Move the subfile stack to buildsym_compunit
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "filenames.h" /* For DOSish file names. */
78 #include "macrotab.h"
79 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
80 #include "block.h"
81 #include "cp-support.h"
82 #include "dictionary.h"
83 #include "addrmap.h"
84 #include <algorithm>
85
86 /* Ask buildsym.h to define the vars it normally declares `extern'. */
87 #define EXTERN
88 /**/
89 #include "buildsym.h" /* Our own declarations. */
90 #undef EXTERN
91
92 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
93 questionable--see comment where we call them). */
94
95 #include "stabsread.h"
96
97 /* Buildsym's counterpart to struct compunit_symtab.
98 TODO(dje): Move all related global state into here. */
99
100 struct buildsym_compunit
101 {
102 /* Start recording information about a primary source file (IOW, not an
103 included source file).
104 COMP_DIR is the directory in which the compilation unit was compiled
105 (or NULL if not known). */
106
107 buildsym_compunit (struct objfile *objfile_, const char *name,
108 const char *comp_dir_, enum language language_,
109 CORE_ADDR last_addr)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_),
114 m_last_source_start_addr (last_addr)
115 {
116 }
117
118 ~buildsym_compunit ()
119 {
120 struct subfile *subfile, *nextsub;
121
122 if (m_pending_macros != nullptr)
123 free_macro_table (m_pending_macros);
124
125 for (subfile = subfiles;
126 subfile != NULL;
127 subfile = nextsub)
128 {
129 nextsub = subfile->next;
130 xfree (subfile->name);
131 xfree (subfile->line_vector);
132 xfree (subfile);
133 }
134 }
135
136 void set_last_source_file (const char *name)
137 {
138 char *new_name = name == NULL ? NULL : xstrdup (name);
139 m_last_source_file.reset (new_name);
140 }
141
142 struct macro_table *get_macro_table ()
143 {
144 if (m_pending_macros == nullptr)
145 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
146 objfile->per_bfd->macro_cache,
147 compunit_symtab);
148 return m_pending_macros;
149 }
150
151 struct macro_table *release_macros ()
152 {
153 struct macro_table *result = m_pending_macros;
154 m_pending_macros = nullptr;
155 return result;
156 }
157
158 /* The objfile we're reading debug info from. */
159 struct objfile *objfile;
160
161 /* List of subfiles (source files).
162 Files are added to the front of the list.
163 This is important mostly for the language determination hacks we use,
164 which iterate over previously added files. */
165 struct subfile *subfiles = nullptr;
166
167 /* The subfile of the main source file. */
168 struct subfile *main_subfile = nullptr;
169
170 /* Name of source file whose symbol data we are now processing. This
171 comes from a symbol of type N_SO for stabs. For DWARF it comes
172 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
173 gdb::unique_xmalloc_ptr<char> m_last_source_file;
174
175 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
176 gdb::unique_xmalloc_ptr<char> comp_dir;
177
178 /* Space for this is not malloc'd, and is assumed to have at least
179 the same lifetime as objfile. */
180 const char *producer = nullptr;
181
182 /* Space for this is not malloc'd, and is assumed to have at least
183 the same lifetime as objfile. */
184 const char *debugformat = nullptr;
185
186 /* The compunit we are building. */
187 struct compunit_symtab *compunit_symtab = nullptr;
188
189 /* Language of this compunit_symtab. */
190 enum language language;
191
192 /* The macro table for the compilation unit whose symbols we're
193 currently reading. */
194 struct macro_table *m_pending_macros = nullptr;
195
196 /* True if symtab has line number info. This prevents an otherwise
197 empty symtab from being tossed. */
198 bool m_have_line_numbers = false;
199
200 /* Core address of start of text of current source file. This too
201 comes from the N_SO symbol. For Dwarf it typically comes from the
202 DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
203 CORE_ADDR m_last_source_start_addr;
204
205 /* Stack of subfile names. */
206 std::vector<const char *> m_subfile_stack;
207 };
208
209 /* The work-in-progress of the compunit we are building.
210 This is created first, before any subfiles by start_symtab. */
211
212 static struct buildsym_compunit *buildsym_compunit;
213
214 /* List of free `struct pending' structures for reuse. */
215
216 static struct pending *free_pendings;
217
218 /* The mutable address map for the compilation unit whose symbols
219 we're currently reading. The symtabs' shared blockvector will
220 point to a fixed copy of this. */
221 static struct addrmap *pending_addrmap;
222
223 /* The obstack on which we allocate pending_addrmap.
224 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
225 initialized (and holds pending_addrmap). */
226 static struct obstack pending_addrmap_obstack;
227
228 /* Non-zero if we recorded any ranges in the addrmap that are
229 different from those in the blockvector already. We set this to
230 zero when we start processing a symfile, and if it's still zero at
231 the end, then we just toss the addrmap. */
232 static int pending_addrmap_interesting;
233
234 /* An obstack used for allocating pending blocks. */
235
236 static struct obstack pending_block_obstack;
237
238 /* List of blocks already made (lexical contexts already closed).
239 This is used at the end to make the blockvector. */
240
241 struct pending_block
242 {
243 struct pending_block *next;
244 struct block *block;
245 };
246
247 /* Pointer to the head of a linked list of symbol blocks which have
248 already been finalized (lexical contexts already closed) and which
249 are just waiting to be built into a blockvector when finalizing the
250 associated symtab. */
251
252 static struct pending_block *pending_blocks;
253
254 /* Currently allocated size of context stack. */
255
256 static int context_stack_size;
257
258 static void free_buildsym_compunit (void);
259
260 static int compare_line_numbers (const void *ln1p, const void *ln2p);
261
262 static void record_pending_block (struct objfile *objfile,
263 struct block *block,
264 struct pending_block *opblock);
265
266 /* Initial sizes of data structures. These are realloc'd larger if
267 needed, and realloc'd down to the size actually used, when
268 completed. */
269
270 #define INITIAL_CONTEXT_STACK_SIZE 10
271 #define INITIAL_LINE_VECTOR_LENGTH 1000
272 \f
273
274 /* Maintain the lists of symbols and blocks. */
275
276 /* Add a symbol to one of the lists of symbols. */
277
278 void
279 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
280 {
281 struct pending *link;
282
283 /* If this is an alias for another symbol, don't add it. */
284 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
285 return;
286
287 /* We keep PENDINGSIZE symbols in each link of the list. If we
288 don't have a link with room in it, add a new link. */
289 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
290 {
291 if (free_pendings)
292 {
293 link = free_pendings;
294 free_pendings = link->next;
295 }
296 else
297 {
298 link = XNEW (struct pending);
299 }
300
301 link->next = *listhead;
302 *listhead = link;
303 link->nsyms = 0;
304 }
305
306 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
307 }
308
309 /* Find a symbol named NAME on a LIST. NAME need not be
310 '\0'-terminated; LENGTH is the length of the name. */
311
312 struct symbol *
313 find_symbol_in_list (struct pending *list, char *name, int length)
314 {
315 int j;
316 const char *pp;
317
318 while (list != NULL)
319 {
320 for (j = list->nsyms; --j >= 0;)
321 {
322 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
323 if (*pp == *name && strncmp (pp, name, length) == 0
324 && pp[length] == '\0')
325 {
326 return (list->symbol[j]);
327 }
328 }
329 list = list->next;
330 }
331 return (NULL);
332 }
333
334 /* At end of reading syms, or in case of quit, ensure everything
335 associated with building symtabs is freed.
336
337 N.B. This is *not* intended to be used when building psymtabs. Some debug
338 info readers call this anyway, which is harmless if confusing. */
339
340 scoped_free_pendings::~scoped_free_pendings ()
341 {
342 struct pending *next, *next1;
343
344 for (next = free_pendings; next; next = next1)
345 {
346 next1 = next->next;
347 xfree ((void *) next);
348 }
349 free_pendings = NULL;
350
351 free_pending_blocks ();
352
353 for (next = file_symbols; next != NULL; next = next1)
354 {
355 next1 = next->next;
356 xfree ((void *) next);
357 }
358 file_symbols = NULL;
359
360 for (next = global_symbols; next != NULL; next = next1)
361 {
362 next1 = next->next;
363 xfree ((void *) next);
364 }
365 global_symbols = NULL;
366
367 if (pending_addrmap)
368 obstack_free (&pending_addrmap_obstack, NULL);
369 pending_addrmap = NULL;
370
371 free_buildsym_compunit ();
372 }
373
374 /* This function is called to discard any pending blocks. */
375
376 void
377 free_pending_blocks (void)
378 {
379 if (pending_blocks != NULL)
380 {
381 obstack_free (&pending_block_obstack, NULL);
382 pending_blocks = NULL;
383 }
384 }
385
386 /* Take one of the lists of symbols and make a block from it. Keep
387 the order the symbols have in the list (reversed from the input
388 file). Put the block on the list of pending blocks. */
389
390 static struct block *
391 finish_block_internal (struct symbol *symbol,
392 struct pending **listhead,
393 struct pending_block *old_blocks,
394 const struct dynamic_prop *static_link,
395 CORE_ADDR start, CORE_ADDR end,
396 int is_global, int expandable)
397 {
398 struct objfile *objfile = buildsym_compunit->objfile;
399 struct gdbarch *gdbarch = get_objfile_arch (objfile);
400 struct pending *next, *next1;
401 struct block *block;
402 struct pending_block *pblock;
403 struct pending_block *opblock;
404
405 block = (is_global
406 ? allocate_global_block (&objfile->objfile_obstack)
407 : allocate_block (&objfile->objfile_obstack));
408
409 if (symbol)
410 {
411 BLOCK_DICT (block)
412 = dict_create_linear (&objfile->objfile_obstack,
413 buildsym_compunit->language, *listhead);
414 }
415 else
416 {
417 if (expandable)
418 {
419 BLOCK_DICT (block)
420 = dict_create_hashed_expandable (buildsym_compunit->language);
421 dict_add_pending (BLOCK_DICT (block), *listhead);
422 }
423 else
424 {
425 BLOCK_DICT (block) =
426 dict_create_hashed (&objfile->objfile_obstack,
427 buildsym_compunit->language, *listhead);
428 }
429 }
430
431 BLOCK_START (block) = start;
432 BLOCK_END (block) = end;
433
434 /* Put the block in as the value of the symbol that names it. */
435
436 if (symbol)
437 {
438 struct type *ftype = SYMBOL_TYPE (symbol);
439 struct dict_iterator iter;
440 SYMBOL_BLOCK_VALUE (symbol) = block;
441 BLOCK_FUNCTION (block) = symbol;
442
443 if (TYPE_NFIELDS (ftype) <= 0)
444 {
445 /* No parameter type information is recorded with the
446 function's type. Set that from the type of the
447 parameter symbols. */
448 int nparams = 0, iparams;
449 struct symbol *sym;
450
451 /* Here we want to directly access the dictionary, because
452 we haven't fully initialized the block yet. */
453 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
454 {
455 if (SYMBOL_IS_ARGUMENT (sym))
456 nparams++;
457 }
458 if (nparams > 0)
459 {
460 TYPE_NFIELDS (ftype) = nparams;
461 TYPE_FIELDS (ftype) = (struct field *)
462 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
463
464 iparams = 0;
465 /* Here we want to directly access the dictionary, because
466 we haven't fully initialized the block yet. */
467 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
468 {
469 if (iparams == nparams)
470 break;
471
472 if (SYMBOL_IS_ARGUMENT (sym))
473 {
474 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
475 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
476 iparams++;
477 }
478 }
479 }
480 }
481 }
482 else
483 {
484 BLOCK_FUNCTION (block) = NULL;
485 }
486
487 if (static_link != NULL)
488 objfile_register_static_link (objfile, block, static_link);
489
490 /* Now "free" the links of the list, and empty the list. */
491
492 for (next = *listhead; next; next = next1)
493 {
494 next1 = next->next;
495 next->next = free_pendings;
496 free_pendings = next;
497 }
498 *listhead = NULL;
499
500 /* Check to be sure that the blocks have an end address that is
501 greater than starting address. */
502
503 if (BLOCK_END (block) < BLOCK_START (block))
504 {
505 if (symbol)
506 {
507 complaint (_("block end address less than block "
508 "start address in %s (patched it)"),
509 SYMBOL_PRINT_NAME (symbol));
510 }
511 else
512 {
513 complaint (_("block end address %s less than block "
514 "start address %s (patched it)"),
515 paddress (gdbarch, BLOCK_END (block)),
516 paddress (gdbarch, BLOCK_START (block)));
517 }
518 /* Better than nothing. */
519 BLOCK_END (block) = BLOCK_START (block);
520 }
521
522 /* Install this block as the superblock of all blocks made since the
523 start of this scope that don't have superblocks yet. */
524
525 opblock = NULL;
526 for (pblock = pending_blocks;
527 pblock && pblock != old_blocks;
528 pblock = pblock->next)
529 {
530 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
531 {
532 /* Check to be sure the blocks are nested as we receive
533 them. If the compiler/assembler/linker work, this just
534 burns a small amount of time.
535
536 Skip blocks which correspond to a function; they're not
537 physically nested inside this other blocks, only
538 lexically nested. */
539 if (BLOCK_FUNCTION (pblock->block) == NULL
540 && (BLOCK_START (pblock->block) < BLOCK_START (block)
541 || BLOCK_END (pblock->block) > BLOCK_END (block)))
542 {
543 if (symbol)
544 {
545 complaint (_("inner block not inside outer block in %s"),
546 SYMBOL_PRINT_NAME (symbol));
547 }
548 else
549 {
550 complaint (_("inner block (%s-%s) not "
551 "inside outer block (%s-%s)"),
552 paddress (gdbarch, BLOCK_START (pblock->block)),
553 paddress (gdbarch, BLOCK_END (pblock->block)),
554 paddress (gdbarch, BLOCK_START (block)),
555 paddress (gdbarch, BLOCK_END (block)));
556 }
557 if (BLOCK_START (pblock->block) < BLOCK_START (block))
558 BLOCK_START (pblock->block) = BLOCK_START (block);
559 if (BLOCK_END (pblock->block) > BLOCK_END (block))
560 BLOCK_END (pblock->block) = BLOCK_END (block);
561 }
562 BLOCK_SUPERBLOCK (pblock->block) = block;
563 }
564 opblock = pblock;
565 }
566
567 block_set_using (block,
568 (is_global
569 ? global_using_directives
570 : local_using_directives),
571 &objfile->objfile_obstack);
572 if (is_global)
573 global_using_directives = NULL;
574 else
575 local_using_directives = NULL;
576
577 record_pending_block (objfile, block, opblock);
578
579 return block;
580 }
581
582 struct block *
583 finish_block (struct symbol *symbol,
584 struct pending **listhead,
585 struct pending_block *old_blocks,
586 const struct dynamic_prop *static_link,
587 CORE_ADDR start, CORE_ADDR end)
588 {
589 return finish_block_internal (symbol, listhead, old_blocks, static_link,
590 start, end, 0, 0);
591 }
592
593 /* Record BLOCK on the list of all blocks in the file. Put it after
594 OPBLOCK, or at the beginning if opblock is NULL. This puts the
595 block in the list after all its subblocks.
596
597 Allocate the pending block struct in the objfile_obstack to save
598 time. This wastes a little space. FIXME: Is it worth it? */
599
600 static void
601 record_pending_block (struct objfile *objfile, struct block *block,
602 struct pending_block *opblock)
603 {
604 struct pending_block *pblock;
605
606 if (pending_blocks == NULL)
607 obstack_init (&pending_block_obstack);
608
609 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
610 pblock->block = block;
611 if (opblock)
612 {
613 pblock->next = opblock->next;
614 opblock->next = pblock;
615 }
616 else
617 {
618 pblock->next = pending_blocks;
619 pending_blocks = pblock;
620 }
621 }
622
623
624 /* Record that the range of addresses from START to END_INCLUSIVE
625 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
626 addresses must be set already. You must apply this function to all
627 BLOCK's children before applying it to BLOCK.
628
629 If a call to this function complicates the picture beyond that
630 already provided by BLOCK_START and BLOCK_END, then we create an
631 address map for the block. */
632 void
633 record_block_range (struct block *block,
634 CORE_ADDR start, CORE_ADDR end_inclusive)
635 {
636 /* If this is any different from the range recorded in the block's
637 own BLOCK_START and BLOCK_END, then note that the address map has
638 become interesting. Note that even if this block doesn't have
639 any "interesting" ranges, some later block might, so we still
640 need to record this block in the addrmap. */
641 if (start != BLOCK_START (block)
642 || end_inclusive + 1 != BLOCK_END (block))
643 pending_addrmap_interesting = 1;
644
645 if (! pending_addrmap)
646 {
647 obstack_init (&pending_addrmap_obstack);
648 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
649 }
650
651 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
652 }
653
654 static struct blockvector *
655 make_blockvector (void)
656 {
657 struct objfile *objfile = buildsym_compunit->objfile;
658 struct pending_block *next;
659 struct blockvector *blockvector;
660 int i;
661
662 /* Count the length of the list of blocks. */
663
664 for (next = pending_blocks, i = 0; next; next = next->next, i++)
665 {;
666 }
667
668 blockvector = (struct blockvector *)
669 obstack_alloc (&objfile->objfile_obstack,
670 (sizeof (struct blockvector)
671 + (i - 1) * sizeof (struct block *)));
672
673 /* Copy the blocks into the blockvector. This is done in reverse
674 order, which happens to put the blocks into the proper order
675 (ascending starting address). finish_block has hair to insert
676 each block into the list after its subblocks in order to make
677 sure this is true. */
678
679 BLOCKVECTOR_NBLOCKS (blockvector) = i;
680 for (next = pending_blocks; next; next = next->next)
681 {
682 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
683 }
684
685 free_pending_blocks ();
686
687 /* If we needed an address map for this symtab, record it in the
688 blockvector. */
689 if (pending_addrmap && pending_addrmap_interesting)
690 BLOCKVECTOR_MAP (blockvector)
691 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
692 else
693 BLOCKVECTOR_MAP (blockvector) = 0;
694
695 /* Some compilers output blocks in the wrong order, but we depend on
696 their being in the right order so we can binary search. Check the
697 order and moan about it.
698 Note: Remember that the first two blocks are the global and static
699 blocks. We could special case that fact and begin checking at block 2.
700 To avoid making that assumption we do not. */
701 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
702 {
703 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
704 {
705 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
706 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
707 {
708 CORE_ADDR start
709 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
710
711 complaint (_("block at %s out of order"),
712 hex_string ((LONGEST) start));
713 }
714 }
715 }
716
717 return (blockvector);
718 }
719 \f
720 /* Start recording information about source code that came from an
721 included (or otherwise merged-in) source file with a different
722 name. NAME is the name of the file (cannot be NULL). */
723
724 void
725 start_subfile (const char *name)
726 {
727 const char *subfile_dirname;
728 struct subfile *subfile;
729
730 gdb_assert (buildsym_compunit != NULL);
731
732 subfile_dirname = buildsym_compunit->comp_dir.get ();
733
734 /* See if this subfile is already registered. */
735
736 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
737 {
738 char *subfile_name;
739
740 /* If NAME is an absolute path, and this subfile is not, then
741 attempt to create an absolute path to compare. */
742 if (IS_ABSOLUTE_PATH (name)
743 && !IS_ABSOLUTE_PATH (subfile->name)
744 && subfile_dirname != NULL)
745 subfile_name = concat (subfile_dirname, SLASH_STRING,
746 subfile->name, (char *) NULL);
747 else
748 subfile_name = subfile->name;
749
750 if (FILENAME_CMP (subfile_name, name) == 0)
751 {
752 current_subfile = subfile;
753 if (subfile_name != subfile->name)
754 xfree (subfile_name);
755 return;
756 }
757 if (subfile_name != subfile->name)
758 xfree (subfile_name);
759 }
760
761 /* This subfile is not known. Add an entry for it. */
762
763 subfile = XNEW (struct subfile);
764 memset (subfile, 0, sizeof (struct subfile));
765 subfile->buildsym_compunit = buildsym_compunit;
766
767 subfile->next = buildsym_compunit->subfiles;
768 buildsym_compunit->subfiles = subfile;
769
770 current_subfile = subfile;
771
772 subfile->name = xstrdup (name);
773
774 /* Initialize line-number recording for this subfile. */
775 subfile->line_vector = NULL;
776
777 /* Default the source language to whatever can be deduced from the
778 filename. If nothing can be deduced (such as for a C/C++ include
779 file with a ".h" extension), then inherit whatever language the
780 previous subfile had. This kludgery is necessary because there
781 is no standard way in some object formats to record the source
782 language. Also, when symtabs are allocated we try to deduce a
783 language then as well, but it is too late for us to use that
784 information while reading symbols, since symtabs aren't allocated
785 until after all the symbols have been processed for a given
786 source file. */
787
788 subfile->language = deduce_language_from_filename (subfile->name);
789 if (subfile->language == language_unknown
790 && subfile->next != NULL)
791 {
792 subfile->language = subfile->next->language;
793 }
794
795 /* If the filename of this subfile ends in .C, then change the
796 language of any pending subfiles from C to C++. We also accept
797 any other C++ suffixes accepted by deduce_language_from_filename. */
798 /* Likewise for f2c. */
799
800 if (subfile->name)
801 {
802 struct subfile *s;
803 enum language sublang = deduce_language_from_filename (subfile->name);
804
805 if (sublang == language_cplus || sublang == language_fortran)
806 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
807 if (s->language == language_c)
808 s->language = sublang;
809 }
810
811 /* And patch up this file if necessary. */
812 if (subfile->language == language_c
813 && subfile->next != NULL
814 && (subfile->next->language == language_cplus
815 || subfile->next->language == language_fortran))
816 {
817 subfile->language = subfile->next->language;
818 }
819 }
820
821 /* Delete the buildsym compunit. */
822
823 static void
824 free_buildsym_compunit (void)
825 {
826 if (buildsym_compunit == NULL)
827 return;
828 delete buildsym_compunit;
829 buildsym_compunit = NULL;
830 current_subfile = NULL;
831 }
832
833 /* For stabs readers, the first N_SO symbol is assumed to be the
834 source file name, and the subfile struct is initialized using that
835 assumption. If another N_SO symbol is later seen, immediately
836 following the first one, then the first one is assumed to be the
837 directory name and the second one is really the source file name.
838
839 So we have to patch up the subfile struct by moving the old name
840 value to dirname and remembering the new name. Some sanity
841 checking is performed to ensure that the state of the subfile
842 struct is reasonable and that the old name we are assuming to be a
843 directory name actually is (by checking for a trailing '/'). */
844
845 void
846 patch_subfile_names (struct subfile *subfile, const char *name)
847 {
848 if (subfile != NULL
849 && buildsym_compunit->comp_dir == NULL
850 && subfile->name != NULL
851 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
852 {
853 buildsym_compunit->comp_dir.reset (subfile->name);
854 subfile->name = xstrdup (name);
855 set_last_source_file (name);
856
857 /* Default the source language to whatever can be deduced from
858 the filename. If nothing can be deduced (such as for a C/C++
859 include file with a ".h" extension), then inherit whatever
860 language the previous subfile had. This kludgery is
861 necessary because there is no standard way in some object
862 formats to record the source language. Also, when symtabs
863 are allocated we try to deduce a language then as well, but
864 it is too late for us to use that information while reading
865 symbols, since symtabs aren't allocated until after all the
866 symbols have been processed for a given source file. */
867
868 subfile->language = deduce_language_from_filename (subfile->name);
869 if (subfile->language == language_unknown
870 && subfile->next != NULL)
871 {
872 subfile->language = subfile->next->language;
873 }
874 }
875 }
876 \f
877 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
878 switching source files (different subfiles, as we call them) within
879 one object file, but using a stack rather than in an arbitrary
880 order. */
881
882 void
883 push_subfile ()
884 {
885 gdb_assert (buildsym_compunit != nullptr);
886 gdb_assert (current_subfile != NULL && current_subfile->name != NULL);
887 buildsym_compunit->m_subfile_stack.push_back (current_subfile->name);
888 }
889
890 const char *
891 pop_subfile ()
892 {
893 gdb_assert (buildsym_compunit != nullptr);
894 gdb_assert (!buildsym_compunit->m_subfile_stack.empty ());
895 const char *name = buildsym_compunit->m_subfile_stack.back ();
896 buildsym_compunit->m_subfile_stack.pop_back ();
897 return name;
898 }
899 \f
900 /* Add a linetable entry for line number LINE and address PC to the
901 line vector for SUBFILE. */
902
903 void
904 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
905 {
906 struct linetable_entry *e;
907
908 /* Ignore the dummy line number in libg.o */
909 if (line == 0xffff)
910 {
911 return;
912 }
913
914 /* Make sure line vector exists and is big enough. */
915 if (!subfile->line_vector)
916 {
917 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
918 subfile->line_vector = (struct linetable *)
919 xmalloc (sizeof (struct linetable)
920 + subfile->line_vector_length * sizeof (struct linetable_entry));
921 subfile->line_vector->nitems = 0;
922 buildsym_compunit->m_have_line_numbers = true;
923 }
924
925 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
926 {
927 subfile->line_vector_length *= 2;
928 subfile->line_vector = (struct linetable *)
929 xrealloc ((char *) subfile->line_vector,
930 (sizeof (struct linetable)
931 + (subfile->line_vector_length
932 * sizeof (struct linetable_entry))));
933 }
934
935 /* Normally, we treat lines as unsorted. But the end of sequence
936 marker is special. We sort line markers at the same PC by line
937 number, so end of sequence markers (which have line == 0) appear
938 first. This is right if the marker ends the previous function,
939 and there is no padding before the next function. But it is
940 wrong if the previous line was empty and we are now marking a
941 switch to a different subfile. We must leave the end of sequence
942 marker at the end of this group of lines, not sort the empty line
943 to after the marker. The easiest way to accomplish this is to
944 delete any empty lines from our table, if they are followed by
945 end of sequence markers. All we lose is the ability to set
946 breakpoints at some lines which contain no instructions
947 anyway. */
948 if (line == 0 && subfile->line_vector->nitems > 0)
949 {
950 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
951 while (subfile->line_vector->nitems > 0 && e->pc == pc)
952 {
953 e--;
954 subfile->line_vector->nitems--;
955 }
956 }
957
958 e = subfile->line_vector->item + subfile->line_vector->nitems++;
959 e->line = line;
960 e->pc = pc;
961 }
962
963 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
964
965 static int
966 compare_line_numbers (const void *ln1p, const void *ln2p)
967 {
968 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
969 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
970
971 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
972 Please keep it that way. */
973 if (ln1->pc < ln2->pc)
974 return -1;
975
976 if (ln1->pc > ln2->pc)
977 return 1;
978
979 /* If pc equal, sort by line. I'm not sure whether this is optimum
980 behavior (see comment at struct linetable in symtab.h). */
981 return ln1->line - ln2->line;
982 }
983 \f
984 /* See buildsym.h. */
985
986 struct compunit_symtab *
987 buildsym_compunit_symtab (void)
988 {
989 gdb_assert (buildsym_compunit != NULL);
990
991 return buildsym_compunit->compunit_symtab;
992 }
993
994 /* See buildsym.h. */
995
996 struct macro_table *
997 get_macro_table (void)
998 {
999 struct objfile *objfile;
1000
1001 gdb_assert (buildsym_compunit != NULL);
1002 return buildsym_compunit->get_macro_table ();
1003 }
1004 \f
1005 /* Init state to prepare for building a symtab.
1006 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1007 can call start_symtab+end_symtab multiple times after one call to
1008 buildsym_init. */
1009
1010 static void
1011 prepare_for_building ()
1012 {
1013 local_symbols = NULL;
1014 local_using_directives = NULL;
1015
1016 context_stack_depth = 0;
1017
1018 /* These should have been reset either by successful completion of building
1019 a symtab, or by the scoped_free_pendings destructor. */
1020 gdb_assert (file_symbols == NULL);
1021 gdb_assert (global_symbols == NULL);
1022 gdb_assert (global_using_directives == NULL);
1023 gdb_assert (pending_addrmap == NULL);
1024 gdb_assert (current_subfile == NULL);
1025 gdb_assert (buildsym_compunit == nullptr);
1026 }
1027
1028 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1029 when a stabs symbol of type N_SO is seen, or when a DWARF
1030 TAG_compile_unit DIE is seen. It indicates the start of data for
1031 one original source file.
1032
1033 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1034 directory in which the file was compiled (or NULL if not known).
1035 START_ADDR is the lowest address of objects in the file (or 0 if
1036 not known). LANGUAGE is the language of the source file, or
1037 language_unknown if not known, in which case it'll be deduced from
1038 the filename. */
1039
1040 struct compunit_symtab *
1041 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1042 CORE_ADDR start_addr, enum language language)
1043 {
1044 prepare_for_building ();
1045
1046 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1047 language, start_addr);
1048
1049 /* Allocate the compunit symtab now. The caller needs it to allocate
1050 non-primary symtabs. It is also needed by get_macro_table. */
1051 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1052 name);
1053
1054 /* Build the subfile for NAME (the main source file) so that we can record
1055 a pointer to it for later.
1056 IMPORTANT: Do not allocate a struct symtab for NAME here.
1057 It can happen that the debug info provides a different path to NAME than
1058 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1059 that only works if the main_subfile doesn't have a symtab yet. */
1060 start_subfile (name);
1061 /* Save this so that we don't have to go looking for it at the end
1062 of the subfiles list. */
1063 buildsym_compunit->main_subfile = current_subfile;
1064
1065 return buildsym_compunit->compunit_symtab;
1066 }
1067
1068 /* Restart compilation for a symtab.
1069 CUST is the result of end_expandable_symtab.
1070 NAME, START_ADDR are the source file we are resuming with.
1071
1072 This is used when a symtab is built from multiple sources.
1073 The symtab is first built with start_symtab/end_expandable_symtab
1074 and then for each additional piece call restart_symtab/augment_*_symtab.
1075 Note: At the moment there is only augment_type_symtab. */
1076
1077 void
1078 restart_symtab (struct compunit_symtab *cust,
1079 const char *name, CORE_ADDR start_addr)
1080 {
1081 prepare_for_building ();
1082
1083 buildsym_compunit
1084 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1085 name,
1086 COMPUNIT_DIRNAME (cust),
1087 compunit_language (cust),
1088 start_addr);
1089 buildsym_compunit->compunit_symtab = cust;
1090 }
1091
1092 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1093 matches the main source file's basename. If there is only one, and
1094 if the main source file doesn't have any symbol or line number
1095 information, then copy this file's symtab and line_vector to the
1096 main source file's subfile and discard the other subfile. This can
1097 happen because of a compiler bug or from the user playing games
1098 with #line or from things like a distributed build system that
1099 manipulates the debug info. This can also happen from an innocent
1100 symlink in the paths, we don't canonicalize paths here. */
1101
1102 static void
1103 watch_main_source_file_lossage (void)
1104 {
1105 struct subfile *mainsub, *subfile;
1106
1107 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1108 end_symtab, it can return NULL so there may not be a main subfile. */
1109 if (buildsym_compunit == NULL)
1110 return;
1111
1112 /* Get the main source file. */
1113 mainsub = buildsym_compunit->main_subfile;
1114
1115 /* If the main source file doesn't have any line number or symbol
1116 info, look for an alias in another subfile. */
1117
1118 if (mainsub->line_vector == NULL
1119 && mainsub->symtab == NULL)
1120 {
1121 const char *mainbase = lbasename (mainsub->name);
1122 int nr_matches = 0;
1123 struct subfile *prevsub;
1124 struct subfile *mainsub_alias = NULL;
1125 struct subfile *prev_mainsub_alias = NULL;
1126
1127 prevsub = NULL;
1128 for (subfile = buildsym_compunit->subfiles;
1129 subfile != NULL;
1130 subfile = subfile->next)
1131 {
1132 if (subfile == mainsub)
1133 continue;
1134 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1135 {
1136 ++nr_matches;
1137 mainsub_alias = subfile;
1138 prev_mainsub_alias = prevsub;
1139 }
1140 prevsub = subfile;
1141 }
1142
1143 if (nr_matches == 1)
1144 {
1145 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1146
1147 /* Found a match for the main source file.
1148 Copy its line_vector and symtab to the main subfile
1149 and then discard it. */
1150
1151 mainsub->line_vector = mainsub_alias->line_vector;
1152 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1153 mainsub->symtab = mainsub_alias->symtab;
1154
1155 if (prev_mainsub_alias == NULL)
1156 buildsym_compunit->subfiles = mainsub_alias->next;
1157 else
1158 prev_mainsub_alias->next = mainsub_alias->next;
1159 xfree (mainsub_alias->name);
1160 xfree (mainsub_alias);
1161 }
1162 }
1163 }
1164
1165 /* Reset state after a successful building of a symtab.
1166 This exists because dbxread.c and xcoffread.c can call
1167 start_symtab+end_symtab multiple times after one call to buildsym_init,
1168 and before the scoped_free_pendings destructor is called.
1169 We keep the free_pendings list around for dbx/xcoff sake. */
1170
1171 static void
1172 reset_symtab_globals (void)
1173 {
1174 local_symbols = NULL;
1175 local_using_directives = NULL;
1176 file_symbols = NULL;
1177 global_symbols = NULL;
1178 global_using_directives = NULL;
1179
1180 if (pending_addrmap)
1181 obstack_free (&pending_addrmap_obstack, NULL);
1182 pending_addrmap = NULL;
1183
1184 free_buildsym_compunit ();
1185 }
1186
1187 /* Implementation of the first part of end_symtab. It allows modifying
1188 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1189 If the returned value is NULL there is no blockvector created for
1190 this symtab (you still must call end_symtab_from_static_block).
1191
1192 END_ADDR is the same as for end_symtab: the address of the end of the
1193 file's text.
1194
1195 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1196 expandable.
1197
1198 If REQUIRED is non-zero, then a symtab is created even if it does
1199 not contain any symbols. */
1200
1201 struct block *
1202 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1203 {
1204 struct objfile *objfile = buildsym_compunit->objfile;
1205
1206 /* Finish the lexical context of the last function in the file; pop
1207 the context stack. */
1208
1209 if (context_stack_depth > 0)
1210 {
1211 struct context_stack *cstk = pop_context ();
1212
1213 /* Make a block for the local symbols within. */
1214 finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
1215 cstk->start_addr, end_addr);
1216
1217 if (context_stack_depth > 0)
1218 {
1219 /* This is said to happen with SCO. The old coffread.c
1220 code simply emptied the context stack, so we do the
1221 same. FIXME: Find out why it is happening. This is not
1222 believed to happen in most cases (even for coffread.c);
1223 it used to be an abort(). */
1224 complaint (_("Context stack not empty in end_symtab"));
1225 context_stack_depth = 0;
1226 }
1227 }
1228
1229 /* Reordered executables may have out of order pending blocks; if
1230 OBJF_REORDERED is true, then sort the pending blocks. */
1231
1232 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1233 {
1234 struct pending_block *pb;
1235
1236 std::vector<block *> barray;
1237
1238 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1239 barray.push_back (pb->block);
1240
1241 /* Sort blocks by start address in descending order. Blocks with the
1242 same start address must remain in the original order to preserve
1243 inline function caller/callee relationships. */
1244 std::stable_sort (barray.begin (), barray.end (),
1245 [] (const block *a, const block *b)
1246 {
1247 return BLOCK_START (a) > BLOCK_START (b);
1248 });
1249
1250 int i = 0;
1251 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1252 pb->block = barray[i++];
1253 }
1254
1255 /* Cleanup any undefined types that have been left hanging around
1256 (this needs to be done before the finish_blocks so that
1257 file_symbols is still good).
1258
1259 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1260 specific, but harmless for other symbol readers, since on gdb
1261 startup or when finished reading stabs, the state is set so these
1262 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1263 we make this cleaner? */
1264
1265 cleanup_undefined_stabs_types (objfile);
1266 finish_global_stabs (objfile);
1267
1268 if (!required
1269 && pending_blocks == NULL
1270 && file_symbols == NULL
1271 && global_symbols == NULL
1272 && !buildsym_compunit->m_have_line_numbers
1273 && buildsym_compunit->m_pending_macros == NULL
1274 && global_using_directives == NULL)
1275 {
1276 /* Ignore symtabs that have no functions with real debugging info. */
1277 return NULL;
1278 }
1279 else
1280 {
1281 /* Define the STATIC_BLOCK. */
1282 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1283 buildsym_compunit->m_last_source_start_addr,
1284 end_addr, 0, expandable);
1285 }
1286 }
1287
1288 /* Subroutine of end_symtab_from_static_block to simplify it.
1289 Handle the "have blockvector" case.
1290 See end_symtab_from_static_block for a description of the arguments. */
1291
1292 static struct compunit_symtab *
1293 end_symtab_with_blockvector (struct block *static_block,
1294 int section, int expandable)
1295 {
1296 struct objfile *objfile = buildsym_compunit->objfile;
1297 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1298 struct symtab *symtab;
1299 struct blockvector *blockvector;
1300 struct subfile *subfile;
1301 CORE_ADDR end_addr;
1302
1303 gdb_assert (static_block != NULL);
1304 gdb_assert (buildsym_compunit != NULL);
1305 gdb_assert (buildsym_compunit->subfiles != NULL);
1306
1307 end_addr = BLOCK_END (static_block);
1308
1309 /* Create the GLOBAL_BLOCK and build the blockvector. */
1310 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1311 buildsym_compunit->m_last_source_start_addr, end_addr,
1312 1, expandable);
1313 blockvector = make_blockvector ();
1314
1315 /* Read the line table if it has to be read separately.
1316 This is only used by xcoffread.c. */
1317 if (objfile->sf->sym_read_linetable != NULL)
1318 objfile->sf->sym_read_linetable (objfile);
1319
1320 /* Handle the case where the debug info specifies a different path
1321 for the main source file. It can cause us to lose track of its
1322 line number information. */
1323 watch_main_source_file_lossage ();
1324
1325 /* Now create the symtab objects proper, if not already done,
1326 one for each subfile. */
1327
1328 for (subfile = buildsym_compunit->subfiles;
1329 subfile != NULL;
1330 subfile = subfile->next)
1331 {
1332 int linetablesize = 0;
1333
1334 if (subfile->line_vector)
1335 {
1336 linetablesize = sizeof (struct linetable) +
1337 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1338
1339 /* Like the pending blocks, the line table may be
1340 scrambled in reordered executables. Sort it if
1341 OBJF_REORDERED is true. */
1342 if (objfile->flags & OBJF_REORDERED)
1343 qsort (subfile->line_vector->item,
1344 subfile->line_vector->nitems,
1345 sizeof (struct linetable_entry), compare_line_numbers);
1346 }
1347
1348 /* Allocate a symbol table if necessary. */
1349 if (subfile->symtab == NULL)
1350 subfile->symtab = allocate_symtab (cu, subfile->name);
1351 symtab = subfile->symtab;
1352
1353 /* Fill in its components. */
1354
1355 if (subfile->line_vector)
1356 {
1357 /* Reallocate the line table on the symbol obstack. */
1358 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1359 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1360 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1361 linetablesize);
1362 }
1363 else
1364 {
1365 SYMTAB_LINETABLE (symtab) = NULL;
1366 }
1367
1368 /* Use whatever language we have been using for this
1369 subfile, not the one that was deduced in allocate_symtab
1370 from the filename. We already did our own deducing when
1371 we created the subfile, and we may have altered our
1372 opinion of what language it is from things we found in
1373 the symbols. */
1374 symtab->language = subfile->language;
1375 }
1376
1377 /* Make sure the symtab of main_subfile is the first in its list. */
1378 {
1379 struct symtab *main_symtab, *prev_symtab;
1380
1381 main_symtab = buildsym_compunit->main_subfile->symtab;
1382 prev_symtab = NULL;
1383 ALL_COMPUNIT_FILETABS (cu, symtab)
1384 {
1385 if (symtab == main_symtab)
1386 {
1387 if (prev_symtab != NULL)
1388 {
1389 prev_symtab->next = main_symtab->next;
1390 main_symtab->next = COMPUNIT_FILETABS (cu);
1391 COMPUNIT_FILETABS (cu) = main_symtab;
1392 }
1393 break;
1394 }
1395 prev_symtab = symtab;
1396 }
1397 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1398 }
1399
1400 /* Fill out the compunit symtab. */
1401
1402 if (buildsym_compunit->comp_dir != NULL)
1403 {
1404 /* Reallocate the dirname on the symbol obstack. */
1405 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1406 COMPUNIT_DIRNAME (cu)
1407 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1408 comp_dir, strlen (comp_dir));
1409 }
1410
1411 /* Save the debug format string (if any) in the symtab. */
1412 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1413
1414 /* Similarly for the producer. */
1415 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1416
1417 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1418 {
1419 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1420
1421 set_block_compunit_symtab (b, cu);
1422 }
1423
1424 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1425
1426 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1427
1428 /* Default any symbols without a specified symtab to the primary symtab. */
1429 {
1430 int block_i;
1431
1432 /* The main source file's symtab. */
1433 symtab = COMPUNIT_FILETABS (cu);
1434
1435 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1436 {
1437 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1438 struct symbol *sym;
1439 struct dict_iterator iter;
1440
1441 /* Inlined functions may have symbols not in the global or
1442 static symbol lists. */
1443 if (BLOCK_FUNCTION (block) != NULL)
1444 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1445 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1446
1447 /* Note that we only want to fix up symbols from the local
1448 blocks, not blocks coming from included symtabs. That is why
1449 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1450 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1451 if (symbol_symtab (sym) == NULL)
1452 symbol_set_symtab (sym, symtab);
1453 }
1454 }
1455
1456 add_compunit_symtab_to_objfile (cu);
1457
1458 return cu;
1459 }
1460
1461 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1462 as value returned by end_symtab_get_static_block.
1463
1464 SECTION is the same as for end_symtab: the section number
1465 (in objfile->section_offsets) of the blockvector and linetable.
1466
1467 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1468 expandable. */
1469
1470 struct compunit_symtab *
1471 end_symtab_from_static_block (struct block *static_block,
1472 int section, int expandable)
1473 {
1474 struct compunit_symtab *cu;
1475
1476 if (static_block == NULL)
1477 {
1478 /* Handle the "no blockvector" case.
1479 When this happens there is nothing to record, so there's nothing
1480 to do: memory will be freed up later.
1481
1482 Note: We won't be adding a compunit to the objfile's list of
1483 compunits, so there's nothing to unchain. However, since each symtab
1484 is added to the objfile's obstack we can't free that space.
1485 We could do better, but this is believed to be a sufficiently rare
1486 event. */
1487 cu = NULL;
1488 }
1489 else
1490 cu = end_symtab_with_blockvector (static_block, section, expandable);
1491
1492 reset_symtab_globals ();
1493
1494 return cu;
1495 }
1496
1497 /* Finish the symbol definitions for one main source file, close off
1498 all the lexical contexts for that file (creating struct block's for
1499 them), then make the struct symtab for that file and put it in the
1500 list of all such.
1501
1502 END_ADDR is the address of the end of the file's text. SECTION is
1503 the section number (in objfile->section_offsets) of the blockvector
1504 and linetable.
1505
1506 Note that it is possible for end_symtab() to return NULL. In
1507 particular, for the DWARF case at least, it will return NULL when
1508 it finds a compilation unit that has exactly one DIE, a
1509 TAG_compile_unit DIE. This can happen when we link in an object
1510 file that was compiled from an empty source file. Returning NULL
1511 is probably not the correct thing to do, because then gdb will
1512 never know about this empty file (FIXME).
1513
1514 If you need to modify STATIC_BLOCK before it is finalized you should
1515 call end_symtab_get_static_block and end_symtab_from_static_block
1516 yourself. */
1517
1518 struct compunit_symtab *
1519 end_symtab (CORE_ADDR end_addr, int section)
1520 {
1521 struct block *static_block;
1522
1523 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1524 return end_symtab_from_static_block (static_block, section, 0);
1525 }
1526
1527 /* Same as end_symtab except create a symtab that can be later added to. */
1528
1529 struct compunit_symtab *
1530 end_expandable_symtab (CORE_ADDR end_addr, int section)
1531 {
1532 struct block *static_block;
1533
1534 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1535 return end_symtab_from_static_block (static_block, section, 1);
1536 }
1537
1538 /* Subroutine of augment_type_symtab to simplify it.
1539 Attach the main source file's symtab to all symbols in PENDING_LIST that
1540 don't have one. */
1541
1542 static void
1543 set_missing_symtab (struct pending *pending_list,
1544 struct compunit_symtab *cu)
1545 {
1546 struct pending *pending;
1547 int i;
1548
1549 for (pending = pending_list; pending != NULL; pending = pending->next)
1550 {
1551 for (i = 0; i < pending->nsyms; ++i)
1552 {
1553 if (symbol_symtab (pending->symbol[i]) == NULL)
1554 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1555 }
1556 }
1557 }
1558
1559 /* Same as end_symtab, but for the case where we're adding more symbols
1560 to an existing symtab that is known to contain only type information.
1561 This is the case for DWARF4 Type Units. */
1562
1563 void
1564 augment_type_symtab (void)
1565 {
1566 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1567 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1568
1569 if (context_stack_depth > 0)
1570 {
1571 complaint (_("Context stack not empty in augment_type_symtab"));
1572 context_stack_depth = 0;
1573 }
1574 if (pending_blocks != NULL)
1575 complaint (_("Blocks in a type symtab"));
1576 if (buildsym_compunit->m_pending_macros != NULL)
1577 complaint (_("Macro in a type symtab"));
1578 if (buildsym_compunit->m_have_line_numbers)
1579 complaint (_("Line numbers recorded in a type symtab"));
1580
1581 if (file_symbols != NULL)
1582 {
1583 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1584
1585 /* First mark any symbols without a specified symtab as belonging
1586 to the primary symtab. */
1587 set_missing_symtab (file_symbols, cust);
1588
1589 dict_add_pending (BLOCK_DICT (block), file_symbols);
1590 }
1591
1592 if (global_symbols != NULL)
1593 {
1594 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1595
1596 /* First mark any symbols without a specified symtab as belonging
1597 to the primary symtab. */
1598 set_missing_symtab (global_symbols, cust);
1599
1600 dict_add_pending (BLOCK_DICT (block), global_symbols);
1601 }
1602
1603 reset_symtab_globals ();
1604 }
1605
1606 /* Push a context block. Args are an identifying nesting level
1607 (checkable when you pop it), and the starting PC address of this
1608 context. */
1609
1610 struct context_stack *
1611 push_context (int desc, CORE_ADDR valu)
1612 {
1613 struct context_stack *newobj;
1614
1615 if (context_stack_depth == context_stack_size)
1616 {
1617 context_stack_size *= 2;
1618 context_stack = (struct context_stack *)
1619 xrealloc ((char *) context_stack,
1620 (context_stack_size * sizeof (struct context_stack)));
1621 }
1622
1623 newobj = &context_stack[context_stack_depth++];
1624 newobj->depth = desc;
1625 newobj->locals = local_symbols;
1626 newobj->old_blocks = pending_blocks;
1627 newobj->start_addr = valu;
1628 newobj->local_using_directives = local_using_directives;
1629 newobj->name = NULL;
1630
1631 local_symbols = NULL;
1632 local_using_directives = NULL;
1633
1634 return newobj;
1635 }
1636
1637 /* Pop a context block. Returns the address of the context block just
1638 popped. */
1639
1640 struct context_stack *
1641 pop_context (void)
1642 {
1643 gdb_assert (context_stack_depth > 0);
1644 return (&context_stack[--context_stack_depth]);
1645 }
1646
1647 \f
1648
1649 void
1650 record_debugformat (const char *format)
1651 {
1652 buildsym_compunit->debugformat = format;
1653 }
1654
1655 void
1656 record_producer (const char *producer)
1657 {
1658 buildsym_compunit->producer = producer;
1659 }
1660
1661 \f
1662
1663 /* See buildsym.h. */
1664
1665 void
1666 set_last_source_file (const char *name)
1667 {
1668 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1669 if (buildsym_compunit != nullptr)
1670 buildsym_compunit->set_last_source_file (name);
1671 }
1672
1673 /* See buildsym.h. */
1674
1675 const char *
1676 get_last_source_file (void)
1677 {
1678 if (buildsym_compunit == nullptr)
1679 return nullptr;
1680 return buildsym_compunit->m_last_source_file.get ();
1681 }
1682
1683 /* See buildsym.h. */
1684
1685 void
1686 set_last_source_start_addr (CORE_ADDR addr)
1687 {
1688 gdb_assert (buildsym_compunit != nullptr);
1689 buildsym_compunit->m_last_source_start_addr = addr;
1690 }
1691
1692 /* See buildsym.h. */
1693
1694 CORE_ADDR
1695 get_last_source_start_addr ()
1696 {
1697 gdb_assert (buildsym_compunit != nullptr);
1698 return buildsym_compunit->m_last_source_start_addr;
1699 }
1700
1701 \f
1702
1703 /* Initialize anything that needs initializing when starting to read a
1704 fresh piece of a symbol file, e.g. reading in the stuff
1705 corresponding to a psymtab. */
1706
1707 void
1708 buildsym_init ()
1709 {
1710 pending_addrmap_interesting = 0;
1711
1712 /* Context stack is initially empty. Allocate first one with room
1713 for a few levels; reuse it forever afterward. */
1714 if (context_stack == NULL)
1715 {
1716 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
1717 context_stack = XNEWVEC (struct context_stack, context_stack_size);
1718 }
1719
1720 /* Ensure the scoped_free_pendings destructor was called after
1721 the last time. */
1722 gdb_assert (free_pendings == NULL);
1723 gdb_assert (pending_blocks == NULL);
1724 gdb_assert (file_symbols == NULL);
1725 gdb_assert (global_symbols == NULL);
1726 gdb_assert (global_using_directives == NULL);
1727 gdb_assert (pending_addrmap == NULL);
1728 gdb_assert (buildsym_compunit == NULL);
1729 }
This page took 0.15022 seconds and 5 git commands to generate.