Move current_subfile to buildsym_compunit
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "filenames.h" /* For DOSish file names. */
78 #include "macrotab.h"
79 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
80 #include "block.h"
81 #include "cp-support.h"
82 #include "dictionary.h"
83 #include "addrmap.h"
84 #include <algorithm>
85
86 /* Ask buildsym.h to define the vars it normally declares `extern'. */
87 #define EXTERN
88 /**/
89 #include "buildsym.h" /* Our own declarations. */
90 #undef EXTERN
91
92 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
93 questionable--see comment where we call them). */
94
95 #include "stabsread.h"
96
97 /* Buildsym's counterpart to struct compunit_symtab.
98 TODO(dje): Move all related global state into here. */
99
100 struct buildsym_compunit
101 {
102 /* Start recording information about a primary source file (IOW, not an
103 included source file).
104 COMP_DIR is the directory in which the compilation unit was compiled
105 (or NULL if not known). */
106
107 buildsym_compunit (struct objfile *objfile_, const char *name,
108 const char *comp_dir_, enum language language_,
109 CORE_ADDR last_addr)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_),
114 m_last_source_start_addr (last_addr)
115 {
116 }
117
118 ~buildsym_compunit ()
119 {
120 struct subfile *subfile, *nextsub;
121
122 if (m_pending_macros != nullptr)
123 free_macro_table (m_pending_macros);
124
125 for (subfile = subfiles;
126 subfile != NULL;
127 subfile = nextsub)
128 {
129 nextsub = subfile->next;
130 xfree (subfile->name);
131 xfree (subfile->line_vector);
132 xfree (subfile);
133 }
134 }
135
136 void set_last_source_file (const char *name)
137 {
138 char *new_name = name == NULL ? NULL : xstrdup (name);
139 m_last_source_file.reset (new_name);
140 }
141
142 struct macro_table *get_macro_table ()
143 {
144 if (m_pending_macros == nullptr)
145 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
146 objfile->per_bfd->macro_cache,
147 compunit_symtab);
148 return m_pending_macros;
149 }
150
151 struct macro_table *release_macros ()
152 {
153 struct macro_table *result = m_pending_macros;
154 m_pending_macros = nullptr;
155 return result;
156 }
157
158 /* The objfile we're reading debug info from. */
159 struct objfile *objfile;
160
161 /* List of subfiles (source files).
162 Files are added to the front of the list.
163 This is important mostly for the language determination hacks we use,
164 which iterate over previously added files. */
165 struct subfile *subfiles = nullptr;
166
167 /* The subfile of the main source file. */
168 struct subfile *main_subfile = nullptr;
169
170 /* Name of source file whose symbol data we are now processing. This
171 comes from a symbol of type N_SO for stabs. For DWARF it comes
172 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
173 gdb::unique_xmalloc_ptr<char> m_last_source_file;
174
175 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
176 gdb::unique_xmalloc_ptr<char> comp_dir;
177
178 /* Space for this is not malloc'd, and is assumed to have at least
179 the same lifetime as objfile. */
180 const char *producer = nullptr;
181
182 /* Space for this is not malloc'd, and is assumed to have at least
183 the same lifetime as objfile. */
184 const char *debugformat = nullptr;
185
186 /* The compunit we are building. */
187 struct compunit_symtab *compunit_symtab = nullptr;
188
189 /* Language of this compunit_symtab. */
190 enum language language;
191
192 /* The macro table for the compilation unit whose symbols we're
193 currently reading. */
194 struct macro_table *m_pending_macros = nullptr;
195
196 /* True if symtab has line number info. This prevents an otherwise
197 empty symtab from being tossed. */
198 bool m_have_line_numbers = false;
199
200 /* Core address of start of text of current source file. This too
201 comes from the N_SO symbol. For Dwarf it typically comes from the
202 DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
203 CORE_ADDR m_last_source_start_addr;
204
205 /* Stack of subfile names. */
206 std::vector<const char *> m_subfile_stack;
207
208 /* The "using" directives local to lexical context. */
209 struct using_direct *m_local_using_directives = nullptr;
210
211 /* Global "using" directives. */
212 struct using_direct *m_global_using_directives = nullptr;
213
214 /* The stack of contexts that are pushed by push_context and popped
215 by pop_context. */
216 std::vector<struct context_stack> m_context_stack;
217
218 struct subfile *m_current_subfile = nullptr;
219 };
220
221 /* The work-in-progress of the compunit we are building.
222 This is created first, before any subfiles by start_symtab. */
223
224 static struct buildsym_compunit *buildsym_compunit;
225
226 /* List of free `struct pending' structures for reuse. */
227
228 static struct pending *free_pendings;
229
230 /* The mutable address map for the compilation unit whose symbols
231 we're currently reading. The symtabs' shared blockvector will
232 point to a fixed copy of this. */
233 static struct addrmap *pending_addrmap;
234
235 /* The obstack on which we allocate pending_addrmap.
236 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
237 initialized (and holds pending_addrmap). */
238 static struct obstack pending_addrmap_obstack;
239
240 /* Non-zero if we recorded any ranges in the addrmap that are
241 different from those in the blockvector already. We set this to
242 zero when we start processing a symfile, and if it's still zero at
243 the end, then we just toss the addrmap. */
244 static int pending_addrmap_interesting;
245
246 /* An obstack used for allocating pending blocks. */
247
248 static struct obstack pending_block_obstack;
249
250 /* List of blocks already made (lexical contexts already closed).
251 This is used at the end to make the blockvector. */
252
253 struct pending_block
254 {
255 struct pending_block *next;
256 struct block *block;
257 };
258
259 /* Pointer to the head of a linked list of symbol blocks which have
260 already been finalized (lexical contexts already closed) and which
261 are just waiting to be built into a blockvector when finalizing the
262 associated symtab. */
263
264 static struct pending_block *pending_blocks;
265
266 static void free_buildsym_compunit (void);
267
268 static int compare_line_numbers (const void *ln1p, const void *ln2p);
269
270 static void record_pending_block (struct objfile *objfile,
271 struct block *block,
272 struct pending_block *opblock);
273
274 static void free_pending_blocks ();
275
276 /* Initial sizes of data structures. These are realloc'd larger if
277 needed, and realloc'd down to the size actually used, when
278 completed. */
279
280 #define INITIAL_LINE_VECTOR_LENGTH 1000
281 \f
282
283 /* Maintain the lists of symbols and blocks. */
284
285 /* Add a symbol to one of the lists of symbols. */
286
287 void
288 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
289 {
290 struct pending *link;
291
292 /* If this is an alias for another symbol, don't add it. */
293 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
294 return;
295
296 /* We keep PENDINGSIZE symbols in each link of the list. If we
297 don't have a link with room in it, add a new link. */
298 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
299 {
300 if (free_pendings)
301 {
302 link = free_pendings;
303 free_pendings = link->next;
304 }
305 else
306 {
307 link = XNEW (struct pending);
308 }
309
310 link->next = *listhead;
311 *listhead = link;
312 link->nsyms = 0;
313 }
314
315 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
316 }
317
318 /* Find a symbol named NAME on a LIST. NAME need not be
319 '\0'-terminated; LENGTH is the length of the name. */
320
321 struct symbol *
322 find_symbol_in_list (struct pending *list, char *name, int length)
323 {
324 int j;
325 const char *pp;
326
327 while (list != NULL)
328 {
329 for (j = list->nsyms; --j >= 0;)
330 {
331 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
332 if (*pp == *name && strncmp (pp, name, length) == 0
333 && pp[length] == '\0')
334 {
335 return (list->symbol[j]);
336 }
337 }
338 list = list->next;
339 }
340 return (NULL);
341 }
342
343 scoped_free_pendings::scoped_free_pendings ()
344 {
345 gdb_assert (pending_blocks == nullptr);
346 }
347
348 /* At end of reading syms, or in case of quit, ensure everything
349 associated with building symtabs is freed.
350
351 N.B. This is *not* intended to be used when building psymtabs. Some debug
352 info readers call this anyway, which is harmless if confusing. */
353
354 scoped_free_pendings::~scoped_free_pendings ()
355 {
356 struct pending *next, *next1;
357
358 for (next = free_pendings; next; next = next1)
359 {
360 next1 = next->next;
361 xfree ((void *) next);
362 }
363 free_pendings = NULL;
364
365 free_pending_blocks ();
366
367 for (next = file_symbols; next != NULL; next = next1)
368 {
369 next1 = next->next;
370 xfree ((void *) next);
371 }
372 file_symbols = NULL;
373
374 for (next = global_symbols; next != NULL; next = next1)
375 {
376 next1 = next->next;
377 xfree ((void *) next);
378 }
379 global_symbols = NULL;
380
381 if (pending_addrmap)
382 obstack_free (&pending_addrmap_obstack, NULL);
383 pending_addrmap = NULL;
384
385 free_buildsym_compunit ();
386 }
387
388 /* This function is called to discard any pending blocks. */
389
390 static void
391 free_pending_blocks ()
392 {
393 if (pending_blocks != NULL)
394 {
395 obstack_free (&pending_block_obstack, NULL);
396 pending_blocks = NULL;
397 }
398 }
399
400 /* Take one of the lists of symbols and make a block from it. Keep
401 the order the symbols have in the list (reversed from the input
402 file). Put the block on the list of pending blocks. */
403
404 static struct block *
405 finish_block_internal (struct symbol *symbol,
406 struct pending **listhead,
407 struct pending_block *old_blocks,
408 const struct dynamic_prop *static_link,
409 CORE_ADDR start, CORE_ADDR end,
410 int is_global, int expandable)
411 {
412 struct objfile *objfile = buildsym_compunit->objfile;
413 struct gdbarch *gdbarch = get_objfile_arch (objfile);
414 struct pending *next, *next1;
415 struct block *block;
416 struct pending_block *pblock;
417 struct pending_block *opblock;
418
419 block = (is_global
420 ? allocate_global_block (&objfile->objfile_obstack)
421 : allocate_block (&objfile->objfile_obstack));
422
423 if (symbol)
424 {
425 BLOCK_DICT (block)
426 = dict_create_linear (&objfile->objfile_obstack,
427 buildsym_compunit->language, *listhead);
428 }
429 else
430 {
431 if (expandable)
432 {
433 BLOCK_DICT (block)
434 = dict_create_hashed_expandable (buildsym_compunit->language);
435 dict_add_pending (BLOCK_DICT (block), *listhead);
436 }
437 else
438 {
439 BLOCK_DICT (block) =
440 dict_create_hashed (&objfile->objfile_obstack,
441 buildsym_compunit->language, *listhead);
442 }
443 }
444
445 BLOCK_START (block) = start;
446 BLOCK_END (block) = end;
447
448 /* Put the block in as the value of the symbol that names it. */
449
450 if (symbol)
451 {
452 struct type *ftype = SYMBOL_TYPE (symbol);
453 struct dict_iterator iter;
454 SYMBOL_BLOCK_VALUE (symbol) = block;
455 BLOCK_FUNCTION (block) = symbol;
456
457 if (TYPE_NFIELDS (ftype) <= 0)
458 {
459 /* No parameter type information is recorded with the
460 function's type. Set that from the type of the
461 parameter symbols. */
462 int nparams = 0, iparams;
463 struct symbol *sym;
464
465 /* Here we want to directly access the dictionary, because
466 we haven't fully initialized the block yet. */
467 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
468 {
469 if (SYMBOL_IS_ARGUMENT (sym))
470 nparams++;
471 }
472 if (nparams > 0)
473 {
474 TYPE_NFIELDS (ftype) = nparams;
475 TYPE_FIELDS (ftype) = (struct field *)
476 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
477
478 iparams = 0;
479 /* Here we want to directly access the dictionary, because
480 we haven't fully initialized the block yet. */
481 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
482 {
483 if (iparams == nparams)
484 break;
485
486 if (SYMBOL_IS_ARGUMENT (sym))
487 {
488 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
489 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
490 iparams++;
491 }
492 }
493 }
494 }
495 }
496 else
497 {
498 BLOCK_FUNCTION (block) = NULL;
499 }
500
501 if (static_link != NULL)
502 objfile_register_static_link (objfile, block, static_link);
503
504 /* Now "free" the links of the list, and empty the list. */
505
506 for (next = *listhead; next; next = next1)
507 {
508 next1 = next->next;
509 next->next = free_pendings;
510 free_pendings = next;
511 }
512 *listhead = NULL;
513
514 /* Check to be sure that the blocks have an end address that is
515 greater than starting address. */
516
517 if (BLOCK_END (block) < BLOCK_START (block))
518 {
519 if (symbol)
520 {
521 complaint (_("block end address less than block "
522 "start address in %s (patched it)"),
523 SYMBOL_PRINT_NAME (symbol));
524 }
525 else
526 {
527 complaint (_("block end address %s less than block "
528 "start address %s (patched it)"),
529 paddress (gdbarch, BLOCK_END (block)),
530 paddress (gdbarch, BLOCK_START (block)));
531 }
532 /* Better than nothing. */
533 BLOCK_END (block) = BLOCK_START (block);
534 }
535
536 /* Install this block as the superblock of all blocks made since the
537 start of this scope that don't have superblocks yet. */
538
539 opblock = NULL;
540 for (pblock = pending_blocks;
541 pblock && pblock != old_blocks;
542 pblock = pblock->next)
543 {
544 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
545 {
546 /* Check to be sure the blocks are nested as we receive
547 them. If the compiler/assembler/linker work, this just
548 burns a small amount of time.
549
550 Skip blocks which correspond to a function; they're not
551 physically nested inside this other blocks, only
552 lexically nested. */
553 if (BLOCK_FUNCTION (pblock->block) == NULL
554 && (BLOCK_START (pblock->block) < BLOCK_START (block)
555 || BLOCK_END (pblock->block) > BLOCK_END (block)))
556 {
557 if (symbol)
558 {
559 complaint (_("inner block not inside outer block in %s"),
560 SYMBOL_PRINT_NAME (symbol));
561 }
562 else
563 {
564 complaint (_("inner block (%s-%s) not "
565 "inside outer block (%s-%s)"),
566 paddress (gdbarch, BLOCK_START (pblock->block)),
567 paddress (gdbarch, BLOCK_END (pblock->block)),
568 paddress (gdbarch, BLOCK_START (block)),
569 paddress (gdbarch, BLOCK_END (block)));
570 }
571 if (BLOCK_START (pblock->block) < BLOCK_START (block))
572 BLOCK_START (pblock->block) = BLOCK_START (block);
573 if (BLOCK_END (pblock->block) > BLOCK_END (block))
574 BLOCK_END (pblock->block) = BLOCK_END (block);
575 }
576 BLOCK_SUPERBLOCK (pblock->block) = block;
577 }
578 opblock = pblock;
579 }
580
581 block_set_using (block,
582 (is_global
583 ? buildsym_compunit->m_global_using_directives
584 : buildsym_compunit->m_local_using_directives),
585 &objfile->objfile_obstack);
586 if (is_global)
587 buildsym_compunit->m_global_using_directives = NULL;
588 else
589 buildsym_compunit->m_local_using_directives = NULL;
590
591 record_pending_block (objfile, block, opblock);
592
593 return block;
594 }
595
596 struct block *
597 finish_block (struct symbol *symbol,
598 struct pending **listhead,
599 struct pending_block *old_blocks,
600 const struct dynamic_prop *static_link,
601 CORE_ADDR start, CORE_ADDR end)
602 {
603 return finish_block_internal (symbol, listhead, old_blocks, static_link,
604 start, end, 0, 0);
605 }
606
607 /* Record BLOCK on the list of all blocks in the file. Put it after
608 OPBLOCK, or at the beginning if opblock is NULL. This puts the
609 block in the list after all its subblocks.
610
611 Allocate the pending block struct in the objfile_obstack to save
612 time. This wastes a little space. FIXME: Is it worth it? */
613
614 static void
615 record_pending_block (struct objfile *objfile, struct block *block,
616 struct pending_block *opblock)
617 {
618 struct pending_block *pblock;
619
620 if (pending_blocks == NULL)
621 obstack_init (&pending_block_obstack);
622
623 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
624 pblock->block = block;
625 if (opblock)
626 {
627 pblock->next = opblock->next;
628 opblock->next = pblock;
629 }
630 else
631 {
632 pblock->next = pending_blocks;
633 pending_blocks = pblock;
634 }
635 }
636
637
638 /* Record that the range of addresses from START to END_INCLUSIVE
639 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
640 addresses must be set already. You must apply this function to all
641 BLOCK's children before applying it to BLOCK.
642
643 If a call to this function complicates the picture beyond that
644 already provided by BLOCK_START and BLOCK_END, then we create an
645 address map for the block. */
646 void
647 record_block_range (struct block *block,
648 CORE_ADDR start, CORE_ADDR end_inclusive)
649 {
650 /* If this is any different from the range recorded in the block's
651 own BLOCK_START and BLOCK_END, then note that the address map has
652 become interesting. Note that even if this block doesn't have
653 any "interesting" ranges, some later block might, so we still
654 need to record this block in the addrmap. */
655 if (start != BLOCK_START (block)
656 || end_inclusive + 1 != BLOCK_END (block))
657 pending_addrmap_interesting = 1;
658
659 if (! pending_addrmap)
660 {
661 obstack_init (&pending_addrmap_obstack);
662 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
663 }
664
665 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
666 }
667
668 static struct blockvector *
669 make_blockvector (void)
670 {
671 struct objfile *objfile = buildsym_compunit->objfile;
672 struct pending_block *next;
673 struct blockvector *blockvector;
674 int i;
675
676 /* Count the length of the list of blocks. */
677
678 for (next = pending_blocks, i = 0; next; next = next->next, i++)
679 {;
680 }
681
682 blockvector = (struct blockvector *)
683 obstack_alloc (&objfile->objfile_obstack,
684 (sizeof (struct blockvector)
685 + (i - 1) * sizeof (struct block *)));
686
687 /* Copy the blocks into the blockvector. This is done in reverse
688 order, which happens to put the blocks into the proper order
689 (ascending starting address). finish_block has hair to insert
690 each block into the list after its subblocks in order to make
691 sure this is true. */
692
693 BLOCKVECTOR_NBLOCKS (blockvector) = i;
694 for (next = pending_blocks; next; next = next->next)
695 {
696 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
697 }
698
699 free_pending_blocks ();
700
701 /* If we needed an address map for this symtab, record it in the
702 blockvector. */
703 if (pending_addrmap && pending_addrmap_interesting)
704 BLOCKVECTOR_MAP (blockvector)
705 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
706 else
707 BLOCKVECTOR_MAP (blockvector) = 0;
708
709 /* Some compilers output blocks in the wrong order, but we depend on
710 their being in the right order so we can binary search. Check the
711 order and moan about it.
712 Note: Remember that the first two blocks are the global and static
713 blocks. We could special case that fact and begin checking at block 2.
714 To avoid making that assumption we do not. */
715 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
716 {
717 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
718 {
719 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
720 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
721 {
722 CORE_ADDR start
723 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
724
725 complaint (_("block at %s out of order"),
726 hex_string ((LONGEST) start));
727 }
728 }
729 }
730
731 return (blockvector);
732 }
733 \f
734 /* Start recording information about source code that came from an
735 included (or otherwise merged-in) source file with a different
736 name. NAME is the name of the file (cannot be NULL). */
737
738 void
739 start_subfile (const char *name)
740 {
741 const char *subfile_dirname;
742 struct subfile *subfile;
743
744 gdb_assert (buildsym_compunit != NULL);
745
746 subfile_dirname = buildsym_compunit->comp_dir.get ();
747
748 /* See if this subfile is already registered. */
749
750 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
751 {
752 char *subfile_name;
753
754 /* If NAME is an absolute path, and this subfile is not, then
755 attempt to create an absolute path to compare. */
756 if (IS_ABSOLUTE_PATH (name)
757 && !IS_ABSOLUTE_PATH (subfile->name)
758 && subfile_dirname != NULL)
759 subfile_name = concat (subfile_dirname, SLASH_STRING,
760 subfile->name, (char *) NULL);
761 else
762 subfile_name = subfile->name;
763
764 if (FILENAME_CMP (subfile_name, name) == 0)
765 {
766 buildsym_compunit->m_current_subfile = subfile;
767 if (subfile_name != subfile->name)
768 xfree (subfile_name);
769 return;
770 }
771 if (subfile_name != subfile->name)
772 xfree (subfile_name);
773 }
774
775 /* This subfile is not known. Add an entry for it. */
776
777 subfile = XNEW (struct subfile);
778 memset (subfile, 0, sizeof (struct subfile));
779 subfile->buildsym_compunit = buildsym_compunit;
780
781 subfile->next = buildsym_compunit->subfiles;
782 buildsym_compunit->subfiles = subfile;
783
784 buildsym_compunit->m_current_subfile = subfile;
785
786 subfile->name = xstrdup (name);
787
788 /* Initialize line-number recording for this subfile. */
789 subfile->line_vector = NULL;
790
791 /* Default the source language to whatever can be deduced from the
792 filename. If nothing can be deduced (such as for a C/C++ include
793 file with a ".h" extension), then inherit whatever language the
794 previous subfile had. This kludgery is necessary because there
795 is no standard way in some object formats to record the source
796 language. Also, when symtabs are allocated we try to deduce a
797 language then as well, but it is too late for us to use that
798 information while reading symbols, since symtabs aren't allocated
799 until after all the symbols have been processed for a given
800 source file. */
801
802 subfile->language = deduce_language_from_filename (subfile->name);
803 if (subfile->language == language_unknown
804 && subfile->next != NULL)
805 {
806 subfile->language = subfile->next->language;
807 }
808
809 /* If the filename of this subfile ends in .C, then change the
810 language of any pending subfiles from C to C++. We also accept
811 any other C++ suffixes accepted by deduce_language_from_filename. */
812 /* Likewise for f2c. */
813
814 if (subfile->name)
815 {
816 struct subfile *s;
817 enum language sublang = deduce_language_from_filename (subfile->name);
818
819 if (sublang == language_cplus || sublang == language_fortran)
820 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
821 if (s->language == language_c)
822 s->language = sublang;
823 }
824
825 /* And patch up this file if necessary. */
826 if (subfile->language == language_c
827 && subfile->next != NULL
828 && (subfile->next->language == language_cplus
829 || subfile->next->language == language_fortran))
830 {
831 subfile->language = subfile->next->language;
832 }
833 }
834
835 /* Delete the buildsym compunit. */
836
837 static void
838 free_buildsym_compunit (void)
839 {
840 if (buildsym_compunit == NULL)
841 return;
842 delete buildsym_compunit;
843 buildsym_compunit = NULL;
844 }
845
846 /* For stabs readers, the first N_SO symbol is assumed to be the
847 source file name, and the subfile struct is initialized using that
848 assumption. If another N_SO symbol is later seen, immediately
849 following the first one, then the first one is assumed to be the
850 directory name and the second one is really the source file name.
851
852 So we have to patch up the subfile struct by moving the old name
853 value to dirname and remembering the new name. Some sanity
854 checking is performed to ensure that the state of the subfile
855 struct is reasonable and that the old name we are assuming to be a
856 directory name actually is (by checking for a trailing '/'). */
857
858 void
859 patch_subfile_names (struct subfile *subfile, const char *name)
860 {
861 if (subfile != NULL
862 && buildsym_compunit->comp_dir == NULL
863 && subfile->name != NULL
864 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
865 {
866 buildsym_compunit->comp_dir.reset (subfile->name);
867 subfile->name = xstrdup (name);
868 set_last_source_file (name);
869
870 /* Default the source language to whatever can be deduced from
871 the filename. If nothing can be deduced (such as for a C/C++
872 include file with a ".h" extension), then inherit whatever
873 language the previous subfile had. This kludgery is
874 necessary because there is no standard way in some object
875 formats to record the source language. Also, when symtabs
876 are allocated we try to deduce a language then as well, but
877 it is too late for us to use that information while reading
878 symbols, since symtabs aren't allocated until after all the
879 symbols have been processed for a given source file. */
880
881 subfile->language = deduce_language_from_filename (subfile->name);
882 if (subfile->language == language_unknown
883 && subfile->next != NULL)
884 {
885 subfile->language = subfile->next->language;
886 }
887 }
888 }
889 \f
890 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
891 switching source files (different subfiles, as we call them) within
892 one object file, but using a stack rather than in an arbitrary
893 order. */
894
895 void
896 push_subfile ()
897 {
898 gdb_assert (buildsym_compunit != nullptr);
899 gdb_assert (buildsym_compunit->m_current_subfile != NULL);
900 gdb_assert (buildsym_compunit->m_current_subfile->name != NULL);
901 buildsym_compunit->m_subfile_stack.push_back
902 (buildsym_compunit->m_current_subfile->name);
903 }
904
905 const char *
906 pop_subfile ()
907 {
908 gdb_assert (buildsym_compunit != nullptr);
909 gdb_assert (!buildsym_compunit->m_subfile_stack.empty ());
910 const char *name = buildsym_compunit->m_subfile_stack.back ();
911 buildsym_compunit->m_subfile_stack.pop_back ();
912 return name;
913 }
914 \f
915 /* Add a linetable entry for line number LINE and address PC to the
916 line vector for SUBFILE. */
917
918 void
919 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
920 {
921 struct linetable_entry *e;
922
923 /* Ignore the dummy line number in libg.o */
924 if (line == 0xffff)
925 {
926 return;
927 }
928
929 /* Make sure line vector exists and is big enough. */
930 if (!subfile->line_vector)
931 {
932 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
933 subfile->line_vector = (struct linetable *)
934 xmalloc (sizeof (struct linetable)
935 + subfile->line_vector_length * sizeof (struct linetable_entry));
936 subfile->line_vector->nitems = 0;
937 buildsym_compunit->m_have_line_numbers = true;
938 }
939
940 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
941 {
942 subfile->line_vector_length *= 2;
943 subfile->line_vector = (struct linetable *)
944 xrealloc ((char *) subfile->line_vector,
945 (sizeof (struct linetable)
946 + (subfile->line_vector_length
947 * sizeof (struct linetable_entry))));
948 }
949
950 /* Normally, we treat lines as unsorted. But the end of sequence
951 marker is special. We sort line markers at the same PC by line
952 number, so end of sequence markers (which have line == 0) appear
953 first. This is right if the marker ends the previous function,
954 and there is no padding before the next function. But it is
955 wrong if the previous line was empty and we are now marking a
956 switch to a different subfile. We must leave the end of sequence
957 marker at the end of this group of lines, not sort the empty line
958 to after the marker. The easiest way to accomplish this is to
959 delete any empty lines from our table, if they are followed by
960 end of sequence markers. All we lose is the ability to set
961 breakpoints at some lines which contain no instructions
962 anyway. */
963 if (line == 0 && subfile->line_vector->nitems > 0)
964 {
965 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
966 while (subfile->line_vector->nitems > 0 && e->pc == pc)
967 {
968 e--;
969 subfile->line_vector->nitems--;
970 }
971 }
972
973 e = subfile->line_vector->item + subfile->line_vector->nitems++;
974 e->line = line;
975 e->pc = pc;
976 }
977
978 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
979
980 static int
981 compare_line_numbers (const void *ln1p, const void *ln2p)
982 {
983 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
984 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
985
986 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
987 Please keep it that way. */
988 if (ln1->pc < ln2->pc)
989 return -1;
990
991 if (ln1->pc > ln2->pc)
992 return 1;
993
994 /* If pc equal, sort by line. I'm not sure whether this is optimum
995 behavior (see comment at struct linetable in symtab.h). */
996 return ln1->line - ln2->line;
997 }
998 \f
999 /* See buildsym.h. */
1000
1001 struct compunit_symtab *
1002 buildsym_compunit_symtab (void)
1003 {
1004 gdb_assert (buildsym_compunit != NULL);
1005
1006 return buildsym_compunit->compunit_symtab;
1007 }
1008
1009 /* See buildsym.h. */
1010
1011 struct macro_table *
1012 get_macro_table (void)
1013 {
1014 struct objfile *objfile;
1015
1016 gdb_assert (buildsym_compunit != NULL);
1017 return buildsym_compunit->get_macro_table ();
1018 }
1019 \f
1020 /* Init state to prepare for building a symtab.
1021 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1022 can call start_symtab+end_symtab multiple times after one call to
1023 buildsym_init. */
1024
1025 static void
1026 prepare_for_building ()
1027 {
1028 local_symbols = NULL;
1029
1030 /* These should have been reset either by successful completion of building
1031 a symtab, or by the scoped_free_pendings destructor. */
1032 gdb_assert (file_symbols == NULL);
1033 gdb_assert (global_symbols == NULL);
1034 gdb_assert (pending_addrmap == NULL);
1035 gdb_assert (buildsym_compunit == nullptr);
1036 }
1037
1038 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1039 when a stabs symbol of type N_SO is seen, or when a DWARF
1040 TAG_compile_unit DIE is seen. It indicates the start of data for
1041 one original source file.
1042
1043 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1044 directory in which the file was compiled (or NULL if not known).
1045 START_ADDR is the lowest address of objects in the file (or 0 if
1046 not known). LANGUAGE is the language of the source file, or
1047 language_unknown if not known, in which case it'll be deduced from
1048 the filename. */
1049
1050 struct compunit_symtab *
1051 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1052 CORE_ADDR start_addr, enum language language)
1053 {
1054 prepare_for_building ();
1055
1056 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1057 language, start_addr);
1058
1059 /* Allocate the compunit symtab now. The caller needs it to allocate
1060 non-primary symtabs. It is also needed by get_macro_table. */
1061 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1062 name);
1063
1064 /* Build the subfile for NAME (the main source file) so that we can record
1065 a pointer to it for later.
1066 IMPORTANT: Do not allocate a struct symtab for NAME here.
1067 It can happen that the debug info provides a different path to NAME than
1068 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1069 that only works if the main_subfile doesn't have a symtab yet. */
1070 start_subfile (name);
1071 /* Save this so that we don't have to go looking for it at the end
1072 of the subfiles list. */
1073 buildsym_compunit->main_subfile = buildsym_compunit->m_current_subfile;
1074
1075 return buildsym_compunit->compunit_symtab;
1076 }
1077
1078 /* Restart compilation for a symtab.
1079 CUST is the result of end_expandable_symtab.
1080 NAME, START_ADDR are the source file we are resuming with.
1081
1082 This is used when a symtab is built from multiple sources.
1083 The symtab is first built with start_symtab/end_expandable_symtab
1084 and then for each additional piece call restart_symtab/augment_*_symtab.
1085 Note: At the moment there is only augment_type_symtab. */
1086
1087 void
1088 restart_symtab (struct compunit_symtab *cust,
1089 const char *name, CORE_ADDR start_addr)
1090 {
1091 prepare_for_building ();
1092
1093 buildsym_compunit
1094 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1095 name,
1096 COMPUNIT_DIRNAME (cust),
1097 compunit_language (cust),
1098 start_addr);
1099 buildsym_compunit->compunit_symtab = cust;
1100 }
1101
1102 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1103 matches the main source file's basename. If there is only one, and
1104 if the main source file doesn't have any symbol or line number
1105 information, then copy this file's symtab and line_vector to the
1106 main source file's subfile and discard the other subfile. This can
1107 happen because of a compiler bug or from the user playing games
1108 with #line or from things like a distributed build system that
1109 manipulates the debug info. This can also happen from an innocent
1110 symlink in the paths, we don't canonicalize paths here. */
1111
1112 static void
1113 watch_main_source_file_lossage (void)
1114 {
1115 struct subfile *mainsub, *subfile;
1116
1117 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1118 end_symtab, it can return NULL so there may not be a main subfile. */
1119 if (buildsym_compunit == NULL)
1120 return;
1121
1122 /* Get the main source file. */
1123 mainsub = buildsym_compunit->main_subfile;
1124
1125 /* If the main source file doesn't have any line number or symbol
1126 info, look for an alias in another subfile. */
1127
1128 if (mainsub->line_vector == NULL
1129 && mainsub->symtab == NULL)
1130 {
1131 const char *mainbase = lbasename (mainsub->name);
1132 int nr_matches = 0;
1133 struct subfile *prevsub;
1134 struct subfile *mainsub_alias = NULL;
1135 struct subfile *prev_mainsub_alias = NULL;
1136
1137 prevsub = NULL;
1138 for (subfile = buildsym_compunit->subfiles;
1139 subfile != NULL;
1140 subfile = subfile->next)
1141 {
1142 if (subfile == mainsub)
1143 continue;
1144 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1145 {
1146 ++nr_matches;
1147 mainsub_alias = subfile;
1148 prev_mainsub_alias = prevsub;
1149 }
1150 prevsub = subfile;
1151 }
1152
1153 if (nr_matches == 1)
1154 {
1155 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1156
1157 /* Found a match for the main source file.
1158 Copy its line_vector and symtab to the main subfile
1159 and then discard it. */
1160
1161 mainsub->line_vector = mainsub_alias->line_vector;
1162 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1163 mainsub->symtab = mainsub_alias->symtab;
1164
1165 if (prev_mainsub_alias == NULL)
1166 buildsym_compunit->subfiles = mainsub_alias->next;
1167 else
1168 prev_mainsub_alias->next = mainsub_alias->next;
1169 xfree (mainsub_alias->name);
1170 xfree (mainsub_alias);
1171 }
1172 }
1173 }
1174
1175 /* Reset state after a successful building of a symtab.
1176 This exists because dbxread.c and xcoffread.c can call
1177 start_symtab+end_symtab multiple times after one call to buildsym_init,
1178 and before the scoped_free_pendings destructor is called.
1179 We keep the free_pendings list around for dbx/xcoff sake. */
1180
1181 static void
1182 reset_symtab_globals (void)
1183 {
1184 local_symbols = NULL;
1185 file_symbols = NULL;
1186 global_symbols = NULL;
1187
1188 if (pending_addrmap)
1189 obstack_free (&pending_addrmap_obstack, NULL);
1190 pending_addrmap = NULL;
1191
1192 free_buildsym_compunit ();
1193 }
1194
1195 /* Implementation of the first part of end_symtab. It allows modifying
1196 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1197 If the returned value is NULL there is no blockvector created for
1198 this symtab (you still must call end_symtab_from_static_block).
1199
1200 END_ADDR is the same as for end_symtab: the address of the end of the
1201 file's text.
1202
1203 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1204 expandable.
1205
1206 If REQUIRED is non-zero, then a symtab is created even if it does
1207 not contain any symbols. */
1208
1209 struct block *
1210 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1211 {
1212 struct objfile *objfile = buildsym_compunit->objfile;
1213
1214 /* Finish the lexical context of the last function in the file; pop
1215 the context stack. */
1216
1217 if (!buildsym_compunit->m_context_stack.empty ())
1218 {
1219 struct context_stack cstk = pop_context ();
1220
1221 /* Make a block for the local symbols within. */
1222 finish_block (cstk.name, &local_symbols, cstk.old_blocks, NULL,
1223 cstk.start_addr, end_addr);
1224
1225 if (!buildsym_compunit->m_context_stack.empty ())
1226 {
1227 /* This is said to happen with SCO. The old coffread.c
1228 code simply emptied the context stack, so we do the
1229 same. FIXME: Find out why it is happening. This is not
1230 believed to happen in most cases (even for coffread.c);
1231 it used to be an abort(). */
1232 complaint (_("Context stack not empty in end_symtab"));
1233 buildsym_compunit->m_context_stack.clear ();
1234 }
1235 }
1236
1237 /* Reordered executables may have out of order pending blocks; if
1238 OBJF_REORDERED is true, then sort the pending blocks. */
1239
1240 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1241 {
1242 struct pending_block *pb;
1243
1244 std::vector<block *> barray;
1245
1246 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1247 barray.push_back (pb->block);
1248
1249 /* Sort blocks by start address in descending order. Blocks with the
1250 same start address must remain in the original order to preserve
1251 inline function caller/callee relationships. */
1252 std::stable_sort (barray.begin (), barray.end (),
1253 [] (const block *a, const block *b)
1254 {
1255 return BLOCK_START (a) > BLOCK_START (b);
1256 });
1257
1258 int i = 0;
1259 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1260 pb->block = barray[i++];
1261 }
1262
1263 /* Cleanup any undefined types that have been left hanging around
1264 (this needs to be done before the finish_blocks so that
1265 file_symbols is still good).
1266
1267 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1268 specific, but harmless for other symbol readers, since on gdb
1269 startup or when finished reading stabs, the state is set so these
1270 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1271 we make this cleaner? */
1272
1273 cleanup_undefined_stabs_types (objfile);
1274 finish_global_stabs (objfile);
1275
1276 if (!required
1277 && pending_blocks == NULL
1278 && file_symbols == NULL
1279 && global_symbols == NULL
1280 && !buildsym_compunit->m_have_line_numbers
1281 && buildsym_compunit->m_pending_macros == NULL
1282 && buildsym_compunit->m_global_using_directives == NULL)
1283 {
1284 /* Ignore symtabs that have no functions with real debugging info. */
1285 return NULL;
1286 }
1287 else
1288 {
1289 /* Define the STATIC_BLOCK. */
1290 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1291 buildsym_compunit->m_last_source_start_addr,
1292 end_addr, 0, expandable);
1293 }
1294 }
1295
1296 /* Subroutine of end_symtab_from_static_block to simplify it.
1297 Handle the "have blockvector" case.
1298 See end_symtab_from_static_block for a description of the arguments. */
1299
1300 static struct compunit_symtab *
1301 end_symtab_with_blockvector (struct block *static_block,
1302 int section, int expandable)
1303 {
1304 struct objfile *objfile = buildsym_compunit->objfile;
1305 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1306 struct symtab *symtab;
1307 struct blockvector *blockvector;
1308 struct subfile *subfile;
1309 CORE_ADDR end_addr;
1310
1311 gdb_assert (static_block != NULL);
1312 gdb_assert (buildsym_compunit != NULL);
1313 gdb_assert (buildsym_compunit->subfiles != NULL);
1314
1315 end_addr = BLOCK_END (static_block);
1316
1317 /* Create the GLOBAL_BLOCK and build the blockvector. */
1318 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1319 buildsym_compunit->m_last_source_start_addr, end_addr,
1320 1, expandable);
1321 blockvector = make_blockvector ();
1322
1323 /* Read the line table if it has to be read separately.
1324 This is only used by xcoffread.c. */
1325 if (objfile->sf->sym_read_linetable != NULL)
1326 objfile->sf->sym_read_linetable (objfile);
1327
1328 /* Handle the case where the debug info specifies a different path
1329 for the main source file. It can cause us to lose track of its
1330 line number information. */
1331 watch_main_source_file_lossage ();
1332
1333 /* Now create the symtab objects proper, if not already done,
1334 one for each subfile. */
1335
1336 for (subfile = buildsym_compunit->subfiles;
1337 subfile != NULL;
1338 subfile = subfile->next)
1339 {
1340 int linetablesize = 0;
1341
1342 if (subfile->line_vector)
1343 {
1344 linetablesize = sizeof (struct linetable) +
1345 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1346
1347 /* Like the pending blocks, the line table may be
1348 scrambled in reordered executables. Sort it if
1349 OBJF_REORDERED is true. */
1350 if (objfile->flags & OBJF_REORDERED)
1351 qsort (subfile->line_vector->item,
1352 subfile->line_vector->nitems,
1353 sizeof (struct linetable_entry), compare_line_numbers);
1354 }
1355
1356 /* Allocate a symbol table if necessary. */
1357 if (subfile->symtab == NULL)
1358 subfile->symtab = allocate_symtab (cu, subfile->name);
1359 symtab = subfile->symtab;
1360
1361 /* Fill in its components. */
1362
1363 if (subfile->line_vector)
1364 {
1365 /* Reallocate the line table on the symbol obstack. */
1366 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1367 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1368 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1369 linetablesize);
1370 }
1371 else
1372 {
1373 SYMTAB_LINETABLE (symtab) = NULL;
1374 }
1375
1376 /* Use whatever language we have been using for this
1377 subfile, not the one that was deduced in allocate_symtab
1378 from the filename. We already did our own deducing when
1379 we created the subfile, and we may have altered our
1380 opinion of what language it is from things we found in
1381 the symbols. */
1382 symtab->language = subfile->language;
1383 }
1384
1385 /* Make sure the symtab of main_subfile is the first in its list. */
1386 {
1387 struct symtab *main_symtab, *prev_symtab;
1388
1389 main_symtab = buildsym_compunit->main_subfile->symtab;
1390 prev_symtab = NULL;
1391 ALL_COMPUNIT_FILETABS (cu, symtab)
1392 {
1393 if (symtab == main_symtab)
1394 {
1395 if (prev_symtab != NULL)
1396 {
1397 prev_symtab->next = main_symtab->next;
1398 main_symtab->next = COMPUNIT_FILETABS (cu);
1399 COMPUNIT_FILETABS (cu) = main_symtab;
1400 }
1401 break;
1402 }
1403 prev_symtab = symtab;
1404 }
1405 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1406 }
1407
1408 /* Fill out the compunit symtab. */
1409
1410 if (buildsym_compunit->comp_dir != NULL)
1411 {
1412 /* Reallocate the dirname on the symbol obstack. */
1413 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1414 COMPUNIT_DIRNAME (cu)
1415 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1416 comp_dir, strlen (comp_dir));
1417 }
1418
1419 /* Save the debug format string (if any) in the symtab. */
1420 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1421
1422 /* Similarly for the producer. */
1423 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1424
1425 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1426 {
1427 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1428
1429 set_block_compunit_symtab (b, cu);
1430 }
1431
1432 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1433
1434 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1435
1436 /* Default any symbols without a specified symtab to the primary symtab. */
1437 {
1438 int block_i;
1439
1440 /* The main source file's symtab. */
1441 symtab = COMPUNIT_FILETABS (cu);
1442
1443 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1444 {
1445 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1446 struct symbol *sym;
1447 struct dict_iterator iter;
1448
1449 /* Inlined functions may have symbols not in the global or
1450 static symbol lists. */
1451 if (BLOCK_FUNCTION (block) != NULL)
1452 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1453 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1454
1455 /* Note that we only want to fix up symbols from the local
1456 blocks, not blocks coming from included symtabs. That is why
1457 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1458 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1459 if (symbol_symtab (sym) == NULL)
1460 symbol_set_symtab (sym, symtab);
1461 }
1462 }
1463
1464 add_compunit_symtab_to_objfile (cu);
1465
1466 return cu;
1467 }
1468
1469 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1470 as value returned by end_symtab_get_static_block.
1471
1472 SECTION is the same as for end_symtab: the section number
1473 (in objfile->section_offsets) of the blockvector and linetable.
1474
1475 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1476 expandable. */
1477
1478 struct compunit_symtab *
1479 end_symtab_from_static_block (struct block *static_block,
1480 int section, int expandable)
1481 {
1482 struct compunit_symtab *cu;
1483
1484 if (static_block == NULL)
1485 {
1486 /* Handle the "no blockvector" case.
1487 When this happens there is nothing to record, so there's nothing
1488 to do: memory will be freed up later.
1489
1490 Note: We won't be adding a compunit to the objfile's list of
1491 compunits, so there's nothing to unchain. However, since each symtab
1492 is added to the objfile's obstack we can't free that space.
1493 We could do better, but this is believed to be a sufficiently rare
1494 event. */
1495 cu = NULL;
1496 }
1497 else
1498 cu = end_symtab_with_blockvector (static_block, section, expandable);
1499
1500 reset_symtab_globals ();
1501
1502 return cu;
1503 }
1504
1505 /* Finish the symbol definitions for one main source file, close off
1506 all the lexical contexts for that file (creating struct block's for
1507 them), then make the struct symtab for that file and put it in the
1508 list of all such.
1509
1510 END_ADDR is the address of the end of the file's text. SECTION is
1511 the section number (in objfile->section_offsets) of the blockvector
1512 and linetable.
1513
1514 Note that it is possible for end_symtab() to return NULL. In
1515 particular, for the DWARF case at least, it will return NULL when
1516 it finds a compilation unit that has exactly one DIE, a
1517 TAG_compile_unit DIE. This can happen when we link in an object
1518 file that was compiled from an empty source file. Returning NULL
1519 is probably not the correct thing to do, because then gdb will
1520 never know about this empty file (FIXME).
1521
1522 If you need to modify STATIC_BLOCK before it is finalized you should
1523 call end_symtab_get_static_block and end_symtab_from_static_block
1524 yourself. */
1525
1526 struct compunit_symtab *
1527 end_symtab (CORE_ADDR end_addr, int section)
1528 {
1529 struct block *static_block;
1530
1531 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1532 return end_symtab_from_static_block (static_block, section, 0);
1533 }
1534
1535 /* Same as end_symtab except create a symtab that can be later added to. */
1536
1537 struct compunit_symtab *
1538 end_expandable_symtab (CORE_ADDR end_addr, int section)
1539 {
1540 struct block *static_block;
1541
1542 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1543 return end_symtab_from_static_block (static_block, section, 1);
1544 }
1545
1546 /* Subroutine of augment_type_symtab to simplify it.
1547 Attach the main source file's symtab to all symbols in PENDING_LIST that
1548 don't have one. */
1549
1550 static void
1551 set_missing_symtab (struct pending *pending_list,
1552 struct compunit_symtab *cu)
1553 {
1554 struct pending *pending;
1555 int i;
1556
1557 for (pending = pending_list; pending != NULL; pending = pending->next)
1558 {
1559 for (i = 0; i < pending->nsyms; ++i)
1560 {
1561 if (symbol_symtab (pending->symbol[i]) == NULL)
1562 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1563 }
1564 }
1565 }
1566
1567 /* Same as end_symtab, but for the case where we're adding more symbols
1568 to an existing symtab that is known to contain only type information.
1569 This is the case for DWARF4 Type Units. */
1570
1571 void
1572 augment_type_symtab (void)
1573 {
1574 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1575 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1576
1577 if (!buildsym_compunit->m_context_stack.empty ())
1578 complaint (_("Context stack not empty in augment_type_symtab"));
1579 if (pending_blocks != NULL)
1580 complaint (_("Blocks in a type symtab"));
1581 if (buildsym_compunit->m_pending_macros != NULL)
1582 complaint (_("Macro in a type symtab"));
1583 if (buildsym_compunit->m_have_line_numbers)
1584 complaint (_("Line numbers recorded in a type symtab"));
1585
1586 if (file_symbols != NULL)
1587 {
1588 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1589
1590 /* First mark any symbols without a specified symtab as belonging
1591 to the primary symtab. */
1592 set_missing_symtab (file_symbols, cust);
1593
1594 dict_add_pending (BLOCK_DICT (block), file_symbols);
1595 }
1596
1597 if (global_symbols != NULL)
1598 {
1599 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1600
1601 /* First mark any symbols without a specified symtab as belonging
1602 to the primary symtab. */
1603 set_missing_symtab (global_symbols, cust);
1604
1605 dict_add_pending (BLOCK_DICT (block), global_symbols);
1606 }
1607
1608 reset_symtab_globals ();
1609 }
1610
1611 /* Push a context block. Args are an identifying nesting level
1612 (checkable when you pop it), and the starting PC address of this
1613 context. */
1614
1615 struct context_stack *
1616 push_context (int desc, CORE_ADDR valu)
1617 {
1618 gdb_assert (buildsym_compunit != nullptr);
1619
1620 buildsym_compunit->m_context_stack.emplace_back ();
1621 struct context_stack *newobj = &buildsym_compunit->m_context_stack.back ();
1622
1623 newobj->depth = desc;
1624 newobj->locals = local_symbols;
1625 newobj->old_blocks = pending_blocks;
1626 newobj->start_addr = valu;
1627 newobj->local_using_directives
1628 = buildsym_compunit->m_local_using_directives;
1629 newobj->name = NULL;
1630
1631 local_symbols = NULL;
1632 buildsym_compunit->m_local_using_directives = NULL;
1633
1634 return newobj;
1635 }
1636
1637 /* Pop a context block. Returns the address of the context block just
1638 popped. */
1639
1640 struct context_stack
1641 pop_context ()
1642 {
1643 gdb_assert (buildsym_compunit != nullptr);
1644 gdb_assert (!buildsym_compunit->m_context_stack.empty ());
1645 struct context_stack result = buildsym_compunit->m_context_stack.back ();
1646 buildsym_compunit->m_context_stack.pop_back ();
1647 return result;
1648 }
1649
1650 \f
1651
1652 void
1653 record_debugformat (const char *format)
1654 {
1655 buildsym_compunit->debugformat = format;
1656 }
1657
1658 void
1659 record_producer (const char *producer)
1660 {
1661 buildsym_compunit->producer = producer;
1662 }
1663
1664 \f
1665
1666 /* See buildsym.h. */
1667
1668 void
1669 set_last_source_file (const char *name)
1670 {
1671 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1672 if (buildsym_compunit != nullptr)
1673 buildsym_compunit->set_last_source_file (name);
1674 }
1675
1676 /* See buildsym.h. */
1677
1678 const char *
1679 get_last_source_file (void)
1680 {
1681 if (buildsym_compunit == nullptr)
1682 return nullptr;
1683 return buildsym_compunit->m_last_source_file.get ();
1684 }
1685
1686 /* See buildsym.h. */
1687
1688 void
1689 set_last_source_start_addr (CORE_ADDR addr)
1690 {
1691 gdb_assert (buildsym_compunit != nullptr);
1692 buildsym_compunit->m_last_source_start_addr = addr;
1693 }
1694
1695 /* See buildsym.h. */
1696
1697 CORE_ADDR
1698 get_last_source_start_addr ()
1699 {
1700 gdb_assert (buildsym_compunit != nullptr);
1701 return buildsym_compunit->m_last_source_start_addr;
1702 }
1703
1704 /* See buildsym.h. */
1705
1706 struct using_direct **
1707 get_local_using_directives ()
1708 {
1709 gdb_assert (buildsym_compunit != nullptr);
1710 return &buildsym_compunit->m_local_using_directives;
1711 }
1712
1713 /* See buildsym.h. */
1714
1715 void
1716 set_local_using_directives (struct using_direct *new_local)
1717 {
1718 gdb_assert (buildsym_compunit != nullptr);
1719 buildsym_compunit->m_local_using_directives = new_local;
1720 }
1721
1722 /* See buildsym.h. */
1723
1724 struct using_direct **
1725 get_global_using_directives ()
1726 {
1727 gdb_assert (buildsym_compunit != nullptr);
1728 return &buildsym_compunit->m_global_using_directives;
1729 }
1730
1731 /* See buildsym.h. */
1732
1733 bool
1734 outermost_context_p ()
1735 {
1736 gdb_assert (buildsym_compunit != nullptr);
1737 return buildsym_compunit->m_context_stack.empty ();
1738 }
1739
1740 /* See buildsym.h. */
1741
1742 struct context_stack *
1743 get_current_context_stack ()
1744 {
1745 gdb_assert (buildsym_compunit != nullptr);
1746 if (buildsym_compunit->m_context_stack.empty ())
1747 return nullptr;
1748 return &buildsym_compunit->m_context_stack.back ();
1749 }
1750
1751 /* See buildsym.h. */
1752
1753 int
1754 get_context_stack_depth ()
1755 {
1756 gdb_assert (buildsym_compunit != nullptr);
1757 return buildsym_compunit->m_context_stack.size ();
1758 }
1759
1760 /* See buildsym.h. */
1761
1762 struct subfile *
1763 get_current_subfile ()
1764 {
1765 gdb_assert (buildsym_compunit != nullptr);
1766 return buildsym_compunit->m_current_subfile;
1767 }
1768
1769 \f
1770
1771 /* Initialize anything that needs initializing when starting to read a
1772 fresh piece of a symbol file, e.g. reading in the stuff
1773 corresponding to a psymtab. */
1774
1775 void
1776 buildsym_init ()
1777 {
1778 pending_addrmap_interesting = 0;
1779
1780 /* Ensure the scoped_free_pendings destructor was called after
1781 the last time. */
1782 gdb_assert (free_pendings == NULL);
1783 gdb_assert (pending_blocks == NULL);
1784 gdb_assert (file_symbols == NULL);
1785 gdb_assert (global_symbols == NULL);
1786 gdb_assert (pending_addrmap == NULL);
1787 gdb_assert (buildsym_compunit == NULL);
1788 }
This page took 0.131229 seconds and 4 git commands to generate.