clean up some target delegation cases
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <string.h>
23 #include <errno.h>
24 #include <signal.h>
25 #include <fcntl.h>
26 #ifdef HAVE_SYS_FILE_H
27 #include <sys/file.h> /* needed for F_OK and friends */
28 #endif
29 #include "frame.h" /* required by inferior.h */
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "symtab.h"
33 #include "command.h"
34 #include "bfd.h"
35 #include "target.h"
36 #include "gdbcore.h"
37 #include "gdbthread.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "exec.h"
42 #include "readline/readline.h"
43 #include "gdb_assert.h"
44 #include "exceptions.h"
45 #include "solib.h"
46 #include "filenames.h"
47 #include "progspace.h"
48 #include "objfiles.h"
49 #include "gdb_bfd.h"
50 #include "completer.h"
51 #include "filestuff.h"
52
53 #ifndef O_LARGEFILE
54 #define O_LARGEFILE 0
55 #endif
56
57 /* List of all available core_fns. On gdb startup, each core file
58 register reader calls deprecated_add_core_fns() to register
59 information on each core format it is prepared to read. */
60
61 static struct core_fns *core_file_fns = NULL;
62
63 /* The core_fns for a core file handler that is prepared to read the
64 core file currently open on core_bfd. */
65
66 static struct core_fns *core_vec = NULL;
67
68 /* FIXME: kettenis/20031023: Eventually this variable should
69 disappear. */
70
71 static struct gdbarch *core_gdbarch = NULL;
72
73 /* Per-core data. Currently, only the section table. Note that these
74 target sections are *not* mapped in the current address spaces' set
75 of target sections --- those should come only from pure executable
76 or shared library bfds. The core bfd sections are an
77 implementation detail of the core target, just like ptrace is for
78 unix child targets. */
79 static struct target_section_table *core_data;
80
81 static void core_files_info (struct target_ops *);
82
83 static struct core_fns *sniff_core_bfd (bfd *);
84
85 static int gdb_check_format (bfd *);
86
87 static void core_open (char *, int);
88
89 static void core_close (struct target_ops *self);
90
91 static void core_close_cleanup (void *ignore);
92
93 static void add_to_thread_list (bfd *, asection *, void *);
94
95 static void init_core_ops (void);
96
97 void _initialize_corelow (void);
98
99 static struct target_ops core_ops;
100
101 /* An arbitrary identifier for the core inferior. */
102 #define CORELOW_PID 1
103
104 /* Link a new core_fns into the global core_file_fns list. Called on
105 gdb startup by the _initialize routine in each core file register
106 reader, to register information about each format the reader is
107 prepared to handle. */
108
109 void
110 deprecated_add_core_fns (struct core_fns *cf)
111 {
112 cf->next = core_file_fns;
113 core_file_fns = cf;
114 }
115
116 /* The default function that core file handlers can use to examine a
117 core file BFD and decide whether or not to accept the job of
118 reading the core file. */
119
120 int
121 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
122 {
123 int result;
124
125 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
126 return (result);
127 }
128
129 /* Walk through the list of core functions to find a set that can
130 handle the core file open on ABFD. Returns pointer to set that is
131 selected. */
132
133 static struct core_fns *
134 sniff_core_bfd (bfd *abfd)
135 {
136 struct core_fns *cf;
137 struct core_fns *yummy = NULL;
138 int matches = 0;;
139
140 /* Don't sniff if we have support for register sets in
141 CORE_GDBARCH. */
142 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
143 return NULL;
144
145 for (cf = core_file_fns; cf != NULL; cf = cf->next)
146 {
147 if (cf->core_sniffer (cf, abfd))
148 {
149 yummy = cf;
150 matches++;
151 }
152 }
153 if (matches > 1)
154 {
155 warning (_("\"%s\": ambiguous core format, %d handlers match"),
156 bfd_get_filename (abfd), matches);
157 }
158 else if (matches == 0)
159 error (_("\"%s\": no core file handler recognizes format"),
160 bfd_get_filename (abfd));
161
162 return (yummy);
163 }
164
165 /* The default is to reject every core file format we see. Either
166 BFD has to recognize it, or we have to provide a function in the
167 core file handler that recognizes it. */
168
169 int
170 default_check_format (bfd *abfd)
171 {
172 return (0);
173 }
174
175 /* Attempt to recognize core file formats that BFD rejects. */
176
177 static int
178 gdb_check_format (bfd *abfd)
179 {
180 struct core_fns *cf;
181
182 for (cf = core_file_fns; cf != NULL; cf = cf->next)
183 {
184 if (cf->check_format (abfd))
185 {
186 return (1);
187 }
188 }
189 return (0);
190 }
191
192 /* Discard all vestiges of any previous core file and mark data and
193 stack spaces as empty. */
194
195 static void
196 core_close (struct target_ops *self)
197 {
198 if (core_bfd)
199 {
200 int pid = ptid_get_pid (inferior_ptid);
201 inferior_ptid = null_ptid; /* Avoid confusion from thread
202 stuff. */
203 if (pid != 0)
204 exit_inferior_silent (pid);
205
206 /* Clear out solib state while the bfd is still open. See
207 comments in clear_solib in solib.c. */
208 clear_solib ();
209
210 if (core_data)
211 {
212 xfree (core_data->sections);
213 xfree (core_data);
214 core_data = NULL;
215 }
216
217 gdb_bfd_unref (core_bfd);
218 core_bfd = NULL;
219 }
220 core_vec = NULL;
221 core_gdbarch = NULL;
222 }
223
224 static void
225 core_close_cleanup (void *ignore)
226 {
227 core_close (NULL);
228 }
229
230 /* Look for sections whose names start with `.reg/' so that we can
231 extract the list of threads in a core file. */
232
233 static void
234 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
235 {
236 ptid_t ptid;
237 int core_tid;
238 int pid, lwpid;
239 asection *reg_sect = (asection *) reg_sect_arg;
240 int fake_pid_p = 0;
241 struct inferior *inf;
242
243 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
244 return;
245
246 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
247
248 pid = bfd_core_file_pid (core_bfd);
249 if (pid == 0)
250 {
251 fake_pid_p = 1;
252 pid = CORELOW_PID;
253 }
254
255 lwpid = core_tid;
256
257 inf = current_inferior ();
258 if (inf->pid == 0)
259 {
260 inferior_appeared (inf, pid);
261 inf->fake_pid_p = fake_pid_p;
262 }
263
264 ptid = ptid_build (pid, lwpid, 0);
265
266 add_thread (ptid);
267
268 /* Warning, Will Robinson, looking at BFD private data! */
269
270 if (reg_sect != NULL
271 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
272 inferior_ptid = ptid; /* Yes, make it current. */
273 }
274
275 /* This routine opens and sets up the core file bfd. */
276
277 static void
278 core_open (char *filename, int from_tty)
279 {
280 const char *p;
281 int siggy;
282 struct cleanup *old_chain;
283 char *temp;
284 bfd *temp_bfd;
285 int scratch_chan;
286 int flags;
287 volatile struct gdb_exception except;
288
289 target_preopen (from_tty);
290 if (!filename)
291 {
292 if (core_bfd)
293 error (_("No core file specified. (Use `detach' "
294 "to stop debugging a core file.)"));
295 else
296 error (_("No core file specified."));
297 }
298
299 filename = tilde_expand (filename);
300 if (!IS_ABSOLUTE_PATH (filename))
301 {
302 temp = concat (current_directory, "/",
303 filename, (char *) NULL);
304 xfree (filename);
305 filename = temp;
306 }
307
308 old_chain = make_cleanup (xfree, filename);
309
310 flags = O_BINARY | O_LARGEFILE;
311 if (write_files)
312 flags |= O_RDWR;
313 else
314 flags |= O_RDONLY;
315 scratch_chan = gdb_open_cloexec (filename, flags, 0);
316 if (scratch_chan < 0)
317 perror_with_name (filename);
318
319 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
320 write_files ? FOPEN_RUB : FOPEN_RB,
321 scratch_chan);
322 if (temp_bfd == NULL)
323 perror_with_name (filename);
324
325 if (!bfd_check_format (temp_bfd, bfd_core)
326 && !gdb_check_format (temp_bfd))
327 {
328 /* Do it after the err msg */
329 /* FIXME: should be checking for errors from bfd_close (for one
330 thing, on error it does not free all the storage associated
331 with the bfd). */
332 make_cleanup_bfd_unref (temp_bfd);
333 error (_("\"%s\" is not a core dump: %s"),
334 filename, bfd_errmsg (bfd_get_error ()));
335 }
336
337 /* Looks semi-reasonable. Toss the old core file and work on the
338 new. */
339
340 do_cleanups (old_chain);
341 unpush_target (&core_ops);
342 core_bfd = temp_bfd;
343 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
344
345 core_gdbarch = gdbarch_from_bfd (core_bfd);
346
347 /* Find a suitable core file handler to munch on core_bfd */
348 core_vec = sniff_core_bfd (core_bfd);
349
350 validate_files ();
351
352 core_data = XCNEW (struct target_section_table);
353
354 /* Find the data section */
355 if (build_section_table (core_bfd,
356 &core_data->sections,
357 &core_data->sections_end))
358 error (_("\"%s\": Can't find sections: %s"),
359 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
360
361 /* If we have no exec file, try to set the architecture from the
362 core file. We don't do this unconditionally since an exec file
363 typically contains more information that helps us determine the
364 architecture than a core file. */
365 if (!exec_bfd)
366 set_gdbarch_from_file (core_bfd);
367
368 push_target (&core_ops);
369 discard_cleanups (old_chain);
370
371 /* Do this before acknowledging the inferior, so if
372 post_create_inferior throws (can happen easilly if you're loading
373 a core file with the wrong exec), we aren't left with threads
374 from the previous inferior. */
375 init_thread_list ();
376
377 inferior_ptid = null_ptid;
378
379 /* Need to flush the register cache (and the frame cache) from a
380 previous debug session. If inferior_ptid ends up the same as the
381 last debug session --- e.g., b foo; run; gcore core1; step; gcore
382 core2; core core1; core core2 --- then there's potential for
383 get_current_regcache to return the cached regcache of the
384 previous session, and the frame cache being stale. */
385 registers_changed ();
386
387 /* Build up thread list from BFD sections, and possibly set the
388 current thread to the .reg/NN section matching the .reg
389 section. */
390 bfd_map_over_sections (core_bfd, add_to_thread_list,
391 bfd_get_section_by_name (core_bfd, ".reg"));
392
393 if (ptid_equal (inferior_ptid, null_ptid))
394 {
395 /* Either we found no .reg/NN section, and hence we have a
396 non-threaded core (single-threaded, from gdb's perspective),
397 or for some reason add_to_thread_list couldn't determine
398 which was the "main" thread. The latter case shouldn't
399 usually happen, but we're dealing with input here, which can
400 always be broken in different ways. */
401 struct thread_info *thread = first_thread_of_process (-1);
402
403 if (thread == NULL)
404 {
405 inferior_appeared (current_inferior (), CORELOW_PID);
406 inferior_ptid = pid_to_ptid (CORELOW_PID);
407 add_thread_silent (inferior_ptid);
408 }
409 else
410 switch_to_thread (thread->ptid);
411 }
412
413 post_create_inferior (&core_ops, from_tty);
414
415 /* Now go through the target stack looking for threads since there
416 may be a thread_stratum target loaded on top of target core by
417 now. The layer above should claim threads found in the BFD
418 sections. */
419 TRY_CATCH (except, RETURN_MASK_ERROR)
420 {
421 target_find_new_threads ();
422 }
423
424 if (except.reason < 0)
425 exception_print (gdb_stderr, except);
426
427 p = bfd_core_file_failing_command (core_bfd);
428 if (p)
429 printf_filtered (_("Core was generated by `%s'.\n"), p);
430
431 /* Clearing any previous state of convenience variables. */
432 clear_exit_convenience_vars ();
433
434 siggy = bfd_core_file_failing_signal (core_bfd);
435 if (siggy > 0)
436 {
437 /* If we don't have a CORE_GDBARCH to work with, assume a native
438 core (map gdb_signal from host signals). If we do have
439 CORE_GDBARCH to work with, but no gdb_signal_from_target
440 implementation for that gdbarch, as a fallback measure,
441 assume the host signal mapping. It'll be correct for native
442 cores, but most likely incorrect for cross-cores. */
443 enum gdb_signal sig = (core_gdbarch != NULL
444 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
445 ? gdbarch_gdb_signal_from_target (core_gdbarch,
446 siggy)
447 : gdb_signal_from_host (siggy));
448
449 printf_filtered (_("Program terminated with signal %s, %s.\n"),
450 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
451
452 /* Set the value of the internal variable $_exitsignal,
453 which holds the signal uncaught by the inferior. */
454 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
455 siggy);
456 }
457
458 /* Fetch all registers from core file. */
459 target_fetch_registers (get_current_regcache (), -1);
460
461 /* Now, set up the frame cache, and print the top of stack. */
462 reinit_frame_cache ();
463 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
464 }
465
466 static void
467 core_detach (struct target_ops *ops, const char *args, int from_tty)
468 {
469 if (args)
470 error (_("Too many arguments"));
471 unpush_target (ops);
472 reinit_frame_cache ();
473 if (from_tty)
474 printf_filtered (_("No core file now.\n"));
475 }
476
477 /* Try to retrieve registers from a section in core_bfd, and supply
478 them to core_vec->core_read_registers, as the register set numbered
479 WHICH.
480
481 If inferior_ptid's lwp member is zero, do the single-threaded
482 thing: look for a section named NAME. If inferior_ptid's lwp
483 member is non-zero, do the multi-threaded thing: look for a section
484 named "NAME/LWP", where LWP is the shortest ASCII decimal
485 representation of inferior_ptid's lwp member.
486
487 HUMAN_NAME is a human-readable name for the kind of registers the
488 NAME section contains, for use in error messages.
489
490 If REQUIRED is non-zero, print an error if the core file doesn't
491 have a section by the appropriate name. Otherwise, just do
492 nothing. */
493
494 static void
495 get_core_register_section (struct regcache *regcache,
496 const char *name,
497 int which,
498 const char *human_name,
499 int required)
500 {
501 static char *section_name = NULL;
502 struct bfd_section *section;
503 bfd_size_type size;
504 char *contents;
505
506 xfree (section_name);
507
508 if (ptid_get_lwp (inferior_ptid))
509 section_name = xstrprintf ("%s/%ld", name,
510 ptid_get_lwp (inferior_ptid));
511 else
512 section_name = xstrdup (name);
513
514 section = bfd_get_section_by_name (core_bfd, section_name);
515 if (! section)
516 {
517 if (required)
518 warning (_("Couldn't find %s registers in core file."),
519 human_name);
520 return;
521 }
522
523 size = bfd_section_size (core_bfd, section);
524 contents = alloca (size);
525 if (! bfd_get_section_contents (core_bfd, section, contents,
526 (file_ptr) 0, size))
527 {
528 warning (_("Couldn't read %s registers from `%s' section in core file."),
529 human_name, name);
530 return;
531 }
532
533 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
534 {
535 const struct regset *regset;
536
537 regset = gdbarch_regset_from_core_section (core_gdbarch,
538 name, size);
539 if (regset == NULL)
540 {
541 if (required)
542 warning (_("Couldn't recognize %s registers in core file."),
543 human_name);
544 return;
545 }
546
547 regset->supply_regset (regset, regcache, -1, contents, size);
548 return;
549 }
550
551 gdb_assert (core_vec);
552 core_vec->core_read_registers (regcache, contents, size, which,
553 ((CORE_ADDR)
554 bfd_section_vma (core_bfd, section)));
555 }
556
557
558 /* Get the registers out of a core file. This is the machine-
559 independent part. Fetch_core_registers is the machine-dependent
560 part, typically implemented in the xm-file for each
561 architecture. */
562
563 /* We just get all the registers, so we don't use regno. */
564
565 static void
566 get_core_registers (struct target_ops *ops,
567 struct regcache *regcache, int regno)
568 {
569 struct core_regset_section *sect_list;
570 int i;
571
572 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
573 && (core_vec == NULL || core_vec->core_read_registers == NULL))
574 {
575 fprintf_filtered (gdb_stderr,
576 "Can't fetch registers from this type of core file\n");
577 return;
578 }
579
580 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
581 if (sect_list)
582 while (sect_list->sect_name != NULL)
583 {
584 if (strcmp (sect_list->sect_name, ".reg") == 0)
585 get_core_register_section (regcache, sect_list->sect_name,
586 0, sect_list->human_name, 1);
587 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
588 get_core_register_section (regcache, sect_list->sect_name,
589 2, sect_list->human_name, 0);
590 else
591 get_core_register_section (regcache, sect_list->sect_name,
592 3, sect_list->human_name, 0);
593
594 sect_list++;
595 }
596
597 else
598 {
599 get_core_register_section (regcache,
600 ".reg", 0, "general-purpose", 1);
601 get_core_register_section (regcache,
602 ".reg2", 2, "floating-point", 0);
603 }
604
605 /* Mark all registers not found in the core as unavailable. */
606 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
607 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
608 regcache_raw_supply (regcache, i, NULL);
609 }
610
611 static void
612 core_files_info (struct target_ops *t)
613 {
614 print_section_info (core_data, core_bfd);
615 }
616 \f
617 struct spuid_list
618 {
619 gdb_byte *buf;
620 ULONGEST offset;
621 LONGEST len;
622 ULONGEST pos;
623 ULONGEST written;
624 };
625
626 static void
627 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
628 {
629 struct spuid_list *list = list_p;
630 enum bfd_endian byte_order
631 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
632 int fd, pos = 0;
633
634 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
635 if (pos == 0)
636 return;
637
638 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
639 {
640 store_unsigned_integer (list->buf + list->pos - list->offset,
641 4, byte_order, fd);
642 list->written += 4;
643 }
644 list->pos += 4;
645 }
646
647 /* Read siginfo data from the core, if possible. Returns -1 on
648 failure. Otherwise, returns the number of bytes read. ABFD is the
649 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
650 the to_xfer_partial interface. */
651
652 static LONGEST
653 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
654 {
655 asection *section;
656 char *section_name;
657 const char *name = ".note.linuxcore.siginfo";
658
659 if (ptid_get_lwp (inferior_ptid))
660 section_name = xstrprintf ("%s/%ld", name,
661 ptid_get_lwp (inferior_ptid));
662 else
663 section_name = xstrdup (name);
664
665 section = bfd_get_section_by_name (abfd, section_name);
666 xfree (section_name);
667 if (section == NULL)
668 return -1;
669
670 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
671 return -1;
672
673 return len;
674 }
675
676 static enum target_xfer_status
677 core_xfer_partial (struct target_ops *ops, enum target_object object,
678 const char *annex, gdb_byte *readbuf,
679 const gdb_byte *writebuf, ULONGEST offset,
680 ULONGEST len, ULONGEST *xfered_len)
681 {
682 switch (object)
683 {
684 case TARGET_OBJECT_MEMORY:
685 return section_table_xfer_memory_partial (readbuf, writebuf,
686 offset, len, xfered_len,
687 core_data->sections,
688 core_data->sections_end,
689 NULL);
690
691 case TARGET_OBJECT_AUXV:
692 if (readbuf)
693 {
694 /* When the aux vector is stored in core file, BFD
695 represents this with a fake section called ".auxv". */
696
697 struct bfd_section *section;
698 bfd_size_type size;
699
700 section = bfd_get_section_by_name (core_bfd, ".auxv");
701 if (section == NULL)
702 return TARGET_XFER_E_IO;
703
704 size = bfd_section_size (core_bfd, section);
705 if (offset >= size)
706 return TARGET_XFER_EOF;
707 size -= offset;
708 if (size > len)
709 size = len;
710
711 if (size == 0)
712 return TARGET_XFER_EOF;
713 if (!bfd_get_section_contents (core_bfd, section, readbuf,
714 (file_ptr) offset, size))
715 {
716 warning (_("Couldn't read NT_AUXV note in core file."));
717 return TARGET_XFER_E_IO;
718 }
719
720 *xfered_len = (ULONGEST) size;
721 return TARGET_XFER_OK;
722 }
723 return TARGET_XFER_E_IO;
724
725 case TARGET_OBJECT_WCOOKIE:
726 if (readbuf)
727 {
728 /* When the StackGhost cookie is stored in core file, BFD
729 represents this with a fake section called
730 ".wcookie". */
731
732 struct bfd_section *section;
733 bfd_size_type size;
734
735 section = bfd_get_section_by_name (core_bfd, ".wcookie");
736 if (section == NULL)
737 return TARGET_XFER_E_IO;
738
739 size = bfd_section_size (core_bfd, section);
740 if (offset >= size)
741 return 0;
742 size -= offset;
743 if (size > len)
744 size = len;
745
746 if (size == 0)
747 return TARGET_XFER_EOF;
748 if (!bfd_get_section_contents (core_bfd, section, readbuf,
749 (file_ptr) offset, size))
750 {
751 warning (_("Couldn't read StackGhost cookie in core file."));
752 return TARGET_XFER_E_IO;
753 }
754
755 *xfered_len = (ULONGEST) size;
756 return TARGET_XFER_OK;
757
758 }
759 return TARGET_XFER_E_IO;
760
761 case TARGET_OBJECT_LIBRARIES:
762 if (core_gdbarch
763 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
764 {
765 if (writebuf)
766 return TARGET_XFER_E_IO;
767 else
768 {
769 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
770 readbuf,
771 offset, len);
772
773 if (*xfered_len == 0)
774 return TARGET_XFER_EOF;
775 else
776 return TARGET_XFER_OK;
777 }
778 }
779 /* FALL THROUGH */
780
781 case TARGET_OBJECT_LIBRARIES_AIX:
782 if (core_gdbarch
783 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
784 {
785 if (writebuf)
786 return TARGET_XFER_E_IO;
787 else
788 {
789 *xfered_len
790 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
791 readbuf, offset,
792 len);
793
794 if (*xfered_len == 0)
795 return TARGET_XFER_EOF;
796 else
797 return TARGET_XFER_OK;
798 }
799 }
800 /* FALL THROUGH */
801
802 case TARGET_OBJECT_SPU:
803 if (readbuf && annex)
804 {
805 /* When the SPU contexts are stored in a core file, BFD
806 represents this with a fake section called
807 "SPU/<annex>". */
808
809 struct bfd_section *section;
810 bfd_size_type size;
811 char sectionstr[100];
812
813 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
814
815 section = bfd_get_section_by_name (core_bfd, sectionstr);
816 if (section == NULL)
817 return TARGET_XFER_E_IO;
818
819 size = bfd_section_size (core_bfd, section);
820 if (offset >= size)
821 return TARGET_XFER_EOF;
822 size -= offset;
823 if (size > len)
824 size = len;
825
826 if (size == 0)
827 return TARGET_XFER_EOF;
828 if (!bfd_get_section_contents (core_bfd, section, readbuf,
829 (file_ptr) offset, size))
830 {
831 warning (_("Couldn't read SPU section in core file."));
832 return TARGET_XFER_E_IO;
833 }
834
835 *xfered_len = (ULONGEST) size;
836 return TARGET_XFER_OK;
837 }
838 else if (readbuf)
839 {
840 /* NULL annex requests list of all present spuids. */
841 struct spuid_list list;
842
843 list.buf = readbuf;
844 list.offset = offset;
845 list.len = len;
846 list.pos = 0;
847 list.written = 0;
848 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
849
850 if (list.written == 0)
851 return TARGET_XFER_EOF;
852 else
853 {
854 *xfered_len = (ULONGEST) list.written;
855 return TARGET_XFER_OK;
856 }
857 }
858 return TARGET_XFER_E_IO;
859
860 case TARGET_OBJECT_SIGNAL_INFO:
861 if (readbuf)
862 {
863 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
864
865 if (l > 0)
866 {
867 *xfered_len = len;
868 return TARGET_XFER_OK;
869 }
870 }
871 return TARGET_XFER_E_IO;
872
873 default:
874 return ops->beneath->to_xfer_partial (ops->beneath, object,
875 annex, readbuf,
876 writebuf, offset, len,
877 xfered_len);
878 }
879 }
880
881 \f
882 /* If mourn is being called in all the right places, this could be say
883 `gdb internal error' (since generic_mourn calls
884 breakpoint_init_inferior). */
885
886 static int
887 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
888 struct bp_target_info *bp_tgt)
889 {
890 return 0;
891 }
892
893
894 /* Okay, let's be honest: threads gleaned from a core file aren't
895 exactly lively, are they? On the other hand, if we don't claim
896 that each & every one is alive, then we don't get any of them
897 to appear in an "info thread" command, which is quite a useful
898 behaviour.
899 */
900 static int
901 core_thread_alive (struct target_ops *ops, ptid_t ptid)
902 {
903 return 1;
904 }
905
906 /* Ask the current architecture what it knows about this core file.
907 That will be used, in turn, to pick a better architecture. This
908 wrapper could be avoided if targets got a chance to specialize
909 core_ops. */
910
911 static const struct target_desc *
912 core_read_description (struct target_ops *target)
913 {
914 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
915 {
916 const struct target_desc *result;
917
918 result = gdbarch_core_read_description (core_gdbarch,
919 target, core_bfd);
920 if (result != NULL)
921 return result;
922 }
923
924 return target->beneath->to_read_description (target->beneath);
925 }
926
927 static char *
928 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
929 {
930 static char buf[64];
931 struct inferior *inf;
932 int pid;
933
934 /* The preferred way is to have a gdbarch/OS specific
935 implementation. */
936 if (core_gdbarch
937 && gdbarch_core_pid_to_str_p (core_gdbarch))
938 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
939
940 /* Otherwise, if we don't have one, we'll just fallback to
941 "process", with normal_pid_to_str. */
942
943 /* Try the LWPID field first. */
944 pid = ptid_get_lwp (ptid);
945 if (pid != 0)
946 return normal_pid_to_str (pid_to_ptid (pid));
947
948 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
949 only if it isn't a fake PID. */
950 inf = find_inferior_pid (ptid_get_pid (ptid));
951 if (inf != NULL && !inf->fake_pid_p)
952 return normal_pid_to_str (ptid);
953
954 /* No luck. We simply don't have a valid PID to print. */
955 xsnprintf (buf, sizeof buf, "<main task>");
956 return buf;
957 }
958
959 static int
960 core_has_memory (struct target_ops *ops)
961 {
962 return (core_bfd != NULL);
963 }
964
965 static int
966 core_has_stack (struct target_ops *ops)
967 {
968 return (core_bfd != NULL);
969 }
970
971 static int
972 core_has_registers (struct target_ops *ops)
973 {
974 return (core_bfd != NULL);
975 }
976
977 /* Implement the to_info_proc method. */
978
979 static void
980 core_info_proc (struct target_ops *ops, const char *args,
981 enum info_proc_what request)
982 {
983 struct gdbarch *gdbarch = get_current_arch ();
984
985 /* Since this is the core file target, call the 'core_info_proc'
986 method on gdbarch, not 'info_proc'. */
987 if (gdbarch_core_info_proc_p (gdbarch))
988 gdbarch_core_info_proc (gdbarch, args, request);
989 }
990
991 /* Fill in core_ops with its defined operations and properties. */
992
993 static void
994 init_core_ops (void)
995 {
996 core_ops.to_shortname = "core";
997 core_ops.to_longname = "Local core dump file";
998 core_ops.to_doc =
999 "Use a core file as a target. Specify the filename of the core file.";
1000 core_ops.to_open = core_open;
1001 core_ops.to_close = core_close;
1002 core_ops.to_detach = core_detach;
1003 core_ops.to_fetch_registers = get_core_registers;
1004 core_ops.to_xfer_partial = core_xfer_partial;
1005 core_ops.to_files_info = core_files_info;
1006 core_ops.to_insert_breakpoint = ignore;
1007 core_ops.to_remove_breakpoint = ignore;
1008 core_ops.to_thread_alive = core_thread_alive;
1009 core_ops.to_read_description = core_read_description;
1010 core_ops.to_pid_to_str = core_pid_to_str;
1011 core_ops.to_stratum = process_stratum;
1012 core_ops.to_has_memory = core_has_memory;
1013 core_ops.to_has_stack = core_has_stack;
1014 core_ops.to_has_registers = core_has_registers;
1015 core_ops.to_info_proc = core_info_proc;
1016 core_ops.to_magic = OPS_MAGIC;
1017
1018 if (core_target)
1019 internal_error (__FILE__, __LINE__,
1020 _("init_core_ops: core target already exists (\"%s\")."),
1021 core_target->to_longname);
1022 core_target = &core_ops;
1023 }
1024
1025 void
1026 _initialize_corelow (void)
1027 {
1028 init_core_ops ();
1029
1030 add_target_with_completer (&core_ops, filename_completer);
1031 }
This page took 0.083161 seconds and 4 git commands to generate.