Don't elide all inlined frames
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 check_no_tracepoint_commands (c->body_list_0.get ());
1019 check_no_tracepoint_commands (c->body_list_1.get ());
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_list_1 == nullptr);
1131 c2 = while_stepping->body_list_0.get ();
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 counted_command_line &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 static void
1220 commands_command_1 (const char *arg, int from_tty,
1221 struct command_line *control)
1222 {
1223 counted_command_line cmd;
1224
1225 std::string new_arg;
1226
1227 if (arg == NULL || !*arg)
1228 {
1229 if (breakpoint_count - prev_breakpoint_count > 1)
1230 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1231 breakpoint_count);
1232 else if (breakpoint_count > 0)
1233 new_arg = string_printf ("%d", breakpoint_count);
1234 arg = new_arg.c_str ();
1235 }
1236
1237 map_breakpoint_numbers
1238 (arg, [&] (breakpoint *b)
1239 {
1240 if (cmd == NULL)
1241 {
1242 if (control != NULL)
1243 cmd = control->body_list_0;
1244 else
1245 {
1246 std::string str
1247 = string_printf (_("Type commands for breakpoint(s) "
1248 "%s, one per line."),
1249 arg);
1250
1251 auto do_validate = [=] (const char *line)
1252 {
1253 validate_actionline (line, b);
1254 };
1255 gdb::function_view<void (const char *)> validator;
1256 if (is_tracepoint (b))
1257 validator = do_validate;
1258
1259 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1260 }
1261 }
1262
1263 /* If a breakpoint was on the list more than once, we don't need to
1264 do anything. */
1265 if (b->commands != cmd)
1266 {
1267 validate_commands_for_breakpoint (b, cmd.get ());
1268 b->commands = cmd;
1269 gdb::observers::breakpoint_modified.notify (b);
1270 }
1271 });
1272 }
1273
1274 static void
1275 commands_command (const char *arg, int from_tty)
1276 {
1277 commands_command_1 (arg, from_tty, NULL);
1278 }
1279
1280 /* Like commands_command, but instead of reading the commands from
1281 input stream, takes them from an already parsed command structure.
1282
1283 This is used by cli-script.c to DTRT with breakpoint commands
1284 that are part of if and while bodies. */
1285 enum command_control_type
1286 commands_from_control_command (const char *arg, struct command_line *cmd)
1287 {
1288 commands_command_1 (arg, 0, cmd);
1289 return simple_control;
1290 }
1291
1292 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1293
1294 static int
1295 bp_location_has_shadow (struct bp_location *bl)
1296 {
1297 if (bl->loc_type != bp_loc_software_breakpoint)
1298 return 0;
1299 if (!bl->inserted)
1300 return 0;
1301 if (bl->target_info.shadow_len == 0)
1302 /* BL isn't valid, or doesn't shadow memory. */
1303 return 0;
1304 return 1;
1305 }
1306
1307 /* Update BUF, which is LEN bytes read from the target address
1308 MEMADDR, by replacing a memory breakpoint with its shadowed
1309 contents.
1310
1311 If READBUF is not NULL, this buffer must not overlap with the of
1312 the breakpoint location's shadow_contents buffer. Otherwise, a
1313 failed assertion internal error will be raised. */
1314
1315 static void
1316 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1317 const gdb_byte *writebuf_org,
1318 ULONGEST memaddr, LONGEST len,
1319 struct bp_target_info *target_info,
1320 struct gdbarch *gdbarch)
1321 {
1322 /* Now do full processing of the found relevant range of elements. */
1323 CORE_ADDR bp_addr = 0;
1324 int bp_size = 0;
1325 int bptoffset = 0;
1326
1327 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1328 current_program_space->aspace, 0))
1329 {
1330 /* The breakpoint is inserted in a different address space. */
1331 return;
1332 }
1333
1334 /* Addresses and length of the part of the breakpoint that
1335 we need to copy. */
1336 bp_addr = target_info->placed_address;
1337 bp_size = target_info->shadow_len;
1338
1339 if (bp_addr + bp_size <= memaddr)
1340 {
1341 /* The breakpoint is entirely before the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 if (bp_addr >= memaddr + len)
1347 {
1348 /* The breakpoint is entirely after the chunk of memory we are
1349 reading. */
1350 return;
1351 }
1352
1353 /* Offset within shadow_contents. */
1354 if (bp_addr < memaddr)
1355 {
1356 /* Only copy the second part of the breakpoint. */
1357 bp_size -= memaddr - bp_addr;
1358 bptoffset = memaddr - bp_addr;
1359 bp_addr = memaddr;
1360 }
1361
1362 if (bp_addr + bp_size > memaddr + len)
1363 {
1364 /* Only copy the first part of the breakpoint. */
1365 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1366 }
1367
1368 if (readbuf != NULL)
1369 {
1370 /* Verify that the readbuf buffer does not overlap with the
1371 shadow_contents buffer. */
1372 gdb_assert (target_info->shadow_contents >= readbuf + len
1373 || readbuf >= (target_info->shadow_contents
1374 + target_info->shadow_len));
1375
1376 /* Update the read buffer with this inserted breakpoint's
1377 shadow. */
1378 memcpy (readbuf + bp_addr - memaddr,
1379 target_info->shadow_contents + bptoffset, bp_size);
1380 }
1381 else
1382 {
1383 const unsigned char *bp;
1384 CORE_ADDR addr = target_info->reqstd_address;
1385 int placed_size;
1386
1387 /* Update the shadow with what we want to write to memory. */
1388 memcpy (target_info->shadow_contents + bptoffset,
1389 writebuf_org + bp_addr - memaddr, bp_size);
1390
1391 /* Determine appropriate breakpoint contents and size for this
1392 address. */
1393 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1394
1395 /* Update the final write buffer with this inserted
1396 breakpoint's INSN. */
1397 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1398 }
1399 }
1400
1401 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1402 by replacing any memory breakpoints with their shadowed contents.
1403
1404 If READBUF is not NULL, this buffer must not overlap with any of
1405 the breakpoint location's shadow_contents buffers. Otherwise,
1406 a failed assertion internal error will be raised.
1407
1408 The range of shadowed area by each bp_location is:
1409 bl->address - bp_locations_placed_address_before_address_max
1410 up to bl->address + bp_locations_shadow_len_after_address_max
1411 The range we were requested to resolve shadows for is:
1412 memaddr ... memaddr + len
1413 Thus the safe cutoff boundaries for performance optimization are
1414 memaddr + len <= (bl->address
1415 - bp_locations_placed_address_before_address_max)
1416 and:
1417 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1418
1419 void
1420 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1421 const gdb_byte *writebuf_org,
1422 ULONGEST memaddr, LONGEST len)
1423 {
1424 /* Left boundary, right boundary and median element of our binary
1425 search. */
1426 unsigned bc_l, bc_r, bc;
1427
1428 /* Find BC_L which is a leftmost element which may affect BUF
1429 content. It is safe to report lower value but a failure to
1430 report higher one. */
1431
1432 bc_l = 0;
1433 bc_r = bp_locations_count;
1434 while (bc_l + 1 < bc_r)
1435 {
1436 struct bp_location *bl;
1437
1438 bc = (bc_l + bc_r) / 2;
1439 bl = bp_locations[bc];
1440
1441 /* Check first BL->ADDRESS will not overflow due to the added
1442 constant. Then advance the left boundary only if we are sure
1443 the BC element can in no way affect the BUF content (MEMADDR
1444 to MEMADDR + LEN range).
1445
1446 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1447 offset so that we cannot miss a breakpoint with its shadow
1448 range tail still reaching MEMADDR. */
1449
1450 if ((bl->address + bp_locations_shadow_len_after_address_max
1451 >= bl->address)
1452 && (bl->address + bp_locations_shadow_len_after_address_max
1453 <= memaddr))
1454 bc_l = bc;
1455 else
1456 bc_r = bc;
1457 }
1458
1459 /* Due to the binary search above, we need to make sure we pick the
1460 first location that's at BC_L's address. E.g., if there are
1461 multiple locations at the same address, BC_L may end up pointing
1462 at a duplicate location, and miss the "master"/"inserted"
1463 location. Say, given locations L1, L2 and L3 at addresses A and
1464 B:
1465
1466 L1@A, L2@A, L3@B, ...
1467
1468 BC_L could end up pointing at location L2, while the "master"
1469 location could be L1. Since the `loc->inserted' flag is only set
1470 on "master" locations, we'd forget to restore the shadow of L1
1471 and L2. */
1472 while (bc_l > 0
1473 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1474 bc_l--;
1475
1476 /* Now do full processing of the found relevant range of elements. */
1477
1478 for (bc = bc_l; bc < bp_locations_count; bc++)
1479 {
1480 struct bp_location *bl = bp_locations[bc];
1481
1482 /* bp_location array has BL->OWNER always non-NULL. */
1483 if (bl->owner->type == bp_none)
1484 warning (_("reading through apparently deleted breakpoint #%d?"),
1485 bl->owner->number);
1486
1487 /* Performance optimization: any further element can no longer affect BUF
1488 content. */
1489
1490 if (bl->address >= bp_locations_placed_address_before_address_max
1491 && memaddr + len <= (bl->address
1492 - bp_locations_placed_address_before_address_max))
1493 break;
1494
1495 if (!bp_location_has_shadow (bl))
1496 continue;
1497
1498 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1499 memaddr, len, &bl->target_info, bl->gdbarch);
1500 }
1501 }
1502
1503 \f
1504
1505 /* Return true if BPT is either a software breakpoint or a hardware
1506 breakpoint. */
1507
1508 int
1509 is_breakpoint (const struct breakpoint *bpt)
1510 {
1511 return (bpt->type == bp_breakpoint
1512 || bpt->type == bp_hardware_breakpoint
1513 || bpt->type == bp_dprintf);
1514 }
1515
1516 /* Return true if BPT is of any hardware watchpoint kind. */
1517
1518 static int
1519 is_hardware_watchpoint (const struct breakpoint *bpt)
1520 {
1521 return (bpt->type == bp_hardware_watchpoint
1522 || bpt->type == bp_read_watchpoint
1523 || bpt->type == bp_access_watchpoint);
1524 }
1525
1526 /* Return true if BPT is of any watchpoint kind, hardware or
1527 software. */
1528
1529 int
1530 is_watchpoint (const struct breakpoint *bpt)
1531 {
1532 return (is_hardware_watchpoint (bpt)
1533 || bpt->type == bp_watchpoint);
1534 }
1535
1536 /* Returns true if the current thread and its running state are safe
1537 to evaluate or update watchpoint B. Watchpoints on local
1538 expressions need to be evaluated in the context of the thread that
1539 was current when the watchpoint was created, and, that thread needs
1540 to be stopped to be able to select the correct frame context.
1541 Watchpoints on global expressions can be evaluated on any thread,
1542 and in any state. It is presently left to the target allowing
1543 memory accesses when threads are running. */
1544
1545 static int
1546 watchpoint_in_thread_scope (struct watchpoint *b)
1547 {
1548 return (b->pspace == current_program_space
1549 && (ptid_equal (b->watchpoint_thread, null_ptid)
1550 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1551 && !is_executing (inferior_ptid))));
1552 }
1553
1554 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1555 associated bp_watchpoint_scope breakpoint. */
1556
1557 static void
1558 watchpoint_del_at_next_stop (struct watchpoint *w)
1559 {
1560 if (w->related_breakpoint != w)
1561 {
1562 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1563 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1564 w->related_breakpoint->disposition = disp_del_at_next_stop;
1565 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1566 w->related_breakpoint = w;
1567 }
1568 w->disposition = disp_del_at_next_stop;
1569 }
1570
1571 /* Extract a bitfield value from value VAL using the bit parameters contained in
1572 watchpoint W. */
1573
1574 static struct value *
1575 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1576 {
1577 struct value *bit_val;
1578
1579 if (val == NULL)
1580 return NULL;
1581
1582 bit_val = allocate_value (value_type (val));
1583
1584 unpack_value_bitfield (bit_val,
1585 w->val_bitpos,
1586 w->val_bitsize,
1587 value_contents_for_printing (val),
1588 value_offset (val),
1589 val);
1590
1591 return bit_val;
1592 }
1593
1594 /* Allocate a dummy location and add it to B, which must be a software
1595 watchpoint. This is required because even if a software watchpoint
1596 is not watching any memory, bpstat_stop_status requires a location
1597 to be able to report stops. */
1598
1599 static void
1600 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1601 struct program_space *pspace)
1602 {
1603 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1604
1605 b->loc = allocate_bp_location (b);
1606 b->loc->pspace = pspace;
1607 b->loc->address = -1;
1608 b->loc->length = -1;
1609 }
1610
1611 /* Returns true if B is a software watchpoint that is not watching any
1612 memory (e.g., "watch $pc"). */
1613
1614 static int
1615 is_no_memory_software_watchpoint (struct breakpoint *b)
1616 {
1617 return (b->type == bp_watchpoint
1618 && b->loc != NULL
1619 && b->loc->next == NULL
1620 && b->loc->address == -1
1621 && b->loc->length == -1);
1622 }
1623
1624 /* Assuming that B is a watchpoint:
1625 - Reparse watchpoint expression, if REPARSE is non-zero
1626 - Evaluate expression and store the result in B->val
1627 - Evaluate the condition if there is one, and store the result
1628 in b->loc->cond.
1629 - Update the list of values that must be watched in B->loc.
1630
1631 If the watchpoint disposition is disp_del_at_next_stop, then do
1632 nothing. If this is local watchpoint that is out of scope, delete
1633 it.
1634
1635 Even with `set breakpoint always-inserted on' the watchpoints are
1636 removed + inserted on each stop here. Normal breakpoints must
1637 never be removed because they might be missed by a running thread
1638 when debugging in non-stop mode. On the other hand, hardware
1639 watchpoints (is_hardware_watchpoint; processed here) are specific
1640 to each LWP since they are stored in each LWP's hardware debug
1641 registers. Therefore, such LWP must be stopped first in order to
1642 be able to modify its hardware watchpoints.
1643
1644 Hardware watchpoints must be reset exactly once after being
1645 presented to the user. It cannot be done sooner, because it would
1646 reset the data used to present the watchpoint hit to the user. And
1647 it must not be done later because it could display the same single
1648 watchpoint hit during multiple GDB stops. Note that the latter is
1649 relevant only to the hardware watchpoint types bp_read_watchpoint
1650 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1651 not user-visible - its hit is suppressed if the memory content has
1652 not changed.
1653
1654 The following constraints influence the location where we can reset
1655 hardware watchpoints:
1656
1657 * target_stopped_by_watchpoint and target_stopped_data_address are
1658 called several times when GDB stops.
1659
1660 [linux]
1661 * Multiple hardware watchpoints can be hit at the same time,
1662 causing GDB to stop. GDB only presents one hardware watchpoint
1663 hit at a time as the reason for stopping, and all the other hits
1664 are presented later, one after the other, each time the user
1665 requests the execution to be resumed. Execution is not resumed
1666 for the threads still having pending hit event stored in
1667 LWP_INFO->STATUS. While the watchpoint is already removed from
1668 the inferior on the first stop the thread hit event is kept being
1669 reported from its cached value by linux_nat_stopped_data_address
1670 until the real thread resume happens after the watchpoint gets
1671 presented and thus its LWP_INFO->STATUS gets reset.
1672
1673 Therefore the hardware watchpoint hit can get safely reset on the
1674 watchpoint removal from inferior. */
1675
1676 static void
1677 update_watchpoint (struct watchpoint *b, int reparse)
1678 {
1679 int within_current_scope;
1680 struct frame_id saved_frame_id;
1681 int frame_saved;
1682
1683 /* If this is a local watchpoint, we only want to check if the
1684 watchpoint frame is in scope if the current thread is the thread
1685 that was used to create the watchpoint. */
1686 if (!watchpoint_in_thread_scope (b))
1687 return;
1688
1689 if (b->disposition == disp_del_at_next_stop)
1690 return;
1691
1692 frame_saved = 0;
1693
1694 /* Determine if the watchpoint is within scope. */
1695 if (b->exp_valid_block == NULL)
1696 within_current_scope = 1;
1697 else
1698 {
1699 struct frame_info *fi = get_current_frame ();
1700 struct gdbarch *frame_arch = get_frame_arch (fi);
1701 CORE_ADDR frame_pc = get_frame_pc (fi);
1702
1703 /* If we're at a point where the stack has been destroyed
1704 (e.g. in a function epilogue), unwinding may not work
1705 properly. Do not attempt to recreate locations at this
1706 point. See similar comments in watchpoint_check. */
1707 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1708 return;
1709
1710 /* Save the current frame's ID so we can restore it after
1711 evaluating the watchpoint expression on its own frame. */
1712 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1713 took a frame parameter, so that we didn't have to change the
1714 selected frame. */
1715 frame_saved = 1;
1716 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1717
1718 fi = frame_find_by_id (b->watchpoint_frame);
1719 within_current_scope = (fi != NULL);
1720 if (within_current_scope)
1721 select_frame (fi);
1722 }
1723
1724 /* We don't free locations. They are stored in the bp_location array
1725 and update_global_location_list will eventually delete them and
1726 remove breakpoints if needed. */
1727 b->loc = NULL;
1728
1729 if (within_current_scope && reparse)
1730 {
1731 const char *s;
1732
1733 b->exp.reset ();
1734 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1735 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1736 /* If the meaning of expression itself changed, the old value is
1737 no longer relevant. We don't want to report a watchpoint hit
1738 to the user when the old value and the new value may actually
1739 be completely different objects. */
1740 b->val = NULL;
1741 b->val_valid = 0;
1742
1743 /* Note that unlike with breakpoints, the watchpoint's condition
1744 expression is stored in the breakpoint object, not in the
1745 locations (re)created below. */
1746 if (b->cond_string != NULL)
1747 {
1748 b->cond_exp.reset ();
1749
1750 s = b->cond_string;
1751 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1752 }
1753 }
1754
1755 /* If we failed to parse the expression, for example because
1756 it refers to a global variable in a not-yet-loaded shared library,
1757 don't try to insert watchpoint. We don't automatically delete
1758 such watchpoint, though, since failure to parse expression
1759 is different from out-of-scope watchpoint. */
1760 if (!target_has_execution)
1761 {
1762 /* Without execution, memory can't change. No use to try and
1763 set watchpoint locations. The watchpoint will be reset when
1764 the target gains execution, through breakpoint_re_set. */
1765 if (!can_use_hw_watchpoints)
1766 {
1767 if (b->ops->works_in_software_mode (b))
1768 b->type = bp_watchpoint;
1769 else
1770 error (_("Can't set read/access watchpoint when "
1771 "hardware watchpoints are disabled."));
1772 }
1773 }
1774 else if (within_current_scope && b->exp)
1775 {
1776 int pc = 0;
1777 std::vector<value_ref_ptr> val_chain;
1778 struct value *v, *result, *next;
1779 struct program_space *frame_pspace;
1780
1781 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1782
1783 /* Avoid setting b->val if it's already set. The meaning of
1784 b->val is 'the last value' user saw, and we should update
1785 it only if we reported that last value to user. As it
1786 happens, the code that reports it updates b->val directly.
1787 We don't keep track of the memory value for masked
1788 watchpoints. */
1789 if (!b->val_valid && !is_masked_watchpoint (b))
1790 {
1791 if (b->val_bitsize != 0)
1792 v = extract_bitfield_from_watchpoint_value (b, v);
1793 b->val = release_value (v);
1794 b->val_valid = 1;
1795 }
1796
1797 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1798
1799 /* Look at each value on the value chain. */
1800 gdb_assert (!val_chain.empty ());
1801 for (const value_ref_ptr &iter : val_chain)
1802 {
1803 v = iter.get ();
1804
1805 /* If it's a memory location, and GDB actually needed
1806 its contents to evaluate the expression, then we
1807 must watch it. If the first value returned is
1808 still lazy, that means an error occurred reading it;
1809 watch it anyway in case it becomes readable. */
1810 if (VALUE_LVAL (v) == lval_memory
1811 && (v == val_chain[0] || ! value_lazy (v)))
1812 {
1813 struct type *vtype = check_typedef (value_type (v));
1814
1815 /* We only watch structs and arrays if user asked
1816 for it explicitly, never if they just happen to
1817 appear in the middle of some value chain. */
1818 if (v == result
1819 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1820 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1821 {
1822 CORE_ADDR addr;
1823 enum target_hw_bp_type type;
1824 struct bp_location *loc, **tmp;
1825 int bitpos = 0, bitsize = 0;
1826
1827 if (value_bitsize (v) != 0)
1828 {
1829 /* Extract the bit parameters out from the bitfield
1830 sub-expression. */
1831 bitpos = value_bitpos (v);
1832 bitsize = value_bitsize (v);
1833 }
1834 else if (v == result && b->val_bitsize != 0)
1835 {
1836 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1837 lvalue whose bit parameters are saved in the fields
1838 VAL_BITPOS and VAL_BITSIZE. */
1839 bitpos = b->val_bitpos;
1840 bitsize = b->val_bitsize;
1841 }
1842
1843 addr = value_address (v);
1844 if (bitsize != 0)
1845 {
1846 /* Skip the bytes that don't contain the bitfield. */
1847 addr += bitpos / 8;
1848 }
1849
1850 type = hw_write;
1851 if (b->type == bp_read_watchpoint)
1852 type = hw_read;
1853 else if (b->type == bp_access_watchpoint)
1854 type = hw_access;
1855
1856 loc = allocate_bp_location (b);
1857 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1858 ;
1859 *tmp = loc;
1860 loc->gdbarch = get_type_arch (value_type (v));
1861
1862 loc->pspace = frame_pspace;
1863 loc->address = address_significant (loc->gdbarch, addr);
1864
1865 if (bitsize != 0)
1866 {
1867 /* Just cover the bytes that make up the bitfield. */
1868 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1869 }
1870 else
1871 loc->length = TYPE_LENGTH (value_type (v));
1872
1873 loc->watchpoint_type = type;
1874 }
1875 }
1876 }
1877
1878 /* Change the type of breakpoint between hardware assisted or
1879 an ordinary watchpoint depending on the hardware support
1880 and free hardware slots. REPARSE is set when the inferior
1881 is started. */
1882 if (reparse)
1883 {
1884 int reg_cnt;
1885 enum bp_loc_type loc_type;
1886 struct bp_location *bl;
1887
1888 reg_cnt = can_use_hardware_watchpoint (val_chain);
1889
1890 if (reg_cnt)
1891 {
1892 int i, target_resources_ok, other_type_used;
1893 enum bptype type;
1894
1895 /* Use an exact watchpoint when there's only one memory region to be
1896 watched, and only one debug register is needed to watch it. */
1897 b->exact = target_exact_watchpoints && reg_cnt == 1;
1898
1899 /* We need to determine how many resources are already
1900 used for all other hardware watchpoints plus this one
1901 to see if we still have enough resources to also fit
1902 this watchpoint in as well. */
1903
1904 /* If this is a software watchpoint, we try to turn it
1905 to a hardware one -- count resources as if B was of
1906 hardware watchpoint type. */
1907 type = b->type;
1908 if (type == bp_watchpoint)
1909 type = bp_hardware_watchpoint;
1910
1911 /* This watchpoint may or may not have been placed on
1912 the list yet at this point (it won't be in the list
1913 if we're trying to create it for the first time,
1914 through watch_command), so always account for it
1915 manually. */
1916
1917 /* Count resources used by all watchpoints except B. */
1918 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1919
1920 /* Add in the resources needed for B. */
1921 i += hw_watchpoint_use_count (b);
1922
1923 target_resources_ok
1924 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1925 if (target_resources_ok <= 0)
1926 {
1927 int sw_mode = b->ops->works_in_software_mode (b);
1928
1929 if (target_resources_ok == 0 && !sw_mode)
1930 error (_("Target does not support this type of "
1931 "hardware watchpoint."));
1932 else if (target_resources_ok < 0 && !sw_mode)
1933 error (_("There are not enough available hardware "
1934 "resources for this watchpoint."));
1935
1936 /* Downgrade to software watchpoint. */
1937 b->type = bp_watchpoint;
1938 }
1939 else
1940 {
1941 /* If this was a software watchpoint, we've just
1942 found we have enough resources to turn it to a
1943 hardware watchpoint. Otherwise, this is a
1944 nop. */
1945 b->type = type;
1946 }
1947 }
1948 else if (!b->ops->works_in_software_mode (b))
1949 {
1950 if (!can_use_hw_watchpoints)
1951 error (_("Can't set read/access watchpoint when "
1952 "hardware watchpoints are disabled."));
1953 else
1954 error (_("Expression cannot be implemented with "
1955 "read/access watchpoint."));
1956 }
1957 else
1958 b->type = bp_watchpoint;
1959
1960 loc_type = (b->type == bp_watchpoint? bp_loc_other
1961 : bp_loc_hardware_watchpoint);
1962 for (bl = b->loc; bl; bl = bl->next)
1963 bl->loc_type = loc_type;
1964 }
1965
1966 /* If a software watchpoint is not watching any memory, then the
1967 above left it without any location set up. But,
1968 bpstat_stop_status requires a location to be able to report
1969 stops, so make sure there's at least a dummy one. */
1970 if (b->type == bp_watchpoint && b->loc == NULL)
1971 software_watchpoint_add_no_memory_location (b, frame_pspace);
1972 }
1973 else if (!within_current_scope)
1974 {
1975 printf_filtered (_("\
1976 Watchpoint %d deleted because the program has left the block\n\
1977 in which its expression is valid.\n"),
1978 b->number);
1979 watchpoint_del_at_next_stop (b);
1980 }
1981
1982 /* Restore the selected frame. */
1983 if (frame_saved)
1984 select_frame (frame_find_by_id (saved_frame_id));
1985 }
1986
1987
1988 /* Returns 1 iff breakpoint location should be
1989 inserted in the inferior. We don't differentiate the type of BL's owner
1990 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1991 breakpoint_ops is not defined, because in insert_bp_location,
1992 tracepoint's insert_location will not be called. */
1993 static int
1994 should_be_inserted (struct bp_location *bl)
1995 {
1996 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1997 return 0;
1998
1999 if (bl->owner->disposition == disp_del_at_next_stop)
2000 return 0;
2001
2002 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2003 return 0;
2004
2005 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2006 return 0;
2007
2008 /* This is set for example, when we're attached to the parent of a
2009 vfork, and have detached from the child. The child is running
2010 free, and we expect it to do an exec or exit, at which point the
2011 OS makes the parent schedulable again (and the target reports
2012 that the vfork is done). Until the child is done with the shared
2013 memory region, do not insert breakpoints in the parent, otherwise
2014 the child could still trip on the parent's breakpoints. Since
2015 the parent is blocked anyway, it won't miss any breakpoint. */
2016 if (bl->pspace->breakpoints_not_allowed)
2017 return 0;
2018
2019 /* Don't insert a breakpoint if we're trying to step past its
2020 location, except if the breakpoint is a single-step breakpoint,
2021 and the breakpoint's thread is the thread which is stepping past
2022 a breakpoint. */
2023 if ((bl->loc_type == bp_loc_software_breakpoint
2024 || bl->loc_type == bp_loc_hardware_breakpoint)
2025 && stepping_past_instruction_at (bl->pspace->aspace,
2026 bl->address)
2027 /* The single-step breakpoint may be inserted at the location
2028 we're trying to step if the instruction branches to itself.
2029 However, the instruction won't be executed at all and it may
2030 break the semantics of the instruction, for example, the
2031 instruction is a conditional branch or updates some flags.
2032 We can't fix it unless GDB is able to emulate the instruction
2033 or switch to displaced stepping. */
2034 && !(bl->owner->type == bp_single_step
2035 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2036 {
2037 if (debug_infrun)
2038 {
2039 fprintf_unfiltered (gdb_stdlog,
2040 "infrun: skipping breakpoint: "
2041 "stepping past insn at: %s\n",
2042 paddress (bl->gdbarch, bl->address));
2043 }
2044 return 0;
2045 }
2046
2047 /* Don't insert watchpoints if we're trying to step past the
2048 instruction that triggered one. */
2049 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2050 && stepping_past_nonsteppable_watchpoint ())
2051 {
2052 if (debug_infrun)
2053 {
2054 fprintf_unfiltered (gdb_stdlog,
2055 "infrun: stepping past non-steppable watchpoint. "
2056 "skipping watchpoint at %s:%d\n",
2057 paddress (bl->gdbarch, bl->address),
2058 bl->length);
2059 }
2060 return 0;
2061 }
2062
2063 return 1;
2064 }
2065
2066 /* Same as should_be_inserted but does the check assuming
2067 that the location is not duplicated. */
2068
2069 static int
2070 unduplicated_should_be_inserted (struct bp_location *bl)
2071 {
2072 int result;
2073 const int save_duplicate = bl->duplicate;
2074
2075 bl->duplicate = 0;
2076 result = should_be_inserted (bl);
2077 bl->duplicate = save_duplicate;
2078 return result;
2079 }
2080
2081 /* Parses a conditional described by an expression COND into an
2082 agent expression bytecode suitable for evaluation
2083 by the bytecode interpreter. Return NULL if there was
2084 any error during parsing. */
2085
2086 static agent_expr_up
2087 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2088 {
2089 if (cond == NULL)
2090 return NULL;
2091
2092 agent_expr_up aexpr;
2093
2094 /* We don't want to stop processing, so catch any errors
2095 that may show up. */
2096 TRY
2097 {
2098 aexpr = gen_eval_for_expr (scope, cond);
2099 }
2100
2101 CATCH (ex, RETURN_MASK_ERROR)
2102 {
2103 /* If we got here, it means the condition could not be parsed to a valid
2104 bytecode expression and thus can't be evaluated on the target's side.
2105 It's no use iterating through the conditions. */
2106 }
2107 END_CATCH
2108
2109 /* We have a valid agent expression. */
2110 return aexpr;
2111 }
2112
2113 /* Based on location BL, create a list of breakpoint conditions to be
2114 passed on to the target. If we have duplicated locations with different
2115 conditions, we will add such conditions to the list. The idea is that the
2116 target will evaluate the list of conditions and will only notify GDB when
2117 one of them is true. */
2118
2119 static void
2120 build_target_condition_list (struct bp_location *bl)
2121 {
2122 struct bp_location **locp = NULL, **loc2p;
2123 int null_condition_or_parse_error = 0;
2124 int modified = bl->needs_update;
2125 struct bp_location *loc;
2126
2127 /* Release conditions left over from a previous insert. */
2128 bl->target_info.conditions.clear ();
2129
2130 /* This is only meaningful if the target is
2131 evaluating conditions and if the user has
2132 opted for condition evaluation on the target's
2133 side. */
2134 if (gdb_evaluates_breakpoint_condition_p ()
2135 || !target_supports_evaluation_of_breakpoint_conditions ())
2136 return;
2137
2138 /* Do a first pass to check for locations with no assigned
2139 conditions or conditions that fail to parse to a valid agent expression
2140 bytecode. If any of these happen, then it's no use to send conditions
2141 to the target since this location will always trigger and generate a
2142 response back to GDB. */
2143 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2144 {
2145 loc = (*loc2p);
2146 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2147 {
2148 if (modified)
2149 {
2150 /* Re-parse the conditions since something changed. In that
2151 case we already freed the condition bytecodes (see
2152 force_breakpoint_reinsertion). We just
2153 need to parse the condition to bytecodes again. */
2154 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2155 loc->cond.get ());
2156 }
2157
2158 /* If we have a NULL bytecode expression, it means something
2159 went wrong or we have a null condition expression. */
2160 if (!loc->cond_bytecode)
2161 {
2162 null_condition_or_parse_error = 1;
2163 break;
2164 }
2165 }
2166 }
2167
2168 /* If any of these happened, it means we will have to evaluate the conditions
2169 for the location's address on gdb's side. It is no use keeping bytecodes
2170 for all the other duplicate locations, thus we free all of them here.
2171
2172 This is so we have a finer control over which locations' conditions are
2173 being evaluated by GDB or the remote stub. */
2174 if (null_condition_or_parse_error)
2175 {
2176 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2177 {
2178 loc = (*loc2p);
2179 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2180 {
2181 /* Only go as far as the first NULL bytecode is
2182 located. */
2183 if (!loc->cond_bytecode)
2184 return;
2185
2186 loc->cond_bytecode.reset ();
2187 }
2188 }
2189 }
2190
2191 /* No NULL conditions or failed bytecode generation. Build a condition list
2192 for this location's address. */
2193 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2194 {
2195 loc = (*loc2p);
2196 if (loc->cond
2197 && is_breakpoint (loc->owner)
2198 && loc->pspace->num == bl->pspace->num
2199 && loc->owner->enable_state == bp_enabled
2200 && loc->enabled)
2201 {
2202 /* Add the condition to the vector. This will be used later
2203 to send the conditions to the target. */
2204 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2205 }
2206 }
2207
2208 return;
2209 }
2210
2211 /* Parses a command described by string CMD into an agent expression
2212 bytecode suitable for evaluation by the bytecode interpreter.
2213 Return NULL if there was any error during parsing. */
2214
2215 static agent_expr_up
2216 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2217 {
2218 const char *cmdrest;
2219 const char *format_start, *format_end;
2220 struct gdbarch *gdbarch = get_current_arch ();
2221
2222 if (cmd == NULL)
2223 return NULL;
2224
2225 cmdrest = cmd;
2226
2227 if (*cmdrest == ',')
2228 ++cmdrest;
2229 cmdrest = skip_spaces (cmdrest);
2230
2231 if (*cmdrest++ != '"')
2232 error (_("No format string following the location"));
2233
2234 format_start = cmdrest;
2235
2236 format_pieces fpieces (&cmdrest);
2237
2238 format_end = cmdrest;
2239
2240 if (*cmdrest++ != '"')
2241 error (_("Bad format string, non-terminated '\"'."));
2242
2243 cmdrest = skip_spaces (cmdrest);
2244
2245 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2246 error (_("Invalid argument syntax"));
2247
2248 if (*cmdrest == ',')
2249 cmdrest++;
2250 cmdrest = skip_spaces (cmdrest);
2251
2252 /* For each argument, make an expression. */
2253
2254 std::vector<struct expression *> argvec;
2255 while (*cmdrest != '\0')
2256 {
2257 const char *cmd1;
2258
2259 cmd1 = cmdrest;
2260 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2261 argvec.push_back (expr.release ());
2262 cmdrest = cmd1;
2263 if (*cmdrest == ',')
2264 ++cmdrest;
2265 }
2266
2267 agent_expr_up aexpr;
2268
2269 /* We don't want to stop processing, so catch any errors
2270 that may show up. */
2271 TRY
2272 {
2273 aexpr = gen_printf (scope, gdbarch, 0, 0,
2274 format_start, format_end - format_start,
2275 argvec.size (), argvec.data ());
2276 }
2277 CATCH (ex, RETURN_MASK_ERROR)
2278 {
2279 /* If we got here, it means the command could not be parsed to a valid
2280 bytecode expression and thus can't be evaluated on the target's side.
2281 It's no use iterating through the other commands. */
2282 }
2283 END_CATCH
2284
2285 /* We have a valid agent expression, return it. */
2286 return aexpr;
2287 }
2288
2289 /* Based on location BL, create a list of breakpoint commands to be
2290 passed on to the target. If we have duplicated locations with
2291 different commands, we will add any such to the list. */
2292
2293 static void
2294 build_target_command_list (struct bp_location *bl)
2295 {
2296 struct bp_location **locp = NULL, **loc2p;
2297 int null_command_or_parse_error = 0;
2298 int modified = bl->needs_update;
2299 struct bp_location *loc;
2300
2301 /* Clear commands left over from a previous insert. */
2302 bl->target_info.tcommands.clear ();
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* For now, limit to agent-style dprintf breakpoints. */
2308 if (dprintf_style != dprintf_style_agent)
2309 return;
2310
2311 /* For now, if we have any duplicate location that isn't a dprintf,
2312 don't install the target-side commands, as that would make the
2313 breakpoint not be reported to the core, and we'd lose
2314 control. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner)
2319 && loc->pspace->num == bl->pspace->num
2320 && loc->owner->type != bp_dprintf)
2321 return;
2322 }
2323
2324 /* Do a first pass to check for locations with no assigned
2325 conditions or conditions that fail to parse to a valid agent expression
2326 bytecode. If any of these happen, then it's no use to send conditions
2327 to the target since this location will always trigger and generate a
2328 response back to GDB. */
2329 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2330 {
2331 loc = (*loc2p);
2332 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2333 {
2334 if (modified)
2335 {
2336 /* Re-parse the commands since something changed. In that
2337 case we already freed the command bytecodes (see
2338 force_breakpoint_reinsertion). We just
2339 need to parse the command to bytecodes again. */
2340 loc->cmd_bytecode
2341 = parse_cmd_to_aexpr (bl->address,
2342 loc->owner->extra_string);
2343 }
2344
2345 /* If we have a NULL bytecode expression, it means something
2346 went wrong or we have a null command expression. */
2347 if (!loc->cmd_bytecode)
2348 {
2349 null_command_or_parse_error = 1;
2350 break;
2351 }
2352 }
2353 }
2354
2355 /* If anything failed, then we're not doing target-side commands,
2356 and so clean up. */
2357 if (null_command_or_parse_error)
2358 {
2359 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2360 {
2361 loc = (*loc2p);
2362 if (is_breakpoint (loc->owner)
2363 && loc->pspace->num == bl->pspace->num)
2364 {
2365 /* Only go as far as the first NULL bytecode is
2366 located. */
2367 if (loc->cmd_bytecode == NULL)
2368 return;
2369
2370 loc->cmd_bytecode.reset ();
2371 }
2372 }
2373 }
2374
2375 /* No NULL commands or failed bytecode generation. Build a command list
2376 for this location's address. */
2377 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2378 {
2379 loc = (*loc2p);
2380 if (loc->owner->extra_string
2381 && is_breakpoint (loc->owner)
2382 && loc->pspace->num == bl->pspace->num
2383 && loc->owner->enable_state == bp_enabled
2384 && loc->enabled)
2385 {
2386 /* Add the command to the vector. This will be used later
2387 to send the commands to the target. */
2388 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2389 }
2390 }
2391
2392 bl->target_info.persist = 0;
2393 /* Maybe flag this location as persistent. */
2394 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2395 bl->target_info.persist = 1;
2396 }
2397
2398 /* Return the kind of breakpoint on address *ADDR. Get the kind
2399 of breakpoint according to ADDR except single-step breakpoint.
2400 Get the kind of single-step breakpoint according to the current
2401 registers state. */
2402
2403 static int
2404 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2405 {
2406 if (bl->owner->type == bp_single_step)
2407 {
2408 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2409 struct regcache *regcache;
2410
2411 regcache = get_thread_regcache (thr->ptid);
2412
2413 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2414 regcache, addr);
2415 }
2416 else
2417 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2418 }
2419
2420 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2421 location. Any error messages are printed to TMP_ERROR_STREAM; and
2422 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2423 Returns 0 for success, 1 if the bp_location type is not supported or
2424 -1 for failure.
2425
2426 NOTE drow/2003-09-09: This routine could be broken down to an
2427 object-style method for each breakpoint or catchpoint type. */
2428 static int
2429 insert_bp_location (struct bp_location *bl,
2430 struct ui_file *tmp_error_stream,
2431 int *disabled_breaks,
2432 int *hw_breakpoint_error,
2433 int *hw_bp_error_explained_already)
2434 {
2435 gdb_exception bp_excpt = exception_none;
2436
2437 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2438 return 0;
2439
2440 /* Note we don't initialize bl->target_info, as that wipes out
2441 the breakpoint location's shadow_contents if the breakpoint
2442 is still inserted at that location. This in turn breaks
2443 target_read_memory which depends on these buffers when
2444 a memory read is requested at the breakpoint location:
2445 Once the target_info has been wiped, we fail to see that
2446 we have a breakpoint inserted at that address and thus
2447 read the breakpoint instead of returning the data saved in
2448 the breakpoint location's shadow contents. */
2449 bl->target_info.reqstd_address = bl->address;
2450 bl->target_info.placed_address_space = bl->pspace->aspace;
2451 bl->target_info.length = bl->length;
2452
2453 /* When working with target-side conditions, we must pass all the conditions
2454 for the same breakpoint address down to the target since GDB will not
2455 insert those locations. With a list of breakpoint conditions, the target
2456 can decide when to stop and notify GDB. */
2457
2458 if (is_breakpoint (bl->owner))
2459 {
2460 build_target_condition_list (bl);
2461 build_target_command_list (bl);
2462 /* Reset the modification marker. */
2463 bl->needs_update = 0;
2464 }
2465
2466 if (bl->loc_type == bp_loc_software_breakpoint
2467 || bl->loc_type == bp_loc_hardware_breakpoint)
2468 {
2469 if (bl->owner->type != bp_hardware_breakpoint)
2470 {
2471 /* If the explicitly specified breakpoint type
2472 is not hardware breakpoint, check the memory map to see
2473 if the breakpoint address is in read only memory or not.
2474
2475 Two important cases are:
2476 - location type is not hardware breakpoint, memory
2477 is readonly. We change the type of the location to
2478 hardware breakpoint.
2479 - location type is hardware breakpoint, memory is
2480 read-write. This means we've previously made the
2481 location hardware one, but then the memory map changed,
2482 so we undo.
2483
2484 When breakpoints are removed, remove_breakpoints will use
2485 location types we've just set here, the only possible
2486 problem is that memory map has changed during running
2487 program, but it's not going to work anyway with current
2488 gdb. */
2489 struct mem_region *mr
2490 = lookup_mem_region (bl->target_info.reqstd_address);
2491
2492 if (mr)
2493 {
2494 if (automatic_hardware_breakpoints)
2495 {
2496 enum bp_loc_type new_type;
2497
2498 if (mr->attrib.mode != MEM_RW)
2499 new_type = bp_loc_hardware_breakpoint;
2500 else
2501 new_type = bp_loc_software_breakpoint;
2502
2503 if (new_type != bl->loc_type)
2504 {
2505 static int said = 0;
2506
2507 bl->loc_type = new_type;
2508 if (!said)
2509 {
2510 fprintf_filtered (gdb_stdout,
2511 _("Note: automatically using "
2512 "hardware breakpoints for "
2513 "read-only addresses.\n"));
2514 said = 1;
2515 }
2516 }
2517 }
2518 else if (bl->loc_type == bp_loc_software_breakpoint
2519 && mr->attrib.mode != MEM_RW)
2520 {
2521 fprintf_unfiltered (tmp_error_stream,
2522 _("Cannot insert breakpoint %d.\n"
2523 "Cannot set software breakpoint "
2524 "at read-only address %s\n"),
2525 bl->owner->number,
2526 paddress (bl->gdbarch, bl->address));
2527 return 1;
2528 }
2529 }
2530 }
2531
2532 /* First check to see if we have to handle an overlay. */
2533 if (overlay_debugging == ovly_off
2534 || bl->section == NULL
2535 || !(section_is_overlay (bl->section)))
2536 {
2537 /* No overlay handling: just set the breakpoint. */
2538 TRY
2539 {
2540 int val;
2541
2542 val = bl->owner->ops->insert_location (bl);
2543 if (val)
2544 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2545 }
2546 CATCH (e, RETURN_MASK_ALL)
2547 {
2548 bp_excpt = e;
2549 }
2550 END_CATCH
2551 }
2552 else
2553 {
2554 /* This breakpoint is in an overlay section.
2555 Shall we set a breakpoint at the LMA? */
2556 if (!overlay_events_enabled)
2557 {
2558 /* Yes -- overlay event support is not active,
2559 so we must try to set a breakpoint at the LMA.
2560 This will not work for a hardware breakpoint. */
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 warning (_("hardware breakpoint %d not supported in overlay!"),
2563 bl->owner->number);
2564 else
2565 {
2566 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2567 bl->section);
2568 /* Set a software (trap) breakpoint at the LMA. */
2569 bl->overlay_target_info = bl->target_info;
2570 bl->overlay_target_info.reqstd_address = addr;
2571
2572 /* No overlay handling: just set the breakpoint. */
2573 TRY
2574 {
2575 int val;
2576
2577 bl->overlay_target_info.kind
2578 = breakpoint_kind (bl, &addr);
2579 bl->overlay_target_info.placed_address = addr;
2580 val = target_insert_breakpoint (bl->gdbarch,
2581 &bl->overlay_target_info);
2582 if (val)
2583 bp_excpt
2584 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2585 }
2586 CATCH (e, RETURN_MASK_ALL)
2587 {
2588 bp_excpt = e;
2589 }
2590 END_CATCH
2591
2592 if (bp_excpt.reason != 0)
2593 fprintf_unfiltered (tmp_error_stream,
2594 "Overlay breakpoint %d "
2595 "failed: in ROM?\n",
2596 bl->owner->number);
2597 }
2598 }
2599 /* Shall we set a breakpoint at the VMA? */
2600 if (section_is_mapped (bl->section))
2601 {
2602 /* Yes. This overlay section is mapped into memory. */
2603 TRY
2604 {
2605 int val;
2606
2607 val = bl->owner->ops->insert_location (bl);
2608 if (val)
2609 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2610 }
2611 CATCH (e, RETURN_MASK_ALL)
2612 {
2613 bp_excpt = e;
2614 }
2615 END_CATCH
2616 }
2617 else
2618 {
2619 /* No. This breakpoint will not be inserted.
2620 No error, but do not mark the bp as 'inserted'. */
2621 return 0;
2622 }
2623 }
2624
2625 if (bp_excpt.reason != 0)
2626 {
2627 /* Can't set the breakpoint. */
2628
2629 /* In some cases, we might not be able to insert a
2630 breakpoint in a shared library that has already been
2631 removed, but we have not yet processed the shlib unload
2632 event. Unfortunately, some targets that implement
2633 breakpoint insertion themselves can't tell why the
2634 breakpoint insertion failed (e.g., the remote target
2635 doesn't define error codes), so we must treat generic
2636 errors as memory errors. */
2637 if (bp_excpt.reason == RETURN_ERROR
2638 && (bp_excpt.error == GENERIC_ERROR
2639 || bp_excpt.error == MEMORY_ERROR)
2640 && bl->loc_type == bp_loc_software_breakpoint
2641 && (solib_name_from_address (bl->pspace, bl->address)
2642 || shared_objfile_contains_address_p (bl->pspace,
2643 bl->address)))
2644 {
2645 /* See also: disable_breakpoints_in_shlibs. */
2646 bl->shlib_disabled = 1;
2647 gdb::observers::breakpoint_modified.notify (bl->owner);
2648 if (!*disabled_breaks)
2649 {
2650 fprintf_unfiltered (tmp_error_stream,
2651 "Cannot insert breakpoint %d.\n",
2652 bl->owner->number);
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Temporarily disabling shared "
2655 "library breakpoints:\n");
2656 }
2657 *disabled_breaks = 1;
2658 fprintf_unfiltered (tmp_error_stream,
2659 "breakpoint #%d\n", bl->owner->number);
2660 return 0;
2661 }
2662 else
2663 {
2664 if (bl->loc_type == bp_loc_hardware_breakpoint)
2665 {
2666 *hw_breakpoint_error = 1;
2667 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2668 fprintf_unfiltered (tmp_error_stream,
2669 "Cannot insert hardware breakpoint %d%s",
2670 bl->owner->number,
2671 bp_excpt.message ? ":" : ".\n");
2672 if (bp_excpt.message != NULL)
2673 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2674 bp_excpt.message);
2675 }
2676 else
2677 {
2678 if (bp_excpt.message == NULL)
2679 {
2680 std::string message
2681 = memory_error_message (TARGET_XFER_E_IO,
2682 bl->gdbarch, bl->address);
2683
2684 fprintf_unfiltered (tmp_error_stream,
2685 "Cannot insert breakpoint %d.\n"
2686 "%s\n",
2687 bl->owner->number, message.c_str ());
2688 }
2689 else
2690 {
2691 fprintf_unfiltered (tmp_error_stream,
2692 "Cannot insert breakpoint %d: %s\n",
2693 bl->owner->number,
2694 bp_excpt.message);
2695 }
2696 }
2697 return 1;
2698
2699 }
2700 }
2701 else
2702 bl->inserted = 1;
2703
2704 return 0;
2705 }
2706
2707 else if (bl->loc_type == bp_loc_hardware_watchpoint
2708 /* NOTE drow/2003-09-08: This state only exists for removing
2709 watchpoints. It's not clear that it's necessary... */
2710 && bl->owner->disposition != disp_del_at_next_stop)
2711 {
2712 int val;
2713
2714 gdb_assert (bl->owner->ops != NULL
2715 && bl->owner->ops->insert_location != NULL);
2716
2717 val = bl->owner->ops->insert_location (bl);
2718
2719 /* If trying to set a read-watchpoint, and it turns out it's not
2720 supported, try emulating one with an access watchpoint. */
2721 if (val == 1 && bl->watchpoint_type == hw_read)
2722 {
2723 struct bp_location *loc, **loc_temp;
2724
2725 /* But don't try to insert it, if there's already another
2726 hw_access location that would be considered a duplicate
2727 of this one. */
2728 ALL_BP_LOCATIONS (loc, loc_temp)
2729 if (loc != bl
2730 && loc->watchpoint_type == hw_access
2731 && watchpoint_locations_match (bl, loc))
2732 {
2733 bl->duplicate = 1;
2734 bl->inserted = 1;
2735 bl->target_info = loc->target_info;
2736 bl->watchpoint_type = hw_access;
2737 val = 0;
2738 break;
2739 }
2740
2741 if (val == 1)
2742 {
2743 bl->watchpoint_type = hw_access;
2744 val = bl->owner->ops->insert_location (bl);
2745
2746 if (val)
2747 /* Back to the original value. */
2748 bl->watchpoint_type = hw_read;
2749 }
2750 }
2751
2752 bl->inserted = (val == 0);
2753 }
2754
2755 else if (bl->owner->type == bp_catchpoint)
2756 {
2757 int val;
2758
2759 gdb_assert (bl->owner->ops != NULL
2760 && bl->owner->ops->insert_location != NULL);
2761
2762 val = bl->owner->ops->insert_location (bl);
2763 if (val)
2764 {
2765 bl->owner->enable_state = bp_disabled;
2766
2767 if (val == 1)
2768 warning (_("\
2769 Error inserting catchpoint %d: Your system does not support this type\n\
2770 of catchpoint."), bl->owner->number);
2771 else
2772 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2773 }
2774
2775 bl->inserted = (val == 0);
2776
2777 /* We've already printed an error message if there was a problem
2778 inserting this catchpoint, and we've disabled the catchpoint,
2779 so just return success. */
2780 return 0;
2781 }
2782
2783 return 0;
2784 }
2785
2786 /* This function is called when program space PSPACE is about to be
2787 deleted. It takes care of updating breakpoints to not reference
2788 PSPACE anymore. */
2789
2790 void
2791 breakpoint_program_space_exit (struct program_space *pspace)
2792 {
2793 struct breakpoint *b, *b_temp;
2794 struct bp_location *loc, **loc_temp;
2795
2796 /* Remove any breakpoint that was set through this program space. */
2797 ALL_BREAKPOINTS_SAFE (b, b_temp)
2798 {
2799 if (b->pspace == pspace)
2800 delete_breakpoint (b);
2801 }
2802
2803 /* Breakpoints set through other program spaces could have locations
2804 bound to PSPACE as well. Remove those. */
2805 ALL_BP_LOCATIONS (loc, loc_temp)
2806 {
2807 struct bp_location *tmp;
2808
2809 if (loc->pspace == pspace)
2810 {
2811 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2812 if (loc->owner->loc == loc)
2813 loc->owner->loc = loc->next;
2814 else
2815 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2816 if (tmp->next == loc)
2817 {
2818 tmp->next = loc->next;
2819 break;
2820 }
2821 }
2822 }
2823
2824 /* Now update the global location list to permanently delete the
2825 removed locations above. */
2826 update_global_location_list (UGLL_DONT_INSERT);
2827 }
2828
2829 /* Make sure all breakpoints are inserted in inferior.
2830 Throws exception on any error.
2831 A breakpoint that is already inserted won't be inserted
2832 again, so calling this function twice is safe. */
2833 void
2834 insert_breakpoints (void)
2835 {
2836 struct breakpoint *bpt;
2837
2838 ALL_BREAKPOINTS (bpt)
2839 if (is_hardware_watchpoint (bpt))
2840 {
2841 struct watchpoint *w = (struct watchpoint *) bpt;
2842
2843 update_watchpoint (w, 0 /* don't reparse. */);
2844 }
2845
2846 /* Updating watchpoints creates new locations, so update the global
2847 location list. Explicitly tell ugll to insert locations and
2848 ignore breakpoints_always_inserted_mode. */
2849 update_global_location_list (UGLL_INSERT);
2850 }
2851
2852 /* Invoke CALLBACK for each of bp_location. */
2853
2854 void
2855 iterate_over_bp_locations (walk_bp_location_callback callback)
2856 {
2857 struct bp_location *loc, **loc_tmp;
2858
2859 ALL_BP_LOCATIONS (loc, loc_tmp)
2860 {
2861 callback (loc, NULL);
2862 }
2863 }
2864
2865 /* This is used when we need to synch breakpoint conditions between GDB and the
2866 target. It is the case with deleting and disabling of breakpoints when using
2867 always-inserted mode. */
2868
2869 static void
2870 update_inserted_breakpoint_locations (void)
2871 {
2872 struct bp_location *bl, **blp_tmp;
2873 int error_flag = 0;
2874 int val = 0;
2875 int disabled_breaks = 0;
2876 int hw_breakpoint_error = 0;
2877 int hw_bp_details_reported = 0;
2878
2879 string_file tmp_error_stream;
2880
2881 /* Explicitly mark the warning -- this will only be printed if
2882 there was an error. */
2883 tmp_error_stream.puts ("Warning:\n");
2884
2885 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2886
2887 ALL_BP_LOCATIONS (bl, blp_tmp)
2888 {
2889 /* We only want to update software breakpoints and hardware
2890 breakpoints. */
2891 if (!is_breakpoint (bl->owner))
2892 continue;
2893
2894 /* We only want to update locations that are already inserted
2895 and need updating. This is to avoid unwanted insertion during
2896 deletion of breakpoints. */
2897 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2898 continue;
2899
2900 switch_to_program_space_and_thread (bl->pspace);
2901
2902 /* For targets that support global breakpoints, there's no need
2903 to select an inferior to insert breakpoint to. In fact, even
2904 if we aren't attached to any process yet, we should still
2905 insert breakpoints. */
2906 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2907 && ptid_equal (inferior_ptid, null_ptid))
2908 continue;
2909
2910 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2911 &hw_breakpoint_error, &hw_bp_details_reported);
2912 if (val)
2913 error_flag = val;
2914 }
2915
2916 if (error_flag)
2917 {
2918 target_terminal::ours_for_output ();
2919 error_stream (tmp_error_stream);
2920 }
2921 }
2922
2923 /* Used when starting or continuing the program. */
2924
2925 static void
2926 insert_breakpoint_locations (void)
2927 {
2928 struct breakpoint *bpt;
2929 struct bp_location *bl, **blp_tmp;
2930 int error_flag = 0;
2931 int val = 0;
2932 int disabled_breaks = 0;
2933 int hw_breakpoint_error = 0;
2934 int hw_bp_error_explained_already = 0;
2935
2936 string_file tmp_error_stream;
2937
2938 /* Explicitly mark the warning -- this will only be printed if
2939 there was an error. */
2940 tmp_error_stream.puts ("Warning:\n");
2941
2942 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2943
2944 ALL_BP_LOCATIONS (bl, blp_tmp)
2945 {
2946 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2947 continue;
2948
2949 /* There is no point inserting thread-specific breakpoints if
2950 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2951 has BL->OWNER always non-NULL. */
2952 if (bl->owner->thread != -1
2953 && !valid_global_thread_id (bl->owner->thread))
2954 continue;
2955
2956 switch_to_program_space_and_thread (bl->pspace);
2957
2958 /* For targets that support global breakpoints, there's no need
2959 to select an inferior to insert breakpoint to. In fact, even
2960 if we aren't attached to any process yet, we should still
2961 insert breakpoints. */
2962 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2963 && ptid_equal (inferior_ptid, null_ptid))
2964 continue;
2965
2966 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2967 &hw_breakpoint_error, &hw_bp_error_explained_already);
2968 if (val)
2969 error_flag = val;
2970 }
2971
2972 /* If we failed to insert all locations of a watchpoint, remove
2973 them, as half-inserted watchpoint is of limited use. */
2974 ALL_BREAKPOINTS (bpt)
2975 {
2976 int some_failed = 0;
2977 struct bp_location *loc;
2978
2979 if (!is_hardware_watchpoint (bpt))
2980 continue;
2981
2982 if (!breakpoint_enabled (bpt))
2983 continue;
2984
2985 if (bpt->disposition == disp_del_at_next_stop)
2986 continue;
2987
2988 for (loc = bpt->loc; loc; loc = loc->next)
2989 if (!loc->inserted && should_be_inserted (loc))
2990 {
2991 some_failed = 1;
2992 break;
2993 }
2994 if (some_failed)
2995 {
2996 for (loc = bpt->loc; loc; loc = loc->next)
2997 if (loc->inserted)
2998 remove_breakpoint (loc);
2999
3000 hw_breakpoint_error = 1;
3001 tmp_error_stream.printf ("Could not insert "
3002 "hardware watchpoint %d.\n",
3003 bpt->number);
3004 error_flag = -1;
3005 }
3006 }
3007
3008 if (error_flag)
3009 {
3010 /* If a hardware breakpoint or watchpoint was inserted, add a
3011 message about possibly exhausted resources. */
3012 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3013 {
3014 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3015 You may have requested too many hardware breakpoints/watchpoints.\n");
3016 }
3017 target_terminal::ours_for_output ();
3018 error_stream (tmp_error_stream);
3019 }
3020 }
3021
3022 /* Used when the program stops.
3023 Returns zero if successful, or non-zero if there was a problem
3024 removing a breakpoint location. */
3025
3026 int
3027 remove_breakpoints (void)
3028 {
3029 struct bp_location *bl, **blp_tmp;
3030 int val = 0;
3031
3032 ALL_BP_LOCATIONS (bl, blp_tmp)
3033 {
3034 if (bl->inserted && !is_tracepoint (bl->owner))
3035 val |= remove_breakpoint (bl);
3036 }
3037 return val;
3038 }
3039
3040 /* When a thread exits, remove breakpoints that are related to
3041 that thread. */
3042
3043 static void
3044 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3045 {
3046 struct breakpoint *b, *b_tmp;
3047
3048 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3049 {
3050 if (b->thread == tp->global_num && user_breakpoint_p (b))
3051 {
3052 b->disposition = disp_del_at_next_stop;
3053
3054 printf_filtered (_("\
3055 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3056 b->number, print_thread_id (tp));
3057
3058 /* Hide it from the user. */
3059 b->number = 0;
3060 }
3061 }
3062 }
3063
3064 /* Remove breakpoints of process PID. */
3065
3066 int
3067 remove_breakpoints_pid (int pid)
3068 {
3069 struct bp_location *bl, **blp_tmp;
3070 int val;
3071 struct inferior *inf = find_inferior_pid (pid);
3072
3073 ALL_BP_LOCATIONS (bl, blp_tmp)
3074 {
3075 if (bl->pspace != inf->pspace)
3076 continue;
3077
3078 if (bl->inserted && !bl->target_info.persist)
3079 {
3080 val = remove_breakpoint (bl);
3081 if (val != 0)
3082 return val;
3083 }
3084 }
3085 return 0;
3086 }
3087
3088 static int internal_breakpoint_number = -1;
3089
3090 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3091 If INTERNAL is non-zero, the breakpoint number will be populated
3092 from internal_breakpoint_number and that variable decremented.
3093 Otherwise the breakpoint number will be populated from
3094 breakpoint_count and that value incremented. Internal breakpoints
3095 do not set the internal var bpnum. */
3096 static void
3097 set_breakpoint_number (int internal, struct breakpoint *b)
3098 {
3099 if (internal)
3100 b->number = internal_breakpoint_number--;
3101 else
3102 {
3103 set_breakpoint_count (breakpoint_count + 1);
3104 b->number = breakpoint_count;
3105 }
3106 }
3107
3108 static struct breakpoint *
3109 create_internal_breakpoint (struct gdbarch *gdbarch,
3110 CORE_ADDR address, enum bptype type,
3111 const struct breakpoint_ops *ops)
3112 {
3113 symtab_and_line sal;
3114 sal.pc = address;
3115 sal.section = find_pc_overlay (sal.pc);
3116 sal.pspace = current_program_space;
3117
3118 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3119 b->number = internal_breakpoint_number--;
3120 b->disposition = disp_donttouch;
3121
3122 return b;
3123 }
3124
3125 static const char *const longjmp_names[] =
3126 {
3127 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3128 };
3129 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3130
3131 /* Per-objfile data private to breakpoint.c. */
3132 struct breakpoint_objfile_data
3133 {
3134 /* Minimal symbol for "_ovly_debug_event" (if any). */
3135 struct bound_minimal_symbol overlay_msym {};
3136
3137 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3138 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3139
3140 /* True if we have looked for longjmp probes. */
3141 int longjmp_searched = 0;
3142
3143 /* SystemTap probe points for longjmp (if any). These are non-owning
3144 references. */
3145 std::vector<probe *> longjmp_probes;
3146
3147 /* Minimal symbol for "std::terminate()" (if any). */
3148 struct bound_minimal_symbol terminate_msym {};
3149
3150 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3151 struct bound_minimal_symbol exception_msym {};
3152
3153 /* True if we have looked for exception probes. */
3154 int exception_searched = 0;
3155
3156 /* SystemTap probe points for unwinding (if any). These are non-owning
3157 references. */
3158 std::vector<probe *> exception_probes;
3159 };
3160
3161 static const struct objfile_data *breakpoint_objfile_key;
3162
3163 /* Minimal symbol not found sentinel. */
3164 static struct minimal_symbol msym_not_found;
3165
3166 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3167
3168 static int
3169 msym_not_found_p (const struct minimal_symbol *msym)
3170 {
3171 return msym == &msym_not_found;
3172 }
3173
3174 /* Return per-objfile data needed by breakpoint.c.
3175 Allocate the data if necessary. */
3176
3177 static struct breakpoint_objfile_data *
3178 get_breakpoint_objfile_data (struct objfile *objfile)
3179 {
3180 struct breakpoint_objfile_data *bp_objfile_data;
3181
3182 bp_objfile_data = ((struct breakpoint_objfile_data *)
3183 objfile_data (objfile, breakpoint_objfile_key));
3184 if (bp_objfile_data == NULL)
3185 {
3186 bp_objfile_data = new breakpoint_objfile_data ();
3187 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3188 }
3189 return bp_objfile_data;
3190 }
3191
3192 static void
3193 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3194 {
3195 struct breakpoint_objfile_data *bp_objfile_data
3196 = (struct breakpoint_objfile_data *) data;
3197
3198 delete bp_objfile_data;
3199 }
3200
3201 static void
3202 create_overlay_event_breakpoint (void)
3203 {
3204 struct objfile *objfile;
3205 const char *const func_name = "_ovly_debug_event";
3206
3207 ALL_OBJFILES (objfile)
3208 {
3209 struct breakpoint *b;
3210 struct breakpoint_objfile_data *bp_objfile_data;
3211 CORE_ADDR addr;
3212 struct explicit_location explicit_loc;
3213
3214 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3215
3216 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3217 continue;
3218
3219 if (bp_objfile_data->overlay_msym.minsym == NULL)
3220 {
3221 struct bound_minimal_symbol m;
3222
3223 m = lookup_minimal_symbol_text (func_name, objfile);
3224 if (m.minsym == NULL)
3225 {
3226 /* Avoid future lookups in this objfile. */
3227 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3228 continue;
3229 }
3230 bp_objfile_data->overlay_msym = m;
3231 }
3232
3233 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3234 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3235 bp_overlay_event,
3236 &internal_breakpoint_ops);
3237 initialize_explicit_location (&explicit_loc);
3238 explicit_loc.function_name = ASTRDUP (func_name);
3239 b->location = new_explicit_location (&explicit_loc);
3240
3241 if (overlay_debugging == ovly_auto)
3242 {
3243 b->enable_state = bp_enabled;
3244 overlay_events_enabled = 1;
3245 }
3246 else
3247 {
3248 b->enable_state = bp_disabled;
3249 overlay_events_enabled = 0;
3250 }
3251 }
3252 }
3253
3254 static void
3255 create_longjmp_master_breakpoint (void)
3256 {
3257 struct program_space *pspace;
3258
3259 scoped_restore_current_program_space restore_pspace;
3260
3261 ALL_PSPACES (pspace)
3262 {
3263 struct objfile *objfile;
3264
3265 set_current_program_space (pspace);
3266
3267 ALL_OBJFILES (objfile)
3268 {
3269 int i;
3270 struct gdbarch *gdbarch;
3271 struct breakpoint_objfile_data *bp_objfile_data;
3272
3273 gdbarch = get_objfile_arch (objfile);
3274
3275 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3276
3277 if (!bp_objfile_data->longjmp_searched)
3278 {
3279 std::vector<probe *> ret
3280 = find_probes_in_objfile (objfile, "libc", "longjmp");
3281
3282 if (!ret.empty ())
3283 {
3284 /* We are only interested in checking one element. */
3285 probe *p = ret[0];
3286
3287 if (!p->can_evaluate_arguments ())
3288 {
3289 /* We cannot use the probe interface here, because it does
3290 not know how to evaluate arguments. */
3291 ret.clear ();
3292 }
3293 }
3294 bp_objfile_data->longjmp_probes = ret;
3295 bp_objfile_data->longjmp_searched = 1;
3296 }
3297
3298 if (!bp_objfile_data->longjmp_probes.empty ())
3299 {
3300 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3301
3302 for (probe *p : bp_objfile_data->longjmp_probes)
3303 {
3304 struct breakpoint *b;
3305
3306 b = create_internal_breakpoint (gdbarch,
3307 p->get_relocated_address (objfile),
3308 bp_longjmp_master,
3309 &internal_breakpoint_ops);
3310 b->location = new_probe_location ("-probe-stap libc:longjmp");
3311 b->enable_state = bp_disabled;
3312 }
3313
3314 continue;
3315 }
3316
3317 if (!gdbarch_get_longjmp_target_p (gdbarch))
3318 continue;
3319
3320 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3321 {
3322 struct breakpoint *b;
3323 const char *func_name;
3324 CORE_ADDR addr;
3325 struct explicit_location explicit_loc;
3326
3327 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3328 continue;
3329
3330 func_name = longjmp_names[i];
3331 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3332 {
3333 struct bound_minimal_symbol m;
3334
3335 m = lookup_minimal_symbol_text (func_name, objfile);
3336 if (m.minsym == NULL)
3337 {
3338 /* Prevent future lookups in this objfile. */
3339 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3340 continue;
3341 }
3342 bp_objfile_data->longjmp_msym[i] = m;
3343 }
3344
3345 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3346 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3347 &internal_breakpoint_ops);
3348 initialize_explicit_location (&explicit_loc);
3349 explicit_loc.function_name = ASTRDUP (func_name);
3350 b->location = new_explicit_location (&explicit_loc);
3351 b->enable_state = bp_disabled;
3352 }
3353 }
3354 }
3355 }
3356
3357 /* Create a master std::terminate breakpoint. */
3358 static void
3359 create_std_terminate_master_breakpoint (void)
3360 {
3361 struct program_space *pspace;
3362 const char *const func_name = "std::terminate()";
3363
3364 scoped_restore_current_program_space restore_pspace;
3365
3366 ALL_PSPACES (pspace)
3367 {
3368 struct objfile *objfile;
3369 CORE_ADDR addr;
3370
3371 set_current_program_space (pspace);
3372
3373 ALL_OBJFILES (objfile)
3374 {
3375 struct breakpoint *b;
3376 struct breakpoint_objfile_data *bp_objfile_data;
3377 struct explicit_location explicit_loc;
3378
3379 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3380
3381 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3382 continue;
3383
3384 if (bp_objfile_data->terminate_msym.minsym == NULL)
3385 {
3386 struct bound_minimal_symbol m;
3387
3388 m = lookup_minimal_symbol (func_name, NULL, objfile);
3389 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3390 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3391 {
3392 /* Prevent future lookups in this objfile. */
3393 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3394 continue;
3395 }
3396 bp_objfile_data->terminate_msym = m;
3397 }
3398
3399 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3400 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3401 bp_std_terminate_master,
3402 &internal_breakpoint_ops);
3403 initialize_explicit_location (&explicit_loc);
3404 explicit_loc.function_name = ASTRDUP (func_name);
3405 b->location = new_explicit_location (&explicit_loc);
3406 b->enable_state = bp_disabled;
3407 }
3408 }
3409 }
3410
3411 /* Install a master breakpoint on the unwinder's debug hook. */
3412
3413 static void
3414 create_exception_master_breakpoint (void)
3415 {
3416 struct objfile *objfile;
3417 const char *const func_name = "_Unwind_DebugHook";
3418
3419 ALL_OBJFILES (objfile)
3420 {
3421 struct breakpoint *b;
3422 struct gdbarch *gdbarch;
3423 struct breakpoint_objfile_data *bp_objfile_data;
3424 CORE_ADDR addr;
3425 struct explicit_location explicit_loc;
3426
3427 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3428
3429 /* We prefer the SystemTap probe point if it exists. */
3430 if (!bp_objfile_data->exception_searched)
3431 {
3432 std::vector<probe *> ret
3433 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3434
3435 if (!ret.empty ())
3436 {
3437 /* We are only interested in checking one element. */
3438 probe *p = ret[0];
3439
3440 if (!p->can_evaluate_arguments ())
3441 {
3442 /* We cannot use the probe interface here, because it does
3443 not know how to evaluate arguments. */
3444 ret.clear ();
3445 }
3446 }
3447 bp_objfile_data->exception_probes = ret;
3448 bp_objfile_data->exception_searched = 1;
3449 }
3450
3451 if (!bp_objfile_data->exception_probes.empty ())
3452 {
3453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3454
3455 for (probe *p : bp_objfile_data->exception_probes)
3456 {
3457 struct breakpoint *b;
3458
3459 b = create_internal_breakpoint (gdbarch,
3460 p->get_relocated_address (objfile),
3461 bp_exception_master,
3462 &internal_breakpoint_ops);
3463 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3464 b->enable_state = bp_disabled;
3465 }
3466
3467 continue;
3468 }
3469
3470 /* Otherwise, try the hook function. */
3471
3472 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3473 continue;
3474
3475 gdbarch = get_objfile_arch (objfile);
3476
3477 if (bp_objfile_data->exception_msym.minsym == NULL)
3478 {
3479 struct bound_minimal_symbol debug_hook;
3480
3481 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3482 if (debug_hook.minsym == NULL)
3483 {
3484 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3485 continue;
3486 }
3487
3488 bp_objfile_data->exception_msym = debug_hook;
3489 }
3490
3491 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3492 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, target_stack);
3493 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3494 &internal_breakpoint_ops);
3495 initialize_explicit_location (&explicit_loc);
3496 explicit_loc.function_name = ASTRDUP (func_name);
3497 b->location = new_explicit_location (&explicit_loc);
3498 b->enable_state = bp_disabled;
3499 }
3500 }
3501
3502 /* Does B have a location spec? */
3503
3504 static int
3505 breakpoint_event_location_empty_p (const struct breakpoint *b)
3506 {
3507 return b->location != NULL && event_location_empty_p (b->location.get ());
3508 }
3509
3510 void
3511 update_breakpoints_after_exec (void)
3512 {
3513 struct breakpoint *b, *b_tmp;
3514 struct bp_location *bploc, **bplocp_tmp;
3515
3516 /* We're about to delete breakpoints from GDB's lists. If the
3517 INSERTED flag is true, GDB will try to lift the breakpoints by
3518 writing the breakpoints' "shadow contents" back into memory. The
3519 "shadow contents" are NOT valid after an exec, so GDB should not
3520 do that. Instead, the target is responsible from marking
3521 breakpoints out as soon as it detects an exec. We don't do that
3522 here instead, because there may be other attempts to delete
3523 breakpoints after detecting an exec and before reaching here. */
3524 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3525 if (bploc->pspace == current_program_space)
3526 gdb_assert (!bploc->inserted);
3527
3528 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3529 {
3530 if (b->pspace != current_program_space)
3531 continue;
3532
3533 /* Solib breakpoints must be explicitly reset after an exec(). */
3534 if (b->type == bp_shlib_event)
3535 {
3536 delete_breakpoint (b);
3537 continue;
3538 }
3539
3540 /* JIT breakpoints must be explicitly reset after an exec(). */
3541 if (b->type == bp_jit_event)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 /* Thread event breakpoints must be set anew after an exec(),
3548 as must overlay event and longjmp master breakpoints. */
3549 if (b->type == bp_thread_event || b->type == bp_overlay_event
3550 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3551 || b->type == bp_exception_master)
3552 {
3553 delete_breakpoint (b);
3554 continue;
3555 }
3556
3557 /* Step-resume breakpoints are meaningless after an exec(). */
3558 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3559 {
3560 delete_breakpoint (b);
3561 continue;
3562 }
3563
3564 /* Just like single-step breakpoints. */
3565 if (b->type == bp_single_step)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 /* Longjmp and longjmp-resume breakpoints are also meaningless
3572 after an exec. */
3573 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3574 || b->type == bp_longjmp_call_dummy
3575 || b->type == bp_exception || b->type == bp_exception_resume)
3576 {
3577 delete_breakpoint (b);
3578 continue;
3579 }
3580
3581 if (b->type == bp_catchpoint)
3582 {
3583 /* For now, none of the bp_catchpoint breakpoints need to
3584 do anything at this point. In the future, if some of
3585 the catchpoints need to something, we will need to add
3586 a new method, and call this method from here. */
3587 continue;
3588 }
3589
3590 /* bp_finish is a special case. The only way we ought to be able
3591 to see one of these when an exec() has happened, is if the user
3592 caught a vfork, and then said "finish". Ordinarily a finish just
3593 carries them to the call-site of the current callee, by setting
3594 a temporary bp there and resuming. But in this case, the finish
3595 will carry them entirely through the vfork & exec.
3596
3597 We don't want to allow a bp_finish to remain inserted now. But
3598 we can't safely delete it, 'cause finish_command has a handle to
3599 the bp on a bpstat, and will later want to delete it. There's a
3600 chance (and I've seen it happen) that if we delete the bp_finish
3601 here, that its storage will get reused by the time finish_command
3602 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3603 We really must allow finish_command to delete a bp_finish.
3604
3605 In the absence of a general solution for the "how do we know
3606 it's safe to delete something others may have handles to?"
3607 problem, what we'll do here is just uninsert the bp_finish, and
3608 let finish_command delete it.
3609
3610 (We know the bp_finish is "doomed" in the sense that it's
3611 momentary, and will be deleted as soon as finish_command sees
3612 the inferior stopped. So it doesn't matter that the bp's
3613 address is probably bogus in the new a.out, unlike e.g., the
3614 solib breakpoints.) */
3615
3616 if (b->type == bp_finish)
3617 {
3618 continue;
3619 }
3620
3621 /* Without a symbolic address, we have little hope of the
3622 pre-exec() address meaning the same thing in the post-exec()
3623 a.out. */
3624 if (breakpoint_event_location_empty_p (b))
3625 {
3626 delete_breakpoint (b);
3627 continue;
3628 }
3629 }
3630 }
3631
3632 int
3633 detach_breakpoints (ptid_t ptid)
3634 {
3635 struct bp_location *bl, **blp_tmp;
3636 int val = 0;
3637 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3638 struct inferior *inf = current_inferior ();
3639
3640 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3641 error (_("Cannot detach breakpoints of inferior_ptid"));
3642
3643 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3644 inferior_ptid = ptid;
3645 ALL_BP_LOCATIONS (bl, blp_tmp)
3646 {
3647 if (bl->pspace != inf->pspace)
3648 continue;
3649
3650 /* This function must physically remove breakpoints locations
3651 from the specified ptid, without modifying the breakpoint
3652 package's state. Locations of type bp_loc_other are only
3653 maintained at GDB side. So, there is no need to remove
3654 these bp_loc_other locations. Moreover, removing these
3655 would modify the breakpoint package's state. */
3656 if (bl->loc_type == bp_loc_other)
3657 continue;
3658
3659 if (bl->inserted)
3660 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3661 }
3662
3663 return val;
3664 }
3665
3666 /* Remove the breakpoint location BL from the current address space.
3667 Note that this is used to detach breakpoints from a child fork.
3668 When we get here, the child isn't in the inferior list, and neither
3669 do we have objects to represent its address space --- we should
3670 *not* look at bl->pspace->aspace here. */
3671
3672 static int
3673 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3674 {
3675 int val;
3676
3677 /* BL is never in moribund_locations by our callers. */
3678 gdb_assert (bl->owner != NULL);
3679
3680 /* The type of none suggests that owner is actually deleted.
3681 This should not ever happen. */
3682 gdb_assert (bl->owner->type != bp_none);
3683
3684 if (bl->loc_type == bp_loc_software_breakpoint
3685 || bl->loc_type == bp_loc_hardware_breakpoint)
3686 {
3687 /* "Normal" instruction breakpoint: either the standard
3688 trap-instruction bp (bp_breakpoint), or a
3689 bp_hardware_breakpoint. */
3690
3691 /* First check to see if we have to handle an overlay. */
3692 if (overlay_debugging == ovly_off
3693 || bl->section == NULL
3694 || !(section_is_overlay (bl->section)))
3695 {
3696 /* No overlay handling: just remove the breakpoint. */
3697
3698 /* If we're trying to uninsert a memory breakpoint that we
3699 know is set in a dynamic object that is marked
3700 shlib_disabled, then either the dynamic object was
3701 removed with "remove-symbol-file" or with
3702 "nosharedlibrary". In the former case, we don't know
3703 whether another dynamic object might have loaded over the
3704 breakpoint's address -- the user might well let us know
3705 about it next with add-symbol-file (the whole point of
3706 add-symbol-file is letting the user manually maintain a
3707 list of dynamically loaded objects). If we have the
3708 breakpoint's shadow memory, that is, this is a software
3709 breakpoint managed by GDB, check whether the breakpoint
3710 is still inserted in memory, to avoid overwriting wrong
3711 code with stale saved shadow contents. Note that HW
3712 breakpoints don't have shadow memory, as they're
3713 implemented using a mechanism that is not dependent on
3714 being able to modify the target's memory, and as such
3715 they should always be removed. */
3716 if (bl->shlib_disabled
3717 && bl->target_info.shadow_len != 0
3718 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3719 val = 0;
3720 else
3721 val = bl->owner->ops->remove_location (bl, reason);
3722 }
3723 else
3724 {
3725 /* This breakpoint is in an overlay section.
3726 Did we set a breakpoint at the LMA? */
3727 if (!overlay_events_enabled)
3728 {
3729 /* Yes -- overlay event support is not active, so we
3730 should have set a breakpoint at the LMA. Remove it.
3731 */
3732 /* Ignore any failures: if the LMA is in ROM, we will
3733 have already warned when we failed to insert it. */
3734 if (bl->loc_type == bp_loc_hardware_breakpoint)
3735 target_remove_hw_breakpoint (bl->gdbarch,
3736 &bl->overlay_target_info);
3737 else
3738 target_remove_breakpoint (bl->gdbarch,
3739 &bl->overlay_target_info,
3740 reason);
3741 }
3742 /* Did we set a breakpoint at the VMA?
3743 If so, we will have marked the breakpoint 'inserted'. */
3744 if (bl->inserted)
3745 {
3746 /* Yes -- remove it. Previously we did not bother to
3747 remove the breakpoint if the section had been
3748 unmapped, but let's not rely on that being safe. We
3749 don't know what the overlay manager might do. */
3750
3751 /* However, we should remove *software* breakpoints only
3752 if the section is still mapped, or else we overwrite
3753 wrong code with the saved shadow contents. */
3754 if (bl->loc_type == bp_loc_hardware_breakpoint
3755 || section_is_mapped (bl->section))
3756 val = bl->owner->ops->remove_location (bl, reason);
3757 else
3758 val = 0;
3759 }
3760 else
3761 {
3762 /* No -- not inserted, so no need to remove. No error. */
3763 val = 0;
3764 }
3765 }
3766
3767 /* In some cases, we might not be able to remove a breakpoint in
3768 a shared library that has already been removed, but we have
3769 not yet processed the shlib unload event. Similarly for an
3770 unloaded add-symbol-file object - the user might not yet have
3771 had the chance to remove-symbol-file it. shlib_disabled will
3772 be set if the library/object has already been removed, but
3773 the breakpoint hasn't been uninserted yet, e.g., after
3774 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3775 always-inserted mode. */
3776 if (val
3777 && (bl->loc_type == bp_loc_software_breakpoint
3778 && (bl->shlib_disabled
3779 || solib_name_from_address (bl->pspace, bl->address)
3780 || shared_objfile_contains_address_p (bl->pspace,
3781 bl->address))))
3782 val = 0;
3783
3784 if (val)
3785 return val;
3786 bl->inserted = (reason == DETACH_BREAKPOINT);
3787 }
3788 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3789 {
3790 gdb_assert (bl->owner->ops != NULL
3791 && bl->owner->ops->remove_location != NULL);
3792
3793 bl->inserted = (reason == DETACH_BREAKPOINT);
3794 bl->owner->ops->remove_location (bl, reason);
3795
3796 /* Failure to remove any of the hardware watchpoints comes here. */
3797 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3798 warning (_("Could not remove hardware watchpoint %d."),
3799 bl->owner->number);
3800 }
3801 else if (bl->owner->type == bp_catchpoint
3802 && breakpoint_enabled (bl->owner)
3803 && !bl->duplicate)
3804 {
3805 gdb_assert (bl->owner->ops != NULL
3806 && bl->owner->ops->remove_location != NULL);
3807
3808 val = bl->owner->ops->remove_location (bl, reason);
3809 if (val)
3810 return val;
3811
3812 bl->inserted = (reason == DETACH_BREAKPOINT);
3813 }
3814
3815 return 0;
3816 }
3817
3818 static int
3819 remove_breakpoint (struct bp_location *bl)
3820 {
3821 /* BL is never in moribund_locations by our callers. */
3822 gdb_assert (bl->owner != NULL);
3823
3824 /* The type of none suggests that owner is actually deleted.
3825 This should not ever happen. */
3826 gdb_assert (bl->owner->type != bp_none);
3827
3828 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3829
3830 switch_to_program_space_and_thread (bl->pspace);
3831
3832 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3833 }
3834
3835 /* Clear the "inserted" flag in all breakpoints. */
3836
3837 void
3838 mark_breakpoints_out (void)
3839 {
3840 struct bp_location *bl, **blp_tmp;
3841
3842 ALL_BP_LOCATIONS (bl, blp_tmp)
3843 if (bl->pspace == current_program_space)
3844 bl->inserted = 0;
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints and delete any
3848 breakpoints which should go away between runs of the program.
3849
3850 Plus other such housekeeping that has to be done for breakpoints
3851 between runs.
3852
3853 Note: this function gets called at the end of a run (by
3854 generic_mourn_inferior) and when a run begins (by
3855 init_wait_for_inferior). */
3856
3857
3858
3859 void
3860 breakpoint_init_inferior (enum inf_context context)
3861 {
3862 struct breakpoint *b, *b_tmp;
3863 struct bp_location *bl;
3864 int ix;
3865 struct program_space *pspace = current_program_space;
3866
3867 /* If breakpoint locations are shared across processes, then there's
3868 nothing to do. */
3869 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3870 return;
3871
3872 mark_breakpoints_out ();
3873
3874 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3875 {
3876 if (b->loc && b->loc->pspace != pspace)
3877 continue;
3878
3879 switch (b->type)
3880 {
3881 case bp_call_dummy:
3882 case bp_longjmp_call_dummy:
3883
3884 /* If the call dummy breakpoint is at the entry point it will
3885 cause problems when the inferior is rerun, so we better get
3886 rid of it. */
3887
3888 case bp_watchpoint_scope:
3889
3890 /* Also get rid of scope breakpoints. */
3891
3892 case bp_shlib_event:
3893
3894 /* Also remove solib event breakpoints. Their addresses may
3895 have changed since the last time we ran the program.
3896 Actually we may now be debugging against different target;
3897 and so the solib backend that installed this breakpoint may
3898 not be used in by the target. E.g.,
3899
3900 (gdb) file prog-linux
3901 (gdb) run # native linux target
3902 ...
3903 (gdb) kill
3904 (gdb) file prog-win.exe
3905 (gdb) tar rem :9999 # remote Windows gdbserver.
3906 */
3907
3908 case bp_step_resume:
3909
3910 /* Also remove step-resume breakpoints. */
3911
3912 case bp_single_step:
3913
3914 /* Also remove single-step breakpoints. */
3915
3916 delete_breakpoint (b);
3917 break;
3918
3919 case bp_watchpoint:
3920 case bp_hardware_watchpoint:
3921 case bp_read_watchpoint:
3922 case bp_access_watchpoint:
3923 {
3924 struct watchpoint *w = (struct watchpoint *) b;
3925
3926 /* Likewise for watchpoints on local expressions. */
3927 if (w->exp_valid_block != NULL)
3928 delete_breakpoint (b);
3929 else
3930 {
3931 /* Get rid of existing locations, which are no longer
3932 valid. New ones will be created in
3933 update_watchpoint, when the inferior is restarted.
3934 The next update_global_location_list call will
3935 garbage collect them. */
3936 b->loc = NULL;
3937
3938 if (context == inf_starting)
3939 {
3940 /* Reset val field to force reread of starting value in
3941 insert_breakpoints. */
3942 w->val.reset (nullptr);
3943 w->val_valid = 0;
3944 }
3945 }
3946 }
3947 break;
3948 default:
3949 break;
3950 }
3951 }
3952
3953 /* Get rid of the moribund locations. */
3954 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3955 decref_bp_location (&bl);
3956 VEC_free (bp_location_p, moribund_locations);
3957 }
3958
3959 /* These functions concern about actual breakpoints inserted in the
3960 target --- to e.g. check if we need to do decr_pc adjustment or if
3961 we need to hop over the bkpt --- so we check for address space
3962 match, not program space. */
3963
3964 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3965 exists at PC. It returns ordinary_breakpoint_here if it's an
3966 ordinary breakpoint, or permanent_breakpoint_here if it's a
3967 permanent breakpoint.
3968 - When continuing from a location with an ordinary breakpoint, we
3969 actually single step once before calling insert_breakpoints.
3970 - When continuing from a location with a permanent breakpoint, we
3971 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3972 the target, to advance the PC past the breakpoint. */
3973
3974 enum breakpoint_here
3975 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3976 {
3977 struct bp_location *bl, **blp_tmp;
3978 int any_breakpoint_here = 0;
3979
3980 ALL_BP_LOCATIONS (bl, blp_tmp)
3981 {
3982 if (bl->loc_type != bp_loc_software_breakpoint
3983 && bl->loc_type != bp_loc_hardware_breakpoint)
3984 continue;
3985
3986 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3987 if ((breakpoint_enabled (bl->owner)
3988 || bl->permanent)
3989 && breakpoint_location_address_match (bl, aspace, pc))
3990 {
3991 if (overlay_debugging
3992 && section_is_overlay (bl->section)
3993 && !section_is_mapped (bl->section))
3994 continue; /* unmapped overlay -- can't be a match */
3995 else if (bl->permanent)
3996 return permanent_breakpoint_here;
3997 else
3998 any_breakpoint_here = 1;
3999 }
4000 }
4001
4002 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4003 }
4004
4005 /* See breakpoint.h. */
4006
4007 int
4008 breakpoint_in_range_p (const address_space *aspace,
4009 CORE_ADDR addr, ULONGEST len)
4010 {
4011 struct bp_location *bl, **blp_tmp;
4012
4013 ALL_BP_LOCATIONS (bl, blp_tmp)
4014 {
4015 if (bl->loc_type != bp_loc_software_breakpoint
4016 && bl->loc_type != bp_loc_hardware_breakpoint)
4017 continue;
4018
4019 if ((breakpoint_enabled (bl->owner)
4020 || bl->permanent)
4021 && breakpoint_location_address_range_overlap (bl, aspace,
4022 addr, len))
4023 {
4024 if (overlay_debugging
4025 && section_is_overlay (bl->section)
4026 && !section_is_mapped (bl->section))
4027 {
4028 /* Unmapped overlay -- can't be a match. */
4029 continue;
4030 }
4031
4032 return 1;
4033 }
4034 }
4035
4036 return 0;
4037 }
4038
4039 /* Return true if there's a moribund breakpoint at PC. */
4040
4041 int
4042 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4043 {
4044 struct bp_location *loc;
4045 int ix;
4046
4047 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4048 if (breakpoint_location_address_match (loc, aspace, pc))
4049 return 1;
4050
4051 return 0;
4052 }
4053
4054 /* Returns non-zero iff BL is inserted at PC, in address space
4055 ASPACE. */
4056
4057 static int
4058 bp_location_inserted_here_p (struct bp_location *bl,
4059 const address_space *aspace, CORE_ADDR pc)
4060 {
4061 if (bl->inserted
4062 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4063 aspace, pc))
4064 {
4065 if (overlay_debugging
4066 && section_is_overlay (bl->section)
4067 && !section_is_mapped (bl->section))
4068 return 0; /* unmapped overlay -- can't be a match */
4069 else
4070 return 1;
4071 }
4072 return 0;
4073 }
4074
4075 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4076
4077 int
4078 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4079 {
4080 struct bp_location **blp, **blp_tmp = NULL;
4081
4082 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4083 {
4084 struct bp_location *bl = *blp;
4085
4086 if (bl->loc_type != bp_loc_software_breakpoint
4087 && bl->loc_type != bp_loc_hardware_breakpoint)
4088 continue;
4089
4090 if (bp_location_inserted_here_p (bl, aspace, pc))
4091 return 1;
4092 }
4093 return 0;
4094 }
4095
4096 /* This function returns non-zero iff there is a software breakpoint
4097 inserted at PC. */
4098
4099 int
4100 software_breakpoint_inserted_here_p (const address_space *aspace,
4101 CORE_ADDR pc)
4102 {
4103 struct bp_location **blp, **blp_tmp = NULL;
4104
4105 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4106 {
4107 struct bp_location *bl = *blp;
4108
4109 if (bl->loc_type != bp_loc_software_breakpoint)
4110 continue;
4111
4112 if (bp_location_inserted_here_p (bl, aspace, pc))
4113 return 1;
4114 }
4115
4116 return 0;
4117 }
4118
4119 /* See breakpoint.h. */
4120
4121 int
4122 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4123 CORE_ADDR pc)
4124 {
4125 struct bp_location **blp, **blp_tmp = NULL;
4126
4127 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4128 {
4129 struct bp_location *bl = *blp;
4130
4131 if (bl->loc_type != bp_loc_hardware_breakpoint)
4132 continue;
4133
4134 if (bp_location_inserted_here_p (bl, aspace, pc))
4135 return 1;
4136 }
4137
4138 return 0;
4139 }
4140
4141 int
4142 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4143 CORE_ADDR addr, ULONGEST len)
4144 {
4145 struct breakpoint *bpt;
4146
4147 ALL_BREAKPOINTS (bpt)
4148 {
4149 struct bp_location *loc;
4150
4151 if (bpt->type != bp_hardware_watchpoint
4152 && bpt->type != bp_access_watchpoint)
4153 continue;
4154
4155 if (!breakpoint_enabled (bpt))
4156 continue;
4157
4158 for (loc = bpt->loc; loc; loc = loc->next)
4159 if (loc->pspace->aspace == aspace && loc->inserted)
4160 {
4161 CORE_ADDR l, h;
4162
4163 /* Check for intersection. */
4164 l = std::max<CORE_ADDR> (loc->address, addr);
4165 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4166 if (l < h)
4167 return 1;
4168 }
4169 }
4170 return 0;
4171 }
4172 \f
4173
4174 /* bpstat stuff. External routines' interfaces are documented
4175 in breakpoint.h. */
4176
4177 int
4178 is_catchpoint (struct breakpoint *ep)
4179 {
4180 return (ep->type == bp_catchpoint);
4181 }
4182
4183 /* Frees any storage that is part of a bpstat. Does not walk the
4184 'next' chain. */
4185
4186 bpstats::~bpstats ()
4187 {
4188 if (bp_location_at != NULL)
4189 decref_bp_location (&bp_location_at);
4190 }
4191
4192 /* Clear a bpstat so that it says we are not at any breakpoint.
4193 Also free any storage that is part of a bpstat. */
4194
4195 void
4196 bpstat_clear (bpstat *bsp)
4197 {
4198 bpstat p;
4199 bpstat q;
4200
4201 if (bsp == 0)
4202 return;
4203 p = *bsp;
4204 while (p != NULL)
4205 {
4206 q = p->next;
4207 delete p;
4208 p = q;
4209 }
4210 *bsp = NULL;
4211 }
4212
4213 bpstats::bpstats (const bpstats &other)
4214 : next (NULL),
4215 bp_location_at (other.bp_location_at),
4216 breakpoint_at (other.breakpoint_at),
4217 commands (other.commands),
4218 print (other.print),
4219 stop (other.stop),
4220 print_it (other.print_it)
4221 {
4222 if (other.old_val != NULL)
4223 old_val = release_value (value_copy (other.old_val.get ()));
4224 incref_bp_location (bp_location_at);
4225 }
4226
4227 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4228 is part of the bpstat is copied as well. */
4229
4230 bpstat
4231 bpstat_copy (bpstat bs)
4232 {
4233 bpstat p = NULL;
4234 bpstat tmp;
4235 bpstat retval = NULL;
4236
4237 if (bs == NULL)
4238 return bs;
4239
4240 for (; bs != NULL; bs = bs->next)
4241 {
4242 tmp = new bpstats (*bs);
4243
4244 if (p == NULL)
4245 /* This is the first thing in the chain. */
4246 retval = tmp;
4247 else
4248 p->next = tmp;
4249 p = tmp;
4250 }
4251 p->next = NULL;
4252 return retval;
4253 }
4254
4255 /* Find the bpstat associated with this breakpoint. */
4256
4257 bpstat
4258 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4259 {
4260 if (bsp == NULL)
4261 return NULL;
4262
4263 for (; bsp != NULL; bsp = bsp->next)
4264 {
4265 if (bsp->breakpoint_at == breakpoint)
4266 return bsp;
4267 }
4268 return NULL;
4269 }
4270
4271 /* See breakpoint.h. */
4272
4273 int
4274 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4275 {
4276 for (; bsp != NULL; bsp = bsp->next)
4277 {
4278 if (bsp->breakpoint_at == NULL)
4279 {
4280 /* A moribund location can never explain a signal other than
4281 GDB_SIGNAL_TRAP. */
4282 if (sig == GDB_SIGNAL_TRAP)
4283 return 1;
4284 }
4285 else
4286 {
4287 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4288 sig))
4289 return 1;
4290 }
4291 }
4292
4293 return 0;
4294 }
4295
4296 /* Put in *NUM the breakpoint number of the first breakpoint we are
4297 stopped at. *BSP upon return is a bpstat which points to the
4298 remaining breakpoints stopped at (but which is not guaranteed to be
4299 good for anything but further calls to bpstat_num).
4300
4301 Return 0 if passed a bpstat which does not indicate any breakpoints.
4302 Return -1 if stopped at a breakpoint that has been deleted since
4303 we set it.
4304 Return 1 otherwise. */
4305
4306 int
4307 bpstat_num (bpstat *bsp, int *num)
4308 {
4309 struct breakpoint *b;
4310
4311 if ((*bsp) == NULL)
4312 return 0; /* No more breakpoint values */
4313
4314 /* We assume we'll never have several bpstats that correspond to a
4315 single breakpoint -- otherwise, this function might return the
4316 same number more than once and this will look ugly. */
4317 b = (*bsp)->breakpoint_at;
4318 *bsp = (*bsp)->next;
4319 if (b == NULL)
4320 return -1; /* breakpoint that's been deleted since */
4321
4322 *num = b->number; /* We have its number */
4323 return 1;
4324 }
4325
4326 /* See breakpoint.h. */
4327
4328 void
4329 bpstat_clear_actions (void)
4330 {
4331 struct thread_info *tp;
4332 bpstat bs;
4333
4334 if (ptid_equal (inferior_ptid, null_ptid))
4335 return;
4336
4337 tp = find_thread_ptid (inferior_ptid);
4338 if (tp == NULL)
4339 return;
4340
4341 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4342 {
4343 bs->commands = NULL;
4344 bs->old_val.reset (nullptr);
4345 }
4346 }
4347
4348 /* Called when a command is about to proceed the inferior. */
4349
4350 static void
4351 breakpoint_about_to_proceed (void)
4352 {
4353 if (!ptid_equal (inferior_ptid, null_ptid))
4354 {
4355 struct thread_info *tp = inferior_thread ();
4356
4357 /* Allow inferior function calls in breakpoint commands to not
4358 interrupt the command list. When the call finishes
4359 successfully, the inferior will be standing at the same
4360 breakpoint as if nothing happened. */
4361 if (tp->control.in_infcall)
4362 return;
4363 }
4364
4365 breakpoint_proceeded = 1;
4366 }
4367
4368 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4369 or its equivalent. */
4370
4371 static int
4372 command_line_is_silent (struct command_line *cmd)
4373 {
4374 return cmd && (strcmp ("silent", cmd->line) == 0);
4375 }
4376
4377 /* Execute all the commands associated with all the breakpoints at
4378 this location. Any of these commands could cause the process to
4379 proceed beyond this point, etc. We look out for such changes by
4380 checking the global "breakpoint_proceeded" after each command.
4381
4382 Returns true if a breakpoint command resumed the inferior. In that
4383 case, it is the caller's responsibility to recall it again with the
4384 bpstat of the current thread. */
4385
4386 static int
4387 bpstat_do_actions_1 (bpstat *bsp)
4388 {
4389 bpstat bs;
4390 int again = 0;
4391
4392 /* Avoid endless recursion if a `source' command is contained
4393 in bs->commands. */
4394 if (executing_breakpoint_commands)
4395 return 0;
4396
4397 scoped_restore save_executing
4398 = make_scoped_restore (&executing_breakpoint_commands, 1);
4399
4400 scoped_restore preventer = prevent_dont_repeat ();
4401
4402 /* This pointer will iterate over the list of bpstat's. */
4403 bs = *bsp;
4404
4405 breakpoint_proceeded = 0;
4406 for (; bs != NULL; bs = bs->next)
4407 {
4408 struct command_line *cmd = NULL;
4409
4410 /* Take ownership of the BSP's command tree, if it has one.
4411
4412 The command tree could legitimately contain commands like
4413 'step' and 'next', which call clear_proceed_status, which
4414 frees stop_bpstat's command tree. To make sure this doesn't
4415 free the tree we're executing out from under us, we need to
4416 take ownership of the tree ourselves. Since a given bpstat's
4417 commands are only executed once, we don't need to copy it; we
4418 can clear the pointer in the bpstat, and make sure we free
4419 the tree when we're done. */
4420 counted_command_line ccmd = bs->commands;
4421 bs->commands = NULL;
4422 if (ccmd != NULL)
4423 cmd = ccmd.get ();
4424 if (command_line_is_silent (cmd))
4425 {
4426 /* The action has been already done by bpstat_stop_status. */
4427 cmd = cmd->next;
4428 }
4429
4430 while (cmd != NULL)
4431 {
4432 execute_control_command (cmd);
4433
4434 if (breakpoint_proceeded)
4435 break;
4436 else
4437 cmd = cmd->next;
4438 }
4439
4440 if (breakpoint_proceeded)
4441 {
4442 if (current_ui->async)
4443 /* If we are in async mode, then the target might be still
4444 running, not stopped at any breakpoint, so nothing for
4445 us to do here -- just return to the event loop. */
4446 ;
4447 else
4448 /* In sync mode, when execute_control_command returns
4449 we're already standing on the next breakpoint.
4450 Breakpoint commands for that stop were not run, since
4451 execute_command does not run breakpoint commands --
4452 only command_line_handler does, but that one is not
4453 involved in execution of breakpoint commands. So, we
4454 can now execute breakpoint commands. It should be
4455 noted that making execute_command do bpstat actions is
4456 not an option -- in this case we'll have recursive
4457 invocation of bpstat for each breakpoint with a
4458 command, and can easily blow up GDB stack. Instead, we
4459 return true, which will trigger the caller to recall us
4460 with the new stop_bpstat. */
4461 again = 1;
4462 break;
4463 }
4464 }
4465 return again;
4466 }
4467
4468 void
4469 bpstat_do_actions (void)
4470 {
4471 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4472
4473 /* Do any commands attached to breakpoint we are stopped at. */
4474 while (!ptid_equal (inferior_ptid, null_ptid)
4475 && target_has_execution
4476 && !is_exited (inferior_ptid)
4477 && !is_executing (inferior_ptid))
4478 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4479 and only return when it is stopped at the next breakpoint, we
4480 keep doing breakpoint actions until it returns false to
4481 indicate the inferior was not resumed. */
4482 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4483 break;
4484
4485 discard_cleanups (cleanup_if_error);
4486 }
4487
4488 /* Print out the (old or new) value associated with a watchpoint. */
4489
4490 static void
4491 watchpoint_value_print (struct value *val, struct ui_file *stream)
4492 {
4493 if (val == NULL)
4494 fprintf_unfiltered (stream, _("<unreadable>"));
4495 else
4496 {
4497 struct value_print_options opts;
4498 get_user_print_options (&opts);
4499 value_print (val, stream, &opts);
4500 }
4501 }
4502
4503 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4504 debugging multiple threads. */
4505
4506 void
4507 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4508 {
4509 if (uiout->is_mi_like_p ())
4510 return;
4511
4512 uiout->text ("\n");
4513
4514 if (show_thread_that_caused_stop ())
4515 {
4516 const char *name;
4517 struct thread_info *thr = inferior_thread ();
4518
4519 uiout->text ("Thread ");
4520 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4521
4522 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4523 if (name != NULL)
4524 {
4525 uiout->text (" \"");
4526 uiout->field_fmt ("name", "%s", name);
4527 uiout->text ("\"");
4528 }
4529
4530 uiout->text (" hit ");
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4583 int any_added
4584 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4585
4586 if (!is_catchpoint)
4587 {
4588 if (any_added || any_deleted)
4589 current_uiout->text (_("Stopped due to shared library event:\n"));
4590 else
4591 current_uiout->text (_("Stopped due to shared library event (no "
4592 "libraries added or removed)\n"));
4593 }
4594
4595 if (current_uiout->is_mi_like_p ())
4596 current_uiout->field_string ("reason",
4597 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4598
4599 if (any_deleted)
4600 {
4601 current_uiout->text (_(" Inferior unloaded "));
4602 ui_out_emit_list list_emitter (current_uiout, "removed");
4603 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4604 {
4605 const std::string &name = current_program_space->deleted_solibs[ix];
4606
4607 if (ix > 0)
4608 current_uiout->text (" ");
4609 current_uiout->field_string ("library", name);
4610 current_uiout->text ("\n");
4611 }
4612 }
4613
4614 if (any_added)
4615 {
4616 struct so_list *iter;
4617 int ix;
4618
4619 current_uiout->text (_(" Inferior loaded "));
4620 ui_out_emit_list list_emitter (current_uiout, "added");
4621 for (ix = 0;
4622 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4623 ix, iter);
4624 ++ix)
4625 {
4626 if (ix > 0)
4627 current_uiout->text (" ");
4628 current_uiout->field_string ("library", iter->so_name);
4629 current_uiout->text ("\n");
4630 }
4631 }
4632 }
4633
4634 /* Print a message indicating what happened. This is called from
4635 normal_stop(). The input to this routine is the head of the bpstat
4636 list - a list of the eventpoints that caused this stop. KIND is
4637 the target_waitkind for the stopping event. This
4638 routine calls the generic print routine for printing a message
4639 about reasons for stopping. This will print (for example) the
4640 "Breakpoint n," part of the output. The return value of this
4641 routine is one of:
4642
4643 PRINT_UNKNOWN: Means we printed nothing.
4644 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4645 code to print the location. An example is
4646 "Breakpoint 1, " which should be followed by
4647 the location.
4648 PRINT_SRC_ONLY: Means we printed something, but there is no need
4649 to also print the location part of the message.
4650 An example is the catch/throw messages, which
4651 don't require a location appended to the end.
4652 PRINT_NOTHING: We have done some printing and we don't need any
4653 further info to be printed. */
4654
4655 enum print_stop_action
4656 bpstat_print (bpstat bs, int kind)
4657 {
4658 enum print_stop_action val;
4659
4660 /* Maybe another breakpoint in the chain caused us to stop.
4661 (Currently all watchpoints go on the bpstat whether hit or not.
4662 That probably could (should) be changed, provided care is taken
4663 with respect to bpstat_explains_signal). */
4664 for (; bs; bs = bs->next)
4665 {
4666 val = print_bp_stop_message (bs);
4667 if (val == PRINT_SRC_ONLY
4668 || val == PRINT_SRC_AND_LOC
4669 || val == PRINT_NOTHING)
4670 return val;
4671 }
4672
4673 /* If we had hit a shared library event breakpoint,
4674 print_bp_stop_message would print out this message. If we hit an
4675 OS-level shared library event, do the same thing. */
4676 if (kind == TARGET_WAITKIND_LOADED)
4677 {
4678 print_solib_event (0);
4679 return PRINT_NOTHING;
4680 }
4681
4682 /* We reached the end of the chain, or we got a null BS to start
4683 with and nothing was printed. */
4684 return PRINT_UNKNOWN;
4685 }
4686
4687 /* Evaluate the boolean expression EXP and return the result. */
4688
4689 static bool
4690 breakpoint_cond_eval (expression *exp)
4691 {
4692 struct value *mark = value_mark ();
4693 bool res = value_true (evaluate_expression (exp));
4694
4695 value_free_to_mark (mark);
4696 return res;
4697 }
4698
4699 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4700
4701 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4702 : next (NULL),
4703 bp_location_at (bl),
4704 breakpoint_at (bl->owner),
4705 commands (NULL),
4706 print (0),
4707 stop (0),
4708 print_it (print_it_normal)
4709 {
4710 incref_bp_location (bl);
4711 **bs_link_pointer = this;
4712 *bs_link_pointer = &next;
4713 }
4714
4715 bpstats::bpstats ()
4716 : next (NULL),
4717 bp_location_at (NULL),
4718 breakpoint_at (NULL),
4719 commands (NULL),
4720 print (0),
4721 stop (0),
4722 print_it (print_it_normal)
4723 {
4724 }
4725 \f
4726 /* The target has stopped with waitstatus WS. Check if any hardware
4727 watchpoints have triggered, according to the target. */
4728
4729 int
4730 watchpoints_triggered (struct target_waitstatus *ws)
4731 {
4732 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4733 CORE_ADDR addr;
4734 struct breakpoint *b;
4735
4736 if (!stopped_by_watchpoint)
4737 {
4738 /* We were not stopped by a watchpoint. Mark all watchpoints
4739 as not triggered. */
4740 ALL_BREAKPOINTS (b)
4741 if (is_hardware_watchpoint (b))
4742 {
4743 struct watchpoint *w = (struct watchpoint *) b;
4744
4745 w->watchpoint_triggered = watch_triggered_no;
4746 }
4747
4748 return 0;
4749 }
4750
4751 if (!target_stopped_data_address (target_stack, &addr))
4752 {
4753 /* We were stopped by a watchpoint, but we don't know where.
4754 Mark all watchpoints as unknown. */
4755 ALL_BREAKPOINTS (b)
4756 if (is_hardware_watchpoint (b))
4757 {
4758 struct watchpoint *w = (struct watchpoint *) b;
4759
4760 w->watchpoint_triggered = watch_triggered_unknown;
4761 }
4762
4763 return 1;
4764 }
4765
4766 /* The target could report the data address. Mark watchpoints
4767 affected by this data address as triggered, and all others as not
4768 triggered. */
4769
4770 ALL_BREAKPOINTS (b)
4771 if (is_hardware_watchpoint (b))
4772 {
4773 struct watchpoint *w = (struct watchpoint *) b;
4774 struct bp_location *loc;
4775
4776 w->watchpoint_triggered = watch_triggered_no;
4777 for (loc = b->loc; loc; loc = loc->next)
4778 {
4779 if (is_masked_watchpoint (b))
4780 {
4781 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4782 CORE_ADDR start = loc->address & w->hw_wp_mask;
4783
4784 if (newaddr == start)
4785 {
4786 w->watchpoint_triggered = watch_triggered_yes;
4787 break;
4788 }
4789 }
4790 /* Exact match not required. Within range is sufficient. */
4791 else if (target_watchpoint_addr_within_range (target_stack,
4792 addr, loc->address,
4793 loc->length))
4794 {
4795 w->watchpoint_triggered = watch_triggered_yes;
4796 break;
4797 }
4798 }
4799 }
4800
4801 return 1;
4802 }
4803
4804 /* Possible return values for watchpoint_check. */
4805 enum wp_check_result
4806 {
4807 /* The watchpoint has been deleted. */
4808 WP_DELETED = 1,
4809
4810 /* The value has changed. */
4811 WP_VALUE_CHANGED = 2,
4812
4813 /* The value has not changed. */
4814 WP_VALUE_NOT_CHANGED = 3,
4815
4816 /* Ignore this watchpoint, no matter if the value changed or not. */
4817 WP_IGNORE = 4,
4818 };
4819
4820 #define BP_TEMPFLAG 1
4821 #define BP_HARDWAREFLAG 2
4822
4823 /* Evaluate watchpoint condition expression and check if its value
4824 changed. */
4825
4826 static wp_check_result
4827 watchpoint_check (bpstat bs)
4828 {
4829 struct watchpoint *b;
4830 struct frame_info *fr;
4831 int within_current_scope;
4832
4833 /* BS is built from an existing struct breakpoint. */
4834 gdb_assert (bs->breakpoint_at != NULL);
4835 b = (struct watchpoint *) bs->breakpoint_at;
4836
4837 /* If this is a local watchpoint, we only want to check if the
4838 watchpoint frame is in scope if the current thread is the thread
4839 that was used to create the watchpoint. */
4840 if (!watchpoint_in_thread_scope (b))
4841 return WP_IGNORE;
4842
4843 if (b->exp_valid_block == NULL)
4844 within_current_scope = 1;
4845 else
4846 {
4847 struct frame_info *frame = get_current_frame ();
4848 struct gdbarch *frame_arch = get_frame_arch (frame);
4849 CORE_ADDR frame_pc = get_frame_pc (frame);
4850
4851 /* stack_frame_destroyed_p() returns a non-zero value if we're
4852 still in the function but the stack frame has already been
4853 invalidated. Since we can't rely on the values of local
4854 variables after the stack has been destroyed, we are treating
4855 the watchpoint in that state as `not changed' without further
4856 checking. Don't mark watchpoints as changed if the current
4857 frame is in an epilogue - even if they are in some other
4858 frame, our view of the stack is likely to be wrong and
4859 frame_find_by_id could error out. */
4860 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4861 return WP_IGNORE;
4862
4863 fr = frame_find_by_id (b->watchpoint_frame);
4864 within_current_scope = (fr != NULL);
4865
4866 /* If we've gotten confused in the unwinder, we might have
4867 returned a frame that can't describe this variable. */
4868 if (within_current_scope)
4869 {
4870 struct symbol *function;
4871
4872 function = get_frame_function (fr);
4873 if (function == NULL
4874 || !contained_in (b->exp_valid_block,
4875 SYMBOL_BLOCK_VALUE (function)))
4876 within_current_scope = 0;
4877 }
4878
4879 if (within_current_scope)
4880 /* If we end up stopping, the current frame will get selected
4881 in normal_stop. So this call to select_frame won't affect
4882 the user. */
4883 select_frame (fr);
4884 }
4885
4886 if (within_current_scope)
4887 {
4888 /* We use value_{,free_to_}mark because it could be a *long*
4889 time before we return to the command level and call
4890 free_all_values. We can't call free_all_values because we
4891 might be in the middle of evaluating a function call. */
4892
4893 int pc = 0;
4894 struct value *mark;
4895 struct value *new_val;
4896
4897 if (is_masked_watchpoint (b))
4898 /* Since we don't know the exact trigger address (from
4899 stopped_data_address), just tell the user we've triggered
4900 a mask watchpoint. */
4901 return WP_VALUE_CHANGED;
4902
4903 mark = value_mark ();
4904 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4905
4906 if (b->val_bitsize != 0)
4907 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4908
4909 /* We use value_equal_contents instead of value_equal because
4910 the latter coerces an array to a pointer, thus comparing just
4911 the address of the array instead of its contents. This is
4912 not what we want. */
4913 if ((b->val != NULL) != (new_val != NULL)
4914 || (b->val != NULL && !value_equal_contents (b->val.get (),
4915 new_val)))
4916 {
4917 bs->old_val = b->val;
4918 b->val = release_value (new_val);
4919 b->val_valid = 1;
4920 if (new_val != NULL)
4921 value_free_to_mark (mark);
4922 return WP_VALUE_CHANGED;
4923 }
4924 else
4925 {
4926 /* Nothing changed. */
4927 value_free_to_mark (mark);
4928 return WP_VALUE_NOT_CHANGED;
4929 }
4930 }
4931 else
4932 {
4933 /* This seems like the only logical thing to do because
4934 if we temporarily ignored the watchpoint, then when
4935 we reenter the block in which it is valid it contains
4936 garbage (in the case of a function, it may have two
4937 garbage values, one before and one after the prologue).
4938 So we can't even detect the first assignment to it and
4939 watch after that (since the garbage may or may not equal
4940 the first value assigned). */
4941 /* We print all the stop information in
4942 breakpoint_ops->print_it, but in this case, by the time we
4943 call breakpoint_ops->print_it this bp will be deleted
4944 already. So we have no choice but print the information
4945 here. */
4946
4947 SWITCH_THRU_ALL_UIS ()
4948 {
4949 struct ui_out *uiout = current_uiout;
4950
4951 if (uiout->is_mi_like_p ())
4952 uiout->field_string
4953 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4954 uiout->text ("\nWatchpoint ");
4955 uiout->field_int ("wpnum", b->number);
4956 uiout->text (" deleted because the program has left the block in\n"
4957 "which its expression is valid.\n");
4958 }
4959
4960 /* Make sure the watchpoint's commands aren't executed. */
4961 b->commands = NULL;
4962 watchpoint_del_at_next_stop (b);
4963
4964 return WP_DELETED;
4965 }
4966 }
4967
4968 /* Return true if it looks like target has stopped due to hitting
4969 breakpoint location BL. This function does not check if we should
4970 stop, only if BL explains the stop. */
4971
4972 static int
4973 bpstat_check_location (const struct bp_location *bl,
4974 const address_space *aspace, CORE_ADDR bp_addr,
4975 const struct target_waitstatus *ws)
4976 {
4977 struct breakpoint *b = bl->owner;
4978
4979 /* BL is from an existing breakpoint. */
4980 gdb_assert (b != NULL);
4981
4982 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4983 }
4984
4985 /* Determine if the watched values have actually changed, and we
4986 should stop. If not, set BS->stop to 0. */
4987
4988 static void
4989 bpstat_check_watchpoint (bpstat bs)
4990 {
4991 const struct bp_location *bl;
4992 struct watchpoint *b;
4993
4994 /* BS is built for existing struct breakpoint. */
4995 bl = bs->bp_location_at;
4996 gdb_assert (bl != NULL);
4997 b = (struct watchpoint *) bs->breakpoint_at;
4998 gdb_assert (b != NULL);
4999
5000 {
5001 int must_check_value = 0;
5002
5003 if (b->type == bp_watchpoint)
5004 /* For a software watchpoint, we must always check the
5005 watched value. */
5006 must_check_value = 1;
5007 else if (b->watchpoint_triggered == watch_triggered_yes)
5008 /* We have a hardware watchpoint (read, write, or access)
5009 and the target earlier reported an address watched by
5010 this watchpoint. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_unknown
5013 && b->type == bp_hardware_watchpoint)
5014 /* We were stopped by a hardware watchpoint, but the target could
5015 not report the data address. We must check the watchpoint's
5016 value. Access and read watchpoints are out of luck; without
5017 a data address, we can't figure it out. */
5018 must_check_value = 1;
5019
5020 if (must_check_value)
5021 {
5022 wp_check_result e;
5023
5024 TRY
5025 {
5026 e = watchpoint_check (bs);
5027 }
5028 CATCH (ex, RETURN_MASK_ALL)
5029 {
5030 exception_fprintf (gdb_stderr, ex,
5031 "Error evaluating expression "
5032 "for watchpoint %d\n",
5033 b->number);
5034
5035 SWITCH_THRU_ALL_UIS ()
5036 {
5037 printf_filtered (_("Watchpoint %d deleted.\n"),
5038 b->number);
5039 }
5040 watchpoint_del_at_next_stop (b);
5041 e = WP_DELETED;
5042 }
5043 END_CATCH
5044
5045 switch (e)
5046 {
5047 case WP_DELETED:
5048 /* We've already printed what needs to be printed. */
5049 bs->print_it = print_it_done;
5050 /* Stop. */
5051 break;
5052 case WP_IGNORE:
5053 bs->print_it = print_it_noop;
5054 bs->stop = 0;
5055 break;
5056 case WP_VALUE_CHANGED:
5057 if (b->type == bp_read_watchpoint)
5058 {
5059 /* There are two cases to consider here:
5060
5061 1. We're watching the triggered memory for reads.
5062 In that case, trust the target, and always report
5063 the watchpoint hit to the user. Even though
5064 reads don't cause value changes, the value may
5065 have changed since the last time it was read, and
5066 since we're not trapping writes, we will not see
5067 those, and as such we should ignore our notion of
5068 old value.
5069
5070 2. We're watching the triggered memory for both
5071 reads and writes. There are two ways this may
5072 happen:
5073
5074 2.1. This is a target that can't break on data
5075 reads only, but can break on accesses (reads or
5076 writes), such as e.g., x86. We detect this case
5077 at the time we try to insert read watchpoints.
5078
5079 2.2. Otherwise, the target supports read
5080 watchpoints, but, the user set an access or write
5081 watchpoint watching the same memory as this read
5082 watchpoint.
5083
5084 If we're watching memory writes as well as reads,
5085 ignore watchpoint hits when we find that the
5086 value hasn't changed, as reads don't cause
5087 changes. This still gives false positives when
5088 the program writes the same value to memory as
5089 what there was already in memory (we will confuse
5090 it for a read), but it's much better than
5091 nothing. */
5092
5093 int other_write_watchpoint = 0;
5094
5095 if (bl->watchpoint_type == hw_read)
5096 {
5097 struct breakpoint *other_b;
5098
5099 ALL_BREAKPOINTS (other_b)
5100 if (other_b->type == bp_hardware_watchpoint
5101 || other_b->type == bp_access_watchpoint)
5102 {
5103 struct watchpoint *other_w =
5104 (struct watchpoint *) other_b;
5105
5106 if (other_w->watchpoint_triggered
5107 == watch_triggered_yes)
5108 {
5109 other_write_watchpoint = 1;
5110 break;
5111 }
5112 }
5113 }
5114
5115 if (other_write_watchpoint
5116 || bl->watchpoint_type == hw_access)
5117 {
5118 /* We're watching the same memory for writes,
5119 and the value changed since the last time we
5120 updated it, so this trap must be for a write.
5121 Ignore it. */
5122 bs->print_it = print_it_noop;
5123 bs->stop = 0;
5124 }
5125 }
5126 break;
5127 case WP_VALUE_NOT_CHANGED:
5128 if (b->type == bp_hardware_watchpoint
5129 || b->type == bp_watchpoint)
5130 {
5131 /* Don't stop: write watchpoints shouldn't fire if
5132 the value hasn't changed. */
5133 bs->print_it = print_it_noop;
5134 bs->stop = 0;
5135 }
5136 /* Stop. */
5137 break;
5138 default:
5139 /* Can't happen. */
5140 break;
5141 }
5142 }
5143 else /* must_check_value == 0 */
5144 {
5145 /* This is a case where some watchpoint(s) triggered, but
5146 not at the address of this watchpoint, or else no
5147 watchpoint triggered after all. So don't print
5148 anything for this watchpoint. */
5149 bs->print_it = print_it_noop;
5150 bs->stop = 0;
5151 }
5152 }
5153 }
5154
5155 /* For breakpoints that are currently marked as telling gdb to stop,
5156 check conditions (condition proper, frame, thread and ignore count)
5157 of breakpoint referred to by BS. If we should not stop for this
5158 breakpoint, set BS->stop to 0. */
5159
5160 static void
5161 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5162 {
5163 const struct bp_location *bl;
5164 struct breakpoint *b;
5165 /* Assume stop. */
5166 bool condition_result = true;
5167 struct expression *cond;
5168
5169 gdb_assert (bs->stop);
5170
5171 /* BS is built for existing struct breakpoint. */
5172 bl = bs->bp_location_at;
5173 gdb_assert (bl != NULL);
5174 b = bs->breakpoint_at;
5175 gdb_assert (b != NULL);
5176
5177 /* Even if the target evaluated the condition on its end and notified GDB, we
5178 need to do so again since GDB does not know if we stopped due to a
5179 breakpoint or a single step breakpoint. */
5180
5181 if (frame_id_p (b->frame_id)
5182 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5183 {
5184 bs->stop = 0;
5185 return;
5186 }
5187
5188 /* If this is a thread/task-specific breakpoint, don't waste cpu
5189 evaluating the condition if this isn't the specified
5190 thread/task. */
5191 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5192 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5193
5194 {
5195 bs->stop = 0;
5196 return;
5197 }
5198
5199 /* Evaluate extension language breakpoints that have a "stop" method
5200 implemented. */
5201 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5202
5203 if (is_watchpoint (b))
5204 {
5205 struct watchpoint *w = (struct watchpoint *) b;
5206
5207 cond = w->cond_exp.get ();
5208 }
5209 else
5210 cond = bl->cond.get ();
5211
5212 if (cond && b->disposition != disp_del_at_next_stop)
5213 {
5214 int within_current_scope = 1;
5215 struct watchpoint * w;
5216
5217 /* We use value_mark and value_free_to_mark because it could
5218 be a long time before we return to the command level and
5219 call free_all_values. We can't call free_all_values
5220 because we might be in the middle of evaluating a
5221 function call. */
5222 struct value *mark = value_mark ();
5223
5224 if (is_watchpoint (b))
5225 w = (struct watchpoint *) b;
5226 else
5227 w = NULL;
5228
5229 /* Need to select the frame, with all that implies so that
5230 the conditions will have the right context. Because we
5231 use the frame, we will not see an inlined function's
5232 variables when we arrive at a breakpoint at the start
5233 of the inlined function; the current frame will be the
5234 call site. */
5235 if (w == NULL || w->cond_exp_valid_block == NULL)
5236 select_frame (get_current_frame ());
5237 else
5238 {
5239 struct frame_info *frame;
5240
5241 /* For local watchpoint expressions, which particular
5242 instance of a local is being watched matters, so we
5243 keep track of the frame to evaluate the expression
5244 in. To evaluate the condition however, it doesn't
5245 really matter which instantiation of the function
5246 where the condition makes sense triggers the
5247 watchpoint. This allows an expression like "watch
5248 global if q > 10" set in `func', catch writes to
5249 global on all threads that call `func', or catch
5250 writes on all recursive calls of `func' by a single
5251 thread. We simply always evaluate the condition in
5252 the innermost frame that's executing where it makes
5253 sense to evaluate the condition. It seems
5254 intuitive. */
5255 frame = block_innermost_frame (w->cond_exp_valid_block);
5256 if (frame != NULL)
5257 select_frame (frame);
5258 else
5259 within_current_scope = 0;
5260 }
5261 if (within_current_scope)
5262 {
5263 TRY
5264 {
5265 condition_result = breakpoint_cond_eval (cond);
5266 }
5267 CATCH (ex, RETURN_MASK_ALL)
5268 {
5269 exception_fprintf (gdb_stderr, ex,
5270 "Error in testing breakpoint condition:\n");
5271 }
5272 END_CATCH
5273 }
5274 else
5275 {
5276 warning (_("Watchpoint condition cannot be tested "
5277 "in the current scope"));
5278 /* If we failed to set the right context for this
5279 watchpoint, unconditionally report it. */
5280 }
5281 /* FIXME-someday, should give breakpoint #. */
5282 value_free_to_mark (mark);
5283 }
5284
5285 if (cond && !condition_result)
5286 {
5287 bs->stop = 0;
5288 }
5289 else if (b->ignore_count > 0)
5290 {
5291 b->ignore_count--;
5292 bs->stop = 0;
5293 /* Increase the hit count even though we don't stop. */
5294 ++(b->hit_count);
5295 gdb::observers::breakpoint_modified.notify (b);
5296 }
5297 }
5298
5299 /* Returns true if we need to track moribund locations of LOC's type
5300 on the current target. */
5301
5302 static int
5303 need_moribund_for_location_type (struct bp_location *loc)
5304 {
5305 return ((loc->loc_type == bp_loc_software_breakpoint
5306 && !target_supports_stopped_by_sw_breakpoint ())
5307 || (loc->loc_type == bp_loc_hardware_breakpoint
5308 && !target_supports_stopped_by_hw_breakpoint ()));
5309 }
5310
5311 /* See breakpoint.h. */
5312
5313 bpstat
5314 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5315 const struct target_waitstatus *ws)
5316 {
5317 struct breakpoint *b;
5318 bpstat bs_head = NULL, *bs_link = &bs_head;
5319
5320 ALL_BREAKPOINTS (b)
5321 {
5322 if (!breakpoint_enabled (b))
5323 continue;
5324
5325 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5326 {
5327 /* For hardware watchpoints, we look only at the first
5328 location. The watchpoint_check function will work on the
5329 entire expression, not the individual locations. For
5330 read watchpoints, the watchpoints_triggered function has
5331 checked all locations already. */
5332 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5333 break;
5334
5335 if (!bl->enabled || bl->shlib_disabled)
5336 continue;
5337
5338 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5339 continue;
5340
5341 /* Come here if it's a watchpoint, or if the break address
5342 matches. */
5343
5344 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5345 explain stop. */
5346
5347 /* Assume we stop. Should we find a watchpoint that is not
5348 actually triggered, or if the condition of the breakpoint
5349 evaluates as false, we'll reset 'stop' to 0. */
5350 bs->stop = 1;
5351 bs->print = 1;
5352
5353 /* If this is a scope breakpoint, mark the associated
5354 watchpoint as triggered so that we will handle the
5355 out-of-scope event. We'll get to the watchpoint next
5356 iteration. */
5357 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5358 {
5359 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5360
5361 w->watchpoint_triggered = watch_triggered_yes;
5362 }
5363 }
5364 }
5365
5366 /* Check if a moribund breakpoint explains the stop. */
5367 if (!target_supports_stopped_by_sw_breakpoint ()
5368 || !target_supports_stopped_by_hw_breakpoint ())
5369 {
5370 bp_location *loc;
5371
5372 for (int ix = 0;
5373 VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5374 {
5375 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5376 && need_moribund_for_location_type (loc))
5377 {
5378 bpstat bs = new bpstats (loc, &bs_link);
5379 /* For hits of moribund locations, we should just proceed. */
5380 bs->stop = 0;
5381 bs->print = 0;
5382 bs->print_it = print_it_noop;
5383 }
5384 }
5385 }
5386
5387 return bs_head;
5388 }
5389
5390 /* See breakpoint.h. */
5391
5392 bpstat
5393 bpstat_stop_status (const address_space *aspace,
5394 CORE_ADDR bp_addr, ptid_t ptid,
5395 const struct target_waitstatus *ws,
5396 bpstat stop_chain)
5397 {
5398 struct breakpoint *b = NULL;
5399 /* First item of allocated bpstat's. */
5400 bpstat bs_head = stop_chain;
5401 bpstat bs;
5402 int need_remove_insert;
5403 int removed_any;
5404
5405 /* First, build the bpstat chain with locations that explain a
5406 target stop, while being careful to not set the target running,
5407 as that may invalidate locations (in particular watchpoint
5408 locations are recreated). Resuming will happen here with
5409 breakpoint conditions or watchpoint expressions that include
5410 inferior function calls. */
5411 if (bs_head == NULL)
5412 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5413
5414 /* A bit of special processing for shlib breakpoints. We need to
5415 process solib loading here, so that the lists of loaded and
5416 unloaded libraries are correct before we handle "catch load" and
5417 "catch unload". */
5418 for (bs = bs_head; bs != NULL; bs = bs->next)
5419 {
5420 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5421 {
5422 handle_solib_event ();
5423 break;
5424 }
5425 }
5426
5427 /* Now go through the locations that caused the target to stop, and
5428 check whether we're interested in reporting this stop to higher
5429 layers, or whether we should resume the target transparently. */
5430
5431 removed_any = 0;
5432
5433 for (bs = bs_head; bs != NULL; bs = bs->next)
5434 {
5435 if (!bs->stop)
5436 continue;
5437
5438 b = bs->breakpoint_at;
5439 b->ops->check_status (bs);
5440 if (bs->stop)
5441 {
5442 bpstat_check_breakpoint_conditions (bs, ptid);
5443
5444 if (bs->stop)
5445 {
5446 ++(b->hit_count);
5447 gdb::observers::breakpoint_modified.notify (b);
5448
5449 /* We will stop here. */
5450 if (b->disposition == disp_disable)
5451 {
5452 --(b->enable_count);
5453 if (b->enable_count <= 0)
5454 b->enable_state = bp_disabled;
5455 removed_any = 1;
5456 }
5457 if (b->silent)
5458 bs->print = 0;
5459 bs->commands = b->commands;
5460 if (command_line_is_silent (bs->commands
5461 ? bs->commands.get () : NULL))
5462 bs->print = 0;
5463
5464 b->ops->after_condition_true (bs);
5465 }
5466
5467 }
5468
5469 /* Print nothing for this entry if we don't stop or don't
5470 print. */
5471 if (!bs->stop || !bs->print)
5472 bs->print_it = print_it_noop;
5473 }
5474
5475 /* If we aren't stopping, the value of some hardware watchpoint may
5476 not have changed, but the intermediate memory locations we are
5477 watching may have. Don't bother if we're stopping; this will get
5478 done later. */
5479 need_remove_insert = 0;
5480 if (! bpstat_causes_stop (bs_head))
5481 for (bs = bs_head; bs != NULL; bs = bs->next)
5482 if (!bs->stop
5483 && bs->breakpoint_at
5484 && is_hardware_watchpoint (bs->breakpoint_at))
5485 {
5486 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5487
5488 update_watchpoint (w, 0 /* don't reparse. */);
5489 need_remove_insert = 1;
5490 }
5491
5492 if (need_remove_insert)
5493 update_global_location_list (UGLL_MAY_INSERT);
5494 else if (removed_any)
5495 update_global_location_list (UGLL_DONT_INSERT);
5496
5497 return bs_head;
5498 }
5499
5500 static void
5501 handle_jit_event (void)
5502 {
5503 struct frame_info *frame;
5504 struct gdbarch *gdbarch;
5505
5506 if (debug_infrun)
5507 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5508
5509 /* Switch terminal for any messages produced by
5510 breakpoint_re_set. */
5511 target_terminal::ours_for_output ();
5512
5513 frame = get_current_frame ();
5514 gdbarch = get_frame_arch (frame);
5515
5516 jit_event_handler (gdbarch);
5517
5518 target_terminal::inferior ();
5519 }
5520
5521 /* Prepare WHAT final decision for infrun. */
5522
5523 /* Decide what infrun needs to do with this bpstat. */
5524
5525 struct bpstat_what
5526 bpstat_what (bpstat bs_head)
5527 {
5528 struct bpstat_what retval;
5529 bpstat bs;
5530
5531 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5532 retval.call_dummy = STOP_NONE;
5533 retval.is_longjmp = 0;
5534
5535 for (bs = bs_head; bs != NULL; bs = bs->next)
5536 {
5537 /* Extract this BS's action. After processing each BS, we check
5538 if its action overrides all we've seem so far. */
5539 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5540 enum bptype bptype;
5541
5542 if (bs->breakpoint_at == NULL)
5543 {
5544 /* I suspect this can happen if it was a momentary
5545 breakpoint which has since been deleted. */
5546 bptype = bp_none;
5547 }
5548 else
5549 bptype = bs->breakpoint_at->type;
5550
5551 switch (bptype)
5552 {
5553 case bp_none:
5554 break;
5555 case bp_breakpoint:
5556 case bp_hardware_breakpoint:
5557 case bp_single_step:
5558 case bp_until:
5559 case bp_finish:
5560 case bp_shlib_event:
5561 if (bs->stop)
5562 {
5563 if (bs->print)
5564 this_action = BPSTAT_WHAT_STOP_NOISY;
5565 else
5566 this_action = BPSTAT_WHAT_STOP_SILENT;
5567 }
5568 else
5569 this_action = BPSTAT_WHAT_SINGLE;
5570 break;
5571 case bp_watchpoint:
5572 case bp_hardware_watchpoint:
5573 case bp_read_watchpoint:
5574 case bp_access_watchpoint:
5575 if (bs->stop)
5576 {
5577 if (bs->print)
5578 this_action = BPSTAT_WHAT_STOP_NOISY;
5579 else
5580 this_action = BPSTAT_WHAT_STOP_SILENT;
5581 }
5582 else
5583 {
5584 /* There was a watchpoint, but we're not stopping.
5585 This requires no further action. */
5586 }
5587 break;
5588 case bp_longjmp:
5589 case bp_longjmp_call_dummy:
5590 case bp_exception:
5591 if (bs->stop)
5592 {
5593 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5594 retval.is_longjmp = bptype != bp_exception;
5595 }
5596 else
5597 this_action = BPSTAT_WHAT_SINGLE;
5598 break;
5599 case bp_longjmp_resume:
5600 case bp_exception_resume:
5601 if (bs->stop)
5602 {
5603 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5604 retval.is_longjmp = bptype == bp_longjmp_resume;
5605 }
5606 else
5607 this_action = BPSTAT_WHAT_SINGLE;
5608 break;
5609 case bp_step_resume:
5610 if (bs->stop)
5611 this_action = BPSTAT_WHAT_STEP_RESUME;
5612 else
5613 {
5614 /* It is for the wrong frame. */
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 }
5617 break;
5618 case bp_hp_step_resume:
5619 if (bs->stop)
5620 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5621 else
5622 {
5623 /* It is for the wrong frame. */
5624 this_action = BPSTAT_WHAT_SINGLE;
5625 }
5626 break;
5627 case bp_watchpoint_scope:
5628 case bp_thread_event:
5629 case bp_overlay_event:
5630 case bp_longjmp_master:
5631 case bp_std_terminate_master:
5632 case bp_exception_master:
5633 this_action = BPSTAT_WHAT_SINGLE;
5634 break;
5635 case bp_catchpoint:
5636 if (bs->stop)
5637 {
5638 if (bs->print)
5639 this_action = BPSTAT_WHAT_STOP_NOISY;
5640 else
5641 this_action = BPSTAT_WHAT_STOP_SILENT;
5642 }
5643 else
5644 {
5645 /* There was a catchpoint, but we're not stopping.
5646 This requires no further action. */
5647 }
5648 break;
5649 case bp_jit_event:
5650 this_action = BPSTAT_WHAT_SINGLE;
5651 break;
5652 case bp_call_dummy:
5653 /* Make sure the action is stop (silent or noisy),
5654 so infrun.c pops the dummy frame. */
5655 retval.call_dummy = STOP_STACK_DUMMY;
5656 this_action = BPSTAT_WHAT_STOP_SILENT;
5657 break;
5658 case bp_std_terminate:
5659 /* Make sure the action is stop (silent or noisy),
5660 so infrun.c pops the dummy frame. */
5661 retval.call_dummy = STOP_STD_TERMINATE;
5662 this_action = BPSTAT_WHAT_STOP_SILENT;
5663 break;
5664 case bp_tracepoint:
5665 case bp_fast_tracepoint:
5666 case bp_static_tracepoint:
5667 /* Tracepoint hits should not be reported back to GDB, and
5668 if one got through somehow, it should have been filtered
5669 out already. */
5670 internal_error (__FILE__, __LINE__,
5671 _("bpstat_what: tracepoint encountered"));
5672 break;
5673 case bp_gnu_ifunc_resolver:
5674 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5675 this_action = BPSTAT_WHAT_SINGLE;
5676 break;
5677 case bp_gnu_ifunc_resolver_return:
5678 /* The breakpoint will be removed, execution will restart from the
5679 PC of the former breakpoint. */
5680 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5681 break;
5682
5683 case bp_dprintf:
5684 if (bs->stop)
5685 this_action = BPSTAT_WHAT_STOP_SILENT;
5686 else
5687 this_action = BPSTAT_WHAT_SINGLE;
5688 break;
5689
5690 default:
5691 internal_error (__FILE__, __LINE__,
5692 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5693 }
5694
5695 retval.main_action = std::max (retval.main_action, this_action);
5696 }
5697
5698 return retval;
5699 }
5700
5701 void
5702 bpstat_run_callbacks (bpstat bs_head)
5703 {
5704 bpstat bs;
5705
5706 for (bs = bs_head; bs != NULL; bs = bs->next)
5707 {
5708 struct breakpoint *b = bs->breakpoint_at;
5709
5710 if (b == NULL)
5711 continue;
5712 switch (b->type)
5713 {
5714 case bp_jit_event:
5715 handle_jit_event ();
5716 break;
5717 case bp_gnu_ifunc_resolver:
5718 gnu_ifunc_resolver_stop (b);
5719 break;
5720 case bp_gnu_ifunc_resolver_return:
5721 gnu_ifunc_resolver_return_stop (b);
5722 break;
5723 }
5724 }
5725 }
5726
5727 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5728 without hardware support). This isn't related to a specific bpstat,
5729 just to things like whether watchpoints are set. */
5730
5731 int
5732 bpstat_should_step (void)
5733 {
5734 struct breakpoint *b;
5735
5736 ALL_BREAKPOINTS (b)
5737 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5738 return 1;
5739 return 0;
5740 }
5741
5742 int
5743 bpstat_causes_stop (bpstat bs)
5744 {
5745 for (; bs != NULL; bs = bs->next)
5746 if (bs->stop)
5747 return 1;
5748
5749 return 0;
5750 }
5751
5752 \f
5753
5754 /* Compute a string of spaces suitable to indent the next line
5755 so it starts at the position corresponding to the table column
5756 named COL_NAME in the currently active table of UIOUT. */
5757
5758 static char *
5759 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5760 {
5761 static char wrap_indent[80];
5762 int i, total_width, width, align;
5763 const char *text;
5764
5765 total_width = 0;
5766 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5767 {
5768 if (strcmp (text, col_name) == 0)
5769 {
5770 gdb_assert (total_width < sizeof wrap_indent);
5771 memset (wrap_indent, ' ', total_width);
5772 wrap_indent[total_width] = 0;
5773
5774 return wrap_indent;
5775 }
5776
5777 total_width += width + 1;
5778 }
5779
5780 return NULL;
5781 }
5782
5783 /* Determine if the locations of this breakpoint will have their conditions
5784 evaluated by the target, host or a mix of both. Returns the following:
5785
5786 "host": Host evals condition.
5787 "host or target": Host or Target evals condition.
5788 "target": Target evals condition.
5789 */
5790
5791 static const char *
5792 bp_condition_evaluator (struct breakpoint *b)
5793 {
5794 struct bp_location *bl;
5795 char host_evals = 0;
5796 char target_evals = 0;
5797
5798 if (!b)
5799 return NULL;
5800
5801 if (!is_breakpoint (b))
5802 return NULL;
5803
5804 if (gdb_evaluates_breakpoint_condition_p ()
5805 || !target_supports_evaluation_of_breakpoint_conditions ())
5806 return condition_evaluation_host;
5807
5808 for (bl = b->loc; bl; bl = bl->next)
5809 {
5810 if (bl->cond_bytecode)
5811 target_evals++;
5812 else
5813 host_evals++;
5814 }
5815
5816 if (host_evals && target_evals)
5817 return condition_evaluation_both;
5818 else if (target_evals)
5819 return condition_evaluation_target;
5820 else
5821 return condition_evaluation_host;
5822 }
5823
5824 /* Determine the breakpoint location's condition evaluator. This is
5825 similar to bp_condition_evaluator, but for locations. */
5826
5827 static const char *
5828 bp_location_condition_evaluator (struct bp_location *bl)
5829 {
5830 if (bl && !is_breakpoint (bl->owner))
5831 return NULL;
5832
5833 if (gdb_evaluates_breakpoint_condition_p ()
5834 || !target_supports_evaluation_of_breakpoint_conditions ())
5835 return condition_evaluation_host;
5836
5837 if (bl && bl->cond_bytecode)
5838 return condition_evaluation_target;
5839 else
5840 return condition_evaluation_host;
5841 }
5842
5843 /* Print the LOC location out of the list of B->LOC locations. */
5844
5845 static void
5846 print_breakpoint_location (struct breakpoint *b,
5847 struct bp_location *loc)
5848 {
5849 struct ui_out *uiout = current_uiout;
5850
5851 scoped_restore_current_program_space restore_pspace;
5852
5853 if (loc != NULL && loc->shlib_disabled)
5854 loc = NULL;
5855
5856 if (loc != NULL)
5857 set_current_program_space (loc->pspace);
5858
5859 if (b->display_canonical)
5860 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5861 else if (loc && loc->symtab)
5862 {
5863 const struct symbol *sym = loc->symbol;
5864
5865 if (sym == NULL)
5866 sym = find_pc_sect_function (loc->address, loc->section);
5867
5868 if (sym)
5869 {
5870 uiout->text ("in ");
5871 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5872 uiout->text (" ");
5873 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5874 uiout->text ("at ");
5875 }
5876 uiout->field_string ("file",
5877 symtab_to_filename_for_display (loc->symtab));
5878 uiout->text (":");
5879
5880 if (uiout->is_mi_like_p ())
5881 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5882
5883 uiout->field_int ("line", loc->line_number);
5884 }
5885 else if (loc)
5886 {
5887 string_file stb;
5888
5889 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5890 demangle, "");
5891 uiout->field_stream ("at", stb);
5892 }
5893 else
5894 {
5895 uiout->field_string ("pending",
5896 event_location_to_string (b->location.get ()));
5897 /* If extra_string is available, it could be holding a condition
5898 or dprintf arguments. In either case, make sure it is printed,
5899 too, but only for non-MI streams. */
5900 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5901 {
5902 if (b->type == bp_dprintf)
5903 uiout->text (",");
5904 else
5905 uiout->text (" ");
5906 uiout->text (b->extra_string);
5907 }
5908 }
5909
5910 if (loc && is_breakpoint (b)
5911 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5912 && bp_condition_evaluator (b) == condition_evaluation_both)
5913 {
5914 uiout->text (" (");
5915 uiout->field_string ("evaluated-by",
5916 bp_location_condition_evaluator (loc));
5917 uiout->text (")");
5918 }
5919 }
5920
5921 static const char *
5922 bptype_string (enum bptype type)
5923 {
5924 struct ep_type_description
5925 {
5926 enum bptype type;
5927 const char *description;
5928 };
5929 static struct ep_type_description bptypes[] =
5930 {
5931 {bp_none, "?deleted?"},
5932 {bp_breakpoint, "breakpoint"},
5933 {bp_hardware_breakpoint, "hw breakpoint"},
5934 {bp_single_step, "sw single-step"},
5935 {bp_until, "until"},
5936 {bp_finish, "finish"},
5937 {bp_watchpoint, "watchpoint"},
5938 {bp_hardware_watchpoint, "hw watchpoint"},
5939 {bp_read_watchpoint, "read watchpoint"},
5940 {bp_access_watchpoint, "acc watchpoint"},
5941 {bp_longjmp, "longjmp"},
5942 {bp_longjmp_resume, "longjmp resume"},
5943 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5944 {bp_exception, "exception"},
5945 {bp_exception_resume, "exception resume"},
5946 {bp_step_resume, "step resume"},
5947 {bp_hp_step_resume, "high-priority step resume"},
5948 {bp_watchpoint_scope, "watchpoint scope"},
5949 {bp_call_dummy, "call dummy"},
5950 {bp_std_terminate, "std::terminate"},
5951 {bp_shlib_event, "shlib events"},
5952 {bp_thread_event, "thread events"},
5953 {bp_overlay_event, "overlay events"},
5954 {bp_longjmp_master, "longjmp master"},
5955 {bp_std_terminate_master, "std::terminate master"},
5956 {bp_exception_master, "exception master"},
5957 {bp_catchpoint, "catchpoint"},
5958 {bp_tracepoint, "tracepoint"},
5959 {bp_fast_tracepoint, "fast tracepoint"},
5960 {bp_static_tracepoint, "static tracepoint"},
5961 {bp_dprintf, "dprintf"},
5962 {bp_jit_event, "jit events"},
5963 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5964 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5965 };
5966
5967 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5968 || ((int) type != bptypes[(int) type].type))
5969 internal_error (__FILE__, __LINE__,
5970 _("bptypes table does not describe type #%d."),
5971 (int) type);
5972
5973 return bptypes[(int) type].description;
5974 }
5975
5976 /* For MI, output a field named 'thread-groups' with a list as the value.
5977 For CLI, prefix the list with the string 'inf'. */
5978
5979 static void
5980 output_thread_groups (struct ui_out *uiout,
5981 const char *field_name,
5982 const std::vector<int> &inf_nums,
5983 int mi_only)
5984 {
5985 int is_mi = uiout->is_mi_like_p ();
5986
5987 /* For backward compatibility, don't display inferiors in CLI unless
5988 there are several. Always display them for MI. */
5989 if (!is_mi && mi_only)
5990 return;
5991
5992 ui_out_emit_list list_emitter (uiout, field_name);
5993
5994 for (size_t i = 0; i < inf_nums.size (); i++)
5995 {
5996 if (is_mi)
5997 {
5998 char mi_group[10];
5999
6000 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6001 uiout->field_string (NULL, mi_group);
6002 }
6003 else
6004 {
6005 if (i == 0)
6006 uiout->text (" inf ");
6007 else
6008 uiout->text (", ");
6009
6010 uiout->text (plongest (inf_nums[i]));
6011 }
6012 }
6013 }
6014
6015 /* Print B to gdb_stdout. */
6016
6017 static void
6018 print_one_breakpoint_location (struct breakpoint *b,
6019 struct bp_location *loc,
6020 int loc_number,
6021 struct bp_location **last_loc,
6022 int allflag)
6023 {
6024 struct command_line *l;
6025 static char bpenables[] = "nynny";
6026
6027 struct ui_out *uiout = current_uiout;
6028 int header_of_multiple = 0;
6029 int part_of_multiple = (loc != NULL);
6030 struct value_print_options opts;
6031
6032 get_user_print_options (&opts);
6033
6034 gdb_assert (!loc || loc_number != 0);
6035 /* See comment in print_one_breakpoint concerning treatment of
6036 breakpoints with single disabled location. */
6037 if (loc == NULL
6038 && (b->loc != NULL
6039 && (b->loc->next != NULL || !b->loc->enabled)))
6040 header_of_multiple = 1;
6041 if (loc == NULL)
6042 loc = b->loc;
6043
6044 annotate_record ();
6045
6046 /* 1 */
6047 annotate_field (0);
6048 if (part_of_multiple)
6049 {
6050 char *formatted;
6051 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6052 uiout->field_string ("number", formatted);
6053 xfree (formatted);
6054 }
6055 else
6056 {
6057 uiout->field_int ("number", b->number);
6058 }
6059
6060 /* 2 */
6061 annotate_field (1);
6062 if (part_of_multiple)
6063 uiout->field_skip ("type");
6064 else
6065 uiout->field_string ("type", bptype_string (b->type));
6066
6067 /* 3 */
6068 annotate_field (2);
6069 if (part_of_multiple)
6070 uiout->field_skip ("disp");
6071 else
6072 uiout->field_string ("disp", bpdisp_text (b->disposition));
6073
6074
6075 /* 4 */
6076 annotate_field (3);
6077 if (part_of_multiple)
6078 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6079 else
6080 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6081 uiout->spaces (2);
6082
6083
6084 /* 5 and 6 */
6085 if (b->ops != NULL && b->ops->print_one != NULL)
6086 {
6087 /* Although the print_one can possibly print all locations,
6088 calling it here is not likely to get any nice result. So,
6089 make sure there's just one location. */
6090 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6091 b->ops->print_one (b, last_loc);
6092 }
6093 else
6094 switch (b->type)
6095 {
6096 case bp_none:
6097 internal_error (__FILE__, __LINE__,
6098 _("print_one_breakpoint: bp_none encountered\n"));
6099 break;
6100
6101 case bp_watchpoint:
6102 case bp_hardware_watchpoint:
6103 case bp_read_watchpoint:
6104 case bp_access_watchpoint:
6105 {
6106 struct watchpoint *w = (struct watchpoint *) b;
6107
6108 /* Field 4, the address, is omitted (which makes the columns
6109 not line up too nicely with the headers, but the effect
6110 is relatively readable). */
6111 if (opts.addressprint)
6112 uiout->field_skip ("addr");
6113 annotate_field (5);
6114 uiout->field_string ("what", w->exp_string);
6115 }
6116 break;
6117
6118 case bp_breakpoint:
6119 case bp_hardware_breakpoint:
6120 case bp_single_step:
6121 case bp_until:
6122 case bp_finish:
6123 case bp_longjmp:
6124 case bp_longjmp_resume:
6125 case bp_longjmp_call_dummy:
6126 case bp_exception:
6127 case bp_exception_resume:
6128 case bp_step_resume:
6129 case bp_hp_step_resume:
6130 case bp_watchpoint_scope:
6131 case bp_call_dummy:
6132 case bp_std_terminate:
6133 case bp_shlib_event:
6134 case bp_thread_event:
6135 case bp_overlay_event:
6136 case bp_longjmp_master:
6137 case bp_std_terminate_master:
6138 case bp_exception_master:
6139 case bp_tracepoint:
6140 case bp_fast_tracepoint:
6141 case bp_static_tracepoint:
6142 case bp_dprintf:
6143 case bp_jit_event:
6144 case bp_gnu_ifunc_resolver:
6145 case bp_gnu_ifunc_resolver_return:
6146 if (opts.addressprint)
6147 {
6148 annotate_field (4);
6149 if (header_of_multiple)
6150 uiout->field_string ("addr", "<MULTIPLE>");
6151 else if (b->loc == NULL || loc->shlib_disabled)
6152 uiout->field_string ("addr", "<PENDING>");
6153 else
6154 uiout->field_core_addr ("addr",
6155 loc->gdbarch, loc->address);
6156 }
6157 annotate_field (5);
6158 if (!header_of_multiple)
6159 print_breakpoint_location (b, loc);
6160 if (b->loc)
6161 *last_loc = b->loc;
6162 break;
6163 }
6164
6165
6166 if (loc != NULL && !header_of_multiple)
6167 {
6168 struct inferior *inf;
6169 std::vector<int> inf_nums;
6170 int mi_only = 1;
6171
6172 ALL_INFERIORS (inf)
6173 {
6174 if (inf->pspace == loc->pspace)
6175 inf_nums.push_back (inf->num);
6176 }
6177
6178 /* For backward compatibility, don't display inferiors in CLI unless
6179 there are several. Always display for MI. */
6180 if (allflag
6181 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6182 && (number_of_program_spaces () > 1
6183 || number_of_inferiors () > 1)
6184 /* LOC is for existing B, it cannot be in
6185 moribund_locations and thus having NULL OWNER. */
6186 && loc->owner->type != bp_catchpoint))
6187 mi_only = 0;
6188 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6189 }
6190
6191 if (!part_of_multiple)
6192 {
6193 if (b->thread != -1)
6194 {
6195 /* FIXME: This seems to be redundant and lost here; see the
6196 "stop only in" line a little further down. */
6197 uiout->text (" thread ");
6198 uiout->field_int ("thread", b->thread);
6199 }
6200 else if (b->task != 0)
6201 {
6202 uiout->text (" task ");
6203 uiout->field_int ("task", b->task);
6204 }
6205 }
6206
6207 uiout->text ("\n");
6208
6209 if (!part_of_multiple)
6210 b->ops->print_one_detail (b, uiout);
6211
6212 if (part_of_multiple && frame_id_p (b->frame_id))
6213 {
6214 annotate_field (6);
6215 uiout->text ("\tstop only in stack frame at ");
6216 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6217 the frame ID. */
6218 uiout->field_core_addr ("frame",
6219 b->gdbarch, b->frame_id.stack_addr);
6220 uiout->text ("\n");
6221 }
6222
6223 if (!part_of_multiple && b->cond_string)
6224 {
6225 annotate_field (7);
6226 if (is_tracepoint (b))
6227 uiout->text ("\ttrace only if ");
6228 else
6229 uiout->text ("\tstop only if ");
6230 uiout->field_string ("cond", b->cond_string);
6231
6232 /* Print whether the target is doing the breakpoint's condition
6233 evaluation. If GDB is doing the evaluation, don't print anything. */
6234 if (is_breakpoint (b)
6235 && breakpoint_condition_evaluation_mode ()
6236 == condition_evaluation_target)
6237 {
6238 uiout->text (" (");
6239 uiout->field_string ("evaluated-by",
6240 bp_condition_evaluator (b));
6241 uiout->text (" evals)");
6242 }
6243 uiout->text ("\n");
6244 }
6245
6246 if (!part_of_multiple && b->thread != -1)
6247 {
6248 /* FIXME should make an annotation for this. */
6249 uiout->text ("\tstop only in thread ");
6250 if (uiout->is_mi_like_p ())
6251 uiout->field_int ("thread", b->thread);
6252 else
6253 {
6254 struct thread_info *thr = find_thread_global_id (b->thread);
6255
6256 uiout->field_string ("thread", print_thread_id (thr));
6257 }
6258 uiout->text ("\n");
6259 }
6260
6261 if (!part_of_multiple)
6262 {
6263 if (b->hit_count)
6264 {
6265 /* FIXME should make an annotation for this. */
6266 if (is_catchpoint (b))
6267 uiout->text ("\tcatchpoint");
6268 else if (is_tracepoint (b))
6269 uiout->text ("\ttracepoint");
6270 else
6271 uiout->text ("\tbreakpoint");
6272 uiout->text (" already hit ");
6273 uiout->field_int ("times", b->hit_count);
6274 if (b->hit_count == 1)
6275 uiout->text (" time\n");
6276 else
6277 uiout->text (" times\n");
6278 }
6279 else
6280 {
6281 /* Output the count also if it is zero, but only if this is mi. */
6282 if (uiout->is_mi_like_p ())
6283 uiout->field_int ("times", b->hit_count);
6284 }
6285 }
6286
6287 if (!part_of_multiple && b->ignore_count)
6288 {
6289 annotate_field (8);
6290 uiout->text ("\tignore next ");
6291 uiout->field_int ("ignore", b->ignore_count);
6292 uiout->text (" hits\n");
6293 }
6294
6295 /* Note that an enable count of 1 corresponds to "enable once"
6296 behavior, which is reported by the combination of enablement and
6297 disposition, so we don't need to mention it here. */
6298 if (!part_of_multiple && b->enable_count > 1)
6299 {
6300 annotate_field (8);
6301 uiout->text ("\tdisable after ");
6302 /* Tweak the wording to clarify that ignore and enable counts
6303 are distinct, and have additive effect. */
6304 if (b->ignore_count)
6305 uiout->text ("additional ");
6306 else
6307 uiout->text ("next ");
6308 uiout->field_int ("enable", b->enable_count);
6309 uiout->text (" hits\n");
6310 }
6311
6312 if (!part_of_multiple && is_tracepoint (b))
6313 {
6314 struct tracepoint *tp = (struct tracepoint *) b;
6315
6316 if (tp->traceframe_usage)
6317 {
6318 uiout->text ("\ttrace buffer usage ");
6319 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6320 uiout->text (" bytes\n");
6321 }
6322 }
6323
6324 l = b->commands ? b->commands.get () : NULL;
6325 if (!part_of_multiple && l)
6326 {
6327 annotate_field (9);
6328 ui_out_emit_tuple tuple_emitter (uiout, "script");
6329 print_command_lines (uiout, l, 4);
6330 }
6331
6332 if (is_tracepoint (b))
6333 {
6334 struct tracepoint *t = (struct tracepoint *) b;
6335
6336 if (!part_of_multiple && t->pass_count)
6337 {
6338 annotate_field (10);
6339 uiout->text ("\tpass count ");
6340 uiout->field_int ("pass", t->pass_count);
6341 uiout->text (" \n");
6342 }
6343
6344 /* Don't display it when tracepoint or tracepoint location is
6345 pending. */
6346 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6347 {
6348 annotate_field (11);
6349
6350 if (uiout->is_mi_like_p ())
6351 uiout->field_string ("installed",
6352 loc->inserted ? "y" : "n");
6353 else
6354 {
6355 if (loc->inserted)
6356 uiout->text ("\t");
6357 else
6358 uiout->text ("\tnot ");
6359 uiout->text ("installed on target\n");
6360 }
6361 }
6362 }
6363
6364 if (uiout->is_mi_like_p () && !part_of_multiple)
6365 {
6366 if (is_watchpoint (b))
6367 {
6368 struct watchpoint *w = (struct watchpoint *) b;
6369
6370 uiout->field_string ("original-location", w->exp_string);
6371 }
6372 else if (b->location != NULL
6373 && event_location_to_string (b->location.get ()) != NULL)
6374 uiout->field_string ("original-location",
6375 event_location_to_string (b->location.get ()));
6376 }
6377 }
6378
6379 static void
6380 print_one_breakpoint (struct breakpoint *b,
6381 struct bp_location **last_loc,
6382 int allflag)
6383 {
6384 struct ui_out *uiout = current_uiout;
6385
6386 {
6387 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6388
6389 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6390 }
6391
6392 /* If this breakpoint has custom print function,
6393 it's already printed. Otherwise, print individual
6394 locations, if any. */
6395 if (b->ops == NULL || b->ops->print_one == NULL)
6396 {
6397 /* If breakpoint has a single location that is disabled, we
6398 print it as if it had several locations, since otherwise it's
6399 hard to represent "breakpoint enabled, location disabled"
6400 situation.
6401
6402 Note that while hardware watchpoints have several locations
6403 internally, that's not a property exposed to user. */
6404 if (b->loc
6405 && !is_hardware_watchpoint (b)
6406 && (b->loc->next || !b->loc->enabled))
6407 {
6408 struct bp_location *loc;
6409 int n = 1;
6410
6411 for (loc = b->loc; loc; loc = loc->next, ++n)
6412 {
6413 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6414 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6415 }
6416 }
6417 }
6418 }
6419
6420 static int
6421 breakpoint_address_bits (struct breakpoint *b)
6422 {
6423 int print_address_bits = 0;
6424 struct bp_location *loc;
6425
6426 /* Software watchpoints that aren't watching memory don't have an
6427 address to print. */
6428 if (is_no_memory_software_watchpoint (b))
6429 return 0;
6430
6431 for (loc = b->loc; loc; loc = loc->next)
6432 {
6433 int addr_bit;
6434
6435 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6436 if (addr_bit > print_address_bits)
6437 print_address_bits = addr_bit;
6438 }
6439
6440 return print_address_bits;
6441 }
6442
6443 /* See breakpoint.h. */
6444
6445 void
6446 print_breakpoint (breakpoint *b)
6447 {
6448 struct bp_location *dummy_loc = NULL;
6449 print_one_breakpoint (b, &dummy_loc, 0);
6450 }
6451
6452 /* Return true if this breakpoint was set by the user, false if it is
6453 internal or momentary. */
6454
6455 int
6456 user_breakpoint_p (struct breakpoint *b)
6457 {
6458 return b->number > 0;
6459 }
6460
6461 /* See breakpoint.h. */
6462
6463 int
6464 pending_breakpoint_p (struct breakpoint *b)
6465 {
6466 return b->loc == NULL;
6467 }
6468
6469 /* Print information on user settable breakpoint (watchpoint, etc)
6470 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6471 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6472 FILTER is non-NULL, call it on each breakpoint and only include the
6473 ones for which it returns non-zero. Return the total number of
6474 breakpoints listed. */
6475
6476 static int
6477 breakpoint_1 (const char *args, int allflag,
6478 int (*filter) (const struct breakpoint *))
6479 {
6480 struct breakpoint *b;
6481 struct bp_location *last_loc = NULL;
6482 int nr_printable_breakpoints;
6483 struct value_print_options opts;
6484 int print_address_bits = 0;
6485 int print_type_col_width = 14;
6486 struct ui_out *uiout = current_uiout;
6487
6488 get_user_print_options (&opts);
6489
6490 /* Compute the number of rows in the table, as well as the size
6491 required for address fields. */
6492 nr_printable_breakpoints = 0;
6493 ALL_BREAKPOINTS (b)
6494 {
6495 /* If we have a filter, only list the breakpoints it accepts. */
6496 if (filter && !filter (b))
6497 continue;
6498
6499 /* If we have an "args" string, it is a list of breakpoints to
6500 accept. Skip the others. */
6501 if (args != NULL && *args != '\0')
6502 {
6503 if (allflag && parse_and_eval_long (args) != b->number)
6504 continue;
6505 if (!allflag && !number_is_in_list (args, b->number))
6506 continue;
6507 }
6508
6509 if (allflag || user_breakpoint_p (b))
6510 {
6511 int addr_bit, type_len;
6512
6513 addr_bit = breakpoint_address_bits (b);
6514 if (addr_bit > print_address_bits)
6515 print_address_bits = addr_bit;
6516
6517 type_len = strlen (bptype_string (b->type));
6518 if (type_len > print_type_col_width)
6519 print_type_col_width = type_len;
6520
6521 nr_printable_breakpoints++;
6522 }
6523 }
6524
6525 {
6526 ui_out_emit_table table_emitter (uiout,
6527 opts.addressprint ? 6 : 5,
6528 nr_printable_breakpoints,
6529 "BreakpointTable");
6530
6531 if (nr_printable_breakpoints > 0)
6532 annotate_breakpoints_headers ();
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (0);
6535 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6536 if (nr_printable_breakpoints > 0)
6537 annotate_field (1);
6538 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6539 if (nr_printable_breakpoints > 0)
6540 annotate_field (2);
6541 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6542 if (nr_printable_breakpoints > 0)
6543 annotate_field (3);
6544 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6545 if (opts.addressprint)
6546 {
6547 if (nr_printable_breakpoints > 0)
6548 annotate_field (4);
6549 if (print_address_bits <= 32)
6550 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6551 else
6552 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6553 }
6554 if (nr_printable_breakpoints > 0)
6555 annotate_field (5);
6556 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6557 uiout->table_body ();
6558 if (nr_printable_breakpoints > 0)
6559 annotate_breakpoints_table ();
6560
6561 ALL_BREAKPOINTS (b)
6562 {
6563 QUIT;
6564 /* If we have a filter, only list the breakpoints it accepts. */
6565 if (filter && !filter (b))
6566 continue;
6567
6568 /* If we have an "args" string, it is a list of breakpoints to
6569 accept. Skip the others. */
6570
6571 if (args != NULL && *args != '\0')
6572 {
6573 if (allflag) /* maintenance info breakpoint */
6574 {
6575 if (parse_and_eval_long (args) != b->number)
6576 continue;
6577 }
6578 else /* all others */
6579 {
6580 if (!number_is_in_list (args, b->number))
6581 continue;
6582 }
6583 }
6584 /* We only print out user settable breakpoints unless the
6585 allflag is set. */
6586 if (allflag || user_breakpoint_p (b))
6587 print_one_breakpoint (b, &last_loc, allflag);
6588 }
6589 }
6590
6591 if (nr_printable_breakpoints == 0)
6592 {
6593 /* If there's a filter, let the caller decide how to report
6594 empty list. */
6595 if (!filter)
6596 {
6597 if (args == NULL || *args == '\0')
6598 uiout->message ("No breakpoints or watchpoints.\n");
6599 else
6600 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6601 args);
6602 }
6603 }
6604 else
6605 {
6606 if (last_loc && !server_command)
6607 set_next_address (last_loc->gdbarch, last_loc->address);
6608 }
6609
6610 /* FIXME? Should this be moved up so that it is only called when
6611 there have been breakpoints? */
6612 annotate_breakpoints_table_end ();
6613
6614 return nr_printable_breakpoints;
6615 }
6616
6617 /* Display the value of default-collect in a way that is generally
6618 compatible with the breakpoint list. */
6619
6620 static void
6621 default_collect_info (void)
6622 {
6623 struct ui_out *uiout = current_uiout;
6624
6625 /* If it has no value (which is frequently the case), say nothing; a
6626 message like "No default-collect." gets in user's face when it's
6627 not wanted. */
6628 if (!*default_collect)
6629 return;
6630
6631 /* The following phrase lines up nicely with per-tracepoint collect
6632 actions. */
6633 uiout->text ("default collect ");
6634 uiout->field_string ("default-collect", default_collect);
6635 uiout->text (" \n");
6636 }
6637
6638 static void
6639 info_breakpoints_command (const char *args, int from_tty)
6640 {
6641 breakpoint_1 (args, 0, NULL);
6642
6643 default_collect_info ();
6644 }
6645
6646 static void
6647 info_watchpoints_command (const char *args, int from_tty)
6648 {
6649 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6650 struct ui_out *uiout = current_uiout;
6651
6652 if (num_printed == 0)
6653 {
6654 if (args == NULL || *args == '\0')
6655 uiout->message ("No watchpoints.\n");
6656 else
6657 uiout->message ("No watchpoint matching '%s'.\n", args);
6658 }
6659 }
6660
6661 static void
6662 maintenance_info_breakpoints (const char *args, int from_tty)
6663 {
6664 breakpoint_1 (args, 1, NULL);
6665
6666 default_collect_info ();
6667 }
6668
6669 static int
6670 breakpoint_has_pc (struct breakpoint *b,
6671 struct program_space *pspace,
6672 CORE_ADDR pc, struct obj_section *section)
6673 {
6674 struct bp_location *bl = b->loc;
6675
6676 for (; bl; bl = bl->next)
6677 {
6678 if (bl->pspace == pspace
6679 && bl->address == pc
6680 && (!overlay_debugging || bl->section == section))
6681 return 1;
6682 }
6683 return 0;
6684 }
6685
6686 /* Print a message describing any user-breakpoints set at PC. This
6687 concerns with logical breakpoints, so we match program spaces, not
6688 address spaces. */
6689
6690 static void
6691 describe_other_breakpoints (struct gdbarch *gdbarch,
6692 struct program_space *pspace, CORE_ADDR pc,
6693 struct obj_section *section, int thread)
6694 {
6695 int others = 0;
6696 struct breakpoint *b;
6697
6698 ALL_BREAKPOINTS (b)
6699 others += (user_breakpoint_p (b)
6700 && breakpoint_has_pc (b, pspace, pc, section));
6701 if (others > 0)
6702 {
6703 if (others == 1)
6704 printf_filtered (_("Note: breakpoint "));
6705 else /* if (others == ???) */
6706 printf_filtered (_("Note: breakpoints "));
6707 ALL_BREAKPOINTS (b)
6708 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6709 {
6710 others--;
6711 printf_filtered ("%d", b->number);
6712 if (b->thread == -1 && thread != -1)
6713 printf_filtered (" (all threads)");
6714 else if (b->thread != -1)
6715 printf_filtered (" (thread %d)", b->thread);
6716 printf_filtered ("%s%s ",
6717 ((b->enable_state == bp_disabled
6718 || b->enable_state == bp_call_disabled)
6719 ? " (disabled)"
6720 : ""),
6721 (others > 1) ? ","
6722 : ((others == 1) ? " and" : ""));
6723 }
6724 printf_filtered (_("also set at pc "));
6725 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6726 printf_filtered (".\n");
6727 }
6728 }
6729 \f
6730
6731 /* Return true iff it is meaningful to use the address member of
6732 BPT locations. For some breakpoint types, the locations' address members
6733 are irrelevant and it makes no sense to attempt to compare them to other
6734 addresses (or use them for any other purpose either).
6735
6736 More specifically, each of the following breakpoint types will
6737 always have a zero valued location address and we don't want to mark
6738 breakpoints of any of these types to be a duplicate of an actual
6739 breakpoint location at address zero:
6740
6741 bp_watchpoint
6742 bp_catchpoint
6743
6744 */
6745
6746 static int
6747 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6748 {
6749 enum bptype type = bpt->type;
6750
6751 return (type != bp_watchpoint && type != bp_catchpoint);
6752 }
6753
6754 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6755 true if LOC1 and LOC2 represent the same watchpoint location. */
6756
6757 static int
6758 watchpoint_locations_match (struct bp_location *loc1,
6759 struct bp_location *loc2)
6760 {
6761 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6762 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6763
6764 /* Both of them must exist. */
6765 gdb_assert (w1 != NULL);
6766 gdb_assert (w2 != NULL);
6767
6768 /* If the target can evaluate the condition expression in hardware,
6769 then we we need to insert both watchpoints even if they are at
6770 the same place. Otherwise the watchpoint will only trigger when
6771 the condition of whichever watchpoint was inserted evaluates to
6772 true, not giving a chance for GDB to check the condition of the
6773 other watchpoint. */
6774 if ((w1->cond_exp
6775 && target_can_accel_watchpoint_condition (loc1->address,
6776 loc1->length,
6777 loc1->watchpoint_type,
6778 w1->cond_exp.get ()))
6779 || (w2->cond_exp
6780 && target_can_accel_watchpoint_condition (loc2->address,
6781 loc2->length,
6782 loc2->watchpoint_type,
6783 w2->cond_exp.get ())))
6784 return 0;
6785
6786 /* Note that this checks the owner's type, not the location's. In
6787 case the target does not support read watchpoints, but does
6788 support access watchpoints, we'll have bp_read_watchpoint
6789 watchpoints with hw_access locations. Those should be considered
6790 duplicates of hw_read locations. The hw_read locations will
6791 become hw_access locations later. */
6792 return (loc1->owner->type == loc2->owner->type
6793 && loc1->pspace->aspace == loc2->pspace->aspace
6794 && loc1->address == loc2->address
6795 && loc1->length == loc2->length);
6796 }
6797
6798 /* See breakpoint.h. */
6799
6800 int
6801 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6802 const address_space *aspace2, CORE_ADDR addr2)
6803 {
6804 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6805 || aspace1 == aspace2)
6806 && addr1 == addr2);
6807 }
6808
6809 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6810 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6811 matches ASPACE2. On targets that have global breakpoints, the address
6812 space doesn't really matter. */
6813
6814 static int
6815 breakpoint_address_match_range (const address_space *aspace1,
6816 CORE_ADDR addr1,
6817 int len1, const address_space *aspace2,
6818 CORE_ADDR addr2)
6819 {
6820 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6821 || aspace1 == aspace2)
6822 && addr2 >= addr1 && addr2 < addr1 + len1);
6823 }
6824
6825 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6826 a ranged breakpoint. In most targets, a match happens only if ASPACE
6827 matches the breakpoint's address space. On targets that have global
6828 breakpoints, the address space doesn't really matter. */
6829
6830 static int
6831 breakpoint_location_address_match (struct bp_location *bl,
6832 const address_space *aspace,
6833 CORE_ADDR addr)
6834 {
6835 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6836 aspace, addr)
6837 || (bl->length
6838 && breakpoint_address_match_range (bl->pspace->aspace,
6839 bl->address, bl->length,
6840 aspace, addr)));
6841 }
6842
6843 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6844 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6845 match happens only if ASPACE matches the breakpoint's address
6846 space. On targets that have global breakpoints, the address space
6847 doesn't really matter. */
6848
6849 static int
6850 breakpoint_location_address_range_overlap (struct bp_location *bl,
6851 const address_space *aspace,
6852 CORE_ADDR addr, int len)
6853 {
6854 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6855 || bl->pspace->aspace == aspace)
6856 {
6857 int bl_len = bl->length != 0 ? bl->length : 1;
6858
6859 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6860 return 1;
6861 }
6862 return 0;
6863 }
6864
6865 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6866 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6867 true, otherwise returns false. */
6868
6869 static int
6870 tracepoint_locations_match (struct bp_location *loc1,
6871 struct bp_location *loc2)
6872 {
6873 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6874 /* Since tracepoint locations are never duplicated with others', tracepoint
6875 locations at the same address of different tracepoints are regarded as
6876 different locations. */
6877 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6878 else
6879 return 0;
6880 }
6881
6882 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6883 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6884 represent the same location. */
6885
6886 static int
6887 breakpoint_locations_match (struct bp_location *loc1,
6888 struct bp_location *loc2)
6889 {
6890 int hw_point1, hw_point2;
6891
6892 /* Both of them must not be in moribund_locations. */
6893 gdb_assert (loc1->owner != NULL);
6894 gdb_assert (loc2->owner != NULL);
6895
6896 hw_point1 = is_hardware_watchpoint (loc1->owner);
6897 hw_point2 = is_hardware_watchpoint (loc2->owner);
6898
6899 if (hw_point1 != hw_point2)
6900 return 0;
6901 else if (hw_point1)
6902 return watchpoint_locations_match (loc1, loc2);
6903 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6904 return tracepoint_locations_match (loc1, loc2);
6905 else
6906 /* We compare bp_location.length in order to cover ranged breakpoints. */
6907 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6908 loc2->pspace->aspace, loc2->address)
6909 && loc1->length == loc2->length);
6910 }
6911
6912 static void
6913 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6914 int bnum, int have_bnum)
6915 {
6916 /* The longest string possibly returned by hex_string_custom
6917 is 50 chars. These must be at least that big for safety. */
6918 char astr1[64];
6919 char astr2[64];
6920
6921 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6922 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6923 if (have_bnum)
6924 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6925 bnum, astr1, astr2);
6926 else
6927 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6928 }
6929
6930 /* Adjust a breakpoint's address to account for architectural
6931 constraints on breakpoint placement. Return the adjusted address.
6932 Note: Very few targets require this kind of adjustment. For most
6933 targets, this function is simply the identity function. */
6934
6935 static CORE_ADDR
6936 adjust_breakpoint_address (struct gdbarch *gdbarch,
6937 CORE_ADDR bpaddr, enum bptype bptype)
6938 {
6939 if (bptype == bp_watchpoint
6940 || bptype == bp_hardware_watchpoint
6941 || bptype == bp_read_watchpoint
6942 || bptype == bp_access_watchpoint
6943 || bptype == bp_catchpoint)
6944 {
6945 /* Watchpoints and the various bp_catch_* eventpoints should not
6946 have their addresses modified. */
6947 return bpaddr;
6948 }
6949 else if (bptype == bp_single_step)
6950 {
6951 /* Single-step breakpoints should not have their addresses
6952 modified. If there's any architectural constrain that
6953 applies to this address, then it should have already been
6954 taken into account when the breakpoint was created in the
6955 first place. If we didn't do this, stepping through e.g.,
6956 Thumb-2 IT blocks would break. */
6957 return bpaddr;
6958 }
6959 else
6960 {
6961 CORE_ADDR adjusted_bpaddr = bpaddr;
6962
6963 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6964 {
6965 /* Some targets have architectural constraints on the placement
6966 of breakpoint instructions. Obtain the adjusted address. */
6967 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6968 }
6969
6970 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6971
6972 /* An adjusted breakpoint address can significantly alter
6973 a user's expectations. Print a warning if an adjustment
6974 is required. */
6975 if (adjusted_bpaddr != bpaddr)
6976 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6977
6978 return adjusted_bpaddr;
6979 }
6980 }
6981
6982 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6983 {
6984 bp_location *loc = this;
6985
6986 gdb_assert (ops != NULL);
6987
6988 loc->ops = ops;
6989 loc->owner = owner;
6990 loc->cond_bytecode = NULL;
6991 loc->shlib_disabled = 0;
6992 loc->enabled = 1;
6993
6994 switch (owner->type)
6995 {
6996 case bp_breakpoint:
6997 case bp_single_step:
6998 case bp_until:
6999 case bp_finish:
7000 case bp_longjmp:
7001 case bp_longjmp_resume:
7002 case bp_longjmp_call_dummy:
7003 case bp_exception:
7004 case bp_exception_resume:
7005 case bp_step_resume:
7006 case bp_hp_step_resume:
7007 case bp_watchpoint_scope:
7008 case bp_call_dummy:
7009 case bp_std_terminate:
7010 case bp_shlib_event:
7011 case bp_thread_event:
7012 case bp_overlay_event:
7013 case bp_jit_event:
7014 case bp_longjmp_master:
7015 case bp_std_terminate_master:
7016 case bp_exception_master:
7017 case bp_gnu_ifunc_resolver:
7018 case bp_gnu_ifunc_resolver_return:
7019 case bp_dprintf:
7020 loc->loc_type = bp_loc_software_breakpoint;
7021 mark_breakpoint_location_modified (loc);
7022 break;
7023 case bp_hardware_breakpoint:
7024 loc->loc_type = bp_loc_hardware_breakpoint;
7025 mark_breakpoint_location_modified (loc);
7026 break;
7027 case bp_hardware_watchpoint:
7028 case bp_read_watchpoint:
7029 case bp_access_watchpoint:
7030 loc->loc_type = bp_loc_hardware_watchpoint;
7031 break;
7032 case bp_watchpoint:
7033 case bp_catchpoint:
7034 case bp_tracepoint:
7035 case bp_fast_tracepoint:
7036 case bp_static_tracepoint:
7037 loc->loc_type = bp_loc_other;
7038 break;
7039 default:
7040 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7041 }
7042
7043 loc->refc = 1;
7044 }
7045
7046 /* Allocate a struct bp_location. */
7047
7048 static struct bp_location *
7049 allocate_bp_location (struct breakpoint *bpt)
7050 {
7051 return bpt->ops->allocate_location (bpt);
7052 }
7053
7054 static void
7055 free_bp_location (struct bp_location *loc)
7056 {
7057 loc->ops->dtor (loc);
7058 delete loc;
7059 }
7060
7061 /* Increment reference count. */
7062
7063 static void
7064 incref_bp_location (struct bp_location *bl)
7065 {
7066 ++bl->refc;
7067 }
7068
7069 /* Decrement reference count. If the reference count reaches 0,
7070 destroy the bp_location. Sets *BLP to NULL. */
7071
7072 static void
7073 decref_bp_location (struct bp_location **blp)
7074 {
7075 gdb_assert ((*blp)->refc > 0);
7076
7077 if (--(*blp)->refc == 0)
7078 free_bp_location (*blp);
7079 *blp = NULL;
7080 }
7081
7082 /* Add breakpoint B at the end of the global breakpoint chain. */
7083
7084 static breakpoint *
7085 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7086 {
7087 struct breakpoint *b1;
7088 struct breakpoint *result = b.get ();
7089
7090 /* Add this breakpoint to the end of the chain so that a list of
7091 breakpoints will come out in order of increasing numbers. */
7092
7093 b1 = breakpoint_chain;
7094 if (b1 == 0)
7095 breakpoint_chain = b.release ();
7096 else
7097 {
7098 while (b1->next)
7099 b1 = b1->next;
7100 b1->next = b.release ();
7101 }
7102
7103 return result;
7104 }
7105
7106 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7107
7108 static void
7109 init_raw_breakpoint_without_location (struct breakpoint *b,
7110 struct gdbarch *gdbarch,
7111 enum bptype bptype,
7112 const struct breakpoint_ops *ops)
7113 {
7114 gdb_assert (ops != NULL);
7115
7116 b->ops = ops;
7117 b->type = bptype;
7118 b->gdbarch = gdbarch;
7119 b->language = current_language->la_language;
7120 b->input_radix = input_radix;
7121 b->related_breakpoint = b;
7122 }
7123
7124 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7125 that has type BPTYPE and has no locations as yet. */
7126
7127 static struct breakpoint *
7128 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7129 enum bptype bptype,
7130 const struct breakpoint_ops *ops)
7131 {
7132 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7133
7134 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7135 return add_to_breakpoint_chain (std::move (b));
7136 }
7137
7138 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7139 resolutions should be made as the user specified the location explicitly
7140 enough. */
7141
7142 static void
7143 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7144 {
7145 gdb_assert (loc->owner != NULL);
7146
7147 if (loc->owner->type == bp_breakpoint
7148 || loc->owner->type == bp_hardware_breakpoint
7149 || is_tracepoint (loc->owner))
7150 {
7151 const char *function_name;
7152
7153 if (loc->msymbol != NULL
7154 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7155 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7156 && !explicit_loc)
7157 {
7158 struct breakpoint *b = loc->owner;
7159
7160 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7161
7162 if (b->type == bp_breakpoint && b->loc == loc
7163 && loc->next == NULL && b->related_breakpoint == b)
7164 {
7165 /* Create only the whole new breakpoint of this type but do not
7166 mess more complicated breakpoints with multiple locations. */
7167 b->type = bp_gnu_ifunc_resolver;
7168 /* Remember the resolver's address for use by the return
7169 breakpoint. */
7170 loc->related_address = loc->address;
7171 }
7172 }
7173 else
7174 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7175
7176 if (function_name)
7177 loc->function_name = xstrdup (function_name);
7178 }
7179 }
7180
7181 /* Attempt to determine architecture of location identified by SAL. */
7182 struct gdbarch *
7183 get_sal_arch (struct symtab_and_line sal)
7184 {
7185 if (sal.section)
7186 return get_objfile_arch (sal.section->objfile);
7187 if (sal.symtab)
7188 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7189
7190 return NULL;
7191 }
7192
7193 /* Low level routine for partially initializing a breakpoint of type
7194 BPTYPE. The newly created breakpoint's address, section, source
7195 file name, and line number are provided by SAL.
7196
7197 It is expected that the caller will complete the initialization of
7198 the newly created breakpoint struct as well as output any status
7199 information regarding the creation of a new breakpoint. */
7200
7201 static void
7202 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7203 struct symtab_and_line sal, enum bptype bptype,
7204 const struct breakpoint_ops *ops)
7205 {
7206 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7207
7208 add_location_to_breakpoint (b, &sal);
7209
7210 if (bptype != bp_catchpoint)
7211 gdb_assert (sal.pspace != NULL);
7212
7213 /* Store the program space that was used to set the breakpoint,
7214 except for ordinary breakpoints, which are independent of the
7215 program space. */
7216 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7217 b->pspace = sal.pspace;
7218 }
7219
7220 /* set_raw_breakpoint is a low level routine for allocating and
7221 partially initializing a breakpoint of type BPTYPE. The newly
7222 created breakpoint's address, section, source file name, and line
7223 number are provided by SAL. The newly created and partially
7224 initialized breakpoint is added to the breakpoint chain and
7225 is also returned as the value of this function.
7226
7227 It is expected that the caller will complete the initialization of
7228 the newly created breakpoint struct as well as output any status
7229 information regarding the creation of a new breakpoint. In
7230 particular, set_raw_breakpoint does NOT set the breakpoint
7231 number! Care should be taken to not allow an error to occur
7232 prior to completing the initialization of the breakpoint. If this
7233 should happen, a bogus breakpoint will be left on the chain. */
7234
7235 struct breakpoint *
7236 set_raw_breakpoint (struct gdbarch *gdbarch,
7237 struct symtab_and_line sal, enum bptype bptype,
7238 const struct breakpoint_ops *ops)
7239 {
7240 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7241
7242 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7243 return add_to_breakpoint_chain (std::move (b));
7244 }
7245
7246 /* Call this routine when stepping and nexting to enable a breakpoint
7247 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7248 initiated the operation. */
7249
7250 void
7251 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7252 {
7253 struct breakpoint *b, *b_tmp;
7254 int thread = tp->global_num;
7255
7256 /* To avoid having to rescan all objfile symbols at every step,
7257 we maintain a list of continually-inserted but always disabled
7258 longjmp "master" breakpoints. Here, we simply create momentary
7259 clones of those and enable them for the requested thread. */
7260 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7261 if (b->pspace == current_program_space
7262 && (b->type == bp_longjmp_master
7263 || b->type == bp_exception_master))
7264 {
7265 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7266 struct breakpoint *clone;
7267
7268 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7269 after their removal. */
7270 clone = momentary_breakpoint_from_master (b, type,
7271 &momentary_breakpoint_ops, 1);
7272 clone->thread = thread;
7273 }
7274
7275 tp->initiating_frame = frame;
7276 }
7277
7278 /* Delete all longjmp breakpoints from THREAD. */
7279 void
7280 delete_longjmp_breakpoint (int thread)
7281 {
7282 struct breakpoint *b, *b_tmp;
7283
7284 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7285 if (b->type == bp_longjmp || b->type == bp_exception)
7286 {
7287 if (b->thread == thread)
7288 delete_breakpoint (b);
7289 }
7290 }
7291
7292 void
7293 delete_longjmp_breakpoint_at_next_stop (int thread)
7294 {
7295 struct breakpoint *b, *b_tmp;
7296
7297 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7298 if (b->type == bp_longjmp || b->type == bp_exception)
7299 {
7300 if (b->thread == thread)
7301 b->disposition = disp_del_at_next_stop;
7302 }
7303 }
7304
7305 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7306 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7307 pointer to any of them. Return NULL if this system cannot place longjmp
7308 breakpoints. */
7309
7310 struct breakpoint *
7311 set_longjmp_breakpoint_for_call_dummy (void)
7312 {
7313 struct breakpoint *b, *retval = NULL;
7314
7315 ALL_BREAKPOINTS (b)
7316 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7317 {
7318 struct breakpoint *new_b;
7319
7320 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7321 &momentary_breakpoint_ops,
7322 1);
7323 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7324
7325 /* Link NEW_B into the chain of RETVAL breakpoints. */
7326
7327 gdb_assert (new_b->related_breakpoint == new_b);
7328 if (retval == NULL)
7329 retval = new_b;
7330 new_b->related_breakpoint = retval;
7331 while (retval->related_breakpoint != new_b->related_breakpoint)
7332 retval = retval->related_breakpoint;
7333 retval->related_breakpoint = new_b;
7334 }
7335
7336 return retval;
7337 }
7338
7339 /* Verify all existing dummy frames and their associated breakpoints for
7340 TP. Remove those which can no longer be found in the current frame
7341 stack.
7342
7343 You should call this function only at places where it is safe to currently
7344 unwind the whole stack. Failed stack unwind would discard live dummy
7345 frames. */
7346
7347 void
7348 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7349 {
7350 struct breakpoint *b, *b_tmp;
7351
7352 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7353 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7354 {
7355 struct breakpoint *dummy_b = b->related_breakpoint;
7356
7357 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7358 dummy_b = dummy_b->related_breakpoint;
7359 if (dummy_b->type != bp_call_dummy
7360 || frame_find_by_id (dummy_b->frame_id) != NULL)
7361 continue;
7362
7363 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7364
7365 while (b->related_breakpoint != b)
7366 {
7367 if (b_tmp == b->related_breakpoint)
7368 b_tmp = b->related_breakpoint->next;
7369 delete_breakpoint (b->related_breakpoint);
7370 }
7371 delete_breakpoint (b);
7372 }
7373 }
7374
7375 void
7376 enable_overlay_breakpoints (void)
7377 {
7378 struct breakpoint *b;
7379
7380 ALL_BREAKPOINTS (b)
7381 if (b->type == bp_overlay_event)
7382 {
7383 b->enable_state = bp_enabled;
7384 update_global_location_list (UGLL_MAY_INSERT);
7385 overlay_events_enabled = 1;
7386 }
7387 }
7388
7389 void
7390 disable_overlay_breakpoints (void)
7391 {
7392 struct breakpoint *b;
7393
7394 ALL_BREAKPOINTS (b)
7395 if (b->type == bp_overlay_event)
7396 {
7397 b->enable_state = bp_disabled;
7398 update_global_location_list (UGLL_DONT_INSERT);
7399 overlay_events_enabled = 0;
7400 }
7401 }
7402
7403 /* Set an active std::terminate breakpoint for each std::terminate
7404 master breakpoint. */
7405 void
7406 set_std_terminate_breakpoint (void)
7407 {
7408 struct breakpoint *b, *b_tmp;
7409
7410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7411 if (b->pspace == current_program_space
7412 && b->type == bp_std_terminate_master)
7413 {
7414 momentary_breakpoint_from_master (b, bp_std_terminate,
7415 &momentary_breakpoint_ops, 1);
7416 }
7417 }
7418
7419 /* Delete all the std::terminate breakpoints. */
7420 void
7421 delete_std_terminate_breakpoint (void)
7422 {
7423 struct breakpoint *b, *b_tmp;
7424
7425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7426 if (b->type == bp_std_terminate)
7427 delete_breakpoint (b);
7428 }
7429
7430 struct breakpoint *
7431 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7432 {
7433 struct breakpoint *b;
7434
7435 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7436 &internal_breakpoint_ops);
7437
7438 b->enable_state = bp_enabled;
7439 /* location has to be used or breakpoint_re_set will delete me. */
7440 b->location = new_address_location (b->loc->address, NULL, 0);
7441
7442 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7443
7444 return b;
7445 }
7446
7447 struct lang_and_radix
7448 {
7449 enum language lang;
7450 int radix;
7451 };
7452
7453 /* Create a breakpoint for JIT code registration and unregistration. */
7454
7455 struct breakpoint *
7456 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7457 {
7458 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7459 &internal_breakpoint_ops);
7460 }
7461
7462 /* Remove JIT code registration and unregistration breakpoint(s). */
7463
7464 void
7465 remove_jit_event_breakpoints (void)
7466 {
7467 struct breakpoint *b, *b_tmp;
7468
7469 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7470 if (b->type == bp_jit_event
7471 && b->loc->pspace == current_program_space)
7472 delete_breakpoint (b);
7473 }
7474
7475 void
7476 remove_solib_event_breakpoints (void)
7477 {
7478 struct breakpoint *b, *b_tmp;
7479
7480 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7481 if (b->type == bp_shlib_event
7482 && b->loc->pspace == current_program_space)
7483 delete_breakpoint (b);
7484 }
7485
7486 /* See breakpoint.h. */
7487
7488 void
7489 remove_solib_event_breakpoints_at_next_stop (void)
7490 {
7491 struct breakpoint *b, *b_tmp;
7492
7493 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7494 if (b->type == bp_shlib_event
7495 && b->loc->pspace == current_program_space)
7496 b->disposition = disp_del_at_next_stop;
7497 }
7498
7499 /* Helper for create_solib_event_breakpoint /
7500 create_and_insert_solib_event_breakpoint. Allows specifying which
7501 INSERT_MODE to pass through to update_global_location_list. */
7502
7503 static struct breakpoint *
7504 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7505 enum ugll_insert_mode insert_mode)
7506 {
7507 struct breakpoint *b;
7508
7509 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7510 &internal_breakpoint_ops);
7511 update_global_location_list_nothrow (insert_mode);
7512 return b;
7513 }
7514
7515 struct breakpoint *
7516 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7517 {
7518 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7519 }
7520
7521 /* See breakpoint.h. */
7522
7523 struct breakpoint *
7524 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7525 {
7526 struct breakpoint *b;
7527
7528 /* Explicitly tell update_global_location_list to insert
7529 locations. */
7530 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7531 if (!b->loc->inserted)
7532 {
7533 delete_breakpoint (b);
7534 return NULL;
7535 }
7536 return b;
7537 }
7538
7539 /* Disable any breakpoints that are on code in shared libraries. Only
7540 apply to enabled breakpoints, disabled ones can just stay disabled. */
7541
7542 void
7543 disable_breakpoints_in_shlibs (void)
7544 {
7545 struct bp_location *loc, **locp_tmp;
7546
7547 ALL_BP_LOCATIONS (loc, locp_tmp)
7548 {
7549 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7550 struct breakpoint *b = loc->owner;
7551
7552 /* We apply the check to all breakpoints, including disabled for
7553 those with loc->duplicate set. This is so that when breakpoint
7554 becomes enabled, or the duplicate is removed, gdb will try to
7555 insert all breakpoints. If we don't set shlib_disabled here,
7556 we'll try to insert those breakpoints and fail. */
7557 if (((b->type == bp_breakpoint)
7558 || (b->type == bp_jit_event)
7559 || (b->type == bp_hardware_breakpoint)
7560 || (is_tracepoint (b)))
7561 && loc->pspace == current_program_space
7562 && !loc->shlib_disabled
7563 && solib_name_from_address (loc->pspace, loc->address)
7564 )
7565 {
7566 loc->shlib_disabled = 1;
7567 }
7568 }
7569 }
7570
7571 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7572 notification of unloaded_shlib. Only apply to enabled breakpoints,
7573 disabled ones can just stay disabled. */
7574
7575 static void
7576 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7577 {
7578 struct bp_location *loc, **locp_tmp;
7579 int disabled_shlib_breaks = 0;
7580
7581 ALL_BP_LOCATIONS (loc, locp_tmp)
7582 {
7583 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7584 struct breakpoint *b = loc->owner;
7585
7586 if (solib->pspace == loc->pspace
7587 && !loc->shlib_disabled
7588 && (((b->type == bp_breakpoint
7589 || b->type == bp_jit_event
7590 || b->type == bp_hardware_breakpoint)
7591 && (loc->loc_type == bp_loc_hardware_breakpoint
7592 || loc->loc_type == bp_loc_software_breakpoint))
7593 || is_tracepoint (b))
7594 && solib_contains_address_p (solib, loc->address))
7595 {
7596 loc->shlib_disabled = 1;
7597 /* At this point, we cannot rely on remove_breakpoint
7598 succeeding so we must mark the breakpoint as not inserted
7599 to prevent future errors occurring in remove_breakpoints. */
7600 loc->inserted = 0;
7601
7602 /* This may cause duplicate notifications for the same breakpoint. */
7603 gdb::observers::breakpoint_modified.notify (b);
7604
7605 if (!disabled_shlib_breaks)
7606 {
7607 target_terminal::ours_for_output ();
7608 warning (_("Temporarily disabling breakpoints "
7609 "for unloaded shared library \"%s\""),
7610 solib->so_name);
7611 }
7612 disabled_shlib_breaks = 1;
7613 }
7614 }
7615 }
7616
7617 /* Disable any breakpoints and tracepoints in OBJFILE upon
7618 notification of free_objfile. Only apply to enabled breakpoints,
7619 disabled ones can just stay disabled. */
7620
7621 static void
7622 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7623 {
7624 struct breakpoint *b;
7625
7626 if (objfile == NULL)
7627 return;
7628
7629 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7630 managed by the user with add-symbol-file/remove-symbol-file.
7631 Similarly to how breakpoints in shared libraries are handled in
7632 response to "nosharedlibrary", mark breakpoints in such modules
7633 shlib_disabled so they end up uninserted on the next global
7634 location list update. Shared libraries not loaded by the user
7635 aren't handled here -- they're already handled in
7636 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7637 solib_unloaded observer. We skip objfiles that are not
7638 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7639 main objfile). */
7640 if ((objfile->flags & OBJF_SHARED) == 0
7641 || (objfile->flags & OBJF_USERLOADED) == 0)
7642 return;
7643
7644 ALL_BREAKPOINTS (b)
7645 {
7646 struct bp_location *loc;
7647 int bp_modified = 0;
7648
7649 if (!is_breakpoint (b) && !is_tracepoint (b))
7650 continue;
7651
7652 for (loc = b->loc; loc != NULL; loc = loc->next)
7653 {
7654 CORE_ADDR loc_addr = loc->address;
7655
7656 if (loc->loc_type != bp_loc_hardware_breakpoint
7657 && loc->loc_type != bp_loc_software_breakpoint)
7658 continue;
7659
7660 if (loc->shlib_disabled != 0)
7661 continue;
7662
7663 if (objfile->pspace != loc->pspace)
7664 continue;
7665
7666 if (loc->loc_type != bp_loc_hardware_breakpoint
7667 && loc->loc_type != bp_loc_software_breakpoint)
7668 continue;
7669
7670 if (is_addr_in_objfile (loc_addr, objfile))
7671 {
7672 loc->shlib_disabled = 1;
7673 /* At this point, we don't know whether the object was
7674 unmapped from the inferior or not, so leave the
7675 inserted flag alone. We'll handle failure to
7676 uninsert quietly, in case the object was indeed
7677 unmapped. */
7678
7679 mark_breakpoint_location_modified (loc);
7680
7681 bp_modified = 1;
7682 }
7683 }
7684
7685 if (bp_modified)
7686 gdb::observers::breakpoint_modified.notify (b);
7687 }
7688 }
7689
7690 /* FORK & VFORK catchpoints. */
7691
7692 /* An instance of this type is used to represent a fork or vfork
7693 catchpoint. A breakpoint is really of this type iff its ops pointer points
7694 to CATCH_FORK_BREAKPOINT_OPS. */
7695
7696 struct fork_catchpoint : public breakpoint
7697 {
7698 /* Process id of a child process whose forking triggered this
7699 catchpoint. This field is only valid immediately after this
7700 catchpoint has triggered. */
7701 ptid_t forked_inferior_pid;
7702 };
7703
7704 /* Implement the "insert" breakpoint_ops method for fork
7705 catchpoints. */
7706
7707 static int
7708 insert_catch_fork (struct bp_location *bl)
7709 {
7710 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7711 }
7712
7713 /* Implement the "remove" breakpoint_ops method for fork
7714 catchpoints. */
7715
7716 static int
7717 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7718 {
7719 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7720 }
7721
7722 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7723 catchpoints. */
7724
7725 static int
7726 breakpoint_hit_catch_fork (const struct bp_location *bl,
7727 const address_space *aspace, CORE_ADDR bp_addr,
7728 const struct target_waitstatus *ws)
7729 {
7730 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7731
7732 if (ws->kind != TARGET_WAITKIND_FORKED)
7733 return 0;
7734
7735 c->forked_inferior_pid = ws->value.related_pid;
7736 return 1;
7737 }
7738
7739 /* Implement the "print_it" breakpoint_ops method for fork
7740 catchpoints. */
7741
7742 static enum print_stop_action
7743 print_it_catch_fork (bpstat bs)
7744 {
7745 struct ui_out *uiout = current_uiout;
7746 struct breakpoint *b = bs->breakpoint_at;
7747 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7748
7749 annotate_catchpoint (b->number);
7750 maybe_print_thread_hit_breakpoint (uiout);
7751 if (b->disposition == disp_del)
7752 uiout->text ("Temporary catchpoint ");
7753 else
7754 uiout->text ("Catchpoint ");
7755 if (uiout->is_mi_like_p ())
7756 {
7757 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7758 uiout->field_string ("disp", bpdisp_text (b->disposition));
7759 }
7760 uiout->field_int ("bkptno", b->number);
7761 uiout->text (" (forked process ");
7762 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7763 uiout->text ("), ");
7764 return PRINT_SRC_AND_LOC;
7765 }
7766
7767 /* Implement the "print_one" breakpoint_ops method for fork
7768 catchpoints. */
7769
7770 static void
7771 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7772 {
7773 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7774 struct value_print_options opts;
7775 struct ui_out *uiout = current_uiout;
7776
7777 get_user_print_options (&opts);
7778
7779 /* Field 4, the address, is omitted (which makes the columns not
7780 line up too nicely with the headers, but the effect is relatively
7781 readable). */
7782 if (opts.addressprint)
7783 uiout->field_skip ("addr");
7784 annotate_field (5);
7785 uiout->text ("fork");
7786 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7787 {
7788 uiout->text (", process ");
7789 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7790 uiout->spaces (1);
7791 }
7792
7793 if (uiout->is_mi_like_p ())
7794 uiout->field_string ("catch-type", "fork");
7795 }
7796
7797 /* Implement the "print_mention" breakpoint_ops method for fork
7798 catchpoints. */
7799
7800 static void
7801 print_mention_catch_fork (struct breakpoint *b)
7802 {
7803 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7804 }
7805
7806 /* Implement the "print_recreate" breakpoint_ops method for fork
7807 catchpoints. */
7808
7809 static void
7810 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7811 {
7812 fprintf_unfiltered (fp, "catch fork");
7813 print_recreate_thread (b, fp);
7814 }
7815
7816 /* The breakpoint_ops structure to be used in fork catchpoints. */
7817
7818 static struct breakpoint_ops catch_fork_breakpoint_ops;
7819
7820 /* Implement the "insert" breakpoint_ops method for vfork
7821 catchpoints. */
7822
7823 static int
7824 insert_catch_vfork (struct bp_location *bl)
7825 {
7826 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7827 }
7828
7829 /* Implement the "remove" breakpoint_ops method for vfork
7830 catchpoints. */
7831
7832 static int
7833 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7834 {
7835 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7836 }
7837
7838 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7839 catchpoints. */
7840
7841 static int
7842 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7843 const address_space *aspace, CORE_ADDR bp_addr,
7844 const struct target_waitstatus *ws)
7845 {
7846 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7847
7848 if (ws->kind != TARGET_WAITKIND_VFORKED)
7849 return 0;
7850
7851 c->forked_inferior_pid = ws->value.related_pid;
7852 return 1;
7853 }
7854
7855 /* Implement the "print_it" breakpoint_ops method for vfork
7856 catchpoints. */
7857
7858 static enum print_stop_action
7859 print_it_catch_vfork (bpstat bs)
7860 {
7861 struct ui_out *uiout = current_uiout;
7862 struct breakpoint *b = bs->breakpoint_at;
7863 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7864
7865 annotate_catchpoint (b->number);
7866 maybe_print_thread_hit_breakpoint (uiout);
7867 if (b->disposition == disp_del)
7868 uiout->text ("Temporary catchpoint ");
7869 else
7870 uiout->text ("Catchpoint ");
7871 if (uiout->is_mi_like_p ())
7872 {
7873 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7874 uiout->field_string ("disp", bpdisp_text (b->disposition));
7875 }
7876 uiout->field_int ("bkptno", b->number);
7877 uiout->text (" (vforked process ");
7878 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7879 uiout->text ("), ");
7880 return PRINT_SRC_AND_LOC;
7881 }
7882
7883 /* Implement the "print_one" breakpoint_ops method for vfork
7884 catchpoints. */
7885
7886 static void
7887 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7888 {
7889 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7890 struct value_print_options opts;
7891 struct ui_out *uiout = current_uiout;
7892
7893 get_user_print_options (&opts);
7894 /* Field 4, the address, is omitted (which makes the columns not
7895 line up too nicely with the headers, but the effect is relatively
7896 readable). */
7897 if (opts.addressprint)
7898 uiout->field_skip ("addr");
7899 annotate_field (5);
7900 uiout->text ("vfork");
7901 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7902 {
7903 uiout->text (", process ");
7904 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7905 uiout->spaces (1);
7906 }
7907
7908 if (uiout->is_mi_like_p ())
7909 uiout->field_string ("catch-type", "vfork");
7910 }
7911
7912 /* Implement the "print_mention" breakpoint_ops method for vfork
7913 catchpoints. */
7914
7915 static void
7916 print_mention_catch_vfork (struct breakpoint *b)
7917 {
7918 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7919 }
7920
7921 /* Implement the "print_recreate" breakpoint_ops method for vfork
7922 catchpoints. */
7923
7924 static void
7925 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7926 {
7927 fprintf_unfiltered (fp, "catch vfork");
7928 print_recreate_thread (b, fp);
7929 }
7930
7931 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7932
7933 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7934
7935 /* An instance of this type is used to represent an solib catchpoint.
7936 A breakpoint is really of this type iff its ops pointer points to
7937 CATCH_SOLIB_BREAKPOINT_OPS. */
7938
7939 struct solib_catchpoint : public breakpoint
7940 {
7941 ~solib_catchpoint () override;
7942
7943 /* True for "catch load", false for "catch unload". */
7944 unsigned char is_load;
7945
7946 /* Regular expression to match, if any. COMPILED is only valid when
7947 REGEX is non-NULL. */
7948 char *regex;
7949 std::unique_ptr<compiled_regex> compiled;
7950 };
7951
7952 solib_catchpoint::~solib_catchpoint ()
7953 {
7954 xfree (this->regex);
7955 }
7956
7957 static int
7958 insert_catch_solib (struct bp_location *ignore)
7959 {
7960 return 0;
7961 }
7962
7963 static int
7964 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7965 {
7966 return 0;
7967 }
7968
7969 static int
7970 breakpoint_hit_catch_solib (const struct bp_location *bl,
7971 const address_space *aspace,
7972 CORE_ADDR bp_addr,
7973 const struct target_waitstatus *ws)
7974 {
7975 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7976 struct breakpoint *other;
7977
7978 if (ws->kind == TARGET_WAITKIND_LOADED)
7979 return 1;
7980
7981 ALL_BREAKPOINTS (other)
7982 {
7983 struct bp_location *other_bl;
7984
7985 if (other == bl->owner)
7986 continue;
7987
7988 if (other->type != bp_shlib_event)
7989 continue;
7990
7991 if (self->pspace != NULL && other->pspace != self->pspace)
7992 continue;
7993
7994 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7995 {
7996 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7997 return 1;
7998 }
7999 }
8000
8001 return 0;
8002 }
8003
8004 static void
8005 check_status_catch_solib (struct bpstats *bs)
8006 {
8007 struct solib_catchpoint *self
8008 = (struct solib_catchpoint *) bs->breakpoint_at;
8009
8010 if (self->is_load)
8011 {
8012 struct so_list *iter;
8013
8014 for (int ix = 0;
8015 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8016 ix, iter);
8017 ++ix)
8018 {
8019 if (!self->regex
8020 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8021 return;
8022 }
8023 }
8024 else
8025 {
8026 for (const std::string &iter : current_program_space->deleted_solibs)
8027 {
8028 if (!self->regex
8029 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8030 return;
8031 }
8032 }
8033
8034 bs->stop = 0;
8035 bs->print_it = print_it_noop;
8036 }
8037
8038 static enum print_stop_action
8039 print_it_catch_solib (bpstat bs)
8040 {
8041 struct breakpoint *b = bs->breakpoint_at;
8042 struct ui_out *uiout = current_uiout;
8043
8044 annotate_catchpoint (b->number);
8045 maybe_print_thread_hit_breakpoint (uiout);
8046 if (b->disposition == disp_del)
8047 uiout->text ("Temporary catchpoint ");
8048 else
8049 uiout->text ("Catchpoint ");
8050 uiout->field_int ("bkptno", b->number);
8051 uiout->text ("\n");
8052 if (uiout->is_mi_like_p ())
8053 uiout->field_string ("disp", bpdisp_text (b->disposition));
8054 print_solib_event (1);
8055 return PRINT_SRC_AND_LOC;
8056 }
8057
8058 static void
8059 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8060 {
8061 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8062 struct value_print_options opts;
8063 struct ui_out *uiout = current_uiout;
8064 char *msg;
8065
8066 get_user_print_options (&opts);
8067 /* Field 4, the address, is omitted (which makes the columns not
8068 line up too nicely with the headers, but the effect is relatively
8069 readable). */
8070 if (opts.addressprint)
8071 {
8072 annotate_field (4);
8073 uiout->field_skip ("addr");
8074 }
8075
8076 annotate_field (5);
8077 if (self->is_load)
8078 {
8079 if (self->regex)
8080 msg = xstrprintf (_("load of library matching %s"), self->regex);
8081 else
8082 msg = xstrdup (_("load of library"));
8083 }
8084 else
8085 {
8086 if (self->regex)
8087 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8088 else
8089 msg = xstrdup (_("unload of library"));
8090 }
8091 uiout->field_string ("what", msg);
8092 xfree (msg);
8093
8094 if (uiout->is_mi_like_p ())
8095 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8096 }
8097
8098 static void
8099 print_mention_catch_solib (struct breakpoint *b)
8100 {
8101 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8102
8103 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8104 self->is_load ? "load" : "unload");
8105 }
8106
8107 static void
8108 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8109 {
8110 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8111
8112 fprintf_unfiltered (fp, "%s %s",
8113 b->disposition == disp_del ? "tcatch" : "catch",
8114 self->is_load ? "load" : "unload");
8115 if (self->regex)
8116 fprintf_unfiltered (fp, " %s", self->regex);
8117 fprintf_unfiltered (fp, "\n");
8118 }
8119
8120 static struct breakpoint_ops catch_solib_breakpoint_ops;
8121
8122 /* Shared helper function (MI and CLI) for creating and installing
8123 a shared object event catchpoint. If IS_LOAD is non-zero then
8124 the events to be caught are load events, otherwise they are
8125 unload events. If IS_TEMP is non-zero the catchpoint is a
8126 temporary one. If ENABLED is non-zero the catchpoint is
8127 created in an enabled state. */
8128
8129 void
8130 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8131 {
8132 struct gdbarch *gdbarch = get_current_arch ();
8133
8134 if (!arg)
8135 arg = "";
8136 arg = skip_spaces (arg);
8137
8138 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8139
8140 if (*arg != '\0')
8141 {
8142 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8143 _("Invalid regexp")));
8144 c->regex = xstrdup (arg);
8145 }
8146
8147 c->is_load = is_load;
8148 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8149 &catch_solib_breakpoint_ops);
8150
8151 c->enable_state = enabled ? bp_enabled : bp_disabled;
8152
8153 install_breakpoint (0, std::move (c), 1);
8154 }
8155
8156 /* A helper function that does all the work for "catch load" and
8157 "catch unload". */
8158
8159 static void
8160 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8161 struct cmd_list_element *command)
8162 {
8163 int tempflag;
8164 const int enabled = 1;
8165
8166 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8167
8168 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8169 }
8170
8171 static void
8172 catch_load_command_1 (const char *arg, int from_tty,
8173 struct cmd_list_element *command)
8174 {
8175 catch_load_or_unload (arg, from_tty, 1, command);
8176 }
8177
8178 static void
8179 catch_unload_command_1 (const char *arg, int from_tty,
8180 struct cmd_list_element *command)
8181 {
8182 catch_load_or_unload (arg, from_tty, 0, command);
8183 }
8184
8185 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8186 is non-zero, then make the breakpoint temporary. If COND_STRING is
8187 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8188 the breakpoint_ops structure associated to the catchpoint. */
8189
8190 void
8191 init_catchpoint (struct breakpoint *b,
8192 struct gdbarch *gdbarch, int tempflag,
8193 const char *cond_string,
8194 const struct breakpoint_ops *ops)
8195 {
8196 symtab_and_line sal;
8197 sal.pspace = current_program_space;
8198
8199 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8200
8201 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8202 b->disposition = tempflag ? disp_del : disp_donttouch;
8203 }
8204
8205 void
8206 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8207 {
8208 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8209 set_breakpoint_number (internal, b);
8210 if (is_tracepoint (b))
8211 set_tracepoint_count (breakpoint_count);
8212 if (!internal)
8213 mention (b);
8214 gdb::observers::breakpoint_created.notify (b);
8215
8216 if (update_gll)
8217 update_global_location_list (UGLL_MAY_INSERT);
8218 }
8219
8220 static void
8221 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8222 int tempflag, const char *cond_string,
8223 const struct breakpoint_ops *ops)
8224 {
8225 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8226
8227 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8228
8229 c->forked_inferior_pid = null_ptid;
8230
8231 install_breakpoint (0, std::move (c), 1);
8232 }
8233
8234 /* Exec catchpoints. */
8235
8236 /* An instance of this type is used to represent an exec catchpoint.
8237 A breakpoint is really of this type iff its ops pointer points to
8238 CATCH_EXEC_BREAKPOINT_OPS. */
8239
8240 struct exec_catchpoint : public breakpoint
8241 {
8242 ~exec_catchpoint () override;
8243
8244 /* Filename of a program whose exec triggered this catchpoint.
8245 This field is only valid immediately after this catchpoint has
8246 triggered. */
8247 char *exec_pathname;
8248 };
8249
8250 /* Exec catchpoint destructor. */
8251
8252 exec_catchpoint::~exec_catchpoint ()
8253 {
8254 xfree (this->exec_pathname);
8255 }
8256
8257 static int
8258 insert_catch_exec (struct bp_location *bl)
8259 {
8260 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8261 }
8262
8263 static int
8264 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8265 {
8266 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8267 }
8268
8269 static int
8270 breakpoint_hit_catch_exec (const struct bp_location *bl,
8271 const address_space *aspace, CORE_ADDR bp_addr,
8272 const struct target_waitstatus *ws)
8273 {
8274 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8275
8276 if (ws->kind != TARGET_WAITKIND_EXECD)
8277 return 0;
8278
8279 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8280 return 1;
8281 }
8282
8283 static enum print_stop_action
8284 print_it_catch_exec (bpstat bs)
8285 {
8286 struct ui_out *uiout = current_uiout;
8287 struct breakpoint *b = bs->breakpoint_at;
8288 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8289
8290 annotate_catchpoint (b->number);
8291 maybe_print_thread_hit_breakpoint (uiout);
8292 if (b->disposition == disp_del)
8293 uiout->text ("Temporary catchpoint ");
8294 else
8295 uiout->text ("Catchpoint ");
8296 if (uiout->is_mi_like_p ())
8297 {
8298 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8299 uiout->field_string ("disp", bpdisp_text (b->disposition));
8300 }
8301 uiout->field_int ("bkptno", b->number);
8302 uiout->text (" (exec'd ");
8303 uiout->field_string ("new-exec", c->exec_pathname);
8304 uiout->text ("), ");
8305
8306 return PRINT_SRC_AND_LOC;
8307 }
8308
8309 static void
8310 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8311 {
8312 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8313 struct value_print_options opts;
8314 struct ui_out *uiout = current_uiout;
8315
8316 get_user_print_options (&opts);
8317
8318 /* Field 4, the address, is omitted (which makes the columns
8319 not line up too nicely with the headers, but the effect
8320 is relatively readable). */
8321 if (opts.addressprint)
8322 uiout->field_skip ("addr");
8323 annotate_field (5);
8324 uiout->text ("exec");
8325 if (c->exec_pathname != NULL)
8326 {
8327 uiout->text (", program \"");
8328 uiout->field_string ("what", c->exec_pathname);
8329 uiout->text ("\" ");
8330 }
8331
8332 if (uiout->is_mi_like_p ())
8333 uiout->field_string ("catch-type", "exec");
8334 }
8335
8336 static void
8337 print_mention_catch_exec (struct breakpoint *b)
8338 {
8339 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8340 }
8341
8342 /* Implement the "print_recreate" breakpoint_ops method for exec
8343 catchpoints. */
8344
8345 static void
8346 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8347 {
8348 fprintf_unfiltered (fp, "catch exec");
8349 print_recreate_thread (b, fp);
8350 }
8351
8352 static struct breakpoint_ops catch_exec_breakpoint_ops;
8353
8354 static int
8355 hw_breakpoint_used_count (void)
8356 {
8357 int i = 0;
8358 struct breakpoint *b;
8359 struct bp_location *bl;
8360
8361 ALL_BREAKPOINTS (b)
8362 {
8363 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8364 for (bl = b->loc; bl; bl = bl->next)
8365 {
8366 /* Special types of hardware breakpoints may use more than
8367 one register. */
8368 i += b->ops->resources_needed (bl);
8369 }
8370 }
8371
8372 return i;
8373 }
8374
8375 /* Returns the resources B would use if it were a hardware
8376 watchpoint. */
8377
8378 static int
8379 hw_watchpoint_use_count (struct breakpoint *b)
8380 {
8381 int i = 0;
8382 struct bp_location *bl;
8383
8384 if (!breakpoint_enabled (b))
8385 return 0;
8386
8387 for (bl = b->loc; bl; bl = bl->next)
8388 {
8389 /* Special types of hardware watchpoints may use more than
8390 one register. */
8391 i += b->ops->resources_needed (bl);
8392 }
8393
8394 return i;
8395 }
8396
8397 /* Returns the sum the used resources of all hardware watchpoints of
8398 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8399 the sum of the used resources of all hardware watchpoints of other
8400 types _not_ TYPE. */
8401
8402 static int
8403 hw_watchpoint_used_count_others (struct breakpoint *except,
8404 enum bptype type, int *other_type_used)
8405 {
8406 int i = 0;
8407 struct breakpoint *b;
8408
8409 *other_type_used = 0;
8410 ALL_BREAKPOINTS (b)
8411 {
8412 if (b == except)
8413 continue;
8414 if (!breakpoint_enabled (b))
8415 continue;
8416
8417 if (b->type == type)
8418 i += hw_watchpoint_use_count (b);
8419 else if (is_hardware_watchpoint (b))
8420 *other_type_used = 1;
8421 }
8422
8423 return i;
8424 }
8425
8426 void
8427 disable_watchpoints_before_interactive_call_start (void)
8428 {
8429 struct breakpoint *b;
8430
8431 ALL_BREAKPOINTS (b)
8432 {
8433 if (is_watchpoint (b) && breakpoint_enabled (b))
8434 {
8435 b->enable_state = bp_call_disabled;
8436 update_global_location_list (UGLL_DONT_INSERT);
8437 }
8438 }
8439 }
8440
8441 void
8442 enable_watchpoints_after_interactive_call_stop (void)
8443 {
8444 struct breakpoint *b;
8445
8446 ALL_BREAKPOINTS (b)
8447 {
8448 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8449 {
8450 b->enable_state = bp_enabled;
8451 update_global_location_list (UGLL_MAY_INSERT);
8452 }
8453 }
8454 }
8455
8456 void
8457 disable_breakpoints_before_startup (void)
8458 {
8459 current_program_space->executing_startup = 1;
8460 update_global_location_list (UGLL_DONT_INSERT);
8461 }
8462
8463 void
8464 enable_breakpoints_after_startup (void)
8465 {
8466 current_program_space->executing_startup = 0;
8467 breakpoint_re_set ();
8468 }
8469
8470 /* Create a new single-step breakpoint for thread THREAD, with no
8471 locations. */
8472
8473 static struct breakpoint *
8474 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8475 {
8476 std::unique_ptr<breakpoint> b (new breakpoint ());
8477
8478 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8479 &momentary_breakpoint_ops);
8480
8481 b->disposition = disp_donttouch;
8482 b->frame_id = null_frame_id;
8483
8484 b->thread = thread;
8485 gdb_assert (b->thread != 0);
8486
8487 return add_to_breakpoint_chain (std::move (b));
8488 }
8489
8490 /* Set a momentary breakpoint of type TYPE at address specified by
8491 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8492 frame. */
8493
8494 breakpoint_up
8495 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8496 struct frame_id frame_id, enum bptype type)
8497 {
8498 struct breakpoint *b;
8499
8500 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8501 tail-called one. */
8502 gdb_assert (!frame_id_artificial_p (frame_id));
8503
8504 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8505 b->enable_state = bp_enabled;
8506 b->disposition = disp_donttouch;
8507 b->frame_id = frame_id;
8508
8509 /* If we're debugging a multi-threaded program, then we want
8510 momentary breakpoints to be active in only a single thread of
8511 control. */
8512 if (in_thread_list (inferior_ptid))
8513 b->thread = ptid_to_global_thread_id (inferior_ptid);
8514
8515 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8516
8517 return breakpoint_up (b);
8518 }
8519
8520 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8521 The new breakpoint will have type TYPE, use OPS as its
8522 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8523
8524 static struct breakpoint *
8525 momentary_breakpoint_from_master (struct breakpoint *orig,
8526 enum bptype type,
8527 const struct breakpoint_ops *ops,
8528 int loc_enabled)
8529 {
8530 struct breakpoint *copy;
8531
8532 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8533 copy->loc = allocate_bp_location (copy);
8534 set_breakpoint_location_function (copy->loc, 1);
8535
8536 copy->loc->gdbarch = orig->loc->gdbarch;
8537 copy->loc->requested_address = orig->loc->requested_address;
8538 copy->loc->address = orig->loc->address;
8539 copy->loc->section = orig->loc->section;
8540 copy->loc->pspace = orig->loc->pspace;
8541 copy->loc->probe = orig->loc->probe;
8542 copy->loc->line_number = orig->loc->line_number;
8543 copy->loc->symtab = orig->loc->symtab;
8544 copy->loc->enabled = loc_enabled;
8545 copy->frame_id = orig->frame_id;
8546 copy->thread = orig->thread;
8547 copy->pspace = orig->pspace;
8548
8549 copy->enable_state = bp_enabled;
8550 copy->disposition = disp_donttouch;
8551 copy->number = internal_breakpoint_number--;
8552
8553 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8554 return copy;
8555 }
8556
8557 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8558 ORIG is NULL. */
8559
8560 struct breakpoint *
8561 clone_momentary_breakpoint (struct breakpoint *orig)
8562 {
8563 /* If there's nothing to clone, then return nothing. */
8564 if (orig == NULL)
8565 return NULL;
8566
8567 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8568 }
8569
8570 breakpoint_up
8571 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8572 enum bptype type)
8573 {
8574 struct symtab_and_line sal;
8575
8576 sal = find_pc_line (pc, 0);
8577 sal.pc = pc;
8578 sal.section = find_pc_overlay (pc);
8579 sal.explicit_pc = 1;
8580
8581 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8582 }
8583 \f
8584
8585 /* Tell the user we have just set a breakpoint B. */
8586
8587 static void
8588 mention (struct breakpoint *b)
8589 {
8590 b->ops->print_mention (b);
8591 current_uiout->text ("\n");
8592 }
8593 \f
8594
8595 static int bp_loc_is_permanent (struct bp_location *loc);
8596
8597 static struct bp_location *
8598 add_location_to_breakpoint (struct breakpoint *b,
8599 const struct symtab_and_line *sal)
8600 {
8601 struct bp_location *loc, **tmp;
8602 CORE_ADDR adjusted_address;
8603 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8604
8605 if (loc_gdbarch == NULL)
8606 loc_gdbarch = b->gdbarch;
8607
8608 /* Adjust the breakpoint's address prior to allocating a location.
8609 Once we call allocate_bp_location(), that mostly uninitialized
8610 location will be placed on the location chain. Adjustment of the
8611 breakpoint may cause target_read_memory() to be called and we do
8612 not want its scan of the location chain to find a breakpoint and
8613 location that's only been partially initialized. */
8614 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8615 sal->pc, b->type);
8616
8617 /* Sort the locations by their ADDRESS. */
8618 loc = allocate_bp_location (b);
8619 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8620 tmp = &((*tmp)->next))
8621 ;
8622 loc->next = *tmp;
8623 *tmp = loc;
8624
8625 loc->requested_address = sal->pc;
8626 loc->address = adjusted_address;
8627 loc->pspace = sal->pspace;
8628 loc->probe.prob = sal->prob;
8629 loc->probe.objfile = sal->objfile;
8630 gdb_assert (loc->pspace != NULL);
8631 loc->section = sal->section;
8632 loc->gdbarch = loc_gdbarch;
8633 loc->line_number = sal->line;
8634 loc->symtab = sal->symtab;
8635 loc->symbol = sal->symbol;
8636 loc->msymbol = sal->msymbol;
8637 loc->objfile = sal->objfile;
8638
8639 set_breakpoint_location_function (loc,
8640 sal->explicit_pc || sal->explicit_line);
8641
8642 /* While by definition, permanent breakpoints are already present in the
8643 code, we don't mark the location as inserted. Normally one would expect
8644 that GDB could rely on that breakpoint instruction to stop the program,
8645 thus removing the need to insert its own breakpoint, except that executing
8646 the breakpoint instruction can kill the target instead of reporting a
8647 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8648 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8649 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8650 breakpoint be inserted normally results in QEMU knowing about the GDB
8651 breakpoint, and thus trap before the breakpoint instruction is executed.
8652 (If GDB later needs to continue execution past the permanent breakpoint,
8653 it manually increments the PC, thus avoiding executing the breakpoint
8654 instruction.) */
8655 if (bp_loc_is_permanent (loc))
8656 loc->permanent = 1;
8657
8658 return loc;
8659 }
8660 \f
8661
8662 /* See breakpoint.h. */
8663
8664 int
8665 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8666 {
8667 int len;
8668 CORE_ADDR addr;
8669 const gdb_byte *bpoint;
8670 gdb_byte *target_mem;
8671
8672 addr = address;
8673 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8674
8675 /* Software breakpoints unsupported? */
8676 if (bpoint == NULL)
8677 return 0;
8678
8679 target_mem = (gdb_byte *) alloca (len);
8680
8681 /* Enable the automatic memory restoration from breakpoints while
8682 we read the memory. Otherwise we could say about our temporary
8683 breakpoints they are permanent. */
8684 scoped_restore restore_memory
8685 = make_scoped_restore_show_memory_breakpoints (0);
8686
8687 if (target_read_memory (address, target_mem, len) == 0
8688 && memcmp (target_mem, bpoint, len) == 0)
8689 return 1;
8690
8691 return 0;
8692 }
8693
8694 /* Return 1 if LOC is pointing to a permanent breakpoint,
8695 return 0 otherwise. */
8696
8697 static int
8698 bp_loc_is_permanent (struct bp_location *loc)
8699 {
8700 gdb_assert (loc != NULL);
8701
8702 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8703 attempt to read from the addresses the locations of these breakpoint types
8704 point to. program_breakpoint_here_p, below, will attempt to read
8705 memory. */
8706 if (!breakpoint_address_is_meaningful (loc->owner))
8707 return 0;
8708
8709 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8710 switch_to_program_space_and_thread (loc->pspace);
8711 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8712 }
8713
8714 /* Build a command list for the dprintf corresponding to the current
8715 settings of the dprintf style options. */
8716
8717 static void
8718 update_dprintf_command_list (struct breakpoint *b)
8719 {
8720 char *dprintf_args = b->extra_string;
8721 char *printf_line = NULL;
8722
8723 if (!dprintf_args)
8724 return;
8725
8726 dprintf_args = skip_spaces (dprintf_args);
8727
8728 /* Allow a comma, as it may have terminated a location, but don't
8729 insist on it. */
8730 if (*dprintf_args == ',')
8731 ++dprintf_args;
8732 dprintf_args = skip_spaces (dprintf_args);
8733
8734 if (*dprintf_args != '"')
8735 error (_("Bad format string, missing '\"'."));
8736
8737 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8738 printf_line = xstrprintf ("printf %s", dprintf_args);
8739 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8740 {
8741 if (!dprintf_function)
8742 error (_("No function supplied for dprintf call"));
8743
8744 if (dprintf_channel && strlen (dprintf_channel) > 0)
8745 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8746 dprintf_function,
8747 dprintf_channel,
8748 dprintf_args);
8749 else
8750 printf_line = xstrprintf ("call (void) %s (%s)",
8751 dprintf_function,
8752 dprintf_args);
8753 }
8754 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8755 {
8756 if (target_can_run_breakpoint_commands ())
8757 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8758 else
8759 {
8760 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8761 printf_line = xstrprintf ("printf %s", dprintf_args);
8762 }
8763 }
8764 else
8765 internal_error (__FILE__, __LINE__,
8766 _("Invalid dprintf style."));
8767
8768 gdb_assert (printf_line != NULL);
8769
8770 /* Manufacture a printf sequence. */
8771 struct command_line *printf_cmd_line
8772 = new struct command_line (simple_control, printf_line);
8773 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8774 command_lines_deleter ()));
8775 }
8776
8777 /* Update all dprintf commands, making their command lists reflect
8778 current style settings. */
8779
8780 static void
8781 update_dprintf_commands (const char *args, int from_tty,
8782 struct cmd_list_element *c)
8783 {
8784 struct breakpoint *b;
8785
8786 ALL_BREAKPOINTS (b)
8787 {
8788 if (b->type == bp_dprintf)
8789 update_dprintf_command_list (b);
8790 }
8791 }
8792
8793 /* Create a breakpoint with SAL as location. Use LOCATION
8794 as a description of the location, and COND_STRING
8795 as condition expression. If LOCATION is NULL then create an
8796 "address location" from the address in the SAL. */
8797
8798 static void
8799 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8800 gdb::array_view<const symtab_and_line> sals,
8801 event_location_up &&location,
8802 gdb::unique_xmalloc_ptr<char> filter,
8803 gdb::unique_xmalloc_ptr<char> cond_string,
8804 gdb::unique_xmalloc_ptr<char> extra_string,
8805 enum bptype type, enum bpdisp disposition,
8806 int thread, int task, int ignore_count,
8807 const struct breakpoint_ops *ops, int from_tty,
8808 int enabled, int internal, unsigned flags,
8809 int display_canonical)
8810 {
8811 int i;
8812
8813 if (type == bp_hardware_breakpoint)
8814 {
8815 int target_resources_ok;
8816
8817 i = hw_breakpoint_used_count ();
8818 target_resources_ok =
8819 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8820 i + 1, 0);
8821 if (target_resources_ok == 0)
8822 error (_("No hardware breakpoint support in the target."));
8823 else if (target_resources_ok < 0)
8824 error (_("Hardware breakpoints used exceeds limit."));
8825 }
8826
8827 gdb_assert (!sals.empty ());
8828
8829 for (const auto &sal : sals)
8830 {
8831 struct bp_location *loc;
8832
8833 if (from_tty)
8834 {
8835 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8836 if (!loc_gdbarch)
8837 loc_gdbarch = gdbarch;
8838
8839 describe_other_breakpoints (loc_gdbarch,
8840 sal.pspace, sal.pc, sal.section, thread);
8841 }
8842
8843 if (&sal == &sals[0])
8844 {
8845 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8846 b->thread = thread;
8847 b->task = task;
8848
8849 b->cond_string = cond_string.release ();
8850 b->extra_string = extra_string.release ();
8851 b->ignore_count = ignore_count;
8852 b->enable_state = enabled ? bp_enabled : bp_disabled;
8853 b->disposition = disposition;
8854
8855 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8856 b->loc->inserted = 1;
8857
8858 if (type == bp_static_tracepoint)
8859 {
8860 struct tracepoint *t = (struct tracepoint *) b;
8861 struct static_tracepoint_marker marker;
8862
8863 if (strace_marker_p (b))
8864 {
8865 /* We already know the marker exists, otherwise, we
8866 wouldn't see a sal for it. */
8867 const char *p
8868 = &event_location_to_string (b->location.get ())[3];
8869 const char *endp;
8870
8871 p = skip_spaces (p);
8872
8873 endp = skip_to_space (p);
8874
8875 t->static_trace_marker_id.assign (p, endp - p);
8876
8877 printf_filtered (_("Probed static tracepoint "
8878 "marker \"%s\"\n"),
8879 t->static_trace_marker_id.c_str ());
8880 }
8881 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8882 {
8883 t->static_trace_marker_id = std::move (marker.str_id);
8884
8885 printf_filtered (_("Probed static tracepoint "
8886 "marker \"%s\"\n"),
8887 t->static_trace_marker_id.c_str ());
8888 }
8889 else
8890 warning (_("Couldn't determine the static "
8891 "tracepoint marker to probe"));
8892 }
8893
8894 loc = b->loc;
8895 }
8896 else
8897 {
8898 loc = add_location_to_breakpoint (b, &sal);
8899 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8900 loc->inserted = 1;
8901 }
8902
8903 if (b->cond_string)
8904 {
8905 const char *arg = b->cond_string;
8906
8907 loc->cond = parse_exp_1 (&arg, loc->address,
8908 block_for_pc (loc->address), 0);
8909 if (*arg)
8910 error (_("Garbage '%s' follows condition"), arg);
8911 }
8912
8913 /* Dynamic printf requires and uses additional arguments on the
8914 command line, otherwise it's an error. */
8915 if (type == bp_dprintf)
8916 {
8917 if (b->extra_string)
8918 update_dprintf_command_list (b);
8919 else
8920 error (_("Format string required"));
8921 }
8922 else if (b->extra_string)
8923 error (_("Garbage '%s' at end of command"), b->extra_string);
8924 }
8925
8926 b->display_canonical = display_canonical;
8927 if (location != NULL)
8928 b->location = std::move (location);
8929 else
8930 b->location = new_address_location (b->loc->address, NULL, 0);
8931 b->filter = filter.release ();
8932 }
8933
8934 static void
8935 create_breakpoint_sal (struct gdbarch *gdbarch,
8936 gdb::array_view<const symtab_and_line> sals,
8937 event_location_up &&location,
8938 gdb::unique_xmalloc_ptr<char> filter,
8939 gdb::unique_xmalloc_ptr<char> cond_string,
8940 gdb::unique_xmalloc_ptr<char> extra_string,
8941 enum bptype type, enum bpdisp disposition,
8942 int thread, int task, int ignore_count,
8943 const struct breakpoint_ops *ops, int from_tty,
8944 int enabled, int internal, unsigned flags,
8945 int display_canonical)
8946 {
8947 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8948
8949 init_breakpoint_sal (b.get (), gdbarch,
8950 sals, std::move (location),
8951 std::move (filter),
8952 std::move (cond_string),
8953 std::move (extra_string),
8954 type, disposition,
8955 thread, task, ignore_count,
8956 ops, from_tty,
8957 enabled, internal, flags,
8958 display_canonical);
8959
8960 install_breakpoint (internal, std::move (b), 0);
8961 }
8962
8963 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8964 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8965 value. COND_STRING, if not NULL, specified the condition to be
8966 used for all breakpoints. Essentially the only case where
8967 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8968 function. In that case, it's still not possible to specify
8969 separate conditions for different overloaded functions, so
8970 we take just a single condition string.
8971
8972 NOTE: If the function succeeds, the caller is expected to cleanup
8973 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8974 array contents). If the function fails (error() is called), the
8975 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8976 COND and SALS arrays and each of those arrays contents. */
8977
8978 static void
8979 create_breakpoints_sal (struct gdbarch *gdbarch,
8980 struct linespec_result *canonical,
8981 gdb::unique_xmalloc_ptr<char> cond_string,
8982 gdb::unique_xmalloc_ptr<char> extra_string,
8983 enum bptype type, enum bpdisp disposition,
8984 int thread, int task, int ignore_count,
8985 const struct breakpoint_ops *ops, int from_tty,
8986 int enabled, int internal, unsigned flags)
8987 {
8988 if (canonical->pre_expanded)
8989 gdb_assert (canonical->lsals.size () == 1);
8990
8991 for (const auto &lsal : canonical->lsals)
8992 {
8993 /* Note that 'location' can be NULL in the case of a plain
8994 'break', without arguments. */
8995 event_location_up location
8996 = (canonical->location != NULL
8997 ? copy_event_location (canonical->location.get ()) : NULL);
8998 gdb::unique_xmalloc_ptr<char> filter_string
8999 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9000
9001 create_breakpoint_sal (gdbarch, lsal.sals,
9002 std::move (location),
9003 std::move (filter_string),
9004 std::move (cond_string),
9005 std::move (extra_string),
9006 type, disposition,
9007 thread, task, ignore_count, ops,
9008 from_tty, enabled, internal, flags,
9009 canonical->special_display);
9010 }
9011 }
9012
9013 /* Parse LOCATION which is assumed to be a SAL specification possibly
9014 followed by conditionals. On return, SALS contains an array of SAL
9015 addresses found. LOCATION points to the end of the SAL (for
9016 linespec locations).
9017
9018 The array and the line spec strings are allocated on the heap, it is
9019 the caller's responsibility to free them. */
9020
9021 static void
9022 parse_breakpoint_sals (const struct event_location *location,
9023 struct linespec_result *canonical)
9024 {
9025 struct symtab_and_line cursal;
9026
9027 if (event_location_type (location) == LINESPEC_LOCATION)
9028 {
9029 const char *spec = get_linespec_location (location)->spec_string;
9030
9031 if (spec == NULL)
9032 {
9033 /* The last displayed codepoint, if it's valid, is our default
9034 breakpoint address. */
9035 if (last_displayed_sal_is_valid ())
9036 {
9037 /* Set sal's pspace, pc, symtab, and line to the values
9038 corresponding to the last call to print_frame_info.
9039 Be sure to reinitialize LINE with NOTCURRENT == 0
9040 as the breakpoint line number is inappropriate otherwise.
9041 find_pc_line would adjust PC, re-set it back. */
9042 symtab_and_line sal = get_last_displayed_sal ();
9043 CORE_ADDR pc = sal.pc;
9044
9045 sal = find_pc_line (pc, 0);
9046
9047 /* "break" without arguments is equivalent to "break *PC"
9048 where PC is the last displayed codepoint's address. So
9049 make sure to set sal.explicit_pc to prevent GDB from
9050 trying to expand the list of sals to include all other
9051 instances with the same symtab and line. */
9052 sal.pc = pc;
9053 sal.explicit_pc = 1;
9054
9055 struct linespec_sals lsal;
9056 lsal.sals = {sal};
9057 lsal.canonical = NULL;
9058
9059 canonical->lsals.push_back (std::move (lsal));
9060 return;
9061 }
9062 else
9063 error (_("No default breakpoint address now."));
9064 }
9065 }
9066
9067 /* Force almost all breakpoints to be in terms of the
9068 current_source_symtab (which is decode_line_1's default).
9069 This should produce the results we want almost all of the
9070 time while leaving default_breakpoint_* alone.
9071
9072 ObjC: However, don't match an Objective-C method name which
9073 may have a '+' or '-' succeeded by a '['. */
9074 cursal = get_current_source_symtab_and_line ();
9075 if (last_displayed_sal_is_valid ())
9076 {
9077 const char *spec = NULL;
9078
9079 if (event_location_type (location) == LINESPEC_LOCATION)
9080 spec = get_linespec_location (location)->spec_string;
9081
9082 if (!cursal.symtab
9083 || (spec != NULL
9084 && strchr ("+-", spec[0]) != NULL
9085 && spec[1] != '['))
9086 {
9087 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9088 get_last_displayed_symtab (),
9089 get_last_displayed_line (),
9090 canonical, NULL, NULL);
9091 return;
9092 }
9093 }
9094
9095 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9096 cursal.symtab, cursal.line, canonical, NULL, NULL);
9097 }
9098
9099
9100 /* Convert each SAL into a real PC. Verify that the PC can be
9101 inserted as a breakpoint. If it can't throw an error. */
9102
9103 static void
9104 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9105 {
9106 for (auto &sal : sals)
9107 resolve_sal_pc (&sal);
9108 }
9109
9110 /* Fast tracepoints may have restrictions on valid locations. For
9111 instance, a fast tracepoint using a jump instead of a trap will
9112 likely have to overwrite more bytes than a trap would, and so can
9113 only be placed where the instruction is longer than the jump, or a
9114 multi-instruction sequence does not have a jump into the middle of
9115 it, etc. */
9116
9117 static void
9118 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9119 gdb::array_view<const symtab_and_line> sals)
9120 {
9121 for (const auto &sal : sals)
9122 {
9123 struct gdbarch *sarch;
9124
9125 sarch = get_sal_arch (sal);
9126 /* We fall back to GDBARCH if there is no architecture
9127 associated with SAL. */
9128 if (sarch == NULL)
9129 sarch = gdbarch;
9130 std::string msg;
9131 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9132 error (_("May not have a fast tracepoint at %s%s"),
9133 paddress (sarch, sal.pc), msg.c_str ());
9134 }
9135 }
9136
9137 /* Given TOK, a string specification of condition and thread, as
9138 accepted by the 'break' command, extract the condition
9139 string and thread number and set *COND_STRING and *THREAD.
9140 PC identifies the context at which the condition should be parsed.
9141 If no condition is found, *COND_STRING is set to NULL.
9142 If no thread is found, *THREAD is set to -1. */
9143
9144 static void
9145 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9146 char **cond_string, int *thread, int *task,
9147 char **rest)
9148 {
9149 *cond_string = NULL;
9150 *thread = -1;
9151 *task = 0;
9152 *rest = NULL;
9153
9154 while (tok && *tok)
9155 {
9156 const char *end_tok;
9157 int toklen;
9158 const char *cond_start = NULL;
9159 const char *cond_end = NULL;
9160
9161 tok = skip_spaces (tok);
9162
9163 if ((*tok == '"' || *tok == ',') && rest)
9164 {
9165 *rest = savestring (tok, strlen (tok));
9166 return;
9167 }
9168
9169 end_tok = skip_to_space (tok);
9170
9171 toklen = end_tok - tok;
9172
9173 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9174 {
9175 tok = cond_start = end_tok + 1;
9176 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9177 cond_end = tok;
9178 *cond_string = savestring (cond_start, cond_end - cond_start);
9179 }
9180 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9181 {
9182 const char *tmptok;
9183 struct thread_info *thr;
9184
9185 tok = end_tok + 1;
9186 thr = parse_thread_id (tok, &tmptok);
9187 if (tok == tmptok)
9188 error (_("Junk after thread keyword."));
9189 *thread = thr->global_num;
9190 tok = tmptok;
9191 }
9192 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9193 {
9194 char *tmptok;
9195
9196 tok = end_tok + 1;
9197 *task = strtol (tok, &tmptok, 0);
9198 if (tok == tmptok)
9199 error (_("Junk after task keyword."));
9200 if (!valid_task_id (*task))
9201 error (_("Unknown task %d."), *task);
9202 tok = tmptok;
9203 }
9204 else if (rest)
9205 {
9206 *rest = savestring (tok, strlen (tok));
9207 return;
9208 }
9209 else
9210 error (_("Junk at end of arguments."));
9211 }
9212 }
9213
9214 /* Decode a static tracepoint marker spec. */
9215
9216 static std::vector<symtab_and_line>
9217 decode_static_tracepoint_spec (const char **arg_p)
9218 {
9219 const char *p = &(*arg_p)[3];
9220 const char *endp;
9221
9222 p = skip_spaces (p);
9223
9224 endp = skip_to_space (p);
9225
9226 std::string marker_str (p, endp - p);
9227
9228 std::vector<static_tracepoint_marker> markers
9229 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9230 if (markers.empty ())
9231 error (_("No known static tracepoint marker named %s"),
9232 marker_str.c_str ());
9233
9234 std::vector<symtab_and_line> sals;
9235 sals.reserve (markers.size ());
9236
9237 for (const static_tracepoint_marker &marker : markers)
9238 {
9239 symtab_and_line sal = find_pc_line (marker.address, 0);
9240 sal.pc = marker.address;
9241 sals.push_back (sal);
9242 }
9243
9244 *arg_p = endp;
9245 return sals;
9246 }
9247
9248 /* See breakpoint.h. */
9249
9250 int
9251 create_breakpoint (struct gdbarch *gdbarch,
9252 const struct event_location *location,
9253 const char *cond_string,
9254 int thread, const char *extra_string,
9255 int parse_extra,
9256 int tempflag, enum bptype type_wanted,
9257 int ignore_count,
9258 enum auto_boolean pending_break_support,
9259 const struct breakpoint_ops *ops,
9260 int from_tty, int enabled, int internal,
9261 unsigned flags)
9262 {
9263 struct linespec_result canonical;
9264 struct cleanup *bkpt_chain = NULL;
9265 int pending = 0;
9266 int task = 0;
9267 int prev_bkpt_count = breakpoint_count;
9268
9269 gdb_assert (ops != NULL);
9270
9271 /* If extra_string isn't useful, set it to NULL. */
9272 if (extra_string != NULL && *extra_string == '\0')
9273 extra_string = NULL;
9274
9275 TRY
9276 {
9277 ops->create_sals_from_location (location, &canonical, type_wanted);
9278 }
9279 CATCH (e, RETURN_MASK_ERROR)
9280 {
9281 /* If caller is interested in rc value from parse, set
9282 value. */
9283 if (e.error == NOT_FOUND_ERROR)
9284 {
9285 /* If pending breakpoint support is turned off, throw
9286 error. */
9287
9288 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9289 throw_exception (e);
9290
9291 exception_print (gdb_stderr, e);
9292
9293 /* If pending breakpoint support is auto query and the user
9294 selects no, then simply return the error code. */
9295 if (pending_break_support == AUTO_BOOLEAN_AUTO
9296 && !nquery (_("Make %s pending on future shared library load? "),
9297 bptype_string (type_wanted)))
9298 return 0;
9299
9300 /* At this point, either the user was queried about setting
9301 a pending breakpoint and selected yes, or pending
9302 breakpoint behavior is on and thus a pending breakpoint
9303 is defaulted on behalf of the user. */
9304 pending = 1;
9305 }
9306 else
9307 throw_exception (e);
9308 }
9309 END_CATCH
9310
9311 if (!pending && canonical.lsals.empty ())
9312 return 0;
9313
9314 /* ----------------------------- SNIP -----------------------------
9315 Anything added to the cleanup chain beyond this point is assumed
9316 to be part of a breakpoint. If the breakpoint create succeeds
9317 then the memory is not reclaimed. */
9318 bkpt_chain = make_cleanup (null_cleanup, 0);
9319
9320 /* Resolve all line numbers to PC's and verify that the addresses
9321 are ok for the target. */
9322 if (!pending)
9323 {
9324 for (auto &lsal : canonical.lsals)
9325 breakpoint_sals_to_pc (lsal.sals);
9326 }
9327
9328 /* Fast tracepoints may have additional restrictions on location. */
9329 if (!pending && type_wanted == bp_fast_tracepoint)
9330 {
9331 for (const auto &lsal : canonical.lsals)
9332 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9333 }
9334
9335 /* Verify that condition can be parsed, before setting any
9336 breakpoints. Allocate a separate condition expression for each
9337 breakpoint. */
9338 if (!pending)
9339 {
9340 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9341 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9342
9343 if (parse_extra)
9344 {
9345 char *rest;
9346 char *cond;
9347
9348 const linespec_sals &lsal = canonical.lsals[0];
9349
9350 /* Here we only parse 'arg' to separate condition
9351 from thread number, so parsing in context of first
9352 sal is OK. When setting the breakpoint we'll
9353 re-parse it in context of each sal. */
9354
9355 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9356 &cond, &thread, &task, &rest);
9357 cond_string_copy.reset (cond);
9358 extra_string_copy.reset (rest);
9359 }
9360 else
9361 {
9362 if (type_wanted != bp_dprintf
9363 && extra_string != NULL && *extra_string != '\0')
9364 error (_("Garbage '%s' at end of location"), extra_string);
9365
9366 /* Create a private copy of condition string. */
9367 if (cond_string)
9368 cond_string_copy.reset (xstrdup (cond_string));
9369 /* Create a private copy of any extra string. */
9370 if (extra_string)
9371 extra_string_copy.reset (xstrdup (extra_string));
9372 }
9373
9374 ops->create_breakpoints_sal (gdbarch, &canonical,
9375 std::move (cond_string_copy),
9376 std::move (extra_string_copy),
9377 type_wanted,
9378 tempflag ? disp_del : disp_donttouch,
9379 thread, task, ignore_count, ops,
9380 from_tty, enabled, internal, flags);
9381 }
9382 else
9383 {
9384 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9385
9386 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9387 b->location = copy_event_location (location);
9388
9389 if (parse_extra)
9390 b->cond_string = NULL;
9391 else
9392 {
9393 /* Create a private copy of condition string. */
9394 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9395 b->thread = thread;
9396 }
9397
9398 /* Create a private copy of any extra string. */
9399 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9400 b->ignore_count = ignore_count;
9401 b->disposition = tempflag ? disp_del : disp_donttouch;
9402 b->condition_not_parsed = 1;
9403 b->enable_state = enabled ? bp_enabled : bp_disabled;
9404 if ((type_wanted != bp_breakpoint
9405 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9406 b->pspace = current_program_space;
9407
9408 install_breakpoint (internal, std::move (b), 0);
9409 }
9410
9411 if (canonical.lsals.size () > 1)
9412 {
9413 warning (_("Multiple breakpoints were set.\nUse the "
9414 "\"delete\" command to delete unwanted breakpoints."));
9415 prev_breakpoint_count = prev_bkpt_count;
9416 }
9417
9418 /* That's it. Discard the cleanups for data inserted into the
9419 breakpoint. */
9420 discard_cleanups (bkpt_chain);
9421
9422 /* error call may happen here - have BKPT_CHAIN already discarded. */
9423 update_global_location_list (UGLL_MAY_INSERT);
9424
9425 return 1;
9426 }
9427
9428 /* Set a breakpoint.
9429 ARG is a string describing breakpoint address,
9430 condition, and thread.
9431 FLAG specifies if a breakpoint is hardware on,
9432 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9433 and BP_TEMPFLAG. */
9434
9435 static void
9436 break_command_1 (const char *arg, int flag, int from_tty)
9437 {
9438 int tempflag = flag & BP_TEMPFLAG;
9439 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9440 ? bp_hardware_breakpoint
9441 : bp_breakpoint);
9442 struct breakpoint_ops *ops;
9443
9444 event_location_up location = string_to_event_location (&arg, current_language);
9445
9446 /* Matching breakpoints on probes. */
9447 if (location != NULL
9448 && event_location_type (location.get ()) == PROBE_LOCATION)
9449 ops = &bkpt_probe_breakpoint_ops;
9450 else
9451 ops = &bkpt_breakpoint_ops;
9452
9453 create_breakpoint (get_current_arch (),
9454 location.get (),
9455 NULL, 0, arg, 1 /* parse arg */,
9456 tempflag, type_wanted,
9457 0 /* Ignore count */,
9458 pending_break_support,
9459 ops,
9460 from_tty,
9461 1 /* enabled */,
9462 0 /* internal */,
9463 0);
9464 }
9465
9466 /* Helper function for break_command_1 and disassemble_command. */
9467
9468 void
9469 resolve_sal_pc (struct symtab_and_line *sal)
9470 {
9471 CORE_ADDR pc;
9472
9473 if (sal->pc == 0 && sal->symtab != NULL)
9474 {
9475 if (!find_line_pc (sal->symtab, sal->line, &pc))
9476 error (_("No line %d in file \"%s\"."),
9477 sal->line, symtab_to_filename_for_display (sal->symtab));
9478 sal->pc = pc;
9479
9480 /* If this SAL corresponds to a breakpoint inserted using a line
9481 number, then skip the function prologue if necessary. */
9482 if (sal->explicit_line)
9483 skip_prologue_sal (sal);
9484 }
9485
9486 if (sal->section == 0 && sal->symtab != NULL)
9487 {
9488 const struct blockvector *bv;
9489 const struct block *b;
9490 struct symbol *sym;
9491
9492 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9493 SYMTAB_COMPUNIT (sal->symtab));
9494 if (bv != NULL)
9495 {
9496 sym = block_linkage_function (b);
9497 if (sym != NULL)
9498 {
9499 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9500 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9501 sym);
9502 }
9503 else
9504 {
9505 /* It really is worthwhile to have the section, so we'll
9506 just have to look harder. This case can be executed
9507 if we have line numbers but no functions (as can
9508 happen in assembly source). */
9509
9510 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9511 switch_to_program_space_and_thread (sal->pspace);
9512
9513 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9514 if (msym.minsym)
9515 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9516 }
9517 }
9518 }
9519 }
9520
9521 void
9522 break_command (const char *arg, int from_tty)
9523 {
9524 break_command_1 (arg, 0, from_tty);
9525 }
9526
9527 void
9528 tbreak_command (const char *arg, int from_tty)
9529 {
9530 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9531 }
9532
9533 static void
9534 hbreak_command (const char *arg, int from_tty)
9535 {
9536 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9537 }
9538
9539 static void
9540 thbreak_command (const char *arg, int from_tty)
9541 {
9542 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9543 }
9544
9545 static void
9546 stop_command (const char *arg, int from_tty)
9547 {
9548 printf_filtered (_("Specify the type of breakpoint to set.\n\
9549 Usage: stop in <function | address>\n\
9550 stop at <line>\n"));
9551 }
9552
9553 static void
9554 stopin_command (const char *arg, int from_tty)
9555 {
9556 int badInput = 0;
9557
9558 if (arg == (char *) NULL)
9559 badInput = 1;
9560 else if (*arg != '*')
9561 {
9562 const char *argptr = arg;
9563 int hasColon = 0;
9564
9565 /* Look for a ':'. If this is a line number specification, then
9566 say it is bad, otherwise, it should be an address or
9567 function/method name. */
9568 while (*argptr && !hasColon)
9569 {
9570 hasColon = (*argptr == ':');
9571 argptr++;
9572 }
9573
9574 if (hasColon)
9575 badInput = (*argptr != ':'); /* Not a class::method */
9576 else
9577 badInput = isdigit (*arg); /* a simple line number */
9578 }
9579
9580 if (badInput)
9581 printf_filtered (_("Usage: stop in <function | address>\n"));
9582 else
9583 break_command_1 (arg, 0, from_tty);
9584 }
9585
9586 static void
9587 stopat_command (const char *arg, int from_tty)
9588 {
9589 int badInput = 0;
9590
9591 if (arg == (char *) NULL || *arg == '*') /* no line number */
9592 badInput = 1;
9593 else
9594 {
9595 const char *argptr = arg;
9596 int hasColon = 0;
9597
9598 /* Look for a ':'. If there is a '::' then get out, otherwise
9599 it is probably a line number. */
9600 while (*argptr && !hasColon)
9601 {
9602 hasColon = (*argptr == ':');
9603 argptr++;
9604 }
9605
9606 if (hasColon)
9607 badInput = (*argptr == ':'); /* we have class::method */
9608 else
9609 badInput = !isdigit (*arg); /* not a line number */
9610 }
9611
9612 if (badInput)
9613 printf_filtered (_("Usage: stop at <line>\n"));
9614 else
9615 break_command_1 (arg, 0, from_tty);
9616 }
9617
9618 /* The dynamic printf command is mostly like a regular breakpoint, but
9619 with a prewired command list consisting of a single output command,
9620 built from extra arguments supplied on the dprintf command
9621 line. */
9622
9623 static void
9624 dprintf_command (const char *arg, int from_tty)
9625 {
9626 event_location_up location = string_to_event_location (&arg, current_language);
9627
9628 /* If non-NULL, ARG should have been advanced past the location;
9629 the next character must be ','. */
9630 if (arg != NULL)
9631 {
9632 if (arg[0] != ',' || arg[1] == '\0')
9633 error (_("Format string required"));
9634 else
9635 {
9636 /* Skip the comma. */
9637 ++arg;
9638 }
9639 }
9640
9641 create_breakpoint (get_current_arch (),
9642 location.get (),
9643 NULL, 0, arg, 1 /* parse arg */,
9644 0, bp_dprintf,
9645 0 /* Ignore count */,
9646 pending_break_support,
9647 &dprintf_breakpoint_ops,
9648 from_tty,
9649 1 /* enabled */,
9650 0 /* internal */,
9651 0);
9652 }
9653
9654 static void
9655 agent_printf_command (const char *arg, int from_tty)
9656 {
9657 error (_("May only run agent-printf on the target"));
9658 }
9659
9660 /* Implement the "breakpoint_hit" breakpoint_ops method for
9661 ranged breakpoints. */
9662
9663 static int
9664 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9665 const address_space *aspace,
9666 CORE_ADDR bp_addr,
9667 const struct target_waitstatus *ws)
9668 {
9669 if (ws->kind != TARGET_WAITKIND_STOPPED
9670 || ws->value.sig != GDB_SIGNAL_TRAP)
9671 return 0;
9672
9673 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9674 bl->length, aspace, bp_addr);
9675 }
9676
9677 /* Implement the "resources_needed" breakpoint_ops method for
9678 ranged breakpoints. */
9679
9680 static int
9681 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9682 {
9683 return target_ranged_break_num_registers ();
9684 }
9685
9686 /* Implement the "print_it" breakpoint_ops method for
9687 ranged breakpoints. */
9688
9689 static enum print_stop_action
9690 print_it_ranged_breakpoint (bpstat bs)
9691 {
9692 struct breakpoint *b = bs->breakpoint_at;
9693 struct bp_location *bl = b->loc;
9694 struct ui_out *uiout = current_uiout;
9695
9696 gdb_assert (b->type == bp_hardware_breakpoint);
9697
9698 /* Ranged breakpoints have only one location. */
9699 gdb_assert (bl && bl->next == NULL);
9700
9701 annotate_breakpoint (b->number);
9702
9703 maybe_print_thread_hit_breakpoint (uiout);
9704
9705 if (b->disposition == disp_del)
9706 uiout->text ("Temporary ranged breakpoint ");
9707 else
9708 uiout->text ("Ranged breakpoint ");
9709 if (uiout->is_mi_like_p ())
9710 {
9711 uiout->field_string ("reason",
9712 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9713 uiout->field_string ("disp", bpdisp_text (b->disposition));
9714 }
9715 uiout->field_int ("bkptno", b->number);
9716 uiout->text (", ");
9717
9718 return PRINT_SRC_AND_LOC;
9719 }
9720
9721 /* Implement the "print_one" breakpoint_ops method for
9722 ranged breakpoints. */
9723
9724 static void
9725 print_one_ranged_breakpoint (struct breakpoint *b,
9726 struct bp_location **last_loc)
9727 {
9728 struct bp_location *bl = b->loc;
9729 struct value_print_options opts;
9730 struct ui_out *uiout = current_uiout;
9731
9732 /* Ranged breakpoints have only one location. */
9733 gdb_assert (bl && bl->next == NULL);
9734
9735 get_user_print_options (&opts);
9736
9737 if (opts.addressprint)
9738 /* We don't print the address range here, it will be printed later
9739 by print_one_detail_ranged_breakpoint. */
9740 uiout->field_skip ("addr");
9741 annotate_field (5);
9742 print_breakpoint_location (b, bl);
9743 *last_loc = bl;
9744 }
9745
9746 /* Implement the "print_one_detail" breakpoint_ops method for
9747 ranged breakpoints. */
9748
9749 static void
9750 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9751 struct ui_out *uiout)
9752 {
9753 CORE_ADDR address_start, address_end;
9754 struct bp_location *bl = b->loc;
9755 string_file stb;
9756
9757 gdb_assert (bl);
9758
9759 address_start = bl->address;
9760 address_end = address_start + bl->length - 1;
9761
9762 uiout->text ("\taddress range: ");
9763 stb.printf ("[%s, %s]",
9764 print_core_address (bl->gdbarch, address_start),
9765 print_core_address (bl->gdbarch, address_end));
9766 uiout->field_stream ("addr", stb);
9767 uiout->text ("\n");
9768 }
9769
9770 /* Implement the "print_mention" breakpoint_ops method for
9771 ranged breakpoints. */
9772
9773 static void
9774 print_mention_ranged_breakpoint (struct breakpoint *b)
9775 {
9776 struct bp_location *bl = b->loc;
9777 struct ui_out *uiout = current_uiout;
9778
9779 gdb_assert (bl);
9780 gdb_assert (b->type == bp_hardware_breakpoint);
9781
9782 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9783 b->number, paddress (bl->gdbarch, bl->address),
9784 paddress (bl->gdbarch, bl->address + bl->length - 1));
9785 }
9786
9787 /* Implement the "print_recreate" breakpoint_ops method for
9788 ranged breakpoints. */
9789
9790 static void
9791 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9792 {
9793 fprintf_unfiltered (fp, "break-range %s, %s",
9794 event_location_to_string (b->location.get ()),
9795 event_location_to_string (b->location_range_end.get ()));
9796 print_recreate_thread (b, fp);
9797 }
9798
9799 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9800
9801 static struct breakpoint_ops ranged_breakpoint_ops;
9802
9803 /* Find the address where the end of the breakpoint range should be
9804 placed, given the SAL of the end of the range. This is so that if
9805 the user provides a line number, the end of the range is set to the
9806 last instruction of the given line. */
9807
9808 static CORE_ADDR
9809 find_breakpoint_range_end (struct symtab_and_line sal)
9810 {
9811 CORE_ADDR end;
9812
9813 /* If the user provided a PC value, use it. Otherwise,
9814 find the address of the end of the given location. */
9815 if (sal.explicit_pc)
9816 end = sal.pc;
9817 else
9818 {
9819 int ret;
9820 CORE_ADDR start;
9821
9822 ret = find_line_pc_range (sal, &start, &end);
9823 if (!ret)
9824 error (_("Could not find location of the end of the range."));
9825
9826 /* find_line_pc_range returns the start of the next line. */
9827 end--;
9828 }
9829
9830 return end;
9831 }
9832
9833 /* Implement the "break-range" CLI command. */
9834
9835 static void
9836 break_range_command (const char *arg, int from_tty)
9837 {
9838 const char *arg_start;
9839 struct linespec_result canonical_start, canonical_end;
9840 int bp_count, can_use_bp, length;
9841 CORE_ADDR end;
9842 struct breakpoint *b;
9843
9844 /* We don't support software ranged breakpoints. */
9845 if (target_ranged_break_num_registers () < 0)
9846 error (_("This target does not support hardware ranged breakpoints."));
9847
9848 bp_count = hw_breakpoint_used_count ();
9849 bp_count += target_ranged_break_num_registers ();
9850 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9851 bp_count, 0);
9852 if (can_use_bp < 0)
9853 error (_("Hardware breakpoints used exceeds limit."));
9854
9855 arg = skip_spaces (arg);
9856 if (arg == NULL || arg[0] == '\0')
9857 error(_("No address range specified."));
9858
9859 arg_start = arg;
9860 event_location_up start_location = string_to_event_location (&arg,
9861 current_language);
9862 parse_breakpoint_sals (start_location.get (), &canonical_start);
9863
9864 if (arg[0] != ',')
9865 error (_("Too few arguments."));
9866 else if (canonical_start.lsals.empty ())
9867 error (_("Could not find location of the beginning of the range."));
9868
9869 const linespec_sals &lsal_start = canonical_start.lsals[0];
9870
9871 if (canonical_start.lsals.size () > 1
9872 || lsal_start.sals.size () != 1)
9873 error (_("Cannot create a ranged breakpoint with multiple locations."));
9874
9875 const symtab_and_line &sal_start = lsal_start.sals[0];
9876 std::string addr_string_start (arg_start, arg - arg_start);
9877
9878 arg++; /* Skip the comma. */
9879 arg = skip_spaces (arg);
9880
9881 /* Parse the end location. */
9882
9883 arg_start = arg;
9884
9885 /* We call decode_line_full directly here instead of using
9886 parse_breakpoint_sals because we need to specify the start location's
9887 symtab and line as the default symtab and line for the end of the
9888 range. This makes it possible to have ranges like "foo.c:27, +14",
9889 where +14 means 14 lines from the start location. */
9890 event_location_up end_location = string_to_event_location (&arg,
9891 current_language);
9892 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9893 sal_start.symtab, sal_start.line,
9894 &canonical_end, NULL, NULL);
9895
9896 if (canonical_end.lsals.empty ())
9897 error (_("Could not find location of the end of the range."));
9898
9899 const linespec_sals &lsal_end = canonical_end.lsals[0];
9900 if (canonical_end.lsals.size () > 1
9901 || lsal_end.sals.size () != 1)
9902 error (_("Cannot create a ranged breakpoint with multiple locations."));
9903
9904 const symtab_and_line &sal_end = lsal_end.sals[0];
9905
9906 end = find_breakpoint_range_end (sal_end);
9907 if (sal_start.pc > end)
9908 error (_("Invalid address range, end precedes start."));
9909
9910 length = end - sal_start.pc + 1;
9911 if (length < 0)
9912 /* Length overflowed. */
9913 error (_("Address range too large."));
9914 else if (length == 1)
9915 {
9916 /* This range is simple enough to be handled by
9917 the `hbreak' command. */
9918 hbreak_command (&addr_string_start[0], 1);
9919
9920 return;
9921 }
9922
9923 /* Now set up the breakpoint. */
9924 b = set_raw_breakpoint (get_current_arch (), sal_start,
9925 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9926 set_breakpoint_count (breakpoint_count + 1);
9927 b->number = breakpoint_count;
9928 b->disposition = disp_donttouch;
9929 b->location = std::move (start_location);
9930 b->location_range_end = std::move (end_location);
9931 b->loc->length = length;
9932
9933 mention (b);
9934 gdb::observers::breakpoint_created.notify (b);
9935 update_global_location_list (UGLL_MAY_INSERT);
9936 }
9937
9938 /* Return non-zero if EXP is verified as constant. Returned zero
9939 means EXP is variable. Also the constant detection may fail for
9940 some constant expressions and in such case still falsely return
9941 zero. */
9942
9943 static int
9944 watchpoint_exp_is_const (const struct expression *exp)
9945 {
9946 int i = exp->nelts;
9947
9948 while (i > 0)
9949 {
9950 int oplenp, argsp;
9951
9952 /* We are only interested in the descriptor of each element. */
9953 operator_length (exp, i, &oplenp, &argsp);
9954 i -= oplenp;
9955
9956 switch (exp->elts[i].opcode)
9957 {
9958 case BINOP_ADD:
9959 case BINOP_SUB:
9960 case BINOP_MUL:
9961 case BINOP_DIV:
9962 case BINOP_REM:
9963 case BINOP_MOD:
9964 case BINOP_LSH:
9965 case BINOP_RSH:
9966 case BINOP_LOGICAL_AND:
9967 case BINOP_LOGICAL_OR:
9968 case BINOP_BITWISE_AND:
9969 case BINOP_BITWISE_IOR:
9970 case BINOP_BITWISE_XOR:
9971 case BINOP_EQUAL:
9972 case BINOP_NOTEQUAL:
9973 case BINOP_LESS:
9974 case BINOP_GTR:
9975 case BINOP_LEQ:
9976 case BINOP_GEQ:
9977 case BINOP_REPEAT:
9978 case BINOP_COMMA:
9979 case BINOP_EXP:
9980 case BINOP_MIN:
9981 case BINOP_MAX:
9982 case BINOP_INTDIV:
9983 case BINOP_CONCAT:
9984 case TERNOP_COND:
9985 case TERNOP_SLICE:
9986
9987 case OP_LONG:
9988 case OP_FLOAT:
9989 case OP_LAST:
9990 case OP_COMPLEX:
9991 case OP_STRING:
9992 case OP_ARRAY:
9993 case OP_TYPE:
9994 case OP_TYPEOF:
9995 case OP_DECLTYPE:
9996 case OP_TYPEID:
9997 case OP_NAME:
9998 case OP_OBJC_NSSTRING:
9999
10000 case UNOP_NEG:
10001 case UNOP_LOGICAL_NOT:
10002 case UNOP_COMPLEMENT:
10003 case UNOP_ADDR:
10004 case UNOP_HIGH:
10005 case UNOP_CAST:
10006
10007 case UNOP_CAST_TYPE:
10008 case UNOP_REINTERPRET_CAST:
10009 case UNOP_DYNAMIC_CAST:
10010 /* Unary, binary and ternary operators: We have to check
10011 their operands. If they are constant, then so is the
10012 result of that operation. For instance, if A and B are
10013 determined to be constants, then so is "A + B".
10014
10015 UNOP_IND is one exception to the rule above, because the
10016 value of *ADDR is not necessarily a constant, even when
10017 ADDR is. */
10018 break;
10019
10020 case OP_VAR_VALUE:
10021 /* Check whether the associated symbol is a constant.
10022
10023 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10024 possible that a buggy compiler could mark a variable as
10025 constant even when it is not, and TYPE_CONST would return
10026 true in this case, while SYMBOL_CLASS wouldn't.
10027
10028 We also have to check for function symbols because they
10029 are always constant. */
10030 {
10031 struct symbol *s = exp->elts[i + 2].symbol;
10032
10033 if (SYMBOL_CLASS (s) != LOC_BLOCK
10034 && SYMBOL_CLASS (s) != LOC_CONST
10035 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10036 return 0;
10037 break;
10038 }
10039
10040 /* The default action is to return 0 because we are using
10041 the optimistic approach here: If we don't know something,
10042 then it is not a constant. */
10043 default:
10044 return 0;
10045 }
10046 }
10047
10048 return 1;
10049 }
10050
10051 /* Watchpoint destructor. */
10052
10053 watchpoint::~watchpoint ()
10054 {
10055 xfree (this->exp_string);
10056 xfree (this->exp_string_reparse);
10057 }
10058
10059 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10060
10061 static void
10062 re_set_watchpoint (struct breakpoint *b)
10063 {
10064 struct watchpoint *w = (struct watchpoint *) b;
10065
10066 /* Watchpoint can be either on expression using entirely global
10067 variables, or it can be on local variables.
10068
10069 Watchpoints of the first kind are never auto-deleted, and even
10070 persist across program restarts. Since they can use variables
10071 from shared libraries, we need to reparse expression as libraries
10072 are loaded and unloaded.
10073
10074 Watchpoints on local variables can also change meaning as result
10075 of solib event. For example, if a watchpoint uses both a local
10076 and a global variables in expression, it's a local watchpoint,
10077 but unloading of a shared library will make the expression
10078 invalid. This is not a very common use case, but we still
10079 re-evaluate expression, to avoid surprises to the user.
10080
10081 Note that for local watchpoints, we re-evaluate it only if
10082 watchpoints frame id is still valid. If it's not, it means the
10083 watchpoint is out of scope and will be deleted soon. In fact,
10084 I'm not sure we'll ever be called in this case.
10085
10086 If a local watchpoint's frame id is still valid, then
10087 w->exp_valid_block is likewise valid, and we can safely use it.
10088
10089 Don't do anything about disabled watchpoints, since they will be
10090 reevaluated again when enabled. */
10091 update_watchpoint (w, 1 /* reparse */);
10092 }
10093
10094 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10095
10096 static int
10097 insert_watchpoint (struct bp_location *bl)
10098 {
10099 struct watchpoint *w = (struct watchpoint *) bl->owner;
10100 int length = w->exact ? 1 : bl->length;
10101
10102 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10103 w->cond_exp.get ());
10104 }
10105
10106 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10107
10108 static int
10109 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10110 {
10111 struct watchpoint *w = (struct watchpoint *) bl->owner;
10112 int length = w->exact ? 1 : bl->length;
10113
10114 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10115 w->cond_exp.get ());
10116 }
10117
10118 static int
10119 breakpoint_hit_watchpoint (const struct bp_location *bl,
10120 const address_space *aspace, CORE_ADDR bp_addr,
10121 const struct target_waitstatus *ws)
10122 {
10123 struct breakpoint *b = bl->owner;
10124 struct watchpoint *w = (struct watchpoint *) b;
10125
10126 /* Continuable hardware watchpoints are treated as non-existent if the
10127 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10128 some data address). Otherwise gdb won't stop on a break instruction
10129 in the code (not from a breakpoint) when a hardware watchpoint has
10130 been defined. Also skip watchpoints which we know did not trigger
10131 (did not match the data address). */
10132 if (is_hardware_watchpoint (b)
10133 && w->watchpoint_triggered == watch_triggered_no)
10134 return 0;
10135
10136 return 1;
10137 }
10138
10139 static void
10140 check_status_watchpoint (bpstat bs)
10141 {
10142 gdb_assert (is_watchpoint (bs->breakpoint_at));
10143
10144 bpstat_check_watchpoint (bs);
10145 }
10146
10147 /* Implement the "resources_needed" breakpoint_ops method for
10148 hardware watchpoints. */
10149
10150 static int
10151 resources_needed_watchpoint (const struct bp_location *bl)
10152 {
10153 struct watchpoint *w = (struct watchpoint *) bl->owner;
10154 int length = w->exact? 1 : bl->length;
10155
10156 return target_region_ok_for_hw_watchpoint (bl->address, length);
10157 }
10158
10159 /* Implement the "works_in_software_mode" breakpoint_ops method for
10160 hardware watchpoints. */
10161
10162 static int
10163 works_in_software_mode_watchpoint (const struct breakpoint *b)
10164 {
10165 /* Read and access watchpoints only work with hardware support. */
10166 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10167 }
10168
10169 static enum print_stop_action
10170 print_it_watchpoint (bpstat bs)
10171 {
10172 struct breakpoint *b;
10173 enum print_stop_action result;
10174 struct watchpoint *w;
10175 struct ui_out *uiout = current_uiout;
10176
10177 gdb_assert (bs->bp_location_at != NULL);
10178
10179 b = bs->breakpoint_at;
10180 w = (struct watchpoint *) b;
10181
10182 annotate_watchpoint (b->number);
10183 maybe_print_thread_hit_breakpoint (uiout);
10184
10185 string_file stb;
10186
10187 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10188 switch (b->type)
10189 {
10190 case bp_watchpoint:
10191 case bp_hardware_watchpoint:
10192 if (uiout->is_mi_like_p ())
10193 uiout->field_string
10194 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10195 mention (b);
10196 tuple_emitter.emplace (uiout, "value");
10197 uiout->text ("\nOld value = ");
10198 watchpoint_value_print (bs->old_val.get (), &stb);
10199 uiout->field_stream ("old", stb);
10200 uiout->text ("\nNew value = ");
10201 watchpoint_value_print (w->val.get (), &stb);
10202 uiout->field_stream ("new", stb);
10203 uiout->text ("\n");
10204 /* More than one watchpoint may have been triggered. */
10205 result = PRINT_UNKNOWN;
10206 break;
10207
10208 case bp_read_watchpoint:
10209 if (uiout->is_mi_like_p ())
10210 uiout->field_string
10211 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10212 mention (b);
10213 tuple_emitter.emplace (uiout, "value");
10214 uiout->text ("\nValue = ");
10215 watchpoint_value_print (w->val.get (), &stb);
10216 uiout->field_stream ("value", stb);
10217 uiout->text ("\n");
10218 result = PRINT_UNKNOWN;
10219 break;
10220
10221 case bp_access_watchpoint:
10222 if (bs->old_val != NULL)
10223 {
10224 if (uiout->is_mi_like_p ())
10225 uiout->field_string
10226 ("reason",
10227 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10228 mention (b);
10229 tuple_emitter.emplace (uiout, "value");
10230 uiout->text ("\nOld value = ");
10231 watchpoint_value_print (bs->old_val.get (), &stb);
10232 uiout->field_stream ("old", stb);
10233 uiout->text ("\nNew value = ");
10234 }
10235 else
10236 {
10237 mention (b);
10238 if (uiout->is_mi_like_p ())
10239 uiout->field_string
10240 ("reason",
10241 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10242 tuple_emitter.emplace (uiout, "value");
10243 uiout->text ("\nValue = ");
10244 }
10245 watchpoint_value_print (w->val.get (), &stb);
10246 uiout->field_stream ("new", stb);
10247 uiout->text ("\n");
10248 result = PRINT_UNKNOWN;
10249 break;
10250 default:
10251 result = PRINT_UNKNOWN;
10252 }
10253
10254 return result;
10255 }
10256
10257 /* Implement the "print_mention" breakpoint_ops method for hardware
10258 watchpoints. */
10259
10260 static void
10261 print_mention_watchpoint (struct breakpoint *b)
10262 {
10263 struct watchpoint *w = (struct watchpoint *) b;
10264 struct ui_out *uiout = current_uiout;
10265 const char *tuple_name;
10266
10267 switch (b->type)
10268 {
10269 case bp_watchpoint:
10270 uiout->text ("Watchpoint ");
10271 tuple_name = "wpt";
10272 break;
10273 case bp_hardware_watchpoint:
10274 uiout->text ("Hardware watchpoint ");
10275 tuple_name = "wpt";
10276 break;
10277 case bp_read_watchpoint:
10278 uiout->text ("Hardware read watchpoint ");
10279 tuple_name = "hw-rwpt";
10280 break;
10281 case bp_access_watchpoint:
10282 uiout->text ("Hardware access (read/write) watchpoint ");
10283 tuple_name = "hw-awpt";
10284 break;
10285 default:
10286 internal_error (__FILE__, __LINE__,
10287 _("Invalid hardware watchpoint type."));
10288 }
10289
10290 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10291 uiout->field_int ("number", b->number);
10292 uiout->text (": ");
10293 uiout->field_string ("exp", w->exp_string);
10294 }
10295
10296 /* Implement the "print_recreate" breakpoint_ops method for
10297 watchpoints. */
10298
10299 static void
10300 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10301 {
10302 struct watchpoint *w = (struct watchpoint *) b;
10303
10304 switch (b->type)
10305 {
10306 case bp_watchpoint:
10307 case bp_hardware_watchpoint:
10308 fprintf_unfiltered (fp, "watch");
10309 break;
10310 case bp_read_watchpoint:
10311 fprintf_unfiltered (fp, "rwatch");
10312 break;
10313 case bp_access_watchpoint:
10314 fprintf_unfiltered (fp, "awatch");
10315 break;
10316 default:
10317 internal_error (__FILE__, __LINE__,
10318 _("Invalid watchpoint type."));
10319 }
10320
10321 fprintf_unfiltered (fp, " %s", w->exp_string);
10322 print_recreate_thread (b, fp);
10323 }
10324
10325 /* Implement the "explains_signal" breakpoint_ops method for
10326 watchpoints. */
10327
10328 static int
10329 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10330 {
10331 /* A software watchpoint cannot cause a signal other than
10332 GDB_SIGNAL_TRAP. */
10333 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10334 return 0;
10335
10336 return 1;
10337 }
10338
10339 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10340
10341 static struct breakpoint_ops watchpoint_breakpoint_ops;
10342
10343 /* Implement the "insert" breakpoint_ops method for
10344 masked hardware watchpoints. */
10345
10346 static int
10347 insert_masked_watchpoint (struct bp_location *bl)
10348 {
10349 struct watchpoint *w = (struct watchpoint *) bl->owner;
10350
10351 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10352 bl->watchpoint_type);
10353 }
10354
10355 /* Implement the "remove" breakpoint_ops method for
10356 masked hardware watchpoints. */
10357
10358 static int
10359 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10360 {
10361 struct watchpoint *w = (struct watchpoint *) bl->owner;
10362
10363 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10364 bl->watchpoint_type);
10365 }
10366
10367 /* Implement the "resources_needed" breakpoint_ops method for
10368 masked hardware watchpoints. */
10369
10370 static int
10371 resources_needed_masked_watchpoint (const struct bp_location *bl)
10372 {
10373 struct watchpoint *w = (struct watchpoint *) bl->owner;
10374
10375 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10376 }
10377
10378 /* Implement the "works_in_software_mode" breakpoint_ops method for
10379 masked hardware watchpoints. */
10380
10381 static int
10382 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10383 {
10384 return 0;
10385 }
10386
10387 /* Implement the "print_it" breakpoint_ops method for
10388 masked hardware watchpoints. */
10389
10390 static enum print_stop_action
10391 print_it_masked_watchpoint (bpstat bs)
10392 {
10393 struct breakpoint *b = bs->breakpoint_at;
10394 struct ui_out *uiout = current_uiout;
10395
10396 /* Masked watchpoints have only one location. */
10397 gdb_assert (b->loc && b->loc->next == NULL);
10398
10399 annotate_watchpoint (b->number);
10400 maybe_print_thread_hit_breakpoint (uiout);
10401
10402 switch (b->type)
10403 {
10404 case bp_hardware_watchpoint:
10405 if (uiout->is_mi_like_p ())
10406 uiout->field_string
10407 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10408 break;
10409
10410 case bp_read_watchpoint:
10411 if (uiout->is_mi_like_p ())
10412 uiout->field_string
10413 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10414 break;
10415
10416 case bp_access_watchpoint:
10417 if (uiout->is_mi_like_p ())
10418 uiout->field_string
10419 ("reason",
10420 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10421 break;
10422 default:
10423 internal_error (__FILE__, __LINE__,
10424 _("Invalid hardware watchpoint type."));
10425 }
10426
10427 mention (b);
10428 uiout->text (_("\n\
10429 Check the underlying instruction at PC for the memory\n\
10430 address and value which triggered this watchpoint.\n"));
10431 uiout->text ("\n");
10432
10433 /* More than one watchpoint may have been triggered. */
10434 return PRINT_UNKNOWN;
10435 }
10436
10437 /* Implement the "print_one_detail" breakpoint_ops method for
10438 masked hardware watchpoints. */
10439
10440 static void
10441 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10442 struct ui_out *uiout)
10443 {
10444 struct watchpoint *w = (struct watchpoint *) b;
10445
10446 /* Masked watchpoints have only one location. */
10447 gdb_assert (b->loc && b->loc->next == NULL);
10448
10449 uiout->text ("\tmask ");
10450 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10451 uiout->text ("\n");
10452 }
10453
10454 /* Implement the "print_mention" breakpoint_ops method for
10455 masked hardware watchpoints. */
10456
10457 static void
10458 print_mention_masked_watchpoint (struct breakpoint *b)
10459 {
10460 struct watchpoint *w = (struct watchpoint *) b;
10461 struct ui_out *uiout = current_uiout;
10462 const char *tuple_name;
10463
10464 switch (b->type)
10465 {
10466 case bp_hardware_watchpoint:
10467 uiout->text ("Masked hardware watchpoint ");
10468 tuple_name = "wpt";
10469 break;
10470 case bp_read_watchpoint:
10471 uiout->text ("Masked hardware read watchpoint ");
10472 tuple_name = "hw-rwpt";
10473 break;
10474 case bp_access_watchpoint:
10475 uiout->text ("Masked hardware access (read/write) watchpoint ");
10476 tuple_name = "hw-awpt";
10477 break;
10478 default:
10479 internal_error (__FILE__, __LINE__,
10480 _("Invalid hardware watchpoint type."));
10481 }
10482
10483 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10484 uiout->field_int ("number", b->number);
10485 uiout->text (": ");
10486 uiout->field_string ("exp", w->exp_string);
10487 }
10488
10489 /* Implement the "print_recreate" breakpoint_ops method for
10490 masked hardware watchpoints. */
10491
10492 static void
10493 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10494 {
10495 struct watchpoint *w = (struct watchpoint *) b;
10496 char tmp[40];
10497
10498 switch (b->type)
10499 {
10500 case bp_hardware_watchpoint:
10501 fprintf_unfiltered (fp, "watch");
10502 break;
10503 case bp_read_watchpoint:
10504 fprintf_unfiltered (fp, "rwatch");
10505 break;
10506 case bp_access_watchpoint:
10507 fprintf_unfiltered (fp, "awatch");
10508 break;
10509 default:
10510 internal_error (__FILE__, __LINE__,
10511 _("Invalid hardware watchpoint type."));
10512 }
10513
10514 sprintf_vma (tmp, w->hw_wp_mask);
10515 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10516 print_recreate_thread (b, fp);
10517 }
10518
10519 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10520
10521 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10522
10523 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10524
10525 static int
10526 is_masked_watchpoint (const struct breakpoint *b)
10527 {
10528 return b->ops == &masked_watchpoint_breakpoint_ops;
10529 }
10530
10531 /* accessflag: hw_write: watch write,
10532 hw_read: watch read,
10533 hw_access: watch access (read or write) */
10534 static void
10535 watch_command_1 (const char *arg, int accessflag, int from_tty,
10536 int just_location, int internal)
10537 {
10538 struct breakpoint *scope_breakpoint = NULL;
10539 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10540 struct value *mark, *result;
10541 int saved_bitpos = 0, saved_bitsize = 0;
10542 const char *exp_start = NULL;
10543 const char *exp_end = NULL;
10544 const char *tok, *end_tok;
10545 int toklen = -1;
10546 const char *cond_start = NULL;
10547 const char *cond_end = NULL;
10548 enum bptype bp_type;
10549 int thread = -1;
10550 int pc = 0;
10551 /* Flag to indicate whether we are going to use masks for
10552 the hardware watchpoint. */
10553 int use_mask = 0;
10554 CORE_ADDR mask = 0;
10555
10556 /* Make sure that we actually have parameters to parse. */
10557 if (arg != NULL && arg[0] != '\0')
10558 {
10559 const char *value_start;
10560
10561 exp_end = arg + strlen (arg);
10562
10563 /* Look for "parameter value" pairs at the end
10564 of the arguments string. */
10565 for (tok = exp_end - 1; tok > arg; tok--)
10566 {
10567 /* Skip whitespace at the end of the argument list. */
10568 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10569 tok--;
10570
10571 /* Find the beginning of the last token.
10572 This is the value of the parameter. */
10573 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10574 tok--;
10575 value_start = tok + 1;
10576
10577 /* Skip whitespace. */
10578 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10579 tok--;
10580
10581 end_tok = tok;
10582
10583 /* Find the beginning of the second to last token.
10584 This is the parameter itself. */
10585 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10586 tok--;
10587 tok++;
10588 toklen = end_tok - tok + 1;
10589
10590 if (toklen == 6 && startswith (tok, "thread"))
10591 {
10592 struct thread_info *thr;
10593 /* At this point we've found a "thread" token, which means
10594 the user is trying to set a watchpoint that triggers
10595 only in a specific thread. */
10596 const char *endp;
10597
10598 if (thread != -1)
10599 error(_("You can specify only one thread."));
10600
10601 /* Extract the thread ID from the next token. */
10602 thr = parse_thread_id (value_start, &endp);
10603
10604 /* Check if the user provided a valid thread ID. */
10605 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10606 invalid_thread_id_error (value_start);
10607
10608 thread = thr->global_num;
10609 }
10610 else if (toklen == 4 && startswith (tok, "mask"))
10611 {
10612 /* We've found a "mask" token, which means the user wants to
10613 create a hardware watchpoint that is going to have the mask
10614 facility. */
10615 struct value *mask_value, *mark;
10616
10617 if (use_mask)
10618 error(_("You can specify only one mask."));
10619
10620 use_mask = just_location = 1;
10621
10622 mark = value_mark ();
10623 mask_value = parse_to_comma_and_eval (&value_start);
10624 mask = value_as_address (mask_value);
10625 value_free_to_mark (mark);
10626 }
10627 else
10628 /* We didn't recognize what we found. We should stop here. */
10629 break;
10630
10631 /* Truncate the string and get rid of the "parameter value" pair before
10632 the arguments string is parsed by the parse_exp_1 function. */
10633 exp_end = tok;
10634 }
10635 }
10636 else
10637 exp_end = arg;
10638
10639 /* Parse the rest of the arguments. From here on out, everything
10640 is in terms of a newly allocated string instead of the original
10641 ARG. */
10642 innermost_block.reset ();
10643 std::string expression (arg, exp_end - arg);
10644 exp_start = arg = expression.c_str ();
10645 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10646 exp_end = arg;
10647 /* Remove trailing whitespace from the expression before saving it.
10648 This makes the eventual display of the expression string a bit
10649 prettier. */
10650 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10651 --exp_end;
10652
10653 /* Checking if the expression is not constant. */
10654 if (watchpoint_exp_is_const (exp.get ()))
10655 {
10656 int len;
10657
10658 len = exp_end - exp_start;
10659 while (len > 0 && isspace (exp_start[len - 1]))
10660 len--;
10661 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10662 }
10663
10664 exp_valid_block = innermost_block.block ();
10665 mark = value_mark ();
10666 struct value *val_as_value = nullptr;
10667 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10668 just_location);
10669
10670 if (val_as_value != NULL && just_location)
10671 {
10672 saved_bitpos = value_bitpos (val_as_value);
10673 saved_bitsize = value_bitsize (val_as_value);
10674 }
10675
10676 value_ref_ptr val;
10677 if (just_location)
10678 {
10679 int ret;
10680
10681 exp_valid_block = NULL;
10682 val = release_value (value_addr (result));
10683 value_free_to_mark (mark);
10684
10685 if (use_mask)
10686 {
10687 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10688 mask);
10689 if (ret == -1)
10690 error (_("This target does not support masked watchpoints."));
10691 else if (ret == -2)
10692 error (_("Invalid mask or memory region."));
10693 }
10694 }
10695 else if (val_as_value != NULL)
10696 val = release_value (val_as_value);
10697
10698 tok = skip_spaces (arg);
10699 end_tok = skip_to_space (tok);
10700
10701 toklen = end_tok - tok;
10702 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10703 {
10704 innermost_block.reset ();
10705 tok = cond_start = end_tok + 1;
10706 parse_exp_1 (&tok, 0, 0, 0);
10707
10708 /* The watchpoint expression may not be local, but the condition
10709 may still be. E.g.: `watch global if local > 0'. */
10710 cond_exp_valid_block = innermost_block.block ();
10711
10712 cond_end = tok;
10713 }
10714 if (*tok)
10715 error (_("Junk at end of command."));
10716
10717 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10718
10719 /* Save this because create_internal_breakpoint below invalidates
10720 'wp_frame'. */
10721 frame_id watchpoint_frame = get_frame_id (wp_frame);
10722
10723 /* If the expression is "local", then set up a "watchpoint scope"
10724 breakpoint at the point where we've left the scope of the watchpoint
10725 expression. Create the scope breakpoint before the watchpoint, so
10726 that we will encounter it first in bpstat_stop_status. */
10727 if (exp_valid_block != NULL && wp_frame != NULL)
10728 {
10729 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10730
10731 if (frame_id_p (caller_frame_id))
10732 {
10733 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10734 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10735
10736 scope_breakpoint
10737 = create_internal_breakpoint (caller_arch, caller_pc,
10738 bp_watchpoint_scope,
10739 &momentary_breakpoint_ops);
10740
10741 /* create_internal_breakpoint could invalidate WP_FRAME. */
10742 wp_frame = NULL;
10743
10744 scope_breakpoint->enable_state = bp_enabled;
10745
10746 /* Automatically delete the breakpoint when it hits. */
10747 scope_breakpoint->disposition = disp_del;
10748
10749 /* Only break in the proper frame (help with recursion). */
10750 scope_breakpoint->frame_id = caller_frame_id;
10751
10752 /* Set the address at which we will stop. */
10753 scope_breakpoint->loc->gdbarch = caller_arch;
10754 scope_breakpoint->loc->requested_address = caller_pc;
10755 scope_breakpoint->loc->address
10756 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10757 scope_breakpoint->loc->requested_address,
10758 scope_breakpoint->type);
10759 }
10760 }
10761
10762 /* Now set up the breakpoint. We create all watchpoints as hardware
10763 watchpoints here even if hardware watchpoints are turned off, a call
10764 to update_watchpoint later in this function will cause the type to
10765 drop back to bp_watchpoint (software watchpoint) if required. */
10766
10767 if (accessflag == hw_read)
10768 bp_type = bp_read_watchpoint;
10769 else if (accessflag == hw_access)
10770 bp_type = bp_access_watchpoint;
10771 else
10772 bp_type = bp_hardware_watchpoint;
10773
10774 std::unique_ptr<watchpoint> w (new watchpoint ());
10775
10776 if (use_mask)
10777 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10778 &masked_watchpoint_breakpoint_ops);
10779 else
10780 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10781 &watchpoint_breakpoint_ops);
10782 w->thread = thread;
10783 w->disposition = disp_donttouch;
10784 w->pspace = current_program_space;
10785 w->exp = std::move (exp);
10786 w->exp_valid_block = exp_valid_block;
10787 w->cond_exp_valid_block = cond_exp_valid_block;
10788 if (just_location)
10789 {
10790 struct type *t = value_type (val.get ());
10791 CORE_ADDR addr = value_as_address (val.get ());
10792
10793 w->exp_string_reparse
10794 = current_language->la_watch_location_expression (t, addr).release ();
10795
10796 w->exp_string = xstrprintf ("-location %.*s",
10797 (int) (exp_end - exp_start), exp_start);
10798 }
10799 else
10800 w->exp_string = savestring (exp_start, exp_end - exp_start);
10801
10802 if (use_mask)
10803 {
10804 w->hw_wp_mask = mask;
10805 }
10806 else
10807 {
10808 w->val = val;
10809 w->val_bitpos = saved_bitpos;
10810 w->val_bitsize = saved_bitsize;
10811 w->val_valid = 1;
10812 }
10813
10814 if (cond_start)
10815 w->cond_string = savestring (cond_start, cond_end - cond_start);
10816 else
10817 w->cond_string = 0;
10818
10819 if (frame_id_p (watchpoint_frame))
10820 {
10821 w->watchpoint_frame = watchpoint_frame;
10822 w->watchpoint_thread = inferior_ptid;
10823 }
10824 else
10825 {
10826 w->watchpoint_frame = null_frame_id;
10827 w->watchpoint_thread = null_ptid;
10828 }
10829
10830 if (scope_breakpoint != NULL)
10831 {
10832 /* The scope breakpoint is related to the watchpoint. We will
10833 need to act on them together. */
10834 w->related_breakpoint = scope_breakpoint;
10835 scope_breakpoint->related_breakpoint = w.get ();
10836 }
10837
10838 if (!just_location)
10839 value_free_to_mark (mark);
10840
10841 /* Finally update the new watchpoint. This creates the locations
10842 that should be inserted. */
10843 update_watchpoint (w.get (), 1);
10844
10845 install_breakpoint (internal, std::move (w), 1);
10846 }
10847
10848 /* Return count of debug registers needed to watch the given expression.
10849 If the watchpoint cannot be handled in hardware return zero. */
10850
10851 static int
10852 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10853 {
10854 int found_memory_cnt = 0;
10855
10856 /* Did the user specifically forbid us to use hardware watchpoints? */
10857 if (!can_use_hw_watchpoints)
10858 return 0;
10859
10860 gdb_assert (!vals.empty ());
10861 struct value *head = vals[0].get ();
10862
10863 /* Make sure that the value of the expression depends only upon
10864 memory contents, and values computed from them within GDB. If we
10865 find any register references or function calls, we can't use a
10866 hardware watchpoint.
10867
10868 The idea here is that evaluating an expression generates a series
10869 of values, one holding the value of every subexpression. (The
10870 expression a*b+c has five subexpressions: a, b, a*b, c, and
10871 a*b+c.) GDB's values hold almost enough information to establish
10872 the criteria given above --- they identify memory lvalues,
10873 register lvalues, computed values, etcetera. So we can evaluate
10874 the expression, and then scan the chain of values that leaves
10875 behind to decide whether we can detect any possible change to the
10876 expression's final value using only hardware watchpoints.
10877
10878 However, I don't think that the values returned by inferior
10879 function calls are special in any way. So this function may not
10880 notice that an expression involving an inferior function call
10881 can't be watched with hardware watchpoints. FIXME. */
10882 for (const value_ref_ptr &iter : vals)
10883 {
10884 struct value *v = iter.get ();
10885
10886 if (VALUE_LVAL (v) == lval_memory)
10887 {
10888 if (v != head && value_lazy (v))
10889 /* A lazy memory lvalue in the chain is one that GDB never
10890 needed to fetch; we either just used its address (e.g.,
10891 `a' in `a.b') or we never needed it at all (e.g., `a'
10892 in `a,b'). This doesn't apply to HEAD; if that is
10893 lazy then it was not readable, but watch it anyway. */
10894 ;
10895 else
10896 {
10897 /* Ahh, memory we actually used! Check if we can cover
10898 it with hardware watchpoints. */
10899 struct type *vtype = check_typedef (value_type (v));
10900
10901 /* We only watch structs and arrays if user asked for it
10902 explicitly, never if they just happen to appear in a
10903 middle of some value chain. */
10904 if (v == head
10905 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10906 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10907 {
10908 CORE_ADDR vaddr = value_address (v);
10909 int len;
10910 int num_regs;
10911
10912 len = (target_exact_watchpoints
10913 && is_scalar_type_recursive (vtype))?
10914 1 : TYPE_LENGTH (value_type (v));
10915
10916 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10917 if (!num_regs)
10918 return 0;
10919 else
10920 found_memory_cnt += num_regs;
10921 }
10922 }
10923 }
10924 else if (VALUE_LVAL (v) != not_lval
10925 && deprecated_value_modifiable (v) == 0)
10926 return 0; /* These are values from the history (e.g., $1). */
10927 else if (VALUE_LVAL (v) == lval_register)
10928 return 0; /* Cannot watch a register with a HW watchpoint. */
10929 }
10930
10931 /* The expression itself looks suitable for using a hardware
10932 watchpoint, but give the target machine a chance to reject it. */
10933 return found_memory_cnt;
10934 }
10935
10936 void
10937 watch_command_wrapper (const char *arg, int from_tty, int internal)
10938 {
10939 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10940 }
10941
10942 /* A helper function that looks for the "-location" argument and then
10943 calls watch_command_1. */
10944
10945 static void
10946 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10947 {
10948 int just_location = 0;
10949
10950 if (arg
10951 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10952 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10953 {
10954 arg = skip_spaces (arg);
10955 just_location = 1;
10956 }
10957
10958 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10959 }
10960
10961 static void
10962 watch_command (const char *arg, int from_tty)
10963 {
10964 watch_maybe_just_location (arg, hw_write, from_tty);
10965 }
10966
10967 void
10968 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10969 {
10970 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10971 }
10972
10973 static void
10974 rwatch_command (const char *arg, int from_tty)
10975 {
10976 watch_maybe_just_location (arg, hw_read, from_tty);
10977 }
10978
10979 void
10980 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10981 {
10982 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10983 }
10984
10985 static void
10986 awatch_command (const char *arg, int from_tty)
10987 {
10988 watch_maybe_just_location (arg, hw_access, from_tty);
10989 }
10990 \f
10991
10992 /* Data for the FSM that manages the until(location)/advance commands
10993 in infcmd.c. Here because it uses the mechanisms of
10994 breakpoints. */
10995
10996 struct until_break_fsm
10997 {
10998 /* The base class. */
10999 struct thread_fsm thread_fsm;
11000
11001 /* The thread that as current when the command was executed. */
11002 int thread;
11003
11004 /* The breakpoint set at the destination location. */
11005 struct breakpoint *location_breakpoint;
11006
11007 /* Breakpoint set at the return address in the caller frame. May be
11008 NULL. */
11009 struct breakpoint *caller_breakpoint;
11010 };
11011
11012 static void until_break_fsm_clean_up (struct thread_fsm *self,
11013 struct thread_info *thread);
11014 static int until_break_fsm_should_stop (struct thread_fsm *self,
11015 struct thread_info *thread);
11016 static enum async_reply_reason
11017 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11018
11019 /* until_break_fsm's vtable. */
11020
11021 static struct thread_fsm_ops until_break_fsm_ops =
11022 {
11023 NULL, /* dtor */
11024 until_break_fsm_clean_up,
11025 until_break_fsm_should_stop,
11026 NULL, /* return_value */
11027 until_break_fsm_async_reply_reason,
11028 };
11029
11030 /* Allocate a new until_break_command_fsm. */
11031
11032 static struct until_break_fsm *
11033 new_until_break_fsm (struct interp *cmd_interp, int thread,
11034 breakpoint_up &&location_breakpoint,
11035 breakpoint_up &&caller_breakpoint)
11036 {
11037 struct until_break_fsm *sm;
11038
11039 sm = XCNEW (struct until_break_fsm);
11040 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11041
11042 sm->thread = thread;
11043 sm->location_breakpoint = location_breakpoint.release ();
11044 sm->caller_breakpoint = caller_breakpoint.release ();
11045
11046 return sm;
11047 }
11048
11049 /* Implementation of the 'should_stop' FSM method for the
11050 until(location)/advance commands. */
11051
11052 static int
11053 until_break_fsm_should_stop (struct thread_fsm *self,
11054 struct thread_info *tp)
11055 {
11056 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11057
11058 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11059 sm->location_breakpoint) != NULL
11060 || (sm->caller_breakpoint != NULL
11061 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11062 sm->caller_breakpoint) != NULL))
11063 thread_fsm_set_finished (self);
11064
11065 return 1;
11066 }
11067
11068 /* Implementation of the 'clean_up' FSM method for the
11069 until(location)/advance commands. */
11070
11071 static void
11072 until_break_fsm_clean_up (struct thread_fsm *self,
11073 struct thread_info *thread)
11074 {
11075 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11076
11077 /* Clean up our temporary breakpoints. */
11078 if (sm->location_breakpoint != NULL)
11079 {
11080 delete_breakpoint (sm->location_breakpoint);
11081 sm->location_breakpoint = NULL;
11082 }
11083 if (sm->caller_breakpoint != NULL)
11084 {
11085 delete_breakpoint (sm->caller_breakpoint);
11086 sm->caller_breakpoint = NULL;
11087 }
11088 delete_longjmp_breakpoint (sm->thread);
11089 }
11090
11091 /* Implementation of the 'async_reply_reason' FSM method for the
11092 until(location)/advance commands. */
11093
11094 static enum async_reply_reason
11095 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11096 {
11097 return EXEC_ASYNC_LOCATION_REACHED;
11098 }
11099
11100 void
11101 until_break_command (const char *arg, int from_tty, int anywhere)
11102 {
11103 struct frame_info *frame;
11104 struct gdbarch *frame_gdbarch;
11105 struct frame_id stack_frame_id;
11106 struct frame_id caller_frame_id;
11107 struct cleanup *old_chain;
11108 int thread;
11109 struct thread_info *tp;
11110 struct until_break_fsm *sm;
11111
11112 clear_proceed_status (0);
11113
11114 /* Set a breakpoint where the user wants it and at return from
11115 this function. */
11116
11117 event_location_up location = string_to_event_location (&arg, current_language);
11118
11119 std::vector<symtab_and_line> sals
11120 = (last_displayed_sal_is_valid ()
11121 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11122 get_last_displayed_symtab (),
11123 get_last_displayed_line ())
11124 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11125 NULL, (struct symtab *) NULL, 0));
11126
11127 if (sals.size () != 1)
11128 error (_("Couldn't get information on specified line."));
11129
11130 symtab_and_line &sal = sals[0];
11131
11132 if (*arg)
11133 error (_("Junk at end of arguments."));
11134
11135 resolve_sal_pc (&sal);
11136
11137 tp = inferior_thread ();
11138 thread = tp->global_num;
11139
11140 old_chain = make_cleanup (null_cleanup, NULL);
11141
11142 /* Note linespec handling above invalidates the frame chain.
11143 Installing a breakpoint also invalidates the frame chain (as it
11144 may need to switch threads), so do any frame handling before
11145 that. */
11146
11147 frame = get_selected_frame (NULL);
11148 frame_gdbarch = get_frame_arch (frame);
11149 stack_frame_id = get_stack_frame_id (frame);
11150 caller_frame_id = frame_unwind_caller_id (frame);
11151
11152 /* Keep within the current frame, or in frames called by the current
11153 one. */
11154
11155 breakpoint_up caller_breakpoint;
11156 if (frame_id_p (caller_frame_id))
11157 {
11158 struct symtab_and_line sal2;
11159 struct gdbarch *caller_gdbarch;
11160
11161 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11162 sal2.pc = frame_unwind_caller_pc (frame);
11163 caller_gdbarch = frame_unwind_caller_arch (frame);
11164 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11165 sal2,
11166 caller_frame_id,
11167 bp_until);
11168
11169 set_longjmp_breakpoint (tp, caller_frame_id);
11170 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11171 }
11172
11173 /* set_momentary_breakpoint could invalidate FRAME. */
11174 frame = NULL;
11175
11176 breakpoint_up location_breakpoint;
11177 if (anywhere)
11178 /* If the user told us to continue until a specified location,
11179 we don't specify a frame at which we need to stop. */
11180 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11181 null_frame_id, bp_until);
11182 else
11183 /* Otherwise, specify the selected frame, because we want to stop
11184 only at the very same frame. */
11185 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11186 stack_frame_id, bp_until);
11187
11188 sm = new_until_break_fsm (command_interp (), tp->global_num,
11189 std::move (location_breakpoint),
11190 std::move (caller_breakpoint));
11191 tp->thread_fsm = &sm->thread_fsm;
11192
11193 discard_cleanups (old_chain);
11194
11195 proceed (-1, GDB_SIGNAL_DEFAULT);
11196 }
11197
11198 /* This function attempts to parse an optional "if <cond>" clause
11199 from the arg string. If one is not found, it returns NULL.
11200
11201 Else, it returns a pointer to the condition string. (It does not
11202 attempt to evaluate the string against a particular block.) And,
11203 it updates arg to point to the first character following the parsed
11204 if clause in the arg string. */
11205
11206 const char *
11207 ep_parse_optional_if_clause (const char **arg)
11208 {
11209 const char *cond_string;
11210
11211 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11212 return NULL;
11213
11214 /* Skip the "if" keyword. */
11215 (*arg) += 2;
11216
11217 /* Skip any extra leading whitespace, and record the start of the
11218 condition string. */
11219 *arg = skip_spaces (*arg);
11220 cond_string = *arg;
11221
11222 /* Assume that the condition occupies the remainder of the arg
11223 string. */
11224 (*arg) += strlen (cond_string);
11225
11226 return cond_string;
11227 }
11228
11229 /* Commands to deal with catching events, such as signals, exceptions,
11230 process start/exit, etc. */
11231
11232 typedef enum
11233 {
11234 catch_fork_temporary, catch_vfork_temporary,
11235 catch_fork_permanent, catch_vfork_permanent
11236 }
11237 catch_fork_kind;
11238
11239 static void
11240 catch_fork_command_1 (const char *arg, int from_tty,
11241 struct cmd_list_element *command)
11242 {
11243 struct gdbarch *gdbarch = get_current_arch ();
11244 const char *cond_string = NULL;
11245 catch_fork_kind fork_kind;
11246 int tempflag;
11247
11248 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11249 tempflag = (fork_kind == catch_fork_temporary
11250 || fork_kind == catch_vfork_temporary);
11251
11252 if (!arg)
11253 arg = "";
11254 arg = skip_spaces (arg);
11255
11256 /* The allowed syntax is:
11257 catch [v]fork
11258 catch [v]fork if <cond>
11259
11260 First, check if there's an if clause. */
11261 cond_string = ep_parse_optional_if_clause (&arg);
11262
11263 if ((*arg != '\0') && !isspace (*arg))
11264 error (_("Junk at end of arguments."));
11265
11266 /* If this target supports it, create a fork or vfork catchpoint
11267 and enable reporting of such events. */
11268 switch (fork_kind)
11269 {
11270 case catch_fork_temporary:
11271 case catch_fork_permanent:
11272 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11273 &catch_fork_breakpoint_ops);
11274 break;
11275 case catch_vfork_temporary:
11276 case catch_vfork_permanent:
11277 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11278 &catch_vfork_breakpoint_ops);
11279 break;
11280 default:
11281 error (_("unsupported or unknown fork kind; cannot catch it"));
11282 break;
11283 }
11284 }
11285
11286 static void
11287 catch_exec_command_1 (const char *arg, int from_tty,
11288 struct cmd_list_element *command)
11289 {
11290 struct gdbarch *gdbarch = get_current_arch ();
11291 int tempflag;
11292 const char *cond_string = NULL;
11293
11294 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11295
11296 if (!arg)
11297 arg = "";
11298 arg = skip_spaces (arg);
11299
11300 /* The allowed syntax is:
11301 catch exec
11302 catch exec if <cond>
11303
11304 First, check if there's an if clause. */
11305 cond_string = ep_parse_optional_if_clause (&arg);
11306
11307 if ((*arg != '\0') && !isspace (*arg))
11308 error (_("Junk at end of arguments."));
11309
11310 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11311 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11312 &catch_exec_breakpoint_ops);
11313 c->exec_pathname = NULL;
11314
11315 install_breakpoint (0, std::move (c), 1);
11316 }
11317
11318 void
11319 init_ada_exception_breakpoint (struct breakpoint *b,
11320 struct gdbarch *gdbarch,
11321 struct symtab_and_line sal,
11322 const char *addr_string,
11323 const struct breakpoint_ops *ops,
11324 int tempflag,
11325 int enabled,
11326 int from_tty)
11327 {
11328 if (from_tty)
11329 {
11330 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11331 if (!loc_gdbarch)
11332 loc_gdbarch = gdbarch;
11333
11334 describe_other_breakpoints (loc_gdbarch,
11335 sal.pspace, sal.pc, sal.section, -1);
11336 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11337 version for exception catchpoints, because two catchpoints
11338 used for different exception names will use the same address.
11339 In this case, a "breakpoint ... also set at..." warning is
11340 unproductive. Besides, the warning phrasing is also a bit
11341 inappropriate, we should use the word catchpoint, and tell
11342 the user what type of catchpoint it is. The above is good
11343 enough for now, though. */
11344 }
11345
11346 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11347
11348 b->enable_state = enabled ? bp_enabled : bp_disabled;
11349 b->disposition = tempflag ? disp_del : disp_donttouch;
11350 b->location = string_to_event_location (&addr_string,
11351 language_def (language_ada));
11352 b->language = language_ada;
11353 }
11354
11355 static void
11356 catch_command (const char *arg, int from_tty)
11357 {
11358 error (_("Catch requires an event name."));
11359 }
11360 \f
11361
11362 static void
11363 tcatch_command (const char *arg, int from_tty)
11364 {
11365 error (_("Catch requires an event name."));
11366 }
11367
11368 /* Compare two breakpoints and return a strcmp-like result. */
11369
11370 static int
11371 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11372 {
11373 uintptr_t ua = (uintptr_t) a;
11374 uintptr_t ub = (uintptr_t) b;
11375
11376 if (a->number < b->number)
11377 return -1;
11378 else if (a->number > b->number)
11379 return 1;
11380
11381 /* Now sort by address, in case we see, e..g, two breakpoints with
11382 the number 0. */
11383 if (ua < ub)
11384 return -1;
11385 return ua > ub ? 1 : 0;
11386 }
11387
11388 /* Delete breakpoints by address or line. */
11389
11390 static void
11391 clear_command (const char *arg, int from_tty)
11392 {
11393 struct breakpoint *b;
11394 int default_match;
11395
11396 std::vector<symtab_and_line> decoded_sals;
11397 symtab_and_line last_sal;
11398 gdb::array_view<symtab_and_line> sals;
11399 if (arg)
11400 {
11401 decoded_sals
11402 = decode_line_with_current_source (arg,
11403 (DECODE_LINE_FUNFIRSTLINE
11404 | DECODE_LINE_LIST_MODE));
11405 default_match = 0;
11406 sals = decoded_sals;
11407 }
11408 else
11409 {
11410 /* Set sal's line, symtab, pc, and pspace to the values
11411 corresponding to the last call to print_frame_info. If the
11412 codepoint is not valid, this will set all the fields to 0. */
11413 last_sal = get_last_displayed_sal ();
11414 if (last_sal.symtab == 0)
11415 error (_("No source file specified."));
11416
11417 default_match = 1;
11418 sals = last_sal;
11419 }
11420
11421 /* We don't call resolve_sal_pc here. That's not as bad as it
11422 seems, because all existing breakpoints typically have both
11423 file/line and pc set. So, if clear is given file/line, we can
11424 match this to existing breakpoint without obtaining pc at all.
11425
11426 We only support clearing given the address explicitly
11427 present in breakpoint table. Say, we've set breakpoint
11428 at file:line. There were several PC values for that file:line,
11429 due to optimization, all in one block.
11430
11431 We've picked one PC value. If "clear" is issued with another
11432 PC corresponding to the same file:line, the breakpoint won't
11433 be cleared. We probably can still clear the breakpoint, but
11434 since the other PC value is never presented to user, user
11435 can only find it by guessing, and it does not seem important
11436 to support that. */
11437
11438 /* For each line spec given, delete bps which correspond to it. Do
11439 it in two passes, solely to preserve the current behavior that
11440 from_tty is forced true if we delete more than one
11441 breakpoint. */
11442
11443 std::vector<struct breakpoint *> found;
11444 for (const auto &sal : sals)
11445 {
11446 const char *sal_fullname;
11447
11448 /* If exact pc given, clear bpts at that pc.
11449 If line given (pc == 0), clear all bpts on specified line.
11450 If defaulting, clear all bpts on default line
11451 or at default pc.
11452
11453 defaulting sal.pc != 0 tests to do
11454
11455 0 1 pc
11456 1 1 pc _and_ line
11457 0 0 line
11458 1 0 <can't happen> */
11459
11460 sal_fullname = (sal.symtab == NULL
11461 ? NULL : symtab_to_fullname (sal.symtab));
11462
11463 /* Find all matching breakpoints and add them to 'found'. */
11464 ALL_BREAKPOINTS (b)
11465 {
11466 int match = 0;
11467 /* Are we going to delete b? */
11468 if (b->type != bp_none && !is_watchpoint (b))
11469 {
11470 struct bp_location *loc = b->loc;
11471 for (; loc; loc = loc->next)
11472 {
11473 /* If the user specified file:line, don't allow a PC
11474 match. This matches historical gdb behavior. */
11475 int pc_match = (!sal.explicit_line
11476 && sal.pc
11477 && (loc->pspace == sal.pspace)
11478 && (loc->address == sal.pc)
11479 && (!section_is_overlay (loc->section)
11480 || loc->section == sal.section));
11481 int line_match = 0;
11482
11483 if ((default_match || sal.explicit_line)
11484 && loc->symtab != NULL
11485 && sal_fullname != NULL
11486 && sal.pspace == loc->pspace
11487 && loc->line_number == sal.line
11488 && filename_cmp (symtab_to_fullname (loc->symtab),
11489 sal_fullname) == 0)
11490 line_match = 1;
11491
11492 if (pc_match || line_match)
11493 {
11494 match = 1;
11495 break;
11496 }
11497 }
11498 }
11499
11500 if (match)
11501 found.push_back (b);
11502 }
11503 }
11504
11505 /* Now go thru the 'found' chain and delete them. */
11506 if (found.empty ())
11507 {
11508 if (arg)
11509 error (_("No breakpoint at %s."), arg);
11510 else
11511 error (_("No breakpoint at this line."));
11512 }
11513
11514 /* Remove duplicates from the vec. */
11515 std::sort (found.begin (), found.end (),
11516 [] (const breakpoint *a, const breakpoint *b)
11517 {
11518 return compare_breakpoints (a, b) < 0;
11519 });
11520 found.erase (std::unique (found.begin (), found.end (),
11521 [] (const breakpoint *a, const breakpoint *b)
11522 {
11523 return compare_breakpoints (a, b) == 0;
11524 }),
11525 found.end ());
11526
11527 if (found.size () > 1)
11528 from_tty = 1; /* Always report if deleted more than one. */
11529 if (from_tty)
11530 {
11531 if (found.size () == 1)
11532 printf_unfiltered (_("Deleted breakpoint "));
11533 else
11534 printf_unfiltered (_("Deleted breakpoints "));
11535 }
11536
11537 for (breakpoint *iter : found)
11538 {
11539 if (from_tty)
11540 printf_unfiltered ("%d ", iter->number);
11541 delete_breakpoint (iter);
11542 }
11543 if (from_tty)
11544 putchar_unfiltered ('\n');
11545 }
11546 \f
11547 /* Delete breakpoint in BS if they are `delete' breakpoints and
11548 all breakpoints that are marked for deletion, whether hit or not.
11549 This is called after any breakpoint is hit, or after errors. */
11550
11551 void
11552 breakpoint_auto_delete (bpstat bs)
11553 {
11554 struct breakpoint *b, *b_tmp;
11555
11556 for (; bs; bs = bs->next)
11557 if (bs->breakpoint_at
11558 && bs->breakpoint_at->disposition == disp_del
11559 && bs->stop)
11560 delete_breakpoint (bs->breakpoint_at);
11561
11562 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11563 {
11564 if (b->disposition == disp_del_at_next_stop)
11565 delete_breakpoint (b);
11566 }
11567 }
11568
11569 /* A comparison function for bp_location AP and BP being interfaced to
11570 qsort. Sort elements primarily by their ADDRESS (no matter what
11571 does breakpoint_address_is_meaningful say for its OWNER),
11572 secondarily by ordering first permanent elements and
11573 terciarily just ensuring the array is sorted stable way despite
11574 qsort being an unstable algorithm. */
11575
11576 static int
11577 bp_locations_compare (const void *ap, const void *bp)
11578 {
11579 const struct bp_location *a = *(const struct bp_location **) ap;
11580 const struct bp_location *b = *(const struct bp_location **) bp;
11581
11582 if (a->address != b->address)
11583 return (a->address > b->address) - (a->address < b->address);
11584
11585 /* Sort locations at the same address by their pspace number, keeping
11586 locations of the same inferior (in a multi-inferior environment)
11587 grouped. */
11588
11589 if (a->pspace->num != b->pspace->num)
11590 return ((a->pspace->num > b->pspace->num)
11591 - (a->pspace->num < b->pspace->num));
11592
11593 /* Sort permanent breakpoints first. */
11594 if (a->permanent != b->permanent)
11595 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11596
11597 /* Make the internal GDB representation stable across GDB runs
11598 where A and B memory inside GDB can differ. Breakpoint locations of
11599 the same type at the same address can be sorted in arbitrary order. */
11600
11601 if (a->owner->number != b->owner->number)
11602 return ((a->owner->number > b->owner->number)
11603 - (a->owner->number < b->owner->number));
11604
11605 return (a > b) - (a < b);
11606 }
11607
11608 /* Set bp_locations_placed_address_before_address_max and
11609 bp_locations_shadow_len_after_address_max according to the current
11610 content of the bp_locations array. */
11611
11612 static void
11613 bp_locations_target_extensions_update (void)
11614 {
11615 struct bp_location *bl, **blp_tmp;
11616
11617 bp_locations_placed_address_before_address_max = 0;
11618 bp_locations_shadow_len_after_address_max = 0;
11619
11620 ALL_BP_LOCATIONS (bl, blp_tmp)
11621 {
11622 CORE_ADDR start, end, addr;
11623
11624 if (!bp_location_has_shadow (bl))
11625 continue;
11626
11627 start = bl->target_info.placed_address;
11628 end = start + bl->target_info.shadow_len;
11629
11630 gdb_assert (bl->address >= start);
11631 addr = bl->address - start;
11632 if (addr > bp_locations_placed_address_before_address_max)
11633 bp_locations_placed_address_before_address_max = addr;
11634
11635 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11636
11637 gdb_assert (bl->address < end);
11638 addr = end - bl->address;
11639 if (addr > bp_locations_shadow_len_after_address_max)
11640 bp_locations_shadow_len_after_address_max = addr;
11641 }
11642 }
11643
11644 /* Download tracepoint locations if they haven't been. */
11645
11646 static void
11647 download_tracepoint_locations (void)
11648 {
11649 struct breakpoint *b;
11650 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11651
11652 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11653
11654 ALL_TRACEPOINTS (b)
11655 {
11656 struct bp_location *bl;
11657 struct tracepoint *t;
11658 int bp_location_downloaded = 0;
11659
11660 if ((b->type == bp_fast_tracepoint
11661 ? !may_insert_fast_tracepoints
11662 : !may_insert_tracepoints))
11663 continue;
11664
11665 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11666 {
11667 if (target_can_download_tracepoint ())
11668 can_download_tracepoint = TRIBOOL_TRUE;
11669 else
11670 can_download_tracepoint = TRIBOOL_FALSE;
11671 }
11672
11673 if (can_download_tracepoint == TRIBOOL_FALSE)
11674 break;
11675
11676 for (bl = b->loc; bl; bl = bl->next)
11677 {
11678 /* In tracepoint, locations are _never_ duplicated, so
11679 should_be_inserted is equivalent to
11680 unduplicated_should_be_inserted. */
11681 if (!should_be_inserted (bl) || bl->inserted)
11682 continue;
11683
11684 switch_to_program_space_and_thread (bl->pspace);
11685
11686 target_download_tracepoint (bl);
11687
11688 bl->inserted = 1;
11689 bp_location_downloaded = 1;
11690 }
11691 t = (struct tracepoint *) b;
11692 t->number_on_target = b->number;
11693 if (bp_location_downloaded)
11694 gdb::observers::breakpoint_modified.notify (b);
11695 }
11696 }
11697
11698 /* Swap the insertion/duplication state between two locations. */
11699
11700 static void
11701 swap_insertion (struct bp_location *left, struct bp_location *right)
11702 {
11703 const int left_inserted = left->inserted;
11704 const int left_duplicate = left->duplicate;
11705 const int left_needs_update = left->needs_update;
11706 const struct bp_target_info left_target_info = left->target_info;
11707
11708 /* Locations of tracepoints can never be duplicated. */
11709 if (is_tracepoint (left->owner))
11710 gdb_assert (!left->duplicate);
11711 if (is_tracepoint (right->owner))
11712 gdb_assert (!right->duplicate);
11713
11714 left->inserted = right->inserted;
11715 left->duplicate = right->duplicate;
11716 left->needs_update = right->needs_update;
11717 left->target_info = right->target_info;
11718 right->inserted = left_inserted;
11719 right->duplicate = left_duplicate;
11720 right->needs_update = left_needs_update;
11721 right->target_info = left_target_info;
11722 }
11723
11724 /* Force the re-insertion of the locations at ADDRESS. This is called
11725 once a new/deleted/modified duplicate location is found and we are evaluating
11726 conditions on the target's side. Such conditions need to be updated on
11727 the target. */
11728
11729 static void
11730 force_breakpoint_reinsertion (struct bp_location *bl)
11731 {
11732 struct bp_location **locp = NULL, **loc2p;
11733 struct bp_location *loc;
11734 CORE_ADDR address = 0;
11735 int pspace_num;
11736
11737 address = bl->address;
11738 pspace_num = bl->pspace->num;
11739
11740 /* This is only meaningful if the target is
11741 evaluating conditions and if the user has
11742 opted for condition evaluation on the target's
11743 side. */
11744 if (gdb_evaluates_breakpoint_condition_p ()
11745 || !target_supports_evaluation_of_breakpoint_conditions ())
11746 return;
11747
11748 /* Flag all breakpoint locations with this address and
11749 the same program space as the location
11750 as "its condition has changed". We need to
11751 update the conditions on the target's side. */
11752 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11753 {
11754 loc = *loc2p;
11755
11756 if (!is_breakpoint (loc->owner)
11757 || pspace_num != loc->pspace->num)
11758 continue;
11759
11760 /* Flag the location appropriately. We use a different state to
11761 let everyone know that we already updated the set of locations
11762 with addr bl->address and program space bl->pspace. This is so
11763 we don't have to keep calling these functions just to mark locations
11764 that have already been marked. */
11765 loc->condition_changed = condition_updated;
11766
11767 /* Free the agent expression bytecode as well. We will compute
11768 it later on. */
11769 loc->cond_bytecode.reset ();
11770 }
11771 }
11772 /* Called whether new breakpoints are created, or existing breakpoints
11773 deleted, to update the global location list and recompute which
11774 locations are duplicate of which.
11775
11776 The INSERT_MODE flag determines whether locations may not, may, or
11777 shall be inserted now. See 'enum ugll_insert_mode' for more
11778 info. */
11779
11780 static void
11781 update_global_location_list (enum ugll_insert_mode insert_mode)
11782 {
11783 struct breakpoint *b;
11784 struct bp_location **locp, *loc;
11785 /* Last breakpoint location address that was marked for update. */
11786 CORE_ADDR last_addr = 0;
11787 /* Last breakpoint location program space that was marked for update. */
11788 int last_pspace_num = -1;
11789
11790 /* Used in the duplicates detection below. When iterating over all
11791 bp_locations, points to the first bp_location of a given address.
11792 Breakpoints and watchpoints of different types are never
11793 duplicates of each other. Keep one pointer for each type of
11794 breakpoint/watchpoint, so we only need to loop over all locations
11795 once. */
11796 struct bp_location *bp_loc_first; /* breakpoint */
11797 struct bp_location *wp_loc_first; /* hardware watchpoint */
11798 struct bp_location *awp_loc_first; /* access watchpoint */
11799 struct bp_location *rwp_loc_first; /* read watchpoint */
11800
11801 /* Saved former bp_locations array which we compare against the newly
11802 built bp_locations from the current state of ALL_BREAKPOINTS. */
11803 struct bp_location **old_locp;
11804 unsigned old_locations_count;
11805 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11806
11807 old_locations_count = bp_locations_count;
11808 bp_locations = NULL;
11809 bp_locations_count = 0;
11810
11811 ALL_BREAKPOINTS (b)
11812 for (loc = b->loc; loc; loc = loc->next)
11813 bp_locations_count++;
11814
11815 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11816 locp = bp_locations;
11817 ALL_BREAKPOINTS (b)
11818 for (loc = b->loc; loc; loc = loc->next)
11819 *locp++ = loc;
11820 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11821 bp_locations_compare);
11822
11823 bp_locations_target_extensions_update ();
11824
11825 /* Identify bp_location instances that are no longer present in the
11826 new list, and therefore should be freed. Note that it's not
11827 necessary that those locations should be removed from inferior --
11828 if there's another location at the same address (previously
11829 marked as duplicate), we don't need to remove/insert the
11830 location.
11831
11832 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11833 and former bp_location array state respectively. */
11834
11835 locp = bp_locations;
11836 for (old_locp = old_locations.get ();
11837 old_locp < old_locations.get () + old_locations_count;
11838 old_locp++)
11839 {
11840 struct bp_location *old_loc = *old_locp;
11841 struct bp_location **loc2p;
11842
11843 /* Tells if 'old_loc' is found among the new locations. If
11844 not, we have to free it. */
11845 int found_object = 0;
11846 /* Tells if the location should remain inserted in the target. */
11847 int keep_in_target = 0;
11848 int removed = 0;
11849
11850 /* Skip LOCP entries which will definitely never be needed.
11851 Stop either at or being the one matching OLD_LOC. */
11852 while (locp < bp_locations + bp_locations_count
11853 && (*locp)->address < old_loc->address)
11854 locp++;
11855
11856 for (loc2p = locp;
11857 (loc2p < bp_locations + bp_locations_count
11858 && (*loc2p)->address == old_loc->address);
11859 loc2p++)
11860 {
11861 /* Check if this is a new/duplicated location or a duplicated
11862 location that had its condition modified. If so, we want to send
11863 its condition to the target if evaluation of conditions is taking
11864 place there. */
11865 if ((*loc2p)->condition_changed == condition_modified
11866 && (last_addr != old_loc->address
11867 || last_pspace_num != old_loc->pspace->num))
11868 {
11869 force_breakpoint_reinsertion (*loc2p);
11870 last_pspace_num = old_loc->pspace->num;
11871 }
11872
11873 if (*loc2p == old_loc)
11874 found_object = 1;
11875 }
11876
11877 /* We have already handled this address, update it so that we don't
11878 have to go through updates again. */
11879 last_addr = old_loc->address;
11880
11881 /* Target-side condition evaluation: Handle deleted locations. */
11882 if (!found_object)
11883 force_breakpoint_reinsertion (old_loc);
11884
11885 /* If this location is no longer present, and inserted, look if
11886 there's maybe a new location at the same address. If so,
11887 mark that one inserted, and don't remove this one. This is
11888 needed so that we don't have a time window where a breakpoint
11889 at certain location is not inserted. */
11890
11891 if (old_loc->inserted)
11892 {
11893 /* If the location is inserted now, we might have to remove
11894 it. */
11895
11896 if (found_object && should_be_inserted (old_loc))
11897 {
11898 /* The location is still present in the location list,
11899 and still should be inserted. Don't do anything. */
11900 keep_in_target = 1;
11901 }
11902 else
11903 {
11904 /* This location still exists, but it won't be kept in the
11905 target since it may have been disabled. We proceed to
11906 remove its target-side condition. */
11907
11908 /* The location is either no longer present, or got
11909 disabled. See if there's another location at the
11910 same address, in which case we don't need to remove
11911 this one from the target. */
11912
11913 /* OLD_LOC comes from existing struct breakpoint. */
11914 if (breakpoint_address_is_meaningful (old_loc->owner))
11915 {
11916 for (loc2p = locp;
11917 (loc2p < bp_locations + bp_locations_count
11918 && (*loc2p)->address == old_loc->address);
11919 loc2p++)
11920 {
11921 struct bp_location *loc2 = *loc2p;
11922
11923 if (breakpoint_locations_match (loc2, old_loc))
11924 {
11925 /* Read watchpoint locations are switched to
11926 access watchpoints, if the former are not
11927 supported, but the latter are. */
11928 if (is_hardware_watchpoint (old_loc->owner))
11929 {
11930 gdb_assert (is_hardware_watchpoint (loc2->owner));
11931 loc2->watchpoint_type = old_loc->watchpoint_type;
11932 }
11933
11934 /* loc2 is a duplicated location. We need to check
11935 if it should be inserted in case it will be
11936 unduplicated. */
11937 if (loc2 != old_loc
11938 && unduplicated_should_be_inserted (loc2))
11939 {
11940 swap_insertion (old_loc, loc2);
11941 keep_in_target = 1;
11942 break;
11943 }
11944 }
11945 }
11946 }
11947 }
11948
11949 if (!keep_in_target)
11950 {
11951 if (remove_breakpoint (old_loc))
11952 {
11953 /* This is just about all we can do. We could keep
11954 this location on the global list, and try to
11955 remove it next time, but there's no particular
11956 reason why we will succeed next time.
11957
11958 Note that at this point, old_loc->owner is still
11959 valid, as delete_breakpoint frees the breakpoint
11960 only after calling us. */
11961 printf_filtered (_("warning: Error removing "
11962 "breakpoint %d\n"),
11963 old_loc->owner->number);
11964 }
11965 removed = 1;
11966 }
11967 }
11968
11969 if (!found_object)
11970 {
11971 if (removed && target_is_non_stop_p ()
11972 && need_moribund_for_location_type (old_loc))
11973 {
11974 /* This location was removed from the target. In
11975 non-stop mode, a race condition is possible where
11976 we've removed a breakpoint, but stop events for that
11977 breakpoint are already queued and will arrive later.
11978 We apply an heuristic to be able to distinguish such
11979 SIGTRAPs from other random SIGTRAPs: we keep this
11980 breakpoint location for a bit, and will retire it
11981 after we see some number of events. The theory here
11982 is that reporting of events should, "on the average",
11983 be fair, so after a while we'll see events from all
11984 threads that have anything of interest, and no longer
11985 need to keep this breakpoint location around. We
11986 don't hold locations forever so to reduce chances of
11987 mistaking a non-breakpoint SIGTRAP for a breakpoint
11988 SIGTRAP.
11989
11990 The heuristic failing can be disastrous on
11991 decr_pc_after_break targets.
11992
11993 On decr_pc_after_break targets, like e.g., x86-linux,
11994 if we fail to recognize a late breakpoint SIGTRAP,
11995 because events_till_retirement has reached 0 too
11996 soon, we'll fail to do the PC adjustment, and report
11997 a random SIGTRAP to the user. When the user resumes
11998 the inferior, it will most likely immediately crash
11999 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12000 corrupted, because of being resumed e.g., in the
12001 middle of a multi-byte instruction, or skipped a
12002 one-byte instruction. This was actually seen happen
12003 on native x86-linux, and should be less rare on
12004 targets that do not support new thread events, like
12005 remote, due to the heuristic depending on
12006 thread_count.
12007
12008 Mistaking a random SIGTRAP for a breakpoint trap
12009 causes similar symptoms (PC adjustment applied when
12010 it shouldn't), but then again, playing with SIGTRAPs
12011 behind the debugger's back is asking for trouble.
12012
12013 Since hardware watchpoint traps are always
12014 distinguishable from other traps, so we don't need to
12015 apply keep hardware watchpoint moribund locations
12016 around. We simply always ignore hardware watchpoint
12017 traps we can no longer explain. */
12018
12019 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12020 old_loc->owner = NULL;
12021
12022 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12023 }
12024 else
12025 {
12026 old_loc->owner = NULL;
12027 decref_bp_location (&old_loc);
12028 }
12029 }
12030 }
12031
12032 /* Rescan breakpoints at the same address and section, marking the
12033 first one as "first" and any others as "duplicates". This is so
12034 that the bpt instruction is only inserted once. If we have a
12035 permanent breakpoint at the same place as BPT, make that one the
12036 official one, and the rest as duplicates. Permanent breakpoints
12037 are sorted first for the same address.
12038
12039 Do the same for hardware watchpoints, but also considering the
12040 watchpoint's type (regular/access/read) and length. */
12041
12042 bp_loc_first = NULL;
12043 wp_loc_first = NULL;
12044 awp_loc_first = NULL;
12045 rwp_loc_first = NULL;
12046 ALL_BP_LOCATIONS (loc, locp)
12047 {
12048 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12049 non-NULL. */
12050 struct bp_location **loc_first_p;
12051 b = loc->owner;
12052
12053 if (!unduplicated_should_be_inserted (loc)
12054 || !breakpoint_address_is_meaningful (b)
12055 /* Don't detect duplicate for tracepoint locations because they are
12056 never duplicated. See the comments in field `duplicate' of
12057 `struct bp_location'. */
12058 || is_tracepoint (b))
12059 {
12060 /* Clear the condition modification flag. */
12061 loc->condition_changed = condition_unchanged;
12062 continue;
12063 }
12064
12065 if (b->type == bp_hardware_watchpoint)
12066 loc_first_p = &wp_loc_first;
12067 else if (b->type == bp_read_watchpoint)
12068 loc_first_p = &rwp_loc_first;
12069 else if (b->type == bp_access_watchpoint)
12070 loc_first_p = &awp_loc_first;
12071 else
12072 loc_first_p = &bp_loc_first;
12073
12074 if (*loc_first_p == NULL
12075 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12076 || !breakpoint_locations_match (loc, *loc_first_p))
12077 {
12078 *loc_first_p = loc;
12079 loc->duplicate = 0;
12080
12081 if (is_breakpoint (loc->owner) && loc->condition_changed)
12082 {
12083 loc->needs_update = 1;
12084 /* Clear the condition modification flag. */
12085 loc->condition_changed = condition_unchanged;
12086 }
12087 continue;
12088 }
12089
12090
12091 /* This and the above ensure the invariant that the first location
12092 is not duplicated, and is the inserted one.
12093 All following are marked as duplicated, and are not inserted. */
12094 if (loc->inserted)
12095 swap_insertion (loc, *loc_first_p);
12096 loc->duplicate = 1;
12097
12098 /* Clear the condition modification flag. */
12099 loc->condition_changed = condition_unchanged;
12100 }
12101
12102 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12103 {
12104 if (insert_mode != UGLL_DONT_INSERT)
12105 insert_breakpoint_locations ();
12106 else
12107 {
12108 /* Even though the caller told us to not insert new
12109 locations, we may still need to update conditions on the
12110 target's side of breakpoints that were already inserted
12111 if the target is evaluating breakpoint conditions. We
12112 only update conditions for locations that are marked
12113 "needs_update". */
12114 update_inserted_breakpoint_locations ();
12115 }
12116 }
12117
12118 if (insert_mode != UGLL_DONT_INSERT)
12119 download_tracepoint_locations ();
12120 }
12121
12122 void
12123 breakpoint_retire_moribund (void)
12124 {
12125 struct bp_location *loc;
12126 int ix;
12127
12128 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12129 if (--(loc->events_till_retirement) == 0)
12130 {
12131 decref_bp_location (&loc);
12132 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12133 --ix;
12134 }
12135 }
12136
12137 static void
12138 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12139 {
12140
12141 TRY
12142 {
12143 update_global_location_list (insert_mode);
12144 }
12145 CATCH (e, RETURN_MASK_ERROR)
12146 {
12147 }
12148 END_CATCH
12149 }
12150
12151 /* Clear BKP from a BPS. */
12152
12153 static void
12154 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12155 {
12156 bpstat bs;
12157
12158 for (bs = bps; bs; bs = bs->next)
12159 if (bs->breakpoint_at == bpt)
12160 {
12161 bs->breakpoint_at = NULL;
12162 bs->old_val = NULL;
12163 /* bs->commands will be freed later. */
12164 }
12165 }
12166
12167 /* Callback for iterate_over_threads. */
12168 static int
12169 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12170 {
12171 struct breakpoint *bpt = (struct breakpoint *) data;
12172
12173 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12174 return 0;
12175 }
12176
12177 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12178 callbacks. */
12179
12180 static void
12181 say_where (struct breakpoint *b)
12182 {
12183 struct value_print_options opts;
12184
12185 get_user_print_options (&opts);
12186
12187 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12188 single string. */
12189 if (b->loc == NULL)
12190 {
12191 /* For pending locations, the output differs slightly based
12192 on b->extra_string. If this is non-NULL, it contains either
12193 a condition or dprintf arguments. */
12194 if (b->extra_string == NULL)
12195 {
12196 printf_filtered (_(" (%s) pending."),
12197 event_location_to_string (b->location.get ()));
12198 }
12199 else if (b->type == bp_dprintf)
12200 {
12201 printf_filtered (_(" (%s,%s) pending."),
12202 event_location_to_string (b->location.get ()),
12203 b->extra_string);
12204 }
12205 else
12206 {
12207 printf_filtered (_(" (%s %s) pending."),
12208 event_location_to_string (b->location.get ()),
12209 b->extra_string);
12210 }
12211 }
12212 else
12213 {
12214 if (opts.addressprint || b->loc->symtab == NULL)
12215 {
12216 printf_filtered (" at ");
12217 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12218 gdb_stdout);
12219 }
12220 if (b->loc->symtab != NULL)
12221 {
12222 /* If there is a single location, we can print the location
12223 more nicely. */
12224 if (b->loc->next == NULL)
12225 printf_filtered (": file %s, line %d.",
12226 symtab_to_filename_for_display (b->loc->symtab),
12227 b->loc->line_number);
12228 else
12229 /* This is not ideal, but each location may have a
12230 different file name, and this at least reflects the
12231 real situation somewhat. */
12232 printf_filtered (": %s.",
12233 event_location_to_string (b->location.get ()));
12234 }
12235
12236 if (b->loc->next)
12237 {
12238 struct bp_location *loc = b->loc;
12239 int n = 0;
12240 for (; loc; loc = loc->next)
12241 ++n;
12242 printf_filtered (" (%d locations)", n);
12243 }
12244 }
12245 }
12246
12247 /* Default bp_location_ops methods. */
12248
12249 static void
12250 bp_location_dtor (struct bp_location *self)
12251 {
12252 xfree (self->function_name);
12253 }
12254
12255 static const struct bp_location_ops bp_location_ops =
12256 {
12257 bp_location_dtor
12258 };
12259
12260 /* Destructor for the breakpoint base class. */
12261
12262 breakpoint::~breakpoint ()
12263 {
12264 xfree (this->cond_string);
12265 xfree (this->extra_string);
12266 xfree (this->filter);
12267 }
12268
12269 static struct bp_location *
12270 base_breakpoint_allocate_location (struct breakpoint *self)
12271 {
12272 return new bp_location (&bp_location_ops, self);
12273 }
12274
12275 static void
12276 base_breakpoint_re_set (struct breakpoint *b)
12277 {
12278 /* Nothing to re-set. */
12279 }
12280
12281 #define internal_error_pure_virtual_called() \
12282 gdb_assert_not_reached ("pure virtual function called")
12283
12284 static int
12285 base_breakpoint_insert_location (struct bp_location *bl)
12286 {
12287 internal_error_pure_virtual_called ();
12288 }
12289
12290 static int
12291 base_breakpoint_remove_location (struct bp_location *bl,
12292 enum remove_bp_reason reason)
12293 {
12294 internal_error_pure_virtual_called ();
12295 }
12296
12297 static int
12298 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12299 const address_space *aspace,
12300 CORE_ADDR bp_addr,
12301 const struct target_waitstatus *ws)
12302 {
12303 internal_error_pure_virtual_called ();
12304 }
12305
12306 static void
12307 base_breakpoint_check_status (bpstat bs)
12308 {
12309 /* Always stop. */
12310 }
12311
12312 /* A "works_in_software_mode" breakpoint_ops method that just internal
12313 errors. */
12314
12315 static int
12316 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12317 {
12318 internal_error_pure_virtual_called ();
12319 }
12320
12321 /* A "resources_needed" breakpoint_ops method that just internal
12322 errors. */
12323
12324 static int
12325 base_breakpoint_resources_needed (const struct bp_location *bl)
12326 {
12327 internal_error_pure_virtual_called ();
12328 }
12329
12330 static enum print_stop_action
12331 base_breakpoint_print_it (bpstat bs)
12332 {
12333 internal_error_pure_virtual_called ();
12334 }
12335
12336 static void
12337 base_breakpoint_print_one_detail (const struct breakpoint *self,
12338 struct ui_out *uiout)
12339 {
12340 /* nothing */
12341 }
12342
12343 static void
12344 base_breakpoint_print_mention (struct breakpoint *b)
12345 {
12346 internal_error_pure_virtual_called ();
12347 }
12348
12349 static void
12350 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12351 {
12352 internal_error_pure_virtual_called ();
12353 }
12354
12355 static void
12356 base_breakpoint_create_sals_from_location
12357 (const struct event_location *location,
12358 struct linespec_result *canonical,
12359 enum bptype type_wanted)
12360 {
12361 internal_error_pure_virtual_called ();
12362 }
12363
12364 static void
12365 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12366 struct linespec_result *c,
12367 gdb::unique_xmalloc_ptr<char> cond_string,
12368 gdb::unique_xmalloc_ptr<char> extra_string,
12369 enum bptype type_wanted,
12370 enum bpdisp disposition,
12371 int thread,
12372 int task, int ignore_count,
12373 const struct breakpoint_ops *o,
12374 int from_tty, int enabled,
12375 int internal, unsigned flags)
12376 {
12377 internal_error_pure_virtual_called ();
12378 }
12379
12380 static std::vector<symtab_and_line>
12381 base_breakpoint_decode_location (struct breakpoint *b,
12382 const struct event_location *location,
12383 struct program_space *search_pspace)
12384 {
12385 internal_error_pure_virtual_called ();
12386 }
12387
12388 /* The default 'explains_signal' method. */
12389
12390 static int
12391 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12392 {
12393 return 1;
12394 }
12395
12396 /* The default "after_condition_true" method. */
12397
12398 static void
12399 base_breakpoint_after_condition_true (struct bpstats *bs)
12400 {
12401 /* Nothing to do. */
12402 }
12403
12404 struct breakpoint_ops base_breakpoint_ops =
12405 {
12406 base_breakpoint_allocate_location,
12407 base_breakpoint_re_set,
12408 base_breakpoint_insert_location,
12409 base_breakpoint_remove_location,
12410 base_breakpoint_breakpoint_hit,
12411 base_breakpoint_check_status,
12412 base_breakpoint_resources_needed,
12413 base_breakpoint_works_in_software_mode,
12414 base_breakpoint_print_it,
12415 NULL,
12416 base_breakpoint_print_one_detail,
12417 base_breakpoint_print_mention,
12418 base_breakpoint_print_recreate,
12419 base_breakpoint_create_sals_from_location,
12420 base_breakpoint_create_breakpoints_sal,
12421 base_breakpoint_decode_location,
12422 base_breakpoint_explains_signal,
12423 base_breakpoint_after_condition_true,
12424 };
12425
12426 /* Default breakpoint_ops methods. */
12427
12428 static void
12429 bkpt_re_set (struct breakpoint *b)
12430 {
12431 /* FIXME: is this still reachable? */
12432 if (breakpoint_event_location_empty_p (b))
12433 {
12434 /* Anything without a location can't be re-set. */
12435 delete_breakpoint (b);
12436 return;
12437 }
12438
12439 breakpoint_re_set_default (b);
12440 }
12441
12442 static int
12443 bkpt_insert_location (struct bp_location *bl)
12444 {
12445 CORE_ADDR addr = bl->target_info.reqstd_address;
12446
12447 bl->target_info.kind = breakpoint_kind (bl, &addr);
12448 bl->target_info.placed_address = addr;
12449
12450 if (bl->loc_type == bp_loc_hardware_breakpoint)
12451 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12452 else
12453 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12454 }
12455
12456 static int
12457 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12458 {
12459 if (bl->loc_type == bp_loc_hardware_breakpoint)
12460 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12461 else
12462 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12463 }
12464
12465 static int
12466 bkpt_breakpoint_hit (const struct bp_location *bl,
12467 const address_space *aspace, CORE_ADDR bp_addr,
12468 const struct target_waitstatus *ws)
12469 {
12470 if (ws->kind != TARGET_WAITKIND_STOPPED
12471 || ws->value.sig != GDB_SIGNAL_TRAP)
12472 return 0;
12473
12474 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12475 aspace, bp_addr))
12476 return 0;
12477
12478 if (overlay_debugging /* unmapped overlay section */
12479 && section_is_overlay (bl->section)
12480 && !section_is_mapped (bl->section))
12481 return 0;
12482
12483 return 1;
12484 }
12485
12486 static int
12487 dprintf_breakpoint_hit (const struct bp_location *bl,
12488 const address_space *aspace, CORE_ADDR bp_addr,
12489 const struct target_waitstatus *ws)
12490 {
12491 if (dprintf_style == dprintf_style_agent
12492 && target_can_run_breakpoint_commands ())
12493 {
12494 /* An agent-style dprintf never causes a stop. If we see a trap
12495 for this address it must be for a breakpoint that happens to
12496 be set at the same address. */
12497 return 0;
12498 }
12499
12500 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12501 }
12502
12503 static int
12504 bkpt_resources_needed (const struct bp_location *bl)
12505 {
12506 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12507
12508 return 1;
12509 }
12510
12511 static enum print_stop_action
12512 bkpt_print_it (bpstat bs)
12513 {
12514 struct breakpoint *b;
12515 const struct bp_location *bl;
12516 int bp_temp;
12517 struct ui_out *uiout = current_uiout;
12518
12519 gdb_assert (bs->bp_location_at != NULL);
12520
12521 bl = bs->bp_location_at;
12522 b = bs->breakpoint_at;
12523
12524 bp_temp = b->disposition == disp_del;
12525 if (bl->address != bl->requested_address)
12526 breakpoint_adjustment_warning (bl->requested_address,
12527 bl->address,
12528 b->number, 1);
12529 annotate_breakpoint (b->number);
12530 maybe_print_thread_hit_breakpoint (uiout);
12531
12532 if (bp_temp)
12533 uiout->text ("Temporary breakpoint ");
12534 else
12535 uiout->text ("Breakpoint ");
12536 if (uiout->is_mi_like_p ())
12537 {
12538 uiout->field_string ("reason",
12539 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12540 uiout->field_string ("disp", bpdisp_text (b->disposition));
12541 }
12542 uiout->field_int ("bkptno", b->number);
12543 uiout->text (", ");
12544
12545 return PRINT_SRC_AND_LOC;
12546 }
12547
12548 static void
12549 bkpt_print_mention (struct breakpoint *b)
12550 {
12551 if (current_uiout->is_mi_like_p ())
12552 return;
12553
12554 switch (b->type)
12555 {
12556 case bp_breakpoint:
12557 case bp_gnu_ifunc_resolver:
12558 if (b->disposition == disp_del)
12559 printf_filtered (_("Temporary breakpoint"));
12560 else
12561 printf_filtered (_("Breakpoint"));
12562 printf_filtered (_(" %d"), b->number);
12563 if (b->type == bp_gnu_ifunc_resolver)
12564 printf_filtered (_(" at gnu-indirect-function resolver"));
12565 break;
12566 case bp_hardware_breakpoint:
12567 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12568 break;
12569 case bp_dprintf:
12570 printf_filtered (_("Dprintf %d"), b->number);
12571 break;
12572 }
12573
12574 say_where (b);
12575 }
12576
12577 static void
12578 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12579 {
12580 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12581 fprintf_unfiltered (fp, "tbreak");
12582 else if (tp->type == bp_breakpoint)
12583 fprintf_unfiltered (fp, "break");
12584 else if (tp->type == bp_hardware_breakpoint
12585 && tp->disposition == disp_del)
12586 fprintf_unfiltered (fp, "thbreak");
12587 else if (tp->type == bp_hardware_breakpoint)
12588 fprintf_unfiltered (fp, "hbreak");
12589 else
12590 internal_error (__FILE__, __LINE__,
12591 _("unhandled breakpoint type %d"), (int) tp->type);
12592
12593 fprintf_unfiltered (fp, " %s",
12594 event_location_to_string (tp->location.get ()));
12595
12596 /* Print out extra_string if this breakpoint is pending. It might
12597 contain, for example, conditions that were set by the user. */
12598 if (tp->loc == NULL && tp->extra_string != NULL)
12599 fprintf_unfiltered (fp, " %s", tp->extra_string);
12600
12601 print_recreate_thread (tp, fp);
12602 }
12603
12604 static void
12605 bkpt_create_sals_from_location (const struct event_location *location,
12606 struct linespec_result *canonical,
12607 enum bptype type_wanted)
12608 {
12609 create_sals_from_location_default (location, canonical, type_wanted);
12610 }
12611
12612 static void
12613 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12614 struct linespec_result *canonical,
12615 gdb::unique_xmalloc_ptr<char> cond_string,
12616 gdb::unique_xmalloc_ptr<char> extra_string,
12617 enum bptype type_wanted,
12618 enum bpdisp disposition,
12619 int thread,
12620 int task, int ignore_count,
12621 const struct breakpoint_ops *ops,
12622 int from_tty, int enabled,
12623 int internal, unsigned flags)
12624 {
12625 create_breakpoints_sal_default (gdbarch, canonical,
12626 std::move (cond_string),
12627 std::move (extra_string),
12628 type_wanted,
12629 disposition, thread, task,
12630 ignore_count, ops, from_tty,
12631 enabled, internal, flags);
12632 }
12633
12634 static std::vector<symtab_and_line>
12635 bkpt_decode_location (struct breakpoint *b,
12636 const struct event_location *location,
12637 struct program_space *search_pspace)
12638 {
12639 return decode_location_default (b, location, search_pspace);
12640 }
12641
12642 /* Virtual table for internal breakpoints. */
12643
12644 static void
12645 internal_bkpt_re_set (struct breakpoint *b)
12646 {
12647 switch (b->type)
12648 {
12649 /* Delete overlay event and longjmp master breakpoints; they
12650 will be reset later by breakpoint_re_set. */
12651 case bp_overlay_event:
12652 case bp_longjmp_master:
12653 case bp_std_terminate_master:
12654 case bp_exception_master:
12655 delete_breakpoint (b);
12656 break;
12657
12658 /* This breakpoint is special, it's set up when the inferior
12659 starts and we really don't want to touch it. */
12660 case bp_shlib_event:
12661
12662 /* Like bp_shlib_event, this breakpoint type is special. Once
12663 it is set up, we do not want to touch it. */
12664 case bp_thread_event:
12665 break;
12666 }
12667 }
12668
12669 static void
12670 internal_bkpt_check_status (bpstat bs)
12671 {
12672 if (bs->breakpoint_at->type == bp_shlib_event)
12673 {
12674 /* If requested, stop when the dynamic linker notifies GDB of
12675 events. This allows the user to get control and place
12676 breakpoints in initializer routines for dynamically loaded
12677 objects (among other things). */
12678 bs->stop = stop_on_solib_events;
12679 bs->print = stop_on_solib_events;
12680 }
12681 else
12682 bs->stop = 0;
12683 }
12684
12685 static enum print_stop_action
12686 internal_bkpt_print_it (bpstat bs)
12687 {
12688 struct breakpoint *b;
12689
12690 b = bs->breakpoint_at;
12691
12692 switch (b->type)
12693 {
12694 case bp_shlib_event:
12695 /* Did we stop because the user set the stop_on_solib_events
12696 variable? (If so, we report this as a generic, "Stopped due
12697 to shlib event" message.) */
12698 print_solib_event (0);
12699 break;
12700
12701 case bp_thread_event:
12702 /* Not sure how we will get here.
12703 GDB should not stop for these breakpoints. */
12704 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12705 break;
12706
12707 case bp_overlay_event:
12708 /* By analogy with the thread event, GDB should not stop for these. */
12709 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12710 break;
12711
12712 case bp_longjmp_master:
12713 /* These should never be enabled. */
12714 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12715 break;
12716
12717 case bp_std_terminate_master:
12718 /* These should never be enabled. */
12719 printf_filtered (_("std::terminate Master Breakpoint: "
12720 "gdb should not stop!\n"));
12721 break;
12722
12723 case bp_exception_master:
12724 /* These should never be enabled. */
12725 printf_filtered (_("Exception Master Breakpoint: "
12726 "gdb should not stop!\n"));
12727 break;
12728 }
12729
12730 return PRINT_NOTHING;
12731 }
12732
12733 static void
12734 internal_bkpt_print_mention (struct breakpoint *b)
12735 {
12736 /* Nothing to mention. These breakpoints are internal. */
12737 }
12738
12739 /* Virtual table for momentary breakpoints */
12740
12741 static void
12742 momentary_bkpt_re_set (struct breakpoint *b)
12743 {
12744 /* Keep temporary breakpoints, which can be encountered when we step
12745 over a dlopen call and solib_add is resetting the breakpoints.
12746 Otherwise these should have been blown away via the cleanup chain
12747 or by breakpoint_init_inferior when we rerun the executable. */
12748 }
12749
12750 static void
12751 momentary_bkpt_check_status (bpstat bs)
12752 {
12753 /* Nothing. The point of these breakpoints is causing a stop. */
12754 }
12755
12756 static enum print_stop_action
12757 momentary_bkpt_print_it (bpstat bs)
12758 {
12759 return PRINT_UNKNOWN;
12760 }
12761
12762 static void
12763 momentary_bkpt_print_mention (struct breakpoint *b)
12764 {
12765 /* Nothing to mention. These breakpoints are internal. */
12766 }
12767
12768 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12769
12770 It gets cleared already on the removal of the first one of such placed
12771 breakpoints. This is OK as they get all removed altogether. */
12772
12773 longjmp_breakpoint::~longjmp_breakpoint ()
12774 {
12775 thread_info *tp = find_thread_global_id (this->thread);
12776
12777 if (tp != NULL)
12778 tp->initiating_frame = null_frame_id;
12779 }
12780
12781 /* Specific methods for probe breakpoints. */
12782
12783 static int
12784 bkpt_probe_insert_location (struct bp_location *bl)
12785 {
12786 int v = bkpt_insert_location (bl);
12787
12788 if (v == 0)
12789 {
12790 /* The insertion was successful, now let's set the probe's semaphore
12791 if needed. */
12792 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12793 }
12794
12795 return v;
12796 }
12797
12798 static int
12799 bkpt_probe_remove_location (struct bp_location *bl,
12800 enum remove_bp_reason reason)
12801 {
12802 /* Let's clear the semaphore before removing the location. */
12803 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12804
12805 return bkpt_remove_location (bl, reason);
12806 }
12807
12808 static void
12809 bkpt_probe_create_sals_from_location (const struct event_location *location,
12810 struct linespec_result *canonical,
12811 enum bptype type_wanted)
12812 {
12813 struct linespec_sals lsal;
12814
12815 lsal.sals = parse_probes (location, NULL, canonical);
12816 lsal.canonical
12817 = xstrdup (event_location_to_string (canonical->location.get ()));
12818 canonical->lsals.push_back (std::move (lsal));
12819 }
12820
12821 static std::vector<symtab_and_line>
12822 bkpt_probe_decode_location (struct breakpoint *b,
12823 const struct event_location *location,
12824 struct program_space *search_pspace)
12825 {
12826 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12827 if (sals.empty ())
12828 error (_("probe not found"));
12829 return sals;
12830 }
12831
12832 /* The breakpoint_ops structure to be used in tracepoints. */
12833
12834 static void
12835 tracepoint_re_set (struct breakpoint *b)
12836 {
12837 breakpoint_re_set_default (b);
12838 }
12839
12840 static int
12841 tracepoint_breakpoint_hit (const struct bp_location *bl,
12842 const address_space *aspace, CORE_ADDR bp_addr,
12843 const struct target_waitstatus *ws)
12844 {
12845 /* By definition, the inferior does not report stops at
12846 tracepoints. */
12847 return 0;
12848 }
12849
12850 static void
12851 tracepoint_print_one_detail (const struct breakpoint *self,
12852 struct ui_out *uiout)
12853 {
12854 struct tracepoint *tp = (struct tracepoint *) self;
12855 if (!tp->static_trace_marker_id.empty ())
12856 {
12857 gdb_assert (self->type == bp_static_tracepoint);
12858
12859 uiout->text ("\tmarker id is ");
12860 uiout->field_string ("static-tracepoint-marker-string-id",
12861 tp->static_trace_marker_id);
12862 uiout->text ("\n");
12863 }
12864 }
12865
12866 static void
12867 tracepoint_print_mention (struct breakpoint *b)
12868 {
12869 if (current_uiout->is_mi_like_p ())
12870 return;
12871
12872 switch (b->type)
12873 {
12874 case bp_tracepoint:
12875 printf_filtered (_("Tracepoint"));
12876 printf_filtered (_(" %d"), b->number);
12877 break;
12878 case bp_fast_tracepoint:
12879 printf_filtered (_("Fast tracepoint"));
12880 printf_filtered (_(" %d"), b->number);
12881 break;
12882 case bp_static_tracepoint:
12883 printf_filtered (_("Static tracepoint"));
12884 printf_filtered (_(" %d"), b->number);
12885 break;
12886 default:
12887 internal_error (__FILE__, __LINE__,
12888 _("unhandled tracepoint type %d"), (int) b->type);
12889 }
12890
12891 say_where (b);
12892 }
12893
12894 static void
12895 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12896 {
12897 struct tracepoint *tp = (struct tracepoint *) self;
12898
12899 if (self->type == bp_fast_tracepoint)
12900 fprintf_unfiltered (fp, "ftrace");
12901 else if (self->type == bp_static_tracepoint)
12902 fprintf_unfiltered (fp, "strace");
12903 else if (self->type == bp_tracepoint)
12904 fprintf_unfiltered (fp, "trace");
12905 else
12906 internal_error (__FILE__, __LINE__,
12907 _("unhandled tracepoint type %d"), (int) self->type);
12908
12909 fprintf_unfiltered (fp, " %s",
12910 event_location_to_string (self->location.get ()));
12911 print_recreate_thread (self, fp);
12912
12913 if (tp->pass_count)
12914 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12915 }
12916
12917 static void
12918 tracepoint_create_sals_from_location (const struct event_location *location,
12919 struct linespec_result *canonical,
12920 enum bptype type_wanted)
12921 {
12922 create_sals_from_location_default (location, canonical, type_wanted);
12923 }
12924
12925 static void
12926 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12927 struct linespec_result *canonical,
12928 gdb::unique_xmalloc_ptr<char> cond_string,
12929 gdb::unique_xmalloc_ptr<char> extra_string,
12930 enum bptype type_wanted,
12931 enum bpdisp disposition,
12932 int thread,
12933 int task, int ignore_count,
12934 const struct breakpoint_ops *ops,
12935 int from_tty, int enabled,
12936 int internal, unsigned flags)
12937 {
12938 create_breakpoints_sal_default (gdbarch, canonical,
12939 std::move (cond_string),
12940 std::move (extra_string),
12941 type_wanted,
12942 disposition, thread, task,
12943 ignore_count, ops, from_tty,
12944 enabled, internal, flags);
12945 }
12946
12947 static std::vector<symtab_and_line>
12948 tracepoint_decode_location (struct breakpoint *b,
12949 const struct event_location *location,
12950 struct program_space *search_pspace)
12951 {
12952 return decode_location_default (b, location, search_pspace);
12953 }
12954
12955 struct breakpoint_ops tracepoint_breakpoint_ops;
12956
12957 /* The breakpoint_ops structure to be use on tracepoints placed in a
12958 static probe. */
12959
12960 static void
12961 tracepoint_probe_create_sals_from_location
12962 (const struct event_location *location,
12963 struct linespec_result *canonical,
12964 enum bptype type_wanted)
12965 {
12966 /* We use the same method for breakpoint on probes. */
12967 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12968 }
12969
12970 static std::vector<symtab_and_line>
12971 tracepoint_probe_decode_location (struct breakpoint *b,
12972 const struct event_location *location,
12973 struct program_space *search_pspace)
12974 {
12975 /* We use the same method for breakpoint on probes. */
12976 return bkpt_probe_decode_location (b, location, search_pspace);
12977 }
12978
12979 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12980
12981 /* Dprintf breakpoint_ops methods. */
12982
12983 static void
12984 dprintf_re_set (struct breakpoint *b)
12985 {
12986 breakpoint_re_set_default (b);
12987
12988 /* extra_string should never be non-NULL for dprintf. */
12989 gdb_assert (b->extra_string != NULL);
12990
12991 /* 1 - connect to target 1, that can run breakpoint commands.
12992 2 - create a dprintf, which resolves fine.
12993 3 - disconnect from target 1
12994 4 - connect to target 2, that can NOT run breakpoint commands.
12995
12996 After steps #3/#4, you'll want the dprintf command list to
12997 be updated, because target 1 and 2 may well return different
12998 answers for target_can_run_breakpoint_commands().
12999 Given absence of finer grained resetting, we get to do
13000 it all the time. */
13001 if (b->extra_string != NULL)
13002 update_dprintf_command_list (b);
13003 }
13004
13005 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13006
13007 static void
13008 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13009 {
13010 fprintf_unfiltered (fp, "dprintf %s,%s",
13011 event_location_to_string (tp->location.get ()),
13012 tp->extra_string);
13013 print_recreate_thread (tp, fp);
13014 }
13015
13016 /* Implement the "after_condition_true" breakpoint_ops method for
13017 dprintf.
13018
13019 dprintf's are implemented with regular commands in their command
13020 list, but we run the commands here instead of before presenting the
13021 stop to the user, as dprintf's don't actually cause a stop. This
13022 also makes it so that the commands of multiple dprintfs at the same
13023 address are all handled. */
13024
13025 static void
13026 dprintf_after_condition_true (struct bpstats *bs)
13027 {
13028 struct bpstats tmp_bs;
13029 struct bpstats *tmp_bs_p = &tmp_bs;
13030
13031 /* dprintf's never cause a stop. This wasn't set in the
13032 check_status hook instead because that would make the dprintf's
13033 condition not be evaluated. */
13034 bs->stop = 0;
13035
13036 /* Run the command list here. Take ownership of it instead of
13037 copying. We never want these commands to run later in
13038 bpstat_do_actions, if a breakpoint that causes a stop happens to
13039 be set at same address as this dprintf, or even if running the
13040 commands here throws. */
13041 tmp_bs.commands = bs->commands;
13042 bs->commands = NULL;
13043
13044 bpstat_do_actions_1 (&tmp_bs_p);
13045
13046 /* 'tmp_bs.commands' will usually be NULL by now, but
13047 bpstat_do_actions_1 may return early without processing the whole
13048 list. */
13049 }
13050
13051 /* The breakpoint_ops structure to be used on static tracepoints with
13052 markers (`-m'). */
13053
13054 static void
13055 strace_marker_create_sals_from_location (const struct event_location *location,
13056 struct linespec_result *canonical,
13057 enum bptype type_wanted)
13058 {
13059 struct linespec_sals lsal;
13060 const char *arg_start, *arg;
13061
13062 arg = arg_start = get_linespec_location (location)->spec_string;
13063 lsal.sals = decode_static_tracepoint_spec (&arg);
13064
13065 std::string str (arg_start, arg - arg_start);
13066 const char *ptr = str.c_str ();
13067 canonical->location
13068 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13069
13070 lsal.canonical
13071 = xstrdup (event_location_to_string (canonical->location.get ()));
13072 canonical->lsals.push_back (std::move (lsal));
13073 }
13074
13075 static void
13076 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13077 struct linespec_result *canonical,
13078 gdb::unique_xmalloc_ptr<char> cond_string,
13079 gdb::unique_xmalloc_ptr<char> extra_string,
13080 enum bptype type_wanted,
13081 enum bpdisp disposition,
13082 int thread,
13083 int task, int ignore_count,
13084 const struct breakpoint_ops *ops,
13085 int from_tty, int enabled,
13086 int internal, unsigned flags)
13087 {
13088 const linespec_sals &lsal = canonical->lsals[0];
13089
13090 /* If the user is creating a static tracepoint by marker id
13091 (strace -m MARKER_ID), then store the sals index, so that
13092 breakpoint_re_set can try to match up which of the newly
13093 found markers corresponds to this one, and, don't try to
13094 expand multiple locations for each sal, given than SALS
13095 already should contain all sals for MARKER_ID. */
13096
13097 for (size_t i = 0; i < lsal.sals.size (); i++)
13098 {
13099 event_location_up location
13100 = copy_event_location (canonical->location.get ());
13101
13102 std::unique_ptr<tracepoint> tp (new tracepoint ());
13103 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13104 std::move (location), NULL,
13105 std::move (cond_string),
13106 std::move (extra_string),
13107 type_wanted, disposition,
13108 thread, task, ignore_count, ops,
13109 from_tty, enabled, internal, flags,
13110 canonical->special_display);
13111 /* Given that its possible to have multiple markers with
13112 the same string id, if the user is creating a static
13113 tracepoint by marker id ("strace -m MARKER_ID"), then
13114 store the sals index, so that breakpoint_re_set can
13115 try to match up which of the newly found markers
13116 corresponds to this one */
13117 tp->static_trace_marker_id_idx = i;
13118
13119 install_breakpoint (internal, std::move (tp), 0);
13120 }
13121 }
13122
13123 static std::vector<symtab_and_line>
13124 strace_marker_decode_location (struct breakpoint *b,
13125 const struct event_location *location,
13126 struct program_space *search_pspace)
13127 {
13128 struct tracepoint *tp = (struct tracepoint *) b;
13129 const char *s = get_linespec_location (location)->spec_string;
13130
13131 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13132 if (sals.size () > tp->static_trace_marker_id_idx)
13133 {
13134 sals[0] = sals[tp->static_trace_marker_id_idx];
13135 sals.resize (1);
13136 return sals;
13137 }
13138 else
13139 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13140 }
13141
13142 static struct breakpoint_ops strace_marker_breakpoint_ops;
13143
13144 static int
13145 strace_marker_p (struct breakpoint *b)
13146 {
13147 return b->ops == &strace_marker_breakpoint_ops;
13148 }
13149
13150 /* Delete a breakpoint and clean up all traces of it in the data
13151 structures. */
13152
13153 void
13154 delete_breakpoint (struct breakpoint *bpt)
13155 {
13156 struct breakpoint *b;
13157
13158 gdb_assert (bpt != NULL);
13159
13160 /* Has this bp already been deleted? This can happen because
13161 multiple lists can hold pointers to bp's. bpstat lists are
13162 especial culprits.
13163
13164 One example of this happening is a watchpoint's scope bp. When
13165 the scope bp triggers, we notice that the watchpoint is out of
13166 scope, and delete it. We also delete its scope bp. But the
13167 scope bp is marked "auto-deleting", and is already on a bpstat.
13168 That bpstat is then checked for auto-deleting bp's, which are
13169 deleted.
13170
13171 A real solution to this problem might involve reference counts in
13172 bp's, and/or giving them pointers back to their referencing
13173 bpstat's, and teaching delete_breakpoint to only free a bp's
13174 storage when no more references were extent. A cheaper bandaid
13175 was chosen. */
13176 if (bpt->type == bp_none)
13177 return;
13178
13179 /* At least avoid this stale reference until the reference counting
13180 of breakpoints gets resolved. */
13181 if (bpt->related_breakpoint != bpt)
13182 {
13183 struct breakpoint *related;
13184 struct watchpoint *w;
13185
13186 if (bpt->type == bp_watchpoint_scope)
13187 w = (struct watchpoint *) bpt->related_breakpoint;
13188 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13189 w = (struct watchpoint *) bpt;
13190 else
13191 w = NULL;
13192 if (w != NULL)
13193 watchpoint_del_at_next_stop (w);
13194
13195 /* Unlink bpt from the bpt->related_breakpoint ring. */
13196 for (related = bpt; related->related_breakpoint != bpt;
13197 related = related->related_breakpoint);
13198 related->related_breakpoint = bpt->related_breakpoint;
13199 bpt->related_breakpoint = bpt;
13200 }
13201
13202 /* watch_command_1 creates a watchpoint but only sets its number if
13203 update_watchpoint succeeds in creating its bp_locations. If there's
13204 a problem in that process, we'll be asked to delete the half-created
13205 watchpoint. In that case, don't announce the deletion. */
13206 if (bpt->number)
13207 gdb::observers::breakpoint_deleted.notify (bpt);
13208
13209 if (breakpoint_chain == bpt)
13210 breakpoint_chain = bpt->next;
13211
13212 ALL_BREAKPOINTS (b)
13213 if (b->next == bpt)
13214 {
13215 b->next = bpt->next;
13216 break;
13217 }
13218
13219 /* Be sure no bpstat's are pointing at the breakpoint after it's
13220 been freed. */
13221 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13222 in all threads for now. Note that we cannot just remove bpstats
13223 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13224 commands are associated with the bpstat; if we remove it here,
13225 then the later call to bpstat_do_actions (&stop_bpstat); in
13226 event-top.c won't do anything, and temporary breakpoints with
13227 commands won't work. */
13228
13229 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13230
13231 /* Now that breakpoint is removed from breakpoint list, update the
13232 global location list. This will remove locations that used to
13233 belong to this breakpoint. Do this before freeing the breakpoint
13234 itself, since remove_breakpoint looks at location's owner. It
13235 might be better design to have location completely
13236 self-contained, but it's not the case now. */
13237 update_global_location_list (UGLL_DONT_INSERT);
13238
13239 /* On the chance that someone will soon try again to delete this
13240 same bp, we mark it as deleted before freeing its storage. */
13241 bpt->type = bp_none;
13242 delete bpt;
13243 }
13244
13245 /* Iterator function to call a user-provided callback function once
13246 for each of B and its related breakpoints. */
13247
13248 static void
13249 iterate_over_related_breakpoints (struct breakpoint *b,
13250 gdb::function_view<void (breakpoint *)> function)
13251 {
13252 struct breakpoint *related;
13253
13254 related = b;
13255 do
13256 {
13257 struct breakpoint *next;
13258
13259 /* FUNCTION may delete RELATED. */
13260 next = related->related_breakpoint;
13261
13262 if (next == related)
13263 {
13264 /* RELATED is the last ring entry. */
13265 function (related);
13266
13267 /* FUNCTION may have deleted it, so we'd never reach back to
13268 B. There's nothing left to do anyway, so just break
13269 out. */
13270 break;
13271 }
13272 else
13273 function (related);
13274
13275 related = next;
13276 }
13277 while (related != b);
13278 }
13279
13280 static void
13281 delete_command (const char *arg, int from_tty)
13282 {
13283 struct breakpoint *b, *b_tmp;
13284
13285 dont_repeat ();
13286
13287 if (arg == 0)
13288 {
13289 int breaks_to_delete = 0;
13290
13291 /* Delete all breakpoints if no argument. Do not delete
13292 internal breakpoints, these have to be deleted with an
13293 explicit breakpoint number argument. */
13294 ALL_BREAKPOINTS (b)
13295 if (user_breakpoint_p (b))
13296 {
13297 breaks_to_delete = 1;
13298 break;
13299 }
13300
13301 /* Ask user only if there are some breakpoints to delete. */
13302 if (!from_tty
13303 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13304 {
13305 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13306 if (user_breakpoint_p (b))
13307 delete_breakpoint (b);
13308 }
13309 }
13310 else
13311 map_breakpoint_numbers
13312 (arg, [&] (breakpoint *b)
13313 {
13314 iterate_over_related_breakpoints (b, delete_breakpoint);
13315 });
13316 }
13317
13318 /* Return true if all locations of B bound to PSPACE are pending. If
13319 PSPACE is NULL, all locations of all program spaces are
13320 considered. */
13321
13322 static int
13323 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13324 {
13325 struct bp_location *loc;
13326
13327 for (loc = b->loc; loc != NULL; loc = loc->next)
13328 if ((pspace == NULL
13329 || loc->pspace == pspace)
13330 && !loc->shlib_disabled
13331 && !loc->pspace->executing_startup)
13332 return 0;
13333 return 1;
13334 }
13335
13336 /* Subroutine of update_breakpoint_locations to simplify it.
13337 Return non-zero if multiple fns in list LOC have the same name.
13338 Null names are ignored. */
13339
13340 static int
13341 ambiguous_names_p (struct bp_location *loc)
13342 {
13343 struct bp_location *l;
13344 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13345 xcalloc, xfree);
13346
13347 for (l = loc; l != NULL; l = l->next)
13348 {
13349 const char **slot;
13350 const char *name = l->function_name;
13351
13352 /* Allow for some names to be NULL, ignore them. */
13353 if (name == NULL)
13354 continue;
13355
13356 slot = (const char **) htab_find_slot (htab, (const void *) name,
13357 INSERT);
13358 /* NOTE: We can assume slot != NULL here because xcalloc never
13359 returns NULL. */
13360 if (*slot != NULL)
13361 {
13362 htab_delete (htab);
13363 return 1;
13364 }
13365 *slot = name;
13366 }
13367
13368 htab_delete (htab);
13369 return 0;
13370 }
13371
13372 /* When symbols change, it probably means the sources changed as well,
13373 and it might mean the static tracepoint markers are no longer at
13374 the same address or line numbers they used to be at last we
13375 checked. Losing your static tracepoints whenever you rebuild is
13376 undesirable. This function tries to resync/rematch gdb static
13377 tracepoints with the markers on the target, for static tracepoints
13378 that have not been set by marker id. Static tracepoint that have
13379 been set by marker id are reset by marker id in breakpoint_re_set.
13380 The heuristic is:
13381
13382 1) For a tracepoint set at a specific address, look for a marker at
13383 the old PC. If one is found there, assume to be the same marker.
13384 If the name / string id of the marker found is different from the
13385 previous known name, assume that means the user renamed the marker
13386 in the sources, and output a warning.
13387
13388 2) For a tracepoint set at a given line number, look for a marker
13389 at the new address of the old line number. If one is found there,
13390 assume to be the same marker. If the name / string id of the
13391 marker found is different from the previous known name, assume that
13392 means the user renamed the marker in the sources, and output a
13393 warning.
13394
13395 3) If a marker is no longer found at the same address or line, it
13396 may mean the marker no longer exists. But it may also just mean
13397 the code changed a bit. Maybe the user added a few lines of code
13398 that made the marker move up or down (in line number terms). Ask
13399 the target for info about the marker with the string id as we knew
13400 it. If found, update line number and address in the matching
13401 static tracepoint. This will get confused if there's more than one
13402 marker with the same ID (possible in UST, although unadvised
13403 precisely because it confuses tools). */
13404
13405 static struct symtab_and_line
13406 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13407 {
13408 struct tracepoint *tp = (struct tracepoint *) b;
13409 struct static_tracepoint_marker marker;
13410 CORE_ADDR pc;
13411
13412 pc = sal.pc;
13413 if (sal.line)
13414 find_line_pc (sal.symtab, sal.line, &pc);
13415
13416 if (target_static_tracepoint_marker_at (pc, &marker))
13417 {
13418 if (tp->static_trace_marker_id != marker.str_id)
13419 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13420 b->number, tp->static_trace_marker_id.c_str (),
13421 marker.str_id.c_str ());
13422
13423 tp->static_trace_marker_id = std::move (marker.str_id);
13424
13425 return sal;
13426 }
13427
13428 /* Old marker wasn't found on target at lineno. Try looking it up
13429 by string ID. */
13430 if (!sal.explicit_pc
13431 && sal.line != 0
13432 && sal.symtab != NULL
13433 && !tp->static_trace_marker_id.empty ())
13434 {
13435 std::vector<static_tracepoint_marker> markers
13436 = target_static_tracepoint_markers_by_strid
13437 (tp->static_trace_marker_id.c_str ());
13438
13439 if (!markers.empty ())
13440 {
13441 struct symbol *sym;
13442 struct static_tracepoint_marker *tpmarker;
13443 struct ui_out *uiout = current_uiout;
13444 struct explicit_location explicit_loc;
13445
13446 tpmarker = &markers[0];
13447
13448 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13449
13450 warning (_("marker for static tracepoint %d (%s) not "
13451 "found at previous line number"),
13452 b->number, tp->static_trace_marker_id.c_str ());
13453
13454 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13455 sym = find_pc_sect_function (tpmarker->address, NULL);
13456 uiout->text ("Now in ");
13457 if (sym)
13458 {
13459 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13460 uiout->text (" at ");
13461 }
13462 uiout->field_string ("file",
13463 symtab_to_filename_for_display (sal2.symtab));
13464 uiout->text (":");
13465
13466 if (uiout->is_mi_like_p ())
13467 {
13468 const char *fullname = symtab_to_fullname (sal2.symtab);
13469
13470 uiout->field_string ("fullname", fullname);
13471 }
13472
13473 uiout->field_int ("line", sal2.line);
13474 uiout->text ("\n");
13475
13476 b->loc->line_number = sal2.line;
13477 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13478
13479 b->location.reset (NULL);
13480 initialize_explicit_location (&explicit_loc);
13481 explicit_loc.source_filename
13482 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13483 explicit_loc.line_offset.offset = b->loc->line_number;
13484 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13485 b->location = new_explicit_location (&explicit_loc);
13486
13487 /* Might be nice to check if function changed, and warn if
13488 so. */
13489 }
13490 }
13491 return sal;
13492 }
13493
13494 /* Returns 1 iff locations A and B are sufficiently same that
13495 we don't need to report breakpoint as changed. */
13496
13497 static int
13498 locations_are_equal (struct bp_location *a, struct bp_location *b)
13499 {
13500 while (a && b)
13501 {
13502 if (a->address != b->address)
13503 return 0;
13504
13505 if (a->shlib_disabled != b->shlib_disabled)
13506 return 0;
13507
13508 if (a->enabled != b->enabled)
13509 return 0;
13510
13511 a = a->next;
13512 b = b->next;
13513 }
13514
13515 if ((a == NULL) != (b == NULL))
13516 return 0;
13517
13518 return 1;
13519 }
13520
13521 /* Split all locations of B that are bound to PSPACE out of B's
13522 location list to a separate list and return that list's head. If
13523 PSPACE is NULL, hoist out all locations of B. */
13524
13525 static struct bp_location *
13526 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13527 {
13528 struct bp_location head;
13529 struct bp_location *i = b->loc;
13530 struct bp_location **i_link = &b->loc;
13531 struct bp_location *hoisted = &head;
13532
13533 if (pspace == NULL)
13534 {
13535 i = b->loc;
13536 b->loc = NULL;
13537 return i;
13538 }
13539
13540 head.next = NULL;
13541
13542 while (i != NULL)
13543 {
13544 if (i->pspace == pspace)
13545 {
13546 *i_link = i->next;
13547 i->next = NULL;
13548 hoisted->next = i;
13549 hoisted = i;
13550 }
13551 else
13552 i_link = &i->next;
13553 i = *i_link;
13554 }
13555
13556 return head.next;
13557 }
13558
13559 /* Create new breakpoint locations for B (a hardware or software
13560 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13561 zero, then B is a ranged breakpoint. Only recreates locations for
13562 FILTER_PSPACE. Locations of other program spaces are left
13563 untouched. */
13564
13565 void
13566 update_breakpoint_locations (struct breakpoint *b,
13567 struct program_space *filter_pspace,
13568 gdb::array_view<const symtab_and_line> sals,
13569 gdb::array_view<const symtab_and_line> sals_end)
13570 {
13571 struct bp_location *existing_locations;
13572
13573 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13574 {
13575 /* Ranged breakpoints have only one start location and one end
13576 location. */
13577 b->enable_state = bp_disabled;
13578 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13579 "multiple locations found\n"),
13580 b->number);
13581 return;
13582 }
13583
13584 /* If there's no new locations, and all existing locations are
13585 pending, don't do anything. This optimizes the common case where
13586 all locations are in the same shared library, that was unloaded.
13587 We'd like to retain the location, so that when the library is
13588 loaded again, we don't loose the enabled/disabled status of the
13589 individual locations. */
13590 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13591 return;
13592
13593 existing_locations = hoist_existing_locations (b, filter_pspace);
13594
13595 for (const auto &sal : sals)
13596 {
13597 struct bp_location *new_loc;
13598
13599 switch_to_program_space_and_thread (sal.pspace);
13600
13601 new_loc = add_location_to_breakpoint (b, &sal);
13602
13603 /* Reparse conditions, they might contain references to the
13604 old symtab. */
13605 if (b->cond_string != NULL)
13606 {
13607 const char *s;
13608
13609 s = b->cond_string;
13610 TRY
13611 {
13612 new_loc->cond = parse_exp_1 (&s, sal.pc,
13613 block_for_pc (sal.pc),
13614 0);
13615 }
13616 CATCH (e, RETURN_MASK_ERROR)
13617 {
13618 warning (_("failed to reevaluate condition "
13619 "for breakpoint %d: %s"),
13620 b->number, e.message);
13621 new_loc->enabled = 0;
13622 }
13623 END_CATCH
13624 }
13625
13626 if (!sals_end.empty ())
13627 {
13628 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13629
13630 new_loc->length = end - sals[0].pc + 1;
13631 }
13632 }
13633
13634 /* If possible, carry over 'disable' status from existing
13635 breakpoints. */
13636 {
13637 struct bp_location *e = existing_locations;
13638 /* If there are multiple breakpoints with the same function name,
13639 e.g. for inline functions, comparing function names won't work.
13640 Instead compare pc addresses; this is just a heuristic as things
13641 may have moved, but in practice it gives the correct answer
13642 often enough until a better solution is found. */
13643 int have_ambiguous_names = ambiguous_names_p (b->loc);
13644
13645 for (; e; e = e->next)
13646 {
13647 if (!e->enabled && e->function_name)
13648 {
13649 struct bp_location *l = b->loc;
13650 if (have_ambiguous_names)
13651 {
13652 for (; l; l = l->next)
13653 if (breakpoint_locations_match (e, l))
13654 {
13655 l->enabled = 0;
13656 break;
13657 }
13658 }
13659 else
13660 {
13661 for (; l; l = l->next)
13662 if (l->function_name
13663 && strcmp (e->function_name, l->function_name) == 0)
13664 {
13665 l->enabled = 0;
13666 break;
13667 }
13668 }
13669 }
13670 }
13671 }
13672
13673 if (!locations_are_equal (existing_locations, b->loc))
13674 gdb::observers::breakpoint_modified.notify (b);
13675 }
13676
13677 /* Find the SaL locations corresponding to the given LOCATION.
13678 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13679
13680 static std::vector<symtab_and_line>
13681 location_to_sals (struct breakpoint *b, struct event_location *location,
13682 struct program_space *search_pspace, int *found)
13683 {
13684 struct gdb_exception exception = exception_none;
13685
13686 gdb_assert (b->ops != NULL);
13687
13688 std::vector<symtab_and_line> sals;
13689
13690 TRY
13691 {
13692 sals = b->ops->decode_location (b, location, search_pspace);
13693 }
13694 CATCH (e, RETURN_MASK_ERROR)
13695 {
13696 int not_found_and_ok = 0;
13697
13698 exception = e;
13699
13700 /* For pending breakpoints, it's expected that parsing will
13701 fail until the right shared library is loaded. User has
13702 already told to create pending breakpoints and don't need
13703 extra messages. If breakpoint is in bp_shlib_disabled
13704 state, then user already saw the message about that
13705 breakpoint being disabled, and don't want to see more
13706 errors. */
13707 if (e.error == NOT_FOUND_ERROR
13708 && (b->condition_not_parsed
13709 || (b->loc != NULL
13710 && search_pspace != NULL
13711 && b->loc->pspace != search_pspace)
13712 || (b->loc && b->loc->shlib_disabled)
13713 || (b->loc && b->loc->pspace->executing_startup)
13714 || b->enable_state == bp_disabled))
13715 not_found_and_ok = 1;
13716
13717 if (!not_found_and_ok)
13718 {
13719 /* We surely don't want to warn about the same breakpoint
13720 10 times. One solution, implemented here, is disable
13721 the breakpoint on error. Another solution would be to
13722 have separate 'warning emitted' flag. Since this
13723 happens only when a binary has changed, I don't know
13724 which approach is better. */
13725 b->enable_state = bp_disabled;
13726 throw_exception (e);
13727 }
13728 }
13729 END_CATCH
13730
13731 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13732 {
13733 for (auto &sal : sals)
13734 resolve_sal_pc (&sal);
13735 if (b->condition_not_parsed && b->extra_string != NULL)
13736 {
13737 char *cond_string, *extra_string;
13738 int thread, task;
13739
13740 find_condition_and_thread (b->extra_string, sals[0].pc,
13741 &cond_string, &thread, &task,
13742 &extra_string);
13743 gdb_assert (b->cond_string == NULL);
13744 if (cond_string)
13745 b->cond_string = cond_string;
13746 b->thread = thread;
13747 b->task = task;
13748 if (extra_string)
13749 {
13750 xfree (b->extra_string);
13751 b->extra_string = extra_string;
13752 }
13753 b->condition_not_parsed = 0;
13754 }
13755
13756 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13757 sals[0] = update_static_tracepoint (b, sals[0]);
13758
13759 *found = 1;
13760 }
13761 else
13762 *found = 0;
13763
13764 return sals;
13765 }
13766
13767 /* The default re_set method, for typical hardware or software
13768 breakpoints. Reevaluate the breakpoint and recreate its
13769 locations. */
13770
13771 static void
13772 breakpoint_re_set_default (struct breakpoint *b)
13773 {
13774 struct program_space *filter_pspace = current_program_space;
13775 std::vector<symtab_and_line> expanded, expanded_end;
13776
13777 int found;
13778 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13779 filter_pspace, &found);
13780 if (found)
13781 expanded = std::move (sals);
13782
13783 if (b->location_range_end != NULL)
13784 {
13785 std::vector<symtab_and_line> sals_end
13786 = location_to_sals (b, b->location_range_end.get (),
13787 filter_pspace, &found);
13788 if (found)
13789 expanded_end = std::move (sals_end);
13790 }
13791
13792 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13793 }
13794
13795 /* Default method for creating SALs from an address string. It basically
13796 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13797
13798 static void
13799 create_sals_from_location_default (const struct event_location *location,
13800 struct linespec_result *canonical,
13801 enum bptype type_wanted)
13802 {
13803 parse_breakpoint_sals (location, canonical);
13804 }
13805
13806 /* Call create_breakpoints_sal for the given arguments. This is the default
13807 function for the `create_breakpoints_sal' method of
13808 breakpoint_ops. */
13809
13810 static void
13811 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13812 struct linespec_result *canonical,
13813 gdb::unique_xmalloc_ptr<char> cond_string,
13814 gdb::unique_xmalloc_ptr<char> extra_string,
13815 enum bptype type_wanted,
13816 enum bpdisp disposition,
13817 int thread,
13818 int task, int ignore_count,
13819 const struct breakpoint_ops *ops,
13820 int from_tty, int enabled,
13821 int internal, unsigned flags)
13822 {
13823 create_breakpoints_sal (gdbarch, canonical,
13824 std::move (cond_string),
13825 std::move (extra_string),
13826 type_wanted, disposition,
13827 thread, task, ignore_count, ops, from_tty,
13828 enabled, internal, flags);
13829 }
13830
13831 /* Decode the line represented by S by calling decode_line_full. This is the
13832 default function for the `decode_location' method of breakpoint_ops. */
13833
13834 static std::vector<symtab_and_line>
13835 decode_location_default (struct breakpoint *b,
13836 const struct event_location *location,
13837 struct program_space *search_pspace)
13838 {
13839 struct linespec_result canonical;
13840
13841 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13842 (struct symtab *) NULL, 0,
13843 &canonical, multiple_symbols_all,
13844 b->filter);
13845
13846 /* We should get 0 or 1 resulting SALs. */
13847 gdb_assert (canonical.lsals.size () < 2);
13848
13849 if (!canonical.lsals.empty ())
13850 {
13851 const linespec_sals &lsal = canonical.lsals[0];
13852 return std::move (lsal.sals);
13853 }
13854 return {};
13855 }
13856
13857 /* Reset a breakpoint. */
13858
13859 static void
13860 breakpoint_re_set_one (breakpoint *b)
13861 {
13862 input_radix = b->input_radix;
13863 set_language (b->language);
13864
13865 b->ops->re_set (b);
13866 }
13867
13868 /* Re-set breakpoint locations for the current program space.
13869 Locations bound to other program spaces are left untouched. */
13870
13871 void
13872 breakpoint_re_set (void)
13873 {
13874 struct breakpoint *b, *b_tmp;
13875
13876 {
13877 scoped_restore_current_language save_language;
13878 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13879 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13880
13881 /* Note: we must not try to insert locations until after all
13882 breakpoints have been re-set. Otherwise, e.g., when re-setting
13883 breakpoint 1, we'd insert the locations of breakpoint 2, which
13884 hadn't been re-set yet, and thus may have stale locations. */
13885
13886 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13887 {
13888 TRY
13889 {
13890 breakpoint_re_set_one (b);
13891 }
13892 CATCH (ex, RETURN_MASK_ALL)
13893 {
13894 exception_fprintf (gdb_stderr, ex,
13895 "Error in re-setting breakpoint %d: ",
13896 b->number);
13897 }
13898 END_CATCH
13899 }
13900
13901 jit_breakpoint_re_set ();
13902 }
13903
13904 create_overlay_event_breakpoint ();
13905 create_longjmp_master_breakpoint ();
13906 create_std_terminate_master_breakpoint ();
13907 create_exception_master_breakpoint ();
13908
13909 /* Now we can insert. */
13910 update_global_location_list (UGLL_MAY_INSERT);
13911 }
13912 \f
13913 /* Reset the thread number of this breakpoint:
13914
13915 - If the breakpoint is for all threads, leave it as-is.
13916 - Else, reset it to the current thread for inferior_ptid. */
13917 void
13918 breakpoint_re_set_thread (struct breakpoint *b)
13919 {
13920 if (b->thread != -1)
13921 {
13922 if (in_thread_list (inferior_ptid))
13923 b->thread = ptid_to_global_thread_id (inferior_ptid);
13924
13925 /* We're being called after following a fork. The new fork is
13926 selected as current, and unless this was a vfork will have a
13927 different program space from the original thread. Reset that
13928 as well. */
13929 b->loc->pspace = current_program_space;
13930 }
13931 }
13932
13933 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13934 If from_tty is nonzero, it prints a message to that effect,
13935 which ends with a period (no newline). */
13936
13937 void
13938 set_ignore_count (int bptnum, int count, int from_tty)
13939 {
13940 struct breakpoint *b;
13941
13942 if (count < 0)
13943 count = 0;
13944
13945 ALL_BREAKPOINTS (b)
13946 if (b->number == bptnum)
13947 {
13948 if (is_tracepoint (b))
13949 {
13950 if (from_tty && count != 0)
13951 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13952 bptnum);
13953 return;
13954 }
13955
13956 b->ignore_count = count;
13957 if (from_tty)
13958 {
13959 if (count == 0)
13960 printf_filtered (_("Will stop next time "
13961 "breakpoint %d is reached."),
13962 bptnum);
13963 else if (count == 1)
13964 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13965 bptnum);
13966 else
13967 printf_filtered (_("Will ignore next %d "
13968 "crossings of breakpoint %d."),
13969 count, bptnum);
13970 }
13971 gdb::observers::breakpoint_modified.notify (b);
13972 return;
13973 }
13974
13975 error (_("No breakpoint number %d."), bptnum);
13976 }
13977
13978 /* Command to set ignore-count of breakpoint N to COUNT. */
13979
13980 static void
13981 ignore_command (const char *args, int from_tty)
13982 {
13983 const char *p = args;
13984 int num;
13985
13986 if (p == 0)
13987 error_no_arg (_("a breakpoint number"));
13988
13989 num = get_number (&p);
13990 if (num == 0)
13991 error (_("bad breakpoint number: '%s'"), args);
13992 if (*p == 0)
13993 error (_("Second argument (specified ignore-count) is missing."));
13994
13995 set_ignore_count (num,
13996 longest_to_int (value_as_long (parse_and_eval (p))),
13997 from_tty);
13998 if (from_tty)
13999 printf_filtered ("\n");
14000 }
14001 \f
14002
14003 /* Call FUNCTION on each of the breakpoints with numbers in the range
14004 defined by BP_NUM_RANGE (an inclusive range). */
14005
14006 static void
14007 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14008 gdb::function_view<void (breakpoint *)> function)
14009 {
14010 if (bp_num_range.first == 0)
14011 {
14012 warning (_("bad breakpoint number at or near '%d'"),
14013 bp_num_range.first);
14014 }
14015 else
14016 {
14017 struct breakpoint *b, *tmp;
14018
14019 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14020 {
14021 bool match = false;
14022
14023 ALL_BREAKPOINTS_SAFE (b, tmp)
14024 if (b->number == i)
14025 {
14026 match = true;
14027 function (b);
14028 break;
14029 }
14030 if (!match)
14031 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14032 }
14033 }
14034 }
14035
14036 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14037 ARGS. */
14038
14039 static void
14040 map_breakpoint_numbers (const char *args,
14041 gdb::function_view<void (breakpoint *)> function)
14042 {
14043 if (args == NULL || *args == '\0')
14044 error_no_arg (_("one or more breakpoint numbers"));
14045
14046 number_or_range_parser parser (args);
14047
14048 while (!parser.finished ())
14049 {
14050 int num = parser.get_number ();
14051 map_breakpoint_number_range (std::make_pair (num, num), function);
14052 }
14053 }
14054
14055 /* Return the breakpoint location structure corresponding to the
14056 BP_NUM and LOC_NUM values. */
14057
14058 static struct bp_location *
14059 find_location_by_number (int bp_num, int loc_num)
14060 {
14061 struct breakpoint *b;
14062
14063 ALL_BREAKPOINTS (b)
14064 if (b->number == bp_num)
14065 {
14066 break;
14067 }
14068
14069 if (!b || b->number != bp_num)
14070 error (_("Bad breakpoint number '%d'"), bp_num);
14071
14072 if (loc_num == 0)
14073 error (_("Bad breakpoint location number '%d'"), loc_num);
14074
14075 int n = 0;
14076 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14077 if (++n == loc_num)
14078 return loc;
14079
14080 error (_("Bad breakpoint location number '%d'"), loc_num);
14081 }
14082
14083 /* Modes of operation for extract_bp_num. */
14084 enum class extract_bp_kind
14085 {
14086 /* Extracting a breakpoint number. */
14087 bp,
14088
14089 /* Extracting a location number. */
14090 loc,
14091 };
14092
14093 /* Extract a breakpoint or location number (as determined by KIND)
14094 from the string starting at START. TRAILER is a character which
14095 can be found after the number. If you don't want a trailer, use
14096 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14097 string. This always returns a positive integer. */
14098
14099 static int
14100 extract_bp_num (extract_bp_kind kind, const char *start,
14101 int trailer, const char **end_out = NULL)
14102 {
14103 const char *end = start;
14104 int num = get_number_trailer (&end, trailer);
14105 if (num < 0)
14106 error (kind == extract_bp_kind::bp
14107 ? _("Negative breakpoint number '%.*s'")
14108 : _("Negative breakpoint location number '%.*s'"),
14109 int (end - start), start);
14110 if (num == 0)
14111 error (kind == extract_bp_kind::bp
14112 ? _("Bad breakpoint number '%.*s'")
14113 : _("Bad breakpoint location number '%.*s'"),
14114 int (end - start), start);
14115
14116 if (end_out != NULL)
14117 *end_out = end;
14118 return num;
14119 }
14120
14121 /* Extract a breakpoint or location range (as determined by KIND) in
14122 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14123 representing the (inclusive) range. The returned pair's elements
14124 are always positive integers. */
14125
14126 static std::pair<int, int>
14127 extract_bp_or_bp_range (extract_bp_kind kind,
14128 const std::string &arg,
14129 std::string::size_type arg_offset)
14130 {
14131 std::pair<int, int> range;
14132 const char *bp_loc = &arg[arg_offset];
14133 std::string::size_type dash = arg.find ('-', arg_offset);
14134 if (dash != std::string::npos)
14135 {
14136 /* bp_loc is a range (x-z). */
14137 if (arg.length () == dash + 1)
14138 error (kind == extract_bp_kind::bp
14139 ? _("Bad breakpoint number at or near: '%s'")
14140 : _("Bad breakpoint location number at or near: '%s'"),
14141 bp_loc);
14142
14143 const char *end;
14144 const char *start_first = bp_loc;
14145 const char *start_second = &arg[dash + 1];
14146 range.first = extract_bp_num (kind, start_first, '-');
14147 range.second = extract_bp_num (kind, start_second, '\0', &end);
14148
14149 if (range.first > range.second)
14150 error (kind == extract_bp_kind::bp
14151 ? _("Inverted breakpoint range at '%.*s'")
14152 : _("Inverted breakpoint location range at '%.*s'"),
14153 int (end - start_first), start_first);
14154 }
14155 else
14156 {
14157 /* bp_loc is a single value. */
14158 range.first = extract_bp_num (kind, bp_loc, '\0');
14159 range.second = range.first;
14160 }
14161 return range;
14162 }
14163
14164 /* Extract the breakpoint/location range specified by ARG. Returns
14165 the breakpoint range in BP_NUM_RANGE, and the location range in
14166 BP_LOC_RANGE.
14167
14168 ARG may be in any of the following forms:
14169
14170 x where 'x' is a breakpoint number.
14171 x-y where 'x' and 'y' specify a breakpoint numbers range.
14172 x.y where 'x' is a breakpoint number and 'y' a location number.
14173 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14174 location number range.
14175 */
14176
14177 static void
14178 extract_bp_number_and_location (const std::string &arg,
14179 std::pair<int, int> &bp_num_range,
14180 std::pair<int, int> &bp_loc_range)
14181 {
14182 std::string::size_type dot = arg.find ('.');
14183
14184 if (dot != std::string::npos)
14185 {
14186 /* Handle 'x.y' and 'x.y-z' cases. */
14187
14188 if (arg.length () == dot + 1 || dot == 0)
14189 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14190
14191 bp_num_range.first
14192 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14193 bp_num_range.second = bp_num_range.first;
14194
14195 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14196 arg, dot + 1);
14197 }
14198 else
14199 {
14200 /* Handle x and x-y cases. */
14201
14202 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14203 bp_loc_range.first = 0;
14204 bp_loc_range.second = 0;
14205 }
14206 }
14207
14208 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14209 specifies whether to enable or disable. */
14210
14211 static void
14212 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14213 {
14214 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14215 if (loc != NULL)
14216 {
14217 if (loc->enabled != enable)
14218 {
14219 loc->enabled = enable;
14220 mark_breakpoint_location_modified (loc);
14221 }
14222 if (target_supports_enable_disable_tracepoint ()
14223 && current_trace_status ()->running && loc->owner
14224 && is_tracepoint (loc->owner))
14225 target_disable_tracepoint (loc);
14226 }
14227 update_global_location_list (UGLL_DONT_INSERT);
14228 }
14229
14230 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14231 number of the breakpoint, and BP_LOC_RANGE specifies the
14232 (inclusive) range of location numbers of that breakpoint to
14233 enable/disable. ENABLE specifies whether to enable or disable the
14234 location. */
14235
14236 static void
14237 enable_disable_breakpoint_location_range (int bp_num,
14238 std::pair<int, int> &bp_loc_range,
14239 bool enable)
14240 {
14241 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14242 enable_disable_bp_num_loc (bp_num, i, enable);
14243 }
14244
14245 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14246 If from_tty is nonzero, it prints a message to that effect,
14247 which ends with a period (no newline). */
14248
14249 void
14250 disable_breakpoint (struct breakpoint *bpt)
14251 {
14252 /* Never disable a watchpoint scope breakpoint; we want to
14253 hit them when we leave scope so we can delete both the
14254 watchpoint and its scope breakpoint at that time. */
14255 if (bpt->type == bp_watchpoint_scope)
14256 return;
14257
14258 bpt->enable_state = bp_disabled;
14259
14260 /* Mark breakpoint locations modified. */
14261 mark_breakpoint_modified (bpt);
14262
14263 if (target_supports_enable_disable_tracepoint ()
14264 && current_trace_status ()->running && is_tracepoint (bpt))
14265 {
14266 struct bp_location *location;
14267
14268 for (location = bpt->loc; location; location = location->next)
14269 target_disable_tracepoint (location);
14270 }
14271
14272 update_global_location_list (UGLL_DONT_INSERT);
14273
14274 gdb::observers::breakpoint_modified.notify (bpt);
14275 }
14276
14277 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14278 specified in ARGS. ARGS may be in any of the formats handled by
14279 extract_bp_number_and_location. ENABLE specifies whether to enable
14280 or disable the breakpoints/locations. */
14281
14282 static void
14283 enable_disable_command (const char *args, int from_tty, bool enable)
14284 {
14285 if (args == 0)
14286 {
14287 struct breakpoint *bpt;
14288
14289 ALL_BREAKPOINTS (bpt)
14290 if (user_breakpoint_p (bpt))
14291 {
14292 if (enable)
14293 enable_breakpoint (bpt);
14294 else
14295 disable_breakpoint (bpt);
14296 }
14297 }
14298 else
14299 {
14300 std::string num = extract_arg (&args);
14301
14302 while (!num.empty ())
14303 {
14304 std::pair<int, int> bp_num_range, bp_loc_range;
14305
14306 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14307
14308 if (bp_loc_range.first == bp_loc_range.second
14309 && bp_loc_range.first == 0)
14310 {
14311 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14312 map_breakpoint_number_range (bp_num_range,
14313 enable
14314 ? enable_breakpoint
14315 : disable_breakpoint);
14316 }
14317 else
14318 {
14319 /* Handle breakpoint ids with formats 'x.y' or
14320 'x.y-z'. */
14321 enable_disable_breakpoint_location_range
14322 (bp_num_range.first, bp_loc_range, enable);
14323 }
14324 num = extract_arg (&args);
14325 }
14326 }
14327 }
14328
14329 /* The disable command disables the specified breakpoints/locations
14330 (or all defined breakpoints) so they're no longer effective in
14331 stopping the inferior. ARGS may be in any of the forms defined in
14332 extract_bp_number_and_location. */
14333
14334 static void
14335 disable_command (const char *args, int from_tty)
14336 {
14337 enable_disable_command (args, from_tty, false);
14338 }
14339
14340 static void
14341 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14342 int count)
14343 {
14344 int target_resources_ok;
14345
14346 if (bpt->type == bp_hardware_breakpoint)
14347 {
14348 int i;
14349 i = hw_breakpoint_used_count ();
14350 target_resources_ok =
14351 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14352 i + 1, 0);
14353 if (target_resources_ok == 0)
14354 error (_("No hardware breakpoint support in the target."));
14355 else if (target_resources_ok < 0)
14356 error (_("Hardware breakpoints used exceeds limit."));
14357 }
14358
14359 if (is_watchpoint (bpt))
14360 {
14361 /* Initialize it just to avoid a GCC false warning. */
14362 enum enable_state orig_enable_state = bp_disabled;
14363
14364 TRY
14365 {
14366 struct watchpoint *w = (struct watchpoint *) bpt;
14367
14368 orig_enable_state = bpt->enable_state;
14369 bpt->enable_state = bp_enabled;
14370 update_watchpoint (w, 1 /* reparse */);
14371 }
14372 CATCH (e, RETURN_MASK_ALL)
14373 {
14374 bpt->enable_state = orig_enable_state;
14375 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14376 bpt->number);
14377 return;
14378 }
14379 END_CATCH
14380 }
14381
14382 bpt->enable_state = bp_enabled;
14383
14384 /* Mark breakpoint locations modified. */
14385 mark_breakpoint_modified (bpt);
14386
14387 if (target_supports_enable_disable_tracepoint ()
14388 && current_trace_status ()->running && is_tracepoint (bpt))
14389 {
14390 struct bp_location *location;
14391
14392 for (location = bpt->loc; location; location = location->next)
14393 target_enable_tracepoint (location);
14394 }
14395
14396 bpt->disposition = disposition;
14397 bpt->enable_count = count;
14398 update_global_location_list (UGLL_MAY_INSERT);
14399
14400 gdb::observers::breakpoint_modified.notify (bpt);
14401 }
14402
14403
14404 void
14405 enable_breakpoint (struct breakpoint *bpt)
14406 {
14407 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14408 }
14409
14410 /* The enable command enables the specified breakpoints/locations (or
14411 all defined breakpoints) so they once again become (or continue to
14412 be) effective in stopping the inferior. ARGS may be in any of the
14413 forms defined in extract_bp_number_and_location. */
14414
14415 static void
14416 enable_command (const char *args, int from_tty)
14417 {
14418 enable_disable_command (args, from_tty, true);
14419 }
14420
14421 static void
14422 enable_once_command (const char *args, int from_tty)
14423 {
14424 map_breakpoint_numbers
14425 (args, [&] (breakpoint *b)
14426 {
14427 iterate_over_related_breakpoints
14428 (b, [&] (breakpoint *bpt)
14429 {
14430 enable_breakpoint_disp (bpt, disp_disable, 1);
14431 });
14432 });
14433 }
14434
14435 static void
14436 enable_count_command (const char *args, int from_tty)
14437 {
14438 int count;
14439
14440 if (args == NULL)
14441 error_no_arg (_("hit count"));
14442
14443 count = get_number (&args);
14444
14445 map_breakpoint_numbers
14446 (args, [&] (breakpoint *b)
14447 {
14448 iterate_over_related_breakpoints
14449 (b, [&] (breakpoint *bpt)
14450 {
14451 enable_breakpoint_disp (bpt, disp_disable, count);
14452 });
14453 });
14454 }
14455
14456 static void
14457 enable_delete_command (const char *args, int from_tty)
14458 {
14459 map_breakpoint_numbers
14460 (args, [&] (breakpoint *b)
14461 {
14462 iterate_over_related_breakpoints
14463 (b, [&] (breakpoint *bpt)
14464 {
14465 enable_breakpoint_disp (bpt, disp_del, 1);
14466 });
14467 });
14468 }
14469 \f
14470 static void
14471 set_breakpoint_cmd (const char *args, int from_tty)
14472 {
14473 }
14474
14475 static void
14476 show_breakpoint_cmd (const char *args, int from_tty)
14477 {
14478 }
14479
14480 /* Invalidate last known value of any hardware watchpoint if
14481 the memory which that value represents has been written to by
14482 GDB itself. */
14483
14484 static void
14485 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14486 CORE_ADDR addr, ssize_t len,
14487 const bfd_byte *data)
14488 {
14489 struct breakpoint *bp;
14490
14491 ALL_BREAKPOINTS (bp)
14492 if (bp->enable_state == bp_enabled
14493 && bp->type == bp_hardware_watchpoint)
14494 {
14495 struct watchpoint *wp = (struct watchpoint *) bp;
14496
14497 if (wp->val_valid && wp->val != nullptr)
14498 {
14499 struct bp_location *loc;
14500
14501 for (loc = bp->loc; loc != NULL; loc = loc->next)
14502 if (loc->loc_type == bp_loc_hardware_watchpoint
14503 && loc->address + loc->length > addr
14504 && addr + len > loc->address)
14505 {
14506 wp->val = NULL;
14507 wp->val_valid = 0;
14508 }
14509 }
14510 }
14511 }
14512
14513 /* Create and insert a breakpoint for software single step. */
14514
14515 void
14516 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14517 const address_space *aspace,
14518 CORE_ADDR next_pc)
14519 {
14520 struct thread_info *tp = inferior_thread ();
14521 struct symtab_and_line sal;
14522 CORE_ADDR pc = next_pc;
14523
14524 if (tp->control.single_step_breakpoints == NULL)
14525 {
14526 tp->control.single_step_breakpoints
14527 = new_single_step_breakpoint (tp->global_num, gdbarch);
14528 }
14529
14530 sal = find_pc_line (pc, 0);
14531 sal.pc = pc;
14532 sal.section = find_pc_overlay (pc);
14533 sal.explicit_pc = 1;
14534 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14535
14536 update_global_location_list (UGLL_INSERT);
14537 }
14538
14539 /* Insert single step breakpoints according to the current state. */
14540
14541 int
14542 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14543 {
14544 struct regcache *regcache = get_current_regcache ();
14545 std::vector<CORE_ADDR> next_pcs;
14546
14547 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14548
14549 if (!next_pcs.empty ())
14550 {
14551 struct frame_info *frame = get_current_frame ();
14552 const address_space *aspace = get_frame_address_space (frame);
14553
14554 for (CORE_ADDR pc : next_pcs)
14555 insert_single_step_breakpoint (gdbarch, aspace, pc);
14556
14557 return 1;
14558 }
14559 else
14560 return 0;
14561 }
14562
14563 /* See breakpoint.h. */
14564
14565 int
14566 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14567 const address_space *aspace,
14568 CORE_ADDR pc)
14569 {
14570 struct bp_location *loc;
14571
14572 for (loc = bp->loc; loc != NULL; loc = loc->next)
14573 if (loc->inserted
14574 && breakpoint_location_address_match (loc, aspace, pc))
14575 return 1;
14576
14577 return 0;
14578 }
14579
14580 /* Check whether a software single-step breakpoint is inserted at
14581 PC. */
14582
14583 int
14584 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14585 CORE_ADDR pc)
14586 {
14587 struct breakpoint *bpt;
14588
14589 ALL_BREAKPOINTS (bpt)
14590 {
14591 if (bpt->type == bp_single_step
14592 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14593 return 1;
14594 }
14595 return 0;
14596 }
14597
14598 /* Tracepoint-specific operations. */
14599
14600 /* Set tracepoint count to NUM. */
14601 static void
14602 set_tracepoint_count (int num)
14603 {
14604 tracepoint_count = num;
14605 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14606 }
14607
14608 static void
14609 trace_command (const char *arg, int from_tty)
14610 {
14611 struct breakpoint_ops *ops;
14612
14613 event_location_up location = string_to_event_location (&arg,
14614 current_language);
14615 if (location != NULL
14616 && event_location_type (location.get ()) == PROBE_LOCATION)
14617 ops = &tracepoint_probe_breakpoint_ops;
14618 else
14619 ops = &tracepoint_breakpoint_ops;
14620
14621 create_breakpoint (get_current_arch (),
14622 location.get (),
14623 NULL, 0, arg, 1 /* parse arg */,
14624 0 /* tempflag */,
14625 bp_tracepoint /* type_wanted */,
14626 0 /* Ignore count */,
14627 pending_break_support,
14628 ops,
14629 from_tty,
14630 1 /* enabled */,
14631 0 /* internal */, 0);
14632 }
14633
14634 static void
14635 ftrace_command (const char *arg, int from_tty)
14636 {
14637 event_location_up location = string_to_event_location (&arg,
14638 current_language);
14639 create_breakpoint (get_current_arch (),
14640 location.get (),
14641 NULL, 0, arg, 1 /* parse arg */,
14642 0 /* tempflag */,
14643 bp_fast_tracepoint /* type_wanted */,
14644 0 /* Ignore count */,
14645 pending_break_support,
14646 &tracepoint_breakpoint_ops,
14647 from_tty,
14648 1 /* enabled */,
14649 0 /* internal */, 0);
14650 }
14651
14652 /* strace command implementation. Creates a static tracepoint. */
14653
14654 static void
14655 strace_command (const char *arg, int from_tty)
14656 {
14657 struct breakpoint_ops *ops;
14658 event_location_up location;
14659
14660 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14661 or with a normal static tracepoint. */
14662 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14663 {
14664 ops = &strace_marker_breakpoint_ops;
14665 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14666 }
14667 else
14668 {
14669 ops = &tracepoint_breakpoint_ops;
14670 location = string_to_event_location (&arg, current_language);
14671 }
14672
14673 create_breakpoint (get_current_arch (),
14674 location.get (),
14675 NULL, 0, arg, 1 /* parse arg */,
14676 0 /* tempflag */,
14677 bp_static_tracepoint /* type_wanted */,
14678 0 /* Ignore count */,
14679 pending_break_support,
14680 ops,
14681 from_tty,
14682 1 /* enabled */,
14683 0 /* internal */, 0);
14684 }
14685
14686 /* Set up a fake reader function that gets command lines from a linked
14687 list that was acquired during tracepoint uploading. */
14688
14689 static struct uploaded_tp *this_utp;
14690 static int next_cmd;
14691
14692 static char *
14693 read_uploaded_action (void)
14694 {
14695 char *rslt = nullptr;
14696
14697 if (next_cmd < this_utp->cmd_strings.size ())
14698 {
14699 rslt = this_utp->cmd_strings[next_cmd];
14700 next_cmd++;
14701 }
14702
14703 return rslt;
14704 }
14705
14706 /* Given information about a tracepoint as recorded on a target (which
14707 can be either a live system or a trace file), attempt to create an
14708 equivalent GDB tracepoint. This is not a reliable process, since
14709 the target does not necessarily have all the information used when
14710 the tracepoint was originally defined. */
14711
14712 struct tracepoint *
14713 create_tracepoint_from_upload (struct uploaded_tp *utp)
14714 {
14715 const char *addr_str;
14716 char small_buf[100];
14717 struct tracepoint *tp;
14718
14719 if (utp->at_string)
14720 addr_str = utp->at_string;
14721 else
14722 {
14723 /* In the absence of a source location, fall back to raw
14724 address. Since there is no way to confirm that the address
14725 means the same thing as when the trace was started, warn the
14726 user. */
14727 warning (_("Uploaded tracepoint %d has no "
14728 "source location, using raw address"),
14729 utp->number);
14730 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14731 addr_str = small_buf;
14732 }
14733
14734 /* There's not much we can do with a sequence of bytecodes. */
14735 if (utp->cond && !utp->cond_string)
14736 warning (_("Uploaded tracepoint %d condition "
14737 "has no source form, ignoring it"),
14738 utp->number);
14739
14740 event_location_up location = string_to_event_location (&addr_str,
14741 current_language);
14742 if (!create_breakpoint (get_current_arch (),
14743 location.get (),
14744 utp->cond_string, -1, addr_str,
14745 0 /* parse cond/thread */,
14746 0 /* tempflag */,
14747 utp->type /* type_wanted */,
14748 0 /* Ignore count */,
14749 pending_break_support,
14750 &tracepoint_breakpoint_ops,
14751 0 /* from_tty */,
14752 utp->enabled /* enabled */,
14753 0 /* internal */,
14754 CREATE_BREAKPOINT_FLAGS_INSERTED))
14755 return NULL;
14756
14757 /* Get the tracepoint we just created. */
14758 tp = get_tracepoint (tracepoint_count);
14759 gdb_assert (tp != NULL);
14760
14761 if (utp->pass > 0)
14762 {
14763 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14764 tp->number);
14765
14766 trace_pass_command (small_buf, 0);
14767 }
14768
14769 /* If we have uploaded versions of the original commands, set up a
14770 special-purpose "reader" function and call the usual command line
14771 reader, then pass the result to the breakpoint command-setting
14772 function. */
14773 if (!utp->cmd_strings.empty ())
14774 {
14775 counted_command_line cmd_list;
14776
14777 this_utp = utp;
14778 next_cmd = 0;
14779
14780 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14781
14782 breakpoint_set_commands (tp, std::move (cmd_list));
14783 }
14784 else if (!utp->actions.empty ()
14785 || !utp->step_actions.empty ())
14786 warning (_("Uploaded tracepoint %d actions "
14787 "have no source form, ignoring them"),
14788 utp->number);
14789
14790 /* Copy any status information that might be available. */
14791 tp->hit_count = utp->hit_count;
14792 tp->traceframe_usage = utp->traceframe_usage;
14793
14794 return tp;
14795 }
14796
14797 /* Print information on tracepoint number TPNUM_EXP, or all if
14798 omitted. */
14799
14800 static void
14801 info_tracepoints_command (const char *args, int from_tty)
14802 {
14803 struct ui_out *uiout = current_uiout;
14804 int num_printed;
14805
14806 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14807
14808 if (num_printed == 0)
14809 {
14810 if (args == NULL || *args == '\0')
14811 uiout->message ("No tracepoints.\n");
14812 else
14813 uiout->message ("No tracepoint matching '%s'.\n", args);
14814 }
14815
14816 default_collect_info ();
14817 }
14818
14819 /* The 'enable trace' command enables tracepoints.
14820 Not supported by all targets. */
14821 static void
14822 enable_trace_command (const char *args, int from_tty)
14823 {
14824 enable_command (args, from_tty);
14825 }
14826
14827 /* The 'disable trace' command disables tracepoints.
14828 Not supported by all targets. */
14829 static void
14830 disable_trace_command (const char *args, int from_tty)
14831 {
14832 disable_command (args, from_tty);
14833 }
14834
14835 /* Remove a tracepoint (or all if no argument). */
14836 static void
14837 delete_trace_command (const char *arg, int from_tty)
14838 {
14839 struct breakpoint *b, *b_tmp;
14840
14841 dont_repeat ();
14842
14843 if (arg == 0)
14844 {
14845 int breaks_to_delete = 0;
14846
14847 /* Delete all breakpoints if no argument.
14848 Do not delete internal or call-dummy breakpoints, these
14849 have to be deleted with an explicit breakpoint number
14850 argument. */
14851 ALL_TRACEPOINTS (b)
14852 if (is_tracepoint (b) && user_breakpoint_p (b))
14853 {
14854 breaks_to_delete = 1;
14855 break;
14856 }
14857
14858 /* Ask user only if there are some breakpoints to delete. */
14859 if (!from_tty
14860 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14861 {
14862 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14863 if (is_tracepoint (b) && user_breakpoint_p (b))
14864 delete_breakpoint (b);
14865 }
14866 }
14867 else
14868 map_breakpoint_numbers
14869 (arg, [&] (breakpoint *b)
14870 {
14871 iterate_over_related_breakpoints (b, delete_breakpoint);
14872 });
14873 }
14874
14875 /* Helper function for trace_pass_command. */
14876
14877 static void
14878 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14879 {
14880 tp->pass_count = count;
14881 gdb::observers::breakpoint_modified.notify (tp);
14882 if (from_tty)
14883 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14884 tp->number, count);
14885 }
14886
14887 /* Set passcount for tracepoint.
14888
14889 First command argument is passcount, second is tracepoint number.
14890 If tracepoint number omitted, apply to most recently defined.
14891 Also accepts special argument "all". */
14892
14893 static void
14894 trace_pass_command (const char *args, int from_tty)
14895 {
14896 struct tracepoint *t1;
14897 ULONGEST count;
14898
14899 if (args == 0 || *args == 0)
14900 error (_("passcount command requires an "
14901 "argument (count + optional TP num)"));
14902
14903 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14904
14905 args = skip_spaces (args);
14906 if (*args && strncasecmp (args, "all", 3) == 0)
14907 {
14908 struct breakpoint *b;
14909
14910 args += 3; /* Skip special argument "all". */
14911 if (*args)
14912 error (_("Junk at end of arguments."));
14913
14914 ALL_TRACEPOINTS (b)
14915 {
14916 t1 = (struct tracepoint *) b;
14917 trace_pass_set_count (t1, count, from_tty);
14918 }
14919 }
14920 else if (*args == '\0')
14921 {
14922 t1 = get_tracepoint_by_number (&args, NULL);
14923 if (t1)
14924 trace_pass_set_count (t1, count, from_tty);
14925 }
14926 else
14927 {
14928 number_or_range_parser parser (args);
14929 while (!parser.finished ())
14930 {
14931 t1 = get_tracepoint_by_number (&args, &parser);
14932 if (t1)
14933 trace_pass_set_count (t1, count, from_tty);
14934 }
14935 }
14936 }
14937
14938 struct tracepoint *
14939 get_tracepoint (int num)
14940 {
14941 struct breakpoint *t;
14942
14943 ALL_TRACEPOINTS (t)
14944 if (t->number == num)
14945 return (struct tracepoint *) t;
14946
14947 return NULL;
14948 }
14949
14950 /* Find the tracepoint with the given target-side number (which may be
14951 different from the tracepoint number after disconnecting and
14952 reconnecting). */
14953
14954 struct tracepoint *
14955 get_tracepoint_by_number_on_target (int num)
14956 {
14957 struct breakpoint *b;
14958
14959 ALL_TRACEPOINTS (b)
14960 {
14961 struct tracepoint *t = (struct tracepoint *) b;
14962
14963 if (t->number_on_target == num)
14964 return t;
14965 }
14966
14967 return NULL;
14968 }
14969
14970 /* Utility: parse a tracepoint number and look it up in the list.
14971 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14972 If the argument is missing, the most recent tracepoint
14973 (tracepoint_count) is returned. */
14974
14975 struct tracepoint *
14976 get_tracepoint_by_number (const char **arg,
14977 number_or_range_parser *parser)
14978 {
14979 struct breakpoint *t;
14980 int tpnum;
14981 const char *instring = arg == NULL ? NULL : *arg;
14982
14983 if (parser != NULL)
14984 {
14985 gdb_assert (!parser->finished ());
14986 tpnum = parser->get_number ();
14987 }
14988 else if (arg == NULL || *arg == NULL || ! **arg)
14989 tpnum = tracepoint_count;
14990 else
14991 tpnum = get_number (arg);
14992
14993 if (tpnum <= 0)
14994 {
14995 if (instring && *instring)
14996 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14997 instring);
14998 else
14999 printf_filtered (_("No previous tracepoint\n"));
15000 return NULL;
15001 }
15002
15003 ALL_TRACEPOINTS (t)
15004 if (t->number == tpnum)
15005 {
15006 return (struct tracepoint *) t;
15007 }
15008
15009 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15010 return NULL;
15011 }
15012
15013 void
15014 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15015 {
15016 if (b->thread != -1)
15017 fprintf_unfiltered (fp, " thread %d", b->thread);
15018
15019 if (b->task != 0)
15020 fprintf_unfiltered (fp, " task %d", b->task);
15021
15022 fprintf_unfiltered (fp, "\n");
15023 }
15024
15025 /* Save information on user settable breakpoints (watchpoints, etc) to
15026 a new script file named FILENAME. If FILTER is non-NULL, call it
15027 on each breakpoint and only include the ones for which it returns
15028 non-zero. */
15029
15030 static void
15031 save_breakpoints (const char *filename, int from_tty,
15032 int (*filter) (const struct breakpoint *))
15033 {
15034 struct breakpoint *tp;
15035 int any = 0;
15036 int extra_trace_bits = 0;
15037
15038 if (filename == 0 || *filename == 0)
15039 error (_("Argument required (file name in which to save)"));
15040
15041 /* See if we have anything to save. */
15042 ALL_BREAKPOINTS (tp)
15043 {
15044 /* Skip internal and momentary breakpoints. */
15045 if (!user_breakpoint_p (tp))
15046 continue;
15047
15048 /* If we have a filter, only save the breakpoints it accepts. */
15049 if (filter && !filter (tp))
15050 continue;
15051
15052 any = 1;
15053
15054 if (is_tracepoint (tp))
15055 {
15056 extra_trace_bits = 1;
15057
15058 /* We can stop searching. */
15059 break;
15060 }
15061 }
15062
15063 if (!any)
15064 {
15065 warning (_("Nothing to save."));
15066 return;
15067 }
15068
15069 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15070
15071 stdio_file fp;
15072
15073 if (!fp.open (expanded_filename.get (), "w"))
15074 error (_("Unable to open file '%s' for saving (%s)"),
15075 expanded_filename.get (), safe_strerror (errno));
15076
15077 if (extra_trace_bits)
15078 save_trace_state_variables (&fp);
15079
15080 ALL_BREAKPOINTS (tp)
15081 {
15082 /* Skip internal and momentary breakpoints. */
15083 if (!user_breakpoint_p (tp))
15084 continue;
15085
15086 /* If we have a filter, only save the breakpoints it accepts. */
15087 if (filter && !filter (tp))
15088 continue;
15089
15090 tp->ops->print_recreate (tp, &fp);
15091
15092 /* Note, we can't rely on tp->number for anything, as we can't
15093 assume the recreated breakpoint numbers will match. Use $bpnum
15094 instead. */
15095
15096 if (tp->cond_string)
15097 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15098
15099 if (tp->ignore_count)
15100 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15101
15102 if (tp->type != bp_dprintf && tp->commands)
15103 {
15104 fp.puts (" commands\n");
15105
15106 current_uiout->redirect (&fp);
15107 TRY
15108 {
15109 print_command_lines (current_uiout, tp->commands.get (), 2);
15110 }
15111 CATCH (ex, RETURN_MASK_ALL)
15112 {
15113 current_uiout->redirect (NULL);
15114 throw_exception (ex);
15115 }
15116 END_CATCH
15117
15118 current_uiout->redirect (NULL);
15119 fp.puts (" end\n");
15120 }
15121
15122 if (tp->enable_state == bp_disabled)
15123 fp.puts ("disable $bpnum\n");
15124
15125 /* If this is a multi-location breakpoint, check if the locations
15126 should be individually disabled. Watchpoint locations are
15127 special, and not user visible. */
15128 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15129 {
15130 struct bp_location *loc;
15131 int n = 1;
15132
15133 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15134 if (!loc->enabled)
15135 fp.printf ("disable $bpnum.%d\n", n);
15136 }
15137 }
15138
15139 if (extra_trace_bits && *default_collect)
15140 fp.printf ("set default-collect %s\n", default_collect);
15141
15142 if (from_tty)
15143 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15144 }
15145
15146 /* The `save breakpoints' command. */
15147
15148 static void
15149 save_breakpoints_command (const char *args, int from_tty)
15150 {
15151 save_breakpoints (args, from_tty, NULL);
15152 }
15153
15154 /* The `save tracepoints' command. */
15155
15156 static void
15157 save_tracepoints_command (const char *args, int from_tty)
15158 {
15159 save_breakpoints (args, from_tty, is_tracepoint);
15160 }
15161
15162 /* Create a vector of all tracepoints. */
15163
15164 VEC(breakpoint_p) *
15165 all_tracepoints (void)
15166 {
15167 VEC(breakpoint_p) *tp_vec = 0;
15168 struct breakpoint *tp;
15169
15170 ALL_TRACEPOINTS (tp)
15171 {
15172 VEC_safe_push (breakpoint_p, tp_vec, tp);
15173 }
15174
15175 return tp_vec;
15176 }
15177
15178 \f
15179 /* This help string is used to consolidate all the help string for specifying
15180 locations used by several commands. */
15181
15182 #define LOCATION_HELP_STRING \
15183 "Linespecs are colon-separated lists of location parameters, such as\n\
15184 source filename, function name, label name, and line number.\n\
15185 Example: To specify the start of a label named \"the_top\" in the\n\
15186 function \"fact\" in the file \"factorial.c\", use\n\
15187 \"factorial.c:fact:the_top\".\n\
15188 \n\
15189 Address locations begin with \"*\" and specify an exact address in the\n\
15190 program. Example: To specify the fourth byte past the start function\n\
15191 \"main\", use \"*main + 4\".\n\
15192 \n\
15193 Explicit locations are similar to linespecs but use an option/argument\n\
15194 syntax to specify location parameters.\n\
15195 Example: To specify the start of the label named \"the_top\" in the\n\
15196 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15197 -function fact -label the_top\".\n\
15198 \n\
15199 By default, a specified function is matched against the program's\n\
15200 functions in all scopes. For C++, this means in all namespaces and\n\
15201 classes. For Ada, this means in all packages. E.g., in C++,\n\
15202 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15203 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15204 specified name as a complete fully-qualified name instead.\n"
15205
15206 /* This help string is used for the break, hbreak, tbreak and thbreak
15207 commands. It is defined as a macro to prevent duplication.
15208 COMMAND should be a string constant containing the name of the
15209 command. */
15210
15211 #define BREAK_ARGS_HELP(command) \
15212 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15213 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15214 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15215 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15216 `-probe-dtrace' (for a DTrace probe).\n\
15217 LOCATION may be a linespec, address, or explicit location as described\n\
15218 below.\n\
15219 \n\
15220 With no LOCATION, uses current execution address of the selected\n\
15221 stack frame. This is useful for breaking on return to a stack frame.\n\
15222 \n\
15223 THREADNUM is the number from \"info threads\".\n\
15224 CONDITION is a boolean expression.\n\
15225 \n" LOCATION_HELP_STRING "\n\
15226 Multiple breakpoints at one place are permitted, and useful if their\n\
15227 conditions are different.\n\
15228 \n\
15229 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15230
15231 /* List of subcommands for "catch". */
15232 static struct cmd_list_element *catch_cmdlist;
15233
15234 /* List of subcommands for "tcatch". */
15235 static struct cmd_list_element *tcatch_cmdlist;
15236
15237 void
15238 add_catch_command (const char *name, const char *docstring,
15239 cmd_const_sfunc_ftype *sfunc,
15240 completer_ftype *completer,
15241 void *user_data_catch,
15242 void *user_data_tcatch)
15243 {
15244 struct cmd_list_element *command;
15245
15246 command = add_cmd (name, class_breakpoint, docstring,
15247 &catch_cmdlist);
15248 set_cmd_sfunc (command, sfunc);
15249 set_cmd_context (command, user_data_catch);
15250 set_cmd_completer (command, completer);
15251
15252 command = add_cmd (name, class_breakpoint, docstring,
15253 &tcatch_cmdlist);
15254 set_cmd_sfunc (command, sfunc);
15255 set_cmd_context (command, user_data_tcatch);
15256 set_cmd_completer (command, completer);
15257 }
15258
15259 static void
15260 save_command (const char *arg, int from_tty)
15261 {
15262 printf_unfiltered (_("\"save\" must be followed by "
15263 "the name of a save subcommand.\n"));
15264 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15265 }
15266
15267 struct breakpoint *
15268 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15269 void *data)
15270 {
15271 struct breakpoint *b, *b_tmp;
15272
15273 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15274 {
15275 if ((*callback) (b, data))
15276 return b;
15277 }
15278
15279 return NULL;
15280 }
15281
15282 /* Zero if any of the breakpoint's locations could be a location where
15283 functions have been inlined, nonzero otherwise. */
15284
15285 static int
15286 is_non_inline_function (struct breakpoint *b)
15287 {
15288 /* The shared library event breakpoint is set on the address of a
15289 non-inline function. */
15290 if (b->type == bp_shlib_event)
15291 return 1;
15292
15293 return 0;
15294 }
15295
15296 /* Nonzero if the specified PC cannot be a location where functions
15297 have been inlined. */
15298
15299 int
15300 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15301 const struct target_waitstatus *ws)
15302 {
15303 struct breakpoint *b;
15304 struct bp_location *bl;
15305
15306 ALL_BREAKPOINTS (b)
15307 {
15308 if (!is_non_inline_function (b))
15309 continue;
15310
15311 for (bl = b->loc; bl != NULL; bl = bl->next)
15312 {
15313 if (!bl->shlib_disabled
15314 && bpstat_check_location (bl, aspace, pc, ws))
15315 return 1;
15316 }
15317 }
15318
15319 return 0;
15320 }
15321
15322 /* Remove any references to OBJFILE which is going to be freed. */
15323
15324 void
15325 breakpoint_free_objfile (struct objfile *objfile)
15326 {
15327 struct bp_location **locp, *loc;
15328
15329 ALL_BP_LOCATIONS (loc, locp)
15330 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15331 loc->symtab = NULL;
15332 }
15333
15334 void
15335 initialize_breakpoint_ops (void)
15336 {
15337 static int initialized = 0;
15338
15339 struct breakpoint_ops *ops;
15340
15341 if (initialized)
15342 return;
15343 initialized = 1;
15344
15345 /* The breakpoint_ops structure to be inherit by all kinds of
15346 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15347 internal and momentary breakpoints, etc.). */
15348 ops = &bkpt_base_breakpoint_ops;
15349 *ops = base_breakpoint_ops;
15350 ops->re_set = bkpt_re_set;
15351 ops->insert_location = bkpt_insert_location;
15352 ops->remove_location = bkpt_remove_location;
15353 ops->breakpoint_hit = bkpt_breakpoint_hit;
15354 ops->create_sals_from_location = bkpt_create_sals_from_location;
15355 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15356 ops->decode_location = bkpt_decode_location;
15357
15358 /* The breakpoint_ops structure to be used in regular breakpoints. */
15359 ops = &bkpt_breakpoint_ops;
15360 *ops = bkpt_base_breakpoint_ops;
15361 ops->re_set = bkpt_re_set;
15362 ops->resources_needed = bkpt_resources_needed;
15363 ops->print_it = bkpt_print_it;
15364 ops->print_mention = bkpt_print_mention;
15365 ops->print_recreate = bkpt_print_recreate;
15366
15367 /* Ranged breakpoints. */
15368 ops = &ranged_breakpoint_ops;
15369 *ops = bkpt_breakpoint_ops;
15370 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15371 ops->resources_needed = resources_needed_ranged_breakpoint;
15372 ops->print_it = print_it_ranged_breakpoint;
15373 ops->print_one = print_one_ranged_breakpoint;
15374 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15375 ops->print_mention = print_mention_ranged_breakpoint;
15376 ops->print_recreate = print_recreate_ranged_breakpoint;
15377
15378 /* Internal breakpoints. */
15379 ops = &internal_breakpoint_ops;
15380 *ops = bkpt_base_breakpoint_ops;
15381 ops->re_set = internal_bkpt_re_set;
15382 ops->check_status = internal_bkpt_check_status;
15383 ops->print_it = internal_bkpt_print_it;
15384 ops->print_mention = internal_bkpt_print_mention;
15385
15386 /* Momentary breakpoints. */
15387 ops = &momentary_breakpoint_ops;
15388 *ops = bkpt_base_breakpoint_ops;
15389 ops->re_set = momentary_bkpt_re_set;
15390 ops->check_status = momentary_bkpt_check_status;
15391 ops->print_it = momentary_bkpt_print_it;
15392 ops->print_mention = momentary_bkpt_print_mention;
15393
15394 /* Probe breakpoints. */
15395 ops = &bkpt_probe_breakpoint_ops;
15396 *ops = bkpt_breakpoint_ops;
15397 ops->insert_location = bkpt_probe_insert_location;
15398 ops->remove_location = bkpt_probe_remove_location;
15399 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15400 ops->decode_location = bkpt_probe_decode_location;
15401
15402 /* Watchpoints. */
15403 ops = &watchpoint_breakpoint_ops;
15404 *ops = base_breakpoint_ops;
15405 ops->re_set = re_set_watchpoint;
15406 ops->insert_location = insert_watchpoint;
15407 ops->remove_location = remove_watchpoint;
15408 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15409 ops->check_status = check_status_watchpoint;
15410 ops->resources_needed = resources_needed_watchpoint;
15411 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15412 ops->print_it = print_it_watchpoint;
15413 ops->print_mention = print_mention_watchpoint;
15414 ops->print_recreate = print_recreate_watchpoint;
15415 ops->explains_signal = explains_signal_watchpoint;
15416
15417 /* Masked watchpoints. */
15418 ops = &masked_watchpoint_breakpoint_ops;
15419 *ops = watchpoint_breakpoint_ops;
15420 ops->insert_location = insert_masked_watchpoint;
15421 ops->remove_location = remove_masked_watchpoint;
15422 ops->resources_needed = resources_needed_masked_watchpoint;
15423 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15424 ops->print_it = print_it_masked_watchpoint;
15425 ops->print_one_detail = print_one_detail_masked_watchpoint;
15426 ops->print_mention = print_mention_masked_watchpoint;
15427 ops->print_recreate = print_recreate_masked_watchpoint;
15428
15429 /* Tracepoints. */
15430 ops = &tracepoint_breakpoint_ops;
15431 *ops = base_breakpoint_ops;
15432 ops->re_set = tracepoint_re_set;
15433 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15434 ops->print_one_detail = tracepoint_print_one_detail;
15435 ops->print_mention = tracepoint_print_mention;
15436 ops->print_recreate = tracepoint_print_recreate;
15437 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15438 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15439 ops->decode_location = tracepoint_decode_location;
15440
15441 /* Probe tracepoints. */
15442 ops = &tracepoint_probe_breakpoint_ops;
15443 *ops = tracepoint_breakpoint_ops;
15444 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15445 ops->decode_location = tracepoint_probe_decode_location;
15446
15447 /* Static tracepoints with marker (`-m'). */
15448 ops = &strace_marker_breakpoint_ops;
15449 *ops = tracepoint_breakpoint_ops;
15450 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15451 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15452 ops->decode_location = strace_marker_decode_location;
15453
15454 /* Fork catchpoints. */
15455 ops = &catch_fork_breakpoint_ops;
15456 *ops = base_breakpoint_ops;
15457 ops->insert_location = insert_catch_fork;
15458 ops->remove_location = remove_catch_fork;
15459 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15460 ops->print_it = print_it_catch_fork;
15461 ops->print_one = print_one_catch_fork;
15462 ops->print_mention = print_mention_catch_fork;
15463 ops->print_recreate = print_recreate_catch_fork;
15464
15465 /* Vfork catchpoints. */
15466 ops = &catch_vfork_breakpoint_ops;
15467 *ops = base_breakpoint_ops;
15468 ops->insert_location = insert_catch_vfork;
15469 ops->remove_location = remove_catch_vfork;
15470 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15471 ops->print_it = print_it_catch_vfork;
15472 ops->print_one = print_one_catch_vfork;
15473 ops->print_mention = print_mention_catch_vfork;
15474 ops->print_recreate = print_recreate_catch_vfork;
15475
15476 /* Exec catchpoints. */
15477 ops = &catch_exec_breakpoint_ops;
15478 *ops = base_breakpoint_ops;
15479 ops->insert_location = insert_catch_exec;
15480 ops->remove_location = remove_catch_exec;
15481 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15482 ops->print_it = print_it_catch_exec;
15483 ops->print_one = print_one_catch_exec;
15484 ops->print_mention = print_mention_catch_exec;
15485 ops->print_recreate = print_recreate_catch_exec;
15486
15487 /* Solib-related catchpoints. */
15488 ops = &catch_solib_breakpoint_ops;
15489 *ops = base_breakpoint_ops;
15490 ops->insert_location = insert_catch_solib;
15491 ops->remove_location = remove_catch_solib;
15492 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15493 ops->check_status = check_status_catch_solib;
15494 ops->print_it = print_it_catch_solib;
15495 ops->print_one = print_one_catch_solib;
15496 ops->print_mention = print_mention_catch_solib;
15497 ops->print_recreate = print_recreate_catch_solib;
15498
15499 ops = &dprintf_breakpoint_ops;
15500 *ops = bkpt_base_breakpoint_ops;
15501 ops->re_set = dprintf_re_set;
15502 ops->resources_needed = bkpt_resources_needed;
15503 ops->print_it = bkpt_print_it;
15504 ops->print_mention = bkpt_print_mention;
15505 ops->print_recreate = dprintf_print_recreate;
15506 ops->after_condition_true = dprintf_after_condition_true;
15507 ops->breakpoint_hit = dprintf_breakpoint_hit;
15508 }
15509
15510 /* Chain containing all defined "enable breakpoint" subcommands. */
15511
15512 static struct cmd_list_element *enablebreaklist = NULL;
15513
15514 void
15515 _initialize_breakpoint (void)
15516 {
15517 struct cmd_list_element *c;
15518
15519 initialize_breakpoint_ops ();
15520
15521 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15522 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15523 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15524
15525 breakpoint_objfile_key
15526 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15527
15528 breakpoint_chain = 0;
15529 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15530 before a breakpoint is set. */
15531 breakpoint_count = 0;
15532
15533 tracepoint_count = 0;
15534
15535 add_com ("ignore", class_breakpoint, ignore_command, _("\
15536 Set ignore-count of breakpoint number N to COUNT.\n\
15537 Usage is `ignore N COUNT'."));
15538
15539 add_com ("commands", class_breakpoint, commands_command, _("\
15540 Set commands to be executed when the given breakpoints are hit.\n\
15541 Give a space-separated breakpoint list as argument after \"commands\".\n\
15542 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15543 (e.g. `5-7').\n\
15544 With no argument, the targeted breakpoint is the last one set.\n\
15545 The commands themselves follow starting on the next line.\n\
15546 Type a line containing \"end\" to indicate the end of them.\n\
15547 Give \"silent\" as the first line to make the breakpoint silent;\n\
15548 then no output is printed when it is hit, except what the commands print."));
15549
15550 c = add_com ("condition", class_breakpoint, condition_command, _("\
15551 Specify breakpoint number N to break only if COND is true.\n\
15552 Usage is `condition N COND', where N is an integer and COND is an\n\
15553 expression to be evaluated whenever breakpoint N is reached."));
15554 set_cmd_completer (c, condition_completer);
15555
15556 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15557 Set a temporary breakpoint.\n\
15558 Like \"break\" except the breakpoint is only temporary,\n\
15559 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15560 by using \"enable delete\" on the breakpoint number.\n\
15561 \n"
15562 BREAK_ARGS_HELP ("tbreak")));
15563 set_cmd_completer (c, location_completer);
15564
15565 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15566 Set a hardware assisted breakpoint.\n\
15567 Like \"break\" except the breakpoint requires hardware support,\n\
15568 some target hardware may not have this support.\n\
15569 \n"
15570 BREAK_ARGS_HELP ("hbreak")));
15571 set_cmd_completer (c, location_completer);
15572
15573 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15574 Set a temporary hardware assisted breakpoint.\n\
15575 Like \"hbreak\" except the breakpoint is only temporary,\n\
15576 so it will be deleted when hit.\n\
15577 \n"
15578 BREAK_ARGS_HELP ("thbreak")));
15579 set_cmd_completer (c, location_completer);
15580
15581 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15582 Enable some breakpoints.\n\
15583 Give breakpoint numbers (separated by spaces) as arguments.\n\
15584 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15585 This is used to cancel the effect of the \"disable\" command.\n\
15586 With a subcommand you can enable temporarily."),
15587 &enablelist, "enable ", 1, &cmdlist);
15588
15589 add_com_alias ("en", "enable", class_breakpoint, 1);
15590
15591 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15592 Enable some breakpoints.\n\
15593 Give breakpoint numbers (separated by spaces) as arguments.\n\
15594 This is used to cancel the effect of the \"disable\" command.\n\
15595 May be abbreviated to simply \"enable\".\n"),
15596 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15597
15598 add_cmd ("once", no_class, enable_once_command, _("\
15599 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15601 &enablebreaklist);
15602
15603 add_cmd ("delete", no_class, enable_delete_command, _("\
15604 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15605 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15606 &enablebreaklist);
15607
15608 add_cmd ("count", no_class, enable_count_command, _("\
15609 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15610 If a breakpoint is hit while enabled in this fashion,\n\
15611 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15612 &enablebreaklist);
15613
15614 add_cmd ("delete", no_class, enable_delete_command, _("\
15615 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15616 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15617 &enablelist);
15618
15619 add_cmd ("once", no_class, enable_once_command, _("\
15620 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15621 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15622 &enablelist);
15623
15624 add_cmd ("count", no_class, enable_count_command, _("\
15625 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15626 If a breakpoint is hit while enabled in this fashion,\n\
15627 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15628 &enablelist);
15629
15630 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15631 Disable some breakpoints.\n\
15632 Arguments are breakpoint numbers with spaces in between.\n\
15633 To disable all breakpoints, give no argument.\n\
15634 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15635 &disablelist, "disable ", 1, &cmdlist);
15636 add_com_alias ("dis", "disable", class_breakpoint, 1);
15637 add_com_alias ("disa", "disable", class_breakpoint, 1);
15638
15639 add_cmd ("breakpoints", class_alias, disable_command, _("\
15640 Disable some breakpoints.\n\
15641 Arguments are breakpoint numbers with spaces in between.\n\
15642 To disable all breakpoints, give no argument.\n\
15643 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15644 This command may be abbreviated \"disable\"."),
15645 &disablelist);
15646
15647 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15648 Delete some breakpoints or auto-display expressions.\n\
15649 Arguments are breakpoint numbers with spaces in between.\n\
15650 To delete all breakpoints, give no argument.\n\
15651 \n\
15652 Also a prefix command for deletion of other GDB objects.\n\
15653 The \"unset\" command is also an alias for \"delete\"."),
15654 &deletelist, "delete ", 1, &cmdlist);
15655 add_com_alias ("d", "delete", class_breakpoint, 1);
15656 add_com_alias ("del", "delete", class_breakpoint, 1);
15657
15658 add_cmd ("breakpoints", class_alias, delete_command, _("\
15659 Delete some breakpoints or auto-display expressions.\n\
15660 Arguments are breakpoint numbers with spaces in between.\n\
15661 To delete all breakpoints, give no argument.\n\
15662 This command may be abbreviated \"delete\"."),
15663 &deletelist);
15664
15665 add_com ("clear", class_breakpoint, clear_command, _("\
15666 Clear breakpoint at specified location.\n\
15667 Argument may be a linespec, explicit, or address location as described below.\n\
15668 \n\
15669 With no argument, clears all breakpoints in the line that the selected frame\n\
15670 is executing in.\n"
15671 "\n" LOCATION_HELP_STRING "\n\
15672 See also the \"delete\" command which clears breakpoints by number."));
15673 add_com_alias ("cl", "clear", class_breakpoint, 1);
15674
15675 c = add_com ("break", class_breakpoint, break_command, _("\
15676 Set breakpoint at specified location.\n"
15677 BREAK_ARGS_HELP ("break")));
15678 set_cmd_completer (c, location_completer);
15679
15680 add_com_alias ("b", "break", class_run, 1);
15681 add_com_alias ("br", "break", class_run, 1);
15682 add_com_alias ("bre", "break", class_run, 1);
15683 add_com_alias ("brea", "break", class_run, 1);
15684
15685 if (dbx_commands)
15686 {
15687 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15688 Break in function/address or break at a line in the current file."),
15689 &stoplist, "stop ", 1, &cmdlist);
15690 add_cmd ("in", class_breakpoint, stopin_command,
15691 _("Break in function or address."), &stoplist);
15692 add_cmd ("at", class_breakpoint, stopat_command,
15693 _("Break at a line in the current file."), &stoplist);
15694 add_com ("status", class_info, info_breakpoints_command, _("\
15695 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15696 The \"Type\" column indicates one of:\n\
15697 \tbreakpoint - normal breakpoint\n\
15698 \twatchpoint - watchpoint\n\
15699 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15700 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15701 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15702 address and file/line number respectively.\n\
15703 \n\
15704 Convenience variable \"$_\" and default examine address for \"x\"\n\
15705 are set to the address of the last breakpoint listed unless the command\n\
15706 is prefixed with \"server \".\n\n\
15707 Convenience variable \"$bpnum\" contains the number of the last\n\
15708 breakpoint set."));
15709 }
15710
15711 add_info ("breakpoints", info_breakpoints_command, _("\
15712 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15713 The \"Type\" column indicates one of:\n\
15714 \tbreakpoint - normal breakpoint\n\
15715 \twatchpoint - watchpoint\n\
15716 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15717 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15718 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15719 address and file/line number respectively.\n\
15720 \n\
15721 Convenience variable \"$_\" and default examine address for \"x\"\n\
15722 are set to the address of the last breakpoint listed unless the command\n\
15723 is prefixed with \"server \".\n\n\
15724 Convenience variable \"$bpnum\" contains the number of the last\n\
15725 breakpoint set."));
15726
15727 add_info_alias ("b", "breakpoints", 1);
15728
15729 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15730 Status of all breakpoints, or breakpoint number NUMBER.\n\
15731 The \"Type\" column indicates one of:\n\
15732 \tbreakpoint - normal breakpoint\n\
15733 \twatchpoint - watchpoint\n\
15734 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15735 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15736 \tuntil - internal breakpoint used by the \"until\" command\n\
15737 \tfinish - internal breakpoint used by the \"finish\" command\n\
15738 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15739 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15740 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15741 address and file/line number respectively.\n\
15742 \n\
15743 Convenience variable \"$_\" and default examine address for \"x\"\n\
15744 are set to the address of the last breakpoint listed unless the command\n\
15745 is prefixed with \"server \".\n\n\
15746 Convenience variable \"$bpnum\" contains the number of the last\n\
15747 breakpoint set."),
15748 &maintenanceinfolist);
15749
15750 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15751 Set catchpoints to catch events."),
15752 &catch_cmdlist, "catch ",
15753 0/*allow-unknown*/, &cmdlist);
15754
15755 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15756 Set temporary catchpoints to catch events."),
15757 &tcatch_cmdlist, "tcatch ",
15758 0/*allow-unknown*/, &cmdlist);
15759
15760 add_catch_command ("fork", _("Catch calls to fork."),
15761 catch_fork_command_1,
15762 NULL,
15763 (void *) (uintptr_t) catch_fork_permanent,
15764 (void *) (uintptr_t) catch_fork_temporary);
15765 add_catch_command ("vfork", _("Catch calls to vfork."),
15766 catch_fork_command_1,
15767 NULL,
15768 (void *) (uintptr_t) catch_vfork_permanent,
15769 (void *) (uintptr_t) catch_vfork_temporary);
15770 add_catch_command ("exec", _("Catch calls to exec."),
15771 catch_exec_command_1,
15772 NULL,
15773 CATCH_PERMANENT,
15774 CATCH_TEMPORARY);
15775 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15776 Usage: catch load [REGEX]\n\
15777 If REGEX is given, only stop for libraries matching the regular expression."),
15778 catch_load_command_1,
15779 NULL,
15780 CATCH_PERMANENT,
15781 CATCH_TEMPORARY);
15782 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15783 Usage: catch unload [REGEX]\n\
15784 If REGEX is given, only stop for libraries matching the regular expression."),
15785 catch_unload_command_1,
15786 NULL,
15787 CATCH_PERMANENT,
15788 CATCH_TEMPORARY);
15789
15790 c = add_com ("watch", class_breakpoint, watch_command, _("\
15791 Set a watchpoint for an expression.\n\
15792 Usage: watch [-l|-location] EXPRESSION\n\
15793 A watchpoint stops execution of your program whenever the value of\n\
15794 an expression changes.\n\
15795 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15796 the memory to which it refers."));
15797 set_cmd_completer (c, expression_completer);
15798
15799 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15800 Set a read watchpoint for an expression.\n\
15801 Usage: rwatch [-l|-location] EXPRESSION\n\
15802 A watchpoint stops execution of your program whenever the value of\n\
15803 an expression is read.\n\
15804 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15805 the memory to which it refers."));
15806 set_cmd_completer (c, expression_completer);
15807
15808 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15809 Set a watchpoint for an expression.\n\
15810 Usage: awatch [-l|-location] EXPRESSION\n\
15811 A watchpoint stops execution of your program whenever the value of\n\
15812 an expression is either read or written.\n\
15813 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15814 the memory to which it refers."));
15815 set_cmd_completer (c, expression_completer);
15816
15817 add_info ("watchpoints", info_watchpoints_command, _("\
15818 Status of specified watchpoints (all watchpoints if no argument)."));
15819
15820 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15821 respond to changes - contrary to the description. */
15822 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15823 &can_use_hw_watchpoints, _("\
15824 Set debugger's willingness to use watchpoint hardware."), _("\
15825 Show debugger's willingness to use watchpoint hardware."), _("\
15826 If zero, gdb will not use hardware for new watchpoints, even if\n\
15827 such is available. (However, any hardware watchpoints that were\n\
15828 created before setting this to nonzero, will continue to use watchpoint\n\
15829 hardware.)"),
15830 NULL,
15831 show_can_use_hw_watchpoints,
15832 &setlist, &showlist);
15833
15834 can_use_hw_watchpoints = 1;
15835
15836 /* Tracepoint manipulation commands. */
15837
15838 c = add_com ("trace", class_breakpoint, trace_command, _("\
15839 Set a tracepoint at specified location.\n\
15840 \n"
15841 BREAK_ARGS_HELP ("trace") "\n\
15842 Do \"help tracepoints\" for info on other tracepoint commands."));
15843 set_cmd_completer (c, location_completer);
15844
15845 add_com_alias ("tp", "trace", class_alias, 0);
15846 add_com_alias ("tr", "trace", class_alias, 1);
15847 add_com_alias ("tra", "trace", class_alias, 1);
15848 add_com_alias ("trac", "trace", class_alias, 1);
15849
15850 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15851 Set a fast tracepoint at specified location.\n\
15852 \n"
15853 BREAK_ARGS_HELP ("ftrace") "\n\
15854 Do \"help tracepoints\" for info on other tracepoint commands."));
15855 set_cmd_completer (c, location_completer);
15856
15857 c = add_com ("strace", class_breakpoint, strace_command, _("\
15858 Set a static tracepoint at location or marker.\n\
15859 \n\
15860 strace [LOCATION] [if CONDITION]\n\
15861 LOCATION may be a linespec, explicit, or address location (described below) \n\
15862 or -m MARKER_ID.\n\n\
15863 If a marker id is specified, probe the marker with that name. With\n\
15864 no LOCATION, uses current execution address of the selected stack frame.\n\
15865 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15866 This collects arbitrary user data passed in the probe point call to the\n\
15867 tracing library. You can inspect it when analyzing the trace buffer,\n\
15868 by printing the $_sdata variable like any other convenience variable.\n\
15869 \n\
15870 CONDITION is a boolean expression.\n\
15871 \n" LOCATION_HELP_STRING "\n\
15872 Multiple tracepoints at one place are permitted, and useful if their\n\
15873 conditions are different.\n\
15874 \n\
15875 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15876 Do \"help tracepoints\" for info on other tracepoint commands."));
15877 set_cmd_completer (c, location_completer);
15878
15879 add_info ("tracepoints", info_tracepoints_command, _("\
15880 Status of specified tracepoints (all tracepoints if no argument).\n\
15881 Convenience variable \"$tpnum\" contains the number of the\n\
15882 last tracepoint set."));
15883
15884 add_info_alias ("tp", "tracepoints", 1);
15885
15886 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15887 Delete specified tracepoints.\n\
15888 Arguments are tracepoint numbers, separated by spaces.\n\
15889 No argument means delete all tracepoints."),
15890 &deletelist);
15891 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15892
15893 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15894 Disable specified tracepoints.\n\
15895 Arguments are tracepoint numbers, separated by spaces.\n\
15896 No argument means disable all tracepoints."),
15897 &disablelist);
15898 deprecate_cmd (c, "disable");
15899
15900 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15901 Enable specified tracepoints.\n\
15902 Arguments are tracepoint numbers, separated by spaces.\n\
15903 No argument means enable all tracepoints."),
15904 &enablelist);
15905 deprecate_cmd (c, "enable");
15906
15907 add_com ("passcount", class_trace, trace_pass_command, _("\
15908 Set the passcount for a tracepoint.\n\
15909 The trace will end when the tracepoint has been passed 'count' times.\n\
15910 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15911 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15912
15913 add_prefix_cmd ("save", class_breakpoint, save_command,
15914 _("Save breakpoint definitions as a script."),
15915 &save_cmdlist, "save ",
15916 0/*allow-unknown*/, &cmdlist);
15917
15918 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15919 Save current breakpoint definitions as a script.\n\
15920 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15921 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15922 session to restore them."),
15923 &save_cmdlist);
15924 set_cmd_completer (c, filename_completer);
15925
15926 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15927 Save current tracepoint definitions as a script.\n\
15928 Use the 'source' command in another debug session to restore them."),
15929 &save_cmdlist);
15930 set_cmd_completer (c, filename_completer);
15931
15932 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15933 deprecate_cmd (c, "save tracepoints");
15934
15935 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15936 Breakpoint specific settings\n\
15937 Configure various breakpoint-specific variables such as\n\
15938 pending breakpoint behavior"),
15939 &breakpoint_set_cmdlist, "set breakpoint ",
15940 0/*allow-unknown*/, &setlist);
15941 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15942 Breakpoint specific settings\n\
15943 Configure various breakpoint-specific variables such as\n\
15944 pending breakpoint behavior"),
15945 &breakpoint_show_cmdlist, "show breakpoint ",
15946 0/*allow-unknown*/, &showlist);
15947
15948 add_setshow_auto_boolean_cmd ("pending", no_class,
15949 &pending_break_support, _("\
15950 Set debugger's behavior regarding pending breakpoints."), _("\
15951 Show debugger's behavior regarding pending breakpoints."), _("\
15952 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15953 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15954 an error. If auto, an unrecognized breakpoint location results in a\n\
15955 user-query to see if a pending breakpoint should be created."),
15956 NULL,
15957 show_pending_break_support,
15958 &breakpoint_set_cmdlist,
15959 &breakpoint_show_cmdlist);
15960
15961 pending_break_support = AUTO_BOOLEAN_AUTO;
15962
15963 add_setshow_boolean_cmd ("auto-hw", no_class,
15964 &automatic_hardware_breakpoints, _("\
15965 Set automatic usage of hardware breakpoints."), _("\
15966 Show automatic usage of hardware breakpoints."), _("\
15967 If set, the debugger will automatically use hardware breakpoints for\n\
15968 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15969 a warning will be emitted for such breakpoints."),
15970 NULL,
15971 show_automatic_hardware_breakpoints,
15972 &breakpoint_set_cmdlist,
15973 &breakpoint_show_cmdlist);
15974
15975 add_setshow_boolean_cmd ("always-inserted", class_support,
15976 &always_inserted_mode, _("\
15977 Set mode for inserting breakpoints."), _("\
15978 Show mode for inserting breakpoints."), _("\
15979 When this mode is on, breakpoints are inserted immediately as soon as\n\
15980 they're created, kept inserted even when execution stops, and removed\n\
15981 only when the user deletes them. When this mode is off (the default),\n\
15982 breakpoints are inserted only when execution continues, and removed\n\
15983 when execution stops."),
15984 NULL,
15985 &show_always_inserted_mode,
15986 &breakpoint_set_cmdlist,
15987 &breakpoint_show_cmdlist);
15988
15989 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15990 condition_evaluation_enums,
15991 &condition_evaluation_mode_1, _("\
15992 Set mode of breakpoint condition evaluation."), _("\
15993 Show mode of breakpoint condition evaluation."), _("\
15994 When this is set to \"host\", breakpoint conditions will be\n\
15995 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15996 breakpoint conditions will be downloaded to the target (if the target\n\
15997 supports such feature) and conditions will be evaluated on the target's side.\n\
15998 If this is set to \"auto\" (default), this will be automatically set to\n\
15999 \"target\" if it supports condition evaluation, otherwise it will\n\
16000 be set to \"gdb\""),
16001 &set_condition_evaluation_mode,
16002 &show_condition_evaluation_mode,
16003 &breakpoint_set_cmdlist,
16004 &breakpoint_show_cmdlist);
16005
16006 add_com ("break-range", class_breakpoint, break_range_command, _("\
16007 Set a breakpoint for an address range.\n\
16008 break-range START-LOCATION, END-LOCATION\n\
16009 where START-LOCATION and END-LOCATION can be one of the following:\n\
16010 LINENUM, for that line in the current file,\n\
16011 FILE:LINENUM, for that line in that file,\n\
16012 +OFFSET, for that number of lines after the current line\n\
16013 or the start of the range\n\
16014 FUNCTION, for the first line in that function,\n\
16015 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16016 *ADDRESS, for the instruction at that address.\n\
16017 \n\
16018 The breakpoint will stop execution of the inferior whenever it executes\n\
16019 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16020 range (including START-LOCATION and END-LOCATION)."));
16021
16022 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16023 Set a dynamic printf at specified location.\n\
16024 dprintf location,format string,arg1,arg2,...\n\
16025 location may be a linespec, explicit, or address location.\n"
16026 "\n" LOCATION_HELP_STRING));
16027 set_cmd_completer (c, location_completer);
16028
16029 add_setshow_enum_cmd ("dprintf-style", class_support,
16030 dprintf_style_enums, &dprintf_style, _("\
16031 Set the style of usage for dynamic printf."), _("\
16032 Show the style of usage for dynamic printf."), _("\
16033 This setting chooses how GDB will do a dynamic printf.\n\
16034 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16035 console, as with the \"printf\" command.\n\
16036 If the value is \"call\", the print is done by calling a function in your\n\
16037 program; by default printf(), but you can choose a different function or\n\
16038 output stream by setting dprintf-function and dprintf-channel."),
16039 update_dprintf_commands, NULL,
16040 &setlist, &showlist);
16041
16042 dprintf_function = xstrdup ("printf");
16043 add_setshow_string_cmd ("dprintf-function", class_support,
16044 &dprintf_function, _("\
16045 Set the function to use for dynamic printf"), _("\
16046 Show the function to use for dynamic printf"), NULL,
16047 update_dprintf_commands, NULL,
16048 &setlist, &showlist);
16049
16050 dprintf_channel = xstrdup ("");
16051 add_setshow_string_cmd ("dprintf-channel", class_support,
16052 &dprintf_channel, _("\
16053 Set the channel to use for dynamic printf"), _("\
16054 Show the channel to use for dynamic printf"), NULL,
16055 update_dprintf_commands, NULL,
16056 &setlist, &showlist);
16057
16058 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16059 &disconnected_dprintf, _("\
16060 Set whether dprintf continues after GDB disconnects."), _("\
16061 Show whether dprintf continues after GDB disconnects."), _("\
16062 Use this to let dprintf commands continue to hit and produce output\n\
16063 even if GDB disconnects or detaches from the target."),
16064 NULL,
16065 NULL,
16066 &setlist, &showlist);
16067
16068 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16069 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16070 (target agent only) This is useful for formatted output in user-defined commands."));
16071
16072 automatic_hardware_breakpoints = 1;
16073
16074 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16075 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16076 }
This page took 0.405597 seconds and 5 git commands to generate.