bpt)
14419 {
14420 enable_breakpoint_disp (bpt, disp_disable, 1);
14421 });
14422 });
14423 }
14424
14425 static void
14426 enable_count_command (const char *args, int from_tty)
14427 {
14428 int count;
14429
14430 if (args == NULL)
14431 error_no_arg (_("hit count"));
14432
14433 count = get_number (&args);
14434
14435 map_breakpoint_numbers
14436 (args, [&] (breakpoint *b)
14437 {
14438 iterate_over_related_breakpoints
14439 (b, [&] (breakpoint *bpt)
14440 {
14441 enable_breakpoint_disp (bpt, disp_disable, count);
14442 });
14443 });
14444 }
14445
14446 static void
14447 enable_delete_command (const char *args, int from_tty)
14448 {
14449 map_breakpoint_numbers
14450 (args, [&] (breakpoint *b)
14451 {
14452 iterate_over_related_breakpoints
14453 (b, [&] (breakpoint *bpt)
14454 {
14455 enable_breakpoint_disp (bpt, disp_del, 1);
14456 });
14457 });
14458 }
14459 \f
14460 static void
14461 set_breakpoint_cmd (const char *args, int from_tty)
14462 {
14463 }
14464
14465 static void
14466 show_breakpoint_cmd (const char *args, int from_tty)
14467 {
14468 }
14469
14470 /* Invalidate last known value of any hardware watchpoint if
14471 the memory which that value represents has been written to by
14472 GDB itself. */
14473
14474 static void
14475 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14476 CORE_ADDR addr, ssize_t len,
14477 const bfd_byte *data)
14478 {
14479 struct breakpoint *bp;
14480
14481 ALL_BREAKPOINTS (bp)
14482 if (bp->enable_state == bp_enabled
14483 && bp->type == bp_hardware_watchpoint)
14484 {
14485 struct watchpoint *wp = (struct watchpoint *) bp;
14486
14487 if (wp->val_valid && wp->val != nullptr)
14488 {
14489 struct bp_location *loc;
14490
14491 for (loc = bp->loc; loc != NULL; loc = loc->next)
14492 if (loc->loc_type == bp_loc_hardware_watchpoint
14493 && loc->address + loc->length > addr
14494 && addr + len > loc->address)
14495 {
14496 wp->val = NULL;
14497 wp->val_valid = 0;
14498 }
14499 }
14500 }
14501 }
14502
14503 /* Create and insert a breakpoint for software single step. */
14504
14505 void
14506 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14507 const address_space *aspace,
14508 CORE_ADDR next_pc)
14509 {
14510 struct thread_info *tp = inferior_thread ();
14511 struct symtab_and_line sal;
14512 CORE_ADDR pc = next_pc;
14513
14514 if (tp->control.single_step_breakpoints == NULL)
14515 {
14516 tp->control.single_step_breakpoints
14517 = new_single_step_breakpoint (tp->global_num, gdbarch);
14518 }
14519
14520 sal = find_pc_line (pc, 0);
14521 sal.pc = pc;
14522 sal.section = find_pc_overlay (pc);
14523 sal.explicit_pc = 1;
14524 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14525
14526 update_global_location_list (UGLL_INSERT);
14527 }
14528
14529 /* Insert single step breakpoints according to the current state. */
14530
14531 int
14532 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14533 {
14534 struct regcache *regcache = get_current_regcache ();
14535 std::vector<CORE_ADDR> next_pcs;
14536
14537 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14538
14539 if (!next_pcs.empty ())
14540 {
14541 struct frame_info *frame = get_current_frame ();
14542 const address_space *aspace = get_frame_address_space (frame);
14543
14544 for (CORE_ADDR pc : next_pcs)
14545 insert_single_step_breakpoint (gdbarch, aspace, pc);
14546
14547 return 1;
14548 }
14549 else
14550 return 0;
14551 }
14552
14553 /* See breakpoint.h. */
14554
14555 int
14556 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14557 const address_space *aspace,
14558 CORE_ADDR pc)
14559 {
14560 struct bp_location *loc;
14561
14562 for (loc = bp->loc; loc != NULL; loc = loc->next)
14563 if (loc->inserted
14564 && breakpoint_location_address_match (loc, aspace, pc))
14565 return 1;
14566
14567 return 0;
14568 }
14569
14570 /* Check whether a software single-step breakpoint is inserted at
14571 PC. */
14572
14573 int
14574 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14575 CORE_ADDR pc)
14576 {
14577 struct breakpoint *bpt;
14578
14579 ALL_BREAKPOINTS (bpt)
14580 {
14581 if (bpt->type == bp_single_step
14582 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14583 return 1;
14584 }
14585 return 0;
14586 }
14587
14588 /* Tracepoint-specific operations. */
14589
14590 /* Set tracepoint count to NUM. */
14591 static void
14592 set_tracepoint_count (int num)
14593 {
14594 tracepoint_count = num;
14595 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14596 }
14597
14598 static void
14599 trace_command (const char *arg, int from_tty)
14600 {
14601 struct breakpoint_ops *ops;
14602
14603 event_location_up location = string_to_event_location (&arg,
14604 current_language);
14605 if (location != NULL
14606 && event_location_type (location.get ()) == PROBE_LOCATION)
14607 ops = &tracepoint_probe_breakpoint_ops;
14608 else
14609 ops = &tracepoint_breakpoint_ops;
14610
14611 create_breakpoint (get_current_arch (),
14612 location.get (),
14613 NULL, 0, arg, 1 /* parse arg */,
14614 0 /* tempflag */,
14615 bp_tracepoint /* type_wanted */,
14616 0 /* Ignore count */,
14617 pending_break_support,
14618 ops,
14619 from_tty,
14620 1 /* enabled */,
14621 0 /* internal */, 0);
14622 }
14623
14624 static void
14625 ftrace_command (const char *arg, int from_tty)
14626 {
14627 event_location_up location = string_to_event_location (&arg,
14628 current_language);
14629 create_breakpoint (get_current_arch (),
14630 location.get (),
14631 NULL, 0, arg, 1 /* parse arg */,
14632 0 /* tempflag */,
14633 bp_fast_tracepoint /* type_wanted */,
14634 0 /* Ignore count */,
14635 pending_break_support,
14636 &tracepoint_breakpoint_ops,
14637 from_tty,
14638 1 /* enabled */,
14639 0 /* internal */, 0);
14640 }
14641
14642 /* strace command implementation. Creates a static tracepoint. */
14643
14644 static void
14645 strace_command (const char *arg, int from_tty)
14646 {
14647 struct breakpoint_ops *ops;
14648 event_location_up location;
14649
14650 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14651 or with a normal static tracepoint. */
14652 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14653 {
14654 ops = &strace_marker_breakpoint_ops;
14655 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14656 }
14657 else
14658 {
14659 ops = &tracepoint_breakpoint_ops;
14660 location = string_to_event_location (&arg, current_language);
14661 }
14662
14663 create_breakpoint (get_current_arch (),
14664 location.get (),
14665 NULL, 0, arg, 1 /* parse arg */,
14666 0 /* tempflag */,
14667 bp_static_tracepoint /* type_wanted */,
14668 0 /* Ignore count */,
14669 pending_break_support,
14670 ops,
14671 from_tty,
14672 1 /* enabled */,
14673 0 /* internal */, 0);
14674 }
14675
14676 /* Set up a fake reader function that gets command lines from a linked
14677 list that was acquired during tracepoint uploading. */
14678
14679 static struct uploaded_tp *this_utp;
14680 static int next_cmd;
14681
14682 static char *
14683 read_uploaded_action (void)
14684 {
14685 char *rslt = nullptr;
14686
14687 if (next_cmd < this_utp->cmd_strings.size ())
14688 {
14689 rslt = this_utp->cmd_strings[next_cmd];
14690 next_cmd++;
14691 }
14692
14693 return rslt;
14694 }
14695
14696 /* Given information about a tracepoint as recorded on a target (which
14697 can be either a live system or a trace file), attempt to create an
14698 equivalent GDB tracepoint. This is not a reliable process, since
14699 the target does not necessarily have all the information used when
14700 the tracepoint was originally defined. */
14701
14702 struct tracepoint *
14703 create_tracepoint_from_upload (struct uploaded_tp *utp)
14704 {
14705 const char *addr_str;
14706 char small_buf[100];
14707 struct tracepoint *tp;
14708
14709 if (utp->at_string)
14710 addr_str = utp->at_string;
14711 else
14712 {
14713 /* In the absence of a source location, fall back to raw
14714 address. Since there is no way to confirm that the address
14715 means the same thing as when the trace was started, warn the
14716 user. */
14717 warning (_("Uploaded tracepoint %d has no "
14718 "source location, using raw address"),
14719 utp->number);
14720 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14721 addr_str = small_buf;
14722 }
14723
14724 /* There's not much we can do with a sequence of bytecodes. */
14725 if (utp->cond && !utp->cond_string)
14726 warning (_("Uploaded tracepoint %d condition "
14727 "has no source form, ignoring it"),
14728 utp->number);
14729
14730 event_location_up location = string_to_event_location (&addr_str,
14731 current_language);
14732 if (!create_breakpoint (get_current_arch (),
14733 location.get (),
14734 utp->cond_string, -1, addr_str,
14735 0 /* parse cond/thread */,
14736 0 /* tempflag */,
14737 utp->type /* type_wanted */,
14738 0 /* Ignore count */,
14739 pending_break_support,
14740 &tracepoint_breakpoint_ops,
14741 0 /* from_tty */,
14742 utp->enabled /* enabled */,
14743 0 /* internal */,
14744 CREATE_BREAKPOINT_FLAGS_INSERTED))
14745 return NULL;
14746
14747 /* Get the tracepoint we just created. */
14748 tp = get_tracepoint (tracepoint_count);
14749 gdb_assert (tp != NULL);
14750
14751 if (utp->pass > 0)
14752 {
14753 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14754 tp->number);
14755
14756 trace_pass_command (small_buf, 0);
14757 }
14758
14759 /* If we have uploaded versions of the original commands, set up a
14760 special-purpose "reader" function and call the usual command line
14761 reader, then pass the result to the breakpoint command-setting
14762 function. */
14763 if (!utp->cmd_strings.empty ())
14764 {
14765 counted_command_line cmd_list;
14766
14767 this_utp = utp;
14768 next_cmd = 0;
14769
14770 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14771
14772 breakpoint_set_commands (tp, std::move (cmd_list));
14773 }
14774 else if (!utp->actions.empty ()
14775 || !utp->step_actions.empty ())
14776 warning (_("Uploaded tracepoint %d actions "
14777 "have no source form, ignoring them"),
14778 utp->number);
14779
14780 /* Copy any status information that might be available. */
14781 tp->hit_count = utp->hit_count;
14782 tp->traceframe_usage = utp->traceframe_usage;
14783
14784 return tp;
14785 }
14786
14787 /* Print information on tracepoint number TPNUM_EXP, or all if
14788 omitted. */
14789
14790 static void
14791 info_tracepoints_command (const char *args, int from_tty)
14792 {
14793 struct ui_out *uiout = current_uiout;
14794 int num_printed;
14795
14796 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14797
14798 if (num_printed == 0)
14799 {
14800 if (args == NULL || *args == '\0')
14801 uiout->message ("No tracepoints.\n");
14802 else
14803 uiout->message ("No tracepoint matching '%s'.\n", args);
14804 }
14805
14806 default_collect_info ();
14807 }
14808
14809 /* The 'enable trace' command enables tracepoints.
14810 Not supported by all targets. */
14811 static void
14812 enable_trace_command (const char *args, int from_tty)
14813 {
14814 enable_command (args, from_tty);
14815 }
14816
14817 /* The 'disable trace' command disables tracepoints.
14818 Not supported by all targets. */
14819 static void
14820 disable_trace_command (const char *args, int from_tty)
14821 {
14822 disable_command (args, from_tty);
14823 }
14824
14825 /* Remove a tracepoint (or all if no argument). */
14826 static void
14827 delete_trace_command (const char *arg, int from_tty)
14828 {
14829 struct breakpoint *b, *b_tmp;
14830
14831 dont_repeat ();
14832
14833 if (arg == 0)
14834 {
14835 int breaks_to_delete = 0;
14836
14837 /* Delete all breakpoints if no argument.
14838 Do not delete internal or call-dummy breakpoints, these
14839 have to be deleted with an explicit breakpoint number
14840 argument. */
14841 ALL_TRACEPOINTS (b)
14842 if (is_tracepoint (b) && user_breakpoint_p (b))
14843 {
14844 breaks_to_delete = 1;
14845 break;
14846 }
14847
14848 /* Ask user only if there are some breakpoints to delete. */
14849 if (!from_tty
14850 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14851 {
14852 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14853 if (is_tracepoint (b) && user_breakpoint_p (b))
14854 delete_breakpoint (b);
14855 }
14856 }
14857 else
14858 map_breakpoint_numbers
14859 (arg, [&] (breakpoint *br)
14860 {
14861 iterate_over_related_breakpoints (br, delete_breakpoint);
14862 });
14863 }
14864
14865 /* Helper function for trace_pass_command. */
14866
14867 static void
14868 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14869 {
14870 tp->pass_count = count;
14871 gdb::observers::breakpoint_modified.notify (tp);
14872 if (from_tty)
14873 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14874 tp->number, count);
14875 }
14876
14877 /* Set passcount for tracepoint.
14878
14879 First command argument is passcount, second is tracepoint number.
14880 If tracepoint number omitted, apply to most recently defined.
14881 Also accepts special argument "all". */
14882
14883 static void
14884 trace_pass_command (const char *args, int from_tty)
14885 {
14886 struct tracepoint *t1;
14887 ULONGEST count;
14888
14889 if (args == 0 || *args == 0)
14890 error (_("passcount command requires an "
14891 "argument (count + optional TP num)"));
14892
14893 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14894
14895 args = skip_spaces (args);
14896 if (*args && strncasecmp (args, "all", 3) == 0)
14897 {
14898 struct breakpoint *b;
14899
14900 args += 3; /* Skip special argument "all". */
14901 if (*args)
14902 error (_("Junk at end of arguments."));
14903
14904 ALL_TRACEPOINTS (b)
14905 {
14906 t1 = (struct tracepoint *) b;
14907 trace_pass_set_count (t1, count, from_tty);
14908 }
14909 }
14910 else if (*args == '\0')
14911 {
14912 t1 = get_tracepoint_by_number (&args, NULL);
14913 if (t1)
14914 trace_pass_set_count (t1, count, from_tty);
14915 }
14916 else
14917 {
14918 number_or_range_parser parser (args);
14919 while (!parser.finished ())
14920 {
14921 t1 = get_tracepoint_by_number (&args, &parser);
14922 if (t1)
14923 trace_pass_set_count (t1, count, from_tty);
14924 }
14925 }
14926 }
14927
14928 struct tracepoint *
14929 get_tracepoint (int num)
14930 {
14931 struct breakpoint *t;
14932
14933 ALL_TRACEPOINTS (t)
14934 if (t->number == num)
14935 return (struct tracepoint *) t;
14936
14937 return NULL;
14938 }
14939
14940 /* Find the tracepoint with the given target-side number (which may be
14941 different from the tracepoint number after disconnecting and
14942 reconnecting). */
14943
14944 struct tracepoint *
14945 get_tracepoint_by_number_on_target (int num)
14946 {
14947 struct breakpoint *b;
14948
14949 ALL_TRACEPOINTS (b)
14950 {
14951 struct tracepoint *t = (struct tracepoint *) b;
14952
14953 if (t->number_on_target == num)
14954 return t;
14955 }
14956
14957 return NULL;
14958 }
14959
14960 /* Utility: parse a tracepoint number and look it up in the list.
14961 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14962 If the argument is missing, the most recent tracepoint
14963 (tracepoint_count) is returned. */
14964
14965 struct tracepoint *
14966 get_tracepoint_by_number (const char **arg,
14967 number_or_range_parser *parser)
14968 {
14969 struct breakpoint *t;
14970 int tpnum;
14971 const char *instring = arg == NULL ? NULL : *arg;
14972
14973 if (parser != NULL)
14974 {
14975 gdb_assert (!parser->finished ());
14976 tpnum = parser->get_number ();
14977 }
14978 else if (arg == NULL || *arg == NULL || ! **arg)
14979 tpnum = tracepoint_count;
14980 else
14981 tpnum = get_number (arg);
14982
14983 if (tpnum <= 0)
14984 {
14985 if (instring && *instring)
14986 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14987 instring);
14988 else
14989 printf_filtered (_("No previous tracepoint\n"));
14990 return NULL;
14991 }
14992
14993 ALL_TRACEPOINTS (t)
14994 if (t->number == tpnum)
14995 {
14996 return (struct tracepoint *) t;
14997 }
14998
14999 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15000 return NULL;
15001 }
15002
15003 void
15004 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15005 {
15006 if (b->thread != -1)
15007 fprintf_unfiltered (fp, " thread %d", b->thread);
15008
15009 if (b->task != 0)
15010 fprintf_unfiltered (fp, " task %d", b->task);
15011
15012 fprintf_unfiltered (fp, "\n");
15013 }
15014
15015 /* Save information on user settable breakpoints (watchpoints, etc) to
15016 a new script file named FILENAME. If FILTER is non-NULL, call it
15017 on each breakpoint and only include the ones for which it returns
15018 non-zero. */
15019
15020 static void
15021 save_breakpoints (const char *filename, int from_tty,
15022 int (*filter) (const struct breakpoint *))
15023 {
15024 struct breakpoint *tp;
15025 int any = 0;
15026 int extra_trace_bits = 0;
15027
15028 if (filename == 0 || *filename == 0)
15029 error (_("Argument required (file name in which to save)"));
15030
15031 /* See if we have anything to save. */
15032 ALL_BREAKPOINTS (tp)
15033 {
15034 /* Skip internal and momentary breakpoints. */
15035 if (!user_breakpoint_p (tp))
15036 continue;
15037
15038 /* If we have a filter, only save the breakpoints it accepts. */
15039 if (filter && !filter (tp))
15040 continue;
15041
15042 any = 1;
15043
15044 if (is_tracepoint (tp))
15045 {
15046 extra_trace_bits = 1;
15047
15048 /* We can stop searching. */
15049 break;
15050 }
15051 }
15052
15053 if (!any)
15054 {
15055 warning (_("Nothing to save."));
15056 return;
15057 }
15058
15059 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15060
15061 stdio_file fp;
15062
15063 if (!fp.open (expanded_filename.get (), "w"))
15064 error (_("Unable to open file '%s' for saving (%s)"),
15065 expanded_filename.get (), safe_strerror (errno));
15066
15067 if (extra_trace_bits)
15068 save_trace_state_variables (&fp);
15069
15070 ALL_BREAKPOINTS (tp)
15071 {
15072 /* Skip internal and momentary breakpoints. */
15073 if (!user_breakpoint_p (tp))
15074 continue;
15075
15076 /* If we have a filter, only save the breakpoints it accepts. */
15077 if (filter && !filter (tp))
15078 continue;
15079
15080 tp->ops->print_recreate (tp, &fp);
15081
15082 /* Note, we can't rely on tp->number for anything, as we can't
15083 assume the recreated breakpoint numbers will match. Use $bpnum
15084 instead. */
15085
15086 if (tp->cond_string)
15087 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15088
15089 if (tp->ignore_count)
15090 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15091
15092 if (tp->type != bp_dprintf && tp->commands)
15093 {
15094 fp.puts (" commands\n");
15095
15096 current_uiout->redirect (&fp);
15097 TRY
15098 {
15099 print_command_lines (current_uiout, tp->commands.get (), 2);
15100 }
15101 CATCH (ex, RETURN_MASK_ALL)
15102 {
15103 current_uiout->redirect (NULL);
15104 throw_exception (ex);
15105 }
15106 END_CATCH
15107
15108 current_uiout->redirect (NULL);
15109 fp.puts (" end\n");
15110 }
15111
15112 if (tp->enable_state == bp_disabled)
15113 fp.puts ("disable $bpnum\n");
15114
15115 /* If this is a multi-location breakpoint, check if the locations
15116 should be individually disabled. Watchpoint locations are
15117 special, and not user visible. */
15118 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15119 {
15120 struct bp_location *loc;
15121 int n = 1;
15122
15123 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15124 if (!loc->enabled)
15125 fp.printf ("disable $bpnum.%d\n", n);
15126 }
15127 }
15128
15129 if (extra_trace_bits && *default_collect)
15130 fp.printf ("set default-collect %s\n", default_collect);
15131
15132 if (from_tty)
15133 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15134 }
15135
15136 /* The `save breakpoints' command. */
15137
15138 static void
15139 save_breakpoints_command (const char *args, int from_tty)
15140 {
15141 save_breakpoints (args, from_tty, NULL);
15142 }
15143
15144 /* The `save tracepoints' command. */
15145
15146 static void
15147 save_tracepoints_command (const char *args, int from_tty)
15148 {
15149 save_breakpoints (args, from_tty, is_tracepoint);
15150 }
15151
15152 /* Create a vector of all tracepoints. */
15153
15154 std::vector<breakpoint *>
15155 all_tracepoints (void)
15156 {
15157 std::vector<breakpoint *> tp_vec;
15158 struct breakpoint *tp;
15159
15160 ALL_TRACEPOINTS (tp)
15161 {
15162 tp_vec.push_back (tp);
15163 }
15164
15165 return tp_vec;
15166 }
15167
15168 \f
15169 /* This help string is used to consolidate all the help string for specifying
15170 locations used by several commands. */
15171
15172 #define LOCATION_HELP_STRING \
15173 "Linespecs are colon-separated lists of location parameters, such as\n\
15174 source filename, function name, label name, and line number.\n\
15175 Example: To specify the start of a label named \"the_top\" in the\n\
15176 function \"fact\" in the file \"factorial.c\", use\n\
15177 \"factorial.c:fact:the_top\".\n\
15178 \n\
15179 Address locations begin with \"*\" and specify an exact address in the\n\
15180 program. Example: To specify the fourth byte past the start function\n\
15181 \"main\", use \"*main + 4\".\n\
15182 \n\
15183 Explicit locations are similar to linespecs but use an option/argument\n\
15184 syntax to specify location parameters.\n\
15185 Example: To specify the start of the label named \"the_top\" in the\n\
15186 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15187 -function fact -label the_top\".\n\
15188 \n\
15189 By default, a specified function is matched against the program's\n\
15190 functions in all scopes. For C++, this means in all namespaces and\n\
15191 classes. For Ada, this means in all packages. E.g., in C++,\n\
15192 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15193 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15194 specified name as a complete fully-qualified name instead.\n"
15195
15196 /* This help string is used for the break, hbreak, tbreak and thbreak
15197 commands. It is defined as a macro to prevent duplication.
15198 COMMAND should be a string constant containing the name of the
15199 command. */
15200
15201 #define BREAK_ARGS_HELP(command) \
15202 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15203 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15204 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15205 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15206 `-probe-dtrace' (for a DTrace probe).\n\
15207 LOCATION may be a linespec, address, or explicit location as described\n\
15208 below.\n\
15209 \n\
15210 With no LOCATION, uses current execution address of the selected\n\
15211 stack frame. This is useful for breaking on return to a stack frame.\n\
15212 \n\
15213 THREADNUM is the number from \"info threads\".\n\
15214 CONDITION is a boolean expression.\n\
15215 \n" LOCATION_HELP_STRING "\n\
15216 Multiple breakpoints at one place are permitted, and useful if their\n\
15217 conditions are different.\n\
15218 \n\
15219 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15220
15221 /* List of subcommands for "catch". */
15222 static struct cmd_list_element *catch_cmdlist;
15223
15224 /* List of subcommands for "tcatch". */
15225 static struct cmd_list_element *tcatch_cmdlist;
15226
15227 void
15228 add_catch_command (const char *name, const char *docstring,
15229 cmd_const_sfunc_ftype *sfunc,
15230 completer_ftype *completer,
15231 void *user_data_catch,
15232 void *user_data_tcatch)
15233 {
15234 struct cmd_list_element *command;
15235
15236 command = add_cmd (name, class_breakpoint, docstring,
15237 &catch_cmdlist);
15238 set_cmd_sfunc (command, sfunc);
15239 set_cmd_context (command, user_data_catch);
15240 set_cmd_completer (command, completer);
15241
15242 command = add_cmd (name, class_breakpoint, docstring,
15243 &tcatch_cmdlist);
15244 set_cmd_sfunc (command, sfunc);
15245 set_cmd_context (command, user_data_tcatch);
15246 set_cmd_completer (command, completer);
15247 }
15248
15249 static void
15250 save_command (const char *arg, int from_tty)
15251 {
15252 printf_unfiltered (_("\"save\" must be followed by "
15253 "the name of a save subcommand.\n"));
15254 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15255 }
15256
15257 struct breakpoint *
15258 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15259 void *data)
15260 {
15261 struct breakpoint *b, *b_tmp;
15262
15263 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15264 {
15265 if ((*callback) (b, data))
15266 return b;
15267 }
15268
15269 return NULL;
15270 }
15271
15272 /* Zero if any of the breakpoint's locations could be a location where
15273 functions have been inlined, nonzero otherwise. */
15274
15275 static int
15276 is_non_inline_function (struct breakpoint *b)
15277 {
15278 /* The shared library event breakpoint is set on the address of a
15279 non-inline function. */
15280 if (b->type == bp_shlib_event)
15281 return 1;
15282
15283 return 0;
15284 }
15285
15286 /* Nonzero if the specified PC cannot be a location where functions
15287 have been inlined. */
15288
15289 int
15290 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15291 const struct target_waitstatus *ws)
15292 {
15293 struct breakpoint *b;
15294 struct bp_location *bl;
15295
15296 ALL_BREAKPOINTS (b)
15297 {
15298 if (!is_non_inline_function (b))
15299 continue;
15300
15301 for (bl = b->loc; bl != NULL; bl = bl->next)
15302 {
15303 if (!bl->shlib_disabled
15304 && bpstat_check_location (bl, aspace, pc, ws))
15305 return 1;
15306 }
15307 }
15308
15309 return 0;
15310 }
15311
15312 /* Remove any references to OBJFILE which is going to be freed. */
15313
15314 void
15315 breakpoint_free_objfile (struct objfile *objfile)
15316 {
15317 struct bp_location **locp, *loc;
15318
15319 ALL_BP_LOCATIONS (loc, locp)
15320 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15321 loc->symtab = NULL;
15322 }
15323
15324 void
15325 initialize_breakpoint_ops (void)
15326 {
15327 static int initialized = 0;
15328
15329 struct breakpoint_ops *ops;
15330
15331 if (initialized)
15332 return;
15333 initialized = 1;
15334
15335 /* The breakpoint_ops structure to be inherit by all kinds of
15336 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15337 internal and momentary breakpoints, etc.). */
15338 ops = &bkpt_base_breakpoint_ops;
15339 *ops = base_breakpoint_ops;
15340 ops->re_set = bkpt_re_set;
15341 ops->insert_location = bkpt_insert_location;
15342 ops->remove_location = bkpt_remove_location;
15343 ops->breakpoint_hit = bkpt_breakpoint_hit;
15344 ops->create_sals_from_location = bkpt_create_sals_from_location;
15345 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15346 ops->decode_location = bkpt_decode_location;
15347
15348 /* The breakpoint_ops structure to be used in regular breakpoints. */
15349 ops = &bkpt_breakpoint_ops;
15350 *ops = bkpt_base_breakpoint_ops;
15351 ops->re_set = bkpt_re_set;
15352 ops->resources_needed = bkpt_resources_needed;
15353 ops->print_it = bkpt_print_it;
15354 ops->print_mention = bkpt_print_mention;
15355 ops->print_recreate = bkpt_print_recreate;
15356
15357 /* Ranged breakpoints. */
15358 ops = &ranged_breakpoint_ops;
15359 *ops = bkpt_breakpoint_ops;
15360 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15361 ops->resources_needed = resources_needed_ranged_breakpoint;
15362 ops->print_it = print_it_ranged_breakpoint;
15363 ops->print_one = print_one_ranged_breakpoint;
15364 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15365 ops->print_mention = print_mention_ranged_breakpoint;
15366 ops->print_recreate = print_recreate_ranged_breakpoint;
15367
15368 /* Internal breakpoints. */
15369 ops = &internal_breakpoint_ops;
15370 *ops = bkpt_base_breakpoint_ops;
15371 ops->re_set = internal_bkpt_re_set;
15372 ops->check_status = internal_bkpt_check_status;
15373 ops->print_it = internal_bkpt_print_it;
15374 ops->print_mention = internal_bkpt_print_mention;
15375
15376 /* Momentary breakpoints. */
15377 ops = &momentary_breakpoint_ops;
15378 *ops = bkpt_base_breakpoint_ops;
15379 ops->re_set = momentary_bkpt_re_set;
15380 ops->check_status = momentary_bkpt_check_status;
15381 ops->print_it = momentary_bkpt_print_it;
15382 ops->print_mention = momentary_bkpt_print_mention;
15383
15384 /* Probe breakpoints. */
15385 ops = &bkpt_probe_breakpoint_ops;
15386 *ops = bkpt_breakpoint_ops;
15387 ops->insert_location = bkpt_probe_insert_location;
15388 ops->remove_location = bkpt_probe_remove_location;
15389 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15390 ops->decode_location = bkpt_probe_decode_location;
15391
15392 /* Watchpoints. */
15393 ops = &watchpoint_breakpoint_ops;
15394 *ops = base_breakpoint_ops;
15395 ops->re_set = re_set_watchpoint;
15396 ops->insert_location = insert_watchpoint;
15397 ops->remove_location = remove_watchpoint;
15398 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15399 ops->check_status = check_status_watchpoint;
15400 ops->resources_needed = resources_needed_watchpoint;
15401 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15402 ops->print_it = print_it_watchpoint;
15403 ops->print_mention = print_mention_watchpoint;
15404 ops->print_recreate = print_recreate_watchpoint;
15405 ops->explains_signal = explains_signal_watchpoint;
15406
15407 /* Masked watchpoints. */
15408 ops = &masked_watchpoint_breakpoint_ops;
15409 *ops = watchpoint_breakpoint_ops;
15410 ops->insert_location = insert_masked_watchpoint;
15411 ops->remove_location = remove_masked_watchpoint;
15412 ops->resources_needed = resources_needed_masked_watchpoint;
15413 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15414 ops->print_it = print_it_masked_watchpoint;
15415 ops->print_one_detail = print_one_detail_masked_watchpoint;
15416 ops->print_mention = print_mention_masked_watchpoint;
15417 ops->print_recreate = print_recreate_masked_watchpoint;
15418
15419 /* Tracepoints. */
15420 ops = &tracepoint_breakpoint_ops;
15421 *ops = base_breakpoint_ops;
15422 ops->re_set = tracepoint_re_set;
15423 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15424 ops->print_one_detail = tracepoint_print_one_detail;
15425 ops->print_mention = tracepoint_print_mention;
15426 ops->print_recreate = tracepoint_print_recreate;
15427 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15428 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15429 ops->decode_location = tracepoint_decode_location;
15430
15431 /* Probe tracepoints. */
15432 ops = &tracepoint_probe_breakpoint_ops;
15433 *ops = tracepoint_breakpoint_ops;
15434 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15435 ops->decode_location = tracepoint_probe_decode_location;
15436
15437 /* Static tracepoints with marker (`-m'). */
15438 ops = &strace_marker_breakpoint_ops;
15439 *ops = tracepoint_breakpoint_ops;
15440 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15441 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15442 ops->decode_location = strace_marker_decode_location;
15443
15444 /* Fork catchpoints. */
15445 ops = &catch_fork_breakpoint_ops;
15446 *ops = base_breakpoint_ops;
15447 ops->insert_location = insert_catch_fork;
15448 ops->remove_location = remove_catch_fork;
15449 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15450 ops->print_it = print_it_catch_fork;
15451 ops->print_one = print_one_catch_fork;
15452 ops->print_mention = print_mention_catch_fork;
15453 ops->print_recreate = print_recreate_catch_fork;
15454
15455 /* Vfork catchpoints. */
15456 ops = &catch_vfork_breakpoint_ops;
15457 *ops = base_breakpoint_ops;
15458 ops->insert_location = insert_catch_vfork;
15459 ops->remove_location = remove_catch_vfork;
15460 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15461 ops->print_it = print_it_catch_vfork;
15462 ops->print_one = print_one_catch_vfork;
15463 ops->print_mention = print_mention_catch_vfork;
15464 ops->print_recreate = print_recreate_catch_vfork;
15465
15466 /* Exec catchpoints. */
15467 ops = &catch_exec_breakpoint_ops;
15468 *ops = base_breakpoint_ops;
15469 ops->insert_location = insert_catch_exec;
15470 ops->remove_location = remove_catch_exec;
15471 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15472 ops->print_it = print_it_catch_exec;
15473 ops->print_one = print_one_catch_exec;
15474 ops->print_mention = print_mention_catch_exec;
15475 ops->print_recreate = print_recreate_catch_exec;
15476
15477 /* Solib-related catchpoints. */
15478 ops = &catch_solib_breakpoint_ops;
15479 *ops = base_breakpoint_ops;
15480 ops->insert_location = insert_catch_solib;
15481 ops->remove_location = remove_catch_solib;
15482 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15483 ops->check_status = check_status_catch_solib;
15484 ops->print_it = print_it_catch_solib;
15485 ops->print_one = print_one_catch_solib;
15486 ops->print_mention = print_mention_catch_solib;
15487 ops->print_recreate = print_recreate_catch_solib;
15488
15489 ops = &dprintf_breakpoint_ops;
15490 *ops = bkpt_base_breakpoint_ops;
15491 ops->re_set = dprintf_re_set;
15492 ops->resources_needed = bkpt_resources_needed;
15493 ops->print_it = bkpt_print_it;
15494 ops->print_mention = bkpt_print_mention;
15495 ops->print_recreate = dprintf_print_recreate;
15496 ops->after_condition_true = dprintf_after_condition_true;
15497 ops->breakpoint_hit = dprintf_breakpoint_hit;
15498 }
15499
15500 /* Chain containing all defined "enable breakpoint" subcommands. */
15501
15502 static struct cmd_list_element *enablebreaklist = NULL;
15503
15504 /* See breakpoint.h. */
15505
15506 cmd_list_element *commands_cmd_element = nullptr;
15507
15508 void
15509 _initialize_breakpoint (void)
15510 {
15511 struct cmd_list_element *c;
15512
15513 initialize_breakpoint_ops ();
15514
15515 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15516 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15517 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15518
15519 breakpoint_objfile_key
15520 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15521
15522 breakpoint_chain = 0;
15523 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15524 before a breakpoint is set. */
15525 breakpoint_count = 0;
15526
15527 tracepoint_count = 0;
15528
15529 add_com ("ignore", class_breakpoint, ignore_command, _("\
15530 Set ignore-count of breakpoint number N to COUNT.\n\
15531 Usage is `ignore N COUNT'."));
15532
15533 commands_cmd_element = add_com ("commands", class_breakpoint,
15534 commands_command, _("\
15535 Set commands to be executed when the given breakpoints are hit.\n\
15536 Give a space-separated breakpoint list as argument after \"commands\".\n\
15537 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15538 (e.g. `5-7').\n\
15539 With no argument, the targeted breakpoint is the last one set.\n\
15540 The commands themselves follow starting on the next line.\n\
15541 Type a line containing \"end\" to indicate the end of them.\n\
15542 Give \"silent\" as the first line to make the breakpoint silent;\n\
15543 then no output is printed when it is hit, except what the commands print."));
15544
15545 c = add_com ("condition", class_breakpoint, condition_command, _("\
15546 Specify breakpoint number N to break only if COND is true.\n\
15547 Usage is `condition N COND', where N is an integer and COND is an\n\
15548 expression to be evaluated whenever breakpoint N is reached."));
15549 set_cmd_completer (c, condition_completer);
15550
15551 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15552 Set a temporary breakpoint.\n\
15553 Like \"break\" except the breakpoint is only temporary,\n\
15554 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15555 by using \"enable delete\" on the breakpoint number.\n\
15556 \n"
15557 BREAK_ARGS_HELP ("tbreak")));
15558 set_cmd_completer (c, location_completer);
15559
15560 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15561 Set a hardware assisted breakpoint.\n\
15562 Like \"break\" except the breakpoint requires hardware support,\n\
15563 some target hardware may not have this support.\n\
15564 \n"
15565 BREAK_ARGS_HELP ("hbreak")));
15566 set_cmd_completer (c, location_completer);
15567
15568 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15569 Set a temporary hardware assisted breakpoint.\n\
15570 Like \"hbreak\" except the breakpoint is only temporary,\n\
15571 so it will be deleted when hit.\n\
15572 \n"
15573 BREAK_ARGS_HELP ("thbreak")));
15574 set_cmd_completer (c, location_completer);
15575
15576 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15577 Enable some breakpoints.\n\
15578 Give breakpoint numbers (separated by spaces) as arguments.\n\
15579 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15580 This is used to cancel the effect of the \"disable\" command.\n\
15581 With a subcommand you can enable temporarily."),
15582 &enablelist, "enable ", 1, &cmdlist);
15583
15584 add_com_alias ("en", "enable", class_breakpoint, 1);
15585
15586 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15587 Enable some breakpoints.\n\
15588 Give breakpoint numbers (separated by spaces) as arguments.\n\
15589 This is used to cancel the effect of the \"disable\" command.\n\
15590 May be abbreviated to simply \"enable\".\n"),
15591 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15592
15593 add_cmd ("once", no_class, enable_once_command, _("\
15594 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15595 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15596 &enablebreaklist);
15597
15598 add_cmd ("delete", no_class, enable_delete_command, _("\
15599 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15601 &enablebreaklist);
15602
15603 add_cmd ("count", no_class, enable_count_command, _("\
15604 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15605 If a breakpoint is hit while enabled in this fashion,\n\
15606 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15607 &enablebreaklist);
15608
15609 add_cmd ("delete", no_class, enable_delete_command, _("\
15610 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15611 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15612 &enablelist);
15613
15614 add_cmd ("once", no_class, enable_once_command, _("\
15615 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15616 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15617 &enablelist);
15618
15619 add_cmd ("count", no_class, enable_count_command, _("\
15620 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15621 If a breakpoint is hit while enabled in this fashion,\n\
15622 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15623 &enablelist);
15624
15625 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15626 Disable some breakpoints.\n\
15627 Arguments are breakpoint numbers with spaces in between.\n\
15628 To disable all breakpoints, give no argument.\n\
15629 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15630 &disablelist, "disable ", 1, &cmdlist);
15631 add_com_alias ("dis", "disable", class_breakpoint, 1);
15632 add_com_alias ("disa", "disable", class_breakpoint, 1);
15633
15634 add_cmd ("breakpoints", class_alias, disable_command, _("\
15635 Disable some breakpoints.\n\
15636 Arguments are breakpoint numbers with spaces in between.\n\
15637 To disable all breakpoints, give no argument.\n\
15638 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15639 This command may be abbreviated \"disable\"."),
15640 &disablelist);
15641
15642 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15643 Delete some breakpoints or auto-display expressions.\n\
15644 Arguments are breakpoint numbers with spaces in between.\n\
15645 To delete all breakpoints, give no argument.\n\
15646 \n\
15647 Also a prefix command for deletion of other GDB objects.\n\
15648 The \"unset\" command is also an alias for \"delete\"."),
15649 &deletelist, "delete ", 1, &cmdlist);
15650 add_com_alias ("d", "delete", class_breakpoint, 1);
15651 add_com_alias ("del", "delete", class_breakpoint, 1);
15652
15653 add_cmd ("breakpoints", class_alias, delete_command, _("\
15654 Delete some breakpoints or auto-display expressions.\n\
15655 Arguments are breakpoint numbers with spaces in between.\n\
15656 To delete all breakpoints, give no argument.\n\
15657 This command may be abbreviated \"delete\"."),
15658 &deletelist);
15659
15660 add_com ("clear", class_breakpoint, clear_command, _("\
15661 Clear breakpoint at specified location.\n\
15662 Argument may be a linespec, explicit, or address location as described below.\n\
15663 \n\
15664 With no argument, clears all breakpoints in the line that the selected frame\n\
15665 is executing in.\n"
15666 "\n" LOCATION_HELP_STRING "\n\
15667 See also the \"delete\" command which clears breakpoints by number."));
15668 add_com_alias ("cl", "clear", class_breakpoint, 1);
15669
15670 c = add_com ("break", class_breakpoint, break_command, _("\
15671 Set breakpoint at specified location.\n"
15672 BREAK_ARGS_HELP ("break")));
15673 set_cmd_completer (c, location_completer);
15674
15675 add_com_alias ("b", "break", class_run, 1);
15676 add_com_alias ("br", "break", class_run, 1);
15677 add_com_alias ("bre", "break", class_run, 1);
15678 add_com_alias ("brea", "break", class_run, 1);
15679
15680 if (dbx_commands)
15681 {
15682 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15683 Break in function/address or break at a line in the current file."),
15684 &stoplist, "stop ", 1, &cmdlist);
15685 add_cmd ("in", class_breakpoint, stopin_command,
15686 _("Break in function or address."), &stoplist);
15687 add_cmd ("at", class_breakpoint, stopat_command,
15688 _("Break at a line in the current file."), &stoplist);
15689 add_com ("status", class_info, info_breakpoints_command, _("\
15690 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15691 The \"Type\" column indicates one of:\n\
15692 \tbreakpoint - normal breakpoint\n\
15693 \twatchpoint - watchpoint\n\
15694 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15695 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15696 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15697 address and file/line number respectively.\n\
15698 \n\
15699 Convenience variable \"$_\" and default examine address for \"x\"\n\
15700 are set to the address of the last breakpoint listed unless the command\n\
15701 is prefixed with \"server \".\n\n\
15702 Convenience variable \"$bpnum\" contains the number of the last\n\
15703 breakpoint set."));
15704 }
15705
15706 add_info ("breakpoints", info_breakpoints_command, _("\
15707 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15708 The \"Type\" column indicates one of:\n\
15709 \tbreakpoint - normal breakpoint\n\
15710 \twatchpoint - watchpoint\n\
15711 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15712 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15713 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15714 address and file/line number respectively.\n\
15715 \n\
15716 Convenience variable \"$_\" and default examine address for \"x\"\n\
15717 are set to the address of the last breakpoint listed unless the command\n\
15718 is prefixed with \"server \".\n\n\
15719 Convenience variable \"$bpnum\" contains the number of the last\n\
15720 breakpoint set."));
15721
15722 add_info_alias ("b", "breakpoints", 1);
15723
15724 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15725 Status of all breakpoints, or breakpoint number NUMBER.\n\
15726 The \"Type\" column indicates one of:\n\
15727 \tbreakpoint - normal breakpoint\n\
15728 \twatchpoint - watchpoint\n\
15729 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15730 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15731 \tuntil - internal breakpoint used by the \"until\" command\n\
15732 \tfinish - internal breakpoint used by the \"finish\" command\n\
15733 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15734 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15735 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15736 address and file/line number respectively.\n\
15737 \n\
15738 Convenience variable \"$_\" and default examine address for \"x\"\n\
15739 are set to the address of the last breakpoint listed unless the command\n\
15740 is prefixed with \"server \".\n\n\
15741 Convenience variable \"$bpnum\" contains the number of the last\n\
15742 breakpoint set."),
15743 &maintenanceinfolist);
15744
15745 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15746 Set catchpoints to catch events."),
15747 &catch_cmdlist, "catch ",
15748 0/*allow-unknown*/, &cmdlist);
15749
15750 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15751 Set temporary catchpoints to catch events."),
15752 &tcatch_cmdlist, "tcatch ",
15753 0/*allow-unknown*/, &cmdlist);
15754
15755 add_catch_command ("fork", _("Catch calls to fork."),
15756 catch_fork_command_1,
15757 NULL,
15758 (void *) (uintptr_t) catch_fork_permanent,
15759 (void *) (uintptr_t) catch_fork_temporary);
15760 add_catch_command ("vfork", _("Catch calls to vfork."),
15761 catch_fork_command_1,
15762 NULL,
15763 (void *) (uintptr_t) catch_vfork_permanent,
15764 (void *) (uintptr_t) catch_vfork_temporary);
15765 add_catch_command ("exec", _("Catch calls to exec."),
15766 catch_exec_command_1,
15767 NULL,
15768 CATCH_PERMANENT,
15769 CATCH_TEMPORARY);
15770 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15771 Usage: catch load [REGEX]\n\
15772 If REGEX is given, only stop for libraries matching the regular expression."),
15773 catch_load_command_1,
15774 NULL,
15775 CATCH_PERMANENT,
15776 CATCH_TEMPORARY);
15777 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15778 Usage: catch unload [REGEX]\n\
15779 If REGEX is given, only stop for libraries matching the regular expression."),
15780 catch_unload_command_1,
15781 NULL,
15782 CATCH_PERMANENT,
15783 CATCH_TEMPORARY);
15784
15785 c = add_com ("watch", class_breakpoint, watch_command, _("\
15786 Set a watchpoint for an expression.\n\
15787 Usage: watch [-l|-location] EXPRESSION\n\
15788 A watchpoint stops execution of your program whenever the value of\n\
15789 an expression changes.\n\
15790 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15791 the memory to which it refers."));
15792 set_cmd_completer (c, expression_completer);
15793
15794 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15795 Set a read watchpoint for an expression.\n\
15796 Usage: rwatch [-l|-location] EXPRESSION\n\
15797 A watchpoint stops execution of your program whenever the value of\n\
15798 an expression is read.\n\
15799 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15800 the memory to which it refers."));
15801 set_cmd_completer (c, expression_completer);
15802
15803 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15804 Set a watchpoint for an expression.\n\
15805 Usage: awatch [-l|-location] EXPRESSION\n\
15806 A watchpoint stops execution of your program whenever the value of\n\
15807 an expression is either read or written.\n\
15808 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15809 the memory to which it refers."));
15810 set_cmd_completer (c, expression_completer);
15811
15812 add_info ("watchpoints", info_watchpoints_command, _("\
15813 Status of specified watchpoints (all watchpoints if no argument)."));
15814
15815 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15816 respond to changes - contrary to the description. */
15817 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15818 &can_use_hw_watchpoints, _("\
15819 Set debugger's willingness to use watchpoint hardware."), _("\
15820 Show debugger's willingness to use watchpoint hardware."), _("\
15821 If zero, gdb will not use hardware for new watchpoints, even if\n\
15822 such is available. (However, any hardware watchpoints that were\n\
15823 created before setting this to nonzero, will continue to use watchpoint\n\
15824 hardware.)"),
15825 NULL,
15826 show_can_use_hw_watchpoints,
15827 &setlist, &showlist);
15828
15829 can_use_hw_watchpoints = 1;
15830
15831 /* Tracepoint manipulation commands. */
15832
15833 c = add_com ("trace", class_breakpoint, trace_command, _("\
15834 Set a tracepoint at specified location.\n\
15835 \n"
15836 BREAK_ARGS_HELP ("trace") "\n\
15837 Do \"help tracepoints\" for info on other tracepoint commands."));
15838 set_cmd_completer (c, location_completer);
15839
15840 add_com_alias ("tp", "trace", class_alias, 0);
15841 add_com_alias ("tr", "trace", class_alias, 1);
15842 add_com_alias ("tra", "trace", class_alias, 1);
15843 add_com_alias ("trac", "trace", class_alias, 1);
15844
15845 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15846 Set a fast tracepoint at specified location.\n\
15847 \n"
15848 BREAK_ARGS_HELP ("ftrace") "\n\
15849 Do \"help tracepoints\" for info on other tracepoint commands."));
15850 set_cmd_completer (c, location_completer);
15851
15852 c = add_com ("strace", class_breakpoint, strace_command, _("\
15853 Set a static tracepoint at location or marker.\n\
15854 \n\
15855 strace [LOCATION] [if CONDITION]\n\
15856 LOCATION may be a linespec, explicit, or address location (described below) \n\
15857 or -m MARKER_ID.\n\n\
15858 If a marker id is specified, probe the marker with that name. With\n\
15859 no LOCATION, uses current execution address of the selected stack frame.\n\
15860 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15861 This collects arbitrary user data passed in the probe point call to the\n\
15862 tracing library. You can inspect it when analyzing the trace buffer,\n\
15863 by printing the $_sdata variable like any other convenience variable.\n\
15864 \n\
15865 CONDITION is a boolean expression.\n\
15866 \n" LOCATION_HELP_STRING "\n\
15867 Multiple tracepoints at one place are permitted, and useful if their\n\
15868 conditions are different.\n\
15869 \n\
15870 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15871 Do \"help tracepoints\" for info on other tracepoint commands."));
15872 set_cmd_completer (c, location_completer);
15873
15874 add_info ("tracepoints", info_tracepoints_command, _("\
15875 Status of specified tracepoints (all tracepoints if no argument).\n\
15876 Convenience variable \"$tpnum\" contains the number of the\n\
15877 last tracepoint set."));
15878
15879 add_info_alias ("tp", "tracepoints", 1);
15880
15881 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15882 Delete specified tracepoints.\n\
15883 Arguments are tracepoint numbers, separated by spaces.\n\
15884 No argument means delete all tracepoints."),
15885 &deletelist);
15886 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15887
15888 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15889 Disable specified tracepoints.\n\
15890 Arguments are tracepoint numbers, separated by spaces.\n\
15891 No argument means disable all tracepoints."),
15892 &disablelist);
15893 deprecate_cmd (c, "disable");
15894
15895 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15896 Enable specified tracepoints.\n\
15897 Arguments are tracepoint numbers, separated by spaces.\n\
15898 No argument means enable all tracepoints."),
15899 &enablelist);
15900 deprecate_cmd (c, "enable");
15901
15902 add_com ("passcount", class_trace, trace_pass_command, _("\
15903 Set the passcount for a tracepoint.\n\
15904 The trace will end when the tracepoint has been passed 'count' times.\n\
15905 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15906 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15907
15908 add_prefix_cmd ("save", class_breakpoint, save_command,
15909 _("Save breakpoint definitions as a script."),
15910 &save_cmdlist, "save ",
15911 0/*allow-unknown*/, &cmdlist);
15912
15913 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15914 Save current breakpoint definitions as a script.\n\
15915 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15916 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15917 session to restore them."),
15918 &save_cmdlist);
15919 set_cmd_completer (c, filename_completer);
15920
15921 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15922 Save current tracepoint definitions as a script.\n\
15923 Use the 'source' command in another debug session to restore them."),
15924 &save_cmdlist);
15925 set_cmd_completer (c, filename_completer);
15926
15927 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15928 deprecate_cmd (c, "save tracepoints");
15929
15930 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15931 Breakpoint specific settings\n\
15932 Configure various breakpoint-specific variables such as\n\
15933 pending breakpoint behavior"),
15934 &breakpoint_set_cmdlist, "set breakpoint ",
15935 0/*allow-unknown*/, &setlist);
15936 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15937 Breakpoint specific settings\n\
15938 Configure various breakpoint-specific variables such as\n\
15939 pending breakpoint behavior"),
15940 &breakpoint_show_cmdlist, "show breakpoint ",
15941 0/*allow-unknown*/, &showlist);
15942
15943 add_setshow_auto_boolean_cmd ("pending", no_class,
15944 &pending_break_support, _("\
15945 Set debugger's behavior regarding pending breakpoints."), _("\
15946 Show debugger's behavior regarding pending breakpoints."), _("\
15947 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15948 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15949 an error. If auto, an unrecognized breakpoint location results in a\n\
15950 user-query to see if a pending breakpoint should be created."),
15951 NULL,
15952 show_pending_break_support,
15953 &breakpoint_set_cmdlist,
15954 &breakpoint_show_cmdlist);
15955
15956 pending_break_support = AUTO_BOOLEAN_AUTO;
15957
15958 add_setshow_boolean_cmd ("auto-hw", no_class,
15959 &automatic_hardware_breakpoints, _("\
15960 Set automatic usage of hardware breakpoints."), _("\
15961 Show automatic usage of hardware breakpoints."), _("\
15962 If set, the debugger will automatically use hardware breakpoints for\n\
15963 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15964 a warning will be emitted for such breakpoints."),
15965 NULL,
15966 show_automatic_hardware_breakpoints,
15967 &breakpoint_set_cmdlist,
15968 &breakpoint_show_cmdlist);
15969
15970 add_setshow_boolean_cmd ("always-inserted", class_support,
15971 &always_inserted_mode, _("\
15972 Set mode for inserting breakpoints."), _("\
15973 Show mode for inserting breakpoints."), _("\
15974 When this mode is on, breakpoints are inserted immediately as soon as\n\
15975 they're created, kept inserted even when execution stops, and removed\n\
15976 only when the user deletes them. When this mode is off (the default),\n\
15977 breakpoints are inserted only when execution continues, and removed\n\
15978 when execution stops."),
15979 NULL,
15980 &show_always_inserted_mode,
15981 &breakpoint_set_cmdlist,
15982 &breakpoint_show_cmdlist);
15983
15984 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15985 condition_evaluation_enums,
15986 &condition_evaluation_mode_1, _("\
15987 Set mode of breakpoint condition evaluation."), _("\
15988 Show mode of breakpoint condition evaluation."), _("\
15989 When this is set to \"host\", breakpoint conditions will be\n\
15990 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15991 breakpoint conditions will be downloaded to the target (if the target\n\
15992 supports such feature) and conditions will be evaluated on the target's side.\n\
15993 If this is set to \"auto\" (default), this will be automatically set to\n\
15994 \"target\" if it supports condition evaluation, otherwise it will\n\
15995 be set to \"gdb\""),
15996 &set_condition_evaluation_mode,
15997 &show_condition_evaluation_mode,
15998 &breakpoint_set_cmdlist,
15999 &breakpoint_show_cmdlist);
16000
16001 add_com ("break-range", class_breakpoint, break_range_command, _("\
16002 Set a breakpoint for an address range.\n\
16003 break-range START-LOCATION, END-LOCATION\n\
16004 where START-LOCATION and END-LOCATION can be one of the following:\n\
16005 LINENUM, for that line in the current file,\n\
16006 FILE:LINENUM, for that line in that file,\n\
16007 +OFFSET, for that number of lines after the current line\n\
16008 or the start of the range\n\
16009 FUNCTION, for the first line in that function,\n\
16010 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16011 *ADDRESS, for the instruction at that address.\n\
16012 \n\
16013 The breakpoint will stop execution of the inferior whenever it executes\n\
16014 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16015 range (including START-LOCATION and END-LOCATION)."));
16016
16017 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16018 Set a dynamic printf at specified location.\n\
16019 dprintf location,format string,arg1,arg2,...\n\
16020 location may be a linespec, explicit, or address location.\n"
16021 "\n" LOCATION_HELP_STRING));
16022 set_cmd_completer (c, location_completer);
16023
16024 add_setshow_enum_cmd ("dprintf-style", class_support,
16025 dprintf_style_enums, &dprintf_style, _("\
16026 Set the style of usage for dynamic printf."), _("\
16027 Show the style of usage for dynamic printf."), _("\
16028 This setting chooses how GDB will do a dynamic printf.\n\
16029 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16030 console, as with the \"printf\" command.\n\
16031 If the value is \"call\", the print is done by calling a function in your\n\
16032 program; by default printf(), but you can choose a different function or\n\
16033 output stream by setting dprintf-function and dprintf-channel."),
16034 update_dprintf_commands, NULL,
16035 &setlist, &showlist);
16036
16037 dprintf_function = xstrdup ("printf");
16038 add_setshow_string_cmd ("dprintf-function", class_support,
16039 &dprintf_function, _("\
16040 Set the function to use for dynamic printf"), _("\
16041 Show the function to use for dynamic printf"), NULL,
16042 update_dprintf_commands, NULL,
16043 &setlist, &showlist);
16044
16045 dprintf_channel = xstrdup ("");
16046 add_setshow_string_cmd ("dprintf-channel", class_support,
16047 &dprintf_channel, _("\
16048 Set the channel to use for dynamic printf"), _("\
16049 Show the channel to use for dynamic printf"), NULL,
16050 update_dprintf_commands, NULL,
16051 &setlist, &showlist);
16052
16053 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16054 &disconnected_dprintf, _("\
16055 Set whether dprintf continues after GDB disconnects."), _("\
16056 Show whether dprintf continues after GDB disconnects."), _("\
16057 Use this to let dprintf commands continue to hit and produce output\n\
16058 even if GDB disconnects or detaches from the target."),
16059 NULL,
16060 NULL,
16061 &setlist, &showlist);
16062
16063 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16064 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16065 (target agent only) This is useful for formatted output in user-defined commands."));
16066
16067 automatic_hardware_breakpoints = 1;
16068
16069 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16070 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16071 }
This page took 0.489827 seconds and 5 git commands to generate.