Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 /* Standard C includes. */
23 #include <fcntl.h>
24 #include <signal.h>
25
26 /* Local non-gdb includes. */
27 #include "arch-utils.h"
28 #include "bfd.h"
29 #include "command.h"
30 #include "common/filestuff.h"
31 #include "completer.h"
32 #include "exec.h"
33 #include "filenames.h"
34 #include "frame.h"
35 #include "gdb_bfd.h"
36 #include "gdbcore.h"
37 #include "gdbthread.h"
38 #include "inferior.h"
39 #include "infrun.h"
40 #include "objfiles.h"
41 #include "process-stratum-target.h"
42 #include "progspace.h"
43 #include "readline/readline.h"
44 #include "regcache.h"
45 #include "regset.h"
46 #include "solib.h"
47 #include "symfile.h"
48 #include "symtab.h"
49 #include "target.h"
50
51 #ifndef O_LARGEFILE
52 #define O_LARGEFILE 0
53 #endif
54
55 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
56 bfd *abfd);
57
58 /* The core file target. */
59
60 static const target_info core_target_info = {
61 "core",
62 N_("Local core dump file"),
63 N_("Use a core file as a target. Specify the filename of the core file.")
64 };
65
66 class core_target final : public process_stratum_target
67 {
68 public:
69 core_target ();
70 ~core_target () override;
71
72 const target_info &info () const override
73 { return core_target_info; }
74
75 void close () override;
76 void detach (inferior *, int) override;
77 void fetch_registers (struct regcache *, int) override;
78
79 enum target_xfer_status xfer_partial (enum target_object object,
80 const char *annex,
81 gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, ULONGEST len,
84 ULONGEST *xfered_len) override;
85 void files_info () override;
86
87 bool thread_alive (ptid_t ptid) override;
88 const struct target_desc *read_description () override;
89
90 std::string pid_to_str (ptid_t) override;
91
92 const char *thread_name (struct thread_info *) override;
93
94 bool has_all_memory () override { return false; }
95 bool has_memory () override;
96 bool has_stack () override;
97 bool has_registers () override;
98 bool has_execution (ptid_t) override { return false; }
99
100 bool info_proc (const char *, enum info_proc_what) override;
101
102 /* A few helpers. */
103
104 /* Getter, see variable definition. */
105 struct gdbarch *core_gdbarch ()
106 {
107 return m_core_gdbarch;
108 }
109
110 /* See definition. */
111 void get_core_register_section (struct regcache *regcache,
112 const struct regset *regset,
113 const char *name,
114 int section_min_size,
115 int which,
116 const char *human_name,
117 bool required);
118
119 private: /* per-core data */
120
121 /* The core's section table. Note that these target sections are
122 *not* mapped in the current address spaces' set of target
123 sections --- those should come only from pure executable or
124 shared library bfds. The core bfd sections are an implementation
125 detail of the core target, just like ptrace is for unix child
126 targets. */
127 target_section_table m_core_section_table {};
128
129 /* The core_fns for a core file handler that is prepared to read the
130 core file currently open on core_bfd. */
131 core_fns *m_core_vec = NULL;
132
133 /* FIXME: kettenis/20031023: Eventually this field should
134 disappear. */
135 struct gdbarch *m_core_gdbarch = NULL;
136 };
137
138 core_target::core_target ()
139 {
140 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
141
142 /* Find a suitable core file handler to munch on core_bfd */
143 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
144
145 /* Find the data section */
146 if (build_section_table (core_bfd,
147 &m_core_section_table.sections,
148 &m_core_section_table.sections_end))
149 error (_("\"%s\": Can't find sections: %s"),
150 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
151 }
152
153 core_target::~core_target ()
154 {
155 xfree (m_core_section_table.sections);
156 }
157
158 /* List of all available core_fns. On gdb startup, each core file
159 register reader calls deprecated_add_core_fns() to register
160 information on each core format it is prepared to read. */
161
162 static struct core_fns *core_file_fns = NULL;
163
164 static int gdb_check_format (bfd *);
165
166 static void add_to_thread_list (bfd *, asection *, void *);
167
168 /* An arbitrary identifier for the core inferior. */
169 #define CORELOW_PID 1
170
171 /* Link a new core_fns into the global core_file_fns list. Called on
172 gdb startup by the _initialize routine in each core file register
173 reader, to register information about each format the reader is
174 prepared to handle. */
175
176 void
177 deprecated_add_core_fns (struct core_fns *cf)
178 {
179 cf->next = core_file_fns;
180 core_file_fns = cf;
181 }
182
183 /* The default function that core file handlers can use to examine a
184 core file BFD and decide whether or not to accept the job of
185 reading the core file. */
186
187 int
188 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
189 {
190 int result;
191
192 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
193 return (result);
194 }
195
196 /* Walk through the list of core functions to find a set that can
197 handle the core file open on ABFD. Returns pointer to set that is
198 selected. */
199
200 static struct core_fns *
201 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
202 {
203 struct core_fns *cf;
204 struct core_fns *yummy = NULL;
205 int matches = 0;
206
207 /* Don't sniff if we have support for register sets in
208 CORE_GDBARCH. */
209 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
210 return NULL;
211
212 for (cf = core_file_fns; cf != NULL; cf = cf->next)
213 {
214 if (cf->core_sniffer (cf, abfd))
215 {
216 yummy = cf;
217 matches++;
218 }
219 }
220 if (matches > 1)
221 {
222 warning (_("\"%s\": ambiguous core format, %d handlers match"),
223 bfd_get_filename (abfd), matches);
224 }
225 else if (matches == 0)
226 error (_("\"%s\": no core file handler recognizes format"),
227 bfd_get_filename (abfd));
228
229 return (yummy);
230 }
231
232 /* The default is to reject every core file format we see. Either
233 BFD has to recognize it, or we have to provide a function in the
234 core file handler that recognizes it. */
235
236 int
237 default_check_format (bfd *abfd)
238 {
239 return (0);
240 }
241
242 /* Attempt to recognize core file formats that BFD rejects. */
243
244 static int
245 gdb_check_format (bfd *abfd)
246 {
247 struct core_fns *cf;
248
249 for (cf = core_file_fns; cf != NULL; cf = cf->next)
250 {
251 if (cf->check_format (abfd))
252 {
253 return (1);
254 }
255 }
256 return (0);
257 }
258
259 /* Close the core target. */
260
261 void
262 core_target::close ()
263 {
264 if (core_bfd)
265 {
266 inferior_ptid = null_ptid; /* Avoid confusion from thread
267 stuff. */
268 exit_inferior_silent (current_inferior ());
269
270 /* Clear out solib state while the bfd is still open. See
271 comments in clear_solib in solib.c. */
272 clear_solib ();
273
274 current_program_space->cbfd.reset (nullptr);
275 }
276
277 /* Core targets are heap-allocated (see core_target_open), so here
278 we delete ourselves. */
279 delete this;
280 }
281
282 /* Look for sections whose names start with `.reg/' so that we can
283 extract the list of threads in a core file. */
284
285 static void
286 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
287 {
288 ptid_t ptid;
289 int core_tid;
290 int pid, lwpid;
291 asection *reg_sect = (asection *) reg_sect_arg;
292 int fake_pid_p = 0;
293 struct inferior *inf;
294
295 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
296 return;
297
298 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
299
300 pid = bfd_core_file_pid (core_bfd);
301 if (pid == 0)
302 {
303 fake_pid_p = 1;
304 pid = CORELOW_PID;
305 }
306
307 lwpid = core_tid;
308
309 inf = current_inferior ();
310 if (inf->pid == 0)
311 {
312 inferior_appeared (inf, pid);
313 inf->fake_pid_p = fake_pid_p;
314 }
315
316 ptid = ptid_t (pid, lwpid, 0);
317
318 add_thread (ptid);
319
320 /* Warning, Will Robinson, looking at BFD private data! */
321
322 if (reg_sect != NULL
323 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
324 inferior_ptid = ptid; /* Yes, make it current. */
325 }
326
327 /* Issue a message saying we have no core to debug, if FROM_TTY. */
328
329 static void
330 maybe_say_no_core_file_now (int from_tty)
331 {
332 if (from_tty)
333 printf_filtered (_("No core file now.\n"));
334 }
335
336 /* Backward compatability with old way of specifying core files. */
337
338 void
339 core_file_command (const char *filename, int from_tty)
340 {
341 dont_repeat (); /* Either way, seems bogus. */
342
343 if (filename == NULL)
344 {
345 if (core_bfd != NULL)
346 {
347 target_detach (current_inferior (), from_tty);
348 gdb_assert (core_bfd == NULL);
349 }
350 else
351 maybe_say_no_core_file_now (from_tty);
352 }
353 else
354 core_target_open (filename, from_tty);
355 }
356
357 /* See gdbcore.h. */
358
359 void
360 core_target_open (const char *arg, int from_tty)
361 {
362 const char *p;
363 int siggy;
364 int scratch_chan;
365 int flags;
366
367 target_preopen (from_tty);
368 if (!arg)
369 {
370 if (core_bfd)
371 error (_("No core file specified. (Use `detach' "
372 "to stop debugging a core file.)"));
373 else
374 error (_("No core file specified."));
375 }
376
377 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
378 if (!IS_ABSOLUTE_PATH (filename.get ()))
379 filename.reset (concat (current_directory, "/",
380 filename.get (), (char *) NULL));
381
382 flags = O_BINARY | O_LARGEFILE;
383 if (write_files)
384 flags |= O_RDWR;
385 else
386 flags |= O_RDONLY;
387 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
388 if (scratch_chan < 0)
389 perror_with_name (filename.get ());
390
391 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
392 write_files ? FOPEN_RUB : FOPEN_RB,
393 scratch_chan));
394 if (temp_bfd == NULL)
395 perror_with_name (filename.get ());
396
397 if (!bfd_check_format (temp_bfd.get (), bfd_core)
398 && !gdb_check_format (temp_bfd.get ()))
399 {
400 /* Do it after the err msg */
401 /* FIXME: should be checking for errors from bfd_close (for one
402 thing, on error it does not free all the storage associated
403 with the bfd). */
404 error (_("\"%s\" is not a core dump: %s"),
405 filename.get (), bfd_errmsg (bfd_get_error ()));
406 }
407
408 current_program_space->cbfd = std::move (temp_bfd);
409
410 core_target *target = new core_target ();
411
412 /* Own the target until it is successfully pushed. */
413 target_ops_up target_holder (target);
414
415 validate_files ();
416
417 /* If we have no exec file, try to set the architecture from the
418 core file. We don't do this unconditionally since an exec file
419 typically contains more information that helps us determine the
420 architecture than a core file. */
421 if (!exec_bfd)
422 set_gdbarch_from_file (core_bfd);
423
424 push_target (std::move (target_holder));
425
426 inferior_ptid = null_ptid;
427
428 /* Need to flush the register cache (and the frame cache) from a
429 previous debug session. If inferior_ptid ends up the same as the
430 last debug session --- e.g., b foo; run; gcore core1; step; gcore
431 core2; core core1; core core2 --- then there's potential for
432 get_current_regcache to return the cached regcache of the
433 previous session, and the frame cache being stale. */
434 registers_changed ();
435
436 /* Build up thread list from BFD sections, and possibly set the
437 current thread to the .reg/NN section matching the .reg
438 section. */
439 bfd_map_over_sections (core_bfd, add_to_thread_list,
440 bfd_get_section_by_name (core_bfd, ".reg"));
441
442 if (inferior_ptid == null_ptid)
443 {
444 /* Either we found no .reg/NN section, and hence we have a
445 non-threaded core (single-threaded, from gdb's perspective),
446 or for some reason add_to_thread_list couldn't determine
447 which was the "main" thread. The latter case shouldn't
448 usually happen, but we're dealing with input here, which can
449 always be broken in different ways. */
450 thread_info *thread = first_thread_of_inferior (current_inferior ());
451
452 if (thread == NULL)
453 {
454 inferior_appeared (current_inferior (), CORELOW_PID);
455 inferior_ptid = ptid_t (CORELOW_PID);
456 add_thread_silent (inferior_ptid);
457 }
458 else
459 switch_to_thread (thread);
460 }
461
462 post_create_inferior (target, from_tty);
463
464 /* Now go through the target stack looking for threads since there
465 may be a thread_stratum target loaded on top of target core by
466 now. The layer above should claim threads found in the BFD
467 sections. */
468 TRY
469 {
470 target_update_thread_list ();
471 }
472
473 CATCH (except, RETURN_MASK_ERROR)
474 {
475 exception_print (gdb_stderr, except);
476 }
477 END_CATCH
478
479 p = bfd_core_file_failing_command (core_bfd);
480 if (p)
481 printf_filtered (_("Core was generated by `%s'.\n"), p);
482
483 /* Clearing any previous state of convenience variables. */
484 clear_exit_convenience_vars ();
485
486 siggy = bfd_core_file_failing_signal (core_bfd);
487 if (siggy > 0)
488 {
489 gdbarch *core_gdbarch = target->core_gdbarch ();
490
491 /* If we don't have a CORE_GDBARCH to work with, assume a native
492 core (map gdb_signal from host signals). If we do have
493 CORE_GDBARCH to work with, but no gdb_signal_from_target
494 implementation for that gdbarch, as a fallback measure,
495 assume the host signal mapping. It'll be correct for native
496 cores, but most likely incorrect for cross-cores. */
497 enum gdb_signal sig = (core_gdbarch != NULL
498 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
499 ? gdbarch_gdb_signal_from_target (core_gdbarch,
500 siggy)
501 : gdb_signal_from_host (siggy));
502
503 printf_filtered (_("Program terminated with signal %s, %s.\n"),
504 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
505
506 /* Set the value of the internal variable $_exitsignal,
507 which holds the signal uncaught by the inferior. */
508 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
509 siggy);
510 }
511
512 /* Fetch all registers from core file. */
513 target_fetch_registers (get_current_regcache (), -1);
514
515 /* Now, set up the frame cache, and print the top of stack. */
516 reinit_frame_cache ();
517 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
518
519 /* Current thread should be NUM 1 but the user does not know that.
520 If a program is single threaded gdb in general does not mention
521 anything about threads. That is why the test is >= 2. */
522 if (thread_count () >= 2)
523 {
524 TRY
525 {
526 thread_command (NULL, from_tty);
527 }
528 CATCH (except, RETURN_MASK_ERROR)
529 {
530 exception_print (gdb_stderr, except);
531 }
532 END_CATCH
533 }
534 }
535
536 void
537 core_target::detach (inferior *inf, int from_tty)
538 {
539 /* Note that 'this' is dangling after this call. unpush_target
540 closes the target, and our close implementation deletes
541 'this'. */
542 unpush_target (this);
543
544 reinit_frame_cache ();
545 maybe_say_no_core_file_now (from_tty);
546 }
547
548 /* Try to retrieve registers from a section in core_bfd, and supply
549 them to m_core_vec->core_read_registers, as the register set
550 numbered WHICH.
551
552 If ptid's lwp member is zero, do the single-threaded
553 thing: look for a section named NAME. If ptid's lwp
554 member is non-zero, do the multi-threaded thing: look for a section
555 named "NAME/LWP", where LWP is the shortest ASCII decimal
556 representation of ptid's lwp member.
557
558 HUMAN_NAME is a human-readable name for the kind of registers the
559 NAME section contains, for use in error messages.
560
561 If REQUIRED is true, print an error if the core file doesn't have a
562 section by the appropriate name. Otherwise, just do nothing. */
563
564 void
565 core_target::get_core_register_section (struct regcache *regcache,
566 const struct regset *regset,
567 const char *name,
568 int section_min_size,
569 int which,
570 const char *human_name,
571 bool required)
572 {
573 struct bfd_section *section;
574 bfd_size_type size;
575 char *contents;
576 bool variable_size_section = (regset != NULL
577 && regset->flags & REGSET_VARIABLE_SIZE);
578
579 thread_section_name section_name (name, regcache->ptid ());
580
581 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
582 if (! section)
583 {
584 if (required)
585 warning (_("Couldn't find %s registers in core file."),
586 human_name);
587 return;
588 }
589
590 size = bfd_section_size (core_bfd, section);
591 if (size < section_min_size)
592 {
593 warning (_("Section `%s' in core file too small."),
594 section_name.c_str ());
595 return;
596 }
597 if (size != section_min_size && !variable_size_section)
598 {
599 warning (_("Unexpected size of section `%s' in core file."),
600 section_name.c_str ());
601 }
602
603 contents = (char *) alloca (size);
604 if (! bfd_get_section_contents (core_bfd, section, contents,
605 (file_ptr) 0, size))
606 {
607 warning (_("Couldn't read %s registers from `%s' section in core file."),
608 human_name, section_name.c_str ());
609 return;
610 }
611
612 if (regset != NULL)
613 {
614 regset->supply_regset (regset, regcache, -1, contents, size);
615 return;
616 }
617
618 gdb_assert (m_core_vec != nullptr);
619 m_core_vec->core_read_registers (regcache, contents, size, which,
620 ((CORE_ADDR)
621 bfd_section_vma (core_bfd, section)));
622 }
623
624 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
625 struct get_core_registers_cb_data
626 {
627 core_target *target;
628 struct regcache *regcache;
629 };
630
631 /* Callback for get_core_registers that handles a single core file
632 register note section. */
633
634 static void
635 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
636 const struct regset *regset,
637 const char *human_name, void *cb_data)
638 {
639 auto *data = (get_core_registers_cb_data *) cb_data;
640 bool required = false;
641 bool variable_size_section = (regset != NULL
642 && regset->flags & REGSET_VARIABLE_SIZE);
643
644 if (!variable_size_section)
645 gdb_assert (supply_size == collect_size);
646
647 if (strcmp (sect_name, ".reg") == 0)
648 {
649 required = true;
650 if (human_name == NULL)
651 human_name = "general-purpose";
652 }
653 else if (strcmp (sect_name, ".reg2") == 0)
654 {
655 if (human_name == NULL)
656 human_name = "floating-point";
657 }
658
659 /* The 'which' parameter is only used when no regset is provided.
660 Thus we just set it to -1. */
661 data->target->get_core_register_section (data->regcache, regset, sect_name,
662 supply_size, -1, human_name,
663 required);
664 }
665
666 /* Get the registers out of a core file. This is the machine-
667 independent part. Fetch_core_registers is the machine-dependent
668 part, typically implemented in the xm-file for each
669 architecture. */
670
671 /* We just get all the registers, so we don't use regno. */
672
673 void
674 core_target::fetch_registers (struct regcache *regcache, int regno)
675 {
676 int i;
677 struct gdbarch *gdbarch;
678
679 if (!(m_core_gdbarch != nullptr
680 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
681 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
682 {
683 fprintf_filtered (gdb_stderr,
684 "Can't fetch registers from this type of core file\n");
685 return;
686 }
687
688 gdbarch = regcache->arch ();
689 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
690 {
691 get_core_registers_cb_data data = { this, regcache };
692 gdbarch_iterate_over_regset_sections (gdbarch,
693 get_core_registers_cb,
694 (void *) &data, NULL);
695 }
696 else
697 {
698 get_core_register_section (regcache, NULL,
699 ".reg", 0, 0, "general-purpose", 1);
700 get_core_register_section (regcache, NULL,
701 ".reg2", 0, 2, "floating-point", 0);
702 }
703
704 /* Mark all registers not found in the core as unavailable. */
705 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
706 if (regcache->get_register_status (i) == REG_UNKNOWN)
707 regcache->raw_supply (i, NULL);
708 }
709
710 void
711 core_target::files_info ()
712 {
713 print_section_info (&m_core_section_table, core_bfd);
714 }
715 \f
716 struct spuid_list
717 {
718 gdb_byte *buf;
719 ULONGEST offset;
720 LONGEST len;
721 ULONGEST pos;
722 ULONGEST written;
723 };
724
725 static void
726 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
727 {
728 struct spuid_list *list = (struct spuid_list *) list_p;
729 enum bfd_endian byte_order
730 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
731 int fd, pos = 0;
732
733 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
734 if (pos == 0)
735 return;
736
737 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
738 {
739 store_unsigned_integer (list->buf + list->pos - list->offset,
740 4, byte_order, fd);
741 list->written += 4;
742 }
743 list->pos += 4;
744 }
745
746 enum target_xfer_status
747 core_target::xfer_partial (enum target_object object, const char *annex,
748 gdb_byte *readbuf, const gdb_byte *writebuf,
749 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
750 {
751 switch (object)
752 {
753 case TARGET_OBJECT_MEMORY:
754 return (section_table_xfer_memory_partial
755 (readbuf, writebuf,
756 offset, len, xfered_len,
757 m_core_section_table.sections,
758 m_core_section_table.sections_end,
759 NULL));
760
761 case TARGET_OBJECT_AUXV:
762 if (readbuf)
763 {
764 /* When the aux vector is stored in core file, BFD
765 represents this with a fake section called ".auxv". */
766
767 struct bfd_section *section;
768 bfd_size_type size;
769
770 section = bfd_get_section_by_name (core_bfd, ".auxv");
771 if (section == NULL)
772 return TARGET_XFER_E_IO;
773
774 size = bfd_section_size (core_bfd, section);
775 if (offset >= size)
776 return TARGET_XFER_EOF;
777 size -= offset;
778 if (size > len)
779 size = len;
780
781 if (size == 0)
782 return TARGET_XFER_EOF;
783 if (!bfd_get_section_contents (core_bfd, section, readbuf,
784 (file_ptr) offset, size))
785 {
786 warning (_("Couldn't read NT_AUXV note in core file."));
787 return TARGET_XFER_E_IO;
788 }
789
790 *xfered_len = (ULONGEST) size;
791 return TARGET_XFER_OK;
792 }
793 return TARGET_XFER_E_IO;
794
795 case TARGET_OBJECT_WCOOKIE:
796 if (readbuf)
797 {
798 /* When the StackGhost cookie is stored in core file, BFD
799 represents this with a fake section called
800 ".wcookie". */
801
802 struct bfd_section *section;
803 bfd_size_type size;
804
805 section = bfd_get_section_by_name (core_bfd, ".wcookie");
806 if (section == NULL)
807 return TARGET_XFER_E_IO;
808
809 size = bfd_section_size (core_bfd, section);
810 if (offset >= size)
811 return TARGET_XFER_EOF;
812 size -= offset;
813 if (size > len)
814 size = len;
815
816 if (size == 0)
817 return TARGET_XFER_EOF;
818 if (!bfd_get_section_contents (core_bfd, section, readbuf,
819 (file_ptr) offset, size))
820 {
821 warning (_("Couldn't read StackGhost cookie in core file."));
822 return TARGET_XFER_E_IO;
823 }
824
825 *xfered_len = (ULONGEST) size;
826 return TARGET_XFER_OK;
827
828 }
829 return TARGET_XFER_E_IO;
830
831 case TARGET_OBJECT_LIBRARIES:
832 if (m_core_gdbarch != nullptr
833 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
834 {
835 if (writebuf)
836 return TARGET_XFER_E_IO;
837 else
838 {
839 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
840 readbuf,
841 offset, len);
842
843 if (*xfered_len == 0)
844 return TARGET_XFER_EOF;
845 else
846 return TARGET_XFER_OK;
847 }
848 }
849 /* FALL THROUGH */
850
851 case TARGET_OBJECT_LIBRARIES_AIX:
852 if (m_core_gdbarch != nullptr
853 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
854 {
855 if (writebuf)
856 return TARGET_XFER_E_IO;
857 else
858 {
859 *xfered_len
860 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
861 readbuf, offset,
862 len);
863
864 if (*xfered_len == 0)
865 return TARGET_XFER_EOF;
866 else
867 return TARGET_XFER_OK;
868 }
869 }
870 /* FALL THROUGH */
871
872 case TARGET_OBJECT_SPU:
873 if (readbuf && annex)
874 {
875 /* When the SPU contexts are stored in a core file, BFD
876 represents this with a fake section called
877 "SPU/<annex>". */
878
879 struct bfd_section *section;
880 bfd_size_type size;
881 char sectionstr[100];
882
883 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
884
885 section = bfd_get_section_by_name (core_bfd, sectionstr);
886 if (section == NULL)
887 return TARGET_XFER_E_IO;
888
889 size = bfd_section_size (core_bfd, section);
890 if (offset >= size)
891 return TARGET_XFER_EOF;
892 size -= offset;
893 if (size > len)
894 size = len;
895
896 if (size == 0)
897 return TARGET_XFER_EOF;
898 if (!bfd_get_section_contents (core_bfd, section, readbuf,
899 (file_ptr) offset, size))
900 {
901 warning (_("Couldn't read SPU section in core file."));
902 return TARGET_XFER_E_IO;
903 }
904
905 *xfered_len = (ULONGEST) size;
906 return TARGET_XFER_OK;
907 }
908 else if (readbuf)
909 {
910 /* NULL annex requests list of all present spuids. */
911 struct spuid_list list;
912
913 list.buf = readbuf;
914 list.offset = offset;
915 list.len = len;
916 list.pos = 0;
917 list.written = 0;
918 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
919
920 if (list.written == 0)
921 return TARGET_XFER_EOF;
922 else
923 {
924 *xfered_len = (ULONGEST) list.written;
925 return TARGET_XFER_OK;
926 }
927 }
928 return TARGET_XFER_E_IO;
929
930 case TARGET_OBJECT_SIGNAL_INFO:
931 if (readbuf)
932 {
933 if (m_core_gdbarch != nullptr
934 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
935 {
936 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
937 offset, len);
938
939 if (l >= 0)
940 {
941 *xfered_len = l;
942 if (l == 0)
943 return TARGET_XFER_EOF;
944 else
945 return TARGET_XFER_OK;
946 }
947 }
948 }
949 return TARGET_XFER_E_IO;
950
951 default:
952 return this->beneath ()->xfer_partial (object, annex, readbuf,
953 writebuf, offset, len,
954 xfered_len);
955 }
956 }
957
958 \f
959
960 /* Okay, let's be honest: threads gleaned from a core file aren't
961 exactly lively, are they? On the other hand, if we don't claim
962 that each & every one is alive, then we don't get any of them
963 to appear in an "info thread" command, which is quite a useful
964 behaviour.
965 */
966 bool
967 core_target::thread_alive (ptid_t ptid)
968 {
969 return true;
970 }
971
972 /* Ask the current architecture what it knows about this core file.
973 That will be used, in turn, to pick a better architecture. This
974 wrapper could be avoided if targets got a chance to specialize
975 core_target. */
976
977 const struct target_desc *
978 core_target::read_description ()
979 {
980 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
981 {
982 const struct target_desc *result;
983
984 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
985 if (result != NULL)
986 return result;
987 }
988
989 return this->beneath ()->read_description ();
990 }
991
992 std::string
993 core_target::pid_to_str (ptid_t ptid)
994 {
995 struct inferior *inf;
996 int pid;
997
998 /* The preferred way is to have a gdbarch/OS specific
999 implementation. */
1000 if (m_core_gdbarch != nullptr
1001 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1002 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1003
1004 /* Otherwise, if we don't have one, we'll just fallback to
1005 "process", with normal_pid_to_str. */
1006
1007 /* Try the LWPID field first. */
1008 pid = ptid.lwp ();
1009 if (pid != 0)
1010 return normal_pid_to_str (ptid_t (pid));
1011
1012 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1013 only if it isn't a fake PID. */
1014 inf = find_inferior_ptid (ptid);
1015 if (inf != NULL && !inf->fake_pid_p)
1016 return normal_pid_to_str (ptid);
1017
1018 /* No luck. We simply don't have a valid PID to print. */
1019 return "<main task>";
1020 }
1021
1022 const char *
1023 core_target::thread_name (struct thread_info *thr)
1024 {
1025 if (m_core_gdbarch != nullptr
1026 && gdbarch_core_thread_name_p (m_core_gdbarch))
1027 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1028 return NULL;
1029 }
1030
1031 bool
1032 core_target::has_memory ()
1033 {
1034 return (core_bfd != NULL);
1035 }
1036
1037 bool
1038 core_target::has_stack ()
1039 {
1040 return (core_bfd != NULL);
1041 }
1042
1043 bool
1044 core_target::has_registers ()
1045 {
1046 return (core_bfd != NULL);
1047 }
1048
1049 /* Implement the to_info_proc method. */
1050
1051 bool
1052 core_target::info_proc (const char *args, enum info_proc_what request)
1053 {
1054 struct gdbarch *gdbarch = get_current_arch ();
1055
1056 /* Since this is the core file target, call the 'core_info_proc'
1057 method on gdbarch, not 'info_proc'. */
1058 if (gdbarch_core_info_proc_p (gdbarch))
1059 gdbarch_core_info_proc (gdbarch, args, request);
1060
1061 return true;
1062 }
1063
1064 void
1065 _initialize_corelow (void)
1066 {
1067 add_target (core_target_info, core_target_open, filename_completer);
1068 }
This page took 0.088833 seconds and 5 git commands to generate.