Update copyright year range in all GDB files.
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "process-stratum-target.h"
35 #include "gdbcore.h"
36 #include "gdbthread.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "exec.h"
41 #include "readline/readline.h"
42 #include "solib.h"
43 #include "filenames.h"
44 #include "progspace.h"
45 #include "objfiles.h"
46 #include "gdb_bfd.h"
47 #include "completer.h"
48 #include "filestuff.h"
49
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53
54 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
55 bfd *abfd);
56
57 /* The core file target. */
58
59 static const target_info core_target_info = {
60 "core",
61 N_("Local core dump file"),
62 N_("Use a core file as a target. Specify the filename of the core file.")
63 };
64
65 class core_target final : public process_stratum_target
66 {
67 public:
68 core_target ();
69 ~core_target () override;
70
71 const target_info &info () const override
72 { return core_target_info; }
73
74 void close () override;
75 void detach (inferior *, int) override;
76 void fetch_registers (struct regcache *, int) override;
77
78 enum target_xfer_status xfer_partial (enum target_object object,
79 const char *annex,
80 gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, ULONGEST len,
83 ULONGEST *xfered_len) override;
84 void files_info () override;
85
86 bool thread_alive (ptid_t ptid) override;
87 const struct target_desc *read_description () override;
88
89 const char *pid_to_str (ptid_t) override;
90
91 const char *thread_name (struct thread_info *) override;
92
93 bool has_all_memory () override { return false; }
94 bool has_memory () override;
95 bool has_stack () override;
96 bool has_registers () override;
97 bool has_execution (ptid_t) override { return false; }
98
99 bool info_proc (const char *, enum info_proc_what) override;
100
101 /* A few helpers. */
102
103 /* Getter, see variable definition. */
104 struct gdbarch *core_gdbarch ()
105 {
106 return m_core_gdbarch;
107 }
108
109 /* See definition. */
110 void get_core_register_section (struct regcache *regcache,
111 const struct regset *regset,
112 const char *name,
113 int section_min_size,
114 int which,
115 const char *human_name,
116 bool required);
117
118 private: /* per-core data */
119
120 /* The core's section table. Note that these target sections are
121 *not* mapped in the current address spaces' set of target
122 sections --- those should come only from pure executable or
123 shared library bfds. The core bfd sections are an implementation
124 detail of the core target, just like ptrace is for unix child
125 targets. */
126 target_section_table m_core_section_table {};
127
128 /* The core_fns for a core file handler that is prepared to read the
129 core file currently open on core_bfd. */
130 core_fns *m_core_vec = NULL;
131
132 /* FIXME: kettenis/20031023: Eventually this field should
133 disappear. */
134 struct gdbarch *m_core_gdbarch = NULL;
135 };
136
137 core_target::core_target ()
138 {
139 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
140
141 /* Find a suitable core file handler to munch on core_bfd */
142 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
143
144 /* Find the data section */
145 if (build_section_table (core_bfd,
146 &m_core_section_table.sections,
147 &m_core_section_table.sections_end))
148 error (_("\"%s\": Can't find sections: %s"),
149 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
150 }
151
152 core_target::~core_target ()
153 {
154 xfree (m_core_section_table.sections);
155 }
156
157 /* List of all available core_fns. On gdb startup, each core file
158 register reader calls deprecated_add_core_fns() to register
159 information on each core format it is prepared to read. */
160
161 static struct core_fns *core_file_fns = NULL;
162
163 static int gdb_check_format (bfd *);
164
165 static void add_to_thread_list (bfd *, asection *, void *);
166
167 /* An arbitrary identifier for the core inferior. */
168 #define CORELOW_PID 1
169
170 /* Link a new core_fns into the global core_file_fns list. Called on
171 gdb startup by the _initialize routine in each core file register
172 reader, to register information about each format the reader is
173 prepared to handle. */
174
175 void
176 deprecated_add_core_fns (struct core_fns *cf)
177 {
178 cf->next = core_file_fns;
179 core_file_fns = cf;
180 }
181
182 /* The default function that core file handlers can use to examine a
183 core file BFD and decide whether or not to accept the job of
184 reading the core file. */
185
186 int
187 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
188 {
189 int result;
190
191 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
192 return (result);
193 }
194
195 /* Walk through the list of core functions to find a set that can
196 handle the core file open on ABFD. Returns pointer to set that is
197 selected. */
198
199 static struct core_fns *
200 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
201 {
202 struct core_fns *cf;
203 struct core_fns *yummy = NULL;
204 int matches = 0;
205
206 /* Don't sniff if we have support for register sets in
207 CORE_GDBARCH. */
208 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
209 return NULL;
210
211 for (cf = core_file_fns; cf != NULL; cf = cf->next)
212 {
213 if (cf->core_sniffer (cf, abfd))
214 {
215 yummy = cf;
216 matches++;
217 }
218 }
219 if (matches > 1)
220 {
221 warning (_("\"%s\": ambiguous core format, %d handlers match"),
222 bfd_get_filename (abfd), matches);
223 }
224 else if (matches == 0)
225 error (_("\"%s\": no core file handler recognizes format"),
226 bfd_get_filename (abfd));
227
228 return (yummy);
229 }
230
231 /* The default is to reject every core file format we see. Either
232 BFD has to recognize it, or we have to provide a function in the
233 core file handler that recognizes it. */
234
235 int
236 default_check_format (bfd *abfd)
237 {
238 return (0);
239 }
240
241 /* Attempt to recognize core file formats that BFD rejects. */
242
243 static int
244 gdb_check_format (bfd *abfd)
245 {
246 struct core_fns *cf;
247
248 for (cf = core_file_fns; cf != NULL; cf = cf->next)
249 {
250 if (cf->check_format (abfd))
251 {
252 return (1);
253 }
254 }
255 return (0);
256 }
257
258 /* Close the core target. */
259
260 void
261 core_target::close ()
262 {
263 if (core_bfd)
264 {
265 inferior_ptid = null_ptid; /* Avoid confusion from thread
266 stuff. */
267 exit_inferior_silent (current_inferior ());
268
269 /* Clear out solib state while the bfd is still open. See
270 comments in clear_solib in solib.c. */
271 clear_solib ();
272
273 current_program_space->cbfd.reset (nullptr);
274 }
275
276 /* Core targets are heap-allocated (see core_target_open), so here
277 we delete ourselves. */
278 delete this;
279 }
280
281 /* Look for sections whose names start with `.reg/' so that we can
282 extract the list of threads in a core file. */
283
284 static void
285 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
286 {
287 ptid_t ptid;
288 int core_tid;
289 int pid, lwpid;
290 asection *reg_sect = (asection *) reg_sect_arg;
291 int fake_pid_p = 0;
292 struct inferior *inf;
293
294 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
295 return;
296
297 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
298
299 pid = bfd_core_file_pid (core_bfd);
300 if (pid == 0)
301 {
302 fake_pid_p = 1;
303 pid = CORELOW_PID;
304 }
305
306 lwpid = core_tid;
307
308 inf = current_inferior ();
309 if (inf->pid == 0)
310 {
311 inferior_appeared (inf, pid);
312 inf->fake_pid_p = fake_pid_p;
313 }
314
315 ptid = ptid_t (pid, lwpid, 0);
316
317 add_thread (ptid);
318
319 /* Warning, Will Robinson, looking at BFD private data! */
320
321 if (reg_sect != NULL
322 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
323 inferior_ptid = ptid; /* Yes, make it current. */
324 }
325
326 /* Issue a message saying we have no core to debug, if FROM_TTY. */
327
328 static void
329 maybe_say_no_core_file_now (int from_tty)
330 {
331 if (from_tty)
332 printf_filtered (_("No core file now.\n"));
333 }
334
335 /* Backward compatability with old way of specifying core files. */
336
337 void
338 core_file_command (const char *filename, int from_tty)
339 {
340 dont_repeat (); /* Either way, seems bogus. */
341
342 if (filename == NULL)
343 {
344 if (core_bfd != NULL)
345 {
346 target_detach (current_inferior (), from_tty);
347 gdb_assert (core_bfd == NULL);
348 }
349 else
350 maybe_say_no_core_file_now (from_tty);
351 }
352 else
353 core_target_open (filename, from_tty);
354 }
355
356 /* See gdbcore.h. */
357
358 void
359 core_target_open (const char *arg, int from_tty)
360 {
361 const char *p;
362 int siggy;
363 int scratch_chan;
364 int flags;
365
366 target_preopen (from_tty);
367 if (!arg)
368 {
369 if (core_bfd)
370 error (_("No core file specified. (Use `detach' "
371 "to stop debugging a core file.)"));
372 else
373 error (_("No core file specified."));
374 }
375
376 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
377 if (!IS_ABSOLUTE_PATH (filename.get ()))
378 filename.reset (concat (current_directory, "/",
379 filename.get (), (char *) NULL));
380
381 flags = O_BINARY | O_LARGEFILE;
382 if (write_files)
383 flags |= O_RDWR;
384 else
385 flags |= O_RDONLY;
386 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
387 if (scratch_chan < 0)
388 perror_with_name (filename.get ());
389
390 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
391 write_files ? FOPEN_RUB : FOPEN_RB,
392 scratch_chan));
393 if (temp_bfd == NULL)
394 perror_with_name (filename.get ());
395
396 if (!bfd_check_format (temp_bfd.get (), bfd_core)
397 && !gdb_check_format (temp_bfd.get ()))
398 {
399 /* Do it after the err msg */
400 /* FIXME: should be checking for errors from bfd_close (for one
401 thing, on error it does not free all the storage associated
402 with the bfd). */
403 error (_("\"%s\" is not a core dump: %s"),
404 filename.get (), bfd_errmsg (bfd_get_error ()));
405 }
406
407 current_program_space->cbfd = std::move (temp_bfd);
408
409 core_target *target = new core_target ();
410
411 /* Own the target until it is successfully pushed. */
412 target_ops_up target_holder (target);
413
414 validate_files ();
415
416 /* If we have no exec file, try to set the architecture from the
417 core file. We don't do this unconditionally since an exec file
418 typically contains more information that helps us determine the
419 architecture than a core file. */
420 if (!exec_bfd)
421 set_gdbarch_from_file (core_bfd);
422
423 push_target (target);
424 target_holder.release ();
425
426 inferior_ptid = null_ptid;
427
428 /* Need to flush the register cache (and the frame cache) from a
429 previous debug session. If inferior_ptid ends up the same as the
430 last debug session --- e.g., b foo; run; gcore core1; step; gcore
431 core2; core core1; core core2 --- then there's potential for
432 get_current_regcache to return the cached regcache of the
433 previous session, and the frame cache being stale. */
434 registers_changed ();
435
436 /* Build up thread list from BFD sections, and possibly set the
437 current thread to the .reg/NN section matching the .reg
438 section. */
439 bfd_map_over_sections (core_bfd, add_to_thread_list,
440 bfd_get_section_by_name (core_bfd, ".reg"));
441
442 if (inferior_ptid == null_ptid)
443 {
444 /* Either we found no .reg/NN section, and hence we have a
445 non-threaded core (single-threaded, from gdb's perspective),
446 or for some reason add_to_thread_list couldn't determine
447 which was the "main" thread. The latter case shouldn't
448 usually happen, but we're dealing with input here, which can
449 always be broken in different ways. */
450 thread_info *thread = first_thread_of_inferior (current_inferior ());
451
452 if (thread == NULL)
453 {
454 inferior_appeared (current_inferior (), CORELOW_PID);
455 inferior_ptid = ptid_t (CORELOW_PID);
456 add_thread_silent (inferior_ptid);
457 }
458 else
459 switch_to_thread (thread);
460 }
461
462 post_create_inferior (target, from_tty);
463
464 /* Now go through the target stack looking for threads since there
465 may be a thread_stratum target loaded on top of target core by
466 now. The layer above should claim threads found in the BFD
467 sections. */
468 TRY
469 {
470 target_update_thread_list ();
471 }
472
473 CATCH (except, RETURN_MASK_ERROR)
474 {
475 exception_print (gdb_stderr, except);
476 }
477 END_CATCH
478
479 p = bfd_core_file_failing_command (core_bfd);
480 if (p)
481 printf_filtered (_("Core was generated by `%s'.\n"), p);
482
483 /* Clearing any previous state of convenience variables. */
484 clear_exit_convenience_vars ();
485
486 siggy = bfd_core_file_failing_signal (core_bfd);
487 if (siggy > 0)
488 {
489 gdbarch *core_gdbarch = target->core_gdbarch ();
490
491 /* If we don't have a CORE_GDBARCH to work with, assume a native
492 core (map gdb_signal from host signals). If we do have
493 CORE_GDBARCH to work with, but no gdb_signal_from_target
494 implementation for that gdbarch, as a fallback measure,
495 assume the host signal mapping. It'll be correct for native
496 cores, but most likely incorrect for cross-cores. */
497 enum gdb_signal sig = (core_gdbarch != NULL
498 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
499 ? gdbarch_gdb_signal_from_target (core_gdbarch,
500 siggy)
501 : gdb_signal_from_host (siggy));
502
503 printf_filtered (_("Program terminated with signal %s, %s.\n"),
504 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
505
506 /* Set the value of the internal variable $_exitsignal,
507 which holds the signal uncaught by the inferior. */
508 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
509 siggy);
510 }
511
512 /* Fetch all registers from core file. */
513 target_fetch_registers (get_current_regcache (), -1);
514
515 /* Now, set up the frame cache, and print the top of stack. */
516 reinit_frame_cache ();
517 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
518
519 /* Current thread should be NUM 1 but the user does not know that.
520 If a program is single threaded gdb in general does not mention
521 anything about threads. That is why the test is >= 2. */
522 if (thread_count () >= 2)
523 {
524 TRY
525 {
526 thread_command (NULL, from_tty);
527 }
528 CATCH (except, RETURN_MASK_ERROR)
529 {
530 exception_print (gdb_stderr, except);
531 }
532 END_CATCH
533 }
534 }
535
536 void
537 core_target::detach (inferior *inf, int from_tty)
538 {
539 /* Note that 'this' is dangling after this call. unpush_target
540 closes the target, and our close implementation deletes
541 'this'. */
542 unpush_target (this);
543
544 reinit_frame_cache ();
545 maybe_say_no_core_file_now (from_tty);
546 }
547
548 /* Try to retrieve registers from a section in core_bfd, and supply
549 them to m_core_vec->core_read_registers, as the register set
550 numbered WHICH.
551
552 If ptid's lwp member is zero, do the single-threaded
553 thing: look for a section named NAME. If ptid's lwp
554 member is non-zero, do the multi-threaded thing: look for a section
555 named "NAME/LWP", where LWP is the shortest ASCII decimal
556 representation of ptid's lwp member.
557
558 HUMAN_NAME is a human-readable name for the kind of registers the
559 NAME section contains, for use in error messages.
560
561 If REQUIRED is true, print an error if the core file doesn't have a
562 section by the appropriate name. Otherwise, just do nothing. */
563
564 void
565 core_target::get_core_register_section (struct regcache *regcache,
566 const struct regset *regset,
567 const char *name,
568 int section_min_size,
569 int which,
570 const char *human_name,
571 bool required)
572 {
573 struct bfd_section *section;
574 bfd_size_type size;
575 char *contents;
576 bool variable_size_section = (regset != NULL
577 && regset->flags & REGSET_VARIABLE_SIZE);
578
579 thread_section_name section_name (name, regcache->ptid ());
580
581 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
582 if (! section)
583 {
584 if (required)
585 warning (_("Couldn't find %s registers in core file."),
586 human_name);
587 return;
588 }
589
590 size = bfd_section_size (core_bfd, section);
591 if (size < section_min_size)
592 {
593 warning (_("Section `%s' in core file too small."),
594 section_name.c_str ());
595 return;
596 }
597 if (size != section_min_size && !variable_size_section)
598 {
599 warning (_("Unexpected size of section `%s' in core file."),
600 section_name.c_str ());
601 }
602
603 contents = (char *) alloca (size);
604 if (! bfd_get_section_contents (core_bfd, section, contents,
605 (file_ptr) 0, size))
606 {
607 warning (_("Couldn't read %s registers from `%s' section in core file."),
608 human_name, section_name.c_str ());
609 return;
610 }
611
612 if (regset != NULL)
613 {
614 regset->supply_regset (regset, regcache, -1, contents, size);
615 return;
616 }
617
618 gdb_assert (m_core_vec != nullptr);
619 m_core_vec->core_read_registers (regcache, contents, size, which,
620 ((CORE_ADDR)
621 bfd_section_vma (core_bfd, section)));
622 }
623
624 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
625 struct get_core_registers_cb_data
626 {
627 core_target *target;
628 struct regcache *regcache;
629 };
630
631 /* Callback for get_core_registers that handles a single core file
632 register note section. */
633
634 static void
635 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
636 const struct regset *regset,
637 const char *human_name, void *cb_data)
638 {
639 auto *data = (get_core_registers_cb_data *) cb_data;
640 bool required = false;
641 bool variable_size_section = (regset != NULL
642 && regset->flags & REGSET_VARIABLE_SIZE);
643
644 if (!variable_size_section)
645 gdb_assert (supply_size == collect_size);
646
647 if (strcmp (sect_name, ".reg") == 0)
648 {
649 required = true;
650 if (human_name == NULL)
651 human_name = "general-purpose";
652 }
653 else if (strcmp (sect_name, ".reg2") == 0)
654 {
655 if (human_name == NULL)
656 human_name = "floating-point";
657 }
658
659 /* The 'which' parameter is only used when no regset is provided.
660 Thus we just set it to -1. */
661 data->target->get_core_register_section (data->regcache, regset, sect_name,
662 supply_size, -1, human_name,
663 required);
664 }
665
666 /* Get the registers out of a core file. This is the machine-
667 independent part. Fetch_core_registers is the machine-dependent
668 part, typically implemented in the xm-file for each
669 architecture. */
670
671 /* We just get all the registers, so we don't use regno. */
672
673 void
674 core_target::fetch_registers (struct regcache *regcache, int regno)
675 {
676 int i;
677 struct gdbarch *gdbarch;
678
679 if (!(m_core_gdbarch != nullptr
680 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
681 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
682 {
683 fprintf_filtered (gdb_stderr,
684 "Can't fetch registers from this type of core file\n");
685 return;
686 }
687
688 gdbarch = regcache->arch ();
689 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
690 {
691 get_core_registers_cb_data data = { this, regcache };
692 gdbarch_iterate_over_regset_sections (gdbarch,
693 get_core_registers_cb,
694 (void *) &data, NULL);
695 }
696 else
697 {
698 get_core_register_section (regcache, NULL,
699 ".reg", 0, 0, "general-purpose", 1);
700 get_core_register_section (regcache, NULL,
701 ".reg2", 0, 2, "floating-point", 0);
702 }
703
704 /* Mark all registers not found in the core as unavailable. */
705 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
706 if (regcache->get_register_status (i) == REG_UNKNOWN)
707 regcache->raw_supply (i, NULL);
708 }
709
710 void
711 core_target::files_info ()
712 {
713 print_section_info (&m_core_section_table, core_bfd);
714 }
715 \f
716 struct spuid_list
717 {
718 gdb_byte *buf;
719 ULONGEST offset;
720 LONGEST len;
721 ULONGEST pos;
722 ULONGEST written;
723 };
724
725 static void
726 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
727 {
728 struct spuid_list *list = (struct spuid_list *) list_p;
729 enum bfd_endian byte_order
730 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
731 int fd, pos = 0;
732
733 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
734 if (pos == 0)
735 return;
736
737 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
738 {
739 store_unsigned_integer (list->buf + list->pos - list->offset,
740 4, byte_order, fd);
741 list->written += 4;
742 }
743 list->pos += 4;
744 }
745
746 enum target_xfer_status
747 core_target::xfer_partial (enum target_object object, const char *annex,
748 gdb_byte *readbuf, const gdb_byte *writebuf,
749 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
750 {
751 switch (object)
752 {
753 case TARGET_OBJECT_MEMORY:
754 return (section_table_xfer_memory_partial
755 (readbuf, writebuf,
756 offset, len, xfered_len,
757 m_core_section_table.sections,
758 m_core_section_table.sections_end,
759 NULL));
760
761 case TARGET_OBJECT_AUXV:
762 if (readbuf)
763 {
764 /* When the aux vector is stored in core file, BFD
765 represents this with a fake section called ".auxv". */
766
767 struct bfd_section *section;
768 bfd_size_type size;
769
770 section = bfd_get_section_by_name (core_bfd, ".auxv");
771 if (section == NULL)
772 return TARGET_XFER_E_IO;
773
774 size = bfd_section_size (core_bfd, section);
775 if (offset >= size)
776 return TARGET_XFER_EOF;
777 size -= offset;
778 if (size > len)
779 size = len;
780
781 if (size == 0)
782 return TARGET_XFER_EOF;
783 if (!bfd_get_section_contents (core_bfd, section, readbuf,
784 (file_ptr) offset, size))
785 {
786 warning (_("Couldn't read NT_AUXV note in core file."));
787 return TARGET_XFER_E_IO;
788 }
789
790 *xfered_len = (ULONGEST) size;
791 return TARGET_XFER_OK;
792 }
793 return TARGET_XFER_E_IO;
794
795 case TARGET_OBJECT_WCOOKIE:
796 if (readbuf)
797 {
798 /* When the StackGhost cookie is stored in core file, BFD
799 represents this with a fake section called
800 ".wcookie". */
801
802 struct bfd_section *section;
803 bfd_size_type size;
804
805 section = bfd_get_section_by_name (core_bfd, ".wcookie");
806 if (section == NULL)
807 return TARGET_XFER_E_IO;
808
809 size = bfd_section_size (core_bfd, section);
810 if (offset >= size)
811 return TARGET_XFER_EOF;
812 size -= offset;
813 if (size > len)
814 size = len;
815
816 if (size == 0)
817 return TARGET_XFER_EOF;
818 if (!bfd_get_section_contents (core_bfd, section, readbuf,
819 (file_ptr) offset, size))
820 {
821 warning (_("Couldn't read StackGhost cookie in core file."));
822 return TARGET_XFER_E_IO;
823 }
824
825 *xfered_len = (ULONGEST) size;
826 return TARGET_XFER_OK;
827
828 }
829 return TARGET_XFER_E_IO;
830
831 case TARGET_OBJECT_LIBRARIES:
832 if (m_core_gdbarch != nullptr
833 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
834 {
835 if (writebuf)
836 return TARGET_XFER_E_IO;
837 else
838 {
839 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
840 readbuf,
841 offset, len);
842
843 if (*xfered_len == 0)
844 return TARGET_XFER_EOF;
845 else
846 return TARGET_XFER_OK;
847 }
848 }
849 /* FALL THROUGH */
850
851 case TARGET_OBJECT_LIBRARIES_AIX:
852 if (m_core_gdbarch != nullptr
853 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
854 {
855 if (writebuf)
856 return TARGET_XFER_E_IO;
857 else
858 {
859 *xfered_len
860 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
861 readbuf, offset,
862 len);
863
864 if (*xfered_len == 0)
865 return TARGET_XFER_EOF;
866 else
867 return TARGET_XFER_OK;
868 }
869 }
870 /* FALL THROUGH */
871
872 case TARGET_OBJECT_SPU:
873 if (readbuf && annex)
874 {
875 /* When the SPU contexts are stored in a core file, BFD
876 represents this with a fake section called
877 "SPU/<annex>". */
878
879 struct bfd_section *section;
880 bfd_size_type size;
881 char sectionstr[100];
882
883 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
884
885 section = bfd_get_section_by_name (core_bfd, sectionstr);
886 if (section == NULL)
887 return TARGET_XFER_E_IO;
888
889 size = bfd_section_size (core_bfd, section);
890 if (offset >= size)
891 return TARGET_XFER_EOF;
892 size -= offset;
893 if (size > len)
894 size = len;
895
896 if (size == 0)
897 return TARGET_XFER_EOF;
898 if (!bfd_get_section_contents (core_bfd, section, readbuf,
899 (file_ptr) offset, size))
900 {
901 warning (_("Couldn't read SPU section in core file."));
902 return TARGET_XFER_E_IO;
903 }
904
905 *xfered_len = (ULONGEST) size;
906 return TARGET_XFER_OK;
907 }
908 else if (readbuf)
909 {
910 /* NULL annex requests list of all present spuids. */
911 struct spuid_list list;
912
913 list.buf = readbuf;
914 list.offset = offset;
915 list.len = len;
916 list.pos = 0;
917 list.written = 0;
918 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
919
920 if (list.written == 0)
921 return TARGET_XFER_EOF;
922 else
923 {
924 *xfered_len = (ULONGEST) list.written;
925 return TARGET_XFER_OK;
926 }
927 }
928 return TARGET_XFER_E_IO;
929
930 case TARGET_OBJECT_SIGNAL_INFO:
931 if (readbuf)
932 {
933 if (m_core_gdbarch != nullptr
934 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
935 {
936 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
937 offset, len);
938
939 if (l >= 0)
940 {
941 *xfered_len = l;
942 if (l == 0)
943 return TARGET_XFER_EOF;
944 else
945 return TARGET_XFER_OK;
946 }
947 }
948 }
949 return TARGET_XFER_E_IO;
950
951 default:
952 return this->beneath ()->xfer_partial (object, annex, readbuf,
953 writebuf, offset, len,
954 xfered_len);
955 }
956 }
957
958 \f
959
960 /* Okay, let's be honest: threads gleaned from a core file aren't
961 exactly lively, are they? On the other hand, if we don't claim
962 that each & every one is alive, then we don't get any of them
963 to appear in an "info thread" command, which is quite a useful
964 behaviour.
965 */
966 bool
967 core_target::thread_alive (ptid_t ptid)
968 {
969 return true;
970 }
971
972 /* Ask the current architecture what it knows about this core file.
973 That will be used, in turn, to pick a better architecture. This
974 wrapper could be avoided if targets got a chance to specialize
975 core_target. */
976
977 const struct target_desc *
978 core_target::read_description ()
979 {
980 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
981 {
982 const struct target_desc *result;
983
984 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
985 if (result != NULL)
986 return result;
987 }
988
989 return this->beneath ()->read_description ();
990 }
991
992 const char *
993 core_target::pid_to_str (ptid_t ptid)
994 {
995 static char buf[64];
996 struct inferior *inf;
997 int pid;
998
999 /* The preferred way is to have a gdbarch/OS specific
1000 implementation. */
1001 if (m_core_gdbarch != nullptr
1002 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1003 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1004
1005 /* Otherwise, if we don't have one, we'll just fallback to
1006 "process", with normal_pid_to_str. */
1007
1008 /* Try the LWPID field first. */
1009 pid = ptid.lwp ();
1010 if (pid != 0)
1011 return normal_pid_to_str (ptid_t (pid));
1012
1013 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1014 only if it isn't a fake PID. */
1015 inf = find_inferior_ptid (ptid);
1016 if (inf != NULL && !inf->fake_pid_p)
1017 return normal_pid_to_str (ptid);
1018
1019 /* No luck. We simply don't have a valid PID to print. */
1020 xsnprintf (buf, sizeof buf, "<main task>");
1021 return buf;
1022 }
1023
1024 const char *
1025 core_target::thread_name (struct thread_info *thr)
1026 {
1027 if (m_core_gdbarch != nullptr
1028 && gdbarch_core_thread_name_p (m_core_gdbarch))
1029 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1030 return NULL;
1031 }
1032
1033 bool
1034 core_target::has_memory ()
1035 {
1036 return (core_bfd != NULL);
1037 }
1038
1039 bool
1040 core_target::has_stack ()
1041 {
1042 return (core_bfd != NULL);
1043 }
1044
1045 bool
1046 core_target::has_registers ()
1047 {
1048 return (core_bfd != NULL);
1049 }
1050
1051 /* Implement the to_info_proc method. */
1052
1053 bool
1054 core_target::info_proc (const char *args, enum info_proc_what request)
1055 {
1056 struct gdbarch *gdbarch = get_current_arch ();
1057
1058 /* Since this is the core file target, call the 'core_info_proc'
1059 method on gdbarch, not 'info_proc'. */
1060 if (gdbarch_core_info_proc_p (gdbarch))
1061 gdbarch_core_info_proc (gdbarch, args, request);
1062
1063 return true;
1064 }
1065
1066 void
1067 _initialize_corelow (void)
1068 {
1069 add_target (core_target_info, core_target_open, filename_completer);
1070 }
This page took 0.075093 seconds and 5 git commands to generate.