Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/tilde.h"
39 #include "solib.h"
40 #include "solist.h"
41 #include "filenames.h"
42 #include "progspace.h"
43 #include "objfiles.h"
44 #include "gdb_bfd.h"
45 #include "completer.h"
46 #include "gdbsupport/filestuff.h"
47 #include "build-id.h"
48 #include "gdbsupport/pathstuff.h"
49 #include <unordered_map>
50 #include <unordered_set>
51 #include "gdbcmd.h"
52 #include "xml-tdesc.h"
53
54 #ifndef O_LARGEFILE
55 #define O_LARGEFILE 0
56 #endif
57
58 /* The core file target. */
59
60 static const target_info core_target_info = {
61 "core",
62 N_("Local core dump file"),
63 N_("Use a core file as a target.\n\
64 Specify the filename of the core file.")
65 };
66
67 class core_target final : public process_stratum_target
68 {
69 public:
70 core_target ();
71
72 const target_info &info () const override
73 { return core_target_info; }
74
75 void close () override;
76 void detach (inferior *, int) override;
77 void fetch_registers (struct regcache *, int) override;
78
79 enum target_xfer_status xfer_partial (enum target_object object,
80 const char *annex,
81 gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, ULONGEST len,
84 ULONGEST *xfered_len) override;
85 void files_info () override;
86
87 bool thread_alive (ptid_t ptid) override;
88 const struct target_desc *read_description () override;
89
90 std::string pid_to_str (ptid_t) override;
91
92 const char *thread_name (struct thread_info *) override;
93
94 bool has_all_memory () override { return true; }
95 bool has_memory () override;
96 bool has_stack () override;
97 bool has_registers () override;
98 bool has_execution (inferior *inf) override { return false; }
99
100 bool info_proc (const char *, enum info_proc_what) override;
101
102 /* A few helpers. */
103
104 /* Getter, see variable definition. */
105 struct gdbarch *core_gdbarch ()
106 {
107 return m_core_gdbarch;
108 }
109
110 /* See definition. */
111 void get_core_register_section (struct regcache *regcache,
112 const struct regset *regset,
113 const char *name,
114 int section_min_size,
115 const char *human_name,
116 bool required);
117
118 /* See definition. */
119 void info_proc_mappings (struct gdbarch *gdbarch);
120
121 private: /* per-core data */
122
123 /* The core's section table. Note that these target sections are
124 *not* mapped in the current address spaces' set of target
125 sections --- those should come only from pure executable or
126 shared library bfds. The core bfd sections are an implementation
127 detail of the core target, just like ptrace is for unix child
128 targets. */
129 target_section_table m_core_section_table;
130
131 /* File-backed address space mappings: some core files include
132 information about memory mapped files. */
133 target_section_table m_core_file_mappings;
134
135 /* Unavailable mappings. These correspond to pathnames which either
136 weren't found or could not be opened. Knowing these addresses can
137 still be useful. */
138 std::vector<mem_range> m_core_unavailable_mappings;
139
140 /* Build m_core_file_mappings. Called from the constructor. */
141 void build_file_mappings ();
142
143 /* Helper method for xfer_partial. */
144 enum target_xfer_status xfer_memory_via_mappings (gdb_byte *readbuf,
145 const gdb_byte *writebuf,
146 ULONGEST offset,
147 ULONGEST len,
148 ULONGEST *xfered_len);
149
150 /* FIXME: kettenis/20031023: Eventually this field should
151 disappear. */
152 struct gdbarch *m_core_gdbarch = NULL;
153 };
154
155 core_target::core_target ()
156 {
157 /* Find a first arch based on the BFD. We need the initial gdbarch so
158 we can setup the hooks to find a target description. */
159 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
160
161 /* If the arch is able to read a target description from the core, it
162 could yield a more specific gdbarch. */
163 const struct target_desc *tdesc = read_description ();
164
165 if (tdesc != nullptr)
166 {
167 struct gdbarch_info info;
168 info.abfd = core_bfd;
169 info.target_desc = tdesc;
170 m_core_gdbarch = gdbarch_find_by_info (info);
171 }
172
173 if (!m_core_gdbarch
174 || !gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
175 error (_("\"%s\": Core file format not supported"),
176 bfd_get_filename (core_bfd));
177
178 /* Find the data section */
179 m_core_section_table = build_section_table (core_bfd);
180
181 build_file_mappings ();
182 }
183
184 /* Construct the target_section_table for file-backed mappings if
185 they exist.
186
187 For each unique path in the note, we'll open a BFD with a bfd
188 target of "binary". This is an unstructured bfd target upon which
189 we'll impose a structure from the mappings in the architecture-specific
190 mappings note. A BFD section is allocated and initialized for each
191 file-backed mapping.
192
193 We take care to not share already open bfds with other parts of
194 GDB; in particular, we don't want to add new sections to existing
195 BFDs. We do, however, ensure that the BFDs that we allocate here
196 will go away (be deallocated) when the core target is detached. */
197
198 void
199 core_target::build_file_mappings ()
200 {
201 std::unordered_map<std::string, struct bfd *> bfd_map;
202 std::unordered_set<std::string> unavailable_paths;
203
204 /* See linux_read_core_file_mappings() in linux-tdep.c for an example
205 read_core_file_mappings method. */
206 gdbarch_read_core_file_mappings (m_core_gdbarch, core_bfd,
207
208 /* After determining the number of mappings, read_core_file_mappings
209 will invoke this lambda. */
210 [&] (ULONGEST)
211 {
212 },
213
214 /* read_core_file_mappings will invoke this lambda for each mapping
215 that it finds. */
216 [&] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
217 const char *filename)
218 {
219 /* Architecture-specific read_core_mapping methods are expected to
220 weed out non-file-backed mappings. */
221 gdb_assert (filename != nullptr);
222
223 struct bfd *bfd = bfd_map[filename];
224 if (bfd == nullptr)
225 {
226 /* Use exec_file_find() to do sysroot expansion. It'll
227 also strip the potential sysroot "target:" prefix. If
228 there is no sysroot, an equivalent (possibly more
229 canonical) pathname will be provided. */
230 gdb::unique_xmalloc_ptr<char> expanded_fname
231 = exec_file_find (filename, NULL);
232 if (expanded_fname == nullptr)
233 {
234 m_core_unavailable_mappings.emplace_back (start, end - start);
235 /* Print just one warning per path. */
236 if (unavailable_paths.insert (filename).second)
237 warning (_("Can't open file %s during file-backed mapping "
238 "note processing"),
239 filename);
240 return;
241 }
242
243 bfd = bfd_map[filename] = bfd_openr (expanded_fname.get (),
244 "binary");
245
246 if (bfd == nullptr || !bfd_check_format (bfd, bfd_object))
247 {
248 m_core_unavailable_mappings.emplace_back (start, end - start);
249 /* If we get here, there's a good chance that it's due to
250 an internal error. We issue a warning instead of an
251 internal error because of the possibility that the
252 file was removed in between checking for its
253 existence during the expansion in exec_file_find()
254 and the calls to bfd_openr() / bfd_check_format().
255 Output both the path from the core file note along
256 with its expansion to make debugging this problem
257 easier. */
258 warning (_("Can't open file %s which was expanded to %s "
259 "during file-backed mapping note processing"),
260 filename, expanded_fname.get ());
261 if (bfd != nullptr)
262 bfd_close (bfd);
263 return;
264 }
265 /* Ensure that the bfd will be closed when core_bfd is closed.
266 This can be checked before/after a core file detach via
267 "maint info bfds". */
268 gdb_bfd_record_inclusion (core_bfd, bfd);
269 }
270
271 /* Make new BFD section. All sections have the same name,
272 which is permitted by bfd_make_section_anyway(). */
273 asection *sec = bfd_make_section_anyway (bfd, "load");
274 if (sec == nullptr)
275 error (_("Can't make section"));
276 sec->filepos = file_ofs;
277 bfd_set_section_flags (sec, SEC_READONLY | SEC_HAS_CONTENTS);
278 bfd_set_section_size (sec, end - start);
279 bfd_set_section_vma (sec, start);
280 bfd_set_section_lma (sec, start);
281 bfd_set_section_alignment (sec, 2);
282
283 /* Set target_section fields. */
284 m_core_file_mappings.emplace_back (start, end, sec);
285 });
286
287 normalize_mem_ranges (&m_core_unavailable_mappings);
288 }
289
290 /* An arbitrary identifier for the core inferior. */
291 #define CORELOW_PID 1
292
293 /* Close the core target. */
294
295 void
296 core_target::close ()
297 {
298 if (core_bfd)
299 {
300 switch_to_no_thread (); /* Avoid confusion from thread
301 stuff. */
302 exit_inferior_silent (current_inferior ());
303
304 /* Clear out solib state while the bfd is still open. See
305 comments in clear_solib in solib.c. */
306 clear_solib ();
307
308 current_program_space->cbfd.reset (nullptr);
309 }
310
311 /* Core targets are heap-allocated (see core_target_open), so here
312 we delete ourselves. */
313 delete this;
314 }
315
316 /* Look for sections whose names start with `.reg/' so that we can
317 extract the list of threads in a core file. */
318
319 static void
320 add_to_thread_list (asection *asect, asection *reg_sect)
321 {
322 int core_tid;
323 int pid, lwpid;
324 bool fake_pid_p = false;
325 struct inferior *inf;
326
327 if (!startswith (bfd_section_name (asect), ".reg/"))
328 return;
329
330 core_tid = atoi (bfd_section_name (asect) + 5);
331
332 pid = bfd_core_file_pid (core_bfd);
333 if (pid == 0)
334 {
335 fake_pid_p = true;
336 pid = CORELOW_PID;
337 }
338
339 lwpid = core_tid;
340
341 inf = current_inferior ();
342 if (inf->pid == 0)
343 {
344 inferior_appeared (inf, pid);
345 inf->fake_pid_p = fake_pid_p;
346 }
347
348 ptid_t ptid (pid, lwpid);
349
350 thread_info *thr = add_thread (inf->process_target (), ptid);
351
352 /* Warning, Will Robinson, looking at BFD private data! */
353
354 if (reg_sect != NULL
355 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
356 switch_to_thread (thr); /* Yes, make it current. */
357 }
358
359 /* Issue a message saying we have no core to debug, if FROM_TTY. */
360
361 static void
362 maybe_say_no_core_file_now (int from_tty)
363 {
364 if (from_tty)
365 printf_filtered (_("No core file now.\n"));
366 }
367
368 /* Backward compatibility with old way of specifying core files. */
369
370 void
371 core_file_command (const char *filename, int from_tty)
372 {
373 dont_repeat (); /* Either way, seems bogus. */
374
375 if (filename == NULL)
376 {
377 if (core_bfd != NULL)
378 {
379 target_detach (current_inferior (), from_tty);
380 gdb_assert (core_bfd == NULL);
381 }
382 else
383 maybe_say_no_core_file_now (from_tty);
384 }
385 else
386 core_target_open (filename, from_tty);
387 }
388
389 /* Locate (and load) an executable file (and symbols) given the core file
390 BFD ABFD. */
391
392 static void
393 locate_exec_from_corefile_build_id (bfd *abfd, int from_tty)
394 {
395 const bfd_build_id *build_id = build_id_bfd_get (abfd);
396 if (build_id == nullptr)
397 return;
398
399 gdb_bfd_ref_ptr execbfd
400 = build_id_to_exec_bfd (build_id->size, build_id->data);
401
402 if (execbfd != nullptr)
403 {
404 exec_file_attach (bfd_get_filename (execbfd.get ()), from_tty);
405 symbol_file_add_main (bfd_get_filename (execbfd.get ()),
406 symfile_add_flag (from_tty ? SYMFILE_VERBOSE : 0));
407 }
408 }
409
410 /* See gdbcore.h. */
411
412 void
413 core_target_open (const char *arg, int from_tty)
414 {
415 const char *p;
416 int siggy;
417 int scratch_chan;
418 int flags;
419
420 target_preopen (from_tty);
421 if (!arg)
422 {
423 if (core_bfd)
424 error (_("No core file specified. (Use `detach' "
425 "to stop debugging a core file.)"));
426 else
427 error (_("No core file specified."));
428 }
429
430 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
431 if (strlen (filename.get ()) != 0
432 && !IS_ABSOLUTE_PATH (filename.get ()))
433 filename = gdb_abspath (filename.get ());
434
435 flags = O_BINARY | O_LARGEFILE;
436 if (write_files)
437 flags |= O_RDWR;
438 else
439 flags |= O_RDONLY;
440 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
441 if (scratch_chan < 0)
442 perror_with_name (filename.get ());
443
444 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
445 write_files ? FOPEN_RUB : FOPEN_RB,
446 scratch_chan));
447 if (temp_bfd == NULL)
448 perror_with_name (filename.get ());
449
450 if (!bfd_check_format (temp_bfd.get (), bfd_core))
451 {
452 /* Do it after the err msg */
453 /* FIXME: should be checking for errors from bfd_close (for one
454 thing, on error it does not free all the storage associated
455 with the bfd). */
456 error (_("\"%s\" is not a core dump: %s"),
457 filename.get (), bfd_errmsg (bfd_get_error ()));
458 }
459
460 current_program_space->cbfd = std::move (temp_bfd);
461
462 core_target *target = new core_target ();
463
464 /* Own the target until it is successfully pushed. */
465 target_ops_up target_holder (target);
466
467 validate_files ();
468
469 /* If we have no exec file, try to set the architecture from the
470 core file. We don't do this unconditionally since an exec file
471 typically contains more information that helps us determine the
472 architecture than a core file. */
473 if (!current_program_space->exec_bfd ())
474 set_gdbarch_from_file (core_bfd);
475
476 current_inferior ()->push_target (std::move (target_holder));
477
478 switch_to_no_thread ();
479
480 /* Need to flush the register cache (and the frame cache) from a
481 previous debug session. If inferior_ptid ends up the same as the
482 last debug session --- e.g., b foo; run; gcore core1; step; gcore
483 core2; core core1; core core2 --- then there's potential for
484 get_current_regcache to return the cached regcache of the
485 previous session, and the frame cache being stale. */
486 registers_changed ();
487
488 /* Build up thread list from BFD sections, and possibly set the
489 current thread to the .reg/NN section matching the .reg
490 section. */
491 asection *reg_sect = bfd_get_section_by_name (core_bfd, ".reg");
492 for (asection *sect : gdb_bfd_sections (core_bfd))
493 add_to_thread_list (sect, reg_sect);
494
495 if (inferior_ptid == null_ptid)
496 {
497 /* Either we found no .reg/NN section, and hence we have a
498 non-threaded core (single-threaded, from gdb's perspective),
499 or for some reason add_to_thread_list couldn't determine
500 which was the "main" thread. The latter case shouldn't
501 usually happen, but we're dealing with input here, which can
502 always be broken in different ways. */
503 thread_info *thread = first_thread_of_inferior (current_inferior ());
504
505 if (thread == NULL)
506 {
507 inferior_appeared (current_inferior (), CORELOW_PID);
508 thread = add_thread_silent (target, ptid_t (CORELOW_PID));
509 }
510
511 switch_to_thread (thread);
512 }
513
514 if (current_program_space->exec_bfd () == nullptr)
515 locate_exec_from_corefile_build_id (core_bfd, from_tty);
516
517 post_create_inferior (from_tty);
518
519 /* Now go through the target stack looking for threads since there
520 may be a thread_stratum target loaded on top of target core by
521 now. The layer above should claim threads found in the BFD
522 sections. */
523 try
524 {
525 target_update_thread_list ();
526 }
527
528 catch (const gdb_exception_error &except)
529 {
530 exception_print (gdb_stderr, except);
531 }
532
533 p = bfd_core_file_failing_command (core_bfd);
534 if (p)
535 printf_filtered (_("Core was generated by `%s'.\n"), p);
536
537 /* Clearing any previous state of convenience variables. */
538 clear_exit_convenience_vars ();
539
540 siggy = bfd_core_file_failing_signal (core_bfd);
541 if (siggy > 0)
542 {
543 gdbarch *core_gdbarch = target->core_gdbarch ();
544
545 /* If we don't have a CORE_GDBARCH to work with, assume a native
546 core (map gdb_signal from host signals). If we do have
547 CORE_GDBARCH to work with, but no gdb_signal_from_target
548 implementation for that gdbarch, as a fallback measure,
549 assume the host signal mapping. It'll be correct for native
550 cores, but most likely incorrect for cross-cores. */
551 enum gdb_signal sig = (core_gdbarch != NULL
552 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
553 ? gdbarch_gdb_signal_from_target (core_gdbarch,
554 siggy)
555 : gdb_signal_from_host (siggy));
556
557 printf_filtered (_("Program terminated with signal %s, %s"),
558 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
559 if (gdbarch_report_signal_info_p (core_gdbarch))
560 gdbarch_report_signal_info (core_gdbarch, current_uiout, sig);
561 printf_filtered (_(".\n"));
562
563 /* Set the value of the internal variable $_exitsignal,
564 which holds the signal uncaught by the inferior. */
565 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
566 siggy);
567 }
568
569 /* Fetch all registers from core file. */
570 target_fetch_registers (get_current_regcache (), -1);
571
572 /* Now, set up the frame cache, and print the top of stack. */
573 reinit_frame_cache ();
574 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
575
576 /* Current thread should be NUM 1 but the user does not know that.
577 If a program is single threaded gdb in general does not mention
578 anything about threads. That is why the test is >= 2. */
579 if (thread_count (target) >= 2)
580 {
581 try
582 {
583 thread_command (NULL, from_tty);
584 }
585 catch (const gdb_exception_error &except)
586 {
587 exception_print (gdb_stderr, except);
588 }
589 }
590 }
591
592 void
593 core_target::detach (inferior *inf, int from_tty)
594 {
595 /* Note that 'this' is dangling after this call. unpush_target
596 closes the target, and our close implementation deletes
597 'this'. */
598 inf->unpush_target (this);
599
600 /* Clear the register cache and the frame cache. */
601 registers_changed ();
602 reinit_frame_cache ();
603 maybe_say_no_core_file_now (from_tty);
604 }
605
606 /* Try to retrieve registers from a section in core_bfd, and supply
607 them to REGSET.
608
609 If ptid's lwp member is zero, do the single-threaded
610 thing: look for a section named NAME. If ptid's lwp
611 member is non-zero, do the multi-threaded thing: look for a section
612 named "NAME/LWP", where LWP is the shortest ASCII decimal
613 representation of ptid's lwp member.
614
615 HUMAN_NAME is a human-readable name for the kind of registers the
616 NAME section contains, for use in error messages.
617
618 If REQUIRED is true, print an error if the core file doesn't have a
619 section by the appropriate name. Otherwise, just do nothing. */
620
621 void
622 core_target::get_core_register_section (struct regcache *regcache,
623 const struct regset *regset,
624 const char *name,
625 int section_min_size,
626 const char *human_name,
627 bool required)
628 {
629 gdb_assert (regset != nullptr);
630
631 struct bfd_section *section;
632 bfd_size_type size;
633 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
634
635 thread_section_name section_name (name, regcache->ptid ());
636
637 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
638 if (! section)
639 {
640 if (required)
641 warning (_("Couldn't find %s registers in core file."),
642 human_name);
643 return;
644 }
645
646 size = bfd_section_size (section);
647 if (size < section_min_size)
648 {
649 warning (_("Section `%s' in core file too small."),
650 section_name.c_str ());
651 return;
652 }
653 if (size != section_min_size && !variable_size_section)
654 {
655 warning (_("Unexpected size of section `%s' in core file."),
656 section_name.c_str ());
657 }
658
659 gdb::byte_vector contents (size);
660 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
661 (file_ptr) 0, size))
662 {
663 warning (_("Couldn't read %s registers from `%s' section in core file."),
664 human_name, section_name.c_str ());
665 return;
666 }
667
668 regset->supply_regset (regset, regcache, -1, contents.data (), size);
669 }
670
671 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
672 struct get_core_registers_cb_data
673 {
674 core_target *target;
675 struct regcache *regcache;
676 };
677
678 /* Callback for get_core_registers that handles a single core file
679 register note section. */
680
681 static void
682 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
683 const struct regset *regset,
684 const char *human_name, void *cb_data)
685 {
686 gdb_assert (regset != nullptr);
687
688 auto *data = (get_core_registers_cb_data *) cb_data;
689 bool required = false;
690 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
691
692 if (!variable_size_section)
693 gdb_assert (supply_size == collect_size);
694
695 if (strcmp (sect_name, ".reg") == 0)
696 {
697 required = true;
698 if (human_name == NULL)
699 human_name = "general-purpose";
700 }
701 else if (strcmp (sect_name, ".reg2") == 0)
702 {
703 if (human_name == NULL)
704 human_name = "floating-point";
705 }
706
707 data->target->get_core_register_section (data->regcache, regset, sect_name,
708 supply_size, human_name, required);
709 }
710
711 /* Get the registers out of a core file. This is the machine-
712 independent part. Fetch_core_registers is the machine-dependent
713 part, typically implemented in the xm-file for each
714 architecture. */
715
716 /* We just get all the registers, so we don't use regno. */
717
718 void
719 core_target::fetch_registers (struct regcache *regcache, int regno)
720 {
721 if (!(m_core_gdbarch != nullptr
722 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch)))
723 {
724 fprintf_filtered (gdb_stderr,
725 "Can't fetch registers from this type of core file\n");
726 return;
727 }
728
729 struct gdbarch *gdbarch = regcache->arch ();
730 get_core_registers_cb_data data = { this, regcache };
731 gdbarch_iterate_over_regset_sections (gdbarch,
732 get_core_registers_cb,
733 (void *) &data, NULL);
734
735 /* Mark all registers not found in the core as unavailable. */
736 for (int i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
737 if (regcache->get_register_status (i) == REG_UNKNOWN)
738 regcache->raw_supply (i, NULL);
739 }
740
741 void
742 core_target::files_info ()
743 {
744 print_section_info (&m_core_section_table, core_bfd);
745 }
746 \f
747 /* Helper method for core_target::xfer_partial. */
748
749 enum target_xfer_status
750 core_target::xfer_memory_via_mappings (gdb_byte *readbuf,
751 const gdb_byte *writebuf,
752 ULONGEST offset, ULONGEST len,
753 ULONGEST *xfered_len)
754 {
755 enum target_xfer_status xfer_status;
756
757 xfer_status = (section_table_xfer_memory_partial
758 (readbuf, writebuf,
759 offset, len, xfered_len,
760 m_core_file_mappings));
761
762 if (xfer_status == TARGET_XFER_OK || m_core_unavailable_mappings.empty ())
763 return xfer_status;
764
765 /* There are instances - e.g. when debugging within a docker
766 container using the AUFS storage driver - where the pathnames
767 obtained from the note section are incorrect. Despite the path
768 being wrong, just knowing the start and end addresses of the
769 mappings is still useful; we can attempt an access of the file
770 stratum constrained to the address ranges corresponding to the
771 unavailable mappings. */
772
773 ULONGEST memaddr = offset;
774 ULONGEST memend = offset + len;
775
776 for (const auto &mr : m_core_unavailable_mappings)
777 {
778 if (address_in_mem_range (memaddr, &mr))
779 {
780 if (!address_in_mem_range (memend, &mr))
781 len = mr.start + mr.length - memaddr;
782
783 xfer_status = this->beneath ()->xfer_partial (TARGET_OBJECT_MEMORY,
784 NULL,
785 readbuf,
786 writebuf,
787 offset,
788 len,
789 xfered_len);
790 break;
791 }
792 }
793
794 return xfer_status;
795 }
796
797 enum target_xfer_status
798 core_target::xfer_partial (enum target_object object, const char *annex,
799 gdb_byte *readbuf, const gdb_byte *writebuf,
800 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
801 {
802 switch (object)
803 {
804 case TARGET_OBJECT_MEMORY:
805 {
806 enum target_xfer_status xfer_status;
807
808 /* Try accessing memory contents from core file data,
809 restricting consideration to those sections for which
810 the BFD section flag SEC_HAS_CONTENTS is set. */
811 auto has_contents_cb = [] (const struct target_section *s)
812 {
813 return ((s->the_bfd_section->flags & SEC_HAS_CONTENTS) != 0);
814 };
815 xfer_status = section_table_xfer_memory_partial
816 (readbuf, writebuf,
817 offset, len, xfered_len,
818 m_core_section_table,
819 has_contents_cb);
820 if (xfer_status == TARGET_XFER_OK)
821 return TARGET_XFER_OK;
822
823 /* Check file backed mappings. If they're available, use
824 core file provided mappings (e.g. from .note.linuxcore.file
825 or the like) as this should provide a more accurate
826 result. If not, check the stratum beneath us, which should
827 be the file stratum.
828
829 We also check unavailable mappings due to Docker/AUFS driver
830 issues. */
831 if (!m_core_file_mappings.empty ()
832 || !m_core_unavailable_mappings.empty ())
833 {
834 xfer_status = xfer_memory_via_mappings (readbuf, writebuf, offset,
835 len, xfered_len);
836 }
837 else
838 xfer_status = this->beneath ()->xfer_partial (object, annex, readbuf,
839 writebuf, offset, len,
840 xfered_len);
841 if (xfer_status == TARGET_XFER_OK)
842 return TARGET_XFER_OK;
843
844 /* Finally, attempt to access data in core file sections with
845 no contents. These will typically read as all zero. */
846 auto no_contents_cb = [&] (const struct target_section *s)
847 {
848 return !has_contents_cb (s);
849 };
850 xfer_status = section_table_xfer_memory_partial
851 (readbuf, writebuf,
852 offset, len, xfered_len,
853 m_core_section_table,
854 no_contents_cb);
855
856 return xfer_status;
857 }
858 case TARGET_OBJECT_AUXV:
859 if (readbuf)
860 {
861 /* When the aux vector is stored in core file, BFD
862 represents this with a fake section called ".auxv". */
863
864 struct bfd_section *section;
865 bfd_size_type size;
866
867 section = bfd_get_section_by_name (core_bfd, ".auxv");
868 if (section == NULL)
869 return TARGET_XFER_E_IO;
870
871 size = bfd_section_size (section);
872 if (offset >= size)
873 return TARGET_XFER_EOF;
874 size -= offset;
875 if (size > len)
876 size = len;
877
878 if (size == 0)
879 return TARGET_XFER_EOF;
880 if (!bfd_get_section_contents (core_bfd, section, readbuf,
881 (file_ptr) offset, size))
882 {
883 warning (_("Couldn't read NT_AUXV note in core file."));
884 return TARGET_XFER_E_IO;
885 }
886
887 *xfered_len = (ULONGEST) size;
888 return TARGET_XFER_OK;
889 }
890 return TARGET_XFER_E_IO;
891
892 case TARGET_OBJECT_WCOOKIE:
893 if (readbuf)
894 {
895 /* When the StackGhost cookie is stored in core file, BFD
896 represents this with a fake section called
897 ".wcookie". */
898
899 struct bfd_section *section;
900 bfd_size_type size;
901
902 section = bfd_get_section_by_name (core_bfd, ".wcookie");
903 if (section == NULL)
904 return TARGET_XFER_E_IO;
905
906 size = bfd_section_size (section);
907 if (offset >= size)
908 return TARGET_XFER_EOF;
909 size -= offset;
910 if (size > len)
911 size = len;
912
913 if (size == 0)
914 return TARGET_XFER_EOF;
915 if (!bfd_get_section_contents (core_bfd, section, readbuf,
916 (file_ptr) offset, size))
917 {
918 warning (_("Couldn't read StackGhost cookie in core file."));
919 return TARGET_XFER_E_IO;
920 }
921
922 *xfered_len = (ULONGEST) size;
923 return TARGET_XFER_OK;
924
925 }
926 return TARGET_XFER_E_IO;
927
928 case TARGET_OBJECT_LIBRARIES:
929 if (m_core_gdbarch != nullptr
930 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
931 {
932 if (writebuf)
933 return TARGET_XFER_E_IO;
934 else
935 {
936 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
937 readbuf,
938 offset, len);
939
940 if (*xfered_len == 0)
941 return TARGET_XFER_EOF;
942 else
943 return TARGET_XFER_OK;
944 }
945 }
946 /* FALL THROUGH */
947
948 case TARGET_OBJECT_LIBRARIES_AIX:
949 if (m_core_gdbarch != nullptr
950 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
951 {
952 if (writebuf)
953 return TARGET_XFER_E_IO;
954 else
955 {
956 *xfered_len
957 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
958 readbuf, offset,
959 len);
960
961 if (*xfered_len == 0)
962 return TARGET_XFER_EOF;
963 else
964 return TARGET_XFER_OK;
965 }
966 }
967 /* FALL THROUGH */
968
969 case TARGET_OBJECT_SIGNAL_INFO:
970 if (readbuf)
971 {
972 if (m_core_gdbarch != nullptr
973 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
974 {
975 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
976 offset, len);
977
978 if (l >= 0)
979 {
980 *xfered_len = l;
981 if (l == 0)
982 return TARGET_XFER_EOF;
983 else
984 return TARGET_XFER_OK;
985 }
986 }
987 }
988 return TARGET_XFER_E_IO;
989
990 default:
991 return this->beneath ()->xfer_partial (object, annex, readbuf,
992 writebuf, offset, len,
993 xfered_len);
994 }
995 }
996
997 \f
998
999 /* Okay, let's be honest: threads gleaned from a core file aren't
1000 exactly lively, are they? On the other hand, if we don't claim
1001 that each & every one is alive, then we don't get any of them
1002 to appear in an "info thread" command, which is quite a useful
1003 behaviour.
1004 */
1005 bool
1006 core_target::thread_alive (ptid_t ptid)
1007 {
1008 return true;
1009 }
1010
1011 /* Ask the current architecture what it knows about this core file.
1012 That will be used, in turn, to pick a better architecture. This
1013 wrapper could be avoided if targets got a chance to specialize
1014 core_target. */
1015
1016 const struct target_desc *
1017 core_target::read_description ()
1018 {
1019 /* If the core file contains a target description note then we will use
1020 that in preference to anything else. */
1021 bfd_size_type tdesc_note_size = 0;
1022 struct bfd_section *tdesc_note_section
1023 = bfd_get_section_by_name (core_bfd, ".gdb-tdesc");
1024 if (tdesc_note_section != nullptr)
1025 tdesc_note_size = bfd_section_size (tdesc_note_section);
1026 if (tdesc_note_size > 0)
1027 {
1028 gdb::char_vector contents (tdesc_note_size + 1);
1029 if (bfd_get_section_contents (core_bfd, tdesc_note_section,
1030 contents.data (), (file_ptr) 0,
1031 tdesc_note_size))
1032 {
1033 /* Ensure we have a null terminator. */
1034 contents[tdesc_note_size] = '\0';
1035 const struct target_desc *result
1036 = string_read_description_xml (contents.data ());
1037 if (result != nullptr)
1038 return result;
1039 }
1040 }
1041
1042 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
1043 {
1044 const struct target_desc *result;
1045
1046 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
1047 if (result != NULL)
1048 return result;
1049 }
1050
1051 return this->beneath ()->read_description ();
1052 }
1053
1054 std::string
1055 core_target::pid_to_str (ptid_t ptid)
1056 {
1057 struct inferior *inf;
1058 int pid;
1059
1060 /* The preferred way is to have a gdbarch/OS specific
1061 implementation. */
1062 if (m_core_gdbarch != nullptr
1063 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1064 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1065
1066 /* Otherwise, if we don't have one, we'll just fallback to
1067 "process", with normal_pid_to_str. */
1068
1069 /* Try the LWPID field first. */
1070 pid = ptid.lwp ();
1071 if (pid != 0)
1072 return normal_pid_to_str (ptid_t (pid));
1073
1074 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1075 only if it isn't a fake PID. */
1076 inf = find_inferior_ptid (this, ptid);
1077 if (inf != NULL && !inf->fake_pid_p)
1078 return normal_pid_to_str (ptid);
1079
1080 /* No luck. We simply don't have a valid PID to print. */
1081 return "<main task>";
1082 }
1083
1084 const char *
1085 core_target::thread_name (struct thread_info *thr)
1086 {
1087 if (m_core_gdbarch != nullptr
1088 && gdbarch_core_thread_name_p (m_core_gdbarch))
1089 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1090 return NULL;
1091 }
1092
1093 bool
1094 core_target::has_memory ()
1095 {
1096 return (core_bfd != NULL);
1097 }
1098
1099 bool
1100 core_target::has_stack ()
1101 {
1102 return (core_bfd != NULL);
1103 }
1104
1105 bool
1106 core_target::has_registers ()
1107 {
1108 return (core_bfd != NULL);
1109 }
1110
1111 /* Implement the to_info_proc method. */
1112
1113 bool
1114 core_target::info_proc (const char *args, enum info_proc_what request)
1115 {
1116 struct gdbarch *gdbarch = get_current_arch ();
1117
1118 /* Since this is the core file target, call the 'core_info_proc'
1119 method on gdbarch, not 'info_proc'. */
1120 if (gdbarch_core_info_proc_p (gdbarch))
1121 gdbarch_core_info_proc (gdbarch, args, request);
1122
1123 return true;
1124 }
1125
1126 /* Get a pointer to the current core target. If not connected to a
1127 core target, return NULL. */
1128
1129 static core_target *
1130 get_current_core_target ()
1131 {
1132 target_ops *proc_target = current_inferior ()->process_target ();
1133 return dynamic_cast<core_target *> (proc_target);
1134 }
1135
1136 /* Display file backed mappings from core file. */
1137
1138 void
1139 core_target::info_proc_mappings (struct gdbarch *gdbarch)
1140 {
1141 if (!m_core_file_mappings.empty ())
1142 {
1143 printf_filtered (_("Mapped address spaces:\n\n"));
1144 if (gdbarch_addr_bit (gdbarch) == 32)
1145 {
1146 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1147 "Start Addr",
1148 " End Addr",
1149 " Size", " Offset", "objfile");
1150 }
1151 else
1152 {
1153 printf_filtered (" %18s %18s %10s %10s %s\n",
1154 "Start Addr",
1155 " End Addr",
1156 " Size", " Offset", "objfile");
1157 }
1158 }
1159
1160 for (const target_section &tsp : m_core_file_mappings)
1161 {
1162 ULONGEST start = tsp.addr;
1163 ULONGEST end = tsp.endaddr;
1164 ULONGEST file_ofs = tsp.the_bfd_section->filepos;
1165 const char *filename = bfd_get_filename (tsp.the_bfd_section->owner);
1166
1167 if (gdbarch_addr_bit (gdbarch) == 32)
1168 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1169 paddress (gdbarch, start),
1170 paddress (gdbarch, end),
1171 hex_string (end - start),
1172 hex_string (file_ofs),
1173 filename);
1174 else
1175 printf_filtered (" %18s %18s %10s %10s %s\n",
1176 paddress (gdbarch, start),
1177 paddress (gdbarch, end),
1178 hex_string (end - start),
1179 hex_string (file_ofs),
1180 filename);
1181 }
1182 }
1183
1184 /* Implement "maintenance print core-file-backed-mappings" command.
1185
1186 If mappings are loaded, the results should be similar to the
1187 mappings shown by "info proc mappings". This command is mainly a
1188 debugging tool for GDB developers to make sure that the expected
1189 mappings are present after loading a core file. For Linux, the
1190 output provided by this command will be very similar (if not
1191 identical) to that provided by "info proc mappings". This is not
1192 necessarily the case for other OSes which might provide
1193 more/different information in the "info proc mappings" output. */
1194
1195 static void
1196 maintenance_print_core_file_backed_mappings (const char *args, int from_tty)
1197 {
1198 core_target *targ = get_current_core_target ();
1199 if (targ != nullptr)
1200 targ->info_proc_mappings (targ->core_gdbarch ());
1201 }
1202
1203 void _initialize_corelow ();
1204 void
1205 _initialize_corelow ()
1206 {
1207 add_target (core_target_info, core_target_open, filename_completer);
1208 add_cmd ("core-file-backed-mappings", class_maintenance,
1209 maintenance_print_core_file_backed_mappings,
1210 _("Print core file's file-backed mappings."),
1211 &maintenanceprintlist);
1212 }
This page took 0.060059 seconds and 4 git commands to generate.