Make free_pending_blocks static
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "filenames.h" /* For DOSish file names. */
78 #include "macrotab.h"
79 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
80 #include "block.h"
81 #include "cp-support.h"
82 #include "dictionary.h"
83 #include "addrmap.h"
84 #include <algorithm>
85
86 /* Ask buildsym.h to define the vars it normally declares `extern'. */
87 #define EXTERN
88 /**/
89 #include "buildsym.h" /* Our own declarations. */
90 #undef EXTERN
91
92 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
93 questionable--see comment where we call them). */
94
95 #include "stabsread.h"
96
97 /* Buildsym's counterpart to struct compunit_symtab.
98 TODO(dje): Move all related global state into here. */
99
100 struct buildsym_compunit
101 {
102 /* Start recording information about a primary source file (IOW, not an
103 included source file).
104 COMP_DIR is the directory in which the compilation unit was compiled
105 (or NULL if not known). */
106
107 buildsym_compunit (struct objfile *objfile_, const char *name,
108 const char *comp_dir_, enum language language_,
109 CORE_ADDR last_addr)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_),
114 m_last_source_start_addr (last_addr)
115 {
116 }
117
118 ~buildsym_compunit ()
119 {
120 struct subfile *subfile, *nextsub;
121
122 if (m_pending_macros != nullptr)
123 free_macro_table (m_pending_macros);
124
125 for (subfile = subfiles;
126 subfile != NULL;
127 subfile = nextsub)
128 {
129 nextsub = subfile->next;
130 xfree (subfile->name);
131 xfree (subfile->line_vector);
132 xfree (subfile);
133 }
134 }
135
136 void set_last_source_file (const char *name)
137 {
138 char *new_name = name == NULL ? NULL : xstrdup (name);
139 m_last_source_file.reset (new_name);
140 }
141
142 struct macro_table *get_macro_table ()
143 {
144 if (m_pending_macros == nullptr)
145 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
146 objfile->per_bfd->macro_cache,
147 compunit_symtab);
148 return m_pending_macros;
149 }
150
151 struct macro_table *release_macros ()
152 {
153 struct macro_table *result = m_pending_macros;
154 m_pending_macros = nullptr;
155 return result;
156 }
157
158 /* The objfile we're reading debug info from. */
159 struct objfile *objfile;
160
161 /* List of subfiles (source files).
162 Files are added to the front of the list.
163 This is important mostly for the language determination hacks we use,
164 which iterate over previously added files. */
165 struct subfile *subfiles = nullptr;
166
167 /* The subfile of the main source file. */
168 struct subfile *main_subfile = nullptr;
169
170 /* Name of source file whose symbol data we are now processing. This
171 comes from a symbol of type N_SO for stabs. For DWARF it comes
172 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
173 gdb::unique_xmalloc_ptr<char> m_last_source_file;
174
175 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
176 gdb::unique_xmalloc_ptr<char> comp_dir;
177
178 /* Space for this is not malloc'd, and is assumed to have at least
179 the same lifetime as objfile. */
180 const char *producer = nullptr;
181
182 /* Space for this is not malloc'd, and is assumed to have at least
183 the same lifetime as objfile. */
184 const char *debugformat = nullptr;
185
186 /* The compunit we are building. */
187 struct compunit_symtab *compunit_symtab = nullptr;
188
189 /* Language of this compunit_symtab. */
190 enum language language;
191
192 /* The macro table for the compilation unit whose symbols we're
193 currently reading. */
194 struct macro_table *m_pending_macros = nullptr;
195
196 /* True if symtab has line number info. This prevents an otherwise
197 empty symtab from being tossed. */
198 bool m_have_line_numbers = false;
199
200 /* Core address of start of text of current source file. This too
201 comes from the N_SO symbol. For Dwarf it typically comes from the
202 DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
203 CORE_ADDR m_last_source_start_addr;
204
205 /* Stack of subfile names. */
206 std::vector<const char *> m_subfile_stack;
207 };
208
209 /* The work-in-progress of the compunit we are building.
210 This is created first, before any subfiles by start_symtab. */
211
212 static struct buildsym_compunit *buildsym_compunit;
213
214 /* List of free `struct pending' structures for reuse. */
215
216 static struct pending *free_pendings;
217
218 /* The mutable address map for the compilation unit whose symbols
219 we're currently reading. The symtabs' shared blockvector will
220 point to a fixed copy of this. */
221 static struct addrmap *pending_addrmap;
222
223 /* The obstack on which we allocate pending_addrmap.
224 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
225 initialized (and holds pending_addrmap). */
226 static struct obstack pending_addrmap_obstack;
227
228 /* Non-zero if we recorded any ranges in the addrmap that are
229 different from those in the blockvector already. We set this to
230 zero when we start processing a symfile, and if it's still zero at
231 the end, then we just toss the addrmap. */
232 static int pending_addrmap_interesting;
233
234 /* An obstack used for allocating pending blocks. */
235
236 static struct obstack pending_block_obstack;
237
238 /* List of blocks already made (lexical contexts already closed).
239 This is used at the end to make the blockvector. */
240
241 struct pending_block
242 {
243 struct pending_block *next;
244 struct block *block;
245 };
246
247 /* Pointer to the head of a linked list of symbol blocks which have
248 already been finalized (lexical contexts already closed) and which
249 are just waiting to be built into a blockvector when finalizing the
250 associated symtab. */
251
252 static struct pending_block *pending_blocks;
253
254 /* Currently allocated size of context stack. */
255
256 static int context_stack_size;
257
258 static void free_buildsym_compunit (void);
259
260 static int compare_line_numbers (const void *ln1p, const void *ln2p);
261
262 static void record_pending_block (struct objfile *objfile,
263 struct block *block,
264 struct pending_block *opblock);
265
266 static void free_pending_blocks ();
267
268 /* Initial sizes of data structures. These are realloc'd larger if
269 needed, and realloc'd down to the size actually used, when
270 completed. */
271
272 #define INITIAL_CONTEXT_STACK_SIZE 10
273 #define INITIAL_LINE_VECTOR_LENGTH 1000
274 \f
275
276 /* Maintain the lists of symbols and blocks. */
277
278 /* Add a symbol to one of the lists of symbols. */
279
280 void
281 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
282 {
283 struct pending *link;
284
285 /* If this is an alias for another symbol, don't add it. */
286 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
287 return;
288
289 /* We keep PENDINGSIZE symbols in each link of the list. If we
290 don't have a link with room in it, add a new link. */
291 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
292 {
293 if (free_pendings)
294 {
295 link = free_pendings;
296 free_pendings = link->next;
297 }
298 else
299 {
300 link = XNEW (struct pending);
301 }
302
303 link->next = *listhead;
304 *listhead = link;
305 link->nsyms = 0;
306 }
307
308 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
309 }
310
311 /* Find a symbol named NAME on a LIST. NAME need not be
312 '\0'-terminated; LENGTH is the length of the name. */
313
314 struct symbol *
315 find_symbol_in_list (struct pending *list, char *name, int length)
316 {
317 int j;
318 const char *pp;
319
320 while (list != NULL)
321 {
322 for (j = list->nsyms; --j >= 0;)
323 {
324 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
325 if (*pp == *name && strncmp (pp, name, length) == 0
326 && pp[length] == '\0')
327 {
328 return (list->symbol[j]);
329 }
330 }
331 list = list->next;
332 }
333 return (NULL);
334 }
335
336 scoped_free_pendings::scoped_free_pendings ()
337 {
338 gdb_assert (pending_blocks == nullptr);
339 }
340
341 /* At end of reading syms, or in case of quit, ensure everything
342 associated with building symtabs is freed.
343
344 N.B. This is *not* intended to be used when building psymtabs. Some debug
345 info readers call this anyway, which is harmless if confusing. */
346
347 scoped_free_pendings::~scoped_free_pendings ()
348 {
349 struct pending *next, *next1;
350
351 for (next = free_pendings; next; next = next1)
352 {
353 next1 = next->next;
354 xfree ((void *) next);
355 }
356 free_pendings = NULL;
357
358 free_pending_blocks ();
359
360 for (next = file_symbols; next != NULL; next = next1)
361 {
362 next1 = next->next;
363 xfree ((void *) next);
364 }
365 file_symbols = NULL;
366
367 for (next = global_symbols; next != NULL; next = next1)
368 {
369 next1 = next->next;
370 xfree ((void *) next);
371 }
372 global_symbols = NULL;
373
374 if (pending_addrmap)
375 obstack_free (&pending_addrmap_obstack, NULL);
376 pending_addrmap = NULL;
377
378 free_buildsym_compunit ();
379 }
380
381 /* This function is called to discard any pending blocks. */
382
383 static void
384 free_pending_blocks ()
385 {
386 if (pending_blocks != NULL)
387 {
388 obstack_free (&pending_block_obstack, NULL);
389 pending_blocks = NULL;
390 }
391 }
392
393 /* Take one of the lists of symbols and make a block from it. Keep
394 the order the symbols have in the list (reversed from the input
395 file). Put the block on the list of pending blocks. */
396
397 static struct block *
398 finish_block_internal (struct symbol *symbol,
399 struct pending **listhead,
400 struct pending_block *old_blocks,
401 const struct dynamic_prop *static_link,
402 CORE_ADDR start, CORE_ADDR end,
403 int is_global, int expandable)
404 {
405 struct objfile *objfile = buildsym_compunit->objfile;
406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
407 struct pending *next, *next1;
408 struct block *block;
409 struct pending_block *pblock;
410 struct pending_block *opblock;
411
412 block = (is_global
413 ? allocate_global_block (&objfile->objfile_obstack)
414 : allocate_block (&objfile->objfile_obstack));
415
416 if (symbol)
417 {
418 BLOCK_DICT (block)
419 = dict_create_linear (&objfile->objfile_obstack,
420 buildsym_compunit->language, *listhead);
421 }
422 else
423 {
424 if (expandable)
425 {
426 BLOCK_DICT (block)
427 = dict_create_hashed_expandable (buildsym_compunit->language);
428 dict_add_pending (BLOCK_DICT (block), *listhead);
429 }
430 else
431 {
432 BLOCK_DICT (block) =
433 dict_create_hashed (&objfile->objfile_obstack,
434 buildsym_compunit->language, *listhead);
435 }
436 }
437
438 BLOCK_START (block) = start;
439 BLOCK_END (block) = end;
440
441 /* Put the block in as the value of the symbol that names it. */
442
443 if (symbol)
444 {
445 struct type *ftype = SYMBOL_TYPE (symbol);
446 struct dict_iterator iter;
447 SYMBOL_BLOCK_VALUE (symbol) = block;
448 BLOCK_FUNCTION (block) = symbol;
449
450 if (TYPE_NFIELDS (ftype) <= 0)
451 {
452 /* No parameter type information is recorded with the
453 function's type. Set that from the type of the
454 parameter symbols. */
455 int nparams = 0, iparams;
456 struct symbol *sym;
457
458 /* Here we want to directly access the dictionary, because
459 we haven't fully initialized the block yet. */
460 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
461 {
462 if (SYMBOL_IS_ARGUMENT (sym))
463 nparams++;
464 }
465 if (nparams > 0)
466 {
467 TYPE_NFIELDS (ftype) = nparams;
468 TYPE_FIELDS (ftype) = (struct field *)
469 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
470
471 iparams = 0;
472 /* Here we want to directly access the dictionary, because
473 we haven't fully initialized the block yet. */
474 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
475 {
476 if (iparams == nparams)
477 break;
478
479 if (SYMBOL_IS_ARGUMENT (sym))
480 {
481 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
482 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
483 iparams++;
484 }
485 }
486 }
487 }
488 }
489 else
490 {
491 BLOCK_FUNCTION (block) = NULL;
492 }
493
494 if (static_link != NULL)
495 objfile_register_static_link (objfile, block, static_link);
496
497 /* Now "free" the links of the list, and empty the list. */
498
499 for (next = *listhead; next; next = next1)
500 {
501 next1 = next->next;
502 next->next = free_pendings;
503 free_pendings = next;
504 }
505 *listhead = NULL;
506
507 /* Check to be sure that the blocks have an end address that is
508 greater than starting address. */
509
510 if (BLOCK_END (block) < BLOCK_START (block))
511 {
512 if (symbol)
513 {
514 complaint (_("block end address less than block "
515 "start address in %s (patched it)"),
516 SYMBOL_PRINT_NAME (symbol));
517 }
518 else
519 {
520 complaint (_("block end address %s less than block "
521 "start address %s (patched it)"),
522 paddress (gdbarch, BLOCK_END (block)),
523 paddress (gdbarch, BLOCK_START (block)));
524 }
525 /* Better than nothing. */
526 BLOCK_END (block) = BLOCK_START (block);
527 }
528
529 /* Install this block as the superblock of all blocks made since the
530 start of this scope that don't have superblocks yet. */
531
532 opblock = NULL;
533 for (pblock = pending_blocks;
534 pblock && pblock != old_blocks;
535 pblock = pblock->next)
536 {
537 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
538 {
539 /* Check to be sure the blocks are nested as we receive
540 them. If the compiler/assembler/linker work, this just
541 burns a small amount of time.
542
543 Skip blocks which correspond to a function; they're not
544 physically nested inside this other blocks, only
545 lexically nested. */
546 if (BLOCK_FUNCTION (pblock->block) == NULL
547 && (BLOCK_START (pblock->block) < BLOCK_START (block)
548 || BLOCK_END (pblock->block) > BLOCK_END (block)))
549 {
550 if (symbol)
551 {
552 complaint (_("inner block not inside outer block in %s"),
553 SYMBOL_PRINT_NAME (symbol));
554 }
555 else
556 {
557 complaint (_("inner block (%s-%s) not "
558 "inside outer block (%s-%s)"),
559 paddress (gdbarch, BLOCK_START (pblock->block)),
560 paddress (gdbarch, BLOCK_END (pblock->block)),
561 paddress (gdbarch, BLOCK_START (block)),
562 paddress (gdbarch, BLOCK_END (block)));
563 }
564 if (BLOCK_START (pblock->block) < BLOCK_START (block))
565 BLOCK_START (pblock->block) = BLOCK_START (block);
566 if (BLOCK_END (pblock->block) > BLOCK_END (block))
567 BLOCK_END (pblock->block) = BLOCK_END (block);
568 }
569 BLOCK_SUPERBLOCK (pblock->block) = block;
570 }
571 opblock = pblock;
572 }
573
574 block_set_using (block,
575 (is_global
576 ? global_using_directives
577 : local_using_directives),
578 &objfile->objfile_obstack);
579 if (is_global)
580 global_using_directives = NULL;
581 else
582 local_using_directives = NULL;
583
584 record_pending_block (objfile, block, opblock);
585
586 return block;
587 }
588
589 struct block *
590 finish_block (struct symbol *symbol,
591 struct pending **listhead,
592 struct pending_block *old_blocks,
593 const struct dynamic_prop *static_link,
594 CORE_ADDR start, CORE_ADDR end)
595 {
596 return finish_block_internal (symbol, listhead, old_blocks, static_link,
597 start, end, 0, 0);
598 }
599
600 /* Record BLOCK on the list of all blocks in the file. Put it after
601 OPBLOCK, or at the beginning if opblock is NULL. This puts the
602 block in the list after all its subblocks.
603
604 Allocate the pending block struct in the objfile_obstack to save
605 time. This wastes a little space. FIXME: Is it worth it? */
606
607 static void
608 record_pending_block (struct objfile *objfile, struct block *block,
609 struct pending_block *opblock)
610 {
611 struct pending_block *pblock;
612
613 if (pending_blocks == NULL)
614 obstack_init (&pending_block_obstack);
615
616 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
617 pblock->block = block;
618 if (opblock)
619 {
620 pblock->next = opblock->next;
621 opblock->next = pblock;
622 }
623 else
624 {
625 pblock->next = pending_blocks;
626 pending_blocks = pblock;
627 }
628 }
629
630
631 /* Record that the range of addresses from START to END_INCLUSIVE
632 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
633 addresses must be set already. You must apply this function to all
634 BLOCK's children before applying it to BLOCK.
635
636 If a call to this function complicates the picture beyond that
637 already provided by BLOCK_START and BLOCK_END, then we create an
638 address map for the block. */
639 void
640 record_block_range (struct block *block,
641 CORE_ADDR start, CORE_ADDR end_inclusive)
642 {
643 /* If this is any different from the range recorded in the block's
644 own BLOCK_START and BLOCK_END, then note that the address map has
645 become interesting. Note that even if this block doesn't have
646 any "interesting" ranges, some later block might, so we still
647 need to record this block in the addrmap. */
648 if (start != BLOCK_START (block)
649 || end_inclusive + 1 != BLOCK_END (block))
650 pending_addrmap_interesting = 1;
651
652 if (! pending_addrmap)
653 {
654 obstack_init (&pending_addrmap_obstack);
655 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
656 }
657
658 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
659 }
660
661 static struct blockvector *
662 make_blockvector (void)
663 {
664 struct objfile *objfile = buildsym_compunit->objfile;
665 struct pending_block *next;
666 struct blockvector *blockvector;
667 int i;
668
669 /* Count the length of the list of blocks. */
670
671 for (next = pending_blocks, i = 0; next; next = next->next, i++)
672 {;
673 }
674
675 blockvector = (struct blockvector *)
676 obstack_alloc (&objfile->objfile_obstack,
677 (sizeof (struct blockvector)
678 + (i - 1) * sizeof (struct block *)));
679
680 /* Copy the blocks into the blockvector. This is done in reverse
681 order, which happens to put the blocks into the proper order
682 (ascending starting address). finish_block has hair to insert
683 each block into the list after its subblocks in order to make
684 sure this is true. */
685
686 BLOCKVECTOR_NBLOCKS (blockvector) = i;
687 for (next = pending_blocks; next; next = next->next)
688 {
689 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
690 }
691
692 free_pending_blocks ();
693
694 /* If we needed an address map for this symtab, record it in the
695 blockvector. */
696 if (pending_addrmap && pending_addrmap_interesting)
697 BLOCKVECTOR_MAP (blockvector)
698 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
699 else
700 BLOCKVECTOR_MAP (blockvector) = 0;
701
702 /* Some compilers output blocks in the wrong order, but we depend on
703 their being in the right order so we can binary search. Check the
704 order and moan about it.
705 Note: Remember that the first two blocks are the global and static
706 blocks. We could special case that fact and begin checking at block 2.
707 To avoid making that assumption we do not. */
708 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
709 {
710 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
711 {
712 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
713 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
714 {
715 CORE_ADDR start
716 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
717
718 complaint (_("block at %s out of order"),
719 hex_string ((LONGEST) start));
720 }
721 }
722 }
723
724 return (blockvector);
725 }
726 \f
727 /* Start recording information about source code that came from an
728 included (or otherwise merged-in) source file with a different
729 name. NAME is the name of the file (cannot be NULL). */
730
731 void
732 start_subfile (const char *name)
733 {
734 const char *subfile_dirname;
735 struct subfile *subfile;
736
737 gdb_assert (buildsym_compunit != NULL);
738
739 subfile_dirname = buildsym_compunit->comp_dir.get ();
740
741 /* See if this subfile is already registered. */
742
743 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
744 {
745 char *subfile_name;
746
747 /* If NAME is an absolute path, and this subfile is not, then
748 attempt to create an absolute path to compare. */
749 if (IS_ABSOLUTE_PATH (name)
750 && !IS_ABSOLUTE_PATH (subfile->name)
751 && subfile_dirname != NULL)
752 subfile_name = concat (subfile_dirname, SLASH_STRING,
753 subfile->name, (char *) NULL);
754 else
755 subfile_name = subfile->name;
756
757 if (FILENAME_CMP (subfile_name, name) == 0)
758 {
759 current_subfile = subfile;
760 if (subfile_name != subfile->name)
761 xfree (subfile_name);
762 return;
763 }
764 if (subfile_name != subfile->name)
765 xfree (subfile_name);
766 }
767
768 /* This subfile is not known. Add an entry for it. */
769
770 subfile = XNEW (struct subfile);
771 memset (subfile, 0, sizeof (struct subfile));
772 subfile->buildsym_compunit = buildsym_compunit;
773
774 subfile->next = buildsym_compunit->subfiles;
775 buildsym_compunit->subfiles = subfile;
776
777 current_subfile = subfile;
778
779 subfile->name = xstrdup (name);
780
781 /* Initialize line-number recording for this subfile. */
782 subfile->line_vector = NULL;
783
784 /* Default the source language to whatever can be deduced from the
785 filename. If nothing can be deduced (such as for a C/C++ include
786 file with a ".h" extension), then inherit whatever language the
787 previous subfile had. This kludgery is necessary because there
788 is no standard way in some object formats to record the source
789 language. Also, when symtabs are allocated we try to deduce a
790 language then as well, but it is too late for us to use that
791 information while reading symbols, since symtabs aren't allocated
792 until after all the symbols have been processed for a given
793 source file. */
794
795 subfile->language = deduce_language_from_filename (subfile->name);
796 if (subfile->language == language_unknown
797 && subfile->next != NULL)
798 {
799 subfile->language = subfile->next->language;
800 }
801
802 /* If the filename of this subfile ends in .C, then change the
803 language of any pending subfiles from C to C++. We also accept
804 any other C++ suffixes accepted by deduce_language_from_filename. */
805 /* Likewise for f2c. */
806
807 if (subfile->name)
808 {
809 struct subfile *s;
810 enum language sublang = deduce_language_from_filename (subfile->name);
811
812 if (sublang == language_cplus || sublang == language_fortran)
813 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
814 if (s->language == language_c)
815 s->language = sublang;
816 }
817
818 /* And patch up this file if necessary. */
819 if (subfile->language == language_c
820 && subfile->next != NULL
821 && (subfile->next->language == language_cplus
822 || subfile->next->language == language_fortran))
823 {
824 subfile->language = subfile->next->language;
825 }
826 }
827
828 /* Delete the buildsym compunit. */
829
830 static void
831 free_buildsym_compunit (void)
832 {
833 if (buildsym_compunit == NULL)
834 return;
835 delete buildsym_compunit;
836 buildsym_compunit = NULL;
837 current_subfile = NULL;
838 }
839
840 /* For stabs readers, the first N_SO symbol is assumed to be the
841 source file name, and the subfile struct is initialized using that
842 assumption. If another N_SO symbol is later seen, immediately
843 following the first one, then the first one is assumed to be the
844 directory name and the second one is really the source file name.
845
846 So we have to patch up the subfile struct by moving the old name
847 value to dirname and remembering the new name. Some sanity
848 checking is performed to ensure that the state of the subfile
849 struct is reasonable and that the old name we are assuming to be a
850 directory name actually is (by checking for a trailing '/'). */
851
852 void
853 patch_subfile_names (struct subfile *subfile, const char *name)
854 {
855 if (subfile != NULL
856 && buildsym_compunit->comp_dir == NULL
857 && subfile->name != NULL
858 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
859 {
860 buildsym_compunit->comp_dir.reset (subfile->name);
861 subfile->name = xstrdup (name);
862 set_last_source_file (name);
863
864 /* Default the source language to whatever can be deduced from
865 the filename. If nothing can be deduced (such as for a C/C++
866 include file with a ".h" extension), then inherit whatever
867 language the previous subfile had. This kludgery is
868 necessary because there is no standard way in some object
869 formats to record the source language. Also, when symtabs
870 are allocated we try to deduce a language then as well, but
871 it is too late for us to use that information while reading
872 symbols, since symtabs aren't allocated until after all the
873 symbols have been processed for a given source file. */
874
875 subfile->language = deduce_language_from_filename (subfile->name);
876 if (subfile->language == language_unknown
877 && subfile->next != NULL)
878 {
879 subfile->language = subfile->next->language;
880 }
881 }
882 }
883 \f
884 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
885 switching source files (different subfiles, as we call them) within
886 one object file, but using a stack rather than in an arbitrary
887 order. */
888
889 void
890 push_subfile ()
891 {
892 gdb_assert (buildsym_compunit != nullptr);
893 gdb_assert (current_subfile != NULL && current_subfile->name != NULL);
894 buildsym_compunit->m_subfile_stack.push_back (current_subfile->name);
895 }
896
897 const char *
898 pop_subfile ()
899 {
900 gdb_assert (buildsym_compunit != nullptr);
901 gdb_assert (!buildsym_compunit->m_subfile_stack.empty ());
902 const char *name = buildsym_compunit->m_subfile_stack.back ();
903 buildsym_compunit->m_subfile_stack.pop_back ();
904 return name;
905 }
906 \f
907 /* Add a linetable entry for line number LINE and address PC to the
908 line vector for SUBFILE. */
909
910 void
911 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
912 {
913 struct linetable_entry *e;
914
915 /* Ignore the dummy line number in libg.o */
916 if (line == 0xffff)
917 {
918 return;
919 }
920
921 /* Make sure line vector exists and is big enough. */
922 if (!subfile->line_vector)
923 {
924 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
925 subfile->line_vector = (struct linetable *)
926 xmalloc (sizeof (struct linetable)
927 + subfile->line_vector_length * sizeof (struct linetable_entry));
928 subfile->line_vector->nitems = 0;
929 buildsym_compunit->m_have_line_numbers = true;
930 }
931
932 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
933 {
934 subfile->line_vector_length *= 2;
935 subfile->line_vector = (struct linetable *)
936 xrealloc ((char *) subfile->line_vector,
937 (sizeof (struct linetable)
938 + (subfile->line_vector_length
939 * sizeof (struct linetable_entry))));
940 }
941
942 /* Normally, we treat lines as unsorted. But the end of sequence
943 marker is special. We sort line markers at the same PC by line
944 number, so end of sequence markers (which have line == 0) appear
945 first. This is right if the marker ends the previous function,
946 and there is no padding before the next function. But it is
947 wrong if the previous line was empty and we are now marking a
948 switch to a different subfile. We must leave the end of sequence
949 marker at the end of this group of lines, not sort the empty line
950 to after the marker. The easiest way to accomplish this is to
951 delete any empty lines from our table, if they are followed by
952 end of sequence markers. All we lose is the ability to set
953 breakpoints at some lines which contain no instructions
954 anyway. */
955 if (line == 0 && subfile->line_vector->nitems > 0)
956 {
957 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
958 while (subfile->line_vector->nitems > 0 && e->pc == pc)
959 {
960 e--;
961 subfile->line_vector->nitems--;
962 }
963 }
964
965 e = subfile->line_vector->item + subfile->line_vector->nitems++;
966 e->line = line;
967 e->pc = pc;
968 }
969
970 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
971
972 static int
973 compare_line_numbers (const void *ln1p, const void *ln2p)
974 {
975 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
976 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
977
978 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
979 Please keep it that way. */
980 if (ln1->pc < ln2->pc)
981 return -1;
982
983 if (ln1->pc > ln2->pc)
984 return 1;
985
986 /* If pc equal, sort by line. I'm not sure whether this is optimum
987 behavior (see comment at struct linetable in symtab.h). */
988 return ln1->line - ln2->line;
989 }
990 \f
991 /* See buildsym.h. */
992
993 struct compunit_symtab *
994 buildsym_compunit_symtab (void)
995 {
996 gdb_assert (buildsym_compunit != NULL);
997
998 return buildsym_compunit->compunit_symtab;
999 }
1000
1001 /* See buildsym.h. */
1002
1003 struct macro_table *
1004 get_macro_table (void)
1005 {
1006 struct objfile *objfile;
1007
1008 gdb_assert (buildsym_compunit != NULL);
1009 return buildsym_compunit->get_macro_table ();
1010 }
1011 \f
1012 /* Init state to prepare for building a symtab.
1013 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1014 can call start_symtab+end_symtab multiple times after one call to
1015 buildsym_init. */
1016
1017 static void
1018 prepare_for_building ()
1019 {
1020 local_symbols = NULL;
1021 local_using_directives = NULL;
1022
1023 context_stack_depth = 0;
1024
1025 /* These should have been reset either by successful completion of building
1026 a symtab, or by the scoped_free_pendings destructor. */
1027 gdb_assert (file_symbols == NULL);
1028 gdb_assert (global_symbols == NULL);
1029 gdb_assert (global_using_directives == NULL);
1030 gdb_assert (pending_addrmap == NULL);
1031 gdb_assert (current_subfile == NULL);
1032 gdb_assert (buildsym_compunit == nullptr);
1033 }
1034
1035 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1036 when a stabs symbol of type N_SO is seen, or when a DWARF
1037 TAG_compile_unit DIE is seen. It indicates the start of data for
1038 one original source file.
1039
1040 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1041 directory in which the file was compiled (or NULL if not known).
1042 START_ADDR is the lowest address of objects in the file (or 0 if
1043 not known). LANGUAGE is the language of the source file, or
1044 language_unknown if not known, in which case it'll be deduced from
1045 the filename. */
1046
1047 struct compunit_symtab *
1048 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1049 CORE_ADDR start_addr, enum language language)
1050 {
1051 prepare_for_building ();
1052
1053 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1054 language, start_addr);
1055
1056 /* Allocate the compunit symtab now. The caller needs it to allocate
1057 non-primary symtabs. It is also needed by get_macro_table. */
1058 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1059 name);
1060
1061 /* Build the subfile for NAME (the main source file) so that we can record
1062 a pointer to it for later.
1063 IMPORTANT: Do not allocate a struct symtab for NAME here.
1064 It can happen that the debug info provides a different path to NAME than
1065 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1066 that only works if the main_subfile doesn't have a symtab yet. */
1067 start_subfile (name);
1068 /* Save this so that we don't have to go looking for it at the end
1069 of the subfiles list. */
1070 buildsym_compunit->main_subfile = current_subfile;
1071
1072 return buildsym_compunit->compunit_symtab;
1073 }
1074
1075 /* Restart compilation for a symtab.
1076 CUST is the result of end_expandable_symtab.
1077 NAME, START_ADDR are the source file we are resuming with.
1078
1079 This is used when a symtab is built from multiple sources.
1080 The symtab is first built with start_symtab/end_expandable_symtab
1081 and then for each additional piece call restart_symtab/augment_*_symtab.
1082 Note: At the moment there is only augment_type_symtab. */
1083
1084 void
1085 restart_symtab (struct compunit_symtab *cust,
1086 const char *name, CORE_ADDR start_addr)
1087 {
1088 prepare_for_building ();
1089
1090 buildsym_compunit
1091 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1092 name,
1093 COMPUNIT_DIRNAME (cust),
1094 compunit_language (cust),
1095 start_addr);
1096 buildsym_compunit->compunit_symtab = cust;
1097 }
1098
1099 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1100 matches the main source file's basename. If there is only one, and
1101 if the main source file doesn't have any symbol or line number
1102 information, then copy this file's symtab and line_vector to the
1103 main source file's subfile and discard the other subfile. This can
1104 happen because of a compiler bug or from the user playing games
1105 with #line or from things like a distributed build system that
1106 manipulates the debug info. This can also happen from an innocent
1107 symlink in the paths, we don't canonicalize paths here. */
1108
1109 static void
1110 watch_main_source_file_lossage (void)
1111 {
1112 struct subfile *mainsub, *subfile;
1113
1114 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1115 end_symtab, it can return NULL so there may not be a main subfile. */
1116 if (buildsym_compunit == NULL)
1117 return;
1118
1119 /* Get the main source file. */
1120 mainsub = buildsym_compunit->main_subfile;
1121
1122 /* If the main source file doesn't have any line number or symbol
1123 info, look for an alias in another subfile. */
1124
1125 if (mainsub->line_vector == NULL
1126 && mainsub->symtab == NULL)
1127 {
1128 const char *mainbase = lbasename (mainsub->name);
1129 int nr_matches = 0;
1130 struct subfile *prevsub;
1131 struct subfile *mainsub_alias = NULL;
1132 struct subfile *prev_mainsub_alias = NULL;
1133
1134 prevsub = NULL;
1135 for (subfile = buildsym_compunit->subfiles;
1136 subfile != NULL;
1137 subfile = subfile->next)
1138 {
1139 if (subfile == mainsub)
1140 continue;
1141 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1142 {
1143 ++nr_matches;
1144 mainsub_alias = subfile;
1145 prev_mainsub_alias = prevsub;
1146 }
1147 prevsub = subfile;
1148 }
1149
1150 if (nr_matches == 1)
1151 {
1152 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1153
1154 /* Found a match for the main source file.
1155 Copy its line_vector and symtab to the main subfile
1156 and then discard it. */
1157
1158 mainsub->line_vector = mainsub_alias->line_vector;
1159 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1160 mainsub->symtab = mainsub_alias->symtab;
1161
1162 if (prev_mainsub_alias == NULL)
1163 buildsym_compunit->subfiles = mainsub_alias->next;
1164 else
1165 prev_mainsub_alias->next = mainsub_alias->next;
1166 xfree (mainsub_alias->name);
1167 xfree (mainsub_alias);
1168 }
1169 }
1170 }
1171
1172 /* Reset state after a successful building of a symtab.
1173 This exists because dbxread.c and xcoffread.c can call
1174 start_symtab+end_symtab multiple times after one call to buildsym_init,
1175 and before the scoped_free_pendings destructor is called.
1176 We keep the free_pendings list around for dbx/xcoff sake. */
1177
1178 static void
1179 reset_symtab_globals (void)
1180 {
1181 local_symbols = NULL;
1182 local_using_directives = NULL;
1183 file_symbols = NULL;
1184 global_symbols = NULL;
1185 global_using_directives = NULL;
1186
1187 if (pending_addrmap)
1188 obstack_free (&pending_addrmap_obstack, NULL);
1189 pending_addrmap = NULL;
1190
1191 free_buildsym_compunit ();
1192 }
1193
1194 /* Implementation of the first part of end_symtab. It allows modifying
1195 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1196 If the returned value is NULL there is no blockvector created for
1197 this symtab (you still must call end_symtab_from_static_block).
1198
1199 END_ADDR is the same as for end_symtab: the address of the end of the
1200 file's text.
1201
1202 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1203 expandable.
1204
1205 If REQUIRED is non-zero, then a symtab is created even if it does
1206 not contain any symbols. */
1207
1208 struct block *
1209 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1210 {
1211 struct objfile *objfile = buildsym_compunit->objfile;
1212
1213 /* Finish the lexical context of the last function in the file; pop
1214 the context stack. */
1215
1216 if (context_stack_depth > 0)
1217 {
1218 struct context_stack *cstk = pop_context ();
1219
1220 /* Make a block for the local symbols within. */
1221 finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
1222 cstk->start_addr, end_addr);
1223
1224 if (context_stack_depth > 0)
1225 {
1226 /* This is said to happen with SCO. The old coffread.c
1227 code simply emptied the context stack, so we do the
1228 same. FIXME: Find out why it is happening. This is not
1229 believed to happen in most cases (even for coffread.c);
1230 it used to be an abort(). */
1231 complaint (_("Context stack not empty in end_symtab"));
1232 context_stack_depth = 0;
1233 }
1234 }
1235
1236 /* Reordered executables may have out of order pending blocks; if
1237 OBJF_REORDERED is true, then sort the pending blocks. */
1238
1239 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1240 {
1241 struct pending_block *pb;
1242
1243 std::vector<block *> barray;
1244
1245 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1246 barray.push_back (pb->block);
1247
1248 /* Sort blocks by start address in descending order. Blocks with the
1249 same start address must remain in the original order to preserve
1250 inline function caller/callee relationships. */
1251 std::stable_sort (barray.begin (), barray.end (),
1252 [] (const block *a, const block *b)
1253 {
1254 return BLOCK_START (a) > BLOCK_START (b);
1255 });
1256
1257 int i = 0;
1258 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1259 pb->block = barray[i++];
1260 }
1261
1262 /* Cleanup any undefined types that have been left hanging around
1263 (this needs to be done before the finish_blocks so that
1264 file_symbols is still good).
1265
1266 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1267 specific, but harmless for other symbol readers, since on gdb
1268 startup or when finished reading stabs, the state is set so these
1269 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1270 we make this cleaner? */
1271
1272 cleanup_undefined_stabs_types (objfile);
1273 finish_global_stabs (objfile);
1274
1275 if (!required
1276 && pending_blocks == NULL
1277 && file_symbols == NULL
1278 && global_symbols == NULL
1279 && !buildsym_compunit->m_have_line_numbers
1280 && buildsym_compunit->m_pending_macros == NULL
1281 && global_using_directives == NULL)
1282 {
1283 /* Ignore symtabs that have no functions with real debugging info. */
1284 return NULL;
1285 }
1286 else
1287 {
1288 /* Define the STATIC_BLOCK. */
1289 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1290 buildsym_compunit->m_last_source_start_addr,
1291 end_addr, 0, expandable);
1292 }
1293 }
1294
1295 /* Subroutine of end_symtab_from_static_block to simplify it.
1296 Handle the "have blockvector" case.
1297 See end_symtab_from_static_block for a description of the arguments. */
1298
1299 static struct compunit_symtab *
1300 end_symtab_with_blockvector (struct block *static_block,
1301 int section, int expandable)
1302 {
1303 struct objfile *objfile = buildsym_compunit->objfile;
1304 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1305 struct symtab *symtab;
1306 struct blockvector *blockvector;
1307 struct subfile *subfile;
1308 CORE_ADDR end_addr;
1309
1310 gdb_assert (static_block != NULL);
1311 gdb_assert (buildsym_compunit != NULL);
1312 gdb_assert (buildsym_compunit->subfiles != NULL);
1313
1314 end_addr = BLOCK_END (static_block);
1315
1316 /* Create the GLOBAL_BLOCK and build the blockvector. */
1317 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1318 buildsym_compunit->m_last_source_start_addr, end_addr,
1319 1, expandable);
1320 blockvector = make_blockvector ();
1321
1322 /* Read the line table if it has to be read separately.
1323 This is only used by xcoffread.c. */
1324 if (objfile->sf->sym_read_linetable != NULL)
1325 objfile->sf->sym_read_linetable (objfile);
1326
1327 /* Handle the case where the debug info specifies a different path
1328 for the main source file. It can cause us to lose track of its
1329 line number information. */
1330 watch_main_source_file_lossage ();
1331
1332 /* Now create the symtab objects proper, if not already done,
1333 one for each subfile. */
1334
1335 for (subfile = buildsym_compunit->subfiles;
1336 subfile != NULL;
1337 subfile = subfile->next)
1338 {
1339 int linetablesize = 0;
1340
1341 if (subfile->line_vector)
1342 {
1343 linetablesize = sizeof (struct linetable) +
1344 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1345
1346 /* Like the pending blocks, the line table may be
1347 scrambled in reordered executables. Sort it if
1348 OBJF_REORDERED is true. */
1349 if (objfile->flags & OBJF_REORDERED)
1350 qsort (subfile->line_vector->item,
1351 subfile->line_vector->nitems,
1352 sizeof (struct linetable_entry), compare_line_numbers);
1353 }
1354
1355 /* Allocate a symbol table if necessary. */
1356 if (subfile->symtab == NULL)
1357 subfile->symtab = allocate_symtab (cu, subfile->name);
1358 symtab = subfile->symtab;
1359
1360 /* Fill in its components. */
1361
1362 if (subfile->line_vector)
1363 {
1364 /* Reallocate the line table on the symbol obstack. */
1365 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1366 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1367 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1368 linetablesize);
1369 }
1370 else
1371 {
1372 SYMTAB_LINETABLE (symtab) = NULL;
1373 }
1374
1375 /* Use whatever language we have been using for this
1376 subfile, not the one that was deduced in allocate_symtab
1377 from the filename. We already did our own deducing when
1378 we created the subfile, and we may have altered our
1379 opinion of what language it is from things we found in
1380 the symbols. */
1381 symtab->language = subfile->language;
1382 }
1383
1384 /* Make sure the symtab of main_subfile is the first in its list. */
1385 {
1386 struct symtab *main_symtab, *prev_symtab;
1387
1388 main_symtab = buildsym_compunit->main_subfile->symtab;
1389 prev_symtab = NULL;
1390 ALL_COMPUNIT_FILETABS (cu, symtab)
1391 {
1392 if (symtab == main_symtab)
1393 {
1394 if (prev_symtab != NULL)
1395 {
1396 prev_symtab->next = main_symtab->next;
1397 main_symtab->next = COMPUNIT_FILETABS (cu);
1398 COMPUNIT_FILETABS (cu) = main_symtab;
1399 }
1400 break;
1401 }
1402 prev_symtab = symtab;
1403 }
1404 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1405 }
1406
1407 /* Fill out the compunit symtab. */
1408
1409 if (buildsym_compunit->comp_dir != NULL)
1410 {
1411 /* Reallocate the dirname on the symbol obstack. */
1412 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1413 COMPUNIT_DIRNAME (cu)
1414 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1415 comp_dir, strlen (comp_dir));
1416 }
1417
1418 /* Save the debug format string (if any) in the symtab. */
1419 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1420
1421 /* Similarly for the producer. */
1422 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1423
1424 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1425 {
1426 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1427
1428 set_block_compunit_symtab (b, cu);
1429 }
1430
1431 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1432
1433 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1434
1435 /* Default any symbols without a specified symtab to the primary symtab. */
1436 {
1437 int block_i;
1438
1439 /* The main source file's symtab. */
1440 symtab = COMPUNIT_FILETABS (cu);
1441
1442 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1443 {
1444 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1445 struct symbol *sym;
1446 struct dict_iterator iter;
1447
1448 /* Inlined functions may have symbols not in the global or
1449 static symbol lists. */
1450 if (BLOCK_FUNCTION (block) != NULL)
1451 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1452 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1453
1454 /* Note that we only want to fix up symbols from the local
1455 blocks, not blocks coming from included symtabs. That is why
1456 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1457 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1458 if (symbol_symtab (sym) == NULL)
1459 symbol_set_symtab (sym, symtab);
1460 }
1461 }
1462
1463 add_compunit_symtab_to_objfile (cu);
1464
1465 return cu;
1466 }
1467
1468 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1469 as value returned by end_symtab_get_static_block.
1470
1471 SECTION is the same as for end_symtab: the section number
1472 (in objfile->section_offsets) of the blockvector and linetable.
1473
1474 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1475 expandable. */
1476
1477 struct compunit_symtab *
1478 end_symtab_from_static_block (struct block *static_block,
1479 int section, int expandable)
1480 {
1481 struct compunit_symtab *cu;
1482
1483 if (static_block == NULL)
1484 {
1485 /* Handle the "no blockvector" case.
1486 When this happens there is nothing to record, so there's nothing
1487 to do: memory will be freed up later.
1488
1489 Note: We won't be adding a compunit to the objfile's list of
1490 compunits, so there's nothing to unchain. However, since each symtab
1491 is added to the objfile's obstack we can't free that space.
1492 We could do better, but this is believed to be a sufficiently rare
1493 event. */
1494 cu = NULL;
1495 }
1496 else
1497 cu = end_symtab_with_blockvector (static_block, section, expandable);
1498
1499 reset_symtab_globals ();
1500
1501 return cu;
1502 }
1503
1504 /* Finish the symbol definitions for one main source file, close off
1505 all the lexical contexts for that file (creating struct block's for
1506 them), then make the struct symtab for that file and put it in the
1507 list of all such.
1508
1509 END_ADDR is the address of the end of the file's text. SECTION is
1510 the section number (in objfile->section_offsets) of the blockvector
1511 and linetable.
1512
1513 Note that it is possible for end_symtab() to return NULL. In
1514 particular, for the DWARF case at least, it will return NULL when
1515 it finds a compilation unit that has exactly one DIE, a
1516 TAG_compile_unit DIE. This can happen when we link in an object
1517 file that was compiled from an empty source file. Returning NULL
1518 is probably not the correct thing to do, because then gdb will
1519 never know about this empty file (FIXME).
1520
1521 If you need to modify STATIC_BLOCK before it is finalized you should
1522 call end_symtab_get_static_block and end_symtab_from_static_block
1523 yourself. */
1524
1525 struct compunit_symtab *
1526 end_symtab (CORE_ADDR end_addr, int section)
1527 {
1528 struct block *static_block;
1529
1530 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1531 return end_symtab_from_static_block (static_block, section, 0);
1532 }
1533
1534 /* Same as end_symtab except create a symtab that can be later added to. */
1535
1536 struct compunit_symtab *
1537 end_expandable_symtab (CORE_ADDR end_addr, int section)
1538 {
1539 struct block *static_block;
1540
1541 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1542 return end_symtab_from_static_block (static_block, section, 1);
1543 }
1544
1545 /* Subroutine of augment_type_symtab to simplify it.
1546 Attach the main source file's symtab to all symbols in PENDING_LIST that
1547 don't have one. */
1548
1549 static void
1550 set_missing_symtab (struct pending *pending_list,
1551 struct compunit_symtab *cu)
1552 {
1553 struct pending *pending;
1554 int i;
1555
1556 for (pending = pending_list; pending != NULL; pending = pending->next)
1557 {
1558 for (i = 0; i < pending->nsyms; ++i)
1559 {
1560 if (symbol_symtab (pending->symbol[i]) == NULL)
1561 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1562 }
1563 }
1564 }
1565
1566 /* Same as end_symtab, but for the case where we're adding more symbols
1567 to an existing symtab that is known to contain only type information.
1568 This is the case for DWARF4 Type Units. */
1569
1570 void
1571 augment_type_symtab (void)
1572 {
1573 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1574 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1575
1576 if (context_stack_depth > 0)
1577 {
1578 complaint (_("Context stack not empty in augment_type_symtab"));
1579 context_stack_depth = 0;
1580 }
1581 if (pending_blocks != NULL)
1582 complaint (_("Blocks in a type symtab"));
1583 if (buildsym_compunit->m_pending_macros != NULL)
1584 complaint (_("Macro in a type symtab"));
1585 if (buildsym_compunit->m_have_line_numbers)
1586 complaint (_("Line numbers recorded in a type symtab"));
1587
1588 if (file_symbols != NULL)
1589 {
1590 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1591
1592 /* First mark any symbols without a specified symtab as belonging
1593 to the primary symtab. */
1594 set_missing_symtab (file_symbols, cust);
1595
1596 dict_add_pending (BLOCK_DICT (block), file_symbols);
1597 }
1598
1599 if (global_symbols != NULL)
1600 {
1601 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1602
1603 /* First mark any symbols without a specified symtab as belonging
1604 to the primary symtab. */
1605 set_missing_symtab (global_symbols, cust);
1606
1607 dict_add_pending (BLOCK_DICT (block), global_symbols);
1608 }
1609
1610 reset_symtab_globals ();
1611 }
1612
1613 /* Push a context block. Args are an identifying nesting level
1614 (checkable when you pop it), and the starting PC address of this
1615 context. */
1616
1617 struct context_stack *
1618 push_context (int desc, CORE_ADDR valu)
1619 {
1620 struct context_stack *newobj;
1621
1622 if (context_stack_depth == context_stack_size)
1623 {
1624 context_stack_size *= 2;
1625 context_stack = (struct context_stack *)
1626 xrealloc ((char *) context_stack,
1627 (context_stack_size * sizeof (struct context_stack)));
1628 }
1629
1630 newobj = &context_stack[context_stack_depth++];
1631 newobj->depth = desc;
1632 newobj->locals = local_symbols;
1633 newobj->old_blocks = pending_blocks;
1634 newobj->start_addr = valu;
1635 newobj->local_using_directives = local_using_directives;
1636 newobj->name = NULL;
1637
1638 local_symbols = NULL;
1639 local_using_directives = NULL;
1640
1641 return newobj;
1642 }
1643
1644 /* Pop a context block. Returns the address of the context block just
1645 popped. */
1646
1647 struct context_stack *
1648 pop_context (void)
1649 {
1650 gdb_assert (context_stack_depth > 0);
1651 return (&context_stack[--context_stack_depth]);
1652 }
1653
1654 \f
1655
1656 void
1657 record_debugformat (const char *format)
1658 {
1659 buildsym_compunit->debugformat = format;
1660 }
1661
1662 void
1663 record_producer (const char *producer)
1664 {
1665 buildsym_compunit->producer = producer;
1666 }
1667
1668 \f
1669
1670 /* See buildsym.h. */
1671
1672 void
1673 set_last_source_file (const char *name)
1674 {
1675 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1676 if (buildsym_compunit != nullptr)
1677 buildsym_compunit->set_last_source_file (name);
1678 }
1679
1680 /* See buildsym.h. */
1681
1682 const char *
1683 get_last_source_file (void)
1684 {
1685 if (buildsym_compunit == nullptr)
1686 return nullptr;
1687 return buildsym_compunit->m_last_source_file.get ();
1688 }
1689
1690 /* See buildsym.h. */
1691
1692 void
1693 set_last_source_start_addr (CORE_ADDR addr)
1694 {
1695 gdb_assert (buildsym_compunit != nullptr);
1696 buildsym_compunit->m_last_source_start_addr = addr;
1697 }
1698
1699 /* See buildsym.h. */
1700
1701 CORE_ADDR
1702 get_last_source_start_addr ()
1703 {
1704 gdb_assert (buildsym_compunit != nullptr);
1705 return buildsym_compunit->m_last_source_start_addr;
1706 }
1707
1708 \f
1709
1710 /* Initialize anything that needs initializing when starting to read a
1711 fresh piece of a symbol file, e.g. reading in the stuff
1712 corresponding to a psymtab. */
1713
1714 void
1715 buildsym_init ()
1716 {
1717 pending_addrmap_interesting = 0;
1718
1719 /* Context stack is initially empty. Allocate first one with room
1720 for a few levels; reuse it forever afterward. */
1721 if (context_stack == NULL)
1722 {
1723 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
1724 context_stack = XNEWVEC (struct context_stack, context_stack_size);
1725 }
1726
1727 /* Ensure the scoped_free_pendings destructor was called after
1728 the last time. */
1729 gdb_assert (free_pendings == NULL);
1730 gdb_assert (pending_blocks == NULL);
1731 gdb_assert (file_symbols == NULL);
1732 gdb_assert (global_symbols == NULL);
1733 gdb_assert (global_using_directives == NULL);
1734 gdb_assert (pending_addrmap == NULL);
1735 gdb_assert (buildsym_compunit == NULL);
1736 }
This page took 0.115613 seconds and 5 git commands to generate.