Drop 'regset_from_core_section' gdbarch method
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "exceptions.h"
42 #include "solib.h"
43 #include "filenames.h"
44 #include "progspace.h"
45 #include "objfiles.h"
46 #include "gdb_bfd.h"
47 #include "completer.h"
48 #include "filestuff.h"
49
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53
54 /* List of all available core_fns. On gdb startup, each core file
55 register reader calls deprecated_add_core_fns() to register
56 information on each core format it is prepared to read. */
57
58 static struct core_fns *core_file_fns = NULL;
59
60 /* The core_fns for a core file handler that is prepared to read the
61 core file currently open on core_bfd. */
62
63 static struct core_fns *core_vec = NULL;
64
65 /* FIXME: kettenis/20031023: Eventually this variable should
66 disappear. */
67
68 static struct gdbarch *core_gdbarch = NULL;
69
70 /* Per-core data. Currently, only the section table. Note that these
71 target sections are *not* mapped in the current address spaces' set
72 of target sections --- those should come only from pure executable
73 or shared library bfds. The core bfd sections are an
74 implementation detail of the core target, just like ptrace is for
75 unix child targets. */
76 static struct target_section_table *core_data;
77
78 static void core_files_info (struct target_ops *);
79
80 static struct core_fns *sniff_core_bfd (bfd *);
81
82 static int gdb_check_format (bfd *);
83
84 static void core_close (struct target_ops *self);
85
86 static void core_close_cleanup (void *ignore);
87
88 static void add_to_thread_list (bfd *, asection *, void *);
89
90 static void init_core_ops (void);
91
92 void _initialize_corelow (void);
93
94 static struct target_ops core_ops;
95
96 /* An arbitrary identifier for the core inferior. */
97 #define CORELOW_PID 1
98
99 /* Link a new core_fns into the global core_file_fns list. Called on
100 gdb startup by the _initialize routine in each core file register
101 reader, to register information about each format the reader is
102 prepared to handle. */
103
104 void
105 deprecated_add_core_fns (struct core_fns *cf)
106 {
107 cf->next = core_file_fns;
108 core_file_fns = cf;
109 }
110
111 /* The default function that core file handlers can use to examine a
112 core file BFD and decide whether or not to accept the job of
113 reading the core file. */
114
115 int
116 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
117 {
118 int result;
119
120 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
121 return (result);
122 }
123
124 /* Walk through the list of core functions to find a set that can
125 handle the core file open on ABFD. Returns pointer to set that is
126 selected. */
127
128 static struct core_fns *
129 sniff_core_bfd (bfd *abfd)
130 {
131 struct core_fns *cf;
132 struct core_fns *yummy = NULL;
133 int matches = 0;;
134
135 /* Don't sniff if we have support for register sets in
136 CORE_GDBARCH. */
137 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
138 return NULL;
139
140 for (cf = core_file_fns; cf != NULL; cf = cf->next)
141 {
142 if (cf->core_sniffer (cf, abfd))
143 {
144 yummy = cf;
145 matches++;
146 }
147 }
148 if (matches > 1)
149 {
150 warning (_("\"%s\": ambiguous core format, %d handlers match"),
151 bfd_get_filename (abfd), matches);
152 }
153 else if (matches == 0)
154 error (_("\"%s\": no core file handler recognizes format"),
155 bfd_get_filename (abfd));
156
157 return (yummy);
158 }
159
160 /* The default is to reject every core file format we see. Either
161 BFD has to recognize it, or we have to provide a function in the
162 core file handler that recognizes it. */
163
164 int
165 default_check_format (bfd *abfd)
166 {
167 return (0);
168 }
169
170 /* Attempt to recognize core file formats that BFD rejects. */
171
172 static int
173 gdb_check_format (bfd *abfd)
174 {
175 struct core_fns *cf;
176
177 for (cf = core_file_fns; cf != NULL; cf = cf->next)
178 {
179 if (cf->check_format (abfd))
180 {
181 return (1);
182 }
183 }
184 return (0);
185 }
186
187 /* Discard all vestiges of any previous core file and mark data and
188 stack spaces as empty. */
189
190 static void
191 core_close (struct target_ops *self)
192 {
193 if (core_bfd)
194 {
195 int pid = ptid_get_pid (inferior_ptid);
196 inferior_ptid = null_ptid; /* Avoid confusion from thread
197 stuff. */
198 if (pid != 0)
199 exit_inferior_silent (pid);
200
201 /* Clear out solib state while the bfd is still open. See
202 comments in clear_solib in solib.c. */
203 clear_solib ();
204
205 if (core_data)
206 {
207 xfree (core_data->sections);
208 xfree (core_data);
209 core_data = NULL;
210 }
211
212 gdb_bfd_unref (core_bfd);
213 core_bfd = NULL;
214 }
215 core_vec = NULL;
216 core_gdbarch = NULL;
217 }
218
219 static void
220 core_close_cleanup (void *ignore)
221 {
222 core_close (NULL);
223 }
224
225 /* Look for sections whose names start with `.reg/' so that we can
226 extract the list of threads in a core file. */
227
228 static void
229 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
230 {
231 ptid_t ptid;
232 int core_tid;
233 int pid, lwpid;
234 asection *reg_sect = (asection *) reg_sect_arg;
235 int fake_pid_p = 0;
236 struct inferior *inf;
237
238 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
239 return;
240
241 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
242
243 pid = bfd_core_file_pid (core_bfd);
244 if (pid == 0)
245 {
246 fake_pid_p = 1;
247 pid = CORELOW_PID;
248 }
249
250 lwpid = core_tid;
251
252 inf = current_inferior ();
253 if (inf->pid == 0)
254 {
255 inferior_appeared (inf, pid);
256 inf->fake_pid_p = fake_pid_p;
257 }
258
259 ptid = ptid_build (pid, lwpid, 0);
260
261 add_thread (ptid);
262
263 /* Warning, Will Robinson, looking at BFD private data! */
264
265 if (reg_sect != NULL
266 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
267 inferior_ptid = ptid; /* Yes, make it current. */
268 }
269
270 /* This routine opens and sets up the core file bfd. */
271
272 static void
273 core_open (const char *arg, int from_tty)
274 {
275 const char *p;
276 int siggy;
277 struct cleanup *old_chain;
278 char *temp;
279 bfd *temp_bfd;
280 int scratch_chan;
281 int flags;
282 volatile struct gdb_exception except;
283 char *filename;
284
285 target_preopen (from_tty);
286 if (!arg)
287 {
288 if (core_bfd)
289 error (_("No core file specified. (Use `detach' "
290 "to stop debugging a core file.)"));
291 else
292 error (_("No core file specified."));
293 }
294
295 filename = tilde_expand (arg);
296 if (!IS_ABSOLUTE_PATH (filename))
297 {
298 temp = concat (current_directory, "/",
299 filename, (char *) NULL);
300 xfree (filename);
301 filename = temp;
302 }
303
304 old_chain = make_cleanup (xfree, filename);
305
306 flags = O_BINARY | O_LARGEFILE;
307 if (write_files)
308 flags |= O_RDWR;
309 else
310 flags |= O_RDONLY;
311 scratch_chan = gdb_open_cloexec (filename, flags, 0);
312 if (scratch_chan < 0)
313 perror_with_name (filename);
314
315 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
316 write_files ? FOPEN_RUB : FOPEN_RB,
317 scratch_chan);
318 if (temp_bfd == NULL)
319 perror_with_name (filename);
320
321 if (!bfd_check_format (temp_bfd, bfd_core)
322 && !gdb_check_format (temp_bfd))
323 {
324 /* Do it after the err msg */
325 /* FIXME: should be checking for errors from bfd_close (for one
326 thing, on error it does not free all the storage associated
327 with the bfd). */
328 make_cleanup_bfd_unref (temp_bfd);
329 error (_("\"%s\" is not a core dump: %s"),
330 filename, bfd_errmsg (bfd_get_error ()));
331 }
332
333 /* Looks semi-reasonable. Toss the old core file and work on the
334 new. */
335
336 do_cleanups (old_chain);
337 unpush_target (&core_ops);
338 core_bfd = temp_bfd;
339 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
340
341 core_gdbarch = gdbarch_from_bfd (core_bfd);
342
343 /* Find a suitable core file handler to munch on core_bfd */
344 core_vec = sniff_core_bfd (core_bfd);
345
346 validate_files ();
347
348 core_data = XCNEW (struct target_section_table);
349
350 /* Find the data section */
351 if (build_section_table (core_bfd,
352 &core_data->sections,
353 &core_data->sections_end))
354 error (_("\"%s\": Can't find sections: %s"),
355 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
356
357 /* If we have no exec file, try to set the architecture from the
358 core file. We don't do this unconditionally since an exec file
359 typically contains more information that helps us determine the
360 architecture than a core file. */
361 if (!exec_bfd)
362 set_gdbarch_from_file (core_bfd);
363
364 push_target (&core_ops);
365 discard_cleanups (old_chain);
366
367 /* Do this before acknowledging the inferior, so if
368 post_create_inferior throws (can happen easilly if you're loading
369 a core file with the wrong exec), we aren't left with threads
370 from the previous inferior. */
371 init_thread_list ();
372
373 inferior_ptid = null_ptid;
374
375 /* Need to flush the register cache (and the frame cache) from a
376 previous debug session. If inferior_ptid ends up the same as the
377 last debug session --- e.g., b foo; run; gcore core1; step; gcore
378 core2; core core1; core core2 --- then there's potential for
379 get_current_regcache to return the cached regcache of the
380 previous session, and the frame cache being stale. */
381 registers_changed ();
382
383 /* Build up thread list from BFD sections, and possibly set the
384 current thread to the .reg/NN section matching the .reg
385 section. */
386 bfd_map_over_sections (core_bfd, add_to_thread_list,
387 bfd_get_section_by_name (core_bfd, ".reg"));
388
389 if (ptid_equal (inferior_ptid, null_ptid))
390 {
391 /* Either we found no .reg/NN section, and hence we have a
392 non-threaded core (single-threaded, from gdb's perspective),
393 or for some reason add_to_thread_list couldn't determine
394 which was the "main" thread. The latter case shouldn't
395 usually happen, but we're dealing with input here, which can
396 always be broken in different ways. */
397 struct thread_info *thread = first_thread_of_process (-1);
398
399 if (thread == NULL)
400 {
401 inferior_appeared (current_inferior (), CORELOW_PID);
402 inferior_ptid = pid_to_ptid (CORELOW_PID);
403 add_thread_silent (inferior_ptid);
404 }
405 else
406 switch_to_thread (thread->ptid);
407 }
408
409 post_create_inferior (&core_ops, from_tty);
410
411 /* Now go through the target stack looking for threads since there
412 may be a thread_stratum target loaded on top of target core by
413 now. The layer above should claim threads found in the BFD
414 sections. */
415 TRY_CATCH (except, RETURN_MASK_ERROR)
416 {
417 target_find_new_threads ();
418 }
419
420 if (except.reason < 0)
421 exception_print (gdb_stderr, except);
422
423 p = bfd_core_file_failing_command (core_bfd);
424 if (p)
425 printf_filtered (_("Core was generated by `%s'.\n"), p);
426
427 /* Clearing any previous state of convenience variables. */
428 clear_exit_convenience_vars ();
429
430 siggy = bfd_core_file_failing_signal (core_bfd);
431 if (siggy > 0)
432 {
433 /* If we don't have a CORE_GDBARCH to work with, assume a native
434 core (map gdb_signal from host signals). If we do have
435 CORE_GDBARCH to work with, but no gdb_signal_from_target
436 implementation for that gdbarch, as a fallback measure,
437 assume the host signal mapping. It'll be correct for native
438 cores, but most likely incorrect for cross-cores. */
439 enum gdb_signal sig = (core_gdbarch != NULL
440 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
441 ? gdbarch_gdb_signal_from_target (core_gdbarch,
442 siggy)
443 : gdb_signal_from_host (siggy));
444
445 printf_filtered (_("Program terminated with signal %s, %s.\n"),
446 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
447
448 /* Set the value of the internal variable $_exitsignal,
449 which holds the signal uncaught by the inferior. */
450 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
451 siggy);
452 }
453
454 /* Fetch all registers from core file. */
455 target_fetch_registers (get_current_regcache (), -1);
456
457 /* Now, set up the frame cache, and print the top of stack. */
458 reinit_frame_cache ();
459 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
460 }
461
462 static void
463 core_detach (struct target_ops *ops, const char *args, int from_tty)
464 {
465 if (args)
466 error (_("Too many arguments"));
467 unpush_target (ops);
468 reinit_frame_cache ();
469 if (from_tty)
470 printf_filtered (_("No core file now.\n"));
471 }
472
473 /* Try to retrieve registers from a section in core_bfd, and supply
474 them to core_vec->core_read_registers, as the register set numbered
475 WHICH.
476
477 If inferior_ptid's lwp member is zero, do the single-threaded
478 thing: look for a section named NAME. If inferior_ptid's lwp
479 member is non-zero, do the multi-threaded thing: look for a section
480 named "NAME/LWP", where LWP is the shortest ASCII decimal
481 representation of inferior_ptid's lwp member.
482
483 HUMAN_NAME is a human-readable name for the kind of registers the
484 NAME section contains, for use in error messages.
485
486 If REQUIRED is non-zero, print an error if the core file doesn't
487 have a section by the appropriate name. Otherwise, just do
488 nothing. */
489
490 static void
491 get_core_register_section (struct regcache *regcache,
492 const struct regset *regset,
493 const char *name,
494 int min_size,
495 int which,
496 const char *human_name,
497 int required)
498 {
499 static char *section_name = NULL;
500 struct bfd_section *section;
501 bfd_size_type size;
502 char *contents;
503
504 xfree (section_name);
505
506 if (ptid_get_lwp (inferior_ptid))
507 section_name = xstrprintf ("%s/%ld", name,
508 ptid_get_lwp (inferior_ptid));
509 else
510 section_name = xstrdup (name);
511
512 section = bfd_get_section_by_name (core_bfd, section_name);
513 if (! section)
514 {
515 if (required)
516 warning (_("Couldn't find %s registers in core file."),
517 human_name);
518 return;
519 }
520
521 size = bfd_section_size (core_bfd, section);
522 if (size < min_size)
523 {
524 warning (_("Section `%s' in core file too small."), section_name);
525 return;
526 }
527
528 contents = alloca (size);
529 if (! bfd_get_section_contents (core_bfd, section, contents,
530 (file_ptr) 0, size))
531 {
532 warning (_("Couldn't read %s registers from `%s' section in core file."),
533 human_name, name);
534 return;
535 }
536
537 if (regset != NULL)
538 {
539 regset->supply_regset (regset, regcache, -1, contents, size);
540 return;
541 }
542
543 gdb_assert (core_vec);
544 core_vec->core_read_registers (regcache, contents, size, which,
545 ((CORE_ADDR)
546 bfd_section_vma (core_bfd, section)));
547 }
548
549 /* Callback for get_core_registers that handles a single core file
550 register note section. */
551
552 static void
553 get_core_registers_cb (const char *sect_name, int size,
554 const struct regset *regset,
555 const char *human_name, void *cb_data)
556 {
557 struct regcache *regcache = (struct regcache *) cb_data;
558 int required = 0;
559
560 if (strcmp (sect_name, ".reg") == 0)
561 {
562 required = 1;
563 if (human_name == NULL)
564 human_name = "general-purpose";
565 }
566 else if (strcmp (sect_name, ".reg2") == 0)
567 {
568 if (human_name == NULL)
569 human_name = "floating-point";
570 }
571
572 /* The 'which' parameter is only used when no regset is provided.
573 Thus we just set it to -1. */
574 get_core_register_section (regcache, regset, sect_name,
575 size, -1, human_name, required);
576 }
577
578 /* Get the registers out of a core file. This is the machine-
579 independent part. Fetch_core_registers is the machine-dependent
580 part, typically implemented in the xm-file for each
581 architecture. */
582
583 /* We just get all the registers, so we don't use regno. */
584
585 static void
586 get_core_registers (struct target_ops *ops,
587 struct regcache *regcache, int regno)
588 {
589 int i;
590 struct gdbarch *gdbarch;
591
592 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
593 && (core_vec == NULL || core_vec->core_read_registers == NULL))
594 {
595 fprintf_filtered (gdb_stderr,
596 "Can't fetch registers from this type of core file\n");
597 return;
598 }
599
600 gdbarch = get_regcache_arch (regcache);
601 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
602 gdbarch_iterate_over_regset_sections (gdbarch,
603 get_core_registers_cb,
604 (void *) regcache, NULL);
605 else
606 {
607 get_core_register_section (regcache, NULL,
608 ".reg", 0, 0, "general-purpose", 1);
609 get_core_register_section (regcache, NULL,
610 ".reg2", 0, 2, "floating-point", 0);
611 }
612
613 /* Mark all registers not found in the core as unavailable. */
614 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
615 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
616 regcache_raw_supply (regcache, i, NULL);
617 }
618
619 static void
620 core_files_info (struct target_ops *t)
621 {
622 print_section_info (core_data, core_bfd);
623 }
624 \f
625 struct spuid_list
626 {
627 gdb_byte *buf;
628 ULONGEST offset;
629 LONGEST len;
630 ULONGEST pos;
631 ULONGEST written;
632 };
633
634 static void
635 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
636 {
637 struct spuid_list *list = list_p;
638 enum bfd_endian byte_order
639 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
640 int fd, pos = 0;
641
642 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
643 if (pos == 0)
644 return;
645
646 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
647 {
648 store_unsigned_integer (list->buf + list->pos - list->offset,
649 4, byte_order, fd);
650 list->written += 4;
651 }
652 list->pos += 4;
653 }
654
655 /* Read siginfo data from the core, if possible. Returns -1 on
656 failure. Otherwise, returns the number of bytes read. ABFD is the
657 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
658 the to_xfer_partial interface. */
659
660 static LONGEST
661 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
662 {
663 asection *section;
664 char *section_name;
665 const char *name = ".note.linuxcore.siginfo";
666
667 if (ptid_get_lwp (inferior_ptid))
668 section_name = xstrprintf ("%s/%ld", name,
669 ptid_get_lwp (inferior_ptid));
670 else
671 section_name = xstrdup (name);
672
673 section = bfd_get_section_by_name (abfd, section_name);
674 xfree (section_name);
675 if (section == NULL)
676 return -1;
677
678 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
679 return -1;
680
681 return len;
682 }
683
684 static enum target_xfer_status
685 core_xfer_partial (struct target_ops *ops, enum target_object object,
686 const char *annex, gdb_byte *readbuf,
687 const gdb_byte *writebuf, ULONGEST offset,
688 ULONGEST len, ULONGEST *xfered_len)
689 {
690 switch (object)
691 {
692 case TARGET_OBJECT_MEMORY:
693 return section_table_xfer_memory_partial (readbuf, writebuf,
694 offset, len, xfered_len,
695 core_data->sections,
696 core_data->sections_end,
697 NULL);
698
699 case TARGET_OBJECT_AUXV:
700 if (readbuf)
701 {
702 /* When the aux vector is stored in core file, BFD
703 represents this with a fake section called ".auxv". */
704
705 struct bfd_section *section;
706 bfd_size_type size;
707
708 section = bfd_get_section_by_name (core_bfd, ".auxv");
709 if (section == NULL)
710 return TARGET_XFER_E_IO;
711
712 size = bfd_section_size (core_bfd, section);
713 if (offset >= size)
714 return TARGET_XFER_EOF;
715 size -= offset;
716 if (size > len)
717 size = len;
718
719 if (size == 0)
720 return TARGET_XFER_EOF;
721 if (!bfd_get_section_contents (core_bfd, section, readbuf,
722 (file_ptr) offset, size))
723 {
724 warning (_("Couldn't read NT_AUXV note in core file."));
725 return TARGET_XFER_E_IO;
726 }
727
728 *xfered_len = (ULONGEST) size;
729 return TARGET_XFER_OK;
730 }
731 return TARGET_XFER_E_IO;
732
733 case TARGET_OBJECT_WCOOKIE:
734 if (readbuf)
735 {
736 /* When the StackGhost cookie is stored in core file, BFD
737 represents this with a fake section called
738 ".wcookie". */
739
740 struct bfd_section *section;
741 bfd_size_type size;
742
743 section = bfd_get_section_by_name (core_bfd, ".wcookie");
744 if (section == NULL)
745 return TARGET_XFER_E_IO;
746
747 size = bfd_section_size (core_bfd, section);
748 if (offset >= size)
749 return TARGET_XFER_EOF;
750 size -= offset;
751 if (size > len)
752 size = len;
753
754 if (size == 0)
755 return TARGET_XFER_EOF;
756 if (!bfd_get_section_contents (core_bfd, section, readbuf,
757 (file_ptr) offset, size))
758 {
759 warning (_("Couldn't read StackGhost cookie in core file."));
760 return TARGET_XFER_E_IO;
761 }
762
763 *xfered_len = (ULONGEST) size;
764 return TARGET_XFER_OK;
765
766 }
767 return TARGET_XFER_E_IO;
768
769 case TARGET_OBJECT_LIBRARIES:
770 if (core_gdbarch
771 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
772 {
773 if (writebuf)
774 return TARGET_XFER_E_IO;
775 else
776 {
777 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
778 readbuf,
779 offset, len);
780
781 if (*xfered_len == 0)
782 return TARGET_XFER_EOF;
783 else
784 return TARGET_XFER_OK;
785 }
786 }
787 /* FALL THROUGH */
788
789 case TARGET_OBJECT_LIBRARIES_AIX:
790 if (core_gdbarch
791 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
792 {
793 if (writebuf)
794 return TARGET_XFER_E_IO;
795 else
796 {
797 *xfered_len
798 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
799 readbuf, offset,
800 len);
801
802 if (*xfered_len == 0)
803 return TARGET_XFER_EOF;
804 else
805 return TARGET_XFER_OK;
806 }
807 }
808 /* FALL THROUGH */
809
810 case TARGET_OBJECT_SPU:
811 if (readbuf && annex)
812 {
813 /* When the SPU contexts are stored in a core file, BFD
814 represents this with a fake section called
815 "SPU/<annex>". */
816
817 struct bfd_section *section;
818 bfd_size_type size;
819 char sectionstr[100];
820
821 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
822
823 section = bfd_get_section_by_name (core_bfd, sectionstr);
824 if (section == NULL)
825 return TARGET_XFER_E_IO;
826
827 size = bfd_section_size (core_bfd, section);
828 if (offset >= size)
829 return TARGET_XFER_EOF;
830 size -= offset;
831 if (size > len)
832 size = len;
833
834 if (size == 0)
835 return TARGET_XFER_EOF;
836 if (!bfd_get_section_contents (core_bfd, section, readbuf,
837 (file_ptr) offset, size))
838 {
839 warning (_("Couldn't read SPU section in core file."));
840 return TARGET_XFER_E_IO;
841 }
842
843 *xfered_len = (ULONGEST) size;
844 return TARGET_XFER_OK;
845 }
846 else if (readbuf)
847 {
848 /* NULL annex requests list of all present spuids. */
849 struct spuid_list list;
850
851 list.buf = readbuf;
852 list.offset = offset;
853 list.len = len;
854 list.pos = 0;
855 list.written = 0;
856 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
857
858 if (list.written == 0)
859 return TARGET_XFER_EOF;
860 else
861 {
862 *xfered_len = (ULONGEST) list.written;
863 return TARGET_XFER_OK;
864 }
865 }
866 return TARGET_XFER_E_IO;
867
868 case TARGET_OBJECT_SIGNAL_INFO:
869 if (readbuf)
870 {
871 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
872
873 if (l > 0)
874 {
875 *xfered_len = len;
876 return TARGET_XFER_OK;
877 }
878 }
879 return TARGET_XFER_E_IO;
880
881 default:
882 return ops->beneath->to_xfer_partial (ops->beneath, object,
883 annex, readbuf,
884 writebuf, offset, len,
885 xfered_len);
886 }
887 }
888
889 \f
890 /* If mourn is being called in all the right places, this could be say
891 `gdb internal error' (since generic_mourn calls
892 breakpoint_init_inferior). */
893
894 static int
895 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
896 struct bp_target_info *bp_tgt)
897 {
898 return 0;
899 }
900
901
902 /* Okay, let's be honest: threads gleaned from a core file aren't
903 exactly lively, are they? On the other hand, if we don't claim
904 that each & every one is alive, then we don't get any of them
905 to appear in an "info thread" command, which is quite a useful
906 behaviour.
907 */
908 static int
909 core_thread_alive (struct target_ops *ops, ptid_t ptid)
910 {
911 return 1;
912 }
913
914 /* Ask the current architecture what it knows about this core file.
915 That will be used, in turn, to pick a better architecture. This
916 wrapper could be avoided if targets got a chance to specialize
917 core_ops. */
918
919 static const struct target_desc *
920 core_read_description (struct target_ops *target)
921 {
922 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
923 {
924 const struct target_desc *result;
925
926 result = gdbarch_core_read_description (core_gdbarch,
927 target, core_bfd);
928 if (result != NULL)
929 return result;
930 }
931
932 return target->beneath->to_read_description (target->beneath);
933 }
934
935 static char *
936 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
937 {
938 static char buf[64];
939 struct inferior *inf;
940 int pid;
941
942 /* The preferred way is to have a gdbarch/OS specific
943 implementation. */
944 if (core_gdbarch
945 && gdbarch_core_pid_to_str_p (core_gdbarch))
946 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
947
948 /* Otherwise, if we don't have one, we'll just fallback to
949 "process", with normal_pid_to_str. */
950
951 /* Try the LWPID field first. */
952 pid = ptid_get_lwp (ptid);
953 if (pid != 0)
954 return normal_pid_to_str (pid_to_ptid (pid));
955
956 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
957 only if it isn't a fake PID. */
958 inf = find_inferior_pid (ptid_get_pid (ptid));
959 if (inf != NULL && !inf->fake_pid_p)
960 return normal_pid_to_str (ptid);
961
962 /* No luck. We simply don't have a valid PID to print. */
963 xsnprintf (buf, sizeof buf, "<main task>");
964 return buf;
965 }
966
967 static int
968 core_has_memory (struct target_ops *ops)
969 {
970 return (core_bfd != NULL);
971 }
972
973 static int
974 core_has_stack (struct target_ops *ops)
975 {
976 return (core_bfd != NULL);
977 }
978
979 static int
980 core_has_registers (struct target_ops *ops)
981 {
982 return (core_bfd != NULL);
983 }
984
985 /* Implement the to_info_proc method. */
986
987 static void
988 core_info_proc (struct target_ops *ops, const char *args,
989 enum info_proc_what request)
990 {
991 struct gdbarch *gdbarch = get_current_arch ();
992
993 /* Since this is the core file target, call the 'core_info_proc'
994 method on gdbarch, not 'info_proc'. */
995 if (gdbarch_core_info_proc_p (gdbarch))
996 gdbarch_core_info_proc (gdbarch, args, request);
997 }
998
999 /* Fill in core_ops with its defined operations and properties. */
1000
1001 static void
1002 init_core_ops (void)
1003 {
1004 core_ops.to_shortname = "core";
1005 core_ops.to_longname = "Local core dump file";
1006 core_ops.to_doc =
1007 "Use a core file as a target. Specify the filename of the core file.";
1008 core_ops.to_open = core_open;
1009 core_ops.to_close = core_close;
1010 core_ops.to_detach = core_detach;
1011 core_ops.to_fetch_registers = get_core_registers;
1012 core_ops.to_xfer_partial = core_xfer_partial;
1013 core_ops.to_files_info = core_files_info;
1014 core_ops.to_insert_breakpoint = ignore;
1015 core_ops.to_remove_breakpoint = ignore;
1016 core_ops.to_thread_alive = core_thread_alive;
1017 core_ops.to_read_description = core_read_description;
1018 core_ops.to_pid_to_str = core_pid_to_str;
1019 core_ops.to_stratum = process_stratum;
1020 core_ops.to_has_memory = core_has_memory;
1021 core_ops.to_has_stack = core_has_stack;
1022 core_ops.to_has_registers = core_has_registers;
1023 core_ops.to_info_proc = core_info_proc;
1024 core_ops.to_magic = OPS_MAGIC;
1025
1026 if (core_target)
1027 internal_error (__FILE__, __LINE__,
1028 _("init_core_ops: core target already exists (\"%s\")."),
1029 core_target->to_longname);
1030 core_target = &core_ops;
1031 }
1032
1033 void
1034 _initialize_corelow (void)
1035 {
1036 init_core_ops ();
1037
1038 add_target_with_completer (&core_ops, filename_completer);
1039 }
This page took 0.069536 seconds and 5 git commands to generate.