Remove merge_symbol_lists
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "filenames.h" /* For DOSish file names. */
78 #include "macrotab.h"
79 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
80 #include "block.h"
81 #include "cp-support.h"
82 #include "dictionary.h"
83 #include "addrmap.h"
84 #include <algorithm>
85
86 /* Ask buildsym.h to define the vars it normally declares `extern'. */
87 #define EXTERN
88 /**/
89 #include "buildsym.h" /* Our own declarations. */
90 #undef EXTERN
91
92 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
93 questionable--see comment where we call them). */
94
95 #include "stabsread.h"
96
97 /* Buildsym's counterpart to struct compunit_symtab.
98 TODO(dje): Move all related global state into here. */
99
100 struct buildsym_compunit
101 {
102 /* Start recording information about a primary source file (IOW, not an
103 included source file).
104 COMP_DIR is the directory in which the compilation unit was compiled
105 (or NULL if not known). */
106
107 buildsym_compunit (struct objfile *objfile_, const char *name,
108 const char *comp_dir_, enum language language_,
109 CORE_ADDR last_addr)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_),
114 m_last_source_start_addr (last_addr)
115 {
116 }
117
118 ~buildsym_compunit ()
119 {
120 struct subfile *subfile, *nextsub;
121
122 if (m_pending_macros != nullptr)
123 free_macro_table (m_pending_macros);
124
125 for (subfile = subfiles;
126 subfile != NULL;
127 subfile = nextsub)
128 {
129 nextsub = subfile->next;
130 xfree (subfile->name);
131 xfree (subfile->line_vector);
132 xfree (subfile);
133 }
134 }
135
136 void set_last_source_file (const char *name)
137 {
138 char *new_name = name == NULL ? NULL : xstrdup (name);
139 m_last_source_file.reset (new_name);
140 }
141
142 struct macro_table *get_macro_table ()
143 {
144 if (m_pending_macros == nullptr)
145 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
146 objfile->per_bfd->macro_cache,
147 compunit_symtab);
148 return m_pending_macros;
149 }
150
151 struct macro_table *release_macros ()
152 {
153 struct macro_table *result = m_pending_macros;
154 m_pending_macros = nullptr;
155 return result;
156 }
157
158 /* The objfile we're reading debug info from. */
159 struct objfile *objfile;
160
161 /* List of subfiles (source files).
162 Files are added to the front of the list.
163 This is important mostly for the language determination hacks we use,
164 which iterate over previously added files. */
165 struct subfile *subfiles = nullptr;
166
167 /* The subfile of the main source file. */
168 struct subfile *main_subfile = nullptr;
169
170 /* Name of source file whose symbol data we are now processing. This
171 comes from a symbol of type N_SO for stabs. For DWARF it comes
172 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
173 gdb::unique_xmalloc_ptr<char> m_last_source_file;
174
175 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
176 gdb::unique_xmalloc_ptr<char> comp_dir;
177
178 /* Space for this is not malloc'd, and is assumed to have at least
179 the same lifetime as objfile. */
180 const char *producer = nullptr;
181
182 /* Space for this is not malloc'd, and is assumed to have at least
183 the same lifetime as objfile. */
184 const char *debugformat = nullptr;
185
186 /* The compunit we are building. */
187 struct compunit_symtab *compunit_symtab = nullptr;
188
189 /* Language of this compunit_symtab. */
190 enum language language;
191
192 /* The macro table for the compilation unit whose symbols we're
193 currently reading. */
194 struct macro_table *m_pending_macros = nullptr;
195
196 /* True if symtab has line number info. This prevents an otherwise
197 empty symtab from being tossed. */
198 bool m_have_line_numbers = false;
199
200 /* Core address of start of text of current source file. This too
201 comes from the N_SO symbol. For Dwarf it typically comes from the
202 DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
203 CORE_ADDR m_last_source_start_addr;
204 };
205
206 /* The work-in-progress of the compunit we are building.
207 This is created first, before any subfiles by start_symtab. */
208
209 static struct buildsym_compunit *buildsym_compunit;
210
211 /* List of free `struct pending' structures for reuse. */
212
213 static struct pending *free_pendings;
214
215 /* The mutable address map for the compilation unit whose symbols
216 we're currently reading. The symtabs' shared blockvector will
217 point to a fixed copy of this. */
218 static struct addrmap *pending_addrmap;
219
220 /* The obstack on which we allocate pending_addrmap.
221 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
222 initialized (and holds pending_addrmap). */
223 static struct obstack pending_addrmap_obstack;
224
225 /* Non-zero if we recorded any ranges in the addrmap that are
226 different from those in the blockvector already. We set this to
227 zero when we start processing a symfile, and if it's still zero at
228 the end, then we just toss the addrmap. */
229 static int pending_addrmap_interesting;
230
231 /* An obstack used for allocating pending blocks. */
232
233 static struct obstack pending_block_obstack;
234
235 /* List of blocks already made (lexical contexts already closed).
236 This is used at the end to make the blockvector. */
237
238 struct pending_block
239 {
240 struct pending_block *next;
241 struct block *block;
242 };
243
244 /* Pointer to the head of a linked list of symbol blocks which have
245 already been finalized (lexical contexts already closed) and which
246 are just waiting to be built into a blockvector when finalizing the
247 associated symtab. */
248
249 static struct pending_block *pending_blocks;
250
251 struct subfile_stack
252 {
253 struct subfile_stack *next;
254 char *name;
255 };
256
257 static struct subfile_stack *subfile_stack;
258
259 /* Currently allocated size of context stack. */
260
261 static int context_stack_size;
262
263 static void free_buildsym_compunit (void);
264
265 static int compare_line_numbers (const void *ln1p, const void *ln2p);
266
267 static void record_pending_block (struct objfile *objfile,
268 struct block *block,
269 struct pending_block *opblock);
270
271 /* Initial sizes of data structures. These are realloc'd larger if
272 needed, and realloc'd down to the size actually used, when
273 completed. */
274
275 #define INITIAL_CONTEXT_STACK_SIZE 10
276 #define INITIAL_LINE_VECTOR_LENGTH 1000
277 \f
278
279 /* Maintain the lists of symbols and blocks. */
280
281 /* Add a symbol to one of the lists of symbols. */
282
283 void
284 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
285 {
286 struct pending *link;
287
288 /* If this is an alias for another symbol, don't add it. */
289 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
290 return;
291
292 /* We keep PENDINGSIZE symbols in each link of the list. If we
293 don't have a link with room in it, add a new link. */
294 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
295 {
296 if (free_pendings)
297 {
298 link = free_pendings;
299 free_pendings = link->next;
300 }
301 else
302 {
303 link = XNEW (struct pending);
304 }
305
306 link->next = *listhead;
307 *listhead = link;
308 link->nsyms = 0;
309 }
310
311 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
312 }
313
314 /* Find a symbol named NAME on a LIST. NAME need not be
315 '\0'-terminated; LENGTH is the length of the name. */
316
317 struct symbol *
318 find_symbol_in_list (struct pending *list, char *name, int length)
319 {
320 int j;
321 const char *pp;
322
323 while (list != NULL)
324 {
325 for (j = list->nsyms; --j >= 0;)
326 {
327 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
328 if (*pp == *name && strncmp (pp, name, length) == 0
329 && pp[length] == '\0')
330 {
331 return (list->symbol[j]);
332 }
333 }
334 list = list->next;
335 }
336 return (NULL);
337 }
338
339 /* At end of reading syms, or in case of quit, ensure everything
340 associated with building symtabs is freed.
341
342 N.B. This is *not* intended to be used when building psymtabs. Some debug
343 info readers call this anyway, which is harmless if confusing. */
344
345 scoped_free_pendings::~scoped_free_pendings ()
346 {
347 struct pending *next, *next1;
348
349 for (next = free_pendings; next; next = next1)
350 {
351 next1 = next->next;
352 xfree ((void *) next);
353 }
354 free_pendings = NULL;
355
356 free_pending_blocks ();
357
358 for (next = file_symbols; next != NULL; next = next1)
359 {
360 next1 = next->next;
361 xfree ((void *) next);
362 }
363 file_symbols = NULL;
364
365 for (next = global_symbols; next != NULL; next = next1)
366 {
367 next1 = next->next;
368 xfree ((void *) next);
369 }
370 global_symbols = NULL;
371
372 if (pending_addrmap)
373 obstack_free (&pending_addrmap_obstack, NULL);
374 pending_addrmap = NULL;
375
376 free_buildsym_compunit ();
377 }
378
379 /* This function is called to discard any pending blocks. */
380
381 void
382 free_pending_blocks (void)
383 {
384 if (pending_blocks != NULL)
385 {
386 obstack_free (&pending_block_obstack, NULL);
387 pending_blocks = NULL;
388 }
389 }
390
391 /* Take one of the lists of symbols and make a block from it. Keep
392 the order the symbols have in the list (reversed from the input
393 file). Put the block on the list of pending blocks. */
394
395 static struct block *
396 finish_block_internal (struct symbol *symbol,
397 struct pending **listhead,
398 struct pending_block *old_blocks,
399 const struct dynamic_prop *static_link,
400 CORE_ADDR start, CORE_ADDR end,
401 int is_global, int expandable)
402 {
403 struct objfile *objfile = buildsym_compunit->objfile;
404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
405 struct pending *next, *next1;
406 struct block *block;
407 struct pending_block *pblock;
408 struct pending_block *opblock;
409
410 block = (is_global
411 ? allocate_global_block (&objfile->objfile_obstack)
412 : allocate_block (&objfile->objfile_obstack));
413
414 if (symbol)
415 {
416 BLOCK_DICT (block)
417 = dict_create_linear (&objfile->objfile_obstack,
418 buildsym_compunit->language, *listhead);
419 }
420 else
421 {
422 if (expandable)
423 {
424 BLOCK_DICT (block)
425 = dict_create_hashed_expandable (buildsym_compunit->language);
426 dict_add_pending (BLOCK_DICT (block), *listhead);
427 }
428 else
429 {
430 BLOCK_DICT (block) =
431 dict_create_hashed (&objfile->objfile_obstack,
432 buildsym_compunit->language, *listhead);
433 }
434 }
435
436 BLOCK_START (block) = start;
437 BLOCK_END (block) = end;
438
439 /* Put the block in as the value of the symbol that names it. */
440
441 if (symbol)
442 {
443 struct type *ftype = SYMBOL_TYPE (symbol);
444 struct dict_iterator iter;
445 SYMBOL_BLOCK_VALUE (symbol) = block;
446 BLOCK_FUNCTION (block) = symbol;
447
448 if (TYPE_NFIELDS (ftype) <= 0)
449 {
450 /* No parameter type information is recorded with the
451 function's type. Set that from the type of the
452 parameter symbols. */
453 int nparams = 0, iparams;
454 struct symbol *sym;
455
456 /* Here we want to directly access the dictionary, because
457 we haven't fully initialized the block yet. */
458 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
459 {
460 if (SYMBOL_IS_ARGUMENT (sym))
461 nparams++;
462 }
463 if (nparams > 0)
464 {
465 TYPE_NFIELDS (ftype) = nparams;
466 TYPE_FIELDS (ftype) = (struct field *)
467 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
468
469 iparams = 0;
470 /* Here we want to directly access the dictionary, because
471 we haven't fully initialized the block yet. */
472 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
473 {
474 if (iparams == nparams)
475 break;
476
477 if (SYMBOL_IS_ARGUMENT (sym))
478 {
479 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
480 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
481 iparams++;
482 }
483 }
484 }
485 }
486 }
487 else
488 {
489 BLOCK_FUNCTION (block) = NULL;
490 }
491
492 if (static_link != NULL)
493 objfile_register_static_link (objfile, block, static_link);
494
495 /* Now "free" the links of the list, and empty the list. */
496
497 for (next = *listhead; next; next = next1)
498 {
499 next1 = next->next;
500 next->next = free_pendings;
501 free_pendings = next;
502 }
503 *listhead = NULL;
504
505 /* Check to be sure that the blocks have an end address that is
506 greater than starting address. */
507
508 if (BLOCK_END (block) < BLOCK_START (block))
509 {
510 if (symbol)
511 {
512 complaint (_("block end address less than block "
513 "start address in %s (patched it)"),
514 SYMBOL_PRINT_NAME (symbol));
515 }
516 else
517 {
518 complaint (_("block end address %s less than block "
519 "start address %s (patched it)"),
520 paddress (gdbarch, BLOCK_END (block)),
521 paddress (gdbarch, BLOCK_START (block)));
522 }
523 /* Better than nothing. */
524 BLOCK_END (block) = BLOCK_START (block);
525 }
526
527 /* Install this block as the superblock of all blocks made since the
528 start of this scope that don't have superblocks yet. */
529
530 opblock = NULL;
531 for (pblock = pending_blocks;
532 pblock && pblock != old_blocks;
533 pblock = pblock->next)
534 {
535 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
536 {
537 /* Check to be sure the blocks are nested as we receive
538 them. If the compiler/assembler/linker work, this just
539 burns a small amount of time.
540
541 Skip blocks which correspond to a function; they're not
542 physically nested inside this other blocks, only
543 lexically nested. */
544 if (BLOCK_FUNCTION (pblock->block) == NULL
545 && (BLOCK_START (pblock->block) < BLOCK_START (block)
546 || BLOCK_END (pblock->block) > BLOCK_END (block)))
547 {
548 if (symbol)
549 {
550 complaint (_("inner block not inside outer block in %s"),
551 SYMBOL_PRINT_NAME (symbol));
552 }
553 else
554 {
555 complaint (_("inner block (%s-%s) not "
556 "inside outer block (%s-%s)"),
557 paddress (gdbarch, BLOCK_START (pblock->block)),
558 paddress (gdbarch, BLOCK_END (pblock->block)),
559 paddress (gdbarch, BLOCK_START (block)),
560 paddress (gdbarch, BLOCK_END (block)));
561 }
562 if (BLOCK_START (pblock->block) < BLOCK_START (block))
563 BLOCK_START (pblock->block) = BLOCK_START (block);
564 if (BLOCK_END (pblock->block) > BLOCK_END (block))
565 BLOCK_END (pblock->block) = BLOCK_END (block);
566 }
567 BLOCK_SUPERBLOCK (pblock->block) = block;
568 }
569 opblock = pblock;
570 }
571
572 block_set_using (block,
573 (is_global
574 ? global_using_directives
575 : local_using_directives),
576 &objfile->objfile_obstack);
577 if (is_global)
578 global_using_directives = NULL;
579 else
580 local_using_directives = NULL;
581
582 record_pending_block (objfile, block, opblock);
583
584 return block;
585 }
586
587 struct block *
588 finish_block (struct symbol *symbol,
589 struct pending **listhead,
590 struct pending_block *old_blocks,
591 const struct dynamic_prop *static_link,
592 CORE_ADDR start, CORE_ADDR end)
593 {
594 return finish_block_internal (symbol, listhead, old_blocks, static_link,
595 start, end, 0, 0);
596 }
597
598 /* Record BLOCK on the list of all blocks in the file. Put it after
599 OPBLOCK, or at the beginning if opblock is NULL. This puts the
600 block in the list after all its subblocks.
601
602 Allocate the pending block struct in the objfile_obstack to save
603 time. This wastes a little space. FIXME: Is it worth it? */
604
605 static void
606 record_pending_block (struct objfile *objfile, struct block *block,
607 struct pending_block *opblock)
608 {
609 struct pending_block *pblock;
610
611 if (pending_blocks == NULL)
612 obstack_init (&pending_block_obstack);
613
614 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
615 pblock->block = block;
616 if (opblock)
617 {
618 pblock->next = opblock->next;
619 opblock->next = pblock;
620 }
621 else
622 {
623 pblock->next = pending_blocks;
624 pending_blocks = pblock;
625 }
626 }
627
628
629 /* Record that the range of addresses from START to END_INCLUSIVE
630 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
631 addresses must be set already. You must apply this function to all
632 BLOCK's children before applying it to BLOCK.
633
634 If a call to this function complicates the picture beyond that
635 already provided by BLOCK_START and BLOCK_END, then we create an
636 address map for the block. */
637 void
638 record_block_range (struct block *block,
639 CORE_ADDR start, CORE_ADDR end_inclusive)
640 {
641 /* If this is any different from the range recorded in the block's
642 own BLOCK_START and BLOCK_END, then note that the address map has
643 become interesting. Note that even if this block doesn't have
644 any "interesting" ranges, some later block might, so we still
645 need to record this block in the addrmap. */
646 if (start != BLOCK_START (block)
647 || end_inclusive + 1 != BLOCK_END (block))
648 pending_addrmap_interesting = 1;
649
650 if (! pending_addrmap)
651 {
652 obstack_init (&pending_addrmap_obstack);
653 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
654 }
655
656 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
657 }
658
659 static struct blockvector *
660 make_blockvector (void)
661 {
662 struct objfile *objfile = buildsym_compunit->objfile;
663 struct pending_block *next;
664 struct blockvector *blockvector;
665 int i;
666
667 /* Count the length of the list of blocks. */
668
669 for (next = pending_blocks, i = 0; next; next = next->next, i++)
670 {;
671 }
672
673 blockvector = (struct blockvector *)
674 obstack_alloc (&objfile->objfile_obstack,
675 (sizeof (struct blockvector)
676 + (i - 1) * sizeof (struct block *)));
677
678 /* Copy the blocks into the blockvector. This is done in reverse
679 order, which happens to put the blocks into the proper order
680 (ascending starting address). finish_block has hair to insert
681 each block into the list after its subblocks in order to make
682 sure this is true. */
683
684 BLOCKVECTOR_NBLOCKS (blockvector) = i;
685 for (next = pending_blocks; next; next = next->next)
686 {
687 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
688 }
689
690 free_pending_blocks ();
691
692 /* If we needed an address map for this symtab, record it in the
693 blockvector. */
694 if (pending_addrmap && pending_addrmap_interesting)
695 BLOCKVECTOR_MAP (blockvector)
696 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
697 else
698 BLOCKVECTOR_MAP (blockvector) = 0;
699
700 /* Some compilers output blocks in the wrong order, but we depend on
701 their being in the right order so we can binary search. Check the
702 order and moan about it.
703 Note: Remember that the first two blocks are the global and static
704 blocks. We could special case that fact and begin checking at block 2.
705 To avoid making that assumption we do not. */
706 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
707 {
708 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
709 {
710 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
711 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
712 {
713 CORE_ADDR start
714 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
715
716 complaint (_("block at %s out of order"),
717 hex_string ((LONGEST) start));
718 }
719 }
720 }
721
722 return (blockvector);
723 }
724 \f
725 /* Start recording information about source code that came from an
726 included (or otherwise merged-in) source file with a different
727 name. NAME is the name of the file (cannot be NULL). */
728
729 void
730 start_subfile (const char *name)
731 {
732 const char *subfile_dirname;
733 struct subfile *subfile;
734
735 gdb_assert (buildsym_compunit != NULL);
736
737 subfile_dirname = buildsym_compunit->comp_dir.get ();
738
739 /* See if this subfile is already registered. */
740
741 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
742 {
743 char *subfile_name;
744
745 /* If NAME is an absolute path, and this subfile is not, then
746 attempt to create an absolute path to compare. */
747 if (IS_ABSOLUTE_PATH (name)
748 && !IS_ABSOLUTE_PATH (subfile->name)
749 && subfile_dirname != NULL)
750 subfile_name = concat (subfile_dirname, SLASH_STRING,
751 subfile->name, (char *) NULL);
752 else
753 subfile_name = subfile->name;
754
755 if (FILENAME_CMP (subfile_name, name) == 0)
756 {
757 current_subfile = subfile;
758 if (subfile_name != subfile->name)
759 xfree (subfile_name);
760 return;
761 }
762 if (subfile_name != subfile->name)
763 xfree (subfile_name);
764 }
765
766 /* This subfile is not known. Add an entry for it. */
767
768 subfile = XNEW (struct subfile);
769 memset (subfile, 0, sizeof (struct subfile));
770 subfile->buildsym_compunit = buildsym_compunit;
771
772 subfile->next = buildsym_compunit->subfiles;
773 buildsym_compunit->subfiles = subfile;
774
775 current_subfile = subfile;
776
777 subfile->name = xstrdup (name);
778
779 /* Initialize line-number recording for this subfile. */
780 subfile->line_vector = NULL;
781
782 /* Default the source language to whatever can be deduced from the
783 filename. If nothing can be deduced (such as for a C/C++ include
784 file with a ".h" extension), then inherit whatever language the
785 previous subfile had. This kludgery is necessary because there
786 is no standard way in some object formats to record the source
787 language. Also, when symtabs are allocated we try to deduce a
788 language then as well, but it is too late for us to use that
789 information while reading symbols, since symtabs aren't allocated
790 until after all the symbols have been processed for a given
791 source file. */
792
793 subfile->language = deduce_language_from_filename (subfile->name);
794 if (subfile->language == language_unknown
795 && subfile->next != NULL)
796 {
797 subfile->language = subfile->next->language;
798 }
799
800 /* If the filename of this subfile ends in .C, then change the
801 language of any pending subfiles from C to C++. We also accept
802 any other C++ suffixes accepted by deduce_language_from_filename. */
803 /* Likewise for f2c. */
804
805 if (subfile->name)
806 {
807 struct subfile *s;
808 enum language sublang = deduce_language_from_filename (subfile->name);
809
810 if (sublang == language_cplus || sublang == language_fortran)
811 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
812 if (s->language == language_c)
813 s->language = sublang;
814 }
815
816 /* And patch up this file if necessary. */
817 if (subfile->language == language_c
818 && subfile->next != NULL
819 && (subfile->next->language == language_cplus
820 || subfile->next->language == language_fortran))
821 {
822 subfile->language = subfile->next->language;
823 }
824 }
825
826 /* Delete the buildsym compunit. */
827
828 static void
829 free_buildsym_compunit (void)
830 {
831 if (buildsym_compunit == NULL)
832 return;
833 delete buildsym_compunit;
834 buildsym_compunit = NULL;
835 current_subfile = NULL;
836 }
837
838 /* For stabs readers, the first N_SO symbol is assumed to be the
839 source file name, and the subfile struct is initialized using that
840 assumption. If another N_SO symbol is later seen, immediately
841 following the first one, then the first one is assumed to be the
842 directory name and the second one is really the source file name.
843
844 So we have to patch up the subfile struct by moving the old name
845 value to dirname and remembering the new name. Some sanity
846 checking is performed to ensure that the state of the subfile
847 struct is reasonable and that the old name we are assuming to be a
848 directory name actually is (by checking for a trailing '/'). */
849
850 void
851 patch_subfile_names (struct subfile *subfile, const char *name)
852 {
853 if (subfile != NULL
854 && buildsym_compunit->comp_dir == NULL
855 && subfile->name != NULL
856 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
857 {
858 buildsym_compunit->comp_dir.reset (subfile->name);
859 subfile->name = xstrdup (name);
860 set_last_source_file (name);
861
862 /* Default the source language to whatever can be deduced from
863 the filename. If nothing can be deduced (such as for a C/C++
864 include file with a ".h" extension), then inherit whatever
865 language the previous subfile had. This kludgery is
866 necessary because there is no standard way in some object
867 formats to record the source language. Also, when symtabs
868 are allocated we try to deduce a language then as well, but
869 it is too late for us to use that information while reading
870 symbols, since symtabs aren't allocated until after all the
871 symbols have been processed for a given source file. */
872
873 subfile->language = deduce_language_from_filename (subfile->name);
874 if (subfile->language == language_unknown
875 && subfile->next != NULL)
876 {
877 subfile->language = subfile->next->language;
878 }
879 }
880 }
881 \f
882 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
883 switching source files (different subfiles, as we call them) within
884 one object file, but using a stack rather than in an arbitrary
885 order. */
886
887 void
888 push_subfile (void)
889 {
890 struct subfile_stack *tem = XNEW (struct subfile_stack);
891
892 tem->next = subfile_stack;
893 subfile_stack = tem;
894 if (current_subfile == NULL || current_subfile->name == NULL)
895 {
896 internal_error (__FILE__, __LINE__,
897 _("failed internal consistency check"));
898 }
899 tem->name = current_subfile->name;
900 }
901
902 char *
903 pop_subfile (void)
904 {
905 char *name;
906 struct subfile_stack *link = subfile_stack;
907
908 if (link == NULL)
909 {
910 internal_error (__FILE__, __LINE__,
911 _("failed internal consistency check"));
912 }
913 name = link->name;
914 subfile_stack = link->next;
915 xfree ((void *) link);
916 return (name);
917 }
918 \f
919 /* Add a linetable entry for line number LINE and address PC to the
920 line vector for SUBFILE. */
921
922 void
923 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
924 {
925 struct linetable_entry *e;
926
927 /* Ignore the dummy line number in libg.o */
928 if (line == 0xffff)
929 {
930 return;
931 }
932
933 /* Make sure line vector exists and is big enough. */
934 if (!subfile->line_vector)
935 {
936 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
937 subfile->line_vector = (struct linetable *)
938 xmalloc (sizeof (struct linetable)
939 + subfile->line_vector_length * sizeof (struct linetable_entry));
940 subfile->line_vector->nitems = 0;
941 buildsym_compunit->m_have_line_numbers = true;
942 }
943
944 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
945 {
946 subfile->line_vector_length *= 2;
947 subfile->line_vector = (struct linetable *)
948 xrealloc ((char *) subfile->line_vector,
949 (sizeof (struct linetable)
950 + (subfile->line_vector_length
951 * sizeof (struct linetable_entry))));
952 }
953
954 /* Normally, we treat lines as unsorted. But the end of sequence
955 marker is special. We sort line markers at the same PC by line
956 number, so end of sequence markers (which have line == 0) appear
957 first. This is right if the marker ends the previous function,
958 and there is no padding before the next function. But it is
959 wrong if the previous line was empty and we are now marking a
960 switch to a different subfile. We must leave the end of sequence
961 marker at the end of this group of lines, not sort the empty line
962 to after the marker. The easiest way to accomplish this is to
963 delete any empty lines from our table, if they are followed by
964 end of sequence markers. All we lose is the ability to set
965 breakpoints at some lines which contain no instructions
966 anyway. */
967 if (line == 0 && subfile->line_vector->nitems > 0)
968 {
969 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
970 while (subfile->line_vector->nitems > 0 && e->pc == pc)
971 {
972 e--;
973 subfile->line_vector->nitems--;
974 }
975 }
976
977 e = subfile->line_vector->item + subfile->line_vector->nitems++;
978 e->line = line;
979 e->pc = pc;
980 }
981
982 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
983
984 static int
985 compare_line_numbers (const void *ln1p, const void *ln2p)
986 {
987 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
988 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
989
990 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
991 Please keep it that way. */
992 if (ln1->pc < ln2->pc)
993 return -1;
994
995 if (ln1->pc > ln2->pc)
996 return 1;
997
998 /* If pc equal, sort by line. I'm not sure whether this is optimum
999 behavior (see comment at struct linetable in symtab.h). */
1000 return ln1->line - ln2->line;
1001 }
1002 \f
1003 /* See buildsym.h. */
1004
1005 struct compunit_symtab *
1006 buildsym_compunit_symtab (void)
1007 {
1008 gdb_assert (buildsym_compunit != NULL);
1009
1010 return buildsym_compunit->compunit_symtab;
1011 }
1012
1013 /* See buildsym.h. */
1014
1015 struct macro_table *
1016 get_macro_table (void)
1017 {
1018 struct objfile *objfile;
1019
1020 gdb_assert (buildsym_compunit != NULL);
1021 return buildsym_compunit->get_macro_table ();
1022 }
1023 \f
1024 /* Init state to prepare for building a symtab.
1025 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1026 can call start_symtab+end_symtab multiple times after one call to
1027 buildsym_init. */
1028
1029 static void
1030 prepare_for_building ()
1031 {
1032 local_symbols = NULL;
1033 local_using_directives = NULL;
1034
1035 context_stack_depth = 0;
1036
1037 /* These should have been reset either by successful completion of building
1038 a symtab, or by the scoped_free_pendings destructor. */
1039 gdb_assert (file_symbols == NULL);
1040 gdb_assert (global_symbols == NULL);
1041 gdb_assert (global_using_directives == NULL);
1042 gdb_assert (pending_addrmap == NULL);
1043 gdb_assert (current_subfile == NULL);
1044 gdb_assert (buildsym_compunit == nullptr);
1045 }
1046
1047 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1048 when a stabs symbol of type N_SO is seen, or when a DWARF
1049 TAG_compile_unit DIE is seen. It indicates the start of data for
1050 one original source file.
1051
1052 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1053 directory in which the file was compiled (or NULL if not known).
1054 START_ADDR is the lowest address of objects in the file (or 0 if
1055 not known). LANGUAGE is the language of the source file, or
1056 language_unknown if not known, in which case it'll be deduced from
1057 the filename. */
1058
1059 struct compunit_symtab *
1060 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1061 CORE_ADDR start_addr, enum language language)
1062 {
1063 prepare_for_building ();
1064
1065 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1066 language, start_addr);
1067
1068 /* Allocate the compunit symtab now. The caller needs it to allocate
1069 non-primary symtabs. It is also needed by get_macro_table. */
1070 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1071 name);
1072
1073 /* Build the subfile for NAME (the main source file) so that we can record
1074 a pointer to it for later.
1075 IMPORTANT: Do not allocate a struct symtab for NAME here.
1076 It can happen that the debug info provides a different path to NAME than
1077 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1078 that only works if the main_subfile doesn't have a symtab yet. */
1079 start_subfile (name);
1080 /* Save this so that we don't have to go looking for it at the end
1081 of the subfiles list. */
1082 buildsym_compunit->main_subfile = current_subfile;
1083
1084 return buildsym_compunit->compunit_symtab;
1085 }
1086
1087 /* Restart compilation for a symtab.
1088 CUST is the result of end_expandable_symtab.
1089 NAME, START_ADDR are the source file we are resuming with.
1090
1091 This is used when a symtab is built from multiple sources.
1092 The symtab is first built with start_symtab/end_expandable_symtab
1093 and then for each additional piece call restart_symtab/augment_*_symtab.
1094 Note: At the moment there is only augment_type_symtab. */
1095
1096 void
1097 restart_symtab (struct compunit_symtab *cust,
1098 const char *name, CORE_ADDR start_addr)
1099 {
1100 prepare_for_building ();
1101
1102 buildsym_compunit
1103 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1104 name,
1105 COMPUNIT_DIRNAME (cust),
1106 compunit_language (cust),
1107 start_addr);
1108 buildsym_compunit->compunit_symtab = cust;
1109 }
1110
1111 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1112 matches the main source file's basename. If there is only one, and
1113 if the main source file doesn't have any symbol or line number
1114 information, then copy this file's symtab and line_vector to the
1115 main source file's subfile and discard the other subfile. This can
1116 happen because of a compiler bug or from the user playing games
1117 with #line or from things like a distributed build system that
1118 manipulates the debug info. This can also happen from an innocent
1119 symlink in the paths, we don't canonicalize paths here. */
1120
1121 static void
1122 watch_main_source_file_lossage (void)
1123 {
1124 struct subfile *mainsub, *subfile;
1125
1126 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1127 end_symtab, it can return NULL so there may not be a main subfile. */
1128 if (buildsym_compunit == NULL)
1129 return;
1130
1131 /* Get the main source file. */
1132 mainsub = buildsym_compunit->main_subfile;
1133
1134 /* If the main source file doesn't have any line number or symbol
1135 info, look for an alias in another subfile. */
1136
1137 if (mainsub->line_vector == NULL
1138 && mainsub->symtab == NULL)
1139 {
1140 const char *mainbase = lbasename (mainsub->name);
1141 int nr_matches = 0;
1142 struct subfile *prevsub;
1143 struct subfile *mainsub_alias = NULL;
1144 struct subfile *prev_mainsub_alias = NULL;
1145
1146 prevsub = NULL;
1147 for (subfile = buildsym_compunit->subfiles;
1148 subfile != NULL;
1149 subfile = subfile->next)
1150 {
1151 if (subfile == mainsub)
1152 continue;
1153 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1154 {
1155 ++nr_matches;
1156 mainsub_alias = subfile;
1157 prev_mainsub_alias = prevsub;
1158 }
1159 prevsub = subfile;
1160 }
1161
1162 if (nr_matches == 1)
1163 {
1164 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1165
1166 /* Found a match for the main source file.
1167 Copy its line_vector and symtab to the main subfile
1168 and then discard it. */
1169
1170 mainsub->line_vector = mainsub_alias->line_vector;
1171 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1172 mainsub->symtab = mainsub_alias->symtab;
1173
1174 if (prev_mainsub_alias == NULL)
1175 buildsym_compunit->subfiles = mainsub_alias->next;
1176 else
1177 prev_mainsub_alias->next = mainsub_alias->next;
1178 xfree (mainsub_alias->name);
1179 xfree (mainsub_alias);
1180 }
1181 }
1182 }
1183
1184 /* Reset state after a successful building of a symtab.
1185 This exists because dbxread.c and xcoffread.c can call
1186 start_symtab+end_symtab multiple times after one call to buildsym_init,
1187 and before the scoped_free_pendings destructor is called.
1188 We keep the free_pendings list around for dbx/xcoff sake. */
1189
1190 static void
1191 reset_symtab_globals (void)
1192 {
1193 local_symbols = NULL;
1194 local_using_directives = NULL;
1195 file_symbols = NULL;
1196 global_symbols = NULL;
1197 global_using_directives = NULL;
1198
1199 if (pending_addrmap)
1200 obstack_free (&pending_addrmap_obstack, NULL);
1201 pending_addrmap = NULL;
1202
1203 free_buildsym_compunit ();
1204 }
1205
1206 /* Implementation of the first part of end_symtab. It allows modifying
1207 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1208 If the returned value is NULL there is no blockvector created for
1209 this symtab (you still must call end_symtab_from_static_block).
1210
1211 END_ADDR is the same as for end_symtab: the address of the end of the
1212 file's text.
1213
1214 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1215 expandable.
1216
1217 If REQUIRED is non-zero, then a symtab is created even if it does
1218 not contain any symbols. */
1219
1220 struct block *
1221 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1222 {
1223 struct objfile *objfile = buildsym_compunit->objfile;
1224
1225 /* Finish the lexical context of the last function in the file; pop
1226 the context stack. */
1227
1228 if (context_stack_depth > 0)
1229 {
1230 struct context_stack *cstk = pop_context ();
1231
1232 /* Make a block for the local symbols within. */
1233 finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
1234 cstk->start_addr, end_addr);
1235
1236 if (context_stack_depth > 0)
1237 {
1238 /* This is said to happen with SCO. The old coffread.c
1239 code simply emptied the context stack, so we do the
1240 same. FIXME: Find out why it is happening. This is not
1241 believed to happen in most cases (even for coffread.c);
1242 it used to be an abort(). */
1243 complaint (_("Context stack not empty in end_symtab"));
1244 context_stack_depth = 0;
1245 }
1246 }
1247
1248 /* Reordered executables may have out of order pending blocks; if
1249 OBJF_REORDERED is true, then sort the pending blocks. */
1250
1251 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1252 {
1253 struct pending_block *pb;
1254
1255 std::vector<block *> barray;
1256
1257 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1258 barray.push_back (pb->block);
1259
1260 /* Sort blocks by start address in descending order. Blocks with the
1261 same start address must remain in the original order to preserve
1262 inline function caller/callee relationships. */
1263 std::stable_sort (barray.begin (), barray.end (),
1264 [] (const block *a, const block *b)
1265 {
1266 return BLOCK_START (a) > BLOCK_START (b);
1267 });
1268
1269 int i = 0;
1270 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1271 pb->block = barray[i++];
1272 }
1273
1274 /* Cleanup any undefined types that have been left hanging around
1275 (this needs to be done before the finish_blocks so that
1276 file_symbols is still good).
1277
1278 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1279 specific, but harmless for other symbol readers, since on gdb
1280 startup or when finished reading stabs, the state is set so these
1281 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1282 we make this cleaner? */
1283
1284 cleanup_undefined_stabs_types (objfile);
1285 finish_global_stabs (objfile);
1286
1287 if (!required
1288 && pending_blocks == NULL
1289 && file_symbols == NULL
1290 && global_symbols == NULL
1291 && !buildsym_compunit->m_have_line_numbers
1292 && buildsym_compunit->m_pending_macros == NULL
1293 && global_using_directives == NULL)
1294 {
1295 /* Ignore symtabs that have no functions with real debugging info. */
1296 return NULL;
1297 }
1298 else
1299 {
1300 /* Define the STATIC_BLOCK. */
1301 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1302 buildsym_compunit->m_last_source_start_addr,
1303 end_addr, 0, expandable);
1304 }
1305 }
1306
1307 /* Subroutine of end_symtab_from_static_block to simplify it.
1308 Handle the "have blockvector" case.
1309 See end_symtab_from_static_block for a description of the arguments. */
1310
1311 static struct compunit_symtab *
1312 end_symtab_with_blockvector (struct block *static_block,
1313 int section, int expandable)
1314 {
1315 struct objfile *objfile = buildsym_compunit->objfile;
1316 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1317 struct symtab *symtab;
1318 struct blockvector *blockvector;
1319 struct subfile *subfile;
1320 CORE_ADDR end_addr;
1321
1322 gdb_assert (static_block != NULL);
1323 gdb_assert (buildsym_compunit != NULL);
1324 gdb_assert (buildsym_compunit->subfiles != NULL);
1325
1326 end_addr = BLOCK_END (static_block);
1327
1328 /* Create the GLOBAL_BLOCK and build the blockvector. */
1329 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1330 buildsym_compunit->m_last_source_start_addr, end_addr,
1331 1, expandable);
1332 blockvector = make_blockvector ();
1333
1334 /* Read the line table if it has to be read separately.
1335 This is only used by xcoffread.c. */
1336 if (objfile->sf->sym_read_linetable != NULL)
1337 objfile->sf->sym_read_linetable (objfile);
1338
1339 /* Handle the case where the debug info specifies a different path
1340 for the main source file. It can cause us to lose track of its
1341 line number information. */
1342 watch_main_source_file_lossage ();
1343
1344 /* Now create the symtab objects proper, if not already done,
1345 one for each subfile. */
1346
1347 for (subfile = buildsym_compunit->subfiles;
1348 subfile != NULL;
1349 subfile = subfile->next)
1350 {
1351 int linetablesize = 0;
1352
1353 if (subfile->line_vector)
1354 {
1355 linetablesize = sizeof (struct linetable) +
1356 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1357
1358 /* Like the pending blocks, the line table may be
1359 scrambled in reordered executables. Sort it if
1360 OBJF_REORDERED is true. */
1361 if (objfile->flags & OBJF_REORDERED)
1362 qsort (subfile->line_vector->item,
1363 subfile->line_vector->nitems,
1364 sizeof (struct linetable_entry), compare_line_numbers);
1365 }
1366
1367 /* Allocate a symbol table if necessary. */
1368 if (subfile->symtab == NULL)
1369 subfile->symtab = allocate_symtab (cu, subfile->name);
1370 symtab = subfile->symtab;
1371
1372 /* Fill in its components. */
1373
1374 if (subfile->line_vector)
1375 {
1376 /* Reallocate the line table on the symbol obstack. */
1377 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1378 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1379 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1380 linetablesize);
1381 }
1382 else
1383 {
1384 SYMTAB_LINETABLE (symtab) = NULL;
1385 }
1386
1387 /* Use whatever language we have been using for this
1388 subfile, not the one that was deduced in allocate_symtab
1389 from the filename. We already did our own deducing when
1390 we created the subfile, and we may have altered our
1391 opinion of what language it is from things we found in
1392 the symbols. */
1393 symtab->language = subfile->language;
1394 }
1395
1396 /* Make sure the symtab of main_subfile is the first in its list. */
1397 {
1398 struct symtab *main_symtab, *prev_symtab;
1399
1400 main_symtab = buildsym_compunit->main_subfile->symtab;
1401 prev_symtab = NULL;
1402 ALL_COMPUNIT_FILETABS (cu, symtab)
1403 {
1404 if (symtab == main_symtab)
1405 {
1406 if (prev_symtab != NULL)
1407 {
1408 prev_symtab->next = main_symtab->next;
1409 main_symtab->next = COMPUNIT_FILETABS (cu);
1410 COMPUNIT_FILETABS (cu) = main_symtab;
1411 }
1412 break;
1413 }
1414 prev_symtab = symtab;
1415 }
1416 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1417 }
1418
1419 /* Fill out the compunit symtab. */
1420
1421 if (buildsym_compunit->comp_dir != NULL)
1422 {
1423 /* Reallocate the dirname on the symbol obstack. */
1424 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1425 COMPUNIT_DIRNAME (cu)
1426 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1427 comp_dir, strlen (comp_dir));
1428 }
1429
1430 /* Save the debug format string (if any) in the symtab. */
1431 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1432
1433 /* Similarly for the producer. */
1434 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1435
1436 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1437 {
1438 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1439
1440 set_block_compunit_symtab (b, cu);
1441 }
1442
1443 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1444
1445 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1446
1447 /* Default any symbols without a specified symtab to the primary symtab. */
1448 {
1449 int block_i;
1450
1451 /* The main source file's symtab. */
1452 symtab = COMPUNIT_FILETABS (cu);
1453
1454 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1455 {
1456 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1457 struct symbol *sym;
1458 struct dict_iterator iter;
1459
1460 /* Inlined functions may have symbols not in the global or
1461 static symbol lists. */
1462 if (BLOCK_FUNCTION (block) != NULL)
1463 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1464 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1465
1466 /* Note that we only want to fix up symbols from the local
1467 blocks, not blocks coming from included symtabs. That is why
1468 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1469 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1470 if (symbol_symtab (sym) == NULL)
1471 symbol_set_symtab (sym, symtab);
1472 }
1473 }
1474
1475 add_compunit_symtab_to_objfile (cu);
1476
1477 return cu;
1478 }
1479
1480 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1481 as value returned by end_symtab_get_static_block.
1482
1483 SECTION is the same as for end_symtab: the section number
1484 (in objfile->section_offsets) of the blockvector and linetable.
1485
1486 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1487 expandable. */
1488
1489 struct compunit_symtab *
1490 end_symtab_from_static_block (struct block *static_block,
1491 int section, int expandable)
1492 {
1493 struct compunit_symtab *cu;
1494
1495 if (static_block == NULL)
1496 {
1497 /* Handle the "no blockvector" case.
1498 When this happens there is nothing to record, so there's nothing
1499 to do: memory will be freed up later.
1500
1501 Note: We won't be adding a compunit to the objfile's list of
1502 compunits, so there's nothing to unchain. However, since each symtab
1503 is added to the objfile's obstack we can't free that space.
1504 We could do better, but this is believed to be a sufficiently rare
1505 event. */
1506 cu = NULL;
1507 }
1508 else
1509 cu = end_symtab_with_blockvector (static_block, section, expandable);
1510
1511 reset_symtab_globals ();
1512
1513 return cu;
1514 }
1515
1516 /* Finish the symbol definitions for one main source file, close off
1517 all the lexical contexts for that file (creating struct block's for
1518 them), then make the struct symtab for that file and put it in the
1519 list of all such.
1520
1521 END_ADDR is the address of the end of the file's text. SECTION is
1522 the section number (in objfile->section_offsets) of the blockvector
1523 and linetable.
1524
1525 Note that it is possible for end_symtab() to return NULL. In
1526 particular, for the DWARF case at least, it will return NULL when
1527 it finds a compilation unit that has exactly one DIE, a
1528 TAG_compile_unit DIE. This can happen when we link in an object
1529 file that was compiled from an empty source file. Returning NULL
1530 is probably not the correct thing to do, because then gdb will
1531 never know about this empty file (FIXME).
1532
1533 If you need to modify STATIC_BLOCK before it is finalized you should
1534 call end_symtab_get_static_block and end_symtab_from_static_block
1535 yourself. */
1536
1537 struct compunit_symtab *
1538 end_symtab (CORE_ADDR end_addr, int section)
1539 {
1540 struct block *static_block;
1541
1542 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1543 return end_symtab_from_static_block (static_block, section, 0);
1544 }
1545
1546 /* Same as end_symtab except create a symtab that can be later added to. */
1547
1548 struct compunit_symtab *
1549 end_expandable_symtab (CORE_ADDR end_addr, int section)
1550 {
1551 struct block *static_block;
1552
1553 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1554 return end_symtab_from_static_block (static_block, section, 1);
1555 }
1556
1557 /* Subroutine of augment_type_symtab to simplify it.
1558 Attach the main source file's symtab to all symbols in PENDING_LIST that
1559 don't have one. */
1560
1561 static void
1562 set_missing_symtab (struct pending *pending_list,
1563 struct compunit_symtab *cu)
1564 {
1565 struct pending *pending;
1566 int i;
1567
1568 for (pending = pending_list; pending != NULL; pending = pending->next)
1569 {
1570 for (i = 0; i < pending->nsyms; ++i)
1571 {
1572 if (symbol_symtab (pending->symbol[i]) == NULL)
1573 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1574 }
1575 }
1576 }
1577
1578 /* Same as end_symtab, but for the case where we're adding more symbols
1579 to an existing symtab that is known to contain only type information.
1580 This is the case for DWARF4 Type Units. */
1581
1582 void
1583 augment_type_symtab (void)
1584 {
1585 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1586 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1587
1588 if (context_stack_depth > 0)
1589 {
1590 complaint (_("Context stack not empty in augment_type_symtab"));
1591 context_stack_depth = 0;
1592 }
1593 if (pending_blocks != NULL)
1594 complaint (_("Blocks in a type symtab"));
1595 if (buildsym_compunit->m_pending_macros != NULL)
1596 complaint (_("Macro in a type symtab"));
1597 if (buildsym_compunit->m_have_line_numbers)
1598 complaint (_("Line numbers recorded in a type symtab"));
1599
1600 if (file_symbols != NULL)
1601 {
1602 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1603
1604 /* First mark any symbols without a specified symtab as belonging
1605 to the primary symtab. */
1606 set_missing_symtab (file_symbols, cust);
1607
1608 dict_add_pending (BLOCK_DICT (block), file_symbols);
1609 }
1610
1611 if (global_symbols != NULL)
1612 {
1613 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1614
1615 /* First mark any symbols without a specified symtab as belonging
1616 to the primary symtab. */
1617 set_missing_symtab (global_symbols, cust);
1618
1619 dict_add_pending (BLOCK_DICT (block), global_symbols);
1620 }
1621
1622 reset_symtab_globals ();
1623 }
1624
1625 /* Push a context block. Args are an identifying nesting level
1626 (checkable when you pop it), and the starting PC address of this
1627 context. */
1628
1629 struct context_stack *
1630 push_context (int desc, CORE_ADDR valu)
1631 {
1632 struct context_stack *newobj;
1633
1634 if (context_stack_depth == context_stack_size)
1635 {
1636 context_stack_size *= 2;
1637 context_stack = (struct context_stack *)
1638 xrealloc ((char *) context_stack,
1639 (context_stack_size * sizeof (struct context_stack)));
1640 }
1641
1642 newobj = &context_stack[context_stack_depth++];
1643 newobj->depth = desc;
1644 newobj->locals = local_symbols;
1645 newobj->old_blocks = pending_blocks;
1646 newobj->start_addr = valu;
1647 newobj->local_using_directives = local_using_directives;
1648 newobj->name = NULL;
1649
1650 local_symbols = NULL;
1651 local_using_directives = NULL;
1652
1653 return newobj;
1654 }
1655
1656 /* Pop a context block. Returns the address of the context block just
1657 popped. */
1658
1659 struct context_stack *
1660 pop_context (void)
1661 {
1662 gdb_assert (context_stack_depth > 0);
1663 return (&context_stack[--context_stack_depth]);
1664 }
1665
1666 \f
1667
1668 void
1669 record_debugformat (const char *format)
1670 {
1671 buildsym_compunit->debugformat = format;
1672 }
1673
1674 void
1675 record_producer (const char *producer)
1676 {
1677 buildsym_compunit->producer = producer;
1678 }
1679
1680 \f
1681
1682 /* See buildsym.h. */
1683
1684 void
1685 set_last_source_file (const char *name)
1686 {
1687 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1688 if (buildsym_compunit != nullptr)
1689 buildsym_compunit->set_last_source_file (name);
1690 }
1691
1692 /* See buildsym.h. */
1693
1694 const char *
1695 get_last_source_file (void)
1696 {
1697 if (buildsym_compunit == nullptr)
1698 return nullptr;
1699 return buildsym_compunit->m_last_source_file.get ();
1700 }
1701
1702 /* See buildsym.h. */
1703
1704 void
1705 set_last_source_start_addr (CORE_ADDR addr)
1706 {
1707 gdb_assert (buildsym_compunit != nullptr);
1708 buildsym_compunit->m_last_source_start_addr = addr;
1709 }
1710
1711 /* See buildsym.h. */
1712
1713 CORE_ADDR
1714 get_last_source_start_addr ()
1715 {
1716 gdb_assert (buildsym_compunit != nullptr);
1717 return buildsym_compunit->m_last_source_start_addr;
1718 }
1719
1720 \f
1721
1722 /* Initialize anything that needs initializing when starting to read a
1723 fresh piece of a symbol file, e.g. reading in the stuff
1724 corresponding to a psymtab. */
1725
1726 void
1727 buildsym_init ()
1728 {
1729 subfile_stack = NULL;
1730
1731 pending_addrmap_interesting = 0;
1732
1733 /* Context stack is initially empty. Allocate first one with room
1734 for a few levels; reuse it forever afterward. */
1735 if (context_stack == NULL)
1736 {
1737 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
1738 context_stack = XNEWVEC (struct context_stack, context_stack_size);
1739 }
1740
1741 /* Ensure the scoped_free_pendings destructor was called after
1742 the last time. */
1743 gdb_assert (free_pendings == NULL);
1744 gdb_assert (pending_blocks == NULL);
1745 gdb_assert (file_symbols == NULL);
1746 gdb_assert (global_symbols == NULL);
1747 gdb_assert (global_using_directives == NULL);
1748 gdb_assert (pending_addrmap == NULL);
1749 gdb_assert (buildsym_compunit == NULL);
1750 }
This page took 0.067657 seconds and 5 git commands to generate.