Remove return value from remove_breakpoints_inf
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "common/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "common/array-view.h"
86 #include "common/gdb_optional.h"
87
88 /* Prototypes for local functions. */
89
90 static void map_breakpoint_numbers (const char *,
91 gdb::function_view<void (breakpoint *)>);
92
93 static void breakpoint_re_set_default (struct breakpoint *);
94
95 static void
96 create_sals_from_location_default (const struct event_location *location,
97 struct linespec_result *canonical,
98 enum bptype type_wanted);
99
100 static void create_breakpoints_sal_default (struct gdbarch *,
101 struct linespec_result *,
102 gdb::unique_xmalloc_ptr<char>,
103 gdb::unique_xmalloc_ptr<char>,
104 enum bptype,
105 enum bpdisp, int, int,
106 int,
107 const struct breakpoint_ops *,
108 int, int, int, unsigned);
109
110 static std::vector<symtab_and_line> decode_location_default
111 (struct breakpoint *b, const struct event_location *location,
112 struct program_space *search_pspace);
113
114 static int can_use_hardware_watchpoint
115 (const std::vector<value_ref_ptr> &vals);
116
117 static void mention (struct breakpoint *);
118
119 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
120 enum bptype,
121 const struct breakpoint_ops *);
122 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
123 const struct symtab_and_line *);
124
125 /* This function is used in gdbtk sources and thus can not be made
126 static. */
127 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
128 struct symtab_and_line,
129 enum bptype,
130 const struct breakpoint_ops *);
131
132 static struct breakpoint *
133 momentary_breakpoint_from_master (struct breakpoint *orig,
134 enum bptype type,
135 const struct breakpoint_ops *ops,
136 int loc_enabled);
137
138 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
139
140 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
141 CORE_ADDR bpaddr,
142 enum bptype bptype);
143
144 static void describe_other_breakpoints (struct gdbarch *,
145 struct program_space *, CORE_ADDR,
146 struct obj_section *, int);
147
148 static int watchpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static int is_hardware_watchpoint (const struct breakpoint *bpt);
221
222 static void insert_breakpoint_locations (void);
223
224 static void trace_pass_command (const char *, int);
225
226 static void set_tracepoint_count (int num);
227
228 static int is_masked_watchpoint (const struct breakpoint *b);
229
230 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
231
232 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
233 otherwise. */
234
235 static int strace_marker_p (struct breakpoint *b);
236
237 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
238 that are implemented on top of software or hardware breakpoints
239 (user breakpoints, internal and momentary breakpoints, etc.). */
240 static struct breakpoint_ops bkpt_base_breakpoint_ops;
241
242 /* Internal breakpoints class type. */
243 static struct breakpoint_ops internal_breakpoint_ops;
244
245 /* Momentary breakpoints class type. */
246 static struct breakpoint_ops momentary_breakpoint_ops;
247
248 /* The breakpoint_ops structure to be used in regular user created
249 breakpoints. */
250 struct breakpoint_ops bkpt_breakpoint_ops;
251
252 /* Breakpoints set on probes. */
253 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
254
255 /* Dynamic printf class type. */
256 struct breakpoint_ops dprintf_breakpoint_ops;
257
258 /* The style in which to perform a dynamic printf. This is a user
259 option because different output options have different tradeoffs;
260 if GDB does the printing, there is better error handling if there
261 is a problem with any of the arguments, but using an inferior
262 function lets you have special-purpose printers and sending of
263 output to the same place as compiled-in print functions. */
264
265 static const char dprintf_style_gdb[] = "gdb";
266 static const char dprintf_style_call[] = "call";
267 static const char dprintf_style_agent[] = "agent";
268 static const char *const dprintf_style_enums[] = {
269 dprintf_style_gdb,
270 dprintf_style_call,
271 dprintf_style_agent,
272 NULL
273 };
274 static const char *dprintf_style = dprintf_style_gdb;
275
276 /* The function to use for dynamic printf if the preferred style is to
277 call into the inferior. The value is simply a string that is
278 copied into the command, so it can be anything that GDB can
279 evaluate to a callable address, not necessarily a function name. */
280
281 static char *dprintf_function;
282
283 /* The channel to use for dynamic printf if the preferred style is to
284 call into the inferior; if a nonempty string, it will be passed to
285 the call as the first argument, with the format string as the
286 second. As with the dprintf function, this can be anything that
287 GDB knows how to evaluate, so in addition to common choices like
288 "stderr", this could be an app-specific expression like
289 "mystreams[curlogger]". */
290
291 static char *dprintf_channel;
292
293 /* True if dprintf commands should continue to operate even if GDB
294 has disconnected. */
295 static int disconnected_dprintf = 1;
296
297 struct command_line *
298 breakpoint_commands (struct breakpoint *b)
299 {
300 return b->commands ? b->commands.get () : NULL;
301 }
302
303 /* Flag indicating that a command has proceeded the inferior past the
304 current breakpoint. */
305
306 static int breakpoint_proceeded;
307
308 const char *
309 bpdisp_text (enum bpdisp disp)
310 {
311 /* NOTE: the following values are a part of MI protocol and
312 represent values of 'disp' field returned when inferior stops at
313 a breakpoint. */
314 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
315
316 return bpdisps[(int) disp];
317 }
318
319 /* Prototypes for exported functions. */
320 /* If FALSE, gdb will not use hardware support for watchpoints, even
321 if such is available. */
322 static int can_use_hw_watchpoints;
323
324 static void
325 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c,
327 const char *value)
328 {
329 fprintf_filtered (file,
330 _("Debugger's willingness to use "
331 "watchpoint hardware is %s.\n"),
332 value);
333 }
334
335 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
336 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
337 for unrecognized breakpoint locations.
338 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
339 static enum auto_boolean pending_break_support;
340 static void
341 show_pending_break_support (struct ui_file *file, int from_tty,
342 struct cmd_list_element *c,
343 const char *value)
344 {
345 fprintf_filtered (file,
346 _("Debugger's behavior regarding "
347 "pending breakpoints is %s.\n"),
348 value);
349 }
350
351 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
352 set with "break" but falling in read-only memory.
353 If 0, gdb will warn about such breakpoints, but won't automatically
354 use hardware breakpoints. */
355 static int automatic_hardware_breakpoints;
356 static void
357 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c,
359 const char *value)
360 {
361 fprintf_filtered (file,
362 _("Automatic usage of hardware breakpoints is %s.\n"),
363 value);
364 }
365
366 /* If on, GDB keeps breakpoints inserted even if the inferior is
367 stopped, and immediately inserts any new breakpoints as soon as
368 they're created. If off (default), GDB keeps breakpoints off of
369 the target as long as possible. That is, it delays inserting
370 breakpoints until the next resume, and removes them again when the
371 target fully stops. This is a bit safer in case GDB crashes while
372 processing user input. */
373 static int always_inserted_mode = 0;
374
375 static void
376 show_always_inserted_mode (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
380 value);
381 }
382
383 /* See breakpoint.h. */
384
385 int
386 breakpoints_should_be_inserted_now (void)
387 {
388 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
389 {
390 /* If breakpoints are global, they should be inserted even if no
391 thread under gdb's control is running, or even if there are
392 no threads under GDB's control yet. */
393 return 1;
394 }
395 else if (target_has_execution)
396 {
397 if (always_inserted_mode)
398 {
399 /* The user wants breakpoints inserted even if all threads
400 are stopped. */
401 return 1;
402 }
403
404 if (threads_are_executing ())
405 return 1;
406
407 /* Don't remove breakpoints yet if, even though all threads are
408 stopped, we still have events to process. */
409 for (thread_info *tp : all_non_exited_threads ())
410 if (tp->resumed
411 && tp->suspend.waitstatus_pending_p)
412 return 1;
413 }
414 return 0;
415 }
416
417 static const char condition_evaluation_both[] = "host or target";
418
419 /* Modes for breakpoint condition evaluation. */
420 static const char condition_evaluation_auto[] = "auto";
421 static const char condition_evaluation_host[] = "host";
422 static const char condition_evaluation_target[] = "target";
423 static const char *const condition_evaluation_enums[] = {
424 condition_evaluation_auto,
425 condition_evaluation_host,
426 condition_evaluation_target,
427 NULL
428 };
429
430 /* Global that holds the current mode for breakpoint condition evaluation. */
431 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
432
433 /* Global that we use to display information to the user (gets its value from
434 condition_evaluation_mode_1. */
435 static const char *condition_evaluation_mode = condition_evaluation_auto;
436
437 /* Translate a condition evaluation mode MODE into either "host"
438 or "target". This is used mostly to translate from "auto" to the
439 real setting that is being used. It returns the translated
440 evaluation mode. */
441
442 static const char *
443 translate_condition_evaluation_mode (const char *mode)
444 {
445 if (mode == condition_evaluation_auto)
446 {
447 if (target_supports_evaluation_of_breakpoint_conditions ())
448 return condition_evaluation_target;
449 else
450 return condition_evaluation_host;
451 }
452 else
453 return mode;
454 }
455
456 /* Discovers what condition_evaluation_auto translates to. */
457
458 static const char *
459 breakpoint_condition_evaluation_mode (void)
460 {
461 return translate_condition_evaluation_mode (condition_evaluation_mode);
462 }
463
464 /* Return true if GDB should evaluate breakpoint conditions or false
465 otherwise. */
466
467 static int
468 gdb_evaluates_breakpoint_condition_p (void)
469 {
470 const char *mode = breakpoint_condition_evaluation_mode ();
471
472 return (mode == condition_evaluation_host);
473 }
474
475 /* Are we executing breakpoint commands? */
476 static int executing_breakpoint_commands;
477
478 /* Are overlay event breakpoints enabled? */
479 static int overlay_events_enabled;
480
481 /* See description in breakpoint.h. */
482 int target_exact_watchpoints = 0;
483
484 /* Walk the following statement or block through all breakpoints.
485 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
486 current breakpoint. */
487
488 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
489
490 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
491 for (B = breakpoint_chain; \
492 B ? (TMP=B->next, 1): 0; \
493 B = TMP)
494
495 /* Similar iterator for the low-level breakpoints. SAFE variant is
496 not provided so update_global_location_list must not be called
497 while executing the block of ALL_BP_LOCATIONS. */
498
499 #define ALL_BP_LOCATIONS(B,BP_TMP) \
500 for (BP_TMP = bp_locations; \
501 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
502 BP_TMP++)
503
504 /* Iterates through locations with address ADDRESS for the currently selected
505 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
506 to where the loop should start from.
507 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
508 appropriate location to start with. */
509
510 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
511 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
512 BP_LOCP_TMP = BP_LOCP_START; \
513 BP_LOCP_START \
514 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
515 && (*BP_LOCP_TMP)->address == ADDRESS); \
516 BP_LOCP_TMP++)
517
518 /* Iterator for tracepoints only. */
519
520 #define ALL_TRACEPOINTS(B) \
521 for (B = breakpoint_chain; B; B = B->next) \
522 if (is_tracepoint (B))
523
524 /* Chains of all breakpoints defined. */
525
526 struct breakpoint *breakpoint_chain;
527
528 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
529
530 static struct bp_location **bp_locations;
531
532 /* Number of elements of BP_LOCATIONS. */
533
534 static unsigned bp_locations_count;
535
536 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
537 ADDRESS for the current elements of BP_LOCATIONS which get a valid
538 result from bp_location_has_shadow. You can use it for roughly
539 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
540 an address you need to read. */
541
542 static CORE_ADDR bp_locations_placed_address_before_address_max;
543
544 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
545 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
546 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
547 You can use it for roughly limiting the subrange of BP_LOCATIONS to
548 scan for shadow bytes for an address you need to read. */
549
550 static CORE_ADDR bp_locations_shadow_len_after_address_max;
551
552 /* The locations that no longer correspond to any breakpoint, unlinked
553 from the bp_locations array, but for which a hit may still be
554 reported by a target. */
555 static std::vector<bp_location *> moribund_locations;
556
557 /* Number of last breakpoint made. */
558
559 static int breakpoint_count;
560
561 /* The value of `breakpoint_count' before the last command that
562 created breakpoints. If the last (break-like) command created more
563 than one breakpoint, then the difference between BREAKPOINT_COUNT
564 and PREV_BREAKPOINT_COUNT is more than one. */
565 static int prev_breakpoint_count;
566
567 /* Number of last tracepoint made. */
568
569 static int tracepoint_count;
570
571 static struct cmd_list_element *breakpoint_set_cmdlist;
572 static struct cmd_list_element *breakpoint_show_cmdlist;
573 struct cmd_list_element *save_cmdlist;
574
575 /* See declaration at breakpoint.h. */
576
577 struct breakpoint *
578 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
579 void *user_data)
580 {
581 struct breakpoint *b = NULL;
582
583 ALL_BREAKPOINTS (b)
584 {
585 if (func (b, user_data) != 0)
586 break;
587 }
588
589 return b;
590 }
591
592 /* Return whether a breakpoint is an active enabled breakpoint. */
593 static int
594 breakpoint_enabled (struct breakpoint *b)
595 {
596 return (b->enable_state == bp_enabled);
597 }
598
599 /* Set breakpoint count to NUM. */
600
601 static void
602 set_breakpoint_count (int num)
603 {
604 prev_breakpoint_count = breakpoint_count;
605 breakpoint_count = num;
606 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
607 }
608
609 /* Used by `start_rbreak_breakpoints' below, to record the current
610 breakpoint count before "rbreak" creates any breakpoint. */
611 static int rbreak_start_breakpoint_count;
612
613 /* Called at the start an "rbreak" command to record the first
614 breakpoint made. */
615
616 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
617 {
618 rbreak_start_breakpoint_count = breakpoint_count;
619 }
620
621 /* Called at the end of an "rbreak" command to record the last
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
625 {
626 prev_breakpoint_count = rbreak_start_breakpoint_count;
627 }
628
629 /* Used in run_command to zero the hit count when a new run starts. */
630
631 void
632 clear_breakpoint_hit_counts (void)
633 {
634 struct breakpoint *b;
635
636 ALL_BREAKPOINTS (b)
637 b->hit_count = 0;
638 }
639
640 \f
641 /* Return the breakpoint with the specified number, or NULL
642 if the number does not refer to an existing breakpoint. */
643
644 struct breakpoint *
645 get_breakpoint (int num)
646 {
647 struct breakpoint *b;
648
649 ALL_BREAKPOINTS (b)
650 if (b->number == num)
651 return b;
652
653 return NULL;
654 }
655
656 \f
657
658 /* Mark locations as "conditions have changed" in case the target supports
659 evaluating conditions on its side. */
660
661 static void
662 mark_breakpoint_modified (struct breakpoint *b)
663 {
664 struct bp_location *loc;
665
666 /* This is only meaningful if the target is
667 evaluating conditions and if the user has
668 opted for condition evaluation on the target's
669 side. */
670 if (gdb_evaluates_breakpoint_condition_p ()
671 || !target_supports_evaluation_of_breakpoint_conditions ())
672 return;
673
674 if (!is_breakpoint (b))
675 return;
676
677 for (loc = b->loc; loc; loc = loc->next)
678 loc->condition_changed = condition_modified;
679 }
680
681 /* Mark location as "conditions have changed" in case the target supports
682 evaluating conditions on its side. */
683
684 static void
685 mark_breakpoint_location_modified (struct bp_location *loc)
686 {
687 /* This is only meaningful if the target is
688 evaluating conditions and if the user has
689 opted for condition evaluation on the target's
690 side. */
691 if (gdb_evaluates_breakpoint_condition_p ()
692 || !target_supports_evaluation_of_breakpoint_conditions ())
693
694 return;
695
696 if (!is_breakpoint (loc->owner))
697 return;
698
699 loc->condition_changed = condition_modified;
700 }
701
702 /* Sets the condition-evaluation mode using the static global
703 condition_evaluation_mode. */
704
705 static void
706 set_condition_evaluation_mode (const char *args, int from_tty,
707 struct cmd_list_element *c)
708 {
709 const char *old_mode, *new_mode;
710
711 if ((condition_evaluation_mode_1 == condition_evaluation_target)
712 && !target_supports_evaluation_of_breakpoint_conditions ())
713 {
714 condition_evaluation_mode_1 = condition_evaluation_mode;
715 warning (_("Target does not support breakpoint condition evaluation.\n"
716 "Using host evaluation mode instead."));
717 return;
718 }
719
720 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
721 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
722
723 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
724 settings was "auto". */
725 condition_evaluation_mode = condition_evaluation_mode_1;
726
727 /* Only update the mode if the user picked a different one. */
728 if (new_mode != old_mode)
729 {
730 struct bp_location *loc, **loc_tmp;
731 /* If the user switched to a different evaluation mode, we
732 need to synch the changes with the target as follows:
733
734 "host" -> "target": Send all (valid) conditions to the target.
735 "target" -> "host": Remove all the conditions from the target.
736 */
737
738 if (new_mode == condition_evaluation_target)
739 {
740 /* Mark everything modified and synch conditions with the
741 target. */
742 ALL_BP_LOCATIONS (loc, loc_tmp)
743 mark_breakpoint_location_modified (loc);
744 }
745 else
746 {
747 /* Manually mark non-duplicate locations to synch conditions
748 with the target. We do this to remove all the conditions the
749 target knows about. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 if (is_breakpoint (loc->owner) && loc->inserted)
752 loc->needs_update = 1;
753 }
754
755 /* Do the update. */
756 update_global_location_list (UGLL_MAY_INSERT);
757 }
758
759 return;
760 }
761
762 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
763 what "auto" is translating to. */
764
765 static void
766 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 if (condition_evaluation_mode == condition_evaluation_auto)
770 fprintf_filtered (file,
771 _("Breakpoint condition evaluation "
772 "mode is %s (currently %s).\n"),
773 value,
774 breakpoint_condition_evaluation_mode ());
775 else
776 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
777 value);
778 }
779
780 /* A comparison function for bp_location AP and BP that is used by
781 bsearch. This comparison function only cares about addresses, unlike
782 the more general bp_locations_compare function. */
783
784 static int
785 bp_locations_compare_addrs (const void *ap, const void *bp)
786 {
787 const struct bp_location *a = *(const struct bp_location **) ap;
788 const struct bp_location *b = *(const struct bp_location **) bp;
789
790 if (a->address == b->address)
791 return 0;
792 else
793 return ((a->address > b->address) - (a->address < b->address));
794 }
795
796 /* Helper function to skip all bp_locations with addresses
797 less than ADDRESS. It returns the first bp_location that
798 is greater than or equal to ADDRESS. If none is found, just
799 return NULL. */
800
801 static struct bp_location **
802 get_first_locp_gte_addr (CORE_ADDR address)
803 {
804 struct bp_location dummy_loc;
805 struct bp_location *dummy_locp = &dummy_loc;
806 struct bp_location **locp_found = NULL;
807
808 /* Initialize the dummy location's address field. */
809 dummy_loc.address = address;
810
811 /* Find a close match to the first location at ADDRESS. */
812 locp_found = ((struct bp_location **)
813 bsearch (&dummy_locp, bp_locations, bp_locations_count,
814 sizeof (struct bp_location **),
815 bp_locations_compare_addrs));
816
817 /* Nothing was found, nothing left to do. */
818 if (locp_found == NULL)
819 return NULL;
820
821 /* We may have found a location that is at ADDRESS but is not the first in the
822 location's list. Go backwards (if possible) and locate the first one. */
823 while ((locp_found - 1) >= bp_locations
824 && (*(locp_found - 1))->address == address)
825 locp_found--;
826
827 return locp_found;
828 }
829
830 void
831 set_breakpoint_condition (struct breakpoint *b, const char *exp,
832 int from_tty)
833 {
834 xfree (b->cond_string);
835 b->cond_string = NULL;
836
837 if (is_watchpoint (b))
838 {
839 struct watchpoint *w = (struct watchpoint *) b;
840
841 w->cond_exp.reset ();
842 }
843 else
844 {
845 struct bp_location *loc;
846
847 for (loc = b->loc; loc; loc = loc->next)
848 {
849 loc->cond.reset ();
850
851 /* No need to free the condition agent expression
852 bytecode (if we have one). We will handle this
853 when we go through update_global_location_list. */
854 }
855 }
856
857 if (*exp == 0)
858 {
859 if (from_tty)
860 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
861 }
862 else
863 {
864 const char *arg = exp;
865
866 /* I don't know if it matters whether this is the string the user
867 typed in or the decompiled expression. */
868 b->cond_string = xstrdup (arg);
869 b->condition_not_parsed = 0;
870
871 if (is_watchpoint (b))
872 {
873 struct watchpoint *w = (struct watchpoint *) b;
874
875 innermost_block_tracker tracker;
876 arg = exp;
877 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
878 if (*arg)
879 error (_("Junk at end of expression"));
880 w->cond_exp_valid_block = tracker.block ();
881 }
882 else
883 {
884 struct bp_location *loc;
885
886 for (loc = b->loc; loc; loc = loc->next)
887 {
888 arg = exp;
889 loc->cond =
890 parse_exp_1 (&arg, loc->address,
891 block_for_pc (loc->address), 0);
892 if (*arg)
893 error (_("Junk at end of expression"));
894 }
895 }
896 }
897 mark_breakpoint_modified (b);
898
899 gdb::observers::breakpoint_modified.notify (b);
900 }
901
902 /* Completion for the "condition" command. */
903
904 static void
905 condition_completer (struct cmd_list_element *cmd,
906 completion_tracker &tracker,
907 const char *text, const char *word)
908 {
909 const char *space;
910
911 text = skip_spaces (text);
912 space = skip_to_space (text);
913 if (*space == '\0')
914 {
915 int len;
916 struct breakpoint *b;
917
918 if (text[0] == '$')
919 {
920 /* We don't support completion of history indices. */
921 if (!isdigit (text[1]))
922 complete_internalvar (tracker, &text[1]);
923 return;
924 }
925
926 /* We're completing the breakpoint number. */
927 len = strlen (text);
928
929 ALL_BREAKPOINTS (b)
930 {
931 char number[50];
932
933 xsnprintf (number, sizeof (number), "%d", b->number);
934
935 if (strncmp (number, text, len) == 0)
936 tracker.add_completion (make_unique_xstrdup (number));
937 }
938
939 return;
940 }
941
942 /* We're completing the expression part. */
943 text = skip_spaces (space);
944 expression_completer (cmd, tracker, text, word);
945 }
946
947 /* condition N EXP -- set break condition of breakpoint N to EXP. */
948
949 static void
950 condition_command (const char *arg, int from_tty)
951 {
952 struct breakpoint *b;
953 const char *p;
954 int bnum;
955
956 if (arg == 0)
957 error_no_arg (_("breakpoint number"));
958
959 p = arg;
960 bnum = get_number (&p);
961 if (bnum == 0)
962 error (_("Bad breakpoint argument: '%s'"), arg);
963
964 ALL_BREAKPOINTS (b)
965 if (b->number == bnum)
966 {
967 /* Check if this breakpoint has a "stop" method implemented in an
968 extension language. This method and conditions entered into GDB
969 from the CLI are mutually exclusive. */
970 const struct extension_language_defn *extlang
971 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
972
973 if (extlang != NULL)
974 {
975 error (_("Only one stop condition allowed. There is currently"
976 " a %s stop condition defined for this breakpoint."),
977 ext_lang_capitalized_name (extlang));
978 }
979 set_breakpoint_condition (b, p, from_tty);
980
981 if (is_breakpoint (b))
982 update_global_location_list (UGLL_MAY_INSERT);
983
984 return;
985 }
986
987 error (_("No breakpoint number %d."), bnum);
988 }
989
990 /* Check that COMMAND do not contain commands that are suitable
991 only for tracepoints and not suitable for ordinary breakpoints.
992 Throw if any such commands is found. */
993
994 static void
995 check_no_tracepoint_commands (struct command_line *commands)
996 {
997 struct command_line *c;
998
999 for (c = commands; c; c = c->next)
1000 {
1001 if (c->control_type == while_stepping_control)
1002 error (_("The 'while-stepping' command can "
1003 "only be used for tracepoints"));
1004
1005 check_no_tracepoint_commands (c->body_list_0.get ());
1006 check_no_tracepoint_commands (c->body_list_1.get ());
1007
1008 /* Not that command parsing removes leading whitespace and comment
1009 lines and also empty lines. So, we only need to check for
1010 command directly. */
1011 if (strstr (c->line, "collect ") == c->line)
1012 error (_("The 'collect' command can only be used for tracepoints"));
1013
1014 if (strstr (c->line, "teval ") == c->line)
1015 error (_("The 'teval' command can only be used for tracepoints"));
1016 }
1017 }
1018
1019 struct longjmp_breakpoint : public breakpoint
1020 {
1021 ~longjmp_breakpoint () override;
1022 };
1023
1024 /* Encapsulate tests for different types of tracepoints. */
1025
1026 static bool
1027 is_tracepoint_type (bptype type)
1028 {
1029 return (type == bp_tracepoint
1030 || type == bp_fast_tracepoint
1031 || type == bp_static_tracepoint);
1032 }
1033
1034 static bool
1035 is_longjmp_type (bptype type)
1036 {
1037 return type == bp_longjmp || type == bp_exception;
1038 }
1039
1040 int
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 \f
1497
1498 /* Return true if BPT is either a software breakpoint or a hardware
1499 breakpoint. */
1500
1501 int
1502 is_breakpoint (const struct breakpoint *bpt)
1503 {
1504 return (bpt->type == bp_breakpoint
1505 || bpt->type == bp_hardware_breakpoint
1506 || bpt->type == bp_dprintf);
1507 }
1508
1509 /* Return true if BPT is of any hardware watchpoint kind. */
1510
1511 static int
1512 is_hardware_watchpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_hardware_watchpoint
1515 || bpt->type == bp_read_watchpoint
1516 || bpt->type == bp_access_watchpoint);
1517 }
1518
1519 /* Return true if BPT is of any watchpoint kind, hardware or
1520 software. */
1521
1522 int
1523 is_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (is_hardware_watchpoint (bpt)
1526 || bpt->type == bp_watchpoint);
1527 }
1528
1529 /* Returns true if the current thread and its running state are safe
1530 to evaluate or update watchpoint B. Watchpoints on local
1531 expressions need to be evaluated in the context of the thread that
1532 was current when the watchpoint was created, and, that thread needs
1533 to be stopped to be able to select the correct frame context.
1534 Watchpoints on global expressions can be evaluated on any thread,
1535 and in any state. It is presently left to the target allowing
1536 memory accesses when threads are running. */
1537
1538 static int
1539 watchpoint_in_thread_scope (struct watchpoint *b)
1540 {
1541 return (b->pspace == current_program_space
1542 && (b->watchpoint_thread == null_ptid
1543 || (inferior_ptid == b->watchpoint_thread
1544 && !inferior_thread ()->executing)));
1545 }
1546
1547 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1548 associated bp_watchpoint_scope breakpoint. */
1549
1550 static void
1551 watchpoint_del_at_next_stop (struct watchpoint *w)
1552 {
1553 if (w->related_breakpoint != w)
1554 {
1555 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1556 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1557 w->related_breakpoint->disposition = disp_del_at_next_stop;
1558 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1559 w->related_breakpoint = w;
1560 }
1561 w->disposition = disp_del_at_next_stop;
1562 }
1563
1564 /* Extract a bitfield value from value VAL using the bit parameters contained in
1565 watchpoint W. */
1566
1567 static struct value *
1568 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1569 {
1570 struct value *bit_val;
1571
1572 if (val == NULL)
1573 return NULL;
1574
1575 bit_val = allocate_value (value_type (val));
1576
1577 unpack_value_bitfield (bit_val,
1578 w->val_bitpos,
1579 w->val_bitsize,
1580 value_contents_for_printing (val),
1581 value_offset (val),
1582 val);
1583
1584 return bit_val;
1585 }
1586
1587 /* Allocate a dummy location and add it to B, which must be a software
1588 watchpoint. This is required because even if a software watchpoint
1589 is not watching any memory, bpstat_stop_status requires a location
1590 to be able to report stops. */
1591
1592 static void
1593 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1594 struct program_space *pspace)
1595 {
1596 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1597
1598 b->loc = allocate_bp_location (b);
1599 b->loc->pspace = pspace;
1600 b->loc->address = -1;
1601 b->loc->length = -1;
1602 }
1603
1604 /* Returns true if B is a software watchpoint that is not watching any
1605 memory (e.g., "watch $pc"). */
1606
1607 static int
1608 is_no_memory_software_watchpoint (struct breakpoint *b)
1609 {
1610 return (b->type == bp_watchpoint
1611 && b->loc != NULL
1612 && b->loc->next == NULL
1613 && b->loc->address == -1
1614 && b->loc->length == -1);
1615 }
1616
1617 /* Assuming that B is a watchpoint:
1618 - Reparse watchpoint expression, if REPARSE is non-zero
1619 - Evaluate expression and store the result in B->val
1620 - Evaluate the condition if there is one, and store the result
1621 in b->loc->cond.
1622 - Update the list of values that must be watched in B->loc.
1623
1624 If the watchpoint disposition is disp_del_at_next_stop, then do
1625 nothing. If this is local watchpoint that is out of scope, delete
1626 it.
1627
1628 Even with `set breakpoint always-inserted on' the watchpoints are
1629 removed + inserted on each stop here. Normal breakpoints must
1630 never be removed because they might be missed by a running thread
1631 when debugging in non-stop mode. On the other hand, hardware
1632 watchpoints (is_hardware_watchpoint; processed here) are specific
1633 to each LWP since they are stored in each LWP's hardware debug
1634 registers. Therefore, such LWP must be stopped first in order to
1635 be able to modify its hardware watchpoints.
1636
1637 Hardware watchpoints must be reset exactly once after being
1638 presented to the user. It cannot be done sooner, because it would
1639 reset the data used to present the watchpoint hit to the user. And
1640 it must not be done later because it could display the same single
1641 watchpoint hit during multiple GDB stops. Note that the latter is
1642 relevant only to the hardware watchpoint types bp_read_watchpoint
1643 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1644 not user-visible - its hit is suppressed if the memory content has
1645 not changed.
1646
1647 The following constraints influence the location where we can reset
1648 hardware watchpoints:
1649
1650 * target_stopped_by_watchpoint and target_stopped_data_address are
1651 called several times when GDB stops.
1652
1653 [linux]
1654 * Multiple hardware watchpoints can be hit at the same time,
1655 causing GDB to stop. GDB only presents one hardware watchpoint
1656 hit at a time as the reason for stopping, and all the other hits
1657 are presented later, one after the other, each time the user
1658 requests the execution to be resumed. Execution is not resumed
1659 for the threads still having pending hit event stored in
1660 LWP_INFO->STATUS. While the watchpoint is already removed from
1661 the inferior on the first stop the thread hit event is kept being
1662 reported from its cached value by linux_nat_stopped_data_address
1663 until the real thread resume happens after the watchpoint gets
1664 presented and thus its LWP_INFO->STATUS gets reset.
1665
1666 Therefore the hardware watchpoint hit can get safely reset on the
1667 watchpoint removal from inferior. */
1668
1669 static void
1670 update_watchpoint (struct watchpoint *b, int reparse)
1671 {
1672 int within_current_scope;
1673 struct frame_id saved_frame_id;
1674 int frame_saved;
1675
1676 /* If this is a local watchpoint, we only want to check if the
1677 watchpoint frame is in scope if the current thread is the thread
1678 that was used to create the watchpoint. */
1679 if (!watchpoint_in_thread_scope (b))
1680 return;
1681
1682 if (b->disposition == disp_del_at_next_stop)
1683 return;
1684
1685 frame_saved = 0;
1686
1687 /* Determine if the watchpoint is within scope. */
1688 if (b->exp_valid_block == NULL)
1689 within_current_scope = 1;
1690 else
1691 {
1692 struct frame_info *fi = get_current_frame ();
1693 struct gdbarch *frame_arch = get_frame_arch (fi);
1694 CORE_ADDR frame_pc = get_frame_pc (fi);
1695
1696 /* If we're at a point where the stack has been destroyed
1697 (e.g. in a function epilogue), unwinding may not work
1698 properly. Do not attempt to recreate locations at this
1699 point. See similar comments in watchpoint_check. */
1700 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1701 return;
1702
1703 /* Save the current frame's ID so we can restore it after
1704 evaluating the watchpoint expression on its own frame. */
1705 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1706 took a frame parameter, so that we didn't have to change the
1707 selected frame. */
1708 frame_saved = 1;
1709 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1710
1711 fi = frame_find_by_id (b->watchpoint_frame);
1712 within_current_scope = (fi != NULL);
1713 if (within_current_scope)
1714 select_frame (fi);
1715 }
1716
1717 /* We don't free locations. They are stored in the bp_location array
1718 and update_global_location_list will eventually delete them and
1719 remove breakpoints if needed. */
1720 b->loc = NULL;
1721
1722 if (within_current_scope && reparse)
1723 {
1724 const char *s;
1725
1726 b->exp.reset ();
1727 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1728 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1729 /* If the meaning of expression itself changed, the old value is
1730 no longer relevant. We don't want to report a watchpoint hit
1731 to the user when the old value and the new value may actually
1732 be completely different objects. */
1733 b->val = NULL;
1734 b->val_valid = 0;
1735
1736 /* Note that unlike with breakpoints, the watchpoint's condition
1737 expression is stored in the breakpoint object, not in the
1738 locations (re)created below. */
1739 if (b->cond_string != NULL)
1740 {
1741 b->cond_exp.reset ();
1742
1743 s = b->cond_string;
1744 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1745 }
1746 }
1747
1748 /* If we failed to parse the expression, for example because
1749 it refers to a global variable in a not-yet-loaded shared library,
1750 don't try to insert watchpoint. We don't automatically delete
1751 such watchpoint, though, since failure to parse expression
1752 is different from out-of-scope watchpoint. */
1753 if (!target_has_execution)
1754 {
1755 /* Without execution, memory can't change. No use to try and
1756 set watchpoint locations. The watchpoint will be reset when
1757 the target gains execution, through breakpoint_re_set. */
1758 if (!can_use_hw_watchpoints)
1759 {
1760 if (b->ops->works_in_software_mode (b))
1761 b->type = bp_watchpoint;
1762 else
1763 error (_("Can't set read/access watchpoint when "
1764 "hardware watchpoints are disabled."));
1765 }
1766 }
1767 else if (within_current_scope && b->exp)
1768 {
1769 int pc = 0;
1770 std::vector<value_ref_ptr> val_chain;
1771 struct value *v, *result;
1772 struct program_space *frame_pspace;
1773
1774 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1775
1776 /* Avoid setting b->val if it's already set. The meaning of
1777 b->val is 'the last value' user saw, and we should update
1778 it only if we reported that last value to user. As it
1779 happens, the code that reports it updates b->val directly.
1780 We don't keep track of the memory value for masked
1781 watchpoints. */
1782 if (!b->val_valid && !is_masked_watchpoint (b))
1783 {
1784 if (b->val_bitsize != 0)
1785 v = extract_bitfield_from_watchpoint_value (b, v);
1786 b->val = release_value (v);
1787 b->val_valid = 1;
1788 }
1789
1790 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1791
1792 /* Look at each value on the value chain. */
1793 gdb_assert (!val_chain.empty ());
1794 for (const value_ref_ptr &iter : val_chain)
1795 {
1796 v = iter.get ();
1797
1798 /* If it's a memory location, and GDB actually needed
1799 its contents to evaluate the expression, then we
1800 must watch it. If the first value returned is
1801 still lazy, that means an error occurred reading it;
1802 watch it anyway in case it becomes readable. */
1803 if (VALUE_LVAL (v) == lval_memory
1804 && (v == val_chain[0] || ! value_lazy (v)))
1805 {
1806 struct type *vtype = check_typedef (value_type (v));
1807
1808 /* We only watch structs and arrays if user asked
1809 for it explicitly, never if they just happen to
1810 appear in the middle of some value chain. */
1811 if (v == result
1812 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1813 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1814 {
1815 CORE_ADDR addr;
1816 enum target_hw_bp_type type;
1817 struct bp_location *loc, **tmp;
1818 int bitpos = 0, bitsize = 0;
1819
1820 if (value_bitsize (v) != 0)
1821 {
1822 /* Extract the bit parameters out from the bitfield
1823 sub-expression. */
1824 bitpos = value_bitpos (v);
1825 bitsize = value_bitsize (v);
1826 }
1827 else if (v == result && b->val_bitsize != 0)
1828 {
1829 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1830 lvalue whose bit parameters are saved in the fields
1831 VAL_BITPOS and VAL_BITSIZE. */
1832 bitpos = b->val_bitpos;
1833 bitsize = b->val_bitsize;
1834 }
1835
1836 addr = value_address (v);
1837 if (bitsize != 0)
1838 {
1839 /* Skip the bytes that don't contain the bitfield. */
1840 addr += bitpos / 8;
1841 }
1842
1843 type = hw_write;
1844 if (b->type == bp_read_watchpoint)
1845 type = hw_read;
1846 else if (b->type == bp_access_watchpoint)
1847 type = hw_access;
1848
1849 loc = allocate_bp_location (b);
1850 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1851 ;
1852 *tmp = loc;
1853 loc->gdbarch = get_type_arch (value_type (v));
1854
1855 loc->pspace = frame_pspace;
1856 loc->address = address_significant (loc->gdbarch, addr);
1857
1858 if (bitsize != 0)
1859 {
1860 /* Just cover the bytes that make up the bitfield. */
1861 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1862 }
1863 else
1864 loc->length = TYPE_LENGTH (value_type (v));
1865
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (b);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->ops->works_in_software_mode (b);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->type = type;
1939 }
1940 }
1941 else if (!b->ops->works_in_software_mode (b))
1942 {
1943 if (!can_use_hw_watchpoints)
1944 error (_("Can't set read/access watchpoint when "
1945 "hardware watchpoints are disabled."));
1946 else
1947 error (_("Expression cannot be implemented with "
1948 "read/access watchpoint."));
1949 }
1950 else
1951 b->type = bp_watchpoint;
1952
1953 loc_type = (b->type == bp_watchpoint? bp_loc_other
1954 : bp_loc_hardware_watchpoint);
1955 for (bl = b->loc; bl; bl = bl->next)
1956 bl->loc_type = loc_type;
1957 }
1958
1959 /* If a software watchpoint is not watching any memory, then the
1960 above left it without any location set up. But,
1961 bpstat_stop_status requires a location to be able to report
1962 stops, so make sure there's at least a dummy one. */
1963 if (b->type == bp_watchpoint && b->loc == NULL)
1964 software_watchpoint_add_no_memory_location (b, frame_pspace);
1965 }
1966 else if (!within_current_scope)
1967 {
1968 printf_filtered (_("\
1969 Watchpoint %d deleted because the program has left the block\n\
1970 in which its expression is valid.\n"),
1971 b->number);
1972 watchpoint_del_at_next_stop (b);
1973 }
1974
1975 /* Restore the selected frame. */
1976 if (frame_saved)
1977 select_frame (frame_find_by_id (saved_frame_id));
1978 }
1979
1980
1981 /* Returns 1 iff breakpoint location should be
1982 inserted in the inferior. We don't differentiate the type of BL's owner
1983 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1984 breakpoint_ops is not defined, because in insert_bp_location,
1985 tracepoint's insert_location will not be called. */
1986 static int
1987 should_be_inserted (struct bp_location *bl)
1988 {
1989 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1990 return 0;
1991
1992 if (bl->owner->disposition == disp_del_at_next_stop)
1993 return 0;
1994
1995 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1996 return 0;
1997
1998 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1999 return 0;
2000
2001 /* This is set for example, when we're attached to the parent of a
2002 vfork, and have detached from the child. The child is running
2003 free, and we expect it to do an exec or exit, at which point the
2004 OS makes the parent schedulable again (and the target reports
2005 that the vfork is done). Until the child is done with the shared
2006 memory region, do not insert breakpoints in the parent, otherwise
2007 the child could still trip on the parent's breakpoints. Since
2008 the parent is blocked anyway, it won't miss any breakpoint. */
2009 if (bl->pspace->breakpoints_not_allowed)
2010 return 0;
2011
2012 /* Don't insert a breakpoint if we're trying to step past its
2013 location, except if the breakpoint is a single-step breakpoint,
2014 and the breakpoint's thread is the thread which is stepping past
2015 a breakpoint. */
2016 if ((bl->loc_type == bp_loc_software_breakpoint
2017 || bl->loc_type == bp_loc_hardware_breakpoint)
2018 && stepping_past_instruction_at (bl->pspace->aspace,
2019 bl->address)
2020 /* The single-step breakpoint may be inserted at the location
2021 we're trying to step if the instruction branches to itself.
2022 However, the instruction won't be executed at all and it may
2023 break the semantics of the instruction, for example, the
2024 instruction is a conditional branch or updates some flags.
2025 We can't fix it unless GDB is able to emulate the instruction
2026 or switch to displaced stepping. */
2027 && !(bl->owner->type == bp_single_step
2028 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2029 {
2030 if (debug_infrun)
2031 {
2032 fprintf_unfiltered (gdb_stdlog,
2033 "infrun: skipping breakpoint: "
2034 "stepping past insn at: %s\n",
2035 paddress (bl->gdbarch, bl->address));
2036 }
2037 return 0;
2038 }
2039
2040 /* Don't insert watchpoints if we're trying to step past the
2041 instruction that triggered one. */
2042 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2043 && stepping_past_nonsteppable_watchpoint ())
2044 {
2045 if (debug_infrun)
2046 {
2047 fprintf_unfiltered (gdb_stdlog,
2048 "infrun: stepping past non-steppable watchpoint. "
2049 "skipping watchpoint at %s:%d\n",
2050 paddress (bl->gdbarch, bl->address),
2051 bl->length);
2052 }
2053 return 0;
2054 }
2055
2056 return 1;
2057 }
2058
2059 /* Same as should_be_inserted but does the check assuming
2060 that the location is not duplicated. */
2061
2062 static int
2063 unduplicated_should_be_inserted (struct bp_location *bl)
2064 {
2065 int result;
2066 const int save_duplicate = bl->duplicate;
2067
2068 bl->duplicate = 0;
2069 result = should_be_inserted (bl);
2070 bl->duplicate = save_duplicate;
2071 return result;
2072 }
2073
2074 /* Parses a conditional described by an expression COND into an
2075 agent expression bytecode suitable for evaluation
2076 by the bytecode interpreter. Return NULL if there was
2077 any error during parsing. */
2078
2079 static agent_expr_up
2080 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2081 {
2082 if (cond == NULL)
2083 return NULL;
2084
2085 agent_expr_up aexpr;
2086
2087 /* We don't want to stop processing, so catch any errors
2088 that may show up. */
2089 try
2090 {
2091 aexpr = gen_eval_for_expr (scope, cond);
2092 }
2093
2094 catch (const gdb_exception_error &ex)
2095 {
2096 /* If we got here, it means the condition could not be parsed to a valid
2097 bytecode expression and thus can't be evaluated on the target's side.
2098 It's no use iterating through the conditions. */
2099 }
2100
2101 /* We have a valid agent expression. */
2102 return aexpr;
2103 }
2104
2105 /* Based on location BL, create a list of breakpoint conditions to be
2106 passed on to the target. If we have duplicated locations with different
2107 conditions, we will add such conditions to the list. The idea is that the
2108 target will evaluate the list of conditions and will only notify GDB when
2109 one of them is true. */
2110
2111 static void
2112 build_target_condition_list (struct bp_location *bl)
2113 {
2114 struct bp_location **locp = NULL, **loc2p;
2115 int null_condition_or_parse_error = 0;
2116 int modified = bl->needs_update;
2117 struct bp_location *loc;
2118
2119 /* Release conditions left over from a previous insert. */
2120 bl->target_info.conditions.clear ();
2121
2122 /* This is only meaningful if the target is
2123 evaluating conditions and if the user has
2124 opted for condition evaluation on the target's
2125 side. */
2126 if (gdb_evaluates_breakpoint_condition_p ()
2127 || !target_supports_evaluation_of_breakpoint_conditions ())
2128 return;
2129
2130 /* Do a first pass to check for locations with no assigned
2131 conditions or conditions that fail to parse to a valid agent expression
2132 bytecode. If any of these happen, then it's no use to send conditions
2133 to the target since this location will always trigger and generate a
2134 response back to GDB. */
2135 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2136 {
2137 loc = (*loc2p);
2138 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2139 {
2140 if (modified)
2141 {
2142 /* Re-parse the conditions since something changed. In that
2143 case we already freed the condition bytecodes (see
2144 force_breakpoint_reinsertion). We just
2145 need to parse the condition to bytecodes again. */
2146 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2147 loc->cond.get ());
2148 }
2149
2150 /* If we have a NULL bytecode expression, it means something
2151 went wrong or we have a null condition expression. */
2152 if (!loc->cond_bytecode)
2153 {
2154 null_condition_or_parse_error = 1;
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* If any of these happened, it means we will have to evaluate the conditions
2161 for the location's address on gdb's side. It is no use keeping bytecodes
2162 for all the other duplicate locations, thus we free all of them here.
2163
2164 This is so we have a finer control over which locations' conditions are
2165 being evaluated by GDB or the remote stub. */
2166 if (null_condition_or_parse_error)
2167 {
2168 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2169 {
2170 loc = (*loc2p);
2171 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2172 {
2173 /* Only go as far as the first NULL bytecode is
2174 located. */
2175 if (!loc->cond_bytecode)
2176 return;
2177
2178 loc->cond_bytecode.reset ();
2179 }
2180 }
2181 }
2182
2183 /* No NULL conditions or failed bytecode generation. Build a condition list
2184 for this location's address. */
2185 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2186 {
2187 loc = (*loc2p);
2188 if (loc->cond
2189 && is_breakpoint (loc->owner)
2190 && loc->pspace->num == bl->pspace->num
2191 && loc->owner->enable_state == bp_enabled
2192 && loc->enabled)
2193 {
2194 /* Add the condition to the vector. This will be used later
2195 to send the conditions to the target. */
2196 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2197 }
2198 }
2199
2200 return;
2201 }
2202
2203 /* Parses a command described by string CMD into an agent expression
2204 bytecode suitable for evaluation by the bytecode interpreter.
2205 Return NULL if there was any error during parsing. */
2206
2207 static agent_expr_up
2208 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2209 {
2210 const char *cmdrest;
2211 const char *format_start, *format_end;
2212 struct gdbarch *gdbarch = get_current_arch ();
2213
2214 if (cmd == NULL)
2215 return NULL;
2216
2217 cmdrest = cmd;
2218
2219 if (*cmdrest == ',')
2220 ++cmdrest;
2221 cmdrest = skip_spaces (cmdrest);
2222
2223 if (*cmdrest++ != '"')
2224 error (_("No format string following the location"));
2225
2226 format_start = cmdrest;
2227
2228 format_pieces fpieces (&cmdrest);
2229
2230 format_end = cmdrest;
2231
2232 if (*cmdrest++ != '"')
2233 error (_("Bad format string, non-terminated '\"'."));
2234
2235 cmdrest = skip_spaces (cmdrest);
2236
2237 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2238 error (_("Invalid argument syntax"));
2239
2240 if (*cmdrest == ',')
2241 cmdrest++;
2242 cmdrest = skip_spaces (cmdrest);
2243
2244 /* For each argument, make an expression. */
2245
2246 std::vector<struct expression *> argvec;
2247 while (*cmdrest != '\0')
2248 {
2249 const char *cmd1;
2250
2251 cmd1 = cmdrest;
2252 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2253 argvec.push_back (expr.release ());
2254 cmdrest = cmd1;
2255 if (*cmdrest == ',')
2256 ++cmdrest;
2257 }
2258
2259 agent_expr_up aexpr;
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 try
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 argvec.size (), argvec.data ());
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 /* If we got here, it means the command could not be parsed to a valid
2272 bytecode expression and thus can't be evaluated on the target's side.
2273 It's no use iterating through the other commands. */
2274 }
2275
2276 /* We have a valid agent expression, return it. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint commands to be
2281 passed on to the target. If we have duplicated locations with
2282 different commands, we will add any such to the list. */
2283
2284 static void
2285 build_target_command_list (struct bp_location *bl)
2286 {
2287 struct bp_location **locp = NULL, **loc2p;
2288 int null_command_or_parse_error = 0;
2289 int modified = bl->needs_update;
2290 struct bp_location *loc;
2291
2292 /* Clear commands left over from a previous insert. */
2293 bl->target_info.tcommands.clear ();
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* For now, limit to agent-style dprintf breakpoints. */
2299 if (dprintf_style != dprintf_style_agent)
2300 return;
2301
2302 /* For now, if we have any duplicate location that isn't a dprintf,
2303 don't install the target-side commands, as that would make the
2304 breakpoint not be reported to the core, and we'd lose
2305 control. */
2306 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2307 {
2308 loc = (*loc2p);
2309 if (is_breakpoint (loc->owner)
2310 && loc->pspace->num == bl->pspace->num
2311 && loc->owner->type != bp_dprintf)
2312 return;
2313 }
2314
2315 /* Do a first pass to check for locations with no assigned
2316 conditions or conditions that fail to parse to a valid agent expression
2317 bytecode. If any of these happen, then it's no use to send conditions
2318 to the target since this location will always trigger and generate a
2319 response back to GDB. */
2320 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2321 {
2322 loc = (*loc2p);
2323 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2324 {
2325 if (modified)
2326 {
2327 /* Re-parse the commands since something changed. In that
2328 case we already freed the command bytecodes (see
2329 force_breakpoint_reinsertion). We just
2330 need to parse the command to bytecodes again. */
2331 loc->cmd_bytecode
2332 = parse_cmd_to_aexpr (bl->address,
2333 loc->owner->extra_string);
2334 }
2335
2336 /* If we have a NULL bytecode expression, it means something
2337 went wrong or we have a null command expression. */
2338 if (!loc->cmd_bytecode)
2339 {
2340 null_command_or_parse_error = 1;
2341 break;
2342 }
2343 }
2344 }
2345
2346 /* If anything failed, then we're not doing target-side commands,
2347 and so clean up. */
2348 if (null_command_or_parse_error)
2349 {
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (is_breakpoint (loc->owner)
2354 && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (loc->cmd_bytecode == NULL)
2359 return;
2360
2361 loc->cmd_bytecode.reset ();
2362 }
2363 }
2364 }
2365
2366 /* No NULL commands or failed bytecode generation. Build a command list
2367 for this location's address. */
2368 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2369 {
2370 loc = (*loc2p);
2371 if (loc->owner->extra_string
2372 && is_breakpoint (loc->owner)
2373 && loc->pspace->num == bl->pspace->num
2374 && loc->owner->enable_state == bp_enabled
2375 && loc->enabled)
2376 {
2377 /* Add the command to the vector. This will be used later
2378 to send the commands to the target. */
2379 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2380 }
2381 }
2382
2383 bl->target_info.persist = 0;
2384 /* Maybe flag this location as persistent. */
2385 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2386 bl->target_info.persist = 1;
2387 }
2388
2389 /* Return the kind of breakpoint on address *ADDR. Get the kind
2390 of breakpoint according to ADDR except single-step breakpoint.
2391 Get the kind of single-step breakpoint according to the current
2392 registers state. */
2393
2394 static int
2395 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2396 {
2397 if (bl->owner->type == bp_single_step)
2398 {
2399 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2400 struct regcache *regcache;
2401
2402 regcache = get_thread_regcache (thr);
2403
2404 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2405 regcache, addr);
2406 }
2407 else
2408 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2409 }
2410
2411 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2412 location. Any error messages are printed to TMP_ERROR_STREAM; and
2413 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2414 Returns 0 for success, 1 if the bp_location type is not supported or
2415 -1 for failure.
2416
2417 NOTE drow/2003-09-09: This routine could be broken down to an
2418 object-style method for each breakpoint or catchpoint type. */
2419 static int
2420 insert_bp_location (struct bp_location *bl,
2421 struct ui_file *tmp_error_stream,
2422 int *disabled_breaks,
2423 int *hw_breakpoint_error,
2424 int *hw_bp_error_explained_already)
2425 {
2426 gdb_exception bp_excpt;
2427
2428 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2429 return 0;
2430
2431 /* Note we don't initialize bl->target_info, as that wipes out
2432 the breakpoint location's shadow_contents if the breakpoint
2433 is still inserted at that location. This in turn breaks
2434 target_read_memory which depends on these buffers when
2435 a memory read is requested at the breakpoint location:
2436 Once the target_info has been wiped, we fail to see that
2437 we have a breakpoint inserted at that address and thus
2438 read the breakpoint instead of returning the data saved in
2439 the breakpoint location's shadow contents. */
2440 bl->target_info.reqstd_address = bl->address;
2441 bl->target_info.placed_address_space = bl->pspace->aspace;
2442 bl->target_info.length = bl->length;
2443
2444 /* When working with target-side conditions, we must pass all the conditions
2445 for the same breakpoint address down to the target since GDB will not
2446 insert those locations. With a list of breakpoint conditions, the target
2447 can decide when to stop and notify GDB. */
2448
2449 if (is_breakpoint (bl->owner))
2450 {
2451 build_target_condition_list (bl);
2452 build_target_command_list (bl);
2453 /* Reset the modification marker. */
2454 bl->needs_update = 0;
2455 }
2456
2457 if (bl->loc_type == bp_loc_software_breakpoint
2458 || bl->loc_type == bp_loc_hardware_breakpoint)
2459 {
2460 if (bl->owner->type != bp_hardware_breakpoint)
2461 {
2462 /* If the explicitly specified breakpoint type
2463 is not hardware breakpoint, check the memory map to see
2464 if the breakpoint address is in read only memory or not.
2465
2466 Two important cases are:
2467 - location type is not hardware breakpoint, memory
2468 is readonly. We change the type of the location to
2469 hardware breakpoint.
2470 - location type is hardware breakpoint, memory is
2471 read-write. This means we've previously made the
2472 location hardware one, but then the memory map changed,
2473 so we undo.
2474
2475 When breakpoints are removed, remove_breakpoints will use
2476 location types we've just set here, the only possible
2477 problem is that memory map has changed during running
2478 program, but it's not going to work anyway with current
2479 gdb. */
2480 struct mem_region *mr
2481 = lookup_mem_region (bl->target_info.reqstd_address);
2482
2483 if (mr)
2484 {
2485 if (automatic_hardware_breakpoints)
2486 {
2487 enum bp_loc_type new_type;
2488
2489 if (mr->attrib.mode != MEM_RW)
2490 new_type = bp_loc_hardware_breakpoint;
2491 else
2492 new_type = bp_loc_software_breakpoint;
2493
2494 if (new_type != bl->loc_type)
2495 {
2496 static int said = 0;
2497
2498 bl->loc_type = new_type;
2499 if (!said)
2500 {
2501 fprintf_filtered (gdb_stdout,
2502 _("Note: automatically using "
2503 "hardware breakpoints for "
2504 "read-only addresses.\n"));
2505 said = 1;
2506 }
2507 }
2508 }
2509 else if (bl->loc_type == bp_loc_software_breakpoint
2510 && mr->attrib.mode != MEM_RW)
2511 {
2512 fprintf_unfiltered (tmp_error_stream,
2513 _("Cannot insert breakpoint %d.\n"
2514 "Cannot set software breakpoint "
2515 "at read-only address %s\n"),
2516 bl->owner->number,
2517 paddress (bl->gdbarch, bl->address));
2518 return 1;
2519 }
2520 }
2521 }
2522
2523 /* First check to see if we have to handle an overlay. */
2524 if (overlay_debugging == ovly_off
2525 || bl->section == NULL
2526 || !(section_is_overlay (bl->section)))
2527 {
2528 /* No overlay handling: just set the breakpoint. */
2529 try
2530 {
2531 int val;
2532
2533 val = bl->owner->ops->insert_location (bl);
2534 if (val)
2535 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2536 }
2537 catch (gdb_exception &e)
2538 {
2539 bp_excpt = std::move (e);
2540 }
2541 }
2542 else
2543 {
2544 /* This breakpoint is in an overlay section.
2545 Shall we set a breakpoint at the LMA? */
2546 if (!overlay_events_enabled)
2547 {
2548 /* Yes -- overlay event support is not active,
2549 so we must try to set a breakpoint at the LMA.
2550 This will not work for a hardware breakpoint. */
2551 if (bl->loc_type == bp_loc_hardware_breakpoint)
2552 warning (_("hardware breakpoint %d not supported in overlay!"),
2553 bl->owner->number);
2554 else
2555 {
2556 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2557 bl->section);
2558 /* Set a software (trap) breakpoint at the LMA. */
2559 bl->overlay_target_info = bl->target_info;
2560 bl->overlay_target_info.reqstd_address = addr;
2561
2562 /* No overlay handling: just set the breakpoint. */
2563 try
2564 {
2565 int val;
2566
2567 bl->overlay_target_info.kind
2568 = breakpoint_kind (bl, &addr);
2569 bl->overlay_target_info.placed_address = addr;
2570 val = target_insert_breakpoint (bl->gdbarch,
2571 &bl->overlay_target_info);
2572 if (val)
2573 bp_excpt
2574 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2575 }
2576 catch (gdb_exception &e)
2577 {
2578 bp_excpt = std::move (e);
2579 }
2580
2581 if (bp_excpt.reason != 0)
2582 fprintf_unfiltered (tmp_error_stream,
2583 "Overlay breakpoint %d "
2584 "failed: in ROM?\n",
2585 bl->owner->number);
2586 }
2587 }
2588 /* Shall we set a breakpoint at the VMA? */
2589 if (section_is_mapped (bl->section))
2590 {
2591 /* Yes. This overlay section is mapped into memory. */
2592 try
2593 {
2594 int val;
2595
2596 val = bl->owner->ops->insert_location (bl);
2597 if (val)
2598 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2599 }
2600 catch (gdb_exception &e)
2601 {
2602 bp_excpt = std::move (e);
2603 }
2604 }
2605 else
2606 {
2607 /* No. This breakpoint will not be inserted.
2608 No error, but do not mark the bp as 'inserted'. */
2609 return 0;
2610 }
2611 }
2612
2613 if (bp_excpt.reason != 0)
2614 {
2615 /* Can't set the breakpoint. */
2616
2617 /* In some cases, we might not be able to insert a
2618 breakpoint in a shared library that has already been
2619 removed, but we have not yet processed the shlib unload
2620 event. Unfortunately, some targets that implement
2621 breakpoint insertion themselves can't tell why the
2622 breakpoint insertion failed (e.g., the remote target
2623 doesn't define error codes), so we must treat generic
2624 errors as memory errors. */
2625 if (bp_excpt.reason == RETURN_ERROR
2626 && (bp_excpt.error == GENERIC_ERROR
2627 || bp_excpt.error == MEMORY_ERROR)
2628 && bl->loc_type == bp_loc_software_breakpoint
2629 && (solib_name_from_address (bl->pspace, bl->address)
2630 || shared_objfile_contains_address_p (bl->pspace,
2631 bl->address)))
2632 {
2633 /* See also: disable_breakpoints_in_shlibs. */
2634 bl->shlib_disabled = 1;
2635 gdb::observers::breakpoint_modified.notify (bl->owner);
2636 if (!*disabled_breaks)
2637 {
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert breakpoint %d.\n",
2640 bl->owner->number);
2641 fprintf_unfiltered (tmp_error_stream,
2642 "Temporarily disabling shared "
2643 "library breakpoints:\n");
2644 }
2645 *disabled_breaks = 1;
2646 fprintf_unfiltered (tmp_error_stream,
2647 "breakpoint #%d\n", bl->owner->number);
2648 return 0;
2649 }
2650 else
2651 {
2652 if (bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 *hw_breakpoint_error = 1;
2655 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Cannot insert hardware breakpoint %d%s",
2658 bl->owner->number,
2659 bp_excpt.message ? ":" : ".\n");
2660 if (bp_excpt.message != NULL)
2661 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2662 bp_excpt.what ());
2663 }
2664 else
2665 {
2666 if (bp_excpt.message == NULL)
2667 {
2668 std::string message
2669 = memory_error_message (TARGET_XFER_E_IO,
2670 bl->gdbarch, bl->address);
2671
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert breakpoint %d.\n"
2674 "%s\n",
2675 bl->owner->number, message.c_str ());
2676 }
2677 else
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert breakpoint %d: %s\n",
2681 bl->owner->number,
2682 bp_excpt.what ());
2683 }
2684 }
2685 return 1;
2686
2687 }
2688 }
2689 else
2690 bl->inserted = 1;
2691
2692 return 0;
2693 }
2694
2695 else if (bl->loc_type == bp_loc_hardware_watchpoint
2696 /* NOTE drow/2003-09-08: This state only exists for removing
2697 watchpoints. It's not clear that it's necessary... */
2698 && bl->owner->disposition != disp_del_at_next_stop)
2699 {
2700 int val;
2701
2702 gdb_assert (bl->owner->ops != NULL
2703 && bl->owner->ops->insert_location != NULL);
2704
2705 val = bl->owner->ops->insert_location (bl);
2706
2707 /* If trying to set a read-watchpoint, and it turns out it's not
2708 supported, try emulating one with an access watchpoint. */
2709 if (val == 1 && bl->watchpoint_type == hw_read)
2710 {
2711 struct bp_location *loc, **loc_temp;
2712
2713 /* But don't try to insert it, if there's already another
2714 hw_access location that would be considered a duplicate
2715 of this one. */
2716 ALL_BP_LOCATIONS (loc, loc_temp)
2717 if (loc != bl
2718 && loc->watchpoint_type == hw_access
2719 && watchpoint_locations_match (bl, loc))
2720 {
2721 bl->duplicate = 1;
2722 bl->inserted = 1;
2723 bl->target_info = loc->target_info;
2724 bl->watchpoint_type = hw_access;
2725 val = 0;
2726 break;
2727 }
2728
2729 if (val == 1)
2730 {
2731 bl->watchpoint_type = hw_access;
2732 val = bl->owner->ops->insert_location (bl);
2733
2734 if (val)
2735 /* Back to the original value. */
2736 bl->watchpoint_type = hw_read;
2737 }
2738 }
2739
2740 bl->inserted = (val == 0);
2741 }
2742
2743 else if (bl->owner->type == bp_catchpoint)
2744 {
2745 int val;
2746
2747 gdb_assert (bl->owner->ops != NULL
2748 && bl->owner->ops->insert_location != NULL);
2749
2750 val = bl->owner->ops->insert_location (bl);
2751 if (val)
2752 {
2753 bl->owner->enable_state = bp_disabled;
2754
2755 if (val == 1)
2756 warning (_("\
2757 Error inserting catchpoint %d: Your system does not support this type\n\
2758 of catchpoint."), bl->owner->number);
2759 else
2760 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2761 }
2762
2763 bl->inserted = (val == 0);
2764
2765 /* We've already printed an error message if there was a problem
2766 inserting this catchpoint, and we've disabled the catchpoint,
2767 so just return success. */
2768 return 0;
2769 }
2770
2771 return 0;
2772 }
2773
2774 /* This function is called when program space PSPACE is about to be
2775 deleted. It takes care of updating breakpoints to not reference
2776 PSPACE anymore. */
2777
2778 void
2779 breakpoint_program_space_exit (struct program_space *pspace)
2780 {
2781 struct breakpoint *b, *b_temp;
2782 struct bp_location *loc, **loc_temp;
2783
2784 /* Remove any breakpoint that was set through this program space. */
2785 ALL_BREAKPOINTS_SAFE (b, b_temp)
2786 {
2787 if (b->pspace == pspace)
2788 delete_breakpoint (b);
2789 }
2790
2791 /* Breakpoints set through other program spaces could have locations
2792 bound to PSPACE as well. Remove those. */
2793 ALL_BP_LOCATIONS (loc, loc_temp)
2794 {
2795 struct bp_location *tmp;
2796
2797 if (loc->pspace == pspace)
2798 {
2799 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2800 if (loc->owner->loc == loc)
2801 loc->owner->loc = loc->next;
2802 else
2803 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2804 if (tmp->next == loc)
2805 {
2806 tmp->next = loc->next;
2807 break;
2808 }
2809 }
2810 }
2811
2812 /* Now update the global location list to permanently delete the
2813 removed locations above. */
2814 update_global_location_list (UGLL_DONT_INSERT);
2815 }
2816
2817 /* Make sure all breakpoints are inserted in inferior.
2818 Throws exception on any error.
2819 A breakpoint that is already inserted won't be inserted
2820 again, so calling this function twice is safe. */
2821 void
2822 insert_breakpoints (void)
2823 {
2824 struct breakpoint *bpt;
2825
2826 ALL_BREAKPOINTS (bpt)
2827 if (is_hardware_watchpoint (bpt))
2828 {
2829 struct watchpoint *w = (struct watchpoint *) bpt;
2830
2831 update_watchpoint (w, 0 /* don't reparse. */);
2832 }
2833
2834 /* Updating watchpoints creates new locations, so update the global
2835 location list. Explicitly tell ugll to insert locations and
2836 ignore breakpoints_always_inserted_mode. */
2837 update_global_location_list (UGLL_INSERT);
2838 }
2839
2840 /* Invoke CALLBACK for each of bp_location. */
2841
2842 void
2843 iterate_over_bp_locations (walk_bp_location_callback callback)
2844 {
2845 struct bp_location *loc, **loc_tmp;
2846
2847 ALL_BP_LOCATIONS (loc, loc_tmp)
2848 {
2849 callback (loc, NULL);
2850 }
2851 }
2852
2853 /* This is used when we need to synch breakpoint conditions between GDB and the
2854 target. It is the case with deleting and disabling of breakpoints when using
2855 always-inserted mode. */
2856
2857 static void
2858 update_inserted_breakpoint_locations (void)
2859 {
2860 struct bp_location *bl, **blp_tmp;
2861 int error_flag = 0;
2862 int val = 0;
2863 int disabled_breaks = 0;
2864 int hw_breakpoint_error = 0;
2865 int hw_bp_details_reported = 0;
2866
2867 string_file tmp_error_stream;
2868
2869 /* Explicitly mark the warning -- this will only be printed if
2870 there was an error. */
2871 tmp_error_stream.puts ("Warning:\n");
2872
2873 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2874
2875 ALL_BP_LOCATIONS (bl, blp_tmp)
2876 {
2877 /* We only want to update software breakpoints and hardware
2878 breakpoints. */
2879 if (!is_breakpoint (bl->owner))
2880 continue;
2881
2882 /* We only want to update locations that are already inserted
2883 and need updating. This is to avoid unwanted insertion during
2884 deletion of breakpoints. */
2885 if (!bl->inserted || !bl->needs_update)
2886 continue;
2887
2888 switch_to_program_space_and_thread (bl->pspace);
2889
2890 /* For targets that support global breakpoints, there's no need
2891 to select an inferior to insert breakpoint to. In fact, even
2892 if we aren't attached to any process yet, we should still
2893 insert breakpoints. */
2894 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2895 && inferior_ptid == null_ptid)
2896 continue;
2897
2898 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2899 &hw_breakpoint_error, &hw_bp_details_reported);
2900 if (val)
2901 error_flag = val;
2902 }
2903
2904 if (error_flag)
2905 {
2906 target_terminal::ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909 }
2910
2911 /* Used when starting or continuing the program. */
2912
2913 static void
2914 insert_breakpoint_locations (void)
2915 {
2916 struct breakpoint *bpt;
2917 struct bp_location *bl, **blp_tmp;
2918 int error_flag = 0;
2919 int val = 0;
2920 int disabled_breaks = 0;
2921 int hw_breakpoint_error = 0;
2922 int hw_bp_error_explained_already = 0;
2923
2924 string_file tmp_error_stream;
2925
2926 /* Explicitly mark the warning -- this will only be printed if
2927 there was an error. */
2928 tmp_error_stream.puts ("Warning:\n");
2929
2930 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2931
2932 ALL_BP_LOCATIONS (bl, blp_tmp)
2933 {
2934 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2935 continue;
2936
2937 /* There is no point inserting thread-specific breakpoints if
2938 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2939 has BL->OWNER always non-NULL. */
2940 if (bl->owner->thread != -1
2941 && !valid_global_thread_id (bl->owner->thread))
2942 continue;
2943
2944 switch_to_program_space_and_thread (bl->pspace);
2945
2946 /* For targets that support global breakpoints, there's no need
2947 to select an inferior to insert breakpoint to. In fact, even
2948 if we aren't attached to any process yet, we should still
2949 insert breakpoints. */
2950 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2951 && inferior_ptid == null_ptid)
2952 continue;
2953
2954 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2955 &hw_breakpoint_error, &hw_bp_error_explained_already);
2956 if (val)
2957 error_flag = val;
2958 }
2959
2960 /* If we failed to insert all locations of a watchpoint, remove
2961 them, as half-inserted watchpoint is of limited use. */
2962 ALL_BREAKPOINTS (bpt)
2963 {
2964 int some_failed = 0;
2965 struct bp_location *loc;
2966
2967 if (!is_hardware_watchpoint (bpt))
2968 continue;
2969
2970 if (!breakpoint_enabled (bpt))
2971 continue;
2972
2973 if (bpt->disposition == disp_del_at_next_stop)
2974 continue;
2975
2976 for (loc = bpt->loc; loc; loc = loc->next)
2977 if (!loc->inserted && should_be_inserted (loc))
2978 {
2979 some_failed = 1;
2980 break;
2981 }
2982 if (some_failed)
2983 {
2984 for (loc = bpt->loc; loc; loc = loc->next)
2985 if (loc->inserted)
2986 remove_breakpoint (loc);
2987
2988 hw_breakpoint_error = 1;
2989 tmp_error_stream.printf ("Could not insert "
2990 "hardware watchpoint %d.\n",
2991 bpt->number);
2992 error_flag = -1;
2993 }
2994 }
2995
2996 if (error_flag)
2997 {
2998 /* If a hardware breakpoint or watchpoint was inserted, add a
2999 message about possibly exhausted resources. */
3000 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3001 {
3002 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3003 You may have requested too many hardware breakpoints/watchpoints.\n");
3004 }
3005 target_terminal::ours_for_output ();
3006 error_stream (tmp_error_stream);
3007 }
3008 }
3009
3010 /* Used when the program stops.
3011 Returns zero if successful, or non-zero if there was a problem
3012 removing a breakpoint location. */
3013
3014 int
3015 remove_breakpoints (void)
3016 {
3017 struct bp_location *bl, **blp_tmp;
3018 int val = 0;
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->inserted && !is_tracepoint (bl->owner))
3023 val |= remove_breakpoint (bl);
3024 }
3025 return val;
3026 }
3027
3028 /* When a thread exits, remove breakpoints that are related to
3029 that thread. */
3030
3031 static void
3032 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3033 {
3034 struct breakpoint *b, *b_tmp;
3035
3036 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3037 {
3038 if (b->thread == tp->global_num && user_breakpoint_p (b))
3039 {
3040 b->disposition = disp_del_at_next_stop;
3041
3042 printf_filtered (_("\
3043 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3044 b->number, print_thread_id (tp));
3045
3046 /* Hide it from the user. */
3047 b->number = 0;
3048 }
3049 }
3050 }
3051
3052 /* See breakpoint.h. */
3053
3054 void
3055 remove_breakpoints_inf (inferior *inf)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int val;
3059
3060 ALL_BP_LOCATIONS (bl, blp_tmp)
3061 {
3062 if (bl->pspace != inf->pspace)
3063 continue;
3064
3065 if (bl->inserted && !bl->target_info.persist)
3066 {
3067 val = remove_breakpoint (bl);
3068 if (val != 0)
3069 return;
3070 }
3071 }
3072 }
3073
3074 static int internal_breakpoint_number = -1;
3075
3076 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3077 If INTERNAL is non-zero, the breakpoint number will be populated
3078 from internal_breakpoint_number and that variable decremented.
3079 Otherwise the breakpoint number will be populated from
3080 breakpoint_count and that value incremented. Internal breakpoints
3081 do not set the internal var bpnum. */
3082 static void
3083 set_breakpoint_number (int internal, struct breakpoint *b)
3084 {
3085 if (internal)
3086 b->number = internal_breakpoint_number--;
3087 else
3088 {
3089 set_breakpoint_count (breakpoint_count + 1);
3090 b->number = breakpoint_count;
3091 }
3092 }
3093
3094 static struct breakpoint *
3095 create_internal_breakpoint (struct gdbarch *gdbarch,
3096 CORE_ADDR address, enum bptype type,
3097 const struct breakpoint_ops *ops)
3098 {
3099 symtab_and_line sal;
3100 sal.pc = address;
3101 sal.section = find_pc_overlay (sal.pc);
3102 sal.pspace = current_program_space;
3103
3104 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3105 b->number = internal_breakpoint_number--;
3106 b->disposition = disp_donttouch;
3107
3108 return b;
3109 }
3110
3111 static const char *const longjmp_names[] =
3112 {
3113 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3114 };
3115 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3116
3117 /* Per-objfile data private to breakpoint.c. */
3118 struct breakpoint_objfile_data
3119 {
3120 /* Minimal symbol for "_ovly_debug_event" (if any). */
3121 struct bound_minimal_symbol overlay_msym {};
3122
3123 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3124 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3125
3126 /* True if we have looked for longjmp probes. */
3127 int longjmp_searched = 0;
3128
3129 /* SystemTap probe points for longjmp (if any). These are non-owning
3130 references. */
3131 std::vector<probe *> longjmp_probes;
3132
3133 /* Minimal symbol for "std::terminate()" (if any). */
3134 struct bound_minimal_symbol terminate_msym {};
3135
3136 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3137 struct bound_minimal_symbol exception_msym {};
3138
3139 /* True if we have looked for exception probes. */
3140 int exception_searched = 0;
3141
3142 /* SystemTap probe points for unwinding (if any). These are non-owning
3143 references. */
3144 std::vector<probe *> exception_probes;
3145 };
3146
3147 static const struct objfile_key<breakpoint_objfile_data>
3148 breakpoint_objfile_key;
3149
3150 /* Minimal symbol not found sentinel. */
3151 static struct minimal_symbol msym_not_found;
3152
3153 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3154
3155 static int
3156 msym_not_found_p (const struct minimal_symbol *msym)
3157 {
3158 return msym == &msym_not_found;
3159 }
3160
3161 /* Return per-objfile data needed by breakpoint.c.
3162 Allocate the data if necessary. */
3163
3164 static struct breakpoint_objfile_data *
3165 get_breakpoint_objfile_data (struct objfile *objfile)
3166 {
3167 struct breakpoint_objfile_data *bp_objfile_data;
3168
3169 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3170 if (bp_objfile_data == NULL)
3171 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3172 return bp_objfile_data;
3173 }
3174
3175 static void
3176 create_overlay_event_breakpoint (void)
3177 {
3178 const char *const func_name = "_ovly_debug_event";
3179
3180 for (objfile *objfile : current_program_space->objfiles ())
3181 {
3182 struct breakpoint *b;
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184 CORE_ADDR addr;
3185 struct explicit_location explicit_loc;
3186
3187 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3188
3189 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3190 continue;
3191
3192 if (bp_objfile_data->overlay_msym.minsym == NULL)
3193 {
3194 struct bound_minimal_symbol m;
3195
3196 m = lookup_minimal_symbol_text (func_name, objfile);
3197 if (m.minsym == NULL)
3198 {
3199 /* Avoid future lookups in this objfile. */
3200 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3201 continue;
3202 }
3203 bp_objfile_data->overlay_msym = m;
3204 }
3205
3206 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3207 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3208 bp_overlay_event,
3209 &internal_breakpoint_ops);
3210 initialize_explicit_location (&explicit_loc);
3211 explicit_loc.function_name = ASTRDUP (func_name);
3212 b->location = new_explicit_location (&explicit_loc);
3213
3214 if (overlay_debugging == ovly_auto)
3215 {
3216 b->enable_state = bp_enabled;
3217 overlay_events_enabled = 1;
3218 }
3219 else
3220 {
3221 b->enable_state = bp_disabled;
3222 overlay_events_enabled = 0;
3223 }
3224 }
3225 }
3226
3227 static void
3228 create_longjmp_master_breakpoint (void)
3229 {
3230 struct program_space *pspace;
3231
3232 scoped_restore_current_program_space restore_pspace;
3233
3234 ALL_PSPACES (pspace)
3235 {
3236 set_current_program_space (pspace);
3237
3238 for (objfile *objfile : current_program_space->objfiles ())
3239 {
3240 int i;
3241 struct gdbarch *gdbarch;
3242 struct breakpoint_objfile_data *bp_objfile_data;
3243
3244 gdbarch = get_objfile_arch (objfile);
3245
3246 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3247
3248 if (!bp_objfile_data->longjmp_searched)
3249 {
3250 std::vector<probe *> ret
3251 = find_probes_in_objfile (objfile, "libc", "longjmp");
3252
3253 if (!ret.empty ())
3254 {
3255 /* We are only interested in checking one element. */
3256 probe *p = ret[0];
3257
3258 if (!p->can_evaluate_arguments ())
3259 {
3260 /* We cannot use the probe interface here, because it does
3261 not know how to evaluate arguments. */
3262 ret.clear ();
3263 }
3264 }
3265 bp_objfile_data->longjmp_probes = ret;
3266 bp_objfile_data->longjmp_searched = 1;
3267 }
3268
3269 if (!bp_objfile_data->longjmp_probes.empty ())
3270 {
3271 for (probe *p : bp_objfile_data->longjmp_probes)
3272 {
3273 struct breakpoint *b;
3274
3275 b = create_internal_breakpoint (gdbarch,
3276 p->get_relocated_address (objfile),
3277 bp_longjmp_master,
3278 &internal_breakpoint_ops);
3279 b->location = new_probe_location ("-probe-stap libc:longjmp");
3280 b->enable_state = bp_disabled;
3281 }
3282
3283 continue;
3284 }
3285
3286 if (!gdbarch_get_longjmp_target_p (gdbarch))
3287 continue;
3288
3289 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3290 {
3291 struct breakpoint *b;
3292 const char *func_name;
3293 CORE_ADDR addr;
3294 struct explicit_location explicit_loc;
3295
3296 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3297 continue;
3298
3299 func_name = longjmp_names[i];
3300 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3301 {
3302 struct bound_minimal_symbol m;
3303
3304 m = lookup_minimal_symbol_text (func_name, objfile);
3305 if (m.minsym == NULL)
3306 {
3307 /* Prevent future lookups in this objfile. */
3308 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3309 continue;
3310 }
3311 bp_objfile_data->longjmp_msym[i] = m;
3312 }
3313
3314 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3315 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3316 &internal_breakpoint_ops);
3317 initialize_explicit_location (&explicit_loc);
3318 explicit_loc.function_name = ASTRDUP (func_name);
3319 b->location = new_explicit_location (&explicit_loc);
3320 b->enable_state = bp_disabled;
3321 }
3322 }
3323 }
3324 }
3325
3326 /* Create a master std::terminate breakpoint. */
3327 static void
3328 create_std_terminate_master_breakpoint (void)
3329 {
3330 struct program_space *pspace;
3331 const char *const func_name = "std::terminate()";
3332
3333 scoped_restore_current_program_space restore_pspace;
3334
3335 ALL_PSPACES (pspace)
3336 {
3337 CORE_ADDR addr;
3338
3339 set_current_program_space (pspace);
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 struct breakpoint *b;
3344 struct breakpoint_objfile_data *bp_objfile_data;
3345 struct explicit_location explicit_loc;
3346
3347 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3348
3349 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3350 continue;
3351
3352 if (bp_objfile_data->terminate_msym.minsym == NULL)
3353 {
3354 struct bound_minimal_symbol m;
3355
3356 m = lookup_minimal_symbol (func_name, NULL, objfile);
3357 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3358 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3359 {
3360 /* Prevent future lookups in this objfile. */
3361 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3362 continue;
3363 }
3364 bp_objfile_data->terminate_msym = m;
3365 }
3366
3367 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3368 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3369 bp_std_terminate_master,
3370 &internal_breakpoint_ops);
3371 initialize_explicit_location (&explicit_loc);
3372 explicit_loc.function_name = ASTRDUP (func_name);
3373 b->location = new_explicit_location (&explicit_loc);
3374 b->enable_state = bp_disabled;
3375 }
3376 }
3377 }
3378
3379 /* Install a master breakpoint on the unwinder's debug hook. */
3380
3381 static void
3382 create_exception_master_breakpoint (void)
3383 {
3384 const char *const func_name = "_Unwind_DebugHook";
3385
3386 for (objfile *objfile : current_program_space->objfiles ())
3387 {
3388 struct breakpoint *b;
3389 struct gdbarch *gdbarch;
3390 struct breakpoint_objfile_data *bp_objfile_data;
3391 CORE_ADDR addr;
3392 struct explicit_location explicit_loc;
3393
3394 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3395
3396 /* We prefer the SystemTap probe point if it exists. */
3397 if (!bp_objfile_data->exception_searched)
3398 {
3399 std::vector<probe *> ret
3400 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3401
3402 if (!ret.empty ())
3403 {
3404 /* We are only interested in checking one element. */
3405 probe *p = ret[0];
3406
3407 if (!p->can_evaluate_arguments ())
3408 {
3409 /* We cannot use the probe interface here, because it does
3410 not know how to evaluate arguments. */
3411 ret.clear ();
3412 }
3413 }
3414 bp_objfile_data->exception_probes = ret;
3415 bp_objfile_data->exception_searched = 1;
3416 }
3417
3418 if (!bp_objfile_data->exception_probes.empty ())
3419 {
3420 gdbarch = get_objfile_arch (objfile);
3421
3422 for (probe *p : bp_objfile_data->exception_probes)
3423 {
3424 b = create_internal_breakpoint (gdbarch,
3425 p->get_relocated_address (objfile),
3426 bp_exception_master,
3427 &internal_breakpoint_ops);
3428 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3429 b->enable_state = bp_disabled;
3430 }
3431
3432 continue;
3433 }
3434
3435 /* Otherwise, try the hook function. */
3436
3437 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3438 continue;
3439
3440 gdbarch = get_objfile_arch (objfile);
3441
3442 if (bp_objfile_data->exception_msym.minsym == NULL)
3443 {
3444 struct bound_minimal_symbol debug_hook;
3445
3446 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3447 if (debug_hook.minsym == NULL)
3448 {
3449 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3450 continue;
3451 }
3452
3453 bp_objfile_data->exception_msym = debug_hook;
3454 }
3455
3456 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3457 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3458 current_top_target ());
3459 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3460 &internal_breakpoint_ops);
3461 initialize_explicit_location (&explicit_loc);
3462 explicit_loc.function_name = ASTRDUP (func_name);
3463 b->location = new_explicit_location (&explicit_loc);
3464 b->enable_state = bp_disabled;
3465 }
3466 }
3467
3468 /* Does B have a location spec? */
3469
3470 static int
3471 breakpoint_event_location_empty_p (const struct breakpoint *b)
3472 {
3473 return b->location != NULL && event_location_empty_p (b->location.get ());
3474 }
3475
3476 void
3477 update_breakpoints_after_exec (void)
3478 {
3479 struct breakpoint *b, *b_tmp;
3480 struct bp_location *bploc, **bplocp_tmp;
3481
3482 /* We're about to delete breakpoints from GDB's lists. If the
3483 INSERTED flag is true, GDB will try to lift the breakpoints by
3484 writing the breakpoints' "shadow contents" back into memory. The
3485 "shadow contents" are NOT valid after an exec, so GDB should not
3486 do that. Instead, the target is responsible from marking
3487 breakpoints out as soon as it detects an exec. We don't do that
3488 here instead, because there may be other attempts to delete
3489 breakpoints after detecting an exec and before reaching here. */
3490 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3491 if (bploc->pspace == current_program_space)
3492 gdb_assert (!bploc->inserted);
3493
3494 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3495 {
3496 if (b->pspace != current_program_space)
3497 continue;
3498
3499 /* Solib breakpoints must be explicitly reset after an exec(). */
3500 if (b->type == bp_shlib_event)
3501 {
3502 delete_breakpoint (b);
3503 continue;
3504 }
3505
3506 /* JIT breakpoints must be explicitly reset after an exec(). */
3507 if (b->type == bp_jit_event)
3508 {
3509 delete_breakpoint (b);
3510 continue;
3511 }
3512
3513 /* Thread event breakpoints must be set anew after an exec(),
3514 as must overlay event and longjmp master breakpoints. */
3515 if (b->type == bp_thread_event || b->type == bp_overlay_event
3516 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3517 || b->type == bp_exception_master)
3518 {
3519 delete_breakpoint (b);
3520 continue;
3521 }
3522
3523 /* Step-resume breakpoints are meaningless after an exec(). */
3524 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3525 {
3526 delete_breakpoint (b);
3527 continue;
3528 }
3529
3530 /* Just like single-step breakpoints. */
3531 if (b->type == bp_single_step)
3532 {
3533 delete_breakpoint (b);
3534 continue;
3535 }
3536
3537 /* Longjmp and longjmp-resume breakpoints are also meaningless
3538 after an exec. */
3539 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3540 || b->type == bp_longjmp_call_dummy
3541 || b->type == bp_exception || b->type == bp_exception_resume)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 if (b->type == bp_catchpoint)
3548 {
3549 /* For now, none of the bp_catchpoint breakpoints need to
3550 do anything at this point. In the future, if some of
3551 the catchpoints need to something, we will need to add
3552 a new method, and call this method from here. */
3553 continue;
3554 }
3555
3556 /* bp_finish is a special case. The only way we ought to be able
3557 to see one of these when an exec() has happened, is if the user
3558 caught a vfork, and then said "finish". Ordinarily a finish just
3559 carries them to the call-site of the current callee, by setting
3560 a temporary bp there and resuming. But in this case, the finish
3561 will carry them entirely through the vfork & exec.
3562
3563 We don't want to allow a bp_finish to remain inserted now. But
3564 we can't safely delete it, 'cause finish_command has a handle to
3565 the bp on a bpstat, and will later want to delete it. There's a
3566 chance (and I've seen it happen) that if we delete the bp_finish
3567 here, that its storage will get reused by the time finish_command
3568 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3569 We really must allow finish_command to delete a bp_finish.
3570
3571 In the absence of a general solution for the "how do we know
3572 it's safe to delete something others may have handles to?"
3573 problem, what we'll do here is just uninsert the bp_finish, and
3574 let finish_command delete it.
3575
3576 (We know the bp_finish is "doomed" in the sense that it's
3577 momentary, and will be deleted as soon as finish_command sees
3578 the inferior stopped. So it doesn't matter that the bp's
3579 address is probably bogus in the new a.out, unlike e.g., the
3580 solib breakpoints.) */
3581
3582 if (b->type == bp_finish)
3583 {
3584 continue;
3585 }
3586
3587 /* Without a symbolic address, we have little hope of the
3588 pre-exec() address meaning the same thing in the post-exec()
3589 a.out. */
3590 if (breakpoint_event_location_empty_p (b))
3591 {
3592 delete_breakpoint (b);
3593 continue;
3594 }
3595 }
3596 }
3597
3598 int
3599 detach_breakpoints (ptid_t ptid)
3600 {
3601 struct bp_location *bl, **blp_tmp;
3602 int val = 0;
3603 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3604 struct inferior *inf = current_inferior ();
3605
3606 if (ptid.pid () == inferior_ptid.pid ())
3607 error (_("Cannot detach breakpoints of inferior_ptid"));
3608
3609 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3610 inferior_ptid = ptid;
3611 ALL_BP_LOCATIONS (bl, blp_tmp)
3612 {
3613 if (bl->pspace != inf->pspace)
3614 continue;
3615
3616 /* This function must physically remove breakpoints locations
3617 from the specified ptid, without modifying the breakpoint
3618 package's state. Locations of type bp_loc_other are only
3619 maintained at GDB side. So, there is no need to remove
3620 these bp_loc_other locations. Moreover, removing these
3621 would modify the breakpoint package's state. */
3622 if (bl->loc_type == bp_loc_other)
3623 continue;
3624
3625 if (bl->inserted)
3626 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3627 }
3628
3629 return val;
3630 }
3631
3632 /* Remove the breakpoint location BL from the current address space.
3633 Note that this is used to detach breakpoints from a child fork.
3634 When we get here, the child isn't in the inferior list, and neither
3635 do we have objects to represent its address space --- we should
3636 *not* look at bl->pspace->aspace here. */
3637
3638 static int
3639 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3640 {
3641 int val;
3642
3643 /* BL is never in moribund_locations by our callers. */
3644 gdb_assert (bl->owner != NULL);
3645
3646 /* The type of none suggests that owner is actually deleted.
3647 This should not ever happen. */
3648 gdb_assert (bl->owner->type != bp_none);
3649
3650 if (bl->loc_type == bp_loc_software_breakpoint
3651 || bl->loc_type == bp_loc_hardware_breakpoint)
3652 {
3653 /* "Normal" instruction breakpoint: either the standard
3654 trap-instruction bp (bp_breakpoint), or a
3655 bp_hardware_breakpoint. */
3656
3657 /* First check to see if we have to handle an overlay. */
3658 if (overlay_debugging == ovly_off
3659 || bl->section == NULL
3660 || !(section_is_overlay (bl->section)))
3661 {
3662 /* No overlay handling: just remove the breakpoint. */
3663
3664 /* If we're trying to uninsert a memory breakpoint that we
3665 know is set in a dynamic object that is marked
3666 shlib_disabled, then either the dynamic object was
3667 removed with "remove-symbol-file" or with
3668 "nosharedlibrary". In the former case, we don't know
3669 whether another dynamic object might have loaded over the
3670 breakpoint's address -- the user might well let us know
3671 about it next with add-symbol-file (the whole point of
3672 add-symbol-file is letting the user manually maintain a
3673 list of dynamically loaded objects). If we have the
3674 breakpoint's shadow memory, that is, this is a software
3675 breakpoint managed by GDB, check whether the breakpoint
3676 is still inserted in memory, to avoid overwriting wrong
3677 code with stale saved shadow contents. Note that HW
3678 breakpoints don't have shadow memory, as they're
3679 implemented using a mechanism that is not dependent on
3680 being able to modify the target's memory, and as such
3681 they should always be removed. */
3682 if (bl->shlib_disabled
3683 && bl->target_info.shadow_len != 0
3684 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3685 val = 0;
3686 else
3687 val = bl->owner->ops->remove_location (bl, reason);
3688 }
3689 else
3690 {
3691 /* This breakpoint is in an overlay section.
3692 Did we set a breakpoint at the LMA? */
3693 if (!overlay_events_enabled)
3694 {
3695 /* Yes -- overlay event support is not active, so we
3696 should have set a breakpoint at the LMA. Remove it.
3697 */
3698 /* Ignore any failures: if the LMA is in ROM, we will
3699 have already warned when we failed to insert it. */
3700 if (bl->loc_type == bp_loc_hardware_breakpoint)
3701 target_remove_hw_breakpoint (bl->gdbarch,
3702 &bl->overlay_target_info);
3703 else
3704 target_remove_breakpoint (bl->gdbarch,
3705 &bl->overlay_target_info,
3706 reason);
3707 }
3708 /* Did we set a breakpoint at the VMA?
3709 If so, we will have marked the breakpoint 'inserted'. */
3710 if (bl->inserted)
3711 {
3712 /* Yes -- remove it. Previously we did not bother to
3713 remove the breakpoint if the section had been
3714 unmapped, but let's not rely on that being safe. We
3715 don't know what the overlay manager might do. */
3716
3717 /* However, we should remove *software* breakpoints only
3718 if the section is still mapped, or else we overwrite
3719 wrong code with the saved shadow contents. */
3720 if (bl->loc_type == bp_loc_hardware_breakpoint
3721 || section_is_mapped (bl->section))
3722 val = bl->owner->ops->remove_location (bl, reason);
3723 else
3724 val = 0;
3725 }
3726 else
3727 {
3728 /* No -- not inserted, so no need to remove. No error. */
3729 val = 0;
3730 }
3731 }
3732
3733 /* In some cases, we might not be able to remove a breakpoint in
3734 a shared library that has already been removed, but we have
3735 not yet processed the shlib unload event. Similarly for an
3736 unloaded add-symbol-file object - the user might not yet have
3737 had the chance to remove-symbol-file it. shlib_disabled will
3738 be set if the library/object has already been removed, but
3739 the breakpoint hasn't been uninserted yet, e.g., after
3740 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3741 always-inserted mode. */
3742 if (val
3743 && (bl->loc_type == bp_loc_software_breakpoint
3744 && (bl->shlib_disabled
3745 || solib_name_from_address (bl->pspace, bl->address)
3746 || shared_objfile_contains_address_p (bl->pspace,
3747 bl->address))))
3748 val = 0;
3749
3750 if (val)
3751 return val;
3752 bl->inserted = (reason == DETACH_BREAKPOINT);
3753 }
3754 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3755 {
3756 gdb_assert (bl->owner->ops != NULL
3757 && bl->owner->ops->remove_location != NULL);
3758
3759 bl->inserted = (reason == DETACH_BREAKPOINT);
3760 bl->owner->ops->remove_location (bl, reason);
3761
3762 /* Failure to remove any of the hardware watchpoints comes here. */
3763 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3764 warning (_("Could not remove hardware watchpoint %d."),
3765 bl->owner->number);
3766 }
3767 else if (bl->owner->type == bp_catchpoint
3768 && breakpoint_enabled (bl->owner)
3769 && !bl->duplicate)
3770 {
3771 gdb_assert (bl->owner->ops != NULL
3772 && bl->owner->ops->remove_location != NULL);
3773
3774 val = bl->owner->ops->remove_location (bl, reason);
3775 if (val)
3776 return val;
3777
3778 bl->inserted = (reason == DETACH_BREAKPOINT);
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int
3785 remove_breakpoint (struct bp_location *bl)
3786 {
3787 /* BL is never in moribund_locations by our callers. */
3788 gdb_assert (bl->owner != NULL);
3789
3790 /* The type of none suggests that owner is actually deleted.
3791 This should not ever happen. */
3792 gdb_assert (bl->owner->type != bp_none);
3793
3794 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3795
3796 switch_to_program_space_and_thread (bl->pspace);
3797
3798 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3799 }
3800
3801 /* Clear the "inserted" flag in all breakpoints. */
3802
3803 void
3804 mark_breakpoints_out (void)
3805 {
3806 struct bp_location *bl, **blp_tmp;
3807
3808 ALL_BP_LOCATIONS (bl, blp_tmp)
3809 if (bl->pspace == current_program_space)
3810 bl->inserted = 0;
3811 }
3812
3813 /* Clear the "inserted" flag in all breakpoints and delete any
3814 breakpoints which should go away between runs of the program.
3815
3816 Plus other such housekeeping that has to be done for breakpoints
3817 between runs.
3818
3819 Note: this function gets called at the end of a run (by
3820 generic_mourn_inferior) and when a run begins (by
3821 init_wait_for_inferior). */
3822
3823
3824
3825 void
3826 breakpoint_init_inferior (enum inf_context context)
3827 {
3828 struct breakpoint *b, *b_tmp;
3829 struct program_space *pspace = current_program_space;
3830
3831 /* If breakpoint locations are shared across processes, then there's
3832 nothing to do. */
3833 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3834 return;
3835
3836 mark_breakpoints_out ();
3837
3838 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3839 {
3840 if (b->loc && b->loc->pspace != pspace)
3841 continue;
3842
3843 switch (b->type)
3844 {
3845 case bp_call_dummy:
3846 case bp_longjmp_call_dummy:
3847
3848 /* If the call dummy breakpoint is at the entry point it will
3849 cause problems when the inferior is rerun, so we better get
3850 rid of it. */
3851
3852 case bp_watchpoint_scope:
3853
3854 /* Also get rid of scope breakpoints. */
3855
3856 case bp_shlib_event:
3857
3858 /* Also remove solib event breakpoints. Their addresses may
3859 have changed since the last time we ran the program.
3860 Actually we may now be debugging against different target;
3861 and so the solib backend that installed this breakpoint may
3862 not be used in by the target. E.g.,
3863
3864 (gdb) file prog-linux
3865 (gdb) run # native linux target
3866 ...
3867 (gdb) kill
3868 (gdb) file prog-win.exe
3869 (gdb) tar rem :9999 # remote Windows gdbserver.
3870 */
3871
3872 case bp_step_resume:
3873
3874 /* Also remove step-resume breakpoints. */
3875
3876 case bp_single_step:
3877
3878 /* Also remove single-step breakpoints. */
3879
3880 delete_breakpoint (b);
3881 break;
3882
3883 case bp_watchpoint:
3884 case bp_hardware_watchpoint:
3885 case bp_read_watchpoint:
3886 case bp_access_watchpoint:
3887 {
3888 struct watchpoint *w = (struct watchpoint *) b;
3889
3890 /* Likewise for watchpoints on local expressions. */
3891 if (w->exp_valid_block != NULL)
3892 delete_breakpoint (b);
3893 else
3894 {
3895 /* Get rid of existing locations, which are no longer
3896 valid. New ones will be created in
3897 update_watchpoint, when the inferior is restarted.
3898 The next update_global_location_list call will
3899 garbage collect them. */
3900 b->loc = NULL;
3901
3902 if (context == inf_starting)
3903 {
3904 /* Reset val field to force reread of starting value in
3905 insert_breakpoints. */
3906 w->val.reset (nullptr);
3907 w->val_valid = 0;
3908 }
3909 }
3910 }
3911 break;
3912 default:
3913 break;
3914 }
3915 }
3916
3917 /* Get rid of the moribund locations. */
3918 for (bp_location *bl : moribund_locations)
3919 decref_bp_location (&bl);
3920 moribund_locations.clear ();
3921 }
3922
3923 /* These functions concern about actual breakpoints inserted in the
3924 target --- to e.g. check if we need to do decr_pc adjustment or if
3925 we need to hop over the bkpt --- so we check for address space
3926 match, not program space. */
3927
3928 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3929 exists at PC. It returns ordinary_breakpoint_here if it's an
3930 ordinary breakpoint, or permanent_breakpoint_here if it's a
3931 permanent breakpoint.
3932 - When continuing from a location with an ordinary breakpoint, we
3933 actually single step once before calling insert_breakpoints.
3934 - When continuing from a location with a permanent breakpoint, we
3935 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3936 the target, to advance the PC past the breakpoint. */
3937
3938 enum breakpoint_here
3939 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3940 {
3941 struct bp_location *bl, **blp_tmp;
3942 int any_breakpoint_here = 0;
3943
3944 ALL_BP_LOCATIONS (bl, blp_tmp)
3945 {
3946 if (bl->loc_type != bp_loc_software_breakpoint
3947 && bl->loc_type != bp_loc_hardware_breakpoint)
3948 continue;
3949
3950 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3951 if ((breakpoint_enabled (bl->owner)
3952 || bl->permanent)
3953 && breakpoint_location_address_match (bl, aspace, pc))
3954 {
3955 if (overlay_debugging
3956 && section_is_overlay (bl->section)
3957 && !section_is_mapped (bl->section))
3958 continue; /* unmapped overlay -- can't be a match */
3959 else if (bl->permanent)
3960 return permanent_breakpoint_here;
3961 else
3962 any_breakpoint_here = 1;
3963 }
3964 }
3965
3966 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3967 }
3968
3969 /* See breakpoint.h. */
3970
3971 int
3972 breakpoint_in_range_p (const address_space *aspace,
3973 CORE_ADDR addr, ULONGEST len)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976
3977 ALL_BP_LOCATIONS (bl, blp_tmp)
3978 {
3979 if (bl->loc_type != bp_loc_software_breakpoint
3980 && bl->loc_type != bp_loc_hardware_breakpoint)
3981 continue;
3982
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_range_overlap (bl, aspace,
3986 addr, len))
3987 {
3988 if (overlay_debugging
3989 && section_is_overlay (bl->section)
3990 && !section_is_mapped (bl->section))
3991 {
3992 /* Unmapped overlay -- can't be a match. */
3993 continue;
3994 }
3995
3996 return 1;
3997 }
3998 }
3999
4000 return 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4007 {
4008 for (bp_location *loc : moribund_locations)
4009 if (breakpoint_location_address_match (loc, aspace, pc))
4010 return 1;
4011
4012 return 0;
4013 }
4014
4015 /* Returns non-zero iff BL is inserted at PC, in address space
4016 ASPACE. */
4017
4018 static int
4019 bp_location_inserted_here_p (struct bp_location *bl,
4020 const address_space *aspace, CORE_ADDR pc)
4021 {
4022 if (bl->inserted
4023 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4024 aspace, pc))
4025 {
4026 if (overlay_debugging
4027 && section_is_overlay (bl->section)
4028 && !section_is_mapped (bl->section))
4029 return 0; /* unmapped overlay -- can't be a match */
4030 else
4031 return 1;
4032 }
4033 return 0;
4034 }
4035
4036 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4037
4038 int
4039 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4040 {
4041 struct bp_location **blp, **blp_tmp = NULL;
4042
4043 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4044 {
4045 struct bp_location *bl = *blp;
4046
4047 if (bl->loc_type != bp_loc_software_breakpoint
4048 && bl->loc_type != bp_loc_hardware_breakpoint)
4049 continue;
4050
4051 if (bp_location_inserted_here_p (bl, aspace, pc))
4052 return 1;
4053 }
4054 return 0;
4055 }
4056
4057 /* This function returns non-zero iff there is a software breakpoint
4058 inserted at PC. */
4059
4060 int
4061 software_breakpoint_inserted_here_p (const address_space *aspace,
4062 CORE_ADDR pc)
4063 {
4064 struct bp_location **blp, **blp_tmp = NULL;
4065
4066 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4067 {
4068 struct bp_location *bl = *blp;
4069
4070 if (bl->loc_type != bp_loc_software_breakpoint)
4071 continue;
4072
4073 if (bp_location_inserted_here_p (bl, aspace, pc))
4074 return 1;
4075 }
4076
4077 return 0;
4078 }
4079
4080 /* See breakpoint.h. */
4081
4082 int
4083 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4084 CORE_ADDR pc)
4085 {
4086 struct bp_location **blp, **blp_tmp = NULL;
4087
4088 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4089 {
4090 struct bp_location *bl = *blp;
4091
4092 if (bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098
4099 return 0;
4100 }
4101
4102 int
4103 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4104 CORE_ADDR addr, ULONGEST len)
4105 {
4106 struct breakpoint *bpt;
4107
4108 ALL_BREAKPOINTS (bpt)
4109 {
4110 struct bp_location *loc;
4111
4112 if (bpt->type != bp_hardware_watchpoint
4113 && bpt->type != bp_access_watchpoint)
4114 continue;
4115
4116 if (!breakpoint_enabled (bpt))
4117 continue;
4118
4119 for (loc = bpt->loc; loc; loc = loc->next)
4120 if (loc->pspace->aspace == aspace && loc->inserted)
4121 {
4122 CORE_ADDR l, h;
4123
4124 /* Check for intersection. */
4125 l = std::max<CORE_ADDR> (loc->address, addr);
4126 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4127 if (l < h)
4128 return 1;
4129 }
4130 }
4131 return 0;
4132 }
4133 \f
4134
4135 /* bpstat stuff. External routines' interfaces are documented
4136 in breakpoint.h. */
4137
4138 int
4139 is_catchpoint (struct breakpoint *ep)
4140 {
4141 return (ep->type == bp_catchpoint);
4142 }
4143
4144 /* Frees any storage that is part of a bpstat. Does not walk the
4145 'next' chain. */
4146
4147 bpstats::~bpstats ()
4148 {
4149 if (bp_location_at != NULL)
4150 decref_bp_location (&bp_location_at);
4151 }
4152
4153 /* Clear a bpstat so that it says we are not at any breakpoint.
4154 Also free any storage that is part of a bpstat. */
4155
4156 void
4157 bpstat_clear (bpstat *bsp)
4158 {
4159 bpstat p;
4160 bpstat q;
4161
4162 if (bsp == 0)
4163 return;
4164 p = *bsp;
4165 while (p != NULL)
4166 {
4167 q = p->next;
4168 delete p;
4169 p = q;
4170 }
4171 *bsp = NULL;
4172 }
4173
4174 bpstats::bpstats (const bpstats &other)
4175 : next (NULL),
4176 bp_location_at (other.bp_location_at),
4177 breakpoint_at (other.breakpoint_at),
4178 commands (other.commands),
4179 print (other.print),
4180 stop (other.stop),
4181 print_it (other.print_it)
4182 {
4183 if (other.old_val != NULL)
4184 old_val = release_value (value_copy (other.old_val.get ()));
4185 incref_bp_location (bp_location_at);
4186 }
4187
4188 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4189 is part of the bpstat is copied as well. */
4190
4191 bpstat
4192 bpstat_copy (bpstat bs)
4193 {
4194 bpstat p = NULL;
4195 bpstat tmp;
4196 bpstat retval = NULL;
4197
4198 if (bs == NULL)
4199 return bs;
4200
4201 for (; bs != NULL; bs = bs->next)
4202 {
4203 tmp = new bpstats (*bs);
4204
4205 if (p == NULL)
4206 /* This is the first thing in the chain. */
4207 retval = tmp;
4208 else
4209 p->next = tmp;
4210 p = tmp;
4211 }
4212 p->next = NULL;
4213 return retval;
4214 }
4215
4216 /* Find the bpstat associated with this breakpoint. */
4217
4218 bpstat
4219 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4220 {
4221 if (bsp == NULL)
4222 return NULL;
4223
4224 for (; bsp != NULL; bsp = bsp->next)
4225 {
4226 if (bsp->breakpoint_at == breakpoint)
4227 return bsp;
4228 }
4229 return NULL;
4230 }
4231
4232 /* See breakpoint.h. */
4233
4234 int
4235 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4236 {
4237 for (; bsp != NULL; bsp = bsp->next)
4238 {
4239 if (bsp->breakpoint_at == NULL)
4240 {
4241 /* A moribund location can never explain a signal other than
4242 GDB_SIGNAL_TRAP. */
4243 if (sig == GDB_SIGNAL_TRAP)
4244 return 1;
4245 }
4246 else
4247 {
4248 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4249 sig))
4250 return 1;
4251 }
4252 }
4253
4254 return 0;
4255 }
4256
4257 /* Put in *NUM the breakpoint number of the first breakpoint we are
4258 stopped at. *BSP upon return is a bpstat which points to the
4259 remaining breakpoints stopped at (but which is not guaranteed to be
4260 good for anything but further calls to bpstat_num).
4261
4262 Return 0 if passed a bpstat which does not indicate any breakpoints.
4263 Return -1 if stopped at a breakpoint that has been deleted since
4264 we set it.
4265 Return 1 otherwise. */
4266
4267 int
4268 bpstat_num (bpstat *bsp, int *num)
4269 {
4270 struct breakpoint *b;
4271
4272 if ((*bsp) == NULL)
4273 return 0; /* No more breakpoint values */
4274
4275 /* We assume we'll never have several bpstats that correspond to a
4276 single breakpoint -- otherwise, this function might return the
4277 same number more than once and this will look ugly. */
4278 b = (*bsp)->breakpoint_at;
4279 *bsp = (*bsp)->next;
4280 if (b == NULL)
4281 return -1; /* breakpoint that's been deleted since */
4282
4283 *num = b->number; /* We have its number */
4284 return 1;
4285 }
4286
4287 /* See breakpoint.h. */
4288
4289 void
4290 bpstat_clear_actions (void)
4291 {
4292 bpstat bs;
4293
4294 if (inferior_ptid == null_ptid)
4295 return;
4296
4297 thread_info *tp = inferior_thread ();
4298 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4299 {
4300 bs->commands = NULL;
4301 bs->old_val.reset (nullptr);
4302 }
4303 }
4304
4305 /* Called when a command is about to proceed the inferior. */
4306
4307 static void
4308 breakpoint_about_to_proceed (void)
4309 {
4310 if (inferior_ptid != null_ptid)
4311 {
4312 struct thread_info *tp = inferior_thread ();
4313
4314 /* Allow inferior function calls in breakpoint commands to not
4315 interrupt the command list. When the call finishes
4316 successfully, the inferior will be standing at the same
4317 breakpoint as if nothing happened. */
4318 if (tp->control.in_infcall)
4319 return;
4320 }
4321
4322 breakpoint_proceeded = 1;
4323 }
4324
4325 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4326 or its equivalent. */
4327
4328 static int
4329 command_line_is_silent (struct command_line *cmd)
4330 {
4331 return cmd && (strcmp ("silent", cmd->line) == 0);
4332 }
4333
4334 /* Execute all the commands associated with all the breakpoints at
4335 this location. Any of these commands could cause the process to
4336 proceed beyond this point, etc. We look out for such changes by
4337 checking the global "breakpoint_proceeded" after each command.
4338
4339 Returns true if a breakpoint command resumed the inferior. In that
4340 case, it is the caller's responsibility to recall it again with the
4341 bpstat of the current thread. */
4342
4343 static int
4344 bpstat_do_actions_1 (bpstat *bsp)
4345 {
4346 bpstat bs;
4347 int again = 0;
4348
4349 /* Avoid endless recursion if a `source' command is contained
4350 in bs->commands. */
4351 if (executing_breakpoint_commands)
4352 return 0;
4353
4354 scoped_restore save_executing
4355 = make_scoped_restore (&executing_breakpoint_commands, 1);
4356
4357 scoped_restore preventer = prevent_dont_repeat ();
4358
4359 /* This pointer will iterate over the list of bpstat's. */
4360 bs = *bsp;
4361
4362 breakpoint_proceeded = 0;
4363 for (; bs != NULL; bs = bs->next)
4364 {
4365 struct command_line *cmd = NULL;
4366
4367 /* Take ownership of the BSP's command tree, if it has one.
4368
4369 The command tree could legitimately contain commands like
4370 'step' and 'next', which call clear_proceed_status, which
4371 frees stop_bpstat's command tree. To make sure this doesn't
4372 free the tree we're executing out from under us, we need to
4373 take ownership of the tree ourselves. Since a given bpstat's
4374 commands are only executed once, we don't need to copy it; we
4375 can clear the pointer in the bpstat, and make sure we free
4376 the tree when we're done. */
4377 counted_command_line ccmd = bs->commands;
4378 bs->commands = NULL;
4379 if (ccmd != NULL)
4380 cmd = ccmd.get ();
4381 if (command_line_is_silent (cmd))
4382 {
4383 /* The action has been already done by bpstat_stop_status. */
4384 cmd = cmd->next;
4385 }
4386
4387 while (cmd != NULL)
4388 {
4389 execute_control_command (cmd);
4390
4391 if (breakpoint_proceeded)
4392 break;
4393 else
4394 cmd = cmd->next;
4395 }
4396
4397 if (breakpoint_proceeded)
4398 {
4399 if (current_ui->async)
4400 /* If we are in async mode, then the target might be still
4401 running, not stopped at any breakpoint, so nothing for
4402 us to do here -- just return to the event loop. */
4403 ;
4404 else
4405 /* In sync mode, when execute_control_command returns
4406 we're already standing on the next breakpoint.
4407 Breakpoint commands for that stop were not run, since
4408 execute_command does not run breakpoint commands --
4409 only command_line_handler does, but that one is not
4410 involved in execution of breakpoint commands. So, we
4411 can now execute breakpoint commands. It should be
4412 noted that making execute_command do bpstat actions is
4413 not an option -- in this case we'll have recursive
4414 invocation of bpstat for each breakpoint with a
4415 command, and can easily blow up GDB stack. Instead, we
4416 return true, which will trigger the caller to recall us
4417 with the new stop_bpstat. */
4418 again = 1;
4419 break;
4420 }
4421 }
4422 return again;
4423 }
4424
4425 /* Helper for bpstat_do_actions. Get the current thread, if there's
4426 one, is alive and has execution. Return NULL otherwise. */
4427
4428 static thread_info *
4429 get_bpstat_thread ()
4430 {
4431 if (inferior_ptid == null_ptid || !target_has_execution)
4432 return NULL;
4433
4434 thread_info *tp = inferior_thread ();
4435 if (tp->state == THREAD_EXITED || tp->executing)
4436 return NULL;
4437 return tp;
4438 }
4439
4440 void
4441 bpstat_do_actions (void)
4442 {
4443 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4444 thread_info *tp;
4445
4446 /* Do any commands attached to breakpoint we are stopped at. */
4447 while ((tp = get_bpstat_thread ()) != NULL)
4448 {
4449 /* Since in sync mode, bpstat_do_actions may resume the
4450 inferior, and only return when it is stopped at the next
4451 breakpoint, we keep doing breakpoint actions until it returns
4452 false to indicate the inferior was not resumed. */
4453 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4454 break;
4455 }
4456
4457 cleanup_if_error.release ();
4458 }
4459
4460 /* Print out the (old or new) value associated with a watchpoint. */
4461
4462 static void
4463 watchpoint_value_print (struct value *val, struct ui_file *stream)
4464 {
4465 if (val == NULL)
4466 fprintf_unfiltered (stream, _("<unreadable>"));
4467 else
4468 {
4469 struct value_print_options opts;
4470 get_user_print_options (&opts);
4471 value_print (val, stream, &opts);
4472 }
4473 }
4474
4475 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4476 debugging multiple threads. */
4477
4478 void
4479 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4480 {
4481 if (uiout->is_mi_like_p ())
4482 return;
4483
4484 uiout->text ("\n");
4485
4486 if (show_thread_that_caused_stop ())
4487 {
4488 const char *name;
4489 struct thread_info *thr = inferior_thread ();
4490
4491 uiout->text ("Thread ");
4492 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4493
4494 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4495 if (name != NULL)
4496 {
4497 uiout->text (" \"");
4498 uiout->field_fmt ("name", "%s", name);
4499 uiout->text ("\"");
4500 }
4501
4502 uiout->text (" hit ");
4503 }
4504 }
4505
4506 /* Generic routine for printing messages indicating why we
4507 stopped. The behavior of this function depends on the value
4508 'print_it' in the bpstat structure. Under some circumstances we
4509 may decide not to print anything here and delegate the task to
4510 normal_stop(). */
4511
4512 static enum print_stop_action
4513 print_bp_stop_message (bpstat bs)
4514 {
4515 switch (bs->print_it)
4516 {
4517 case print_it_noop:
4518 /* Nothing should be printed for this bpstat entry. */
4519 return PRINT_UNKNOWN;
4520 break;
4521
4522 case print_it_done:
4523 /* We still want to print the frame, but we already printed the
4524 relevant messages. */
4525 return PRINT_SRC_AND_LOC;
4526 break;
4527
4528 case print_it_normal:
4529 {
4530 struct breakpoint *b = bs->breakpoint_at;
4531
4532 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4533 which has since been deleted. */
4534 if (b == NULL)
4535 return PRINT_UNKNOWN;
4536
4537 /* Normal case. Call the breakpoint's print_it method. */
4538 return b->ops->print_it (bs);
4539 }
4540 break;
4541
4542 default:
4543 internal_error (__FILE__, __LINE__,
4544 _("print_bp_stop_message: unrecognized enum value"));
4545 break;
4546 }
4547 }
4548
4549 /* A helper function that prints a shared library stopped event. */
4550
4551 static void
4552 print_solib_event (int is_catchpoint)
4553 {
4554 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4555 bool any_added = !current_program_space->added_solibs.empty ();
4556
4557 if (!is_catchpoint)
4558 {
4559 if (any_added || any_deleted)
4560 current_uiout->text (_("Stopped due to shared library event:\n"));
4561 else
4562 current_uiout->text (_("Stopped due to shared library event (no "
4563 "libraries added or removed)\n"));
4564 }
4565
4566 if (current_uiout->is_mi_like_p ())
4567 current_uiout->field_string ("reason",
4568 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4569
4570 if (any_deleted)
4571 {
4572 current_uiout->text (_(" Inferior unloaded "));
4573 ui_out_emit_list list_emitter (current_uiout, "removed");
4574 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4575 {
4576 const std::string &name = current_program_space->deleted_solibs[ix];
4577
4578 if (ix > 0)
4579 current_uiout->text (" ");
4580 current_uiout->field_string ("library", name);
4581 current_uiout->text ("\n");
4582 }
4583 }
4584
4585 if (any_added)
4586 {
4587 current_uiout->text (_(" Inferior loaded "));
4588 ui_out_emit_list list_emitter (current_uiout, "added");
4589 bool first = true;
4590 for (so_list *iter : current_program_space->added_solibs)
4591 {
4592 if (!first)
4593 current_uiout->text (" ");
4594 first = false;
4595 current_uiout->field_string ("library", iter->so_name);
4596 current_uiout->text ("\n");
4597 }
4598 }
4599 }
4600
4601 /* Print a message indicating what happened. This is called from
4602 normal_stop(). The input to this routine is the head of the bpstat
4603 list - a list of the eventpoints that caused this stop. KIND is
4604 the target_waitkind for the stopping event. This
4605 routine calls the generic print routine for printing a message
4606 about reasons for stopping. This will print (for example) the
4607 "Breakpoint n," part of the output. The return value of this
4608 routine is one of:
4609
4610 PRINT_UNKNOWN: Means we printed nothing.
4611 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4612 code to print the location. An example is
4613 "Breakpoint 1, " which should be followed by
4614 the location.
4615 PRINT_SRC_ONLY: Means we printed something, but there is no need
4616 to also print the location part of the message.
4617 An example is the catch/throw messages, which
4618 don't require a location appended to the end.
4619 PRINT_NOTHING: We have done some printing and we don't need any
4620 further info to be printed. */
4621
4622 enum print_stop_action
4623 bpstat_print (bpstat bs, int kind)
4624 {
4625 enum print_stop_action val;
4626
4627 /* Maybe another breakpoint in the chain caused us to stop.
4628 (Currently all watchpoints go on the bpstat whether hit or not.
4629 That probably could (should) be changed, provided care is taken
4630 with respect to bpstat_explains_signal). */
4631 for (; bs; bs = bs->next)
4632 {
4633 val = print_bp_stop_message (bs);
4634 if (val == PRINT_SRC_ONLY
4635 || val == PRINT_SRC_AND_LOC
4636 || val == PRINT_NOTHING)
4637 return val;
4638 }
4639
4640 /* If we had hit a shared library event breakpoint,
4641 print_bp_stop_message would print out this message. If we hit an
4642 OS-level shared library event, do the same thing. */
4643 if (kind == TARGET_WAITKIND_LOADED)
4644 {
4645 print_solib_event (0);
4646 return PRINT_NOTHING;
4647 }
4648
4649 /* We reached the end of the chain, or we got a null BS to start
4650 with and nothing was printed. */
4651 return PRINT_UNKNOWN;
4652 }
4653
4654 /* Evaluate the boolean expression EXP and return the result. */
4655
4656 static bool
4657 breakpoint_cond_eval (expression *exp)
4658 {
4659 struct value *mark = value_mark ();
4660 bool res = value_true (evaluate_expression (exp));
4661
4662 value_free_to_mark (mark);
4663 return res;
4664 }
4665
4666 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4667
4668 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4669 : next (NULL),
4670 bp_location_at (bl),
4671 breakpoint_at (bl->owner),
4672 commands (NULL),
4673 print (0),
4674 stop (0),
4675 print_it (print_it_normal)
4676 {
4677 incref_bp_location (bl);
4678 **bs_link_pointer = this;
4679 *bs_link_pointer = &next;
4680 }
4681
4682 bpstats::bpstats ()
4683 : next (NULL),
4684 bp_location_at (NULL),
4685 breakpoint_at (NULL),
4686 commands (NULL),
4687 print (0),
4688 stop (0),
4689 print_it (print_it_normal)
4690 {
4691 }
4692 \f
4693 /* The target has stopped with waitstatus WS. Check if any hardware
4694 watchpoints have triggered, according to the target. */
4695
4696 int
4697 watchpoints_triggered (struct target_waitstatus *ws)
4698 {
4699 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4700 CORE_ADDR addr;
4701 struct breakpoint *b;
4702
4703 if (!stopped_by_watchpoint)
4704 {
4705 /* We were not stopped by a watchpoint. Mark all watchpoints
4706 as not triggered. */
4707 ALL_BREAKPOINTS (b)
4708 if (is_hardware_watchpoint (b))
4709 {
4710 struct watchpoint *w = (struct watchpoint *) b;
4711
4712 w->watchpoint_triggered = watch_triggered_no;
4713 }
4714
4715 return 0;
4716 }
4717
4718 if (!target_stopped_data_address (current_top_target (), &addr))
4719 {
4720 /* We were stopped by a watchpoint, but we don't know where.
4721 Mark all watchpoints as unknown. */
4722 ALL_BREAKPOINTS (b)
4723 if (is_hardware_watchpoint (b))
4724 {
4725 struct watchpoint *w = (struct watchpoint *) b;
4726
4727 w->watchpoint_triggered = watch_triggered_unknown;
4728 }
4729
4730 return 1;
4731 }
4732
4733 /* The target could report the data address. Mark watchpoints
4734 affected by this data address as triggered, and all others as not
4735 triggered. */
4736
4737 ALL_BREAKPOINTS (b)
4738 if (is_hardware_watchpoint (b))
4739 {
4740 struct watchpoint *w = (struct watchpoint *) b;
4741 struct bp_location *loc;
4742
4743 w->watchpoint_triggered = watch_triggered_no;
4744 for (loc = b->loc; loc; loc = loc->next)
4745 {
4746 if (is_masked_watchpoint (b))
4747 {
4748 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4749 CORE_ADDR start = loc->address & w->hw_wp_mask;
4750
4751 if (newaddr == start)
4752 {
4753 w->watchpoint_triggered = watch_triggered_yes;
4754 break;
4755 }
4756 }
4757 /* Exact match not required. Within range is sufficient. */
4758 else if (target_watchpoint_addr_within_range (current_top_target (),
4759 addr, loc->address,
4760 loc->length))
4761 {
4762 w->watchpoint_triggered = watch_triggered_yes;
4763 break;
4764 }
4765 }
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Possible return values for watchpoint_check. */
4772 enum wp_check_result
4773 {
4774 /* The watchpoint has been deleted. */
4775 WP_DELETED = 1,
4776
4777 /* The value has changed. */
4778 WP_VALUE_CHANGED = 2,
4779
4780 /* The value has not changed. */
4781 WP_VALUE_NOT_CHANGED = 3,
4782
4783 /* Ignore this watchpoint, no matter if the value changed or not. */
4784 WP_IGNORE = 4,
4785 };
4786
4787 #define BP_TEMPFLAG 1
4788 #define BP_HARDWAREFLAG 2
4789
4790 /* Evaluate watchpoint condition expression and check if its value
4791 changed. */
4792
4793 static wp_check_result
4794 watchpoint_check (bpstat bs)
4795 {
4796 struct watchpoint *b;
4797 struct frame_info *fr;
4798 int within_current_scope;
4799
4800 /* BS is built from an existing struct breakpoint. */
4801 gdb_assert (bs->breakpoint_at != NULL);
4802 b = (struct watchpoint *) bs->breakpoint_at;
4803
4804 /* If this is a local watchpoint, we only want to check if the
4805 watchpoint frame is in scope if the current thread is the thread
4806 that was used to create the watchpoint. */
4807 if (!watchpoint_in_thread_scope (b))
4808 return WP_IGNORE;
4809
4810 if (b->exp_valid_block == NULL)
4811 within_current_scope = 1;
4812 else
4813 {
4814 struct frame_info *frame = get_current_frame ();
4815 struct gdbarch *frame_arch = get_frame_arch (frame);
4816 CORE_ADDR frame_pc = get_frame_pc (frame);
4817
4818 /* stack_frame_destroyed_p() returns a non-zero value if we're
4819 still in the function but the stack frame has already been
4820 invalidated. Since we can't rely on the values of local
4821 variables after the stack has been destroyed, we are treating
4822 the watchpoint in that state as `not changed' without further
4823 checking. Don't mark watchpoints as changed if the current
4824 frame is in an epilogue - even if they are in some other
4825 frame, our view of the stack is likely to be wrong and
4826 frame_find_by_id could error out. */
4827 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4828 return WP_IGNORE;
4829
4830 fr = frame_find_by_id (b->watchpoint_frame);
4831 within_current_scope = (fr != NULL);
4832
4833 /* If we've gotten confused in the unwinder, we might have
4834 returned a frame that can't describe this variable. */
4835 if (within_current_scope)
4836 {
4837 struct symbol *function;
4838
4839 function = get_frame_function (fr);
4840 if (function == NULL
4841 || !contained_in (b->exp_valid_block,
4842 SYMBOL_BLOCK_VALUE (function)))
4843 within_current_scope = 0;
4844 }
4845
4846 if (within_current_scope)
4847 /* If we end up stopping, the current frame will get selected
4848 in normal_stop. So this call to select_frame won't affect
4849 the user. */
4850 select_frame (fr);
4851 }
4852
4853 if (within_current_scope)
4854 {
4855 /* We use value_{,free_to_}mark because it could be a *long*
4856 time before we return to the command level and call
4857 free_all_values. We can't call free_all_values because we
4858 might be in the middle of evaluating a function call. */
4859
4860 int pc = 0;
4861 struct value *mark;
4862 struct value *new_val;
4863
4864 if (is_masked_watchpoint (b))
4865 /* Since we don't know the exact trigger address (from
4866 stopped_data_address), just tell the user we've triggered
4867 a mask watchpoint. */
4868 return WP_VALUE_CHANGED;
4869
4870 mark = value_mark ();
4871 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4872
4873 if (b->val_bitsize != 0)
4874 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4875
4876 /* We use value_equal_contents instead of value_equal because
4877 the latter coerces an array to a pointer, thus comparing just
4878 the address of the array instead of its contents. This is
4879 not what we want. */
4880 if ((b->val != NULL) != (new_val != NULL)
4881 || (b->val != NULL && !value_equal_contents (b->val.get (),
4882 new_val)))
4883 {
4884 bs->old_val = b->val;
4885 b->val = release_value (new_val);
4886 b->val_valid = 1;
4887 if (new_val != NULL)
4888 value_free_to_mark (mark);
4889 return WP_VALUE_CHANGED;
4890 }
4891 else
4892 {
4893 /* Nothing changed. */
4894 value_free_to_mark (mark);
4895 return WP_VALUE_NOT_CHANGED;
4896 }
4897 }
4898 else
4899 {
4900 /* This seems like the only logical thing to do because
4901 if we temporarily ignored the watchpoint, then when
4902 we reenter the block in which it is valid it contains
4903 garbage (in the case of a function, it may have two
4904 garbage values, one before and one after the prologue).
4905 So we can't even detect the first assignment to it and
4906 watch after that (since the garbage may or may not equal
4907 the first value assigned). */
4908 /* We print all the stop information in
4909 breakpoint_ops->print_it, but in this case, by the time we
4910 call breakpoint_ops->print_it this bp will be deleted
4911 already. So we have no choice but print the information
4912 here. */
4913
4914 SWITCH_THRU_ALL_UIS ()
4915 {
4916 struct ui_out *uiout = current_uiout;
4917
4918 if (uiout->is_mi_like_p ())
4919 uiout->field_string
4920 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4921 uiout->text ("\nWatchpoint ");
4922 uiout->field_int ("wpnum", b->number);
4923 uiout->text (" deleted because the program has left the block in\n"
4924 "which its expression is valid.\n");
4925 }
4926
4927 /* Make sure the watchpoint's commands aren't executed. */
4928 b->commands = NULL;
4929 watchpoint_del_at_next_stop (b);
4930
4931 return WP_DELETED;
4932 }
4933 }
4934
4935 /* Return true if it looks like target has stopped due to hitting
4936 breakpoint location BL. This function does not check if we should
4937 stop, only if BL explains the stop. */
4938
4939 static int
4940 bpstat_check_location (const struct bp_location *bl,
4941 const address_space *aspace, CORE_ADDR bp_addr,
4942 const struct target_waitstatus *ws)
4943 {
4944 struct breakpoint *b = bl->owner;
4945
4946 /* BL is from an existing breakpoint. */
4947 gdb_assert (b != NULL);
4948
4949 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4950 }
4951
4952 /* Determine if the watched values have actually changed, and we
4953 should stop. If not, set BS->stop to 0. */
4954
4955 static void
4956 bpstat_check_watchpoint (bpstat bs)
4957 {
4958 const struct bp_location *bl;
4959 struct watchpoint *b;
4960
4961 /* BS is built for existing struct breakpoint. */
4962 bl = bs->bp_location_at;
4963 gdb_assert (bl != NULL);
4964 b = (struct watchpoint *) bs->breakpoint_at;
4965 gdb_assert (b != NULL);
4966
4967 {
4968 int must_check_value = 0;
4969
4970 if (b->type == bp_watchpoint)
4971 /* For a software watchpoint, we must always check the
4972 watched value. */
4973 must_check_value = 1;
4974 else if (b->watchpoint_triggered == watch_triggered_yes)
4975 /* We have a hardware watchpoint (read, write, or access)
4976 and the target earlier reported an address watched by
4977 this watchpoint. */
4978 must_check_value = 1;
4979 else if (b->watchpoint_triggered == watch_triggered_unknown
4980 && b->type == bp_hardware_watchpoint)
4981 /* We were stopped by a hardware watchpoint, but the target could
4982 not report the data address. We must check the watchpoint's
4983 value. Access and read watchpoints are out of luck; without
4984 a data address, we can't figure it out. */
4985 must_check_value = 1;
4986
4987 if (must_check_value)
4988 {
4989 wp_check_result e;
4990
4991 try
4992 {
4993 e = watchpoint_check (bs);
4994 }
4995 catch (const gdb_exception &ex)
4996 {
4997 exception_fprintf (gdb_stderr, ex,
4998 "Error evaluating expression "
4999 "for watchpoint %d\n",
5000 b->number);
5001
5002 SWITCH_THRU_ALL_UIS ()
5003 {
5004 printf_filtered (_("Watchpoint %d deleted.\n"),
5005 b->number);
5006 }
5007 watchpoint_del_at_next_stop (b);
5008 e = WP_DELETED;
5009 }
5010
5011 switch (e)
5012 {
5013 case WP_DELETED:
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 /* Stop. */
5017 break;
5018 case WP_IGNORE:
5019 bs->print_it = print_it_noop;
5020 bs->stop = 0;
5021 break;
5022 case WP_VALUE_CHANGED:
5023 if (b->type == bp_read_watchpoint)
5024 {
5025 /* There are two cases to consider here:
5026
5027 1. We're watching the triggered memory for reads.
5028 In that case, trust the target, and always report
5029 the watchpoint hit to the user. Even though
5030 reads don't cause value changes, the value may
5031 have changed since the last time it was read, and
5032 since we're not trapping writes, we will not see
5033 those, and as such we should ignore our notion of
5034 old value.
5035
5036 2. We're watching the triggered memory for both
5037 reads and writes. There are two ways this may
5038 happen:
5039
5040 2.1. This is a target that can't break on data
5041 reads only, but can break on accesses (reads or
5042 writes), such as e.g., x86. We detect this case
5043 at the time we try to insert read watchpoints.
5044
5045 2.2. Otherwise, the target supports read
5046 watchpoints, but, the user set an access or write
5047 watchpoint watching the same memory as this read
5048 watchpoint.
5049
5050 If we're watching memory writes as well as reads,
5051 ignore watchpoint hits when we find that the
5052 value hasn't changed, as reads don't cause
5053 changes. This still gives false positives when
5054 the program writes the same value to memory as
5055 what there was already in memory (we will confuse
5056 it for a read), but it's much better than
5057 nothing. */
5058
5059 int other_write_watchpoint = 0;
5060
5061 if (bl->watchpoint_type == hw_read)
5062 {
5063 struct breakpoint *other_b;
5064
5065 ALL_BREAKPOINTS (other_b)
5066 if (other_b->type == bp_hardware_watchpoint
5067 || other_b->type == bp_access_watchpoint)
5068 {
5069 struct watchpoint *other_w =
5070 (struct watchpoint *) other_b;
5071
5072 if (other_w->watchpoint_triggered
5073 == watch_triggered_yes)
5074 {
5075 other_write_watchpoint = 1;
5076 break;
5077 }
5078 }
5079 }
5080
5081 if (other_write_watchpoint
5082 || bl->watchpoint_type == hw_access)
5083 {
5084 /* We're watching the same memory for writes,
5085 and the value changed since the last time we
5086 updated it, so this trap must be for a write.
5087 Ignore it. */
5088 bs->print_it = print_it_noop;
5089 bs->stop = 0;
5090 }
5091 }
5092 break;
5093 case WP_VALUE_NOT_CHANGED:
5094 if (b->type == bp_hardware_watchpoint
5095 || b->type == bp_watchpoint)
5096 {
5097 /* Don't stop: write watchpoints shouldn't fire if
5098 the value hasn't changed. */
5099 bs->print_it = print_it_noop;
5100 bs->stop = 0;
5101 }
5102 /* Stop. */
5103 break;
5104 default:
5105 /* Can't happen. */
5106 break;
5107 }
5108 }
5109 else /* must_check_value == 0 */
5110 {
5111 /* This is a case where some watchpoint(s) triggered, but
5112 not at the address of this watchpoint, or else no
5113 watchpoint triggered after all. So don't print
5114 anything for this watchpoint. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 }
5120
5121 /* For breakpoints that are currently marked as telling gdb to stop,
5122 check conditions (condition proper, frame, thread and ignore count)
5123 of breakpoint referred to by BS. If we should not stop for this
5124 breakpoint, set BS->stop to 0. */
5125
5126 static void
5127 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5128 {
5129 const struct bp_location *bl;
5130 struct breakpoint *b;
5131 /* Assume stop. */
5132 bool condition_result = true;
5133 struct expression *cond;
5134
5135 gdb_assert (bs->stop);
5136
5137 /* BS is built for existing struct breakpoint. */
5138 bl = bs->bp_location_at;
5139 gdb_assert (bl != NULL);
5140 b = bs->breakpoint_at;
5141 gdb_assert (b != NULL);
5142
5143 /* Even if the target evaluated the condition on its end and notified GDB, we
5144 need to do so again since GDB does not know if we stopped due to a
5145 breakpoint or a single step breakpoint. */
5146
5147 if (frame_id_p (b->frame_id)
5148 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5149 {
5150 bs->stop = 0;
5151 return;
5152 }
5153
5154 /* If this is a thread/task-specific breakpoint, don't waste cpu
5155 evaluating the condition if this isn't the specified
5156 thread/task. */
5157 if ((b->thread != -1 && b->thread != thread->global_num)
5158 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5159 {
5160 bs->stop = 0;
5161 return;
5162 }
5163
5164 /* Evaluate extension language breakpoints that have a "stop" method
5165 implemented. */
5166 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5167
5168 if (is_watchpoint (b))
5169 {
5170 struct watchpoint *w = (struct watchpoint *) b;
5171
5172 cond = w->cond_exp.get ();
5173 }
5174 else
5175 cond = bl->cond.get ();
5176
5177 if (cond && b->disposition != disp_del_at_next_stop)
5178 {
5179 int within_current_scope = 1;
5180 struct watchpoint * w;
5181
5182 /* We use value_mark and value_free_to_mark because it could
5183 be a long time before we return to the command level and
5184 call free_all_values. We can't call free_all_values
5185 because we might be in the middle of evaluating a
5186 function call. */
5187 struct value *mark = value_mark ();
5188
5189 if (is_watchpoint (b))
5190 w = (struct watchpoint *) b;
5191 else
5192 w = NULL;
5193
5194 /* Need to select the frame, with all that implies so that
5195 the conditions will have the right context. Because we
5196 use the frame, we will not see an inlined function's
5197 variables when we arrive at a breakpoint at the start
5198 of the inlined function; the current frame will be the
5199 call site. */
5200 if (w == NULL || w->cond_exp_valid_block == NULL)
5201 select_frame (get_current_frame ());
5202 else
5203 {
5204 struct frame_info *frame;
5205
5206 /* For local watchpoint expressions, which particular
5207 instance of a local is being watched matters, so we
5208 keep track of the frame to evaluate the expression
5209 in. To evaluate the condition however, it doesn't
5210 really matter which instantiation of the function
5211 where the condition makes sense triggers the
5212 watchpoint. This allows an expression like "watch
5213 global if q > 10" set in `func', catch writes to
5214 global on all threads that call `func', or catch
5215 writes on all recursive calls of `func' by a single
5216 thread. We simply always evaluate the condition in
5217 the innermost frame that's executing where it makes
5218 sense to evaluate the condition. It seems
5219 intuitive. */
5220 frame = block_innermost_frame (w->cond_exp_valid_block);
5221 if (frame != NULL)
5222 select_frame (frame);
5223 else
5224 within_current_scope = 0;
5225 }
5226 if (within_current_scope)
5227 {
5228 try
5229 {
5230 condition_result = breakpoint_cond_eval (cond);
5231 }
5232 catch (const gdb_exception &ex)
5233 {
5234 exception_fprintf (gdb_stderr, ex,
5235 "Error in testing breakpoint condition:\n");
5236 }
5237 }
5238 else
5239 {
5240 warning (_("Watchpoint condition cannot be tested "
5241 "in the current scope"));
5242 /* If we failed to set the right context for this
5243 watchpoint, unconditionally report it. */
5244 }
5245 /* FIXME-someday, should give breakpoint #. */
5246 value_free_to_mark (mark);
5247 }
5248
5249 if (cond && !condition_result)
5250 {
5251 bs->stop = 0;
5252 }
5253 else if (b->ignore_count > 0)
5254 {
5255 b->ignore_count--;
5256 bs->stop = 0;
5257 /* Increase the hit count even though we don't stop. */
5258 ++(b->hit_count);
5259 gdb::observers::breakpoint_modified.notify (b);
5260 }
5261 }
5262
5263 /* Returns true if we need to track moribund locations of LOC's type
5264 on the current target. */
5265
5266 static int
5267 need_moribund_for_location_type (struct bp_location *loc)
5268 {
5269 return ((loc->loc_type == bp_loc_software_breakpoint
5270 && !target_supports_stopped_by_sw_breakpoint ())
5271 || (loc->loc_type == bp_loc_hardware_breakpoint
5272 && !target_supports_stopped_by_hw_breakpoint ()));
5273 }
5274
5275 /* See breakpoint.h. */
5276
5277 bpstat
5278 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5279 const struct target_waitstatus *ws)
5280 {
5281 struct breakpoint *b;
5282 bpstat bs_head = NULL, *bs_link = &bs_head;
5283
5284 ALL_BREAKPOINTS (b)
5285 {
5286 if (!breakpoint_enabled (b))
5287 continue;
5288
5289 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5290 {
5291 /* For hardware watchpoints, we look only at the first
5292 location. The watchpoint_check function will work on the
5293 entire expression, not the individual locations. For
5294 read watchpoints, the watchpoints_triggered function has
5295 checked all locations already. */
5296 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5297 break;
5298
5299 if (!bl->enabled || bl->shlib_disabled)
5300 continue;
5301
5302 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5303 continue;
5304
5305 /* Come here if it's a watchpoint, or if the break address
5306 matches. */
5307
5308 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5309 explain stop. */
5310
5311 /* Assume we stop. Should we find a watchpoint that is not
5312 actually triggered, or if the condition of the breakpoint
5313 evaluates as false, we'll reset 'stop' to 0. */
5314 bs->stop = 1;
5315 bs->print = 1;
5316
5317 /* If this is a scope breakpoint, mark the associated
5318 watchpoint as triggered so that we will handle the
5319 out-of-scope event. We'll get to the watchpoint next
5320 iteration. */
5321 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5322 {
5323 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5324
5325 w->watchpoint_triggered = watch_triggered_yes;
5326 }
5327 }
5328 }
5329
5330 /* Check if a moribund breakpoint explains the stop. */
5331 if (!target_supports_stopped_by_sw_breakpoint ()
5332 || !target_supports_stopped_by_hw_breakpoint ())
5333 {
5334 for (bp_location *loc : moribund_locations)
5335 {
5336 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5337 && need_moribund_for_location_type (loc))
5338 {
5339 bpstat bs = new bpstats (loc, &bs_link);
5340 /* For hits of moribund locations, we should just proceed. */
5341 bs->stop = 0;
5342 bs->print = 0;
5343 bs->print_it = print_it_noop;
5344 }
5345 }
5346 }
5347
5348 return bs_head;
5349 }
5350
5351 /* See breakpoint.h. */
5352
5353 bpstat
5354 bpstat_stop_status (const address_space *aspace,
5355 CORE_ADDR bp_addr, thread_info *thread,
5356 const struct target_waitstatus *ws,
5357 bpstat stop_chain)
5358 {
5359 struct breakpoint *b = NULL;
5360 /* First item of allocated bpstat's. */
5361 bpstat bs_head = stop_chain;
5362 bpstat bs;
5363 int need_remove_insert;
5364 int removed_any;
5365
5366 /* First, build the bpstat chain with locations that explain a
5367 target stop, while being careful to not set the target running,
5368 as that may invalidate locations (in particular watchpoint
5369 locations are recreated). Resuming will happen here with
5370 breakpoint conditions or watchpoint expressions that include
5371 inferior function calls. */
5372 if (bs_head == NULL)
5373 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5374
5375 /* A bit of special processing for shlib breakpoints. We need to
5376 process solib loading here, so that the lists of loaded and
5377 unloaded libraries are correct before we handle "catch load" and
5378 "catch unload". */
5379 for (bs = bs_head; bs != NULL; bs = bs->next)
5380 {
5381 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5382 {
5383 handle_solib_event ();
5384 break;
5385 }
5386 }
5387
5388 /* Now go through the locations that caused the target to stop, and
5389 check whether we're interested in reporting this stop to higher
5390 layers, or whether we should resume the target transparently. */
5391
5392 removed_any = 0;
5393
5394 for (bs = bs_head; bs != NULL; bs = bs->next)
5395 {
5396 if (!bs->stop)
5397 continue;
5398
5399 b = bs->breakpoint_at;
5400 b->ops->check_status (bs);
5401 if (bs->stop)
5402 {
5403 bpstat_check_breakpoint_conditions (bs, thread);
5404
5405 if (bs->stop)
5406 {
5407 ++(b->hit_count);
5408 gdb::observers::breakpoint_modified.notify (b);
5409
5410 /* We will stop here. */
5411 if (b->disposition == disp_disable)
5412 {
5413 --(b->enable_count);
5414 if (b->enable_count <= 0)
5415 b->enable_state = bp_disabled;
5416 removed_any = 1;
5417 }
5418 if (b->silent)
5419 bs->print = 0;
5420 bs->commands = b->commands;
5421 if (command_line_is_silent (bs->commands
5422 ? bs->commands.get () : NULL))
5423 bs->print = 0;
5424
5425 b->ops->after_condition_true (bs);
5426 }
5427
5428 }
5429
5430 /* Print nothing for this entry if we don't stop or don't
5431 print. */
5432 if (!bs->stop || !bs->print)
5433 bs->print_it = print_it_noop;
5434 }
5435
5436 /* If we aren't stopping, the value of some hardware watchpoint may
5437 not have changed, but the intermediate memory locations we are
5438 watching may have. Don't bother if we're stopping; this will get
5439 done later. */
5440 need_remove_insert = 0;
5441 if (! bpstat_causes_stop (bs_head))
5442 for (bs = bs_head; bs != NULL; bs = bs->next)
5443 if (!bs->stop
5444 && bs->breakpoint_at
5445 && is_hardware_watchpoint (bs->breakpoint_at))
5446 {
5447 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5448
5449 update_watchpoint (w, 0 /* don't reparse. */);
5450 need_remove_insert = 1;
5451 }
5452
5453 if (need_remove_insert)
5454 update_global_location_list (UGLL_MAY_INSERT);
5455 else if (removed_any)
5456 update_global_location_list (UGLL_DONT_INSERT);
5457
5458 return bs_head;
5459 }
5460
5461 static void
5462 handle_jit_event (void)
5463 {
5464 struct frame_info *frame;
5465 struct gdbarch *gdbarch;
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5469
5470 /* Switch terminal for any messages produced by
5471 breakpoint_re_set. */
5472 target_terminal::ours_for_output ();
5473
5474 frame = get_current_frame ();
5475 gdbarch = get_frame_arch (frame);
5476
5477 jit_event_handler (gdbarch);
5478
5479 target_terminal::inferior ();
5480 }
5481
5482 /* Prepare WHAT final decision for infrun. */
5483
5484 /* Decide what infrun needs to do with this bpstat. */
5485
5486 struct bpstat_what
5487 bpstat_what (bpstat bs_head)
5488 {
5489 struct bpstat_what retval;
5490 bpstat bs;
5491
5492 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5493 retval.call_dummy = STOP_NONE;
5494 retval.is_longjmp = 0;
5495
5496 for (bs = bs_head; bs != NULL; bs = bs->next)
5497 {
5498 /* Extract this BS's action. After processing each BS, we check
5499 if its action overrides all we've seem so far. */
5500 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5501 enum bptype bptype;
5502
5503 if (bs->breakpoint_at == NULL)
5504 {
5505 /* I suspect this can happen if it was a momentary
5506 breakpoint which has since been deleted. */
5507 bptype = bp_none;
5508 }
5509 else
5510 bptype = bs->breakpoint_at->type;
5511
5512 switch (bptype)
5513 {
5514 case bp_none:
5515 break;
5516 case bp_breakpoint:
5517 case bp_hardware_breakpoint:
5518 case bp_single_step:
5519 case bp_until:
5520 case bp_finish:
5521 case bp_shlib_event:
5522 if (bs->stop)
5523 {
5524 if (bs->print)
5525 this_action = BPSTAT_WHAT_STOP_NOISY;
5526 else
5527 this_action = BPSTAT_WHAT_STOP_SILENT;
5528 }
5529 else
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 break;
5532 case bp_watchpoint:
5533 case bp_hardware_watchpoint:
5534 case bp_read_watchpoint:
5535 case bp_access_watchpoint:
5536 if (bs->stop)
5537 {
5538 if (bs->print)
5539 this_action = BPSTAT_WHAT_STOP_NOISY;
5540 else
5541 this_action = BPSTAT_WHAT_STOP_SILENT;
5542 }
5543 else
5544 {
5545 /* There was a watchpoint, but we're not stopping.
5546 This requires no further action. */
5547 }
5548 break;
5549 case bp_longjmp:
5550 case bp_longjmp_call_dummy:
5551 case bp_exception:
5552 if (bs->stop)
5553 {
5554 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5555 retval.is_longjmp = bptype != bp_exception;
5556 }
5557 else
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 break;
5560 case bp_longjmp_resume:
5561 case bp_exception_resume:
5562 if (bs->stop)
5563 {
5564 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5565 retval.is_longjmp = bptype == bp_longjmp_resume;
5566 }
5567 else
5568 this_action = BPSTAT_WHAT_SINGLE;
5569 break;
5570 case bp_step_resume:
5571 if (bs->stop)
5572 this_action = BPSTAT_WHAT_STEP_RESUME;
5573 else
5574 {
5575 /* It is for the wrong frame. */
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 }
5578 break;
5579 case bp_hp_step_resume:
5580 if (bs->stop)
5581 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5582 else
5583 {
5584 /* It is for the wrong frame. */
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 }
5587 break;
5588 case bp_watchpoint_scope:
5589 case bp_thread_event:
5590 case bp_overlay_event:
5591 case bp_longjmp_master:
5592 case bp_std_terminate_master:
5593 case bp_exception_master:
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_catchpoint:
5597 if (bs->stop)
5598 {
5599 if (bs->print)
5600 this_action = BPSTAT_WHAT_STOP_NOISY;
5601 else
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 }
5604 else
5605 {
5606 /* There was a catchpoint, but we're not stopping.
5607 This requires no further action. */
5608 }
5609 break;
5610 case bp_jit_event:
5611 this_action = BPSTAT_WHAT_SINGLE;
5612 break;
5613 case bp_call_dummy:
5614 /* Make sure the action is stop (silent or noisy),
5615 so infrun.c pops the dummy frame. */
5616 retval.call_dummy = STOP_STACK_DUMMY;
5617 this_action = BPSTAT_WHAT_STOP_SILENT;
5618 break;
5619 case bp_std_terminate:
5620 /* Make sure the action is stop (silent or noisy),
5621 so infrun.c pops the dummy frame. */
5622 retval.call_dummy = STOP_STD_TERMINATE;
5623 this_action = BPSTAT_WHAT_STOP_SILENT;
5624 break;
5625 case bp_tracepoint:
5626 case bp_fast_tracepoint:
5627 case bp_static_tracepoint:
5628 /* Tracepoint hits should not be reported back to GDB, and
5629 if one got through somehow, it should have been filtered
5630 out already. */
5631 internal_error (__FILE__, __LINE__,
5632 _("bpstat_what: tracepoint encountered"));
5633 break;
5634 case bp_gnu_ifunc_resolver:
5635 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5636 this_action = BPSTAT_WHAT_SINGLE;
5637 break;
5638 case bp_gnu_ifunc_resolver_return:
5639 /* The breakpoint will be removed, execution will restart from the
5640 PC of the former breakpoint. */
5641 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5642 break;
5643
5644 case bp_dprintf:
5645 if (bs->stop)
5646 this_action = BPSTAT_WHAT_STOP_SILENT;
5647 else
5648 this_action = BPSTAT_WHAT_SINGLE;
5649 break;
5650
5651 default:
5652 internal_error (__FILE__, __LINE__,
5653 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5654 }
5655
5656 retval.main_action = std::max (retval.main_action, this_action);
5657 }
5658
5659 return retval;
5660 }
5661
5662 void
5663 bpstat_run_callbacks (bpstat bs_head)
5664 {
5665 bpstat bs;
5666
5667 for (bs = bs_head; bs != NULL; bs = bs->next)
5668 {
5669 struct breakpoint *b = bs->breakpoint_at;
5670
5671 if (b == NULL)
5672 continue;
5673 switch (b->type)
5674 {
5675 case bp_jit_event:
5676 handle_jit_event ();
5677 break;
5678 case bp_gnu_ifunc_resolver:
5679 gnu_ifunc_resolver_stop (b);
5680 break;
5681 case bp_gnu_ifunc_resolver_return:
5682 gnu_ifunc_resolver_return_stop (b);
5683 break;
5684 }
5685 }
5686 }
5687
5688 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5689 without hardware support). This isn't related to a specific bpstat,
5690 just to things like whether watchpoints are set. */
5691
5692 int
5693 bpstat_should_step (void)
5694 {
5695 struct breakpoint *b;
5696
5697 ALL_BREAKPOINTS (b)
5698 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5699 return 1;
5700 return 0;
5701 }
5702
5703 int
5704 bpstat_causes_stop (bpstat bs)
5705 {
5706 for (; bs != NULL; bs = bs->next)
5707 if (bs->stop)
5708 return 1;
5709
5710 return 0;
5711 }
5712
5713 \f
5714
5715 /* Compute a string of spaces suitable to indent the next line
5716 so it starts at the position corresponding to the table column
5717 named COL_NAME in the currently active table of UIOUT. */
5718
5719 static char *
5720 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5721 {
5722 static char wrap_indent[80];
5723 int i, total_width, width, align;
5724 const char *text;
5725
5726 total_width = 0;
5727 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5728 {
5729 if (strcmp (text, col_name) == 0)
5730 {
5731 gdb_assert (total_width < sizeof wrap_indent);
5732 memset (wrap_indent, ' ', total_width);
5733 wrap_indent[total_width] = 0;
5734
5735 return wrap_indent;
5736 }
5737
5738 total_width += width + 1;
5739 }
5740
5741 return NULL;
5742 }
5743
5744 /* Determine if the locations of this breakpoint will have their conditions
5745 evaluated by the target, host or a mix of both. Returns the following:
5746
5747 "host": Host evals condition.
5748 "host or target": Host or Target evals condition.
5749 "target": Target evals condition.
5750 */
5751
5752 static const char *
5753 bp_condition_evaluator (struct breakpoint *b)
5754 {
5755 struct bp_location *bl;
5756 char host_evals = 0;
5757 char target_evals = 0;
5758
5759 if (!b)
5760 return NULL;
5761
5762 if (!is_breakpoint (b))
5763 return NULL;
5764
5765 if (gdb_evaluates_breakpoint_condition_p ()
5766 || !target_supports_evaluation_of_breakpoint_conditions ())
5767 return condition_evaluation_host;
5768
5769 for (bl = b->loc; bl; bl = bl->next)
5770 {
5771 if (bl->cond_bytecode)
5772 target_evals++;
5773 else
5774 host_evals++;
5775 }
5776
5777 if (host_evals && target_evals)
5778 return condition_evaluation_both;
5779 else if (target_evals)
5780 return condition_evaluation_target;
5781 else
5782 return condition_evaluation_host;
5783 }
5784
5785 /* Determine the breakpoint location's condition evaluator. This is
5786 similar to bp_condition_evaluator, but for locations. */
5787
5788 static const char *
5789 bp_location_condition_evaluator (struct bp_location *bl)
5790 {
5791 if (bl && !is_breakpoint (bl->owner))
5792 return NULL;
5793
5794 if (gdb_evaluates_breakpoint_condition_p ()
5795 || !target_supports_evaluation_of_breakpoint_conditions ())
5796 return condition_evaluation_host;
5797
5798 if (bl && bl->cond_bytecode)
5799 return condition_evaluation_target;
5800 else
5801 return condition_evaluation_host;
5802 }
5803
5804 /* Print the LOC location out of the list of B->LOC locations. */
5805
5806 static void
5807 print_breakpoint_location (struct breakpoint *b,
5808 struct bp_location *loc)
5809 {
5810 struct ui_out *uiout = current_uiout;
5811
5812 scoped_restore_current_program_space restore_pspace;
5813
5814 if (loc != NULL && loc->shlib_disabled)
5815 loc = NULL;
5816
5817 if (loc != NULL)
5818 set_current_program_space (loc->pspace);
5819
5820 if (b->display_canonical)
5821 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5822 else if (loc && loc->symtab)
5823 {
5824 const struct symbol *sym = loc->symbol;
5825
5826 if (sym)
5827 {
5828 uiout->text ("in ");
5829 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5830 ui_out_style_kind::FUNCTION);
5831 uiout->text (" ");
5832 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5833 uiout->text ("at ");
5834 }
5835 uiout->field_string ("file",
5836 symtab_to_filename_for_display (loc->symtab),
5837 ui_out_style_kind::FILE);
5838 uiout->text (":");
5839
5840 if (uiout->is_mi_like_p ())
5841 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5842
5843 uiout->field_int ("line", loc->line_number);
5844 }
5845 else if (loc)
5846 {
5847 string_file stb;
5848
5849 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5850 demangle, "");
5851 uiout->field_stream ("at", stb);
5852 }
5853 else
5854 {
5855 uiout->field_string ("pending",
5856 event_location_to_string (b->location.get ()));
5857 /* If extra_string is available, it could be holding a condition
5858 or dprintf arguments. In either case, make sure it is printed,
5859 too, but only for non-MI streams. */
5860 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5861 {
5862 if (b->type == bp_dprintf)
5863 uiout->text (",");
5864 else
5865 uiout->text (" ");
5866 uiout->text (b->extra_string);
5867 }
5868 }
5869
5870 if (loc && is_breakpoint (b)
5871 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5872 && bp_condition_evaluator (b) == condition_evaluation_both)
5873 {
5874 uiout->text (" (");
5875 uiout->field_string ("evaluated-by",
5876 bp_location_condition_evaluator (loc));
5877 uiout->text (")");
5878 }
5879 }
5880
5881 static const char *
5882 bptype_string (enum bptype type)
5883 {
5884 struct ep_type_description
5885 {
5886 enum bptype type;
5887 const char *description;
5888 };
5889 static struct ep_type_description bptypes[] =
5890 {
5891 {bp_none, "?deleted?"},
5892 {bp_breakpoint, "breakpoint"},
5893 {bp_hardware_breakpoint, "hw breakpoint"},
5894 {bp_single_step, "sw single-step"},
5895 {bp_until, "until"},
5896 {bp_finish, "finish"},
5897 {bp_watchpoint, "watchpoint"},
5898 {bp_hardware_watchpoint, "hw watchpoint"},
5899 {bp_read_watchpoint, "read watchpoint"},
5900 {bp_access_watchpoint, "acc watchpoint"},
5901 {bp_longjmp, "longjmp"},
5902 {bp_longjmp_resume, "longjmp resume"},
5903 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5904 {bp_exception, "exception"},
5905 {bp_exception_resume, "exception resume"},
5906 {bp_step_resume, "step resume"},
5907 {bp_hp_step_resume, "high-priority step resume"},
5908 {bp_watchpoint_scope, "watchpoint scope"},
5909 {bp_call_dummy, "call dummy"},
5910 {bp_std_terminate, "std::terminate"},
5911 {bp_shlib_event, "shlib events"},
5912 {bp_thread_event, "thread events"},
5913 {bp_overlay_event, "overlay events"},
5914 {bp_longjmp_master, "longjmp master"},
5915 {bp_std_terminate_master, "std::terminate master"},
5916 {bp_exception_master, "exception master"},
5917 {bp_catchpoint, "catchpoint"},
5918 {bp_tracepoint, "tracepoint"},
5919 {bp_fast_tracepoint, "fast tracepoint"},
5920 {bp_static_tracepoint, "static tracepoint"},
5921 {bp_dprintf, "dprintf"},
5922 {bp_jit_event, "jit events"},
5923 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5924 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5925 };
5926
5927 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5928 || ((int) type != bptypes[(int) type].type))
5929 internal_error (__FILE__, __LINE__,
5930 _("bptypes table does not describe type #%d."),
5931 (int) type);
5932
5933 return bptypes[(int) type].description;
5934 }
5935
5936 /* For MI, output a field named 'thread-groups' with a list as the value.
5937 For CLI, prefix the list with the string 'inf'. */
5938
5939 static void
5940 output_thread_groups (struct ui_out *uiout,
5941 const char *field_name,
5942 const std::vector<int> &inf_nums,
5943 int mi_only)
5944 {
5945 int is_mi = uiout->is_mi_like_p ();
5946
5947 /* For backward compatibility, don't display inferiors in CLI unless
5948 there are several. Always display them for MI. */
5949 if (!is_mi && mi_only)
5950 return;
5951
5952 ui_out_emit_list list_emitter (uiout, field_name);
5953
5954 for (size_t i = 0; i < inf_nums.size (); i++)
5955 {
5956 if (is_mi)
5957 {
5958 char mi_group[10];
5959
5960 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5961 uiout->field_string (NULL, mi_group);
5962 }
5963 else
5964 {
5965 if (i == 0)
5966 uiout->text (" inf ");
5967 else
5968 uiout->text (", ");
5969
5970 uiout->text (plongest (inf_nums[i]));
5971 }
5972 }
5973 }
5974
5975 /* Print B to gdb_stdout. */
5976
5977 static void
5978 print_one_breakpoint_location (struct breakpoint *b,
5979 struct bp_location *loc,
5980 int loc_number,
5981 struct bp_location **last_loc,
5982 int allflag)
5983 {
5984 struct command_line *l;
5985 static char bpenables[] = "nynny";
5986
5987 struct ui_out *uiout = current_uiout;
5988 int header_of_multiple = 0;
5989 int part_of_multiple = (loc != NULL);
5990 struct value_print_options opts;
5991
5992 get_user_print_options (&opts);
5993
5994 gdb_assert (!loc || loc_number != 0);
5995 /* See comment in print_one_breakpoint concerning treatment of
5996 breakpoints with single disabled location. */
5997 if (loc == NULL
5998 && (b->loc != NULL
5999 && (b->loc->next != NULL || !b->loc->enabled)))
6000 header_of_multiple = 1;
6001 if (loc == NULL)
6002 loc = b->loc;
6003
6004 annotate_record ();
6005
6006 /* 1 */
6007 annotate_field (0);
6008 if (part_of_multiple)
6009 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6010 else
6011 uiout->field_int ("number", b->number);
6012
6013 /* 2 */
6014 annotate_field (1);
6015 if (part_of_multiple)
6016 uiout->field_skip ("type");
6017 else
6018 uiout->field_string ("type", bptype_string (b->type));
6019
6020 /* 3 */
6021 annotate_field (2);
6022 if (part_of_multiple)
6023 uiout->field_skip ("disp");
6024 else
6025 uiout->field_string ("disp", bpdisp_text (b->disposition));
6026
6027 /* 4 */
6028 annotate_field (3);
6029 if (part_of_multiple)
6030 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6031 else
6032 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6033
6034 /* 5 and 6 */
6035 if (b->ops != NULL && b->ops->print_one != NULL)
6036 {
6037 /* Although the print_one can possibly print all locations,
6038 calling it here is not likely to get any nice result. So,
6039 make sure there's just one location. */
6040 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6041 b->ops->print_one (b, last_loc);
6042 }
6043 else
6044 switch (b->type)
6045 {
6046 case bp_none:
6047 internal_error (__FILE__, __LINE__,
6048 _("print_one_breakpoint: bp_none encountered\n"));
6049 break;
6050
6051 case bp_watchpoint:
6052 case bp_hardware_watchpoint:
6053 case bp_read_watchpoint:
6054 case bp_access_watchpoint:
6055 {
6056 struct watchpoint *w = (struct watchpoint *) b;
6057
6058 /* Field 4, the address, is omitted (which makes the columns
6059 not line up too nicely with the headers, but the effect
6060 is relatively readable). */
6061 if (opts.addressprint)
6062 uiout->field_skip ("addr");
6063 annotate_field (5);
6064 uiout->field_string ("what", w->exp_string);
6065 }
6066 break;
6067
6068 case bp_breakpoint:
6069 case bp_hardware_breakpoint:
6070 case bp_single_step:
6071 case bp_until:
6072 case bp_finish:
6073 case bp_longjmp:
6074 case bp_longjmp_resume:
6075 case bp_longjmp_call_dummy:
6076 case bp_exception:
6077 case bp_exception_resume:
6078 case bp_step_resume:
6079 case bp_hp_step_resume:
6080 case bp_watchpoint_scope:
6081 case bp_call_dummy:
6082 case bp_std_terminate:
6083 case bp_shlib_event:
6084 case bp_thread_event:
6085 case bp_overlay_event:
6086 case bp_longjmp_master:
6087 case bp_std_terminate_master:
6088 case bp_exception_master:
6089 case bp_tracepoint:
6090 case bp_fast_tracepoint:
6091 case bp_static_tracepoint:
6092 case bp_dprintf:
6093 case bp_jit_event:
6094 case bp_gnu_ifunc_resolver:
6095 case bp_gnu_ifunc_resolver_return:
6096 if (opts.addressprint)
6097 {
6098 annotate_field (4);
6099 if (header_of_multiple)
6100 uiout->field_string ("addr", "<MULTIPLE>");
6101 else if (b->loc == NULL || loc->shlib_disabled)
6102 uiout->field_string ("addr", "<PENDING>");
6103 else
6104 uiout->field_core_addr ("addr",
6105 loc->gdbarch, loc->address);
6106 }
6107 annotate_field (5);
6108 if (!header_of_multiple)
6109 print_breakpoint_location (b, loc);
6110 if (b->loc)
6111 *last_loc = b->loc;
6112 break;
6113 }
6114
6115
6116 if (loc != NULL && !header_of_multiple)
6117 {
6118 std::vector<int> inf_nums;
6119 int mi_only = 1;
6120
6121 for (inferior *inf : all_inferiors ())
6122 {
6123 if (inf->pspace == loc->pspace)
6124 inf_nums.push_back (inf->num);
6125 }
6126
6127 /* For backward compatibility, don't display inferiors in CLI unless
6128 there are several. Always display for MI. */
6129 if (allflag
6130 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6131 && (number_of_program_spaces () > 1
6132 || number_of_inferiors () > 1)
6133 /* LOC is for existing B, it cannot be in
6134 moribund_locations and thus having NULL OWNER. */
6135 && loc->owner->type != bp_catchpoint))
6136 mi_only = 0;
6137 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6138 }
6139
6140 if (!part_of_multiple)
6141 {
6142 if (b->thread != -1)
6143 {
6144 /* FIXME: This seems to be redundant and lost here; see the
6145 "stop only in" line a little further down. */
6146 uiout->text (" thread ");
6147 uiout->field_int ("thread", b->thread);
6148 }
6149 else if (b->task != 0)
6150 {
6151 uiout->text (" task ");
6152 uiout->field_int ("task", b->task);
6153 }
6154 }
6155
6156 uiout->text ("\n");
6157
6158 if (!part_of_multiple)
6159 b->ops->print_one_detail (b, uiout);
6160
6161 if (part_of_multiple && frame_id_p (b->frame_id))
6162 {
6163 annotate_field (6);
6164 uiout->text ("\tstop only in stack frame at ");
6165 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6166 the frame ID. */
6167 uiout->field_core_addr ("frame",
6168 b->gdbarch, b->frame_id.stack_addr);
6169 uiout->text ("\n");
6170 }
6171
6172 if (!part_of_multiple && b->cond_string)
6173 {
6174 annotate_field (7);
6175 if (is_tracepoint (b))
6176 uiout->text ("\ttrace only if ");
6177 else
6178 uiout->text ("\tstop only if ");
6179 uiout->field_string ("cond", b->cond_string);
6180
6181 /* Print whether the target is doing the breakpoint's condition
6182 evaluation. If GDB is doing the evaluation, don't print anything. */
6183 if (is_breakpoint (b)
6184 && breakpoint_condition_evaluation_mode ()
6185 == condition_evaluation_target)
6186 {
6187 uiout->text (" (");
6188 uiout->field_string ("evaluated-by",
6189 bp_condition_evaluator (b));
6190 uiout->text (" evals)");
6191 }
6192 uiout->text ("\n");
6193 }
6194
6195 if (!part_of_multiple && b->thread != -1)
6196 {
6197 /* FIXME should make an annotation for this. */
6198 uiout->text ("\tstop only in thread ");
6199 if (uiout->is_mi_like_p ())
6200 uiout->field_int ("thread", b->thread);
6201 else
6202 {
6203 struct thread_info *thr = find_thread_global_id (b->thread);
6204
6205 uiout->field_string ("thread", print_thread_id (thr));
6206 }
6207 uiout->text ("\n");
6208 }
6209
6210 if (!part_of_multiple)
6211 {
6212 if (b->hit_count)
6213 {
6214 /* FIXME should make an annotation for this. */
6215 if (is_catchpoint (b))
6216 uiout->text ("\tcatchpoint");
6217 else if (is_tracepoint (b))
6218 uiout->text ("\ttracepoint");
6219 else
6220 uiout->text ("\tbreakpoint");
6221 uiout->text (" already hit ");
6222 uiout->field_int ("times", b->hit_count);
6223 if (b->hit_count == 1)
6224 uiout->text (" time\n");
6225 else
6226 uiout->text (" times\n");
6227 }
6228 else
6229 {
6230 /* Output the count also if it is zero, but only if this is mi. */
6231 if (uiout->is_mi_like_p ())
6232 uiout->field_int ("times", b->hit_count);
6233 }
6234 }
6235
6236 if (!part_of_multiple && b->ignore_count)
6237 {
6238 annotate_field (8);
6239 uiout->text ("\tignore next ");
6240 uiout->field_int ("ignore", b->ignore_count);
6241 uiout->text (" hits\n");
6242 }
6243
6244 /* Note that an enable count of 1 corresponds to "enable once"
6245 behavior, which is reported by the combination of enablement and
6246 disposition, so we don't need to mention it here. */
6247 if (!part_of_multiple && b->enable_count > 1)
6248 {
6249 annotate_field (8);
6250 uiout->text ("\tdisable after ");
6251 /* Tweak the wording to clarify that ignore and enable counts
6252 are distinct, and have additive effect. */
6253 if (b->ignore_count)
6254 uiout->text ("additional ");
6255 else
6256 uiout->text ("next ");
6257 uiout->field_int ("enable", b->enable_count);
6258 uiout->text (" hits\n");
6259 }
6260
6261 if (!part_of_multiple && is_tracepoint (b))
6262 {
6263 struct tracepoint *tp = (struct tracepoint *) b;
6264
6265 if (tp->traceframe_usage)
6266 {
6267 uiout->text ("\ttrace buffer usage ");
6268 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6269 uiout->text (" bytes\n");
6270 }
6271 }
6272
6273 l = b->commands ? b->commands.get () : NULL;
6274 if (!part_of_multiple && l)
6275 {
6276 annotate_field (9);
6277 ui_out_emit_tuple tuple_emitter (uiout, "script");
6278 print_command_lines (uiout, l, 4);
6279 }
6280
6281 if (is_tracepoint (b))
6282 {
6283 struct tracepoint *t = (struct tracepoint *) b;
6284
6285 if (!part_of_multiple && t->pass_count)
6286 {
6287 annotate_field (10);
6288 uiout->text ("\tpass count ");
6289 uiout->field_int ("pass", t->pass_count);
6290 uiout->text (" \n");
6291 }
6292
6293 /* Don't display it when tracepoint or tracepoint location is
6294 pending. */
6295 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6296 {
6297 annotate_field (11);
6298
6299 if (uiout->is_mi_like_p ())
6300 uiout->field_string ("installed",
6301 loc->inserted ? "y" : "n");
6302 else
6303 {
6304 if (loc->inserted)
6305 uiout->text ("\t");
6306 else
6307 uiout->text ("\tnot ");
6308 uiout->text ("installed on target\n");
6309 }
6310 }
6311 }
6312
6313 if (uiout->is_mi_like_p () && !part_of_multiple)
6314 {
6315 if (is_watchpoint (b))
6316 {
6317 struct watchpoint *w = (struct watchpoint *) b;
6318
6319 uiout->field_string ("original-location", w->exp_string);
6320 }
6321 else if (b->location != NULL
6322 && event_location_to_string (b->location.get ()) != NULL)
6323 uiout->field_string ("original-location",
6324 event_location_to_string (b->location.get ()));
6325 }
6326 }
6327
6328 /* See breakpoint.h. */
6329
6330 bool fix_multi_location_breakpoint_output_globally = false;
6331
6332 static void
6333 print_one_breakpoint (struct breakpoint *b,
6334 struct bp_location **last_loc,
6335 int allflag)
6336 {
6337 struct ui_out *uiout = current_uiout;
6338 bool use_fixed_output
6339 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6340 || fix_multi_location_breakpoint_output_globally);
6341
6342 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6343 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6344
6345 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6346 are outside. */
6347 if (!use_fixed_output)
6348 bkpt_tuple_emitter.reset ();
6349
6350 /* If this breakpoint has custom print function,
6351 it's already printed. Otherwise, print individual
6352 locations, if any. */
6353 if (b->ops == NULL || b->ops->print_one == NULL)
6354 {
6355 /* If breakpoint has a single location that is disabled, we
6356 print it as if it had several locations, since otherwise it's
6357 hard to represent "breakpoint enabled, location disabled"
6358 situation.
6359
6360 Note that while hardware watchpoints have several locations
6361 internally, that's not a property exposed to user. */
6362 if (b->loc
6363 && !is_hardware_watchpoint (b)
6364 && (b->loc->next || !b->loc->enabled))
6365 {
6366 gdb::optional<ui_out_emit_list> locations_list;
6367
6368 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6369 MI record. For later versions, place breakpoint locations in a
6370 list. */
6371 if (uiout->is_mi_like_p () && use_fixed_output)
6372 locations_list.emplace (uiout, "locations");
6373
6374 int n = 1;
6375 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6376 {
6377 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6378 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6379 }
6380 }
6381 }
6382 }
6383
6384 static int
6385 breakpoint_address_bits (struct breakpoint *b)
6386 {
6387 int print_address_bits = 0;
6388 struct bp_location *loc;
6389
6390 /* Software watchpoints that aren't watching memory don't have an
6391 address to print. */
6392 if (is_no_memory_software_watchpoint (b))
6393 return 0;
6394
6395 for (loc = b->loc; loc; loc = loc->next)
6396 {
6397 int addr_bit;
6398
6399 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6400 if (addr_bit > print_address_bits)
6401 print_address_bits = addr_bit;
6402 }
6403
6404 return print_address_bits;
6405 }
6406
6407 /* See breakpoint.h. */
6408
6409 void
6410 print_breakpoint (breakpoint *b)
6411 {
6412 struct bp_location *dummy_loc = NULL;
6413 print_one_breakpoint (b, &dummy_loc, 0);
6414 }
6415
6416 /* Return true if this breakpoint was set by the user, false if it is
6417 internal or momentary. */
6418
6419 int
6420 user_breakpoint_p (struct breakpoint *b)
6421 {
6422 return b->number > 0;
6423 }
6424
6425 /* See breakpoint.h. */
6426
6427 int
6428 pending_breakpoint_p (struct breakpoint *b)
6429 {
6430 return b->loc == NULL;
6431 }
6432
6433 /* Print information on user settable breakpoint (watchpoint, etc)
6434 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6435 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6436 FILTER is non-NULL, call it on each breakpoint and only include the
6437 ones for which it returns non-zero. Return the total number of
6438 breakpoints listed. */
6439
6440 static int
6441 breakpoint_1 (const char *args, int allflag,
6442 int (*filter) (const struct breakpoint *))
6443 {
6444 struct breakpoint *b;
6445 struct bp_location *last_loc = NULL;
6446 int nr_printable_breakpoints;
6447 struct value_print_options opts;
6448 int print_address_bits = 0;
6449 int print_type_col_width = 14;
6450 struct ui_out *uiout = current_uiout;
6451
6452 get_user_print_options (&opts);
6453
6454 /* Compute the number of rows in the table, as well as the size
6455 required for address fields. */
6456 nr_printable_breakpoints = 0;
6457 ALL_BREAKPOINTS (b)
6458 {
6459 /* If we have a filter, only list the breakpoints it accepts. */
6460 if (filter && !filter (b))
6461 continue;
6462
6463 /* If we have an "args" string, it is a list of breakpoints to
6464 accept. Skip the others. */
6465 if (args != NULL && *args != '\0')
6466 {
6467 if (allflag && parse_and_eval_long (args) != b->number)
6468 continue;
6469 if (!allflag && !number_is_in_list (args, b->number))
6470 continue;
6471 }
6472
6473 if (allflag || user_breakpoint_p (b))
6474 {
6475 int addr_bit, type_len;
6476
6477 addr_bit = breakpoint_address_bits (b);
6478 if (addr_bit > print_address_bits)
6479 print_address_bits = addr_bit;
6480
6481 type_len = strlen (bptype_string (b->type));
6482 if (type_len > print_type_col_width)
6483 print_type_col_width = type_len;
6484
6485 nr_printable_breakpoints++;
6486 }
6487 }
6488
6489 {
6490 ui_out_emit_table table_emitter (uiout,
6491 opts.addressprint ? 6 : 5,
6492 nr_printable_breakpoints,
6493 "BreakpointTable");
6494
6495 if (nr_printable_breakpoints > 0)
6496 annotate_breakpoints_headers ();
6497 if (nr_printable_breakpoints > 0)
6498 annotate_field (0);
6499 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6500 if (nr_printable_breakpoints > 0)
6501 annotate_field (1);
6502 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6503 if (nr_printable_breakpoints > 0)
6504 annotate_field (2);
6505 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6506 if (nr_printable_breakpoints > 0)
6507 annotate_field (3);
6508 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6509 if (opts.addressprint)
6510 {
6511 if (nr_printable_breakpoints > 0)
6512 annotate_field (4);
6513 if (print_address_bits <= 32)
6514 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6515 else
6516 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6517 }
6518 if (nr_printable_breakpoints > 0)
6519 annotate_field (5);
6520 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6521 uiout->table_body ();
6522 if (nr_printable_breakpoints > 0)
6523 annotate_breakpoints_table ();
6524
6525 ALL_BREAKPOINTS (b)
6526 {
6527 QUIT;
6528 /* If we have a filter, only list the breakpoints it accepts. */
6529 if (filter && !filter (b))
6530 continue;
6531
6532 /* If we have an "args" string, it is a list of breakpoints to
6533 accept. Skip the others. */
6534
6535 if (args != NULL && *args != '\0')
6536 {
6537 if (allflag) /* maintenance info breakpoint */
6538 {
6539 if (parse_and_eval_long (args) != b->number)
6540 continue;
6541 }
6542 else /* all others */
6543 {
6544 if (!number_is_in_list (args, b->number))
6545 continue;
6546 }
6547 }
6548 /* We only print out user settable breakpoints unless the
6549 allflag is set. */
6550 if (allflag || user_breakpoint_p (b))
6551 print_one_breakpoint (b, &last_loc, allflag);
6552 }
6553 }
6554
6555 if (nr_printable_breakpoints == 0)
6556 {
6557 /* If there's a filter, let the caller decide how to report
6558 empty list. */
6559 if (!filter)
6560 {
6561 if (args == NULL || *args == '\0')
6562 uiout->message ("No breakpoints or watchpoints.\n");
6563 else
6564 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6565 args);
6566 }
6567 }
6568 else
6569 {
6570 if (last_loc && !server_command)
6571 set_next_address (last_loc->gdbarch, last_loc->address);
6572 }
6573
6574 /* FIXME? Should this be moved up so that it is only called when
6575 there have been breakpoints? */
6576 annotate_breakpoints_table_end ();
6577
6578 return nr_printable_breakpoints;
6579 }
6580
6581 /* Display the value of default-collect in a way that is generally
6582 compatible with the breakpoint list. */
6583
6584 static void
6585 default_collect_info (void)
6586 {
6587 struct ui_out *uiout = current_uiout;
6588
6589 /* If it has no value (which is frequently the case), say nothing; a
6590 message like "No default-collect." gets in user's face when it's
6591 not wanted. */
6592 if (!*default_collect)
6593 return;
6594
6595 /* The following phrase lines up nicely with per-tracepoint collect
6596 actions. */
6597 uiout->text ("default collect ");
6598 uiout->field_string ("default-collect", default_collect);
6599 uiout->text (" \n");
6600 }
6601
6602 static void
6603 info_breakpoints_command (const char *args, int from_tty)
6604 {
6605 breakpoint_1 (args, 0, NULL);
6606
6607 default_collect_info ();
6608 }
6609
6610 static void
6611 info_watchpoints_command (const char *args, int from_tty)
6612 {
6613 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6614 struct ui_out *uiout = current_uiout;
6615
6616 if (num_printed == 0)
6617 {
6618 if (args == NULL || *args == '\0')
6619 uiout->message ("No watchpoints.\n");
6620 else
6621 uiout->message ("No watchpoint matching '%s'.\n", args);
6622 }
6623 }
6624
6625 static void
6626 maintenance_info_breakpoints (const char *args, int from_tty)
6627 {
6628 breakpoint_1 (args, 1, NULL);
6629
6630 default_collect_info ();
6631 }
6632
6633 static int
6634 breakpoint_has_pc (struct breakpoint *b,
6635 struct program_space *pspace,
6636 CORE_ADDR pc, struct obj_section *section)
6637 {
6638 struct bp_location *bl = b->loc;
6639
6640 for (; bl; bl = bl->next)
6641 {
6642 if (bl->pspace == pspace
6643 && bl->address == pc
6644 && (!overlay_debugging || bl->section == section))
6645 return 1;
6646 }
6647 return 0;
6648 }
6649
6650 /* Print a message describing any user-breakpoints set at PC. This
6651 concerns with logical breakpoints, so we match program spaces, not
6652 address spaces. */
6653
6654 static void
6655 describe_other_breakpoints (struct gdbarch *gdbarch,
6656 struct program_space *pspace, CORE_ADDR pc,
6657 struct obj_section *section, int thread)
6658 {
6659 int others = 0;
6660 struct breakpoint *b;
6661
6662 ALL_BREAKPOINTS (b)
6663 others += (user_breakpoint_p (b)
6664 && breakpoint_has_pc (b, pspace, pc, section));
6665 if (others > 0)
6666 {
6667 if (others == 1)
6668 printf_filtered (_("Note: breakpoint "));
6669 else /* if (others == ???) */
6670 printf_filtered (_("Note: breakpoints "));
6671 ALL_BREAKPOINTS (b)
6672 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6673 {
6674 others--;
6675 printf_filtered ("%d", b->number);
6676 if (b->thread == -1 && thread != -1)
6677 printf_filtered (" (all threads)");
6678 else if (b->thread != -1)
6679 printf_filtered (" (thread %d)", b->thread);
6680 printf_filtered ("%s%s ",
6681 ((b->enable_state == bp_disabled
6682 || b->enable_state == bp_call_disabled)
6683 ? " (disabled)"
6684 : ""),
6685 (others > 1) ? ","
6686 : ((others == 1) ? " and" : ""));
6687 }
6688 printf_filtered (_("also set at pc "));
6689 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6690 printf_filtered (".\n");
6691 }
6692 }
6693 \f
6694
6695 /* Return true iff it is meaningful to use the address member of
6696 BPT locations. For some breakpoint types, the locations' address members
6697 are irrelevant and it makes no sense to attempt to compare them to other
6698 addresses (or use them for any other purpose either).
6699
6700 More specifically, each of the following breakpoint types will
6701 always have a zero valued location address and we don't want to mark
6702 breakpoints of any of these types to be a duplicate of an actual
6703 breakpoint location at address zero:
6704
6705 bp_watchpoint
6706 bp_catchpoint
6707
6708 */
6709
6710 static int
6711 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6712 {
6713 enum bptype type = bpt->type;
6714
6715 return (type != bp_watchpoint && type != bp_catchpoint);
6716 }
6717
6718 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6719 true if LOC1 and LOC2 represent the same watchpoint location. */
6720
6721 static int
6722 watchpoint_locations_match (struct bp_location *loc1,
6723 struct bp_location *loc2)
6724 {
6725 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6726 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6727
6728 /* Both of them must exist. */
6729 gdb_assert (w1 != NULL);
6730 gdb_assert (w2 != NULL);
6731
6732 /* If the target can evaluate the condition expression in hardware,
6733 then we we need to insert both watchpoints even if they are at
6734 the same place. Otherwise the watchpoint will only trigger when
6735 the condition of whichever watchpoint was inserted evaluates to
6736 true, not giving a chance for GDB to check the condition of the
6737 other watchpoint. */
6738 if ((w1->cond_exp
6739 && target_can_accel_watchpoint_condition (loc1->address,
6740 loc1->length,
6741 loc1->watchpoint_type,
6742 w1->cond_exp.get ()))
6743 || (w2->cond_exp
6744 && target_can_accel_watchpoint_condition (loc2->address,
6745 loc2->length,
6746 loc2->watchpoint_type,
6747 w2->cond_exp.get ())))
6748 return 0;
6749
6750 /* Note that this checks the owner's type, not the location's. In
6751 case the target does not support read watchpoints, but does
6752 support access watchpoints, we'll have bp_read_watchpoint
6753 watchpoints with hw_access locations. Those should be considered
6754 duplicates of hw_read locations. The hw_read locations will
6755 become hw_access locations later. */
6756 return (loc1->owner->type == loc2->owner->type
6757 && loc1->pspace->aspace == loc2->pspace->aspace
6758 && loc1->address == loc2->address
6759 && loc1->length == loc2->length);
6760 }
6761
6762 /* See breakpoint.h. */
6763
6764 int
6765 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6766 const address_space *aspace2, CORE_ADDR addr2)
6767 {
6768 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6769 || aspace1 == aspace2)
6770 && addr1 == addr2);
6771 }
6772
6773 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6774 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6775 matches ASPACE2. On targets that have global breakpoints, the address
6776 space doesn't really matter. */
6777
6778 static int
6779 breakpoint_address_match_range (const address_space *aspace1,
6780 CORE_ADDR addr1,
6781 int len1, const address_space *aspace2,
6782 CORE_ADDR addr2)
6783 {
6784 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6785 || aspace1 == aspace2)
6786 && addr2 >= addr1 && addr2 < addr1 + len1);
6787 }
6788
6789 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6790 a ranged breakpoint. In most targets, a match happens only if ASPACE
6791 matches the breakpoint's address space. On targets that have global
6792 breakpoints, the address space doesn't really matter. */
6793
6794 static int
6795 breakpoint_location_address_match (struct bp_location *bl,
6796 const address_space *aspace,
6797 CORE_ADDR addr)
6798 {
6799 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6800 aspace, addr)
6801 || (bl->length
6802 && breakpoint_address_match_range (bl->pspace->aspace,
6803 bl->address, bl->length,
6804 aspace, addr)));
6805 }
6806
6807 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6808 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6809 match happens only if ASPACE matches the breakpoint's address
6810 space. On targets that have global breakpoints, the address space
6811 doesn't really matter. */
6812
6813 static int
6814 breakpoint_location_address_range_overlap (struct bp_location *bl,
6815 const address_space *aspace,
6816 CORE_ADDR addr, int len)
6817 {
6818 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6819 || bl->pspace->aspace == aspace)
6820 {
6821 int bl_len = bl->length != 0 ? bl->length : 1;
6822
6823 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6824 return 1;
6825 }
6826 return 0;
6827 }
6828
6829 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6830 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6831 true, otherwise returns false. */
6832
6833 static int
6834 tracepoint_locations_match (struct bp_location *loc1,
6835 struct bp_location *loc2)
6836 {
6837 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6838 /* Since tracepoint locations are never duplicated with others', tracepoint
6839 locations at the same address of different tracepoints are regarded as
6840 different locations. */
6841 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6842 else
6843 return 0;
6844 }
6845
6846 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6847 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6848 represent the same location. */
6849
6850 static int
6851 breakpoint_locations_match (struct bp_location *loc1,
6852 struct bp_location *loc2)
6853 {
6854 int hw_point1, hw_point2;
6855
6856 /* Both of them must not be in moribund_locations. */
6857 gdb_assert (loc1->owner != NULL);
6858 gdb_assert (loc2->owner != NULL);
6859
6860 hw_point1 = is_hardware_watchpoint (loc1->owner);
6861 hw_point2 = is_hardware_watchpoint (loc2->owner);
6862
6863 if (hw_point1 != hw_point2)
6864 return 0;
6865 else if (hw_point1)
6866 return watchpoint_locations_match (loc1, loc2);
6867 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6868 return tracepoint_locations_match (loc1, loc2);
6869 else
6870 /* We compare bp_location.length in order to cover ranged breakpoints. */
6871 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6872 loc2->pspace->aspace, loc2->address)
6873 && loc1->length == loc2->length);
6874 }
6875
6876 static void
6877 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6878 int bnum, int have_bnum)
6879 {
6880 /* The longest string possibly returned by hex_string_custom
6881 is 50 chars. These must be at least that big for safety. */
6882 char astr1[64];
6883 char astr2[64];
6884
6885 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6886 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6887 if (have_bnum)
6888 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6889 bnum, astr1, astr2);
6890 else
6891 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6892 }
6893
6894 /* Adjust a breakpoint's address to account for architectural
6895 constraints on breakpoint placement. Return the adjusted address.
6896 Note: Very few targets require this kind of adjustment. For most
6897 targets, this function is simply the identity function. */
6898
6899 static CORE_ADDR
6900 adjust_breakpoint_address (struct gdbarch *gdbarch,
6901 CORE_ADDR bpaddr, enum bptype bptype)
6902 {
6903 if (bptype == bp_watchpoint
6904 || bptype == bp_hardware_watchpoint
6905 || bptype == bp_read_watchpoint
6906 || bptype == bp_access_watchpoint
6907 || bptype == bp_catchpoint)
6908 {
6909 /* Watchpoints and the various bp_catch_* eventpoints should not
6910 have their addresses modified. */
6911 return bpaddr;
6912 }
6913 else if (bptype == bp_single_step)
6914 {
6915 /* Single-step breakpoints should not have their addresses
6916 modified. If there's any architectural constrain that
6917 applies to this address, then it should have already been
6918 taken into account when the breakpoint was created in the
6919 first place. If we didn't do this, stepping through e.g.,
6920 Thumb-2 IT blocks would break. */
6921 return bpaddr;
6922 }
6923 else
6924 {
6925 CORE_ADDR adjusted_bpaddr = bpaddr;
6926
6927 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6928 {
6929 /* Some targets have architectural constraints on the placement
6930 of breakpoint instructions. Obtain the adjusted address. */
6931 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6932 }
6933
6934 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6935
6936 /* An adjusted breakpoint address can significantly alter
6937 a user's expectations. Print a warning if an adjustment
6938 is required. */
6939 if (adjusted_bpaddr != bpaddr)
6940 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6941
6942 return adjusted_bpaddr;
6943 }
6944 }
6945
6946 bp_location::bp_location (breakpoint *owner)
6947 {
6948 bp_location *loc = this;
6949
6950 loc->owner = owner;
6951 loc->cond_bytecode = NULL;
6952 loc->shlib_disabled = 0;
6953 loc->enabled = 1;
6954
6955 switch (owner->type)
6956 {
6957 case bp_breakpoint:
6958 case bp_single_step:
6959 case bp_until:
6960 case bp_finish:
6961 case bp_longjmp:
6962 case bp_longjmp_resume:
6963 case bp_longjmp_call_dummy:
6964 case bp_exception:
6965 case bp_exception_resume:
6966 case bp_step_resume:
6967 case bp_hp_step_resume:
6968 case bp_watchpoint_scope:
6969 case bp_call_dummy:
6970 case bp_std_terminate:
6971 case bp_shlib_event:
6972 case bp_thread_event:
6973 case bp_overlay_event:
6974 case bp_jit_event:
6975 case bp_longjmp_master:
6976 case bp_std_terminate_master:
6977 case bp_exception_master:
6978 case bp_gnu_ifunc_resolver:
6979 case bp_gnu_ifunc_resolver_return:
6980 case bp_dprintf:
6981 loc->loc_type = bp_loc_software_breakpoint;
6982 mark_breakpoint_location_modified (loc);
6983 break;
6984 case bp_hardware_breakpoint:
6985 loc->loc_type = bp_loc_hardware_breakpoint;
6986 mark_breakpoint_location_modified (loc);
6987 break;
6988 case bp_hardware_watchpoint:
6989 case bp_read_watchpoint:
6990 case bp_access_watchpoint:
6991 loc->loc_type = bp_loc_hardware_watchpoint;
6992 break;
6993 case bp_watchpoint:
6994 case bp_catchpoint:
6995 case bp_tracepoint:
6996 case bp_fast_tracepoint:
6997 case bp_static_tracepoint:
6998 loc->loc_type = bp_loc_other;
6999 break;
7000 default:
7001 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7002 }
7003
7004 loc->refc = 1;
7005 }
7006
7007 /* Allocate a struct bp_location. */
7008
7009 static struct bp_location *
7010 allocate_bp_location (struct breakpoint *bpt)
7011 {
7012 return bpt->ops->allocate_location (bpt);
7013 }
7014
7015 static void
7016 free_bp_location (struct bp_location *loc)
7017 {
7018 delete loc;
7019 }
7020
7021 /* Increment reference count. */
7022
7023 static void
7024 incref_bp_location (struct bp_location *bl)
7025 {
7026 ++bl->refc;
7027 }
7028
7029 /* Decrement reference count. If the reference count reaches 0,
7030 destroy the bp_location. Sets *BLP to NULL. */
7031
7032 static void
7033 decref_bp_location (struct bp_location **blp)
7034 {
7035 gdb_assert ((*blp)->refc > 0);
7036
7037 if (--(*blp)->refc == 0)
7038 free_bp_location (*blp);
7039 *blp = NULL;
7040 }
7041
7042 /* Add breakpoint B at the end of the global breakpoint chain. */
7043
7044 static breakpoint *
7045 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7046 {
7047 struct breakpoint *b1;
7048 struct breakpoint *result = b.get ();
7049
7050 /* Add this breakpoint to the end of the chain so that a list of
7051 breakpoints will come out in order of increasing numbers. */
7052
7053 b1 = breakpoint_chain;
7054 if (b1 == 0)
7055 breakpoint_chain = b.release ();
7056 else
7057 {
7058 while (b1->next)
7059 b1 = b1->next;
7060 b1->next = b.release ();
7061 }
7062
7063 return result;
7064 }
7065
7066 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7067
7068 static void
7069 init_raw_breakpoint_without_location (struct breakpoint *b,
7070 struct gdbarch *gdbarch,
7071 enum bptype bptype,
7072 const struct breakpoint_ops *ops)
7073 {
7074 gdb_assert (ops != NULL);
7075
7076 b->ops = ops;
7077 b->type = bptype;
7078 b->gdbarch = gdbarch;
7079 b->language = current_language->la_language;
7080 b->input_radix = input_radix;
7081 b->related_breakpoint = b;
7082 }
7083
7084 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7085 that has type BPTYPE and has no locations as yet. */
7086
7087 static struct breakpoint *
7088 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7089 enum bptype bptype,
7090 const struct breakpoint_ops *ops)
7091 {
7092 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7093
7094 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7095 return add_to_breakpoint_chain (std::move (b));
7096 }
7097
7098 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7099 resolutions should be made as the user specified the location explicitly
7100 enough. */
7101
7102 static void
7103 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7104 {
7105 gdb_assert (loc->owner != NULL);
7106
7107 if (loc->owner->type == bp_breakpoint
7108 || loc->owner->type == bp_hardware_breakpoint
7109 || is_tracepoint (loc->owner))
7110 {
7111 const char *function_name;
7112
7113 if (loc->msymbol != NULL
7114 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7115 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7116 && !explicit_loc)
7117 {
7118 struct breakpoint *b = loc->owner;
7119
7120 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7121
7122 if (b->type == bp_breakpoint && b->loc == loc
7123 && loc->next == NULL && b->related_breakpoint == b)
7124 {
7125 /* Create only the whole new breakpoint of this type but do not
7126 mess more complicated breakpoints with multiple locations. */
7127 b->type = bp_gnu_ifunc_resolver;
7128 /* Remember the resolver's address for use by the return
7129 breakpoint. */
7130 loc->related_address = loc->address;
7131 }
7132 }
7133 else
7134 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7135
7136 if (function_name)
7137 loc->function_name = xstrdup (function_name);
7138 }
7139 }
7140
7141 /* Attempt to determine architecture of location identified by SAL. */
7142 struct gdbarch *
7143 get_sal_arch (struct symtab_and_line sal)
7144 {
7145 if (sal.section)
7146 return get_objfile_arch (sal.section->objfile);
7147 if (sal.symtab)
7148 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7149
7150 return NULL;
7151 }
7152
7153 /* Low level routine for partially initializing a breakpoint of type
7154 BPTYPE. The newly created breakpoint's address, section, source
7155 file name, and line number are provided by SAL.
7156
7157 It is expected that the caller will complete the initialization of
7158 the newly created breakpoint struct as well as output any status
7159 information regarding the creation of a new breakpoint. */
7160
7161 static void
7162 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7163 struct symtab_and_line sal, enum bptype bptype,
7164 const struct breakpoint_ops *ops)
7165 {
7166 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7167
7168 add_location_to_breakpoint (b, &sal);
7169
7170 if (bptype != bp_catchpoint)
7171 gdb_assert (sal.pspace != NULL);
7172
7173 /* Store the program space that was used to set the breakpoint,
7174 except for ordinary breakpoints, which are independent of the
7175 program space. */
7176 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7177 b->pspace = sal.pspace;
7178 }
7179
7180 /* set_raw_breakpoint is a low level routine for allocating and
7181 partially initializing a breakpoint of type BPTYPE. The newly
7182 created breakpoint's address, section, source file name, and line
7183 number are provided by SAL. The newly created and partially
7184 initialized breakpoint is added to the breakpoint chain and
7185 is also returned as the value of this function.
7186
7187 It is expected that the caller will complete the initialization of
7188 the newly created breakpoint struct as well as output any status
7189 information regarding the creation of a new breakpoint. In
7190 particular, set_raw_breakpoint does NOT set the breakpoint
7191 number! Care should be taken to not allow an error to occur
7192 prior to completing the initialization of the breakpoint. If this
7193 should happen, a bogus breakpoint will be left on the chain. */
7194
7195 struct breakpoint *
7196 set_raw_breakpoint (struct gdbarch *gdbarch,
7197 struct symtab_and_line sal, enum bptype bptype,
7198 const struct breakpoint_ops *ops)
7199 {
7200 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7201
7202 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7203 return add_to_breakpoint_chain (std::move (b));
7204 }
7205
7206 /* Call this routine when stepping and nexting to enable a breakpoint
7207 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7208 initiated the operation. */
7209
7210 void
7211 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7212 {
7213 struct breakpoint *b, *b_tmp;
7214 int thread = tp->global_num;
7215
7216 /* To avoid having to rescan all objfile symbols at every step,
7217 we maintain a list of continually-inserted but always disabled
7218 longjmp "master" breakpoints. Here, we simply create momentary
7219 clones of those and enable them for the requested thread. */
7220 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7221 if (b->pspace == current_program_space
7222 && (b->type == bp_longjmp_master
7223 || b->type == bp_exception_master))
7224 {
7225 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7226 struct breakpoint *clone;
7227
7228 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7229 after their removal. */
7230 clone = momentary_breakpoint_from_master (b, type,
7231 &momentary_breakpoint_ops, 1);
7232 clone->thread = thread;
7233 }
7234
7235 tp->initiating_frame = frame;
7236 }
7237
7238 /* Delete all longjmp breakpoints from THREAD. */
7239 void
7240 delete_longjmp_breakpoint (int thread)
7241 {
7242 struct breakpoint *b, *b_tmp;
7243
7244 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7245 if (b->type == bp_longjmp || b->type == bp_exception)
7246 {
7247 if (b->thread == thread)
7248 delete_breakpoint (b);
7249 }
7250 }
7251
7252 void
7253 delete_longjmp_breakpoint_at_next_stop (int thread)
7254 {
7255 struct breakpoint *b, *b_tmp;
7256
7257 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7258 if (b->type == bp_longjmp || b->type == bp_exception)
7259 {
7260 if (b->thread == thread)
7261 b->disposition = disp_del_at_next_stop;
7262 }
7263 }
7264
7265 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7266 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7267 pointer to any of them. Return NULL if this system cannot place longjmp
7268 breakpoints. */
7269
7270 struct breakpoint *
7271 set_longjmp_breakpoint_for_call_dummy (void)
7272 {
7273 struct breakpoint *b, *retval = NULL;
7274
7275 ALL_BREAKPOINTS (b)
7276 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7277 {
7278 struct breakpoint *new_b;
7279
7280 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7281 &momentary_breakpoint_ops,
7282 1);
7283 new_b->thread = inferior_thread ()->global_num;
7284
7285 /* Link NEW_B into the chain of RETVAL breakpoints. */
7286
7287 gdb_assert (new_b->related_breakpoint == new_b);
7288 if (retval == NULL)
7289 retval = new_b;
7290 new_b->related_breakpoint = retval;
7291 while (retval->related_breakpoint != new_b->related_breakpoint)
7292 retval = retval->related_breakpoint;
7293 retval->related_breakpoint = new_b;
7294 }
7295
7296 return retval;
7297 }
7298
7299 /* Verify all existing dummy frames and their associated breakpoints for
7300 TP. Remove those which can no longer be found in the current frame
7301 stack.
7302
7303 You should call this function only at places where it is safe to currently
7304 unwind the whole stack. Failed stack unwind would discard live dummy
7305 frames. */
7306
7307 void
7308 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7309 {
7310 struct breakpoint *b, *b_tmp;
7311
7312 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7313 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7314 {
7315 struct breakpoint *dummy_b = b->related_breakpoint;
7316
7317 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7318 dummy_b = dummy_b->related_breakpoint;
7319 if (dummy_b->type != bp_call_dummy
7320 || frame_find_by_id (dummy_b->frame_id) != NULL)
7321 continue;
7322
7323 dummy_frame_discard (dummy_b->frame_id, tp);
7324
7325 while (b->related_breakpoint != b)
7326 {
7327 if (b_tmp == b->related_breakpoint)
7328 b_tmp = b->related_breakpoint->next;
7329 delete_breakpoint (b->related_breakpoint);
7330 }
7331 delete_breakpoint (b);
7332 }
7333 }
7334
7335 void
7336 enable_overlay_breakpoints (void)
7337 {
7338 struct breakpoint *b;
7339
7340 ALL_BREAKPOINTS (b)
7341 if (b->type == bp_overlay_event)
7342 {
7343 b->enable_state = bp_enabled;
7344 update_global_location_list (UGLL_MAY_INSERT);
7345 overlay_events_enabled = 1;
7346 }
7347 }
7348
7349 void
7350 disable_overlay_breakpoints (void)
7351 {
7352 struct breakpoint *b;
7353
7354 ALL_BREAKPOINTS (b)
7355 if (b->type == bp_overlay_event)
7356 {
7357 b->enable_state = bp_disabled;
7358 update_global_location_list (UGLL_DONT_INSERT);
7359 overlay_events_enabled = 0;
7360 }
7361 }
7362
7363 /* Set an active std::terminate breakpoint for each std::terminate
7364 master breakpoint. */
7365 void
7366 set_std_terminate_breakpoint (void)
7367 {
7368 struct breakpoint *b, *b_tmp;
7369
7370 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7371 if (b->pspace == current_program_space
7372 && b->type == bp_std_terminate_master)
7373 {
7374 momentary_breakpoint_from_master (b, bp_std_terminate,
7375 &momentary_breakpoint_ops, 1);
7376 }
7377 }
7378
7379 /* Delete all the std::terminate breakpoints. */
7380 void
7381 delete_std_terminate_breakpoint (void)
7382 {
7383 struct breakpoint *b, *b_tmp;
7384
7385 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7386 if (b->type == bp_std_terminate)
7387 delete_breakpoint (b);
7388 }
7389
7390 struct breakpoint *
7391 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7392 {
7393 struct breakpoint *b;
7394
7395 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7396 &internal_breakpoint_ops);
7397
7398 b->enable_state = bp_enabled;
7399 /* location has to be used or breakpoint_re_set will delete me. */
7400 b->location = new_address_location (b->loc->address, NULL, 0);
7401
7402 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7403
7404 return b;
7405 }
7406
7407 struct lang_and_radix
7408 {
7409 enum language lang;
7410 int radix;
7411 };
7412
7413 /* Create a breakpoint for JIT code registration and unregistration. */
7414
7415 struct breakpoint *
7416 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7417 {
7418 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7419 &internal_breakpoint_ops);
7420 }
7421
7422 /* Remove JIT code registration and unregistration breakpoint(s). */
7423
7424 void
7425 remove_jit_event_breakpoints (void)
7426 {
7427 struct breakpoint *b, *b_tmp;
7428
7429 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7430 if (b->type == bp_jit_event
7431 && b->loc->pspace == current_program_space)
7432 delete_breakpoint (b);
7433 }
7434
7435 void
7436 remove_solib_event_breakpoints (void)
7437 {
7438 struct breakpoint *b, *b_tmp;
7439
7440 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7441 if (b->type == bp_shlib_event
7442 && b->loc->pspace == current_program_space)
7443 delete_breakpoint (b);
7444 }
7445
7446 /* See breakpoint.h. */
7447
7448 void
7449 remove_solib_event_breakpoints_at_next_stop (void)
7450 {
7451 struct breakpoint *b, *b_tmp;
7452
7453 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7454 if (b->type == bp_shlib_event
7455 && b->loc->pspace == current_program_space)
7456 b->disposition = disp_del_at_next_stop;
7457 }
7458
7459 /* Helper for create_solib_event_breakpoint /
7460 create_and_insert_solib_event_breakpoint. Allows specifying which
7461 INSERT_MODE to pass through to update_global_location_list. */
7462
7463 static struct breakpoint *
7464 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7465 enum ugll_insert_mode insert_mode)
7466 {
7467 struct breakpoint *b;
7468
7469 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7470 &internal_breakpoint_ops);
7471 update_global_location_list_nothrow (insert_mode);
7472 return b;
7473 }
7474
7475 struct breakpoint *
7476 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7477 {
7478 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7479 }
7480
7481 /* See breakpoint.h. */
7482
7483 struct breakpoint *
7484 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7485 {
7486 struct breakpoint *b;
7487
7488 /* Explicitly tell update_global_location_list to insert
7489 locations. */
7490 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7491 if (!b->loc->inserted)
7492 {
7493 delete_breakpoint (b);
7494 return NULL;
7495 }
7496 return b;
7497 }
7498
7499 /* Disable any breakpoints that are on code in shared libraries. Only
7500 apply to enabled breakpoints, disabled ones can just stay disabled. */
7501
7502 void
7503 disable_breakpoints_in_shlibs (void)
7504 {
7505 struct bp_location *loc, **locp_tmp;
7506
7507 ALL_BP_LOCATIONS (loc, locp_tmp)
7508 {
7509 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7510 struct breakpoint *b = loc->owner;
7511
7512 /* We apply the check to all breakpoints, including disabled for
7513 those with loc->duplicate set. This is so that when breakpoint
7514 becomes enabled, or the duplicate is removed, gdb will try to
7515 insert all breakpoints. If we don't set shlib_disabled here,
7516 we'll try to insert those breakpoints and fail. */
7517 if (((b->type == bp_breakpoint)
7518 || (b->type == bp_jit_event)
7519 || (b->type == bp_hardware_breakpoint)
7520 || (is_tracepoint (b)))
7521 && loc->pspace == current_program_space
7522 && !loc->shlib_disabled
7523 && solib_name_from_address (loc->pspace, loc->address)
7524 )
7525 {
7526 loc->shlib_disabled = 1;
7527 }
7528 }
7529 }
7530
7531 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7532 notification of unloaded_shlib. Only apply to enabled breakpoints,
7533 disabled ones can just stay disabled. */
7534
7535 static void
7536 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7537 {
7538 struct bp_location *loc, **locp_tmp;
7539 int disabled_shlib_breaks = 0;
7540
7541 ALL_BP_LOCATIONS (loc, locp_tmp)
7542 {
7543 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7544 struct breakpoint *b = loc->owner;
7545
7546 if (solib->pspace == loc->pspace
7547 && !loc->shlib_disabled
7548 && (((b->type == bp_breakpoint
7549 || b->type == bp_jit_event
7550 || b->type == bp_hardware_breakpoint)
7551 && (loc->loc_type == bp_loc_hardware_breakpoint
7552 || loc->loc_type == bp_loc_software_breakpoint))
7553 || is_tracepoint (b))
7554 && solib_contains_address_p (solib, loc->address))
7555 {
7556 loc->shlib_disabled = 1;
7557 /* At this point, we cannot rely on remove_breakpoint
7558 succeeding so we must mark the breakpoint as not inserted
7559 to prevent future errors occurring in remove_breakpoints. */
7560 loc->inserted = 0;
7561
7562 /* This may cause duplicate notifications for the same breakpoint. */
7563 gdb::observers::breakpoint_modified.notify (b);
7564
7565 if (!disabled_shlib_breaks)
7566 {
7567 target_terminal::ours_for_output ();
7568 warning (_("Temporarily disabling breakpoints "
7569 "for unloaded shared library \"%s\""),
7570 solib->so_name);
7571 }
7572 disabled_shlib_breaks = 1;
7573 }
7574 }
7575 }
7576
7577 /* Disable any breakpoints and tracepoints in OBJFILE upon
7578 notification of free_objfile. Only apply to enabled breakpoints,
7579 disabled ones can just stay disabled. */
7580
7581 static void
7582 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7583 {
7584 struct breakpoint *b;
7585
7586 if (objfile == NULL)
7587 return;
7588
7589 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7590 managed by the user with add-symbol-file/remove-symbol-file.
7591 Similarly to how breakpoints in shared libraries are handled in
7592 response to "nosharedlibrary", mark breakpoints in such modules
7593 shlib_disabled so they end up uninserted on the next global
7594 location list update. Shared libraries not loaded by the user
7595 aren't handled here -- they're already handled in
7596 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7597 solib_unloaded observer. We skip objfiles that are not
7598 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7599 main objfile). */
7600 if ((objfile->flags & OBJF_SHARED) == 0
7601 || (objfile->flags & OBJF_USERLOADED) == 0)
7602 return;
7603
7604 ALL_BREAKPOINTS (b)
7605 {
7606 struct bp_location *loc;
7607 int bp_modified = 0;
7608
7609 if (!is_breakpoint (b) && !is_tracepoint (b))
7610 continue;
7611
7612 for (loc = b->loc; loc != NULL; loc = loc->next)
7613 {
7614 CORE_ADDR loc_addr = loc->address;
7615
7616 if (loc->loc_type != bp_loc_hardware_breakpoint
7617 && loc->loc_type != bp_loc_software_breakpoint)
7618 continue;
7619
7620 if (loc->shlib_disabled != 0)
7621 continue;
7622
7623 if (objfile->pspace != loc->pspace)
7624 continue;
7625
7626 if (loc->loc_type != bp_loc_hardware_breakpoint
7627 && loc->loc_type != bp_loc_software_breakpoint)
7628 continue;
7629
7630 if (is_addr_in_objfile (loc_addr, objfile))
7631 {
7632 loc->shlib_disabled = 1;
7633 /* At this point, we don't know whether the object was
7634 unmapped from the inferior or not, so leave the
7635 inserted flag alone. We'll handle failure to
7636 uninsert quietly, in case the object was indeed
7637 unmapped. */
7638
7639 mark_breakpoint_location_modified (loc);
7640
7641 bp_modified = 1;
7642 }
7643 }
7644
7645 if (bp_modified)
7646 gdb::observers::breakpoint_modified.notify (b);
7647 }
7648 }
7649
7650 /* FORK & VFORK catchpoints. */
7651
7652 /* An instance of this type is used to represent a fork or vfork
7653 catchpoint. A breakpoint is really of this type iff its ops pointer points
7654 to CATCH_FORK_BREAKPOINT_OPS. */
7655
7656 struct fork_catchpoint : public breakpoint
7657 {
7658 /* Process id of a child process whose forking triggered this
7659 catchpoint. This field is only valid immediately after this
7660 catchpoint has triggered. */
7661 ptid_t forked_inferior_pid;
7662 };
7663
7664 /* Implement the "insert" breakpoint_ops method for fork
7665 catchpoints. */
7666
7667 static int
7668 insert_catch_fork (struct bp_location *bl)
7669 {
7670 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7671 }
7672
7673 /* Implement the "remove" breakpoint_ops method for fork
7674 catchpoints. */
7675
7676 static int
7677 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7678 {
7679 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7680 }
7681
7682 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7683 catchpoints. */
7684
7685 static int
7686 breakpoint_hit_catch_fork (const struct bp_location *bl,
7687 const address_space *aspace, CORE_ADDR bp_addr,
7688 const struct target_waitstatus *ws)
7689 {
7690 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7691
7692 if (ws->kind != TARGET_WAITKIND_FORKED)
7693 return 0;
7694
7695 c->forked_inferior_pid = ws->value.related_pid;
7696 return 1;
7697 }
7698
7699 /* Implement the "print_it" breakpoint_ops method for fork
7700 catchpoints. */
7701
7702 static enum print_stop_action
7703 print_it_catch_fork (bpstat bs)
7704 {
7705 struct ui_out *uiout = current_uiout;
7706 struct breakpoint *b = bs->breakpoint_at;
7707 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7708
7709 annotate_catchpoint (b->number);
7710 maybe_print_thread_hit_breakpoint (uiout);
7711 if (b->disposition == disp_del)
7712 uiout->text ("Temporary catchpoint ");
7713 else
7714 uiout->text ("Catchpoint ");
7715 if (uiout->is_mi_like_p ())
7716 {
7717 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7718 uiout->field_string ("disp", bpdisp_text (b->disposition));
7719 }
7720 uiout->field_int ("bkptno", b->number);
7721 uiout->text (" (forked process ");
7722 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7723 uiout->text ("), ");
7724 return PRINT_SRC_AND_LOC;
7725 }
7726
7727 /* Implement the "print_one" breakpoint_ops method for fork
7728 catchpoints. */
7729
7730 static void
7731 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7732 {
7733 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7734 struct value_print_options opts;
7735 struct ui_out *uiout = current_uiout;
7736
7737 get_user_print_options (&opts);
7738
7739 /* Field 4, the address, is omitted (which makes the columns not
7740 line up too nicely with the headers, but the effect is relatively
7741 readable). */
7742 if (opts.addressprint)
7743 uiout->field_skip ("addr");
7744 annotate_field (5);
7745 uiout->text ("fork");
7746 if (c->forked_inferior_pid != null_ptid)
7747 {
7748 uiout->text (", process ");
7749 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7750 uiout->spaces (1);
7751 }
7752
7753 if (uiout->is_mi_like_p ())
7754 uiout->field_string ("catch-type", "fork");
7755 }
7756
7757 /* Implement the "print_mention" breakpoint_ops method for fork
7758 catchpoints. */
7759
7760 static void
7761 print_mention_catch_fork (struct breakpoint *b)
7762 {
7763 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7764 }
7765
7766 /* Implement the "print_recreate" breakpoint_ops method for fork
7767 catchpoints. */
7768
7769 static void
7770 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7771 {
7772 fprintf_unfiltered (fp, "catch fork");
7773 print_recreate_thread (b, fp);
7774 }
7775
7776 /* The breakpoint_ops structure to be used in fork catchpoints. */
7777
7778 static struct breakpoint_ops catch_fork_breakpoint_ops;
7779
7780 /* Implement the "insert" breakpoint_ops method for vfork
7781 catchpoints. */
7782
7783 static int
7784 insert_catch_vfork (struct bp_location *bl)
7785 {
7786 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7787 }
7788
7789 /* Implement the "remove" breakpoint_ops method for vfork
7790 catchpoints. */
7791
7792 static int
7793 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7794 {
7795 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7796 }
7797
7798 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7799 catchpoints. */
7800
7801 static int
7802 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7803 const address_space *aspace, CORE_ADDR bp_addr,
7804 const struct target_waitstatus *ws)
7805 {
7806 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7807
7808 if (ws->kind != TARGET_WAITKIND_VFORKED)
7809 return 0;
7810
7811 c->forked_inferior_pid = ws->value.related_pid;
7812 return 1;
7813 }
7814
7815 /* Implement the "print_it" breakpoint_ops method for vfork
7816 catchpoints. */
7817
7818 static enum print_stop_action
7819 print_it_catch_vfork (bpstat bs)
7820 {
7821 struct ui_out *uiout = current_uiout;
7822 struct breakpoint *b = bs->breakpoint_at;
7823 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7824
7825 annotate_catchpoint (b->number);
7826 maybe_print_thread_hit_breakpoint (uiout);
7827 if (b->disposition == disp_del)
7828 uiout->text ("Temporary catchpoint ");
7829 else
7830 uiout->text ("Catchpoint ");
7831 if (uiout->is_mi_like_p ())
7832 {
7833 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7834 uiout->field_string ("disp", bpdisp_text (b->disposition));
7835 }
7836 uiout->field_int ("bkptno", b->number);
7837 uiout->text (" (vforked process ");
7838 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7839 uiout->text ("), ");
7840 return PRINT_SRC_AND_LOC;
7841 }
7842
7843 /* Implement the "print_one" breakpoint_ops method for vfork
7844 catchpoints. */
7845
7846 static void
7847 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7848 {
7849 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7850 struct value_print_options opts;
7851 struct ui_out *uiout = current_uiout;
7852
7853 get_user_print_options (&opts);
7854 /* Field 4, the address, is omitted (which makes the columns not
7855 line up too nicely with the headers, but the effect is relatively
7856 readable). */
7857 if (opts.addressprint)
7858 uiout->field_skip ("addr");
7859 annotate_field (5);
7860 uiout->text ("vfork");
7861 if (c->forked_inferior_pid != null_ptid)
7862 {
7863 uiout->text (", process ");
7864 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7865 uiout->spaces (1);
7866 }
7867
7868 if (uiout->is_mi_like_p ())
7869 uiout->field_string ("catch-type", "vfork");
7870 }
7871
7872 /* Implement the "print_mention" breakpoint_ops method for vfork
7873 catchpoints. */
7874
7875 static void
7876 print_mention_catch_vfork (struct breakpoint *b)
7877 {
7878 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7879 }
7880
7881 /* Implement the "print_recreate" breakpoint_ops method for vfork
7882 catchpoints. */
7883
7884 static void
7885 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7886 {
7887 fprintf_unfiltered (fp, "catch vfork");
7888 print_recreate_thread (b, fp);
7889 }
7890
7891 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7892
7893 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7894
7895 /* An instance of this type is used to represent an solib catchpoint.
7896 A breakpoint is really of this type iff its ops pointer points to
7897 CATCH_SOLIB_BREAKPOINT_OPS. */
7898
7899 struct solib_catchpoint : public breakpoint
7900 {
7901 ~solib_catchpoint () override;
7902
7903 /* True for "catch load", false for "catch unload". */
7904 unsigned char is_load;
7905
7906 /* Regular expression to match, if any. COMPILED is only valid when
7907 REGEX is non-NULL. */
7908 char *regex;
7909 std::unique_ptr<compiled_regex> compiled;
7910 };
7911
7912 solib_catchpoint::~solib_catchpoint ()
7913 {
7914 xfree (this->regex);
7915 }
7916
7917 static int
7918 insert_catch_solib (struct bp_location *ignore)
7919 {
7920 return 0;
7921 }
7922
7923 static int
7924 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7925 {
7926 return 0;
7927 }
7928
7929 static int
7930 breakpoint_hit_catch_solib (const struct bp_location *bl,
7931 const address_space *aspace,
7932 CORE_ADDR bp_addr,
7933 const struct target_waitstatus *ws)
7934 {
7935 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7936 struct breakpoint *other;
7937
7938 if (ws->kind == TARGET_WAITKIND_LOADED)
7939 return 1;
7940
7941 ALL_BREAKPOINTS (other)
7942 {
7943 struct bp_location *other_bl;
7944
7945 if (other == bl->owner)
7946 continue;
7947
7948 if (other->type != bp_shlib_event)
7949 continue;
7950
7951 if (self->pspace != NULL && other->pspace != self->pspace)
7952 continue;
7953
7954 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7955 {
7956 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7957 return 1;
7958 }
7959 }
7960
7961 return 0;
7962 }
7963
7964 static void
7965 check_status_catch_solib (struct bpstats *bs)
7966 {
7967 struct solib_catchpoint *self
7968 = (struct solib_catchpoint *) bs->breakpoint_at;
7969
7970 if (self->is_load)
7971 {
7972 for (so_list *iter : current_program_space->added_solibs)
7973 {
7974 if (!self->regex
7975 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7976 return;
7977 }
7978 }
7979 else
7980 {
7981 for (const std::string &iter : current_program_space->deleted_solibs)
7982 {
7983 if (!self->regex
7984 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7985 return;
7986 }
7987 }
7988
7989 bs->stop = 0;
7990 bs->print_it = print_it_noop;
7991 }
7992
7993 static enum print_stop_action
7994 print_it_catch_solib (bpstat bs)
7995 {
7996 struct breakpoint *b = bs->breakpoint_at;
7997 struct ui_out *uiout = current_uiout;
7998
7999 annotate_catchpoint (b->number);
8000 maybe_print_thread_hit_breakpoint (uiout);
8001 if (b->disposition == disp_del)
8002 uiout->text ("Temporary catchpoint ");
8003 else
8004 uiout->text ("Catchpoint ");
8005 uiout->field_int ("bkptno", b->number);
8006 uiout->text ("\n");
8007 if (uiout->is_mi_like_p ())
8008 uiout->field_string ("disp", bpdisp_text (b->disposition));
8009 print_solib_event (1);
8010 return PRINT_SRC_AND_LOC;
8011 }
8012
8013 static void
8014 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8015 {
8016 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8017 struct value_print_options opts;
8018 struct ui_out *uiout = current_uiout;
8019
8020 get_user_print_options (&opts);
8021 /* Field 4, the address, is omitted (which makes the columns not
8022 line up too nicely with the headers, but the effect is relatively
8023 readable). */
8024 if (opts.addressprint)
8025 {
8026 annotate_field (4);
8027 uiout->field_skip ("addr");
8028 }
8029
8030 std::string msg;
8031 annotate_field (5);
8032 if (self->is_load)
8033 {
8034 if (self->regex)
8035 msg = string_printf (_("load of library matching %s"), self->regex);
8036 else
8037 msg = _("load of library");
8038 }
8039 else
8040 {
8041 if (self->regex)
8042 msg = string_printf (_("unload of library matching %s"), self->regex);
8043 else
8044 msg = _("unload of library");
8045 }
8046 uiout->field_string ("what", msg);
8047
8048 if (uiout->is_mi_like_p ())
8049 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8050 }
8051
8052 static void
8053 print_mention_catch_solib (struct breakpoint *b)
8054 {
8055 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8056
8057 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8058 self->is_load ? "load" : "unload");
8059 }
8060
8061 static void
8062 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8063 {
8064 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8065
8066 fprintf_unfiltered (fp, "%s %s",
8067 b->disposition == disp_del ? "tcatch" : "catch",
8068 self->is_load ? "load" : "unload");
8069 if (self->regex)
8070 fprintf_unfiltered (fp, " %s", self->regex);
8071 fprintf_unfiltered (fp, "\n");
8072 }
8073
8074 static struct breakpoint_ops catch_solib_breakpoint_ops;
8075
8076 /* Shared helper function (MI and CLI) for creating and installing
8077 a shared object event catchpoint. If IS_LOAD is non-zero then
8078 the events to be caught are load events, otherwise they are
8079 unload events. If IS_TEMP is non-zero the catchpoint is a
8080 temporary one. If ENABLED is non-zero the catchpoint is
8081 created in an enabled state. */
8082
8083 void
8084 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8085 {
8086 struct gdbarch *gdbarch = get_current_arch ();
8087
8088 if (!arg)
8089 arg = "";
8090 arg = skip_spaces (arg);
8091
8092 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8093
8094 if (*arg != '\0')
8095 {
8096 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8097 _("Invalid regexp")));
8098 c->regex = xstrdup (arg);
8099 }
8100
8101 c->is_load = is_load;
8102 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8103 &catch_solib_breakpoint_ops);
8104
8105 c->enable_state = enabled ? bp_enabled : bp_disabled;
8106
8107 install_breakpoint (0, std::move (c), 1);
8108 }
8109
8110 /* A helper function that does all the work for "catch load" and
8111 "catch unload". */
8112
8113 static void
8114 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8115 struct cmd_list_element *command)
8116 {
8117 int tempflag;
8118 const int enabled = 1;
8119
8120 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8121
8122 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8123 }
8124
8125 static void
8126 catch_load_command_1 (const char *arg, int from_tty,
8127 struct cmd_list_element *command)
8128 {
8129 catch_load_or_unload (arg, from_tty, 1, command);
8130 }
8131
8132 static void
8133 catch_unload_command_1 (const char *arg, int from_tty,
8134 struct cmd_list_element *command)
8135 {
8136 catch_load_or_unload (arg, from_tty, 0, command);
8137 }
8138
8139 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8140 is non-zero, then make the breakpoint temporary. If COND_STRING is
8141 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8142 the breakpoint_ops structure associated to the catchpoint. */
8143
8144 void
8145 init_catchpoint (struct breakpoint *b,
8146 struct gdbarch *gdbarch, int tempflag,
8147 const char *cond_string,
8148 const struct breakpoint_ops *ops)
8149 {
8150 symtab_and_line sal;
8151 sal.pspace = current_program_space;
8152
8153 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8154
8155 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8156 b->disposition = tempflag ? disp_del : disp_donttouch;
8157 }
8158
8159 void
8160 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8161 {
8162 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8163 set_breakpoint_number (internal, b);
8164 if (is_tracepoint (b))
8165 set_tracepoint_count (breakpoint_count);
8166 if (!internal)
8167 mention (b);
8168 gdb::observers::breakpoint_created.notify (b);
8169
8170 if (update_gll)
8171 update_global_location_list (UGLL_MAY_INSERT);
8172 }
8173
8174 static void
8175 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8176 int tempflag, const char *cond_string,
8177 const struct breakpoint_ops *ops)
8178 {
8179 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8180
8181 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8182
8183 c->forked_inferior_pid = null_ptid;
8184
8185 install_breakpoint (0, std::move (c), 1);
8186 }
8187
8188 /* Exec catchpoints. */
8189
8190 /* An instance of this type is used to represent an exec catchpoint.
8191 A breakpoint is really of this type iff its ops pointer points to
8192 CATCH_EXEC_BREAKPOINT_OPS. */
8193
8194 struct exec_catchpoint : public breakpoint
8195 {
8196 ~exec_catchpoint () override;
8197
8198 /* Filename of a program whose exec triggered this catchpoint.
8199 This field is only valid immediately after this catchpoint has
8200 triggered. */
8201 char *exec_pathname;
8202 };
8203
8204 /* Exec catchpoint destructor. */
8205
8206 exec_catchpoint::~exec_catchpoint ()
8207 {
8208 xfree (this->exec_pathname);
8209 }
8210
8211 static int
8212 insert_catch_exec (struct bp_location *bl)
8213 {
8214 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8215 }
8216
8217 static int
8218 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8219 {
8220 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8221 }
8222
8223 static int
8224 breakpoint_hit_catch_exec (const struct bp_location *bl,
8225 const address_space *aspace, CORE_ADDR bp_addr,
8226 const struct target_waitstatus *ws)
8227 {
8228 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8229
8230 if (ws->kind != TARGET_WAITKIND_EXECD)
8231 return 0;
8232
8233 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8234 return 1;
8235 }
8236
8237 static enum print_stop_action
8238 print_it_catch_exec (bpstat bs)
8239 {
8240 struct ui_out *uiout = current_uiout;
8241 struct breakpoint *b = bs->breakpoint_at;
8242 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8243
8244 annotate_catchpoint (b->number);
8245 maybe_print_thread_hit_breakpoint (uiout);
8246 if (b->disposition == disp_del)
8247 uiout->text ("Temporary catchpoint ");
8248 else
8249 uiout->text ("Catchpoint ");
8250 if (uiout->is_mi_like_p ())
8251 {
8252 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8253 uiout->field_string ("disp", bpdisp_text (b->disposition));
8254 }
8255 uiout->field_int ("bkptno", b->number);
8256 uiout->text (" (exec'd ");
8257 uiout->field_string ("new-exec", c->exec_pathname);
8258 uiout->text ("), ");
8259
8260 return PRINT_SRC_AND_LOC;
8261 }
8262
8263 static void
8264 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8265 {
8266 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8267 struct value_print_options opts;
8268 struct ui_out *uiout = current_uiout;
8269
8270 get_user_print_options (&opts);
8271
8272 /* Field 4, the address, is omitted (which makes the columns
8273 not line up too nicely with the headers, but the effect
8274 is relatively readable). */
8275 if (opts.addressprint)
8276 uiout->field_skip ("addr");
8277 annotate_field (5);
8278 uiout->text ("exec");
8279 if (c->exec_pathname != NULL)
8280 {
8281 uiout->text (", program \"");
8282 uiout->field_string ("what", c->exec_pathname);
8283 uiout->text ("\" ");
8284 }
8285
8286 if (uiout->is_mi_like_p ())
8287 uiout->field_string ("catch-type", "exec");
8288 }
8289
8290 static void
8291 print_mention_catch_exec (struct breakpoint *b)
8292 {
8293 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8294 }
8295
8296 /* Implement the "print_recreate" breakpoint_ops method for exec
8297 catchpoints. */
8298
8299 static void
8300 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8301 {
8302 fprintf_unfiltered (fp, "catch exec");
8303 print_recreate_thread (b, fp);
8304 }
8305
8306 static struct breakpoint_ops catch_exec_breakpoint_ops;
8307
8308 static int
8309 hw_breakpoint_used_count (void)
8310 {
8311 int i = 0;
8312 struct breakpoint *b;
8313 struct bp_location *bl;
8314
8315 ALL_BREAKPOINTS (b)
8316 {
8317 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8318 for (bl = b->loc; bl; bl = bl->next)
8319 {
8320 /* Special types of hardware breakpoints may use more than
8321 one register. */
8322 i += b->ops->resources_needed (bl);
8323 }
8324 }
8325
8326 return i;
8327 }
8328
8329 /* Returns the resources B would use if it were a hardware
8330 watchpoint. */
8331
8332 static int
8333 hw_watchpoint_use_count (struct breakpoint *b)
8334 {
8335 int i = 0;
8336 struct bp_location *bl;
8337
8338 if (!breakpoint_enabled (b))
8339 return 0;
8340
8341 for (bl = b->loc; bl; bl = bl->next)
8342 {
8343 /* Special types of hardware watchpoints may use more than
8344 one register. */
8345 i += b->ops->resources_needed (bl);
8346 }
8347
8348 return i;
8349 }
8350
8351 /* Returns the sum the used resources of all hardware watchpoints of
8352 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8353 the sum of the used resources of all hardware watchpoints of other
8354 types _not_ TYPE. */
8355
8356 static int
8357 hw_watchpoint_used_count_others (struct breakpoint *except,
8358 enum bptype type, int *other_type_used)
8359 {
8360 int i = 0;
8361 struct breakpoint *b;
8362
8363 *other_type_used = 0;
8364 ALL_BREAKPOINTS (b)
8365 {
8366 if (b == except)
8367 continue;
8368 if (!breakpoint_enabled (b))
8369 continue;
8370
8371 if (b->type == type)
8372 i += hw_watchpoint_use_count (b);
8373 else if (is_hardware_watchpoint (b))
8374 *other_type_used = 1;
8375 }
8376
8377 return i;
8378 }
8379
8380 void
8381 disable_watchpoints_before_interactive_call_start (void)
8382 {
8383 struct breakpoint *b;
8384
8385 ALL_BREAKPOINTS (b)
8386 {
8387 if (is_watchpoint (b) && breakpoint_enabled (b))
8388 {
8389 b->enable_state = bp_call_disabled;
8390 update_global_location_list (UGLL_DONT_INSERT);
8391 }
8392 }
8393 }
8394
8395 void
8396 enable_watchpoints_after_interactive_call_stop (void)
8397 {
8398 struct breakpoint *b;
8399
8400 ALL_BREAKPOINTS (b)
8401 {
8402 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8403 {
8404 b->enable_state = bp_enabled;
8405 update_global_location_list (UGLL_MAY_INSERT);
8406 }
8407 }
8408 }
8409
8410 void
8411 disable_breakpoints_before_startup (void)
8412 {
8413 current_program_space->executing_startup = 1;
8414 update_global_location_list (UGLL_DONT_INSERT);
8415 }
8416
8417 void
8418 enable_breakpoints_after_startup (void)
8419 {
8420 current_program_space->executing_startup = 0;
8421 breakpoint_re_set ();
8422 }
8423
8424 /* Create a new single-step breakpoint for thread THREAD, with no
8425 locations. */
8426
8427 static struct breakpoint *
8428 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8429 {
8430 std::unique_ptr<breakpoint> b (new breakpoint ());
8431
8432 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8433 &momentary_breakpoint_ops);
8434
8435 b->disposition = disp_donttouch;
8436 b->frame_id = null_frame_id;
8437
8438 b->thread = thread;
8439 gdb_assert (b->thread != 0);
8440
8441 return add_to_breakpoint_chain (std::move (b));
8442 }
8443
8444 /* Set a momentary breakpoint of type TYPE at address specified by
8445 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8446 frame. */
8447
8448 breakpoint_up
8449 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8450 struct frame_id frame_id, enum bptype type)
8451 {
8452 struct breakpoint *b;
8453
8454 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8455 tail-called one. */
8456 gdb_assert (!frame_id_artificial_p (frame_id));
8457
8458 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8459 b->enable_state = bp_enabled;
8460 b->disposition = disp_donttouch;
8461 b->frame_id = frame_id;
8462
8463 b->thread = inferior_thread ()->global_num;
8464
8465 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8466
8467 return breakpoint_up (b);
8468 }
8469
8470 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8471 The new breakpoint will have type TYPE, use OPS as its
8472 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8473
8474 static struct breakpoint *
8475 momentary_breakpoint_from_master (struct breakpoint *orig,
8476 enum bptype type,
8477 const struct breakpoint_ops *ops,
8478 int loc_enabled)
8479 {
8480 struct breakpoint *copy;
8481
8482 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8483 copy->loc = allocate_bp_location (copy);
8484 set_breakpoint_location_function (copy->loc, 1);
8485
8486 copy->loc->gdbarch = orig->loc->gdbarch;
8487 copy->loc->requested_address = orig->loc->requested_address;
8488 copy->loc->address = orig->loc->address;
8489 copy->loc->section = orig->loc->section;
8490 copy->loc->pspace = orig->loc->pspace;
8491 copy->loc->probe = orig->loc->probe;
8492 copy->loc->line_number = orig->loc->line_number;
8493 copy->loc->symtab = orig->loc->symtab;
8494 copy->loc->enabled = loc_enabled;
8495 copy->frame_id = orig->frame_id;
8496 copy->thread = orig->thread;
8497 copy->pspace = orig->pspace;
8498
8499 copy->enable_state = bp_enabled;
8500 copy->disposition = disp_donttouch;
8501 copy->number = internal_breakpoint_number--;
8502
8503 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8504 return copy;
8505 }
8506
8507 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8508 ORIG is NULL. */
8509
8510 struct breakpoint *
8511 clone_momentary_breakpoint (struct breakpoint *orig)
8512 {
8513 /* If there's nothing to clone, then return nothing. */
8514 if (orig == NULL)
8515 return NULL;
8516
8517 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8518 }
8519
8520 breakpoint_up
8521 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8522 enum bptype type)
8523 {
8524 struct symtab_and_line sal;
8525
8526 sal = find_pc_line (pc, 0);
8527 sal.pc = pc;
8528 sal.section = find_pc_overlay (pc);
8529 sal.explicit_pc = 1;
8530
8531 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8532 }
8533 \f
8534
8535 /* Tell the user we have just set a breakpoint B. */
8536
8537 static void
8538 mention (struct breakpoint *b)
8539 {
8540 b->ops->print_mention (b);
8541 current_uiout->text ("\n");
8542 }
8543 \f
8544
8545 static int bp_loc_is_permanent (struct bp_location *loc);
8546
8547 static struct bp_location *
8548 add_location_to_breakpoint (struct breakpoint *b,
8549 const struct symtab_and_line *sal)
8550 {
8551 struct bp_location *loc, **tmp;
8552 CORE_ADDR adjusted_address;
8553 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8554
8555 if (loc_gdbarch == NULL)
8556 loc_gdbarch = b->gdbarch;
8557
8558 /* Adjust the breakpoint's address prior to allocating a location.
8559 Once we call allocate_bp_location(), that mostly uninitialized
8560 location will be placed on the location chain. Adjustment of the
8561 breakpoint may cause target_read_memory() to be called and we do
8562 not want its scan of the location chain to find a breakpoint and
8563 location that's only been partially initialized. */
8564 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8565 sal->pc, b->type);
8566
8567 /* Sort the locations by their ADDRESS. */
8568 loc = allocate_bp_location (b);
8569 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8570 tmp = &((*tmp)->next))
8571 ;
8572 loc->next = *tmp;
8573 *tmp = loc;
8574
8575 loc->requested_address = sal->pc;
8576 loc->address = adjusted_address;
8577 loc->pspace = sal->pspace;
8578 loc->probe.prob = sal->prob;
8579 loc->probe.objfile = sal->objfile;
8580 gdb_assert (loc->pspace != NULL);
8581 loc->section = sal->section;
8582 loc->gdbarch = loc_gdbarch;
8583 loc->line_number = sal->line;
8584 loc->symtab = sal->symtab;
8585 loc->symbol = sal->symbol;
8586 loc->msymbol = sal->msymbol;
8587 loc->objfile = sal->objfile;
8588
8589 set_breakpoint_location_function (loc,
8590 sal->explicit_pc || sal->explicit_line);
8591
8592 /* While by definition, permanent breakpoints are already present in the
8593 code, we don't mark the location as inserted. Normally one would expect
8594 that GDB could rely on that breakpoint instruction to stop the program,
8595 thus removing the need to insert its own breakpoint, except that executing
8596 the breakpoint instruction can kill the target instead of reporting a
8597 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8598 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8599 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8600 breakpoint be inserted normally results in QEMU knowing about the GDB
8601 breakpoint, and thus trap before the breakpoint instruction is executed.
8602 (If GDB later needs to continue execution past the permanent breakpoint,
8603 it manually increments the PC, thus avoiding executing the breakpoint
8604 instruction.) */
8605 if (bp_loc_is_permanent (loc))
8606 loc->permanent = 1;
8607
8608 return loc;
8609 }
8610 \f
8611
8612 /* See breakpoint.h. */
8613
8614 int
8615 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8616 {
8617 int len;
8618 CORE_ADDR addr;
8619 const gdb_byte *bpoint;
8620 gdb_byte *target_mem;
8621
8622 addr = address;
8623 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8624
8625 /* Software breakpoints unsupported? */
8626 if (bpoint == NULL)
8627 return 0;
8628
8629 target_mem = (gdb_byte *) alloca (len);
8630
8631 /* Enable the automatic memory restoration from breakpoints while
8632 we read the memory. Otherwise we could say about our temporary
8633 breakpoints they are permanent. */
8634 scoped_restore restore_memory
8635 = make_scoped_restore_show_memory_breakpoints (0);
8636
8637 if (target_read_memory (address, target_mem, len) == 0
8638 && memcmp (target_mem, bpoint, len) == 0)
8639 return 1;
8640
8641 return 0;
8642 }
8643
8644 /* Return 1 if LOC is pointing to a permanent breakpoint,
8645 return 0 otherwise. */
8646
8647 static int
8648 bp_loc_is_permanent (struct bp_location *loc)
8649 {
8650 gdb_assert (loc != NULL);
8651
8652 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8653 attempt to read from the addresses the locations of these breakpoint types
8654 point to. program_breakpoint_here_p, below, will attempt to read
8655 memory. */
8656 if (!breakpoint_address_is_meaningful (loc->owner))
8657 return 0;
8658
8659 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8660 switch_to_program_space_and_thread (loc->pspace);
8661 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8662 }
8663
8664 /* Build a command list for the dprintf corresponding to the current
8665 settings of the dprintf style options. */
8666
8667 static void
8668 update_dprintf_command_list (struct breakpoint *b)
8669 {
8670 char *dprintf_args = b->extra_string;
8671 char *printf_line = NULL;
8672
8673 if (!dprintf_args)
8674 return;
8675
8676 dprintf_args = skip_spaces (dprintf_args);
8677
8678 /* Allow a comma, as it may have terminated a location, but don't
8679 insist on it. */
8680 if (*dprintf_args == ',')
8681 ++dprintf_args;
8682 dprintf_args = skip_spaces (dprintf_args);
8683
8684 if (*dprintf_args != '"')
8685 error (_("Bad format string, missing '\"'."));
8686
8687 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8688 printf_line = xstrprintf ("printf %s", dprintf_args);
8689 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8690 {
8691 if (!dprintf_function)
8692 error (_("No function supplied for dprintf call"));
8693
8694 if (dprintf_channel && strlen (dprintf_channel) > 0)
8695 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8696 dprintf_function,
8697 dprintf_channel,
8698 dprintf_args);
8699 else
8700 printf_line = xstrprintf ("call (void) %s (%s)",
8701 dprintf_function,
8702 dprintf_args);
8703 }
8704 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8705 {
8706 if (target_can_run_breakpoint_commands ())
8707 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8708 else
8709 {
8710 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8711 printf_line = xstrprintf ("printf %s", dprintf_args);
8712 }
8713 }
8714 else
8715 internal_error (__FILE__, __LINE__,
8716 _("Invalid dprintf style."));
8717
8718 gdb_assert (printf_line != NULL);
8719
8720 /* Manufacture a printf sequence. */
8721 struct command_line *printf_cmd_line
8722 = new struct command_line (simple_control, printf_line);
8723 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8724 command_lines_deleter ()));
8725 }
8726
8727 /* Update all dprintf commands, making their command lists reflect
8728 current style settings. */
8729
8730 static void
8731 update_dprintf_commands (const char *args, int from_tty,
8732 struct cmd_list_element *c)
8733 {
8734 struct breakpoint *b;
8735
8736 ALL_BREAKPOINTS (b)
8737 {
8738 if (b->type == bp_dprintf)
8739 update_dprintf_command_list (b);
8740 }
8741 }
8742
8743 /* Create a breakpoint with SAL as location. Use LOCATION
8744 as a description of the location, and COND_STRING
8745 as condition expression. If LOCATION is NULL then create an
8746 "address location" from the address in the SAL. */
8747
8748 static void
8749 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8750 gdb::array_view<const symtab_and_line> sals,
8751 event_location_up &&location,
8752 gdb::unique_xmalloc_ptr<char> filter,
8753 gdb::unique_xmalloc_ptr<char> cond_string,
8754 gdb::unique_xmalloc_ptr<char> extra_string,
8755 enum bptype type, enum bpdisp disposition,
8756 int thread, int task, int ignore_count,
8757 const struct breakpoint_ops *ops, int from_tty,
8758 int enabled, int internal, unsigned flags,
8759 int display_canonical)
8760 {
8761 int i;
8762
8763 if (type == bp_hardware_breakpoint)
8764 {
8765 int target_resources_ok;
8766
8767 i = hw_breakpoint_used_count ();
8768 target_resources_ok =
8769 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8770 i + 1, 0);
8771 if (target_resources_ok == 0)
8772 error (_("No hardware breakpoint support in the target."));
8773 else if (target_resources_ok < 0)
8774 error (_("Hardware breakpoints used exceeds limit."));
8775 }
8776
8777 gdb_assert (!sals.empty ());
8778
8779 for (const auto &sal : sals)
8780 {
8781 struct bp_location *loc;
8782
8783 if (from_tty)
8784 {
8785 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8786 if (!loc_gdbarch)
8787 loc_gdbarch = gdbarch;
8788
8789 describe_other_breakpoints (loc_gdbarch,
8790 sal.pspace, sal.pc, sal.section, thread);
8791 }
8792
8793 if (&sal == &sals[0])
8794 {
8795 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8796 b->thread = thread;
8797 b->task = task;
8798
8799 b->cond_string = cond_string.release ();
8800 b->extra_string = extra_string.release ();
8801 b->ignore_count = ignore_count;
8802 b->enable_state = enabled ? bp_enabled : bp_disabled;
8803 b->disposition = disposition;
8804
8805 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8806 b->loc->inserted = 1;
8807
8808 if (type == bp_static_tracepoint)
8809 {
8810 struct tracepoint *t = (struct tracepoint *) b;
8811 struct static_tracepoint_marker marker;
8812
8813 if (strace_marker_p (b))
8814 {
8815 /* We already know the marker exists, otherwise, we
8816 wouldn't see a sal for it. */
8817 const char *p
8818 = &event_location_to_string (b->location.get ())[3];
8819 const char *endp;
8820
8821 p = skip_spaces (p);
8822
8823 endp = skip_to_space (p);
8824
8825 t->static_trace_marker_id.assign (p, endp - p);
8826
8827 printf_filtered (_("Probed static tracepoint "
8828 "marker \"%s\"\n"),
8829 t->static_trace_marker_id.c_str ());
8830 }
8831 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8832 {
8833 t->static_trace_marker_id = std::move (marker.str_id);
8834
8835 printf_filtered (_("Probed static tracepoint "
8836 "marker \"%s\"\n"),
8837 t->static_trace_marker_id.c_str ());
8838 }
8839 else
8840 warning (_("Couldn't determine the static "
8841 "tracepoint marker to probe"));
8842 }
8843
8844 loc = b->loc;
8845 }
8846 else
8847 {
8848 loc = add_location_to_breakpoint (b, &sal);
8849 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8850 loc->inserted = 1;
8851 }
8852
8853 if (b->cond_string)
8854 {
8855 const char *arg = b->cond_string;
8856
8857 loc->cond = parse_exp_1 (&arg, loc->address,
8858 block_for_pc (loc->address), 0);
8859 if (*arg)
8860 error (_("Garbage '%s' follows condition"), arg);
8861 }
8862
8863 /* Dynamic printf requires and uses additional arguments on the
8864 command line, otherwise it's an error. */
8865 if (type == bp_dprintf)
8866 {
8867 if (b->extra_string)
8868 update_dprintf_command_list (b);
8869 else
8870 error (_("Format string required"));
8871 }
8872 else if (b->extra_string)
8873 error (_("Garbage '%s' at end of command"), b->extra_string);
8874 }
8875
8876 b->display_canonical = display_canonical;
8877 if (location != NULL)
8878 b->location = std::move (location);
8879 else
8880 b->location = new_address_location (b->loc->address, NULL, 0);
8881 b->filter = filter.release ();
8882 }
8883
8884 static void
8885 create_breakpoint_sal (struct gdbarch *gdbarch,
8886 gdb::array_view<const symtab_and_line> sals,
8887 event_location_up &&location,
8888 gdb::unique_xmalloc_ptr<char> filter,
8889 gdb::unique_xmalloc_ptr<char> cond_string,
8890 gdb::unique_xmalloc_ptr<char> extra_string,
8891 enum bptype type, enum bpdisp disposition,
8892 int thread, int task, int ignore_count,
8893 const struct breakpoint_ops *ops, int from_tty,
8894 int enabled, int internal, unsigned flags,
8895 int display_canonical)
8896 {
8897 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8898
8899 init_breakpoint_sal (b.get (), gdbarch,
8900 sals, std::move (location),
8901 std::move (filter),
8902 std::move (cond_string),
8903 std::move (extra_string),
8904 type, disposition,
8905 thread, task, ignore_count,
8906 ops, from_tty,
8907 enabled, internal, flags,
8908 display_canonical);
8909
8910 install_breakpoint (internal, std::move (b), 0);
8911 }
8912
8913 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8914 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8915 value. COND_STRING, if not NULL, specified the condition to be
8916 used for all breakpoints. Essentially the only case where
8917 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8918 function. In that case, it's still not possible to specify
8919 separate conditions for different overloaded functions, so
8920 we take just a single condition string.
8921
8922 NOTE: If the function succeeds, the caller is expected to cleanup
8923 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8924 array contents). If the function fails (error() is called), the
8925 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8926 COND and SALS arrays and each of those arrays contents. */
8927
8928 static void
8929 create_breakpoints_sal (struct gdbarch *gdbarch,
8930 struct linespec_result *canonical,
8931 gdb::unique_xmalloc_ptr<char> cond_string,
8932 gdb::unique_xmalloc_ptr<char> extra_string,
8933 enum bptype type, enum bpdisp disposition,
8934 int thread, int task, int ignore_count,
8935 const struct breakpoint_ops *ops, int from_tty,
8936 int enabled, int internal, unsigned flags)
8937 {
8938 if (canonical->pre_expanded)
8939 gdb_assert (canonical->lsals.size () == 1);
8940
8941 for (const auto &lsal : canonical->lsals)
8942 {
8943 /* Note that 'location' can be NULL in the case of a plain
8944 'break', without arguments. */
8945 event_location_up location
8946 = (canonical->location != NULL
8947 ? copy_event_location (canonical->location.get ()) : NULL);
8948 gdb::unique_xmalloc_ptr<char> filter_string
8949 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8950
8951 create_breakpoint_sal (gdbarch, lsal.sals,
8952 std::move (location),
8953 std::move (filter_string),
8954 std::move (cond_string),
8955 std::move (extra_string),
8956 type, disposition,
8957 thread, task, ignore_count, ops,
8958 from_tty, enabled, internal, flags,
8959 canonical->special_display);
8960 }
8961 }
8962
8963 /* Parse LOCATION which is assumed to be a SAL specification possibly
8964 followed by conditionals. On return, SALS contains an array of SAL
8965 addresses found. LOCATION points to the end of the SAL (for
8966 linespec locations).
8967
8968 The array and the line spec strings are allocated on the heap, it is
8969 the caller's responsibility to free them. */
8970
8971 static void
8972 parse_breakpoint_sals (const struct event_location *location,
8973 struct linespec_result *canonical)
8974 {
8975 struct symtab_and_line cursal;
8976
8977 if (event_location_type (location) == LINESPEC_LOCATION)
8978 {
8979 const char *spec = get_linespec_location (location)->spec_string;
8980
8981 if (spec == NULL)
8982 {
8983 /* The last displayed codepoint, if it's valid, is our default
8984 breakpoint address. */
8985 if (last_displayed_sal_is_valid ())
8986 {
8987 /* Set sal's pspace, pc, symtab, and line to the values
8988 corresponding to the last call to print_frame_info.
8989 Be sure to reinitialize LINE with NOTCURRENT == 0
8990 as the breakpoint line number is inappropriate otherwise.
8991 find_pc_line would adjust PC, re-set it back. */
8992 symtab_and_line sal = get_last_displayed_sal ();
8993 CORE_ADDR pc = sal.pc;
8994
8995 sal = find_pc_line (pc, 0);
8996
8997 /* "break" without arguments is equivalent to "break *PC"
8998 where PC is the last displayed codepoint's address. So
8999 make sure to set sal.explicit_pc to prevent GDB from
9000 trying to expand the list of sals to include all other
9001 instances with the same symtab and line. */
9002 sal.pc = pc;
9003 sal.explicit_pc = 1;
9004
9005 struct linespec_sals lsal;
9006 lsal.sals = {sal};
9007 lsal.canonical = NULL;
9008
9009 canonical->lsals.push_back (std::move (lsal));
9010 return;
9011 }
9012 else
9013 error (_("No default breakpoint address now."));
9014 }
9015 }
9016
9017 /* Force almost all breakpoints to be in terms of the
9018 current_source_symtab (which is decode_line_1's default).
9019 This should produce the results we want almost all of the
9020 time while leaving default_breakpoint_* alone.
9021
9022 ObjC: However, don't match an Objective-C method name which
9023 may have a '+' or '-' succeeded by a '['. */
9024 cursal = get_current_source_symtab_and_line ();
9025 if (last_displayed_sal_is_valid ())
9026 {
9027 const char *spec = NULL;
9028
9029 if (event_location_type (location) == LINESPEC_LOCATION)
9030 spec = get_linespec_location (location)->spec_string;
9031
9032 if (!cursal.symtab
9033 || (spec != NULL
9034 && strchr ("+-", spec[0]) != NULL
9035 && spec[1] != '['))
9036 {
9037 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9038 get_last_displayed_symtab (),
9039 get_last_displayed_line (),
9040 canonical, NULL, NULL);
9041 return;
9042 }
9043 }
9044
9045 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9046 cursal.symtab, cursal.line, canonical, NULL, NULL);
9047 }
9048
9049
9050 /* Convert each SAL into a real PC. Verify that the PC can be
9051 inserted as a breakpoint. If it can't throw an error. */
9052
9053 static void
9054 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9055 {
9056 for (auto &sal : sals)
9057 resolve_sal_pc (&sal);
9058 }
9059
9060 /* Fast tracepoints may have restrictions on valid locations. For
9061 instance, a fast tracepoint using a jump instead of a trap will
9062 likely have to overwrite more bytes than a trap would, and so can
9063 only be placed where the instruction is longer than the jump, or a
9064 multi-instruction sequence does not have a jump into the middle of
9065 it, etc. */
9066
9067 static void
9068 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9069 gdb::array_view<const symtab_and_line> sals)
9070 {
9071 for (const auto &sal : sals)
9072 {
9073 struct gdbarch *sarch;
9074
9075 sarch = get_sal_arch (sal);
9076 /* We fall back to GDBARCH if there is no architecture
9077 associated with SAL. */
9078 if (sarch == NULL)
9079 sarch = gdbarch;
9080 std::string msg;
9081 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9082 error (_("May not have a fast tracepoint at %s%s"),
9083 paddress (sarch, sal.pc), msg.c_str ());
9084 }
9085 }
9086
9087 /* Given TOK, a string specification of condition and thread, as
9088 accepted by the 'break' command, extract the condition
9089 string and thread number and set *COND_STRING and *THREAD.
9090 PC identifies the context at which the condition should be parsed.
9091 If no condition is found, *COND_STRING is set to NULL.
9092 If no thread is found, *THREAD is set to -1. */
9093
9094 static void
9095 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9096 char **cond_string, int *thread, int *task,
9097 char **rest)
9098 {
9099 *cond_string = NULL;
9100 *thread = -1;
9101 *task = 0;
9102 *rest = NULL;
9103
9104 while (tok && *tok)
9105 {
9106 const char *end_tok;
9107 int toklen;
9108 const char *cond_start = NULL;
9109 const char *cond_end = NULL;
9110
9111 tok = skip_spaces (tok);
9112
9113 if ((*tok == '"' || *tok == ',') && rest)
9114 {
9115 *rest = savestring (tok, strlen (tok));
9116 return;
9117 }
9118
9119 end_tok = skip_to_space (tok);
9120
9121 toklen = end_tok - tok;
9122
9123 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9124 {
9125 tok = cond_start = end_tok + 1;
9126 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9127 cond_end = tok;
9128 *cond_string = savestring (cond_start, cond_end - cond_start);
9129 }
9130 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9131 {
9132 const char *tmptok;
9133 struct thread_info *thr;
9134
9135 tok = end_tok + 1;
9136 thr = parse_thread_id (tok, &tmptok);
9137 if (tok == tmptok)
9138 error (_("Junk after thread keyword."));
9139 *thread = thr->global_num;
9140 tok = tmptok;
9141 }
9142 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9143 {
9144 char *tmptok;
9145
9146 tok = end_tok + 1;
9147 *task = strtol (tok, &tmptok, 0);
9148 if (tok == tmptok)
9149 error (_("Junk after task keyword."));
9150 if (!valid_task_id (*task))
9151 error (_("Unknown task %d."), *task);
9152 tok = tmptok;
9153 }
9154 else if (rest)
9155 {
9156 *rest = savestring (tok, strlen (tok));
9157 return;
9158 }
9159 else
9160 error (_("Junk at end of arguments."));
9161 }
9162 }
9163
9164 /* Decode a static tracepoint marker spec. */
9165
9166 static std::vector<symtab_and_line>
9167 decode_static_tracepoint_spec (const char **arg_p)
9168 {
9169 const char *p = &(*arg_p)[3];
9170 const char *endp;
9171
9172 p = skip_spaces (p);
9173
9174 endp = skip_to_space (p);
9175
9176 std::string marker_str (p, endp - p);
9177
9178 std::vector<static_tracepoint_marker> markers
9179 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9180 if (markers.empty ())
9181 error (_("No known static tracepoint marker named %s"),
9182 marker_str.c_str ());
9183
9184 std::vector<symtab_and_line> sals;
9185 sals.reserve (markers.size ());
9186
9187 for (const static_tracepoint_marker &marker : markers)
9188 {
9189 symtab_and_line sal = find_pc_line (marker.address, 0);
9190 sal.pc = marker.address;
9191 sals.push_back (sal);
9192 }
9193
9194 *arg_p = endp;
9195 return sals;
9196 }
9197
9198 /* See breakpoint.h. */
9199
9200 int
9201 create_breakpoint (struct gdbarch *gdbarch,
9202 const struct event_location *location,
9203 const char *cond_string,
9204 int thread, const char *extra_string,
9205 int parse_extra,
9206 int tempflag, enum bptype type_wanted,
9207 int ignore_count,
9208 enum auto_boolean pending_break_support,
9209 const struct breakpoint_ops *ops,
9210 int from_tty, int enabled, int internal,
9211 unsigned flags)
9212 {
9213 struct linespec_result canonical;
9214 int pending = 0;
9215 int task = 0;
9216 int prev_bkpt_count = breakpoint_count;
9217
9218 gdb_assert (ops != NULL);
9219
9220 /* If extra_string isn't useful, set it to NULL. */
9221 if (extra_string != NULL && *extra_string == '\0')
9222 extra_string = NULL;
9223
9224 try
9225 {
9226 ops->create_sals_from_location (location, &canonical, type_wanted);
9227 }
9228 catch (const gdb_exception_error &e)
9229 {
9230 /* If caller is interested in rc value from parse, set
9231 value. */
9232 if (e.error == NOT_FOUND_ERROR)
9233 {
9234 /* If pending breakpoint support is turned off, throw
9235 error. */
9236
9237 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9238 throw;
9239
9240 exception_print (gdb_stderr, e);
9241
9242 /* If pending breakpoint support is auto query and the user
9243 selects no, then simply return the error code. */
9244 if (pending_break_support == AUTO_BOOLEAN_AUTO
9245 && !nquery (_("Make %s pending on future shared library load? "),
9246 bptype_string (type_wanted)))
9247 return 0;
9248
9249 /* At this point, either the user was queried about setting
9250 a pending breakpoint and selected yes, or pending
9251 breakpoint behavior is on and thus a pending breakpoint
9252 is defaulted on behalf of the user. */
9253 pending = 1;
9254 }
9255 else
9256 throw;
9257 }
9258
9259 if (!pending && canonical.lsals.empty ())
9260 return 0;
9261
9262 /* Resolve all line numbers to PC's and verify that the addresses
9263 are ok for the target. */
9264 if (!pending)
9265 {
9266 for (auto &lsal : canonical.lsals)
9267 breakpoint_sals_to_pc (lsal.sals);
9268 }
9269
9270 /* Fast tracepoints may have additional restrictions on location. */
9271 if (!pending && type_wanted == bp_fast_tracepoint)
9272 {
9273 for (const auto &lsal : canonical.lsals)
9274 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9275 }
9276
9277 /* Verify that condition can be parsed, before setting any
9278 breakpoints. Allocate a separate condition expression for each
9279 breakpoint. */
9280 if (!pending)
9281 {
9282 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9283 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9284
9285 if (parse_extra)
9286 {
9287 char *rest;
9288 char *cond;
9289
9290 const linespec_sals &lsal = canonical.lsals[0];
9291
9292 /* Here we only parse 'arg' to separate condition
9293 from thread number, so parsing in context of first
9294 sal is OK. When setting the breakpoint we'll
9295 re-parse it in context of each sal. */
9296
9297 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9298 &cond, &thread, &task, &rest);
9299 cond_string_copy.reset (cond);
9300 extra_string_copy.reset (rest);
9301 }
9302 else
9303 {
9304 if (type_wanted != bp_dprintf
9305 && extra_string != NULL && *extra_string != '\0')
9306 error (_("Garbage '%s' at end of location"), extra_string);
9307
9308 /* Create a private copy of condition string. */
9309 if (cond_string)
9310 cond_string_copy.reset (xstrdup (cond_string));
9311 /* Create a private copy of any extra string. */
9312 if (extra_string)
9313 extra_string_copy.reset (xstrdup (extra_string));
9314 }
9315
9316 ops->create_breakpoints_sal (gdbarch, &canonical,
9317 std::move (cond_string_copy),
9318 std::move (extra_string_copy),
9319 type_wanted,
9320 tempflag ? disp_del : disp_donttouch,
9321 thread, task, ignore_count, ops,
9322 from_tty, enabled, internal, flags);
9323 }
9324 else
9325 {
9326 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9327
9328 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9329 b->location = copy_event_location (location);
9330
9331 if (parse_extra)
9332 b->cond_string = NULL;
9333 else
9334 {
9335 /* Create a private copy of condition string. */
9336 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9337 b->thread = thread;
9338 }
9339
9340 /* Create a private copy of any extra string. */
9341 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9342 b->ignore_count = ignore_count;
9343 b->disposition = tempflag ? disp_del : disp_donttouch;
9344 b->condition_not_parsed = 1;
9345 b->enable_state = enabled ? bp_enabled : bp_disabled;
9346 if ((type_wanted != bp_breakpoint
9347 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9348 b->pspace = current_program_space;
9349
9350 install_breakpoint (internal, std::move (b), 0);
9351 }
9352
9353 if (canonical.lsals.size () > 1)
9354 {
9355 warning (_("Multiple breakpoints were set.\nUse the "
9356 "\"delete\" command to delete unwanted breakpoints."));
9357 prev_breakpoint_count = prev_bkpt_count;
9358 }
9359
9360 update_global_location_list (UGLL_MAY_INSERT);
9361
9362 return 1;
9363 }
9364
9365 /* Set a breakpoint.
9366 ARG is a string describing breakpoint address,
9367 condition, and thread.
9368 FLAG specifies if a breakpoint is hardware on,
9369 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9370 and BP_TEMPFLAG. */
9371
9372 static void
9373 break_command_1 (const char *arg, int flag, int from_tty)
9374 {
9375 int tempflag = flag & BP_TEMPFLAG;
9376 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9377 ? bp_hardware_breakpoint
9378 : bp_breakpoint);
9379 struct breakpoint_ops *ops;
9380
9381 event_location_up location = string_to_event_location (&arg, current_language);
9382
9383 /* Matching breakpoints on probes. */
9384 if (location != NULL
9385 && event_location_type (location.get ()) == PROBE_LOCATION)
9386 ops = &bkpt_probe_breakpoint_ops;
9387 else
9388 ops = &bkpt_breakpoint_ops;
9389
9390 create_breakpoint (get_current_arch (),
9391 location.get (),
9392 NULL, 0, arg, 1 /* parse arg */,
9393 tempflag, type_wanted,
9394 0 /* Ignore count */,
9395 pending_break_support,
9396 ops,
9397 from_tty,
9398 1 /* enabled */,
9399 0 /* internal */,
9400 0);
9401 }
9402
9403 /* Helper function for break_command_1 and disassemble_command. */
9404
9405 void
9406 resolve_sal_pc (struct symtab_and_line *sal)
9407 {
9408 CORE_ADDR pc;
9409
9410 if (sal->pc == 0 && sal->symtab != NULL)
9411 {
9412 if (!find_line_pc (sal->symtab, sal->line, &pc))
9413 error (_("No line %d in file \"%s\"."),
9414 sal->line, symtab_to_filename_for_display (sal->symtab));
9415 sal->pc = pc;
9416
9417 /* If this SAL corresponds to a breakpoint inserted using a line
9418 number, then skip the function prologue if necessary. */
9419 if (sal->explicit_line)
9420 skip_prologue_sal (sal);
9421 }
9422
9423 if (sal->section == 0 && sal->symtab != NULL)
9424 {
9425 const struct blockvector *bv;
9426 const struct block *b;
9427 struct symbol *sym;
9428
9429 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9430 SYMTAB_COMPUNIT (sal->symtab));
9431 if (bv != NULL)
9432 {
9433 sym = block_linkage_function (b);
9434 if (sym != NULL)
9435 {
9436 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9437 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9438 sym);
9439 }
9440 else
9441 {
9442 /* It really is worthwhile to have the section, so we'll
9443 just have to look harder. This case can be executed
9444 if we have line numbers but no functions (as can
9445 happen in assembly source). */
9446
9447 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9448 switch_to_program_space_and_thread (sal->pspace);
9449
9450 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9451 if (msym.minsym)
9452 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9453 }
9454 }
9455 }
9456 }
9457
9458 void
9459 break_command (const char *arg, int from_tty)
9460 {
9461 break_command_1 (arg, 0, from_tty);
9462 }
9463
9464 void
9465 tbreak_command (const char *arg, int from_tty)
9466 {
9467 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9468 }
9469
9470 static void
9471 hbreak_command (const char *arg, int from_tty)
9472 {
9473 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9474 }
9475
9476 static void
9477 thbreak_command (const char *arg, int from_tty)
9478 {
9479 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9480 }
9481
9482 static void
9483 stop_command (const char *arg, int from_tty)
9484 {
9485 printf_filtered (_("Specify the type of breakpoint to set.\n\
9486 Usage: stop in <function | address>\n\
9487 stop at <line>\n"));
9488 }
9489
9490 static void
9491 stopin_command (const char *arg, int from_tty)
9492 {
9493 int badInput = 0;
9494
9495 if (arg == NULL)
9496 badInput = 1;
9497 else if (*arg != '*')
9498 {
9499 const char *argptr = arg;
9500 int hasColon = 0;
9501
9502 /* Look for a ':'. If this is a line number specification, then
9503 say it is bad, otherwise, it should be an address or
9504 function/method name. */
9505 while (*argptr && !hasColon)
9506 {
9507 hasColon = (*argptr == ':');
9508 argptr++;
9509 }
9510
9511 if (hasColon)
9512 badInput = (*argptr != ':'); /* Not a class::method */
9513 else
9514 badInput = isdigit (*arg); /* a simple line number */
9515 }
9516
9517 if (badInput)
9518 printf_filtered (_("Usage: stop in <function | address>\n"));
9519 else
9520 break_command_1 (arg, 0, from_tty);
9521 }
9522
9523 static void
9524 stopat_command (const char *arg, int from_tty)
9525 {
9526 int badInput = 0;
9527
9528 if (arg == NULL || *arg == '*') /* no line number */
9529 badInput = 1;
9530 else
9531 {
9532 const char *argptr = arg;
9533 int hasColon = 0;
9534
9535 /* Look for a ':'. If there is a '::' then get out, otherwise
9536 it is probably a line number. */
9537 while (*argptr && !hasColon)
9538 {
9539 hasColon = (*argptr == ':');
9540 argptr++;
9541 }
9542
9543 if (hasColon)
9544 badInput = (*argptr == ':'); /* we have class::method */
9545 else
9546 badInput = !isdigit (*arg); /* not a line number */
9547 }
9548
9549 if (badInput)
9550 printf_filtered (_("Usage: stop at LINE\n"));
9551 else
9552 break_command_1 (arg, 0, from_tty);
9553 }
9554
9555 /* The dynamic printf command is mostly like a regular breakpoint, but
9556 with a prewired command list consisting of a single output command,
9557 built from extra arguments supplied on the dprintf command
9558 line. */
9559
9560 static void
9561 dprintf_command (const char *arg, int from_tty)
9562 {
9563 event_location_up location = string_to_event_location (&arg, current_language);
9564
9565 /* If non-NULL, ARG should have been advanced past the location;
9566 the next character must be ','. */
9567 if (arg != NULL)
9568 {
9569 if (arg[0] != ',' || arg[1] == '\0')
9570 error (_("Format string required"));
9571 else
9572 {
9573 /* Skip the comma. */
9574 ++arg;
9575 }
9576 }
9577
9578 create_breakpoint (get_current_arch (),
9579 location.get (),
9580 NULL, 0, arg, 1 /* parse arg */,
9581 0, bp_dprintf,
9582 0 /* Ignore count */,
9583 pending_break_support,
9584 &dprintf_breakpoint_ops,
9585 from_tty,
9586 1 /* enabled */,
9587 0 /* internal */,
9588 0);
9589 }
9590
9591 static void
9592 agent_printf_command (const char *arg, int from_tty)
9593 {
9594 error (_("May only run agent-printf on the target"));
9595 }
9596
9597 /* Implement the "breakpoint_hit" breakpoint_ops method for
9598 ranged breakpoints. */
9599
9600 static int
9601 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9602 const address_space *aspace,
9603 CORE_ADDR bp_addr,
9604 const struct target_waitstatus *ws)
9605 {
9606 if (ws->kind != TARGET_WAITKIND_STOPPED
9607 || ws->value.sig != GDB_SIGNAL_TRAP)
9608 return 0;
9609
9610 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9611 bl->length, aspace, bp_addr);
9612 }
9613
9614 /* Implement the "resources_needed" breakpoint_ops method for
9615 ranged breakpoints. */
9616
9617 static int
9618 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9619 {
9620 return target_ranged_break_num_registers ();
9621 }
9622
9623 /* Implement the "print_it" breakpoint_ops method for
9624 ranged breakpoints. */
9625
9626 static enum print_stop_action
9627 print_it_ranged_breakpoint (bpstat bs)
9628 {
9629 struct breakpoint *b = bs->breakpoint_at;
9630 struct bp_location *bl = b->loc;
9631 struct ui_out *uiout = current_uiout;
9632
9633 gdb_assert (b->type == bp_hardware_breakpoint);
9634
9635 /* Ranged breakpoints have only one location. */
9636 gdb_assert (bl && bl->next == NULL);
9637
9638 annotate_breakpoint (b->number);
9639
9640 maybe_print_thread_hit_breakpoint (uiout);
9641
9642 if (b->disposition == disp_del)
9643 uiout->text ("Temporary ranged breakpoint ");
9644 else
9645 uiout->text ("Ranged breakpoint ");
9646 if (uiout->is_mi_like_p ())
9647 {
9648 uiout->field_string ("reason",
9649 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9650 uiout->field_string ("disp", bpdisp_text (b->disposition));
9651 }
9652 uiout->field_int ("bkptno", b->number);
9653 uiout->text (", ");
9654
9655 return PRINT_SRC_AND_LOC;
9656 }
9657
9658 /* Implement the "print_one" breakpoint_ops method for
9659 ranged breakpoints. */
9660
9661 static void
9662 print_one_ranged_breakpoint (struct breakpoint *b,
9663 struct bp_location **last_loc)
9664 {
9665 struct bp_location *bl = b->loc;
9666 struct value_print_options opts;
9667 struct ui_out *uiout = current_uiout;
9668
9669 /* Ranged breakpoints have only one location. */
9670 gdb_assert (bl && bl->next == NULL);
9671
9672 get_user_print_options (&opts);
9673
9674 if (opts.addressprint)
9675 /* We don't print the address range here, it will be printed later
9676 by print_one_detail_ranged_breakpoint. */
9677 uiout->field_skip ("addr");
9678 annotate_field (5);
9679 print_breakpoint_location (b, bl);
9680 *last_loc = bl;
9681 }
9682
9683 /* Implement the "print_one_detail" breakpoint_ops method for
9684 ranged breakpoints. */
9685
9686 static void
9687 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9688 struct ui_out *uiout)
9689 {
9690 CORE_ADDR address_start, address_end;
9691 struct bp_location *bl = b->loc;
9692 string_file stb;
9693
9694 gdb_assert (bl);
9695
9696 address_start = bl->address;
9697 address_end = address_start + bl->length - 1;
9698
9699 uiout->text ("\taddress range: ");
9700 stb.printf ("[%s, %s]",
9701 print_core_address (bl->gdbarch, address_start),
9702 print_core_address (bl->gdbarch, address_end));
9703 uiout->field_stream ("addr", stb);
9704 uiout->text ("\n");
9705 }
9706
9707 /* Implement the "print_mention" breakpoint_ops method for
9708 ranged breakpoints. */
9709
9710 static void
9711 print_mention_ranged_breakpoint (struct breakpoint *b)
9712 {
9713 struct bp_location *bl = b->loc;
9714 struct ui_out *uiout = current_uiout;
9715
9716 gdb_assert (bl);
9717 gdb_assert (b->type == bp_hardware_breakpoint);
9718
9719 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9720 b->number, paddress (bl->gdbarch, bl->address),
9721 paddress (bl->gdbarch, bl->address + bl->length - 1));
9722 }
9723
9724 /* Implement the "print_recreate" breakpoint_ops method for
9725 ranged breakpoints. */
9726
9727 static void
9728 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9729 {
9730 fprintf_unfiltered (fp, "break-range %s, %s",
9731 event_location_to_string (b->location.get ()),
9732 event_location_to_string (b->location_range_end.get ()));
9733 print_recreate_thread (b, fp);
9734 }
9735
9736 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9737
9738 static struct breakpoint_ops ranged_breakpoint_ops;
9739
9740 /* Find the address where the end of the breakpoint range should be
9741 placed, given the SAL of the end of the range. This is so that if
9742 the user provides a line number, the end of the range is set to the
9743 last instruction of the given line. */
9744
9745 static CORE_ADDR
9746 find_breakpoint_range_end (struct symtab_and_line sal)
9747 {
9748 CORE_ADDR end;
9749
9750 /* If the user provided a PC value, use it. Otherwise,
9751 find the address of the end of the given location. */
9752 if (sal.explicit_pc)
9753 end = sal.pc;
9754 else
9755 {
9756 int ret;
9757 CORE_ADDR start;
9758
9759 ret = find_line_pc_range (sal, &start, &end);
9760 if (!ret)
9761 error (_("Could not find location of the end of the range."));
9762
9763 /* find_line_pc_range returns the start of the next line. */
9764 end--;
9765 }
9766
9767 return end;
9768 }
9769
9770 /* Implement the "break-range" CLI command. */
9771
9772 static void
9773 break_range_command (const char *arg, int from_tty)
9774 {
9775 const char *arg_start;
9776 struct linespec_result canonical_start, canonical_end;
9777 int bp_count, can_use_bp, length;
9778 CORE_ADDR end;
9779 struct breakpoint *b;
9780
9781 /* We don't support software ranged breakpoints. */
9782 if (target_ranged_break_num_registers () < 0)
9783 error (_("This target does not support hardware ranged breakpoints."));
9784
9785 bp_count = hw_breakpoint_used_count ();
9786 bp_count += target_ranged_break_num_registers ();
9787 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9788 bp_count, 0);
9789 if (can_use_bp < 0)
9790 error (_("Hardware breakpoints used exceeds limit."));
9791
9792 arg = skip_spaces (arg);
9793 if (arg == NULL || arg[0] == '\0')
9794 error(_("No address range specified."));
9795
9796 arg_start = arg;
9797 event_location_up start_location = string_to_event_location (&arg,
9798 current_language);
9799 parse_breakpoint_sals (start_location.get (), &canonical_start);
9800
9801 if (arg[0] != ',')
9802 error (_("Too few arguments."));
9803 else if (canonical_start.lsals.empty ())
9804 error (_("Could not find location of the beginning of the range."));
9805
9806 const linespec_sals &lsal_start = canonical_start.lsals[0];
9807
9808 if (canonical_start.lsals.size () > 1
9809 || lsal_start.sals.size () != 1)
9810 error (_("Cannot create a ranged breakpoint with multiple locations."));
9811
9812 const symtab_and_line &sal_start = lsal_start.sals[0];
9813 std::string addr_string_start (arg_start, arg - arg_start);
9814
9815 arg++; /* Skip the comma. */
9816 arg = skip_spaces (arg);
9817
9818 /* Parse the end location. */
9819
9820 arg_start = arg;
9821
9822 /* We call decode_line_full directly here instead of using
9823 parse_breakpoint_sals because we need to specify the start location's
9824 symtab and line as the default symtab and line for the end of the
9825 range. This makes it possible to have ranges like "foo.c:27, +14",
9826 where +14 means 14 lines from the start location. */
9827 event_location_up end_location = string_to_event_location (&arg,
9828 current_language);
9829 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9830 sal_start.symtab, sal_start.line,
9831 &canonical_end, NULL, NULL);
9832
9833 if (canonical_end.lsals.empty ())
9834 error (_("Could not find location of the end of the range."));
9835
9836 const linespec_sals &lsal_end = canonical_end.lsals[0];
9837 if (canonical_end.lsals.size () > 1
9838 || lsal_end.sals.size () != 1)
9839 error (_("Cannot create a ranged breakpoint with multiple locations."));
9840
9841 const symtab_and_line &sal_end = lsal_end.sals[0];
9842
9843 end = find_breakpoint_range_end (sal_end);
9844 if (sal_start.pc > end)
9845 error (_("Invalid address range, end precedes start."));
9846
9847 length = end - sal_start.pc + 1;
9848 if (length < 0)
9849 /* Length overflowed. */
9850 error (_("Address range too large."));
9851 else if (length == 1)
9852 {
9853 /* This range is simple enough to be handled by
9854 the `hbreak' command. */
9855 hbreak_command (&addr_string_start[0], 1);
9856
9857 return;
9858 }
9859
9860 /* Now set up the breakpoint. */
9861 b = set_raw_breakpoint (get_current_arch (), sal_start,
9862 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9863 set_breakpoint_count (breakpoint_count + 1);
9864 b->number = breakpoint_count;
9865 b->disposition = disp_donttouch;
9866 b->location = std::move (start_location);
9867 b->location_range_end = std::move (end_location);
9868 b->loc->length = length;
9869
9870 mention (b);
9871 gdb::observers::breakpoint_created.notify (b);
9872 update_global_location_list (UGLL_MAY_INSERT);
9873 }
9874
9875 /* Return non-zero if EXP is verified as constant. Returned zero
9876 means EXP is variable. Also the constant detection may fail for
9877 some constant expressions and in such case still falsely return
9878 zero. */
9879
9880 static int
9881 watchpoint_exp_is_const (const struct expression *exp)
9882 {
9883 int i = exp->nelts;
9884
9885 while (i > 0)
9886 {
9887 int oplenp, argsp;
9888
9889 /* We are only interested in the descriptor of each element. */
9890 operator_length (exp, i, &oplenp, &argsp);
9891 i -= oplenp;
9892
9893 switch (exp->elts[i].opcode)
9894 {
9895 case BINOP_ADD:
9896 case BINOP_SUB:
9897 case BINOP_MUL:
9898 case BINOP_DIV:
9899 case BINOP_REM:
9900 case BINOP_MOD:
9901 case BINOP_LSH:
9902 case BINOP_RSH:
9903 case BINOP_LOGICAL_AND:
9904 case BINOP_LOGICAL_OR:
9905 case BINOP_BITWISE_AND:
9906 case BINOP_BITWISE_IOR:
9907 case BINOP_BITWISE_XOR:
9908 case BINOP_EQUAL:
9909 case BINOP_NOTEQUAL:
9910 case BINOP_LESS:
9911 case BINOP_GTR:
9912 case BINOP_LEQ:
9913 case BINOP_GEQ:
9914 case BINOP_REPEAT:
9915 case BINOP_COMMA:
9916 case BINOP_EXP:
9917 case BINOP_MIN:
9918 case BINOP_MAX:
9919 case BINOP_INTDIV:
9920 case BINOP_CONCAT:
9921 case TERNOP_COND:
9922 case TERNOP_SLICE:
9923
9924 case OP_LONG:
9925 case OP_FLOAT:
9926 case OP_LAST:
9927 case OP_COMPLEX:
9928 case OP_STRING:
9929 case OP_ARRAY:
9930 case OP_TYPE:
9931 case OP_TYPEOF:
9932 case OP_DECLTYPE:
9933 case OP_TYPEID:
9934 case OP_NAME:
9935 case OP_OBJC_NSSTRING:
9936
9937 case UNOP_NEG:
9938 case UNOP_LOGICAL_NOT:
9939 case UNOP_COMPLEMENT:
9940 case UNOP_ADDR:
9941 case UNOP_HIGH:
9942 case UNOP_CAST:
9943
9944 case UNOP_CAST_TYPE:
9945 case UNOP_REINTERPRET_CAST:
9946 case UNOP_DYNAMIC_CAST:
9947 /* Unary, binary and ternary operators: We have to check
9948 their operands. If they are constant, then so is the
9949 result of that operation. For instance, if A and B are
9950 determined to be constants, then so is "A + B".
9951
9952 UNOP_IND is one exception to the rule above, because the
9953 value of *ADDR is not necessarily a constant, even when
9954 ADDR is. */
9955 break;
9956
9957 case OP_VAR_VALUE:
9958 /* Check whether the associated symbol is a constant.
9959
9960 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9961 possible that a buggy compiler could mark a variable as
9962 constant even when it is not, and TYPE_CONST would return
9963 true in this case, while SYMBOL_CLASS wouldn't.
9964
9965 We also have to check for function symbols because they
9966 are always constant. */
9967 {
9968 struct symbol *s = exp->elts[i + 2].symbol;
9969
9970 if (SYMBOL_CLASS (s) != LOC_BLOCK
9971 && SYMBOL_CLASS (s) != LOC_CONST
9972 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9973 return 0;
9974 break;
9975 }
9976
9977 /* The default action is to return 0 because we are using
9978 the optimistic approach here: If we don't know something,
9979 then it is not a constant. */
9980 default:
9981 return 0;
9982 }
9983 }
9984
9985 return 1;
9986 }
9987
9988 /* Watchpoint destructor. */
9989
9990 watchpoint::~watchpoint ()
9991 {
9992 xfree (this->exp_string);
9993 xfree (this->exp_string_reparse);
9994 }
9995
9996 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9997
9998 static void
9999 re_set_watchpoint (struct breakpoint *b)
10000 {
10001 struct watchpoint *w = (struct watchpoint *) b;
10002
10003 /* Watchpoint can be either on expression using entirely global
10004 variables, or it can be on local variables.
10005
10006 Watchpoints of the first kind are never auto-deleted, and even
10007 persist across program restarts. Since they can use variables
10008 from shared libraries, we need to reparse expression as libraries
10009 are loaded and unloaded.
10010
10011 Watchpoints on local variables can also change meaning as result
10012 of solib event. For example, if a watchpoint uses both a local
10013 and a global variables in expression, it's a local watchpoint,
10014 but unloading of a shared library will make the expression
10015 invalid. This is not a very common use case, but we still
10016 re-evaluate expression, to avoid surprises to the user.
10017
10018 Note that for local watchpoints, we re-evaluate it only if
10019 watchpoints frame id is still valid. If it's not, it means the
10020 watchpoint is out of scope and will be deleted soon. In fact,
10021 I'm not sure we'll ever be called in this case.
10022
10023 If a local watchpoint's frame id is still valid, then
10024 w->exp_valid_block is likewise valid, and we can safely use it.
10025
10026 Don't do anything about disabled watchpoints, since they will be
10027 reevaluated again when enabled. */
10028 update_watchpoint (w, 1 /* reparse */);
10029 }
10030
10031 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10032
10033 static int
10034 insert_watchpoint (struct bp_location *bl)
10035 {
10036 struct watchpoint *w = (struct watchpoint *) bl->owner;
10037 int length = w->exact ? 1 : bl->length;
10038
10039 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10040 w->cond_exp.get ());
10041 }
10042
10043 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10044
10045 static int
10046 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10047 {
10048 struct watchpoint *w = (struct watchpoint *) bl->owner;
10049 int length = w->exact ? 1 : bl->length;
10050
10051 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10052 w->cond_exp.get ());
10053 }
10054
10055 static int
10056 breakpoint_hit_watchpoint (const struct bp_location *bl,
10057 const address_space *aspace, CORE_ADDR bp_addr,
10058 const struct target_waitstatus *ws)
10059 {
10060 struct breakpoint *b = bl->owner;
10061 struct watchpoint *w = (struct watchpoint *) b;
10062
10063 /* Continuable hardware watchpoints are treated as non-existent if the
10064 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10065 some data address). Otherwise gdb won't stop on a break instruction
10066 in the code (not from a breakpoint) when a hardware watchpoint has
10067 been defined. Also skip watchpoints which we know did not trigger
10068 (did not match the data address). */
10069 if (is_hardware_watchpoint (b)
10070 && w->watchpoint_triggered == watch_triggered_no)
10071 return 0;
10072
10073 return 1;
10074 }
10075
10076 static void
10077 check_status_watchpoint (bpstat bs)
10078 {
10079 gdb_assert (is_watchpoint (bs->breakpoint_at));
10080
10081 bpstat_check_watchpoint (bs);
10082 }
10083
10084 /* Implement the "resources_needed" breakpoint_ops method for
10085 hardware watchpoints. */
10086
10087 static int
10088 resources_needed_watchpoint (const struct bp_location *bl)
10089 {
10090 struct watchpoint *w = (struct watchpoint *) bl->owner;
10091 int length = w->exact? 1 : bl->length;
10092
10093 return target_region_ok_for_hw_watchpoint (bl->address, length);
10094 }
10095
10096 /* Implement the "works_in_software_mode" breakpoint_ops method for
10097 hardware watchpoints. */
10098
10099 static int
10100 works_in_software_mode_watchpoint (const struct breakpoint *b)
10101 {
10102 /* Read and access watchpoints only work with hardware support. */
10103 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10104 }
10105
10106 static enum print_stop_action
10107 print_it_watchpoint (bpstat bs)
10108 {
10109 struct breakpoint *b;
10110 enum print_stop_action result;
10111 struct watchpoint *w;
10112 struct ui_out *uiout = current_uiout;
10113
10114 gdb_assert (bs->bp_location_at != NULL);
10115
10116 b = bs->breakpoint_at;
10117 w = (struct watchpoint *) b;
10118
10119 annotate_watchpoint (b->number);
10120 maybe_print_thread_hit_breakpoint (uiout);
10121
10122 string_file stb;
10123
10124 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10125 switch (b->type)
10126 {
10127 case bp_watchpoint:
10128 case bp_hardware_watchpoint:
10129 if (uiout->is_mi_like_p ())
10130 uiout->field_string
10131 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10132 mention (b);
10133 tuple_emitter.emplace (uiout, "value");
10134 uiout->text ("\nOld value = ");
10135 watchpoint_value_print (bs->old_val.get (), &stb);
10136 uiout->field_stream ("old", stb);
10137 uiout->text ("\nNew value = ");
10138 watchpoint_value_print (w->val.get (), &stb);
10139 uiout->field_stream ("new", stb);
10140 uiout->text ("\n");
10141 /* More than one watchpoint may have been triggered. */
10142 result = PRINT_UNKNOWN;
10143 break;
10144
10145 case bp_read_watchpoint:
10146 if (uiout->is_mi_like_p ())
10147 uiout->field_string
10148 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10149 mention (b);
10150 tuple_emitter.emplace (uiout, "value");
10151 uiout->text ("\nValue = ");
10152 watchpoint_value_print (w->val.get (), &stb);
10153 uiout->field_stream ("value", stb);
10154 uiout->text ("\n");
10155 result = PRINT_UNKNOWN;
10156 break;
10157
10158 case bp_access_watchpoint:
10159 if (bs->old_val != NULL)
10160 {
10161 if (uiout->is_mi_like_p ())
10162 uiout->field_string
10163 ("reason",
10164 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10165 mention (b);
10166 tuple_emitter.emplace (uiout, "value");
10167 uiout->text ("\nOld value = ");
10168 watchpoint_value_print (bs->old_val.get (), &stb);
10169 uiout->field_stream ("old", stb);
10170 uiout->text ("\nNew value = ");
10171 }
10172 else
10173 {
10174 mention (b);
10175 if (uiout->is_mi_like_p ())
10176 uiout->field_string
10177 ("reason",
10178 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10179 tuple_emitter.emplace (uiout, "value");
10180 uiout->text ("\nValue = ");
10181 }
10182 watchpoint_value_print (w->val.get (), &stb);
10183 uiout->field_stream ("new", stb);
10184 uiout->text ("\n");
10185 result = PRINT_UNKNOWN;
10186 break;
10187 default:
10188 result = PRINT_UNKNOWN;
10189 }
10190
10191 return result;
10192 }
10193
10194 /* Implement the "print_mention" breakpoint_ops method for hardware
10195 watchpoints. */
10196
10197 static void
10198 print_mention_watchpoint (struct breakpoint *b)
10199 {
10200 struct watchpoint *w = (struct watchpoint *) b;
10201 struct ui_out *uiout = current_uiout;
10202 const char *tuple_name;
10203
10204 switch (b->type)
10205 {
10206 case bp_watchpoint:
10207 uiout->text ("Watchpoint ");
10208 tuple_name = "wpt";
10209 break;
10210 case bp_hardware_watchpoint:
10211 uiout->text ("Hardware watchpoint ");
10212 tuple_name = "wpt";
10213 break;
10214 case bp_read_watchpoint:
10215 uiout->text ("Hardware read watchpoint ");
10216 tuple_name = "hw-rwpt";
10217 break;
10218 case bp_access_watchpoint:
10219 uiout->text ("Hardware access (read/write) watchpoint ");
10220 tuple_name = "hw-awpt";
10221 break;
10222 default:
10223 internal_error (__FILE__, __LINE__,
10224 _("Invalid hardware watchpoint type."));
10225 }
10226
10227 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10228 uiout->field_int ("number", b->number);
10229 uiout->text (": ");
10230 uiout->field_string ("exp", w->exp_string);
10231 }
10232
10233 /* Implement the "print_recreate" breakpoint_ops method for
10234 watchpoints. */
10235
10236 static void
10237 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10238 {
10239 struct watchpoint *w = (struct watchpoint *) b;
10240
10241 switch (b->type)
10242 {
10243 case bp_watchpoint:
10244 case bp_hardware_watchpoint:
10245 fprintf_unfiltered (fp, "watch");
10246 break;
10247 case bp_read_watchpoint:
10248 fprintf_unfiltered (fp, "rwatch");
10249 break;
10250 case bp_access_watchpoint:
10251 fprintf_unfiltered (fp, "awatch");
10252 break;
10253 default:
10254 internal_error (__FILE__, __LINE__,
10255 _("Invalid watchpoint type."));
10256 }
10257
10258 fprintf_unfiltered (fp, " %s", w->exp_string);
10259 print_recreate_thread (b, fp);
10260 }
10261
10262 /* Implement the "explains_signal" breakpoint_ops method for
10263 watchpoints. */
10264
10265 static int
10266 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10267 {
10268 /* A software watchpoint cannot cause a signal other than
10269 GDB_SIGNAL_TRAP. */
10270 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10271 return 0;
10272
10273 return 1;
10274 }
10275
10276 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10277
10278 static struct breakpoint_ops watchpoint_breakpoint_ops;
10279
10280 /* Implement the "insert" breakpoint_ops method for
10281 masked hardware watchpoints. */
10282
10283 static int
10284 insert_masked_watchpoint (struct bp_location *bl)
10285 {
10286 struct watchpoint *w = (struct watchpoint *) bl->owner;
10287
10288 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10289 bl->watchpoint_type);
10290 }
10291
10292 /* Implement the "remove" breakpoint_ops method for
10293 masked hardware watchpoints. */
10294
10295 static int
10296 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10297 {
10298 struct watchpoint *w = (struct watchpoint *) bl->owner;
10299
10300 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10301 bl->watchpoint_type);
10302 }
10303
10304 /* Implement the "resources_needed" breakpoint_ops method for
10305 masked hardware watchpoints. */
10306
10307 static int
10308 resources_needed_masked_watchpoint (const struct bp_location *bl)
10309 {
10310 struct watchpoint *w = (struct watchpoint *) bl->owner;
10311
10312 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10313 }
10314
10315 /* Implement the "works_in_software_mode" breakpoint_ops method for
10316 masked hardware watchpoints. */
10317
10318 static int
10319 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10320 {
10321 return 0;
10322 }
10323
10324 /* Implement the "print_it" breakpoint_ops method for
10325 masked hardware watchpoints. */
10326
10327 static enum print_stop_action
10328 print_it_masked_watchpoint (bpstat bs)
10329 {
10330 struct breakpoint *b = bs->breakpoint_at;
10331 struct ui_out *uiout = current_uiout;
10332
10333 /* Masked watchpoints have only one location. */
10334 gdb_assert (b->loc && b->loc->next == NULL);
10335
10336 annotate_watchpoint (b->number);
10337 maybe_print_thread_hit_breakpoint (uiout);
10338
10339 switch (b->type)
10340 {
10341 case bp_hardware_watchpoint:
10342 if (uiout->is_mi_like_p ())
10343 uiout->field_string
10344 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10345 break;
10346
10347 case bp_read_watchpoint:
10348 if (uiout->is_mi_like_p ())
10349 uiout->field_string
10350 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10351 break;
10352
10353 case bp_access_watchpoint:
10354 if (uiout->is_mi_like_p ())
10355 uiout->field_string
10356 ("reason",
10357 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10358 break;
10359 default:
10360 internal_error (__FILE__, __LINE__,
10361 _("Invalid hardware watchpoint type."));
10362 }
10363
10364 mention (b);
10365 uiout->text (_("\n\
10366 Check the underlying instruction at PC for the memory\n\
10367 address and value which triggered this watchpoint.\n"));
10368 uiout->text ("\n");
10369
10370 /* More than one watchpoint may have been triggered. */
10371 return PRINT_UNKNOWN;
10372 }
10373
10374 /* Implement the "print_one_detail" breakpoint_ops method for
10375 masked hardware watchpoints. */
10376
10377 static void
10378 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10379 struct ui_out *uiout)
10380 {
10381 struct watchpoint *w = (struct watchpoint *) b;
10382
10383 /* Masked watchpoints have only one location. */
10384 gdb_assert (b->loc && b->loc->next == NULL);
10385
10386 uiout->text ("\tmask ");
10387 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10388 uiout->text ("\n");
10389 }
10390
10391 /* Implement the "print_mention" breakpoint_ops method for
10392 masked hardware watchpoints. */
10393
10394 static void
10395 print_mention_masked_watchpoint (struct breakpoint *b)
10396 {
10397 struct watchpoint *w = (struct watchpoint *) b;
10398 struct ui_out *uiout = current_uiout;
10399 const char *tuple_name;
10400
10401 switch (b->type)
10402 {
10403 case bp_hardware_watchpoint:
10404 uiout->text ("Masked hardware watchpoint ");
10405 tuple_name = "wpt";
10406 break;
10407 case bp_read_watchpoint:
10408 uiout->text ("Masked hardware read watchpoint ");
10409 tuple_name = "hw-rwpt";
10410 break;
10411 case bp_access_watchpoint:
10412 uiout->text ("Masked hardware access (read/write) watchpoint ");
10413 tuple_name = "hw-awpt";
10414 break;
10415 default:
10416 internal_error (__FILE__, __LINE__,
10417 _("Invalid hardware watchpoint type."));
10418 }
10419
10420 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10421 uiout->field_int ("number", b->number);
10422 uiout->text (": ");
10423 uiout->field_string ("exp", w->exp_string);
10424 }
10425
10426 /* Implement the "print_recreate" breakpoint_ops method for
10427 masked hardware watchpoints. */
10428
10429 static void
10430 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10431 {
10432 struct watchpoint *w = (struct watchpoint *) b;
10433 char tmp[40];
10434
10435 switch (b->type)
10436 {
10437 case bp_hardware_watchpoint:
10438 fprintf_unfiltered (fp, "watch");
10439 break;
10440 case bp_read_watchpoint:
10441 fprintf_unfiltered (fp, "rwatch");
10442 break;
10443 case bp_access_watchpoint:
10444 fprintf_unfiltered (fp, "awatch");
10445 break;
10446 default:
10447 internal_error (__FILE__, __LINE__,
10448 _("Invalid hardware watchpoint type."));
10449 }
10450
10451 sprintf_vma (tmp, w->hw_wp_mask);
10452 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10453 print_recreate_thread (b, fp);
10454 }
10455
10456 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10457
10458 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10459
10460 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10461
10462 static int
10463 is_masked_watchpoint (const struct breakpoint *b)
10464 {
10465 return b->ops == &masked_watchpoint_breakpoint_ops;
10466 }
10467
10468 /* accessflag: hw_write: watch write,
10469 hw_read: watch read,
10470 hw_access: watch access (read or write) */
10471 static void
10472 watch_command_1 (const char *arg, int accessflag, int from_tty,
10473 int just_location, int internal)
10474 {
10475 struct breakpoint *scope_breakpoint = NULL;
10476 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10477 struct value *result;
10478 int saved_bitpos = 0, saved_bitsize = 0;
10479 const char *exp_start = NULL;
10480 const char *exp_end = NULL;
10481 const char *tok, *end_tok;
10482 int toklen = -1;
10483 const char *cond_start = NULL;
10484 const char *cond_end = NULL;
10485 enum bptype bp_type;
10486 int thread = -1;
10487 int pc = 0;
10488 /* Flag to indicate whether we are going to use masks for
10489 the hardware watchpoint. */
10490 int use_mask = 0;
10491 CORE_ADDR mask = 0;
10492
10493 /* Make sure that we actually have parameters to parse. */
10494 if (arg != NULL && arg[0] != '\0')
10495 {
10496 const char *value_start;
10497
10498 exp_end = arg + strlen (arg);
10499
10500 /* Look for "parameter value" pairs at the end
10501 of the arguments string. */
10502 for (tok = exp_end - 1; tok > arg; tok--)
10503 {
10504 /* Skip whitespace at the end of the argument list. */
10505 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10506 tok--;
10507
10508 /* Find the beginning of the last token.
10509 This is the value of the parameter. */
10510 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10511 tok--;
10512 value_start = tok + 1;
10513
10514 /* Skip whitespace. */
10515 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10516 tok--;
10517
10518 end_tok = tok;
10519
10520 /* Find the beginning of the second to last token.
10521 This is the parameter itself. */
10522 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10523 tok--;
10524 tok++;
10525 toklen = end_tok - tok + 1;
10526
10527 if (toklen == 6 && startswith (tok, "thread"))
10528 {
10529 struct thread_info *thr;
10530 /* At this point we've found a "thread" token, which means
10531 the user is trying to set a watchpoint that triggers
10532 only in a specific thread. */
10533 const char *endp;
10534
10535 if (thread != -1)
10536 error(_("You can specify only one thread."));
10537
10538 /* Extract the thread ID from the next token. */
10539 thr = parse_thread_id (value_start, &endp);
10540
10541 /* Check if the user provided a valid thread ID. */
10542 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10543 invalid_thread_id_error (value_start);
10544
10545 thread = thr->global_num;
10546 }
10547 else if (toklen == 4 && startswith (tok, "mask"))
10548 {
10549 /* We've found a "mask" token, which means the user wants to
10550 create a hardware watchpoint that is going to have the mask
10551 facility. */
10552 struct value *mask_value, *mark;
10553
10554 if (use_mask)
10555 error(_("You can specify only one mask."));
10556
10557 use_mask = just_location = 1;
10558
10559 mark = value_mark ();
10560 mask_value = parse_to_comma_and_eval (&value_start);
10561 mask = value_as_address (mask_value);
10562 value_free_to_mark (mark);
10563 }
10564 else
10565 /* We didn't recognize what we found. We should stop here. */
10566 break;
10567
10568 /* Truncate the string and get rid of the "parameter value" pair before
10569 the arguments string is parsed by the parse_exp_1 function. */
10570 exp_end = tok;
10571 }
10572 }
10573 else
10574 exp_end = arg;
10575
10576 /* Parse the rest of the arguments. From here on out, everything
10577 is in terms of a newly allocated string instead of the original
10578 ARG. */
10579 std::string expression (arg, exp_end - arg);
10580 exp_start = arg = expression.c_str ();
10581 innermost_block_tracker tracker;
10582 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10583 exp_end = arg;
10584 /* Remove trailing whitespace from the expression before saving it.
10585 This makes the eventual display of the expression string a bit
10586 prettier. */
10587 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10588 --exp_end;
10589
10590 /* Checking if the expression is not constant. */
10591 if (watchpoint_exp_is_const (exp.get ()))
10592 {
10593 int len;
10594
10595 len = exp_end - exp_start;
10596 while (len > 0 && isspace (exp_start[len - 1]))
10597 len--;
10598 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10599 }
10600
10601 exp_valid_block = tracker.block ();
10602 struct value *mark = value_mark ();
10603 struct value *val_as_value = nullptr;
10604 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10605 just_location);
10606
10607 if (val_as_value != NULL && just_location)
10608 {
10609 saved_bitpos = value_bitpos (val_as_value);
10610 saved_bitsize = value_bitsize (val_as_value);
10611 }
10612
10613 value_ref_ptr val;
10614 if (just_location)
10615 {
10616 int ret;
10617
10618 exp_valid_block = NULL;
10619 val = release_value (value_addr (result));
10620 value_free_to_mark (mark);
10621
10622 if (use_mask)
10623 {
10624 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10625 mask);
10626 if (ret == -1)
10627 error (_("This target does not support masked watchpoints."));
10628 else if (ret == -2)
10629 error (_("Invalid mask or memory region."));
10630 }
10631 }
10632 else if (val_as_value != NULL)
10633 val = release_value (val_as_value);
10634
10635 tok = skip_spaces (arg);
10636 end_tok = skip_to_space (tok);
10637
10638 toklen = end_tok - tok;
10639 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10640 {
10641 tok = cond_start = end_tok + 1;
10642 innermost_block_tracker if_tracker;
10643 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10644
10645 /* The watchpoint expression may not be local, but the condition
10646 may still be. E.g.: `watch global if local > 0'. */
10647 cond_exp_valid_block = if_tracker.block ();
10648
10649 cond_end = tok;
10650 }
10651 if (*tok)
10652 error (_("Junk at end of command."));
10653
10654 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10655
10656 /* Save this because create_internal_breakpoint below invalidates
10657 'wp_frame'. */
10658 frame_id watchpoint_frame = get_frame_id (wp_frame);
10659
10660 /* If the expression is "local", then set up a "watchpoint scope"
10661 breakpoint at the point where we've left the scope of the watchpoint
10662 expression. Create the scope breakpoint before the watchpoint, so
10663 that we will encounter it first in bpstat_stop_status. */
10664 if (exp_valid_block != NULL && wp_frame != NULL)
10665 {
10666 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10667
10668 if (frame_id_p (caller_frame_id))
10669 {
10670 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10671 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10672
10673 scope_breakpoint
10674 = create_internal_breakpoint (caller_arch, caller_pc,
10675 bp_watchpoint_scope,
10676 &momentary_breakpoint_ops);
10677
10678 /* create_internal_breakpoint could invalidate WP_FRAME. */
10679 wp_frame = NULL;
10680
10681 scope_breakpoint->enable_state = bp_enabled;
10682
10683 /* Automatically delete the breakpoint when it hits. */
10684 scope_breakpoint->disposition = disp_del;
10685
10686 /* Only break in the proper frame (help with recursion). */
10687 scope_breakpoint->frame_id = caller_frame_id;
10688
10689 /* Set the address at which we will stop. */
10690 scope_breakpoint->loc->gdbarch = caller_arch;
10691 scope_breakpoint->loc->requested_address = caller_pc;
10692 scope_breakpoint->loc->address
10693 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10694 scope_breakpoint->loc->requested_address,
10695 scope_breakpoint->type);
10696 }
10697 }
10698
10699 /* Now set up the breakpoint. We create all watchpoints as hardware
10700 watchpoints here even if hardware watchpoints are turned off, a call
10701 to update_watchpoint later in this function will cause the type to
10702 drop back to bp_watchpoint (software watchpoint) if required. */
10703
10704 if (accessflag == hw_read)
10705 bp_type = bp_read_watchpoint;
10706 else if (accessflag == hw_access)
10707 bp_type = bp_access_watchpoint;
10708 else
10709 bp_type = bp_hardware_watchpoint;
10710
10711 std::unique_ptr<watchpoint> w (new watchpoint ());
10712
10713 if (use_mask)
10714 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10715 &masked_watchpoint_breakpoint_ops);
10716 else
10717 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10718 &watchpoint_breakpoint_ops);
10719 w->thread = thread;
10720 w->disposition = disp_donttouch;
10721 w->pspace = current_program_space;
10722 w->exp = std::move (exp);
10723 w->exp_valid_block = exp_valid_block;
10724 w->cond_exp_valid_block = cond_exp_valid_block;
10725 if (just_location)
10726 {
10727 struct type *t = value_type (val.get ());
10728 CORE_ADDR addr = value_as_address (val.get ());
10729
10730 w->exp_string_reparse
10731 = current_language->la_watch_location_expression (t, addr).release ();
10732
10733 w->exp_string = xstrprintf ("-location %.*s",
10734 (int) (exp_end - exp_start), exp_start);
10735 }
10736 else
10737 w->exp_string = savestring (exp_start, exp_end - exp_start);
10738
10739 if (use_mask)
10740 {
10741 w->hw_wp_mask = mask;
10742 }
10743 else
10744 {
10745 w->val = val;
10746 w->val_bitpos = saved_bitpos;
10747 w->val_bitsize = saved_bitsize;
10748 w->val_valid = 1;
10749 }
10750
10751 if (cond_start)
10752 w->cond_string = savestring (cond_start, cond_end - cond_start);
10753 else
10754 w->cond_string = 0;
10755
10756 if (frame_id_p (watchpoint_frame))
10757 {
10758 w->watchpoint_frame = watchpoint_frame;
10759 w->watchpoint_thread = inferior_ptid;
10760 }
10761 else
10762 {
10763 w->watchpoint_frame = null_frame_id;
10764 w->watchpoint_thread = null_ptid;
10765 }
10766
10767 if (scope_breakpoint != NULL)
10768 {
10769 /* The scope breakpoint is related to the watchpoint. We will
10770 need to act on them together. */
10771 w->related_breakpoint = scope_breakpoint;
10772 scope_breakpoint->related_breakpoint = w.get ();
10773 }
10774
10775 if (!just_location)
10776 value_free_to_mark (mark);
10777
10778 /* Finally update the new watchpoint. This creates the locations
10779 that should be inserted. */
10780 update_watchpoint (w.get (), 1);
10781
10782 install_breakpoint (internal, std::move (w), 1);
10783 }
10784
10785 /* Return count of debug registers needed to watch the given expression.
10786 If the watchpoint cannot be handled in hardware return zero. */
10787
10788 static int
10789 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10790 {
10791 int found_memory_cnt = 0;
10792
10793 /* Did the user specifically forbid us to use hardware watchpoints? */
10794 if (!can_use_hw_watchpoints)
10795 return 0;
10796
10797 gdb_assert (!vals.empty ());
10798 struct value *head = vals[0].get ();
10799
10800 /* Make sure that the value of the expression depends only upon
10801 memory contents, and values computed from them within GDB. If we
10802 find any register references or function calls, we can't use a
10803 hardware watchpoint.
10804
10805 The idea here is that evaluating an expression generates a series
10806 of values, one holding the value of every subexpression. (The
10807 expression a*b+c has five subexpressions: a, b, a*b, c, and
10808 a*b+c.) GDB's values hold almost enough information to establish
10809 the criteria given above --- they identify memory lvalues,
10810 register lvalues, computed values, etcetera. So we can evaluate
10811 the expression, and then scan the chain of values that leaves
10812 behind to decide whether we can detect any possible change to the
10813 expression's final value using only hardware watchpoints.
10814
10815 However, I don't think that the values returned by inferior
10816 function calls are special in any way. So this function may not
10817 notice that an expression involving an inferior function call
10818 can't be watched with hardware watchpoints. FIXME. */
10819 for (const value_ref_ptr &iter : vals)
10820 {
10821 struct value *v = iter.get ();
10822
10823 if (VALUE_LVAL (v) == lval_memory)
10824 {
10825 if (v != head && value_lazy (v))
10826 /* A lazy memory lvalue in the chain is one that GDB never
10827 needed to fetch; we either just used its address (e.g.,
10828 `a' in `a.b') or we never needed it at all (e.g., `a'
10829 in `a,b'). This doesn't apply to HEAD; if that is
10830 lazy then it was not readable, but watch it anyway. */
10831 ;
10832 else
10833 {
10834 /* Ahh, memory we actually used! Check if we can cover
10835 it with hardware watchpoints. */
10836 struct type *vtype = check_typedef (value_type (v));
10837
10838 /* We only watch structs and arrays if user asked for it
10839 explicitly, never if they just happen to appear in a
10840 middle of some value chain. */
10841 if (v == head
10842 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10843 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10844 {
10845 CORE_ADDR vaddr = value_address (v);
10846 int len;
10847 int num_regs;
10848
10849 len = (target_exact_watchpoints
10850 && is_scalar_type_recursive (vtype))?
10851 1 : TYPE_LENGTH (value_type (v));
10852
10853 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10854 if (!num_regs)
10855 return 0;
10856 else
10857 found_memory_cnt += num_regs;
10858 }
10859 }
10860 }
10861 else if (VALUE_LVAL (v) != not_lval
10862 && deprecated_value_modifiable (v) == 0)
10863 return 0; /* These are values from the history (e.g., $1). */
10864 else if (VALUE_LVAL (v) == lval_register)
10865 return 0; /* Cannot watch a register with a HW watchpoint. */
10866 }
10867
10868 /* The expression itself looks suitable for using a hardware
10869 watchpoint, but give the target machine a chance to reject it. */
10870 return found_memory_cnt;
10871 }
10872
10873 void
10874 watch_command_wrapper (const char *arg, int from_tty, int internal)
10875 {
10876 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10877 }
10878
10879 /* A helper function that looks for the "-location" argument and then
10880 calls watch_command_1. */
10881
10882 static void
10883 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10884 {
10885 int just_location = 0;
10886
10887 if (arg
10888 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10889 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10890 just_location = 1;
10891
10892 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10893 }
10894
10895 static void
10896 watch_command (const char *arg, int from_tty)
10897 {
10898 watch_maybe_just_location (arg, hw_write, from_tty);
10899 }
10900
10901 void
10902 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10903 {
10904 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10905 }
10906
10907 static void
10908 rwatch_command (const char *arg, int from_tty)
10909 {
10910 watch_maybe_just_location (arg, hw_read, from_tty);
10911 }
10912
10913 void
10914 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10915 {
10916 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10917 }
10918
10919 static void
10920 awatch_command (const char *arg, int from_tty)
10921 {
10922 watch_maybe_just_location (arg, hw_access, from_tty);
10923 }
10924 \f
10925
10926 /* Data for the FSM that manages the until(location)/advance commands
10927 in infcmd.c. Here because it uses the mechanisms of
10928 breakpoints. */
10929
10930 struct until_break_fsm : public thread_fsm
10931 {
10932 /* The thread that was current when the command was executed. */
10933 int thread;
10934
10935 /* The breakpoint set at the destination location. */
10936 breakpoint_up location_breakpoint;
10937
10938 /* Breakpoint set at the return address in the caller frame. May be
10939 NULL. */
10940 breakpoint_up caller_breakpoint;
10941
10942 until_break_fsm (struct interp *cmd_interp, int thread,
10943 breakpoint_up &&location_breakpoint,
10944 breakpoint_up &&caller_breakpoint)
10945 : thread_fsm (cmd_interp),
10946 thread (thread),
10947 location_breakpoint (std::move (location_breakpoint)),
10948 caller_breakpoint (std::move (caller_breakpoint))
10949 {
10950 }
10951
10952 void clean_up (struct thread_info *thread) override;
10953 bool should_stop (struct thread_info *thread) override;
10954 enum async_reply_reason do_async_reply_reason () override;
10955 };
10956
10957 /* Implementation of the 'should_stop' FSM method for the
10958 until(location)/advance commands. */
10959
10960 bool
10961 until_break_fsm::should_stop (struct thread_info *tp)
10962 {
10963 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10964 location_breakpoint.get ()) != NULL
10965 || (caller_breakpoint != NULL
10966 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10967 caller_breakpoint.get ()) != NULL))
10968 set_finished ();
10969
10970 return true;
10971 }
10972
10973 /* Implementation of the 'clean_up' FSM method for the
10974 until(location)/advance commands. */
10975
10976 void
10977 until_break_fsm::clean_up (struct thread_info *)
10978 {
10979 /* Clean up our temporary breakpoints. */
10980 location_breakpoint.reset ();
10981 caller_breakpoint.reset ();
10982 delete_longjmp_breakpoint (thread);
10983 }
10984
10985 /* Implementation of the 'async_reply_reason' FSM method for the
10986 until(location)/advance commands. */
10987
10988 enum async_reply_reason
10989 until_break_fsm::do_async_reply_reason ()
10990 {
10991 return EXEC_ASYNC_LOCATION_REACHED;
10992 }
10993
10994 void
10995 until_break_command (const char *arg, int from_tty, int anywhere)
10996 {
10997 struct frame_info *frame;
10998 struct gdbarch *frame_gdbarch;
10999 struct frame_id stack_frame_id;
11000 struct frame_id caller_frame_id;
11001 int thread;
11002 struct thread_info *tp;
11003
11004 clear_proceed_status (0);
11005
11006 /* Set a breakpoint where the user wants it and at return from
11007 this function. */
11008
11009 event_location_up location = string_to_event_location (&arg, current_language);
11010
11011 std::vector<symtab_and_line> sals
11012 = (last_displayed_sal_is_valid ()
11013 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11014 get_last_displayed_symtab (),
11015 get_last_displayed_line ())
11016 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11017 NULL, NULL, 0));
11018
11019 if (sals.size () != 1)
11020 error (_("Couldn't get information on specified line."));
11021
11022 symtab_and_line &sal = sals[0];
11023
11024 if (*arg)
11025 error (_("Junk at end of arguments."));
11026
11027 resolve_sal_pc (&sal);
11028
11029 tp = inferior_thread ();
11030 thread = tp->global_num;
11031
11032 /* Note linespec handling above invalidates the frame chain.
11033 Installing a breakpoint also invalidates the frame chain (as it
11034 may need to switch threads), so do any frame handling before
11035 that. */
11036
11037 frame = get_selected_frame (NULL);
11038 frame_gdbarch = get_frame_arch (frame);
11039 stack_frame_id = get_stack_frame_id (frame);
11040 caller_frame_id = frame_unwind_caller_id (frame);
11041
11042 /* Keep within the current frame, or in frames called by the current
11043 one. */
11044
11045 breakpoint_up caller_breakpoint;
11046
11047 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11048
11049 if (frame_id_p (caller_frame_id))
11050 {
11051 struct symtab_and_line sal2;
11052 struct gdbarch *caller_gdbarch;
11053
11054 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11055 sal2.pc = frame_unwind_caller_pc (frame);
11056 caller_gdbarch = frame_unwind_caller_arch (frame);
11057 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11058 sal2,
11059 caller_frame_id,
11060 bp_until);
11061
11062 set_longjmp_breakpoint (tp, caller_frame_id);
11063 lj_deleter.emplace (thread);
11064 }
11065
11066 /* set_momentary_breakpoint could invalidate FRAME. */
11067 frame = NULL;
11068
11069 breakpoint_up location_breakpoint;
11070 if (anywhere)
11071 /* If the user told us to continue until a specified location,
11072 we don't specify a frame at which we need to stop. */
11073 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11074 null_frame_id, bp_until);
11075 else
11076 /* Otherwise, specify the selected frame, because we want to stop
11077 only at the very same frame. */
11078 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11079 stack_frame_id, bp_until);
11080
11081 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11082 std::move (location_breakpoint),
11083 std::move (caller_breakpoint));
11084
11085 if (lj_deleter)
11086 lj_deleter->release ();
11087
11088 proceed (-1, GDB_SIGNAL_DEFAULT);
11089 }
11090
11091 /* This function attempts to parse an optional "if <cond>" clause
11092 from the arg string. If one is not found, it returns NULL.
11093
11094 Else, it returns a pointer to the condition string. (It does not
11095 attempt to evaluate the string against a particular block.) And,
11096 it updates arg to point to the first character following the parsed
11097 if clause in the arg string. */
11098
11099 const char *
11100 ep_parse_optional_if_clause (const char **arg)
11101 {
11102 const char *cond_string;
11103
11104 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11105 return NULL;
11106
11107 /* Skip the "if" keyword. */
11108 (*arg) += 2;
11109
11110 /* Skip any extra leading whitespace, and record the start of the
11111 condition string. */
11112 *arg = skip_spaces (*arg);
11113 cond_string = *arg;
11114
11115 /* Assume that the condition occupies the remainder of the arg
11116 string. */
11117 (*arg) += strlen (cond_string);
11118
11119 return cond_string;
11120 }
11121
11122 /* Commands to deal with catching events, such as signals, exceptions,
11123 process start/exit, etc. */
11124
11125 typedef enum
11126 {
11127 catch_fork_temporary, catch_vfork_temporary,
11128 catch_fork_permanent, catch_vfork_permanent
11129 }
11130 catch_fork_kind;
11131
11132 static void
11133 catch_fork_command_1 (const char *arg, int from_tty,
11134 struct cmd_list_element *command)
11135 {
11136 struct gdbarch *gdbarch = get_current_arch ();
11137 const char *cond_string = NULL;
11138 catch_fork_kind fork_kind;
11139 int tempflag;
11140
11141 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11142 tempflag = (fork_kind == catch_fork_temporary
11143 || fork_kind == catch_vfork_temporary);
11144
11145 if (!arg)
11146 arg = "";
11147 arg = skip_spaces (arg);
11148
11149 /* The allowed syntax is:
11150 catch [v]fork
11151 catch [v]fork if <cond>
11152
11153 First, check if there's an if clause. */
11154 cond_string = ep_parse_optional_if_clause (&arg);
11155
11156 if ((*arg != '\0') && !isspace (*arg))
11157 error (_("Junk at end of arguments."));
11158
11159 /* If this target supports it, create a fork or vfork catchpoint
11160 and enable reporting of such events. */
11161 switch (fork_kind)
11162 {
11163 case catch_fork_temporary:
11164 case catch_fork_permanent:
11165 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11166 &catch_fork_breakpoint_ops);
11167 break;
11168 case catch_vfork_temporary:
11169 case catch_vfork_permanent:
11170 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11171 &catch_vfork_breakpoint_ops);
11172 break;
11173 default:
11174 error (_("unsupported or unknown fork kind; cannot catch it"));
11175 break;
11176 }
11177 }
11178
11179 static void
11180 catch_exec_command_1 (const char *arg, int from_tty,
11181 struct cmd_list_element *command)
11182 {
11183 struct gdbarch *gdbarch = get_current_arch ();
11184 int tempflag;
11185 const char *cond_string = NULL;
11186
11187 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11188
11189 if (!arg)
11190 arg = "";
11191 arg = skip_spaces (arg);
11192
11193 /* The allowed syntax is:
11194 catch exec
11195 catch exec if <cond>
11196
11197 First, check if there's an if clause. */
11198 cond_string = ep_parse_optional_if_clause (&arg);
11199
11200 if ((*arg != '\0') && !isspace (*arg))
11201 error (_("Junk at end of arguments."));
11202
11203 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11204 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11205 &catch_exec_breakpoint_ops);
11206 c->exec_pathname = NULL;
11207
11208 install_breakpoint (0, std::move (c), 1);
11209 }
11210
11211 void
11212 init_ada_exception_breakpoint (struct breakpoint *b,
11213 struct gdbarch *gdbarch,
11214 struct symtab_and_line sal,
11215 const char *addr_string,
11216 const struct breakpoint_ops *ops,
11217 int tempflag,
11218 int enabled,
11219 int from_tty)
11220 {
11221 if (from_tty)
11222 {
11223 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11224 if (!loc_gdbarch)
11225 loc_gdbarch = gdbarch;
11226
11227 describe_other_breakpoints (loc_gdbarch,
11228 sal.pspace, sal.pc, sal.section, -1);
11229 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11230 version for exception catchpoints, because two catchpoints
11231 used for different exception names will use the same address.
11232 In this case, a "breakpoint ... also set at..." warning is
11233 unproductive. Besides, the warning phrasing is also a bit
11234 inappropriate, we should use the word catchpoint, and tell
11235 the user what type of catchpoint it is. The above is good
11236 enough for now, though. */
11237 }
11238
11239 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11240
11241 b->enable_state = enabled ? bp_enabled : bp_disabled;
11242 b->disposition = tempflag ? disp_del : disp_donttouch;
11243 b->location = string_to_event_location (&addr_string,
11244 language_def (language_ada));
11245 b->language = language_ada;
11246 }
11247
11248 static void
11249 catch_command (const char *arg, int from_tty)
11250 {
11251 error (_("Catch requires an event name."));
11252 }
11253 \f
11254
11255 static void
11256 tcatch_command (const char *arg, int from_tty)
11257 {
11258 error (_("Catch requires an event name."));
11259 }
11260
11261 /* Compare two breakpoints and return a strcmp-like result. */
11262
11263 static int
11264 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11265 {
11266 uintptr_t ua = (uintptr_t) a;
11267 uintptr_t ub = (uintptr_t) b;
11268
11269 if (a->number < b->number)
11270 return -1;
11271 else if (a->number > b->number)
11272 return 1;
11273
11274 /* Now sort by address, in case we see, e..g, two breakpoints with
11275 the number 0. */
11276 if (ua < ub)
11277 return -1;
11278 return ua > ub ? 1 : 0;
11279 }
11280
11281 /* Delete breakpoints by address or line. */
11282
11283 static void
11284 clear_command (const char *arg, int from_tty)
11285 {
11286 struct breakpoint *b;
11287 int default_match;
11288
11289 std::vector<symtab_and_line> decoded_sals;
11290 symtab_and_line last_sal;
11291 gdb::array_view<symtab_and_line> sals;
11292 if (arg)
11293 {
11294 decoded_sals
11295 = decode_line_with_current_source (arg,
11296 (DECODE_LINE_FUNFIRSTLINE
11297 | DECODE_LINE_LIST_MODE));
11298 default_match = 0;
11299 sals = decoded_sals;
11300 }
11301 else
11302 {
11303 /* Set sal's line, symtab, pc, and pspace to the values
11304 corresponding to the last call to print_frame_info. If the
11305 codepoint is not valid, this will set all the fields to 0. */
11306 last_sal = get_last_displayed_sal ();
11307 if (last_sal.symtab == 0)
11308 error (_("No source file specified."));
11309
11310 default_match = 1;
11311 sals = last_sal;
11312 }
11313
11314 /* We don't call resolve_sal_pc here. That's not as bad as it
11315 seems, because all existing breakpoints typically have both
11316 file/line and pc set. So, if clear is given file/line, we can
11317 match this to existing breakpoint without obtaining pc at all.
11318
11319 We only support clearing given the address explicitly
11320 present in breakpoint table. Say, we've set breakpoint
11321 at file:line. There were several PC values for that file:line,
11322 due to optimization, all in one block.
11323
11324 We've picked one PC value. If "clear" is issued with another
11325 PC corresponding to the same file:line, the breakpoint won't
11326 be cleared. We probably can still clear the breakpoint, but
11327 since the other PC value is never presented to user, user
11328 can only find it by guessing, and it does not seem important
11329 to support that. */
11330
11331 /* For each line spec given, delete bps which correspond to it. Do
11332 it in two passes, solely to preserve the current behavior that
11333 from_tty is forced true if we delete more than one
11334 breakpoint. */
11335
11336 std::vector<struct breakpoint *> found;
11337 for (const auto &sal : sals)
11338 {
11339 const char *sal_fullname;
11340
11341 /* If exact pc given, clear bpts at that pc.
11342 If line given (pc == 0), clear all bpts on specified line.
11343 If defaulting, clear all bpts on default line
11344 or at default pc.
11345
11346 defaulting sal.pc != 0 tests to do
11347
11348 0 1 pc
11349 1 1 pc _and_ line
11350 0 0 line
11351 1 0 <can't happen> */
11352
11353 sal_fullname = (sal.symtab == NULL
11354 ? NULL : symtab_to_fullname (sal.symtab));
11355
11356 /* Find all matching breakpoints and add them to 'found'. */
11357 ALL_BREAKPOINTS (b)
11358 {
11359 int match = 0;
11360 /* Are we going to delete b? */
11361 if (b->type != bp_none && !is_watchpoint (b))
11362 {
11363 struct bp_location *loc = b->loc;
11364 for (; loc; loc = loc->next)
11365 {
11366 /* If the user specified file:line, don't allow a PC
11367 match. This matches historical gdb behavior. */
11368 int pc_match = (!sal.explicit_line
11369 && sal.pc
11370 && (loc->pspace == sal.pspace)
11371 && (loc->address == sal.pc)
11372 && (!section_is_overlay (loc->section)
11373 || loc->section == sal.section));
11374 int line_match = 0;
11375
11376 if ((default_match || sal.explicit_line)
11377 && loc->symtab != NULL
11378 && sal_fullname != NULL
11379 && sal.pspace == loc->pspace
11380 && loc->line_number == sal.line
11381 && filename_cmp (symtab_to_fullname (loc->symtab),
11382 sal_fullname) == 0)
11383 line_match = 1;
11384
11385 if (pc_match || line_match)
11386 {
11387 match = 1;
11388 break;
11389 }
11390 }
11391 }
11392
11393 if (match)
11394 found.push_back (b);
11395 }
11396 }
11397
11398 /* Now go thru the 'found' chain and delete them. */
11399 if (found.empty ())
11400 {
11401 if (arg)
11402 error (_("No breakpoint at %s."), arg);
11403 else
11404 error (_("No breakpoint at this line."));
11405 }
11406
11407 /* Remove duplicates from the vec. */
11408 std::sort (found.begin (), found.end (),
11409 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11410 {
11411 return compare_breakpoints (bp_a, bp_b) < 0;
11412 });
11413 found.erase (std::unique (found.begin (), found.end (),
11414 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11415 {
11416 return compare_breakpoints (bp_a, bp_b) == 0;
11417 }),
11418 found.end ());
11419
11420 if (found.size () > 1)
11421 from_tty = 1; /* Always report if deleted more than one. */
11422 if (from_tty)
11423 {
11424 if (found.size () == 1)
11425 printf_unfiltered (_("Deleted breakpoint "));
11426 else
11427 printf_unfiltered (_("Deleted breakpoints "));
11428 }
11429
11430 for (breakpoint *iter : found)
11431 {
11432 if (from_tty)
11433 printf_unfiltered ("%d ", iter->number);
11434 delete_breakpoint (iter);
11435 }
11436 if (from_tty)
11437 putchar_unfiltered ('\n');
11438 }
11439 \f
11440 /* Delete breakpoint in BS if they are `delete' breakpoints and
11441 all breakpoints that are marked for deletion, whether hit or not.
11442 This is called after any breakpoint is hit, or after errors. */
11443
11444 void
11445 breakpoint_auto_delete (bpstat bs)
11446 {
11447 struct breakpoint *b, *b_tmp;
11448
11449 for (; bs; bs = bs->next)
11450 if (bs->breakpoint_at
11451 && bs->breakpoint_at->disposition == disp_del
11452 && bs->stop)
11453 delete_breakpoint (bs->breakpoint_at);
11454
11455 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11456 {
11457 if (b->disposition == disp_del_at_next_stop)
11458 delete_breakpoint (b);
11459 }
11460 }
11461
11462 /* A comparison function for bp_location AP and BP being interfaced to
11463 qsort. Sort elements primarily by their ADDRESS (no matter what
11464 does breakpoint_address_is_meaningful say for its OWNER),
11465 secondarily by ordering first permanent elements and
11466 terciarily just ensuring the array is sorted stable way despite
11467 qsort being an unstable algorithm. */
11468
11469 static int
11470 bp_locations_compare (const void *ap, const void *bp)
11471 {
11472 const struct bp_location *a = *(const struct bp_location **) ap;
11473 const struct bp_location *b = *(const struct bp_location **) bp;
11474
11475 if (a->address != b->address)
11476 return (a->address > b->address) - (a->address < b->address);
11477
11478 /* Sort locations at the same address by their pspace number, keeping
11479 locations of the same inferior (in a multi-inferior environment)
11480 grouped. */
11481
11482 if (a->pspace->num != b->pspace->num)
11483 return ((a->pspace->num > b->pspace->num)
11484 - (a->pspace->num < b->pspace->num));
11485
11486 /* Sort permanent breakpoints first. */
11487 if (a->permanent != b->permanent)
11488 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11489
11490 /* Make the internal GDB representation stable across GDB runs
11491 where A and B memory inside GDB can differ. Breakpoint locations of
11492 the same type at the same address can be sorted in arbitrary order. */
11493
11494 if (a->owner->number != b->owner->number)
11495 return ((a->owner->number > b->owner->number)
11496 - (a->owner->number < b->owner->number));
11497
11498 return (a > b) - (a < b);
11499 }
11500
11501 /* Set bp_locations_placed_address_before_address_max and
11502 bp_locations_shadow_len_after_address_max according to the current
11503 content of the bp_locations array. */
11504
11505 static void
11506 bp_locations_target_extensions_update (void)
11507 {
11508 struct bp_location *bl, **blp_tmp;
11509
11510 bp_locations_placed_address_before_address_max = 0;
11511 bp_locations_shadow_len_after_address_max = 0;
11512
11513 ALL_BP_LOCATIONS (bl, blp_tmp)
11514 {
11515 CORE_ADDR start, end, addr;
11516
11517 if (!bp_location_has_shadow (bl))
11518 continue;
11519
11520 start = bl->target_info.placed_address;
11521 end = start + bl->target_info.shadow_len;
11522
11523 gdb_assert (bl->address >= start);
11524 addr = bl->address - start;
11525 if (addr > bp_locations_placed_address_before_address_max)
11526 bp_locations_placed_address_before_address_max = addr;
11527
11528 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11529
11530 gdb_assert (bl->address < end);
11531 addr = end - bl->address;
11532 if (addr > bp_locations_shadow_len_after_address_max)
11533 bp_locations_shadow_len_after_address_max = addr;
11534 }
11535 }
11536
11537 /* Download tracepoint locations if they haven't been. */
11538
11539 static void
11540 download_tracepoint_locations (void)
11541 {
11542 struct breakpoint *b;
11543 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11544
11545 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11546
11547 ALL_TRACEPOINTS (b)
11548 {
11549 struct bp_location *bl;
11550 struct tracepoint *t;
11551 int bp_location_downloaded = 0;
11552
11553 if ((b->type == bp_fast_tracepoint
11554 ? !may_insert_fast_tracepoints
11555 : !may_insert_tracepoints))
11556 continue;
11557
11558 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11559 {
11560 if (target_can_download_tracepoint ())
11561 can_download_tracepoint = TRIBOOL_TRUE;
11562 else
11563 can_download_tracepoint = TRIBOOL_FALSE;
11564 }
11565
11566 if (can_download_tracepoint == TRIBOOL_FALSE)
11567 break;
11568
11569 for (bl = b->loc; bl; bl = bl->next)
11570 {
11571 /* In tracepoint, locations are _never_ duplicated, so
11572 should_be_inserted is equivalent to
11573 unduplicated_should_be_inserted. */
11574 if (!should_be_inserted (bl) || bl->inserted)
11575 continue;
11576
11577 switch_to_program_space_and_thread (bl->pspace);
11578
11579 target_download_tracepoint (bl);
11580
11581 bl->inserted = 1;
11582 bp_location_downloaded = 1;
11583 }
11584 t = (struct tracepoint *) b;
11585 t->number_on_target = b->number;
11586 if (bp_location_downloaded)
11587 gdb::observers::breakpoint_modified.notify (b);
11588 }
11589 }
11590
11591 /* Swap the insertion/duplication state between two locations. */
11592
11593 static void
11594 swap_insertion (struct bp_location *left, struct bp_location *right)
11595 {
11596 const int left_inserted = left->inserted;
11597 const int left_duplicate = left->duplicate;
11598 const int left_needs_update = left->needs_update;
11599 const struct bp_target_info left_target_info = left->target_info;
11600
11601 /* Locations of tracepoints can never be duplicated. */
11602 if (is_tracepoint (left->owner))
11603 gdb_assert (!left->duplicate);
11604 if (is_tracepoint (right->owner))
11605 gdb_assert (!right->duplicate);
11606
11607 left->inserted = right->inserted;
11608 left->duplicate = right->duplicate;
11609 left->needs_update = right->needs_update;
11610 left->target_info = right->target_info;
11611 right->inserted = left_inserted;
11612 right->duplicate = left_duplicate;
11613 right->needs_update = left_needs_update;
11614 right->target_info = left_target_info;
11615 }
11616
11617 /* Force the re-insertion of the locations at ADDRESS. This is called
11618 once a new/deleted/modified duplicate location is found and we are evaluating
11619 conditions on the target's side. Such conditions need to be updated on
11620 the target. */
11621
11622 static void
11623 force_breakpoint_reinsertion (struct bp_location *bl)
11624 {
11625 struct bp_location **locp = NULL, **loc2p;
11626 struct bp_location *loc;
11627 CORE_ADDR address = 0;
11628 int pspace_num;
11629
11630 address = bl->address;
11631 pspace_num = bl->pspace->num;
11632
11633 /* This is only meaningful if the target is
11634 evaluating conditions and if the user has
11635 opted for condition evaluation on the target's
11636 side. */
11637 if (gdb_evaluates_breakpoint_condition_p ()
11638 || !target_supports_evaluation_of_breakpoint_conditions ())
11639 return;
11640
11641 /* Flag all breakpoint locations with this address and
11642 the same program space as the location
11643 as "its condition has changed". We need to
11644 update the conditions on the target's side. */
11645 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11646 {
11647 loc = *loc2p;
11648
11649 if (!is_breakpoint (loc->owner)
11650 || pspace_num != loc->pspace->num)
11651 continue;
11652
11653 /* Flag the location appropriately. We use a different state to
11654 let everyone know that we already updated the set of locations
11655 with addr bl->address and program space bl->pspace. This is so
11656 we don't have to keep calling these functions just to mark locations
11657 that have already been marked. */
11658 loc->condition_changed = condition_updated;
11659
11660 /* Free the agent expression bytecode as well. We will compute
11661 it later on. */
11662 loc->cond_bytecode.reset ();
11663 }
11664 }
11665 /* Called whether new breakpoints are created, or existing breakpoints
11666 deleted, to update the global location list and recompute which
11667 locations are duplicate of which.
11668
11669 The INSERT_MODE flag determines whether locations may not, may, or
11670 shall be inserted now. See 'enum ugll_insert_mode' for more
11671 info. */
11672
11673 static void
11674 update_global_location_list (enum ugll_insert_mode insert_mode)
11675 {
11676 struct breakpoint *b;
11677 struct bp_location **locp, *loc;
11678 /* Last breakpoint location address that was marked for update. */
11679 CORE_ADDR last_addr = 0;
11680 /* Last breakpoint location program space that was marked for update. */
11681 int last_pspace_num = -1;
11682
11683 /* Used in the duplicates detection below. When iterating over all
11684 bp_locations, points to the first bp_location of a given address.
11685 Breakpoints and watchpoints of different types are never
11686 duplicates of each other. Keep one pointer for each type of
11687 breakpoint/watchpoint, so we only need to loop over all locations
11688 once. */
11689 struct bp_location *bp_loc_first; /* breakpoint */
11690 struct bp_location *wp_loc_first; /* hardware watchpoint */
11691 struct bp_location *awp_loc_first; /* access watchpoint */
11692 struct bp_location *rwp_loc_first; /* read watchpoint */
11693
11694 /* Saved former bp_locations array which we compare against the newly
11695 built bp_locations from the current state of ALL_BREAKPOINTS. */
11696 struct bp_location **old_locp;
11697 unsigned old_locations_count;
11698 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11699
11700 old_locations_count = bp_locations_count;
11701 bp_locations = NULL;
11702 bp_locations_count = 0;
11703
11704 ALL_BREAKPOINTS (b)
11705 for (loc = b->loc; loc; loc = loc->next)
11706 bp_locations_count++;
11707
11708 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11709 locp = bp_locations;
11710 ALL_BREAKPOINTS (b)
11711 for (loc = b->loc; loc; loc = loc->next)
11712 *locp++ = loc;
11713 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11714 bp_locations_compare);
11715
11716 bp_locations_target_extensions_update ();
11717
11718 /* Identify bp_location instances that are no longer present in the
11719 new list, and therefore should be freed. Note that it's not
11720 necessary that those locations should be removed from inferior --
11721 if there's another location at the same address (previously
11722 marked as duplicate), we don't need to remove/insert the
11723 location.
11724
11725 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11726 and former bp_location array state respectively. */
11727
11728 locp = bp_locations;
11729 for (old_locp = old_locations.get ();
11730 old_locp < old_locations.get () + old_locations_count;
11731 old_locp++)
11732 {
11733 struct bp_location *old_loc = *old_locp;
11734 struct bp_location **loc2p;
11735
11736 /* Tells if 'old_loc' is found among the new locations. If
11737 not, we have to free it. */
11738 int found_object = 0;
11739 /* Tells if the location should remain inserted in the target. */
11740 int keep_in_target = 0;
11741 int removed = 0;
11742
11743 /* Skip LOCP entries which will definitely never be needed.
11744 Stop either at or being the one matching OLD_LOC. */
11745 while (locp < bp_locations + bp_locations_count
11746 && (*locp)->address < old_loc->address)
11747 locp++;
11748
11749 for (loc2p = locp;
11750 (loc2p < bp_locations + bp_locations_count
11751 && (*loc2p)->address == old_loc->address);
11752 loc2p++)
11753 {
11754 /* Check if this is a new/duplicated location or a duplicated
11755 location that had its condition modified. If so, we want to send
11756 its condition to the target if evaluation of conditions is taking
11757 place there. */
11758 if ((*loc2p)->condition_changed == condition_modified
11759 && (last_addr != old_loc->address
11760 || last_pspace_num != old_loc->pspace->num))
11761 {
11762 force_breakpoint_reinsertion (*loc2p);
11763 last_pspace_num = old_loc->pspace->num;
11764 }
11765
11766 if (*loc2p == old_loc)
11767 found_object = 1;
11768 }
11769
11770 /* We have already handled this address, update it so that we don't
11771 have to go through updates again. */
11772 last_addr = old_loc->address;
11773
11774 /* Target-side condition evaluation: Handle deleted locations. */
11775 if (!found_object)
11776 force_breakpoint_reinsertion (old_loc);
11777
11778 /* If this location is no longer present, and inserted, look if
11779 there's maybe a new location at the same address. If so,
11780 mark that one inserted, and don't remove this one. This is
11781 needed so that we don't have a time window where a breakpoint
11782 at certain location is not inserted. */
11783
11784 if (old_loc->inserted)
11785 {
11786 /* If the location is inserted now, we might have to remove
11787 it. */
11788
11789 if (found_object && should_be_inserted (old_loc))
11790 {
11791 /* The location is still present in the location list,
11792 and still should be inserted. Don't do anything. */
11793 keep_in_target = 1;
11794 }
11795 else
11796 {
11797 /* This location still exists, but it won't be kept in the
11798 target since it may have been disabled. We proceed to
11799 remove its target-side condition. */
11800
11801 /* The location is either no longer present, or got
11802 disabled. See if there's another location at the
11803 same address, in which case we don't need to remove
11804 this one from the target. */
11805
11806 /* OLD_LOC comes from existing struct breakpoint. */
11807 if (breakpoint_address_is_meaningful (old_loc->owner))
11808 {
11809 for (loc2p = locp;
11810 (loc2p < bp_locations + bp_locations_count
11811 && (*loc2p)->address == old_loc->address);
11812 loc2p++)
11813 {
11814 struct bp_location *loc2 = *loc2p;
11815
11816 if (breakpoint_locations_match (loc2, old_loc))
11817 {
11818 /* Read watchpoint locations are switched to
11819 access watchpoints, if the former are not
11820 supported, but the latter are. */
11821 if (is_hardware_watchpoint (old_loc->owner))
11822 {
11823 gdb_assert (is_hardware_watchpoint (loc2->owner));
11824 loc2->watchpoint_type = old_loc->watchpoint_type;
11825 }
11826
11827 /* loc2 is a duplicated location. We need to check
11828 if it should be inserted in case it will be
11829 unduplicated. */
11830 if (loc2 != old_loc
11831 && unduplicated_should_be_inserted (loc2))
11832 {
11833 swap_insertion (old_loc, loc2);
11834 keep_in_target = 1;
11835 break;
11836 }
11837 }
11838 }
11839 }
11840 }
11841
11842 if (!keep_in_target)
11843 {
11844 if (remove_breakpoint (old_loc))
11845 {
11846 /* This is just about all we can do. We could keep
11847 this location on the global list, and try to
11848 remove it next time, but there's no particular
11849 reason why we will succeed next time.
11850
11851 Note that at this point, old_loc->owner is still
11852 valid, as delete_breakpoint frees the breakpoint
11853 only after calling us. */
11854 printf_filtered (_("warning: Error removing "
11855 "breakpoint %d\n"),
11856 old_loc->owner->number);
11857 }
11858 removed = 1;
11859 }
11860 }
11861
11862 if (!found_object)
11863 {
11864 if (removed && target_is_non_stop_p ()
11865 && need_moribund_for_location_type (old_loc))
11866 {
11867 /* This location was removed from the target. In
11868 non-stop mode, a race condition is possible where
11869 we've removed a breakpoint, but stop events for that
11870 breakpoint are already queued and will arrive later.
11871 We apply an heuristic to be able to distinguish such
11872 SIGTRAPs from other random SIGTRAPs: we keep this
11873 breakpoint location for a bit, and will retire it
11874 after we see some number of events. The theory here
11875 is that reporting of events should, "on the average",
11876 be fair, so after a while we'll see events from all
11877 threads that have anything of interest, and no longer
11878 need to keep this breakpoint location around. We
11879 don't hold locations forever so to reduce chances of
11880 mistaking a non-breakpoint SIGTRAP for a breakpoint
11881 SIGTRAP.
11882
11883 The heuristic failing can be disastrous on
11884 decr_pc_after_break targets.
11885
11886 On decr_pc_after_break targets, like e.g., x86-linux,
11887 if we fail to recognize a late breakpoint SIGTRAP,
11888 because events_till_retirement has reached 0 too
11889 soon, we'll fail to do the PC adjustment, and report
11890 a random SIGTRAP to the user. When the user resumes
11891 the inferior, it will most likely immediately crash
11892 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11893 corrupted, because of being resumed e.g., in the
11894 middle of a multi-byte instruction, or skipped a
11895 one-byte instruction. This was actually seen happen
11896 on native x86-linux, and should be less rare on
11897 targets that do not support new thread events, like
11898 remote, due to the heuristic depending on
11899 thread_count.
11900
11901 Mistaking a random SIGTRAP for a breakpoint trap
11902 causes similar symptoms (PC adjustment applied when
11903 it shouldn't), but then again, playing with SIGTRAPs
11904 behind the debugger's back is asking for trouble.
11905
11906 Since hardware watchpoint traps are always
11907 distinguishable from other traps, so we don't need to
11908 apply keep hardware watchpoint moribund locations
11909 around. We simply always ignore hardware watchpoint
11910 traps we can no longer explain. */
11911
11912 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11913 old_loc->owner = NULL;
11914
11915 moribund_locations.push_back (old_loc);
11916 }
11917 else
11918 {
11919 old_loc->owner = NULL;
11920 decref_bp_location (&old_loc);
11921 }
11922 }
11923 }
11924
11925 /* Rescan breakpoints at the same address and section, marking the
11926 first one as "first" and any others as "duplicates". This is so
11927 that the bpt instruction is only inserted once. If we have a
11928 permanent breakpoint at the same place as BPT, make that one the
11929 official one, and the rest as duplicates. Permanent breakpoints
11930 are sorted first for the same address.
11931
11932 Do the same for hardware watchpoints, but also considering the
11933 watchpoint's type (regular/access/read) and length. */
11934
11935 bp_loc_first = NULL;
11936 wp_loc_first = NULL;
11937 awp_loc_first = NULL;
11938 rwp_loc_first = NULL;
11939 ALL_BP_LOCATIONS (loc, locp)
11940 {
11941 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11942 non-NULL. */
11943 struct bp_location **loc_first_p;
11944 b = loc->owner;
11945
11946 if (!unduplicated_should_be_inserted (loc)
11947 || !breakpoint_address_is_meaningful (b)
11948 /* Don't detect duplicate for tracepoint locations because they are
11949 never duplicated. See the comments in field `duplicate' of
11950 `struct bp_location'. */
11951 || is_tracepoint (b))
11952 {
11953 /* Clear the condition modification flag. */
11954 loc->condition_changed = condition_unchanged;
11955 continue;
11956 }
11957
11958 if (b->type == bp_hardware_watchpoint)
11959 loc_first_p = &wp_loc_first;
11960 else if (b->type == bp_read_watchpoint)
11961 loc_first_p = &rwp_loc_first;
11962 else if (b->type == bp_access_watchpoint)
11963 loc_first_p = &awp_loc_first;
11964 else
11965 loc_first_p = &bp_loc_first;
11966
11967 if (*loc_first_p == NULL
11968 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11969 || !breakpoint_locations_match (loc, *loc_first_p))
11970 {
11971 *loc_first_p = loc;
11972 loc->duplicate = 0;
11973
11974 if (is_breakpoint (loc->owner) && loc->condition_changed)
11975 {
11976 loc->needs_update = 1;
11977 /* Clear the condition modification flag. */
11978 loc->condition_changed = condition_unchanged;
11979 }
11980 continue;
11981 }
11982
11983
11984 /* This and the above ensure the invariant that the first location
11985 is not duplicated, and is the inserted one.
11986 All following are marked as duplicated, and are not inserted. */
11987 if (loc->inserted)
11988 swap_insertion (loc, *loc_first_p);
11989 loc->duplicate = 1;
11990
11991 /* Clear the condition modification flag. */
11992 loc->condition_changed = condition_unchanged;
11993 }
11994
11995 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11996 {
11997 if (insert_mode != UGLL_DONT_INSERT)
11998 insert_breakpoint_locations ();
11999 else
12000 {
12001 /* Even though the caller told us to not insert new
12002 locations, we may still need to update conditions on the
12003 target's side of breakpoints that were already inserted
12004 if the target is evaluating breakpoint conditions. We
12005 only update conditions for locations that are marked
12006 "needs_update". */
12007 update_inserted_breakpoint_locations ();
12008 }
12009 }
12010
12011 if (insert_mode != UGLL_DONT_INSERT)
12012 download_tracepoint_locations ();
12013 }
12014
12015 void
12016 breakpoint_retire_moribund (void)
12017 {
12018 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12019 {
12020 struct bp_location *loc = moribund_locations[ix];
12021 if (--(loc->events_till_retirement) == 0)
12022 {
12023 decref_bp_location (&loc);
12024 unordered_remove (moribund_locations, ix);
12025 --ix;
12026 }
12027 }
12028 }
12029
12030 static void
12031 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12032 {
12033
12034 try
12035 {
12036 update_global_location_list (insert_mode);
12037 }
12038 catch (const gdb_exception_error &e)
12039 {
12040 }
12041 }
12042
12043 /* Clear BKP from a BPS. */
12044
12045 static void
12046 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12047 {
12048 bpstat bs;
12049
12050 for (bs = bps; bs; bs = bs->next)
12051 if (bs->breakpoint_at == bpt)
12052 {
12053 bs->breakpoint_at = NULL;
12054 bs->old_val = NULL;
12055 /* bs->commands will be freed later. */
12056 }
12057 }
12058
12059 /* Callback for iterate_over_threads. */
12060 static int
12061 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12062 {
12063 struct breakpoint *bpt = (struct breakpoint *) data;
12064
12065 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12066 return 0;
12067 }
12068
12069 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12070 callbacks. */
12071
12072 static void
12073 say_where (struct breakpoint *b)
12074 {
12075 struct value_print_options opts;
12076
12077 get_user_print_options (&opts);
12078
12079 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12080 single string. */
12081 if (b->loc == NULL)
12082 {
12083 /* For pending locations, the output differs slightly based
12084 on b->extra_string. If this is non-NULL, it contains either
12085 a condition or dprintf arguments. */
12086 if (b->extra_string == NULL)
12087 {
12088 printf_filtered (_(" (%s) pending."),
12089 event_location_to_string (b->location.get ()));
12090 }
12091 else if (b->type == bp_dprintf)
12092 {
12093 printf_filtered (_(" (%s,%s) pending."),
12094 event_location_to_string (b->location.get ()),
12095 b->extra_string);
12096 }
12097 else
12098 {
12099 printf_filtered (_(" (%s %s) pending."),
12100 event_location_to_string (b->location.get ()),
12101 b->extra_string);
12102 }
12103 }
12104 else
12105 {
12106 if (opts.addressprint || b->loc->symtab == NULL)
12107 {
12108 printf_filtered (" at ");
12109 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12110 address_style.style (),
12111 gdb_stdout);
12112 }
12113 if (b->loc->symtab != NULL)
12114 {
12115 /* If there is a single location, we can print the location
12116 more nicely. */
12117 if (b->loc->next == NULL)
12118 {
12119 puts_filtered (": file ");
12120 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12121 file_name_style.style (),
12122 gdb_stdout);
12123 printf_filtered (", line %d.",
12124 b->loc->line_number);
12125 }
12126 else
12127 /* This is not ideal, but each location may have a
12128 different file name, and this at least reflects the
12129 real situation somewhat. */
12130 printf_filtered (": %s.",
12131 event_location_to_string (b->location.get ()));
12132 }
12133
12134 if (b->loc->next)
12135 {
12136 struct bp_location *loc = b->loc;
12137 int n = 0;
12138 for (; loc; loc = loc->next)
12139 ++n;
12140 printf_filtered (" (%d locations)", n);
12141 }
12142 }
12143 }
12144
12145 bp_location::~bp_location ()
12146 {
12147 xfree (function_name);
12148 }
12149
12150 /* Destructor for the breakpoint base class. */
12151
12152 breakpoint::~breakpoint ()
12153 {
12154 xfree (this->cond_string);
12155 xfree (this->extra_string);
12156 xfree (this->filter);
12157 }
12158
12159 static struct bp_location *
12160 base_breakpoint_allocate_location (struct breakpoint *self)
12161 {
12162 return new bp_location (self);
12163 }
12164
12165 static void
12166 base_breakpoint_re_set (struct breakpoint *b)
12167 {
12168 /* Nothing to re-set. */
12169 }
12170
12171 #define internal_error_pure_virtual_called() \
12172 gdb_assert_not_reached ("pure virtual function called")
12173
12174 static int
12175 base_breakpoint_insert_location (struct bp_location *bl)
12176 {
12177 internal_error_pure_virtual_called ();
12178 }
12179
12180 static int
12181 base_breakpoint_remove_location (struct bp_location *bl,
12182 enum remove_bp_reason reason)
12183 {
12184 internal_error_pure_virtual_called ();
12185 }
12186
12187 static int
12188 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12189 const address_space *aspace,
12190 CORE_ADDR bp_addr,
12191 const struct target_waitstatus *ws)
12192 {
12193 internal_error_pure_virtual_called ();
12194 }
12195
12196 static void
12197 base_breakpoint_check_status (bpstat bs)
12198 {
12199 /* Always stop. */
12200 }
12201
12202 /* A "works_in_software_mode" breakpoint_ops method that just internal
12203 errors. */
12204
12205 static int
12206 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12207 {
12208 internal_error_pure_virtual_called ();
12209 }
12210
12211 /* A "resources_needed" breakpoint_ops method that just internal
12212 errors. */
12213
12214 static int
12215 base_breakpoint_resources_needed (const struct bp_location *bl)
12216 {
12217 internal_error_pure_virtual_called ();
12218 }
12219
12220 static enum print_stop_action
12221 base_breakpoint_print_it (bpstat bs)
12222 {
12223 internal_error_pure_virtual_called ();
12224 }
12225
12226 static void
12227 base_breakpoint_print_one_detail (const struct breakpoint *self,
12228 struct ui_out *uiout)
12229 {
12230 /* nothing */
12231 }
12232
12233 static void
12234 base_breakpoint_print_mention (struct breakpoint *b)
12235 {
12236 internal_error_pure_virtual_called ();
12237 }
12238
12239 static void
12240 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12241 {
12242 internal_error_pure_virtual_called ();
12243 }
12244
12245 static void
12246 base_breakpoint_create_sals_from_location
12247 (const struct event_location *location,
12248 struct linespec_result *canonical,
12249 enum bptype type_wanted)
12250 {
12251 internal_error_pure_virtual_called ();
12252 }
12253
12254 static void
12255 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12256 struct linespec_result *c,
12257 gdb::unique_xmalloc_ptr<char> cond_string,
12258 gdb::unique_xmalloc_ptr<char> extra_string,
12259 enum bptype type_wanted,
12260 enum bpdisp disposition,
12261 int thread,
12262 int task, int ignore_count,
12263 const struct breakpoint_ops *o,
12264 int from_tty, int enabled,
12265 int internal, unsigned flags)
12266 {
12267 internal_error_pure_virtual_called ();
12268 }
12269
12270 static std::vector<symtab_and_line>
12271 base_breakpoint_decode_location (struct breakpoint *b,
12272 const struct event_location *location,
12273 struct program_space *search_pspace)
12274 {
12275 internal_error_pure_virtual_called ();
12276 }
12277
12278 /* The default 'explains_signal' method. */
12279
12280 static int
12281 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12282 {
12283 return 1;
12284 }
12285
12286 /* The default "after_condition_true" method. */
12287
12288 static void
12289 base_breakpoint_after_condition_true (struct bpstats *bs)
12290 {
12291 /* Nothing to do. */
12292 }
12293
12294 struct breakpoint_ops base_breakpoint_ops =
12295 {
12296 base_breakpoint_allocate_location,
12297 base_breakpoint_re_set,
12298 base_breakpoint_insert_location,
12299 base_breakpoint_remove_location,
12300 base_breakpoint_breakpoint_hit,
12301 base_breakpoint_check_status,
12302 base_breakpoint_resources_needed,
12303 base_breakpoint_works_in_software_mode,
12304 base_breakpoint_print_it,
12305 NULL,
12306 base_breakpoint_print_one_detail,
12307 base_breakpoint_print_mention,
12308 base_breakpoint_print_recreate,
12309 base_breakpoint_create_sals_from_location,
12310 base_breakpoint_create_breakpoints_sal,
12311 base_breakpoint_decode_location,
12312 base_breakpoint_explains_signal,
12313 base_breakpoint_after_condition_true,
12314 };
12315
12316 /* Default breakpoint_ops methods. */
12317
12318 static void
12319 bkpt_re_set (struct breakpoint *b)
12320 {
12321 /* FIXME: is this still reachable? */
12322 if (breakpoint_event_location_empty_p (b))
12323 {
12324 /* Anything without a location can't be re-set. */
12325 delete_breakpoint (b);
12326 return;
12327 }
12328
12329 breakpoint_re_set_default (b);
12330 }
12331
12332 static int
12333 bkpt_insert_location (struct bp_location *bl)
12334 {
12335 CORE_ADDR addr = bl->target_info.reqstd_address;
12336
12337 bl->target_info.kind = breakpoint_kind (bl, &addr);
12338 bl->target_info.placed_address = addr;
12339
12340 if (bl->loc_type == bp_loc_hardware_breakpoint)
12341 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12342 else
12343 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12344 }
12345
12346 static int
12347 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12348 {
12349 if (bl->loc_type == bp_loc_hardware_breakpoint)
12350 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12351 else
12352 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12353 }
12354
12355 static int
12356 bkpt_breakpoint_hit (const struct bp_location *bl,
12357 const address_space *aspace, CORE_ADDR bp_addr,
12358 const struct target_waitstatus *ws)
12359 {
12360 if (ws->kind != TARGET_WAITKIND_STOPPED
12361 || ws->value.sig != GDB_SIGNAL_TRAP)
12362 return 0;
12363
12364 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12365 aspace, bp_addr))
12366 return 0;
12367
12368 if (overlay_debugging /* unmapped overlay section */
12369 && section_is_overlay (bl->section)
12370 && !section_is_mapped (bl->section))
12371 return 0;
12372
12373 return 1;
12374 }
12375
12376 static int
12377 dprintf_breakpoint_hit (const struct bp_location *bl,
12378 const address_space *aspace, CORE_ADDR bp_addr,
12379 const struct target_waitstatus *ws)
12380 {
12381 if (dprintf_style == dprintf_style_agent
12382 && target_can_run_breakpoint_commands ())
12383 {
12384 /* An agent-style dprintf never causes a stop. If we see a trap
12385 for this address it must be for a breakpoint that happens to
12386 be set at the same address. */
12387 return 0;
12388 }
12389
12390 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12391 }
12392
12393 static int
12394 bkpt_resources_needed (const struct bp_location *bl)
12395 {
12396 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12397
12398 return 1;
12399 }
12400
12401 static enum print_stop_action
12402 bkpt_print_it (bpstat bs)
12403 {
12404 struct breakpoint *b;
12405 const struct bp_location *bl;
12406 int bp_temp;
12407 struct ui_out *uiout = current_uiout;
12408
12409 gdb_assert (bs->bp_location_at != NULL);
12410
12411 bl = bs->bp_location_at;
12412 b = bs->breakpoint_at;
12413
12414 bp_temp = b->disposition == disp_del;
12415 if (bl->address != bl->requested_address)
12416 breakpoint_adjustment_warning (bl->requested_address,
12417 bl->address,
12418 b->number, 1);
12419 annotate_breakpoint (b->number);
12420 maybe_print_thread_hit_breakpoint (uiout);
12421
12422 if (bp_temp)
12423 uiout->text ("Temporary breakpoint ");
12424 else
12425 uiout->text ("Breakpoint ");
12426 if (uiout->is_mi_like_p ())
12427 {
12428 uiout->field_string ("reason",
12429 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12430 uiout->field_string ("disp", bpdisp_text (b->disposition));
12431 }
12432 uiout->field_int ("bkptno", b->number);
12433 uiout->text (", ");
12434
12435 return PRINT_SRC_AND_LOC;
12436 }
12437
12438 static void
12439 bkpt_print_mention (struct breakpoint *b)
12440 {
12441 if (current_uiout->is_mi_like_p ())
12442 return;
12443
12444 switch (b->type)
12445 {
12446 case bp_breakpoint:
12447 case bp_gnu_ifunc_resolver:
12448 if (b->disposition == disp_del)
12449 printf_filtered (_("Temporary breakpoint"));
12450 else
12451 printf_filtered (_("Breakpoint"));
12452 printf_filtered (_(" %d"), b->number);
12453 if (b->type == bp_gnu_ifunc_resolver)
12454 printf_filtered (_(" at gnu-indirect-function resolver"));
12455 break;
12456 case bp_hardware_breakpoint:
12457 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12458 break;
12459 case bp_dprintf:
12460 printf_filtered (_("Dprintf %d"), b->number);
12461 break;
12462 }
12463
12464 say_where (b);
12465 }
12466
12467 static void
12468 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12469 {
12470 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12471 fprintf_unfiltered (fp, "tbreak");
12472 else if (tp->type == bp_breakpoint)
12473 fprintf_unfiltered (fp, "break");
12474 else if (tp->type == bp_hardware_breakpoint
12475 && tp->disposition == disp_del)
12476 fprintf_unfiltered (fp, "thbreak");
12477 else if (tp->type == bp_hardware_breakpoint)
12478 fprintf_unfiltered (fp, "hbreak");
12479 else
12480 internal_error (__FILE__, __LINE__,
12481 _("unhandled breakpoint type %d"), (int) tp->type);
12482
12483 fprintf_unfiltered (fp, " %s",
12484 event_location_to_string (tp->location.get ()));
12485
12486 /* Print out extra_string if this breakpoint is pending. It might
12487 contain, for example, conditions that were set by the user. */
12488 if (tp->loc == NULL && tp->extra_string != NULL)
12489 fprintf_unfiltered (fp, " %s", tp->extra_string);
12490
12491 print_recreate_thread (tp, fp);
12492 }
12493
12494 static void
12495 bkpt_create_sals_from_location (const struct event_location *location,
12496 struct linespec_result *canonical,
12497 enum bptype type_wanted)
12498 {
12499 create_sals_from_location_default (location, canonical, type_wanted);
12500 }
12501
12502 static void
12503 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12504 struct linespec_result *canonical,
12505 gdb::unique_xmalloc_ptr<char> cond_string,
12506 gdb::unique_xmalloc_ptr<char> extra_string,
12507 enum bptype type_wanted,
12508 enum bpdisp disposition,
12509 int thread,
12510 int task, int ignore_count,
12511 const struct breakpoint_ops *ops,
12512 int from_tty, int enabled,
12513 int internal, unsigned flags)
12514 {
12515 create_breakpoints_sal_default (gdbarch, canonical,
12516 std::move (cond_string),
12517 std::move (extra_string),
12518 type_wanted,
12519 disposition, thread, task,
12520 ignore_count, ops, from_tty,
12521 enabled, internal, flags);
12522 }
12523
12524 static std::vector<symtab_and_line>
12525 bkpt_decode_location (struct breakpoint *b,
12526 const struct event_location *location,
12527 struct program_space *search_pspace)
12528 {
12529 return decode_location_default (b, location, search_pspace);
12530 }
12531
12532 /* Virtual table for internal breakpoints. */
12533
12534 static void
12535 internal_bkpt_re_set (struct breakpoint *b)
12536 {
12537 switch (b->type)
12538 {
12539 /* Delete overlay event and longjmp master breakpoints; they
12540 will be reset later by breakpoint_re_set. */
12541 case bp_overlay_event:
12542 case bp_longjmp_master:
12543 case bp_std_terminate_master:
12544 case bp_exception_master:
12545 delete_breakpoint (b);
12546 break;
12547
12548 /* This breakpoint is special, it's set up when the inferior
12549 starts and we really don't want to touch it. */
12550 case bp_shlib_event:
12551
12552 /* Like bp_shlib_event, this breakpoint type is special. Once
12553 it is set up, we do not want to touch it. */
12554 case bp_thread_event:
12555 break;
12556 }
12557 }
12558
12559 static void
12560 internal_bkpt_check_status (bpstat bs)
12561 {
12562 if (bs->breakpoint_at->type == bp_shlib_event)
12563 {
12564 /* If requested, stop when the dynamic linker notifies GDB of
12565 events. This allows the user to get control and place
12566 breakpoints in initializer routines for dynamically loaded
12567 objects (among other things). */
12568 bs->stop = stop_on_solib_events;
12569 bs->print = stop_on_solib_events;
12570 }
12571 else
12572 bs->stop = 0;
12573 }
12574
12575 static enum print_stop_action
12576 internal_bkpt_print_it (bpstat bs)
12577 {
12578 struct breakpoint *b;
12579
12580 b = bs->breakpoint_at;
12581
12582 switch (b->type)
12583 {
12584 case bp_shlib_event:
12585 /* Did we stop because the user set the stop_on_solib_events
12586 variable? (If so, we report this as a generic, "Stopped due
12587 to shlib event" message.) */
12588 print_solib_event (0);
12589 break;
12590
12591 case bp_thread_event:
12592 /* Not sure how we will get here.
12593 GDB should not stop for these breakpoints. */
12594 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12595 break;
12596
12597 case bp_overlay_event:
12598 /* By analogy with the thread event, GDB should not stop for these. */
12599 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12600 break;
12601
12602 case bp_longjmp_master:
12603 /* These should never be enabled. */
12604 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12605 break;
12606
12607 case bp_std_terminate_master:
12608 /* These should never be enabled. */
12609 printf_filtered (_("std::terminate Master Breakpoint: "
12610 "gdb should not stop!\n"));
12611 break;
12612
12613 case bp_exception_master:
12614 /* These should never be enabled. */
12615 printf_filtered (_("Exception Master Breakpoint: "
12616 "gdb should not stop!\n"));
12617 break;
12618 }
12619
12620 return PRINT_NOTHING;
12621 }
12622
12623 static void
12624 internal_bkpt_print_mention (struct breakpoint *b)
12625 {
12626 /* Nothing to mention. These breakpoints are internal. */
12627 }
12628
12629 /* Virtual table for momentary breakpoints */
12630
12631 static void
12632 momentary_bkpt_re_set (struct breakpoint *b)
12633 {
12634 /* Keep temporary breakpoints, which can be encountered when we step
12635 over a dlopen call and solib_add is resetting the breakpoints.
12636 Otherwise these should have been blown away via the cleanup chain
12637 or by breakpoint_init_inferior when we rerun the executable. */
12638 }
12639
12640 static void
12641 momentary_bkpt_check_status (bpstat bs)
12642 {
12643 /* Nothing. The point of these breakpoints is causing a stop. */
12644 }
12645
12646 static enum print_stop_action
12647 momentary_bkpt_print_it (bpstat bs)
12648 {
12649 return PRINT_UNKNOWN;
12650 }
12651
12652 static void
12653 momentary_bkpt_print_mention (struct breakpoint *b)
12654 {
12655 /* Nothing to mention. These breakpoints are internal. */
12656 }
12657
12658 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12659
12660 It gets cleared already on the removal of the first one of such placed
12661 breakpoints. This is OK as they get all removed altogether. */
12662
12663 longjmp_breakpoint::~longjmp_breakpoint ()
12664 {
12665 thread_info *tp = find_thread_global_id (this->thread);
12666
12667 if (tp != NULL)
12668 tp->initiating_frame = null_frame_id;
12669 }
12670
12671 /* Specific methods for probe breakpoints. */
12672
12673 static int
12674 bkpt_probe_insert_location (struct bp_location *bl)
12675 {
12676 int v = bkpt_insert_location (bl);
12677
12678 if (v == 0)
12679 {
12680 /* The insertion was successful, now let's set the probe's semaphore
12681 if needed. */
12682 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12683 }
12684
12685 return v;
12686 }
12687
12688 static int
12689 bkpt_probe_remove_location (struct bp_location *bl,
12690 enum remove_bp_reason reason)
12691 {
12692 /* Let's clear the semaphore before removing the location. */
12693 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12694
12695 return bkpt_remove_location (bl, reason);
12696 }
12697
12698 static void
12699 bkpt_probe_create_sals_from_location (const struct event_location *location,
12700 struct linespec_result *canonical,
12701 enum bptype type_wanted)
12702 {
12703 struct linespec_sals lsal;
12704
12705 lsal.sals = parse_probes (location, NULL, canonical);
12706 lsal.canonical
12707 = xstrdup (event_location_to_string (canonical->location.get ()));
12708 canonical->lsals.push_back (std::move (lsal));
12709 }
12710
12711 static std::vector<symtab_and_line>
12712 bkpt_probe_decode_location (struct breakpoint *b,
12713 const struct event_location *location,
12714 struct program_space *search_pspace)
12715 {
12716 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12717 if (sals.empty ())
12718 error (_("probe not found"));
12719 return sals;
12720 }
12721
12722 /* The breakpoint_ops structure to be used in tracepoints. */
12723
12724 static void
12725 tracepoint_re_set (struct breakpoint *b)
12726 {
12727 breakpoint_re_set_default (b);
12728 }
12729
12730 static int
12731 tracepoint_breakpoint_hit (const struct bp_location *bl,
12732 const address_space *aspace, CORE_ADDR bp_addr,
12733 const struct target_waitstatus *ws)
12734 {
12735 /* By definition, the inferior does not report stops at
12736 tracepoints. */
12737 return 0;
12738 }
12739
12740 static void
12741 tracepoint_print_one_detail (const struct breakpoint *self,
12742 struct ui_out *uiout)
12743 {
12744 struct tracepoint *tp = (struct tracepoint *) self;
12745 if (!tp->static_trace_marker_id.empty ())
12746 {
12747 gdb_assert (self->type == bp_static_tracepoint);
12748
12749 uiout->text ("\tmarker id is ");
12750 uiout->field_string ("static-tracepoint-marker-string-id",
12751 tp->static_trace_marker_id);
12752 uiout->text ("\n");
12753 }
12754 }
12755
12756 static void
12757 tracepoint_print_mention (struct breakpoint *b)
12758 {
12759 if (current_uiout->is_mi_like_p ())
12760 return;
12761
12762 switch (b->type)
12763 {
12764 case bp_tracepoint:
12765 printf_filtered (_("Tracepoint"));
12766 printf_filtered (_(" %d"), b->number);
12767 break;
12768 case bp_fast_tracepoint:
12769 printf_filtered (_("Fast tracepoint"));
12770 printf_filtered (_(" %d"), b->number);
12771 break;
12772 case bp_static_tracepoint:
12773 printf_filtered (_("Static tracepoint"));
12774 printf_filtered (_(" %d"), b->number);
12775 break;
12776 default:
12777 internal_error (__FILE__, __LINE__,
12778 _("unhandled tracepoint type %d"), (int) b->type);
12779 }
12780
12781 say_where (b);
12782 }
12783
12784 static void
12785 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12786 {
12787 struct tracepoint *tp = (struct tracepoint *) self;
12788
12789 if (self->type == bp_fast_tracepoint)
12790 fprintf_unfiltered (fp, "ftrace");
12791 else if (self->type == bp_static_tracepoint)
12792 fprintf_unfiltered (fp, "strace");
12793 else if (self->type == bp_tracepoint)
12794 fprintf_unfiltered (fp, "trace");
12795 else
12796 internal_error (__FILE__, __LINE__,
12797 _("unhandled tracepoint type %d"), (int) self->type);
12798
12799 fprintf_unfiltered (fp, " %s",
12800 event_location_to_string (self->location.get ()));
12801 print_recreate_thread (self, fp);
12802
12803 if (tp->pass_count)
12804 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12805 }
12806
12807 static void
12808 tracepoint_create_sals_from_location (const struct event_location *location,
12809 struct linespec_result *canonical,
12810 enum bptype type_wanted)
12811 {
12812 create_sals_from_location_default (location, canonical, type_wanted);
12813 }
12814
12815 static void
12816 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12817 struct linespec_result *canonical,
12818 gdb::unique_xmalloc_ptr<char> cond_string,
12819 gdb::unique_xmalloc_ptr<char> extra_string,
12820 enum bptype type_wanted,
12821 enum bpdisp disposition,
12822 int thread,
12823 int task, int ignore_count,
12824 const struct breakpoint_ops *ops,
12825 int from_tty, int enabled,
12826 int internal, unsigned flags)
12827 {
12828 create_breakpoints_sal_default (gdbarch, canonical,
12829 std::move (cond_string),
12830 std::move (extra_string),
12831 type_wanted,
12832 disposition, thread, task,
12833 ignore_count, ops, from_tty,
12834 enabled, internal, flags);
12835 }
12836
12837 static std::vector<symtab_and_line>
12838 tracepoint_decode_location (struct breakpoint *b,
12839 const struct event_location *location,
12840 struct program_space *search_pspace)
12841 {
12842 return decode_location_default (b, location, search_pspace);
12843 }
12844
12845 struct breakpoint_ops tracepoint_breakpoint_ops;
12846
12847 /* The breakpoint_ops structure to be use on tracepoints placed in a
12848 static probe. */
12849
12850 static void
12851 tracepoint_probe_create_sals_from_location
12852 (const struct event_location *location,
12853 struct linespec_result *canonical,
12854 enum bptype type_wanted)
12855 {
12856 /* We use the same method for breakpoint on probes. */
12857 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12858 }
12859
12860 static std::vector<symtab_and_line>
12861 tracepoint_probe_decode_location (struct breakpoint *b,
12862 const struct event_location *location,
12863 struct program_space *search_pspace)
12864 {
12865 /* We use the same method for breakpoint on probes. */
12866 return bkpt_probe_decode_location (b, location, search_pspace);
12867 }
12868
12869 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12870
12871 /* Dprintf breakpoint_ops methods. */
12872
12873 static void
12874 dprintf_re_set (struct breakpoint *b)
12875 {
12876 breakpoint_re_set_default (b);
12877
12878 /* extra_string should never be non-NULL for dprintf. */
12879 gdb_assert (b->extra_string != NULL);
12880
12881 /* 1 - connect to target 1, that can run breakpoint commands.
12882 2 - create a dprintf, which resolves fine.
12883 3 - disconnect from target 1
12884 4 - connect to target 2, that can NOT run breakpoint commands.
12885
12886 After steps #3/#4, you'll want the dprintf command list to
12887 be updated, because target 1 and 2 may well return different
12888 answers for target_can_run_breakpoint_commands().
12889 Given absence of finer grained resetting, we get to do
12890 it all the time. */
12891 if (b->extra_string != NULL)
12892 update_dprintf_command_list (b);
12893 }
12894
12895 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12896
12897 static void
12898 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12899 {
12900 fprintf_unfiltered (fp, "dprintf %s,%s",
12901 event_location_to_string (tp->location.get ()),
12902 tp->extra_string);
12903 print_recreate_thread (tp, fp);
12904 }
12905
12906 /* Implement the "after_condition_true" breakpoint_ops method for
12907 dprintf.
12908
12909 dprintf's are implemented with regular commands in their command
12910 list, but we run the commands here instead of before presenting the
12911 stop to the user, as dprintf's don't actually cause a stop. This
12912 also makes it so that the commands of multiple dprintfs at the same
12913 address are all handled. */
12914
12915 static void
12916 dprintf_after_condition_true (struct bpstats *bs)
12917 {
12918 struct bpstats tmp_bs;
12919 struct bpstats *tmp_bs_p = &tmp_bs;
12920
12921 /* dprintf's never cause a stop. This wasn't set in the
12922 check_status hook instead because that would make the dprintf's
12923 condition not be evaluated. */
12924 bs->stop = 0;
12925
12926 /* Run the command list here. Take ownership of it instead of
12927 copying. We never want these commands to run later in
12928 bpstat_do_actions, if a breakpoint that causes a stop happens to
12929 be set at same address as this dprintf, or even if running the
12930 commands here throws. */
12931 tmp_bs.commands = bs->commands;
12932 bs->commands = NULL;
12933
12934 bpstat_do_actions_1 (&tmp_bs_p);
12935
12936 /* 'tmp_bs.commands' will usually be NULL by now, but
12937 bpstat_do_actions_1 may return early without processing the whole
12938 list. */
12939 }
12940
12941 /* The breakpoint_ops structure to be used on static tracepoints with
12942 markers (`-m'). */
12943
12944 static void
12945 strace_marker_create_sals_from_location (const struct event_location *location,
12946 struct linespec_result *canonical,
12947 enum bptype type_wanted)
12948 {
12949 struct linespec_sals lsal;
12950 const char *arg_start, *arg;
12951
12952 arg = arg_start = get_linespec_location (location)->spec_string;
12953 lsal.sals = decode_static_tracepoint_spec (&arg);
12954
12955 std::string str (arg_start, arg - arg_start);
12956 const char *ptr = str.c_str ();
12957 canonical->location
12958 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12959
12960 lsal.canonical
12961 = xstrdup (event_location_to_string (canonical->location.get ()));
12962 canonical->lsals.push_back (std::move (lsal));
12963 }
12964
12965 static void
12966 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12967 struct linespec_result *canonical,
12968 gdb::unique_xmalloc_ptr<char> cond_string,
12969 gdb::unique_xmalloc_ptr<char> extra_string,
12970 enum bptype type_wanted,
12971 enum bpdisp disposition,
12972 int thread,
12973 int task, int ignore_count,
12974 const struct breakpoint_ops *ops,
12975 int from_tty, int enabled,
12976 int internal, unsigned flags)
12977 {
12978 const linespec_sals &lsal = canonical->lsals[0];
12979
12980 /* If the user is creating a static tracepoint by marker id
12981 (strace -m MARKER_ID), then store the sals index, so that
12982 breakpoint_re_set can try to match up which of the newly
12983 found markers corresponds to this one, and, don't try to
12984 expand multiple locations for each sal, given than SALS
12985 already should contain all sals for MARKER_ID. */
12986
12987 for (size_t i = 0; i < lsal.sals.size (); i++)
12988 {
12989 event_location_up location
12990 = copy_event_location (canonical->location.get ());
12991
12992 std::unique_ptr<tracepoint> tp (new tracepoint ());
12993 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12994 std::move (location), NULL,
12995 std::move (cond_string),
12996 std::move (extra_string),
12997 type_wanted, disposition,
12998 thread, task, ignore_count, ops,
12999 from_tty, enabled, internal, flags,
13000 canonical->special_display);
13001 /* Given that its possible to have multiple markers with
13002 the same string id, if the user is creating a static
13003 tracepoint by marker id ("strace -m MARKER_ID"), then
13004 store the sals index, so that breakpoint_re_set can
13005 try to match up which of the newly found markers
13006 corresponds to this one */
13007 tp->static_trace_marker_id_idx = i;
13008
13009 install_breakpoint (internal, std::move (tp), 0);
13010 }
13011 }
13012
13013 static std::vector<symtab_and_line>
13014 strace_marker_decode_location (struct breakpoint *b,
13015 const struct event_location *location,
13016 struct program_space *search_pspace)
13017 {
13018 struct tracepoint *tp = (struct tracepoint *) b;
13019 const char *s = get_linespec_location (location)->spec_string;
13020
13021 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13022 if (sals.size () > tp->static_trace_marker_id_idx)
13023 {
13024 sals[0] = sals[tp->static_trace_marker_id_idx];
13025 sals.resize (1);
13026 return sals;
13027 }
13028 else
13029 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13030 }
13031
13032 static struct breakpoint_ops strace_marker_breakpoint_ops;
13033
13034 static int
13035 strace_marker_p (struct breakpoint *b)
13036 {
13037 return b->ops == &strace_marker_breakpoint_ops;
13038 }
13039
13040 /* Delete a breakpoint and clean up all traces of it in the data
13041 structures. */
13042
13043 void
13044 delete_breakpoint (struct breakpoint *bpt)
13045 {
13046 struct breakpoint *b;
13047
13048 gdb_assert (bpt != NULL);
13049
13050 /* Has this bp already been deleted? This can happen because
13051 multiple lists can hold pointers to bp's. bpstat lists are
13052 especial culprits.
13053
13054 One example of this happening is a watchpoint's scope bp. When
13055 the scope bp triggers, we notice that the watchpoint is out of
13056 scope, and delete it. We also delete its scope bp. But the
13057 scope bp is marked "auto-deleting", and is already on a bpstat.
13058 That bpstat is then checked for auto-deleting bp's, which are
13059 deleted.
13060
13061 A real solution to this problem might involve reference counts in
13062 bp's, and/or giving them pointers back to their referencing
13063 bpstat's, and teaching delete_breakpoint to only free a bp's
13064 storage when no more references were extent. A cheaper bandaid
13065 was chosen. */
13066 if (bpt->type == bp_none)
13067 return;
13068
13069 /* At least avoid this stale reference until the reference counting
13070 of breakpoints gets resolved. */
13071 if (bpt->related_breakpoint != bpt)
13072 {
13073 struct breakpoint *related;
13074 struct watchpoint *w;
13075
13076 if (bpt->type == bp_watchpoint_scope)
13077 w = (struct watchpoint *) bpt->related_breakpoint;
13078 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13079 w = (struct watchpoint *) bpt;
13080 else
13081 w = NULL;
13082 if (w != NULL)
13083 watchpoint_del_at_next_stop (w);
13084
13085 /* Unlink bpt from the bpt->related_breakpoint ring. */
13086 for (related = bpt; related->related_breakpoint != bpt;
13087 related = related->related_breakpoint);
13088 related->related_breakpoint = bpt->related_breakpoint;
13089 bpt->related_breakpoint = bpt;
13090 }
13091
13092 /* watch_command_1 creates a watchpoint but only sets its number if
13093 update_watchpoint succeeds in creating its bp_locations. If there's
13094 a problem in that process, we'll be asked to delete the half-created
13095 watchpoint. In that case, don't announce the deletion. */
13096 if (bpt->number)
13097 gdb::observers::breakpoint_deleted.notify (bpt);
13098
13099 if (breakpoint_chain == bpt)
13100 breakpoint_chain = bpt->next;
13101
13102 ALL_BREAKPOINTS (b)
13103 if (b->next == bpt)
13104 {
13105 b->next = bpt->next;
13106 break;
13107 }
13108
13109 /* Be sure no bpstat's are pointing at the breakpoint after it's
13110 been freed. */
13111 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13112 in all threads for now. Note that we cannot just remove bpstats
13113 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13114 commands are associated with the bpstat; if we remove it here,
13115 then the later call to bpstat_do_actions (&stop_bpstat); in
13116 event-top.c won't do anything, and temporary breakpoints with
13117 commands won't work. */
13118
13119 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13120
13121 /* Now that breakpoint is removed from breakpoint list, update the
13122 global location list. This will remove locations that used to
13123 belong to this breakpoint. Do this before freeing the breakpoint
13124 itself, since remove_breakpoint looks at location's owner. It
13125 might be better design to have location completely
13126 self-contained, but it's not the case now. */
13127 update_global_location_list (UGLL_DONT_INSERT);
13128
13129 /* On the chance that someone will soon try again to delete this
13130 same bp, we mark it as deleted before freeing its storage. */
13131 bpt->type = bp_none;
13132 delete bpt;
13133 }
13134
13135 /* Iterator function to call a user-provided callback function once
13136 for each of B and its related breakpoints. */
13137
13138 static void
13139 iterate_over_related_breakpoints (struct breakpoint *b,
13140 gdb::function_view<void (breakpoint *)> function)
13141 {
13142 struct breakpoint *related;
13143
13144 related = b;
13145 do
13146 {
13147 struct breakpoint *next;
13148
13149 /* FUNCTION may delete RELATED. */
13150 next = related->related_breakpoint;
13151
13152 if (next == related)
13153 {
13154 /* RELATED is the last ring entry. */
13155 function (related);
13156
13157 /* FUNCTION may have deleted it, so we'd never reach back to
13158 B. There's nothing left to do anyway, so just break
13159 out. */
13160 break;
13161 }
13162 else
13163 function (related);
13164
13165 related = next;
13166 }
13167 while (related != b);
13168 }
13169
13170 static void
13171 delete_command (const char *arg, int from_tty)
13172 {
13173 struct breakpoint *b, *b_tmp;
13174
13175 dont_repeat ();
13176
13177 if (arg == 0)
13178 {
13179 int breaks_to_delete = 0;
13180
13181 /* Delete all breakpoints if no argument. Do not delete
13182 internal breakpoints, these have to be deleted with an
13183 explicit breakpoint number argument. */
13184 ALL_BREAKPOINTS (b)
13185 if (user_breakpoint_p (b))
13186 {
13187 breaks_to_delete = 1;
13188 break;
13189 }
13190
13191 /* Ask user only if there are some breakpoints to delete. */
13192 if (!from_tty
13193 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13194 {
13195 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13196 if (user_breakpoint_p (b))
13197 delete_breakpoint (b);
13198 }
13199 }
13200 else
13201 map_breakpoint_numbers
13202 (arg, [&] (breakpoint *br)
13203 {
13204 iterate_over_related_breakpoints (br, delete_breakpoint);
13205 });
13206 }
13207
13208 /* Return true if all locations of B bound to PSPACE are pending. If
13209 PSPACE is NULL, all locations of all program spaces are
13210 considered. */
13211
13212 static int
13213 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13214 {
13215 struct bp_location *loc;
13216
13217 for (loc = b->loc; loc != NULL; loc = loc->next)
13218 if ((pspace == NULL
13219 || loc->pspace == pspace)
13220 && !loc->shlib_disabled
13221 && !loc->pspace->executing_startup)
13222 return 0;
13223 return 1;
13224 }
13225
13226 /* Subroutine of update_breakpoint_locations to simplify it.
13227 Return non-zero if multiple fns in list LOC have the same name.
13228 Null names are ignored. */
13229
13230 static int
13231 ambiguous_names_p (struct bp_location *loc)
13232 {
13233 struct bp_location *l;
13234 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13235 xcalloc, xfree);
13236
13237 for (l = loc; l != NULL; l = l->next)
13238 {
13239 const char **slot;
13240 const char *name = l->function_name;
13241
13242 /* Allow for some names to be NULL, ignore them. */
13243 if (name == NULL)
13244 continue;
13245
13246 slot = (const char **) htab_find_slot (htab, (const void *) name,
13247 INSERT);
13248 /* NOTE: We can assume slot != NULL here because xcalloc never
13249 returns NULL. */
13250 if (*slot != NULL)
13251 {
13252 htab_delete (htab);
13253 return 1;
13254 }
13255 *slot = name;
13256 }
13257
13258 htab_delete (htab);
13259 return 0;
13260 }
13261
13262 /* When symbols change, it probably means the sources changed as well,
13263 and it might mean the static tracepoint markers are no longer at
13264 the same address or line numbers they used to be at last we
13265 checked. Losing your static tracepoints whenever you rebuild is
13266 undesirable. This function tries to resync/rematch gdb static
13267 tracepoints with the markers on the target, for static tracepoints
13268 that have not been set by marker id. Static tracepoint that have
13269 been set by marker id are reset by marker id in breakpoint_re_set.
13270 The heuristic is:
13271
13272 1) For a tracepoint set at a specific address, look for a marker at
13273 the old PC. If one is found there, assume to be the same marker.
13274 If the name / string id of the marker found is different from the
13275 previous known name, assume that means the user renamed the marker
13276 in the sources, and output a warning.
13277
13278 2) For a tracepoint set at a given line number, look for a marker
13279 at the new address of the old line number. If one is found there,
13280 assume to be the same marker. If the name / string id of the
13281 marker found is different from the previous known name, assume that
13282 means the user renamed the marker in the sources, and output a
13283 warning.
13284
13285 3) If a marker is no longer found at the same address or line, it
13286 may mean the marker no longer exists. But it may also just mean
13287 the code changed a bit. Maybe the user added a few lines of code
13288 that made the marker move up or down (in line number terms). Ask
13289 the target for info about the marker with the string id as we knew
13290 it. If found, update line number and address in the matching
13291 static tracepoint. This will get confused if there's more than one
13292 marker with the same ID (possible in UST, although unadvised
13293 precisely because it confuses tools). */
13294
13295 static struct symtab_and_line
13296 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13297 {
13298 struct tracepoint *tp = (struct tracepoint *) b;
13299 struct static_tracepoint_marker marker;
13300 CORE_ADDR pc;
13301
13302 pc = sal.pc;
13303 if (sal.line)
13304 find_line_pc (sal.symtab, sal.line, &pc);
13305
13306 if (target_static_tracepoint_marker_at (pc, &marker))
13307 {
13308 if (tp->static_trace_marker_id != marker.str_id)
13309 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13310 b->number, tp->static_trace_marker_id.c_str (),
13311 marker.str_id.c_str ());
13312
13313 tp->static_trace_marker_id = std::move (marker.str_id);
13314
13315 return sal;
13316 }
13317
13318 /* Old marker wasn't found on target at lineno. Try looking it up
13319 by string ID. */
13320 if (!sal.explicit_pc
13321 && sal.line != 0
13322 && sal.symtab != NULL
13323 && !tp->static_trace_marker_id.empty ())
13324 {
13325 std::vector<static_tracepoint_marker> markers
13326 = target_static_tracepoint_markers_by_strid
13327 (tp->static_trace_marker_id.c_str ());
13328
13329 if (!markers.empty ())
13330 {
13331 struct symbol *sym;
13332 struct static_tracepoint_marker *tpmarker;
13333 struct ui_out *uiout = current_uiout;
13334 struct explicit_location explicit_loc;
13335
13336 tpmarker = &markers[0];
13337
13338 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13339
13340 warning (_("marker for static tracepoint %d (%s) not "
13341 "found at previous line number"),
13342 b->number, tp->static_trace_marker_id.c_str ());
13343
13344 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13345 sym = find_pc_sect_function (tpmarker->address, NULL);
13346 uiout->text ("Now in ");
13347 if (sym)
13348 {
13349 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13350 ui_out_style_kind::FUNCTION);
13351 uiout->text (" at ");
13352 }
13353 uiout->field_string ("file",
13354 symtab_to_filename_for_display (sal2.symtab),
13355 ui_out_style_kind::FILE);
13356 uiout->text (":");
13357
13358 if (uiout->is_mi_like_p ())
13359 {
13360 const char *fullname = symtab_to_fullname (sal2.symtab);
13361
13362 uiout->field_string ("fullname", fullname);
13363 }
13364
13365 uiout->field_int ("line", sal2.line);
13366 uiout->text ("\n");
13367
13368 b->loc->line_number = sal2.line;
13369 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13370
13371 b->location.reset (NULL);
13372 initialize_explicit_location (&explicit_loc);
13373 explicit_loc.source_filename
13374 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13375 explicit_loc.line_offset.offset = b->loc->line_number;
13376 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13377 b->location = new_explicit_location (&explicit_loc);
13378
13379 /* Might be nice to check if function changed, and warn if
13380 so. */
13381 }
13382 }
13383 return sal;
13384 }
13385
13386 /* Returns 1 iff locations A and B are sufficiently same that
13387 we don't need to report breakpoint as changed. */
13388
13389 static int
13390 locations_are_equal (struct bp_location *a, struct bp_location *b)
13391 {
13392 while (a && b)
13393 {
13394 if (a->address != b->address)
13395 return 0;
13396
13397 if (a->shlib_disabled != b->shlib_disabled)
13398 return 0;
13399
13400 if (a->enabled != b->enabled)
13401 return 0;
13402
13403 a = a->next;
13404 b = b->next;
13405 }
13406
13407 if ((a == NULL) != (b == NULL))
13408 return 0;
13409
13410 return 1;
13411 }
13412
13413 /* Split all locations of B that are bound to PSPACE out of B's
13414 location list to a separate list and return that list's head. If
13415 PSPACE is NULL, hoist out all locations of B. */
13416
13417 static struct bp_location *
13418 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13419 {
13420 struct bp_location head;
13421 struct bp_location *i = b->loc;
13422 struct bp_location **i_link = &b->loc;
13423 struct bp_location *hoisted = &head;
13424
13425 if (pspace == NULL)
13426 {
13427 i = b->loc;
13428 b->loc = NULL;
13429 return i;
13430 }
13431
13432 head.next = NULL;
13433
13434 while (i != NULL)
13435 {
13436 if (i->pspace == pspace)
13437 {
13438 *i_link = i->next;
13439 i->next = NULL;
13440 hoisted->next = i;
13441 hoisted = i;
13442 }
13443 else
13444 i_link = &i->next;
13445 i = *i_link;
13446 }
13447
13448 return head.next;
13449 }
13450
13451 /* Create new breakpoint locations for B (a hardware or software
13452 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13453 zero, then B is a ranged breakpoint. Only recreates locations for
13454 FILTER_PSPACE. Locations of other program spaces are left
13455 untouched. */
13456
13457 void
13458 update_breakpoint_locations (struct breakpoint *b,
13459 struct program_space *filter_pspace,
13460 gdb::array_view<const symtab_and_line> sals,
13461 gdb::array_view<const symtab_and_line> sals_end)
13462 {
13463 struct bp_location *existing_locations;
13464
13465 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13466 {
13467 /* Ranged breakpoints have only one start location and one end
13468 location. */
13469 b->enable_state = bp_disabled;
13470 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13471 "multiple locations found\n"),
13472 b->number);
13473 return;
13474 }
13475
13476 /* If there's no new locations, and all existing locations are
13477 pending, don't do anything. This optimizes the common case where
13478 all locations are in the same shared library, that was unloaded.
13479 We'd like to retain the location, so that when the library is
13480 loaded again, we don't loose the enabled/disabled status of the
13481 individual locations. */
13482 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13483 return;
13484
13485 existing_locations = hoist_existing_locations (b, filter_pspace);
13486
13487 for (const auto &sal : sals)
13488 {
13489 struct bp_location *new_loc;
13490
13491 switch_to_program_space_and_thread (sal.pspace);
13492
13493 new_loc = add_location_to_breakpoint (b, &sal);
13494
13495 /* Reparse conditions, they might contain references to the
13496 old symtab. */
13497 if (b->cond_string != NULL)
13498 {
13499 const char *s;
13500
13501 s = b->cond_string;
13502 try
13503 {
13504 new_loc->cond = parse_exp_1 (&s, sal.pc,
13505 block_for_pc (sal.pc),
13506 0);
13507 }
13508 catch (const gdb_exception_error &e)
13509 {
13510 warning (_("failed to reevaluate condition "
13511 "for breakpoint %d: %s"),
13512 b->number, e.what ());
13513 new_loc->enabled = 0;
13514 }
13515 }
13516
13517 if (!sals_end.empty ())
13518 {
13519 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13520
13521 new_loc->length = end - sals[0].pc + 1;
13522 }
13523 }
13524
13525 /* If possible, carry over 'disable' status from existing
13526 breakpoints. */
13527 {
13528 struct bp_location *e = existing_locations;
13529 /* If there are multiple breakpoints with the same function name,
13530 e.g. for inline functions, comparing function names won't work.
13531 Instead compare pc addresses; this is just a heuristic as things
13532 may have moved, but in practice it gives the correct answer
13533 often enough until a better solution is found. */
13534 int have_ambiguous_names = ambiguous_names_p (b->loc);
13535
13536 for (; e; e = e->next)
13537 {
13538 if (!e->enabled && e->function_name)
13539 {
13540 struct bp_location *l = b->loc;
13541 if (have_ambiguous_names)
13542 {
13543 for (; l; l = l->next)
13544 if (breakpoint_locations_match (e, l))
13545 {
13546 l->enabled = 0;
13547 break;
13548 }
13549 }
13550 else
13551 {
13552 for (; l; l = l->next)
13553 if (l->function_name
13554 && strcmp (e->function_name, l->function_name) == 0)
13555 {
13556 l->enabled = 0;
13557 break;
13558 }
13559 }
13560 }
13561 }
13562 }
13563
13564 if (!locations_are_equal (existing_locations, b->loc))
13565 gdb::observers::breakpoint_modified.notify (b);
13566 }
13567
13568 /* Find the SaL locations corresponding to the given LOCATION.
13569 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13570
13571 static std::vector<symtab_and_line>
13572 location_to_sals (struct breakpoint *b, struct event_location *location,
13573 struct program_space *search_pspace, int *found)
13574 {
13575 struct gdb_exception exception;
13576
13577 gdb_assert (b->ops != NULL);
13578
13579 std::vector<symtab_and_line> sals;
13580
13581 try
13582 {
13583 sals = b->ops->decode_location (b, location, search_pspace);
13584 }
13585 catch (gdb_exception_error &e)
13586 {
13587 int not_found_and_ok = 0;
13588
13589 /* For pending breakpoints, it's expected that parsing will
13590 fail until the right shared library is loaded. User has
13591 already told to create pending breakpoints and don't need
13592 extra messages. If breakpoint is in bp_shlib_disabled
13593 state, then user already saw the message about that
13594 breakpoint being disabled, and don't want to see more
13595 errors. */
13596 if (e.error == NOT_FOUND_ERROR
13597 && (b->condition_not_parsed
13598 || (b->loc != NULL
13599 && search_pspace != NULL
13600 && b->loc->pspace != search_pspace)
13601 || (b->loc && b->loc->shlib_disabled)
13602 || (b->loc && b->loc->pspace->executing_startup)
13603 || b->enable_state == bp_disabled))
13604 not_found_and_ok = 1;
13605
13606 if (!not_found_and_ok)
13607 {
13608 /* We surely don't want to warn about the same breakpoint
13609 10 times. One solution, implemented here, is disable
13610 the breakpoint on error. Another solution would be to
13611 have separate 'warning emitted' flag. Since this
13612 happens only when a binary has changed, I don't know
13613 which approach is better. */
13614 b->enable_state = bp_disabled;
13615 throw;
13616 }
13617
13618 exception = std::move (e);
13619 }
13620
13621 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13622 {
13623 for (auto &sal : sals)
13624 resolve_sal_pc (&sal);
13625 if (b->condition_not_parsed && b->extra_string != NULL)
13626 {
13627 char *cond_string, *extra_string;
13628 int thread, task;
13629
13630 find_condition_and_thread (b->extra_string, sals[0].pc,
13631 &cond_string, &thread, &task,
13632 &extra_string);
13633 gdb_assert (b->cond_string == NULL);
13634 if (cond_string)
13635 b->cond_string = cond_string;
13636 b->thread = thread;
13637 b->task = task;
13638 if (extra_string)
13639 {
13640 xfree (b->extra_string);
13641 b->extra_string = extra_string;
13642 }
13643 b->condition_not_parsed = 0;
13644 }
13645
13646 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13647 sals[0] = update_static_tracepoint (b, sals[0]);
13648
13649 *found = 1;
13650 }
13651 else
13652 *found = 0;
13653
13654 return sals;
13655 }
13656
13657 /* The default re_set method, for typical hardware or software
13658 breakpoints. Reevaluate the breakpoint and recreate its
13659 locations. */
13660
13661 static void
13662 breakpoint_re_set_default (struct breakpoint *b)
13663 {
13664 struct program_space *filter_pspace = current_program_space;
13665 std::vector<symtab_and_line> expanded, expanded_end;
13666
13667 int found;
13668 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13669 filter_pspace, &found);
13670 if (found)
13671 expanded = std::move (sals);
13672
13673 if (b->location_range_end != NULL)
13674 {
13675 std::vector<symtab_and_line> sals_end
13676 = location_to_sals (b, b->location_range_end.get (),
13677 filter_pspace, &found);
13678 if (found)
13679 expanded_end = std::move (sals_end);
13680 }
13681
13682 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13683 }
13684
13685 /* Default method for creating SALs from an address string. It basically
13686 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13687
13688 static void
13689 create_sals_from_location_default (const struct event_location *location,
13690 struct linespec_result *canonical,
13691 enum bptype type_wanted)
13692 {
13693 parse_breakpoint_sals (location, canonical);
13694 }
13695
13696 /* Call create_breakpoints_sal for the given arguments. This is the default
13697 function for the `create_breakpoints_sal' method of
13698 breakpoint_ops. */
13699
13700 static void
13701 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13702 struct linespec_result *canonical,
13703 gdb::unique_xmalloc_ptr<char> cond_string,
13704 gdb::unique_xmalloc_ptr<char> extra_string,
13705 enum bptype type_wanted,
13706 enum bpdisp disposition,
13707 int thread,
13708 int task, int ignore_count,
13709 const struct breakpoint_ops *ops,
13710 int from_tty, int enabled,
13711 int internal, unsigned flags)
13712 {
13713 create_breakpoints_sal (gdbarch, canonical,
13714 std::move (cond_string),
13715 std::move (extra_string),
13716 type_wanted, disposition,
13717 thread, task, ignore_count, ops, from_tty,
13718 enabled, internal, flags);
13719 }
13720
13721 /* Decode the line represented by S by calling decode_line_full. This is the
13722 default function for the `decode_location' method of breakpoint_ops. */
13723
13724 static std::vector<symtab_and_line>
13725 decode_location_default (struct breakpoint *b,
13726 const struct event_location *location,
13727 struct program_space *search_pspace)
13728 {
13729 struct linespec_result canonical;
13730
13731 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13732 NULL, 0, &canonical, multiple_symbols_all,
13733 b->filter);
13734
13735 /* We should get 0 or 1 resulting SALs. */
13736 gdb_assert (canonical.lsals.size () < 2);
13737
13738 if (!canonical.lsals.empty ())
13739 {
13740 const linespec_sals &lsal = canonical.lsals[0];
13741 return std::move (lsal.sals);
13742 }
13743 return {};
13744 }
13745
13746 /* Reset a breakpoint. */
13747
13748 static void
13749 breakpoint_re_set_one (breakpoint *b)
13750 {
13751 input_radix = b->input_radix;
13752 set_language (b->language);
13753
13754 b->ops->re_set (b);
13755 }
13756
13757 /* Re-set breakpoint locations for the current program space.
13758 Locations bound to other program spaces are left untouched. */
13759
13760 void
13761 breakpoint_re_set (void)
13762 {
13763 struct breakpoint *b, *b_tmp;
13764
13765 {
13766 scoped_restore_current_language save_language;
13767 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13768 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13769
13770 /* breakpoint_re_set_one sets the current_language to the language
13771 of the breakpoint it is resetting (see prepare_re_set_context)
13772 before re-evaluating the breakpoint's location. This change can
13773 unfortunately get undone by accident if the language_mode is set
13774 to auto, and we either switch frames, or more likely in this context,
13775 we select the current frame.
13776
13777 We prevent this by temporarily turning the language_mode to
13778 language_mode_manual. We restore it once all breakpoints
13779 have been reset. */
13780 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13781 language_mode = language_mode_manual;
13782
13783 /* Note: we must not try to insert locations until after all
13784 breakpoints have been re-set. Otherwise, e.g., when re-setting
13785 breakpoint 1, we'd insert the locations of breakpoint 2, which
13786 hadn't been re-set yet, and thus may have stale locations. */
13787
13788 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13789 {
13790 try
13791 {
13792 breakpoint_re_set_one (b);
13793 }
13794 catch (const gdb_exception &ex)
13795 {
13796 exception_fprintf (gdb_stderr, ex,
13797 "Error in re-setting breakpoint %d: ",
13798 b->number);
13799 }
13800 }
13801
13802 jit_breakpoint_re_set ();
13803 }
13804
13805 create_overlay_event_breakpoint ();
13806 create_longjmp_master_breakpoint ();
13807 create_std_terminate_master_breakpoint ();
13808 create_exception_master_breakpoint ();
13809
13810 /* Now we can insert. */
13811 update_global_location_list (UGLL_MAY_INSERT);
13812 }
13813 \f
13814 /* Reset the thread number of this breakpoint:
13815
13816 - If the breakpoint is for all threads, leave it as-is.
13817 - Else, reset it to the current thread for inferior_ptid. */
13818 void
13819 breakpoint_re_set_thread (struct breakpoint *b)
13820 {
13821 if (b->thread != -1)
13822 {
13823 b->thread = inferior_thread ()->global_num;
13824
13825 /* We're being called after following a fork. The new fork is
13826 selected as current, and unless this was a vfork will have a
13827 different program space from the original thread. Reset that
13828 as well. */
13829 b->loc->pspace = current_program_space;
13830 }
13831 }
13832
13833 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13834 If from_tty is nonzero, it prints a message to that effect,
13835 which ends with a period (no newline). */
13836
13837 void
13838 set_ignore_count (int bptnum, int count, int from_tty)
13839 {
13840 struct breakpoint *b;
13841
13842 if (count < 0)
13843 count = 0;
13844
13845 ALL_BREAKPOINTS (b)
13846 if (b->number == bptnum)
13847 {
13848 if (is_tracepoint (b))
13849 {
13850 if (from_tty && count != 0)
13851 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13852 bptnum);
13853 return;
13854 }
13855
13856 b->ignore_count = count;
13857 if (from_tty)
13858 {
13859 if (count == 0)
13860 printf_filtered (_("Will stop next time "
13861 "breakpoint %d is reached."),
13862 bptnum);
13863 else if (count == 1)
13864 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13865 bptnum);
13866 else
13867 printf_filtered (_("Will ignore next %d "
13868 "crossings of breakpoint %d."),
13869 count, bptnum);
13870 }
13871 gdb::observers::breakpoint_modified.notify (b);
13872 return;
13873 }
13874
13875 error (_("No breakpoint number %d."), bptnum);
13876 }
13877
13878 /* Command to set ignore-count of breakpoint N to COUNT. */
13879
13880 static void
13881 ignore_command (const char *args, int from_tty)
13882 {
13883 const char *p = args;
13884 int num;
13885
13886 if (p == 0)
13887 error_no_arg (_("a breakpoint number"));
13888
13889 num = get_number (&p);
13890 if (num == 0)
13891 error (_("bad breakpoint number: '%s'"), args);
13892 if (*p == 0)
13893 error (_("Second argument (specified ignore-count) is missing."));
13894
13895 set_ignore_count (num,
13896 longest_to_int (value_as_long (parse_and_eval (p))),
13897 from_tty);
13898 if (from_tty)
13899 printf_filtered ("\n");
13900 }
13901 \f
13902
13903 /* Call FUNCTION on each of the breakpoints with numbers in the range
13904 defined by BP_NUM_RANGE (an inclusive range). */
13905
13906 static void
13907 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13908 gdb::function_view<void (breakpoint *)> function)
13909 {
13910 if (bp_num_range.first == 0)
13911 {
13912 warning (_("bad breakpoint number at or near '%d'"),
13913 bp_num_range.first);
13914 }
13915 else
13916 {
13917 struct breakpoint *b, *tmp;
13918
13919 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13920 {
13921 bool match = false;
13922
13923 ALL_BREAKPOINTS_SAFE (b, tmp)
13924 if (b->number == i)
13925 {
13926 match = true;
13927 function (b);
13928 break;
13929 }
13930 if (!match)
13931 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13932 }
13933 }
13934 }
13935
13936 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13937 ARGS. */
13938
13939 static void
13940 map_breakpoint_numbers (const char *args,
13941 gdb::function_view<void (breakpoint *)> function)
13942 {
13943 if (args == NULL || *args == '\0')
13944 error_no_arg (_("one or more breakpoint numbers"));
13945
13946 number_or_range_parser parser (args);
13947
13948 while (!parser.finished ())
13949 {
13950 int num = parser.get_number ();
13951 map_breakpoint_number_range (std::make_pair (num, num), function);
13952 }
13953 }
13954
13955 /* Return the breakpoint location structure corresponding to the
13956 BP_NUM and LOC_NUM values. */
13957
13958 static struct bp_location *
13959 find_location_by_number (int bp_num, int loc_num)
13960 {
13961 struct breakpoint *b;
13962
13963 ALL_BREAKPOINTS (b)
13964 if (b->number == bp_num)
13965 {
13966 break;
13967 }
13968
13969 if (!b || b->number != bp_num)
13970 error (_("Bad breakpoint number '%d'"), bp_num);
13971
13972 if (loc_num == 0)
13973 error (_("Bad breakpoint location number '%d'"), loc_num);
13974
13975 int n = 0;
13976 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13977 if (++n == loc_num)
13978 return loc;
13979
13980 error (_("Bad breakpoint location number '%d'"), loc_num);
13981 }
13982
13983 /* Modes of operation for extract_bp_num. */
13984 enum class extract_bp_kind
13985 {
13986 /* Extracting a breakpoint number. */
13987 bp,
13988
13989 /* Extracting a location number. */
13990 loc,
13991 };
13992
13993 /* Extract a breakpoint or location number (as determined by KIND)
13994 from the string starting at START. TRAILER is a character which
13995 can be found after the number. If you don't want a trailer, use
13996 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13997 string. This always returns a positive integer. */
13998
13999 static int
14000 extract_bp_num (extract_bp_kind kind, const char *start,
14001 int trailer, const char **end_out = NULL)
14002 {
14003 const char *end = start;
14004 int num = get_number_trailer (&end, trailer);
14005 if (num < 0)
14006 error (kind == extract_bp_kind::bp
14007 ? _("Negative breakpoint number '%.*s'")
14008 : _("Negative breakpoint location number '%.*s'"),
14009 int (end - start), start);
14010 if (num == 0)
14011 error (kind == extract_bp_kind::bp
14012 ? _("Bad breakpoint number '%.*s'")
14013 : _("Bad breakpoint location number '%.*s'"),
14014 int (end - start), start);
14015
14016 if (end_out != NULL)
14017 *end_out = end;
14018 return num;
14019 }
14020
14021 /* Extract a breakpoint or location range (as determined by KIND) in
14022 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14023 representing the (inclusive) range. The returned pair's elements
14024 are always positive integers. */
14025
14026 static std::pair<int, int>
14027 extract_bp_or_bp_range (extract_bp_kind kind,
14028 const std::string &arg,
14029 std::string::size_type arg_offset)
14030 {
14031 std::pair<int, int> range;
14032 const char *bp_loc = &arg[arg_offset];
14033 std::string::size_type dash = arg.find ('-', arg_offset);
14034 if (dash != std::string::npos)
14035 {
14036 /* bp_loc is a range (x-z). */
14037 if (arg.length () == dash + 1)
14038 error (kind == extract_bp_kind::bp
14039 ? _("Bad breakpoint number at or near: '%s'")
14040 : _("Bad breakpoint location number at or near: '%s'"),
14041 bp_loc);
14042
14043 const char *end;
14044 const char *start_first = bp_loc;
14045 const char *start_second = &arg[dash + 1];
14046 range.first = extract_bp_num (kind, start_first, '-');
14047 range.second = extract_bp_num (kind, start_second, '\0', &end);
14048
14049 if (range.first > range.second)
14050 error (kind == extract_bp_kind::bp
14051 ? _("Inverted breakpoint range at '%.*s'")
14052 : _("Inverted breakpoint location range at '%.*s'"),
14053 int (end - start_first), start_first);
14054 }
14055 else
14056 {
14057 /* bp_loc is a single value. */
14058 range.first = extract_bp_num (kind, bp_loc, '\0');
14059 range.second = range.first;
14060 }
14061 return range;
14062 }
14063
14064 /* Extract the breakpoint/location range specified by ARG. Returns
14065 the breakpoint range in BP_NUM_RANGE, and the location range in
14066 BP_LOC_RANGE.
14067
14068 ARG may be in any of the following forms:
14069
14070 x where 'x' is a breakpoint number.
14071 x-y where 'x' and 'y' specify a breakpoint numbers range.
14072 x.y where 'x' is a breakpoint number and 'y' a location number.
14073 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14074 location number range.
14075 */
14076
14077 static void
14078 extract_bp_number_and_location (const std::string &arg,
14079 std::pair<int, int> &bp_num_range,
14080 std::pair<int, int> &bp_loc_range)
14081 {
14082 std::string::size_type dot = arg.find ('.');
14083
14084 if (dot != std::string::npos)
14085 {
14086 /* Handle 'x.y' and 'x.y-z' cases. */
14087
14088 if (arg.length () == dot + 1 || dot == 0)
14089 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14090
14091 bp_num_range.first
14092 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14093 bp_num_range.second = bp_num_range.first;
14094
14095 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14096 arg, dot + 1);
14097 }
14098 else
14099 {
14100 /* Handle x and x-y cases. */
14101
14102 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14103 bp_loc_range.first = 0;
14104 bp_loc_range.second = 0;
14105 }
14106 }
14107
14108 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14109 specifies whether to enable or disable. */
14110
14111 static void
14112 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14113 {
14114 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14115 if (loc != NULL)
14116 {
14117 if (loc->enabled != enable)
14118 {
14119 loc->enabled = enable;
14120 mark_breakpoint_location_modified (loc);
14121 }
14122 if (target_supports_enable_disable_tracepoint ()
14123 && current_trace_status ()->running && loc->owner
14124 && is_tracepoint (loc->owner))
14125 target_disable_tracepoint (loc);
14126 }
14127 update_global_location_list (UGLL_DONT_INSERT);
14128
14129 gdb::observers::breakpoint_modified.notify (loc->owner);
14130 }
14131
14132 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14133 number of the breakpoint, and BP_LOC_RANGE specifies the
14134 (inclusive) range of location numbers of that breakpoint to
14135 enable/disable. ENABLE specifies whether to enable or disable the
14136 location. */
14137
14138 static void
14139 enable_disable_breakpoint_location_range (int bp_num,
14140 std::pair<int, int> &bp_loc_range,
14141 bool enable)
14142 {
14143 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14144 enable_disable_bp_num_loc (bp_num, i, enable);
14145 }
14146
14147 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14148 If from_tty is nonzero, it prints a message to that effect,
14149 which ends with a period (no newline). */
14150
14151 void
14152 disable_breakpoint (struct breakpoint *bpt)
14153 {
14154 /* Never disable a watchpoint scope breakpoint; we want to
14155 hit them when we leave scope so we can delete both the
14156 watchpoint and its scope breakpoint at that time. */
14157 if (bpt->type == bp_watchpoint_scope)
14158 return;
14159
14160 bpt->enable_state = bp_disabled;
14161
14162 /* Mark breakpoint locations modified. */
14163 mark_breakpoint_modified (bpt);
14164
14165 if (target_supports_enable_disable_tracepoint ()
14166 && current_trace_status ()->running && is_tracepoint (bpt))
14167 {
14168 struct bp_location *location;
14169
14170 for (location = bpt->loc; location; location = location->next)
14171 target_disable_tracepoint (location);
14172 }
14173
14174 update_global_location_list (UGLL_DONT_INSERT);
14175
14176 gdb::observers::breakpoint_modified.notify (bpt);
14177 }
14178
14179 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14180 specified in ARGS. ARGS may be in any of the formats handled by
14181 extract_bp_number_and_location. ENABLE specifies whether to enable
14182 or disable the breakpoints/locations. */
14183
14184 static void
14185 enable_disable_command (const char *args, int from_tty, bool enable)
14186 {
14187 if (args == 0)
14188 {
14189 struct breakpoint *bpt;
14190
14191 ALL_BREAKPOINTS (bpt)
14192 if (user_breakpoint_p (bpt))
14193 {
14194 if (enable)
14195 enable_breakpoint (bpt);
14196 else
14197 disable_breakpoint (bpt);
14198 }
14199 }
14200 else
14201 {
14202 std::string num = extract_arg (&args);
14203
14204 while (!num.empty ())
14205 {
14206 std::pair<int, int> bp_num_range, bp_loc_range;
14207
14208 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14209
14210 if (bp_loc_range.first == bp_loc_range.second
14211 && bp_loc_range.first == 0)
14212 {
14213 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14214 map_breakpoint_number_range (bp_num_range,
14215 enable
14216 ? enable_breakpoint
14217 : disable_breakpoint);
14218 }
14219 else
14220 {
14221 /* Handle breakpoint ids with formats 'x.y' or
14222 'x.y-z'. */
14223 enable_disable_breakpoint_location_range
14224 (bp_num_range.first, bp_loc_range, enable);
14225 }
14226 num = extract_arg (&args);
14227 }
14228 }
14229 }
14230
14231 /* The disable command disables the specified breakpoints/locations
14232 (or all defined breakpoints) so they're no longer effective in
14233 stopping the inferior. ARGS may be in any of the forms defined in
14234 extract_bp_number_and_location. */
14235
14236 static void
14237 disable_command (const char *args, int from_tty)
14238 {
14239 enable_disable_command (args, from_tty, false);
14240 }
14241
14242 static void
14243 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14244 int count)
14245 {
14246 int target_resources_ok;
14247
14248 if (bpt->type == bp_hardware_breakpoint)
14249 {
14250 int i;
14251 i = hw_breakpoint_used_count ();
14252 target_resources_ok =
14253 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14254 i + 1, 0);
14255 if (target_resources_ok == 0)
14256 error (_("No hardware breakpoint support in the target."));
14257 else if (target_resources_ok < 0)
14258 error (_("Hardware breakpoints used exceeds limit."));
14259 }
14260
14261 if (is_watchpoint (bpt))
14262 {
14263 /* Initialize it just to avoid a GCC false warning. */
14264 enum enable_state orig_enable_state = bp_disabled;
14265
14266 try
14267 {
14268 struct watchpoint *w = (struct watchpoint *) bpt;
14269
14270 orig_enable_state = bpt->enable_state;
14271 bpt->enable_state = bp_enabled;
14272 update_watchpoint (w, 1 /* reparse */);
14273 }
14274 catch (const gdb_exception &e)
14275 {
14276 bpt->enable_state = orig_enable_state;
14277 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14278 bpt->number);
14279 return;
14280 }
14281 }
14282
14283 bpt->enable_state = bp_enabled;
14284
14285 /* Mark breakpoint locations modified. */
14286 mark_breakpoint_modified (bpt);
14287
14288 if (target_supports_enable_disable_tracepoint ()
14289 && current_trace_status ()->running && is_tracepoint (bpt))
14290 {
14291 struct bp_location *location;
14292
14293 for (location = bpt->loc; location; location = location->next)
14294 target_enable_tracepoint (location);
14295 }
14296
14297 bpt->disposition = disposition;
14298 bpt->enable_count = count;
14299 update_global_location_list (UGLL_MAY_INSERT);
14300
14301 gdb::observers::breakpoint_modified.notify (bpt);
14302 }
14303
14304
14305 void
14306 enable_breakpoint (struct breakpoint *bpt)
14307 {
14308 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14309 }
14310
14311 /* The enable command enables the specified breakpoints/locations (or
14312 all defined breakpoints) so they once again become (or continue to
14313 be) effective in stopping the inferior. ARGS may be in any of the
14314 forms defined in extract_bp_number_and_location. */
14315
14316 static void
14317 enable_command (const char *args, int from_tty)
14318 {
14319 enable_disable_command (args, from_tty, true);
14320 }
14321
14322 static void
14323 enable_once_command (const char *args, int from_tty)
14324 {
14325 map_breakpoint_numbers
14326 (args, [&] (breakpoint *b)
14327 {
14328 iterate_over_related_breakpoints
14329 (b, [&] (breakpoint *bpt)
14330 {
14331 enable_breakpoint_disp (bpt, disp_disable, 1);
14332 });
14333 });
14334 }
14335
14336 static void
14337 enable_count_command (const char *args, int from_tty)
14338 {
14339 int count;
14340
14341 if (args == NULL)
14342 error_no_arg (_("hit count"));
14343
14344 count = get_number (&args);
14345
14346 map_breakpoint_numbers
14347 (args, [&] (breakpoint *b)
14348 {
14349 iterate_over_related_breakpoints
14350 (b, [&] (breakpoint *bpt)
14351 {
14352 enable_breakpoint_disp (bpt, disp_disable, count);
14353 });
14354 });
14355 }
14356
14357 static void
14358 enable_delete_command (const char *args, int from_tty)
14359 {
14360 map_breakpoint_numbers
14361 (args, [&] (breakpoint *b)
14362 {
14363 iterate_over_related_breakpoints
14364 (b, [&] (breakpoint *bpt)
14365 {
14366 enable_breakpoint_disp (bpt, disp_del, 1);
14367 });
14368 });
14369 }
14370 \f
14371 static void
14372 set_breakpoint_cmd (const char *args, int from_tty)
14373 {
14374 }
14375
14376 static void
14377 show_breakpoint_cmd (const char *args, int from_tty)
14378 {
14379 }
14380
14381 /* Invalidate last known value of any hardware watchpoint if
14382 the memory which that value represents has been written to by
14383 GDB itself. */
14384
14385 static void
14386 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14387 CORE_ADDR addr, ssize_t len,
14388 const bfd_byte *data)
14389 {
14390 struct breakpoint *bp;
14391
14392 ALL_BREAKPOINTS (bp)
14393 if (bp->enable_state == bp_enabled
14394 && bp->type == bp_hardware_watchpoint)
14395 {
14396 struct watchpoint *wp = (struct watchpoint *) bp;
14397
14398 if (wp->val_valid && wp->val != nullptr)
14399 {
14400 struct bp_location *loc;
14401
14402 for (loc = bp->loc; loc != NULL; loc = loc->next)
14403 if (loc->loc_type == bp_loc_hardware_watchpoint
14404 && loc->address + loc->length > addr
14405 && addr + len > loc->address)
14406 {
14407 wp->val = NULL;
14408 wp->val_valid = 0;
14409 }
14410 }
14411 }
14412 }
14413
14414 /* Create and insert a breakpoint for software single step. */
14415
14416 void
14417 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14418 const address_space *aspace,
14419 CORE_ADDR next_pc)
14420 {
14421 struct thread_info *tp = inferior_thread ();
14422 struct symtab_and_line sal;
14423 CORE_ADDR pc = next_pc;
14424
14425 if (tp->control.single_step_breakpoints == NULL)
14426 {
14427 tp->control.single_step_breakpoints
14428 = new_single_step_breakpoint (tp->global_num, gdbarch);
14429 }
14430
14431 sal = find_pc_line (pc, 0);
14432 sal.pc = pc;
14433 sal.section = find_pc_overlay (pc);
14434 sal.explicit_pc = 1;
14435 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14436
14437 update_global_location_list (UGLL_INSERT);
14438 }
14439
14440 /* Insert single step breakpoints according to the current state. */
14441
14442 int
14443 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14444 {
14445 struct regcache *regcache = get_current_regcache ();
14446 std::vector<CORE_ADDR> next_pcs;
14447
14448 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14449
14450 if (!next_pcs.empty ())
14451 {
14452 struct frame_info *frame = get_current_frame ();
14453 const address_space *aspace = get_frame_address_space (frame);
14454
14455 for (CORE_ADDR pc : next_pcs)
14456 insert_single_step_breakpoint (gdbarch, aspace, pc);
14457
14458 return 1;
14459 }
14460 else
14461 return 0;
14462 }
14463
14464 /* See breakpoint.h. */
14465
14466 int
14467 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14468 const address_space *aspace,
14469 CORE_ADDR pc)
14470 {
14471 struct bp_location *loc;
14472
14473 for (loc = bp->loc; loc != NULL; loc = loc->next)
14474 if (loc->inserted
14475 && breakpoint_location_address_match (loc, aspace, pc))
14476 return 1;
14477
14478 return 0;
14479 }
14480
14481 /* Check whether a software single-step breakpoint is inserted at
14482 PC. */
14483
14484 int
14485 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14486 CORE_ADDR pc)
14487 {
14488 struct breakpoint *bpt;
14489
14490 ALL_BREAKPOINTS (bpt)
14491 {
14492 if (bpt->type == bp_single_step
14493 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14494 return 1;
14495 }
14496 return 0;
14497 }
14498
14499 /* Tracepoint-specific operations. */
14500
14501 /* Set tracepoint count to NUM. */
14502 static void
14503 set_tracepoint_count (int num)
14504 {
14505 tracepoint_count = num;
14506 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14507 }
14508
14509 static void
14510 trace_command (const char *arg, int from_tty)
14511 {
14512 struct breakpoint_ops *ops;
14513
14514 event_location_up location = string_to_event_location (&arg,
14515 current_language);
14516 if (location != NULL
14517 && event_location_type (location.get ()) == PROBE_LOCATION)
14518 ops = &tracepoint_probe_breakpoint_ops;
14519 else
14520 ops = &tracepoint_breakpoint_ops;
14521
14522 create_breakpoint (get_current_arch (),
14523 location.get (),
14524 NULL, 0, arg, 1 /* parse arg */,
14525 0 /* tempflag */,
14526 bp_tracepoint /* type_wanted */,
14527 0 /* Ignore count */,
14528 pending_break_support,
14529 ops,
14530 from_tty,
14531 1 /* enabled */,
14532 0 /* internal */, 0);
14533 }
14534
14535 static void
14536 ftrace_command (const char *arg, int from_tty)
14537 {
14538 event_location_up location = string_to_event_location (&arg,
14539 current_language);
14540 create_breakpoint (get_current_arch (),
14541 location.get (),
14542 NULL, 0, arg, 1 /* parse arg */,
14543 0 /* tempflag */,
14544 bp_fast_tracepoint /* type_wanted */,
14545 0 /* Ignore count */,
14546 pending_break_support,
14547 &tracepoint_breakpoint_ops,
14548 from_tty,
14549 1 /* enabled */,
14550 0 /* internal */, 0);
14551 }
14552
14553 /* strace command implementation. Creates a static tracepoint. */
14554
14555 static void
14556 strace_command (const char *arg, int from_tty)
14557 {
14558 struct breakpoint_ops *ops;
14559 event_location_up location;
14560
14561 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14562 or with a normal static tracepoint. */
14563 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14564 {
14565 ops = &strace_marker_breakpoint_ops;
14566 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14567 }
14568 else
14569 {
14570 ops = &tracepoint_breakpoint_ops;
14571 location = string_to_event_location (&arg, current_language);
14572 }
14573
14574 create_breakpoint (get_current_arch (),
14575 location.get (),
14576 NULL, 0, arg, 1 /* parse arg */,
14577 0 /* tempflag */,
14578 bp_static_tracepoint /* type_wanted */,
14579 0 /* Ignore count */,
14580 pending_break_support,
14581 ops,
14582 from_tty,
14583 1 /* enabled */,
14584 0 /* internal */, 0);
14585 }
14586
14587 /* Set up a fake reader function that gets command lines from a linked
14588 list that was acquired during tracepoint uploading. */
14589
14590 static struct uploaded_tp *this_utp;
14591 static int next_cmd;
14592
14593 static char *
14594 read_uploaded_action (void)
14595 {
14596 char *rslt = nullptr;
14597
14598 if (next_cmd < this_utp->cmd_strings.size ())
14599 {
14600 rslt = this_utp->cmd_strings[next_cmd].get ();
14601 next_cmd++;
14602 }
14603
14604 return rslt;
14605 }
14606
14607 /* Given information about a tracepoint as recorded on a target (which
14608 can be either a live system or a trace file), attempt to create an
14609 equivalent GDB tracepoint. This is not a reliable process, since
14610 the target does not necessarily have all the information used when
14611 the tracepoint was originally defined. */
14612
14613 struct tracepoint *
14614 create_tracepoint_from_upload (struct uploaded_tp *utp)
14615 {
14616 const char *addr_str;
14617 char small_buf[100];
14618 struct tracepoint *tp;
14619
14620 if (utp->at_string)
14621 addr_str = utp->at_string.get ();
14622 else
14623 {
14624 /* In the absence of a source location, fall back to raw
14625 address. Since there is no way to confirm that the address
14626 means the same thing as when the trace was started, warn the
14627 user. */
14628 warning (_("Uploaded tracepoint %d has no "
14629 "source location, using raw address"),
14630 utp->number);
14631 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14632 addr_str = small_buf;
14633 }
14634
14635 /* There's not much we can do with a sequence of bytecodes. */
14636 if (utp->cond && !utp->cond_string)
14637 warning (_("Uploaded tracepoint %d condition "
14638 "has no source form, ignoring it"),
14639 utp->number);
14640
14641 event_location_up location = string_to_event_location (&addr_str,
14642 current_language);
14643 if (!create_breakpoint (get_current_arch (),
14644 location.get (),
14645 utp->cond_string.get (), -1, addr_str,
14646 0 /* parse cond/thread */,
14647 0 /* tempflag */,
14648 utp->type /* type_wanted */,
14649 0 /* Ignore count */,
14650 pending_break_support,
14651 &tracepoint_breakpoint_ops,
14652 0 /* from_tty */,
14653 utp->enabled /* enabled */,
14654 0 /* internal */,
14655 CREATE_BREAKPOINT_FLAGS_INSERTED))
14656 return NULL;
14657
14658 /* Get the tracepoint we just created. */
14659 tp = get_tracepoint (tracepoint_count);
14660 gdb_assert (tp != NULL);
14661
14662 if (utp->pass > 0)
14663 {
14664 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14665 tp->number);
14666
14667 trace_pass_command (small_buf, 0);
14668 }
14669
14670 /* If we have uploaded versions of the original commands, set up a
14671 special-purpose "reader" function and call the usual command line
14672 reader, then pass the result to the breakpoint command-setting
14673 function. */
14674 if (!utp->cmd_strings.empty ())
14675 {
14676 counted_command_line cmd_list;
14677
14678 this_utp = utp;
14679 next_cmd = 0;
14680
14681 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14682
14683 breakpoint_set_commands (tp, std::move (cmd_list));
14684 }
14685 else if (!utp->actions.empty ()
14686 || !utp->step_actions.empty ())
14687 warning (_("Uploaded tracepoint %d actions "
14688 "have no source form, ignoring them"),
14689 utp->number);
14690
14691 /* Copy any status information that might be available. */
14692 tp->hit_count = utp->hit_count;
14693 tp->traceframe_usage = utp->traceframe_usage;
14694
14695 return tp;
14696 }
14697
14698 /* Print information on tracepoint number TPNUM_EXP, or all if
14699 omitted. */
14700
14701 static void
14702 info_tracepoints_command (const char *args, int from_tty)
14703 {
14704 struct ui_out *uiout = current_uiout;
14705 int num_printed;
14706
14707 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14708
14709 if (num_printed == 0)
14710 {
14711 if (args == NULL || *args == '\0')
14712 uiout->message ("No tracepoints.\n");
14713 else
14714 uiout->message ("No tracepoint matching '%s'.\n", args);
14715 }
14716
14717 default_collect_info ();
14718 }
14719
14720 /* The 'enable trace' command enables tracepoints.
14721 Not supported by all targets. */
14722 static void
14723 enable_trace_command (const char *args, int from_tty)
14724 {
14725 enable_command (args, from_tty);
14726 }
14727
14728 /* The 'disable trace' command disables tracepoints.
14729 Not supported by all targets. */
14730 static void
14731 disable_trace_command (const char *args, int from_tty)
14732 {
14733 disable_command (args, from_tty);
14734 }
14735
14736 /* Remove a tracepoint (or all if no argument). */
14737 static void
14738 delete_trace_command (const char *arg, int from_tty)
14739 {
14740 struct breakpoint *b, *b_tmp;
14741
14742 dont_repeat ();
14743
14744 if (arg == 0)
14745 {
14746 int breaks_to_delete = 0;
14747
14748 /* Delete all breakpoints if no argument.
14749 Do not delete internal or call-dummy breakpoints, these
14750 have to be deleted with an explicit breakpoint number
14751 argument. */
14752 ALL_TRACEPOINTS (b)
14753 if (is_tracepoint (b) && user_breakpoint_p (b))
14754 {
14755 breaks_to_delete = 1;
14756 break;
14757 }
14758
14759 /* Ask user only if there are some breakpoints to delete. */
14760 if (!from_tty
14761 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14762 {
14763 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14764 if (is_tracepoint (b) && user_breakpoint_p (b))
14765 delete_breakpoint (b);
14766 }
14767 }
14768 else
14769 map_breakpoint_numbers
14770 (arg, [&] (breakpoint *br)
14771 {
14772 iterate_over_related_breakpoints (br, delete_breakpoint);
14773 });
14774 }
14775
14776 /* Helper function for trace_pass_command. */
14777
14778 static void
14779 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14780 {
14781 tp->pass_count = count;
14782 gdb::observers::breakpoint_modified.notify (tp);
14783 if (from_tty)
14784 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14785 tp->number, count);
14786 }
14787
14788 /* Set passcount for tracepoint.
14789
14790 First command argument is passcount, second is tracepoint number.
14791 If tracepoint number omitted, apply to most recently defined.
14792 Also accepts special argument "all". */
14793
14794 static void
14795 trace_pass_command (const char *args, int from_tty)
14796 {
14797 struct tracepoint *t1;
14798 ULONGEST count;
14799
14800 if (args == 0 || *args == 0)
14801 error (_("passcount command requires an "
14802 "argument (count + optional TP num)"));
14803
14804 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14805
14806 args = skip_spaces (args);
14807 if (*args && strncasecmp (args, "all", 3) == 0)
14808 {
14809 struct breakpoint *b;
14810
14811 args += 3; /* Skip special argument "all". */
14812 if (*args)
14813 error (_("Junk at end of arguments."));
14814
14815 ALL_TRACEPOINTS (b)
14816 {
14817 t1 = (struct tracepoint *) b;
14818 trace_pass_set_count (t1, count, from_tty);
14819 }
14820 }
14821 else if (*args == '\0')
14822 {
14823 t1 = get_tracepoint_by_number (&args, NULL);
14824 if (t1)
14825 trace_pass_set_count (t1, count, from_tty);
14826 }
14827 else
14828 {
14829 number_or_range_parser parser (args);
14830 while (!parser.finished ())
14831 {
14832 t1 = get_tracepoint_by_number (&args, &parser);
14833 if (t1)
14834 trace_pass_set_count (t1, count, from_tty);
14835 }
14836 }
14837 }
14838
14839 struct tracepoint *
14840 get_tracepoint (int num)
14841 {
14842 struct breakpoint *t;
14843
14844 ALL_TRACEPOINTS (t)
14845 if (t->number == num)
14846 return (struct tracepoint *) t;
14847
14848 return NULL;
14849 }
14850
14851 /* Find the tracepoint with the given target-side number (which may be
14852 different from the tracepoint number after disconnecting and
14853 reconnecting). */
14854
14855 struct tracepoint *
14856 get_tracepoint_by_number_on_target (int num)
14857 {
14858 struct breakpoint *b;
14859
14860 ALL_TRACEPOINTS (b)
14861 {
14862 struct tracepoint *t = (struct tracepoint *) b;
14863
14864 if (t->number_on_target == num)
14865 return t;
14866 }
14867
14868 return NULL;
14869 }
14870
14871 /* Utility: parse a tracepoint number and look it up in the list.
14872 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14873 If the argument is missing, the most recent tracepoint
14874 (tracepoint_count) is returned. */
14875
14876 struct tracepoint *
14877 get_tracepoint_by_number (const char **arg,
14878 number_or_range_parser *parser)
14879 {
14880 struct breakpoint *t;
14881 int tpnum;
14882 const char *instring = arg == NULL ? NULL : *arg;
14883
14884 if (parser != NULL)
14885 {
14886 gdb_assert (!parser->finished ());
14887 tpnum = parser->get_number ();
14888 }
14889 else if (arg == NULL || *arg == NULL || ! **arg)
14890 tpnum = tracepoint_count;
14891 else
14892 tpnum = get_number (arg);
14893
14894 if (tpnum <= 0)
14895 {
14896 if (instring && *instring)
14897 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14898 instring);
14899 else
14900 printf_filtered (_("No previous tracepoint\n"));
14901 return NULL;
14902 }
14903
14904 ALL_TRACEPOINTS (t)
14905 if (t->number == tpnum)
14906 {
14907 return (struct tracepoint *) t;
14908 }
14909
14910 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14911 return NULL;
14912 }
14913
14914 void
14915 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14916 {
14917 if (b->thread != -1)
14918 fprintf_unfiltered (fp, " thread %d", b->thread);
14919
14920 if (b->task != 0)
14921 fprintf_unfiltered (fp, " task %d", b->task);
14922
14923 fprintf_unfiltered (fp, "\n");
14924 }
14925
14926 /* Save information on user settable breakpoints (watchpoints, etc) to
14927 a new script file named FILENAME. If FILTER is non-NULL, call it
14928 on each breakpoint and only include the ones for which it returns
14929 non-zero. */
14930
14931 static void
14932 save_breakpoints (const char *filename, int from_tty,
14933 int (*filter) (const struct breakpoint *))
14934 {
14935 struct breakpoint *tp;
14936 int any = 0;
14937 int extra_trace_bits = 0;
14938
14939 if (filename == 0 || *filename == 0)
14940 error (_("Argument required (file name in which to save)"));
14941
14942 /* See if we have anything to save. */
14943 ALL_BREAKPOINTS (tp)
14944 {
14945 /* Skip internal and momentary breakpoints. */
14946 if (!user_breakpoint_p (tp))
14947 continue;
14948
14949 /* If we have a filter, only save the breakpoints it accepts. */
14950 if (filter && !filter (tp))
14951 continue;
14952
14953 any = 1;
14954
14955 if (is_tracepoint (tp))
14956 {
14957 extra_trace_bits = 1;
14958
14959 /* We can stop searching. */
14960 break;
14961 }
14962 }
14963
14964 if (!any)
14965 {
14966 warning (_("Nothing to save."));
14967 return;
14968 }
14969
14970 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14971
14972 stdio_file fp;
14973
14974 if (!fp.open (expanded_filename.get (), "w"))
14975 error (_("Unable to open file '%s' for saving (%s)"),
14976 expanded_filename.get (), safe_strerror (errno));
14977
14978 if (extra_trace_bits)
14979 save_trace_state_variables (&fp);
14980
14981 ALL_BREAKPOINTS (tp)
14982 {
14983 /* Skip internal and momentary breakpoints. */
14984 if (!user_breakpoint_p (tp))
14985 continue;
14986
14987 /* If we have a filter, only save the breakpoints it accepts. */
14988 if (filter && !filter (tp))
14989 continue;
14990
14991 tp->ops->print_recreate (tp, &fp);
14992
14993 /* Note, we can't rely on tp->number for anything, as we can't
14994 assume the recreated breakpoint numbers will match. Use $bpnum
14995 instead. */
14996
14997 if (tp->cond_string)
14998 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14999
15000 if (tp->ignore_count)
15001 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15002
15003 if (tp->type != bp_dprintf && tp->commands)
15004 {
15005 fp.puts (" commands\n");
15006
15007 current_uiout->redirect (&fp);
15008 try
15009 {
15010 print_command_lines (current_uiout, tp->commands.get (), 2);
15011 }
15012 catch (const gdb_exception &ex)
15013 {
15014 current_uiout->redirect (NULL);
15015 throw;
15016 }
15017
15018 current_uiout->redirect (NULL);
15019 fp.puts (" end\n");
15020 }
15021
15022 if (tp->enable_state == bp_disabled)
15023 fp.puts ("disable $bpnum\n");
15024
15025 /* If this is a multi-location breakpoint, check if the locations
15026 should be individually disabled. Watchpoint locations are
15027 special, and not user visible. */
15028 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15029 {
15030 struct bp_location *loc;
15031 int n = 1;
15032
15033 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15034 if (!loc->enabled)
15035 fp.printf ("disable $bpnum.%d\n", n);
15036 }
15037 }
15038
15039 if (extra_trace_bits && *default_collect)
15040 fp.printf ("set default-collect %s\n", default_collect);
15041
15042 if (from_tty)
15043 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15044 }
15045
15046 /* The `save breakpoints' command. */
15047
15048 static void
15049 save_breakpoints_command (const char *args, int from_tty)
15050 {
15051 save_breakpoints (args, from_tty, NULL);
15052 }
15053
15054 /* The `save tracepoints' command. */
15055
15056 static void
15057 save_tracepoints_command (const char *args, int from_tty)
15058 {
15059 save_breakpoints (args, from_tty, is_tracepoint);
15060 }
15061
15062 /* Create a vector of all tracepoints. */
15063
15064 std::vector<breakpoint *>
15065 all_tracepoints (void)
15066 {
15067 std::vector<breakpoint *> tp_vec;
15068 struct breakpoint *tp;
15069
15070 ALL_TRACEPOINTS (tp)
15071 {
15072 tp_vec.push_back (tp);
15073 }
15074
15075 return tp_vec;
15076 }
15077
15078 \f
15079 /* This help string is used to consolidate all the help string for specifying
15080 locations used by several commands. */
15081
15082 #define LOCATION_HELP_STRING \
15083 "Linespecs are colon-separated lists of location parameters, such as\n\
15084 source filename, function name, label name, and line number.\n\
15085 Example: To specify the start of a label named \"the_top\" in the\n\
15086 function \"fact\" in the file \"factorial.c\", use\n\
15087 \"factorial.c:fact:the_top\".\n\
15088 \n\
15089 Address locations begin with \"*\" and specify an exact address in the\n\
15090 program. Example: To specify the fourth byte past the start function\n\
15091 \"main\", use \"*main + 4\".\n\
15092 \n\
15093 Explicit locations are similar to linespecs but use an option/argument\n\
15094 syntax to specify location parameters.\n\
15095 Example: To specify the start of the label named \"the_top\" in the\n\
15096 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15097 -function fact -label the_top\".\n\
15098 \n\
15099 By default, a specified function is matched against the program's\n\
15100 functions in all scopes. For C++, this means in all namespaces and\n\
15101 classes. For Ada, this means in all packages. E.g., in C++,\n\
15102 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15103 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15104 specified name as a complete fully-qualified name instead."
15105
15106 /* This help string is used for the break, hbreak, tbreak and thbreak
15107 commands. It is defined as a macro to prevent duplication.
15108 COMMAND should be a string constant containing the name of the
15109 command. */
15110
15111 #define BREAK_ARGS_HELP(command) \
15112 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15113 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15114 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15115 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15116 `-probe-dtrace' (for a DTrace probe).\n\
15117 LOCATION may be a linespec, address, or explicit location as described\n\
15118 below.\n\
15119 \n\
15120 With no LOCATION, uses current execution address of the selected\n\
15121 stack frame. This is useful for breaking on return to a stack frame.\n\
15122 \n\
15123 THREADNUM is the number from \"info threads\".\n\
15124 CONDITION is a boolean expression.\n\
15125 \n" LOCATION_HELP_STRING "\n\n\
15126 Multiple breakpoints at one place are permitted, and useful if their\n\
15127 conditions are different.\n\
15128 \n\
15129 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15130
15131 /* List of subcommands for "catch". */
15132 static struct cmd_list_element *catch_cmdlist;
15133
15134 /* List of subcommands for "tcatch". */
15135 static struct cmd_list_element *tcatch_cmdlist;
15136
15137 void
15138 add_catch_command (const char *name, const char *docstring,
15139 cmd_const_sfunc_ftype *sfunc,
15140 completer_ftype *completer,
15141 void *user_data_catch,
15142 void *user_data_tcatch)
15143 {
15144 struct cmd_list_element *command;
15145
15146 command = add_cmd (name, class_breakpoint, docstring,
15147 &catch_cmdlist);
15148 set_cmd_sfunc (command, sfunc);
15149 set_cmd_context (command, user_data_catch);
15150 set_cmd_completer (command, completer);
15151
15152 command = add_cmd (name, class_breakpoint, docstring,
15153 &tcatch_cmdlist);
15154 set_cmd_sfunc (command, sfunc);
15155 set_cmd_context (command, user_data_tcatch);
15156 set_cmd_completer (command, completer);
15157 }
15158
15159 static void
15160 save_command (const char *arg, int from_tty)
15161 {
15162 printf_unfiltered (_("\"save\" must be followed by "
15163 "the name of a save subcommand.\n"));
15164 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15165 }
15166
15167 struct breakpoint *
15168 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15169 void *data)
15170 {
15171 struct breakpoint *b, *b_tmp;
15172
15173 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15174 {
15175 if ((*callback) (b, data))
15176 return b;
15177 }
15178
15179 return NULL;
15180 }
15181
15182 /* Zero if any of the breakpoint's locations could be a location where
15183 functions have been inlined, nonzero otherwise. */
15184
15185 static int
15186 is_non_inline_function (struct breakpoint *b)
15187 {
15188 /* The shared library event breakpoint is set on the address of a
15189 non-inline function. */
15190 if (b->type == bp_shlib_event)
15191 return 1;
15192
15193 return 0;
15194 }
15195
15196 /* Nonzero if the specified PC cannot be a location where functions
15197 have been inlined. */
15198
15199 int
15200 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15201 const struct target_waitstatus *ws)
15202 {
15203 struct breakpoint *b;
15204 struct bp_location *bl;
15205
15206 ALL_BREAKPOINTS (b)
15207 {
15208 if (!is_non_inline_function (b))
15209 continue;
15210
15211 for (bl = b->loc; bl != NULL; bl = bl->next)
15212 {
15213 if (!bl->shlib_disabled
15214 && bpstat_check_location (bl, aspace, pc, ws))
15215 return 1;
15216 }
15217 }
15218
15219 return 0;
15220 }
15221
15222 /* Remove any references to OBJFILE which is going to be freed. */
15223
15224 void
15225 breakpoint_free_objfile (struct objfile *objfile)
15226 {
15227 struct bp_location **locp, *loc;
15228
15229 ALL_BP_LOCATIONS (loc, locp)
15230 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15231 loc->symtab = NULL;
15232 }
15233
15234 void
15235 initialize_breakpoint_ops (void)
15236 {
15237 static int initialized = 0;
15238
15239 struct breakpoint_ops *ops;
15240
15241 if (initialized)
15242 return;
15243 initialized = 1;
15244
15245 /* The breakpoint_ops structure to be inherit by all kinds of
15246 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15247 internal and momentary breakpoints, etc.). */
15248 ops = &bkpt_base_breakpoint_ops;
15249 *ops = base_breakpoint_ops;
15250 ops->re_set = bkpt_re_set;
15251 ops->insert_location = bkpt_insert_location;
15252 ops->remove_location = bkpt_remove_location;
15253 ops->breakpoint_hit = bkpt_breakpoint_hit;
15254 ops->create_sals_from_location = bkpt_create_sals_from_location;
15255 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15256 ops->decode_location = bkpt_decode_location;
15257
15258 /* The breakpoint_ops structure to be used in regular breakpoints. */
15259 ops = &bkpt_breakpoint_ops;
15260 *ops = bkpt_base_breakpoint_ops;
15261 ops->re_set = bkpt_re_set;
15262 ops->resources_needed = bkpt_resources_needed;
15263 ops->print_it = bkpt_print_it;
15264 ops->print_mention = bkpt_print_mention;
15265 ops->print_recreate = bkpt_print_recreate;
15266
15267 /* Ranged breakpoints. */
15268 ops = &ranged_breakpoint_ops;
15269 *ops = bkpt_breakpoint_ops;
15270 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15271 ops->resources_needed = resources_needed_ranged_breakpoint;
15272 ops->print_it = print_it_ranged_breakpoint;
15273 ops->print_one = print_one_ranged_breakpoint;
15274 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15275 ops->print_mention = print_mention_ranged_breakpoint;
15276 ops->print_recreate = print_recreate_ranged_breakpoint;
15277
15278 /* Internal breakpoints. */
15279 ops = &internal_breakpoint_ops;
15280 *ops = bkpt_base_breakpoint_ops;
15281 ops->re_set = internal_bkpt_re_set;
15282 ops->check_status = internal_bkpt_check_status;
15283 ops->print_it = internal_bkpt_print_it;
15284 ops->print_mention = internal_bkpt_print_mention;
15285
15286 /* Momentary breakpoints. */
15287 ops = &momentary_breakpoint_ops;
15288 *ops = bkpt_base_breakpoint_ops;
15289 ops->re_set = momentary_bkpt_re_set;
15290 ops->check_status = momentary_bkpt_check_status;
15291 ops->print_it = momentary_bkpt_print_it;
15292 ops->print_mention = momentary_bkpt_print_mention;
15293
15294 /* Probe breakpoints. */
15295 ops = &bkpt_probe_breakpoint_ops;
15296 *ops = bkpt_breakpoint_ops;
15297 ops->insert_location = bkpt_probe_insert_location;
15298 ops->remove_location = bkpt_probe_remove_location;
15299 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15300 ops->decode_location = bkpt_probe_decode_location;
15301
15302 /* Watchpoints. */
15303 ops = &watchpoint_breakpoint_ops;
15304 *ops = base_breakpoint_ops;
15305 ops->re_set = re_set_watchpoint;
15306 ops->insert_location = insert_watchpoint;
15307 ops->remove_location = remove_watchpoint;
15308 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15309 ops->check_status = check_status_watchpoint;
15310 ops->resources_needed = resources_needed_watchpoint;
15311 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15312 ops->print_it = print_it_watchpoint;
15313 ops->print_mention = print_mention_watchpoint;
15314 ops->print_recreate = print_recreate_watchpoint;
15315 ops->explains_signal = explains_signal_watchpoint;
15316
15317 /* Masked watchpoints. */
15318 ops = &masked_watchpoint_breakpoint_ops;
15319 *ops = watchpoint_breakpoint_ops;
15320 ops->insert_location = insert_masked_watchpoint;
15321 ops->remove_location = remove_masked_watchpoint;
15322 ops->resources_needed = resources_needed_masked_watchpoint;
15323 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15324 ops->print_it = print_it_masked_watchpoint;
15325 ops->print_one_detail = print_one_detail_masked_watchpoint;
15326 ops->print_mention = print_mention_masked_watchpoint;
15327 ops->print_recreate = print_recreate_masked_watchpoint;
15328
15329 /* Tracepoints. */
15330 ops = &tracepoint_breakpoint_ops;
15331 *ops = base_breakpoint_ops;
15332 ops->re_set = tracepoint_re_set;
15333 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15334 ops->print_one_detail = tracepoint_print_one_detail;
15335 ops->print_mention = tracepoint_print_mention;
15336 ops->print_recreate = tracepoint_print_recreate;
15337 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15338 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15339 ops->decode_location = tracepoint_decode_location;
15340
15341 /* Probe tracepoints. */
15342 ops = &tracepoint_probe_breakpoint_ops;
15343 *ops = tracepoint_breakpoint_ops;
15344 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15345 ops->decode_location = tracepoint_probe_decode_location;
15346
15347 /* Static tracepoints with marker (`-m'). */
15348 ops = &strace_marker_breakpoint_ops;
15349 *ops = tracepoint_breakpoint_ops;
15350 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15351 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15352 ops->decode_location = strace_marker_decode_location;
15353
15354 /* Fork catchpoints. */
15355 ops = &catch_fork_breakpoint_ops;
15356 *ops = base_breakpoint_ops;
15357 ops->insert_location = insert_catch_fork;
15358 ops->remove_location = remove_catch_fork;
15359 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15360 ops->print_it = print_it_catch_fork;
15361 ops->print_one = print_one_catch_fork;
15362 ops->print_mention = print_mention_catch_fork;
15363 ops->print_recreate = print_recreate_catch_fork;
15364
15365 /* Vfork catchpoints. */
15366 ops = &catch_vfork_breakpoint_ops;
15367 *ops = base_breakpoint_ops;
15368 ops->insert_location = insert_catch_vfork;
15369 ops->remove_location = remove_catch_vfork;
15370 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15371 ops->print_it = print_it_catch_vfork;
15372 ops->print_one = print_one_catch_vfork;
15373 ops->print_mention = print_mention_catch_vfork;
15374 ops->print_recreate = print_recreate_catch_vfork;
15375
15376 /* Exec catchpoints. */
15377 ops = &catch_exec_breakpoint_ops;
15378 *ops = base_breakpoint_ops;
15379 ops->insert_location = insert_catch_exec;
15380 ops->remove_location = remove_catch_exec;
15381 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15382 ops->print_it = print_it_catch_exec;
15383 ops->print_one = print_one_catch_exec;
15384 ops->print_mention = print_mention_catch_exec;
15385 ops->print_recreate = print_recreate_catch_exec;
15386
15387 /* Solib-related catchpoints. */
15388 ops = &catch_solib_breakpoint_ops;
15389 *ops = base_breakpoint_ops;
15390 ops->insert_location = insert_catch_solib;
15391 ops->remove_location = remove_catch_solib;
15392 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15393 ops->check_status = check_status_catch_solib;
15394 ops->print_it = print_it_catch_solib;
15395 ops->print_one = print_one_catch_solib;
15396 ops->print_mention = print_mention_catch_solib;
15397 ops->print_recreate = print_recreate_catch_solib;
15398
15399 ops = &dprintf_breakpoint_ops;
15400 *ops = bkpt_base_breakpoint_ops;
15401 ops->re_set = dprintf_re_set;
15402 ops->resources_needed = bkpt_resources_needed;
15403 ops->print_it = bkpt_print_it;
15404 ops->print_mention = bkpt_print_mention;
15405 ops->print_recreate = dprintf_print_recreate;
15406 ops->after_condition_true = dprintf_after_condition_true;
15407 ops->breakpoint_hit = dprintf_breakpoint_hit;
15408 }
15409
15410 /* Chain containing all defined "enable breakpoint" subcommands. */
15411
15412 static struct cmd_list_element *enablebreaklist = NULL;
15413
15414 /* See breakpoint.h. */
15415
15416 cmd_list_element *commands_cmd_element = nullptr;
15417
15418 void
15419 _initialize_breakpoint (void)
15420 {
15421 struct cmd_list_element *c;
15422
15423 initialize_breakpoint_ops ();
15424
15425 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15426 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15427 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15428
15429 breakpoint_chain = 0;
15430 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15431 before a breakpoint is set. */
15432 breakpoint_count = 0;
15433
15434 tracepoint_count = 0;
15435
15436 add_com ("ignore", class_breakpoint, ignore_command, _("\
15437 Set ignore-count of breakpoint number N to COUNT.\n\
15438 Usage is `ignore N COUNT'."));
15439
15440 commands_cmd_element = add_com ("commands", class_breakpoint,
15441 commands_command, _("\
15442 Set commands to be executed when the given breakpoints are hit.\n\
15443 Give a space-separated breakpoint list as argument after \"commands\".\n\
15444 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15445 (e.g. `5-7').\n\
15446 With no argument, the targeted breakpoint is the last one set.\n\
15447 The commands themselves follow starting on the next line.\n\
15448 Type a line containing \"end\" to indicate the end of them.\n\
15449 Give \"silent\" as the first line to make the breakpoint silent;\n\
15450 then no output is printed when it is hit, except what the commands print."));
15451
15452 c = add_com ("condition", class_breakpoint, condition_command, _("\
15453 Specify breakpoint number N to break only if COND is true.\n\
15454 Usage is `condition N COND', where N is an integer and COND is an\n\
15455 expression to be evaluated whenever breakpoint N is reached."));
15456 set_cmd_completer (c, condition_completer);
15457
15458 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15459 Set a temporary breakpoint.\n\
15460 Like \"break\" except the breakpoint is only temporary,\n\
15461 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15462 by using \"enable delete\" on the breakpoint number.\n\
15463 \n"
15464 BREAK_ARGS_HELP ("tbreak")));
15465 set_cmd_completer (c, location_completer);
15466
15467 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15468 Set a hardware assisted breakpoint.\n\
15469 Like \"break\" except the breakpoint requires hardware support,\n\
15470 some target hardware may not have this support.\n\
15471 \n"
15472 BREAK_ARGS_HELP ("hbreak")));
15473 set_cmd_completer (c, location_completer);
15474
15475 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15476 Set a temporary hardware assisted breakpoint.\n\
15477 Like \"hbreak\" except the breakpoint is only temporary,\n\
15478 so it will be deleted when hit.\n\
15479 \n"
15480 BREAK_ARGS_HELP ("thbreak")));
15481 set_cmd_completer (c, location_completer);
15482
15483 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15484 Enable some breakpoints.\n\
15485 Give breakpoint numbers (separated by spaces) as arguments.\n\
15486 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15487 This is used to cancel the effect of the \"disable\" command.\n\
15488 With a subcommand you can enable temporarily."),
15489 &enablelist, "enable ", 1, &cmdlist);
15490
15491 add_com_alias ("en", "enable", class_breakpoint, 1);
15492
15493 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15494 Enable some breakpoints.\n\
15495 Give breakpoint numbers (separated by spaces) as arguments.\n\
15496 This is used to cancel the effect of the \"disable\" command.\n\
15497 May be abbreviated to simply \"enable\"."),
15498 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15499
15500 add_cmd ("once", no_class, enable_once_command, _("\
15501 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15502 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15503 &enablebreaklist);
15504
15505 add_cmd ("delete", no_class, enable_delete_command, _("\
15506 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15507 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15508 &enablebreaklist);
15509
15510 add_cmd ("count", no_class, enable_count_command, _("\
15511 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15512 If a breakpoint is hit while enabled in this fashion,\n\
15513 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15514 &enablebreaklist);
15515
15516 add_cmd ("delete", no_class, enable_delete_command, _("\
15517 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15518 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15519 &enablelist);
15520
15521 add_cmd ("once", no_class, enable_once_command, _("\
15522 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15523 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15524 &enablelist);
15525
15526 add_cmd ("count", no_class, enable_count_command, _("\
15527 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15528 If a breakpoint is hit while enabled in this fashion,\n\
15529 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15530 &enablelist);
15531
15532 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15533 Disable some breakpoints.\n\
15534 Arguments are breakpoint numbers with spaces in between.\n\
15535 To disable all breakpoints, give no argument.\n\
15536 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15537 &disablelist, "disable ", 1, &cmdlist);
15538 add_com_alias ("dis", "disable", class_breakpoint, 1);
15539 add_com_alias ("disa", "disable", class_breakpoint, 1);
15540
15541 add_cmd ("breakpoints", class_alias, disable_command, _("\
15542 Disable some breakpoints.\n\
15543 Arguments are breakpoint numbers with spaces in between.\n\
15544 To disable all breakpoints, give no argument.\n\
15545 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15546 This command may be abbreviated \"disable\"."),
15547 &disablelist);
15548
15549 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15550 Delete some breakpoints or auto-display expressions.\n\
15551 Arguments are breakpoint numbers with spaces in between.\n\
15552 To delete all breakpoints, give no argument.\n\
15553 \n\
15554 Also a prefix command for deletion of other GDB objects.\n\
15555 The \"unset\" command is also an alias for \"delete\"."),
15556 &deletelist, "delete ", 1, &cmdlist);
15557 add_com_alias ("d", "delete", class_breakpoint, 1);
15558 add_com_alias ("del", "delete", class_breakpoint, 1);
15559
15560 add_cmd ("breakpoints", class_alias, delete_command, _("\
15561 Delete some breakpoints or auto-display expressions.\n\
15562 Arguments are breakpoint numbers with spaces in between.\n\
15563 To delete all breakpoints, give no argument.\n\
15564 This command may be abbreviated \"delete\"."),
15565 &deletelist);
15566
15567 add_com ("clear", class_breakpoint, clear_command, _("\
15568 Clear breakpoint at specified location.\n\
15569 Argument may be a linespec, explicit, or address location as described below.\n\
15570 \n\
15571 With no argument, clears all breakpoints in the line that the selected frame\n\
15572 is executing in.\n"
15573 "\n" LOCATION_HELP_STRING "\n\n\
15574 See also the \"delete\" command which clears breakpoints by number."));
15575 add_com_alias ("cl", "clear", class_breakpoint, 1);
15576
15577 c = add_com ("break", class_breakpoint, break_command, _("\
15578 Set breakpoint at specified location.\n"
15579 BREAK_ARGS_HELP ("break")));
15580 set_cmd_completer (c, location_completer);
15581
15582 add_com_alias ("b", "break", class_run, 1);
15583 add_com_alias ("br", "break", class_run, 1);
15584 add_com_alias ("bre", "break", class_run, 1);
15585 add_com_alias ("brea", "break", class_run, 1);
15586
15587 if (dbx_commands)
15588 {
15589 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15590 Break in function/address or break at a line in the current file."),
15591 &stoplist, "stop ", 1, &cmdlist);
15592 add_cmd ("in", class_breakpoint, stopin_command,
15593 _("Break in function or address."), &stoplist);
15594 add_cmd ("at", class_breakpoint, stopat_command,
15595 _("Break at a line in the current file."), &stoplist);
15596 add_com ("status", class_info, info_breakpoints_command, _("\
15597 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15598 The \"Type\" column indicates one of:\n\
15599 \tbreakpoint - normal breakpoint\n\
15600 \twatchpoint - watchpoint\n\
15601 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15602 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15603 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15604 address and file/line number respectively.\n\
15605 \n\
15606 Convenience variable \"$_\" and default examine address for \"x\"\n\
15607 are set to the address of the last breakpoint listed unless the command\n\
15608 is prefixed with \"server \".\n\n\
15609 Convenience variable \"$bpnum\" contains the number of the last\n\
15610 breakpoint set."));
15611 }
15612
15613 add_info ("breakpoints", info_breakpoints_command, _("\
15614 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15615 The \"Type\" column indicates one of:\n\
15616 \tbreakpoint - normal breakpoint\n\
15617 \twatchpoint - watchpoint\n\
15618 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15619 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15620 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15621 address and file/line number respectively.\n\
15622 \n\
15623 Convenience variable \"$_\" and default examine address for \"x\"\n\
15624 are set to the address of the last breakpoint listed unless the command\n\
15625 is prefixed with \"server \".\n\n\
15626 Convenience variable \"$bpnum\" contains the number of the last\n\
15627 breakpoint set."));
15628
15629 add_info_alias ("b", "breakpoints", 1);
15630
15631 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15632 Status of all breakpoints, or breakpoint number NUMBER.\n\
15633 The \"Type\" column indicates one of:\n\
15634 \tbreakpoint - normal breakpoint\n\
15635 \twatchpoint - watchpoint\n\
15636 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15637 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15638 \tuntil - internal breakpoint used by the \"until\" command\n\
15639 \tfinish - internal breakpoint used by the \"finish\" command\n\
15640 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15641 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15642 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15643 address and file/line number respectively.\n\
15644 \n\
15645 Convenience variable \"$_\" and default examine address for \"x\"\n\
15646 are set to the address of the last breakpoint listed unless the command\n\
15647 is prefixed with \"server \".\n\n\
15648 Convenience variable \"$bpnum\" contains the number of the last\n\
15649 breakpoint set."),
15650 &maintenanceinfolist);
15651
15652 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15653 Set catchpoints to catch events."),
15654 &catch_cmdlist, "catch ",
15655 0/*allow-unknown*/, &cmdlist);
15656
15657 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15658 Set temporary catchpoints to catch events."),
15659 &tcatch_cmdlist, "tcatch ",
15660 0/*allow-unknown*/, &cmdlist);
15661
15662 add_catch_command ("fork", _("Catch calls to fork."),
15663 catch_fork_command_1,
15664 NULL,
15665 (void *) (uintptr_t) catch_fork_permanent,
15666 (void *) (uintptr_t) catch_fork_temporary);
15667 add_catch_command ("vfork", _("Catch calls to vfork."),
15668 catch_fork_command_1,
15669 NULL,
15670 (void *) (uintptr_t) catch_vfork_permanent,
15671 (void *) (uintptr_t) catch_vfork_temporary);
15672 add_catch_command ("exec", _("Catch calls to exec."),
15673 catch_exec_command_1,
15674 NULL,
15675 CATCH_PERMANENT,
15676 CATCH_TEMPORARY);
15677 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15678 Usage: catch load [REGEX]\n\
15679 If REGEX is given, only stop for libraries matching the regular expression."),
15680 catch_load_command_1,
15681 NULL,
15682 CATCH_PERMANENT,
15683 CATCH_TEMPORARY);
15684 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15685 Usage: catch unload [REGEX]\n\
15686 If REGEX is given, only stop for libraries matching the regular expression."),
15687 catch_unload_command_1,
15688 NULL,
15689 CATCH_PERMANENT,
15690 CATCH_TEMPORARY);
15691
15692 c = add_com ("watch", class_breakpoint, watch_command, _("\
15693 Set a watchpoint for an expression.\n\
15694 Usage: watch [-l|-location] EXPRESSION\n\
15695 A watchpoint stops execution of your program whenever the value of\n\
15696 an expression changes.\n\
15697 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15698 the memory to which it refers."));
15699 set_cmd_completer (c, expression_completer);
15700
15701 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15702 Set a read watchpoint for an expression.\n\
15703 Usage: rwatch [-l|-location] EXPRESSION\n\
15704 A watchpoint stops execution of your program whenever the value of\n\
15705 an expression is read.\n\
15706 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15707 the memory to which it refers."));
15708 set_cmd_completer (c, expression_completer);
15709
15710 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15711 Set a watchpoint for an expression.\n\
15712 Usage: awatch [-l|-location] EXPRESSION\n\
15713 A watchpoint stops execution of your program whenever the value of\n\
15714 an expression is either read or written.\n\
15715 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15716 the memory to which it refers."));
15717 set_cmd_completer (c, expression_completer);
15718
15719 add_info ("watchpoints", info_watchpoints_command, _("\
15720 Status of specified watchpoints (all watchpoints if no argument)."));
15721
15722 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15723 respond to changes - contrary to the description. */
15724 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15725 &can_use_hw_watchpoints, _("\
15726 Set debugger's willingness to use watchpoint hardware."), _("\
15727 Show debugger's willingness to use watchpoint hardware."), _("\
15728 If zero, gdb will not use hardware for new watchpoints, even if\n\
15729 such is available. (However, any hardware watchpoints that were\n\
15730 created before setting this to nonzero, will continue to use watchpoint\n\
15731 hardware.)"),
15732 NULL,
15733 show_can_use_hw_watchpoints,
15734 &setlist, &showlist);
15735
15736 can_use_hw_watchpoints = 1;
15737
15738 /* Tracepoint manipulation commands. */
15739
15740 c = add_com ("trace", class_breakpoint, trace_command, _("\
15741 Set a tracepoint at specified location.\n\
15742 \n"
15743 BREAK_ARGS_HELP ("trace") "\n\
15744 Do \"help tracepoints\" for info on other tracepoint commands."));
15745 set_cmd_completer (c, location_completer);
15746
15747 add_com_alias ("tp", "trace", class_alias, 0);
15748 add_com_alias ("tr", "trace", class_alias, 1);
15749 add_com_alias ("tra", "trace", class_alias, 1);
15750 add_com_alias ("trac", "trace", class_alias, 1);
15751
15752 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15753 Set a fast tracepoint at specified location.\n\
15754 \n"
15755 BREAK_ARGS_HELP ("ftrace") "\n\
15756 Do \"help tracepoints\" for info on other tracepoint commands."));
15757 set_cmd_completer (c, location_completer);
15758
15759 c = add_com ("strace", class_breakpoint, strace_command, _("\
15760 Set a static tracepoint at location or marker.\n\
15761 \n\
15762 strace [LOCATION] [if CONDITION]\n\
15763 LOCATION may be a linespec, explicit, or address location (described below) \n\
15764 or -m MARKER_ID.\n\n\
15765 If a marker id is specified, probe the marker with that name. With\n\
15766 no LOCATION, uses current execution address of the selected stack frame.\n\
15767 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15768 This collects arbitrary user data passed in the probe point call to the\n\
15769 tracing library. You can inspect it when analyzing the trace buffer,\n\
15770 by printing the $_sdata variable like any other convenience variable.\n\
15771 \n\
15772 CONDITION is a boolean expression.\n\
15773 \n" LOCATION_HELP_STRING "\n\n\
15774 Multiple tracepoints at one place are permitted, and useful if their\n\
15775 conditions are different.\n\
15776 \n\
15777 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15778 Do \"help tracepoints\" for info on other tracepoint commands."));
15779 set_cmd_completer (c, location_completer);
15780
15781 add_info ("tracepoints", info_tracepoints_command, _("\
15782 Status of specified tracepoints (all tracepoints if no argument).\n\
15783 Convenience variable \"$tpnum\" contains the number of the\n\
15784 last tracepoint set."));
15785
15786 add_info_alias ("tp", "tracepoints", 1);
15787
15788 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15789 Delete specified tracepoints.\n\
15790 Arguments are tracepoint numbers, separated by spaces.\n\
15791 No argument means delete all tracepoints."),
15792 &deletelist);
15793 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15794
15795 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15796 Disable specified tracepoints.\n\
15797 Arguments are tracepoint numbers, separated by spaces.\n\
15798 No argument means disable all tracepoints."),
15799 &disablelist);
15800 deprecate_cmd (c, "disable");
15801
15802 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15803 Enable specified tracepoints.\n\
15804 Arguments are tracepoint numbers, separated by spaces.\n\
15805 No argument means enable all tracepoints."),
15806 &enablelist);
15807 deprecate_cmd (c, "enable");
15808
15809 add_com ("passcount", class_trace, trace_pass_command, _("\
15810 Set the passcount for a tracepoint.\n\
15811 The trace will end when the tracepoint has been passed 'count' times.\n\
15812 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15813 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15814
15815 add_prefix_cmd ("save", class_breakpoint, save_command,
15816 _("Save breakpoint definitions as a script."),
15817 &save_cmdlist, "save ",
15818 0/*allow-unknown*/, &cmdlist);
15819
15820 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15821 Save current breakpoint definitions as a script.\n\
15822 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15823 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15824 session to restore them."),
15825 &save_cmdlist);
15826 set_cmd_completer (c, filename_completer);
15827
15828 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15829 Save current tracepoint definitions as a script.\n\
15830 Use the 'source' command in another debug session to restore them."),
15831 &save_cmdlist);
15832 set_cmd_completer (c, filename_completer);
15833
15834 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15835 deprecate_cmd (c, "save tracepoints");
15836
15837 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15838 Breakpoint specific settings\n\
15839 Configure various breakpoint-specific variables such as\n\
15840 pending breakpoint behavior"),
15841 &breakpoint_set_cmdlist, "set breakpoint ",
15842 0/*allow-unknown*/, &setlist);
15843 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15844 Breakpoint specific settings\n\
15845 Configure various breakpoint-specific variables such as\n\
15846 pending breakpoint behavior"),
15847 &breakpoint_show_cmdlist, "show breakpoint ",
15848 0/*allow-unknown*/, &showlist);
15849
15850 add_setshow_auto_boolean_cmd ("pending", no_class,
15851 &pending_break_support, _("\
15852 Set debugger's behavior regarding pending breakpoints."), _("\
15853 Show debugger's behavior regarding pending breakpoints."), _("\
15854 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15855 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15856 an error. If auto, an unrecognized breakpoint location results in a\n\
15857 user-query to see if a pending breakpoint should be created."),
15858 NULL,
15859 show_pending_break_support,
15860 &breakpoint_set_cmdlist,
15861 &breakpoint_show_cmdlist);
15862
15863 pending_break_support = AUTO_BOOLEAN_AUTO;
15864
15865 add_setshow_boolean_cmd ("auto-hw", no_class,
15866 &automatic_hardware_breakpoints, _("\
15867 Set automatic usage of hardware breakpoints."), _("\
15868 Show automatic usage of hardware breakpoints."), _("\
15869 If set, the debugger will automatically use hardware breakpoints for\n\
15870 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15871 a warning will be emitted for such breakpoints."),
15872 NULL,
15873 show_automatic_hardware_breakpoints,
15874 &breakpoint_set_cmdlist,
15875 &breakpoint_show_cmdlist);
15876
15877 add_setshow_boolean_cmd ("always-inserted", class_support,
15878 &always_inserted_mode, _("\
15879 Set mode for inserting breakpoints."), _("\
15880 Show mode for inserting breakpoints."), _("\
15881 When this mode is on, breakpoints are inserted immediately as soon as\n\
15882 they're created, kept inserted even when execution stops, and removed\n\
15883 only when the user deletes them. When this mode is off (the default),\n\
15884 breakpoints are inserted only when execution continues, and removed\n\
15885 when execution stops."),
15886 NULL,
15887 &show_always_inserted_mode,
15888 &breakpoint_set_cmdlist,
15889 &breakpoint_show_cmdlist);
15890
15891 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15892 condition_evaluation_enums,
15893 &condition_evaluation_mode_1, _("\
15894 Set mode of breakpoint condition evaluation."), _("\
15895 Show mode of breakpoint condition evaluation."), _("\
15896 When this is set to \"host\", breakpoint conditions will be\n\
15897 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15898 breakpoint conditions will be downloaded to the target (if the target\n\
15899 supports such feature) and conditions will be evaluated on the target's side.\n\
15900 If this is set to \"auto\" (default), this will be automatically set to\n\
15901 \"target\" if it supports condition evaluation, otherwise it will\n\
15902 be set to \"gdb\""),
15903 &set_condition_evaluation_mode,
15904 &show_condition_evaluation_mode,
15905 &breakpoint_set_cmdlist,
15906 &breakpoint_show_cmdlist);
15907
15908 add_com ("break-range", class_breakpoint, break_range_command, _("\
15909 Set a breakpoint for an address range.\n\
15910 break-range START-LOCATION, END-LOCATION\n\
15911 where START-LOCATION and END-LOCATION can be one of the following:\n\
15912 LINENUM, for that line in the current file,\n\
15913 FILE:LINENUM, for that line in that file,\n\
15914 +OFFSET, for that number of lines after the current line\n\
15915 or the start of the range\n\
15916 FUNCTION, for the first line in that function,\n\
15917 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15918 *ADDRESS, for the instruction at that address.\n\
15919 \n\
15920 The breakpoint will stop execution of the inferior whenever it executes\n\
15921 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15922 range (including START-LOCATION and END-LOCATION)."));
15923
15924 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15925 Set a dynamic printf at specified location.\n\
15926 dprintf location,format string,arg1,arg2,...\n\
15927 location may be a linespec, explicit, or address location.\n"
15928 "\n" LOCATION_HELP_STRING));
15929 set_cmd_completer (c, location_completer);
15930
15931 add_setshow_enum_cmd ("dprintf-style", class_support,
15932 dprintf_style_enums, &dprintf_style, _("\
15933 Set the style of usage for dynamic printf."), _("\
15934 Show the style of usage for dynamic printf."), _("\
15935 This setting chooses how GDB will do a dynamic printf.\n\
15936 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15937 console, as with the \"printf\" command.\n\
15938 If the value is \"call\", the print is done by calling a function in your\n\
15939 program; by default printf(), but you can choose a different function or\n\
15940 output stream by setting dprintf-function and dprintf-channel."),
15941 update_dprintf_commands, NULL,
15942 &setlist, &showlist);
15943
15944 dprintf_function = xstrdup ("printf");
15945 add_setshow_string_cmd ("dprintf-function", class_support,
15946 &dprintf_function, _("\
15947 Set the function to use for dynamic printf"), _("\
15948 Show the function to use for dynamic printf"), NULL,
15949 update_dprintf_commands, NULL,
15950 &setlist, &showlist);
15951
15952 dprintf_channel = xstrdup ("");
15953 add_setshow_string_cmd ("dprintf-channel", class_support,
15954 &dprintf_channel, _("\
15955 Set the channel to use for dynamic printf"), _("\
15956 Show the channel to use for dynamic printf"), NULL,
15957 update_dprintf_commands, NULL,
15958 &setlist, &showlist);
15959
15960 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15961 &disconnected_dprintf, _("\
15962 Set whether dprintf continues after GDB disconnects."), _("\
15963 Show whether dprintf continues after GDB disconnects."), _("\
15964 Use this to let dprintf commands continue to hit and produce output\n\
15965 even if GDB disconnects or detaches from the target."),
15966 NULL,
15967 NULL,
15968 &setlist, &showlist);
15969
15970 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15971 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
15972 (target agent only) This is useful for formatted output in user-defined commands."));
15973
15974 automatic_hardware_breakpoints = 1;
15975
15976 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15977 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15978 }
This page took 0.37966 seconds and 5 git commands to generate.