Rewrite TRY/CATCH
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/readline.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "common/filestuff.h"
46
47 #ifndef O_LARGEFILE
48 #define O_LARGEFILE 0
49 #endif
50
51 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
52 bfd *abfd);
53
54 /* The core file target. */
55
56 static const target_info core_target_info = {
57 "core",
58 N_("Local core dump file"),
59 N_("Use a core file as a target. Specify the filename of the core file.")
60 };
61
62 class core_target final : public process_stratum_target
63 {
64 public:
65 core_target ();
66 ~core_target () override;
67
68 const target_info &info () const override
69 { return core_target_info; }
70
71 void close () override;
72 void detach (inferior *, int) override;
73 void fetch_registers (struct regcache *, int) override;
74
75 enum target_xfer_status xfer_partial (enum target_object object,
76 const char *annex,
77 gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, ULONGEST len,
80 ULONGEST *xfered_len) override;
81 void files_info () override;
82
83 bool thread_alive (ptid_t ptid) override;
84 const struct target_desc *read_description () override;
85
86 std::string pid_to_str (ptid_t) override;
87
88 const char *thread_name (struct thread_info *) override;
89
90 bool has_all_memory () override { return false; }
91 bool has_memory () override;
92 bool has_stack () override;
93 bool has_registers () override;
94 bool has_execution (ptid_t) override { return false; }
95
96 bool info_proc (const char *, enum info_proc_what) override;
97
98 /* A few helpers. */
99
100 /* Getter, see variable definition. */
101 struct gdbarch *core_gdbarch ()
102 {
103 return m_core_gdbarch;
104 }
105
106 /* See definition. */
107 void get_core_register_section (struct regcache *regcache,
108 const struct regset *regset,
109 const char *name,
110 int section_min_size,
111 int which,
112 const char *human_name,
113 bool required);
114
115 private: /* per-core data */
116
117 /* The core's section table. Note that these target sections are
118 *not* mapped in the current address spaces' set of target
119 sections --- those should come only from pure executable or
120 shared library bfds. The core bfd sections are an implementation
121 detail of the core target, just like ptrace is for unix child
122 targets. */
123 target_section_table m_core_section_table {};
124
125 /* The core_fns for a core file handler that is prepared to read the
126 core file currently open on core_bfd. */
127 core_fns *m_core_vec = NULL;
128
129 /* FIXME: kettenis/20031023: Eventually this field should
130 disappear. */
131 struct gdbarch *m_core_gdbarch = NULL;
132 };
133
134 core_target::core_target ()
135 {
136 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
137
138 /* Find a suitable core file handler to munch on core_bfd */
139 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
140
141 /* Find the data section */
142 if (build_section_table (core_bfd,
143 &m_core_section_table.sections,
144 &m_core_section_table.sections_end))
145 error (_("\"%s\": Can't find sections: %s"),
146 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
147 }
148
149 core_target::~core_target ()
150 {
151 xfree (m_core_section_table.sections);
152 }
153
154 /* List of all available core_fns. On gdb startup, each core file
155 register reader calls deprecated_add_core_fns() to register
156 information on each core format it is prepared to read. */
157
158 static struct core_fns *core_file_fns = NULL;
159
160 static int gdb_check_format (bfd *);
161
162 static void add_to_thread_list (bfd *, asection *, void *);
163
164 /* An arbitrary identifier for the core inferior. */
165 #define CORELOW_PID 1
166
167 /* Link a new core_fns into the global core_file_fns list. Called on
168 gdb startup by the _initialize routine in each core file register
169 reader, to register information about each format the reader is
170 prepared to handle. */
171
172 void
173 deprecated_add_core_fns (struct core_fns *cf)
174 {
175 cf->next = core_file_fns;
176 core_file_fns = cf;
177 }
178
179 /* The default function that core file handlers can use to examine a
180 core file BFD and decide whether or not to accept the job of
181 reading the core file. */
182
183 int
184 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
185 {
186 int result;
187
188 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
189 return (result);
190 }
191
192 /* Walk through the list of core functions to find a set that can
193 handle the core file open on ABFD. Returns pointer to set that is
194 selected. */
195
196 static struct core_fns *
197 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
198 {
199 struct core_fns *cf;
200 struct core_fns *yummy = NULL;
201 int matches = 0;
202
203 /* Don't sniff if we have support for register sets in
204 CORE_GDBARCH. */
205 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
206 return NULL;
207
208 for (cf = core_file_fns; cf != NULL; cf = cf->next)
209 {
210 if (cf->core_sniffer (cf, abfd))
211 {
212 yummy = cf;
213 matches++;
214 }
215 }
216 if (matches > 1)
217 {
218 warning (_("\"%s\": ambiguous core format, %d handlers match"),
219 bfd_get_filename (abfd), matches);
220 }
221 else if (matches == 0)
222 error (_("\"%s\": no core file handler recognizes format"),
223 bfd_get_filename (abfd));
224
225 return (yummy);
226 }
227
228 /* The default is to reject every core file format we see. Either
229 BFD has to recognize it, or we have to provide a function in the
230 core file handler that recognizes it. */
231
232 int
233 default_check_format (bfd *abfd)
234 {
235 return (0);
236 }
237
238 /* Attempt to recognize core file formats that BFD rejects. */
239
240 static int
241 gdb_check_format (bfd *abfd)
242 {
243 struct core_fns *cf;
244
245 for (cf = core_file_fns; cf != NULL; cf = cf->next)
246 {
247 if (cf->check_format (abfd))
248 {
249 return (1);
250 }
251 }
252 return (0);
253 }
254
255 /* Close the core target. */
256
257 void
258 core_target::close ()
259 {
260 if (core_bfd)
261 {
262 inferior_ptid = null_ptid; /* Avoid confusion from thread
263 stuff. */
264 exit_inferior_silent (current_inferior ());
265
266 /* Clear out solib state while the bfd is still open. See
267 comments in clear_solib in solib.c. */
268 clear_solib ();
269
270 current_program_space->cbfd.reset (nullptr);
271 }
272
273 /* Core targets are heap-allocated (see core_target_open), so here
274 we delete ourselves. */
275 delete this;
276 }
277
278 /* Look for sections whose names start with `.reg/' so that we can
279 extract the list of threads in a core file. */
280
281 static void
282 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
283 {
284 ptid_t ptid;
285 int core_tid;
286 int pid, lwpid;
287 asection *reg_sect = (asection *) reg_sect_arg;
288 int fake_pid_p = 0;
289 struct inferior *inf;
290
291 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
292 return;
293
294 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
295
296 pid = bfd_core_file_pid (core_bfd);
297 if (pid == 0)
298 {
299 fake_pid_p = 1;
300 pid = CORELOW_PID;
301 }
302
303 lwpid = core_tid;
304
305 inf = current_inferior ();
306 if (inf->pid == 0)
307 {
308 inferior_appeared (inf, pid);
309 inf->fake_pid_p = fake_pid_p;
310 }
311
312 ptid = ptid_t (pid, lwpid, 0);
313
314 add_thread (ptid);
315
316 /* Warning, Will Robinson, looking at BFD private data! */
317
318 if (reg_sect != NULL
319 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
320 inferior_ptid = ptid; /* Yes, make it current. */
321 }
322
323 /* Issue a message saying we have no core to debug, if FROM_TTY. */
324
325 static void
326 maybe_say_no_core_file_now (int from_tty)
327 {
328 if (from_tty)
329 printf_filtered (_("No core file now.\n"));
330 }
331
332 /* Backward compatability with old way of specifying core files. */
333
334 void
335 core_file_command (const char *filename, int from_tty)
336 {
337 dont_repeat (); /* Either way, seems bogus. */
338
339 if (filename == NULL)
340 {
341 if (core_bfd != NULL)
342 {
343 target_detach (current_inferior (), from_tty);
344 gdb_assert (core_bfd == NULL);
345 }
346 else
347 maybe_say_no_core_file_now (from_tty);
348 }
349 else
350 core_target_open (filename, from_tty);
351 }
352
353 /* See gdbcore.h. */
354
355 void
356 core_target_open (const char *arg, int from_tty)
357 {
358 const char *p;
359 int siggy;
360 int scratch_chan;
361 int flags;
362
363 target_preopen (from_tty);
364 if (!arg)
365 {
366 if (core_bfd)
367 error (_("No core file specified. (Use `detach' "
368 "to stop debugging a core file.)"));
369 else
370 error (_("No core file specified."));
371 }
372
373 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
374 if (!IS_ABSOLUTE_PATH (filename.get ()))
375 filename.reset (concat (current_directory, "/",
376 filename.get (), (char *) NULL));
377
378 flags = O_BINARY | O_LARGEFILE;
379 if (write_files)
380 flags |= O_RDWR;
381 else
382 flags |= O_RDONLY;
383 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
384 if (scratch_chan < 0)
385 perror_with_name (filename.get ());
386
387 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
388 write_files ? FOPEN_RUB : FOPEN_RB,
389 scratch_chan));
390 if (temp_bfd == NULL)
391 perror_with_name (filename.get ());
392
393 if (!bfd_check_format (temp_bfd.get (), bfd_core)
394 && !gdb_check_format (temp_bfd.get ()))
395 {
396 /* Do it after the err msg */
397 /* FIXME: should be checking for errors from bfd_close (for one
398 thing, on error it does not free all the storage associated
399 with the bfd). */
400 error (_("\"%s\" is not a core dump: %s"),
401 filename.get (), bfd_errmsg (bfd_get_error ()));
402 }
403
404 current_program_space->cbfd = std::move (temp_bfd);
405
406 core_target *target = new core_target ();
407
408 /* Own the target until it is successfully pushed. */
409 target_ops_up target_holder (target);
410
411 validate_files ();
412
413 /* If we have no exec file, try to set the architecture from the
414 core file. We don't do this unconditionally since an exec file
415 typically contains more information that helps us determine the
416 architecture than a core file. */
417 if (!exec_bfd)
418 set_gdbarch_from_file (core_bfd);
419
420 push_target (std::move (target_holder));
421
422 inferior_ptid = null_ptid;
423
424 /* Need to flush the register cache (and the frame cache) from a
425 previous debug session. If inferior_ptid ends up the same as the
426 last debug session --- e.g., b foo; run; gcore core1; step; gcore
427 core2; core core1; core core2 --- then there's potential for
428 get_current_regcache to return the cached regcache of the
429 previous session, and the frame cache being stale. */
430 registers_changed ();
431
432 /* Build up thread list from BFD sections, and possibly set the
433 current thread to the .reg/NN section matching the .reg
434 section. */
435 bfd_map_over_sections (core_bfd, add_to_thread_list,
436 bfd_get_section_by_name (core_bfd, ".reg"));
437
438 if (inferior_ptid == null_ptid)
439 {
440 /* Either we found no .reg/NN section, and hence we have a
441 non-threaded core (single-threaded, from gdb's perspective),
442 or for some reason add_to_thread_list couldn't determine
443 which was the "main" thread. The latter case shouldn't
444 usually happen, but we're dealing with input here, which can
445 always be broken in different ways. */
446 thread_info *thread = first_thread_of_inferior (current_inferior ());
447
448 if (thread == NULL)
449 {
450 inferior_appeared (current_inferior (), CORELOW_PID);
451 inferior_ptid = ptid_t (CORELOW_PID);
452 add_thread_silent (inferior_ptid);
453 }
454 else
455 switch_to_thread (thread);
456 }
457
458 post_create_inferior (target, from_tty);
459
460 /* Now go through the target stack looking for threads since there
461 may be a thread_stratum target loaded on top of target core by
462 now. The layer above should claim threads found in the BFD
463 sections. */
464 try
465 {
466 target_update_thread_list ();
467 }
468
469 catch (const gdb_exception_RETURN_MASK_ERROR &except)
470 {
471 exception_print (gdb_stderr, except);
472 }
473
474 p = bfd_core_file_failing_command (core_bfd);
475 if (p)
476 printf_filtered (_("Core was generated by `%s'.\n"), p);
477
478 /* Clearing any previous state of convenience variables. */
479 clear_exit_convenience_vars ();
480
481 siggy = bfd_core_file_failing_signal (core_bfd);
482 if (siggy > 0)
483 {
484 gdbarch *core_gdbarch = target->core_gdbarch ();
485
486 /* If we don't have a CORE_GDBARCH to work with, assume a native
487 core (map gdb_signal from host signals). If we do have
488 CORE_GDBARCH to work with, but no gdb_signal_from_target
489 implementation for that gdbarch, as a fallback measure,
490 assume the host signal mapping. It'll be correct for native
491 cores, but most likely incorrect for cross-cores. */
492 enum gdb_signal sig = (core_gdbarch != NULL
493 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
494 ? gdbarch_gdb_signal_from_target (core_gdbarch,
495 siggy)
496 : gdb_signal_from_host (siggy));
497
498 printf_filtered (_("Program terminated with signal %s, %s.\n"),
499 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
500
501 /* Set the value of the internal variable $_exitsignal,
502 which holds the signal uncaught by the inferior. */
503 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
504 siggy);
505 }
506
507 /* Fetch all registers from core file. */
508 target_fetch_registers (get_current_regcache (), -1);
509
510 /* Now, set up the frame cache, and print the top of stack. */
511 reinit_frame_cache ();
512 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
513
514 /* Current thread should be NUM 1 but the user does not know that.
515 If a program is single threaded gdb in general does not mention
516 anything about threads. That is why the test is >= 2. */
517 if (thread_count () >= 2)
518 {
519 try
520 {
521 thread_command (NULL, from_tty);
522 }
523 catch (const gdb_exception_RETURN_MASK_ERROR &except)
524 {
525 exception_print (gdb_stderr, except);
526 }
527 }
528 }
529
530 void
531 core_target::detach (inferior *inf, int from_tty)
532 {
533 /* Note that 'this' is dangling after this call. unpush_target
534 closes the target, and our close implementation deletes
535 'this'. */
536 unpush_target (this);
537
538 reinit_frame_cache ();
539 maybe_say_no_core_file_now (from_tty);
540 }
541
542 /* Try to retrieve registers from a section in core_bfd, and supply
543 them to m_core_vec->core_read_registers, as the register set
544 numbered WHICH.
545
546 If ptid's lwp member is zero, do the single-threaded
547 thing: look for a section named NAME. If ptid's lwp
548 member is non-zero, do the multi-threaded thing: look for a section
549 named "NAME/LWP", where LWP is the shortest ASCII decimal
550 representation of ptid's lwp member.
551
552 HUMAN_NAME is a human-readable name for the kind of registers the
553 NAME section contains, for use in error messages.
554
555 If REQUIRED is true, print an error if the core file doesn't have a
556 section by the appropriate name. Otherwise, just do nothing. */
557
558 void
559 core_target::get_core_register_section (struct regcache *regcache,
560 const struct regset *regset,
561 const char *name,
562 int section_min_size,
563 int which,
564 const char *human_name,
565 bool required)
566 {
567 struct bfd_section *section;
568 bfd_size_type size;
569 char *contents;
570 bool variable_size_section = (regset != NULL
571 && regset->flags & REGSET_VARIABLE_SIZE);
572
573 thread_section_name section_name (name, regcache->ptid ());
574
575 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
576 if (! section)
577 {
578 if (required)
579 warning (_("Couldn't find %s registers in core file."),
580 human_name);
581 return;
582 }
583
584 size = bfd_section_size (core_bfd, section);
585 if (size < section_min_size)
586 {
587 warning (_("Section `%s' in core file too small."),
588 section_name.c_str ());
589 return;
590 }
591 if (size != section_min_size && !variable_size_section)
592 {
593 warning (_("Unexpected size of section `%s' in core file."),
594 section_name.c_str ());
595 }
596
597 contents = (char *) alloca (size);
598 if (! bfd_get_section_contents (core_bfd, section, contents,
599 (file_ptr) 0, size))
600 {
601 warning (_("Couldn't read %s registers from `%s' section in core file."),
602 human_name, section_name.c_str ());
603 return;
604 }
605
606 if (regset != NULL)
607 {
608 regset->supply_regset (regset, regcache, -1, contents, size);
609 return;
610 }
611
612 gdb_assert (m_core_vec != nullptr);
613 m_core_vec->core_read_registers (regcache, contents, size, which,
614 ((CORE_ADDR)
615 bfd_section_vma (core_bfd, section)));
616 }
617
618 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
619 struct get_core_registers_cb_data
620 {
621 core_target *target;
622 struct regcache *regcache;
623 };
624
625 /* Callback for get_core_registers that handles a single core file
626 register note section. */
627
628 static void
629 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
630 const struct regset *regset,
631 const char *human_name, void *cb_data)
632 {
633 auto *data = (get_core_registers_cb_data *) cb_data;
634 bool required = false;
635 bool variable_size_section = (regset != NULL
636 && regset->flags & REGSET_VARIABLE_SIZE);
637
638 if (!variable_size_section)
639 gdb_assert (supply_size == collect_size);
640
641 if (strcmp (sect_name, ".reg") == 0)
642 {
643 required = true;
644 if (human_name == NULL)
645 human_name = "general-purpose";
646 }
647 else if (strcmp (sect_name, ".reg2") == 0)
648 {
649 if (human_name == NULL)
650 human_name = "floating-point";
651 }
652
653 /* The 'which' parameter is only used when no regset is provided.
654 Thus we just set it to -1. */
655 data->target->get_core_register_section (data->regcache, regset, sect_name,
656 supply_size, -1, human_name,
657 required);
658 }
659
660 /* Get the registers out of a core file. This is the machine-
661 independent part. Fetch_core_registers is the machine-dependent
662 part, typically implemented in the xm-file for each
663 architecture. */
664
665 /* We just get all the registers, so we don't use regno. */
666
667 void
668 core_target::fetch_registers (struct regcache *regcache, int regno)
669 {
670 int i;
671 struct gdbarch *gdbarch;
672
673 if (!(m_core_gdbarch != nullptr
674 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
675 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
676 {
677 fprintf_filtered (gdb_stderr,
678 "Can't fetch registers from this type of core file\n");
679 return;
680 }
681
682 gdbarch = regcache->arch ();
683 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
684 {
685 get_core_registers_cb_data data = { this, regcache };
686 gdbarch_iterate_over_regset_sections (gdbarch,
687 get_core_registers_cb,
688 (void *) &data, NULL);
689 }
690 else
691 {
692 get_core_register_section (regcache, NULL,
693 ".reg", 0, 0, "general-purpose", 1);
694 get_core_register_section (regcache, NULL,
695 ".reg2", 0, 2, "floating-point", 0);
696 }
697
698 /* Mark all registers not found in the core as unavailable. */
699 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
700 if (regcache->get_register_status (i) == REG_UNKNOWN)
701 regcache->raw_supply (i, NULL);
702 }
703
704 void
705 core_target::files_info ()
706 {
707 print_section_info (&m_core_section_table, core_bfd);
708 }
709 \f
710 struct spuid_list
711 {
712 gdb_byte *buf;
713 ULONGEST offset;
714 LONGEST len;
715 ULONGEST pos;
716 ULONGEST written;
717 };
718
719 static void
720 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
721 {
722 struct spuid_list *list = (struct spuid_list *) list_p;
723 enum bfd_endian byte_order
724 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
725 int fd, pos = 0;
726
727 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
728 if (pos == 0)
729 return;
730
731 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
732 {
733 store_unsigned_integer (list->buf + list->pos - list->offset,
734 4, byte_order, fd);
735 list->written += 4;
736 }
737 list->pos += 4;
738 }
739
740 enum target_xfer_status
741 core_target::xfer_partial (enum target_object object, const char *annex,
742 gdb_byte *readbuf, const gdb_byte *writebuf,
743 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
744 {
745 switch (object)
746 {
747 case TARGET_OBJECT_MEMORY:
748 return (section_table_xfer_memory_partial
749 (readbuf, writebuf,
750 offset, len, xfered_len,
751 m_core_section_table.sections,
752 m_core_section_table.sections_end,
753 NULL));
754
755 case TARGET_OBJECT_AUXV:
756 if (readbuf)
757 {
758 /* When the aux vector is stored in core file, BFD
759 represents this with a fake section called ".auxv". */
760
761 struct bfd_section *section;
762 bfd_size_type size;
763
764 section = bfd_get_section_by_name (core_bfd, ".auxv");
765 if (section == NULL)
766 return TARGET_XFER_E_IO;
767
768 size = bfd_section_size (core_bfd, section);
769 if (offset >= size)
770 return TARGET_XFER_EOF;
771 size -= offset;
772 if (size > len)
773 size = len;
774
775 if (size == 0)
776 return TARGET_XFER_EOF;
777 if (!bfd_get_section_contents (core_bfd, section, readbuf,
778 (file_ptr) offset, size))
779 {
780 warning (_("Couldn't read NT_AUXV note in core file."));
781 return TARGET_XFER_E_IO;
782 }
783
784 *xfered_len = (ULONGEST) size;
785 return TARGET_XFER_OK;
786 }
787 return TARGET_XFER_E_IO;
788
789 case TARGET_OBJECT_WCOOKIE:
790 if (readbuf)
791 {
792 /* When the StackGhost cookie is stored in core file, BFD
793 represents this with a fake section called
794 ".wcookie". */
795
796 struct bfd_section *section;
797 bfd_size_type size;
798
799 section = bfd_get_section_by_name (core_bfd, ".wcookie");
800 if (section == NULL)
801 return TARGET_XFER_E_IO;
802
803 size = bfd_section_size (core_bfd, section);
804 if (offset >= size)
805 return TARGET_XFER_EOF;
806 size -= offset;
807 if (size > len)
808 size = len;
809
810 if (size == 0)
811 return TARGET_XFER_EOF;
812 if (!bfd_get_section_contents (core_bfd, section, readbuf,
813 (file_ptr) offset, size))
814 {
815 warning (_("Couldn't read StackGhost cookie in core file."));
816 return TARGET_XFER_E_IO;
817 }
818
819 *xfered_len = (ULONGEST) size;
820 return TARGET_XFER_OK;
821
822 }
823 return TARGET_XFER_E_IO;
824
825 case TARGET_OBJECT_LIBRARIES:
826 if (m_core_gdbarch != nullptr
827 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
828 {
829 if (writebuf)
830 return TARGET_XFER_E_IO;
831 else
832 {
833 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
834 readbuf,
835 offset, len);
836
837 if (*xfered_len == 0)
838 return TARGET_XFER_EOF;
839 else
840 return TARGET_XFER_OK;
841 }
842 }
843 /* FALL THROUGH */
844
845 case TARGET_OBJECT_LIBRARIES_AIX:
846 if (m_core_gdbarch != nullptr
847 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
848 {
849 if (writebuf)
850 return TARGET_XFER_E_IO;
851 else
852 {
853 *xfered_len
854 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
855 readbuf, offset,
856 len);
857
858 if (*xfered_len == 0)
859 return TARGET_XFER_EOF;
860 else
861 return TARGET_XFER_OK;
862 }
863 }
864 /* FALL THROUGH */
865
866 case TARGET_OBJECT_SPU:
867 if (readbuf && annex)
868 {
869 /* When the SPU contexts are stored in a core file, BFD
870 represents this with a fake section called
871 "SPU/<annex>". */
872
873 struct bfd_section *section;
874 bfd_size_type size;
875 char sectionstr[100];
876
877 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
878
879 section = bfd_get_section_by_name (core_bfd, sectionstr);
880 if (section == NULL)
881 return TARGET_XFER_E_IO;
882
883 size = bfd_section_size (core_bfd, section);
884 if (offset >= size)
885 return TARGET_XFER_EOF;
886 size -= offset;
887 if (size > len)
888 size = len;
889
890 if (size == 0)
891 return TARGET_XFER_EOF;
892 if (!bfd_get_section_contents (core_bfd, section, readbuf,
893 (file_ptr) offset, size))
894 {
895 warning (_("Couldn't read SPU section in core file."));
896 return TARGET_XFER_E_IO;
897 }
898
899 *xfered_len = (ULONGEST) size;
900 return TARGET_XFER_OK;
901 }
902 else if (readbuf)
903 {
904 /* NULL annex requests list of all present spuids. */
905 struct spuid_list list;
906
907 list.buf = readbuf;
908 list.offset = offset;
909 list.len = len;
910 list.pos = 0;
911 list.written = 0;
912 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
913
914 if (list.written == 0)
915 return TARGET_XFER_EOF;
916 else
917 {
918 *xfered_len = (ULONGEST) list.written;
919 return TARGET_XFER_OK;
920 }
921 }
922 return TARGET_XFER_E_IO;
923
924 case TARGET_OBJECT_SIGNAL_INFO:
925 if (readbuf)
926 {
927 if (m_core_gdbarch != nullptr
928 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
929 {
930 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
931 offset, len);
932
933 if (l >= 0)
934 {
935 *xfered_len = l;
936 if (l == 0)
937 return TARGET_XFER_EOF;
938 else
939 return TARGET_XFER_OK;
940 }
941 }
942 }
943 return TARGET_XFER_E_IO;
944
945 default:
946 return this->beneath ()->xfer_partial (object, annex, readbuf,
947 writebuf, offset, len,
948 xfered_len);
949 }
950 }
951
952 \f
953
954 /* Okay, let's be honest: threads gleaned from a core file aren't
955 exactly lively, are they? On the other hand, if we don't claim
956 that each & every one is alive, then we don't get any of them
957 to appear in an "info thread" command, which is quite a useful
958 behaviour.
959 */
960 bool
961 core_target::thread_alive (ptid_t ptid)
962 {
963 return true;
964 }
965
966 /* Ask the current architecture what it knows about this core file.
967 That will be used, in turn, to pick a better architecture. This
968 wrapper could be avoided if targets got a chance to specialize
969 core_target. */
970
971 const struct target_desc *
972 core_target::read_description ()
973 {
974 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
975 {
976 const struct target_desc *result;
977
978 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
979 if (result != NULL)
980 return result;
981 }
982
983 return this->beneath ()->read_description ();
984 }
985
986 std::string
987 core_target::pid_to_str (ptid_t ptid)
988 {
989 struct inferior *inf;
990 int pid;
991
992 /* The preferred way is to have a gdbarch/OS specific
993 implementation. */
994 if (m_core_gdbarch != nullptr
995 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
996 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
997
998 /* Otherwise, if we don't have one, we'll just fallback to
999 "process", with normal_pid_to_str. */
1000
1001 /* Try the LWPID field first. */
1002 pid = ptid.lwp ();
1003 if (pid != 0)
1004 return normal_pid_to_str (ptid_t (pid));
1005
1006 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1007 only if it isn't a fake PID. */
1008 inf = find_inferior_ptid (ptid);
1009 if (inf != NULL && !inf->fake_pid_p)
1010 return normal_pid_to_str (ptid);
1011
1012 /* No luck. We simply don't have a valid PID to print. */
1013 return "<main task>";
1014 }
1015
1016 const char *
1017 core_target::thread_name (struct thread_info *thr)
1018 {
1019 if (m_core_gdbarch != nullptr
1020 && gdbarch_core_thread_name_p (m_core_gdbarch))
1021 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1022 return NULL;
1023 }
1024
1025 bool
1026 core_target::has_memory ()
1027 {
1028 return (core_bfd != NULL);
1029 }
1030
1031 bool
1032 core_target::has_stack ()
1033 {
1034 return (core_bfd != NULL);
1035 }
1036
1037 bool
1038 core_target::has_registers ()
1039 {
1040 return (core_bfd != NULL);
1041 }
1042
1043 /* Implement the to_info_proc method. */
1044
1045 bool
1046 core_target::info_proc (const char *args, enum info_proc_what request)
1047 {
1048 struct gdbarch *gdbarch = get_current_arch ();
1049
1050 /* Since this is the core file target, call the 'core_info_proc'
1051 method on gdbarch, not 'info_proc'. */
1052 if (gdbarch_core_info_proc_p (gdbarch))
1053 gdbarch_core_info_proc (gdbarch, args, request);
1054
1055 return true;
1056 }
1057
1058 void
1059 _initialize_corelow (void)
1060 {
1061 add_target (core_target_info, core_target_open, filename_completer);
1062 }
This page took 0.0879 seconds and 5 git commands to generate.