Use gdb_assert in two places in buildsym.c
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "filenames.h" /* For DOSish file names. */
78 #include "macrotab.h"
79 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
80 #include "block.h"
81 #include "cp-support.h"
82 #include "dictionary.h"
83 #include "addrmap.h"
84 #include <algorithm>
85
86 /* Ask buildsym.h to define the vars it normally declares `extern'. */
87 #define EXTERN
88 /**/
89 #include "buildsym.h" /* Our own declarations. */
90 #undef EXTERN
91
92 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
93 questionable--see comment where we call them). */
94
95 #include "stabsread.h"
96
97 /* Buildsym's counterpart to struct compunit_symtab.
98 TODO(dje): Move all related global state into here. */
99
100 struct buildsym_compunit
101 {
102 /* Start recording information about a primary source file (IOW, not an
103 included source file).
104 COMP_DIR is the directory in which the compilation unit was compiled
105 (or NULL if not known). */
106
107 buildsym_compunit (struct objfile *objfile_, const char *name,
108 const char *comp_dir_, enum language language_,
109 CORE_ADDR last_addr)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_),
114 m_last_source_start_addr (last_addr)
115 {
116 }
117
118 ~buildsym_compunit ()
119 {
120 struct subfile *subfile, *nextsub;
121
122 if (m_pending_macros != nullptr)
123 free_macro_table (m_pending_macros);
124
125 for (subfile = subfiles;
126 subfile != NULL;
127 subfile = nextsub)
128 {
129 nextsub = subfile->next;
130 xfree (subfile->name);
131 xfree (subfile->line_vector);
132 xfree (subfile);
133 }
134 }
135
136 void set_last_source_file (const char *name)
137 {
138 char *new_name = name == NULL ? NULL : xstrdup (name);
139 m_last_source_file.reset (new_name);
140 }
141
142 struct macro_table *get_macro_table ()
143 {
144 if (m_pending_macros == nullptr)
145 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
146 objfile->per_bfd->macro_cache,
147 compunit_symtab);
148 return m_pending_macros;
149 }
150
151 struct macro_table *release_macros ()
152 {
153 struct macro_table *result = m_pending_macros;
154 m_pending_macros = nullptr;
155 return result;
156 }
157
158 /* The objfile we're reading debug info from. */
159 struct objfile *objfile;
160
161 /* List of subfiles (source files).
162 Files are added to the front of the list.
163 This is important mostly for the language determination hacks we use,
164 which iterate over previously added files. */
165 struct subfile *subfiles = nullptr;
166
167 /* The subfile of the main source file. */
168 struct subfile *main_subfile = nullptr;
169
170 /* Name of source file whose symbol data we are now processing. This
171 comes from a symbol of type N_SO for stabs. For DWARF it comes
172 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
173 gdb::unique_xmalloc_ptr<char> m_last_source_file;
174
175 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
176 gdb::unique_xmalloc_ptr<char> comp_dir;
177
178 /* Space for this is not malloc'd, and is assumed to have at least
179 the same lifetime as objfile. */
180 const char *producer = nullptr;
181
182 /* Space for this is not malloc'd, and is assumed to have at least
183 the same lifetime as objfile. */
184 const char *debugformat = nullptr;
185
186 /* The compunit we are building. */
187 struct compunit_symtab *compunit_symtab = nullptr;
188
189 /* Language of this compunit_symtab. */
190 enum language language;
191
192 /* The macro table for the compilation unit whose symbols we're
193 currently reading. */
194 struct macro_table *m_pending_macros = nullptr;
195
196 /* True if symtab has line number info. This prevents an otherwise
197 empty symtab from being tossed. */
198 bool m_have_line_numbers = false;
199
200 /* Core address of start of text of current source file. This too
201 comes from the N_SO symbol. For Dwarf it typically comes from the
202 DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
203 CORE_ADDR m_last_source_start_addr;
204 };
205
206 /* The work-in-progress of the compunit we are building.
207 This is created first, before any subfiles by start_symtab. */
208
209 static struct buildsym_compunit *buildsym_compunit;
210
211 /* List of free `struct pending' structures for reuse. */
212
213 static struct pending *free_pendings;
214
215 /* The mutable address map for the compilation unit whose symbols
216 we're currently reading. The symtabs' shared blockvector will
217 point to a fixed copy of this. */
218 static struct addrmap *pending_addrmap;
219
220 /* The obstack on which we allocate pending_addrmap.
221 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
222 initialized (and holds pending_addrmap). */
223 static struct obstack pending_addrmap_obstack;
224
225 /* Non-zero if we recorded any ranges in the addrmap that are
226 different from those in the blockvector already. We set this to
227 zero when we start processing a symfile, and if it's still zero at
228 the end, then we just toss the addrmap. */
229 static int pending_addrmap_interesting;
230
231 /* An obstack used for allocating pending blocks. */
232
233 static struct obstack pending_block_obstack;
234
235 /* List of blocks already made (lexical contexts already closed).
236 This is used at the end to make the blockvector. */
237
238 struct pending_block
239 {
240 struct pending_block *next;
241 struct block *block;
242 };
243
244 /* Pointer to the head of a linked list of symbol blocks which have
245 already been finalized (lexical contexts already closed) and which
246 are just waiting to be built into a blockvector when finalizing the
247 associated symtab. */
248
249 static struct pending_block *pending_blocks;
250
251 struct subfile_stack
252 {
253 struct subfile_stack *next;
254 char *name;
255 };
256
257 static struct subfile_stack *subfile_stack;
258
259 /* Currently allocated size of context stack. */
260
261 static int context_stack_size;
262
263 static void free_buildsym_compunit (void);
264
265 static int compare_line_numbers (const void *ln1p, const void *ln2p);
266
267 static void record_pending_block (struct objfile *objfile,
268 struct block *block,
269 struct pending_block *opblock);
270
271 /* Initial sizes of data structures. These are realloc'd larger if
272 needed, and realloc'd down to the size actually used, when
273 completed. */
274
275 #define INITIAL_CONTEXT_STACK_SIZE 10
276 #define INITIAL_LINE_VECTOR_LENGTH 1000
277 \f
278
279 /* Maintain the lists of symbols and blocks. */
280
281 /* Add a symbol to one of the lists of symbols. */
282
283 void
284 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
285 {
286 struct pending *link;
287
288 /* If this is an alias for another symbol, don't add it. */
289 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
290 return;
291
292 /* We keep PENDINGSIZE symbols in each link of the list. If we
293 don't have a link with room in it, add a new link. */
294 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
295 {
296 if (free_pendings)
297 {
298 link = free_pendings;
299 free_pendings = link->next;
300 }
301 else
302 {
303 link = XNEW (struct pending);
304 }
305
306 link->next = *listhead;
307 *listhead = link;
308 link->nsyms = 0;
309 }
310
311 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
312 }
313
314 /* Find a symbol named NAME on a LIST. NAME need not be
315 '\0'-terminated; LENGTH is the length of the name. */
316
317 struct symbol *
318 find_symbol_in_list (struct pending *list, char *name, int length)
319 {
320 int j;
321 const char *pp;
322
323 while (list != NULL)
324 {
325 for (j = list->nsyms; --j >= 0;)
326 {
327 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
328 if (*pp == *name && strncmp (pp, name, length) == 0
329 && pp[length] == '\0')
330 {
331 return (list->symbol[j]);
332 }
333 }
334 list = list->next;
335 }
336 return (NULL);
337 }
338
339 /* At end of reading syms, or in case of quit, ensure everything
340 associated with building symtabs is freed.
341
342 N.B. This is *not* intended to be used when building psymtabs. Some debug
343 info readers call this anyway, which is harmless if confusing. */
344
345 scoped_free_pendings::~scoped_free_pendings ()
346 {
347 struct pending *next, *next1;
348
349 for (next = free_pendings; next; next = next1)
350 {
351 next1 = next->next;
352 xfree ((void *) next);
353 }
354 free_pendings = NULL;
355
356 free_pending_blocks ();
357
358 for (next = file_symbols; next != NULL; next = next1)
359 {
360 next1 = next->next;
361 xfree ((void *) next);
362 }
363 file_symbols = NULL;
364
365 for (next = global_symbols; next != NULL; next = next1)
366 {
367 next1 = next->next;
368 xfree ((void *) next);
369 }
370 global_symbols = NULL;
371
372 if (pending_addrmap)
373 obstack_free (&pending_addrmap_obstack, NULL);
374 pending_addrmap = NULL;
375
376 free_buildsym_compunit ();
377 }
378
379 /* This function is called to discard any pending blocks. */
380
381 void
382 free_pending_blocks (void)
383 {
384 if (pending_blocks != NULL)
385 {
386 obstack_free (&pending_block_obstack, NULL);
387 pending_blocks = NULL;
388 }
389 }
390
391 /* Take one of the lists of symbols and make a block from it. Keep
392 the order the symbols have in the list (reversed from the input
393 file). Put the block on the list of pending blocks. */
394
395 static struct block *
396 finish_block_internal (struct symbol *symbol,
397 struct pending **listhead,
398 struct pending_block *old_blocks,
399 const struct dynamic_prop *static_link,
400 CORE_ADDR start, CORE_ADDR end,
401 int is_global, int expandable)
402 {
403 struct objfile *objfile = buildsym_compunit->objfile;
404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
405 struct pending *next, *next1;
406 struct block *block;
407 struct pending_block *pblock;
408 struct pending_block *opblock;
409
410 block = (is_global
411 ? allocate_global_block (&objfile->objfile_obstack)
412 : allocate_block (&objfile->objfile_obstack));
413
414 if (symbol)
415 {
416 BLOCK_DICT (block)
417 = dict_create_linear (&objfile->objfile_obstack,
418 buildsym_compunit->language, *listhead);
419 }
420 else
421 {
422 if (expandable)
423 {
424 BLOCK_DICT (block)
425 = dict_create_hashed_expandable (buildsym_compunit->language);
426 dict_add_pending (BLOCK_DICT (block), *listhead);
427 }
428 else
429 {
430 BLOCK_DICT (block) =
431 dict_create_hashed (&objfile->objfile_obstack,
432 buildsym_compunit->language, *listhead);
433 }
434 }
435
436 BLOCK_START (block) = start;
437 BLOCK_END (block) = end;
438
439 /* Put the block in as the value of the symbol that names it. */
440
441 if (symbol)
442 {
443 struct type *ftype = SYMBOL_TYPE (symbol);
444 struct dict_iterator iter;
445 SYMBOL_BLOCK_VALUE (symbol) = block;
446 BLOCK_FUNCTION (block) = symbol;
447
448 if (TYPE_NFIELDS (ftype) <= 0)
449 {
450 /* No parameter type information is recorded with the
451 function's type. Set that from the type of the
452 parameter symbols. */
453 int nparams = 0, iparams;
454 struct symbol *sym;
455
456 /* Here we want to directly access the dictionary, because
457 we haven't fully initialized the block yet. */
458 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
459 {
460 if (SYMBOL_IS_ARGUMENT (sym))
461 nparams++;
462 }
463 if (nparams > 0)
464 {
465 TYPE_NFIELDS (ftype) = nparams;
466 TYPE_FIELDS (ftype) = (struct field *)
467 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
468
469 iparams = 0;
470 /* Here we want to directly access the dictionary, because
471 we haven't fully initialized the block yet. */
472 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
473 {
474 if (iparams == nparams)
475 break;
476
477 if (SYMBOL_IS_ARGUMENT (sym))
478 {
479 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
480 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
481 iparams++;
482 }
483 }
484 }
485 }
486 }
487 else
488 {
489 BLOCK_FUNCTION (block) = NULL;
490 }
491
492 if (static_link != NULL)
493 objfile_register_static_link (objfile, block, static_link);
494
495 /* Now "free" the links of the list, and empty the list. */
496
497 for (next = *listhead; next; next = next1)
498 {
499 next1 = next->next;
500 next->next = free_pendings;
501 free_pendings = next;
502 }
503 *listhead = NULL;
504
505 /* Check to be sure that the blocks have an end address that is
506 greater than starting address. */
507
508 if (BLOCK_END (block) < BLOCK_START (block))
509 {
510 if (symbol)
511 {
512 complaint (_("block end address less than block "
513 "start address in %s (patched it)"),
514 SYMBOL_PRINT_NAME (symbol));
515 }
516 else
517 {
518 complaint (_("block end address %s less than block "
519 "start address %s (patched it)"),
520 paddress (gdbarch, BLOCK_END (block)),
521 paddress (gdbarch, BLOCK_START (block)));
522 }
523 /* Better than nothing. */
524 BLOCK_END (block) = BLOCK_START (block);
525 }
526
527 /* Install this block as the superblock of all blocks made since the
528 start of this scope that don't have superblocks yet. */
529
530 opblock = NULL;
531 for (pblock = pending_blocks;
532 pblock && pblock != old_blocks;
533 pblock = pblock->next)
534 {
535 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
536 {
537 /* Check to be sure the blocks are nested as we receive
538 them. If the compiler/assembler/linker work, this just
539 burns a small amount of time.
540
541 Skip blocks which correspond to a function; they're not
542 physically nested inside this other blocks, only
543 lexically nested. */
544 if (BLOCK_FUNCTION (pblock->block) == NULL
545 && (BLOCK_START (pblock->block) < BLOCK_START (block)
546 || BLOCK_END (pblock->block) > BLOCK_END (block)))
547 {
548 if (symbol)
549 {
550 complaint (_("inner block not inside outer block in %s"),
551 SYMBOL_PRINT_NAME (symbol));
552 }
553 else
554 {
555 complaint (_("inner block (%s-%s) not "
556 "inside outer block (%s-%s)"),
557 paddress (gdbarch, BLOCK_START (pblock->block)),
558 paddress (gdbarch, BLOCK_END (pblock->block)),
559 paddress (gdbarch, BLOCK_START (block)),
560 paddress (gdbarch, BLOCK_END (block)));
561 }
562 if (BLOCK_START (pblock->block) < BLOCK_START (block))
563 BLOCK_START (pblock->block) = BLOCK_START (block);
564 if (BLOCK_END (pblock->block) > BLOCK_END (block))
565 BLOCK_END (pblock->block) = BLOCK_END (block);
566 }
567 BLOCK_SUPERBLOCK (pblock->block) = block;
568 }
569 opblock = pblock;
570 }
571
572 block_set_using (block,
573 (is_global
574 ? global_using_directives
575 : local_using_directives),
576 &objfile->objfile_obstack);
577 if (is_global)
578 global_using_directives = NULL;
579 else
580 local_using_directives = NULL;
581
582 record_pending_block (objfile, block, opblock);
583
584 return block;
585 }
586
587 struct block *
588 finish_block (struct symbol *symbol,
589 struct pending **listhead,
590 struct pending_block *old_blocks,
591 const struct dynamic_prop *static_link,
592 CORE_ADDR start, CORE_ADDR end)
593 {
594 return finish_block_internal (symbol, listhead, old_blocks, static_link,
595 start, end, 0, 0);
596 }
597
598 /* Record BLOCK on the list of all blocks in the file. Put it after
599 OPBLOCK, or at the beginning if opblock is NULL. This puts the
600 block in the list after all its subblocks.
601
602 Allocate the pending block struct in the objfile_obstack to save
603 time. This wastes a little space. FIXME: Is it worth it? */
604
605 static void
606 record_pending_block (struct objfile *objfile, struct block *block,
607 struct pending_block *opblock)
608 {
609 struct pending_block *pblock;
610
611 if (pending_blocks == NULL)
612 obstack_init (&pending_block_obstack);
613
614 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
615 pblock->block = block;
616 if (opblock)
617 {
618 pblock->next = opblock->next;
619 opblock->next = pblock;
620 }
621 else
622 {
623 pblock->next = pending_blocks;
624 pending_blocks = pblock;
625 }
626 }
627
628
629 /* Record that the range of addresses from START to END_INCLUSIVE
630 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
631 addresses must be set already. You must apply this function to all
632 BLOCK's children before applying it to BLOCK.
633
634 If a call to this function complicates the picture beyond that
635 already provided by BLOCK_START and BLOCK_END, then we create an
636 address map for the block. */
637 void
638 record_block_range (struct block *block,
639 CORE_ADDR start, CORE_ADDR end_inclusive)
640 {
641 /* If this is any different from the range recorded in the block's
642 own BLOCK_START and BLOCK_END, then note that the address map has
643 become interesting. Note that even if this block doesn't have
644 any "interesting" ranges, some later block might, so we still
645 need to record this block in the addrmap. */
646 if (start != BLOCK_START (block)
647 || end_inclusive + 1 != BLOCK_END (block))
648 pending_addrmap_interesting = 1;
649
650 if (! pending_addrmap)
651 {
652 obstack_init (&pending_addrmap_obstack);
653 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
654 }
655
656 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
657 }
658
659 static struct blockvector *
660 make_blockvector (void)
661 {
662 struct objfile *objfile = buildsym_compunit->objfile;
663 struct pending_block *next;
664 struct blockvector *blockvector;
665 int i;
666
667 /* Count the length of the list of blocks. */
668
669 for (next = pending_blocks, i = 0; next; next = next->next, i++)
670 {;
671 }
672
673 blockvector = (struct blockvector *)
674 obstack_alloc (&objfile->objfile_obstack,
675 (sizeof (struct blockvector)
676 + (i - 1) * sizeof (struct block *)));
677
678 /* Copy the blocks into the blockvector. This is done in reverse
679 order, which happens to put the blocks into the proper order
680 (ascending starting address). finish_block has hair to insert
681 each block into the list after its subblocks in order to make
682 sure this is true. */
683
684 BLOCKVECTOR_NBLOCKS (blockvector) = i;
685 for (next = pending_blocks; next; next = next->next)
686 {
687 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
688 }
689
690 free_pending_blocks ();
691
692 /* If we needed an address map for this symtab, record it in the
693 blockvector. */
694 if (pending_addrmap && pending_addrmap_interesting)
695 BLOCKVECTOR_MAP (blockvector)
696 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
697 else
698 BLOCKVECTOR_MAP (blockvector) = 0;
699
700 /* Some compilers output blocks in the wrong order, but we depend on
701 their being in the right order so we can binary search. Check the
702 order and moan about it.
703 Note: Remember that the first two blocks are the global and static
704 blocks. We could special case that fact and begin checking at block 2.
705 To avoid making that assumption we do not. */
706 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
707 {
708 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
709 {
710 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
711 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
712 {
713 CORE_ADDR start
714 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
715
716 complaint (_("block at %s out of order"),
717 hex_string ((LONGEST) start));
718 }
719 }
720 }
721
722 return (blockvector);
723 }
724 \f
725 /* Start recording information about source code that came from an
726 included (or otherwise merged-in) source file with a different
727 name. NAME is the name of the file (cannot be NULL). */
728
729 void
730 start_subfile (const char *name)
731 {
732 const char *subfile_dirname;
733 struct subfile *subfile;
734
735 gdb_assert (buildsym_compunit != NULL);
736
737 subfile_dirname = buildsym_compunit->comp_dir.get ();
738
739 /* See if this subfile is already registered. */
740
741 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
742 {
743 char *subfile_name;
744
745 /* If NAME is an absolute path, and this subfile is not, then
746 attempt to create an absolute path to compare. */
747 if (IS_ABSOLUTE_PATH (name)
748 && !IS_ABSOLUTE_PATH (subfile->name)
749 && subfile_dirname != NULL)
750 subfile_name = concat (subfile_dirname, SLASH_STRING,
751 subfile->name, (char *) NULL);
752 else
753 subfile_name = subfile->name;
754
755 if (FILENAME_CMP (subfile_name, name) == 0)
756 {
757 current_subfile = subfile;
758 if (subfile_name != subfile->name)
759 xfree (subfile_name);
760 return;
761 }
762 if (subfile_name != subfile->name)
763 xfree (subfile_name);
764 }
765
766 /* This subfile is not known. Add an entry for it. */
767
768 subfile = XNEW (struct subfile);
769 memset (subfile, 0, sizeof (struct subfile));
770 subfile->buildsym_compunit = buildsym_compunit;
771
772 subfile->next = buildsym_compunit->subfiles;
773 buildsym_compunit->subfiles = subfile;
774
775 current_subfile = subfile;
776
777 subfile->name = xstrdup (name);
778
779 /* Initialize line-number recording for this subfile. */
780 subfile->line_vector = NULL;
781
782 /* Default the source language to whatever can be deduced from the
783 filename. If nothing can be deduced (such as for a C/C++ include
784 file with a ".h" extension), then inherit whatever language the
785 previous subfile had. This kludgery is necessary because there
786 is no standard way in some object formats to record the source
787 language. Also, when symtabs are allocated we try to deduce a
788 language then as well, but it is too late for us to use that
789 information while reading symbols, since symtabs aren't allocated
790 until after all the symbols have been processed for a given
791 source file. */
792
793 subfile->language = deduce_language_from_filename (subfile->name);
794 if (subfile->language == language_unknown
795 && subfile->next != NULL)
796 {
797 subfile->language = subfile->next->language;
798 }
799
800 /* If the filename of this subfile ends in .C, then change the
801 language of any pending subfiles from C to C++. We also accept
802 any other C++ suffixes accepted by deduce_language_from_filename. */
803 /* Likewise for f2c. */
804
805 if (subfile->name)
806 {
807 struct subfile *s;
808 enum language sublang = deduce_language_from_filename (subfile->name);
809
810 if (sublang == language_cplus || sublang == language_fortran)
811 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
812 if (s->language == language_c)
813 s->language = sublang;
814 }
815
816 /* And patch up this file if necessary. */
817 if (subfile->language == language_c
818 && subfile->next != NULL
819 && (subfile->next->language == language_cplus
820 || subfile->next->language == language_fortran))
821 {
822 subfile->language = subfile->next->language;
823 }
824 }
825
826 /* Delete the buildsym compunit. */
827
828 static void
829 free_buildsym_compunit (void)
830 {
831 if (buildsym_compunit == NULL)
832 return;
833 delete buildsym_compunit;
834 buildsym_compunit = NULL;
835 current_subfile = NULL;
836 }
837
838 /* For stabs readers, the first N_SO symbol is assumed to be the
839 source file name, and the subfile struct is initialized using that
840 assumption. If another N_SO symbol is later seen, immediately
841 following the first one, then the first one is assumed to be the
842 directory name and the second one is really the source file name.
843
844 So we have to patch up the subfile struct by moving the old name
845 value to dirname and remembering the new name. Some sanity
846 checking is performed to ensure that the state of the subfile
847 struct is reasonable and that the old name we are assuming to be a
848 directory name actually is (by checking for a trailing '/'). */
849
850 void
851 patch_subfile_names (struct subfile *subfile, const char *name)
852 {
853 if (subfile != NULL
854 && buildsym_compunit->comp_dir == NULL
855 && subfile->name != NULL
856 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
857 {
858 buildsym_compunit->comp_dir.reset (subfile->name);
859 subfile->name = xstrdup (name);
860 set_last_source_file (name);
861
862 /* Default the source language to whatever can be deduced from
863 the filename. If nothing can be deduced (such as for a C/C++
864 include file with a ".h" extension), then inherit whatever
865 language the previous subfile had. This kludgery is
866 necessary because there is no standard way in some object
867 formats to record the source language. Also, when symtabs
868 are allocated we try to deduce a language then as well, but
869 it is too late for us to use that information while reading
870 symbols, since symtabs aren't allocated until after all the
871 symbols have been processed for a given source file. */
872
873 subfile->language = deduce_language_from_filename (subfile->name);
874 if (subfile->language == language_unknown
875 && subfile->next != NULL)
876 {
877 subfile->language = subfile->next->language;
878 }
879 }
880 }
881 \f
882 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
883 switching source files (different subfiles, as we call them) within
884 one object file, but using a stack rather than in an arbitrary
885 order. */
886
887 void
888 push_subfile (void)
889 {
890 struct subfile_stack *tem = XNEW (struct subfile_stack);
891
892 tem->next = subfile_stack;
893 subfile_stack = tem;
894 gdb_assert (current_subfile != NULL && current_subfile->name != NULL);
895 tem->name = current_subfile->name;
896 }
897
898 char *
899 pop_subfile (void)
900 {
901 char *name;
902 struct subfile_stack *link = subfile_stack;
903
904 gdb_assert (link != NULL);
905 name = link->name;
906 subfile_stack = link->next;
907 xfree ((void *) link);
908 return (name);
909 }
910 \f
911 /* Add a linetable entry for line number LINE and address PC to the
912 line vector for SUBFILE. */
913
914 void
915 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
916 {
917 struct linetable_entry *e;
918
919 /* Ignore the dummy line number in libg.o */
920 if (line == 0xffff)
921 {
922 return;
923 }
924
925 /* Make sure line vector exists and is big enough. */
926 if (!subfile->line_vector)
927 {
928 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
929 subfile->line_vector = (struct linetable *)
930 xmalloc (sizeof (struct linetable)
931 + subfile->line_vector_length * sizeof (struct linetable_entry));
932 subfile->line_vector->nitems = 0;
933 buildsym_compunit->m_have_line_numbers = true;
934 }
935
936 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
937 {
938 subfile->line_vector_length *= 2;
939 subfile->line_vector = (struct linetable *)
940 xrealloc ((char *) subfile->line_vector,
941 (sizeof (struct linetable)
942 + (subfile->line_vector_length
943 * sizeof (struct linetable_entry))));
944 }
945
946 /* Normally, we treat lines as unsorted. But the end of sequence
947 marker is special. We sort line markers at the same PC by line
948 number, so end of sequence markers (which have line == 0) appear
949 first. This is right if the marker ends the previous function,
950 and there is no padding before the next function. But it is
951 wrong if the previous line was empty and we are now marking a
952 switch to a different subfile. We must leave the end of sequence
953 marker at the end of this group of lines, not sort the empty line
954 to after the marker. The easiest way to accomplish this is to
955 delete any empty lines from our table, if they are followed by
956 end of sequence markers. All we lose is the ability to set
957 breakpoints at some lines which contain no instructions
958 anyway. */
959 if (line == 0 && subfile->line_vector->nitems > 0)
960 {
961 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
962 while (subfile->line_vector->nitems > 0 && e->pc == pc)
963 {
964 e--;
965 subfile->line_vector->nitems--;
966 }
967 }
968
969 e = subfile->line_vector->item + subfile->line_vector->nitems++;
970 e->line = line;
971 e->pc = pc;
972 }
973
974 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
975
976 static int
977 compare_line_numbers (const void *ln1p, const void *ln2p)
978 {
979 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
980 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
981
982 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
983 Please keep it that way. */
984 if (ln1->pc < ln2->pc)
985 return -1;
986
987 if (ln1->pc > ln2->pc)
988 return 1;
989
990 /* If pc equal, sort by line. I'm not sure whether this is optimum
991 behavior (see comment at struct linetable in symtab.h). */
992 return ln1->line - ln2->line;
993 }
994 \f
995 /* See buildsym.h. */
996
997 struct compunit_symtab *
998 buildsym_compunit_symtab (void)
999 {
1000 gdb_assert (buildsym_compunit != NULL);
1001
1002 return buildsym_compunit->compunit_symtab;
1003 }
1004
1005 /* See buildsym.h. */
1006
1007 struct macro_table *
1008 get_macro_table (void)
1009 {
1010 struct objfile *objfile;
1011
1012 gdb_assert (buildsym_compunit != NULL);
1013 return buildsym_compunit->get_macro_table ();
1014 }
1015 \f
1016 /* Init state to prepare for building a symtab.
1017 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1018 can call start_symtab+end_symtab multiple times after one call to
1019 buildsym_init. */
1020
1021 static void
1022 prepare_for_building ()
1023 {
1024 local_symbols = NULL;
1025 local_using_directives = NULL;
1026
1027 context_stack_depth = 0;
1028
1029 /* These should have been reset either by successful completion of building
1030 a symtab, or by the scoped_free_pendings destructor. */
1031 gdb_assert (file_symbols == NULL);
1032 gdb_assert (global_symbols == NULL);
1033 gdb_assert (global_using_directives == NULL);
1034 gdb_assert (pending_addrmap == NULL);
1035 gdb_assert (current_subfile == NULL);
1036 gdb_assert (buildsym_compunit == nullptr);
1037 }
1038
1039 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1040 when a stabs symbol of type N_SO is seen, or when a DWARF
1041 TAG_compile_unit DIE is seen. It indicates the start of data for
1042 one original source file.
1043
1044 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1045 directory in which the file was compiled (or NULL if not known).
1046 START_ADDR is the lowest address of objects in the file (or 0 if
1047 not known). LANGUAGE is the language of the source file, or
1048 language_unknown if not known, in which case it'll be deduced from
1049 the filename. */
1050
1051 struct compunit_symtab *
1052 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1053 CORE_ADDR start_addr, enum language language)
1054 {
1055 prepare_for_building ();
1056
1057 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1058 language, start_addr);
1059
1060 /* Allocate the compunit symtab now. The caller needs it to allocate
1061 non-primary symtabs. It is also needed by get_macro_table. */
1062 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1063 name);
1064
1065 /* Build the subfile for NAME (the main source file) so that we can record
1066 a pointer to it for later.
1067 IMPORTANT: Do not allocate a struct symtab for NAME here.
1068 It can happen that the debug info provides a different path to NAME than
1069 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1070 that only works if the main_subfile doesn't have a symtab yet. */
1071 start_subfile (name);
1072 /* Save this so that we don't have to go looking for it at the end
1073 of the subfiles list. */
1074 buildsym_compunit->main_subfile = current_subfile;
1075
1076 return buildsym_compunit->compunit_symtab;
1077 }
1078
1079 /* Restart compilation for a symtab.
1080 CUST is the result of end_expandable_symtab.
1081 NAME, START_ADDR are the source file we are resuming with.
1082
1083 This is used when a symtab is built from multiple sources.
1084 The symtab is first built with start_symtab/end_expandable_symtab
1085 and then for each additional piece call restart_symtab/augment_*_symtab.
1086 Note: At the moment there is only augment_type_symtab. */
1087
1088 void
1089 restart_symtab (struct compunit_symtab *cust,
1090 const char *name, CORE_ADDR start_addr)
1091 {
1092 prepare_for_building ();
1093
1094 buildsym_compunit
1095 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1096 name,
1097 COMPUNIT_DIRNAME (cust),
1098 compunit_language (cust),
1099 start_addr);
1100 buildsym_compunit->compunit_symtab = cust;
1101 }
1102
1103 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1104 matches the main source file's basename. If there is only one, and
1105 if the main source file doesn't have any symbol or line number
1106 information, then copy this file's symtab and line_vector to the
1107 main source file's subfile and discard the other subfile. This can
1108 happen because of a compiler bug or from the user playing games
1109 with #line or from things like a distributed build system that
1110 manipulates the debug info. This can also happen from an innocent
1111 symlink in the paths, we don't canonicalize paths here. */
1112
1113 static void
1114 watch_main_source_file_lossage (void)
1115 {
1116 struct subfile *mainsub, *subfile;
1117
1118 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1119 end_symtab, it can return NULL so there may not be a main subfile. */
1120 if (buildsym_compunit == NULL)
1121 return;
1122
1123 /* Get the main source file. */
1124 mainsub = buildsym_compunit->main_subfile;
1125
1126 /* If the main source file doesn't have any line number or symbol
1127 info, look for an alias in another subfile. */
1128
1129 if (mainsub->line_vector == NULL
1130 && mainsub->symtab == NULL)
1131 {
1132 const char *mainbase = lbasename (mainsub->name);
1133 int nr_matches = 0;
1134 struct subfile *prevsub;
1135 struct subfile *mainsub_alias = NULL;
1136 struct subfile *prev_mainsub_alias = NULL;
1137
1138 prevsub = NULL;
1139 for (subfile = buildsym_compunit->subfiles;
1140 subfile != NULL;
1141 subfile = subfile->next)
1142 {
1143 if (subfile == mainsub)
1144 continue;
1145 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1146 {
1147 ++nr_matches;
1148 mainsub_alias = subfile;
1149 prev_mainsub_alias = prevsub;
1150 }
1151 prevsub = subfile;
1152 }
1153
1154 if (nr_matches == 1)
1155 {
1156 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1157
1158 /* Found a match for the main source file.
1159 Copy its line_vector and symtab to the main subfile
1160 and then discard it. */
1161
1162 mainsub->line_vector = mainsub_alias->line_vector;
1163 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1164 mainsub->symtab = mainsub_alias->symtab;
1165
1166 if (prev_mainsub_alias == NULL)
1167 buildsym_compunit->subfiles = mainsub_alias->next;
1168 else
1169 prev_mainsub_alias->next = mainsub_alias->next;
1170 xfree (mainsub_alias->name);
1171 xfree (mainsub_alias);
1172 }
1173 }
1174 }
1175
1176 /* Reset state after a successful building of a symtab.
1177 This exists because dbxread.c and xcoffread.c can call
1178 start_symtab+end_symtab multiple times after one call to buildsym_init,
1179 and before the scoped_free_pendings destructor is called.
1180 We keep the free_pendings list around for dbx/xcoff sake. */
1181
1182 static void
1183 reset_symtab_globals (void)
1184 {
1185 local_symbols = NULL;
1186 local_using_directives = NULL;
1187 file_symbols = NULL;
1188 global_symbols = NULL;
1189 global_using_directives = NULL;
1190
1191 if (pending_addrmap)
1192 obstack_free (&pending_addrmap_obstack, NULL);
1193 pending_addrmap = NULL;
1194
1195 free_buildsym_compunit ();
1196 }
1197
1198 /* Implementation of the first part of end_symtab. It allows modifying
1199 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1200 If the returned value is NULL there is no blockvector created for
1201 this symtab (you still must call end_symtab_from_static_block).
1202
1203 END_ADDR is the same as for end_symtab: the address of the end of the
1204 file's text.
1205
1206 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1207 expandable.
1208
1209 If REQUIRED is non-zero, then a symtab is created even if it does
1210 not contain any symbols. */
1211
1212 struct block *
1213 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1214 {
1215 struct objfile *objfile = buildsym_compunit->objfile;
1216
1217 /* Finish the lexical context of the last function in the file; pop
1218 the context stack. */
1219
1220 if (context_stack_depth > 0)
1221 {
1222 struct context_stack *cstk = pop_context ();
1223
1224 /* Make a block for the local symbols within. */
1225 finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
1226 cstk->start_addr, end_addr);
1227
1228 if (context_stack_depth > 0)
1229 {
1230 /* This is said to happen with SCO. The old coffread.c
1231 code simply emptied the context stack, so we do the
1232 same. FIXME: Find out why it is happening. This is not
1233 believed to happen in most cases (even for coffread.c);
1234 it used to be an abort(). */
1235 complaint (_("Context stack not empty in end_symtab"));
1236 context_stack_depth = 0;
1237 }
1238 }
1239
1240 /* Reordered executables may have out of order pending blocks; if
1241 OBJF_REORDERED is true, then sort the pending blocks. */
1242
1243 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1244 {
1245 struct pending_block *pb;
1246
1247 std::vector<block *> barray;
1248
1249 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1250 barray.push_back (pb->block);
1251
1252 /* Sort blocks by start address in descending order. Blocks with the
1253 same start address must remain in the original order to preserve
1254 inline function caller/callee relationships. */
1255 std::stable_sort (barray.begin (), barray.end (),
1256 [] (const block *a, const block *b)
1257 {
1258 return BLOCK_START (a) > BLOCK_START (b);
1259 });
1260
1261 int i = 0;
1262 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1263 pb->block = barray[i++];
1264 }
1265
1266 /* Cleanup any undefined types that have been left hanging around
1267 (this needs to be done before the finish_blocks so that
1268 file_symbols is still good).
1269
1270 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1271 specific, but harmless for other symbol readers, since on gdb
1272 startup or when finished reading stabs, the state is set so these
1273 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1274 we make this cleaner? */
1275
1276 cleanup_undefined_stabs_types (objfile);
1277 finish_global_stabs (objfile);
1278
1279 if (!required
1280 && pending_blocks == NULL
1281 && file_symbols == NULL
1282 && global_symbols == NULL
1283 && !buildsym_compunit->m_have_line_numbers
1284 && buildsym_compunit->m_pending_macros == NULL
1285 && global_using_directives == NULL)
1286 {
1287 /* Ignore symtabs that have no functions with real debugging info. */
1288 return NULL;
1289 }
1290 else
1291 {
1292 /* Define the STATIC_BLOCK. */
1293 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1294 buildsym_compunit->m_last_source_start_addr,
1295 end_addr, 0, expandable);
1296 }
1297 }
1298
1299 /* Subroutine of end_symtab_from_static_block to simplify it.
1300 Handle the "have blockvector" case.
1301 See end_symtab_from_static_block for a description of the arguments. */
1302
1303 static struct compunit_symtab *
1304 end_symtab_with_blockvector (struct block *static_block,
1305 int section, int expandable)
1306 {
1307 struct objfile *objfile = buildsym_compunit->objfile;
1308 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1309 struct symtab *symtab;
1310 struct blockvector *blockvector;
1311 struct subfile *subfile;
1312 CORE_ADDR end_addr;
1313
1314 gdb_assert (static_block != NULL);
1315 gdb_assert (buildsym_compunit != NULL);
1316 gdb_assert (buildsym_compunit->subfiles != NULL);
1317
1318 end_addr = BLOCK_END (static_block);
1319
1320 /* Create the GLOBAL_BLOCK and build the blockvector. */
1321 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1322 buildsym_compunit->m_last_source_start_addr, end_addr,
1323 1, expandable);
1324 blockvector = make_blockvector ();
1325
1326 /* Read the line table if it has to be read separately.
1327 This is only used by xcoffread.c. */
1328 if (objfile->sf->sym_read_linetable != NULL)
1329 objfile->sf->sym_read_linetable (objfile);
1330
1331 /* Handle the case where the debug info specifies a different path
1332 for the main source file. It can cause us to lose track of its
1333 line number information. */
1334 watch_main_source_file_lossage ();
1335
1336 /* Now create the symtab objects proper, if not already done,
1337 one for each subfile. */
1338
1339 for (subfile = buildsym_compunit->subfiles;
1340 subfile != NULL;
1341 subfile = subfile->next)
1342 {
1343 int linetablesize = 0;
1344
1345 if (subfile->line_vector)
1346 {
1347 linetablesize = sizeof (struct linetable) +
1348 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1349
1350 /* Like the pending blocks, the line table may be
1351 scrambled in reordered executables. Sort it if
1352 OBJF_REORDERED is true. */
1353 if (objfile->flags & OBJF_REORDERED)
1354 qsort (subfile->line_vector->item,
1355 subfile->line_vector->nitems,
1356 sizeof (struct linetable_entry), compare_line_numbers);
1357 }
1358
1359 /* Allocate a symbol table if necessary. */
1360 if (subfile->symtab == NULL)
1361 subfile->symtab = allocate_symtab (cu, subfile->name);
1362 symtab = subfile->symtab;
1363
1364 /* Fill in its components. */
1365
1366 if (subfile->line_vector)
1367 {
1368 /* Reallocate the line table on the symbol obstack. */
1369 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1370 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1371 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1372 linetablesize);
1373 }
1374 else
1375 {
1376 SYMTAB_LINETABLE (symtab) = NULL;
1377 }
1378
1379 /* Use whatever language we have been using for this
1380 subfile, not the one that was deduced in allocate_symtab
1381 from the filename. We already did our own deducing when
1382 we created the subfile, and we may have altered our
1383 opinion of what language it is from things we found in
1384 the symbols. */
1385 symtab->language = subfile->language;
1386 }
1387
1388 /* Make sure the symtab of main_subfile is the first in its list. */
1389 {
1390 struct symtab *main_symtab, *prev_symtab;
1391
1392 main_symtab = buildsym_compunit->main_subfile->symtab;
1393 prev_symtab = NULL;
1394 ALL_COMPUNIT_FILETABS (cu, symtab)
1395 {
1396 if (symtab == main_symtab)
1397 {
1398 if (prev_symtab != NULL)
1399 {
1400 prev_symtab->next = main_symtab->next;
1401 main_symtab->next = COMPUNIT_FILETABS (cu);
1402 COMPUNIT_FILETABS (cu) = main_symtab;
1403 }
1404 break;
1405 }
1406 prev_symtab = symtab;
1407 }
1408 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1409 }
1410
1411 /* Fill out the compunit symtab. */
1412
1413 if (buildsym_compunit->comp_dir != NULL)
1414 {
1415 /* Reallocate the dirname on the symbol obstack. */
1416 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1417 COMPUNIT_DIRNAME (cu)
1418 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1419 comp_dir, strlen (comp_dir));
1420 }
1421
1422 /* Save the debug format string (if any) in the symtab. */
1423 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1424
1425 /* Similarly for the producer. */
1426 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1427
1428 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1429 {
1430 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1431
1432 set_block_compunit_symtab (b, cu);
1433 }
1434
1435 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1436
1437 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1438
1439 /* Default any symbols without a specified symtab to the primary symtab. */
1440 {
1441 int block_i;
1442
1443 /* The main source file's symtab. */
1444 symtab = COMPUNIT_FILETABS (cu);
1445
1446 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1447 {
1448 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1449 struct symbol *sym;
1450 struct dict_iterator iter;
1451
1452 /* Inlined functions may have symbols not in the global or
1453 static symbol lists. */
1454 if (BLOCK_FUNCTION (block) != NULL)
1455 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1456 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1457
1458 /* Note that we only want to fix up symbols from the local
1459 blocks, not blocks coming from included symtabs. That is why
1460 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1461 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1462 if (symbol_symtab (sym) == NULL)
1463 symbol_set_symtab (sym, symtab);
1464 }
1465 }
1466
1467 add_compunit_symtab_to_objfile (cu);
1468
1469 return cu;
1470 }
1471
1472 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1473 as value returned by end_symtab_get_static_block.
1474
1475 SECTION is the same as for end_symtab: the section number
1476 (in objfile->section_offsets) of the blockvector and linetable.
1477
1478 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1479 expandable. */
1480
1481 struct compunit_symtab *
1482 end_symtab_from_static_block (struct block *static_block,
1483 int section, int expandable)
1484 {
1485 struct compunit_symtab *cu;
1486
1487 if (static_block == NULL)
1488 {
1489 /* Handle the "no blockvector" case.
1490 When this happens there is nothing to record, so there's nothing
1491 to do: memory will be freed up later.
1492
1493 Note: We won't be adding a compunit to the objfile's list of
1494 compunits, so there's nothing to unchain. However, since each symtab
1495 is added to the objfile's obstack we can't free that space.
1496 We could do better, but this is believed to be a sufficiently rare
1497 event. */
1498 cu = NULL;
1499 }
1500 else
1501 cu = end_symtab_with_blockvector (static_block, section, expandable);
1502
1503 reset_symtab_globals ();
1504
1505 return cu;
1506 }
1507
1508 /* Finish the symbol definitions for one main source file, close off
1509 all the lexical contexts for that file (creating struct block's for
1510 them), then make the struct symtab for that file and put it in the
1511 list of all such.
1512
1513 END_ADDR is the address of the end of the file's text. SECTION is
1514 the section number (in objfile->section_offsets) of the blockvector
1515 and linetable.
1516
1517 Note that it is possible for end_symtab() to return NULL. In
1518 particular, for the DWARF case at least, it will return NULL when
1519 it finds a compilation unit that has exactly one DIE, a
1520 TAG_compile_unit DIE. This can happen when we link in an object
1521 file that was compiled from an empty source file. Returning NULL
1522 is probably not the correct thing to do, because then gdb will
1523 never know about this empty file (FIXME).
1524
1525 If you need to modify STATIC_BLOCK before it is finalized you should
1526 call end_symtab_get_static_block and end_symtab_from_static_block
1527 yourself. */
1528
1529 struct compunit_symtab *
1530 end_symtab (CORE_ADDR end_addr, int section)
1531 {
1532 struct block *static_block;
1533
1534 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1535 return end_symtab_from_static_block (static_block, section, 0);
1536 }
1537
1538 /* Same as end_symtab except create a symtab that can be later added to. */
1539
1540 struct compunit_symtab *
1541 end_expandable_symtab (CORE_ADDR end_addr, int section)
1542 {
1543 struct block *static_block;
1544
1545 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1546 return end_symtab_from_static_block (static_block, section, 1);
1547 }
1548
1549 /* Subroutine of augment_type_symtab to simplify it.
1550 Attach the main source file's symtab to all symbols in PENDING_LIST that
1551 don't have one. */
1552
1553 static void
1554 set_missing_symtab (struct pending *pending_list,
1555 struct compunit_symtab *cu)
1556 {
1557 struct pending *pending;
1558 int i;
1559
1560 for (pending = pending_list; pending != NULL; pending = pending->next)
1561 {
1562 for (i = 0; i < pending->nsyms; ++i)
1563 {
1564 if (symbol_symtab (pending->symbol[i]) == NULL)
1565 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1566 }
1567 }
1568 }
1569
1570 /* Same as end_symtab, but for the case where we're adding more symbols
1571 to an existing symtab that is known to contain only type information.
1572 This is the case for DWARF4 Type Units. */
1573
1574 void
1575 augment_type_symtab (void)
1576 {
1577 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1578 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1579
1580 if (context_stack_depth > 0)
1581 {
1582 complaint (_("Context stack not empty in augment_type_symtab"));
1583 context_stack_depth = 0;
1584 }
1585 if (pending_blocks != NULL)
1586 complaint (_("Blocks in a type symtab"));
1587 if (buildsym_compunit->m_pending_macros != NULL)
1588 complaint (_("Macro in a type symtab"));
1589 if (buildsym_compunit->m_have_line_numbers)
1590 complaint (_("Line numbers recorded in a type symtab"));
1591
1592 if (file_symbols != NULL)
1593 {
1594 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1595
1596 /* First mark any symbols without a specified symtab as belonging
1597 to the primary symtab. */
1598 set_missing_symtab (file_symbols, cust);
1599
1600 dict_add_pending (BLOCK_DICT (block), file_symbols);
1601 }
1602
1603 if (global_symbols != NULL)
1604 {
1605 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1606
1607 /* First mark any symbols without a specified symtab as belonging
1608 to the primary symtab. */
1609 set_missing_symtab (global_symbols, cust);
1610
1611 dict_add_pending (BLOCK_DICT (block), global_symbols);
1612 }
1613
1614 reset_symtab_globals ();
1615 }
1616
1617 /* Push a context block. Args are an identifying nesting level
1618 (checkable when you pop it), and the starting PC address of this
1619 context. */
1620
1621 struct context_stack *
1622 push_context (int desc, CORE_ADDR valu)
1623 {
1624 struct context_stack *newobj;
1625
1626 if (context_stack_depth == context_stack_size)
1627 {
1628 context_stack_size *= 2;
1629 context_stack = (struct context_stack *)
1630 xrealloc ((char *) context_stack,
1631 (context_stack_size * sizeof (struct context_stack)));
1632 }
1633
1634 newobj = &context_stack[context_stack_depth++];
1635 newobj->depth = desc;
1636 newobj->locals = local_symbols;
1637 newobj->old_blocks = pending_blocks;
1638 newobj->start_addr = valu;
1639 newobj->local_using_directives = local_using_directives;
1640 newobj->name = NULL;
1641
1642 local_symbols = NULL;
1643 local_using_directives = NULL;
1644
1645 return newobj;
1646 }
1647
1648 /* Pop a context block. Returns the address of the context block just
1649 popped. */
1650
1651 struct context_stack *
1652 pop_context (void)
1653 {
1654 gdb_assert (context_stack_depth > 0);
1655 return (&context_stack[--context_stack_depth]);
1656 }
1657
1658 \f
1659
1660 void
1661 record_debugformat (const char *format)
1662 {
1663 buildsym_compunit->debugformat = format;
1664 }
1665
1666 void
1667 record_producer (const char *producer)
1668 {
1669 buildsym_compunit->producer = producer;
1670 }
1671
1672 \f
1673
1674 /* See buildsym.h. */
1675
1676 void
1677 set_last_source_file (const char *name)
1678 {
1679 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1680 if (buildsym_compunit != nullptr)
1681 buildsym_compunit->set_last_source_file (name);
1682 }
1683
1684 /* See buildsym.h. */
1685
1686 const char *
1687 get_last_source_file (void)
1688 {
1689 if (buildsym_compunit == nullptr)
1690 return nullptr;
1691 return buildsym_compunit->m_last_source_file.get ();
1692 }
1693
1694 /* See buildsym.h. */
1695
1696 void
1697 set_last_source_start_addr (CORE_ADDR addr)
1698 {
1699 gdb_assert (buildsym_compunit != nullptr);
1700 buildsym_compunit->m_last_source_start_addr = addr;
1701 }
1702
1703 /* See buildsym.h. */
1704
1705 CORE_ADDR
1706 get_last_source_start_addr ()
1707 {
1708 gdb_assert (buildsym_compunit != nullptr);
1709 return buildsym_compunit->m_last_source_start_addr;
1710 }
1711
1712 \f
1713
1714 /* Initialize anything that needs initializing when starting to read a
1715 fresh piece of a symbol file, e.g. reading in the stuff
1716 corresponding to a psymtab. */
1717
1718 void
1719 buildsym_init ()
1720 {
1721 subfile_stack = NULL;
1722
1723 pending_addrmap_interesting = 0;
1724
1725 /* Context stack is initially empty. Allocate first one with room
1726 for a few levels; reuse it forever afterward. */
1727 if (context_stack == NULL)
1728 {
1729 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
1730 context_stack = XNEWVEC (struct context_stack, context_stack_size);
1731 }
1732
1733 /* Ensure the scoped_free_pendings destructor was called after
1734 the last time. */
1735 gdb_assert (free_pendings == NULL);
1736 gdb_assert (pending_blocks == NULL);
1737 gdb_assert (file_symbols == NULL);
1738 gdb_assert (global_symbols == NULL);
1739 gdb_assert (global_using_directives == NULL);
1740 gdb_assert (pending_addrmap == NULL);
1741 gdb_assert (buildsym_compunit == NULL);
1742 }
This page took 0.06443 seconds and 5 git commands to generate.