Fix "info break" + "catch catch" + -static-{libstdc++,libgcc}
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "gdbsupport/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "gdbsupport/array-view.h"
86 #include "gdbsupport/gdb_optional.h"
87
88 /* Prototypes for local functions. */
89
90 static void map_breakpoint_numbers (const char *,
91 gdb::function_view<void (breakpoint *)>);
92
93 static void breakpoint_re_set_default (struct breakpoint *);
94
95 static void
96 create_sals_from_location_default (const struct event_location *location,
97 struct linespec_result *canonical,
98 enum bptype type_wanted);
99
100 static void create_breakpoints_sal_default (struct gdbarch *,
101 struct linespec_result *,
102 gdb::unique_xmalloc_ptr<char>,
103 gdb::unique_xmalloc_ptr<char>,
104 enum bptype,
105 enum bpdisp, int, int,
106 int,
107 const struct breakpoint_ops *,
108 int, int, int, unsigned);
109
110 static std::vector<symtab_and_line> decode_location_default
111 (struct breakpoint *b, const struct event_location *location,
112 struct program_space *search_pspace);
113
114 static int can_use_hardware_watchpoint
115 (const std::vector<value_ref_ptr> &vals);
116
117 static void mention (struct breakpoint *);
118
119 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
120 enum bptype,
121 const struct breakpoint_ops *);
122 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
123 const struct symtab_and_line *);
124
125 /* This function is used in gdbtk sources and thus can not be made
126 static. */
127 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
128 struct symtab_and_line,
129 enum bptype,
130 const struct breakpoint_ops *);
131
132 static struct breakpoint *
133 momentary_breakpoint_from_master (struct breakpoint *orig,
134 enum bptype type,
135 const struct breakpoint_ops *ops,
136 int loc_enabled);
137
138 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
139
140 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
141 CORE_ADDR bpaddr,
142 enum bptype bptype);
143
144 static void describe_other_breakpoints (struct gdbarch *,
145 struct program_space *, CORE_ADDR,
146 struct obj_section *, int);
147
148 static int watchpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static int is_hardware_watchpoint (const struct breakpoint *bpt);
221
222 static void insert_breakpoint_locations (void);
223
224 static void trace_pass_command (const char *, int);
225
226 static void set_tracepoint_count (int num);
227
228 static int is_masked_watchpoint (const struct breakpoint *b);
229
230 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
231
232 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
233 otherwise. */
234
235 static int strace_marker_p (struct breakpoint *b);
236
237 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
238 that are implemented on top of software or hardware breakpoints
239 (user breakpoints, internal and momentary breakpoints, etc.). */
240 static struct breakpoint_ops bkpt_base_breakpoint_ops;
241
242 /* Internal breakpoints class type. */
243 static struct breakpoint_ops internal_breakpoint_ops;
244
245 /* Momentary breakpoints class type. */
246 static struct breakpoint_ops momentary_breakpoint_ops;
247
248 /* The breakpoint_ops structure to be used in regular user created
249 breakpoints. */
250 struct breakpoint_ops bkpt_breakpoint_ops;
251
252 /* Breakpoints set on probes. */
253 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
254
255 /* Dynamic printf class type. */
256 struct breakpoint_ops dprintf_breakpoint_ops;
257
258 /* The style in which to perform a dynamic printf. This is a user
259 option because different output options have different tradeoffs;
260 if GDB does the printing, there is better error handling if there
261 is a problem with any of the arguments, but using an inferior
262 function lets you have special-purpose printers and sending of
263 output to the same place as compiled-in print functions. */
264
265 static const char dprintf_style_gdb[] = "gdb";
266 static const char dprintf_style_call[] = "call";
267 static const char dprintf_style_agent[] = "agent";
268 static const char *const dprintf_style_enums[] = {
269 dprintf_style_gdb,
270 dprintf_style_call,
271 dprintf_style_agent,
272 NULL
273 };
274 static const char *dprintf_style = dprintf_style_gdb;
275
276 /* The function to use for dynamic printf if the preferred style is to
277 call into the inferior. The value is simply a string that is
278 copied into the command, so it can be anything that GDB can
279 evaluate to a callable address, not necessarily a function name. */
280
281 static char *dprintf_function;
282
283 /* The channel to use for dynamic printf if the preferred style is to
284 call into the inferior; if a nonempty string, it will be passed to
285 the call as the first argument, with the format string as the
286 second. As with the dprintf function, this can be anything that
287 GDB knows how to evaluate, so in addition to common choices like
288 "stderr", this could be an app-specific expression like
289 "mystreams[curlogger]". */
290
291 static char *dprintf_channel;
292
293 /* True if dprintf commands should continue to operate even if GDB
294 has disconnected. */
295 static int disconnected_dprintf = 1;
296
297 struct command_line *
298 breakpoint_commands (struct breakpoint *b)
299 {
300 return b->commands ? b->commands.get () : NULL;
301 }
302
303 /* Flag indicating that a command has proceeded the inferior past the
304 current breakpoint. */
305
306 static int breakpoint_proceeded;
307
308 const char *
309 bpdisp_text (enum bpdisp disp)
310 {
311 /* NOTE: the following values are a part of MI protocol and
312 represent values of 'disp' field returned when inferior stops at
313 a breakpoint. */
314 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
315
316 return bpdisps[(int) disp];
317 }
318
319 /* Prototypes for exported functions. */
320 /* If FALSE, gdb will not use hardware support for watchpoints, even
321 if such is available. */
322 static int can_use_hw_watchpoints;
323
324 static void
325 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c,
327 const char *value)
328 {
329 fprintf_filtered (file,
330 _("Debugger's willingness to use "
331 "watchpoint hardware is %s.\n"),
332 value);
333 }
334
335 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
336 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
337 for unrecognized breakpoint locations.
338 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
339 static enum auto_boolean pending_break_support;
340 static void
341 show_pending_break_support (struct ui_file *file, int from_tty,
342 struct cmd_list_element *c,
343 const char *value)
344 {
345 fprintf_filtered (file,
346 _("Debugger's behavior regarding "
347 "pending breakpoints is %s.\n"),
348 value);
349 }
350
351 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
352 set with "break" but falling in read-only memory.
353 If 0, gdb will warn about such breakpoints, but won't automatically
354 use hardware breakpoints. */
355 static int automatic_hardware_breakpoints;
356 static void
357 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c,
359 const char *value)
360 {
361 fprintf_filtered (file,
362 _("Automatic usage of hardware breakpoints is %s.\n"),
363 value);
364 }
365
366 /* If on, GDB keeps breakpoints inserted even if the inferior is
367 stopped, and immediately inserts any new breakpoints as soon as
368 they're created. If off (default), GDB keeps breakpoints off of
369 the target as long as possible. That is, it delays inserting
370 breakpoints until the next resume, and removes them again when the
371 target fully stops. This is a bit safer in case GDB crashes while
372 processing user input. */
373 static int always_inserted_mode = 0;
374
375 static void
376 show_always_inserted_mode (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
380 value);
381 }
382
383 /* See breakpoint.h. */
384
385 int
386 breakpoints_should_be_inserted_now (void)
387 {
388 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
389 {
390 /* If breakpoints are global, they should be inserted even if no
391 thread under gdb's control is running, or even if there are
392 no threads under GDB's control yet. */
393 return 1;
394 }
395 else if (target_has_execution)
396 {
397 if (always_inserted_mode)
398 {
399 /* The user wants breakpoints inserted even if all threads
400 are stopped. */
401 return 1;
402 }
403
404 if (threads_are_executing ())
405 return 1;
406
407 /* Don't remove breakpoints yet if, even though all threads are
408 stopped, we still have events to process. */
409 for (thread_info *tp : all_non_exited_threads ())
410 if (tp->resumed
411 && tp->suspend.waitstatus_pending_p)
412 return 1;
413 }
414 return 0;
415 }
416
417 static const char condition_evaluation_both[] = "host or target";
418
419 /* Modes for breakpoint condition evaluation. */
420 static const char condition_evaluation_auto[] = "auto";
421 static const char condition_evaluation_host[] = "host";
422 static const char condition_evaluation_target[] = "target";
423 static const char *const condition_evaluation_enums[] = {
424 condition_evaluation_auto,
425 condition_evaluation_host,
426 condition_evaluation_target,
427 NULL
428 };
429
430 /* Global that holds the current mode for breakpoint condition evaluation. */
431 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
432
433 /* Global that we use to display information to the user (gets its value from
434 condition_evaluation_mode_1. */
435 static const char *condition_evaluation_mode = condition_evaluation_auto;
436
437 /* Translate a condition evaluation mode MODE into either "host"
438 or "target". This is used mostly to translate from "auto" to the
439 real setting that is being used. It returns the translated
440 evaluation mode. */
441
442 static const char *
443 translate_condition_evaluation_mode (const char *mode)
444 {
445 if (mode == condition_evaluation_auto)
446 {
447 if (target_supports_evaluation_of_breakpoint_conditions ())
448 return condition_evaluation_target;
449 else
450 return condition_evaluation_host;
451 }
452 else
453 return mode;
454 }
455
456 /* Discovers what condition_evaluation_auto translates to. */
457
458 static const char *
459 breakpoint_condition_evaluation_mode (void)
460 {
461 return translate_condition_evaluation_mode (condition_evaluation_mode);
462 }
463
464 /* Return true if GDB should evaluate breakpoint conditions or false
465 otherwise. */
466
467 static int
468 gdb_evaluates_breakpoint_condition_p (void)
469 {
470 const char *mode = breakpoint_condition_evaluation_mode ();
471
472 return (mode == condition_evaluation_host);
473 }
474
475 /* Are we executing breakpoint commands? */
476 static int executing_breakpoint_commands;
477
478 /* Are overlay event breakpoints enabled? */
479 static int overlay_events_enabled;
480
481 /* See description in breakpoint.h. */
482 int target_exact_watchpoints = 0;
483
484 /* Walk the following statement or block through all breakpoints.
485 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
486 current breakpoint. */
487
488 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
489
490 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
491 for (B = breakpoint_chain; \
492 B ? (TMP=B->next, 1): 0; \
493 B = TMP)
494
495 /* Similar iterator for the low-level breakpoints. SAFE variant is
496 not provided so update_global_location_list must not be called
497 while executing the block of ALL_BP_LOCATIONS. */
498
499 #define ALL_BP_LOCATIONS(B,BP_TMP) \
500 for (BP_TMP = bp_locations; \
501 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
502 BP_TMP++)
503
504 /* Iterates through locations with address ADDRESS for the currently selected
505 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
506 to where the loop should start from.
507 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
508 appropriate location to start with. */
509
510 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
511 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
512 BP_LOCP_TMP = BP_LOCP_START; \
513 BP_LOCP_START \
514 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
515 && (*BP_LOCP_TMP)->address == ADDRESS); \
516 BP_LOCP_TMP++)
517
518 /* Iterator for tracepoints only. */
519
520 #define ALL_TRACEPOINTS(B) \
521 for (B = breakpoint_chain; B; B = B->next) \
522 if (is_tracepoint (B))
523
524 /* Chains of all breakpoints defined. */
525
526 struct breakpoint *breakpoint_chain;
527
528 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
529
530 static struct bp_location **bp_locations;
531
532 /* Number of elements of BP_LOCATIONS. */
533
534 static unsigned bp_locations_count;
535
536 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
537 ADDRESS for the current elements of BP_LOCATIONS which get a valid
538 result from bp_location_has_shadow. You can use it for roughly
539 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
540 an address you need to read. */
541
542 static CORE_ADDR bp_locations_placed_address_before_address_max;
543
544 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
545 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
546 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
547 You can use it for roughly limiting the subrange of BP_LOCATIONS to
548 scan for shadow bytes for an address you need to read. */
549
550 static CORE_ADDR bp_locations_shadow_len_after_address_max;
551
552 /* The locations that no longer correspond to any breakpoint, unlinked
553 from the bp_locations array, but for which a hit may still be
554 reported by a target. */
555 static std::vector<bp_location *> moribund_locations;
556
557 /* Number of last breakpoint made. */
558
559 static int breakpoint_count;
560
561 /* The value of `breakpoint_count' before the last command that
562 created breakpoints. If the last (break-like) command created more
563 than one breakpoint, then the difference between BREAKPOINT_COUNT
564 and PREV_BREAKPOINT_COUNT is more than one. */
565 static int prev_breakpoint_count;
566
567 /* Number of last tracepoint made. */
568
569 static int tracepoint_count;
570
571 static struct cmd_list_element *breakpoint_set_cmdlist;
572 static struct cmd_list_element *breakpoint_show_cmdlist;
573 struct cmd_list_element *save_cmdlist;
574
575 /* See declaration at breakpoint.h. */
576
577 struct breakpoint *
578 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
579 void *user_data)
580 {
581 struct breakpoint *b = NULL;
582
583 ALL_BREAKPOINTS (b)
584 {
585 if (func (b, user_data) != 0)
586 break;
587 }
588
589 return b;
590 }
591
592 /* Return whether a breakpoint is an active enabled breakpoint. */
593 static int
594 breakpoint_enabled (struct breakpoint *b)
595 {
596 return (b->enable_state == bp_enabled);
597 }
598
599 /* Set breakpoint count to NUM. */
600
601 static void
602 set_breakpoint_count (int num)
603 {
604 prev_breakpoint_count = breakpoint_count;
605 breakpoint_count = num;
606 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
607 }
608
609 /* Used by `start_rbreak_breakpoints' below, to record the current
610 breakpoint count before "rbreak" creates any breakpoint. */
611 static int rbreak_start_breakpoint_count;
612
613 /* Called at the start an "rbreak" command to record the first
614 breakpoint made. */
615
616 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
617 {
618 rbreak_start_breakpoint_count = breakpoint_count;
619 }
620
621 /* Called at the end of an "rbreak" command to record the last
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
625 {
626 prev_breakpoint_count = rbreak_start_breakpoint_count;
627 }
628
629 /* Used in run_command to zero the hit count when a new run starts. */
630
631 void
632 clear_breakpoint_hit_counts (void)
633 {
634 struct breakpoint *b;
635
636 ALL_BREAKPOINTS (b)
637 b->hit_count = 0;
638 }
639
640 \f
641 /* Return the breakpoint with the specified number, or NULL
642 if the number does not refer to an existing breakpoint. */
643
644 struct breakpoint *
645 get_breakpoint (int num)
646 {
647 struct breakpoint *b;
648
649 ALL_BREAKPOINTS (b)
650 if (b->number == num)
651 return b;
652
653 return NULL;
654 }
655
656 \f
657
658 /* Mark locations as "conditions have changed" in case the target supports
659 evaluating conditions on its side. */
660
661 static void
662 mark_breakpoint_modified (struct breakpoint *b)
663 {
664 struct bp_location *loc;
665
666 /* This is only meaningful if the target is
667 evaluating conditions and if the user has
668 opted for condition evaluation on the target's
669 side. */
670 if (gdb_evaluates_breakpoint_condition_p ()
671 || !target_supports_evaluation_of_breakpoint_conditions ())
672 return;
673
674 if (!is_breakpoint (b))
675 return;
676
677 for (loc = b->loc; loc; loc = loc->next)
678 loc->condition_changed = condition_modified;
679 }
680
681 /* Mark location as "conditions have changed" in case the target supports
682 evaluating conditions on its side. */
683
684 static void
685 mark_breakpoint_location_modified (struct bp_location *loc)
686 {
687 /* This is only meaningful if the target is
688 evaluating conditions and if the user has
689 opted for condition evaluation on the target's
690 side. */
691 if (gdb_evaluates_breakpoint_condition_p ()
692 || !target_supports_evaluation_of_breakpoint_conditions ())
693
694 return;
695
696 if (!is_breakpoint (loc->owner))
697 return;
698
699 loc->condition_changed = condition_modified;
700 }
701
702 /* Sets the condition-evaluation mode using the static global
703 condition_evaluation_mode. */
704
705 static void
706 set_condition_evaluation_mode (const char *args, int from_tty,
707 struct cmd_list_element *c)
708 {
709 const char *old_mode, *new_mode;
710
711 if ((condition_evaluation_mode_1 == condition_evaluation_target)
712 && !target_supports_evaluation_of_breakpoint_conditions ())
713 {
714 condition_evaluation_mode_1 = condition_evaluation_mode;
715 warning (_("Target does not support breakpoint condition evaluation.\n"
716 "Using host evaluation mode instead."));
717 return;
718 }
719
720 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
721 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
722
723 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
724 settings was "auto". */
725 condition_evaluation_mode = condition_evaluation_mode_1;
726
727 /* Only update the mode if the user picked a different one. */
728 if (new_mode != old_mode)
729 {
730 struct bp_location *loc, **loc_tmp;
731 /* If the user switched to a different evaluation mode, we
732 need to synch the changes with the target as follows:
733
734 "host" -> "target": Send all (valid) conditions to the target.
735 "target" -> "host": Remove all the conditions from the target.
736 */
737
738 if (new_mode == condition_evaluation_target)
739 {
740 /* Mark everything modified and synch conditions with the
741 target. */
742 ALL_BP_LOCATIONS (loc, loc_tmp)
743 mark_breakpoint_location_modified (loc);
744 }
745 else
746 {
747 /* Manually mark non-duplicate locations to synch conditions
748 with the target. We do this to remove all the conditions the
749 target knows about. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 if (is_breakpoint (loc->owner) && loc->inserted)
752 loc->needs_update = 1;
753 }
754
755 /* Do the update. */
756 update_global_location_list (UGLL_MAY_INSERT);
757 }
758
759 return;
760 }
761
762 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
763 what "auto" is translating to. */
764
765 static void
766 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 if (condition_evaluation_mode == condition_evaluation_auto)
770 fprintf_filtered (file,
771 _("Breakpoint condition evaluation "
772 "mode is %s (currently %s).\n"),
773 value,
774 breakpoint_condition_evaluation_mode ());
775 else
776 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
777 value);
778 }
779
780 /* A comparison function for bp_location AP and BP that is used by
781 bsearch. This comparison function only cares about addresses, unlike
782 the more general bp_locations_compare function. */
783
784 static int
785 bp_locations_compare_addrs (const void *ap, const void *bp)
786 {
787 const struct bp_location *a = *(const struct bp_location **) ap;
788 const struct bp_location *b = *(const struct bp_location **) bp;
789
790 if (a->address == b->address)
791 return 0;
792 else
793 return ((a->address > b->address) - (a->address < b->address));
794 }
795
796 /* Helper function to skip all bp_locations with addresses
797 less than ADDRESS. It returns the first bp_location that
798 is greater than or equal to ADDRESS. If none is found, just
799 return NULL. */
800
801 static struct bp_location **
802 get_first_locp_gte_addr (CORE_ADDR address)
803 {
804 struct bp_location dummy_loc;
805 struct bp_location *dummy_locp = &dummy_loc;
806 struct bp_location **locp_found = NULL;
807
808 /* Initialize the dummy location's address field. */
809 dummy_loc.address = address;
810
811 /* Find a close match to the first location at ADDRESS. */
812 locp_found = ((struct bp_location **)
813 bsearch (&dummy_locp, bp_locations, bp_locations_count,
814 sizeof (struct bp_location **),
815 bp_locations_compare_addrs));
816
817 /* Nothing was found, nothing left to do. */
818 if (locp_found == NULL)
819 return NULL;
820
821 /* We may have found a location that is at ADDRESS but is not the first in the
822 location's list. Go backwards (if possible) and locate the first one. */
823 while ((locp_found - 1) >= bp_locations
824 && (*(locp_found - 1))->address == address)
825 locp_found--;
826
827 return locp_found;
828 }
829
830 void
831 set_breakpoint_condition (struct breakpoint *b, const char *exp,
832 int from_tty)
833 {
834 xfree (b->cond_string);
835 b->cond_string = NULL;
836
837 if (is_watchpoint (b))
838 {
839 struct watchpoint *w = (struct watchpoint *) b;
840
841 w->cond_exp.reset ();
842 }
843 else
844 {
845 struct bp_location *loc;
846
847 for (loc = b->loc; loc; loc = loc->next)
848 {
849 loc->cond.reset ();
850
851 /* No need to free the condition agent expression
852 bytecode (if we have one). We will handle this
853 when we go through update_global_location_list. */
854 }
855 }
856
857 if (*exp == 0)
858 {
859 if (from_tty)
860 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
861 }
862 else
863 {
864 const char *arg = exp;
865
866 /* I don't know if it matters whether this is the string the user
867 typed in or the decompiled expression. */
868 b->cond_string = xstrdup (arg);
869 b->condition_not_parsed = 0;
870
871 if (is_watchpoint (b))
872 {
873 struct watchpoint *w = (struct watchpoint *) b;
874
875 innermost_block_tracker tracker;
876 arg = exp;
877 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
878 if (*arg)
879 error (_("Junk at end of expression"));
880 w->cond_exp_valid_block = tracker.block ();
881 }
882 else
883 {
884 struct bp_location *loc;
885
886 for (loc = b->loc; loc; loc = loc->next)
887 {
888 arg = exp;
889 loc->cond =
890 parse_exp_1 (&arg, loc->address,
891 block_for_pc (loc->address), 0);
892 if (*arg)
893 error (_("Junk at end of expression"));
894 }
895 }
896 }
897 mark_breakpoint_modified (b);
898
899 gdb::observers::breakpoint_modified.notify (b);
900 }
901
902 /* Completion for the "condition" command. */
903
904 static void
905 condition_completer (struct cmd_list_element *cmd,
906 completion_tracker &tracker,
907 const char *text, const char *word)
908 {
909 const char *space;
910
911 text = skip_spaces (text);
912 space = skip_to_space (text);
913 if (*space == '\0')
914 {
915 int len;
916 struct breakpoint *b;
917
918 if (text[0] == '$')
919 {
920 /* We don't support completion of history indices. */
921 if (!isdigit (text[1]))
922 complete_internalvar (tracker, &text[1]);
923 return;
924 }
925
926 /* We're completing the breakpoint number. */
927 len = strlen (text);
928
929 ALL_BREAKPOINTS (b)
930 {
931 char number[50];
932
933 xsnprintf (number, sizeof (number), "%d", b->number);
934
935 if (strncmp (number, text, len) == 0)
936 tracker.add_completion (make_unique_xstrdup (number));
937 }
938
939 return;
940 }
941
942 /* We're completing the expression part. */
943 text = skip_spaces (space);
944 expression_completer (cmd, tracker, text, word);
945 }
946
947 /* condition N EXP -- set break condition of breakpoint N to EXP. */
948
949 static void
950 condition_command (const char *arg, int from_tty)
951 {
952 struct breakpoint *b;
953 const char *p;
954 int bnum;
955
956 if (arg == 0)
957 error_no_arg (_("breakpoint number"));
958
959 p = arg;
960 bnum = get_number (&p);
961 if (bnum == 0)
962 error (_("Bad breakpoint argument: '%s'"), arg);
963
964 ALL_BREAKPOINTS (b)
965 if (b->number == bnum)
966 {
967 /* Check if this breakpoint has a "stop" method implemented in an
968 extension language. This method and conditions entered into GDB
969 from the CLI are mutually exclusive. */
970 const struct extension_language_defn *extlang
971 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
972
973 if (extlang != NULL)
974 {
975 error (_("Only one stop condition allowed. There is currently"
976 " a %s stop condition defined for this breakpoint."),
977 ext_lang_capitalized_name (extlang));
978 }
979 set_breakpoint_condition (b, p, from_tty);
980
981 if (is_breakpoint (b))
982 update_global_location_list (UGLL_MAY_INSERT);
983
984 return;
985 }
986
987 error (_("No breakpoint number %d."), bnum);
988 }
989
990 /* Check that COMMAND do not contain commands that are suitable
991 only for tracepoints and not suitable for ordinary breakpoints.
992 Throw if any such commands is found. */
993
994 static void
995 check_no_tracepoint_commands (struct command_line *commands)
996 {
997 struct command_line *c;
998
999 for (c = commands; c; c = c->next)
1000 {
1001 if (c->control_type == while_stepping_control)
1002 error (_("The 'while-stepping' command can "
1003 "only be used for tracepoints"));
1004
1005 check_no_tracepoint_commands (c->body_list_0.get ());
1006 check_no_tracepoint_commands (c->body_list_1.get ());
1007
1008 /* Not that command parsing removes leading whitespace and comment
1009 lines and also empty lines. So, we only need to check for
1010 command directly. */
1011 if (strstr (c->line, "collect ") == c->line)
1012 error (_("The 'collect' command can only be used for tracepoints"));
1013
1014 if (strstr (c->line, "teval ") == c->line)
1015 error (_("The 'teval' command can only be used for tracepoints"));
1016 }
1017 }
1018
1019 struct longjmp_breakpoint : public breakpoint
1020 {
1021 ~longjmp_breakpoint () override;
1022 };
1023
1024 /* Encapsulate tests for different types of tracepoints. */
1025
1026 static bool
1027 is_tracepoint_type (bptype type)
1028 {
1029 return (type == bp_tracepoint
1030 || type == bp_fast_tracepoint
1031 || type == bp_static_tracepoint);
1032 }
1033
1034 static bool
1035 is_longjmp_type (bptype type)
1036 {
1037 return type == bp_longjmp || type == bp_exception;
1038 }
1039
1040 int
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 \f
1497
1498 /* Return true if BPT is either a software breakpoint or a hardware
1499 breakpoint. */
1500
1501 int
1502 is_breakpoint (const struct breakpoint *bpt)
1503 {
1504 return (bpt->type == bp_breakpoint
1505 || bpt->type == bp_hardware_breakpoint
1506 || bpt->type == bp_dprintf);
1507 }
1508
1509 /* Return true if BPT is of any hardware watchpoint kind. */
1510
1511 static int
1512 is_hardware_watchpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_hardware_watchpoint
1515 || bpt->type == bp_read_watchpoint
1516 || bpt->type == bp_access_watchpoint);
1517 }
1518
1519 /* Return true if BPT is of any watchpoint kind, hardware or
1520 software. */
1521
1522 int
1523 is_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (is_hardware_watchpoint (bpt)
1526 || bpt->type == bp_watchpoint);
1527 }
1528
1529 /* Returns true if the current thread and its running state are safe
1530 to evaluate or update watchpoint B. Watchpoints on local
1531 expressions need to be evaluated in the context of the thread that
1532 was current when the watchpoint was created, and, that thread needs
1533 to be stopped to be able to select the correct frame context.
1534 Watchpoints on global expressions can be evaluated on any thread,
1535 and in any state. It is presently left to the target allowing
1536 memory accesses when threads are running. */
1537
1538 static int
1539 watchpoint_in_thread_scope (struct watchpoint *b)
1540 {
1541 return (b->pspace == current_program_space
1542 && (b->watchpoint_thread == null_ptid
1543 || (inferior_ptid == b->watchpoint_thread
1544 && !inferior_thread ()->executing)));
1545 }
1546
1547 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1548 associated bp_watchpoint_scope breakpoint. */
1549
1550 static void
1551 watchpoint_del_at_next_stop (struct watchpoint *w)
1552 {
1553 if (w->related_breakpoint != w)
1554 {
1555 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1556 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1557 w->related_breakpoint->disposition = disp_del_at_next_stop;
1558 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1559 w->related_breakpoint = w;
1560 }
1561 w->disposition = disp_del_at_next_stop;
1562 }
1563
1564 /* Extract a bitfield value from value VAL using the bit parameters contained in
1565 watchpoint W. */
1566
1567 static struct value *
1568 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1569 {
1570 struct value *bit_val;
1571
1572 if (val == NULL)
1573 return NULL;
1574
1575 bit_val = allocate_value (value_type (val));
1576
1577 unpack_value_bitfield (bit_val,
1578 w->val_bitpos,
1579 w->val_bitsize,
1580 value_contents_for_printing (val),
1581 value_offset (val),
1582 val);
1583
1584 return bit_val;
1585 }
1586
1587 /* Allocate a dummy location and add it to B, which must be a software
1588 watchpoint. This is required because even if a software watchpoint
1589 is not watching any memory, bpstat_stop_status requires a location
1590 to be able to report stops. */
1591
1592 static void
1593 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1594 struct program_space *pspace)
1595 {
1596 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1597
1598 b->loc = allocate_bp_location (b);
1599 b->loc->pspace = pspace;
1600 b->loc->address = -1;
1601 b->loc->length = -1;
1602 }
1603
1604 /* Returns true if B is a software watchpoint that is not watching any
1605 memory (e.g., "watch $pc"). */
1606
1607 static int
1608 is_no_memory_software_watchpoint (struct breakpoint *b)
1609 {
1610 return (b->type == bp_watchpoint
1611 && b->loc != NULL
1612 && b->loc->next == NULL
1613 && b->loc->address == -1
1614 && b->loc->length == -1);
1615 }
1616
1617 /* Assuming that B is a watchpoint:
1618 - Reparse watchpoint expression, if REPARSE is non-zero
1619 - Evaluate expression and store the result in B->val
1620 - Evaluate the condition if there is one, and store the result
1621 in b->loc->cond.
1622 - Update the list of values that must be watched in B->loc.
1623
1624 If the watchpoint disposition is disp_del_at_next_stop, then do
1625 nothing. If this is local watchpoint that is out of scope, delete
1626 it.
1627
1628 Even with `set breakpoint always-inserted on' the watchpoints are
1629 removed + inserted on each stop here. Normal breakpoints must
1630 never be removed because they might be missed by a running thread
1631 when debugging in non-stop mode. On the other hand, hardware
1632 watchpoints (is_hardware_watchpoint; processed here) are specific
1633 to each LWP since they are stored in each LWP's hardware debug
1634 registers. Therefore, such LWP must be stopped first in order to
1635 be able to modify its hardware watchpoints.
1636
1637 Hardware watchpoints must be reset exactly once after being
1638 presented to the user. It cannot be done sooner, because it would
1639 reset the data used to present the watchpoint hit to the user. And
1640 it must not be done later because it could display the same single
1641 watchpoint hit during multiple GDB stops. Note that the latter is
1642 relevant only to the hardware watchpoint types bp_read_watchpoint
1643 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1644 not user-visible - its hit is suppressed if the memory content has
1645 not changed.
1646
1647 The following constraints influence the location where we can reset
1648 hardware watchpoints:
1649
1650 * target_stopped_by_watchpoint and target_stopped_data_address are
1651 called several times when GDB stops.
1652
1653 [linux]
1654 * Multiple hardware watchpoints can be hit at the same time,
1655 causing GDB to stop. GDB only presents one hardware watchpoint
1656 hit at a time as the reason for stopping, and all the other hits
1657 are presented later, one after the other, each time the user
1658 requests the execution to be resumed. Execution is not resumed
1659 for the threads still having pending hit event stored in
1660 LWP_INFO->STATUS. While the watchpoint is already removed from
1661 the inferior on the first stop the thread hit event is kept being
1662 reported from its cached value by linux_nat_stopped_data_address
1663 until the real thread resume happens after the watchpoint gets
1664 presented and thus its LWP_INFO->STATUS gets reset.
1665
1666 Therefore the hardware watchpoint hit can get safely reset on the
1667 watchpoint removal from inferior. */
1668
1669 static void
1670 update_watchpoint (struct watchpoint *b, int reparse)
1671 {
1672 int within_current_scope;
1673 struct frame_id saved_frame_id;
1674 int frame_saved;
1675
1676 /* If this is a local watchpoint, we only want to check if the
1677 watchpoint frame is in scope if the current thread is the thread
1678 that was used to create the watchpoint. */
1679 if (!watchpoint_in_thread_scope (b))
1680 return;
1681
1682 if (b->disposition == disp_del_at_next_stop)
1683 return;
1684
1685 frame_saved = 0;
1686
1687 /* Determine if the watchpoint is within scope. */
1688 if (b->exp_valid_block == NULL)
1689 within_current_scope = 1;
1690 else
1691 {
1692 struct frame_info *fi = get_current_frame ();
1693 struct gdbarch *frame_arch = get_frame_arch (fi);
1694 CORE_ADDR frame_pc = get_frame_pc (fi);
1695
1696 /* If we're at a point where the stack has been destroyed
1697 (e.g. in a function epilogue), unwinding may not work
1698 properly. Do not attempt to recreate locations at this
1699 point. See similar comments in watchpoint_check. */
1700 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1701 return;
1702
1703 /* Save the current frame's ID so we can restore it after
1704 evaluating the watchpoint expression on its own frame. */
1705 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1706 took a frame parameter, so that we didn't have to change the
1707 selected frame. */
1708 frame_saved = 1;
1709 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1710
1711 fi = frame_find_by_id (b->watchpoint_frame);
1712 within_current_scope = (fi != NULL);
1713 if (within_current_scope)
1714 select_frame (fi);
1715 }
1716
1717 /* We don't free locations. They are stored in the bp_location array
1718 and update_global_location_list will eventually delete them and
1719 remove breakpoints if needed. */
1720 b->loc = NULL;
1721
1722 if (within_current_scope && reparse)
1723 {
1724 const char *s;
1725
1726 b->exp.reset ();
1727 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1728 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1729 /* If the meaning of expression itself changed, the old value is
1730 no longer relevant. We don't want to report a watchpoint hit
1731 to the user when the old value and the new value may actually
1732 be completely different objects. */
1733 b->val = NULL;
1734 b->val_valid = 0;
1735
1736 /* Note that unlike with breakpoints, the watchpoint's condition
1737 expression is stored in the breakpoint object, not in the
1738 locations (re)created below. */
1739 if (b->cond_string != NULL)
1740 {
1741 b->cond_exp.reset ();
1742
1743 s = b->cond_string;
1744 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1745 }
1746 }
1747
1748 /* If we failed to parse the expression, for example because
1749 it refers to a global variable in a not-yet-loaded shared library,
1750 don't try to insert watchpoint. We don't automatically delete
1751 such watchpoint, though, since failure to parse expression
1752 is different from out-of-scope watchpoint. */
1753 if (!target_has_execution)
1754 {
1755 /* Without execution, memory can't change. No use to try and
1756 set watchpoint locations. The watchpoint will be reset when
1757 the target gains execution, through breakpoint_re_set. */
1758 if (!can_use_hw_watchpoints)
1759 {
1760 if (b->ops->works_in_software_mode (b))
1761 b->type = bp_watchpoint;
1762 else
1763 error (_("Can't set read/access watchpoint when "
1764 "hardware watchpoints are disabled."));
1765 }
1766 }
1767 else if (within_current_scope && b->exp)
1768 {
1769 int pc = 0;
1770 std::vector<value_ref_ptr> val_chain;
1771 struct value *v, *result;
1772 struct program_space *frame_pspace;
1773
1774 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1775
1776 /* Avoid setting b->val if it's already set. The meaning of
1777 b->val is 'the last value' user saw, and we should update
1778 it only if we reported that last value to user. As it
1779 happens, the code that reports it updates b->val directly.
1780 We don't keep track of the memory value for masked
1781 watchpoints. */
1782 if (!b->val_valid && !is_masked_watchpoint (b))
1783 {
1784 if (b->val_bitsize != 0)
1785 v = extract_bitfield_from_watchpoint_value (b, v);
1786 b->val = release_value (v);
1787 b->val_valid = 1;
1788 }
1789
1790 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1791
1792 /* Look at each value on the value chain. */
1793 gdb_assert (!val_chain.empty ());
1794 for (const value_ref_ptr &iter : val_chain)
1795 {
1796 v = iter.get ();
1797
1798 /* If it's a memory location, and GDB actually needed
1799 its contents to evaluate the expression, then we
1800 must watch it. If the first value returned is
1801 still lazy, that means an error occurred reading it;
1802 watch it anyway in case it becomes readable. */
1803 if (VALUE_LVAL (v) == lval_memory
1804 && (v == val_chain[0] || ! value_lazy (v)))
1805 {
1806 struct type *vtype = check_typedef (value_type (v));
1807
1808 /* We only watch structs and arrays if user asked
1809 for it explicitly, never if they just happen to
1810 appear in the middle of some value chain. */
1811 if (v == result
1812 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1813 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1814 {
1815 CORE_ADDR addr;
1816 enum target_hw_bp_type type;
1817 struct bp_location *loc, **tmp;
1818 int bitpos = 0, bitsize = 0;
1819
1820 if (value_bitsize (v) != 0)
1821 {
1822 /* Extract the bit parameters out from the bitfield
1823 sub-expression. */
1824 bitpos = value_bitpos (v);
1825 bitsize = value_bitsize (v);
1826 }
1827 else if (v == result && b->val_bitsize != 0)
1828 {
1829 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1830 lvalue whose bit parameters are saved in the fields
1831 VAL_BITPOS and VAL_BITSIZE. */
1832 bitpos = b->val_bitpos;
1833 bitsize = b->val_bitsize;
1834 }
1835
1836 addr = value_address (v);
1837 if (bitsize != 0)
1838 {
1839 /* Skip the bytes that don't contain the bitfield. */
1840 addr += bitpos / 8;
1841 }
1842
1843 type = hw_write;
1844 if (b->type == bp_read_watchpoint)
1845 type = hw_read;
1846 else if (b->type == bp_access_watchpoint)
1847 type = hw_access;
1848
1849 loc = allocate_bp_location (b);
1850 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1851 ;
1852 *tmp = loc;
1853 loc->gdbarch = get_type_arch (value_type (v));
1854
1855 loc->pspace = frame_pspace;
1856 loc->address = address_significant (loc->gdbarch, addr);
1857
1858 if (bitsize != 0)
1859 {
1860 /* Just cover the bytes that make up the bitfield. */
1861 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1862 }
1863 else
1864 loc->length = TYPE_LENGTH (value_type (v));
1865
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (b);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->ops->works_in_software_mode (b);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->type = type;
1939 }
1940 }
1941 else if (!b->ops->works_in_software_mode (b))
1942 {
1943 if (!can_use_hw_watchpoints)
1944 error (_("Can't set read/access watchpoint when "
1945 "hardware watchpoints are disabled."));
1946 else
1947 error (_("Expression cannot be implemented with "
1948 "read/access watchpoint."));
1949 }
1950 else
1951 b->type = bp_watchpoint;
1952
1953 loc_type = (b->type == bp_watchpoint? bp_loc_other
1954 : bp_loc_hardware_watchpoint);
1955 for (bl = b->loc; bl; bl = bl->next)
1956 bl->loc_type = loc_type;
1957 }
1958
1959 /* If a software watchpoint is not watching any memory, then the
1960 above left it without any location set up. But,
1961 bpstat_stop_status requires a location to be able to report
1962 stops, so make sure there's at least a dummy one. */
1963 if (b->type == bp_watchpoint && b->loc == NULL)
1964 software_watchpoint_add_no_memory_location (b, frame_pspace);
1965 }
1966 else if (!within_current_scope)
1967 {
1968 printf_filtered (_("\
1969 Watchpoint %d deleted because the program has left the block\n\
1970 in which its expression is valid.\n"),
1971 b->number);
1972 watchpoint_del_at_next_stop (b);
1973 }
1974
1975 /* Restore the selected frame. */
1976 if (frame_saved)
1977 select_frame (frame_find_by_id (saved_frame_id));
1978 }
1979
1980
1981 /* Returns 1 iff breakpoint location should be
1982 inserted in the inferior. We don't differentiate the type of BL's owner
1983 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1984 breakpoint_ops is not defined, because in insert_bp_location,
1985 tracepoint's insert_location will not be called. */
1986 static int
1987 should_be_inserted (struct bp_location *bl)
1988 {
1989 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1990 return 0;
1991
1992 if (bl->owner->disposition == disp_del_at_next_stop)
1993 return 0;
1994
1995 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1996 return 0;
1997
1998 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1999 return 0;
2000
2001 /* This is set for example, when we're attached to the parent of a
2002 vfork, and have detached from the child. The child is running
2003 free, and we expect it to do an exec or exit, at which point the
2004 OS makes the parent schedulable again (and the target reports
2005 that the vfork is done). Until the child is done with the shared
2006 memory region, do not insert breakpoints in the parent, otherwise
2007 the child could still trip on the parent's breakpoints. Since
2008 the parent is blocked anyway, it won't miss any breakpoint. */
2009 if (bl->pspace->breakpoints_not_allowed)
2010 return 0;
2011
2012 /* Don't insert a breakpoint if we're trying to step past its
2013 location, except if the breakpoint is a single-step breakpoint,
2014 and the breakpoint's thread is the thread which is stepping past
2015 a breakpoint. */
2016 if ((bl->loc_type == bp_loc_software_breakpoint
2017 || bl->loc_type == bp_loc_hardware_breakpoint)
2018 && stepping_past_instruction_at (bl->pspace->aspace,
2019 bl->address)
2020 /* The single-step breakpoint may be inserted at the location
2021 we're trying to step if the instruction branches to itself.
2022 However, the instruction won't be executed at all and it may
2023 break the semantics of the instruction, for example, the
2024 instruction is a conditional branch or updates some flags.
2025 We can't fix it unless GDB is able to emulate the instruction
2026 or switch to displaced stepping. */
2027 && !(bl->owner->type == bp_single_step
2028 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2029 {
2030 if (debug_infrun)
2031 {
2032 fprintf_unfiltered (gdb_stdlog,
2033 "infrun: skipping breakpoint: "
2034 "stepping past insn at: %s\n",
2035 paddress (bl->gdbarch, bl->address));
2036 }
2037 return 0;
2038 }
2039
2040 /* Don't insert watchpoints if we're trying to step past the
2041 instruction that triggered one. */
2042 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2043 && stepping_past_nonsteppable_watchpoint ())
2044 {
2045 if (debug_infrun)
2046 {
2047 fprintf_unfiltered (gdb_stdlog,
2048 "infrun: stepping past non-steppable watchpoint. "
2049 "skipping watchpoint at %s:%d\n",
2050 paddress (bl->gdbarch, bl->address),
2051 bl->length);
2052 }
2053 return 0;
2054 }
2055
2056 return 1;
2057 }
2058
2059 /* Same as should_be_inserted but does the check assuming
2060 that the location is not duplicated. */
2061
2062 static int
2063 unduplicated_should_be_inserted (struct bp_location *bl)
2064 {
2065 int result;
2066 const int save_duplicate = bl->duplicate;
2067
2068 bl->duplicate = 0;
2069 result = should_be_inserted (bl);
2070 bl->duplicate = save_duplicate;
2071 return result;
2072 }
2073
2074 /* Parses a conditional described by an expression COND into an
2075 agent expression bytecode suitable for evaluation
2076 by the bytecode interpreter. Return NULL if there was
2077 any error during parsing. */
2078
2079 static agent_expr_up
2080 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2081 {
2082 if (cond == NULL)
2083 return NULL;
2084
2085 agent_expr_up aexpr;
2086
2087 /* We don't want to stop processing, so catch any errors
2088 that may show up. */
2089 try
2090 {
2091 aexpr = gen_eval_for_expr (scope, cond);
2092 }
2093
2094 catch (const gdb_exception_error &ex)
2095 {
2096 /* If we got here, it means the condition could not be parsed to a valid
2097 bytecode expression and thus can't be evaluated on the target's side.
2098 It's no use iterating through the conditions. */
2099 }
2100
2101 /* We have a valid agent expression. */
2102 return aexpr;
2103 }
2104
2105 /* Based on location BL, create a list of breakpoint conditions to be
2106 passed on to the target. If we have duplicated locations with different
2107 conditions, we will add such conditions to the list. The idea is that the
2108 target will evaluate the list of conditions and will only notify GDB when
2109 one of them is true. */
2110
2111 static void
2112 build_target_condition_list (struct bp_location *bl)
2113 {
2114 struct bp_location **locp = NULL, **loc2p;
2115 int null_condition_or_parse_error = 0;
2116 int modified = bl->needs_update;
2117 struct bp_location *loc;
2118
2119 /* Release conditions left over from a previous insert. */
2120 bl->target_info.conditions.clear ();
2121
2122 /* This is only meaningful if the target is
2123 evaluating conditions and if the user has
2124 opted for condition evaluation on the target's
2125 side. */
2126 if (gdb_evaluates_breakpoint_condition_p ()
2127 || !target_supports_evaluation_of_breakpoint_conditions ())
2128 return;
2129
2130 /* Do a first pass to check for locations with no assigned
2131 conditions or conditions that fail to parse to a valid agent expression
2132 bytecode. If any of these happen, then it's no use to send conditions
2133 to the target since this location will always trigger and generate a
2134 response back to GDB. */
2135 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2136 {
2137 loc = (*loc2p);
2138 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2139 {
2140 if (modified)
2141 {
2142 /* Re-parse the conditions since something changed. In that
2143 case we already freed the condition bytecodes (see
2144 force_breakpoint_reinsertion). We just
2145 need to parse the condition to bytecodes again. */
2146 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2147 loc->cond.get ());
2148 }
2149
2150 /* If we have a NULL bytecode expression, it means something
2151 went wrong or we have a null condition expression. */
2152 if (!loc->cond_bytecode)
2153 {
2154 null_condition_or_parse_error = 1;
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* If any of these happened, it means we will have to evaluate the conditions
2161 for the location's address on gdb's side. It is no use keeping bytecodes
2162 for all the other duplicate locations, thus we free all of them here.
2163
2164 This is so we have a finer control over which locations' conditions are
2165 being evaluated by GDB or the remote stub. */
2166 if (null_condition_or_parse_error)
2167 {
2168 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2169 {
2170 loc = (*loc2p);
2171 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2172 {
2173 /* Only go as far as the first NULL bytecode is
2174 located. */
2175 if (!loc->cond_bytecode)
2176 return;
2177
2178 loc->cond_bytecode.reset ();
2179 }
2180 }
2181 }
2182
2183 /* No NULL conditions or failed bytecode generation. Build a condition list
2184 for this location's address. */
2185 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2186 {
2187 loc = (*loc2p);
2188 if (loc->cond
2189 && is_breakpoint (loc->owner)
2190 && loc->pspace->num == bl->pspace->num
2191 && loc->owner->enable_state == bp_enabled
2192 && loc->enabled)
2193 {
2194 /* Add the condition to the vector. This will be used later
2195 to send the conditions to the target. */
2196 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2197 }
2198 }
2199
2200 return;
2201 }
2202
2203 /* Parses a command described by string CMD into an agent expression
2204 bytecode suitable for evaluation by the bytecode interpreter.
2205 Return NULL if there was any error during parsing. */
2206
2207 static agent_expr_up
2208 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2209 {
2210 const char *cmdrest;
2211 const char *format_start, *format_end;
2212 struct gdbarch *gdbarch = get_current_arch ();
2213
2214 if (cmd == NULL)
2215 return NULL;
2216
2217 cmdrest = cmd;
2218
2219 if (*cmdrest == ',')
2220 ++cmdrest;
2221 cmdrest = skip_spaces (cmdrest);
2222
2223 if (*cmdrest++ != '"')
2224 error (_("No format string following the location"));
2225
2226 format_start = cmdrest;
2227
2228 format_pieces fpieces (&cmdrest);
2229
2230 format_end = cmdrest;
2231
2232 if (*cmdrest++ != '"')
2233 error (_("Bad format string, non-terminated '\"'."));
2234
2235 cmdrest = skip_spaces (cmdrest);
2236
2237 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2238 error (_("Invalid argument syntax"));
2239
2240 if (*cmdrest == ',')
2241 cmdrest++;
2242 cmdrest = skip_spaces (cmdrest);
2243
2244 /* For each argument, make an expression. */
2245
2246 std::vector<struct expression *> argvec;
2247 while (*cmdrest != '\0')
2248 {
2249 const char *cmd1;
2250
2251 cmd1 = cmdrest;
2252 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2253 argvec.push_back (expr.release ());
2254 cmdrest = cmd1;
2255 if (*cmdrest == ',')
2256 ++cmdrest;
2257 }
2258
2259 agent_expr_up aexpr;
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 try
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 argvec.size (), argvec.data ());
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 /* If we got here, it means the command could not be parsed to a valid
2272 bytecode expression and thus can't be evaluated on the target's side.
2273 It's no use iterating through the other commands. */
2274 }
2275
2276 /* We have a valid agent expression, return it. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint commands to be
2281 passed on to the target. If we have duplicated locations with
2282 different commands, we will add any such to the list. */
2283
2284 static void
2285 build_target_command_list (struct bp_location *bl)
2286 {
2287 struct bp_location **locp = NULL, **loc2p;
2288 int null_command_or_parse_error = 0;
2289 int modified = bl->needs_update;
2290 struct bp_location *loc;
2291
2292 /* Clear commands left over from a previous insert. */
2293 bl->target_info.tcommands.clear ();
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* For now, limit to agent-style dprintf breakpoints. */
2299 if (dprintf_style != dprintf_style_agent)
2300 return;
2301
2302 /* For now, if we have any duplicate location that isn't a dprintf,
2303 don't install the target-side commands, as that would make the
2304 breakpoint not be reported to the core, and we'd lose
2305 control. */
2306 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2307 {
2308 loc = (*loc2p);
2309 if (is_breakpoint (loc->owner)
2310 && loc->pspace->num == bl->pspace->num
2311 && loc->owner->type != bp_dprintf)
2312 return;
2313 }
2314
2315 /* Do a first pass to check for locations with no assigned
2316 conditions or conditions that fail to parse to a valid agent expression
2317 bytecode. If any of these happen, then it's no use to send conditions
2318 to the target since this location will always trigger and generate a
2319 response back to GDB. */
2320 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2321 {
2322 loc = (*loc2p);
2323 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2324 {
2325 if (modified)
2326 {
2327 /* Re-parse the commands since something changed. In that
2328 case we already freed the command bytecodes (see
2329 force_breakpoint_reinsertion). We just
2330 need to parse the command to bytecodes again. */
2331 loc->cmd_bytecode
2332 = parse_cmd_to_aexpr (bl->address,
2333 loc->owner->extra_string);
2334 }
2335
2336 /* If we have a NULL bytecode expression, it means something
2337 went wrong or we have a null command expression. */
2338 if (!loc->cmd_bytecode)
2339 {
2340 null_command_or_parse_error = 1;
2341 break;
2342 }
2343 }
2344 }
2345
2346 /* If anything failed, then we're not doing target-side commands,
2347 and so clean up. */
2348 if (null_command_or_parse_error)
2349 {
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (is_breakpoint (loc->owner)
2354 && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (loc->cmd_bytecode == NULL)
2359 return;
2360
2361 loc->cmd_bytecode.reset ();
2362 }
2363 }
2364 }
2365
2366 /* No NULL commands or failed bytecode generation. Build a command list
2367 for this location's address. */
2368 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2369 {
2370 loc = (*loc2p);
2371 if (loc->owner->extra_string
2372 && is_breakpoint (loc->owner)
2373 && loc->pspace->num == bl->pspace->num
2374 && loc->owner->enable_state == bp_enabled
2375 && loc->enabled)
2376 {
2377 /* Add the command to the vector. This will be used later
2378 to send the commands to the target. */
2379 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2380 }
2381 }
2382
2383 bl->target_info.persist = 0;
2384 /* Maybe flag this location as persistent. */
2385 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2386 bl->target_info.persist = 1;
2387 }
2388
2389 /* Return the kind of breakpoint on address *ADDR. Get the kind
2390 of breakpoint according to ADDR except single-step breakpoint.
2391 Get the kind of single-step breakpoint according to the current
2392 registers state. */
2393
2394 static int
2395 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2396 {
2397 if (bl->owner->type == bp_single_step)
2398 {
2399 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2400 struct regcache *regcache;
2401
2402 regcache = get_thread_regcache (thr);
2403
2404 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2405 regcache, addr);
2406 }
2407 else
2408 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2409 }
2410
2411 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2412 location. Any error messages are printed to TMP_ERROR_STREAM; and
2413 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2414 Returns 0 for success, 1 if the bp_location type is not supported or
2415 -1 for failure.
2416
2417 NOTE drow/2003-09-09: This routine could be broken down to an
2418 object-style method for each breakpoint or catchpoint type. */
2419 static int
2420 insert_bp_location (struct bp_location *bl,
2421 struct ui_file *tmp_error_stream,
2422 int *disabled_breaks,
2423 int *hw_breakpoint_error,
2424 int *hw_bp_error_explained_already)
2425 {
2426 gdb_exception bp_excpt;
2427
2428 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2429 return 0;
2430
2431 /* Note we don't initialize bl->target_info, as that wipes out
2432 the breakpoint location's shadow_contents if the breakpoint
2433 is still inserted at that location. This in turn breaks
2434 target_read_memory which depends on these buffers when
2435 a memory read is requested at the breakpoint location:
2436 Once the target_info has been wiped, we fail to see that
2437 we have a breakpoint inserted at that address and thus
2438 read the breakpoint instead of returning the data saved in
2439 the breakpoint location's shadow contents. */
2440 bl->target_info.reqstd_address = bl->address;
2441 bl->target_info.placed_address_space = bl->pspace->aspace;
2442 bl->target_info.length = bl->length;
2443
2444 /* When working with target-side conditions, we must pass all the conditions
2445 for the same breakpoint address down to the target since GDB will not
2446 insert those locations. With a list of breakpoint conditions, the target
2447 can decide when to stop and notify GDB. */
2448
2449 if (is_breakpoint (bl->owner))
2450 {
2451 build_target_condition_list (bl);
2452 build_target_command_list (bl);
2453 /* Reset the modification marker. */
2454 bl->needs_update = 0;
2455 }
2456
2457 if (bl->loc_type == bp_loc_software_breakpoint
2458 || bl->loc_type == bp_loc_hardware_breakpoint)
2459 {
2460 if (bl->owner->type != bp_hardware_breakpoint)
2461 {
2462 /* If the explicitly specified breakpoint type
2463 is not hardware breakpoint, check the memory map to see
2464 if the breakpoint address is in read only memory or not.
2465
2466 Two important cases are:
2467 - location type is not hardware breakpoint, memory
2468 is readonly. We change the type of the location to
2469 hardware breakpoint.
2470 - location type is hardware breakpoint, memory is
2471 read-write. This means we've previously made the
2472 location hardware one, but then the memory map changed,
2473 so we undo.
2474
2475 When breakpoints are removed, remove_breakpoints will use
2476 location types we've just set here, the only possible
2477 problem is that memory map has changed during running
2478 program, but it's not going to work anyway with current
2479 gdb. */
2480 struct mem_region *mr
2481 = lookup_mem_region (bl->target_info.reqstd_address);
2482
2483 if (mr)
2484 {
2485 if (automatic_hardware_breakpoints)
2486 {
2487 enum bp_loc_type new_type;
2488
2489 if (mr->attrib.mode != MEM_RW)
2490 new_type = bp_loc_hardware_breakpoint;
2491 else
2492 new_type = bp_loc_software_breakpoint;
2493
2494 if (new_type != bl->loc_type)
2495 {
2496 static int said = 0;
2497
2498 bl->loc_type = new_type;
2499 if (!said)
2500 {
2501 fprintf_filtered (gdb_stdout,
2502 _("Note: automatically using "
2503 "hardware breakpoints for "
2504 "read-only addresses.\n"));
2505 said = 1;
2506 }
2507 }
2508 }
2509 else if (bl->loc_type == bp_loc_software_breakpoint
2510 && mr->attrib.mode != MEM_RW)
2511 {
2512 fprintf_unfiltered (tmp_error_stream,
2513 _("Cannot insert breakpoint %d.\n"
2514 "Cannot set software breakpoint "
2515 "at read-only address %s\n"),
2516 bl->owner->number,
2517 paddress (bl->gdbarch, bl->address));
2518 return 1;
2519 }
2520 }
2521 }
2522
2523 /* First check to see if we have to handle an overlay. */
2524 if (overlay_debugging == ovly_off
2525 || bl->section == NULL
2526 || !(section_is_overlay (bl->section)))
2527 {
2528 /* No overlay handling: just set the breakpoint. */
2529 try
2530 {
2531 int val;
2532
2533 val = bl->owner->ops->insert_location (bl);
2534 if (val)
2535 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2536 }
2537 catch (gdb_exception &e)
2538 {
2539 bp_excpt = std::move (e);
2540 }
2541 }
2542 else
2543 {
2544 /* This breakpoint is in an overlay section.
2545 Shall we set a breakpoint at the LMA? */
2546 if (!overlay_events_enabled)
2547 {
2548 /* Yes -- overlay event support is not active,
2549 so we must try to set a breakpoint at the LMA.
2550 This will not work for a hardware breakpoint. */
2551 if (bl->loc_type == bp_loc_hardware_breakpoint)
2552 warning (_("hardware breakpoint %d not supported in overlay!"),
2553 bl->owner->number);
2554 else
2555 {
2556 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2557 bl->section);
2558 /* Set a software (trap) breakpoint at the LMA. */
2559 bl->overlay_target_info = bl->target_info;
2560 bl->overlay_target_info.reqstd_address = addr;
2561
2562 /* No overlay handling: just set the breakpoint. */
2563 try
2564 {
2565 int val;
2566
2567 bl->overlay_target_info.kind
2568 = breakpoint_kind (bl, &addr);
2569 bl->overlay_target_info.placed_address = addr;
2570 val = target_insert_breakpoint (bl->gdbarch,
2571 &bl->overlay_target_info);
2572 if (val)
2573 bp_excpt
2574 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2575 }
2576 catch (gdb_exception &e)
2577 {
2578 bp_excpt = std::move (e);
2579 }
2580
2581 if (bp_excpt.reason != 0)
2582 fprintf_unfiltered (tmp_error_stream,
2583 "Overlay breakpoint %d "
2584 "failed: in ROM?\n",
2585 bl->owner->number);
2586 }
2587 }
2588 /* Shall we set a breakpoint at the VMA? */
2589 if (section_is_mapped (bl->section))
2590 {
2591 /* Yes. This overlay section is mapped into memory. */
2592 try
2593 {
2594 int val;
2595
2596 val = bl->owner->ops->insert_location (bl);
2597 if (val)
2598 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2599 }
2600 catch (gdb_exception &e)
2601 {
2602 bp_excpt = std::move (e);
2603 }
2604 }
2605 else
2606 {
2607 /* No. This breakpoint will not be inserted.
2608 No error, but do not mark the bp as 'inserted'. */
2609 return 0;
2610 }
2611 }
2612
2613 if (bp_excpt.reason != 0)
2614 {
2615 /* Can't set the breakpoint. */
2616
2617 /* In some cases, we might not be able to insert a
2618 breakpoint in a shared library that has already been
2619 removed, but we have not yet processed the shlib unload
2620 event. Unfortunately, some targets that implement
2621 breakpoint insertion themselves can't tell why the
2622 breakpoint insertion failed (e.g., the remote target
2623 doesn't define error codes), so we must treat generic
2624 errors as memory errors. */
2625 if (bp_excpt.reason == RETURN_ERROR
2626 && (bp_excpt.error == GENERIC_ERROR
2627 || bp_excpt.error == MEMORY_ERROR)
2628 && bl->loc_type == bp_loc_software_breakpoint
2629 && (solib_name_from_address (bl->pspace, bl->address)
2630 || shared_objfile_contains_address_p (bl->pspace,
2631 bl->address)))
2632 {
2633 /* See also: disable_breakpoints_in_shlibs. */
2634 bl->shlib_disabled = 1;
2635 gdb::observers::breakpoint_modified.notify (bl->owner);
2636 if (!*disabled_breaks)
2637 {
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert breakpoint %d.\n",
2640 bl->owner->number);
2641 fprintf_unfiltered (tmp_error_stream,
2642 "Temporarily disabling shared "
2643 "library breakpoints:\n");
2644 }
2645 *disabled_breaks = 1;
2646 fprintf_unfiltered (tmp_error_stream,
2647 "breakpoint #%d\n", bl->owner->number);
2648 return 0;
2649 }
2650 else
2651 {
2652 if (bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 *hw_breakpoint_error = 1;
2655 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Cannot insert hardware breakpoint %d%s",
2658 bl->owner->number,
2659 bp_excpt.message ? ":" : ".\n");
2660 if (bp_excpt.message != NULL)
2661 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2662 bp_excpt.what ());
2663 }
2664 else
2665 {
2666 if (bp_excpt.message == NULL)
2667 {
2668 std::string message
2669 = memory_error_message (TARGET_XFER_E_IO,
2670 bl->gdbarch, bl->address);
2671
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert breakpoint %d.\n"
2674 "%s\n",
2675 bl->owner->number, message.c_str ());
2676 }
2677 else
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert breakpoint %d: %s\n",
2681 bl->owner->number,
2682 bp_excpt.what ());
2683 }
2684 }
2685 return 1;
2686
2687 }
2688 }
2689 else
2690 bl->inserted = 1;
2691
2692 return 0;
2693 }
2694
2695 else if (bl->loc_type == bp_loc_hardware_watchpoint
2696 /* NOTE drow/2003-09-08: This state only exists for removing
2697 watchpoints. It's not clear that it's necessary... */
2698 && bl->owner->disposition != disp_del_at_next_stop)
2699 {
2700 int val;
2701
2702 gdb_assert (bl->owner->ops != NULL
2703 && bl->owner->ops->insert_location != NULL);
2704
2705 val = bl->owner->ops->insert_location (bl);
2706
2707 /* If trying to set a read-watchpoint, and it turns out it's not
2708 supported, try emulating one with an access watchpoint. */
2709 if (val == 1 && bl->watchpoint_type == hw_read)
2710 {
2711 struct bp_location *loc, **loc_temp;
2712
2713 /* But don't try to insert it, if there's already another
2714 hw_access location that would be considered a duplicate
2715 of this one. */
2716 ALL_BP_LOCATIONS (loc, loc_temp)
2717 if (loc != bl
2718 && loc->watchpoint_type == hw_access
2719 && watchpoint_locations_match (bl, loc))
2720 {
2721 bl->duplicate = 1;
2722 bl->inserted = 1;
2723 bl->target_info = loc->target_info;
2724 bl->watchpoint_type = hw_access;
2725 val = 0;
2726 break;
2727 }
2728
2729 if (val == 1)
2730 {
2731 bl->watchpoint_type = hw_access;
2732 val = bl->owner->ops->insert_location (bl);
2733
2734 if (val)
2735 /* Back to the original value. */
2736 bl->watchpoint_type = hw_read;
2737 }
2738 }
2739
2740 bl->inserted = (val == 0);
2741 }
2742
2743 else if (bl->owner->type == bp_catchpoint)
2744 {
2745 int val;
2746
2747 gdb_assert (bl->owner->ops != NULL
2748 && bl->owner->ops->insert_location != NULL);
2749
2750 val = bl->owner->ops->insert_location (bl);
2751 if (val)
2752 {
2753 bl->owner->enable_state = bp_disabled;
2754
2755 if (val == 1)
2756 warning (_("\
2757 Error inserting catchpoint %d: Your system does not support this type\n\
2758 of catchpoint."), bl->owner->number);
2759 else
2760 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2761 }
2762
2763 bl->inserted = (val == 0);
2764
2765 /* We've already printed an error message if there was a problem
2766 inserting this catchpoint, and we've disabled the catchpoint,
2767 so just return success. */
2768 return 0;
2769 }
2770
2771 return 0;
2772 }
2773
2774 /* This function is called when program space PSPACE is about to be
2775 deleted. It takes care of updating breakpoints to not reference
2776 PSPACE anymore. */
2777
2778 void
2779 breakpoint_program_space_exit (struct program_space *pspace)
2780 {
2781 struct breakpoint *b, *b_temp;
2782 struct bp_location *loc, **loc_temp;
2783
2784 /* Remove any breakpoint that was set through this program space. */
2785 ALL_BREAKPOINTS_SAFE (b, b_temp)
2786 {
2787 if (b->pspace == pspace)
2788 delete_breakpoint (b);
2789 }
2790
2791 /* Breakpoints set through other program spaces could have locations
2792 bound to PSPACE as well. Remove those. */
2793 ALL_BP_LOCATIONS (loc, loc_temp)
2794 {
2795 struct bp_location *tmp;
2796
2797 if (loc->pspace == pspace)
2798 {
2799 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2800 if (loc->owner->loc == loc)
2801 loc->owner->loc = loc->next;
2802 else
2803 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2804 if (tmp->next == loc)
2805 {
2806 tmp->next = loc->next;
2807 break;
2808 }
2809 }
2810 }
2811
2812 /* Now update the global location list to permanently delete the
2813 removed locations above. */
2814 update_global_location_list (UGLL_DONT_INSERT);
2815 }
2816
2817 /* Make sure all breakpoints are inserted in inferior.
2818 Throws exception on any error.
2819 A breakpoint that is already inserted won't be inserted
2820 again, so calling this function twice is safe. */
2821 void
2822 insert_breakpoints (void)
2823 {
2824 struct breakpoint *bpt;
2825
2826 ALL_BREAKPOINTS (bpt)
2827 if (is_hardware_watchpoint (bpt))
2828 {
2829 struct watchpoint *w = (struct watchpoint *) bpt;
2830
2831 update_watchpoint (w, 0 /* don't reparse. */);
2832 }
2833
2834 /* Updating watchpoints creates new locations, so update the global
2835 location list. Explicitly tell ugll to insert locations and
2836 ignore breakpoints_always_inserted_mode. */
2837 update_global_location_list (UGLL_INSERT);
2838 }
2839
2840 /* Invoke CALLBACK for each of bp_location. */
2841
2842 void
2843 iterate_over_bp_locations (walk_bp_location_callback callback)
2844 {
2845 struct bp_location *loc, **loc_tmp;
2846
2847 ALL_BP_LOCATIONS (loc, loc_tmp)
2848 {
2849 callback (loc, NULL);
2850 }
2851 }
2852
2853 /* This is used when we need to synch breakpoint conditions between GDB and the
2854 target. It is the case with deleting and disabling of breakpoints when using
2855 always-inserted mode. */
2856
2857 static void
2858 update_inserted_breakpoint_locations (void)
2859 {
2860 struct bp_location *bl, **blp_tmp;
2861 int error_flag = 0;
2862 int val = 0;
2863 int disabled_breaks = 0;
2864 int hw_breakpoint_error = 0;
2865 int hw_bp_details_reported = 0;
2866
2867 string_file tmp_error_stream;
2868
2869 /* Explicitly mark the warning -- this will only be printed if
2870 there was an error. */
2871 tmp_error_stream.puts ("Warning:\n");
2872
2873 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2874
2875 ALL_BP_LOCATIONS (bl, blp_tmp)
2876 {
2877 /* We only want to update software breakpoints and hardware
2878 breakpoints. */
2879 if (!is_breakpoint (bl->owner))
2880 continue;
2881
2882 /* We only want to update locations that are already inserted
2883 and need updating. This is to avoid unwanted insertion during
2884 deletion of breakpoints. */
2885 if (!bl->inserted || !bl->needs_update)
2886 continue;
2887
2888 switch_to_program_space_and_thread (bl->pspace);
2889
2890 /* For targets that support global breakpoints, there's no need
2891 to select an inferior to insert breakpoint to. In fact, even
2892 if we aren't attached to any process yet, we should still
2893 insert breakpoints. */
2894 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2895 && inferior_ptid == null_ptid)
2896 continue;
2897
2898 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2899 &hw_breakpoint_error, &hw_bp_details_reported);
2900 if (val)
2901 error_flag = val;
2902 }
2903
2904 if (error_flag)
2905 {
2906 target_terminal::ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909 }
2910
2911 /* Used when starting or continuing the program. */
2912
2913 static void
2914 insert_breakpoint_locations (void)
2915 {
2916 struct breakpoint *bpt;
2917 struct bp_location *bl, **blp_tmp;
2918 int error_flag = 0;
2919 int val = 0;
2920 int disabled_breaks = 0;
2921 int hw_breakpoint_error = 0;
2922 int hw_bp_error_explained_already = 0;
2923
2924 string_file tmp_error_stream;
2925
2926 /* Explicitly mark the warning -- this will only be printed if
2927 there was an error. */
2928 tmp_error_stream.puts ("Warning:\n");
2929
2930 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2931
2932 ALL_BP_LOCATIONS (bl, blp_tmp)
2933 {
2934 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2935 continue;
2936
2937 /* There is no point inserting thread-specific breakpoints if
2938 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2939 has BL->OWNER always non-NULL. */
2940 if (bl->owner->thread != -1
2941 && !valid_global_thread_id (bl->owner->thread))
2942 continue;
2943
2944 switch_to_program_space_and_thread (bl->pspace);
2945
2946 /* For targets that support global breakpoints, there's no need
2947 to select an inferior to insert breakpoint to. In fact, even
2948 if we aren't attached to any process yet, we should still
2949 insert breakpoints. */
2950 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2951 && inferior_ptid == null_ptid)
2952 continue;
2953
2954 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2955 &hw_breakpoint_error, &hw_bp_error_explained_already);
2956 if (val)
2957 error_flag = val;
2958 }
2959
2960 /* If we failed to insert all locations of a watchpoint, remove
2961 them, as half-inserted watchpoint is of limited use. */
2962 ALL_BREAKPOINTS (bpt)
2963 {
2964 int some_failed = 0;
2965 struct bp_location *loc;
2966
2967 if (!is_hardware_watchpoint (bpt))
2968 continue;
2969
2970 if (!breakpoint_enabled (bpt))
2971 continue;
2972
2973 if (bpt->disposition == disp_del_at_next_stop)
2974 continue;
2975
2976 for (loc = bpt->loc; loc; loc = loc->next)
2977 if (!loc->inserted && should_be_inserted (loc))
2978 {
2979 some_failed = 1;
2980 break;
2981 }
2982 if (some_failed)
2983 {
2984 for (loc = bpt->loc; loc; loc = loc->next)
2985 if (loc->inserted)
2986 remove_breakpoint (loc);
2987
2988 hw_breakpoint_error = 1;
2989 tmp_error_stream.printf ("Could not insert "
2990 "hardware watchpoint %d.\n",
2991 bpt->number);
2992 error_flag = -1;
2993 }
2994 }
2995
2996 if (error_flag)
2997 {
2998 /* If a hardware breakpoint or watchpoint was inserted, add a
2999 message about possibly exhausted resources. */
3000 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3001 {
3002 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3003 You may have requested too many hardware breakpoints/watchpoints.\n");
3004 }
3005 target_terminal::ours_for_output ();
3006 error_stream (tmp_error_stream);
3007 }
3008 }
3009
3010 /* Used when the program stops.
3011 Returns zero if successful, or non-zero if there was a problem
3012 removing a breakpoint location. */
3013
3014 int
3015 remove_breakpoints (void)
3016 {
3017 struct bp_location *bl, **blp_tmp;
3018 int val = 0;
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->inserted && !is_tracepoint (bl->owner))
3023 val |= remove_breakpoint (bl);
3024 }
3025 return val;
3026 }
3027
3028 /* When a thread exits, remove breakpoints that are related to
3029 that thread. */
3030
3031 static void
3032 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3033 {
3034 struct breakpoint *b, *b_tmp;
3035
3036 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3037 {
3038 if (b->thread == tp->global_num && user_breakpoint_p (b))
3039 {
3040 b->disposition = disp_del_at_next_stop;
3041
3042 printf_filtered (_("\
3043 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3044 b->number, print_thread_id (tp));
3045
3046 /* Hide it from the user. */
3047 b->number = 0;
3048 }
3049 }
3050 }
3051
3052 /* See breakpoint.h. */
3053
3054 void
3055 remove_breakpoints_inf (inferior *inf)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int val;
3059
3060 ALL_BP_LOCATIONS (bl, blp_tmp)
3061 {
3062 if (bl->pspace != inf->pspace)
3063 continue;
3064
3065 if (bl->inserted && !bl->target_info.persist)
3066 {
3067 val = remove_breakpoint (bl);
3068 if (val != 0)
3069 return;
3070 }
3071 }
3072 }
3073
3074 static int internal_breakpoint_number = -1;
3075
3076 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3077 If INTERNAL is non-zero, the breakpoint number will be populated
3078 from internal_breakpoint_number and that variable decremented.
3079 Otherwise the breakpoint number will be populated from
3080 breakpoint_count and that value incremented. Internal breakpoints
3081 do not set the internal var bpnum. */
3082 static void
3083 set_breakpoint_number (int internal, struct breakpoint *b)
3084 {
3085 if (internal)
3086 b->number = internal_breakpoint_number--;
3087 else
3088 {
3089 set_breakpoint_count (breakpoint_count + 1);
3090 b->number = breakpoint_count;
3091 }
3092 }
3093
3094 static struct breakpoint *
3095 create_internal_breakpoint (struct gdbarch *gdbarch,
3096 CORE_ADDR address, enum bptype type,
3097 const struct breakpoint_ops *ops)
3098 {
3099 symtab_and_line sal;
3100 sal.pc = address;
3101 sal.section = find_pc_overlay (sal.pc);
3102 sal.pspace = current_program_space;
3103
3104 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3105 b->number = internal_breakpoint_number--;
3106 b->disposition = disp_donttouch;
3107
3108 return b;
3109 }
3110
3111 static const char *const longjmp_names[] =
3112 {
3113 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3114 };
3115 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3116
3117 /* Per-objfile data private to breakpoint.c. */
3118 struct breakpoint_objfile_data
3119 {
3120 /* Minimal symbol for "_ovly_debug_event" (if any). */
3121 struct bound_minimal_symbol overlay_msym {};
3122
3123 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3124 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3125
3126 /* True if we have looked for longjmp probes. */
3127 int longjmp_searched = 0;
3128
3129 /* SystemTap probe points for longjmp (if any). These are non-owning
3130 references. */
3131 std::vector<probe *> longjmp_probes;
3132
3133 /* Minimal symbol for "std::terminate()" (if any). */
3134 struct bound_minimal_symbol terminate_msym {};
3135
3136 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3137 struct bound_minimal_symbol exception_msym {};
3138
3139 /* True if we have looked for exception probes. */
3140 int exception_searched = 0;
3141
3142 /* SystemTap probe points for unwinding (if any). These are non-owning
3143 references. */
3144 std::vector<probe *> exception_probes;
3145 };
3146
3147 static const struct objfile_key<breakpoint_objfile_data>
3148 breakpoint_objfile_key;
3149
3150 /* Minimal symbol not found sentinel. */
3151 static struct minimal_symbol msym_not_found;
3152
3153 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3154
3155 static int
3156 msym_not_found_p (const struct minimal_symbol *msym)
3157 {
3158 return msym == &msym_not_found;
3159 }
3160
3161 /* Return per-objfile data needed by breakpoint.c.
3162 Allocate the data if necessary. */
3163
3164 static struct breakpoint_objfile_data *
3165 get_breakpoint_objfile_data (struct objfile *objfile)
3166 {
3167 struct breakpoint_objfile_data *bp_objfile_data;
3168
3169 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3170 if (bp_objfile_data == NULL)
3171 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3172 return bp_objfile_data;
3173 }
3174
3175 static void
3176 create_overlay_event_breakpoint (void)
3177 {
3178 const char *const func_name = "_ovly_debug_event";
3179
3180 for (objfile *objfile : current_program_space->objfiles ())
3181 {
3182 struct breakpoint *b;
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184 CORE_ADDR addr;
3185 struct explicit_location explicit_loc;
3186
3187 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3188
3189 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3190 continue;
3191
3192 if (bp_objfile_data->overlay_msym.minsym == NULL)
3193 {
3194 struct bound_minimal_symbol m;
3195
3196 m = lookup_minimal_symbol_text (func_name, objfile);
3197 if (m.minsym == NULL)
3198 {
3199 /* Avoid future lookups in this objfile. */
3200 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3201 continue;
3202 }
3203 bp_objfile_data->overlay_msym = m;
3204 }
3205
3206 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3207 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3208 bp_overlay_event,
3209 &internal_breakpoint_ops);
3210 initialize_explicit_location (&explicit_loc);
3211 explicit_loc.function_name = ASTRDUP (func_name);
3212 b->location = new_explicit_location (&explicit_loc);
3213
3214 if (overlay_debugging == ovly_auto)
3215 {
3216 b->enable_state = bp_enabled;
3217 overlay_events_enabled = 1;
3218 }
3219 else
3220 {
3221 b->enable_state = bp_disabled;
3222 overlay_events_enabled = 0;
3223 }
3224 }
3225 }
3226
3227 static void
3228 create_longjmp_master_breakpoint (void)
3229 {
3230 struct program_space *pspace;
3231
3232 scoped_restore_current_program_space restore_pspace;
3233
3234 ALL_PSPACES (pspace)
3235 {
3236 set_current_program_space (pspace);
3237
3238 for (objfile *objfile : current_program_space->objfiles ())
3239 {
3240 int i;
3241 struct gdbarch *gdbarch;
3242 struct breakpoint_objfile_data *bp_objfile_data;
3243
3244 gdbarch = get_objfile_arch (objfile);
3245
3246 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3247
3248 if (!bp_objfile_data->longjmp_searched)
3249 {
3250 std::vector<probe *> ret
3251 = find_probes_in_objfile (objfile, "libc", "longjmp");
3252
3253 if (!ret.empty ())
3254 {
3255 /* We are only interested in checking one element. */
3256 probe *p = ret[0];
3257
3258 if (!p->can_evaluate_arguments ())
3259 {
3260 /* We cannot use the probe interface here, because it does
3261 not know how to evaluate arguments. */
3262 ret.clear ();
3263 }
3264 }
3265 bp_objfile_data->longjmp_probes = ret;
3266 bp_objfile_data->longjmp_searched = 1;
3267 }
3268
3269 if (!bp_objfile_data->longjmp_probes.empty ())
3270 {
3271 for (probe *p : bp_objfile_data->longjmp_probes)
3272 {
3273 struct breakpoint *b;
3274
3275 b = create_internal_breakpoint (gdbarch,
3276 p->get_relocated_address (objfile),
3277 bp_longjmp_master,
3278 &internal_breakpoint_ops);
3279 b->location = new_probe_location ("-probe-stap libc:longjmp");
3280 b->enable_state = bp_disabled;
3281 }
3282
3283 continue;
3284 }
3285
3286 if (!gdbarch_get_longjmp_target_p (gdbarch))
3287 continue;
3288
3289 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3290 {
3291 struct breakpoint *b;
3292 const char *func_name;
3293 CORE_ADDR addr;
3294 struct explicit_location explicit_loc;
3295
3296 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3297 continue;
3298
3299 func_name = longjmp_names[i];
3300 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3301 {
3302 struct bound_minimal_symbol m;
3303
3304 m = lookup_minimal_symbol_text (func_name, objfile);
3305 if (m.minsym == NULL)
3306 {
3307 /* Prevent future lookups in this objfile. */
3308 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3309 continue;
3310 }
3311 bp_objfile_data->longjmp_msym[i] = m;
3312 }
3313
3314 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3315 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3316 &internal_breakpoint_ops);
3317 initialize_explicit_location (&explicit_loc);
3318 explicit_loc.function_name = ASTRDUP (func_name);
3319 b->location = new_explicit_location (&explicit_loc);
3320 b->enable_state = bp_disabled;
3321 }
3322 }
3323 }
3324 }
3325
3326 /* Create a master std::terminate breakpoint. */
3327 static void
3328 create_std_terminate_master_breakpoint (void)
3329 {
3330 struct program_space *pspace;
3331 const char *const func_name = "std::terminate()";
3332
3333 scoped_restore_current_program_space restore_pspace;
3334
3335 ALL_PSPACES (pspace)
3336 {
3337 CORE_ADDR addr;
3338
3339 set_current_program_space (pspace);
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 struct breakpoint *b;
3344 struct breakpoint_objfile_data *bp_objfile_data;
3345 struct explicit_location explicit_loc;
3346
3347 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3348
3349 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3350 continue;
3351
3352 if (bp_objfile_data->terminate_msym.minsym == NULL)
3353 {
3354 struct bound_minimal_symbol m;
3355
3356 m = lookup_minimal_symbol (func_name, NULL, objfile);
3357 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3358 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3359 {
3360 /* Prevent future lookups in this objfile. */
3361 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3362 continue;
3363 }
3364 bp_objfile_data->terminate_msym = m;
3365 }
3366
3367 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3368 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3369 bp_std_terminate_master,
3370 &internal_breakpoint_ops);
3371 initialize_explicit_location (&explicit_loc);
3372 explicit_loc.function_name = ASTRDUP (func_name);
3373 b->location = new_explicit_location (&explicit_loc);
3374 b->enable_state = bp_disabled;
3375 }
3376 }
3377 }
3378
3379 /* Install a master breakpoint on the unwinder's debug hook. */
3380
3381 static void
3382 create_exception_master_breakpoint (void)
3383 {
3384 const char *const func_name = "_Unwind_DebugHook";
3385
3386 for (objfile *objfile : current_program_space->objfiles ())
3387 {
3388 struct breakpoint *b;
3389 struct gdbarch *gdbarch;
3390 struct breakpoint_objfile_data *bp_objfile_data;
3391 CORE_ADDR addr;
3392 struct explicit_location explicit_loc;
3393
3394 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3395
3396 /* We prefer the SystemTap probe point if it exists. */
3397 if (!bp_objfile_data->exception_searched)
3398 {
3399 std::vector<probe *> ret
3400 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3401
3402 if (!ret.empty ())
3403 {
3404 /* We are only interested in checking one element. */
3405 probe *p = ret[0];
3406
3407 if (!p->can_evaluate_arguments ())
3408 {
3409 /* We cannot use the probe interface here, because it does
3410 not know how to evaluate arguments. */
3411 ret.clear ();
3412 }
3413 }
3414 bp_objfile_data->exception_probes = ret;
3415 bp_objfile_data->exception_searched = 1;
3416 }
3417
3418 if (!bp_objfile_data->exception_probes.empty ())
3419 {
3420 gdbarch = get_objfile_arch (objfile);
3421
3422 for (probe *p : bp_objfile_data->exception_probes)
3423 {
3424 b = create_internal_breakpoint (gdbarch,
3425 p->get_relocated_address (objfile),
3426 bp_exception_master,
3427 &internal_breakpoint_ops);
3428 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3429 b->enable_state = bp_disabled;
3430 }
3431
3432 continue;
3433 }
3434
3435 /* Otherwise, try the hook function. */
3436
3437 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3438 continue;
3439
3440 gdbarch = get_objfile_arch (objfile);
3441
3442 if (bp_objfile_data->exception_msym.minsym == NULL)
3443 {
3444 struct bound_minimal_symbol debug_hook;
3445
3446 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3447 if (debug_hook.minsym == NULL)
3448 {
3449 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3450 continue;
3451 }
3452
3453 bp_objfile_data->exception_msym = debug_hook;
3454 }
3455
3456 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3457 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3458 current_top_target ());
3459 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3460 &internal_breakpoint_ops);
3461 initialize_explicit_location (&explicit_loc);
3462 explicit_loc.function_name = ASTRDUP (func_name);
3463 b->location = new_explicit_location (&explicit_loc);
3464 b->enable_state = bp_disabled;
3465 }
3466 }
3467
3468 /* Does B have a location spec? */
3469
3470 static int
3471 breakpoint_event_location_empty_p (const struct breakpoint *b)
3472 {
3473 return b->location != NULL && event_location_empty_p (b->location.get ());
3474 }
3475
3476 void
3477 update_breakpoints_after_exec (void)
3478 {
3479 struct breakpoint *b, *b_tmp;
3480 struct bp_location *bploc, **bplocp_tmp;
3481
3482 /* We're about to delete breakpoints from GDB's lists. If the
3483 INSERTED flag is true, GDB will try to lift the breakpoints by
3484 writing the breakpoints' "shadow contents" back into memory. The
3485 "shadow contents" are NOT valid after an exec, so GDB should not
3486 do that. Instead, the target is responsible from marking
3487 breakpoints out as soon as it detects an exec. We don't do that
3488 here instead, because there may be other attempts to delete
3489 breakpoints after detecting an exec and before reaching here. */
3490 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3491 if (bploc->pspace == current_program_space)
3492 gdb_assert (!bploc->inserted);
3493
3494 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3495 {
3496 if (b->pspace != current_program_space)
3497 continue;
3498
3499 /* Solib breakpoints must be explicitly reset after an exec(). */
3500 if (b->type == bp_shlib_event)
3501 {
3502 delete_breakpoint (b);
3503 continue;
3504 }
3505
3506 /* JIT breakpoints must be explicitly reset after an exec(). */
3507 if (b->type == bp_jit_event)
3508 {
3509 delete_breakpoint (b);
3510 continue;
3511 }
3512
3513 /* Thread event breakpoints must be set anew after an exec(),
3514 as must overlay event and longjmp master breakpoints. */
3515 if (b->type == bp_thread_event || b->type == bp_overlay_event
3516 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3517 || b->type == bp_exception_master)
3518 {
3519 delete_breakpoint (b);
3520 continue;
3521 }
3522
3523 /* Step-resume breakpoints are meaningless after an exec(). */
3524 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3525 {
3526 delete_breakpoint (b);
3527 continue;
3528 }
3529
3530 /* Just like single-step breakpoints. */
3531 if (b->type == bp_single_step)
3532 {
3533 delete_breakpoint (b);
3534 continue;
3535 }
3536
3537 /* Longjmp and longjmp-resume breakpoints are also meaningless
3538 after an exec. */
3539 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3540 || b->type == bp_longjmp_call_dummy
3541 || b->type == bp_exception || b->type == bp_exception_resume)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 if (b->type == bp_catchpoint)
3548 {
3549 /* For now, none of the bp_catchpoint breakpoints need to
3550 do anything at this point. In the future, if some of
3551 the catchpoints need to something, we will need to add
3552 a new method, and call this method from here. */
3553 continue;
3554 }
3555
3556 /* bp_finish is a special case. The only way we ought to be able
3557 to see one of these when an exec() has happened, is if the user
3558 caught a vfork, and then said "finish". Ordinarily a finish just
3559 carries them to the call-site of the current callee, by setting
3560 a temporary bp there and resuming. But in this case, the finish
3561 will carry them entirely through the vfork & exec.
3562
3563 We don't want to allow a bp_finish to remain inserted now. But
3564 we can't safely delete it, 'cause finish_command has a handle to
3565 the bp on a bpstat, and will later want to delete it. There's a
3566 chance (and I've seen it happen) that if we delete the bp_finish
3567 here, that its storage will get reused by the time finish_command
3568 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3569 We really must allow finish_command to delete a bp_finish.
3570
3571 In the absence of a general solution for the "how do we know
3572 it's safe to delete something others may have handles to?"
3573 problem, what we'll do here is just uninsert the bp_finish, and
3574 let finish_command delete it.
3575
3576 (We know the bp_finish is "doomed" in the sense that it's
3577 momentary, and will be deleted as soon as finish_command sees
3578 the inferior stopped. So it doesn't matter that the bp's
3579 address is probably bogus in the new a.out, unlike e.g., the
3580 solib breakpoints.) */
3581
3582 if (b->type == bp_finish)
3583 {
3584 continue;
3585 }
3586
3587 /* Without a symbolic address, we have little hope of the
3588 pre-exec() address meaning the same thing in the post-exec()
3589 a.out. */
3590 if (breakpoint_event_location_empty_p (b))
3591 {
3592 delete_breakpoint (b);
3593 continue;
3594 }
3595 }
3596 }
3597
3598 int
3599 detach_breakpoints (ptid_t ptid)
3600 {
3601 struct bp_location *bl, **blp_tmp;
3602 int val = 0;
3603 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3604 struct inferior *inf = current_inferior ();
3605
3606 if (ptid.pid () == inferior_ptid.pid ())
3607 error (_("Cannot detach breakpoints of inferior_ptid"));
3608
3609 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3610 inferior_ptid = ptid;
3611 ALL_BP_LOCATIONS (bl, blp_tmp)
3612 {
3613 if (bl->pspace != inf->pspace)
3614 continue;
3615
3616 /* This function must physically remove breakpoints locations
3617 from the specified ptid, without modifying the breakpoint
3618 package's state. Locations of type bp_loc_other are only
3619 maintained at GDB side. So, there is no need to remove
3620 these bp_loc_other locations. Moreover, removing these
3621 would modify the breakpoint package's state. */
3622 if (bl->loc_type == bp_loc_other)
3623 continue;
3624
3625 if (bl->inserted)
3626 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3627 }
3628
3629 return val;
3630 }
3631
3632 /* Remove the breakpoint location BL from the current address space.
3633 Note that this is used to detach breakpoints from a child fork.
3634 When we get here, the child isn't in the inferior list, and neither
3635 do we have objects to represent its address space --- we should
3636 *not* look at bl->pspace->aspace here. */
3637
3638 static int
3639 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3640 {
3641 int val;
3642
3643 /* BL is never in moribund_locations by our callers. */
3644 gdb_assert (bl->owner != NULL);
3645
3646 /* The type of none suggests that owner is actually deleted.
3647 This should not ever happen. */
3648 gdb_assert (bl->owner->type != bp_none);
3649
3650 if (bl->loc_type == bp_loc_software_breakpoint
3651 || bl->loc_type == bp_loc_hardware_breakpoint)
3652 {
3653 /* "Normal" instruction breakpoint: either the standard
3654 trap-instruction bp (bp_breakpoint), or a
3655 bp_hardware_breakpoint. */
3656
3657 /* First check to see if we have to handle an overlay. */
3658 if (overlay_debugging == ovly_off
3659 || bl->section == NULL
3660 || !(section_is_overlay (bl->section)))
3661 {
3662 /* No overlay handling: just remove the breakpoint. */
3663
3664 /* If we're trying to uninsert a memory breakpoint that we
3665 know is set in a dynamic object that is marked
3666 shlib_disabled, then either the dynamic object was
3667 removed with "remove-symbol-file" or with
3668 "nosharedlibrary". In the former case, we don't know
3669 whether another dynamic object might have loaded over the
3670 breakpoint's address -- the user might well let us know
3671 about it next with add-symbol-file (the whole point of
3672 add-symbol-file is letting the user manually maintain a
3673 list of dynamically loaded objects). If we have the
3674 breakpoint's shadow memory, that is, this is a software
3675 breakpoint managed by GDB, check whether the breakpoint
3676 is still inserted in memory, to avoid overwriting wrong
3677 code with stale saved shadow contents. Note that HW
3678 breakpoints don't have shadow memory, as they're
3679 implemented using a mechanism that is not dependent on
3680 being able to modify the target's memory, and as such
3681 they should always be removed. */
3682 if (bl->shlib_disabled
3683 && bl->target_info.shadow_len != 0
3684 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3685 val = 0;
3686 else
3687 val = bl->owner->ops->remove_location (bl, reason);
3688 }
3689 else
3690 {
3691 /* This breakpoint is in an overlay section.
3692 Did we set a breakpoint at the LMA? */
3693 if (!overlay_events_enabled)
3694 {
3695 /* Yes -- overlay event support is not active, so we
3696 should have set a breakpoint at the LMA. Remove it.
3697 */
3698 /* Ignore any failures: if the LMA is in ROM, we will
3699 have already warned when we failed to insert it. */
3700 if (bl->loc_type == bp_loc_hardware_breakpoint)
3701 target_remove_hw_breakpoint (bl->gdbarch,
3702 &bl->overlay_target_info);
3703 else
3704 target_remove_breakpoint (bl->gdbarch,
3705 &bl->overlay_target_info,
3706 reason);
3707 }
3708 /* Did we set a breakpoint at the VMA?
3709 If so, we will have marked the breakpoint 'inserted'. */
3710 if (bl->inserted)
3711 {
3712 /* Yes -- remove it. Previously we did not bother to
3713 remove the breakpoint if the section had been
3714 unmapped, but let's not rely on that being safe. We
3715 don't know what the overlay manager might do. */
3716
3717 /* However, we should remove *software* breakpoints only
3718 if the section is still mapped, or else we overwrite
3719 wrong code with the saved shadow contents. */
3720 if (bl->loc_type == bp_loc_hardware_breakpoint
3721 || section_is_mapped (bl->section))
3722 val = bl->owner->ops->remove_location (bl, reason);
3723 else
3724 val = 0;
3725 }
3726 else
3727 {
3728 /* No -- not inserted, so no need to remove. No error. */
3729 val = 0;
3730 }
3731 }
3732
3733 /* In some cases, we might not be able to remove a breakpoint in
3734 a shared library that has already been removed, but we have
3735 not yet processed the shlib unload event. Similarly for an
3736 unloaded add-symbol-file object - the user might not yet have
3737 had the chance to remove-symbol-file it. shlib_disabled will
3738 be set if the library/object has already been removed, but
3739 the breakpoint hasn't been uninserted yet, e.g., after
3740 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3741 always-inserted mode. */
3742 if (val
3743 && (bl->loc_type == bp_loc_software_breakpoint
3744 && (bl->shlib_disabled
3745 || solib_name_from_address (bl->pspace, bl->address)
3746 || shared_objfile_contains_address_p (bl->pspace,
3747 bl->address))))
3748 val = 0;
3749
3750 if (val)
3751 return val;
3752 bl->inserted = (reason == DETACH_BREAKPOINT);
3753 }
3754 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3755 {
3756 gdb_assert (bl->owner->ops != NULL
3757 && bl->owner->ops->remove_location != NULL);
3758
3759 bl->inserted = (reason == DETACH_BREAKPOINT);
3760 bl->owner->ops->remove_location (bl, reason);
3761
3762 /* Failure to remove any of the hardware watchpoints comes here. */
3763 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3764 warning (_("Could not remove hardware watchpoint %d."),
3765 bl->owner->number);
3766 }
3767 else if (bl->owner->type == bp_catchpoint
3768 && breakpoint_enabled (bl->owner)
3769 && !bl->duplicate)
3770 {
3771 gdb_assert (bl->owner->ops != NULL
3772 && bl->owner->ops->remove_location != NULL);
3773
3774 val = bl->owner->ops->remove_location (bl, reason);
3775 if (val)
3776 return val;
3777
3778 bl->inserted = (reason == DETACH_BREAKPOINT);
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int
3785 remove_breakpoint (struct bp_location *bl)
3786 {
3787 /* BL is never in moribund_locations by our callers. */
3788 gdb_assert (bl->owner != NULL);
3789
3790 /* The type of none suggests that owner is actually deleted.
3791 This should not ever happen. */
3792 gdb_assert (bl->owner->type != bp_none);
3793
3794 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3795
3796 switch_to_program_space_and_thread (bl->pspace);
3797
3798 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3799 }
3800
3801 /* Clear the "inserted" flag in all breakpoints. */
3802
3803 void
3804 mark_breakpoints_out (void)
3805 {
3806 struct bp_location *bl, **blp_tmp;
3807
3808 ALL_BP_LOCATIONS (bl, blp_tmp)
3809 if (bl->pspace == current_program_space)
3810 bl->inserted = 0;
3811 }
3812
3813 /* Clear the "inserted" flag in all breakpoints and delete any
3814 breakpoints which should go away between runs of the program.
3815
3816 Plus other such housekeeping that has to be done for breakpoints
3817 between runs.
3818
3819 Note: this function gets called at the end of a run (by
3820 generic_mourn_inferior) and when a run begins (by
3821 init_wait_for_inferior). */
3822
3823
3824
3825 void
3826 breakpoint_init_inferior (enum inf_context context)
3827 {
3828 struct breakpoint *b, *b_tmp;
3829 struct program_space *pspace = current_program_space;
3830
3831 /* If breakpoint locations are shared across processes, then there's
3832 nothing to do. */
3833 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3834 return;
3835
3836 mark_breakpoints_out ();
3837
3838 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3839 {
3840 if (b->loc && b->loc->pspace != pspace)
3841 continue;
3842
3843 switch (b->type)
3844 {
3845 case bp_call_dummy:
3846 case bp_longjmp_call_dummy:
3847
3848 /* If the call dummy breakpoint is at the entry point it will
3849 cause problems when the inferior is rerun, so we better get
3850 rid of it. */
3851
3852 case bp_watchpoint_scope:
3853
3854 /* Also get rid of scope breakpoints. */
3855
3856 case bp_shlib_event:
3857
3858 /* Also remove solib event breakpoints. Their addresses may
3859 have changed since the last time we ran the program.
3860 Actually we may now be debugging against different target;
3861 and so the solib backend that installed this breakpoint may
3862 not be used in by the target. E.g.,
3863
3864 (gdb) file prog-linux
3865 (gdb) run # native linux target
3866 ...
3867 (gdb) kill
3868 (gdb) file prog-win.exe
3869 (gdb) tar rem :9999 # remote Windows gdbserver.
3870 */
3871
3872 case bp_step_resume:
3873
3874 /* Also remove step-resume breakpoints. */
3875
3876 case bp_single_step:
3877
3878 /* Also remove single-step breakpoints. */
3879
3880 delete_breakpoint (b);
3881 break;
3882
3883 case bp_watchpoint:
3884 case bp_hardware_watchpoint:
3885 case bp_read_watchpoint:
3886 case bp_access_watchpoint:
3887 {
3888 struct watchpoint *w = (struct watchpoint *) b;
3889
3890 /* Likewise for watchpoints on local expressions. */
3891 if (w->exp_valid_block != NULL)
3892 delete_breakpoint (b);
3893 else
3894 {
3895 /* Get rid of existing locations, which are no longer
3896 valid. New ones will be created in
3897 update_watchpoint, when the inferior is restarted.
3898 The next update_global_location_list call will
3899 garbage collect them. */
3900 b->loc = NULL;
3901
3902 if (context == inf_starting)
3903 {
3904 /* Reset val field to force reread of starting value in
3905 insert_breakpoints. */
3906 w->val.reset (nullptr);
3907 w->val_valid = 0;
3908 }
3909 }
3910 }
3911 break;
3912 default:
3913 break;
3914 }
3915 }
3916
3917 /* Get rid of the moribund locations. */
3918 for (bp_location *bl : moribund_locations)
3919 decref_bp_location (&bl);
3920 moribund_locations.clear ();
3921 }
3922
3923 /* These functions concern about actual breakpoints inserted in the
3924 target --- to e.g. check if we need to do decr_pc adjustment or if
3925 we need to hop over the bkpt --- so we check for address space
3926 match, not program space. */
3927
3928 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3929 exists at PC. It returns ordinary_breakpoint_here if it's an
3930 ordinary breakpoint, or permanent_breakpoint_here if it's a
3931 permanent breakpoint.
3932 - When continuing from a location with an ordinary breakpoint, we
3933 actually single step once before calling insert_breakpoints.
3934 - When continuing from a location with a permanent breakpoint, we
3935 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3936 the target, to advance the PC past the breakpoint. */
3937
3938 enum breakpoint_here
3939 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3940 {
3941 struct bp_location *bl, **blp_tmp;
3942 int any_breakpoint_here = 0;
3943
3944 ALL_BP_LOCATIONS (bl, blp_tmp)
3945 {
3946 if (bl->loc_type != bp_loc_software_breakpoint
3947 && bl->loc_type != bp_loc_hardware_breakpoint)
3948 continue;
3949
3950 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3951 if ((breakpoint_enabled (bl->owner)
3952 || bl->permanent)
3953 && breakpoint_location_address_match (bl, aspace, pc))
3954 {
3955 if (overlay_debugging
3956 && section_is_overlay (bl->section)
3957 && !section_is_mapped (bl->section))
3958 continue; /* unmapped overlay -- can't be a match */
3959 else if (bl->permanent)
3960 return permanent_breakpoint_here;
3961 else
3962 any_breakpoint_here = 1;
3963 }
3964 }
3965
3966 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3967 }
3968
3969 /* See breakpoint.h. */
3970
3971 int
3972 breakpoint_in_range_p (const address_space *aspace,
3973 CORE_ADDR addr, ULONGEST len)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976
3977 ALL_BP_LOCATIONS (bl, blp_tmp)
3978 {
3979 if (bl->loc_type != bp_loc_software_breakpoint
3980 && bl->loc_type != bp_loc_hardware_breakpoint)
3981 continue;
3982
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_range_overlap (bl, aspace,
3986 addr, len))
3987 {
3988 if (overlay_debugging
3989 && section_is_overlay (bl->section)
3990 && !section_is_mapped (bl->section))
3991 {
3992 /* Unmapped overlay -- can't be a match. */
3993 continue;
3994 }
3995
3996 return 1;
3997 }
3998 }
3999
4000 return 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4007 {
4008 for (bp_location *loc : moribund_locations)
4009 if (breakpoint_location_address_match (loc, aspace, pc))
4010 return 1;
4011
4012 return 0;
4013 }
4014
4015 /* Returns non-zero iff BL is inserted at PC, in address space
4016 ASPACE. */
4017
4018 static int
4019 bp_location_inserted_here_p (struct bp_location *bl,
4020 const address_space *aspace, CORE_ADDR pc)
4021 {
4022 if (bl->inserted
4023 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4024 aspace, pc))
4025 {
4026 if (overlay_debugging
4027 && section_is_overlay (bl->section)
4028 && !section_is_mapped (bl->section))
4029 return 0; /* unmapped overlay -- can't be a match */
4030 else
4031 return 1;
4032 }
4033 return 0;
4034 }
4035
4036 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4037
4038 int
4039 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4040 {
4041 struct bp_location **blp, **blp_tmp = NULL;
4042
4043 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4044 {
4045 struct bp_location *bl = *blp;
4046
4047 if (bl->loc_type != bp_loc_software_breakpoint
4048 && bl->loc_type != bp_loc_hardware_breakpoint)
4049 continue;
4050
4051 if (bp_location_inserted_here_p (bl, aspace, pc))
4052 return 1;
4053 }
4054 return 0;
4055 }
4056
4057 /* This function returns non-zero iff there is a software breakpoint
4058 inserted at PC. */
4059
4060 int
4061 software_breakpoint_inserted_here_p (const address_space *aspace,
4062 CORE_ADDR pc)
4063 {
4064 struct bp_location **blp, **blp_tmp = NULL;
4065
4066 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4067 {
4068 struct bp_location *bl = *blp;
4069
4070 if (bl->loc_type != bp_loc_software_breakpoint)
4071 continue;
4072
4073 if (bp_location_inserted_here_p (bl, aspace, pc))
4074 return 1;
4075 }
4076
4077 return 0;
4078 }
4079
4080 /* See breakpoint.h. */
4081
4082 int
4083 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4084 CORE_ADDR pc)
4085 {
4086 struct bp_location **blp, **blp_tmp = NULL;
4087
4088 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4089 {
4090 struct bp_location *bl = *blp;
4091
4092 if (bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098
4099 return 0;
4100 }
4101
4102 int
4103 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4104 CORE_ADDR addr, ULONGEST len)
4105 {
4106 struct breakpoint *bpt;
4107
4108 ALL_BREAKPOINTS (bpt)
4109 {
4110 struct bp_location *loc;
4111
4112 if (bpt->type != bp_hardware_watchpoint
4113 && bpt->type != bp_access_watchpoint)
4114 continue;
4115
4116 if (!breakpoint_enabled (bpt))
4117 continue;
4118
4119 for (loc = bpt->loc; loc; loc = loc->next)
4120 if (loc->pspace->aspace == aspace && loc->inserted)
4121 {
4122 CORE_ADDR l, h;
4123
4124 /* Check for intersection. */
4125 l = std::max<CORE_ADDR> (loc->address, addr);
4126 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4127 if (l < h)
4128 return 1;
4129 }
4130 }
4131 return 0;
4132 }
4133 \f
4134
4135 /* bpstat stuff. External routines' interfaces are documented
4136 in breakpoint.h. */
4137
4138 int
4139 is_catchpoint (struct breakpoint *ep)
4140 {
4141 return (ep->type == bp_catchpoint);
4142 }
4143
4144 /* Frees any storage that is part of a bpstat. Does not walk the
4145 'next' chain. */
4146
4147 bpstats::~bpstats ()
4148 {
4149 if (bp_location_at != NULL)
4150 decref_bp_location (&bp_location_at);
4151 }
4152
4153 /* Clear a bpstat so that it says we are not at any breakpoint.
4154 Also free any storage that is part of a bpstat. */
4155
4156 void
4157 bpstat_clear (bpstat *bsp)
4158 {
4159 bpstat p;
4160 bpstat q;
4161
4162 if (bsp == 0)
4163 return;
4164 p = *bsp;
4165 while (p != NULL)
4166 {
4167 q = p->next;
4168 delete p;
4169 p = q;
4170 }
4171 *bsp = NULL;
4172 }
4173
4174 bpstats::bpstats (const bpstats &other)
4175 : next (NULL),
4176 bp_location_at (other.bp_location_at),
4177 breakpoint_at (other.breakpoint_at),
4178 commands (other.commands),
4179 print (other.print),
4180 stop (other.stop),
4181 print_it (other.print_it)
4182 {
4183 if (other.old_val != NULL)
4184 old_val = release_value (value_copy (other.old_val.get ()));
4185 incref_bp_location (bp_location_at);
4186 }
4187
4188 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4189 is part of the bpstat is copied as well. */
4190
4191 bpstat
4192 bpstat_copy (bpstat bs)
4193 {
4194 bpstat p = NULL;
4195 bpstat tmp;
4196 bpstat retval = NULL;
4197
4198 if (bs == NULL)
4199 return bs;
4200
4201 for (; bs != NULL; bs = bs->next)
4202 {
4203 tmp = new bpstats (*bs);
4204
4205 if (p == NULL)
4206 /* This is the first thing in the chain. */
4207 retval = tmp;
4208 else
4209 p->next = tmp;
4210 p = tmp;
4211 }
4212 p->next = NULL;
4213 return retval;
4214 }
4215
4216 /* Find the bpstat associated with this breakpoint. */
4217
4218 bpstat
4219 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4220 {
4221 if (bsp == NULL)
4222 return NULL;
4223
4224 for (; bsp != NULL; bsp = bsp->next)
4225 {
4226 if (bsp->breakpoint_at == breakpoint)
4227 return bsp;
4228 }
4229 return NULL;
4230 }
4231
4232 /* See breakpoint.h. */
4233
4234 int
4235 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4236 {
4237 for (; bsp != NULL; bsp = bsp->next)
4238 {
4239 if (bsp->breakpoint_at == NULL)
4240 {
4241 /* A moribund location can never explain a signal other than
4242 GDB_SIGNAL_TRAP. */
4243 if (sig == GDB_SIGNAL_TRAP)
4244 return 1;
4245 }
4246 else
4247 {
4248 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4249 sig))
4250 return 1;
4251 }
4252 }
4253
4254 return 0;
4255 }
4256
4257 /* Put in *NUM the breakpoint number of the first breakpoint we are
4258 stopped at. *BSP upon return is a bpstat which points to the
4259 remaining breakpoints stopped at (but which is not guaranteed to be
4260 good for anything but further calls to bpstat_num).
4261
4262 Return 0 if passed a bpstat which does not indicate any breakpoints.
4263 Return -1 if stopped at a breakpoint that has been deleted since
4264 we set it.
4265 Return 1 otherwise. */
4266
4267 int
4268 bpstat_num (bpstat *bsp, int *num)
4269 {
4270 struct breakpoint *b;
4271
4272 if ((*bsp) == NULL)
4273 return 0; /* No more breakpoint values */
4274
4275 /* We assume we'll never have several bpstats that correspond to a
4276 single breakpoint -- otherwise, this function might return the
4277 same number more than once and this will look ugly. */
4278 b = (*bsp)->breakpoint_at;
4279 *bsp = (*bsp)->next;
4280 if (b == NULL)
4281 return -1; /* breakpoint that's been deleted since */
4282
4283 *num = b->number; /* We have its number */
4284 return 1;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 void
4290 bpstat_clear_actions (void)
4291 {
4292 bpstat bs;
4293
4294 if (inferior_ptid == null_ptid)
4295 return;
4296
4297 thread_info *tp = inferior_thread ();
4298 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4299 {
4300 bs->commands = NULL;
4301 bs->old_val.reset (nullptr);
4302 }
4303 }
4304
4305 /* Called when a command is about to proceed the inferior. */
4306
4307 static void
4308 breakpoint_about_to_proceed (void)
4309 {
4310 if (inferior_ptid != null_ptid)
4311 {
4312 struct thread_info *tp = inferior_thread ();
4313
4314 /* Allow inferior function calls in breakpoint commands to not
4315 interrupt the command list. When the call finishes
4316 successfully, the inferior will be standing at the same
4317 breakpoint as if nothing happened. */
4318 if (tp->control.in_infcall)
4319 return;
4320 }
4321
4322 breakpoint_proceeded = 1;
4323 }
4324
4325 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4326 or its equivalent. */
4327
4328 static int
4329 command_line_is_silent (struct command_line *cmd)
4330 {
4331 return cmd && (strcmp ("silent", cmd->line) == 0);
4332 }
4333
4334 /* Execute all the commands associated with all the breakpoints at
4335 this location. Any of these commands could cause the process to
4336 proceed beyond this point, etc. We look out for such changes by
4337 checking the global "breakpoint_proceeded" after each command.
4338
4339 Returns true if a breakpoint command resumed the inferior. In that
4340 case, it is the caller's responsibility to recall it again with the
4341 bpstat of the current thread. */
4342
4343 static int
4344 bpstat_do_actions_1 (bpstat *bsp)
4345 {
4346 bpstat bs;
4347 int again = 0;
4348
4349 /* Avoid endless recursion if a `source' command is contained
4350 in bs->commands. */
4351 if (executing_breakpoint_commands)
4352 return 0;
4353
4354 scoped_restore save_executing
4355 = make_scoped_restore (&executing_breakpoint_commands, 1);
4356
4357 scoped_restore preventer = prevent_dont_repeat ();
4358
4359 /* This pointer will iterate over the list of bpstat's. */
4360 bs = *bsp;
4361
4362 breakpoint_proceeded = 0;
4363 for (; bs != NULL; bs = bs->next)
4364 {
4365 struct command_line *cmd = NULL;
4366
4367 /* Take ownership of the BSP's command tree, if it has one.
4368
4369 The command tree could legitimately contain commands like
4370 'step' and 'next', which call clear_proceed_status, which
4371 frees stop_bpstat's command tree. To make sure this doesn't
4372 free the tree we're executing out from under us, we need to
4373 take ownership of the tree ourselves. Since a given bpstat's
4374 commands are only executed once, we don't need to copy it; we
4375 can clear the pointer in the bpstat, and make sure we free
4376 the tree when we're done. */
4377 counted_command_line ccmd = bs->commands;
4378 bs->commands = NULL;
4379 if (ccmd != NULL)
4380 cmd = ccmd.get ();
4381 if (command_line_is_silent (cmd))
4382 {
4383 /* The action has been already done by bpstat_stop_status. */
4384 cmd = cmd->next;
4385 }
4386
4387 while (cmd != NULL)
4388 {
4389 execute_control_command (cmd);
4390
4391 if (breakpoint_proceeded)
4392 break;
4393 else
4394 cmd = cmd->next;
4395 }
4396
4397 if (breakpoint_proceeded)
4398 {
4399 if (current_ui->async)
4400 /* If we are in async mode, then the target might be still
4401 running, not stopped at any breakpoint, so nothing for
4402 us to do here -- just return to the event loop. */
4403 ;
4404 else
4405 /* In sync mode, when execute_control_command returns
4406 we're already standing on the next breakpoint.
4407 Breakpoint commands for that stop were not run, since
4408 execute_command does not run breakpoint commands --
4409 only command_line_handler does, but that one is not
4410 involved in execution of breakpoint commands. So, we
4411 can now execute breakpoint commands. It should be
4412 noted that making execute_command do bpstat actions is
4413 not an option -- in this case we'll have recursive
4414 invocation of bpstat for each breakpoint with a
4415 command, and can easily blow up GDB stack. Instead, we
4416 return true, which will trigger the caller to recall us
4417 with the new stop_bpstat. */
4418 again = 1;
4419 break;
4420 }
4421 }
4422 return again;
4423 }
4424
4425 /* Helper for bpstat_do_actions. Get the current thread, if there's
4426 one, is alive and has execution. Return NULL otherwise. */
4427
4428 static thread_info *
4429 get_bpstat_thread ()
4430 {
4431 if (inferior_ptid == null_ptid || !target_has_execution)
4432 return NULL;
4433
4434 thread_info *tp = inferior_thread ();
4435 if (tp->state == THREAD_EXITED || tp->executing)
4436 return NULL;
4437 return tp;
4438 }
4439
4440 void
4441 bpstat_do_actions (void)
4442 {
4443 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4444 thread_info *tp;
4445
4446 /* Do any commands attached to breakpoint we are stopped at. */
4447 while ((tp = get_bpstat_thread ()) != NULL)
4448 {
4449 /* Since in sync mode, bpstat_do_actions may resume the
4450 inferior, and only return when it is stopped at the next
4451 breakpoint, we keep doing breakpoint actions until it returns
4452 false to indicate the inferior was not resumed. */
4453 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4454 break;
4455 }
4456
4457 cleanup_if_error.release ();
4458 }
4459
4460 /* Print out the (old or new) value associated with a watchpoint. */
4461
4462 static void
4463 watchpoint_value_print (struct value *val, struct ui_file *stream)
4464 {
4465 if (val == NULL)
4466 fprintf_unfiltered (stream, _("<unreadable>"));
4467 else
4468 {
4469 struct value_print_options opts;
4470 get_user_print_options (&opts);
4471 value_print (val, stream, &opts);
4472 }
4473 }
4474
4475 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4476 debugging multiple threads. */
4477
4478 void
4479 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4480 {
4481 if (uiout->is_mi_like_p ())
4482 return;
4483
4484 uiout->text ("\n");
4485
4486 if (show_thread_that_caused_stop ())
4487 {
4488 const char *name;
4489 struct thread_info *thr = inferior_thread ();
4490
4491 uiout->text ("Thread ");
4492 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4493
4494 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4495 if (name != NULL)
4496 {
4497 uiout->text (" \"");
4498 uiout->field_fmt ("name", "%s", name);
4499 uiout->text ("\"");
4500 }
4501
4502 uiout->text (" hit ");
4503 }
4504 }
4505
4506 /* Generic routine for printing messages indicating why we
4507 stopped. The behavior of this function depends on the value
4508 'print_it' in the bpstat structure. Under some circumstances we
4509 may decide not to print anything here and delegate the task to
4510 normal_stop(). */
4511
4512 static enum print_stop_action
4513 print_bp_stop_message (bpstat bs)
4514 {
4515 switch (bs->print_it)
4516 {
4517 case print_it_noop:
4518 /* Nothing should be printed for this bpstat entry. */
4519 return PRINT_UNKNOWN;
4520 break;
4521
4522 case print_it_done:
4523 /* We still want to print the frame, but we already printed the
4524 relevant messages. */
4525 return PRINT_SRC_AND_LOC;
4526 break;
4527
4528 case print_it_normal:
4529 {
4530 struct breakpoint *b = bs->breakpoint_at;
4531
4532 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4533 which has since been deleted. */
4534 if (b == NULL)
4535 return PRINT_UNKNOWN;
4536
4537 /* Normal case. Call the breakpoint's print_it method. */
4538 return b->ops->print_it (bs);
4539 }
4540 break;
4541
4542 default:
4543 internal_error (__FILE__, __LINE__,
4544 _("print_bp_stop_message: unrecognized enum value"));
4545 break;
4546 }
4547 }
4548
4549 /* A helper function that prints a shared library stopped event. */
4550
4551 static void
4552 print_solib_event (int is_catchpoint)
4553 {
4554 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4555 bool any_added = !current_program_space->added_solibs.empty ();
4556
4557 if (!is_catchpoint)
4558 {
4559 if (any_added || any_deleted)
4560 current_uiout->text (_("Stopped due to shared library event:\n"));
4561 else
4562 current_uiout->text (_("Stopped due to shared library event (no "
4563 "libraries added or removed)\n"));
4564 }
4565
4566 if (current_uiout->is_mi_like_p ())
4567 current_uiout->field_string ("reason",
4568 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4569
4570 if (any_deleted)
4571 {
4572 current_uiout->text (_(" Inferior unloaded "));
4573 ui_out_emit_list list_emitter (current_uiout, "removed");
4574 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4575 {
4576 const std::string &name = current_program_space->deleted_solibs[ix];
4577
4578 if (ix > 0)
4579 current_uiout->text (" ");
4580 current_uiout->field_string ("library", name);
4581 current_uiout->text ("\n");
4582 }
4583 }
4584
4585 if (any_added)
4586 {
4587 current_uiout->text (_(" Inferior loaded "));
4588 ui_out_emit_list list_emitter (current_uiout, "added");
4589 bool first = true;
4590 for (so_list *iter : current_program_space->added_solibs)
4591 {
4592 if (!first)
4593 current_uiout->text (" ");
4594 first = false;
4595 current_uiout->field_string ("library", iter->so_name);
4596 current_uiout->text ("\n");
4597 }
4598 }
4599 }
4600
4601 /* Print a message indicating what happened. This is called from
4602 normal_stop(). The input to this routine is the head of the bpstat
4603 list - a list of the eventpoints that caused this stop. KIND is
4604 the target_waitkind for the stopping event. This
4605 routine calls the generic print routine for printing a message
4606 about reasons for stopping. This will print (for example) the
4607 "Breakpoint n," part of the output. The return value of this
4608 routine is one of:
4609
4610 PRINT_UNKNOWN: Means we printed nothing.
4611 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4612 code to print the location. An example is
4613 "Breakpoint 1, " which should be followed by
4614 the location.
4615 PRINT_SRC_ONLY: Means we printed something, but there is no need
4616 to also print the location part of the message.
4617 An example is the catch/throw messages, which
4618 don't require a location appended to the end.
4619 PRINT_NOTHING: We have done some printing and we don't need any
4620 further info to be printed. */
4621
4622 enum print_stop_action
4623 bpstat_print (bpstat bs, int kind)
4624 {
4625 enum print_stop_action val;
4626
4627 /* Maybe another breakpoint in the chain caused us to stop.
4628 (Currently all watchpoints go on the bpstat whether hit or not.
4629 That probably could (should) be changed, provided care is taken
4630 with respect to bpstat_explains_signal). */
4631 for (; bs; bs = bs->next)
4632 {
4633 val = print_bp_stop_message (bs);
4634 if (val == PRINT_SRC_ONLY
4635 || val == PRINT_SRC_AND_LOC
4636 || val == PRINT_NOTHING)
4637 return val;
4638 }
4639
4640 /* If we had hit a shared library event breakpoint,
4641 print_bp_stop_message would print out this message. If we hit an
4642 OS-level shared library event, do the same thing. */
4643 if (kind == TARGET_WAITKIND_LOADED)
4644 {
4645 print_solib_event (0);
4646 return PRINT_NOTHING;
4647 }
4648
4649 /* We reached the end of the chain, or we got a null BS to start
4650 with and nothing was printed. */
4651 return PRINT_UNKNOWN;
4652 }
4653
4654 /* Evaluate the boolean expression EXP and return the result. */
4655
4656 static bool
4657 breakpoint_cond_eval (expression *exp)
4658 {
4659 struct value *mark = value_mark ();
4660 bool res = value_true (evaluate_expression (exp));
4661
4662 value_free_to_mark (mark);
4663 return res;
4664 }
4665
4666 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4667
4668 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4669 : next (NULL),
4670 bp_location_at (bl),
4671 breakpoint_at (bl->owner),
4672 commands (NULL),
4673 print (0),
4674 stop (0),
4675 print_it (print_it_normal)
4676 {
4677 incref_bp_location (bl);
4678 **bs_link_pointer = this;
4679 *bs_link_pointer = &next;
4680 }
4681
4682 bpstats::bpstats ()
4683 : next (NULL),
4684 bp_location_at (NULL),
4685 breakpoint_at (NULL),
4686 commands (NULL),
4687 print (0),
4688 stop (0),
4689 print_it (print_it_normal)
4690 {
4691 }
4692 \f
4693 /* The target has stopped with waitstatus WS. Check if any hardware
4694 watchpoints have triggered, according to the target. */
4695
4696 int
4697 watchpoints_triggered (struct target_waitstatus *ws)
4698 {
4699 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4700 CORE_ADDR addr;
4701 struct breakpoint *b;
4702
4703 if (!stopped_by_watchpoint)
4704 {
4705 /* We were not stopped by a watchpoint. Mark all watchpoints
4706 as not triggered. */
4707 ALL_BREAKPOINTS (b)
4708 if (is_hardware_watchpoint (b))
4709 {
4710 struct watchpoint *w = (struct watchpoint *) b;
4711
4712 w->watchpoint_triggered = watch_triggered_no;
4713 }
4714
4715 return 0;
4716 }
4717
4718 if (!target_stopped_data_address (current_top_target (), &addr))
4719 {
4720 /* We were stopped by a watchpoint, but we don't know where.
4721 Mark all watchpoints as unknown. */
4722 ALL_BREAKPOINTS (b)
4723 if (is_hardware_watchpoint (b))
4724 {
4725 struct watchpoint *w = (struct watchpoint *) b;
4726
4727 w->watchpoint_triggered = watch_triggered_unknown;
4728 }
4729
4730 return 1;
4731 }
4732
4733 /* The target could report the data address. Mark watchpoints
4734 affected by this data address as triggered, and all others as not
4735 triggered. */
4736
4737 ALL_BREAKPOINTS (b)
4738 if (is_hardware_watchpoint (b))
4739 {
4740 struct watchpoint *w = (struct watchpoint *) b;
4741 struct bp_location *loc;
4742
4743 w->watchpoint_triggered = watch_triggered_no;
4744 for (loc = b->loc; loc; loc = loc->next)
4745 {
4746 if (is_masked_watchpoint (b))
4747 {
4748 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4749 CORE_ADDR start = loc->address & w->hw_wp_mask;
4750
4751 if (newaddr == start)
4752 {
4753 w->watchpoint_triggered = watch_triggered_yes;
4754 break;
4755 }
4756 }
4757 /* Exact match not required. Within range is sufficient. */
4758 else if (target_watchpoint_addr_within_range (current_top_target (),
4759 addr, loc->address,
4760 loc->length))
4761 {
4762 w->watchpoint_triggered = watch_triggered_yes;
4763 break;
4764 }
4765 }
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Possible return values for watchpoint_check. */
4772 enum wp_check_result
4773 {
4774 /* The watchpoint has been deleted. */
4775 WP_DELETED = 1,
4776
4777 /* The value has changed. */
4778 WP_VALUE_CHANGED = 2,
4779
4780 /* The value has not changed. */
4781 WP_VALUE_NOT_CHANGED = 3,
4782
4783 /* Ignore this watchpoint, no matter if the value changed or not. */
4784 WP_IGNORE = 4,
4785 };
4786
4787 #define BP_TEMPFLAG 1
4788 #define BP_HARDWAREFLAG 2
4789
4790 /* Evaluate watchpoint condition expression and check if its value
4791 changed. */
4792
4793 static wp_check_result
4794 watchpoint_check (bpstat bs)
4795 {
4796 struct watchpoint *b;
4797 struct frame_info *fr;
4798 int within_current_scope;
4799
4800 /* BS is built from an existing struct breakpoint. */
4801 gdb_assert (bs->breakpoint_at != NULL);
4802 b = (struct watchpoint *) bs->breakpoint_at;
4803
4804 /* If this is a local watchpoint, we only want to check if the
4805 watchpoint frame is in scope if the current thread is the thread
4806 that was used to create the watchpoint. */
4807 if (!watchpoint_in_thread_scope (b))
4808 return WP_IGNORE;
4809
4810 if (b->exp_valid_block == NULL)
4811 within_current_scope = 1;
4812 else
4813 {
4814 struct frame_info *frame = get_current_frame ();
4815 struct gdbarch *frame_arch = get_frame_arch (frame);
4816 CORE_ADDR frame_pc = get_frame_pc (frame);
4817
4818 /* stack_frame_destroyed_p() returns a non-zero value if we're
4819 still in the function but the stack frame has already been
4820 invalidated. Since we can't rely on the values of local
4821 variables after the stack has been destroyed, we are treating
4822 the watchpoint in that state as `not changed' without further
4823 checking. Don't mark watchpoints as changed if the current
4824 frame is in an epilogue - even if they are in some other
4825 frame, our view of the stack is likely to be wrong and
4826 frame_find_by_id could error out. */
4827 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4828 return WP_IGNORE;
4829
4830 fr = frame_find_by_id (b->watchpoint_frame);
4831 within_current_scope = (fr != NULL);
4832
4833 /* If we've gotten confused in the unwinder, we might have
4834 returned a frame that can't describe this variable. */
4835 if (within_current_scope)
4836 {
4837 struct symbol *function;
4838
4839 function = get_frame_function (fr);
4840 if (function == NULL
4841 || !contained_in (b->exp_valid_block,
4842 SYMBOL_BLOCK_VALUE (function)))
4843 within_current_scope = 0;
4844 }
4845
4846 if (within_current_scope)
4847 /* If we end up stopping, the current frame will get selected
4848 in normal_stop. So this call to select_frame won't affect
4849 the user. */
4850 select_frame (fr);
4851 }
4852
4853 if (within_current_scope)
4854 {
4855 /* We use value_{,free_to_}mark because it could be a *long*
4856 time before we return to the command level and call
4857 free_all_values. We can't call free_all_values because we
4858 might be in the middle of evaluating a function call. */
4859
4860 int pc = 0;
4861 struct value *mark;
4862 struct value *new_val;
4863
4864 if (is_masked_watchpoint (b))
4865 /* Since we don't know the exact trigger address (from
4866 stopped_data_address), just tell the user we've triggered
4867 a mask watchpoint. */
4868 return WP_VALUE_CHANGED;
4869
4870 mark = value_mark ();
4871 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4872
4873 if (b->val_bitsize != 0)
4874 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4875
4876 /* We use value_equal_contents instead of value_equal because
4877 the latter coerces an array to a pointer, thus comparing just
4878 the address of the array instead of its contents. This is
4879 not what we want. */
4880 if ((b->val != NULL) != (new_val != NULL)
4881 || (b->val != NULL && !value_equal_contents (b->val.get (),
4882 new_val)))
4883 {
4884 bs->old_val = b->val;
4885 b->val = release_value (new_val);
4886 b->val_valid = 1;
4887 if (new_val != NULL)
4888 value_free_to_mark (mark);
4889 return WP_VALUE_CHANGED;
4890 }
4891 else
4892 {
4893 /* Nothing changed. */
4894 value_free_to_mark (mark);
4895 return WP_VALUE_NOT_CHANGED;
4896 }
4897 }
4898 else
4899 {
4900 /* This seems like the only logical thing to do because
4901 if we temporarily ignored the watchpoint, then when
4902 we reenter the block in which it is valid it contains
4903 garbage (in the case of a function, it may have two
4904 garbage values, one before and one after the prologue).
4905 So we can't even detect the first assignment to it and
4906 watch after that (since the garbage may or may not equal
4907 the first value assigned). */
4908 /* We print all the stop information in
4909 breakpoint_ops->print_it, but in this case, by the time we
4910 call breakpoint_ops->print_it this bp will be deleted
4911 already. So we have no choice but print the information
4912 here. */
4913
4914 SWITCH_THRU_ALL_UIS ()
4915 {
4916 struct ui_out *uiout = current_uiout;
4917
4918 if (uiout->is_mi_like_p ())
4919 uiout->field_string
4920 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4921 uiout->text ("\nWatchpoint ");
4922 uiout->field_int ("wpnum", b->number);
4923 uiout->text (" deleted because the program has left the block in\n"
4924 "which its expression is valid.\n");
4925 }
4926
4927 /* Make sure the watchpoint's commands aren't executed. */
4928 b->commands = NULL;
4929 watchpoint_del_at_next_stop (b);
4930
4931 return WP_DELETED;
4932 }
4933 }
4934
4935 /* Return true if it looks like target has stopped due to hitting
4936 breakpoint location BL. This function does not check if we should
4937 stop, only if BL explains the stop. */
4938
4939 static int
4940 bpstat_check_location (const struct bp_location *bl,
4941 const address_space *aspace, CORE_ADDR bp_addr,
4942 const struct target_waitstatus *ws)
4943 {
4944 struct breakpoint *b = bl->owner;
4945
4946 /* BL is from an existing breakpoint. */
4947 gdb_assert (b != NULL);
4948
4949 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4950 }
4951
4952 /* Determine if the watched values have actually changed, and we
4953 should stop. If not, set BS->stop to 0. */
4954
4955 static void
4956 bpstat_check_watchpoint (bpstat bs)
4957 {
4958 const struct bp_location *bl;
4959 struct watchpoint *b;
4960
4961 /* BS is built for existing struct breakpoint. */
4962 bl = bs->bp_location_at;
4963 gdb_assert (bl != NULL);
4964 b = (struct watchpoint *) bs->breakpoint_at;
4965 gdb_assert (b != NULL);
4966
4967 {
4968 int must_check_value = 0;
4969
4970 if (b->type == bp_watchpoint)
4971 /* For a software watchpoint, we must always check the
4972 watched value. */
4973 must_check_value = 1;
4974 else if (b->watchpoint_triggered == watch_triggered_yes)
4975 /* We have a hardware watchpoint (read, write, or access)
4976 and the target earlier reported an address watched by
4977 this watchpoint. */
4978 must_check_value = 1;
4979 else if (b->watchpoint_triggered == watch_triggered_unknown
4980 && b->type == bp_hardware_watchpoint)
4981 /* We were stopped by a hardware watchpoint, but the target could
4982 not report the data address. We must check the watchpoint's
4983 value. Access and read watchpoints are out of luck; without
4984 a data address, we can't figure it out. */
4985 must_check_value = 1;
4986
4987 if (must_check_value)
4988 {
4989 wp_check_result e;
4990
4991 try
4992 {
4993 e = watchpoint_check (bs);
4994 }
4995 catch (const gdb_exception &ex)
4996 {
4997 exception_fprintf (gdb_stderr, ex,
4998 "Error evaluating expression "
4999 "for watchpoint %d\n",
5000 b->number);
5001
5002 SWITCH_THRU_ALL_UIS ()
5003 {
5004 printf_filtered (_("Watchpoint %d deleted.\n"),
5005 b->number);
5006 }
5007 watchpoint_del_at_next_stop (b);
5008 e = WP_DELETED;
5009 }
5010
5011 switch (e)
5012 {
5013 case WP_DELETED:
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 /* Stop. */
5017 break;
5018 case WP_IGNORE:
5019 bs->print_it = print_it_noop;
5020 bs->stop = 0;
5021 break;
5022 case WP_VALUE_CHANGED:
5023 if (b->type == bp_read_watchpoint)
5024 {
5025 /* There are two cases to consider here:
5026
5027 1. We're watching the triggered memory for reads.
5028 In that case, trust the target, and always report
5029 the watchpoint hit to the user. Even though
5030 reads don't cause value changes, the value may
5031 have changed since the last time it was read, and
5032 since we're not trapping writes, we will not see
5033 those, and as such we should ignore our notion of
5034 old value.
5035
5036 2. We're watching the triggered memory for both
5037 reads and writes. There are two ways this may
5038 happen:
5039
5040 2.1. This is a target that can't break on data
5041 reads only, but can break on accesses (reads or
5042 writes), such as e.g., x86. We detect this case
5043 at the time we try to insert read watchpoints.
5044
5045 2.2. Otherwise, the target supports read
5046 watchpoints, but, the user set an access or write
5047 watchpoint watching the same memory as this read
5048 watchpoint.
5049
5050 If we're watching memory writes as well as reads,
5051 ignore watchpoint hits when we find that the
5052 value hasn't changed, as reads don't cause
5053 changes. This still gives false positives when
5054 the program writes the same value to memory as
5055 what there was already in memory (we will confuse
5056 it for a read), but it's much better than
5057 nothing. */
5058
5059 int other_write_watchpoint = 0;
5060
5061 if (bl->watchpoint_type == hw_read)
5062 {
5063 struct breakpoint *other_b;
5064
5065 ALL_BREAKPOINTS (other_b)
5066 if (other_b->type == bp_hardware_watchpoint
5067 || other_b->type == bp_access_watchpoint)
5068 {
5069 struct watchpoint *other_w =
5070 (struct watchpoint *) other_b;
5071
5072 if (other_w->watchpoint_triggered
5073 == watch_triggered_yes)
5074 {
5075 other_write_watchpoint = 1;
5076 break;
5077 }
5078 }
5079 }
5080
5081 if (other_write_watchpoint
5082 || bl->watchpoint_type == hw_access)
5083 {
5084 /* We're watching the same memory for writes,
5085 and the value changed since the last time we
5086 updated it, so this trap must be for a write.
5087 Ignore it. */
5088 bs->print_it = print_it_noop;
5089 bs->stop = 0;
5090 }
5091 }
5092 break;
5093 case WP_VALUE_NOT_CHANGED:
5094 if (b->type == bp_hardware_watchpoint
5095 || b->type == bp_watchpoint)
5096 {
5097 /* Don't stop: write watchpoints shouldn't fire if
5098 the value hasn't changed. */
5099 bs->print_it = print_it_noop;
5100 bs->stop = 0;
5101 }
5102 /* Stop. */
5103 break;
5104 default:
5105 /* Can't happen. */
5106 break;
5107 }
5108 }
5109 else /* must_check_value == 0 */
5110 {
5111 /* This is a case where some watchpoint(s) triggered, but
5112 not at the address of this watchpoint, or else no
5113 watchpoint triggered after all. So don't print
5114 anything for this watchpoint. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 }
5120
5121 /* For breakpoints that are currently marked as telling gdb to stop,
5122 check conditions (condition proper, frame, thread and ignore count)
5123 of breakpoint referred to by BS. If we should not stop for this
5124 breakpoint, set BS->stop to 0. */
5125
5126 static void
5127 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5128 {
5129 const struct bp_location *bl;
5130 struct breakpoint *b;
5131 /* Assume stop. */
5132 bool condition_result = true;
5133 struct expression *cond;
5134
5135 gdb_assert (bs->stop);
5136
5137 /* BS is built for existing struct breakpoint. */
5138 bl = bs->bp_location_at;
5139 gdb_assert (bl != NULL);
5140 b = bs->breakpoint_at;
5141 gdb_assert (b != NULL);
5142
5143 /* Even if the target evaluated the condition on its end and notified GDB, we
5144 need to do so again since GDB does not know if we stopped due to a
5145 breakpoint or a single step breakpoint. */
5146
5147 if (frame_id_p (b->frame_id)
5148 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5149 {
5150 bs->stop = 0;
5151 return;
5152 }
5153
5154 /* If this is a thread/task-specific breakpoint, don't waste cpu
5155 evaluating the condition if this isn't the specified
5156 thread/task. */
5157 if ((b->thread != -1 && b->thread != thread->global_num)
5158 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5159 {
5160 bs->stop = 0;
5161 return;
5162 }
5163
5164 /* Evaluate extension language breakpoints that have a "stop" method
5165 implemented. */
5166 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5167
5168 if (is_watchpoint (b))
5169 {
5170 struct watchpoint *w = (struct watchpoint *) b;
5171
5172 cond = w->cond_exp.get ();
5173 }
5174 else
5175 cond = bl->cond.get ();
5176
5177 if (cond && b->disposition != disp_del_at_next_stop)
5178 {
5179 int within_current_scope = 1;
5180 struct watchpoint * w;
5181
5182 /* We use value_mark and value_free_to_mark because it could
5183 be a long time before we return to the command level and
5184 call free_all_values. We can't call free_all_values
5185 because we might be in the middle of evaluating a
5186 function call. */
5187 struct value *mark = value_mark ();
5188
5189 if (is_watchpoint (b))
5190 w = (struct watchpoint *) b;
5191 else
5192 w = NULL;
5193
5194 /* Need to select the frame, with all that implies so that
5195 the conditions will have the right context. Because we
5196 use the frame, we will not see an inlined function's
5197 variables when we arrive at a breakpoint at the start
5198 of the inlined function; the current frame will be the
5199 call site. */
5200 if (w == NULL || w->cond_exp_valid_block == NULL)
5201 select_frame (get_current_frame ());
5202 else
5203 {
5204 struct frame_info *frame;
5205
5206 /* For local watchpoint expressions, which particular
5207 instance of a local is being watched matters, so we
5208 keep track of the frame to evaluate the expression
5209 in. To evaluate the condition however, it doesn't
5210 really matter which instantiation of the function
5211 where the condition makes sense triggers the
5212 watchpoint. This allows an expression like "watch
5213 global if q > 10" set in `func', catch writes to
5214 global on all threads that call `func', or catch
5215 writes on all recursive calls of `func' by a single
5216 thread. We simply always evaluate the condition in
5217 the innermost frame that's executing where it makes
5218 sense to evaluate the condition. It seems
5219 intuitive. */
5220 frame = block_innermost_frame (w->cond_exp_valid_block);
5221 if (frame != NULL)
5222 select_frame (frame);
5223 else
5224 within_current_scope = 0;
5225 }
5226 if (within_current_scope)
5227 {
5228 try
5229 {
5230 condition_result = breakpoint_cond_eval (cond);
5231 }
5232 catch (const gdb_exception &ex)
5233 {
5234 exception_fprintf (gdb_stderr, ex,
5235 "Error in testing breakpoint condition:\n");
5236 }
5237 }
5238 else
5239 {
5240 warning (_("Watchpoint condition cannot be tested "
5241 "in the current scope"));
5242 /* If we failed to set the right context for this
5243 watchpoint, unconditionally report it. */
5244 }
5245 /* FIXME-someday, should give breakpoint #. */
5246 value_free_to_mark (mark);
5247 }
5248
5249 if (cond && !condition_result)
5250 {
5251 bs->stop = 0;
5252 }
5253 else if (b->ignore_count > 0)
5254 {
5255 b->ignore_count--;
5256 bs->stop = 0;
5257 /* Increase the hit count even though we don't stop. */
5258 ++(b->hit_count);
5259 gdb::observers::breakpoint_modified.notify (b);
5260 }
5261 }
5262
5263 /* Returns true if we need to track moribund locations of LOC's type
5264 on the current target. */
5265
5266 static int
5267 need_moribund_for_location_type (struct bp_location *loc)
5268 {
5269 return ((loc->loc_type == bp_loc_software_breakpoint
5270 && !target_supports_stopped_by_sw_breakpoint ())
5271 || (loc->loc_type == bp_loc_hardware_breakpoint
5272 && !target_supports_stopped_by_hw_breakpoint ()));
5273 }
5274
5275 /* See breakpoint.h. */
5276
5277 bpstat
5278 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5279 const struct target_waitstatus *ws)
5280 {
5281 struct breakpoint *b;
5282 bpstat bs_head = NULL, *bs_link = &bs_head;
5283
5284 ALL_BREAKPOINTS (b)
5285 {
5286 if (!breakpoint_enabled (b))
5287 continue;
5288
5289 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5290 {
5291 /* For hardware watchpoints, we look only at the first
5292 location. The watchpoint_check function will work on the
5293 entire expression, not the individual locations. For
5294 read watchpoints, the watchpoints_triggered function has
5295 checked all locations already. */
5296 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5297 break;
5298
5299 if (!bl->enabled || bl->shlib_disabled)
5300 continue;
5301
5302 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5303 continue;
5304
5305 /* Come here if it's a watchpoint, or if the break address
5306 matches. */
5307
5308 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5309 explain stop. */
5310
5311 /* Assume we stop. Should we find a watchpoint that is not
5312 actually triggered, or if the condition of the breakpoint
5313 evaluates as false, we'll reset 'stop' to 0. */
5314 bs->stop = 1;
5315 bs->print = 1;
5316
5317 /* If this is a scope breakpoint, mark the associated
5318 watchpoint as triggered so that we will handle the
5319 out-of-scope event. We'll get to the watchpoint next
5320 iteration. */
5321 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5322 {
5323 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5324
5325 w->watchpoint_triggered = watch_triggered_yes;
5326 }
5327 }
5328 }
5329
5330 /* Check if a moribund breakpoint explains the stop. */
5331 if (!target_supports_stopped_by_sw_breakpoint ()
5332 || !target_supports_stopped_by_hw_breakpoint ())
5333 {
5334 for (bp_location *loc : moribund_locations)
5335 {
5336 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5337 && need_moribund_for_location_type (loc))
5338 {
5339 bpstat bs = new bpstats (loc, &bs_link);
5340 /* For hits of moribund locations, we should just proceed. */
5341 bs->stop = 0;
5342 bs->print = 0;
5343 bs->print_it = print_it_noop;
5344 }
5345 }
5346 }
5347
5348 return bs_head;
5349 }
5350
5351 /* See breakpoint.h. */
5352
5353 bpstat
5354 bpstat_stop_status (const address_space *aspace,
5355 CORE_ADDR bp_addr, thread_info *thread,
5356 const struct target_waitstatus *ws,
5357 bpstat stop_chain)
5358 {
5359 struct breakpoint *b = NULL;
5360 /* First item of allocated bpstat's. */
5361 bpstat bs_head = stop_chain;
5362 bpstat bs;
5363 int need_remove_insert;
5364 int removed_any;
5365
5366 /* First, build the bpstat chain with locations that explain a
5367 target stop, while being careful to not set the target running,
5368 as that may invalidate locations (in particular watchpoint
5369 locations are recreated). Resuming will happen here with
5370 breakpoint conditions or watchpoint expressions that include
5371 inferior function calls. */
5372 if (bs_head == NULL)
5373 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5374
5375 /* A bit of special processing for shlib breakpoints. We need to
5376 process solib loading here, so that the lists of loaded and
5377 unloaded libraries are correct before we handle "catch load" and
5378 "catch unload". */
5379 for (bs = bs_head; bs != NULL; bs = bs->next)
5380 {
5381 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5382 {
5383 handle_solib_event ();
5384 break;
5385 }
5386 }
5387
5388 /* Now go through the locations that caused the target to stop, and
5389 check whether we're interested in reporting this stop to higher
5390 layers, or whether we should resume the target transparently. */
5391
5392 removed_any = 0;
5393
5394 for (bs = bs_head; bs != NULL; bs = bs->next)
5395 {
5396 if (!bs->stop)
5397 continue;
5398
5399 b = bs->breakpoint_at;
5400 b->ops->check_status (bs);
5401 if (bs->stop)
5402 {
5403 bpstat_check_breakpoint_conditions (bs, thread);
5404
5405 if (bs->stop)
5406 {
5407 ++(b->hit_count);
5408 gdb::observers::breakpoint_modified.notify (b);
5409
5410 /* We will stop here. */
5411 if (b->disposition == disp_disable)
5412 {
5413 --(b->enable_count);
5414 if (b->enable_count <= 0)
5415 b->enable_state = bp_disabled;
5416 removed_any = 1;
5417 }
5418 if (b->silent)
5419 bs->print = 0;
5420 bs->commands = b->commands;
5421 if (command_line_is_silent (bs->commands
5422 ? bs->commands.get () : NULL))
5423 bs->print = 0;
5424
5425 b->ops->after_condition_true (bs);
5426 }
5427
5428 }
5429
5430 /* Print nothing for this entry if we don't stop or don't
5431 print. */
5432 if (!bs->stop || !bs->print)
5433 bs->print_it = print_it_noop;
5434 }
5435
5436 /* If we aren't stopping, the value of some hardware watchpoint may
5437 not have changed, but the intermediate memory locations we are
5438 watching may have. Don't bother if we're stopping; this will get
5439 done later. */
5440 need_remove_insert = 0;
5441 if (! bpstat_causes_stop (bs_head))
5442 for (bs = bs_head; bs != NULL; bs = bs->next)
5443 if (!bs->stop
5444 && bs->breakpoint_at
5445 && is_hardware_watchpoint (bs->breakpoint_at))
5446 {
5447 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5448
5449 update_watchpoint (w, 0 /* don't reparse. */);
5450 need_remove_insert = 1;
5451 }
5452
5453 if (need_remove_insert)
5454 update_global_location_list (UGLL_MAY_INSERT);
5455 else if (removed_any)
5456 update_global_location_list (UGLL_DONT_INSERT);
5457
5458 return bs_head;
5459 }
5460
5461 static void
5462 handle_jit_event (void)
5463 {
5464 struct frame_info *frame;
5465 struct gdbarch *gdbarch;
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5469
5470 /* Switch terminal for any messages produced by
5471 breakpoint_re_set. */
5472 target_terminal::ours_for_output ();
5473
5474 frame = get_current_frame ();
5475 gdbarch = get_frame_arch (frame);
5476
5477 jit_event_handler (gdbarch);
5478
5479 target_terminal::inferior ();
5480 }
5481
5482 /* Prepare WHAT final decision for infrun. */
5483
5484 /* Decide what infrun needs to do with this bpstat. */
5485
5486 struct bpstat_what
5487 bpstat_what (bpstat bs_head)
5488 {
5489 struct bpstat_what retval;
5490 bpstat bs;
5491
5492 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5493 retval.call_dummy = STOP_NONE;
5494 retval.is_longjmp = 0;
5495
5496 for (bs = bs_head; bs != NULL; bs = bs->next)
5497 {
5498 /* Extract this BS's action. After processing each BS, we check
5499 if its action overrides all we've seem so far. */
5500 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5501 enum bptype bptype;
5502
5503 if (bs->breakpoint_at == NULL)
5504 {
5505 /* I suspect this can happen if it was a momentary
5506 breakpoint which has since been deleted. */
5507 bptype = bp_none;
5508 }
5509 else
5510 bptype = bs->breakpoint_at->type;
5511
5512 switch (bptype)
5513 {
5514 case bp_none:
5515 break;
5516 case bp_breakpoint:
5517 case bp_hardware_breakpoint:
5518 case bp_single_step:
5519 case bp_until:
5520 case bp_finish:
5521 case bp_shlib_event:
5522 if (bs->stop)
5523 {
5524 if (bs->print)
5525 this_action = BPSTAT_WHAT_STOP_NOISY;
5526 else
5527 this_action = BPSTAT_WHAT_STOP_SILENT;
5528 }
5529 else
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 break;
5532 case bp_watchpoint:
5533 case bp_hardware_watchpoint:
5534 case bp_read_watchpoint:
5535 case bp_access_watchpoint:
5536 if (bs->stop)
5537 {
5538 if (bs->print)
5539 this_action = BPSTAT_WHAT_STOP_NOISY;
5540 else
5541 this_action = BPSTAT_WHAT_STOP_SILENT;
5542 }
5543 else
5544 {
5545 /* There was a watchpoint, but we're not stopping.
5546 This requires no further action. */
5547 }
5548 break;
5549 case bp_longjmp:
5550 case bp_longjmp_call_dummy:
5551 case bp_exception:
5552 if (bs->stop)
5553 {
5554 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5555 retval.is_longjmp = bptype != bp_exception;
5556 }
5557 else
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 break;
5560 case bp_longjmp_resume:
5561 case bp_exception_resume:
5562 if (bs->stop)
5563 {
5564 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5565 retval.is_longjmp = bptype == bp_longjmp_resume;
5566 }
5567 else
5568 this_action = BPSTAT_WHAT_SINGLE;
5569 break;
5570 case bp_step_resume:
5571 if (bs->stop)
5572 this_action = BPSTAT_WHAT_STEP_RESUME;
5573 else
5574 {
5575 /* It is for the wrong frame. */
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 }
5578 break;
5579 case bp_hp_step_resume:
5580 if (bs->stop)
5581 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5582 else
5583 {
5584 /* It is for the wrong frame. */
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 }
5587 break;
5588 case bp_watchpoint_scope:
5589 case bp_thread_event:
5590 case bp_overlay_event:
5591 case bp_longjmp_master:
5592 case bp_std_terminate_master:
5593 case bp_exception_master:
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_catchpoint:
5597 if (bs->stop)
5598 {
5599 if (bs->print)
5600 this_action = BPSTAT_WHAT_STOP_NOISY;
5601 else
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 }
5604 else
5605 {
5606 /* There was a catchpoint, but we're not stopping.
5607 This requires no further action. */
5608 }
5609 break;
5610 case bp_jit_event:
5611 this_action = BPSTAT_WHAT_SINGLE;
5612 break;
5613 case bp_call_dummy:
5614 /* Make sure the action is stop (silent or noisy),
5615 so infrun.c pops the dummy frame. */
5616 retval.call_dummy = STOP_STACK_DUMMY;
5617 this_action = BPSTAT_WHAT_STOP_SILENT;
5618 break;
5619 case bp_std_terminate:
5620 /* Make sure the action is stop (silent or noisy),
5621 so infrun.c pops the dummy frame. */
5622 retval.call_dummy = STOP_STD_TERMINATE;
5623 this_action = BPSTAT_WHAT_STOP_SILENT;
5624 break;
5625 case bp_tracepoint:
5626 case bp_fast_tracepoint:
5627 case bp_static_tracepoint:
5628 /* Tracepoint hits should not be reported back to GDB, and
5629 if one got through somehow, it should have been filtered
5630 out already. */
5631 internal_error (__FILE__, __LINE__,
5632 _("bpstat_what: tracepoint encountered"));
5633 break;
5634 case bp_gnu_ifunc_resolver:
5635 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5636 this_action = BPSTAT_WHAT_SINGLE;
5637 break;
5638 case bp_gnu_ifunc_resolver_return:
5639 /* The breakpoint will be removed, execution will restart from the
5640 PC of the former breakpoint. */
5641 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5642 break;
5643
5644 case bp_dprintf:
5645 if (bs->stop)
5646 this_action = BPSTAT_WHAT_STOP_SILENT;
5647 else
5648 this_action = BPSTAT_WHAT_SINGLE;
5649 break;
5650
5651 default:
5652 internal_error (__FILE__, __LINE__,
5653 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5654 }
5655
5656 retval.main_action = std::max (retval.main_action, this_action);
5657 }
5658
5659 return retval;
5660 }
5661
5662 void
5663 bpstat_run_callbacks (bpstat bs_head)
5664 {
5665 bpstat bs;
5666
5667 for (bs = bs_head; bs != NULL; bs = bs->next)
5668 {
5669 struct breakpoint *b = bs->breakpoint_at;
5670
5671 if (b == NULL)
5672 continue;
5673 switch (b->type)
5674 {
5675 case bp_jit_event:
5676 handle_jit_event ();
5677 break;
5678 case bp_gnu_ifunc_resolver:
5679 gnu_ifunc_resolver_stop (b);
5680 break;
5681 case bp_gnu_ifunc_resolver_return:
5682 gnu_ifunc_resolver_return_stop (b);
5683 break;
5684 }
5685 }
5686 }
5687
5688 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5689 without hardware support). This isn't related to a specific bpstat,
5690 just to things like whether watchpoints are set. */
5691
5692 int
5693 bpstat_should_step (void)
5694 {
5695 struct breakpoint *b;
5696
5697 ALL_BREAKPOINTS (b)
5698 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5699 return 1;
5700 return 0;
5701 }
5702
5703 int
5704 bpstat_causes_stop (bpstat bs)
5705 {
5706 for (; bs != NULL; bs = bs->next)
5707 if (bs->stop)
5708 return 1;
5709
5710 return 0;
5711 }
5712
5713 \f
5714
5715 /* Compute a string of spaces suitable to indent the next line
5716 so it starts at the position corresponding to the table column
5717 named COL_NAME in the currently active table of UIOUT. */
5718
5719 static char *
5720 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5721 {
5722 static char wrap_indent[80];
5723 int i, total_width, width, align;
5724 const char *text;
5725
5726 total_width = 0;
5727 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5728 {
5729 if (strcmp (text, col_name) == 0)
5730 {
5731 gdb_assert (total_width < sizeof wrap_indent);
5732 memset (wrap_indent, ' ', total_width);
5733 wrap_indent[total_width] = 0;
5734
5735 return wrap_indent;
5736 }
5737
5738 total_width += width + 1;
5739 }
5740
5741 return NULL;
5742 }
5743
5744 /* Determine if the locations of this breakpoint will have their conditions
5745 evaluated by the target, host or a mix of both. Returns the following:
5746
5747 "host": Host evals condition.
5748 "host or target": Host or Target evals condition.
5749 "target": Target evals condition.
5750 */
5751
5752 static const char *
5753 bp_condition_evaluator (struct breakpoint *b)
5754 {
5755 struct bp_location *bl;
5756 char host_evals = 0;
5757 char target_evals = 0;
5758
5759 if (!b)
5760 return NULL;
5761
5762 if (!is_breakpoint (b))
5763 return NULL;
5764
5765 if (gdb_evaluates_breakpoint_condition_p ()
5766 || !target_supports_evaluation_of_breakpoint_conditions ())
5767 return condition_evaluation_host;
5768
5769 for (bl = b->loc; bl; bl = bl->next)
5770 {
5771 if (bl->cond_bytecode)
5772 target_evals++;
5773 else
5774 host_evals++;
5775 }
5776
5777 if (host_evals && target_evals)
5778 return condition_evaluation_both;
5779 else if (target_evals)
5780 return condition_evaluation_target;
5781 else
5782 return condition_evaluation_host;
5783 }
5784
5785 /* Determine the breakpoint location's condition evaluator. This is
5786 similar to bp_condition_evaluator, but for locations. */
5787
5788 static const char *
5789 bp_location_condition_evaluator (struct bp_location *bl)
5790 {
5791 if (bl && !is_breakpoint (bl->owner))
5792 return NULL;
5793
5794 if (gdb_evaluates_breakpoint_condition_p ()
5795 || !target_supports_evaluation_of_breakpoint_conditions ())
5796 return condition_evaluation_host;
5797
5798 if (bl && bl->cond_bytecode)
5799 return condition_evaluation_target;
5800 else
5801 return condition_evaluation_host;
5802 }
5803
5804 /* Print the LOC location out of the list of B->LOC locations. */
5805
5806 static void
5807 print_breakpoint_location (struct breakpoint *b,
5808 struct bp_location *loc)
5809 {
5810 struct ui_out *uiout = current_uiout;
5811
5812 scoped_restore_current_program_space restore_pspace;
5813
5814 if (loc != NULL && loc->shlib_disabled)
5815 loc = NULL;
5816
5817 if (loc != NULL)
5818 set_current_program_space (loc->pspace);
5819
5820 if (b->display_canonical)
5821 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5822 else if (loc && loc->symtab)
5823 {
5824 const struct symbol *sym = loc->symbol;
5825
5826 if (sym)
5827 {
5828 uiout->text ("in ");
5829 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5830 ui_out_style_kind::FUNCTION);
5831 uiout->text (" ");
5832 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5833 uiout->text ("at ");
5834 }
5835 uiout->field_string ("file",
5836 symtab_to_filename_for_display (loc->symtab),
5837 ui_out_style_kind::FILE);
5838 uiout->text (":");
5839
5840 if (uiout->is_mi_like_p ())
5841 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5842
5843 uiout->field_int ("line", loc->line_number);
5844 }
5845 else if (loc)
5846 {
5847 string_file stb;
5848
5849 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5850 demangle, "");
5851 uiout->field_stream ("at", stb);
5852 }
5853 else
5854 {
5855 uiout->field_string ("pending",
5856 event_location_to_string (b->location.get ()));
5857 /* If extra_string is available, it could be holding a condition
5858 or dprintf arguments. In either case, make sure it is printed,
5859 too, but only for non-MI streams. */
5860 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5861 {
5862 if (b->type == bp_dprintf)
5863 uiout->text (",");
5864 else
5865 uiout->text (" ");
5866 uiout->text (b->extra_string);
5867 }
5868 }
5869
5870 if (loc && is_breakpoint (b)
5871 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5872 && bp_condition_evaluator (b) == condition_evaluation_both)
5873 {
5874 uiout->text (" (");
5875 uiout->field_string ("evaluated-by",
5876 bp_location_condition_evaluator (loc));
5877 uiout->text (")");
5878 }
5879 }
5880
5881 static const char *
5882 bptype_string (enum bptype type)
5883 {
5884 struct ep_type_description
5885 {
5886 enum bptype type;
5887 const char *description;
5888 };
5889 static struct ep_type_description bptypes[] =
5890 {
5891 {bp_none, "?deleted?"},
5892 {bp_breakpoint, "breakpoint"},
5893 {bp_hardware_breakpoint, "hw breakpoint"},
5894 {bp_single_step, "sw single-step"},
5895 {bp_until, "until"},
5896 {bp_finish, "finish"},
5897 {bp_watchpoint, "watchpoint"},
5898 {bp_hardware_watchpoint, "hw watchpoint"},
5899 {bp_read_watchpoint, "read watchpoint"},
5900 {bp_access_watchpoint, "acc watchpoint"},
5901 {bp_longjmp, "longjmp"},
5902 {bp_longjmp_resume, "longjmp resume"},
5903 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5904 {bp_exception, "exception"},
5905 {bp_exception_resume, "exception resume"},
5906 {bp_step_resume, "step resume"},
5907 {bp_hp_step_resume, "high-priority step resume"},
5908 {bp_watchpoint_scope, "watchpoint scope"},
5909 {bp_call_dummy, "call dummy"},
5910 {bp_std_terminate, "std::terminate"},
5911 {bp_shlib_event, "shlib events"},
5912 {bp_thread_event, "thread events"},
5913 {bp_overlay_event, "overlay events"},
5914 {bp_longjmp_master, "longjmp master"},
5915 {bp_std_terminate_master, "std::terminate master"},
5916 {bp_exception_master, "exception master"},
5917 {bp_catchpoint, "catchpoint"},
5918 {bp_tracepoint, "tracepoint"},
5919 {bp_fast_tracepoint, "fast tracepoint"},
5920 {bp_static_tracepoint, "static tracepoint"},
5921 {bp_dprintf, "dprintf"},
5922 {bp_jit_event, "jit events"},
5923 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5924 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5925 };
5926
5927 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5928 || ((int) type != bptypes[(int) type].type))
5929 internal_error (__FILE__, __LINE__,
5930 _("bptypes table does not describe type #%d."),
5931 (int) type);
5932
5933 return bptypes[(int) type].description;
5934 }
5935
5936 /* For MI, output a field named 'thread-groups' with a list as the value.
5937 For CLI, prefix the list with the string 'inf'. */
5938
5939 static void
5940 output_thread_groups (struct ui_out *uiout,
5941 const char *field_name,
5942 const std::vector<int> &inf_nums,
5943 int mi_only)
5944 {
5945 int is_mi = uiout->is_mi_like_p ();
5946
5947 /* For backward compatibility, don't display inferiors in CLI unless
5948 there are several. Always display them for MI. */
5949 if (!is_mi && mi_only)
5950 return;
5951
5952 ui_out_emit_list list_emitter (uiout, field_name);
5953
5954 for (size_t i = 0; i < inf_nums.size (); i++)
5955 {
5956 if (is_mi)
5957 {
5958 char mi_group[10];
5959
5960 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5961 uiout->field_string (NULL, mi_group);
5962 }
5963 else
5964 {
5965 if (i == 0)
5966 uiout->text (" inf ");
5967 else
5968 uiout->text (", ");
5969
5970 uiout->text (plongest (inf_nums[i]));
5971 }
5972 }
5973 }
5974
5975 /* Print B to gdb_stdout. */
5976
5977 static void
5978 print_one_breakpoint_location (struct breakpoint *b,
5979 struct bp_location *loc,
5980 int loc_number,
5981 struct bp_location **last_loc,
5982 int allflag)
5983 {
5984 struct command_line *l;
5985 static char bpenables[] = "nynny";
5986
5987 struct ui_out *uiout = current_uiout;
5988 int header_of_multiple = 0;
5989 int part_of_multiple = (loc != NULL);
5990 struct value_print_options opts;
5991
5992 get_user_print_options (&opts);
5993
5994 gdb_assert (!loc || loc_number != 0);
5995 /* See comment in print_one_breakpoint concerning treatment of
5996 breakpoints with single disabled location. */
5997 if (loc == NULL
5998 && (b->loc != NULL
5999 && (b->loc->next != NULL || !b->loc->enabled)))
6000 header_of_multiple = 1;
6001 if (loc == NULL)
6002 loc = b->loc;
6003
6004 annotate_record ();
6005
6006 /* 1 */
6007 annotate_field (0);
6008 if (part_of_multiple)
6009 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6010 else
6011 uiout->field_int ("number", b->number);
6012
6013 /* 2 */
6014 annotate_field (1);
6015 if (part_of_multiple)
6016 uiout->field_skip ("type");
6017 else
6018 uiout->field_string ("type", bptype_string (b->type));
6019
6020 /* 3 */
6021 annotate_field (2);
6022 if (part_of_multiple)
6023 uiout->field_skip ("disp");
6024 else
6025 uiout->field_string ("disp", bpdisp_text (b->disposition));
6026
6027 /* 4 */
6028 annotate_field (3);
6029 if (part_of_multiple)
6030 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6031 else
6032 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6033
6034 /* 5 and 6 */
6035 if (b->ops != NULL && b->ops->print_one != NULL)
6036 b->ops->print_one (b, last_loc);
6037 else
6038 switch (b->type)
6039 {
6040 case bp_none:
6041 internal_error (__FILE__, __LINE__,
6042 _("print_one_breakpoint: bp_none encountered\n"));
6043 break;
6044
6045 case bp_watchpoint:
6046 case bp_hardware_watchpoint:
6047 case bp_read_watchpoint:
6048 case bp_access_watchpoint:
6049 {
6050 struct watchpoint *w = (struct watchpoint *) b;
6051
6052 /* Field 4, the address, is omitted (which makes the columns
6053 not line up too nicely with the headers, but the effect
6054 is relatively readable). */
6055 if (opts.addressprint)
6056 uiout->field_skip ("addr");
6057 annotate_field (5);
6058 uiout->field_string ("what", w->exp_string);
6059 }
6060 break;
6061
6062 case bp_breakpoint:
6063 case bp_hardware_breakpoint:
6064 case bp_single_step:
6065 case bp_until:
6066 case bp_finish:
6067 case bp_longjmp:
6068 case bp_longjmp_resume:
6069 case bp_longjmp_call_dummy:
6070 case bp_exception:
6071 case bp_exception_resume:
6072 case bp_step_resume:
6073 case bp_hp_step_resume:
6074 case bp_watchpoint_scope:
6075 case bp_call_dummy:
6076 case bp_std_terminate:
6077 case bp_shlib_event:
6078 case bp_thread_event:
6079 case bp_overlay_event:
6080 case bp_longjmp_master:
6081 case bp_std_terminate_master:
6082 case bp_exception_master:
6083 case bp_tracepoint:
6084 case bp_fast_tracepoint:
6085 case bp_static_tracepoint:
6086 case bp_dprintf:
6087 case bp_jit_event:
6088 case bp_gnu_ifunc_resolver:
6089 case bp_gnu_ifunc_resolver_return:
6090 if (opts.addressprint)
6091 {
6092 annotate_field (4);
6093 if (header_of_multiple)
6094 uiout->field_string ("addr", "<MULTIPLE>");
6095 else if (b->loc == NULL || loc->shlib_disabled)
6096 uiout->field_string ("addr", "<PENDING>");
6097 else
6098 uiout->field_core_addr ("addr",
6099 loc->gdbarch, loc->address);
6100 }
6101 annotate_field (5);
6102 if (!header_of_multiple)
6103 print_breakpoint_location (b, loc);
6104 if (b->loc)
6105 *last_loc = b->loc;
6106 break;
6107 }
6108
6109
6110 if (loc != NULL && !header_of_multiple)
6111 {
6112 std::vector<int> inf_nums;
6113 int mi_only = 1;
6114
6115 for (inferior *inf : all_inferiors ())
6116 {
6117 if (inf->pspace == loc->pspace)
6118 inf_nums.push_back (inf->num);
6119 }
6120
6121 /* For backward compatibility, don't display inferiors in CLI unless
6122 there are several. Always display for MI. */
6123 if (allflag
6124 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6125 && (number_of_program_spaces () > 1
6126 || number_of_inferiors () > 1)
6127 /* LOC is for existing B, it cannot be in
6128 moribund_locations and thus having NULL OWNER. */
6129 && loc->owner->type != bp_catchpoint))
6130 mi_only = 0;
6131 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6132 }
6133
6134 if (!part_of_multiple)
6135 {
6136 if (b->thread != -1)
6137 {
6138 /* FIXME: This seems to be redundant and lost here; see the
6139 "stop only in" line a little further down. */
6140 uiout->text (" thread ");
6141 uiout->field_int ("thread", b->thread);
6142 }
6143 else if (b->task != 0)
6144 {
6145 uiout->text (" task ");
6146 uiout->field_int ("task", b->task);
6147 }
6148 }
6149
6150 uiout->text ("\n");
6151
6152 if (!part_of_multiple)
6153 b->ops->print_one_detail (b, uiout);
6154
6155 if (part_of_multiple && frame_id_p (b->frame_id))
6156 {
6157 annotate_field (6);
6158 uiout->text ("\tstop only in stack frame at ");
6159 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6160 the frame ID. */
6161 uiout->field_core_addr ("frame",
6162 b->gdbarch, b->frame_id.stack_addr);
6163 uiout->text ("\n");
6164 }
6165
6166 if (!part_of_multiple && b->cond_string)
6167 {
6168 annotate_field (7);
6169 if (is_tracepoint (b))
6170 uiout->text ("\ttrace only if ");
6171 else
6172 uiout->text ("\tstop only if ");
6173 uiout->field_string ("cond", b->cond_string);
6174
6175 /* Print whether the target is doing the breakpoint's condition
6176 evaluation. If GDB is doing the evaluation, don't print anything. */
6177 if (is_breakpoint (b)
6178 && breakpoint_condition_evaluation_mode ()
6179 == condition_evaluation_target)
6180 {
6181 uiout->text (" (");
6182 uiout->field_string ("evaluated-by",
6183 bp_condition_evaluator (b));
6184 uiout->text (" evals)");
6185 }
6186 uiout->text ("\n");
6187 }
6188
6189 if (!part_of_multiple && b->thread != -1)
6190 {
6191 /* FIXME should make an annotation for this. */
6192 uiout->text ("\tstop only in thread ");
6193 if (uiout->is_mi_like_p ())
6194 uiout->field_int ("thread", b->thread);
6195 else
6196 {
6197 struct thread_info *thr = find_thread_global_id (b->thread);
6198
6199 uiout->field_string ("thread", print_thread_id (thr));
6200 }
6201 uiout->text ("\n");
6202 }
6203
6204 if (!part_of_multiple)
6205 {
6206 if (b->hit_count)
6207 {
6208 /* FIXME should make an annotation for this. */
6209 if (is_catchpoint (b))
6210 uiout->text ("\tcatchpoint");
6211 else if (is_tracepoint (b))
6212 uiout->text ("\ttracepoint");
6213 else
6214 uiout->text ("\tbreakpoint");
6215 uiout->text (" already hit ");
6216 uiout->field_int ("times", b->hit_count);
6217 if (b->hit_count == 1)
6218 uiout->text (" time\n");
6219 else
6220 uiout->text (" times\n");
6221 }
6222 else
6223 {
6224 /* Output the count also if it is zero, but only if this is mi. */
6225 if (uiout->is_mi_like_p ())
6226 uiout->field_int ("times", b->hit_count);
6227 }
6228 }
6229
6230 if (!part_of_multiple && b->ignore_count)
6231 {
6232 annotate_field (8);
6233 uiout->text ("\tignore next ");
6234 uiout->field_int ("ignore", b->ignore_count);
6235 uiout->text (" hits\n");
6236 }
6237
6238 /* Note that an enable count of 1 corresponds to "enable once"
6239 behavior, which is reported by the combination of enablement and
6240 disposition, so we don't need to mention it here. */
6241 if (!part_of_multiple && b->enable_count > 1)
6242 {
6243 annotate_field (8);
6244 uiout->text ("\tdisable after ");
6245 /* Tweak the wording to clarify that ignore and enable counts
6246 are distinct, and have additive effect. */
6247 if (b->ignore_count)
6248 uiout->text ("additional ");
6249 else
6250 uiout->text ("next ");
6251 uiout->field_int ("enable", b->enable_count);
6252 uiout->text (" hits\n");
6253 }
6254
6255 if (!part_of_multiple && is_tracepoint (b))
6256 {
6257 struct tracepoint *tp = (struct tracepoint *) b;
6258
6259 if (tp->traceframe_usage)
6260 {
6261 uiout->text ("\ttrace buffer usage ");
6262 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6263 uiout->text (" bytes\n");
6264 }
6265 }
6266
6267 l = b->commands ? b->commands.get () : NULL;
6268 if (!part_of_multiple && l)
6269 {
6270 annotate_field (9);
6271 ui_out_emit_tuple tuple_emitter (uiout, "script");
6272 print_command_lines (uiout, l, 4);
6273 }
6274
6275 if (is_tracepoint (b))
6276 {
6277 struct tracepoint *t = (struct tracepoint *) b;
6278
6279 if (!part_of_multiple && t->pass_count)
6280 {
6281 annotate_field (10);
6282 uiout->text ("\tpass count ");
6283 uiout->field_int ("pass", t->pass_count);
6284 uiout->text (" \n");
6285 }
6286
6287 /* Don't display it when tracepoint or tracepoint location is
6288 pending. */
6289 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6290 {
6291 annotate_field (11);
6292
6293 if (uiout->is_mi_like_p ())
6294 uiout->field_string ("installed",
6295 loc->inserted ? "y" : "n");
6296 else
6297 {
6298 if (loc->inserted)
6299 uiout->text ("\t");
6300 else
6301 uiout->text ("\tnot ");
6302 uiout->text ("installed on target\n");
6303 }
6304 }
6305 }
6306
6307 if (uiout->is_mi_like_p () && !part_of_multiple)
6308 {
6309 if (is_watchpoint (b))
6310 {
6311 struct watchpoint *w = (struct watchpoint *) b;
6312
6313 uiout->field_string ("original-location", w->exp_string);
6314 }
6315 else if (b->location != NULL
6316 && event_location_to_string (b->location.get ()) != NULL)
6317 uiout->field_string ("original-location",
6318 event_location_to_string (b->location.get ()));
6319 }
6320 }
6321
6322 /* See breakpoint.h. */
6323
6324 bool fix_multi_location_breakpoint_output_globally = false;
6325
6326 static void
6327 print_one_breakpoint (struct breakpoint *b,
6328 struct bp_location **last_loc,
6329 int allflag)
6330 {
6331 struct ui_out *uiout = current_uiout;
6332 bool use_fixed_output
6333 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6334 || fix_multi_location_breakpoint_output_globally);
6335
6336 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6337 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6338
6339 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6340 are outside. */
6341 if (!use_fixed_output)
6342 bkpt_tuple_emitter.reset ();
6343
6344 /* If this breakpoint has custom print function,
6345 it's already printed. Otherwise, print individual
6346 locations, if any. */
6347 if (b->ops == NULL || b->ops->print_one == NULL)
6348 {
6349 /* If breakpoint has a single location that is disabled, we
6350 print it as if it had several locations, since otherwise it's
6351 hard to represent "breakpoint enabled, location disabled"
6352 situation.
6353
6354 Note that while hardware watchpoints have several locations
6355 internally, that's not a property exposed to user. */
6356 if (b->loc
6357 && !is_hardware_watchpoint (b)
6358 && (b->loc->next || !b->loc->enabled))
6359 {
6360 gdb::optional<ui_out_emit_list> locations_list;
6361
6362 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6363 MI record. For later versions, place breakpoint locations in a
6364 list. */
6365 if (uiout->is_mi_like_p () && use_fixed_output)
6366 locations_list.emplace (uiout, "locations");
6367
6368 int n = 1;
6369 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6370 {
6371 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6372 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6373 }
6374 }
6375 }
6376 }
6377
6378 static int
6379 breakpoint_address_bits (struct breakpoint *b)
6380 {
6381 int print_address_bits = 0;
6382 struct bp_location *loc;
6383
6384 /* Software watchpoints that aren't watching memory don't have an
6385 address to print. */
6386 if (is_no_memory_software_watchpoint (b))
6387 return 0;
6388
6389 for (loc = b->loc; loc; loc = loc->next)
6390 {
6391 int addr_bit;
6392
6393 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6394 if (addr_bit > print_address_bits)
6395 print_address_bits = addr_bit;
6396 }
6397
6398 return print_address_bits;
6399 }
6400
6401 /* See breakpoint.h. */
6402
6403 void
6404 print_breakpoint (breakpoint *b)
6405 {
6406 struct bp_location *dummy_loc = NULL;
6407 print_one_breakpoint (b, &dummy_loc, 0);
6408 }
6409
6410 /* Return true if this breakpoint was set by the user, false if it is
6411 internal or momentary. */
6412
6413 int
6414 user_breakpoint_p (struct breakpoint *b)
6415 {
6416 return b->number > 0;
6417 }
6418
6419 /* See breakpoint.h. */
6420
6421 int
6422 pending_breakpoint_p (struct breakpoint *b)
6423 {
6424 return b->loc == NULL;
6425 }
6426
6427 /* Print information on user settable breakpoint (watchpoint, etc)
6428 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6429 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6430 FILTER is non-NULL, call it on each breakpoint and only include the
6431 ones for which it returns non-zero. Return the total number of
6432 breakpoints listed. */
6433
6434 static int
6435 breakpoint_1 (const char *args, int allflag,
6436 int (*filter) (const struct breakpoint *))
6437 {
6438 struct breakpoint *b;
6439 struct bp_location *last_loc = NULL;
6440 int nr_printable_breakpoints;
6441 struct value_print_options opts;
6442 int print_address_bits = 0;
6443 int print_type_col_width = 14;
6444 struct ui_out *uiout = current_uiout;
6445
6446 get_user_print_options (&opts);
6447
6448 /* Compute the number of rows in the table, as well as the size
6449 required for address fields. */
6450 nr_printable_breakpoints = 0;
6451 ALL_BREAKPOINTS (b)
6452 {
6453 /* If we have a filter, only list the breakpoints it accepts. */
6454 if (filter && !filter (b))
6455 continue;
6456
6457 /* If we have an "args" string, it is a list of breakpoints to
6458 accept. Skip the others. */
6459 if (args != NULL && *args != '\0')
6460 {
6461 if (allflag && parse_and_eval_long (args) != b->number)
6462 continue;
6463 if (!allflag && !number_is_in_list (args, b->number))
6464 continue;
6465 }
6466
6467 if (allflag || user_breakpoint_p (b))
6468 {
6469 int addr_bit, type_len;
6470
6471 addr_bit = breakpoint_address_bits (b);
6472 if (addr_bit > print_address_bits)
6473 print_address_bits = addr_bit;
6474
6475 type_len = strlen (bptype_string (b->type));
6476 if (type_len > print_type_col_width)
6477 print_type_col_width = type_len;
6478
6479 nr_printable_breakpoints++;
6480 }
6481 }
6482
6483 {
6484 ui_out_emit_table table_emitter (uiout,
6485 opts.addressprint ? 6 : 5,
6486 nr_printable_breakpoints,
6487 "BreakpointTable");
6488
6489 if (nr_printable_breakpoints > 0)
6490 annotate_breakpoints_headers ();
6491 if (nr_printable_breakpoints > 0)
6492 annotate_field (0);
6493 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6494 if (nr_printable_breakpoints > 0)
6495 annotate_field (1);
6496 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6497 if (nr_printable_breakpoints > 0)
6498 annotate_field (2);
6499 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6500 if (nr_printable_breakpoints > 0)
6501 annotate_field (3);
6502 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6503 if (opts.addressprint)
6504 {
6505 if (nr_printable_breakpoints > 0)
6506 annotate_field (4);
6507 if (print_address_bits <= 32)
6508 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6509 else
6510 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6511 }
6512 if (nr_printable_breakpoints > 0)
6513 annotate_field (5);
6514 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6515 uiout->table_body ();
6516 if (nr_printable_breakpoints > 0)
6517 annotate_breakpoints_table ();
6518
6519 ALL_BREAKPOINTS (b)
6520 {
6521 QUIT;
6522 /* If we have a filter, only list the breakpoints it accepts. */
6523 if (filter && !filter (b))
6524 continue;
6525
6526 /* If we have an "args" string, it is a list of breakpoints to
6527 accept. Skip the others. */
6528
6529 if (args != NULL && *args != '\0')
6530 {
6531 if (allflag) /* maintenance info breakpoint */
6532 {
6533 if (parse_and_eval_long (args) != b->number)
6534 continue;
6535 }
6536 else /* all others */
6537 {
6538 if (!number_is_in_list (args, b->number))
6539 continue;
6540 }
6541 }
6542 /* We only print out user settable breakpoints unless the
6543 allflag is set. */
6544 if (allflag || user_breakpoint_p (b))
6545 print_one_breakpoint (b, &last_loc, allflag);
6546 }
6547 }
6548
6549 if (nr_printable_breakpoints == 0)
6550 {
6551 /* If there's a filter, let the caller decide how to report
6552 empty list. */
6553 if (!filter)
6554 {
6555 if (args == NULL || *args == '\0')
6556 uiout->message ("No breakpoints or watchpoints.\n");
6557 else
6558 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6559 args);
6560 }
6561 }
6562 else
6563 {
6564 if (last_loc && !server_command)
6565 set_next_address (last_loc->gdbarch, last_loc->address);
6566 }
6567
6568 /* FIXME? Should this be moved up so that it is only called when
6569 there have been breakpoints? */
6570 annotate_breakpoints_table_end ();
6571
6572 return nr_printable_breakpoints;
6573 }
6574
6575 /* Display the value of default-collect in a way that is generally
6576 compatible with the breakpoint list. */
6577
6578 static void
6579 default_collect_info (void)
6580 {
6581 struct ui_out *uiout = current_uiout;
6582
6583 /* If it has no value (which is frequently the case), say nothing; a
6584 message like "No default-collect." gets in user's face when it's
6585 not wanted. */
6586 if (!*default_collect)
6587 return;
6588
6589 /* The following phrase lines up nicely with per-tracepoint collect
6590 actions. */
6591 uiout->text ("default collect ");
6592 uiout->field_string ("default-collect", default_collect);
6593 uiout->text (" \n");
6594 }
6595
6596 static void
6597 info_breakpoints_command (const char *args, int from_tty)
6598 {
6599 breakpoint_1 (args, 0, NULL);
6600
6601 default_collect_info ();
6602 }
6603
6604 static void
6605 info_watchpoints_command (const char *args, int from_tty)
6606 {
6607 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6608 struct ui_out *uiout = current_uiout;
6609
6610 if (num_printed == 0)
6611 {
6612 if (args == NULL || *args == '\0')
6613 uiout->message ("No watchpoints.\n");
6614 else
6615 uiout->message ("No watchpoint matching '%s'.\n", args);
6616 }
6617 }
6618
6619 static void
6620 maintenance_info_breakpoints (const char *args, int from_tty)
6621 {
6622 breakpoint_1 (args, 1, NULL);
6623
6624 default_collect_info ();
6625 }
6626
6627 static int
6628 breakpoint_has_pc (struct breakpoint *b,
6629 struct program_space *pspace,
6630 CORE_ADDR pc, struct obj_section *section)
6631 {
6632 struct bp_location *bl = b->loc;
6633
6634 for (; bl; bl = bl->next)
6635 {
6636 if (bl->pspace == pspace
6637 && bl->address == pc
6638 && (!overlay_debugging || bl->section == section))
6639 return 1;
6640 }
6641 return 0;
6642 }
6643
6644 /* Print a message describing any user-breakpoints set at PC. This
6645 concerns with logical breakpoints, so we match program spaces, not
6646 address spaces. */
6647
6648 static void
6649 describe_other_breakpoints (struct gdbarch *gdbarch,
6650 struct program_space *pspace, CORE_ADDR pc,
6651 struct obj_section *section, int thread)
6652 {
6653 int others = 0;
6654 struct breakpoint *b;
6655
6656 ALL_BREAKPOINTS (b)
6657 others += (user_breakpoint_p (b)
6658 && breakpoint_has_pc (b, pspace, pc, section));
6659 if (others > 0)
6660 {
6661 if (others == 1)
6662 printf_filtered (_("Note: breakpoint "));
6663 else /* if (others == ???) */
6664 printf_filtered (_("Note: breakpoints "));
6665 ALL_BREAKPOINTS (b)
6666 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6667 {
6668 others--;
6669 printf_filtered ("%d", b->number);
6670 if (b->thread == -1 && thread != -1)
6671 printf_filtered (" (all threads)");
6672 else if (b->thread != -1)
6673 printf_filtered (" (thread %d)", b->thread);
6674 printf_filtered ("%s%s ",
6675 ((b->enable_state == bp_disabled
6676 || b->enable_state == bp_call_disabled)
6677 ? " (disabled)"
6678 : ""),
6679 (others > 1) ? ","
6680 : ((others == 1) ? " and" : ""));
6681 }
6682 printf_filtered (_("also set at pc "));
6683 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6684 printf_filtered (".\n");
6685 }
6686 }
6687 \f
6688
6689 /* Return true iff it is meaningful to use the address member of
6690 BPT locations. For some breakpoint types, the locations' address members
6691 are irrelevant and it makes no sense to attempt to compare them to other
6692 addresses (or use them for any other purpose either).
6693
6694 More specifically, each of the following breakpoint types will
6695 always have a zero valued location address and we don't want to mark
6696 breakpoints of any of these types to be a duplicate of an actual
6697 breakpoint location at address zero:
6698
6699 bp_watchpoint
6700 bp_catchpoint
6701
6702 */
6703
6704 static int
6705 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6706 {
6707 enum bptype type = bpt->type;
6708
6709 return (type != bp_watchpoint && type != bp_catchpoint);
6710 }
6711
6712 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6713 true if LOC1 and LOC2 represent the same watchpoint location. */
6714
6715 static int
6716 watchpoint_locations_match (struct bp_location *loc1,
6717 struct bp_location *loc2)
6718 {
6719 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6720 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6721
6722 /* Both of them must exist. */
6723 gdb_assert (w1 != NULL);
6724 gdb_assert (w2 != NULL);
6725
6726 /* If the target can evaluate the condition expression in hardware,
6727 then we we need to insert both watchpoints even if they are at
6728 the same place. Otherwise the watchpoint will only trigger when
6729 the condition of whichever watchpoint was inserted evaluates to
6730 true, not giving a chance for GDB to check the condition of the
6731 other watchpoint. */
6732 if ((w1->cond_exp
6733 && target_can_accel_watchpoint_condition (loc1->address,
6734 loc1->length,
6735 loc1->watchpoint_type,
6736 w1->cond_exp.get ()))
6737 || (w2->cond_exp
6738 && target_can_accel_watchpoint_condition (loc2->address,
6739 loc2->length,
6740 loc2->watchpoint_type,
6741 w2->cond_exp.get ())))
6742 return 0;
6743
6744 /* Note that this checks the owner's type, not the location's. In
6745 case the target does not support read watchpoints, but does
6746 support access watchpoints, we'll have bp_read_watchpoint
6747 watchpoints with hw_access locations. Those should be considered
6748 duplicates of hw_read locations. The hw_read locations will
6749 become hw_access locations later. */
6750 return (loc1->owner->type == loc2->owner->type
6751 && loc1->pspace->aspace == loc2->pspace->aspace
6752 && loc1->address == loc2->address
6753 && loc1->length == loc2->length);
6754 }
6755
6756 /* See breakpoint.h. */
6757
6758 int
6759 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6760 const address_space *aspace2, CORE_ADDR addr2)
6761 {
6762 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6763 || aspace1 == aspace2)
6764 && addr1 == addr2);
6765 }
6766
6767 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6768 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6769 matches ASPACE2. On targets that have global breakpoints, the address
6770 space doesn't really matter. */
6771
6772 static int
6773 breakpoint_address_match_range (const address_space *aspace1,
6774 CORE_ADDR addr1,
6775 int len1, const address_space *aspace2,
6776 CORE_ADDR addr2)
6777 {
6778 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6779 || aspace1 == aspace2)
6780 && addr2 >= addr1 && addr2 < addr1 + len1);
6781 }
6782
6783 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6784 a ranged breakpoint. In most targets, a match happens only if ASPACE
6785 matches the breakpoint's address space. On targets that have global
6786 breakpoints, the address space doesn't really matter. */
6787
6788 static int
6789 breakpoint_location_address_match (struct bp_location *bl,
6790 const address_space *aspace,
6791 CORE_ADDR addr)
6792 {
6793 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6794 aspace, addr)
6795 || (bl->length
6796 && breakpoint_address_match_range (bl->pspace->aspace,
6797 bl->address, bl->length,
6798 aspace, addr)));
6799 }
6800
6801 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6802 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6803 match happens only if ASPACE matches the breakpoint's address
6804 space. On targets that have global breakpoints, the address space
6805 doesn't really matter. */
6806
6807 static int
6808 breakpoint_location_address_range_overlap (struct bp_location *bl,
6809 const address_space *aspace,
6810 CORE_ADDR addr, int len)
6811 {
6812 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6813 || bl->pspace->aspace == aspace)
6814 {
6815 int bl_len = bl->length != 0 ? bl->length : 1;
6816
6817 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6818 return 1;
6819 }
6820 return 0;
6821 }
6822
6823 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6824 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6825 true, otherwise returns false. */
6826
6827 static int
6828 tracepoint_locations_match (struct bp_location *loc1,
6829 struct bp_location *loc2)
6830 {
6831 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6832 /* Since tracepoint locations are never duplicated with others', tracepoint
6833 locations at the same address of different tracepoints are regarded as
6834 different locations. */
6835 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6836 else
6837 return 0;
6838 }
6839
6840 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6841 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6842 represent the same location. */
6843
6844 static int
6845 breakpoint_locations_match (struct bp_location *loc1,
6846 struct bp_location *loc2)
6847 {
6848 int hw_point1, hw_point2;
6849
6850 /* Both of them must not be in moribund_locations. */
6851 gdb_assert (loc1->owner != NULL);
6852 gdb_assert (loc2->owner != NULL);
6853
6854 hw_point1 = is_hardware_watchpoint (loc1->owner);
6855 hw_point2 = is_hardware_watchpoint (loc2->owner);
6856
6857 if (hw_point1 != hw_point2)
6858 return 0;
6859 else if (hw_point1)
6860 return watchpoint_locations_match (loc1, loc2);
6861 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6862 return tracepoint_locations_match (loc1, loc2);
6863 else
6864 /* We compare bp_location.length in order to cover ranged breakpoints. */
6865 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6866 loc2->pspace->aspace, loc2->address)
6867 && loc1->length == loc2->length);
6868 }
6869
6870 static void
6871 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6872 int bnum, int have_bnum)
6873 {
6874 /* The longest string possibly returned by hex_string_custom
6875 is 50 chars. These must be at least that big for safety. */
6876 char astr1[64];
6877 char astr2[64];
6878
6879 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6880 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6881 if (have_bnum)
6882 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6883 bnum, astr1, astr2);
6884 else
6885 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6886 }
6887
6888 /* Adjust a breakpoint's address to account for architectural
6889 constraints on breakpoint placement. Return the adjusted address.
6890 Note: Very few targets require this kind of adjustment. For most
6891 targets, this function is simply the identity function. */
6892
6893 static CORE_ADDR
6894 adjust_breakpoint_address (struct gdbarch *gdbarch,
6895 CORE_ADDR bpaddr, enum bptype bptype)
6896 {
6897 if (bptype == bp_watchpoint
6898 || bptype == bp_hardware_watchpoint
6899 || bptype == bp_read_watchpoint
6900 || bptype == bp_access_watchpoint
6901 || bptype == bp_catchpoint)
6902 {
6903 /* Watchpoints and the various bp_catch_* eventpoints should not
6904 have their addresses modified. */
6905 return bpaddr;
6906 }
6907 else if (bptype == bp_single_step)
6908 {
6909 /* Single-step breakpoints should not have their addresses
6910 modified. If there's any architectural constrain that
6911 applies to this address, then it should have already been
6912 taken into account when the breakpoint was created in the
6913 first place. If we didn't do this, stepping through e.g.,
6914 Thumb-2 IT blocks would break. */
6915 return bpaddr;
6916 }
6917 else
6918 {
6919 CORE_ADDR adjusted_bpaddr = bpaddr;
6920
6921 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6922 {
6923 /* Some targets have architectural constraints on the placement
6924 of breakpoint instructions. Obtain the adjusted address. */
6925 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6926 }
6927
6928 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6929
6930 /* An adjusted breakpoint address can significantly alter
6931 a user's expectations. Print a warning if an adjustment
6932 is required. */
6933 if (adjusted_bpaddr != bpaddr)
6934 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6935
6936 return adjusted_bpaddr;
6937 }
6938 }
6939
6940 bp_location::bp_location (breakpoint *owner)
6941 {
6942 bp_location *loc = this;
6943
6944 loc->owner = owner;
6945 loc->cond_bytecode = NULL;
6946 loc->shlib_disabled = 0;
6947 loc->enabled = 1;
6948
6949 switch (owner->type)
6950 {
6951 case bp_breakpoint:
6952 case bp_single_step:
6953 case bp_until:
6954 case bp_finish:
6955 case bp_longjmp:
6956 case bp_longjmp_resume:
6957 case bp_longjmp_call_dummy:
6958 case bp_exception:
6959 case bp_exception_resume:
6960 case bp_step_resume:
6961 case bp_hp_step_resume:
6962 case bp_watchpoint_scope:
6963 case bp_call_dummy:
6964 case bp_std_terminate:
6965 case bp_shlib_event:
6966 case bp_thread_event:
6967 case bp_overlay_event:
6968 case bp_jit_event:
6969 case bp_longjmp_master:
6970 case bp_std_terminate_master:
6971 case bp_exception_master:
6972 case bp_gnu_ifunc_resolver:
6973 case bp_gnu_ifunc_resolver_return:
6974 case bp_dprintf:
6975 loc->loc_type = bp_loc_software_breakpoint;
6976 mark_breakpoint_location_modified (loc);
6977 break;
6978 case bp_hardware_breakpoint:
6979 loc->loc_type = bp_loc_hardware_breakpoint;
6980 mark_breakpoint_location_modified (loc);
6981 break;
6982 case bp_hardware_watchpoint:
6983 case bp_read_watchpoint:
6984 case bp_access_watchpoint:
6985 loc->loc_type = bp_loc_hardware_watchpoint;
6986 break;
6987 case bp_watchpoint:
6988 case bp_catchpoint:
6989 case bp_tracepoint:
6990 case bp_fast_tracepoint:
6991 case bp_static_tracepoint:
6992 loc->loc_type = bp_loc_other;
6993 break;
6994 default:
6995 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6996 }
6997
6998 loc->refc = 1;
6999 }
7000
7001 /* Allocate a struct bp_location. */
7002
7003 static struct bp_location *
7004 allocate_bp_location (struct breakpoint *bpt)
7005 {
7006 return bpt->ops->allocate_location (bpt);
7007 }
7008
7009 static void
7010 free_bp_location (struct bp_location *loc)
7011 {
7012 delete loc;
7013 }
7014
7015 /* Increment reference count. */
7016
7017 static void
7018 incref_bp_location (struct bp_location *bl)
7019 {
7020 ++bl->refc;
7021 }
7022
7023 /* Decrement reference count. If the reference count reaches 0,
7024 destroy the bp_location. Sets *BLP to NULL. */
7025
7026 static void
7027 decref_bp_location (struct bp_location **blp)
7028 {
7029 gdb_assert ((*blp)->refc > 0);
7030
7031 if (--(*blp)->refc == 0)
7032 free_bp_location (*blp);
7033 *blp = NULL;
7034 }
7035
7036 /* Add breakpoint B at the end of the global breakpoint chain. */
7037
7038 static breakpoint *
7039 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7040 {
7041 struct breakpoint *b1;
7042 struct breakpoint *result = b.get ();
7043
7044 /* Add this breakpoint to the end of the chain so that a list of
7045 breakpoints will come out in order of increasing numbers. */
7046
7047 b1 = breakpoint_chain;
7048 if (b1 == 0)
7049 breakpoint_chain = b.release ();
7050 else
7051 {
7052 while (b1->next)
7053 b1 = b1->next;
7054 b1->next = b.release ();
7055 }
7056
7057 return result;
7058 }
7059
7060 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7061
7062 static void
7063 init_raw_breakpoint_without_location (struct breakpoint *b,
7064 struct gdbarch *gdbarch,
7065 enum bptype bptype,
7066 const struct breakpoint_ops *ops)
7067 {
7068 gdb_assert (ops != NULL);
7069
7070 b->ops = ops;
7071 b->type = bptype;
7072 b->gdbarch = gdbarch;
7073 b->language = current_language->la_language;
7074 b->input_radix = input_radix;
7075 b->related_breakpoint = b;
7076 }
7077
7078 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7079 that has type BPTYPE and has no locations as yet. */
7080
7081 static struct breakpoint *
7082 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7083 enum bptype bptype,
7084 const struct breakpoint_ops *ops)
7085 {
7086 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7087
7088 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7089 return add_to_breakpoint_chain (std::move (b));
7090 }
7091
7092 /* Initialize loc->function_name. */
7093
7094 static void
7095 set_breakpoint_location_function (struct bp_location *loc)
7096 {
7097 gdb_assert (loc->owner != NULL);
7098
7099 if (loc->owner->type == bp_breakpoint
7100 || loc->owner->type == bp_hardware_breakpoint
7101 || is_tracepoint (loc->owner))
7102 {
7103 const char *function_name;
7104
7105 if (loc->msymbol != NULL
7106 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7107 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7108 {
7109 struct breakpoint *b = loc->owner;
7110
7111 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7112
7113 if (b->type == bp_breakpoint && b->loc == loc
7114 && loc->next == NULL && b->related_breakpoint == b)
7115 {
7116 /* Create only the whole new breakpoint of this type but do not
7117 mess more complicated breakpoints with multiple locations. */
7118 b->type = bp_gnu_ifunc_resolver;
7119 /* Remember the resolver's address for use by the return
7120 breakpoint. */
7121 loc->related_address = loc->address;
7122 }
7123 }
7124 else
7125 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7126
7127 if (function_name)
7128 loc->function_name = xstrdup (function_name);
7129 }
7130 }
7131
7132 /* Attempt to determine architecture of location identified by SAL. */
7133 struct gdbarch *
7134 get_sal_arch (struct symtab_and_line sal)
7135 {
7136 if (sal.section)
7137 return get_objfile_arch (sal.section->objfile);
7138 if (sal.symtab)
7139 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7140
7141 return NULL;
7142 }
7143
7144 /* Low level routine for partially initializing a breakpoint of type
7145 BPTYPE. The newly created breakpoint's address, section, source
7146 file name, and line number are provided by SAL.
7147
7148 It is expected that the caller will complete the initialization of
7149 the newly created breakpoint struct as well as output any status
7150 information regarding the creation of a new breakpoint. */
7151
7152 static void
7153 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7154 struct symtab_and_line sal, enum bptype bptype,
7155 const struct breakpoint_ops *ops)
7156 {
7157 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7158
7159 add_location_to_breakpoint (b, &sal);
7160
7161 if (bptype != bp_catchpoint)
7162 gdb_assert (sal.pspace != NULL);
7163
7164 /* Store the program space that was used to set the breakpoint,
7165 except for ordinary breakpoints, which are independent of the
7166 program space. */
7167 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7168 b->pspace = sal.pspace;
7169 }
7170
7171 /* set_raw_breakpoint is a low level routine for allocating and
7172 partially initializing a breakpoint of type BPTYPE. The newly
7173 created breakpoint's address, section, source file name, and line
7174 number are provided by SAL. The newly created and partially
7175 initialized breakpoint is added to the breakpoint chain and
7176 is also returned as the value of this function.
7177
7178 It is expected that the caller will complete the initialization of
7179 the newly created breakpoint struct as well as output any status
7180 information regarding the creation of a new breakpoint. In
7181 particular, set_raw_breakpoint does NOT set the breakpoint
7182 number! Care should be taken to not allow an error to occur
7183 prior to completing the initialization of the breakpoint. If this
7184 should happen, a bogus breakpoint will be left on the chain. */
7185
7186 struct breakpoint *
7187 set_raw_breakpoint (struct gdbarch *gdbarch,
7188 struct symtab_and_line sal, enum bptype bptype,
7189 const struct breakpoint_ops *ops)
7190 {
7191 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7192
7193 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7194 return add_to_breakpoint_chain (std::move (b));
7195 }
7196
7197 /* Call this routine when stepping and nexting to enable a breakpoint
7198 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7199 initiated the operation. */
7200
7201 void
7202 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7203 {
7204 struct breakpoint *b, *b_tmp;
7205 int thread = tp->global_num;
7206
7207 /* To avoid having to rescan all objfile symbols at every step,
7208 we maintain a list of continually-inserted but always disabled
7209 longjmp "master" breakpoints. Here, we simply create momentary
7210 clones of those and enable them for the requested thread. */
7211 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7212 if (b->pspace == current_program_space
7213 && (b->type == bp_longjmp_master
7214 || b->type == bp_exception_master))
7215 {
7216 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7217 struct breakpoint *clone;
7218
7219 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7220 after their removal. */
7221 clone = momentary_breakpoint_from_master (b, type,
7222 &momentary_breakpoint_ops, 1);
7223 clone->thread = thread;
7224 }
7225
7226 tp->initiating_frame = frame;
7227 }
7228
7229 /* Delete all longjmp breakpoints from THREAD. */
7230 void
7231 delete_longjmp_breakpoint (int thread)
7232 {
7233 struct breakpoint *b, *b_tmp;
7234
7235 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7236 if (b->type == bp_longjmp || b->type == bp_exception)
7237 {
7238 if (b->thread == thread)
7239 delete_breakpoint (b);
7240 }
7241 }
7242
7243 void
7244 delete_longjmp_breakpoint_at_next_stop (int thread)
7245 {
7246 struct breakpoint *b, *b_tmp;
7247
7248 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7249 if (b->type == bp_longjmp || b->type == bp_exception)
7250 {
7251 if (b->thread == thread)
7252 b->disposition = disp_del_at_next_stop;
7253 }
7254 }
7255
7256 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7257 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7258 pointer to any of them. Return NULL if this system cannot place longjmp
7259 breakpoints. */
7260
7261 struct breakpoint *
7262 set_longjmp_breakpoint_for_call_dummy (void)
7263 {
7264 struct breakpoint *b, *retval = NULL;
7265
7266 ALL_BREAKPOINTS (b)
7267 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7268 {
7269 struct breakpoint *new_b;
7270
7271 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7272 &momentary_breakpoint_ops,
7273 1);
7274 new_b->thread = inferior_thread ()->global_num;
7275
7276 /* Link NEW_B into the chain of RETVAL breakpoints. */
7277
7278 gdb_assert (new_b->related_breakpoint == new_b);
7279 if (retval == NULL)
7280 retval = new_b;
7281 new_b->related_breakpoint = retval;
7282 while (retval->related_breakpoint != new_b->related_breakpoint)
7283 retval = retval->related_breakpoint;
7284 retval->related_breakpoint = new_b;
7285 }
7286
7287 return retval;
7288 }
7289
7290 /* Verify all existing dummy frames and their associated breakpoints for
7291 TP. Remove those which can no longer be found in the current frame
7292 stack.
7293
7294 You should call this function only at places where it is safe to currently
7295 unwind the whole stack. Failed stack unwind would discard live dummy
7296 frames. */
7297
7298 void
7299 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7300 {
7301 struct breakpoint *b, *b_tmp;
7302
7303 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7304 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7305 {
7306 struct breakpoint *dummy_b = b->related_breakpoint;
7307
7308 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7309 dummy_b = dummy_b->related_breakpoint;
7310 if (dummy_b->type != bp_call_dummy
7311 || frame_find_by_id (dummy_b->frame_id) != NULL)
7312 continue;
7313
7314 dummy_frame_discard (dummy_b->frame_id, tp);
7315
7316 while (b->related_breakpoint != b)
7317 {
7318 if (b_tmp == b->related_breakpoint)
7319 b_tmp = b->related_breakpoint->next;
7320 delete_breakpoint (b->related_breakpoint);
7321 }
7322 delete_breakpoint (b);
7323 }
7324 }
7325
7326 void
7327 enable_overlay_breakpoints (void)
7328 {
7329 struct breakpoint *b;
7330
7331 ALL_BREAKPOINTS (b)
7332 if (b->type == bp_overlay_event)
7333 {
7334 b->enable_state = bp_enabled;
7335 update_global_location_list (UGLL_MAY_INSERT);
7336 overlay_events_enabled = 1;
7337 }
7338 }
7339
7340 void
7341 disable_overlay_breakpoints (void)
7342 {
7343 struct breakpoint *b;
7344
7345 ALL_BREAKPOINTS (b)
7346 if (b->type == bp_overlay_event)
7347 {
7348 b->enable_state = bp_disabled;
7349 update_global_location_list (UGLL_DONT_INSERT);
7350 overlay_events_enabled = 0;
7351 }
7352 }
7353
7354 /* Set an active std::terminate breakpoint for each std::terminate
7355 master breakpoint. */
7356 void
7357 set_std_terminate_breakpoint (void)
7358 {
7359 struct breakpoint *b, *b_tmp;
7360
7361 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7362 if (b->pspace == current_program_space
7363 && b->type == bp_std_terminate_master)
7364 {
7365 momentary_breakpoint_from_master (b, bp_std_terminate,
7366 &momentary_breakpoint_ops, 1);
7367 }
7368 }
7369
7370 /* Delete all the std::terminate breakpoints. */
7371 void
7372 delete_std_terminate_breakpoint (void)
7373 {
7374 struct breakpoint *b, *b_tmp;
7375
7376 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7377 if (b->type == bp_std_terminate)
7378 delete_breakpoint (b);
7379 }
7380
7381 struct breakpoint *
7382 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7383 {
7384 struct breakpoint *b;
7385
7386 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7387 &internal_breakpoint_ops);
7388
7389 b->enable_state = bp_enabled;
7390 /* location has to be used or breakpoint_re_set will delete me. */
7391 b->location = new_address_location (b->loc->address, NULL, 0);
7392
7393 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7394
7395 return b;
7396 }
7397
7398 struct lang_and_radix
7399 {
7400 enum language lang;
7401 int radix;
7402 };
7403
7404 /* Create a breakpoint for JIT code registration and unregistration. */
7405
7406 struct breakpoint *
7407 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7408 {
7409 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7410 &internal_breakpoint_ops);
7411 }
7412
7413 /* Remove JIT code registration and unregistration breakpoint(s). */
7414
7415 void
7416 remove_jit_event_breakpoints (void)
7417 {
7418 struct breakpoint *b, *b_tmp;
7419
7420 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7421 if (b->type == bp_jit_event
7422 && b->loc->pspace == current_program_space)
7423 delete_breakpoint (b);
7424 }
7425
7426 void
7427 remove_solib_event_breakpoints (void)
7428 {
7429 struct breakpoint *b, *b_tmp;
7430
7431 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7432 if (b->type == bp_shlib_event
7433 && b->loc->pspace == current_program_space)
7434 delete_breakpoint (b);
7435 }
7436
7437 /* See breakpoint.h. */
7438
7439 void
7440 remove_solib_event_breakpoints_at_next_stop (void)
7441 {
7442 struct breakpoint *b, *b_tmp;
7443
7444 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7445 if (b->type == bp_shlib_event
7446 && b->loc->pspace == current_program_space)
7447 b->disposition = disp_del_at_next_stop;
7448 }
7449
7450 /* Helper for create_solib_event_breakpoint /
7451 create_and_insert_solib_event_breakpoint. Allows specifying which
7452 INSERT_MODE to pass through to update_global_location_list. */
7453
7454 static struct breakpoint *
7455 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7456 enum ugll_insert_mode insert_mode)
7457 {
7458 struct breakpoint *b;
7459
7460 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7461 &internal_breakpoint_ops);
7462 update_global_location_list_nothrow (insert_mode);
7463 return b;
7464 }
7465
7466 struct breakpoint *
7467 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7468 {
7469 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7470 }
7471
7472 /* See breakpoint.h. */
7473
7474 struct breakpoint *
7475 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7476 {
7477 struct breakpoint *b;
7478
7479 /* Explicitly tell update_global_location_list to insert
7480 locations. */
7481 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7482 if (!b->loc->inserted)
7483 {
7484 delete_breakpoint (b);
7485 return NULL;
7486 }
7487 return b;
7488 }
7489
7490 /* Disable any breakpoints that are on code in shared libraries. Only
7491 apply to enabled breakpoints, disabled ones can just stay disabled. */
7492
7493 void
7494 disable_breakpoints_in_shlibs (void)
7495 {
7496 struct bp_location *loc, **locp_tmp;
7497
7498 ALL_BP_LOCATIONS (loc, locp_tmp)
7499 {
7500 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7501 struct breakpoint *b = loc->owner;
7502
7503 /* We apply the check to all breakpoints, including disabled for
7504 those with loc->duplicate set. This is so that when breakpoint
7505 becomes enabled, or the duplicate is removed, gdb will try to
7506 insert all breakpoints. If we don't set shlib_disabled here,
7507 we'll try to insert those breakpoints and fail. */
7508 if (((b->type == bp_breakpoint)
7509 || (b->type == bp_jit_event)
7510 || (b->type == bp_hardware_breakpoint)
7511 || (is_tracepoint (b)))
7512 && loc->pspace == current_program_space
7513 && !loc->shlib_disabled
7514 && solib_name_from_address (loc->pspace, loc->address)
7515 )
7516 {
7517 loc->shlib_disabled = 1;
7518 }
7519 }
7520 }
7521
7522 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7523 notification of unloaded_shlib. Only apply to enabled breakpoints,
7524 disabled ones can just stay disabled. */
7525
7526 static void
7527 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7528 {
7529 struct bp_location *loc, **locp_tmp;
7530 int disabled_shlib_breaks = 0;
7531
7532 ALL_BP_LOCATIONS (loc, locp_tmp)
7533 {
7534 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7535 struct breakpoint *b = loc->owner;
7536
7537 if (solib->pspace == loc->pspace
7538 && !loc->shlib_disabled
7539 && (((b->type == bp_breakpoint
7540 || b->type == bp_jit_event
7541 || b->type == bp_hardware_breakpoint)
7542 && (loc->loc_type == bp_loc_hardware_breakpoint
7543 || loc->loc_type == bp_loc_software_breakpoint))
7544 || is_tracepoint (b))
7545 && solib_contains_address_p (solib, loc->address))
7546 {
7547 loc->shlib_disabled = 1;
7548 /* At this point, we cannot rely on remove_breakpoint
7549 succeeding so we must mark the breakpoint as not inserted
7550 to prevent future errors occurring in remove_breakpoints. */
7551 loc->inserted = 0;
7552
7553 /* This may cause duplicate notifications for the same breakpoint. */
7554 gdb::observers::breakpoint_modified.notify (b);
7555
7556 if (!disabled_shlib_breaks)
7557 {
7558 target_terminal::ours_for_output ();
7559 warning (_("Temporarily disabling breakpoints "
7560 "for unloaded shared library \"%s\""),
7561 solib->so_name);
7562 }
7563 disabled_shlib_breaks = 1;
7564 }
7565 }
7566 }
7567
7568 /* Disable any breakpoints and tracepoints in OBJFILE upon
7569 notification of free_objfile. Only apply to enabled breakpoints,
7570 disabled ones can just stay disabled. */
7571
7572 static void
7573 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7574 {
7575 struct breakpoint *b;
7576
7577 if (objfile == NULL)
7578 return;
7579
7580 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7581 managed by the user with add-symbol-file/remove-symbol-file.
7582 Similarly to how breakpoints in shared libraries are handled in
7583 response to "nosharedlibrary", mark breakpoints in such modules
7584 shlib_disabled so they end up uninserted on the next global
7585 location list update. Shared libraries not loaded by the user
7586 aren't handled here -- they're already handled in
7587 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7588 solib_unloaded observer. We skip objfiles that are not
7589 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7590 main objfile). */
7591 if ((objfile->flags & OBJF_SHARED) == 0
7592 || (objfile->flags & OBJF_USERLOADED) == 0)
7593 return;
7594
7595 ALL_BREAKPOINTS (b)
7596 {
7597 struct bp_location *loc;
7598 int bp_modified = 0;
7599
7600 if (!is_breakpoint (b) && !is_tracepoint (b))
7601 continue;
7602
7603 for (loc = b->loc; loc != NULL; loc = loc->next)
7604 {
7605 CORE_ADDR loc_addr = loc->address;
7606
7607 if (loc->loc_type != bp_loc_hardware_breakpoint
7608 && loc->loc_type != bp_loc_software_breakpoint)
7609 continue;
7610
7611 if (loc->shlib_disabled != 0)
7612 continue;
7613
7614 if (objfile->pspace != loc->pspace)
7615 continue;
7616
7617 if (loc->loc_type != bp_loc_hardware_breakpoint
7618 && loc->loc_type != bp_loc_software_breakpoint)
7619 continue;
7620
7621 if (is_addr_in_objfile (loc_addr, objfile))
7622 {
7623 loc->shlib_disabled = 1;
7624 /* At this point, we don't know whether the object was
7625 unmapped from the inferior or not, so leave the
7626 inserted flag alone. We'll handle failure to
7627 uninsert quietly, in case the object was indeed
7628 unmapped. */
7629
7630 mark_breakpoint_location_modified (loc);
7631
7632 bp_modified = 1;
7633 }
7634 }
7635
7636 if (bp_modified)
7637 gdb::observers::breakpoint_modified.notify (b);
7638 }
7639 }
7640
7641 /* FORK & VFORK catchpoints. */
7642
7643 /* An instance of this type is used to represent a fork or vfork
7644 catchpoint. A breakpoint is really of this type iff its ops pointer points
7645 to CATCH_FORK_BREAKPOINT_OPS. */
7646
7647 struct fork_catchpoint : public breakpoint
7648 {
7649 /* Process id of a child process whose forking triggered this
7650 catchpoint. This field is only valid immediately after this
7651 catchpoint has triggered. */
7652 ptid_t forked_inferior_pid;
7653 };
7654
7655 /* Implement the "insert" breakpoint_ops method for fork
7656 catchpoints. */
7657
7658 static int
7659 insert_catch_fork (struct bp_location *bl)
7660 {
7661 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7662 }
7663
7664 /* Implement the "remove" breakpoint_ops method for fork
7665 catchpoints. */
7666
7667 static int
7668 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7669 {
7670 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7671 }
7672
7673 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7674 catchpoints. */
7675
7676 static int
7677 breakpoint_hit_catch_fork (const struct bp_location *bl,
7678 const address_space *aspace, CORE_ADDR bp_addr,
7679 const struct target_waitstatus *ws)
7680 {
7681 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7682
7683 if (ws->kind != TARGET_WAITKIND_FORKED)
7684 return 0;
7685
7686 c->forked_inferior_pid = ws->value.related_pid;
7687 return 1;
7688 }
7689
7690 /* Implement the "print_it" breakpoint_ops method for fork
7691 catchpoints. */
7692
7693 static enum print_stop_action
7694 print_it_catch_fork (bpstat bs)
7695 {
7696 struct ui_out *uiout = current_uiout;
7697 struct breakpoint *b = bs->breakpoint_at;
7698 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7699
7700 annotate_catchpoint (b->number);
7701 maybe_print_thread_hit_breakpoint (uiout);
7702 if (b->disposition == disp_del)
7703 uiout->text ("Temporary catchpoint ");
7704 else
7705 uiout->text ("Catchpoint ");
7706 if (uiout->is_mi_like_p ())
7707 {
7708 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7709 uiout->field_string ("disp", bpdisp_text (b->disposition));
7710 }
7711 uiout->field_int ("bkptno", b->number);
7712 uiout->text (" (forked process ");
7713 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7714 uiout->text ("), ");
7715 return PRINT_SRC_AND_LOC;
7716 }
7717
7718 /* Implement the "print_one" breakpoint_ops method for fork
7719 catchpoints. */
7720
7721 static void
7722 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7723 {
7724 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7725 struct value_print_options opts;
7726 struct ui_out *uiout = current_uiout;
7727
7728 get_user_print_options (&opts);
7729
7730 /* Field 4, the address, is omitted (which makes the columns not
7731 line up too nicely with the headers, but the effect is relatively
7732 readable). */
7733 if (opts.addressprint)
7734 uiout->field_skip ("addr");
7735 annotate_field (5);
7736 uiout->text ("fork");
7737 if (c->forked_inferior_pid != null_ptid)
7738 {
7739 uiout->text (", process ");
7740 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7741 uiout->spaces (1);
7742 }
7743
7744 if (uiout->is_mi_like_p ())
7745 uiout->field_string ("catch-type", "fork");
7746 }
7747
7748 /* Implement the "print_mention" breakpoint_ops method for fork
7749 catchpoints. */
7750
7751 static void
7752 print_mention_catch_fork (struct breakpoint *b)
7753 {
7754 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7755 }
7756
7757 /* Implement the "print_recreate" breakpoint_ops method for fork
7758 catchpoints. */
7759
7760 static void
7761 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7762 {
7763 fprintf_unfiltered (fp, "catch fork");
7764 print_recreate_thread (b, fp);
7765 }
7766
7767 /* The breakpoint_ops structure to be used in fork catchpoints. */
7768
7769 static struct breakpoint_ops catch_fork_breakpoint_ops;
7770
7771 /* Implement the "insert" breakpoint_ops method for vfork
7772 catchpoints. */
7773
7774 static int
7775 insert_catch_vfork (struct bp_location *bl)
7776 {
7777 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7778 }
7779
7780 /* Implement the "remove" breakpoint_ops method for vfork
7781 catchpoints. */
7782
7783 static int
7784 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7785 {
7786 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7787 }
7788
7789 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7790 catchpoints. */
7791
7792 static int
7793 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7794 const address_space *aspace, CORE_ADDR bp_addr,
7795 const struct target_waitstatus *ws)
7796 {
7797 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7798
7799 if (ws->kind != TARGET_WAITKIND_VFORKED)
7800 return 0;
7801
7802 c->forked_inferior_pid = ws->value.related_pid;
7803 return 1;
7804 }
7805
7806 /* Implement the "print_it" breakpoint_ops method for vfork
7807 catchpoints. */
7808
7809 static enum print_stop_action
7810 print_it_catch_vfork (bpstat bs)
7811 {
7812 struct ui_out *uiout = current_uiout;
7813 struct breakpoint *b = bs->breakpoint_at;
7814 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7815
7816 annotate_catchpoint (b->number);
7817 maybe_print_thread_hit_breakpoint (uiout);
7818 if (b->disposition == disp_del)
7819 uiout->text ("Temporary catchpoint ");
7820 else
7821 uiout->text ("Catchpoint ");
7822 if (uiout->is_mi_like_p ())
7823 {
7824 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7825 uiout->field_string ("disp", bpdisp_text (b->disposition));
7826 }
7827 uiout->field_int ("bkptno", b->number);
7828 uiout->text (" (vforked process ");
7829 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7830 uiout->text ("), ");
7831 return PRINT_SRC_AND_LOC;
7832 }
7833
7834 /* Implement the "print_one" breakpoint_ops method for vfork
7835 catchpoints. */
7836
7837 static void
7838 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7839 {
7840 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7841 struct value_print_options opts;
7842 struct ui_out *uiout = current_uiout;
7843
7844 get_user_print_options (&opts);
7845 /* Field 4, the address, is omitted (which makes the columns not
7846 line up too nicely with the headers, but the effect is relatively
7847 readable). */
7848 if (opts.addressprint)
7849 uiout->field_skip ("addr");
7850 annotate_field (5);
7851 uiout->text ("vfork");
7852 if (c->forked_inferior_pid != null_ptid)
7853 {
7854 uiout->text (", process ");
7855 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7856 uiout->spaces (1);
7857 }
7858
7859 if (uiout->is_mi_like_p ())
7860 uiout->field_string ("catch-type", "vfork");
7861 }
7862
7863 /* Implement the "print_mention" breakpoint_ops method for vfork
7864 catchpoints. */
7865
7866 static void
7867 print_mention_catch_vfork (struct breakpoint *b)
7868 {
7869 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7870 }
7871
7872 /* Implement the "print_recreate" breakpoint_ops method for vfork
7873 catchpoints. */
7874
7875 static void
7876 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7877 {
7878 fprintf_unfiltered (fp, "catch vfork");
7879 print_recreate_thread (b, fp);
7880 }
7881
7882 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7883
7884 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7885
7886 /* An instance of this type is used to represent an solib catchpoint.
7887 A breakpoint is really of this type iff its ops pointer points to
7888 CATCH_SOLIB_BREAKPOINT_OPS. */
7889
7890 struct solib_catchpoint : public breakpoint
7891 {
7892 ~solib_catchpoint () override;
7893
7894 /* True for "catch load", false for "catch unload". */
7895 unsigned char is_load;
7896
7897 /* Regular expression to match, if any. COMPILED is only valid when
7898 REGEX is non-NULL. */
7899 char *regex;
7900 std::unique_ptr<compiled_regex> compiled;
7901 };
7902
7903 solib_catchpoint::~solib_catchpoint ()
7904 {
7905 xfree (this->regex);
7906 }
7907
7908 static int
7909 insert_catch_solib (struct bp_location *ignore)
7910 {
7911 return 0;
7912 }
7913
7914 static int
7915 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7916 {
7917 return 0;
7918 }
7919
7920 static int
7921 breakpoint_hit_catch_solib (const struct bp_location *bl,
7922 const address_space *aspace,
7923 CORE_ADDR bp_addr,
7924 const struct target_waitstatus *ws)
7925 {
7926 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7927 struct breakpoint *other;
7928
7929 if (ws->kind == TARGET_WAITKIND_LOADED)
7930 return 1;
7931
7932 ALL_BREAKPOINTS (other)
7933 {
7934 struct bp_location *other_bl;
7935
7936 if (other == bl->owner)
7937 continue;
7938
7939 if (other->type != bp_shlib_event)
7940 continue;
7941
7942 if (self->pspace != NULL && other->pspace != self->pspace)
7943 continue;
7944
7945 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7946 {
7947 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7948 return 1;
7949 }
7950 }
7951
7952 return 0;
7953 }
7954
7955 static void
7956 check_status_catch_solib (struct bpstats *bs)
7957 {
7958 struct solib_catchpoint *self
7959 = (struct solib_catchpoint *) bs->breakpoint_at;
7960
7961 if (self->is_load)
7962 {
7963 for (so_list *iter : current_program_space->added_solibs)
7964 {
7965 if (!self->regex
7966 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7967 return;
7968 }
7969 }
7970 else
7971 {
7972 for (const std::string &iter : current_program_space->deleted_solibs)
7973 {
7974 if (!self->regex
7975 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7976 return;
7977 }
7978 }
7979
7980 bs->stop = 0;
7981 bs->print_it = print_it_noop;
7982 }
7983
7984 static enum print_stop_action
7985 print_it_catch_solib (bpstat bs)
7986 {
7987 struct breakpoint *b = bs->breakpoint_at;
7988 struct ui_out *uiout = current_uiout;
7989
7990 annotate_catchpoint (b->number);
7991 maybe_print_thread_hit_breakpoint (uiout);
7992 if (b->disposition == disp_del)
7993 uiout->text ("Temporary catchpoint ");
7994 else
7995 uiout->text ("Catchpoint ");
7996 uiout->field_int ("bkptno", b->number);
7997 uiout->text ("\n");
7998 if (uiout->is_mi_like_p ())
7999 uiout->field_string ("disp", bpdisp_text (b->disposition));
8000 print_solib_event (1);
8001 return PRINT_SRC_AND_LOC;
8002 }
8003
8004 static void
8005 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8006 {
8007 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8008 struct value_print_options opts;
8009 struct ui_out *uiout = current_uiout;
8010
8011 get_user_print_options (&opts);
8012 /* Field 4, the address, is omitted (which makes the columns not
8013 line up too nicely with the headers, but the effect is relatively
8014 readable). */
8015 if (opts.addressprint)
8016 {
8017 annotate_field (4);
8018 uiout->field_skip ("addr");
8019 }
8020
8021 std::string msg;
8022 annotate_field (5);
8023 if (self->is_load)
8024 {
8025 if (self->regex)
8026 msg = string_printf (_("load of library matching %s"), self->regex);
8027 else
8028 msg = _("load of library");
8029 }
8030 else
8031 {
8032 if (self->regex)
8033 msg = string_printf (_("unload of library matching %s"), self->regex);
8034 else
8035 msg = _("unload of library");
8036 }
8037 uiout->field_string ("what", msg);
8038
8039 if (uiout->is_mi_like_p ())
8040 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8041 }
8042
8043 static void
8044 print_mention_catch_solib (struct breakpoint *b)
8045 {
8046 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8047
8048 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8049 self->is_load ? "load" : "unload");
8050 }
8051
8052 static void
8053 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8054 {
8055 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8056
8057 fprintf_unfiltered (fp, "%s %s",
8058 b->disposition == disp_del ? "tcatch" : "catch",
8059 self->is_load ? "load" : "unload");
8060 if (self->regex)
8061 fprintf_unfiltered (fp, " %s", self->regex);
8062 fprintf_unfiltered (fp, "\n");
8063 }
8064
8065 static struct breakpoint_ops catch_solib_breakpoint_ops;
8066
8067 /* Shared helper function (MI and CLI) for creating and installing
8068 a shared object event catchpoint. If IS_LOAD is non-zero then
8069 the events to be caught are load events, otherwise they are
8070 unload events. If IS_TEMP is non-zero the catchpoint is a
8071 temporary one. If ENABLED is non-zero the catchpoint is
8072 created in an enabled state. */
8073
8074 void
8075 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8076 {
8077 struct gdbarch *gdbarch = get_current_arch ();
8078
8079 if (!arg)
8080 arg = "";
8081 arg = skip_spaces (arg);
8082
8083 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8084
8085 if (*arg != '\0')
8086 {
8087 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8088 _("Invalid regexp")));
8089 c->regex = xstrdup (arg);
8090 }
8091
8092 c->is_load = is_load;
8093 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8094 &catch_solib_breakpoint_ops);
8095
8096 c->enable_state = enabled ? bp_enabled : bp_disabled;
8097
8098 install_breakpoint (0, std::move (c), 1);
8099 }
8100
8101 /* A helper function that does all the work for "catch load" and
8102 "catch unload". */
8103
8104 static void
8105 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8106 struct cmd_list_element *command)
8107 {
8108 int tempflag;
8109 const int enabled = 1;
8110
8111 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8112
8113 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8114 }
8115
8116 static void
8117 catch_load_command_1 (const char *arg, int from_tty,
8118 struct cmd_list_element *command)
8119 {
8120 catch_load_or_unload (arg, from_tty, 1, command);
8121 }
8122
8123 static void
8124 catch_unload_command_1 (const char *arg, int from_tty,
8125 struct cmd_list_element *command)
8126 {
8127 catch_load_or_unload (arg, from_tty, 0, command);
8128 }
8129
8130 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8131 is non-zero, then make the breakpoint temporary. If COND_STRING is
8132 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8133 the breakpoint_ops structure associated to the catchpoint. */
8134
8135 void
8136 init_catchpoint (struct breakpoint *b,
8137 struct gdbarch *gdbarch, int tempflag,
8138 const char *cond_string,
8139 const struct breakpoint_ops *ops)
8140 {
8141 symtab_and_line sal;
8142 sal.pspace = current_program_space;
8143
8144 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8145
8146 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8147 b->disposition = tempflag ? disp_del : disp_donttouch;
8148 }
8149
8150 void
8151 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8152 {
8153 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8154 set_breakpoint_number (internal, b);
8155 if (is_tracepoint (b))
8156 set_tracepoint_count (breakpoint_count);
8157 if (!internal)
8158 mention (b);
8159 gdb::observers::breakpoint_created.notify (b);
8160
8161 if (update_gll)
8162 update_global_location_list (UGLL_MAY_INSERT);
8163 }
8164
8165 static void
8166 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8167 int tempflag, const char *cond_string,
8168 const struct breakpoint_ops *ops)
8169 {
8170 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8171
8172 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8173
8174 c->forked_inferior_pid = null_ptid;
8175
8176 install_breakpoint (0, std::move (c), 1);
8177 }
8178
8179 /* Exec catchpoints. */
8180
8181 /* An instance of this type is used to represent an exec catchpoint.
8182 A breakpoint is really of this type iff its ops pointer points to
8183 CATCH_EXEC_BREAKPOINT_OPS. */
8184
8185 struct exec_catchpoint : public breakpoint
8186 {
8187 ~exec_catchpoint () override;
8188
8189 /* Filename of a program whose exec triggered this catchpoint.
8190 This field is only valid immediately after this catchpoint has
8191 triggered. */
8192 char *exec_pathname;
8193 };
8194
8195 /* Exec catchpoint destructor. */
8196
8197 exec_catchpoint::~exec_catchpoint ()
8198 {
8199 xfree (this->exec_pathname);
8200 }
8201
8202 static int
8203 insert_catch_exec (struct bp_location *bl)
8204 {
8205 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8206 }
8207
8208 static int
8209 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8210 {
8211 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8212 }
8213
8214 static int
8215 breakpoint_hit_catch_exec (const struct bp_location *bl,
8216 const address_space *aspace, CORE_ADDR bp_addr,
8217 const struct target_waitstatus *ws)
8218 {
8219 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8220
8221 if (ws->kind != TARGET_WAITKIND_EXECD)
8222 return 0;
8223
8224 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8225 return 1;
8226 }
8227
8228 static enum print_stop_action
8229 print_it_catch_exec (bpstat bs)
8230 {
8231 struct ui_out *uiout = current_uiout;
8232 struct breakpoint *b = bs->breakpoint_at;
8233 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8234
8235 annotate_catchpoint (b->number);
8236 maybe_print_thread_hit_breakpoint (uiout);
8237 if (b->disposition == disp_del)
8238 uiout->text ("Temporary catchpoint ");
8239 else
8240 uiout->text ("Catchpoint ");
8241 if (uiout->is_mi_like_p ())
8242 {
8243 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8244 uiout->field_string ("disp", bpdisp_text (b->disposition));
8245 }
8246 uiout->field_int ("bkptno", b->number);
8247 uiout->text (" (exec'd ");
8248 uiout->field_string ("new-exec", c->exec_pathname);
8249 uiout->text ("), ");
8250
8251 return PRINT_SRC_AND_LOC;
8252 }
8253
8254 static void
8255 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8256 {
8257 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8258 struct value_print_options opts;
8259 struct ui_out *uiout = current_uiout;
8260
8261 get_user_print_options (&opts);
8262
8263 /* Field 4, the address, is omitted (which makes the columns
8264 not line up too nicely with the headers, but the effect
8265 is relatively readable). */
8266 if (opts.addressprint)
8267 uiout->field_skip ("addr");
8268 annotate_field (5);
8269 uiout->text ("exec");
8270 if (c->exec_pathname != NULL)
8271 {
8272 uiout->text (", program \"");
8273 uiout->field_string ("what", c->exec_pathname);
8274 uiout->text ("\" ");
8275 }
8276
8277 if (uiout->is_mi_like_p ())
8278 uiout->field_string ("catch-type", "exec");
8279 }
8280
8281 static void
8282 print_mention_catch_exec (struct breakpoint *b)
8283 {
8284 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8285 }
8286
8287 /* Implement the "print_recreate" breakpoint_ops method for exec
8288 catchpoints. */
8289
8290 static void
8291 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8292 {
8293 fprintf_unfiltered (fp, "catch exec");
8294 print_recreate_thread (b, fp);
8295 }
8296
8297 static struct breakpoint_ops catch_exec_breakpoint_ops;
8298
8299 static int
8300 hw_breakpoint_used_count (void)
8301 {
8302 int i = 0;
8303 struct breakpoint *b;
8304 struct bp_location *bl;
8305
8306 ALL_BREAKPOINTS (b)
8307 {
8308 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8309 for (bl = b->loc; bl; bl = bl->next)
8310 {
8311 /* Special types of hardware breakpoints may use more than
8312 one register. */
8313 i += b->ops->resources_needed (bl);
8314 }
8315 }
8316
8317 return i;
8318 }
8319
8320 /* Returns the resources B would use if it were a hardware
8321 watchpoint. */
8322
8323 static int
8324 hw_watchpoint_use_count (struct breakpoint *b)
8325 {
8326 int i = 0;
8327 struct bp_location *bl;
8328
8329 if (!breakpoint_enabled (b))
8330 return 0;
8331
8332 for (bl = b->loc; bl; bl = bl->next)
8333 {
8334 /* Special types of hardware watchpoints may use more than
8335 one register. */
8336 i += b->ops->resources_needed (bl);
8337 }
8338
8339 return i;
8340 }
8341
8342 /* Returns the sum the used resources of all hardware watchpoints of
8343 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8344 the sum of the used resources of all hardware watchpoints of other
8345 types _not_ TYPE. */
8346
8347 static int
8348 hw_watchpoint_used_count_others (struct breakpoint *except,
8349 enum bptype type, int *other_type_used)
8350 {
8351 int i = 0;
8352 struct breakpoint *b;
8353
8354 *other_type_used = 0;
8355 ALL_BREAKPOINTS (b)
8356 {
8357 if (b == except)
8358 continue;
8359 if (!breakpoint_enabled (b))
8360 continue;
8361
8362 if (b->type == type)
8363 i += hw_watchpoint_use_count (b);
8364 else if (is_hardware_watchpoint (b))
8365 *other_type_used = 1;
8366 }
8367
8368 return i;
8369 }
8370
8371 void
8372 disable_watchpoints_before_interactive_call_start (void)
8373 {
8374 struct breakpoint *b;
8375
8376 ALL_BREAKPOINTS (b)
8377 {
8378 if (is_watchpoint (b) && breakpoint_enabled (b))
8379 {
8380 b->enable_state = bp_call_disabled;
8381 update_global_location_list (UGLL_DONT_INSERT);
8382 }
8383 }
8384 }
8385
8386 void
8387 enable_watchpoints_after_interactive_call_stop (void)
8388 {
8389 struct breakpoint *b;
8390
8391 ALL_BREAKPOINTS (b)
8392 {
8393 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8394 {
8395 b->enable_state = bp_enabled;
8396 update_global_location_list (UGLL_MAY_INSERT);
8397 }
8398 }
8399 }
8400
8401 void
8402 disable_breakpoints_before_startup (void)
8403 {
8404 current_program_space->executing_startup = 1;
8405 update_global_location_list (UGLL_DONT_INSERT);
8406 }
8407
8408 void
8409 enable_breakpoints_after_startup (void)
8410 {
8411 current_program_space->executing_startup = 0;
8412 breakpoint_re_set ();
8413 }
8414
8415 /* Create a new single-step breakpoint for thread THREAD, with no
8416 locations. */
8417
8418 static struct breakpoint *
8419 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8420 {
8421 std::unique_ptr<breakpoint> b (new breakpoint ());
8422
8423 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8424 &momentary_breakpoint_ops);
8425
8426 b->disposition = disp_donttouch;
8427 b->frame_id = null_frame_id;
8428
8429 b->thread = thread;
8430 gdb_assert (b->thread != 0);
8431
8432 return add_to_breakpoint_chain (std::move (b));
8433 }
8434
8435 /* Set a momentary breakpoint of type TYPE at address specified by
8436 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8437 frame. */
8438
8439 breakpoint_up
8440 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8441 struct frame_id frame_id, enum bptype type)
8442 {
8443 struct breakpoint *b;
8444
8445 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8446 tail-called one. */
8447 gdb_assert (!frame_id_artificial_p (frame_id));
8448
8449 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8450 b->enable_state = bp_enabled;
8451 b->disposition = disp_donttouch;
8452 b->frame_id = frame_id;
8453
8454 b->thread = inferior_thread ()->global_num;
8455
8456 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8457
8458 return breakpoint_up (b);
8459 }
8460
8461 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8462 The new breakpoint will have type TYPE, use OPS as its
8463 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8464
8465 static struct breakpoint *
8466 momentary_breakpoint_from_master (struct breakpoint *orig,
8467 enum bptype type,
8468 const struct breakpoint_ops *ops,
8469 int loc_enabled)
8470 {
8471 struct breakpoint *copy;
8472
8473 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8474 copy->loc = allocate_bp_location (copy);
8475 set_breakpoint_location_function (copy->loc);
8476
8477 copy->loc->gdbarch = orig->loc->gdbarch;
8478 copy->loc->requested_address = orig->loc->requested_address;
8479 copy->loc->address = orig->loc->address;
8480 copy->loc->section = orig->loc->section;
8481 copy->loc->pspace = orig->loc->pspace;
8482 copy->loc->probe = orig->loc->probe;
8483 copy->loc->line_number = orig->loc->line_number;
8484 copy->loc->symtab = orig->loc->symtab;
8485 copy->loc->enabled = loc_enabled;
8486 copy->frame_id = orig->frame_id;
8487 copy->thread = orig->thread;
8488 copy->pspace = orig->pspace;
8489
8490 copy->enable_state = bp_enabled;
8491 copy->disposition = disp_donttouch;
8492 copy->number = internal_breakpoint_number--;
8493
8494 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8495 return copy;
8496 }
8497
8498 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8499 ORIG is NULL. */
8500
8501 struct breakpoint *
8502 clone_momentary_breakpoint (struct breakpoint *orig)
8503 {
8504 /* If there's nothing to clone, then return nothing. */
8505 if (orig == NULL)
8506 return NULL;
8507
8508 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8509 }
8510
8511 breakpoint_up
8512 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8513 enum bptype type)
8514 {
8515 struct symtab_and_line sal;
8516
8517 sal = find_pc_line (pc, 0);
8518 sal.pc = pc;
8519 sal.section = find_pc_overlay (pc);
8520 sal.explicit_pc = 1;
8521
8522 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8523 }
8524 \f
8525
8526 /* Tell the user we have just set a breakpoint B. */
8527
8528 static void
8529 mention (struct breakpoint *b)
8530 {
8531 b->ops->print_mention (b);
8532 current_uiout->text ("\n");
8533 }
8534 \f
8535
8536 static int bp_loc_is_permanent (struct bp_location *loc);
8537
8538 static struct bp_location *
8539 add_location_to_breakpoint (struct breakpoint *b,
8540 const struct symtab_and_line *sal)
8541 {
8542 struct bp_location *loc, **tmp;
8543 CORE_ADDR adjusted_address;
8544 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8545
8546 if (loc_gdbarch == NULL)
8547 loc_gdbarch = b->gdbarch;
8548
8549 /* Adjust the breakpoint's address prior to allocating a location.
8550 Once we call allocate_bp_location(), that mostly uninitialized
8551 location will be placed on the location chain. Adjustment of the
8552 breakpoint may cause target_read_memory() to be called and we do
8553 not want its scan of the location chain to find a breakpoint and
8554 location that's only been partially initialized. */
8555 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8556 sal->pc, b->type);
8557
8558 /* Sort the locations by their ADDRESS. */
8559 loc = allocate_bp_location (b);
8560 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8561 tmp = &((*tmp)->next))
8562 ;
8563 loc->next = *tmp;
8564 *tmp = loc;
8565
8566 loc->requested_address = sal->pc;
8567 loc->address = adjusted_address;
8568 loc->pspace = sal->pspace;
8569 loc->probe.prob = sal->prob;
8570 loc->probe.objfile = sal->objfile;
8571 gdb_assert (loc->pspace != NULL);
8572 loc->section = sal->section;
8573 loc->gdbarch = loc_gdbarch;
8574 loc->line_number = sal->line;
8575 loc->symtab = sal->symtab;
8576 loc->symbol = sal->symbol;
8577 loc->msymbol = sal->msymbol;
8578 loc->objfile = sal->objfile;
8579
8580 set_breakpoint_location_function (loc);
8581
8582 /* While by definition, permanent breakpoints are already present in the
8583 code, we don't mark the location as inserted. Normally one would expect
8584 that GDB could rely on that breakpoint instruction to stop the program,
8585 thus removing the need to insert its own breakpoint, except that executing
8586 the breakpoint instruction can kill the target instead of reporting a
8587 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8588 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8589 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8590 breakpoint be inserted normally results in QEMU knowing about the GDB
8591 breakpoint, and thus trap before the breakpoint instruction is executed.
8592 (If GDB later needs to continue execution past the permanent breakpoint,
8593 it manually increments the PC, thus avoiding executing the breakpoint
8594 instruction.) */
8595 if (bp_loc_is_permanent (loc))
8596 loc->permanent = 1;
8597
8598 return loc;
8599 }
8600 \f
8601
8602 /* See breakpoint.h. */
8603
8604 int
8605 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8606 {
8607 int len;
8608 CORE_ADDR addr;
8609 const gdb_byte *bpoint;
8610 gdb_byte *target_mem;
8611
8612 addr = address;
8613 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8614
8615 /* Software breakpoints unsupported? */
8616 if (bpoint == NULL)
8617 return 0;
8618
8619 target_mem = (gdb_byte *) alloca (len);
8620
8621 /* Enable the automatic memory restoration from breakpoints while
8622 we read the memory. Otherwise we could say about our temporary
8623 breakpoints they are permanent. */
8624 scoped_restore restore_memory
8625 = make_scoped_restore_show_memory_breakpoints (0);
8626
8627 if (target_read_memory (address, target_mem, len) == 0
8628 && memcmp (target_mem, bpoint, len) == 0)
8629 return 1;
8630
8631 return 0;
8632 }
8633
8634 /* Return 1 if LOC is pointing to a permanent breakpoint,
8635 return 0 otherwise. */
8636
8637 static int
8638 bp_loc_is_permanent (struct bp_location *loc)
8639 {
8640 gdb_assert (loc != NULL);
8641
8642 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8643 attempt to read from the addresses the locations of these breakpoint types
8644 point to. program_breakpoint_here_p, below, will attempt to read
8645 memory. */
8646 if (!breakpoint_address_is_meaningful (loc->owner))
8647 return 0;
8648
8649 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8650 switch_to_program_space_and_thread (loc->pspace);
8651 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8652 }
8653
8654 /* Build a command list for the dprintf corresponding to the current
8655 settings of the dprintf style options. */
8656
8657 static void
8658 update_dprintf_command_list (struct breakpoint *b)
8659 {
8660 char *dprintf_args = b->extra_string;
8661 char *printf_line = NULL;
8662
8663 if (!dprintf_args)
8664 return;
8665
8666 dprintf_args = skip_spaces (dprintf_args);
8667
8668 /* Allow a comma, as it may have terminated a location, but don't
8669 insist on it. */
8670 if (*dprintf_args == ',')
8671 ++dprintf_args;
8672 dprintf_args = skip_spaces (dprintf_args);
8673
8674 if (*dprintf_args != '"')
8675 error (_("Bad format string, missing '\"'."));
8676
8677 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8678 printf_line = xstrprintf ("printf %s", dprintf_args);
8679 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8680 {
8681 if (!dprintf_function)
8682 error (_("No function supplied for dprintf call"));
8683
8684 if (dprintf_channel && strlen (dprintf_channel) > 0)
8685 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8686 dprintf_function,
8687 dprintf_channel,
8688 dprintf_args);
8689 else
8690 printf_line = xstrprintf ("call (void) %s (%s)",
8691 dprintf_function,
8692 dprintf_args);
8693 }
8694 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8695 {
8696 if (target_can_run_breakpoint_commands ())
8697 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8698 else
8699 {
8700 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8701 printf_line = xstrprintf ("printf %s", dprintf_args);
8702 }
8703 }
8704 else
8705 internal_error (__FILE__, __LINE__,
8706 _("Invalid dprintf style."));
8707
8708 gdb_assert (printf_line != NULL);
8709
8710 /* Manufacture a printf sequence. */
8711 struct command_line *printf_cmd_line
8712 = new struct command_line (simple_control, printf_line);
8713 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8714 command_lines_deleter ()));
8715 }
8716
8717 /* Update all dprintf commands, making their command lists reflect
8718 current style settings. */
8719
8720 static void
8721 update_dprintf_commands (const char *args, int from_tty,
8722 struct cmd_list_element *c)
8723 {
8724 struct breakpoint *b;
8725
8726 ALL_BREAKPOINTS (b)
8727 {
8728 if (b->type == bp_dprintf)
8729 update_dprintf_command_list (b);
8730 }
8731 }
8732
8733 /* Create a breakpoint with SAL as location. Use LOCATION
8734 as a description of the location, and COND_STRING
8735 as condition expression. If LOCATION is NULL then create an
8736 "address location" from the address in the SAL. */
8737
8738 static void
8739 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8740 gdb::array_view<const symtab_and_line> sals,
8741 event_location_up &&location,
8742 gdb::unique_xmalloc_ptr<char> filter,
8743 gdb::unique_xmalloc_ptr<char> cond_string,
8744 gdb::unique_xmalloc_ptr<char> extra_string,
8745 enum bptype type, enum bpdisp disposition,
8746 int thread, int task, int ignore_count,
8747 const struct breakpoint_ops *ops, int from_tty,
8748 int enabled, int internal, unsigned flags,
8749 int display_canonical)
8750 {
8751 int i;
8752
8753 if (type == bp_hardware_breakpoint)
8754 {
8755 int target_resources_ok;
8756
8757 i = hw_breakpoint_used_count ();
8758 target_resources_ok =
8759 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8760 i + 1, 0);
8761 if (target_resources_ok == 0)
8762 error (_("No hardware breakpoint support in the target."));
8763 else if (target_resources_ok < 0)
8764 error (_("Hardware breakpoints used exceeds limit."));
8765 }
8766
8767 gdb_assert (!sals.empty ());
8768
8769 for (const auto &sal : sals)
8770 {
8771 struct bp_location *loc;
8772
8773 if (from_tty)
8774 {
8775 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8776 if (!loc_gdbarch)
8777 loc_gdbarch = gdbarch;
8778
8779 describe_other_breakpoints (loc_gdbarch,
8780 sal.pspace, sal.pc, sal.section, thread);
8781 }
8782
8783 if (&sal == &sals[0])
8784 {
8785 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8786 b->thread = thread;
8787 b->task = task;
8788
8789 b->cond_string = cond_string.release ();
8790 b->extra_string = extra_string.release ();
8791 b->ignore_count = ignore_count;
8792 b->enable_state = enabled ? bp_enabled : bp_disabled;
8793 b->disposition = disposition;
8794
8795 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8796 b->loc->inserted = 1;
8797
8798 if (type == bp_static_tracepoint)
8799 {
8800 struct tracepoint *t = (struct tracepoint *) b;
8801 struct static_tracepoint_marker marker;
8802
8803 if (strace_marker_p (b))
8804 {
8805 /* We already know the marker exists, otherwise, we
8806 wouldn't see a sal for it. */
8807 const char *p
8808 = &event_location_to_string (b->location.get ())[3];
8809 const char *endp;
8810
8811 p = skip_spaces (p);
8812
8813 endp = skip_to_space (p);
8814
8815 t->static_trace_marker_id.assign (p, endp - p);
8816
8817 printf_filtered (_("Probed static tracepoint "
8818 "marker \"%s\"\n"),
8819 t->static_trace_marker_id.c_str ());
8820 }
8821 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8822 {
8823 t->static_trace_marker_id = std::move (marker.str_id);
8824
8825 printf_filtered (_("Probed static tracepoint "
8826 "marker \"%s\"\n"),
8827 t->static_trace_marker_id.c_str ());
8828 }
8829 else
8830 warning (_("Couldn't determine the static "
8831 "tracepoint marker to probe"));
8832 }
8833
8834 loc = b->loc;
8835 }
8836 else
8837 {
8838 loc = add_location_to_breakpoint (b, &sal);
8839 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8840 loc->inserted = 1;
8841 }
8842
8843 if (b->cond_string)
8844 {
8845 const char *arg = b->cond_string;
8846
8847 loc->cond = parse_exp_1 (&arg, loc->address,
8848 block_for_pc (loc->address), 0);
8849 if (*arg)
8850 error (_("Garbage '%s' follows condition"), arg);
8851 }
8852
8853 /* Dynamic printf requires and uses additional arguments on the
8854 command line, otherwise it's an error. */
8855 if (type == bp_dprintf)
8856 {
8857 if (b->extra_string)
8858 update_dprintf_command_list (b);
8859 else
8860 error (_("Format string required"));
8861 }
8862 else if (b->extra_string)
8863 error (_("Garbage '%s' at end of command"), b->extra_string);
8864 }
8865
8866 b->display_canonical = display_canonical;
8867 if (location != NULL)
8868 b->location = std::move (location);
8869 else
8870 b->location = new_address_location (b->loc->address, NULL, 0);
8871 b->filter = filter.release ();
8872 }
8873
8874 static void
8875 create_breakpoint_sal (struct gdbarch *gdbarch,
8876 gdb::array_view<const symtab_and_line> sals,
8877 event_location_up &&location,
8878 gdb::unique_xmalloc_ptr<char> filter,
8879 gdb::unique_xmalloc_ptr<char> cond_string,
8880 gdb::unique_xmalloc_ptr<char> extra_string,
8881 enum bptype type, enum bpdisp disposition,
8882 int thread, int task, int ignore_count,
8883 const struct breakpoint_ops *ops, int from_tty,
8884 int enabled, int internal, unsigned flags,
8885 int display_canonical)
8886 {
8887 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8888
8889 init_breakpoint_sal (b.get (), gdbarch,
8890 sals, std::move (location),
8891 std::move (filter),
8892 std::move (cond_string),
8893 std::move (extra_string),
8894 type, disposition,
8895 thread, task, ignore_count,
8896 ops, from_tty,
8897 enabled, internal, flags,
8898 display_canonical);
8899
8900 install_breakpoint (internal, std::move (b), 0);
8901 }
8902
8903 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8904 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8905 value. COND_STRING, if not NULL, specified the condition to be
8906 used for all breakpoints. Essentially the only case where
8907 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8908 function. In that case, it's still not possible to specify
8909 separate conditions for different overloaded functions, so
8910 we take just a single condition string.
8911
8912 NOTE: If the function succeeds, the caller is expected to cleanup
8913 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8914 array contents). If the function fails (error() is called), the
8915 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8916 COND and SALS arrays and each of those arrays contents. */
8917
8918 static void
8919 create_breakpoints_sal (struct gdbarch *gdbarch,
8920 struct linespec_result *canonical,
8921 gdb::unique_xmalloc_ptr<char> cond_string,
8922 gdb::unique_xmalloc_ptr<char> extra_string,
8923 enum bptype type, enum bpdisp disposition,
8924 int thread, int task, int ignore_count,
8925 const struct breakpoint_ops *ops, int from_tty,
8926 int enabled, int internal, unsigned flags)
8927 {
8928 if (canonical->pre_expanded)
8929 gdb_assert (canonical->lsals.size () == 1);
8930
8931 for (const auto &lsal : canonical->lsals)
8932 {
8933 /* Note that 'location' can be NULL in the case of a plain
8934 'break', without arguments. */
8935 event_location_up location
8936 = (canonical->location != NULL
8937 ? copy_event_location (canonical->location.get ()) : NULL);
8938 gdb::unique_xmalloc_ptr<char> filter_string
8939 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8940
8941 create_breakpoint_sal (gdbarch, lsal.sals,
8942 std::move (location),
8943 std::move (filter_string),
8944 std::move (cond_string),
8945 std::move (extra_string),
8946 type, disposition,
8947 thread, task, ignore_count, ops,
8948 from_tty, enabled, internal, flags,
8949 canonical->special_display);
8950 }
8951 }
8952
8953 /* Parse LOCATION which is assumed to be a SAL specification possibly
8954 followed by conditionals. On return, SALS contains an array of SAL
8955 addresses found. LOCATION points to the end of the SAL (for
8956 linespec locations).
8957
8958 The array and the line spec strings are allocated on the heap, it is
8959 the caller's responsibility to free them. */
8960
8961 static void
8962 parse_breakpoint_sals (const struct event_location *location,
8963 struct linespec_result *canonical)
8964 {
8965 struct symtab_and_line cursal;
8966
8967 if (event_location_type (location) == LINESPEC_LOCATION)
8968 {
8969 const char *spec = get_linespec_location (location)->spec_string;
8970
8971 if (spec == NULL)
8972 {
8973 /* The last displayed codepoint, if it's valid, is our default
8974 breakpoint address. */
8975 if (last_displayed_sal_is_valid ())
8976 {
8977 /* Set sal's pspace, pc, symtab, and line to the values
8978 corresponding to the last call to print_frame_info.
8979 Be sure to reinitialize LINE with NOTCURRENT == 0
8980 as the breakpoint line number is inappropriate otherwise.
8981 find_pc_line would adjust PC, re-set it back. */
8982 symtab_and_line sal = get_last_displayed_sal ();
8983 CORE_ADDR pc = sal.pc;
8984
8985 sal = find_pc_line (pc, 0);
8986
8987 /* "break" without arguments is equivalent to "break *PC"
8988 where PC is the last displayed codepoint's address. So
8989 make sure to set sal.explicit_pc to prevent GDB from
8990 trying to expand the list of sals to include all other
8991 instances with the same symtab and line. */
8992 sal.pc = pc;
8993 sal.explicit_pc = 1;
8994
8995 struct linespec_sals lsal;
8996 lsal.sals = {sal};
8997 lsal.canonical = NULL;
8998
8999 canonical->lsals.push_back (std::move (lsal));
9000 return;
9001 }
9002 else
9003 error (_("No default breakpoint address now."));
9004 }
9005 }
9006
9007 /* Force almost all breakpoints to be in terms of the
9008 current_source_symtab (which is decode_line_1's default).
9009 This should produce the results we want almost all of the
9010 time while leaving default_breakpoint_* alone.
9011
9012 ObjC: However, don't match an Objective-C method name which
9013 may have a '+' or '-' succeeded by a '['. */
9014 cursal = get_current_source_symtab_and_line ();
9015 if (last_displayed_sal_is_valid ())
9016 {
9017 const char *spec = NULL;
9018
9019 if (event_location_type (location) == LINESPEC_LOCATION)
9020 spec = get_linespec_location (location)->spec_string;
9021
9022 if (!cursal.symtab
9023 || (spec != NULL
9024 && strchr ("+-", spec[0]) != NULL
9025 && spec[1] != '['))
9026 {
9027 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9028 get_last_displayed_symtab (),
9029 get_last_displayed_line (),
9030 canonical, NULL, NULL);
9031 return;
9032 }
9033 }
9034
9035 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9036 cursal.symtab, cursal.line, canonical, NULL, NULL);
9037 }
9038
9039
9040 /* Convert each SAL into a real PC. Verify that the PC can be
9041 inserted as a breakpoint. If it can't throw an error. */
9042
9043 static void
9044 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9045 {
9046 for (auto &sal : sals)
9047 resolve_sal_pc (&sal);
9048 }
9049
9050 /* Fast tracepoints may have restrictions on valid locations. For
9051 instance, a fast tracepoint using a jump instead of a trap will
9052 likely have to overwrite more bytes than a trap would, and so can
9053 only be placed where the instruction is longer than the jump, or a
9054 multi-instruction sequence does not have a jump into the middle of
9055 it, etc. */
9056
9057 static void
9058 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9059 gdb::array_view<const symtab_and_line> sals)
9060 {
9061 for (const auto &sal : sals)
9062 {
9063 struct gdbarch *sarch;
9064
9065 sarch = get_sal_arch (sal);
9066 /* We fall back to GDBARCH if there is no architecture
9067 associated with SAL. */
9068 if (sarch == NULL)
9069 sarch = gdbarch;
9070 std::string msg;
9071 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9072 error (_("May not have a fast tracepoint at %s%s"),
9073 paddress (sarch, sal.pc), msg.c_str ());
9074 }
9075 }
9076
9077 /* Given TOK, a string specification of condition and thread, as
9078 accepted by the 'break' command, extract the condition
9079 string and thread number and set *COND_STRING and *THREAD.
9080 PC identifies the context at which the condition should be parsed.
9081 If no condition is found, *COND_STRING is set to NULL.
9082 If no thread is found, *THREAD is set to -1. */
9083
9084 static void
9085 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9086 char **cond_string, int *thread, int *task,
9087 char **rest)
9088 {
9089 *cond_string = NULL;
9090 *thread = -1;
9091 *task = 0;
9092 *rest = NULL;
9093
9094 while (tok && *tok)
9095 {
9096 const char *end_tok;
9097 int toklen;
9098 const char *cond_start = NULL;
9099 const char *cond_end = NULL;
9100
9101 tok = skip_spaces (tok);
9102
9103 if ((*tok == '"' || *tok == ',') && rest)
9104 {
9105 *rest = savestring (tok, strlen (tok));
9106 return;
9107 }
9108
9109 end_tok = skip_to_space (tok);
9110
9111 toklen = end_tok - tok;
9112
9113 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9114 {
9115 tok = cond_start = end_tok + 1;
9116 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9117 cond_end = tok;
9118 *cond_string = savestring (cond_start, cond_end - cond_start);
9119 }
9120 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9121 {
9122 const char *tmptok;
9123 struct thread_info *thr;
9124
9125 tok = end_tok + 1;
9126 thr = parse_thread_id (tok, &tmptok);
9127 if (tok == tmptok)
9128 error (_("Junk after thread keyword."));
9129 *thread = thr->global_num;
9130 tok = tmptok;
9131 }
9132 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9133 {
9134 char *tmptok;
9135
9136 tok = end_tok + 1;
9137 *task = strtol (tok, &tmptok, 0);
9138 if (tok == tmptok)
9139 error (_("Junk after task keyword."));
9140 if (!valid_task_id (*task))
9141 error (_("Unknown task %d."), *task);
9142 tok = tmptok;
9143 }
9144 else if (rest)
9145 {
9146 *rest = savestring (tok, strlen (tok));
9147 return;
9148 }
9149 else
9150 error (_("Junk at end of arguments."));
9151 }
9152 }
9153
9154 /* Decode a static tracepoint marker spec. */
9155
9156 static std::vector<symtab_and_line>
9157 decode_static_tracepoint_spec (const char **arg_p)
9158 {
9159 const char *p = &(*arg_p)[3];
9160 const char *endp;
9161
9162 p = skip_spaces (p);
9163
9164 endp = skip_to_space (p);
9165
9166 std::string marker_str (p, endp - p);
9167
9168 std::vector<static_tracepoint_marker> markers
9169 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9170 if (markers.empty ())
9171 error (_("No known static tracepoint marker named %s"),
9172 marker_str.c_str ());
9173
9174 std::vector<symtab_and_line> sals;
9175 sals.reserve (markers.size ());
9176
9177 for (const static_tracepoint_marker &marker : markers)
9178 {
9179 symtab_and_line sal = find_pc_line (marker.address, 0);
9180 sal.pc = marker.address;
9181 sals.push_back (sal);
9182 }
9183
9184 *arg_p = endp;
9185 return sals;
9186 }
9187
9188 /* See breakpoint.h. */
9189
9190 int
9191 create_breakpoint (struct gdbarch *gdbarch,
9192 const struct event_location *location,
9193 const char *cond_string,
9194 int thread, const char *extra_string,
9195 int parse_extra,
9196 int tempflag, enum bptype type_wanted,
9197 int ignore_count,
9198 enum auto_boolean pending_break_support,
9199 const struct breakpoint_ops *ops,
9200 int from_tty, int enabled, int internal,
9201 unsigned flags)
9202 {
9203 struct linespec_result canonical;
9204 int pending = 0;
9205 int task = 0;
9206 int prev_bkpt_count = breakpoint_count;
9207
9208 gdb_assert (ops != NULL);
9209
9210 /* If extra_string isn't useful, set it to NULL. */
9211 if (extra_string != NULL && *extra_string == '\0')
9212 extra_string = NULL;
9213
9214 try
9215 {
9216 ops->create_sals_from_location (location, &canonical, type_wanted);
9217 }
9218 catch (const gdb_exception_error &e)
9219 {
9220 /* If caller is interested in rc value from parse, set
9221 value. */
9222 if (e.error == NOT_FOUND_ERROR)
9223 {
9224 /* If pending breakpoint support is turned off, throw
9225 error. */
9226
9227 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9228 throw;
9229
9230 exception_print (gdb_stderr, e);
9231
9232 /* If pending breakpoint support is auto query and the user
9233 selects no, then simply return the error code. */
9234 if (pending_break_support == AUTO_BOOLEAN_AUTO
9235 && !nquery (_("Make %s pending on future shared library load? "),
9236 bptype_string (type_wanted)))
9237 return 0;
9238
9239 /* At this point, either the user was queried about setting
9240 a pending breakpoint and selected yes, or pending
9241 breakpoint behavior is on and thus a pending breakpoint
9242 is defaulted on behalf of the user. */
9243 pending = 1;
9244 }
9245 else
9246 throw;
9247 }
9248
9249 if (!pending && canonical.lsals.empty ())
9250 return 0;
9251
9252 /* Resolve all line numbers to PC's and verify that the addresses
9253 are ok for the target. */
9254 if (!pending)
9255 {
9256 for (auto &lsal : canonical.lsals)
9257 breakpoint_sals_to_pc (lsal.sals);
9258 }
9259
9260 /* Fast tracepoints may have additional restrictions on location. */
9261 if (!pending && type_wanted == bp_fast_tracepoint)
9262 {
9263 for (const auto &lsal : canonical.lsals)
9264 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9265 }
9266
9267 /* Verify that condition can be parsed, before setting any
9268 breakpoints. Allocate a separate condition expression for each
9269 breakpoint. */
9270 if (!pending)
9271 {
9272 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9273 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9274
9275 if (parse_extra)
9276 {
9277 char *rest;
9278 char *cond;
9279
9280 const linespec_sals &lsal = canonical.lsals[0];
9281
9282 /* Here we only parse 'arg' to separate condition
9283 from thread number, so parsing in context of first
9284 sal is OK. When setting the breakpoint we'll
9285 re-parse it in context of each sal. */
9286
9287 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9288 &cond, &thread, &task, &rest);
9289 cond_string_copy.reset (cond);
9290 extra_string_copy.reset (rest);
9291 }
9292 else
9293 {
9294 if (type_wanted != bp_dprintf
9295 && extra_string != NULL && *extra_string != '\0')
9296 error (_("Garbage '%s' at end of location"), extra_string);
9297
9298 /* Create a private copy of condition string. */
9299 if (cond_string)
9300 cond_string_copy.reset (xstrdup (cond_string));
9301 /* Create a private copy of any extra string. */
9302 if (extra_string)
9303 extra_string_copy.reset (xstrdup (extra_string));
9304 }
9305
9306 ops->create_breakpoints_sal (gdbarch, &canonical,
9307 std::move (cond_string_copy),
9308 std::move (extra_string_copy),
9309 type_wanted,
9310 tempflag ? disp_del : disp_donttouch,
9311 thread, task, ignore_count, ops,
9312 from_tty, enabled, internal, flags);
9313 }
9314 else
9315 {
9316 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9317
9318 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9319 b->location = copy_event_location (location);
9320
9321 if (parse_extra)
9322 b->cond_string = NULL;
9323 else
9324 {
9325 /* Create a private copy of condition string. */
9326 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9327 b->thread = thread;
9328 }
9329
9330 /* Create a private copy of any extra string. */
9331 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9332 b->ignore_count = ignore_count;
9333 b->disposition = tempflag ? disp_del : disp_donttouch;
9334 b->condition_not_parsed = 1;
9335 b->enable_state = enabled ? bp_enabled : bp_disabled;
9336 if ((type_wanted != bp_breakpoint
9337 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9338 b->pspace = current_program_space;
9339
9340 install_breakpoint (internal, std::move (b), 0);
9341 }
9342
9343 if (canonical.lsals.size () > 1)
9344 {
9345 warning (_("Multiple breakpoints were set.\nUse the "
9346 "\"delete\" command to delete unwanted breakpoints."));
9347 prev_breakpoint_count = prev_bkpt_count;
9348 }
9349
9350 update_global_location_list (UGLL_MAY_INSERT);
9351
9352 return 1;
9353 }
9354
9355 /* Set a breakpoint.
9356 ARG is a string describing breakpoint address,
9357 condition, and thread.
9358 FLAG specifies if a breakpoint is hardware on,
9359 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9360 and BP_TEMPFLAG. */
9361
9362 static void
9363 break_command_1 (const char *arg, int flag, int from_tty)
9364 {
9365 int tempflag = flag & BP_TEMPFLAG;
9366 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9367 ? bp_hardware_breakpoint
9368 : bp_breakpoint);
9369 struct breakpoint_ops *ops;
9370
9371 event_location_up location = string_to_event_location (&arg, current_language);
9372
9373 /* Matching breakpoints on probes. */
9374 if (location != NULL
9375 && event_location_type (location.get ()) == PROBE_LOCATION)
9376 ops = &bkpt_probe_breakpoint_ops;
9377 else
9378 ops = &bkpt_breakpoint_ops;
9379
9380 create_breakpoint (get_current_arch (),
9381 location.get (),
9382 NULL, 0, arg, 1 /* parse arg */,
9383 tempflag, type_wanted,
9384 0 /* Ignore count */,
9385 pending_break_support,
9386 ops,
9387 from_tty,
9388 1 /* enabled */,
9389 0 /* internal */,
9390 0);
9391 }
9392
9393 /* Helper function for break_command_1 and disassemble_command. */
9394
9395 void
9396 resolve_sal_pc (struct symtab_and_line *sal)
9397 {
9398 CORE_ADDR pc;
9399
9400 if (sal->pc == 0 && sal->symtab != NULL)
9401 {
9402 if (!find_line_pc (sal->symtab, sal->line, &pc))
9403 error (_("No line %d in file \"%s\"."),
9404 sal->line, symtab_to_filename_for_display (sal->symtab));
9405 sal->pc = pc;
9406
9407 /* If this SAL corresponds to a breakpoint inserted using a line
9408 number, then skip the function prologue if necessary. */
9409 if (sal->explicit_line)
9410 skip_prologue_sal (sal);
9411 }
9412
9413 if (sal->section == 0 && sal->symtab != NULL)
9414 {
9415 const struct blockvector *bv;
9416 const struct block *b;
9417 struct symbol *sym;
9418
9419 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9420 SYMTAB_COMPUNIT (sal->symtab));
9421 if (bv != NULL)
9422 {
9423 sym = block_linkage_function (b);
9424 if (sym != NULL)
9425 {
9426 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9427 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9428 sym);
9429 }
9430 else
9431 {
9432 /* It really is worthwhile to have the section, so we'll
9433 just have to look harder. This case can be executed
9434 if we have line numbers but no functions (as can
9435 happen in assembly source). */
9436
9437 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9438 switch_to_program_space_and_thread (sal->pspace);
9439
9440 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9441 if (msym.minsym)
9442 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9443 }
9444 }
9445 }
9446 }
9447
9448 void
9449 break_command (const char *arg, int from_tty)
9450 {
9451 break_command_1 (arg, 0, from_tty);
9452 }
9453
9454 void
9455 tbreak_command (const char *arg, int from_tty)
9456 {
9457 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9458 }
9459
9460 static void
9461 hbreak_command (const char *arg, int from_tty)
9462 {
9463 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9464 }
9465
9466 static void
9467 thbreak_command (const char *arg, int from_tty)
9468 {
9469 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9470 }
9471
9472 static void
9473 stop_command (const char *arg, int from_tty)
9474 {
9475 printf_filtered (_("Specify the type of breakpoint to set.\n\
9476 Usage: stop in <function | address>\n\
9477 stop at <line>\n"));
9478 }
9479
9480 static void
9481 stopin_command (const char *arg, int from_tty)
9482 {
9483 int badInput = 0;
9484
9485 if (arg == NULL)
9486 badInput = 1;
9487 else if (*arg != '*')
9488 {
9489 const char *argptr = arg;
9490 int hasColon = 0;
9491
9492 /* Look for a ':'. If this is a line number specification, then
9493 say it is bad, otherwise, it should be an address or
9494 function/method name. */
9495 while (*argptr && !hasColon)
9496 {
9497 hasColon = (*argptr == ':');
9498 argptr++;
9499 }
9500
9501 if (hasColon)
9502 badInput = (*argptr != ':'); /* Not a class::method */
9503 else
9504 badInput = isdigit (*arg); /* a simple line number */
9505 }
9506
9507 if (badInput)
9508 printf_filtered (_("Usage: stop in <function | address>\n"));
9509 else
9510 break_command_1 (arg, 0, from_tty);
9511 }
9512
9513 static void
9514 stopat_command (const char *arg, int from_tty)
9515 {
9516 int badInput = 0;
9517
9518 if (arg == NULL || *arg == '*') /* no line number */
9519 badInput = 1;
9520 else
9521 {
9522 const char *argptr = arg;
9523 int hasColon = 0;
9524
9525 /* Look for a ':'. If there is a '::' then get out, otherwise
9526 it is probably a line number. */
9527 while (*argptr && !hasColon)
9528 {
9529 hasColon = (*argptr == ':');
9530 argptr++;
9531 }
9532
9533 if (hasColon)
9534 badInput = (*argptr == ':'); /* we have class::method */
9535 else
9536 badInput = !isdigit (*arg); /* not a line number */
9537 }
9538
9539 if (badInput)
9540 printf_filtered (_("Usage: stop at LINE\n"));
9541 else
9542 break_command_1 (arg, 0, from_tty);
9543 }
9544
9545 /* The dynamic printf command is mostly like a regular breakpoint, but
9546 with a prewired command list consisting of a single output command,
9547 built from extra arguments supplied on the dprintf command
9548 line. */
9549
9550 static void
9551 dprintf_command (const char *arg, int from_tty)
9552 {
9553 event_location_up location = string_to_event_location (&arg, current_language);
9554
9555 /* If non-NULL, ARG should have been advanced past the location;
9556 the next character must be ','. */
9557 if (arg != NULL)
9558 {
9559 if (arg[0] != ',' || arg[1] == '\0')
9560 error (_("Format string required"));
9561 else
9562 {
9563 /* Skip the comma. */
9564 ++arg;
9565 }
9566 }
9567
9568 create_breakpoint (get_current_arch (),
9569 location.get (),
9570 NULL, 0, arg, 1 /* parse arg */,
9571 0, bp_dprintf,
9572 0 /* Ignore count */,
9573 pending_break_support,
9574 &dprintf_breakpoint_ops,
9575 from_tty,
9576 1 /* enabled */,
9577 0 /* internal */,
9578 0);
9579 }
9580
9581 static void
9582 agent_printf_command (const char *arg, int from_tty)
9583 {
9584 error (_("May only run agent-printf on the target"));
9585 }
9586
9587 /* Implement the "breakpoint_hit" breakpoint_ops method for
9588 ranged breakpoints. */
9589
9590 static int
9591 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9592 const address_space *aspace,
9593 CORE_ADDR bp_addr,
9594 const struct target_waitstatus *ws)
9595 {
9596 if (ws->kind != TARGET_WAITKIND_STOPPED
9597 || ws->value.sig != GDB_SIGNAL_TRAP)
9598 return 0;
9599
9600 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9601 bl->length, aspace, bp_addr);
9602 }
9603
9604 /* Implement the "resources_needed" breakpoint_ops method for
9605 ranged breakpoints. */
9606
9607 static int
9608 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9609 {
9610 return target_ranged_break_num_registers ();
9611 }
9612
9613 /* Implement the "print_it" breakpoint_ops method for
9614 ranged breakpoints. */
9615
9616 static enum print_stop_action
9617 print_it_ranged_breakpoint (bpstat bs)
9618 {
9619 struct breakpoint *b = bs->breakpoint_at;
9620 struct bp_location *bl = b->loc;
9621 struct ui_out *uiout = current_uiout;
9622
9623 gdb_assert (b->type == bp_hardware_breakpoint);
9624
9625 /* Ranged breakpoints have only one location. */
9626 gdb_assert (bl && bl->next == NULL);
9627
9628 annotate_breakpoint (b->number);
9629
9630 maybe_print_thread_hit_breakpoint (uiout);
9631
9632 if (b->disposition == disp_del)
9633 uiout->text ("Temporary ranged breakpoint ");
9634 else
9635 uiout->text ("Ranged breakpoint ");
9636 if (uiout->is_mi_like_p ())
9637 {
9638 uiout->field_string ("reason",
9639 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9640 uiout->field_string ("disp", bpdisp_text (b->disposition));
9641 }
9642 uiout->field_int ("bkptno", b->number);
9643 uiout->text (", ");
9644
9645 return PRINT_SRC_AND_LOC;
9646 }
9647
9648 /* Implement the "print_one" breakpoint_ops method for
9649 ranged breakpoints. */
9650
9651 static void
9652 print_one_ranged_breakpoint (struct breakpoint *b,
9653 struct bp_location **last_loc)
9654 {
9655 struct bp_location *bl = b->loc;
9656 struct value_print_options opts;
9657 struct ui_out *uiout = current_uiout;
9658
9659 /* Ranged breakpoints have only one location. */
9660 gdb_assert (bl && bl->next == NULL);
9661
9662 get_user_print_options (&opts);
9663
9664 if (opts.addressprint)
9665 /* We don't print the address range here, it will be printed later
9666 by print_one_detail_ranged_breakpoint. */
9667 uiout->field_skip ("addr");
9668 annotate_field (5);
9669 print_breakpoint_location (b, bl);
9670 *last_loc = bl;
9671 }
9672
9673 /* Implement the "print_one_detail" breakpoint_ops method for
9674 ranged breakpoints. */
9675
9676 static void
9677 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9678 struct ui_out *uiout)
9679 {
9680 CORE_ADDR address_start, address_end;
9681 struct bp_location *bl = b->loc;
9682 string_file stb;
9683
9684 gdb_assert (bl);
9685
9686 address_start = bl->address;
9687 address_end = address_start + bl->length - 1;
9688
9689 uiout->text ("\taddress range: ");
9690 stb.printf ("[%s, %s]",
9691 print_core_address (bl->gdbarch, address_start),
9692 print_core_address (bl->gdbarch, address_end));
9693 uiout->field_stream ("addr", stb);
9694 uiout->text ("\n");
9695 }
9696
9697 /* Implement the "print_mention" breakpoint_ops method for
9698 ranged breakpoints. */
9699
9700 static void
9701 print_mention_ranged_breakpoint (struct breakpoint *b)
9702 {
9703 struct bp_location *bl = b->loc;
9704 struct ui_out *uiout = current_uiout;
9705
9706 gdb_assert (bl);
9707 gdb_assert (b->type == bp_hardware_breakpoint);
9708
9709 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9710 b->number, paddress (bl->gdbarch, bl->address),
9711 paddress (bl->gdbarch, bl->address + bl->length - 1));
9712 }
9713
9714 /* Implement the "print_recreate" breakpoint_ops method for
9715 ranged breakpoints. */
9716
9717 static void
9718 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9719 {
9720 fprintf_unfiltered (fp, "break-range %s, %s",
9721 event_location_to_string (b->location.get ()),
9722 event_location_to_string (b->location_range_end.get ()));
9723 print_recreate_thread (b, fp);
9724 }
9725
9726 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9727
9728 static struct breakpoint_ops ranged_breakpoint_ops;
9729
9730 /* Find the address where the end of the breakpoint range should be
9731 placed, given the SAL of the end of the range. This is so that if
9732 the user provides a line number, the end of the range is set to the
9733 last instruction of the given line. */
9734
9735 static CORE_ADDR
9736 find_breakpoint_range_end (struct symtab_and_line sal)
9737 {
9738 CORE_ADDR end;
9739
9740 /* If the user provided a PC value, use it. Otherwise,
9741 find the address of the end of the given location. */
9742 if (sal.explicit_pc)
9743 end = sal.pc;
9744 else
9745 {
9746 int ret;
9747 CORE_ADDR start;
9748
9749 ret = find_line_pc_range (sal, &start, &end);
9750 if (!ret)
9751 error (_("Could not find location of the end of the range."));
9752
9753 /* find_line_pc_range returns the start of the next line. */
9754 end--;
9755 }
9756
9757 return end;
9758 }
9759
9760 /* Implement the "break-range" CLI command. */
9761
9762 static void
9763 break_range_command (const char *arg, int from_tty)
9764 {
9765 const char *arg_start;
9766 struct linespec_result canonical_start, canonical_end;
9767 int bp_count, can_use_bp, length;
9768 CORE_ADDR end;
9769 struct breakpoint *b;
9770
9771 /* We don't support software ranged breakpoints. */
9772 if (target_ranged_break_num_registers () < 0)
9773 error (_("This target does not support hardware ranged breakpoints."));
9774
9775 bp_count = hw_breakpoint_used_count ();
9776 bp_count += target_ranged_break_num_registers ();
9777 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9778 bp_count, 0);
9779 if (can_use_bp < 0)
9780 error (_("Hardware breakpoints used exceeds limit."));
9781
9782 arg = skip_spaces (arg);
9783 if (arg == NULL || arg[0] == '\0')
9784 error(_("No address range specified."));
9785
9786 arg_start = arg;
9787 event_location_up start_location = string_to_event_location (&arg,
9788 current_language);
9789 parse_breakpoint_sals (start_location.get (), &canonical_start);
9790
9791 if (arg[0] != ',')
9792 error (_("Too few arguments."));
9793 else if (canonical_start.lsals.empty ())
9794 error (_("Could not find location of the beginning of the range."));
9795
9796 const linespec_sals &lsal_start = canonical_start.lsals[0];
9797
9798 if (canonical_start.lsals.size () > 1
9799 || lsal_start.sals.size () != 1)
9800 error (_("Cannot create a ranged breakpoint with multiple locations."));
9801
9802 const symtab_and_line &sal_start = lsal_start.sals[0];
9803 std::string addr_string_start (arg_start, arg - arg_start);
9804
9805 arg++; /* Skip the comma. */
9806 arg = skip_spaces (arg);
9807
9808 /* Parse the end location. */
9809
9810 arg_start = arg;
9811
9812 /* We call decode_line_full directly here instead of using
9813 parse_breakpoint_sals because we need to specify the start location's
9814 symtab and line as the default symtab and line for the end of the
9815 range. This makes it possible to have ranges like "foo.c:27, +14",
9816 where +14 means 14 lines from the start location. */
9817 event_location_up end_location = string_to_event_location (&arg,
9818 current_language);
9819 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9820 sal_start.symtab, sal_start.line,
9821 &canonical_end, NULL, NULL);
9822
9823 if (canonical_end.lsals.empty ())
9824 error (_("Could not find location of the end of the range."));
9825
9826 const linespec_sals &lsal_end = canonical_end.lsals[0];
9827 if (canonical_end.lsals.size () > 1
9828 || lsal_end.sals.size () != 1)
9829 error (_("Cannot create a ranged breakpoint with multiple locations."));
9830
9831 const symtab_and_line &sal_end = lsal_end.sals[0];
9832
9833 end = find_breakpoint_range_end (sal_end);
9834 if (sal_start.pc > end)
9835 error (_("Invalid address range, end precedes start."));
9836
9837 length = end - sal_start.pc + 1;
9838 if (length < 0)
9839 /* Length overflowed. */
9840 error (_("Address range too large."));
9841 else if (length == 1)
9842 {
9843 /* This range is simple enough to be handled by
9844 the `hbreak' command. */
9845 hbreak_command (&addr_string_start[0], 1);
9846
9847 return;
9848 }
9849
9850 /* Now set up the breakpoint. */
9851 b = set_raw_breakpoint (get_current_arch (), sal_start,
9852 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9853 set_breakpoint_count (breakpoint_count + 1);
9854 b->number = breakpoint_count;
9855 b->disposition = disp_donttouch;
9856 b->location = std::move (start_location);
9857 b->location_range_end = std::move (end_location);
9858 b->loc->length = length;
9859
9860 mention (b);
9861 gdb::observers::breakpoint_created.notify (b);
9862 update_global_location_list (UGLL_MAY_INSERT);
9863 }
9864
9865 /* Return non-zero if EXP is verified as constant. Returned zero
9866 means EXP is variable. Also the constant detection may fail for
9867 some constant expressions and in such case still falsely return
9868 zero. */
9869
9870 static int
9871 watchpoint_exp_is_const (const struct expression *exp)
9872 {
9873 int i = exp->nelts;
9874
9875 while (i > 0)
9876 {
9877 int oplenp, argsp;
9878
9879 /* We are only interested in the descriptor of each element. */
9880 operator_length (exp, i, &oplenp, &argsp);
9881 i -= oplenp;
9882
9883 switch (exp->elts[i].opcode)
9884 {
9885 case BINOP_ADD:
9886 case BINOP_SUB:
9887 case BINOP_MUL:
9888 case BINOP_DIV:
9889 case BINOP_REM:
9890 case BINOP_MOD:
9891 case BINOP_LSH:
9892 case BINOP_RSH:
9893 case BINOP_LOGICAL_AND:
9894 case BINOP_LOGICAL_OR:
9895 case BINOP_BITWISE_AND:
9896 case BINOP_BITWISE_IOR:
9897 case BINOP_BITWISE_XOR:
9898 case BINOP_EQUAL:
9899 case BINOP_NOTEQUAL:
9900 case BINOP_LESS:
9901 case BINOP_GTR:
9902 case BINOP_LEQ:
9903 case BINOP_GEQ:
9904 case BINOP_REPEAT:
9905 case BINOP_COMMA:
9906 case BINOP_EXP:
9907 case BINOP_MIN:
9908 case BINOP_MAX:
9909 case BINOP_INTDIV:
9910 case BINOP_CONCAT:
9911 case TERNOP_COND:
9912 case TERNOP_SLICE:
9913
9914 case OP_LONG:
9915 case OP_FLOAT:
9916 case OP_LAST:
9917 case OP_COMPLEX:
9918 case OP_STRING:
9919 case OP_ARRAY:
9920 case OP_TYPE:
9921 case OP_TYPEOF:
9922 case OP_DECLTYPE:
9923 case OP_TYPEID:
9924 case OP_NAME:
9925 case OP_OBJC_NSSTRING:
9926
9927 case UNOP_NEG:
9928 case UNOP_LOGICAL_NOT:
9929 case UNOP_COMPLEMENT:
9930 case UNOP_ADDR:
9931 case UNOP_HIGH:
9932 case UNOP_CAST:
9933
9934 case UNOP_CAST_TYPE:
9935 case UNOP_REINTERPRET_CAST:
9936 case UNOP_DYNAMIC_CAST:
9937 /* Unary, binary and ternary operators: We have to check
9938 their operands. If they are constant, then so is the
9939 result of that operation. For instance, if A and B are
9940 determined to be constants, then so is "A + B".
9941
9942 UNOP_IND is one exception to the rule above, because the
9943 value of *ADDR is not necessarily a constant, even when
9944 ADDR is. */
9945 break;
9946
9947 case OP_VAR_VALUE:
9948 /* Check whether the associated symbol is a constant.
9949
9950 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9951 possible that a buggy compiler could mark a variable as
9952 constant even when it is not, and TYPE_CONST would return
9953 true in this case, while SYMBOL_CLASS wouldn't.
9954
9955 We also have to check for function symbols because they
9956 are always constant. */
9957 {
9958 struct symbol *s = exp->elts[i + 2].symbol;
9959
9960 if (SYMBOL_CLASS (s) != LOC_BLOCK
9961 && SYMBOL_CLASS (s) != LOC_CONST
9962 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9963 return 0;
9964 break;
9965 }
9966
9967 /* The default action is to return 0 because we are using
9968 the optimistic approach here: If we don't know something,
9969 then it is not a constant. */
9970 default:
9971 return 0;
9972 }
9973 }
9974
9975 return 1;
9976 }
9977
9978 /* Watchpoint destructor. */
9979
9980 watchpoint::~watchpoint ()
9981 {
9982 xfree (this->exp_string);
9983 xfree (this->exp_string_reparse);
9984 }
9985
9986 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9987
9988 static void
9989 re_set_watchpoint (struct breakpoint *b)
9990 {
9991 struct watchpoint *w = (struct watchpoint *) b;
9992
9993 /* Watchpoint can be either on expression using entirely global
9994 variables, or it can be on local variables.
9995
9996 Watchpoints of the first kind are never auto-deleted, and even
9997 persist across program restarts. Since they can use variables
9998 from shared libraries, we need to reparse expression as libraries
9999 are loaded and unloaded.
10000
10001 Watchpoints on local variables can also change meaning as result
10002 of solib event. For example, if a watchpoint uses both a local
10003 and a global variables in expression, it's a local watchpoint,
10004 but unloading of a shared library will make the expression
10005 invalid. This is not a very common use case, but we still
10006 re-evaluate expression, to avoid surprises to the user.
10007
10008 Note that for local watchpoints, we re-evaluate it only if
10009 watchpoints frame id is still valid. If it's not, it means the
10010 watchpoint is out of scope and will be deleted soon. In fact,
10011 I'm not sure we'll ever be called in this case.
10012
10013 If a local watchpoint's frame id is still valid, then
10014 w->exp_valid_block is likewise valid, and we can safely use it.
10015
10016 Don't do anything about disabled watchpoints, since they will be
10017 reevaluated again when enabled. */
10018 update_watchpoint (w, 1 /* reparse */);
10019 }
10020
10021 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10022
10023 static int
10024 insert_watchpoint (struct bp_location *bl)
10025 {
10026 struct watchpoint *w = (struct watchpoint *) bl->owner;
10027 int length = w->exact ? 1 : bl->length;
10028
10029 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10030 w->cond_exp.get ());
10031 }
10032
10033 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10034
10035 static int
10036 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10037 {
10038 struct watchpoint *w = (struct watchpoint *) bl->owner;
10039 int length = w->exact ? 1 : bl->length;
10040
10041 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10042 w->cond_exp.get ());
10043 }
10044
10045 static int
10046 breakpoint_hit_watchpoint (const struct bp_location *bl,
10047 const address_space *aspace, CORE_ADDR bp_addr,
10048 const struct target_waitstatus *ws)
10049 {
10050 struct breakpoint *b = bl->owner;
10051 struct watchpoint *w = (struct watchpoint *) b;
10052
10053 /* Continuable hardware watchpoints are treated as non-existent if the
10054 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10055 some data address). Otherwise gdb won't stop on a break instruction
10056 in the code (not from a breakpoint) when a hardware watchpoint has
10057 been defined. Also skip watchpoints which we know did not trigger
10058 (did not match the data address). */
10059 if (is_hardware_watchpoint (b)
10060 && w->watchpoint_triggered == watch_triggered_no)
10061 return 0;
10062
10063 return 1;
10064 }
10065
10066 static void
10067 check_status_watchpoint (bpstat bs)
10068 {
10069 gdb_assert (is_watchpoint (bs->breakpoint_at));
10070
10071 bpstat_check_watchpoint (bs);
10072 }
10073
10074 /* Implement the "resources_needed" breakpoint_ops method for
10075 hardware watchpoints. */
10076
10077 static int
10078 resources_needed_watchpoint (const struct bp_location *bl)
10079 {
10080 struct watchpoint *w = (struct watchpoint *) bl->owner;
10081 int length = w->exact? 1 : bl->length;
10082
10083 return target_region_ok_for_hw_watchpoint (bl->address, length);
10084 }
10085
10086 /* Implement the "works_in_software_mode" breakpoint_ops method for
10087 hardware watchpoints. */
10088
10089 static int
10090 works_in_software_mode_watchpoint (const struct breakpoint *b)
10091 {
10092 /* Read and access watchpoints only work with hardware support. */
10093 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10094 }
10095
10096 static enum print_stop_action
10097 print_it_watchpoint (bpstat bs)
10098 {
10099 struct breakpoint *b;
10100 enum print_stop_action result;
10101 struct watchpoint *w;
10102 struct ui_out *uiout = current_uiout;
10103
10104 gdb_assert (bs->bp_location_at != NULL);
10105
10106 b = bs->breakpoint_at;
10107 w = (struct watchpoint *) b;
10108
10109 annotate_watchpoint (b->number);
10110 maybe_print_thread_hit_breakpoint (uiout);
10111
10112 string_file stb;
10113
10114 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10115 switch (b->type)
10116 {
10117 case bp_watchpoint:
10118 case bp_hardware_watchpoint:
10119 if (uiout->is_mi_like_p ())
10120 uiout->field_string
10121 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10122 mention (b);
10123 tuple_emitter.emplace (uiout, "value");
10124 uiout->text ("\nOld value = ");
10125 watchpoint_value_print (bs->old_val.get (), &stb);
10126 uiout->field_stream ("old", stb);
10127 uiout->text ("\nNew value = ");
10128 watchpoint_value_print (w->val.get (), &stb);
10129 uiout->field_stream ("new", stb);
10130 uiout->text ("\n");
10131 /* More than one watchpoint may have been triggered. */
10132 result = PRINT_UNKNOWN;
10133 break;
10134
10135 case bp_read_watchpoint:
10136 if (uiout->is_mi_like_p ())
10137 uiout->field_string
10138 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10139 mention (b);
10140 tuple_emitter.emplace (uiout, "value");
10141 uiout->text ("\nValue = ");
10142 watchpoint_value_print (w->val.get (), &stb);
10143 uiout->field_stream ("value", stb);
10144 uiout->text ("\n");
10145 result = PRINT_UNKNOWN;
10146 break;
10147
10148 case bp_access_watchpoint:
10149 if (bs->old_val != NULL)
10150 {
10151 if (uiout->is_mi_like_p ())
10152 uiout->field_string
10153 ("reason",
10154 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10155 mention (b);
10156 tuple_emitter.emplace (uiout, "value");
10157 uiout->text ("\nOld value = ");
10158 watchpoint_value_print (bs->old_val.get (), &stb);
10159 uiout->field_stream ("old", stb);
10160 uiout->text ("\nNew value = ");
10161 }
10162 else
10163 {
10164 mention (b);
10165 if (uiout->is_mi_like_p ())
10166 uiout->field_string
10167 ("reason",
10168 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10169 tuple_emitter.emplace (uiout, "value");
10170 uiout->text ("\nValue = ");
10171 }
10172 watchpoint_value_print (w->val.get (), &stb);
10173 uiout->field_stream ("new", stb);
10174 uiout->text ("\n");
10175 result = PRINT_UNKNOWN;
10176 break;
10177 default:
10178 result = PRINT_UNKNOWN;
10179 }
10180
10181 return result;
10182 }
10183
10184 /* Implement the "print_mention" breakpoint_ops method for hardware
10185 watchpoints. */
10186
10187 static void
10188 print_mention_watchpoint (struct breakpoint *b)
10189 {
10190 struct watchpoint *w = (struct watchpoint *) b;
10191 struct ui_out *uiout = current_uiout;
10192 const char *tuple_name;
10193
10194 switch (b->type)
10195 {
10196 case bp_watchpoint:
10197 uiout->text ("Watchpoint ");
10198 tuple_name = "wpt";
10199 break;
10200 case bp_hardware_watchpoint:
10201 uiout->text ("Hardware watchpoint ");
10202 tuple_name = "wpt";
10203 break;
10204 case bp_read_watchpoint:
10205 uiout->text ("Hardware read watchpoint ");
10206 tuple_name = "hw-rwpt";
10207 break;
10208 case bp_access_watchpoint:
10209 uiout->text ("Hardware access (read/write) watchpoint ");
10210 tuple_name = "hw-awpt";
10211 break;
10212 default:
10213 internal_error (__FILE__, __LINE__,
10214 _("Invalid hardware watchpoint type."));
10215 }
10216
10217 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10218 uiout->field_int ("number", b->number);
10219 uiout->text (": ");
10220 uiout->field_string ("exp", w->exp_string);
10221 }
10222
10223 /* Implement the "print_recreate" breakpoint_ops method for
10224 watchpoints. */
10225
10226 static void
10227 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10228 {
10229 struct watchpoint *w = (struct watchpoint *) b;
10230
10231 switch (b->type)
10232 {
10233 case bp_watchpoint:
10234 case bp_hardware_watchpoint:
10235 fprintf_unfiltered (fp, "watch");
10236 break;
10237 case bp_read_watchpoint:
10238 fprintf_unfiltered (fp, "rwatch");
10239 break;
10240 case bp_access_watchpoint:
10241 fprintf_unfiltered (fp, "awatch");
10242 break;
10243 default:
10244 internal_error (__FILE__, __LINE__,
10245 _("Invalid watchpoint type."));
10246 }
10247
10248 fprintf_unfiltered (fp, " %s", w->exp_string);
10249 print_recreate_thread (b, fp);
10250 }
10251
10252 /* Implement the "explains_signal" breakpoint_ops method for
10253 watchpoints. */
10254
10255 static int
10256 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10257 {
10258 /* A software watchpoint cannot cause a signal other than
10259 GDB_SIGNAL_TRAP. */
10260 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10261 return 0;
10262
10263 return 1;
10264 }
10265
10266 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10267
10268 static struct breakpoint_ops watchpoint_breakpoint_ops;
10269
10270 /* Implement the "insert" breakpoint_ops method for
10271 masked hardware watchpoints. */
10272
10273 static int
10274 insert_masked_watchpoint (struct bp_location *bl)
10275 {
10276 struct watchpoint *w = (struct watchpoint *) bl->owner;
10277
10278 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10279 bl->watchpoint_type);
10280 }
10281
10282 /* Implement the "remove" breakpoint_ops method for
10283 masked hardware watchpoints. */
10284
10285 static int
10286 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10287 {
10288 struct watchpoint *w = (struct watchpoint *) bl->owner;
10289
10290 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10291 bl->watchpoint_type);
10292 }
10293
10294 /* Implement the "resources_needed" breakpoint_ops method for
10295 masked hardware watchpoints. */
10296
10297 static int
10298 resources_needed_masked_watchpoint (const struct bp_location *bl)
10299 {
10300 struct watchpoint *w = (struct watchpoint *) bl->owner;
10301
10302 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10303 }
10304
10305 /* Implement the "works_in_software_mode" breakpoint_ops method for
10306 masked hardware watchpoints. */
10307
10308 static int
10309 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10310 {
10311 return 0;
10312 }
10313
10314 /* Implement the "print_it" breakpoint_ops method for
10315 masked hardware watchpoints. */
10316
10317 static enum print_stop_action
10318 print_it_masked_watchpoint (bpstat bs)
10319 {
10320 struct breakpoint *b = bs->breakpoint_at;
10321 struct ui_out *uiout = current_uiout;
10322
10323 /* Masked watchpoints have only one location. */
10324 gdb_assert (b->loc && b->loc->next == NULL);
10325
10326 annotate_watchpoint (b->number);
10327 maybe_print_thread_hit_breakpoint (uiout);
10328
10329 switch (b->type)
10330 {
10331 case bp_hardware_watchpoint:
10332 if (uiout->is_mi_like_p ())
10333 uiout->field_string
10334 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10335 break;
10336
10337 case bp_read_watchpoint:
10338 if (uiout->is_mi_like_p ())
10339 uiout->field_string
10340 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10341 break;
10342
10343 case bp_access_watchpoint:
10344 if (uiout->is_mi_like_p ())
10345 uiout->field_string
10346 ("reason",
10347 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10348 break;
10349 default:
10350 internal_error (__FILE__, __LINE__,
10351 _("Invalid hardware watchpoint type."));
10352 }
10353
10354 mention (b);
10355 uiout->text (_("\n\
10356 Check the underlying instruction at PC for the memory\n\
10357 address and value which triggered this watchpoint.\n"));
10358 uiout->text ("\n");
10359
10360 /* More than one watchpoint may have been triggered. */
10361 return PRINT_UNKNOWN;
10362 }
10363
10364 /* Implement the "print_one_detail" breakpoint_ops method for
10365 masked hardware watchpoints. */
10366
10367 static void
10368 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10369 struct ui_out *uiout)
10370 {
10371 struct watchpoint *w = (struct watchpoint *) b;
10372
10373 /* Masked watchpoints have only one location. */
10374 gdb_assert (b->loc && b->loc->next == NULL);
10375
10376 uiout->text ("\tmask ");
10377 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10378 uiout->text ("\n");
10379 }
10380
10381 /* Implement the "print_mention" breakpoint_ops method for
10382 masked hardware watchpoints. */
10383
10384 static void
10385 print_mention_masked_watchpoint (struct breakpoint *b)
10386 {
10387 struct watchpoint *w = (struct watchpoint *) b;
10388 struct ui_out *uiout = current_uiout;
10389 const char *tuple_name;
10390
10391 switch (b->type)
10392 {
10393 case bp_hardware_watchpoint:
10394 uiout->text ("Masked hardware watchpoint ");
10395 tuple_name = "wpt";
10396 break;
10397 case bp_read_watchpoint:
10398 uiout->text ("Masked hardware read watchpoint ");
10399 tuple_name = "hw-rwpt";
10400 break;
10401 case bp_access_watchpoint:
10402 uiout->text ("Masked hardware access (read/write) watchpoint ");
10403 tuple_name = "hw-awpt";
10404 break;
10405 default:
10406 internal_error (__FILE__, __LINE__,
10407 _("Invalid hardware watchpoint type."));
10408 }
10409
10410 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10411 uiout->field_int ("number", b->number);
10412 uiout->text (": ");
10413 uiout->field_string ("exp", w->exp_string);
10414 }
10415
10416 /* Implement the "print_recreate" breakpoint_ops method for
10417 masked hardware watchpoints. */
10418
10419 static void
10420 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10421 {
10422 struct watchpoint *w = (struct watchpoint *) b;
10423 char tmp[40];
10424
10425 switch (b->type)
10426 {
10427 case bp_hardware_watchpoint:
10428 fprintf_unfiltered (fp, "watch");
10429 break;
10430 case bp_read_watchpoint:
10431 fprintf_unfiltered (fp, "rwatch");
10432 break;
10433 case bp_access_watchpoint:
10434 fprintf_unfiltered (fp, "awatch");
10435 break;
10436 default:
10437 internal_error (__FILE__, __LINE__,
10438 _("Invalid hardware watchpoint type."));
10439 }
10440
10441 sprintf_vma (tmp, w->hw_wp_mask);
10442 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10443 print_recreate_thread (b, fp);
10444 }
10445
10446 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10447
10448 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10449
10450 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10451
10452 static int
10453 is_masked_watchpoint (const struct breakpoint *b)
10454 {
10455 return b->ops == &masked_watchpoint_breakpoint_ops;
10456 }
10457
10458 /* accessflag: hw_write: watch write,
10459 hw_read: watch read,
10460 hw_access: watch access (read or write) */
10461 static void
10462 watch_command_1 (const char *arg, int accessflag, int from_tty,
10463 int just_location, int internal)
10464 {
10465 struct breakpoint *scope_breakpoint = NULL;
10466 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10467 struct value *result;
10468 int saved_bitpos = 0, saved_bitsize = 0;
10469 const char *exp_start = NULL;
10470 const char *exp_end = NULL;
10471 const char *tok, *end_tok;
10472 int toklen = -1;
10473 const char *cond_start = NULL;
10474 const char *cond_end = NULL;
10475 enum bptype bp_type;
10476 int thread = -1;
10477 int pc = 0;
10478 /* Flag to indicate whether we are going to use masks for
10479 the hardware watchpoint. */
10480 int use_mask = 0;
10481 CORE_ADDR mask = 0;
10482
10483 /* Make sure that we actually have parameters to parse. */
10484 if (arg != NULL && arg[0] != '\0')
10485 {
10486 const char *value_start;
10487
10488 exp_end = arg + strlen (arg);
10489
10490 /* Look for "parameter value" pairs at the end
10491 of the arguments string. */
10492 for (tok = exp_end - 1; tok > arg; tok--)
10493 {
10494 /* Skip whitespace at the end of the argument list. */
10495 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10496 tok--;
10497
10498 /* Find the beginning of the last token.
10499 This is the value of the parameter. */
10500 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10501 tok--;
10502 value_start = tok + 1;
10503
10504 /* Skip whitespace. */
10505 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10506 tok--;
10507
10508 end_tok = tok;
10509
10510 /* Find the beginning of the second to last token.
10511 This is the parameter itself. */
10512 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10513 tok--;
10514 tok++;
10515 toklen = end_tok - tok + 1;
10516
10517 if (toklen == 6 && startswith (tok, "thread"))
10518 {
10519 struct thread_info *thr;
10520 /* At this point we've found a "thread" token, which means
10521 the user is trying to set a watchpoint that triggers
10522 only in a specific thread. */
10523 const char *endp;
10524
10525 if (thread != -1)
10526 error(_("You can specify only one thread."));
10527
10528 /* Extract the thread ID from the next token. */
10529 thr = parse_thread_id (value_start, &endp);
10530
10531 /* Check if the user provided a valid thread ID. */
10532 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10533 invalid_thread_id_error (value_start);
10534
10535 thread = thr->global_num;
10536 }
10537 else if (toklen == 4 && startswith (tok, "mask"))
10538 {
10539 /* We've found a "mask" token, which means the user wants to
10540 create a hardware watchpoint that is going to have the mask
10541 facility. */
10542 struct value *mask_value, *mark;
10543
10544 if (use_mask)
10545 error(_("You can specify only one mask."));
10546
10547 use_mask = just_location = 1;
10548
10549 mark = value_mark ();
10550 mask_value = parse_to_comma_and_eval (&value_start);
10551 mask = value_as_address (mask_value);
10552 value_free_to_mark (mark);
10553 }
10554 else
10555 /* We didn't recognize what we found. We should stop here. */
10556 break;
10557
10558 /* Truncate the string and get rid of the "parameter value" pair before
10559 the arguments string is parsed by the parse_exp_1 function. */
10560 exp_end = tok;
10561 }
10562 }
10563 else
10564 exp_end = arg;
10565
10566 /* Parse the rest of the arguments. From here on out, everything
10567 is in terms of a newly allocated string instead of the original
10568 ARG. */
10569 std::string expression (arg, exp_end - arg);
10570 exp_start = arg = expression.c_str ();
10571 innermost_block_tracker tracker;
10572 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10573 exp_end = arg;
10574 /* Remove trailing whitespace from the expression before saving it.
10575 This makes the eventual display of the expression string a bit
10576 prettier. */
10577 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10578 --exp_end;
10579
10580 /* Checking if the expression is not constant. */
10581 if (watchpoint_exp_is_const (exp.get ()))
10582 {
10583 int len;
10584
10585 len = exp_end - exp_start;
10586 while (len > 0 && isspace (exp_start[len - 1]))
10587 len--;
10588 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10589 }
10590
10591 exp_valid_block = tracker.block ();
10592 struct value *mark = value_mark ();
10593 struct value *val_as_value = nullptr;
10594 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10595 just_location);
10596
10597 if (val_as_value != NULL && just_location)
10598 {
10599 saved_bitpos = value_bitpos (val_as_value);
10600 saved_bitsize = value_bitsize (val_as_value);
10601 }
10602
10603 value_ref_ptr val;
10604 if (just_location)
10605 {
10606 int ret;
10607
10608 exp_valid_block = NULL;
10609 val = release_value (value_addr (result));
10610 value_free_to_mark (mark);
10611
10612 if (use_mask)
10613 {
10614 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10615 mask);
10616 if (ret == -1)
10617 error (_("This target does not support masked watchpoints."));
10618 else if (ret == -2)
10619 error (_("Invalid mask or memory region."));
10620 }
10621 }
10622 else if (val_as_value != NULL)
10623 val = release_value (val_as_value);
10624
10625 tok = skip_spaces (arg);
10626 end_tok = skip_to_space (tok);
10627
10628 toklen = end_tok - tok;
10629 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10630 {
10631 tok = cond_start = end_tok + 1;
10632 innermost_block_tracker if_tracker;
10633 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10634
10635 /* The watchpoint expression may not be local, but the condition
10636 may still be. E.g.: `watch global if local > 0'. */
10637 cond_exp_valid_block = if_tracker.block ();
10638
10639 cond_end = tok;
10640 }
10641 if (*tok)
10642 error (_("Junk at end of command."));
10643
10644 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10645
10646 /* Save this because create_internal_breakpoint below invalidates
10647 'wp_frame'. */
10648 frame_id watchpoint_frame = get_frame_id (wp_frame);
10649
10650 /* If the expression is "local", then set up a "watchpoint scope"
10651 breakpoint at the point where we've left the scope of the watchpoint
10652 expression. Create the scope breakpoint before the watchpoint, so
10653 that we will encounter it first in bpstat_stop_status. */
10654 if (exp_valid_block != NULL && wp_frame != NULL)
10655 {
10656 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10657
10658 if (frame_id_p (caller_frame_id))
10659 {
10660 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10661 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10662
10663 scope_breakpoint
10664 = create_internal_breakpoint (caller_arch, caller_pc,
10665 bp_watchpoint_scope,
10666 &momentary_breakpoint_ops);
10667
10668 /* create_internal_breakpoint could invalidate WP_FRAME. */
10669 wp_frame = NULL;
10670
10671 scope_breakpoint->enable_state = bp_enabled;
10672
10673 /* Automatically delete the breakpoint when it hits. */
10674 scope_breakpoint->disposition = disp_del;
10675
10676 /* Only break in the proper frame (help with recursion). */
10677 scope_breakpoint->frame_id = caller_frame_id;
10678
10679 /* Set the address at which we will stop. */
10680 scope_breakpoint->loc->gdbarch = caller_arch;
10681 scope_breakpoint->loc->requested_address = caller_pc;
10682 scope_breakpoint->loc->address
10683 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10684 scope_breakpoint->loc->requested_address,
10685 scope_breakpoint->type);
10686 }
10687 }
10688
10689 /* Now set up the breakpoint. We create all watchpoints as hardware
10690 watchpoints here even if hardware watchpoints are turned off, a call
10691 to update_watchpoint later in this function will cause the type to
10692 drop back to bp_watchpoint (software watchpoint) if required. */
10693
10694 if (accessflag == hw_read)
10695 bp_type = bp_read_watchpoint;
10696 else if (accessflag == hw_access)
10697 bp_type = bp_access_watchpoint;
10698 else
10699 bp_type = bp_hardware_watchpoint;
10700
10701 std::unique_ptr<watchpoint> w (new watchpoint ());
10702
10703 if (use_mask)
10704 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10705 &masked_watchpoint_breakpoint_ops);
10706 else
10707 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10708 &watchpoint_breakpoint_ops);
10709 w->thread = thread;
10710 w->disposition = disp_donttouch;
10711 w->pspace = current_program_space;
10712 w->exp = std::move (exp);
10713 w->exp_valid_block = exp_valid_block;
10714 w->cond_exp_valid_block = cond_exp_valid_block;
10715 if (just_location)
10716 {
10717 struct type *t = value_type (val.get ());
10718 CORE_ADDR addr = value_as_address (val.get ());
10719
10720 w->exp_string_reparse
10721 = current_language->la_watch_location_expression (t, addr).release ();
10722
10723 w->exp_string = xstrprintf ("-location %.*s",
10724 (int) (exp_end - exp_start), exp_start);
10725 }
10726 else
10727 w->exp_string = savestring (exp_start, exp_end - exp_start);
10728
10729 if (use_mask)
10730 {
10731 w->hw_wp_mask = mask;
10732 }
10733 else
10734 {
10735 w->val = val;
10736 w->val_bitpos = saved_bitpos;
10737 w->val_bitsize = saved_bitsize;
10738 w->val_valid = 1;
10739 }
10740
10741 if (cond_start)
10742 w->cond_string = savestring (cond_start, cond_end - cond_start);
10743 else
10744 w->cond_string = 0;
10745
10746 if (frame_id_p (watchpoint_frame))
10747 {
10748 w->watchpoint_frame = watchpoint_frame;
10749 w->watchpoint_thread = inferior_ptid;
10750 }
10751 else
10752 {
10753 w->watchpoint_frame = null_frame_id;
10754 w->watchpoint_thread = null_ptid;
10755 }
10756
10757 if (scope_breakpoint != NULL)
10758 {
10759 /* The scope breakpoint is related to the watchpoint. We will
10760 need to act on them together. */
10761 w->related_breakpoint = scope_breakpoint;
10762 scope_breakpoint->related_breakpoint = w.get ();
10763 }
10764
10765 if (!just_location)
10766 value_free_to_mark (mark);
10767
10768 /* Finally update the new watchpoint. This creates the locations
10769 that should be inserted. */
10770 update_watchpoint (w.get (), 1);
10771
10772 install_breakpoint (internal, std::move (w), 1);
10773 }
10774
10775 /* Return count of debug registers needed to watch the given expression.
10776 If the watchpoint cannot be handled in hardware return zero. */
10777
10778 static int
10779 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10780 {
10781 int found_memory_cnt = 0;
10782
10783 /* Did the user specifically forbid us to use hardware watchpoints? */
10784 if (!can_use_hw_watchpoints)
10785 return 0;
10786
10787 gdb_assert (!vals.empty ());
10788 struct value *head = vals[0].get ();
10789
10790 /* Make sure that the value of the expression depends only upon
10791 memory contents, and values computed from them within GDB. If we
10792 find any register references or function calls, we can't use a
10793 hardware watchpoint.
10794
10795 The idea here is that evaluating an expression generates a series
10796 of values, one holding the value of every subexpression. (The
10797 expression a*b+c has five subexpressions: a, b, a*b, c, and
10798 a*b+c.) GDB's values hold almost enough information to establish
10799 the criteria given above --- they identify memory lvalues,
10800 register lvalues, computed values, etcetera. So we can evaluate
10801 the expression, and then scan the chain of values that leaves
10802 behind to decide whether we can detect any possible change to the
10803 expression's final value using only hardware watchpoints.
10804
10805 However, I don't think that the values returned by inferior
10806 function calls are special in any way. So this function may not
10807 notice that an expression involving an inferior function call
10808 can't be watched with hardware watchpoints. FIXME. */
10809 for (const value_ref_ptr &iter : vals)
10810 {
10811 struct value *v = iter.get ();
10812
10813 if (VALUE_LVAL (v) == lval_memory)
10814 {
10815 if (v != head && value_lazy (v))
10816 /* A lazy memory lvalue in the chain is one that GDB never
10817 needed to fetch; we either just used its address (e.g.,
10818 `a' in `a.b') or we never needed it at all (e.g., `a'
10819 in `a,b'). This doesn't apply to HEAD; if that is
10820 lazy then it was not readable, but watch it anyway. */
10821 ;
10822 else
10823 {
10824 /* Ahh, memory we actually used! Check if we can cover
10825 it with hardware watchpoints. */
10826 struct type *vtype = check_typedef (value_type (v));
10827
10828 /* We only watch structs and arrays if user asked for it
10829 explicitly, never if they just happen to appear in a
10830 middle of some value chain. */
10831 if (v == head
10832 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10833 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10834 {
10835 CORE_ADDR vaddr = value_address (v);
10836 int len;
10837 int num_regs;
10838
10839 len = (target_exact_watchpoints
10840 && is_scalar_type_recursive (vtype))?
10841 1 : TYPE_LENGTH (value_type (v));
10842
10843 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10844 if (!num_regs)
10845 return 0;
10846 else
10847 found_memory_cnt += num_regs;
10848 }
10849 }
10850 }
10851 else if (VALUE_LVAL (v) != not_lval
10852 && deprecated_value_modifiable (v) == 0)
10853 return 0; /* These are values from the history (e.g., $1). */
10854 else if (VALUE_LVAL (v) == lval_register)
10855 return 0; /* Cannot watch a register with a HW watchpoint. */
10856 }
10857
10858 /* The expression itself looks suitable for using a hardware
10859 watchpoint, but give the target machine a chance to reject it. */
10860 return found_memory_cnt;
10861 }
10862
10863 void
10864 watch_command_wrapper (const char *arg, int from_tty, int internal)
10865 {
10866 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10867 }
10868
10869 /* A helper function that looks for the "-location" argument and then
10870 calls watch_command_1. */
10871
10872 static void
10873 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10874 {
10875 int just_location = 0;
10876
10877 if (arg
10878 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10879 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10880 just_location = 1;
10881
10882 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10883 }
10884
10885 static void
10886 watch_command (const char *arg, int from_tty)
10887 {
10888 watch_maybe_just_location (arg, hw_write, from_tty);
10889 }
10890
10891 void
10892 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10893 {
10894 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10895 }
10896
10897 static void
10898 rwatch_command (const char *arg, int from_tty)
10899 {
10900 watch_maybe_just_location (arg, hw_read, from_tty);
10901 }
10902
10903 void
10904 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10905 {
10906 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10907 }
10908
10909 static void
10910 awatch_command (const char *arg, int from_tty)
10911 {
10912 watch_maybe_just_location (arg, hw_access, from_tty);
10913 }
10914 \f
10915
10916 /* Data for the FSM that manages the until(location)/advance commands
10917 in infcmd.c. Here because it uses the mechanisms of
10918 breakpoints. */
10919
10920 struct until_break_fsm : public thread_fsm
10921 {
10922 /* The thread that was current when the command was executed. */
10923 int thread;
10924
10925 /* The breakpoint set at the destination location. */
10926 breakpoint_up location_breakpoint;
10927
10928 /* Breakpoint set at the return address in the caller frame. May be
10929 NULL. */
10930 breakpoint_up caller_breakpoint;
10931
10932 until_break_fsm (struct interp *cmd_interp, int thread,
10933 breakpoint_up &&location_breakpoint,
10934 breakpoint_up &&caller_breakpoint)
10935 : thread_fsm (cmd_interp),
10936 thread (thread),
10937 location_breakpoint (std::move (location_breakpoint)),
10938 caller_breakpoint (std::move (caller_breakpoint))
10939 {
10940 }
10941
10942 void clean_up (struct thread_info *thread) override;
10943 bool should_stop (struct thread_info *thread) override;
10944 enum async_reply_reason do_async_reply_reason () override;
10945 };
10946
10947 /* Implementation of the 'should_stop' FSM method for the
10948 until(location)/advance commands. */
10949
10950 bool
10951 until_break_fsm::should_stop (struct thread_info *tp)
10952 {
10953 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10954 location_breakpoint.get ()) != NULL
10955 || (caller_breakpoint != NULL
10956 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10957 caller_breakpoint.get ()) != NULL))
10958 set_finished ();
10959
10960 return true;
10961 }
10962
10963 /* Implementation of the 'clean_up' FSM method for the
10964 until(location)/advance commands. */
10965
10966 void
10967 until_break_fsm::clean_up (struct thread_info *)
10968 {
10969 /* Clean up our temporary breakpoints. */
10970 location_breakpoint.reset ();
10971 caller_breakpoint.reset ();
10972 delete_longjmp_breakpoint (thread);
10973 }
10974
10975 /* Implementation of the 'async_reply_reason' FSM method for the
10976 until(location)/advance commands. */
10977
10978 enum async_reply_reason
10979 until_break_fsm::do_async_reply_reason ()
10980 {
10981 return EXEC_ASYNC_LOCATION_REACHED;
10982 }
10983
10984 void
10985 until_break_command (const char *arg, int from_tty, int anywhere)
10986 {
10987 struct frame_info *frame;
10988 struct gdbarch *frame_gdbarch;
10989 struct frame_id stack_frame_id;
10990 struct frame_id caller_frame_id;
10991 int thread;
10992 struct thread_info *tp;
10993
10994 clear_proceed_status (0);
10995
10996 /* Set a breakpoint where the user wants it and at return from
10997 this function. */
10998
10999 event_location_up location = string_to_event_location (&arg, current_language);
11000
11001 std::vector<symtab_and_line> sals
11002 = (last_displayed_sal_is_valid ()
11003 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11004 get_last_displayed_symtab (),
11005 get_last_displayed_line ())
11006 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11007 NULL, NULL, 0));
11008
11009 if (sals.size () != 1)
11010 error (_("Couldn't get information on specified line."));
11011
11012 symtab_and_line &sal = sals[0];
11013
11014 if (*arg)
11015 error (_("Junk at end of arguments."));
11016
11017 resolve_sal_pc (&sal);
11018
11019 tp = inferior_thread ();
11020 thread = tp->global_num;
11021
11022 /* Note linespec handling above invalidates the frame chain.
11023 Installing a breakpoint also invalidates the frame chain (as it
11024 may need to switch threads), so do any frame handling before
11025 that. */
11026
11027 frame = get_selected_frame (NULL);
11028 frame_gdbarch = get_frame_arch (frame);
11029 stack_frame_id = get_stack_frame_id (frame);
11030 caller_frame_id = frame_unwind_caller_id (frame);
11031
11032 /* Keep within the current frame, or in frames called by the current
11033 one. */
11034
11035 breakpoint_up caller_breakpoint;
11036
11037 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11038
11039 if (frame_id_p (caller_frame_id))
11040 {
11041 struct symtab_and_line sal2;
11042 struct gdbarch *caller_gdbarch;
11043
11044 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11045 sal2.pc = frame_unwind_caller_pc (frame);
11046 caller_gdbarch = frame_unwind_caller_arch (frame);
11047 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11048 sal2,
11049 caller_frame_id,
11050 bp_until);
11051
11052 set_longjmp_breakpoint (tp, caller_frame_id);
11053 lj_deleter.emplace (thread);
11054 }
11055
11056 /* set_momentary_breakpoint could invalidate FRAME. */
11057 frame = NULL;
11058
11059 breakpoint_up location_breakpoint;
11060 if (anywhere)
11061 /* If the user told us to continue until a specified location,
11062 we don't specify a frame at which we need to stop. */
11063 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11064 null_frame_id, bp_until);
11065 else
11066 /* Otherwise, specify the selected frame, because we want to stop
11067 only at the very same frame. */
11068 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11069 stack_frame_id, bp_until);
11070
11071 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11072 std::move (location_breakpoint),
11073 std::move (caller_breakpoint));
11074
11075 if (lj_deleter)
11076 lj_deleter->release ();
11077
11078 proceed (-1, GDB_SIGNAL_DEFAULT);
11079 }
11080
11081 /* This function attempts to parse an optional "if <cond>" clause
11082 from the arg string. If one is not found, it returns NULL.
11083
11084 Else, it returns a pointer to the condition string. (It does not
11085 attempt to evaluate the string against a particular block.) And,
11086 it updates arg to point to the first character following the parsed
11087 if clause in the arg string. */
11088
11089 const char *
11090 ep_parse_optional_if_clause (const char **arg)
11091 {
11092 const char *cond_string;
11093
11094 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11095 return NULL;
11096
11097 /* Skip the "if" keyword. */
11098 (*arg) += 2;
11099
11100 /* Skip any extra leading whitespace, and record the start of the
11101 condition string. */
11102 *arg = skip_spaces (*arg);
11103 cond_string = *arg;
11104
11105 /* Assume that the condition occupies the remainder of the arg
11106 string. */
11107 (*arg) += strlen (cond_string);
11108
11109 return cond_string;
11110 }
11111
11112 /* Commands to deal with catching events, such as signals, exceptions,
11113 process start/exit, etc. */
11114
11115 typedef enum
11116 {
11117 catch_fork_temporary, catch_vfork_temporary,
11118 catch_fork_permanent, catch_vfork_permanent
11119 }
11120 catch_fork_kind;
11121
11122 static void
11123 catch_fork_command_1 (const char *arg, int from_tty,
11124 struct cmd_list_element *command)
11125 {
11126 struct gdbarch *gdbarch = get_current_arch ();
11127 const char *cond_string = NULL;
11128 catch_fork_kind fork_kind;
11129 int tempflag;
11130
11131 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11132 tempflag = (fork_kind == catch_fork_temporary
11133 || fork_kind == catch_vfork_temporary);
11134
11135 if (!arg)
11136 arg = "";
11137 arg = skip_spaces (arg);
11138
11139 /* The allowed syntax is:
11140 catch [v]fork
11141 catch [v]fork if <cond>
11142
11143 First, check if there's an if clause. */
11144 cond_string = ep_parse_optional_if_clause (&arg);
11145
11146 if ((*arg != '\0') && !isspace (*arg))
11147 error (_("Junk at end of arguments."));
11148
11149 /* If this target supports it, create a fork or vfork catchpoint
11150 and enable reporting of such events. */
11151 switch (fork_kind)
11152 {
11153 case catch_fork_temporary:
11154 case catch_fork_permanent:
11155 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11156 &catch_fork_breakpoint_ops);
11157 break;
11158 case catch_vfork_temporary:
11159 case catch_vfork_permanent:
11160 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11161 &catch_vfork_breakpoint_ops);
11162 break;
11163 default:
11164 error (_("unsupported or unknown fork kind; cannot catch it"));
11165 break;
11166 }
11167 }
11168
11169 static void
11170 catch_exec_command_1 (const char *arg, int from_tty,
11171 struct cmd_list_element *command)
11172 {
11173 struct gdbarch *gdbarch = get_current_arch ();
11174 int tempflag;
11175 const char *cond_string = NULL;
11176
11177 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11178
11179 if (!arg)
11180 arg = "";
11181 arg = skip_spaces (arg);
11182
11183 /* The allowed syntax is:
11184 catch exec
11185 catch exec if <cond>
11186
11187 First, check if there's an if clause. */
11188 cond_string = ep_parse_optional_if_clause (&arg);
11189
11190 if ((*arg != '\0') && !isspace (*arg))
11191 error (_("Junk at end of arguments."));
11192
11193 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11194 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11195 &catch_exec_breakpoint_ops);
11196 c->exec_pathname = NULL;
11197
11198 install_breakpoint (0, std::move (c), 1);
11199 }
11200
11201 void
11202 init_ada_exception_breakpoint (struct breakpoint *b,
11203 struct gdbarch *gdbarch,
11204 struct symtab_and_line sal,
11205 const char *addr_string,
11206 const struct breakpoint_ops *ops,
11207 int tempflag,
11208 int enabled,
11209 int from_tty)
11210 {
11211 if (from_tty)
11212 {
11213 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11214 if (!loc_gdbarch)
11215 loc_gdbarch = gdbarch;
11216
11217 describe_other_breakpoints (loc_gdbarch,
11218 sal.pspace, sal.pc, sal.section, -1);
11219 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11220 version for exception catchpoints, because two catchpoints
11221 used for different exception names will use the same address.
11222 In this case, a "breakpoint ... also set at..." warning is
11223 unproductive. Besides, the warning phrasing is also a bit
11224 inappropriate, we should use the word catchpoint, and tell
11225 the user what type of catchpoint it is. The above is good
11226 enough for now, though. */
11227 }
11228
11229 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11230
11231 b->enable_state = enabled ? bp_enabled : bp_disabled;
11232 b->disposition = tempflag ? disp_del : disp_donttouch;
11233 b->location = string_to_event_location (&addr_string,
11234 language_def (language_ada));
11235 b->language = language_ada;
11236 }
11237
11238 static void
11239 catch_command (const char *arg, int from_tty)
11240 {
11241 error (_("Catch requires an event name."));
11242 }
11243 \f
11244
11245 static void
11246 tcatch_command (const char *arg, int from_tty)
11247 {
11248 error (_("Catch requires an event name."));
11249 }
11250
11251 /* Compare two breakpoints and return a strcmp-like result. */
11252
11253 static int
11254 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11255 {
11256 uintptr_t ua = (uintptr_t) a;
11257 uintptr_t ub = (uintptr_t) b;
11258
11259 if (a->number < b->number)
11260 return -1;
11261 else if (a->number > b->number)
11262 return 1;
11263
11264 /* Now sort by address, in case we see, e..g, two breakpoints with
11265 the number 0. */
11266 if (ua < ub)
11267 return -1;
11268 return ua > ub ? 1 : 0;
11269 }
11270
11271 /* Delete breakpoints by address or line. */
11272
11273 static void
11274 clear_command (const char *arg, int from_tty)
11275 {
11276 struct breakpoint *b;
11277 int default_match;
11278
11279 std::vector<symtab_and_line> decoded_sals;
11280 symtab_and_line last_sal;
11281 gdb::array_view<symtab_and_line> sals;
11282 if (arg)
11283 {
11284 decoded_sals
11285 = decode_line_with_current_source (arg,
11286 (DECODE_LINE_FUNFIRSTLINE
11287 | DECODE_LINE_LIST_MODE));
11288 default_match = 0;
11289 sals = decoded_sals;
11290 }
11291 else
11292 {
11293 /* Set sal's line, symtab, pc, and pspace to the values
11294 corresponding to the last call to print_frame_info. If the
11295 codepoint is not valid, this will set all the fields to 0. */
11296 last_sal = get_last_displayed_sal ();
11297 if (last_sal.symtab == 0)
11298 error (_("No source file specified."));
11299
11300 default_match = 1;
11301 sals = last_sal;
11302 }
11303
11304 /* We don't call resolve_sal_pc here. That's not as bad as it
11305 seems, because all existing breakpoints typically have both
11306 file/line and pc set. So, if clear is given file/line, we can
11307 match this to existing breakpoint without obtaining pc at all.
11308
11309 We only support clearing given the address explicitly
11310 present in breakpoint table. Say, we've set breakpoint
11311 at file:line. There were several PC values for that file:line,
11312 due to optimization, all in one block.
11313
11314 We've picked one PC value. If "clear" is issued with another
11315 PC corresponding to the same file:line, the breakpoint won't
11316 be cleared. We probably can still clear the breakpoint, but
11317 since the other PC value is never presented to user, user
11318 can only find it by guessing, and it does not seem important
11319 to support that. */
11320
11321 /* For each line spec given, delete bps which correspond to it. Do
11322 it in two passes, solely to preserve the current behavior that
11323 from_tty is forced true if we delete more than one
11324 breakpoint. */
11325
11326 std::vector<struct breakpoint *> found;
11327 for (const auto &sal : sals)
11328 {
11329 const char *sal_fullname;
11330
11331 /* If exact pc given, clear bpts at that pc.
11332 If line given (pc == 0), clear all bpts on specified line.
11333 If defaulting, clear all bpts on default line
11334 or at default pc.
11335
11336 defaulting sal.pc != 0 tests to do
11337
11338 0 1 pc
11339 1 1 pc _and_ line
11340 0 0 line
11341 1 0 <can't happen> */
11342
11343 sal_fullname = (sal.symtab == NULL
11344 ? NULL : symtab_to_fullname (sal.symtab));
11345
11346 /* Find all matching breakpoints and add them to 'found'. */
11347 ALL_BREAKPOINTS (b)
11348 {
11349 int match = 0;
11350 /* Are we going to delete b? */
11351 if (b->type != bp_none && !is_watchpoint (b))
11352 {
11353 struct bp_location *loc = b->loc;
11354 for (; loc; loc = loc->next)
11355 {
11356 /* If the user specified file:line, don't allow a PC
11357 match. This matches historical gdb behavior. */
11358 int pc_match = (!sal.explicit_line
11359 && sal.pc
11360 && (loc->pspace == sal.pspace)
11361 && (loc->address == sal.pc)
11362 && (!section_is_overlay (loc->section)
11363 || loc->section == sal.section));
11364 int line_match = 0;
11365
11366 if ((default_match || sal.explicit_line)
11367 && loc->symtab != NULL
11368 && sal_fullname != NULL
11369 && sal.pspace == loc->pspace
11370 && loc->line_number == sal.line
11371 && filename_cmp (symtab_to_fullname (loc->symtab),
11372 sal_fullname) == 0)
11373 line_match = 1;
11374
11375 if (pc_match || line_match)
11376 {
11377 match = 1;
11378 break;
11379 }
11380 }
11381 }
11382
11383 if (match)
11384 found.push_back (b);
11385 }
11386 }
11387
11388 /* Now go thru the 'found' chain and delete them. */
11389 if (found.empty ())
11390 {
11391 if (arg)
11392 error (_("No breakpoint at %s."), arg);
11393 else
11394 error (_("No breakpoint at this line."));
11395 }
11396
11397 /* Remove duplicates from the vec. */
11398 std::sort (found.begin (), found.end (),
11399 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11400 {
11401 return compare_breakpoints (bp_a, bp_b) < 0;
11402 });
11403 found.erase (std::unique (found.begin (), found.end (),
11404 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11405 {
11406 return compare_breakpoints (bp_a, bp_b) == 0;
11407 }),
11408 found.end ());
11409
11410 if (found.size () > 1)
11411 from_tty = 1; /* Always report if deleted more than one. */
11412 if (from_tty)
11413 {
11414 if (found.size () == 1)
11415 printf_unfiltered (_("Deleted breakpoint "));
11416 else
11417 printf_unfiltered (_("Deleted breakpoints "));
11418 }
11419
11420 for (breakpoint *iter : found)
11421 {
11422 if (from_tty)
11423 printf_unfiltered ("%d ", iter->number);
11424 delete_breakpoint (iter);
11425 }
11426 if (from_tty)
11427 putchar_unfiltered ('\n');
11428 }
11429 \f
11430 /* Delete breakpoint in BS if they are `delete' breakpoints and
11431 all breakpoints that are marked for deletion, whether hit or not.
11432 This is called after any breakpoint is hit, or after errors. */
11433
11434 void
11435 breakpoint_auto_delete (bpstat bs)
11436 {
11437 struct breakpoint *b, *b_tmp;
11438
11439 for (; bs; bs = bs->next)
11440 if (bs->breakpoint_at
11441 && bs->breakpoint_at->disposition == disp_del
11442 && bs->stop)
11443 delete_breakpoint (bs->breakpoint_at);
11444
11445 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11446 {
11447 if (b->disposition == disp_del_at_next_stop)
11448 delete_breakpoint (b);
11449 }
11450 }
11451
11452 /* A comparison function for bp_location AP and BP being interfaced to
11453 qsort. Sort elements primarily by their ADDRESS (no matter what
11454 does breakpoint_address_is_meaningful say for its OWNER),
11455 secondarily by ordering first permanent elements and
11456 terciarily just ensuring the array is sorted stable way despite
11457 qsort being an unstable algorithm. */
11458
11459 static int
11460 bp_locations_compare (const void *ap, const void *bp)
11461 {
11462 const struct bp_location *a = *(const struct bp_location **) ap;
11463 const struct bp_location *b = *(const struct bp_location **) bp;
11464
11465 if (a->address != b->address)
11466 return (a->address > b->address) - (a->address < b->address);
11467
11468 /* Sort locations at the same address by their pspace number, keeping
11469 locations of the same inferior (in a multi-inferior environment)
11470 grouped. */
11471
11472 if (a->pspace->num != b->pspace->num)
11473 return ((a->pspace->num > b->pspace->num)
11474 - (a->pspace->num < b->pspace->num));
11475
11476 /* Sort permanent breakpoints first. */
11477 if (a->permanent != b->permanent)
11478 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11479
11480 /* Make the internal GDB representation stable across GDB runs
11481 where A and B memory inside GDB can differ. Breakpoint locations of
11482 the same type at the same address can be sorted in arbitrary order. */
11483
11484 if (a->owner->number != b->owner->number)
11485 return ((a->owner->number > b->owner->number)
11486 - (a->owner->number < b->owner->number));
11487
11488 return (a > b) - (a < b);
11489 }
11490
11491 /* Set bp_locations_placed_address_before_address_max and
11492 bp_locations_shadow_len_after_address_max according to the current
11493 content of the bp_locations array. */
11494
11495 static void
11496 bp_locations_target_extensions_update (void)
11497 {
11498 struct bp_location *bl, **blp_tmp;
11499
11500 bp_locations_placed_address_before_address_max = 0;
11501 bp_locations_shadow_len_after_address_max = 0;
11502
11503 ALL_BP_LOCATIONS (bl, blp_tmp)
11504 {
11505 CORE_ADDR start, end, addr;
11506
11507 if (!bp_location_has_shadow (bl))
11508 continue;
11509
11510 start = bl->target_info.placed_address;
11511 end = start + bl->target_info.shadow_len;
11512
11513 gdb_assert (bl->address >= start);
11514 addr = bl->address - start;
11515 if (addr > bp_locations_placed_address_before_address_max)
11516 bp_locations_placed_address_before_address_max = addr;
11517
11518 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11519
11520 gdb_assert (bl->address < end);
11521 addr = end - bl->address;
11522 if (addr > bp_locations_shadow_len_after_address_max)
11523 bp_locations_shadow_len_after_address_max = addr;
11524 }
11525 }
11526
11527 /* Download tracepoint locations if they haven't been. */
11528
11529 static void
11530 download_tracepoint_locations (void)
11531 {
11532 struct breakpoint *b;
11533 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11534
11535 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11536
11537 ALL_TRACEPOINTS (b)
11538 {
11539 struct bp_location *bl;
11540 struct tracepoint *t;
11541 int bp_location_downloaded = 0;
11542
11543 if ((b->type == bp_fast_tracepoint
11544 ? !may_insert_fast_tracepoints
11545 : !may_insert_tracepoints))
11546 continue;
11547
11548 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11549 {
11550 if (target_can_download_tracepoint ())
11551 can_download_tracepoint = TRIBOOL_TRUE;
11552 else
11553 can_download_tracepoint = TRIBOOL_FALSE;
11554 }
11555
11556 if (can_download_tracepoint == TRIBOOL_FALSE)
11557 break;
11558
11559 for (bl = b->loc; bl; bl = bl->next)
11560 {
11561 /* In tracepoint, locations are _never_ duplicated, so
11562 should_be_inserted is equivalent to
11563 unduplicated_should_be_inserted. */
11564 if (!should_be_inserted (bl) || bl->inserted)
11565 continue;
11566
11567 switch_to_program_space_and_thread (bl->pspace);
11568
11569 target_download_tracepoint (bl);
11570
11571 bl->inserted = 1;
11572 bp_location_downloaded = 1;
11573 }
11574 t = (struct tracepoint *) b;
11575 t->number_on_target = b->number;
11576 if (bp_location_downloaded)
11577 gdb::observers::breakpoint_modified.notify (b);
11578 }
11579 }
11580
11581 /* Swap the insertion/duplication state between two locations. */
11582
11583 static void
11584 swap_insertion (struct bp_location *left, struct bp_location *right)
11585 {
11586 const int left_inserted = left->inserted;
11587 const int left_duplicate = left->duplicate;
11588 const int left_needs_update = left->needs_update;
11589 const struct bp_target_info left_target_info = left->target_info;
11590
11591 /* Locations of tracepoints can never be duplicated. */
11592 if (is_tracepoint (left->owner))
11593 gdb_assert (!left->duplicate);
11594 if (is_tracepoint (right->owner))
11595 gdb_assert (!right->duplicate);
11596
11597 left->inserted = right->inserted;
11598 left->duplicate = right->duplicate;
11599 left->needs_update = right->needs_update;
11600 left->target_info = right->target_info;
11601 right->inserted = left_inserted;
11602 right->duplicate = left_duplicate;
11603 right->needs_update = left_needs_update;
11604 right->target_info = left_target_info;
11605 }
11606
11607 /* Force the re-insertion of the locations at ADDRESS. This is called
11608 once a new/deleted/modified duplicate location is found and we are evaluating
11609 conditions on the target's side. Such conditions need to be updated on
11610 the target. */
11611
11612 static void
11613 force_breakpoint_reinsertion (struct bp_location *bl)
11614 {
11615 struct bp_location **locp = NULL, **loc2p;
11616 struct bp_location *loc;
11617 CORE_ADDR address = 0;
11618 int pspace_num;
11619
11620 address = bl->address;
11621 pspace_num = bl->pspace->num;
11622
11623 /* This is only meaningful if the target is
11624 evaluating conditions and if the user has
11625 opted for condition evaluation on the target's
11626 side. */
11627 if (gdb_evaluates_breakpoint_condition_p ()
11628 || !target_supports_evaluation_of_breakpoint_conditions ())
11629 return;
11630
11631 /* Flag all breakpoint locations with this address and
11632 the same program space as the location
11633 as "its condition has changed". We need to
11634 update the conditions on the target's side. */
11635 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11636 {
11637 loc = *loc2p;
11638
11639 if (!is_breakpoint (loc->owner)
11640 || pspace_num != loc->pspace->num)
11641 continue;
11642
11643 /* Flag the location appropriately. We use a different state to
11644 let everyone know that we already updated the set of locations
11645 with addr bl->address and program space bl->pspace. This is so
11646 we don't have to keep calling these functions just to mark locations
11647 that have already been marked. */
11648 loc->condition_changed = condition_updated;
11649
11650 /* Free the agent expression bytecode as well. We will compute
11651 it later on. */
11652 loc->cond_bytecode.reset ();
11653 }
11654 }
11655 /* Called whether new breakpoints are created, or existing breakpoints
11656 deleted, to update the global location list and recompute which
11657 locations are duplicate of which.
11658
11659 The INSERT_MODE flag determines whether locations may not, may, or
11660 shall be inserted now. See 'enum ugll_insert_mode' for more
11661 info. */
11662
11663 static void
11664 update_global_location_list (enum ugll_insert_mode insert_mode)
11665 {
11666 struct breakpoint *b;
11667 struct bp_location **locp, *loc;
11668 /* Last breakpoint location address that was marked for update. */
11669 CORE_ADDR last_addr = 0;
11670 /* Last breakpoint location program space that was marked for update. */
11671 int last_pspace_num = -1;
11672
11673 /* Used in the duplicates detection below. When iterating over all
11674 bp_locations, points to the first bp_location of a given address.
11675 Breakpoints and watchpoints of different types are never
11676 duplicates of each other. Keep one pointer for each type of
11677 breakpoint/watchpoint, so we only need to loop over all locations
11678 once. */
11679 struct bp_location *bp_loc_first; /* breakpoint */
11680 struct bp_location *wp_loc_first; /* hardware watchpoint */
11681 struct bp_location *awp_loc_first; /* access watchpoint */
11682 struct bp_location *rwp_loc_first; /* read watchpoint */
11683
11684 /* Saved former bp_locations array which we compare against the newly
11685 built bp_locations from the current state of ALL_BREAKPOINTS. */
11686 struct bp_location **old_locp;
11687 unsigned old_locations_count;
11688 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11689
11690 old_locations_count = bp_locations_count;
11691 bp_locations = NULL;
11692 bp_locations_count = 0;
11693
11694 ALL_BREAKPOINTS (b)
11695 for (loc = b->loc; loc; loc = loc->next)
11696 bp_locations_count++;
11697
11698 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11699 locp = bp_locations;
11700 ALL_BREAKPOINTS (b)
11701 for (loc = b->loc; loc; loc = loc->next)
11702 *locp++ = loc;
11703 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11704 bp_locations_compare);
11705
11706 bp_locations_target_extensions_update ();
11707
11708 /* Identify bp_location instances that are no longer present in the
11709 new list, and therefore should be freed. Note that it's not
11710 necessary that those locations should be removed from inferior --
11711 if there's another location at the same address (previously
11712 marked as duplicate), we don't need to remove/insert the
11713 location.
11714
11715 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11716 and former bp_location array state respectively. */
11717
11718 locp = bp_locations;
11719 for (old_locp = old_locations.get ();
11720 old_locp < old_locations.get () + old_locations_count;
11721 old_locp++)
11722 {
11723 struct bp_location *old_loc = *old_locp;
11724 struct bp_location **loc2p;
11725
11726 /* Tells if 'old_loc' is found among the new locations. If
11727 not, we have to free it. */
11728 int found_object = 0;
11729 /* Tells if the location should remain inserted in the target. */
11730 int keep_in_target = 0;
11731 int removed = 0;
11732
11733 /* Skip LOCP entries which will definitely never be needed.
11734 Stop either at or being the one matching OLD_LOC. */
11735 while (locp < bp_locations + bp_locations_count
11736 && (*locp)->address < old_loc->address)
11737 locp++;
11738
11739 for (loc2p = locp;
11740 (loc2p < bp_locations + bp_locations_count
11741 && (*loc2p)->address == old_loc->address);
11742 loc2p++)
11743 {
11744 /* Check if this is a new/duplicated location or a duplicated
11745 location that had its condition modified. If so, we want to send
11746 its condition to the target if evaluation of conditions is taking
11747 place there. */
11748 if ((*loc2p)->condition_changed == condition_modified
11749 && (last_addr != old_loc->address
11750 || last_pspace_num != old_loc->pspace->num))
11751 {
11752 force_breakpoint_reinsertion (*loc2p);
11753 last_pspace_num = old_loc->pspace->num;
11754 }
11755
11756 if (*loc2p == old_loc)
11757 found_object = 1;
11758 }
11759
11760 /* We have already handled this address, update it so that we don't
11761 have to go through updates again. */
11762 last_addr = old_loc->address;
11763
11764 /* Target-side condition evaluation: Handle deleted locations. */
11765 if (!found_object)
11766 force_breakpoint_reinsertion (old_loc);
11767
11768 /* If this location is no longer present, and inserted, look if
11769 there's maybe a new location at the same address. If so,
11770 mark that one inserted, and don't remove this one. This is
11771 needed so that we don't have a time window where a breakpoint
11772 at certain location is not inserted. */
11773
11774 if (old_loc->inserted)
11775 {
11776 /* If the location is inserted now, we might have to remove
11777 it. */
11778
11779 if (found_object && should_be_inserted (old_loc))
11780 {
11781 /* The location is still present in the location list,
11782 and still should be inserted. Don't do anything. */
11783 keep_in_target = 1;
11784 }
11785 else
11786 {
11787 /* This location still exists, but it won't be kept in the
11788 target since it may have been disabled. We proceed to
11789 remove its target-side condition. */
11790
11791 /* The location is either no longer present, or got
11792 disabled. See if there's another location at the
11793 same address, in which case we don't need to remove
11794 this one from the target. */
11795
11796 /* OLD_LOC comes from existing struct breakpoint. */
11797 if (breakpoint_address_is_meaningful (old_loc->owner))
11798 {
11799 for (loc2p = locp;
11800 (loc2p < bp_locations + bp_locations_count
11801 && (*loc2p)->address == old_loc->address);
11802 loc2p++)
11803 {
11804 struct bp_location *loc2 = *loc2p;
11805
11806 if (breakpoint_locations_match (loc2, old_loc))
11807 {
11808 /* Read watchpoint locations are switched to
11809 access watchpoints, if the former are not
11810 supported, but the latter are. */
11811 if (is_hardware_watchpoint (old_loc->owner))
11812 {
11813 gdb_assert (is_hardware_watchpoint (loc2->owner));
11814 loc2->watchpoint_type = old_loc->watchpoint_type;
11815 }
11816
11817 /* loc2 is a duplicated location. We need to check
11818 if it should be inserted in case it will be
11819 unduplicated. */
11820 if (loc2 != old_loc
11821 && unduplicated_should_be_inserted (loc2))
11822 {
11823 swap_insertion (old_loc, loc2);
11824 keep_in_target = 1;
11825 break;
11826 }
11827 }
11828 }
11829 }
11830 }
11831
11832 if (!keep_in_target)
11833 {
11834 if (remove_breakpoint (old_loc))
11835 {
11836 /* This is just about all we can do. We could keep
11837 this location on the global list, and try to
11838 remove it next time, but there's no particular
11839 reason why we will succeed next time.
11840
11841 Note that at this point, old_loc->owner is still
11842 valid, as delete_breakpoint frees the breakpoint
11843 only after calling us. */
11844 printf_filtered (_("warning: Error removing "
11845 "breakpoint %d\n"),
11846 old_loc->owner->number);
11847 }
11848 removed = 1;
11849 }
11850 }
11851
11852 if (!found_object)
11853 {
11854 if (removed && target_is_non_stop_p ()
11855 && need_moribund_for_location_type (old_loc))
11856 {
11857 /* This location was removed from the target. In
11858 non-stop mode, a race condition is possible where
11859 we've removed a breakpoint, but stop events for that
11860 breakpoint are already queued and will arrive later.
11861 We apply an heuristic to be able to distinguish such
11862 SIGTRAPs from other random SIGTRAPs: we keep this
11863 breakpoint location for a bit, and will retire it
11864 after we see some number of events. The theory here
11865 is that reporting of events should, "on the average",
11866 be fair, so after a while we'll see events from all
11867 threads that have anything of interest, and no longer
11868 need to keep this breakpoint location around. We
11869 don't hold locations forever so to reduce chances of
11870 mistaking a non-breakpoint SIGTRAP for a breakpoint
11871 SIGTRAP.
11872
11873 The heuristic failing can be disastrous on
11874 decr_pc_after_break targets.
11875
11876 On decr_pc_after_break targets, like e.g., x86-linux,
11877 if we fail to recognize a late breakpoint SIGTRAP,
11878 because events_till_retirement has reached 0 too
11879 soon, we'll fail to do the PC adjustment, and report
11880 a random SIGTRAP to the user. When the user resumes
11881 the inferior, it will most likely immediately crash
11882 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11883 corrupted, because of being resumed e.g., in the
11884 middle of a multi-byte instruction, or skipped a
11885 one-byte instruction. This was actually seen happen
11886 on native x86-linux, and should be less rare on
11887 targets that do not support new thread events, like
11888 remote, due to the heuristic depending on
11889 thread_count.
11890
11891 Mistaking a random SIGTRAP for a breakpoint trap
11892 causes similar symptoms (PC adjustment applied when
11893 it shouldn't), but then again, playing with SIGTRAPs
11894 behind the debugger's back is asking for trouble.
11895
11896 Since hardware watchpoint traps are always
11897 distinguishable from other traps, so we don't need to
11898 apply keep hardware watchpoint moribund locations
11899 around. We simply always ignore hardware watchpoint
11900 traps we can no longer explain. */
11901
11902 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11903 old_loc->owner = NULL;
11904
11905 moribund_locations.push_back (old_loc);
11906 }
11907 else
11908 {
11909 old_loc->owner = NULL;
11910 decref_bp_location (&old_loc);
11911 }
11912 }
11913 }
11914
11915 /* Rescan breakpoints at the same address and section, marking the
11916 first one as "first" and any others as "duplicates". This is so
11917 that the bpt instruction is only inserted once. If we have a
11918 permanent breakpoint at the same place as BPT, make that one the
11919 official one, and the rest as duplicates. Permanent breakpoints
11920 are sorted first for the same address.
11921
11922 Do the same for hardware watchpoints, but also considering the
11923 watchpoint's type (regular/access/read) and length. */
11924
11925 bp_loc_first = NULL;
11926 wp_loc_first = NULL;
11927 awp_loc_first = NULL;
11928 rwp_loc_first = NULL;
11929 ALL_BP_LOCATIONS (loc, locp)
11930 {
11931 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11932 non-NULL. */
11933 struct bp_location **loc_first_p;
11934 b = loc->owner;
11935
11936 if (!unduplicated_should_be_inserted (loc)
11937 || !breakpoint_address_is_meaningful (b)
11938 /* Don't detect duplicate for tracepoint locations because they are
11939 never duplicated. See the comments in field `duplicate' of
11940 `struct bp_location'. */
11941 || is_tracepoint (b))
11942 {
11943 /* Clear the condition modification flag. */
11944 loc->condition_changed = condition_unchanged;
11945 continue;
11946 }
11947
11948 if (b->type == bp_hardware_watchpoint)
11949 loc_first_p = &wp_loc_first;
11950 else if (b->type == bp_read_watchpoint)
11951 loc_first_p = &rwp_loc_first;
11952 else if (b->type == bp_access_watchpoint)
11953 loc_first_p = &awp_loc_first;
11954 else
11955 loc_first_p = &bp_loc_first;
11956
11957 if (*loc_first_p == NULL
11958 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11959 || !breakpoint_locations_match (loc, *loc_first_p))
11960 {
11961 *loc_first_p = loc;
11962 loc->duplicate = 0;
11963
11964 if (is_breakpoint (loc->owner) && loc->condition_changed)
11965 {
11966 loc->needs_update = 1;
11967 /* Clear the condition modification flag. */
11968 loc->condition_changed = condition_unchanged;
11969 }
11970 continue;
11971 }
11972
11973
11974 /* This and the above ensure the invariant that the first location
11975 is not duplicated, and is the inserted one.
11976 All following are marked as duplicated, and are not inserted. */
11977 if (loc->inserted)
11978 swap_insertion (loc, *loc_first_p);
11979 loc->duplicate = 1;
11980
11981 /* Clear the condition modification flag. */
11982 loc->condition_changed = condition_unchanged;
11983 }
11984
11985 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11986 {
11987 if (insert_mode != UGLL_DONT_INSERT)
11988 insert_breakpoint_locations ();
11989 else
11990 {
11991 /* Even though the caller told us to not insert new
11992 locations, we may still need to update conditions on the
11993 target's side of breakpoints that were already inserted
11994 if the target is evaluating breakpoint conditions. We
11995 only update conditions for locations that are marked
11996 "needs_update". */
11997 update_inserted_breakpoint_locations ();
11998 }
11999 }
12000
12001 if (insert_mode != UGLL_DONT_INSERT)
12002 download_tracepoint_locations ();
12003 }
12004
12005 void
12006 breakpoint_retire_moribund (void)
12007 {
12008 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12009 {
12010 struct bp_location *loc = moribund_locations[ix];
12011 if (--(loc->events_till_retirement) == 0)
12012 {
12013 decref_bp_location (&loc);
12014 unordered_remove (moribund_locations, ix);
12015 --ix;
12016 }
12017 }
12018 }
12019
12020 static void
12021 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12022 {
12023
12024 try
12025 {
12026 update_global_location_list (insert_mode);
12027 }
12028 catch (const gdb_exception_error &e)
12029 {
12030 }
12031 }
12032
12033 /* Clear BKP from a BPS. */
12034
12035 static void
12036 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12037 {
12038 bpstat bs;
12039
12040 for (bs = bps; bs; bs = bs->next)
12041 if (bs->breakpoint_at == bpt)
12042 {
12043 bs->breakpoint_at = NULL;
12044 bs->old_val = NULL;
12045 /* bs->commands will be freed later. */
12046 }
12047 }
12048
12049 /* Callback for iterate_over_threads. */
12050 static int
12051 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12052 {
12053 struct breakpoint *bpt = (struct breakpoint *) data;
12054
12055 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12056 return 0;
12057 }
12058
12059 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12060 callbacks. */
12061
12062 static void
12063 say_where (struct breakpoint *b)
12064 {
12065 struct value_print_options opts;
12066
12067 get_user_print_options (&opts);
12068
12069 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12070 single string. */
12071 if (b->loc == NULL)
12072 {
12073 /* For pending locations, the output differs slightly based
12074 on b->extra_string. If this is non-NULL, it contains either
12075 a condition or dprintf arguments. */
12076 if (b->extra_string == NULL)
12077 {
12078 printf_filtered (_(" (%s) pending."),
12079 event_location_to_string (b->location.get ()));
12080 }
12081 else if (b->type == bp_dprintf)
12082 {
12083 printf_filtered (_(" (%s,%s) pending."),
12084 event_location_to_string (b->location.get ()),
12085 b->extra_string);
12086 }
12087 else
12088 {
12089 printf_filtered (_(" (%s %s) pending."),
12090 event_location_to_string (b->location.get ()),
12091 b->extra_string);
12092 }
12093 }
12094 else
12095 {
12096 if (opts.addressprint || b->loc->symtab == NULL)
12097 {
12098 printf_filtered (" at ");
12099 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12100 address_style.style (),
12101 gdb_stdout);
12102 }
12103 if (b->loc->symtab != NULL)
12104 {
12105 /* If there is a single location, we can print the location
12106 more nicely. */
12107 if (b->loc->next == NULL)
12108 {
12109 puts_filtered (": file ");
12110 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12111 file_name_style.style (),
12112 gdb_stdout);
12113 printf_filtered (", line %d.",
12114 b->loc->line_number);
12115 }
12116 else
12117 /* This is not ideal, but each location may have a
12118 different file name, and this at least reflects the
12119 real situation somewhat. */
12120 printf_filtered (": %s.",
12121 event_location_to_string (b->location.get ()));
12122 }
12123
12124 if (b->loc->next)
12125 {
12126 struct bp_location *loc = b->loc;
12127 int n = 0;
12128 for (; loc; loc = loc->next)
12129 ++n;
12130 printf_filtered (" (%d locations)", n);
12131 }
12132 }
12133 }
12134
12135 bp_location::~bp_location ()
12136 {
12137 xfree (function_name);
12138 }
12139
12140 /* Destructor for the breakpoint base class. */
12141
12142 breakpoint::~breakpoint ()
12143 {
12144 xfree (this->cond_string);
12145 xfree (this->extra_string);
12146 xfree (this->filter);
12147 }
12148
12149 static struct bp_location *
12150 base_breakpoint_allocate_location (struct breakpoint *self)
12151 {
12152 return new bp_location (self);
12153 }
12154
12155 static void
12156 base_breakpoint_re_set (struct breakpoint *b)
12157 {
12158 /* Nothing to re-set. */
12159 }
12160
12161 #define internal_error_pure_virtual_called() \
12162 gdb_assert_not_reached ("pure virtual function called")
12163
12164 static int
12165 base_breakpoint_insert_location (struct bp_location *bl)
12166 {
12167 internal_error_pure_virtual_called ();
12168 }
12169
12170 static int
12171 base_breakpoint_remove_location (struct bp_location *bl,
12172 enum remove_bp_reason reason)
12173 {
12174 internal_error_pure_virtual_called ();
12175 }
12176
12177 static int
12178 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12179 const address_space *aspace,
12180 CORE_ADDR bp_addr,
12181 const struct target_waitstatus *ws)
12182 {
12183 internal_error_pure_virtual_called ();
12184 }
12185
12186 static void
12187 base_breakpoint_check_status (bpstat bs)
12188 {
12189 /* Always stop. */
12190 }
12191
12192 /* A "works_in_software_mode" breakpoint_ops method that just internal
12193 errors. */
12194
12195 static int
12196 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12197 {
12198 internal_error_pure_virtual_called ();
12199 }
12200
12201 /* A "resources_needed" breakpoint_ops method that just internal
12202 errors. */
12203
12204 static int
12205 base_breakpoint_resources_needed (const struct bp_location *bl)
12206 {
12207 internal_error_pure_virtual_called ();
12208 }
12209
12210 static enum print_stop_action
12211 base_breakpoint_print_it (bpstat bs)
12212 {
12213 internal_error_pure_virtual_called ();
12214 }
12215
12216 static void
12217 base_breakpoint_print_one_detail (const struct breakpoint *self,
12218 struct ui_out *uiout)
12219 {
12220 /* nothing */
12221 }
12222
12223 static void
12224 base_breakpoint_print_mention (struct breakpoint *b)
12225 {
12226 internal_error_pure_virtual_called ();
12227 }
12228
12229 static void
12230 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12231 {
12232 internal_error_pure_virtual_called ();
12233 }
12234
12235 static void
12236 base_breakpoint_create_sals_from_location
12237 (const struct event_location *location,
12238 struct linespec_result *canonical,
12239 enum bptype type_wanted)
12240 {
12241 internal_error_pure_virtual_called ();
12242 }
12243
12244 static void
12245 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12246 struct linespec_result *c,
12247 gdb::unique_xmalloc_ptr<char> cond_string,
12248 gdb::unique_xmalloc_ptr<char> extra_string,
12249 enum bptype type_wanted,
12250 enum bpdisp disposition,
12251 int thread,
12252 int task, int ignore_count,
12253 const struct breakpoint_ops *o,
12254 int from_tty, int enabled,
12255 int internal, unsigned flags)
12256 {
12257 internal_error_pure_virtual_called ();
12258 }
12259
12260 static std::vector<symtab_and_line>
12261 base_breakpoint_decode_location (struct breakpoint *b,
12262 const struct event_location *location,
12263 struct program_space *search_pspace)
12264 {
12265 internal_error_pure_virtual_called ();
12266 }
12267
12268 /* The default 'explains_signal' method. */
12269
12270 static int
12271 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12272 {
12273 return 1;
12274 }
12275
12276 /* The default "after_condition_true" method. */
12277
12278 static void
12279 base_breakpoint_after_condition_true (struct bpstats *bs)
12280 {
12281 /* Nothing to do. */
12282 }
12283
12284 struct breakpoint_ops base_breakpoint_ops =
12285 {
12286 base_breakpoint_allocate_location,
12287 base_breakpoint_re_set,
12288 base_breakpoint_insert_location,
12289 base_breakpoint_remove_location,
12290 base_breakpoint_breakpoint_hit,
12291 base_breakpoint_check_status,
12292 base_breakpoint_resources_needed,
12293 base_breakpoint_works_in_software_mode,
12294 base_breakpoint_print_it,
12295 NULL,
12296 base_breakpoint_print_one_detail,
12297 base_breakpoint_print_mention,
12298 base_breakpoint_print_recreate,
12299 base_breakpoint_create_sals_from_location,
12300 base_breakpoint_create_breakpoints_sal,
12301 base_breakpoint_decode_location,
12302 base_breakpoint_explains_signal,
12303 base_breakpoint_after_condition_true,
12304 };
12305
12306 /* Default breakpoint_ops methods. */
12307
12308 static void
12309 bkpt_re_set (struct breakpoint *b)
12310 {
12311 /* FIXME: is this still reachable? */
12312 if (breakpoint_event_location_empty_p (b))
12313 {
12314 /* Anything without a location can't be re-set. */
12315 delete_breakpoint (b);
12316 return;
12317 }
12318
12319 breakpoint_re_set_default (b);
12320 }
12321
12322 static int
12323 bkpt_insert_location (struct bp_location *bl)
12324 {
12325 CORE_ADDR addr = bl->target_info.reqstd_address;
12326
12327 bl->target_info.kind = breakpoint_kind (bl, &addr);
12328 bl->target_info.placed_address = addr;
12329
12330 if (bl->loc_type == bp_loc_hardware_breakpoint)
12331 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12332 else
12333 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12334 }
12335
12336 static int
12337 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12338 {
12339 if (bl->loc_type == bp_loc_hardware_breakpoint)
12340 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12341 else
12342 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12343 }
12344
12345 static int
12346 bkpt_breakpoint_hit (const struct bp_location *bl,
12347 const address_space *aspace, CORE_ADDR bp_addr,
12348 const struct target_waitstatus *ws)
12349 {
12350 if (ws->kind != TARGET_WAITKIND_STOPPED
12351 || ws->value.sig != GDB_SIGNAL_TRAP)
12352 return 0;
12353
12354 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12355 aspace, bp_addr))
12356 return 0;
12357
12358 if (overlay_debugging /* unmapped overlay section */
12359 && section_is_overlay (bl->section)
12360 && !section_is_mapped (bl->section))
12361 return 0;
12362
12363 return 1;
12364 }
12365
12366 static int
12367 dprintf_breakpoint_hit (const struct bp_location *bl,
12368 const address_space *aspace, CORE_ADDR bp_addr,
12369 const struct target_waitstatus *ws)
12370 {
12371 if (dprintf_style == dprintf_style_agent
12372 && target_can_run_breakpoint_commands ())
12373 {
12374 /* An agent-style dprintf never causes a stop. If we see a trap
12375 for this address it must be for a breakpoint that happens to
12376 be set at the same address. */
12377 return 0;
12378 }
12379
12380 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12381 }
12382
12383 static int
12384 bkpt_resources_needed (const struct bp_location *bl)
12385 {
12386 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12387
12388 return 1;
12389 }
12390
12391 static enum print_stop_action
12392 bkpt_print_it (bpstat bs)
12393 {
12394 struct breakpoint *b;
12395 const struct bp_location *bl;
12396 int bp_temp;
12397 struct ui_out *uiout = current_uiout;
12398
12399 gdb_assert (bs->bp_location_at != NULL);
12400
12401 bl = bs->bp_location_at;
12402 b = bs->breakpoint_at;
12403
12404 bp_temp = b->disposition == disp_del;
12405 if (bl->address != bl->requested_address)
12406 breakpoint_adjustment_warning (bl->requested_address,
12407 bl->address,
12408 b->number, 1);
12409 annotate_breakpoint (b->number);
12410 maybe_print_thread_hit_breakpoint (uiout);
12411
12412 if (bp_temp)
12413 uiout->text ("Temporary breakpoint ");
12414 else
12415 uiout->text ("Breakpoint ");
12416 if (uiout->is_mi_like_p ())
12417 {
12418 uiout->field_string ("reason",
12419 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12420 uiout->field_string ("disp", bpdisp_text (b->disposition));
12421 }
12422 uiout->field_int ("bkptno", b->number);
12423 uiout->text (", ");
12424
12425 return PRINT_SRC_AND_LOC;
12426 }
12427
12428 static void
12429 bkpt_print_mention (struct breakpoint *b)
12430 {
12431 if (current_uiout->is_mi_like_p ())
12432 return;
12433
12434 switch (b->type)
12435 {
12436 case bp_breakpoint:
12437 case bp_gnu_ifunc_resolver:
12438 if (b->disposition == disp_del)
12439 printf_filtered (_("Temporary breakpoint"));
12440 else
12441 printf_filtered (_("Breakpoint"));
12442 printf_filtered (_(" %d"), b->number);
12443 if (b->type == bp_gnu_ifunc_resolver)
12444 printf_filtered (_(" at gnu-indirect-function resolver"));
12445 break;
12446 case bp_hardware_breakpoint:
12447 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12448 break;
12449 case bp_dprintf:
12450 printf_filtered (_("Dprintf %d"), b->number);
12451 break;
12452 }
12453
12454 say_where (b);
12455 }
12456
12457 static void
12458 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12459 {
12460 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12461 fprintf_unfiltered (fp, "tbreak");
12462 else if (tp->type == bp_breakpoint)
12463 fprintf_unfiltered (fp, "break");
12464 else if (tp->type == bp_hardware_breakpoint
12465 && tp->disposition == disp_del)
12466 fprintf_unfiltered (fp, "thbreak");
12467 else if (tp->type == bp_hardware_breakpoint)
12468 fprintf_unfiltered (fp, "hbreak");
12469 else
12470 internal_error (__FILE__, __LINE__,
12471 _("unhandled breakpoint type %d"), (int) tp->type);
12472
12473 fprintf_unfiltered (fp, " %s",
12474 event_location_to_string (tp->location.get ()));
12475
12476 /* Print out extra_string if this breakpoint is pending. It might
12477 contain, for example, conditions that were set by the user. */
12478 if (tp->loc == NULL && tp->extra_string != NULL)
12479 fprintf_unfiltered (fp, " %s", tp->extra_string);
12480
12481 print_recreate_thread (tp, fp);
12482 }
12483
12484 static void
12485 bkpt_create_sals_from_location (const struct event_location *location,
12486 struct linespec_result *canonical,
12487 enum bptype type_wanted)
12488 {
12489 create_sals_from_location_default (location, canonical, type_wanted);
12490 }
12491
12492 static void
12493 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12494 struct linespec_result *canonical,
12495 gdb::unique_xmalloc_ptr<char> cond_string,
12496 gdb::unique_xmalloc_ptr<char> extra_string,
12497 enum bptype type_wanted,
12498 enum bpdisp disposition,
12499 int thread,
12500 int task, int ignore_count,
12501 const struct breakpoint_ops *ops,
12502 int from_tty, int enabled,
12503 int internal, unsigned flags)
12504 {
12505 create_breakpoints_sal_default (gdbarch, canonical,
12506 std::move (cond_string),
12507 std::move (extra_string),
12508 type_wanted,
12509 disposition, thread, task,
12510 ignore_count, ops, from_tty,
12511 enabled, internal, flags);
12512 }
12513
12514 static std::vector<symtab_and_line>
12515 bkpt_decode_location (struct breakpoint *b,
12516 const struct event_location *location,
12517 struct program_space *search_pspace)
12518 {
12519 return decode_location_default (b, location, search_pspace);
12520 }
12521
12522 /* Virtual table for internal breakpoints. */
12523
12524 static void
12525 internal_bkpt_re_set (struct breakpoint *b)
12526 {
12527 switch (b->type)
12528 {
12529 /* Delete overlay event and longjmp master breakpoints; they
12530 will be reset later by breakpoint_re_set. */
12531 case bp_overlay_event:
12532 case bp_longjmp_master:
12533 case bp_std_terminate_master:
12534 case bp_exception_master:
12535 delete_breakpoint (b);
12536 break;
12537
12538 /* This breakpoint is special, it's set up when the inferior
12539 starts and we really don't want to touch it. */
12540 case bp_shlib_event:
12541
12542 /* Like bp_shlib_event, this breakpoint type is special. Once
12543 it is set up, we do not want to touch it. */
12544 case bp_thread_event:
12545 break;
12546 }
12547 }
12548
12549 static void
12550 internal_bkpt_check_status (bpstat bs)
12551 {
12552 if (bs->breakpoint_at->type == bp_shlib_event)
12553 {
12554 /* If requested, stop when the dynamic linker notifies GDB of
12555 events. This allows the user to get control and place
12556 breakpoints in initializer routines for dynamically loaded
12557 objects (among other things). */
12558 bs->stop = stop_on_solib_events;
12559 bs->print = stop_on_solib_events;
12560 }
12561 else
12562 bs->stop = 0;
12563 }
12564
12565 static enum print_stop_action
12566 internal_bkpt_print_it (bpstat bs)
12567 {
12568 struct breakpoint *b;
12569
12570 b = bs->breakpoint_at;
12571
12572 switch (b->type)
12573 {
12574 case bp_shlib_event:
12575 /* Did we stop because the user set the stop_on_solib_events
12576 variable? (If so, we report this as a generic, "Stopped due
12577 to shlib event" message.) */
12578 print_solib_event (0);
12579 break;
12580
12581 case bp_thread_event:
12582 /* Not sure how we will get here.
12583 GDB should not stop for these breakpoints. */
12584 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12585 break;
12586
12587 case bp_overlay_event:
12588 /* By analogy with the thread event, GDB should not stop for these. */
12589 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12590 break;
12591
12592 case bp_longjmp_master:
12593 /* These should never be enabled. */
12594 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12595 break;
12596
12597 case bp_std_terminate_master:
12598 /* These should never be enabled. */
12599 printf_filtered (_("std::terminate Master Breakpoint: "
12600 "gdb should not stop!\n"));
12601 break;
12602
12603 case bp_exception_master:
12604 /* These should never be enabled. */
12605 printf_filtered (_("Exception Master Breakpoint: "
12606 "gdb should not stop!\n"));
12607 break;
12608 }
12609
12610 return PRINT_NOTHING;
12611 }
12612
12613 static void
12614 internal_bkpt_print_mention (struct breakpoint *b)
12615 {
12616 /* Nothing to mention. These breakpoints are internal. */
12617 }
12618
12619 /* Virtual table for momentary breakpoints */
12620
12621 static void
12622 momentary_bkpt_re_set (struct breakpoint *b)
12623 {
12624 /* Keep temporary breakpoints, which can be encountered when we step
12625 over a dlopen call and solib_add is resetting the breakpoints.
12626 Otherwise these should have been blown away via the cleanup chain
12627 or by breakpoint_init_inferior when we rerun the executable. */
12628 }
12629
12630 static void
12631 momentary_bkpt_check_status (bpstat bs)
12632 {
12633 /* Nothing. The point of these breakpoints is causing a stop. */
12634 }
12635
12636 static enum print_stop_action
12637 momentary_bkpt_print_it (bpstat bs)
12638 {
12639 return PRINT_UNKNOWN;
12640 }
12641
12642 static void
12643 momentary_bkpt_print_mention (struct breakpoint *b)
12644 {
12645 /* Nothing to mention. These breakpoints are internal. */
12646 }
12647
12648 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12649
12650 It gets cleared already on the removal of the first one of such placed
12651 breakpoints. This is OK as they get all removed altogether. */
12652
12653 longjmp_breakpoint::~longjmp_breakpoint ()
12654 {
12655 thread_info *tp = find_thread_global_id (this->thread);
12656
12657 if (tp != NULL)
12658 tp->initiating_frame = null_frame_id;
12659 }
12660
12661 /* Specific methods for probe breakpoints. */
12662
12663 static int
12664 bkpt_probe_insert_location (struct bp_location *bl)
12665 {
12666 int v = bkpt_insert_location (bl);
12667
12668 if (v == 0)
12669 {
12670 /* The insertion was successful, now let's set the probe's semaphore
12671 if needed. */
12672 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12673 }
12674
12675 return v;
12676 }
12677
12678 static int
12679 bkpt_probe_remove_location (struct bp_location *bl,
12680 enum remove_bp_reason reason)
12681 {
12682 /* Let's clear the semaphore before removing the location. */
12683 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12684
12685 return bkpt_remove_location (bl, reason);
12686 }
12687
12688 static void
12689 bkpt_probe_create_sals_from_location (const struct event_location *location,
12690 struct linespec_result *canonical,
12691 enum bptype type_wanted)
12692 {
12693 struct linespec_sals lsal;
12694
12695 lsal.sals = parse_probes (location, NULL, canonical);
12696 lsal.canonical
12697 = xstrdup (event_location_to_string (canonical->location.get ()));
12698 canonical->lsals.push_back (std::move (lsal));
12699 }
12700
12701 static std::vector<symtab_and_line>
12702 bkpt_probe_decode_location (struct breakpoint *b,
12703 const struct event_location *location,
12704 struct program_space *search_pspace)
12705 {
12706 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12707 if (sals.empty ())
12708 error (_("probe not found"));
12709 return sals;
12710 }
12711
12712 /* The breakpoint_ops structure to be used in tracepoints. */
12713
12714 static void
12715 tracepoint_re_set (struct breakpoint *b)
12716 {
12717 breakpoint_re_set_default (b);
12718 }
12719
12720 static int
12721 tracepoint_breakpoint_hit (const struct bp_location *bl,
12722 const address_space *aspace, CORE_ADDR bp_addr,
12723 const struct target_waitstatus *ws)
12724 {
12725 /* By definition, the inferior does not report stops at
12726 tracepoints. */
12727 return 0;
12728 }
12729
12730 static void
12731 tracepoint_print_one_detail (const struct breakpoint *self,
12732 struct ui_out *uiout)
12733 {
12734 struct tracepoint *tp = (struct tracepoint *) self;
12735 if (!tp->static_trace_marker_id.empty ())
12736 {
12737 gdb_assert (self->type == bp_static_tracepoint);
12738
12739 uiout->text ("\tmarker id is ");
12740 uiout->field_string ("static-tracepoint-marker-string-id",
12741 tp->static_trace_marker_id);
12742 uiout->text ("\n");
12743 }
12744 }
12745
12746 static void
12747 tracepoint_print_mention (struct breakpoint *b)
12748 {
12749 if (current_uiout->is_mi_like_p ())
12750 return;
12751
12752 switch (b->type)
12753 {
12754 case bp_tracepoint:
12755 printf_filtered (_("Tracepoint"));
12756 printf_filtered (_(" %d"), b->number);
12757 break;
12758 case bp_fast_tracepoint:
12759 printf_filtered (_("Fast tracepoint"));
12760 printf_filtered (_(" %d"), b->number);
12761 break;
12762 case bp_static_tracepoint:
12763 printf_filtered (_("Static tracepoint"));
12764 printf_filtered (_(" %d"), b->number);
12765 break;
12766 default:
12767 internal_error (__FILE__, __LINE__,
12768 _("unhandled tracepoint type %d"), (int) b->type);
12769 }
12770
12771 say_where (b);
12772 }
12773
12774 static void
12775 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12776 {
12777 struct tracepoint *tp = (struct tracepoint *) self;
12778
12779 if (self->type == bp_fast_tracepoint)
12780 fprintf_unfiltered (fp, "ftrace");
12781 else if (self->type == bp_static_tracepoint)
12782 fprintf_unfiltered (fp, "strace");
12783 else if (self->type == bp_tracepoint)
12784 fprintf_unfiltered (fp, "trace");
12785 else
12786 internal_error (__FILE__, __LINE__,
12787 _("unhandled tracepoint type %d"), (int) self->type);
12788
12789 fprintf_unfiltered (fp, " %s",
12790 event_location_to_string (self->location.get ()));
12791 print_recreate_thread (self, fp);
12792
12793 if (tp->pass_count)
12794 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12795 }
12796
12797 static void
12798 tracepoint_create_sals_from_location (const struct event_location *location,
12799 struct linespec_result *canonical,
12800 enum bptype type_wanted)
12801 {
12802 create_sals_from_location_default (location, canonical, type_wanted);
12803 }
12804
12805 static void
12806 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12807 struct linespec_result *canonical,
12808 gdb::unique_xmalloc_ptr<char> cond_string,
12809 gdb::unique_xmalloc_ptr<char> extra_string,
12810 enum bptype type_wanted,
12811 enum bpdisp disposition,
12812 int thread,
12813 int task, int ignore_count,
12814 const struct breakpoint_ops *ops,
12815 int from_tty, int enabled,
12816 int internal, unsigned flags)
12817 {
12818 create_breakpoints_sal_default (gdbarch, canonical,
12819 std::move (cond_string),
12820 std::move (extra_string),
12821 type_wanted,
12822 disposition, thread, task,
12823 ignore_count, ops, from_tty,
12824 enabled, internal, flags);
12825 }
12826
12827 static std::vector<symtab_and_line>
12828 tracepoint_decode_location (struct breakpoint *b,
12829 const struct event_location *location,
12830 struct program_space *search_pspace)
12831 {
12832 return decode_location_default (b, location, search_pspace);
12833 }
12834
12835 struct breakpoint_ops tracepoint_breakpoint_ops;
12836
12837 /* The breakpoint_ops structure to be use on tracepoints placed in a
12838 static probe. */
12839
12840 static void
12841 tracepoint_probe_create_sals_from_location
12842 (const struct event_location *location,
12843 struct linespec_result *canonical,
12844 enum bptype type_wanted)
12845 {
12846 /* We use the same method for breakpoint on probes. */
12847 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12848 }
12849
12850 static std::vector<symtab_and_line>
12851 tracepoint_probe_decode_location (struct breakpoint *b,
12852 const struct event_location *location,
12853 struct program_space *search_pspace)
12854 {
12855 /* We use the same method for breakpoint on probes. */
12856 return bkpt_probe_decode_location (b, location, search_pspace);
12857 }
12858
12859 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12860
12861 /* Dprintf breakpoint_ops methods. */
12862
12863 static void
12864 dprintf_re_set (struct breakpoint *b)
12865 {
12866 breakpoint_re_set_default (b);
12867
12868 /* extra_string should never be non-NULL for dprintf. */
12869 gdb_assert (b->extra_string != NULL);
12870
12871 /* 1 - connect to target 1, that can run breakpoint commands.
12872 2 - create a dprintf, which resolves fine.
12873 3 - disconnect from target 1
12874 4 - connect to target 2, that can NOT run breakpoint commands.
12875
12876 After steps #3/#4, you'll want the dprintf command list to
12877 be updated, because target 1 and 2 may well return different
12878 answers for target_can_run_breakpoint_commands().
12879 Given absence of finer grained resetting, we get to do
12880 it all the time. */
12881 if (b->extra_string != NULL)
12882 update_dprintf_command_list (b);
12883 }
12884
12885 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12886
12887 static void
12888 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12889 {
12890 fprintf_unfiltered (fp, "dprintf %s,%s",
12891 event_location_to_string (tp->location.get ()),
12892 tp->extra_string);
12893 print_recreate_thread (tp, fp);
12894 }
12895
12896 /* Implement the "after_condition_true" breakpoint_ops method for
12897 dprintf.
12898
12899 dprintf's are implemented with regular commands in their command
12900 list, but we run the commands here instead of before presenting the
12901 stop to the user, as dprintf's don't actually cause a stop. This
12902 also makes it so that the commands of multiple dprintfs at the same
12903 address are all handled. */
12904
12905 static void
12906 dprintf_after_condition_true (struct bpstats *bs)
12907 {
12908 struct bpstats tmp_bs;
12909 struct bpstats *tmp_bs_p = &tmp_bs;
12910
12911 /* dprintf's never cause a stop. This wasn't set in the
12912 check_status hook instead because that would make the dprintf's
12913 condition not be evaluated. */
12914 bs->stop = 0;
12915
12916 /* Run the command list here. Take ownership of it instead of
12917 copying. We never want these commands to run later in
12918 bpstat_do_actions, if a breakpoint that causes a stop happens to
12919 be set at same address as this dprintf, or even if running the
12920 commands here throws. */
12921 tmp_bs.commands = bs->commands;
12922 bs->commands = NULL;
12923
12924 bpstat_do_actions_1 (&tmp_bs_p);
12925
12926 /* 'tmp_bs.commands' will usually be NULL by now, but
12927 bpstat_do_actions_1 may return early without processing the whole
12928 list. */
12929 }
12930
12931 /* The breakpoint_ops structure to be used on static tracepoints with
12932 markers (`-m'). */
12933
12934 static void
12935 strace_marker_create_sals_from_location (const struct event_location *location,
12936 struct linespec_result *canonical,
12937 enum bptype type_wanted)
12938 {
12939 struct linespec_sals lsal;
12940 const char *arg_start, *arg;
12941
12942 arg = arg_start = get_linespec_location (location)->spec_string;
12943 lsal.sals = decode_static_tracepoint_spec (&arg);
12944
12945 std::string str (arg_start, arg - arg_start);
12946 const char *ptr = str.c_str ();
12947 canonical->location
12948 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12949
12950 lsal.canonical
12951 = xstrdup (event_location_to_string (canonical->location.get ()));
12952 canonical->lsals.push_back (std::move (lsal));
12953 }
12954
12955 static void
12956 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12957 struct linespec_result *canonical,
12958 gdb::unique_xmalloc_ptr<char> cond_string,
12959 gdb::unique_xmalloc_ptr<char> extra_string,
12960 enum bptype type_wanted,
12961 enum bpdisp disposition,
12962 int thread,
12963 int task, int ignore_count,
12964 const struct breakpoint_ops *ops,
12965 int from_tty, int enabled,
12966 int internal, unsigned flags)
12967 {
12968 const linespec_sals &lsal = canonical->lsals[0];
12969
12970 /* If the user is creating a static tracepoint by marker id
12971 (strace -m MARKER_ID), then store the sals index, so that
12972 breakpoint_re_set can try to match up which of the newly
12973 found markers corresponds to this one, and, don't try to
12974 expand multiple locations for each sal, given than SALS
12975 already should contain all sals for MARKER_ID. */
12976
12977 for (size_t i = 0; i < lsal.sals.size (); i++)
12978 {
12979 event_location_up location
12980 = copy_event_location (canonical->location.get ());
12981
12982 std::unique_ptr<tracepoint> tp (new tracepoint ());
12983 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12984 std::move (location), NULL,
12985 std::move (cond_string),
12986 std::move (extra_string),
12987 type_wanted, disposition,
12988 thread, task, ignore_count, ops,
12989 from_tty, enabled, internal, flags,
12990 canonical->special_display);
12991 /* Given that its possible to have multiple markers with
12992 the same string id, if the user is creating a static
12993 tracepoint by marker id ("strace -m MARKER_ID"), then
12994 store the sals index, so that breakpoint_re_set can
12995 try to match up which of the newly found markers
12996 corresponds to this one */
12997 tp->static_trace_marker_id_idx = i;
12998
12999 install_breakpoint (internal, std::move (tp), 0);
13000 }
13001 }
13002
13003 static std::vector<symtab_and_line>
13004 strace_marker_decode_location (struct breakpoint *b,
13005 const struct event_location *location,
13006 struct program_space *search_pspace)
13007 {
13008 struct tracepoint *tp = (struct tracepoint *) b;
13009 const char *s = get_linespec_location (location)->spec_string;
13010
13011 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13012 if (sals.size () > tp->static_trace_marker_id_idx)
13013 {
13014 sals[0] = sals[tp->static_trace_marker_id_idx];
13015 sals.resize (1);
13016 return sals;
13017 }
13018 else
13019 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13020 }
13021
13022 static struct breakpoint_ops strace_marker_breakpoint_ops;
13023
13024 static int
13025 strace_marker_p (struct breakpoint *b)
13026 {
13027 return b->ops == &strace_marker_breakpoint_ops;
13028 }
13029
13030 /* Delete a breakpoint and clean up all traces of it in the data
13031 structures. */
13032
13033 void
13034 delete_breakpoint (struct breakpoint *bpt)
13035 {
13036 struct breakpoint *b;
13037
13038 gdb_assert (bpt != NULL);
13039
13040 /* Has this bp already been deleted? This can happen because
13041 multiple lists can hold pointers to bp's. bpstat lists are
13042 especial culprits.
13043
13044 One example of this happening is a watchpoint's scope bp. When
13045 the scope bp triggers, we notice that the watchpoint is out of
13046 scope, and delete it. We also delete its scope bp. But the
13047 scope bp is marked "auto-deleting", and is already on a bpstat.
13048 That bpstat is then checked for auto-deleting bp's, which are
13049 deleted.
13050
13051 A real solution to this problem might involve reference counts in
13052 bp's, and/or giving them pointers back to their referencing
13053 bpstat's, and teaching delete_breakpoint to only free a bp's
13054 storage when no more references were extent. A cheaper bandaid
13055 was chosen. */
13056 if (bpt->type == bp_none)
13057 return;
13058
13059 /* At least avoid this stale reference until the reference counting
13060 of breakpoints gets resolved. */
13061 if (bpt->related_breakpoint != bpt)
13062 {
13063 struct breakpoint *related;
13064 struct watchpoint *w;
13065
13066 if (bpt->type == bp_watchpoint_scope)
13067 w = (struct watchpoint *) bpt->related_breakpoint;
13068 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13069 w = (struct watchpoint *) bpt;
13070 else
13071 w = NULL;
13072 if (w != NULL)
13073 watchpoint_del_at_next_stop (w);
13074
13075 /* Unlink bpt from the bpt->related_breakpoint ring. */
13076 for (related = bpt; related->related_breakpoint != bpt;
13077 related = related->related_breakpoint);
13078 related->related_breakpoint = bpt->related_breakpoint;
13079 bpt->related_breakpoint = bpt;
13080 }
13081
13082 /* watch_command_1 creates a watchpoint but only sets its number if
13083 update_watchpoint succeeds in creating its bp_locations. If there's
13084 a problem in that process, we'll be asked to delete the half-created
13085 watchpoint. In that case, don't announce the deletion. */
13086 if (bpt->number)
13087 gdb::observers::breakpoint_deleted.notify (bpt);
13088
13089 if (breakpoint_chain == bpt)
13090 breakpoint_chain = bpt->next;
13091
13092 ALL_BREAKPOINTS (b)
13093 if (b->next == bpt)
13094 {
13095 b->next = bpt->next;
13096 break;
13097 }
13098
13099 /* Be sure no bpstat's are pointing at the breakpoint after it's
13100 been freed. */
13101 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13102 in all threads for now. Note that we cannot just remove bpstats
13103 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13104 commands are associated with the bpstat; if we remove it here,
13105 then the later call to bpstat_do_actions (&stop_bpstat); in
13106 event-top.c won't do anything, and temporary breakpoints with
13107 commands won't work. */
13108
13109 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13110
13111 /* Now that breakpoint is removed from breakpoint list, update the
13112 global location list. This will remove locations that used to
13113 belong to this breakpoint. Do this before freeing the breakpoint
13114 itself, since remove_breakpoint looks at location's owner. It
13115 might be better design to have location completely
13116 self-contained, but it's not the case now. */
13117 update_global_location_list (UGLL_DONT_INSERT);
13118
13119 /* On the chance that someone will soon try again to delete this
13120 same bp, we mark it as deleted before freeing its storage. */
13121 bpt->type = bp_none;
13122 delete bpt;
13123 }
13124
13125 /* Iterator function to call a user-provided callback function once
13126 for each of B and its related breakpoints. */
13127
13128 static void
13129 iterate_over_related_breakpoints (struct breakpoint *b,
13130 gdb::function_view<void (breakpoint *)> function)
13131 {
13132 struct breakpoint *related;
13133
13134 related = b;
13135 do
13136 {
13137 struct breakpoint *next;
13138
13139 /* FUNCTION may delete RELATED. */
13140 next = related->related_breakpoint;
13141
13142 if (next == related)
13143 {
13144 /* RELATED is the last ring entry. */
13145 function (related);
13146
13147 /* FUNCTION may have deleted it, so we'd never reach back to
13148 B. There's nothing left to do anyway, so just break
13149 out. */
13150 break;
13151 }
13152 else
13153 function (related);
13154
13155 related = next;
13156 }
13157 while (related != b);
13158 }
13159
13160 static void
13161 delete_command (const char *arg, int from_tty)
13162 {
13163 struct breakpoint *b, *b_tmp;
13164
13165 dont_repeat ();
13166
13167 if (arg == 0)
13168 {
13169 int breaks_to_delete = 0;
13170
13171 /* Delete all breakpoints if no argument. Do not delete
13172 internal breakpoints, these have to be deleted with an
13173 explicit breakpoint number argument. */
13174 ALL_BREAKPOINTS (b)
13175 if (user_breakpoint_p (b))
13176 {
13177 breaks_to_delete = 1;
13178 break;
13179 }
13180
13181 /* Ask user only if there are some breakpoints to delete. */
13182 if (!from_tty
13183 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13184 {
13185 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13186 if (user_breakpoint_p (b))
13187 delete_breakpoint (b);
13188 }
13189 }
13190 else
13191 map_breakpoint_numbers
13192 (arg, [&] (breakpoint *br)
13193 {
13194 iterate_over_related_breakpoints (br, delete_breakpoint);
13195 });
13196 }
13197
13198 /* Return true if all locations of B bound to PSPACE are pending. If
13199 PSPACE is NULL, all locations of all program spaces are
13200 considered. */
13201
13202 static int
13203 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13204 {
13205 struct bp_location *loc;
13206
13207 for (loc = b->loc; loc != NULL; loc = loc->next)
13208 if ((pspace == NULL
13209 || loc->pspace == pspace)
13210 && !loc->shlib_disabled
13211 && !loc->pspace->executing_startup)
13212 return 0;
13213 return 1;
13214 }
13215
13216 /* Subroutine of update_breakpoint_locations to simplify it.
13217 Return non-zero if multiple fns in list LOC have the same name.
13218 Null names are ignored. */
13219
13220 static int
13221 ambiguous_names_p (struct bp_location *loc)
13222 {
13223 struct bp_location *l;
13224 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13225 xcalloc, xfree);
13226
13227 for (l = loc; l != NULL; l = l->next)
13228 {
13229 const char **slot;
13230 const char *name = l->function_name;
13231
13232 /* Allow for some names to be NULL, ignore them. */
13233 if (name == NULL)
13234 continue;
13235
13236 slot = (const char **) htab_find_slot (htab, (const void *) name,
13237 INSERT);
13238 /* NOTE: We can assume slot != NULL here because xcalloc never
13239 returns NULL. */
13240 if (*slot != NULL)
13241 {
13242 htab_delete (htab);
13243 return 1;
13244 }
13245 *slot = name;
13246 }
13247
13248 htab_delete (htab);
13249 return 0;
13250 }
13251
13252 /* When symbols change, it probably means the sources changed as well,
13253 and it might mean the static tracepoint markers are no longer at
13254 the same address or line numbers they used to be at last we
13255 checked. Losing your static tracepoints whenever you rebuild is
13256 undesirable. This function tries to resync/rematch gdb static
13257 tracepoints with the markers on the target, for static tracepoints
13258 that have not been set by marker id. Static tracepoint that have
13259 been set by marker id are reset by marker id in breakpoint_re_set.
13260 The heuristic is:
13261
13262 1) For a tracepoint set at a specific address, look for a marker at
13263 the old PC. If one is found there, assume to be the same marker.
13264 If the name / string id of the marker found is different from the
13265 previous known name, assume that means the user renamed the marker
13266 in the sources, and output a warning.
13267
13268 2) For a tracepoint set at a given line number, look for a marker
13269 at the new address of the old line number. If one is found there,
13270 assume to be the same marker. If the name / string id of the
13271 marker found is different from the previous known name, assume that
13272 means the user renamed the marker in the sources, and output a
13273 warning.
13274
13275 3) If a marker is no longer found at the same address or line, it
13276 may mean the marker no longer exists. But it may also just mean
13277 the code changed a bit. Maybe the user added a few lines of code
13278 that made the marker move up or down (in line number terms). Ask
13279 the target for info about the marker with the string id as we knew
13280 it. If found, update line number and address in the matching
13281 static tracepoint. This will get confused if there's more than one
13282 marker with the same ID (possible in UST, although unadvised
13283 precisely because it confuses tools). */
13284
13285 static struct symtab_and_line
13286 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13287 {
13288 struct tracepoint *tp = (struct tracepoint *) b;
13289 struct static_tracepoint_marker marker;
13290 CORE_ADDR pc;
13291
13292 pc = sal.pc;
13293 if (sal.line)
13294 find_line_pc (sal.symtab, sal.line, &pc);
13295
13296 if (target_static_tracepoint_marker_at (pc, &marker))
13297 {
13298 if (tp->static_trace_marker_id != marker.str_id)
13299 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13300 b->number, tp->static_trace_marker_id.c_str (),
13301 marker.str_id.c_str ());
13302
13303 tp->static_trace_marker_id = std::move (marker.str_id);
13304
13305 return sal;
13306 }
13307
13308 /* Old marker wasn't found on target at lineno. Try looking it up
13309 by string ID. */
13310 if (!sal.explicit_pc
13311 && sal.line != 0
13312 && sal.symtab != NULL
13313 && !tp->static_trace_marker_id.empty ())
13314 {
13315 std::vector<static_tracepoint_marker> markers
13316 = target_static_tracepoint_markers_by_strid
13317 (tp->static_trace_marker_id.c_str ());
13318
13319 if (!markers.empty ())
13320 {
13321 struct symbol *sym;
13322 struct static_tracepoint_marker *tpmarker;
13323 struct ui_out *uiout = current_uiout;
13324 struct explicit_location explicit_loc;
13325
13326 tpmarker = &markers[0];
13327
13328 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13329
13330 warning (_("marker for static tracepoint %d (%s) not "
13331 "found at previous line number"),
13332 b->number, tp->static_trace_marker_id.c_str ());
13333
13334 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13335 sym = find_pc_sect_function (tpmarker->address, NULL);
13336 uiout->text ("Now in ");
13337 if (sym)
13338 {
13339 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13340 ui_out_style_kind::FUNCTION);
13341 uiout->text (" at ");
13342 }
13343 uiout->field_string ("file",
13344 symtab_to_filename_for_display (sal2.symtab),
13345 ui_out_style_kind::FILE);
13346 uiout->text (":");
13347
13348 if (uiout->is_mi_like_p ())
13349 {
13350 const char *fullname = symtab_to_fullname (sal2.symtab);
13351
13352 uiout->field_string ("fullname", fullname);
13353 }
13354
13355 uiout->field_int ("line", sal2.line);
13356 uiout->text ("\n");
13357
13358 b->loc->line_number = sal2.line;
13359 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13360
13361 b->location.reset (NULL);
13362 initialize_explicit_location (&explicit_loc);
13363 explicit_loc.source_filename
13364 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13365 explicit_loc.line_offset.offset = b->loc->line_number;
13366 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13367 b->location = new_explicit_location (&explicit_loc);
13368
13369 /* Might be nice to check if function changed, and warn if
13370 so. */
13371 }
13372 }
13373 return sal;
13374 }
13375
13376 /* Returns 1 iff locations A and B are sufficiently same that
13377 we don't need to report breakpoint as changed. */
13378
13379 static int
13380 locations_are_equal (struct bp_location *a, struct bp_location *b)
13381 {
13382 while (a && b)
13383 {
13384 if (a->address != b->address)
13385 return 0;
13386
13387 if (a->shlib_disabled != b->shlib_disabled)
13388 return 0;
13389
13390 if (a->enabled != b->enabled)
13391 return 0;
13392
13393 a = a->next;
13394 b = b->next;
13395 }
13396
13397 if ((a == NULL) != (b == NULL))
13398 return 0;
13399
13400 return 1;
13401 }
13402
13403 /* Split all locations of B that are bound to PSPACE out of B's
13404 location list to a separate list and return that list's head. If
13405 PSPACE is NULL, hoist out all locations of B. */
13406
13407 static struct bp_location *
13408 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13409 {
13410 struct bp_location head;
13411 struct bp_location *i = b->loc;
13412 struct bp_location **i_link = &b->loc;
13413 struct bp_location *hoisted = &head;
13414
13415 if (pspace == NULL)
13416 {
13417 i = b->loc;
13418 b->loc = NULL;
13419 return i;
13420 }
13421
13422 head.next = NULL;
13423
13424 while (i != NULL)
13425 {
13426 if (i->pspace == pspace)
13427 {
13428 *i_link = i->next;
13429 i->next = NULL;
13430 hoisted->next = i;
13431 hoisted = i;
13432 }
13433 else
13434 i_link = &i->next;
13435 i = *i_link;
13436 }
13437
13438 return head.next;
13439 }
13440
13441 /* Create new breakpoint locations for B (a hardware or software
13442 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13443 zero, then B is a ranged breakpoint. Only recreates locations for
13444 FILTER_PSPACE. Locations of other program spaces are left
13445 untouched. */
13446
13447 void
13448 update_breakpoint_locations (struct breakpoint *b,
13449 struct program_space *filter_pspace,
13450 gdb::array_view<const symtab_and_line> sals,
13451 gdb::array_view<const symtab_and_line> sals_end)
13452 {
13453 struct bp_location *existing_locations;
13454
13455 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13456 {
13457 /* Ranged breakpoints have only one start location and one end
13458 location. */
13459 b->enable_state = bp_disabled;
13460 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13461 "multiple locations found\n"),
13462 b->number);
13463 return;
13464 }
13465
13466 /* If there's no new locations, and all existing locations are
13467 pending, don't do anything. This optimizes the common case where
13468 all locations are in the same shared library, that was unloaded.
13469 We'd like to retain the location, so that when the library is
13470 loaded again, we don't loose the enabled/disabled status of the
13471 individual locations. */
13472 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13473 return;
13474
13475 existing_locations = hoist_existing_locations (b, filter_pspace);
13476
13477 for (const auto &sal : sals)
13478 {
13479 struct bp_location *new_loc;
13480
13481 switch_to_program_space_and_thread (sal.pspace);
13482
13483 new_loc = add_location_to_breakpoint (b, &sal);
13484
13485 /* Reparse conditions, they might contain references to the
13486 old symtab. */
13487 if (b->cond_string != NULL)
13488 {
13489 const char *s;
13490
13491 s = b->cond_string;
13492 try
13493 {
13494 new_loc->cond = parse_exp_1 (&s, sal.pc,
13495 block_for_pc (sal.pc),
13496 0);
13497 }
13498 catch (const gdb_exception_error &e)
13499 {
13500 warning (_("failed to reevaluate condition "
13501 "for breakpoint %d: %s"),
13502 b->number, e.what ());
13503 new_loc->enabled = 0;
13504 }
13505 }
13506
13507 if (!sals_end.empty ())
13508 {
13509 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13510
13511 new_loc->length = end - sals[0].pc + 1;
13512 }
13513 }
13514
13515 /* If possible, carry over 'disable' status from existing
13516 breakpoints. */
13517 {
13518 struct bp_location *e = existing_locations;
13519 /* If there are multiple breakpoints with the same function name,
13520 e.g. for inline functions, comparing function names won't work.
13521 Instead compare pc addresses; this is just a heuristic as things
13522 may have moved, but in practice it gives the correct answer
13523 often enough until a better solution is found. */
13524 int have_ambiguous_names = ambiguous_names_p (b->loc);
13525
13526 for (; e; e = e->next)
13527 {
13528 if (!e->enabled && e->function_name)
13529 {
13530 struct bp_location *l = b->loc;
13531 if (have_ambiguous_names)
13532 {
13533 for (; l; l = l->next)
13534 if (breakpoint_locations_match (e, l))
13535 {
13536 l->enabled = 0;
13537 break;
13538 }
13539 }
13540 else
13541 {
13542 for (; l; l = l->next)
13543 if (l->function_name
13544 && strcmp (e->function_name, l->function_name) == 0)
13545 {
13546 l->enabled = 0;
13547 break;
13548 }
13549 }
13550 }
13551 }
13552 }
13553
13554 if (!locations_are_equal (existing_locations, b->loc))
13555 gdb::observers::breakpoint_modified.notify (b);
13556 }
13557
13558 /* Find the SaL locations corresponding to the given LOCATION.
13559 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13560
13561 static std::vector<symtab_and_line>
13562 location_to_sals (struct breakpoint *b, struct event_location *location,
13563 struct program_space *search_pspace, int *found)
13564 {
13565 struct gdb_exception exception;
13566
13567 gdb_assert (b->ops != NULL);
13568
13569 std::vector<symtab_and_line> sals;
13570
13571 try
13572 {
13573 sals = b->ops->decode_location (b, location, search_pspace);
13574 }
13575 catch (gdb_exception_error &e)
13576 {
13577 int not_found_and_ok = 0;
13578
13579 /* For pending breakpoints, it's expected that parsing will
13580 fail until the right shared library is loaded. User has
13581 already told to create pending breakpoints and don't need
13582 extra messages. If breakpoint is in bp_shlib_disabled
13583 state, then user already saw the message about that
13584 breakpoint being disabled, and don't want to see more
13585 errors. */
13586 if (e.error == NOT_FOUND_ERROR
13587 && (b->condition_not_parsed
13588 || (b->loc != NULL
13589 && search_pspace != NULL
13590 && b->loc->pspace != search_pspace)
13591 || (b->loc && b->loc->shlib_disabled)
13592 || (b->loc && b->loc->pspace->executing_startup)
13593 || b->enable_state == bp_disabled))
13594 not_found_and_ok = 1;
13595
13596 if (!not_found_and_ok)
13597 {
13598 /* We surely don't want to warn about the same breakpoint
13599 10 times. One solution, implemented here, is disable
13600 the breakpoint on error. Another solution would be to
13601 have separate 'warning emitted' flag. Since this
13602 happens only when a binary has changed, I don't know
13603 which approach is better. */
13604 b->enable_state = bp_disabled;
13605 throw;
13606 }
13607
13608 exception = std::move (e);
13609 }
13610
13611 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13612 {
13613 for (auto &sal : sals)
13614 resolve_sal_pc (&sal);
13615 if (b->condition_not_parsed && b->extra_string != NULL)
13616 {
13617 char *cond_string, *extra_string;
13618 int thread, task;
13619
13620 find_condition_and_thread (b->extra_string, sals[0].pc,
13621 &cond_string, &thread, &task,
13622 &extra_string);
13623 gdb_assert (b->cond_string == NULL);
13624 if (cond_string)
13625 b->cond_string = cond_string;
13626 b->thread = thread;
13627 b->task = task;
13628 if (extra_string)
13629 {
13630 xfree (b->extra_string);
13631 b->extra_string = extra_string;
13632 }
13633 b->condition_not_parsed = 0;
13634 }
13635
13636 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13637 sals[0] = update_static_tracepoint (b, sals[0]);
13638
13639 *found = 1;
13640 }
13641 else
13642 *found = 0;
13643
13644 return sals;
13645 }
13646
13647 /* The default re_set method, for typical hardware or software
13648 breakpoints. Reevaluate the breakpoint and recreate its
13649 locations. */
13650
13651 static void
13652 breakpoint_re_set_default (struct breakpoint *b)
13653 {
13654 struct program_space *filter_pspace = current_program_space;
13655 std::vector<symtab_and_line> expanded, expanded_end;
13656
13657 int found;
13658 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13659 filter_pspace, &found);
13660 if (found)
13661 expanded = std::move (sals);
13662
13663 if (b->location_range_end != NULL)
13664 {
13665 std::vector<symtab_and_line> sals_end
13666 = location_to_sals (b, b->location_range_end.get (),
13667 filter_pspace, &found);
13668 if (found)
13669 expanded_end = std::move (sals_end);
13670 }
13671
13672 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13673 }
13674
13675 /* Default method for creating SALs from an address string. It basically
13676 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13677
13678 static void
13679 create_sals_from_location_default (const struct event_location *location,
13680 struct linespec_result *canonical,
13681 enum bptype type_wanted)
13682 {
13683 parse_breakpoint_sals (location, canonical);
13684 }
13685
13686 /* Call create_breakpoints_sal for the given arguments. This is the default
13687 function for the `create_breakpoints_sal' method of
13688 breakpoint_ops. */
13689
13690 static void
13691 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13692 struct linespec_result *canonical,
13693 gdb::unique_xmalloc_ptr<char> cond_string,
13694 gdb::unique_xmalloc_ptr<char> extra_string,
13695 enum bptype type_wanted,
13696 enum bpdisp disposition,
13697 int thread,
13698 int task, int ignore_count,
13699 const struct breakpoint_ops *ops,
13700 int from_tty, int enabled,
13701 int internal, unsigned flags)
13702 {
13703 create_breakpoints_sal (gdbarch, canonical,
13704 std::move (cond_string),
13705 std::move (extra_string),
13706 type_wanted, disposition,
13707 thread, task, ignore_count, ops, from_tty,
13708 enabled, internal, flags);
13709 }
13710
13711 /* Decode the line represented by S by calling decode_line_full. This is the
13712 default function for the `decode_location' method of breakpoint_ops. */
13713
13714 static std::vector<symtab_and_line>
13715 decode_location_default (struct breakpoint *b,
13716 const struct event_location *location,
13717 struct program_space *search_pspace)
13718 {
13719 struct linespec_result canonical;
13720
13721 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13722 NULL, 0, &canonical, multiple_symbols_all,
13723 b->filter);
13724
13725 /* We should get 0 or 1 resulting SALs. */
13726 gdb_assert (canonical.lsals.size () < 2);
13727
13728 if (!canonical.lsals.empty ())
13729 {
13730 const linespec_sals &lsal = canonical.lsals[0];
13731 return std::move (lsal.sals);
13732 }
13733 return {};
13734 }
13735
13736 /* Reset a breakpoint. */
13737
13738 static void
13739 breakpoint_re_set_one (breakpoint *b)
13740 {
13741 input_radix = b->input_radix;
13742 set_language (b->language);
13743
13744 b->ops->re_set (b);
13745 }
13746
13747 /* Re-set breakpoint locations for the current program space.
13748 Locations bound to other program spaces are left untouched. */
13749
13750 void
13751 breakpoint_re_set (void)
13752 {
13753 struct breakpoint *b, *b_tmp;
13754
13755 {
13756 scoped_restore_current_language save_language;
13757 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13758 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13759
13760 /* breakpoint_re_set_one sets the current_language to the language
13761 of the breakpoint it is resetting (see prepare_re_set_context)
13762 before re-evaluating the breakpoint's location. This change can
13763 unfortunately get undone by accident if the language_mode is set
13764 to auto, and we either switch frames, or more likely in this context,
13765 we select the current frame.
13766
13767 We prevent this by temporarily turning the language_mode to
13768 language_mode_manual. We restore it once all breakpoints
13769 have been reset. */
13770 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13771 language_mode = language_mode_manual;
13772
13773 /* Note: we must not try to insert locations until after all
13774 breakpoints have been re-set. Otherwise, e.g., when re-setting
13775 breakpoint 1, we'd insert the locations of breakpoint 2, which
13776 hadn't been re-set yet, and thus may have stale locations. */
13777
13778 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13779 {
13780 try
13781 {
13782 breakpoint_re_set_one (b);
13783 }
13784 catch (const gdb_exception &ex)
13785 {
13786 exception_fprintf (gdb_stderr, ex,
13787 "Error in re-setting breakpoint %d: ",
13788 b->number);
13789 }
13790 }
13791
13792 jit_breakpoint_re_set ();
13793 }
13794
13795 create_overlay_event_breakpoint ();
13796 create_longjmp_master_breakpoint ();
13797 create_std_terminate_master_breakpoint ();
13798 create_exception_master_breakpoint ();
13799
13800 /* Now we can insert. */
13801 update_global_location_list (UGLL_MAY_INSERT);
13802 }
13803 \f
13804 /* Reset the thread number of this breakpoint:
13805
13806 - If the breakpoint is for all threads, leave it as-is.
13807 - Else, reset it to the current thread for inferior_ptid. */
13808 void
13809 breakpoint_re_set_thread (struct breakpoint *b)
13810 {
13811 if (b->thread != -1)
13812 {
13813 b->thread = inferior_thread ()->global_num;
13814
13815 /* We're being called after following a fork. The new fork is
13816 selected as current, and unless this was a vfork will have a
13817 different program space from the original thread. Reset that
13818 as well. */
13819 b->loc->pspace = current_program_space;
13820 }
13821 }
13822
13823 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13824 If from_tty is nonzero, it prints a message to that effect,
13825 which ends with a period (no newline). */
13826
13827 void
13828 set_ignore_count (int bptnum, int count, int from_tty)
13829 {
13830 struct breakpoint *b;
13831
13832 if (count < 0)
13833 count = 0;
13834
13835 ALL_BREAKPOINTS (b)
13836 if (b->number == bptnum)
13837 {
13838 if (is_tracepoint (b))
13839 {
13840 if (from_tty && count != 0)
13841 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13842 bptnum);
13843 return;
13844 }
13845
13846 b->ignore_count = count;
13847 if (from_tty)
13848 {
13849 if (count == 0)
13850 printf_filtered (_("Will stop next time "
13851 "breakpoint %d is reached."),
13852 bptnum);
13853 else if (count == 1)
13854 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13855 bptnum);
13856 else
13857 printf_filtered (_("Will ignore next %d "
13858 "crossings of breakpoint %d."),
13859 count, bptnum);
13860 }
13861 gdb::observers::breakpoint_modified.notify (b);
13862 return;
13863 }
13864
13865 error (_("No breakpoint number %d."), bptnum);
13866 }
13867
13868 /* Command to set ignore-count of breakpoint N to COUNT. */
13869
13870 static void
13871 ignore_command (const char *args, int from_tty)
13872 {
13873 const char *p = args;
13874 int num;
13875
13876 if (p == 0)
13877 error_no_arg (_("a breakpoint number"));
13878
13879 num = get_number (&p);
13880 if (num == 0)
13881 error (_("bad breakpoint number: '%s'"), args);
13882 if (*p == 0)
13883 error (_("Second argument (specified ignore-count) is missing."));
13884
13885 set_ignore_count (num,
13886 longest_to_int (value_as_long (parse_and_eval (p))),
13887 from_tty);
13888 if (from_tty)
13889 printf_filtered ("\n");
13890 }
13891 \f
13892
13893 /* Call FUNCTION on each of the breakpoints with numbers in the range
13894 defined by BP_NUM_RANGE (an inclusive range). */
13895
13896 static void
13897 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13898 gdb::function_view<void (breakpoint *)> function)
13899 {
13900 if (bp_num_range.first == 0)
13901 {
13902 warning (_("bad breakpoint number at or near '%d'"),
13903 bp_num_range.first);
13904 }
13905 else
13906 {
13907 struct breakpoint *b, *tmp;
13908
13909 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13910 {
13911 bool match = false;
13912
13913 ALL_BREAKPOINTS_SAFE (b, tmp)
13914 if (b->number == i)
13915 {
13916 match = true;
13917 function (b);
13918 break;
13919 }
13920 if (!match)
13921 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13922 }
13923 }
13924 }
13925
13926 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13927 ARGS. */
13928
13929 static void
13930 map_breakpoint_numbers (const char *args,
13931 gdb::function_view<void (breakpoint *)> function)
13932 {
13933 if (args == NULL || *args == '\0')
13934 error_no_arg (_("one or more breakpoint numbers"));
13935
13936 number_or_range_parser parser (args);
13937
13938 while (!parser.finished ())
13939 {
13940 int num = parser.get_number ();
13941 map_breakpoint_number_range (std::make_pair (num, num), function);
13942 }
13943 }
13944
13945 /* Return the breakpoint location structure corresponding to the
13946 BP_NUM and LOC_NUM values. */
13947
13948 static struct bp_location *
13949 find_location_by_number (int bp_num, int loc_num)
13950 {
13951 struct breakpoint *b;
13952
13953 ALL_BREAKPOINTS (b)
13954 if (b->number == bp_num)
13955 {
13956 break;
13957 }
13958
13959 if (!b || b->number != bp_num)
13960 error (_("Bad breakpoint number '%d'"), bp_num);
13961
13962 if (loc_num == 0)
13963 error (_("Bad breakpoint location number '%d'"), loc_num);
13964
13965 int n = 0;
13966 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13967 if (++n == loc_num)
13968 return loc;
13969
13970 error (_("Bad breakpoint location number '%d'"), loc_num);
13971 }
13972
13973 /* Modes of operation for extract_bp_num. */
13974 enum class extract_bp_kind
13975 {
13976 /* Extracting a breakpoint number. */
13977 bp,
13978
13979 /* Extracting a location number. */
13980 loc,
13981 };
13982
13983 /* Extract a breakpoint or location number (as determined by KIND)
13984 from the string starting at START. TRAILER is a character which
13985 can be found after the number. If you don't want a trailer, use
13986 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13987 string. This always returns a positive integer. */
13988
13989 static int
13990 extract_bp_num (extract_bp_kind kind, const char *start,
13991 int trailer, const char **end_out = NULL)
13992 {
13993 const char *end = start;
13994 int num = get_number_trailer (&end, trailer);
13995 if (num < 0)
13996 error (kind == extract_bp_kind::bp
13997 ? _("Negative breakpoint number '%.*s'")
13998 : _("Negative breakpoint location number '%.*s'"),
13999 int (end - start), start);
14000 if (num == 0)
14001 error (kind == extract_bp_kind::bp
14002 ? _("Bad breakpoint number '%.*s'")
14003 : _("Bad breakpoint location number '%.*s'"),
14004 int (end - start), start);
14005
14006 if (end_out != NULL)
14007 *end_out = end;
14008 return num;
14009 }
14010
14011 /* Extract a breakpoint or location range (as determined by KIND) in
14012 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14013 representing the (inclusive) range. The returned pair's elements
14014 are always positive integers. */
14015
14016 static std::pair<int, int>
14017 extract_bp_or_bp_range (extract_bp_kind kind,
14018 const std::string &arg,
14019 std::string::size_type arg_offset)
14020 {
14021 std::pair<int, int> range;
14022 const char *bp_loc = &arg[arg_offset];
14023 std::string::size_type dash = arg.find ('-', arg_offset);
14024 if (dash != std::string::npos)
14025 {
14026 /* bp_loc is a range (x-z). */
14027 if (arg.length () == dash + 1)
14028 error (kind == extract_bp_kind::bp
14029 ? _("Bad breakpoint number at or near: '%s'")
14030 : _("Bad breakpoint location number at or near: '%s'"),
14031 bp_loc);
14032
14033 const char *end;
14034 const char *start_first = bp_loc;
14035 const char *start_second = &arg[dash + 1];
14036 range.first = extract_bp_num (kind, start_first, '-');
14037 range.second = extract_bp_num (kind, start_second, '\0', &end);
14038
14039 if (range.first > range.second)
14040 error (kind == extract_bp_kind::bp
14041 ? _("Inverted breakpoint range at '%.*s'")
14042 : _("Inverted breakpoint location range at '%.*s'"),
14043 int (end - start_first), start_first);
14044 }
14045 else
14046 {
14047 /* bp_loc is a single value. */
14048 range.first = extract_bp_num (kind, bp_loc, '\0');
14049 range.second = range.first;
14050 }
14051 return range;
14052 }
14053
14054 /* Extract the breakpoint/location range specified by ARG. Returns
14055 the breakpoint range in BP_NUM_RANGE, and the location range in
14056 BP_LOC_RANGE.
14057
14058 ARG may be in any of the following forms:
14059
14060 x where 'x' is a breakpoint number.
14061 x-y where 'x' and 'y' specify a breakpoint numbers range.
14062 x.y where 'x' is a breakpoint number and 'y' a location number.
14063 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14064 location number range.
14065 */
14066
14067 static void
14068 extract_bp_number_and_location (const std::string &arg,
14069 std::pair<int, int> &bp_num_range,
14070 std::pair<int, int> &bp_loc_range)
14071 {
14072 std::string::size_type dot = arg.find ('.');
14073
14074 if (dot != std::string::npos)
14075 {
14076 /* Handle 'x.y' and 'x.y-z' cases. */
14077
14078 if (arg.length () == dot + 1 || dot == 0)
14079 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14080
14081 bp_num_range.first
14082 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14083 bp_num_range.second = bp_num_range.first;
14084
14085 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14086 arg, dot + 1);
14087 }
14088 else
14089 {
14090 /* Handle x and x-y cases. */
14091
14092 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14093 bp_loc_range.first = 0;
14094 bp_loc_range.second = 0;
14095 }
14096 }
14097
14098 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14099 specifies whether to enable or disable. */
14100
14101 static void
14102 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14103 {
14104 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14105 if (loc != NULL)
14106 {
14107 if (loc->enabled != enable)
14108 {
14109 loc->enabled = enable;
14110 mark_breakpoint_location_modified (loc);
14111 }
14112 if (target_supports_enable_disable_tracepoint ()
14113 && current_trace_status ()->running && loc->owner
14114 && is_tracepoint (loc->owner))
14115 target_disable_tracepoint (loc);
14116 }
14117 update_global_location_list (UGLL_DONT_INSERT);
14118
14119 gdb::observers::breakpoint_modified.notify (loc->owner);
14120 }
14121
14122 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14123 number of the breakpoint, and BP_LOC_RANGE specifies the
14124 (inclusive) range of location numbers of that breakpoint to
14125 enable/disable. ENABLE specifies whether to enable or disable the
14126 location. */
14127
14128 static void
14129 enable_disable_breakpoint_location_range (int bp_num,
14130 std::pair<int, int> &bp_loc_range,
14131 bool enable)
14132 {
14133 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14134 enable_disable_bp_num_loc (bp_num, i, enable);
14135 }
14136
14137 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14138 If from_tty is nonzero, it prints a message to that effect,
14139 which ends with a period (no newline). */
14140
14141 void
14142 disable_breakpoint (struct breakpoint *bpt)
14143 {
14144 /* Never disable a watchpoint scope breakpoint; we want to
14145 hit them when we leave scope so we can delete both the
14146 watchpoint and its scope breakpoint at that time. */
14147 if (bpt->type == bp_watchpoint_scope)
14148 return;
14149
14150 bpt->enable_state = bp_disabled;
14151
14152 /* Mark breakpoint locations modified. */
14153 mark_breakpoint_modified (bpt);
14154
14155 if (target_supports_enable_disable_tracepoint ()
14156 && current_trace_status ()->running && is_tracepoint (bpt))
14157 {
14158 struct bp_location *location;
14159
14160 for (location = bpt->loc; location; location = location->next)
14161 target_disable_tracepoint (location);
14162 }
14163
14164 update_global_location_list (UGLL_DONT_INSERT);
14165
14166 gdb::observers::breakpoint_modified.notify (bpt);
14167 }
14168
14169 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14170 specified in ARGS. ARGS may be in any of the formats handled by
14171 extract_bp_number_and_location. ENABLE specifies whether to enable
14172 or disable the breakpoints/locations. */
14173
14174 static void
14175 enable_disable_command (const char *args, int from_tty, bool enable)
14176 {
14177 if (args == 0)
14178 {
14179 struct breakpoint *bpt;
14180
14181 ALL_BREAKPOINTS (bpt)
14182 if (user_breakpoint_p (bpt))
14183 {
14184 if (enable)
14185 enable_breakpoint (bpt);
14186 else
14187 disable_breakpoint (bpt);
14188 }
14189 }
14190 else
14191 {
14192 std::string num = extract_arg (&args);
14193
14194 while (!num.empty ())
14195 {
14196 std::pair<int, int> bp_num_range, bp_loc_range;
14197
14198 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14199
14200 if (bp_loc_range.first == bp_loc_range.second
14201 && bp_loc_range.first == 0)
14202 {
14203 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14204 map_breakpoint_number_range (bp_num_range,
14205 enable
14206 ? enable_breakpoint
14207 : disable_breakpoint);
14208 }
14209 else
14210 {
14211 /* Handle breakpoint ids with formats 'x.y' or
14212 'x.y-z'. */
14213 enable_disable_breakpoint_location_range
14214 (bp_num_range.first, bp_loc_range, enable);
14215 }
14216 num = extract_arg (&args);
14217 }
14218 }
14219 }
14220
14221 /* The disable command disables the specified breakpoints/locations
14222 (or all defined breakpoints) so they're no longer effective in
14223 stopping the inferior. ARGS may be in any of the forms defined in
14224 extract_bp_number_and_location. */
14225
14226 static void
14227 disable_command (const char *args, int from_tty)
14228 {
14229 enable_disable_command (args, from_tty, false);
14230 }
14231
14232 static void
14233 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14234 int count)
14235 {
14236 int target_resources_ok;
14237
14238 if (bpt->type == bp_hardware_breakpoint)
14239 {
14240 int i;
14241 i = hw_breakpoint_used_count ();
14242 target_resources_ok =
14243 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14244 i + 1, 0);
14245 if (target_resources_ok == 0)
14246 error (_("No hardware breakpoint support in the target."));
14247 else if (target_resources_ok < 0)
14248 error (_("Hardware breakpoints used exceeds limit."));
14249 }
14250
14251 if (is_watchpoint (bpt))
14252 {
14253 /* Initialize it just to avoid a GCC false warning. */
14254 enum enable_state orig_enable_state = bp_disabled;
14255
14256 try
14257 {
14258 struct watchpoint *w = (struct watchpoint *) bpt;
14259
14260 orig_enable_state = bpt->enable_state;
14261 bpt->enable_state = bp_enabled;
14262 update_watchpoint (w, 1 /* reparse */);
14263 }
14264 catch (const gdb_exception &e)
14265 {
14266 bpt->enable_state = orig_enable_state;
14267 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14268 bpt->number);
14269 return;
14270 }
14271 }
14272
14273 bpt->enable_state = bp_enabled;
14274
14275 /* Mark breakpoint locations modified. */
14276 mark_breakpoint_modified (bpt);
14277
14278 if (target_supports_enable_disable_tracepoint ()
14279 && current_trace_status ()->running && is_tracepoint (bpt))
14280 {
14281 struct bp_location *location;
14282
14283 for (location = bpt->loc; location; location = location->next)
14284 target_enable_tracepoint (location);
14285 }
14286
14287 bpt->disposition = disposition;
14288 bpt->enable_count = count;
14289 update_global_location_list (UGLL_MAY_INSERT);
14290
14291 gdb::observers::breakpoint_modified.notify (bpt);
14292 }
14293
14294
14295 void
14296 enable_breakpoint (struct breakpoint *bpt)
14297 {
14298 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14299 }
14300
14301 /* The enable command enables the specified breakpoints/locations (or
14302 all defined breakpoints) so they once again become (or continue to
14303 be) effective in stopping the inferior. ARGS may be in any of the
14304 forms defined in extract_bp_number_and_location. */
14305
14306 static void
14307 enable_command (const char *args, int from_tty)
14308 {
14309 enable_disable_command (args, from_tty, true);
14310 }
14311
14312 static void
14313 enable_once_command (const char *args, int from_tty)
14314 {
14315 map_breakpoint_numbers
14316 (args, [&] (breakpoint *b)
14317 {
14318 iterate_over_related_breakpoints
14319 (b, [&] (breakpoint *bpt)
14320 {
14321 enable_breakpoint_disp (bpt, disp_disable, 1);
14322 });
14323 });
14324 }
14325
14326 static void
14327 enable_count_command (const char *args, int from_tty)
14328 {
14329 int count;
14330
14331 if (args == NULL)
14332 error_no_arg (_("hit count"));
14333
14334 count = get_number (&args);
14335
14336 map_breakpoint_numbers
14337 (args, [&] (breakpoint *b)
14338 {
14339 iterate_over_related_breakpoints
14340 (b, [&] (breakpoint *bpt)
14341 {
14342 enable_breakpoint_disp (bpt, disp_disable, count);
14343 });
14344 });
14345 }
14346
14347 static void
14348 enable_delete_command (const char *args, int from_tty)
14349 {
14350 map_breakpoint_numbers
14351 (args, [&] (breakpoint *b)
14352 {
14353 iterate_over_related_breakpoints
14354 (b, [&] (breakpoint *bpt)
14355 {
14356 enable_breakpoint_disp (bpt, disp_del, 1);
14357 });
14358 });
14359 }
14360 \f
14361 static void
14362 set_breakpoint_cmd (const char *args, int from_tty)
14363 {
14364 }
14365
14366 static void
14367 show_breakpoint_cmd (const char *args, int from_tty)
14368 {
14369 }
14370
14371 /* Invalidate last known value of any hardware watchpoint if
14372 the memory which that value represents has been written to by
14373 GDB itself. */
14374
14375 static void
14376 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14377 CORE_ADDR addr, ssize_t len,
14378 const bfd_byte *data)
14379 {
14380 struct breakpoint *bp;
14381
14382 ALL_BREAKPOINTS (bp)
14383 if (bp->enable_state == bp_enabled
14384 && bp->type == bp_hardware_watchpoint)
14385 {
14386 struct watchpoint *wp = (struct watchpoint *) bp;
14387
14388 if (wp->val_valid && wp->val != nullptr)
14389 {
14390 struct bp_location *loc;
14391
14392 for (loc = bp->loc; loc != NULL; loc = loc->next)
14393 if (loc->loc_type == bp_loc_hardware_watchpoint
14394 && loc->address + loc->length > addr
14395 && addr + len > loc->address)
14396 {
14397 wp->val = NULL;
14398 wp->val_valid = 0;
14399 }
14400 }
14401 }
14402 }
14403
14404 /* Create and insert a breakpoint for software single step. */
14405
14406 void
14407 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14408 const address_space *aspace,
14409 CORE_ADDR next_pc)
14410 {
14411 struct thread_info *tp = inferior_thread ();
14412 struct symtab_and_line sal;
14413 CORE_ADDR pc = next_pc;
14414
14415 if (tp->control.single_step_breakpoints == NULL)
14416 {
14417 tp->control.single_step_breakpoints
14418 = new_single_step_breakpoint (tp->global_num, gdbarch);
14419 }
14420
14421 sal = find_pc_line (pc, 0);
14422 sal.pc = pc;
14423 sal.section = find_pc_overlay (pc);
14424 sal.explicit_pc = 1;
14425 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14426
14427 update_global_location_list (UGLL_INSERT);
14428 }
14429
14430 /* Insert single step breakpoints according to the current state. */
14431
14432 int
14433 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14434 {
14435 struct regcache *regcache = get_current_regcache ();
14436 std::vector<CORE_ADDR> next_pcs;
14437
14438 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14439
14440 if (!next_pcs.empty ())
14441 {
14442 struct frame_info *frame = get_current_frame ();
14443 const address_space *aspace = get_frame_address_space (frame);
14444
14445 for (CORE_ADDR pc : next_pcs)
14446 insert_single_step_breakpoint (gdbarch, aspace, pc);
14447
14448 return 1;
14449 }
14450 else
14451 return 0;
14452 }
14453
14454 /* See breakpoint.h. */
14455
14456 int
14457 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14458 const address_space *aspace,
14459 CORE_ADDR pc)
14460 {
14461 struct bp_location *loc;
14462
14463 for (loc = bp->loc; loc != NULL; loc = loc->next)
14464 if (loc->inserted
14465 && breakpoint_location_address_match (loc, aspace, pc))
14466 return 1;
14467
14468 return 0;
14469 }
14470
14471 /* Check whether a software single-step breakpoint is inserted at
14472 PC. */
14473
14474 int
14475 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14476 CORE_ADDR pc)
14477 {
14478 struct breakpoint *bpt;
14479
14480 ALL_BREAKPOINTS (bpt)
14481 {
14482 if (bpt->type == bp_single_step
14483 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14484 return 1;
14485 }
14486 return 0;
14487 }
14488
14489 /* Tracepoint-specific operations. */
14490
14491 /* Set tracepoint count to NUM. */
14492 static void
14493 set_tracepoint_count (int num)
14494 {
14495 tracepoint_count = num;
14496 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14497 }
14498
14499 static void
14500 trace_command (const char *arg, int from_tty)
14501 {
14502 struct breakpoint_ops *ops;
14503
14504 event_location_up location = string_to_event_location (&arg,
14505 current_language);
14506 if (location != NULL
14507 && event_location_type (location.get ()) == PROBE_LOCATION)
14508 ops = &tracepoint_probe_breakpoint_ops;
14509 else
14510 ops = &tracepoint_breakpoint_ops;
14511
14512 create_breakpoint (get_current_arch (),
14513 location.get (),
14514 NULL, 0, arg, 1 /* parse arg */,
14515 0 /* tempflag */,
14516 bp_tracepoint /* type_wanted */,
14517 0 /* Ignore count */,
14518 pending_break_support,
14519 ops,
14520 from_tty,
14521 1 /* enabled */,
14522 0 /* internal */, 0);
14523 }
14524
14525 static void
14526 ftrace_command (const char *arg, int from_tty)
14527 {
14528 event_location_up location = string_to_event_location (&arg,
14529 current_language);
14530 create_breakpoint (get_current_arch (),
14531 location.get (),
14532 NULL, 0, arg, 1 /* parse arg */,
14533 0 /* tempflag */,
14534 bp_fast_tracepoint /* type_wanted */,
14535 0 /* Ignore count */,
14536 pending_break_support,
14537 &tracepoint_breakpoint_ops,
14538 from_tty,
14539 1 /* enabled */,
14540 0 /* internal */, 0);
14541 }
14542
14543 /* strace command implementation. Creates a static tracepoint. */
14544
14545 static void
14546 strace_command (const char *arg, int from_tty)
14547 {
14548 struct breakpoint_ops *ops;
14549 event_location_up location;
14550
14551 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14552 or with a normal static tracepoint. */
14553 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14554 {
14555 ops = &strace_marker_breakpoint_ops;
14556 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14557 }
14558 else
14559 {
14560 ops = &tracepoint_breakpoint_ops;
14561 location = string_to_event_location (&arg, current_language);
14562 }
14563
14564 create_breakpoint (get_current_arch (),
14565 location.get (),
14566 NULL, 0, arg, 1 /* parse arg */,
14567 0 /* tempflag */,
14568 bp_static_tracepoint /* type_wanted */,
14569 0 /* Ignore count */,
14570 pending_break_support,
14571 ops,
14572 from_tty,
14573 1 /* enabled */,
14574 0 /* internal */, 0);
14575 }
14576
14577 /* Set up a fake reader function that gets command lines from a linked
14578 list that was acquired during tracepoint uploading. */
14579
14580 static struct uploaded_tp *this_utp;
14581 static int next_cmd;
14582
14583 static char *
14584 read_uploaded_action (void)
14585 {
14586 char *rslt = nullptr;
14587
14588 if (next_cmd < this_utp->cmd_strings.size ())
14589 {
14590 rslt = this_utp->cmd_strings[next_cmd].get ();
14591 next_cmd++;
14592 }
14593
14594 return rslt;
14595 }
14596
14597 /* Given information about a tracepoint as recorded on a target (which
14598 can be either a live system or a trace file), attempt to create an
14599 equivalent GDB tracepoint. This is not a reliable process, since
14600 the target does not necessarily have all the information used when
14601 the tracepoint was originally defined. */
14602
14603 struct tracepoint *
14604 create_tracepoint_from_upload (struct uploaded_tp *utp)
14605 {
14606 const char *addr_str;
14607 char small_buf[100];
14608 struct tracepoint *tp;
14609
14610 if (utp->at_string)
14611 addr_str = utp->at_string.get ();
14612 else
14613 {
14614 /* In the absence of a source location, fall back to raw
14615 address. Since there is no way to confirm that the address
14616 means the same thing as when the trace was started, warn the
14617 user. */
14618 warning (_("Uploaded tracepoint %d has no "
14619 "source location, using raw address"),
14620 utp->number);
14621 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14622 addr_str = small_buf;
14623 }
14624
14625 /* There's not much we can do with a sequence of bytecodes. */
14626 if (utp->cond && !utp->cond_string)
14627 warning (_("Uploaded tracepoint %d condition "
14628 "has no source form, ignoring it"),
14629 utp->number);
14630
14631 event_location_up location = string_to_event_location (&addr_str,
14632 current_language);
14633 if (!create_breakpoint (get_current_arch (),
14634 location.get (),
14635 utp->cond_string.get (), -1, addr_str,
14636 0 /* parse cond/thread */,
14637 0 /* tempflag */,
14638 utp->type /* type_wanted */,
14639 0 /* Ignore count */,
14640 pending_break_support,
14641 &tracepoint_breakpoint_ops,
14642 0 /* from_tty */,
14643 utp->enabled /* enabled */,
14644 0 /* internal */,
14645 CREATE_BREAKPOINT_FLAGS_INSERTED))
14646 return NULL;
14647
14648 /* Get the tracepoint we just created. */
14649 tp = get_tracepoint (tracepoint_count);
14650 gdb_assert (tp != NULL);
14651
14652 if (utp->pass > 0)
14653 {
14654 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14655 tp->number);
14656
14657 trace_pass_command (small_buf, 0);
14658 }
14659
14660 /* If we have uploaded versions of the original commands, set up a
14661 special-purpose "reader" function and call the usual command line
14662 reader, then pass the result to the breakpoint command-setting
14663 function. */
14664 if (!utp->cmd_strings.empty ())
14665 {
14666 counted_command_line cmd_list;
14667
14668 this_utp = utp;
14669 next_cmd = 0;
14670
14671 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14672
14673 breakpoint_set_commands (tp, std::move (cmd_list));
14674 }
14675 else if (!utp->actions.empty ()
14676 || !utp->step_actions.empty ())
14677 warning (_("Uploaded tracepoint %d actions "
14678 "have no source form, ignoring them"),
14679 utp->number);
14680
14681 /* Copy any status information that might be available. */
14682 tp->hit_count = utp->hit_count;
14683 tp->traceframe_usage = utp->traceframe_usage;
14684
14685 return tp;
14686 }
14687
14688 /* Print information on tracepoint number TPNUM_EXP, or all if
14689 omitted. */
14690
14691 static void
14692 info_tracepoints_command (const char *args, int from_tty)
14693 {
14694 struct ui_out *uiout = current_uiout;
14695 int num_printed;
14696
14697 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14698
14699 if (num_printed == 0)
14700 {
14701 if (args == NULL || *args == '\0')
14702 uiout->message ("No tracepoints.\n");
14703 else
14704 uiout->message ("No tracepoint matching '%s'.\n", args);
14705 }
14706
14707 default_collect_info ();
14708 }
14709
14710 /* The 'enable trace' command enables tracepoints.
14711 Not supported by all targets. */
14712 static void
14713 enable_trace_command (const char *args, int from_tty)
14714 {
14715 enable_command (args, from_tty);
14716 }
14717
14718 /* The 'disable trace' command disables tracepoints.
14719 Not supported by all targets. */
14720 static void
14721 disable_trace_command (const char *args, int from_tty)
14722 {
14723 disable_command (args, from_tty);
14724 }
14725
14726 /* Remove a tracepoint (or all if no argument). */
14727 static void
14728 delete_trace_command (const char *arg, int from_tty)
14729 {
14730 struct breakpoint *b, *b_tmp;
14731
14732 dont_repeat ();
14733
14734 if (arg == 0)
14735 {
14736 int breaks_to_delete = 0;
14737
14738 /* Delete all breakpoints if no argument.
14739 Do not delete internal or call-dummy breakpoints, these
14740 have to be deleted with an explicit breakpoint number
14741 argument. */
14742 ALL_TRACEPOINTS (b)
14743 if (is_tracepoint (b) && user_breakpoint_p (b))
14744 {
14745 breaks_to_delete = 1;
14746 break;
14747 }
14748
14749 /* Ask user only if there are some breakpoints to delete. */
14750 if (!from_tty
14751 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14752 {
14753 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14754 if (is_tracepoint (b) && user_breakpoint_p (b))
14755 delete_breakpoint (b);
14756 }
14757 }
14758 else
14759 map_breakpoint_numbers
14760 (arg, [&] (breakpoint *br)
14761 {
14762 iterate_over_related_breakpoints (br, delete_breakpoint);
14763 });
14764 }
14765
14766 /* Helper function for trace_pass_command. */
14767
14768 static void
14769 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14770 {
14771 tp->pass_count = count;
14772 gdb::observers::breakpoint_modified.notify (tp);
14773 if (from_tty)
14774 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14775 tp->number, count);
14776 }
14777
14778 /* Set passcount for tracepoint.
14779
14780 First command argument is passcount, second is tracepoint number.
14781 If tracepoint number omitted, apply to most recently defined.
14782 Also accepts special argument "all". */
14783
14784 static void
14785 trace_pass_command (const char *args, int from_tty)
14786 {
14787 struct tracepoint *t1;
14788 ULONGEST count;
14789
14790 if (args == 0 || *args == 0)
14791 error (_("passcount command requires an "
14792 "argument (count + optional TP num)"));
14793
14794 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14795
14796 args = skip_spaces (args);
14797 if (*args && strncasecmp (args, "all", 3) == 0)
14798 {
14799 struct breakpoint *b;
14800
14801 args += 3; /* Skip special argument "all". */
14802 if (*args)
14803 error (_("Junk at end of arguments."));
14804
14805 ALL_TRACEPOINTS (b)
14806 {
14807 t1 = (struct tracepoint *) b;
14808 trace_pass_set_count (t1, count, from_tty);
14809 }
14810 }
14811 else if (*args == '\0')
14812 {
14813 t1 = get_tracepoint_by_number (&args, NULL);
14814 if (t1)
14815 trace_pass_set_count (t1, count, from_tty);
14816 }
14817 else
14818 {
14819 number_or_range_parser parser (args);
14820 while (!parser.finished ())
14821 {
14822 t1 = get_tracepoint_by_number (&args, &parser);
14823 if (t1)
14824 trace_pass_set_count (t1, count, from_tty);
14825 }
14826 }
14827 }
14828
14829 struct tracepoint *
14830 get_tracepoint (int num)
14831 {
14832 struct breakpoint *t;
14833
14834 ALL_TRACEPOINTS (t)
14835 if (t->number == num)
14836 return (struct tracepoint *) t;
14837
14838 return NULL;
14839 }
14840
14841 /* Find the tracepoint with the given target-side number (which may be
14842 different from the tracepoint number after disconnecting and
14843 reconnecting). */
14844
14845 struct tracepoint *
14846 get_tracepoint_by_number_on_target (int num)
14847 {
14848 struct breakpoint *b;
14849
14850 ALL_TRACEPOINTS (b)
14851 {
14852 struct tracepoint *t = (struct tracepoint *) b;
14853
14854 if (t->number_on_target == num)
14855 return t;
14856 }
14857
14858 return NULL;
14859 }
14860
14861 /* Utility: parse a tracepoint number and look it up in the list.
14862 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14863 If the argument is missing, the most recent tracepoint
14864 (tracepoint_count) is returned. */
14865
14866 struct tracepoint *
14867 get_tracepoint_by_number (const char **arg,
14868 number_or_range_parser *parser)
14869 {
14870 struct breakpoint *t;
14871 int tpnum;
14872 const char *instring = arg == NULL ? NULL : *arg;
14873
14874 if (parser != NULL)
14875 {
14876 gdb_assert (!parser->finished ());
14877 tpnum = parser->get_number ();
14878 }
14879 else if (arg == NULL || *arg == NULL || ! **arg)
14880 tpnum = tracepoint_count;
14881 else
14882 tpnum = get_number (arg);
14883
14884 if (tpnum <= 0)
14885 {
14886 if (instring && *instring)
14887 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14888 instring);
14889 else
14890 printf_filtered (_("No previous tracepoint\n"));
14891 return NULL;
14892 }
14893
14894 ALL_TRACEPOINTS (t)
14895 if (t->number == tpnum)
14896 {
14897 return (struct tracepoint *) t;
14898 }
14899
14900 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14901 return NULL;
14902 }
14903
14904 void
14905 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14906 {
14907 if (b->thread != -1)
14908 fprintf_unfiltered (fp, " thread %d", b->thread);
14909
14910 if (b->task != 0)
14911 fprintf_unfiltered (fp, " task %d", b->task);
14912
14913 fprintf_unfiltered (fp, "\n");
14914 }
14915
14916 /* Save information on user settable breakpoints (watchpoints, etc) to
14917 a new script file named FILENAME. If FILTER is non-NULL, call it
14918 on each breakpoint and only include the ones for which it returns
14919 non-zero. */
14920
14921 static void
14922 save_breakpoints (const char *filename, int from_tty,
14923 int (*filter) (const struct breakpoint *))
14924 {
14925 struct breakpoint *tp;
14926 int any = 0;
14927 int extra_trace_bits = 0;
14928
14929 if (filename == 0 || *filename == 0)
14930 error (_("Argument required (file name in which to save)"));
14931
14932 /* See if we have anything to save. */
14933 ALL_BREAKPOINTS (tp)
14934 {
14935 /* Skip internal and momentary breakpoints. */
14936 if (!user_breakpoint_p (tp))
14937 continue;
14938
14939 /* If we have a filter, only save the breakpoints it accepts. */
14940 if (filter && !filter (tp))
14941 continue;
14942
14943 any = 1;
14944
14945 if (is_tracepoint (tp))
14946 {
14947 extra_trace_bits = 1;
14948
14949 /* We can stop searching. */
14950 break;
14951 }
14952 }
14953
14954 if (!any)
14955 {
14956 warning (_("Nothing to save."));
14957 return;
14958 }
14959
14960 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14961
14962 stdio_file fp;
14963
14964 if (!fp.open (expanded_filename.get (), "w"))
14965 error (_("Unable to open file '%s' for saving (%s)"),
14966 expanded_filename.get (), safe_strerror (errno));
14967
14968 if (extra_trace_bits)
14969 save_trace_state_variables (&fp);
14970
14971 ALL_BREAKPOINTS (tp)
14972 {
14973 /* Skip internal and momentary breakpoints. */
14974 if (!user_breakpoint_p (tp))
14975 continue;
14976
14977 /* If we have a filter, only save the breakpoints it accepts. */
14978 if (filter && !filter (tp))
14979 continue;
14980
14981 tp->ops->print_recreate (tp, &fp);
14982
14983 /* Note, we can't rely on tp->number for anything, as we can't
14984 assume the recreated breakpoint numbers will match. Use $bpnum
14985 instead. */
14986
14987 if (tp->cond_string)
14988 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14989
14990 if (tp->ignore_count)
14991 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14992
14993 if (tp->type != bp_dprintf && tp->commands)
14994 {
14995 fp.puts (" commands\n");
14996
14997 current_uiout->redirect (&fp);
14998 try
14999 {
15000 print_command_lines (current_uiout, tp->commands.get (), 2);
15001 }
15002 catch (const gdb_exception &ex)
15003 {
15004 current_uiout->redirect (NULL);
15005 throw;
15006 }
15007
15008 current_uiout->redirect (NULL);
15009 fp.puts (" end\n");
15010 }
15011
15012 if (tp->enable_state == bp_disabled)
15013 fp.puts ("disable $bpnum\n");
15014
15015 /* If this is a multi-location breakpoint, check if the locations
15016 should be individually disabled. Watchpoint locations are
15017 special, and not user visible. */
15018 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15019 {
15020 struct bp_location *loc;
15021 int n = 1;
15022
15023 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15024 if (!loc->enabled)
15025 fp.printf ("disable $bpnum.%d\n", n);
15026 }
15027 }
15028
15029 if (extra_trace_bits && *default_collect)
15030 fp.printf ("set default-collect %s\n", default_collect);
15031
15032 if (from_tty)
15033 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15034 }
15035
15036 /* The `save breakpoints' command. */
15037
15038 static void
15039 save_breakpoints_command (const char *args, int from_tty)
15040 {
15041 save_breakpoints (args, from_tty, NULL);
15042 }
15043
15044 /* The `save tracepoints' command. */
15045
15046 static void
15047 save_tracepoints_command (const char *args, int from_tty)
15048 {
15049 save_breakpoints (args, from_tty, is_tracepoint);
15050 }
15051
15052 /* Create a vector of all tracepoints. */
15053
15054 std::vector<breakpoint *>
15055 all_tracepoints (void)
15056 {
15057 std::vector<breakpoint *> tp_vec;
15058 struct breakpoint *tp;
15059
15060 ALL_TRACEPOINTS (tp)
15061 {
15062 tp_vec.push_back (tp);
15063 }
15064
15065 return tp_vec;
15066 }
15067
15068 \f
15069 /* This help string is used to consolidate all the help string for specifying
15070 locations used by several commands. */
15071
15072 #define LOCATION_HELP_STRING \
15073 "Linespecs are colon-separated lists of location parameters, such as\n\
15074 source filename, function name, label name, and line number.\n\
15075 Example: To specify the start of a label named \"the_top\" in the\n\
15076 function \"fact\" in the file \"factorial.c\", use\n\
15077 \"factorial.c:fact:the_top\".\n\
15078 \n\
15079 Address locations begin with \"*\" and specify an exact address in the\n\
15080 program. Example: To specify the fourth byte past the start function\n\
15081 \"main\", use \"*main + 4\".\n\
15082 \n\
15083 Explicit locations are similar to linespecs but use an option/argument\n\
15084 syntax to specify location parameters.\n\
15085 Example: To specify the start of the label named \"the_top\" in the\n\
15086 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15087 -function fact -label the_top\".\n\
15088 \n\
15089 By default, a specified function is matched against the program's\n\
15090 functions in all scopes. For C++, this means in all namespaces and\n\
15091 classes. For Ada, this means in all packages. E.g., in C++,\n\
15092 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15093 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15094 specified name as a complete fully-qualified name instead."
15095
15096 /* This help string is used for the break, hbreak, tbreak and thbreak
15097 commands. It is defined as a macro to prevent duplication.
15098 COMMAND should be a string constant containing the name of the
15099 command. */
15100
15101 #define BREAK_ARGS_HELP(command) \
15102 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15103 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15104 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15105 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15106 `-probe-dtrace' (for a DTrace probe).\n\
15107 LOCATION may be a linespec, address, or explicit location as described\n\
15108 below.\n\
15109 \n\
15110 With no LOCATION, uses current execution address of the selected\n\
15111 stack frame. This is useful for breaking on return to a stack frame.\n\
15112 \n\
15113 THREADNUM is the number from \"info threads\".\n\
15114 CONDITION is a boolean expression.\n\
15115 \n" LOCATION_HELP_STRING "\n\n\
15116 Multiple breakpoints at one place are permitted, and useful if their\n\
15117 conditions are different.\n\
15118 \n\
15119 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15120
15121 /* List of subcommands for "catch". */
15122 static struct cmd_list_element *catch_cmdlist;
15123
15124 /* List of subcommands for "tcatch". */
15125 static struct cmd_list_element *tcatch_cmdlist;
15126
15127 void
15128 add_catch_command (const char *name, const char *docstring,
15129 cmd_const_sfunc_ftype *sfunc,
15130 completer_ftype *completer,
15131 void *user_data_catch,
15132 void *user_data_tcatch)
15133 {
15134 struct cmd_list_element *command;
15135
15136 command = add_cmd (name, class_breakpoint, docstring,
15137 &catch_cmdlist);
15138 set_cmd_sfunc (command, sfunc);
15139 set_cmd_context (command, user_data_catch);
15140 set_cmd_completer (command, completer);
15141
15142 command = add_cmd (name, class_breakpoint, docstring,
15143 &tcatch_cmdlist);
15144 set_cmd_sfunc (command, sfunc);
15145 set_cmd_context (command, user_data_tcatch);
15146 set_cmd_completer (command, completer);
15147 }
15148
15149 static void
15150 save_command (const char *arg, int from_tty)
15151 {
15152 printf_unfiltered (_("\"save\" must be followed by "
15153 "the name of a save subcommand.\n"));
15154 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15155 }
15156
15157 struct breakpoint *
15158 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15159 void *data)
15160 {
15161 struct breakpoint *b, *b_tmp;
15162
15163 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15164 {
15165 if ((*callback) (b, data))
15166 return b;
15167 }
15168
15169 return NULL;
15170 }
15171
15172 /* Zero if any of the breakpoint's locations could be a location where
15173 functions have been inlined, nonzero otherwise. */
15174
15175 static int
15176 is_non_inline_function (struct breakpoint *b)
15177 {
15178 /* The shared library event breakpoint is set on the address of a
15179 non-inline function. */
15180 if (b->type == bp_shlib_event)
15181 return 1;
15182
15183 return 0;
15184 }
15185
15186 /* Nonzero if the specified PC cannot be a location where functions
15187 have been inlined. */
15188
15189 int
15190 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15191 const struct target_waitstatus *ws)
15192 {
15193 struct breakpoint *b;
15194 struct bp_location *bl;
15195
15196 ALL_BREAKPOINTS (b)
15197 {
15198 if (!is_non_inline_function (b))
15199 continue;
15200
15201 for (bl = b->loc; bl != NULL; bl = bl->next)
15202 {
15203 if (!bl->shlib_disabled
15204 && bpstat_check_location (bl, aspace, pc, ws))
15205 return 1;
15206 }
15207 }
15208
15209 return 0;
15210 }
15211
15212 /* Remove any references to OBJFILE which is going to be freed. */
15213
15214 void
15215 breakpoint_free_objfile (struct objfile *objfile)
15216 {
15217 struct bp_location **locp, *loc;
15218
15219 ALL_BP_LOCATIONS (loc, locp)
15220 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15221 loc->symtab = NULL;
15222 }
15223
15224 void
15225 initialize_breakpoint_ops (void)
15226 {
15227 static int initialized = 0;
15228
15229 struct breakpoint_ops *ops;
15230
15231 if (initialized)
15232 return;
15233 initialized = 1;
15234
15235 /* The breakpoint_ops structure to be inherit by all kinds of
15236 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15237 internal and momentary breakpoints, etc.). */
15238 ops = &bkpt_base_breakpoint_ops;
15239 *ops = base_breakpoint_ops;
15240 ops->re_set = bkpt_re_set;
15241 ops->insert_location = bkpt_insert_location;
15242 ops->remove_location = bkpt_remove_location;
15243 ops->breakpoint_hit = bkpt_breakpoint_hit;
15244 ops->create_sals_from_location = bkpt_create_sals_from_location;
15245 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15246 ops->decode_location = bkpt_decode_location;
15247
15248 /* The breakpoint_ops structure to be used in regular breakpoints. */
15249 ops = &bkpt_breakpoint_ops;
15250 *ops = bkpt_base_breakpoint_ops;
15251 ops->re_set = bkpt_re_set;
15252 ops->resources_needed = bkpt_resources_needed;
15253 ops->print_it = bkpt_print_it;
15254 ops->print_mention = bkpt_print_mention;
15255 ops->print_recreate = bkpt_print_recreate;
15256
15257 /* Ranged breakpoints. */
15258 ops = &ranged_breakpoint_ops;
15259 *ops = bkpt_breakpoint_ops;
15260 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15261 ops->resources_needed = resources_needed_ranged_breakpoint;
15262 ops->print_it = print_it_ranged_breakpoint;
15263 ops->print_one = print_one_ranged_breakpoint;
15264 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15265 ops->print_mention = print_mention_ranged_breakpoint;
15266 ops->print_recreate = print_recreate_ranged_breakpoint;
15267
15268 /* Internal breakpoints. */
15269 ops = &internal_breakpoint_ops;
15270 *ops = bkpt_base_breakpoint_ops;
15271 ops->re_set = internal_bkpt_re_set;
15272 ops->check_status = internal_bkpt_check_status;
15273 ops->print_it = internal_bkpt_print_it;
15274 ops->print_mention = internal_bkpt_print_mention;
15275
15276 /* Momentary breakpoints. */
15277 ops = &momentary_breakpoint_ops;
15278 *ops = bkpt_base_breakpoint_ops;
15279 ops->re_set = momentary_bkpt_re_set;
15280 ops->check_status = momentary_bkpt_check_status;
15281 ops->print_it = momentary_bkpt_print_it;
15282 ops->print_mention = momentary_bkpt_print_mention;
15283
15284 /* Probe breakpoints. */
15285 ops = &bkpt_probe_breakpoint_ops;
15286 *ops = bkpt_breakpoint_ops;
15287 ops->insert_location = bkpt_probe_insert_location;
15288 ops->remove_location = bkpt_probe_remove_location;
15289 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15290 ops->decode_location = bkpt_probe_decode_location;
15291
15292 /* Watchpoints. */
15293 ops = &watchpoint_breakpoint_ops;
15294 *ops = base_breakpoint_ops;
15295 ops->re_set = re_set_watchpoint;
15296 ops->insert_location = insert_watchpoint;
15297 ops->remove_location = remove_watchpoint;
15298 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15299 ops->check_status = check_status_watchpoint;
15300 ops->resources_needed = resources_needed_watchpoint;
15301 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15302 ops->print_it = print_it_watchpoint;
15303 ops->print_mention = print_mention_watchpoint;
15304 ops->print_recreate = print_recreate_watchpoint;
15305 ops->explains_signal = explains_signal_watchpoint;
15306
15307 /* Masked watchpoints. */
15308 ops = &masked_watchpoint_breakpoint_ops;
15309 *ops = watchpoint_breakpoint_ops;
15310 ops->insert_location = insert_masked_watchpoint;
15311 ops->remove_location = remove_masked_watchpoint;
15312 ops->resources_needed = resources_needed_masked_watchpoint;
15313 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15314 ops->print_it = print_it_masked_watchpoint;
15315 ops->print_one_detail = print_one_detail_masked_watchpoint;
15316 ops->print_mention = print_mention_masked_watchpoint;
15317 ops->print_recreate = print_recreate_masked_watchpoint;
15318
15319 /* Tracepoints. */
15320 ops = &tracepoint_breakpoint_ops;
15321 *ops = base_breakpoint_ops;
15322 ops->re_set = tracepoint_re_set;
15323 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15324 ops->print_one_detail = tracepoint_print_one_detail;
15325 ops->print_mention = tracepoint_print_mention;
15326 ops->print_recreate = tracepoint_print_recreate;
15327 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15328 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15329 ops->decode_location = tracepoint_decode_location;
15330
15331 /* Probe tracepoints. */
15332 ops = &tracepoint_probe_breakpoint_ops;
15333 *ops = tracepoint_breakpoint_ops;
15334 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15335 ops->decode_location = tracepoint_probe_decode_location;
15336
15337 /* Static tracepoints with marker (`-m'). */
15338 ops = &strace_marker_breakpoint_ops;
15339 *ops = tracepoint_breakpoint_ops;
15340 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15341 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15342 ops->decode_location = strace_marker_decode_location;
15343
15344 /* Fork catchpoints. */
15345 ops = &catch_fork_breakpoint_ops;
15346 *ops = base_breakpoint_ops;
15347 ops->insert_location = insert_catch_fork;
15348 ops->remove_location = remove_catch_fork;
15349 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15350 ops->print_it = print_it_catch_fork;
15351 ops->print_one = print_one_catch_fork;
15352 ops->print_mention = print_mention_catch_fork;
15353 ops->print_recreate = print_recreate_catch_fork;
15354
15355 /* Vfork catchpoints. */
15356 ops = &catch_vfork_breakpoint_ops;
15357 *ops = base_breakpoint_ops;
15358 ops->insert_location = insert_catch_vfork;
15359 ops->remove_location = remove_catch_vfork;
15360 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15361 ops->print_it = print_it_catch_vfork;
15362 ops->print_one = print_one_catch_vfork;
15363 ops->print_mention = print_mention_catch_vfork;
15364 ops->print_recreate = print_recreate_catch_vfork;
15365
15366 /* Exec catchpoints. */
15367 ops = &catch_exec_breakpoint_ops;
15368 *ops = base_breakpoint_ops;
15369 ops->insert_location = insert_catch_exec;
15370 ops->remove_location = remove_catch_exec;
15371 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15372 ops->print_it = print_it_catch_exec;
15373 ops->print_one = print_one_catch_exec;
15374 ops->print_mention = print_mention_catch_exec;
15375 ops->print_recreate = print_recreate_catch_exec;
15376
15377 /* Solib-related catchpoints. */
15378 ops = &catch_solib_breakpoint_ops;
15379 *ops = base_breakpoint_ops;
15380 ops->insert_location = insert_catch_solib;
15381 ops->remove_location = remove_catch_solib;
15382 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15383 ops->check_status = check_status_catch_solib;
15384 ops->print_it = print_it_catch_solib;
15385 ops->print_one = print_one_catch_solib;
15386 ops->print_mention = print_mention_catch_solib;
15387 ops->print_recreate = print_recreate_catch_solib;
15388
15389 ops = &dprintf_breakpoint_ops;
15390 *ops = bkpt_base_breakpoint_ops;
15391 ops->re_set = dprintf_re_set;
15392 ops->resources_needed = bkpt_resources_needed;
15393 ops->print_it = bkpt_print_it;
15394 ops->print_mention = bkpt_print_mention;
15395 ops->print_recreate = dprintf_print_recreate;
15396 ops->after_condition_true = dprintf_after_condition_true;
15397 ops->breakpoint_hit = dprintf_breakpoint_hit;
15398 }
15399
15400 /* Chain containing all defined "enable breakpoint" subcommands. */
15401
15402 static struct cmd_list_element *enablebreaklist = NULL;
15403
15404 /* See breakpoint.h. */
15405
15406 cmd_list_element *commands_cmd_element = nullptr;
15407
15408 void
15409 _initialize_breakpoint (void)
15410 {
15411 struct cmd_list_element *c;
15412
15413 initialize_breakpoint_ops ();
15414
15415 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15416 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15417 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15418
15419 breakpoint_chain = 0;
15420 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15421 before a breakpoint is set. */
15422 breakpoint_count = 0;
15423
15424 tracepoint_count = 0;
15425
15426 add_com ("ignore", class_breakpoint, ignore_command, _("\
15427 Set ignore-count of breakpoint number N to COUNT.\n\
15428 Usage is `ignore N COUNT'."));
15429
15430 commands_cmd_element = add_com ("commands", class_breakpoint,
15431 commands_command, _("\
15432 Set commands to be executed when the given breakpoints are hit.\n\
15433 Give a space-separated breakpoint list as argument after \"commands\".\n\
15434 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15435 (e.g. `5-7').\n\
15436 With no argument, the targeted breakpoint is the last one set.\n\
15437 The commands themselves follow starting on the next line.\n\
15438 Type a line containing \"end\" to indicate the end of them.\n\
15439 Give \"silent\" as the first line to make the breakpoint silent;\n\
15440 then no output is printed when it is hit, except what the commands print."));
15441
15442 c = add_com ("condition", class_breakpoint, condition_command, _("\
15443 Specify breakpoint number N to break only if COND is true.\n\
15444 Usage is `condition N COND', where N is an integer and COND is an\n\
15445 expression to be evaluated whenever breakpoint N is reached."));
15446 set_cmd_completer (c, condition_completer);
15447
15448 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15449 Set a temporary breakpoint.\n\
15450 Like \"break\" except the breakpoint is only temporary,\n\
15451 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15452 by using \"enable delete\" on the breakpoint number.\n\
15453 \n"
15454 BREAK_ARGS_HELP ("tbreak")));
15455 set_cmd_completer (c, location_completer);
15456
15457 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15458 Set a hardware assisted breakpoint.\n\
15459 Like \"break\" except the breakpoint requires hardware support,\n\
15460 some target hardware may not have this support.\n\
15461 \n"
15462 BREAK_ARGS_HELP ("hbreak")));
15463 set_cmd_completer (c, location_completer);
15464
15465 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15466 Set a temporary hardware assisted breakpoint.\n\
15467 Like \"hbreak\" except the breakpoint is only temporary,\n\
15468 so it will be deleted when hit.\n\
15469 \n"
15470 BREAK_ARGS_HELP ("thbreak")));
15471 set_cmd_completer (c, location_completer);
15472
15473 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15474 Enable some breakpoints.\n\
15475 Give breakpoint numbers (separated by spaces) as arguments.\n\
15476 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15477 This is used to cancel the effect of the \"disable\" command.\n\
15478 With a subcommand you can enable temporarily."),
15479 &enablelist, "enable ", 1, &cmdlist);
15480
15481 add_com_alias ("en", "enable", class_breakpoint, 1);
15482
15483 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15484 Enable some breakpoints.\n\
15485 Give breakpoint numbers (separated by spaces) as arguments.\n\
15486 This is used to cancel the effect of the \"disable\" command.\n\
15487 May be abbreviated to simply \"enable\"."),
15488 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15489
15490 add_cmd ("once", no_class, enable_once_command, _("\
15491 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15492 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15493 &enablebreaklist);
15494
15495 add_cmd ("delete", no_class, enable_delete_command, _("\
15496 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15497 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15498 &enablebreaklist);
15499
15500 add_cmd ("count", no_class, enable_count_command, _("\
15501 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15502 If a breakpoint is hit while enabled in this fashion,\n\
15503 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15504 &enablebreaklist);
15505
15506 add_cmd ("delete", no_class, enable_delete_command, _("\
15507 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15508 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15509 &enablelist);
15510
15511 add_cmd ("once", no_class, enable_once_command, _("\
15512 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15513 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15514 &enablelist);
15515
15516 add_cmd ("count", no_class, enable_count_command, _("\
15517 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15518 If a breakpoint is hit while enabled in this fashion,\n\
15519 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15520 &enablelist);
15521
15522 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15523 Disable some breakpoints.\n\
15524 Arguments are breakpoint numbers with spaces in between.\n\
15525 To disable all breakpoints, give no argument.\n\
15526 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15527 &disablelist, "disable ", 1, &cmdlist);
15528 add_com_alias ("dis", "disable", class_breakpoint, 1);
15529 add_com_alias ("disa", "disable", class_breakpoint, 1);
15530
15531 add_cmd ("breakpoints", class_alias, disable_command, _("\
15532 Disable some breakpoints.\n\
15533 Arguments are breakpoint numbers with spaces in between.\n\
15534 To disable all breakpoints, give no argument.\n\
15535 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15536 This command may be abbreviated \"disable\"."),
15537 &disablelist);
15538
15539 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15540 Delete some breakpoints or auto-display expressions.\n\
15541 Arguments are breakpoint numbers with spaces in between.\n\
15542 To delete all breakpoints, give no argument.\n\
15543 \n\
15544 Also a prefix command for deletion of other GDB objects.\n\
15545 The \"unset\" command is also an alias for \"delete\"."),
15546 &deletelist, "delete ", 1, &cmdlist);
15547 add_com_alias ("d", "delete", class_breakpoint, 1);
15548 add_com_alias ("del", "delete", class_breakpoint, 1);
15549
15550 add_cmd ("breakpoints", class_alias, delete_command, _("\
15551 Delete some breakpoints or auto-display expressions.\n\
15552 Arguments are breakpoint numbers with spaces in between.\n\
15553 To delete all breakpoints, give no argument.\n\
15554 This command may be abbreviated \"delete\"."),
15555 &deletelist);
15556
15557 add_com ("clear", class_breakpoint, clear_command, _("\
15558 Clear breakpoint at specified location.\n\
15559 Argument may be a linespec, explicit, or address location as described below.\n\
15560 \n\
15561 With no argument, clears all breakpoints in the line that the selected frame\n\
15562 is executing in.\n"
15563 "\n" LOCATION_HELP_STRING "\n\n\
15564 See also the \"delete\" command which clears breakpoints by number."));
15565 add_com_alias ("cl", "clear", class_breakpoint, 1);
15566
15567 c = add_com ("break", class_breakpoint, break_command, _("\
15568 Set breakpoint at specified location.\n"
15569 BREAK_ARGS_HELP ("break")));
15570 set_cmd_completer (c, location_completer);
15571
15572 add_com_alias ("b", "break", class_run, 1);
15573 add_com_alias ("br", "break", class_run, 1);
15574 add_com_alias ("bre", "break", class_run, 1);
15575 add_com_alias ("brea", "break", class_run, 1);
15576
15577 if (dbx_commands)
15578 {
15579 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15580 Break in function/address or break at a line in the current file."),
15581 &stoplist, "stop ", 1, &cmdlist);
15582 add_cmd ("in", class_breakpoint, stopin_command,
15583 _("Break in function or address."), &stoplist);
15584 add_cmd ("at", class_breakpoint, stopat_command,
15585 _("Break at a line in the current file."), &stoplist);
15586 add_com ("status", class_info, info_breakpoints_command, _("\
15587 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15588 The \"Type\" column indicates one of:\n\
15589 \tbreakpoint - normal breakpoint\n\
15590 \twatchpoint - watchpoint\n\
15591 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15592 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15593 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15594 address and file/line number respectively.\n\
15595 \n\
15596 Convenience variable \"$_\" and default examine address for \"x\"\n\
15597 are set to the address of the last breakpoint listed unless the command\n\
15598 is prefixed with \"server \".\n\n\
15599 Convenience variable \"$bpnum\" contains the number of the last\n\
15600 breakpoint set."));
15601 }
15602
15603 add_info ("breakpoints", info_breakpoints_command, _("\
15604 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15605 The \"Type\" column indicates one of:\n\
15606 \tbreakpoint - normal breakpoint\n\
15607 \twatchpoint - watchpoint\n\
15608 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15609 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15610 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15611 address and file/line number respectively.\n\
15612 \n\
15613 Convenience variable \"$_\" and default examine address for \"x\"\n\
15614 are set to the address of the last breakpoint listed unless the command\n\
15615 is prefixed with \"server \".\n\n\
15616 Convenience variable \"$bpnum\" contains the number of the last\n\
15617 breakpoint set."));
15618
15619 add_info_alias ("b", "breakpoints", 1);
15620
15621 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15622 Status of all breakpoints, or breakpoint number NUMBER.\n\
15623 The \"Type\" column indicates one of:\n\
15624 \tbreakpoint - normal breakpoint\n\
15625 \twatchpoint - watchpoint\n\
15626 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15627 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15628 \tuntil - internal breakpoint used by the \"until\" command\n\
15629 \tfinish - internal breakpoint used by the \"finish\" command\n\
15630 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15631 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15632 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15633 address and file/line number respectively.\n\
15634 \n\
15635 Convenience variable \"$_\" and default examine address for \"x\"\n\
15636 are set to the address of the last breakpoint listed unless the command\n\
15637 is prefixed with \"server \".\n\n\
15638 Convenience variable \"$bpnum\" contains the number of the last\n\
15639 breakpoint set."),
15640 &maintenanceinfolist);
15641
15642 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15643 Set catchpoints to catch events."),
15644 &catch_cmdlist, "catch ",
15645 0/*allow-unknown*/, &cmdlist);
15646
15647 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15648 Set temporary catchpoints to catch events."),
15649 &tcatch_cmdlist, "tcatch ",
15650 0/*allow-unknown*/, &cmdlist);
15651
15652 add_catch_command ("fork", _("Catch calls to fork."),
15653 catch_fork_command_1,
15654 NULL,
15655 (void *) (uintptr_t) catch_fork_permanent,
15656 (void *) (uintptr_t) catch_fork_temporary);
15657 add_catch_command ("vfork", _("Catch calls to vfork."),
15658 catch_fork_command_1,
15659 NULL,
15660 (void *) (uintptr_t) catch_vfork_permanent,
15661 (void *) (uintptr_t) catch_vfork_temporary);
15662 add_catch_command ("exec", _("Catch calls to exec."),
15663 catch_exec_command_1,
15664 NULL,
15665 CATCH_PERMANENT,
15666 CATCH_TEMPORARY);
15667 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15668 Usage: catch load [REGEX]\n\
15669 If REGEX is given, only stop for libraries matching the regular expression."),
15670 catch_load_command_1,
15671 NULL,
15672 CATCH_PERMANENT,
15673 CATCH_TEMPORARY);
15674 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15675 Usage: catch unload [REGEX]\n\
15676 If REGEX is given, only stop for libraries matching the regular expression."),
15677 catch_unload_command_1,
15678 NULL,
15679 CATCH_PERMANENT,
15680 CATCH_TEMPORARY);
15681
15682 c = add_com ("watch", class_breakpoint, watch_command, _("\
15683 Set a watchpoint for an expression.\n\
15684 Usage: watch [-l|-location] EXPRESSION\n\
15685 A watchpoint stops execution of your program whenever the value of\n\
15686 an expression changes.\n\
15687 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15688 the memory to which it refers."));
15689 set_cmd_completer (c, expression_completer);
15690
15691 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15692 Set a read watchpoint for an expression.\n\
15693 Usage: rwatch [-l|-location] EXPRESSION\n\
15694 A watchpoint stops execution of your program whenever the value of\n\
15695 an expression is read.\n\
15696 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15697 the memory to which it refers."));
15698 set_cmd_completer (c, expression_completer);
15699
15700 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15701 Set a watchpoint for an expression.\n\
15702 Usage: awatch [-l|-location] EXPRESSION\n\
15703 A watchpoint stops execution of your program whenever the value of\n\
15704 an expression is either read or written.\n\
15705 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15706 the memory to which it refers."));
15707 set_cmd_completer (c, expression_completer);
15708
15709 add_info ("watchpoints", info_watchpoints_command, _("\
15710 Status of specified watchpoints (all watchpoints if no argument)."));
15711
15712 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15713 respond to changes - contrary to the description. */
15714 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15715 &can_use_hw_watchpoints, _("\
15716 Set debugger's willingness to use watchpoint hardware."), _("\
15717 Show debugger's willingness to use watchpoint hardware."), _("\
15718 If zero, gdb will not use hardware for new watchpoints, even if\n\
15719 such is available. (However, any hardware watchpoints that were\n\
15720 created before setting this to nonzero, will continue to use watchpoint\n\
15721 hardware.)"),
15722 NULL,
15723 show_can_use_hw_watchpoints,
15724 &setlist, &showlist);
15725
15726 can_use_hw_watchpoints = 1;
15727
15728 /* Tracepoint manipulation commands. */
15729
15730 c = add_com ("trace", class_breakpoint, trace_command, _("\
15731 Set a tracepoint at specified location.\n\
15732 \n"
15733 BREAK_ARGS_HELP ("trace") "\n\
15734 Do \"help tracepoints\" for info on other tracepoint commands."));
15735 set_cmd_completer (c, location_completer);
15736
15737 add_com_alias ("tp", "trace", class_alias, 0);
15738 add_com_alias ("tr", "trace", class_alias, 1);
15739 add_com_alias ("tra", "trace", class_alias, 1);
15740 add_com_alias ("trac", "trace", class_alias, 1);
15741
15742 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15743 Set a fast tracepoint at specified location.\n\
15744 \n"
15745 BREAK_ARGS_HELP ("ftrace") "\n\
15746 Do \"help tracepoints\" for info on other tracepoint commands."));
15747 set_cmd_completer (c, location_completer);
15748
15749 c = add_com ("strace", class_breakpoint, strace_command, _("\
15750 Set a static tracepoint at location or marker.\n\
15751 \n\
15752 strace [LOCATION] [if CONDITION]\n\
15753 LOCATION may be a linespec, explicit, or address location (described below) \n\
15754 or -m MARKER_ID.\n\n\
15755 If a marker id is specified, probe the marker with that name. With\n\
15756 no LOCATION, uses current execution address of the selected stack frame.\n\
15757 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15758 This collects arbitrary user data passed in the probe point call to the\n\
15759 tracing library. You can inspect it when analyzing the trace buffer,\n\
15760 by printing the $_sdata variable like any other convenience variable.\n\
15761 \n\
15762 CONDITION is a boolean expression.\n\
15763 \n" LOCATION_HELP_STRING "\n\n\
15764 Multiple tracepoints at one place are permitted, and useful if their\n\
15765 conditions are different.\n\
15766 \n\
15767 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15768 Do \"help tracepoints\" for info on other tracepoint commands."));
15769 set_cmd_completer (c, location_completer);
15770
15771 add_info ("tracepoints", info_tracepoints_command, _("\
15772 Status of specified tracepoints (all tracepoints if no argument).\n\
15773 Convenience variable \"$tpnum\" contains the number of the\n\
15774 last tracepoint set."));
15775
15776 add_info_alias ("tp", "tracepoints", 1);
15777
15778 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15779 Delete specified tracepoints.\n\
15780 Arguments are tracepoint numbers, separated by spaces.\n\
15781 No argument means delete all tracepoints."),
15782 &deletelist);
15783 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15784
15785 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15786 Disable specified tracepoints.\n\
15787 Arguments are tracepoint numbers, separated by spaces.\n\
15788 No argument means disable all tracepoints."),
15789 &disablelist);
15790 deprecate_cmd (c, "disable");
15791
15792 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15793 Enable specified tracepoints.\n\
15794 Arguments are tracepoint numbers, separated by spaces.\n\
15795 No argument means enable all tracepoints."),
15796 &enablelist);
15797 deprecate_cmd (c, "enable");
15798
15799 add_com ("passcount", class_trace, trace_pass_command, _("\
15800 Set the passcount for a tracepoint.\n\
15801 The trace will end when the tracepoint has been passed 'count' times.\n\
15802 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15803 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15804
15805 add_prefix_cmd ("save", class_breakpoint, save_command,
15806 _("Save breakpoint definitions as a script."),
15807 &save_cmdlist, "save ",
15808 0/*allow-unknown*/, &cmdlist);
15809
15810 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15811 Save current breakpoint definitions as a script.\n\
15812 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15813 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15814 session to restore them."),
15815 &save_cmdlist);
15816 set_cmd_completer (c, filename_completer);
15817
15818 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15819 Save current tracepoint definitions as a script.\n\
15820 Use the 'source' command in another debug session to restore them."),
15821 &save_cmdlist);
15822 set_cmd_completer (c, filename_completer);
15823
15824 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15825 deprecate_cmd (c, "save tracepoints");
15826
15827 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15828 Breakpoint specific settings\n\
15829 Configure various breakpoint-specific variables such as\n\
15830 pending breakpoint behavior"),
15831 &breakpoint_set_cmdlist, "set breakpoint ",
15832 0/*allow-unknown*/, &setlist);
15833 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15834 Breakpoint specific settings\n\
15835 Configure various breakpoint-specific variables such as\n\
15836 pending breakpoint behavior"),
15837 &breakpoint_show_cmdlist, "show breakpoint ",
15838 0/*allow-unknown*/, &showlist);
15839
15840 add_setshow_auto_boolean_cmd ("pending", no_class,
15841 &pending_break_support, _("\
15842 Set debugger's behavior regarding pending breakpoints."), _("\
15843 Show debugger's behavior regarding pending breakpoints."), _("\
15844 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15845 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15846 an error. If auto, an unrecognized breakpoint location results in a\n\
15847 user-query to see if a pending breakpoint should be created."),
15848 NULL,
15849 show_pending_break_support,
15850 &breakpoint_set_cmdlist,
15851 &breakpoint_show_cmdlist);
15852
15853 pending_break_support = AUTO_BOOLEAN_AUTO;
15854
15855 add_setshow_boolean_cmd ("auto-hw", no_class,
15856 &automatic_hardware_breakpoints, _("\
15857 Set automatic usage of hardware breakpoints."), _("\
15858 Show automatic usage of hardware breakpoints."), _("\
15859 If set, the debugger will automatically use hardware breakpoints for\n\
15860 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15861 a warning will be emitted for such breakpoints."),
15862 NULL,
15863 show_automatic_hardware_breakpoints,
15864 &breakpoint_set_cmdlist,
15865 &breakpoint_show_cmdlist);
15866
15867 add_setshow_boolean_cmd ("always-inserted", class_support,
15868 &always_inserted_mode, _("\
15869 Set mode for inserting breakpoints."), _("\
15870 Show mode for inserting breakpoints."), _("\
15871 When this mode is on, breakpoints are inserted immediately as soon as\n\
15872 they're created, kept inserted even when execution stops, and removed\n\
15873 only when the user deletes them. When this mode is off (the default),\n\
15874 breakpoints are inserted only when execution continues, and removed\n\
15875 when execution stops."),
15876 NULL,
15877 &show_always_inserted_mode,
15878 &breakpoint_set_cmdlist,
15879 &breakpoint_show_cmdlist);
15880
15881 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15882 condition_evaluation_enums,
15883 &condition_evaluation_mode_1, _("\
15884 Set mode of breakpoint condition evaluation."), _("\
15885 Show mode of breakpoint condition evaluation."), _("\
15886 When this is set to \"host\", breakpoint conditions will be\n\
15887 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15888 breakpoint conditions will be downloaded to the target (if the target\n\
15889 supports such feature) and conditions will be evaluated on the target's side.\n\
15890 If this is set to \"auto\" (default), this will be automatically set to\n\
15891 \"target\" if it supports condition evaluation, otherwise it will\n\
15892 be set to \"gdb\""),
15893 &set_condition_evaluation_mode,
15894 &show_condition_evaluation_mode,
15895 &breakpoint_set_cmdlist,
15896 &breakpoint_show_cmdlist);
15897
15898 add_com ("break-range", class_breakpoint, break_range_command, _("\
15899 Set a breakpoint for an address range.\n\
15900 break-range START-LOCATION, END-LOCATION\n\
15901 where START-LOCATION and END-LOCATION can be one of the following:\n\
15902 LINENUM, for that line in the current file,\n\
15903 FILE:LINENUM, for that line in that file,\n\
15904 +OFFSET, for that number of lines after the current line\n\
15905 or the start of the range\n\
15906 FUNCTION, for the first line in that function,\n\
15907 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15908 *ADDRESS, for the instruction at that address.\n\
15909 \n\
15910 The breakpoint will stop execution of the inferior whenever it executes\n\
15911 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15912 range (including START-LOCATION and END-LOCATION)."));
15913
15914 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15915 Set a dynamic printf at specified location.\n\
15916 dprintf location,format string,arg1,arg2,...\n\
15917 location may be a linespec, explicit, or address location.\n"
15918 "\n" LOCATION_HELP_STRING));
15919 set_cmd_completer (c, location_completer);
15920
15921 add_setshow_enum_cmd ("dprintf-style", class_support,
15922 dprintf_style_enums, &dprintf_style, _("\
15923 Set the style of usage for dynamic printf."), _("\
15924 Show the style of usage for dynamic printf."), _("\
15925 This setting chooses how GDB will do a dynamic printf.\n\
15926 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15927 console, as with the \"printf\" command.\n\
15928 If the value is \"call\", the print is done by calling a function in your\n\
15929 program; by default printf(), but you can choose a different function or\n\
15930 output stream by setting dprintf-function and dprintf-channel."),
15931 update_dprintf_commands, NULL,
15932 &setlist, &showlist);
15933
15934 dprintf_function = xstrdup ("printf");
15935 add_setshow_string_cmd ("dprintf-function", class_support,
15936 &dprintf_function, _("\
15937 Set the function to use for dynamic printf"), _("\
15938 Show the function to use for dynamic printf"), NULL,
15939 update_dprintf_commands, NULL,
15940 &setlist, &showlist);
15941
15942 dprintf_channel = xstrdup ("");
15943 add_setshow_string_cmd ("dprintf-channel", class_support,
15944 &dprintf_channel, _("\
15945 Set the channel to use for dynamic printf"), _("\
15946 Show the channel to use for dynamic printf"), NULL,
15947 update_dprintf_commands, NULL,
15948 &setlist, &showlist);
15949
15950 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15951 &disconnected_dprintf, _("\
15952 Set whether dprintf continues after GDB disconnects."), _("\
15953 Show whether dprintf continues after GDB disconnects."), _("\
15954 Use this to let dprintf commands continue to hit and produce output\n\
15955 even if GDB disconnects or detaches from the target."),
15956 NULL,
15957 NULL,
15958 &setlist, &showlist);
15959
15960 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15961 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
15962 (target agent only) This is useful for formatted output in user-defined commands."));
15963
15964 automatic_hardware_breakpoints = 1;
15965
15966 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15967 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15968 }
This page took 0.345838 seconds and 5 git commands to generate.