import gdb-1999-08-16 snapshot
[deliverable/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1995, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Forward declarations of some types we use in prototypes */
26
27 #ifdef __STDC__
28 struct frame_info;
29 struct frame_saved_regs;
30 struct value;
31 struct type;
32 struct inferior_status;
33 #endif
34
35 /* Target system byte order. */
36
37 #define TARGET_BYTE_ORDER BIG_ENDIAN
38
39 /* By default assume we don't have to worry about software floating point. */
40 #ifndef SOFT_FLOAT
41 #define SOFT_FLOAT 0
42 #endif
43
44 /* Get at various relevent fields of an instruction word. */
45
46 #define MASK_5 0x1f
47 #define MASK_11 0x7ff
48 #define MASK_14 0x3fff
49 #define MASK_21 0x1fffff
50
51 /* This macro gets bit fields using HP's numbering (MSB = 0) */
52 #ifndef GET_FIELD
53 #define GET_FIELD(X, FROM, TO) \
54 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
55 #endif
56
57 /* Watch out for NaNs */
58
59 #define IEEE_FLOAT
60
61 /* On the PA, any pass-by-value structure > 8 bytes is actually
62 passed via a pointer regardless of its type or the compiler
63 used. */
64
65 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
66 (TYPE_LENGTH (type) > 8)
67
68 /* Offset from address of function to start of its code.
69 Zero on most machines. */
70
71 #define FUNCTION_START_OFFSET 0
72
73 /* Advance PC across any function entry prologue instructions
74 to reach some "real" code. */
75
76 extern CORE_ADDR hppa_skip_prologue PARAMS ((CORE_ADDR));
77 #define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
78
79 /* If PC is in some function-call trampoline code, return the PC
80 where the function itself actually starts. If not, return NULL. */
81
82 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
83 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
84
85 /* Return non-zero if we are in an appropriate trampoline. */
86
87 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
88 in_solib_call_trampoline (pc, name)
89 extern int in_solib_call_trampoline PARAMS ((CORE_ADDR, char *));
90
91 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
92 in_solib_return_trampoline (pc, name)
93 extern int in_solib_return_trampoline PARAMS ((CORE_ADDR, char *));
94
95 /* Immediately after a function call, return the saved pc.
96 Can't go through the frames for this because on some machines
97 the new frame is not set up until the new function executes
98 some instructions. */
99
100 #undef SAVED_PC_AFTER_CALL
101 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
102 extern CORE_ADDR saved_pc_after_call PARAMS ((struct frame_info *));
103
104 /* Stack grows upward */
105 #define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
106
107 /* elz: adjust the quantity to the next highest value which is 64-bit aligned.
108 This is used in valops.c, when the sp is adjusted.
109 On hppa the sp must always be kept 64-bit aligned */
110
111 #define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
112 #define NO_EXTRA_ALIGNMENT_NEEDED 1
113
114 /* Sequence of bytes for breakpoint instruction. */
115
116 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
117 #define BREAKPOINT32 0x10004
118
119 /* Amount PC must be decremented by after a breakpoint.
120 This is often the number of bytes in BREAKPOINT
121 but not always.
122
123 Not on the PA-RISC */
124
125 #define DECR_PC_AFTER_BREAK 0
126
127 /* Sometimes we may pluck out a minimal symbol that has a negative
128 address.
129
130 An example of this occurs when an a.out is linked against a foo.sl.
131 The foo.sl defines a global bar(), and the a.out declares a signature
132 for bar(). However, the a.out doesn't directly call bar(), but passes
133 its address in another call.
134
135 If you have this scenario and attempt to "break bar" before running,
136 gdb will find a minimal symbol for bar() in the a.out. But that
137 symbol's address will be negative. What this appears to denote is
138 an index backwards from the base of the procedure linkage table (PLT)
139 into the data linkage table (DLT), the end of which is contiguous
140 with the start of the PLT. This is clearly not a valid address for
141 us to set a breakpoint on.
142
143 Note that one must be careful in how one checks for a negative address.
144 0xc0000000 is a legitimate address of something in a shared text
145 segment, for example. Since I don't know what the possible range
146 is of these "really, truly negative" addresses that come from the
147 minimal symbols, I'm resorting to the gross hack of checking the
148 top byte of the address for all 1's. Sigh.
149 */
150 #define PC_REQUIRES_RUN_BEFORE_USE(pc) \
151 (! target_has_stack && (pc & 0xFF000000))
152
153 /* return instruction is bv r0(rp) or bv,n r0(rp) */
154
155 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
156
157 /* Say how long (ordinary) registers are. This is a piece of bogosity
158 used in push_word and a few other places; REGISTER_RAW_SIZE is the
159 real way to know how big a register is. */
160
161 #define REGISTER_SIZE 4
162
163 /* Number of machine registers */
164
165 #define NUM_REGS 128
166
167 /* Initializer for an array of names of registers.
168 There should be NUM_REGS strings in this initializer.
169 They are in rows of eight entries */
170
171 #define REGISTER_NAMES \
172 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
173 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
174 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
175 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
176 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
177 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
178 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
179 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
180 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
181 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
182 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
183 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
184 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
185 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
186 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
187 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
188
189 /* Register numbers of various important registers.
190 Note that some of these values are "real" register numbers,
191 and correspond to the general registers of the machine,
192 and some are "phony" register numbers which are too large
193 to be actual register numbers as far as the user is concerned
194 but do serve to get the desired values when passed to read_register. */
195
196 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
197 other r registers. */
198 #define FLAGS_REGNUM 0 /* Various status flags */
199 #define RP_REGNUM 2 /* return pointer */
200 #define FP_REGNUM 3 /* Contains address of executing stack */
201 /* frame */
202 #define SP_REGNUM 30 /* Contains address of top of stack */
203 #define SAR_REGNUM 32 /* Shift Amount Register */
204 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
205 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
206 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
207 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
208 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
209 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
210 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
211 #define IOR_REGNUM 40 /* Interrupt Offset Register */
212 #define SR4_REGNUM 43 /* space register 4 */
213 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
214 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
215 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
216 #define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
217 #define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
218 #define FP4_REGNUM 72
219
220 #define ARG0_REGNUM 26 /* The first argument of a callee. */
221 #define ARG1_REGNUM 25 /* The second argument of a callee. */
222 #define ARG2_REGNUM 24 /* The third argument of a callee. */
223 #define ARG3_REGNUM 23 /* The fourth argument of a callee. */
224
225 /* compatibility with the rest of gdb. */
226 #define PC_REGNUM PCOQ_HEAD_REGNUM
227 #define NPC_REGNUM PCOQ_TAIL_REGNUM
228
229 /*
230 * Processor Status Word Masks
231 */
232
233 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
234 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
235 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
236 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
237 #define PSW_X 0x00100000 /* Data Memory Break Disable */
238 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
239 #define PSW_C 0x00040000 /* Code Address Translation Enable */
240 #define PSW_V 0x00020000 /* Divide Step Correction */
241 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
242 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
243 #define PSW_R 0x00000010 /* Recovery Counter Enable */
244 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
245 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
246 #define PSW_D 0x00000002 /* Data Address Translation Enable */
247 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
248 /* Machine Check Interruption Enable */
249
250 /* When fetching register values from an inferior or a core file,
251 clean them up using this macro. BUF is a char pointer to
252 the raw value of the register in the registers[] array. */
253
254 #define CLEAN_UP_REGISTER_VALUE(regno, buf) \
255 do { \
256 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
257 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
258 } while (0)
259
260 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
261 of register dumps. */
262
263 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
264 extern void pa_do_registers_info PARAMS ((int, int));
265
266 #if 0
267 #define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
268 extern void pa_do_strcat_registers_info PARAMS ((int, int, GDB_FILE *, enum precision_type));
269 #endif
270
271 /* PA specific macro to see if the current instruction is nullified. */
272 #ifndef INSTRUCTION_NULLIFIED
273 #define INSTRUCTION_NULLIFIED \
274 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
275 !((int)read_register (FLAGS_REGNUM) & 0x2))
276 #endif
277
278 /* Number of bytes of storage in the actual machine representation
279 for register N. On the PA-RISC, all regs are 4 bytes, including
280 the FP registers (they're accessed as two 4 byte halves). */
281
282 #define REGISTER_RAW_SIZE(N) 4
283
284 /* Total amount of space needed to store our copies of the machine's
285 register state, the array `registers'. */
286 #define REGISTER_BYTES (NUM_REGS * 4)
287
288 /* Index within `registers' of the first byte of the space for
289 register N. */
290
291 #define REGISTER_BYTE(N) (N) * 4
292
293 /* Number of bytes of storage in the program's representation
294 for register N. */
295
296 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
297
298 /* Largest value REGISTER_RAW_SIZE can have. */
299
300 #define MAX_REGISTER_RAW_SIZE 4
301
302 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
303
304 #define MAX_REGISTER_VIRTUAL_SIZE 8
305
306 /* Return the GDB type object for the "standard" data type
307 of data in register N. */
308
309 #define REGISTER_VIRTUAL_TYPE(N) \
310 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
311
312 /* Store the address of the place in which to copy the structure the
313 subroutine will return. This is called from call_function. */
314
315 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
316
317 /* Extract from an array REGBUF containing the (raw) register state
318 a function return value of type TYPE, and copy that, in virtual format,
319 into VALBUF.
320
321 elz: changed what to return when length is > 4: the stored result is
322 in register 28 and in register 29, with the lower order word being in reg 29,
323 so we must start reading it from somehere in the middle of reg28
324
325 FIXME: Not sure what to do for soft float here. */
326
327 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
328 { \
329 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
330 memcpy ((VALBUF), \
331 ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
332 TYPE_LENGTH (TYPE)); \
333 else \
334 memcpy ((VALBUF), \
335 (char *)(REGBUF) + REGISTER_BYTE (28) + \
336 (TYPE_LENGTH (TYPE) > 4 ? (8 - TYPE_LENGTH (TYPE)) : (4 - TYPE_LENGTH (TYPE))), \
337 TYPE_LENGTH (TYPE)); \
338 }
339
340
341 /* elz: decide whether the function returning a value of type type
342 will put it on the stack or in the registers.
343 The pa calling convention says that:
344 register 28 (called ret0 by gdb) contains any ASCII char,
345 and any non_floating point value up to 32-bits.
346 reg 28 and 29 contain non-floating point up tp 64 bits and larger
347 than 32 bits. (higer order word in reg 28).
348 fr4: floating point up to 64 bits
349 sr1: space identifier (32-bit)
350 stack: any lager than 64-bit, with the address in r28
351 */
352 extern use_struct_convention_fn hppa_use_struct_convention;
353 #define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
354
355 /* Write into appropriate registers a function return value
356 of type TYPE, given in virtual format.
357
358 For software floating point the return value goes into the integer
359 registers. But we don't have any flag to key this on, so we always
360 store the value into the integer registers, and if it's a float value,
361 then we put it in the float registers too. */
362
363 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
364 write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
365 if (!SOFT_FLOAT) \
366 write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
367 ? REGISTER_BYTE (FP4_REGNUM) \
368 : REGISTER_BYTE (28)), \
369 (VALBUF), TYPE_LENGTH (TYPE))
370
371 /* Extract from an array REGBUF containing the (raw) register state
372 the address in which a function should return its structure value,
373 as a CORE_ADDR (or an expression that can be used as one). */
374
375 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
376 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
377
378 /* elz: Return a large value, which is stored on the stack at addr.
379 This is defined only for the hppa, at this moment.
380 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
381 because it assumes that on exit from a called function which returns
382 a large structure on the stack, the address of the ret structure is
383 still in register 28. Unfortunately this register is usually overwritten
384 by the called function itself, on hppa. This is specified in the calling
385 convention doc. As far as I know, the only way to get the return value
386 is to have the caller tell us where it told the callee to put it, rather
387 than have the callee tell us.
388 */
389 #define VALUE_RETURNED_FROM_STACK(valtype,addr) \
390 hppa_value_returned_from_stack (valtype, addr)
391
392 /*
393 * This macro defines the register numbers (from REGISTER_NAMES) that
394 * are effectively unavailable to the user through ptrace(). It allows
395 * us to include the whole register set in REGISTER_NAMES (inorder to
396 * better support remote debugging). If it is used in
397 * fetch/store_inferior_registers() gdb will not complain about I/O errors
398 * on fetching these registers. If all registers in REGISTER_NAMES
399 * are available, then return false (0).
400 */
401
402 #define CANNOT_STORE_REGISTER(regno) \
403 ((regno) == 0) || \
404 ((regno) == PCSQ_HEAD_REGNUM) || \
405 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
406 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
407
408 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
409 extern void init_extra_frame_info PARAMS ((int, struct frame_info *));
410
411 /* Describe the pointer in each stack frame to the previous stack frame
412 (its caller). */
413
414 /* FRAME_CHAIN takes a frame's nominal address
415 and produces the frame's chain-pointer.
416
417 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
418 and produces the nominal address of the caller frame.
419
420 However, if FRAME_CHAIN_VALID returns zero,
421 it means the given frame is the outermost one and has no caller.
422 In that case, FRAME_CHAIN_COMBINE is not used. */
423
424 /* In the case of the PA-RISC, the frame's nominal address
425 is the address of a 4-byte word containing the calling frame's
426 address (previous FP). */
427
428 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
429 extern CORE_ADDR frame_chain PARAMS ((struct frame_info *));
430
431 extern int hppa_frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
432 #define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
433
434 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
435
436 /* Define other aspects of the stack frame. */
437
438 /* A macro that tells us whether the function invocation represented
439 by FI does not have a frame on the stack associated with it. If it
440 does not, FRAMELESS is set to 1, else 0. */
441 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
442 (frameless_function_invocation (FI))
443 extern int frameless_function_invocation PARAMS ((struct frame_info *));
444
445 extern CORE_ADDR hppa_frame_saved_pc PARAMS ((struct frame_info * frame));
446 #define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
447
448 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
449
450 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
451 /* Set VAL to the number of args passed to frame described by FI.
452 Can set VAL to -1, meaning no way to tell. */
453
454 /* We can't tell how many args there are
455 now that the C compiler delays popping them. */
456 #define FRAME_NUM_ARGS(fi) (-1)
457
458 /* Return number of bytes at start of arglist that are not really args. */
459
460 #define FRAME_ARGS_SKIP 0
461
462 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
463 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
464 extern void
465 hppa_frame_find_saved_regs PARAMS ((struct frame_info *,
466 struct frame_saved_regs *));
467 \f
468
469 /* Things needed for making the inferior call functions. */
470
471 /* Push an empty stack frame, to record the current PC, etc. */
472
473 #define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
474 extern void push_dummy_frame PARAMS ((struct inferior_status *));
475
476 /* Discard from the stack the innermost frame,
477 restoring all saved registers. */
478 #define POP_FRAME hppa_pop_frame ()
479 extern void hppa_pop_frame PARAMS ((void));
480
481 #define INSTRUCTION_SIZE 4
482
483 #ifndef PA_LEVEL_0
484
485 /* Non-level zero PA's have space registers (but they don't always have
486 floating-point, do they???? */
487
488 /* This sequence of words is the instructions
489
490 ; Call stack frame has already been built by gdb. Since we could be calling
491 ; a varargs function, and we do not have the benefit of a stub to put things in
492 ; the right place, we load the first 4 word of arguments into both the general
493 ; and fp registers.
494 call_dummy
495 ldw -36(sp), arg0
496 ldw -40(sp), arg1
497 ldw -44(sp), arg2
498 ldw -48(sp), arg3
499 ldo -36(sp), r1
500 fldws 0(0, r1), fr4
501 fldds -4(0, r1), fr5
502 fldws -8(0, r1), fr6
503 fldds -12(0, r1), fr7
504 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
505 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
506 ldsid (0,r22), r4
507 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
508 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
509 ldsid (0,r1), r20
510 combt,=,n r4, r20, text_space ; If target is in data space, do a
511 ble 0(sr5, r22) ; "normal" procedure call
512 copy r31, r2
513 break 4, 8
514 mtsp r21, sr0
515 ble,n 0(sr0, r22)
516 text_space ; Otherwise, go through _sr4export,
517 ble (sr4, r1) ; which will return back here.
518 stw r31,-24(r30)
519 break 4, 8
520 mtsp r21, sr0
521 ble,n 0(sr0, r22)
522 nop ; To avoid kernel bugs
523 nop ; and keep the dummy 8 byte aligned
524
525 The dummy decides if the target is in text space or data space. If
526 it's in data space, there's no problem because the target can
527 return back to the dummy. However, if the target is in text space,
528 the dummy calls the secret, undocumented routine _sr4export, which
529 calls a function in text space and can return to any space. Instead
530 of including fake instructions to represent saved registers, we
531 know that the frame is associated with the call dummy and treat it
532 specially.
533
534 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
535 kernels. If the memory at the location pointed to by the PC is
536 0xffffffff then a ptrace step call will fail (even if the instruction
537 is nullified).
538
539 The code to pop a dummy frame single steps three instructions
540 starting with the last mtsp. This includes the nullified "instruction"
541 following the ble (which is uninitialized junk). If the
542 "instruction" following the last BLE is 0xffffffff, then the ptrace
543 will fail and the dummy frame is not correctly popped.
544
545 By placing a NOP in the delay slot of the BLE instruction we can be
546 sure that we never try to execute a 0xffffffff instruction and
547 avoid the kernel bug. The second NOP is needed to keep the call
548 dummy 8 byte aligned. */
549
550 /* Define offsets into the call dummy for the target function address */
551 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
552 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
553
554 /* Define offsets into the call dummy for the _sr4export address */
555 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
556 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
557
558 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
559 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
560 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
561 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
562 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
563 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
564 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
565
566 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
567 #define REG_PARM_STACK_SPACE 16
568
569 #else /* defined PA_LEVEL_0 */
570
571 /* This is the call dummy for a level 0 PA. Level 0's don't have space
572 registers (or floating point??), so we skip all that inter-space call stuff,
573 and avoid touching the fp regs.
574
575 call_dummy
576
577 ldw -36(%sp), %arg0
578 ldw -40(%sp), %arg1
579 ldw -44(%sp), %arg2
580 ldw -48(%sp), %arg3
581 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
582 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
583 ble 0(%sr0, %r31)
584 copy %r31, %r2
585 break 4, 8
586 nop ; restore_pc_queue expects these
587 bv,n 0(%r22) ; instructions to be here...
588 nop
589 */
590
591 /* Define offsets into the call dummy for the target function address */
592 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
593 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
594
595 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
596 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
597 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
598
599 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
600
601 #endif
602
603 #define CALL_DUMMY_START_OFFSET 0
604
605 /* If we've reached a trap instruction within the call dummy, then
606 we'll consider that to mean that we've reached the call dummy's
607 end after its successful completion. */
608 #define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
609 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
610 (read_memory_integer((pc), 4) == BREAKPOINT32))
611
612 /*
613 * Insert the specified number of args and function address
614 * into a call sequence of the above form stored at DUMMYNAME.
615 *
616 * On the hppa we need to call the stack dummy through $$dyncall.
617 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
618 * real_pc, which is the location where gdb should start up the
619 * inferior to do the function call.
620 */
621
622 #define FIX_CALL_DUMMY hppa_fix_call_dummy
623
624 extern CORE_ADDR
625 hppa_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR, int,
626 struct value **, struct type *, int));
627
628 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
629 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
630 extern CORE_ADDR
631 hppa_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int,
632 CORE_ADDR));
633 \f
634 /* The low two bits of the PC on the PA contain the privilege level. Some
635 genius implementing a (non-GCC) compiler apparently decided this means
636 that "addresses" in a text section therefore include a privilege level,
637 and thus symbol tables should contain these bits. This seems like a
638 bonehead thing to do--anyway, it seems to work for our purposes to just
639 ignore those bits. */
640 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
641
642 #define GDB_TARGET_IS_HPPA
643
644 #define BELIEVE_PCC_PROMOTION 1
645
646 /*
647 * Unwind table and descriptor.
648 */
649
650 struct unwind_table_entry
651 {
652 CORE_ADDR region_start;
653 CORE_ADDR region_end;
654
655 unsigned int Cannot_unwind:1; /* 0 */
656 unsigned int Millicode:1; /* 1 */
657 unsigned int Millicode_save_sr0:1; /* 2 */
658 unsigned int Region_description:2; /* 3..4 */
659 unsigned int reserved1:1; /* 5 */
660 unsigned int Entry_SR:1; /* 6 */
661 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
662 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
663 unsigned int Args_stored:1; /* 16 */
664 unsigned int Variable_Frame:1; /* 17 */
665 unsigned int Separate_Package_Body:1; /* 18 */
666 unsigned int Frame_Extension_Millicode:1; /* 19 */
667 unsigned int Stack_Overflow_Check:1; /* 20 */
668 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
669 unsigned int Ada_Region:1; /* 22 */
670 unsigned int cxx_info:1; /* 23 */
671 unsigned int cxx_try_catch:1; /* 24 */
672 unsigned int sched_entry_seq:1; /* 25 */
673 unsigned int reserved2:1; /* 26 */
674 unsigned int Save_SP:1; /* 27 */
675 unsigned int Save_RP:1; /* 28 */
676 unsigned int Save_MRP_in_frame:1; /* 29 */
677 unsigned int extn_ptr_defined:1; /* 30 */
678 unsigned int Cleanup_defined:1; /* 31 */
679
680 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
681 unsigned int HP_UX_interrupt_marker:1; /* 1 */
682 unsigned int Large_frame:1; /* 2 */
683 unsigned int Pseudo_SP_Set:1; /* 3 */
684 unsigned int reserved4:1; /* 4 */
685 unsigned int Total_frame_size:27; /* 5..31 */
686
687 /* This is *NOT* part of an actual unwind_descriptor in an object
688 file. It is *ONLY* part of the "internalized" descriptors that
689 we create from those in a file.
690 */
691 struct
692 {
693 unsigned int stub_type:4; /* 0..3 */
694 unsigned int padding:28; /* 4..31 */
695 }
696 stub_unwind;
697 };
698
699 /* HP linkers also generate unwinds for various linker-generated stubs.
700 GDB reads in the stubs from the $UNWIND_END$ subspace, then
701 "converts" them into normal unwind entries using some of the reserved
702 fields to store the stub type. */
703
704 struct stub_unwind_entry
705 {
706 /* The offset within the executable for the associated stub. */
707 unsigned stub_offset;
708
709 /* The type of stub this unwind entry describes. */
710 char type;
711
712 /* Unknown. Not needed by GDB at this time. */
713 char prs_info;
714
715 /* Length (in instructions) of the associated stub. */
716 short stub_length;
717 };
718
719 /* Sizes (in bytes) of the native unwind entries. */
720 #define UNWIND_ENTRY_SIZE 16
721 #define STUB_UNWIND_ENTRY_SIZE 8
722
723 /* The gaps represent linker stubs used in MPE and space for future
724 expansion. */
725 enum unwind_stub_types
726 {
727 LONG_BRANCH = 1,
728 PARAMETER_RELOCATION = 2,
729 EXPORT = 10,
730 IMPORT = 11,
731 IMPORT_SHLIB = 12,
732 };
733
734 /* We use the objfile->obj_private pointer for two things:
735
736 * 1. An unwind table;
737 *
738 * 2. A pointer to any associated shared library object.
739 *
740 * #defines are used to help refer to these objects.
741 */
742
743 /* Info about the unwind table associated with an object file.
744
745 * This is hung off of the "objfile->obj_private" pointer, and
746 * is allocated in the objfile's psymbol obstack. This allows
747 * us to have unique unwind info for each executable and shared
748 * library that we are debugging.
749 */
750 struct obj_unwind_info
751 {
752 struct unwind_table_entry *table; /* Pointer to unwind info */
753 struct unwind_table_entry *cache; /* Pointer to last entry we found */
754 int last; /* Index of last entry */
755 };
756
757 typedef struct data {
758 CORE_ADDR dummy[2];
759 CORE_ADDR func_addr;
760 CORE_ADDR dp;
761 } opd_data;
762
763 typedef struct obj_private_struct
764 {
765 struct obj_unwind_info *unwind_info; /* a pointer */
766 struct so_list *so_info; /* a pointer */
767 opd_data *opd;
768 int n_opd_entries;
769 }
770 obj_private_data_t;
771
772 #if 0
773 extern void target_write_pc
774 PARAMS ((CORE_ADDR, int))
775 extern CORE_ADDR target_read_pc PARAMS ((int));
776 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
777 #endif
778
779 #define TARGET_READ_PC(pid) target_read_pc (pid)
780 extern CORE_ADDR target_read_pc PARAMS ((int));
781
782 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
783 extern void target_write_pc PARAMS ((CORE_ADDR, int));
784
785 #define TARGET_READ_FP() target_read_fp (inferior_pid)
786 extern CORE_ADDR target_read_fp PARAMS ((int));
787
788 /* For a number of horrible reasons we may have to adjust the location
789 of variables on the stack. Ugh. */
790 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
791
792 extern int hpread_adjust_stack_address PARAMS ((CORE_ADDR));
793
794 /* If the current gcc for for this target does not produce correct debugging
795 information for float parameters, both prototyped and unprototyped, then
796 define this macro. This forces gdb to always assume that floats are
797 passed as doubles and then converted in the callee.
798
799 For the pa, it appears that the debug info marks the parameters as
800 floats regardless of whether the function is prototyped, but the actual
801 values are passed as doubles for the non-prototyped case and floats for
802 the prototyped case. Thus we choose to make the non-prototyped case work
803 for C and break the prototyped case, since the non-prototyped case is
804 probably much more common. (FIXME). */
805
806 #define COERCE_FLOAT_TO_DOUBLE (current_language -> la_language == language_c)
This page took 0.062244 seconds and 4 git commands to generate.