bfd_section_* macros
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/readline.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "gdbsupport/filestuff.h"
46
47 #ifndef O_LARGEFILE
48 #define O_LARGEFILE 0
49 #endif
50
51 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
52 bfd *abfd);
53
54 /* The core file target. */
55
56 static const target_info core_target_info = {
57 "core",
58 N_("Local core dump file"),
59 N_("Use a core file as a target.\n\
60 Specify the filename of the core file.")
61 };
62
63 class core_target final : public process_stratum_target
64 {
65 public:
66 core_target ();
67 ~core_target () override;
68
69 const target_info &info () const override
70 { return core_target_info; }
71
72 void close () override;
73 void detach (inferior *, int) override;
74 void fetch_registers (struct regcache *, int) override;
75
76 enum target_xfer_status xfer_partial (enum target_object object,
77 const char *annex,
78 gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, ULONGEST len,
81 ULONGEST *xfered_len) override;
82 void files_info () override;
83
84 bool thread_alive (ptid_t ptid) override;
85 const struct target_desc *read_description () override;
86
87 std::string pid_to_str (ptid_t) override;
88
89 const char *thread_name (struct thread_info *) override;
90
91 bool has_all_memory () override { return false; }
92 bool has_memory () override;
93 bool has_stack () override;
94 bool has_registers () override;
95 bool has_execution (ptid_t) override { return false; }
96
97 bool info_proc (const char *, enum info_proc_what) override;
98
99 /* A few helpers. */
100
101 /* Getter, see variable definition. */
102 struct gdbarch *core_gdbarch ()
103 {
104 return m_core_gdbarch;
105 }
106
107 /* See definition. */
108 void get_core_register_section (struct regcache *regcache,
109 const struct regset *regset,
110 const char *name,
111 int section_min_size,
112 int which,
113 const char *human_name,
114 bool required);
115
116 private: /* per-core data */
117
118 /* The core's section table. Note that these target sections are
119 *not* mapped in the current address spaces' set of target
120 sections --- those should come only from pure executable or
121 shared library bfds. The core bfd sections are an implementation
122 detail of the core target, just like ptrace is for unix child
123 targets. */
124 target_section_table m_core_section_table {};
125
126 /* The core_fns for a core file handler that is prepared to read the
127 core file currently open on core_bfd. */
128 core_fns *m_core_vec = NULL;
129
130 /* FIXME: kettenis/20031023: Eventually this field should
131 disappear. */
132 struct gdbarch *m_core_gdbarch = NULL;
133 };
134
135 core_target::core_target ()
136 {
137 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
138
139 /* Find a suitable core file handler to munch on core_bfd */
140 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
141
142 /* Find the data section */
143 if (build_section_table (core_bfd,
144 &m_core_section_table.sections,
145 &m_core_section_table.sections_end))
146 error (_("\"%s\": Can't find sections: %s"),
147 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
148 }
149
150 core_target::~core_target ()
151 {
152 xfree (m_core_section_table.sections);
153 }
154
155 /* List of all available core_fns. On gdb startup, each core file
156 register reader calls deprecated_add_core_fns() to register
157 information on each core format it is prepared to read. */
158
159 static struct core_fns *core_file_fns = NULL;
160
161 static int gdb_check_format (bfd *);
162
163 static void add_to_thread_list (bfd *, asection *, void *);
164
165 /* An arbitrary identifier for the core inferior. */
166 #define CORELOW_PID 1
167
168 /* Link a new core_fns into the global core_file_fns list. Called on
169 gdb startup by the _initialize routine in each core file register
170 reader, to register information about each format the reader is
171 prepared to handle. */
172
173 void
174 deprecated_add_core_fns (struct core_fns *cf)
175 {
176 cf->next = core_file_fns;
177 core_file_fns = cf;
178 }
179
180 /* The default function that core file handlers can use to examine a
181 core file BFD and decide whether or not to accept the job of
182 reading the core file. */
183
184 int
185 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
186 {
187 int result;
188
189 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
190 return (result);
191 }
192
193 /* Walk through the list of core functions to find a set that can
194 handle the core file open on ABFD. Returns pointer to set that is
195 selected. */
196
197 static struct core_fns *
198 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
199 {
200 struct core_fns *cf;
201 struct core_fns *yummy = NULL;
202 int matches = 0;
203
204 /* Don't sniff if we have support for register sets in
205 CORE_GDBARCH. */
206 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
207 return NULL;
208
209 for (cf = core_file_fns; cf != NULL; cf = cf->next)
210 {
211 if (cf->core_sniffer (cf, abfd))
212 {
213 yummy = cf;
214 matches++;
215 }
216 }
217 if (matches > 1)
218 {
219 warning (_("\"%s\": ambiguous core format, %d handlers match"),
220 bfd_get_filename (abfd), matches);
221 }
222 else if (matches == 0)
223 error (_("\"%s\": no core file handler recognizes format"),
224 bfd_get_filename (abfd));
225
226 return (yummy);
227 }
228
229 /* The default is to reject every core file format we see. Either
230 BFD has to recognize it, or we have to provide a function in the
231 core file handler that recognizes it. */
232
233 int
234 default_check_format (bfd *abfd)
235 {
236 return (0);
237 }
238
239 /* Attempt to recognize core file formats that BFD rejects. */
240
241 static int
242 gdb_check_format (bfd *abfd)
243 {
244 struct core_fns *cf;
245
246 for (cf = core_file_fns; cf != NULL; cf = cf->next)
247 {
248 if (cf->check_format (abfd))
249 {
250 return (1);
251 }
252 }
253 return (0);
254 }
255
256 /* Close the core target. */
257
258 void
259 core_target::close ()
260 {
261 if (core_bfd)
262 {
263 inferior_ptid = null_ptid; /* Avoid confusion from thread
264 stuff. */
265 exit_inferior_silent (current_inferior ());
266
267 /* Clear out solib state while the bfd is still open. See
268 comments in clear_solib in solib.c. */
269 clear_solib ();
270
271 current_program_space->cbfd.reset (nullptr);
272 }
273
274 /* Core targets are heap-allocated (see core_target_open), so here
275 we delete ourselves. */
276 delete this;
277 }
278
279 /* Look for sections whose names start with `.reg/' so that we can
280 extract the list of threads in a core file. */
281
282 static void
283 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
284 {
285 ptid_t ptid;
286 int core_tid;
287 int pid, lwpid;
288 asection *reg_sect = (asection *) reg_sect_arg;
289 bool fake_pid_p = false;
290 struct inferior *inf;
291
292 if (!startswith (bfd_section_name (asect), ".reg/"))
293 return;
294
295 core_tid = atoi (bfd_section_name (asect) + 5);
296
297 pid = bfd_core_file_pid (core_bfd);
298 if (pid == 0)
299 {
300 fake_pid_p = true;
301 pid = CORELOW_PID;
302 }
303
304 lwpid = core_tid;
305
306 inf = current_inferior ();
307 if (inf->pid == 0)
308 {
309 inferior_appeared (inf, pid);
310 inf->fake_pid_p = fake_pid_p;
311 }
312
313 ptid = ptid_t (pid, lwpid, 0);
314
315 add_thread (ptid);
316
317 /* Warning, Will Robinson, looking at BFD private data! */
318
319 if (reg_sect != NULL
320 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
321 inferior_ptid = ptid; /* Yes, make it current. */
322 }
323
324 /* Issue a message saying we have no core to debug, if FROM_TTY. */
325
326 static void
327 maybe_say_no_core_file_now (int from_tty)
328 {
329 if (from_tty)
330 printf_filtered (_("No core file now.\n"));
331 }
332
333 /* Backward compatability with old way of specifying core files. */
334
335 void
336 core_file_command (const char *filename, int from_tty)
337 {
338 dont_repeat (); /* Either way, seems bogus. */
339
340 if (filename == NULL)
341 {
342 if (core_bfd != NULL)
343 {
344 target_detach (current_inferior (), from_tty);
345 gdb_assert (core_bfd == NULL);
346 }
347 else
348 maybe_say_no_core_file_now (from_tty);
349 }
350 else
351 core_target_open (filename, from_tty);
352 }
353
354 /* See gdbcore.h. */
355
356 void
357 core_target_open (const char *arg, int from_tty)
358 {
359 const char *p;
360 int siggy;
361 int scratch_chan;
362 int flags;
363
364 target_preopen (from_tty);
365 if (!arg)
366 {
367 if (core_bfd)
368 error (_("No core file specified. (Use `detach' "
369 "to stop debugging a core file.)"));
370 else
371 error (_("No core file specified."));
372 }
373
374 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
375 if (!IS_ABSOLUTE_PATH (filename.get ()))
376 filename.reset (concat (current_directory, "/",
377 filename.get (), (char *) NULL));
378
379 flags = O_BINARY | O_LARGEFILE;
380 if (write_files)
381 flags |= O_RDWR;
382 else
383 flags |= O_RDONLY;
384 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
385 if (scratch_chan < 0)
386 perror_with_name (filename.get ());
387
388 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
389 write_files ? FOPEN_RUB : FOPEN_RB,
390 scratch_chan));
391 if (temp_bfd == NULL)
392 perror_with_name (filename.get ());
393
394 if (!bfd_check_format (temp_bfd.get (), bfd_core)
395 && !gdb_check_format (temp_bfd.get ()))
396 {
397 /* Do it after the err msg */
398 /* FIXME: should be checking for errors from bfd_close (for one
399 thing, on error it does not free all the storage associated
400 with the bfd). */
401 error (_("\"%s\" is not a core dump: %s"),
402 filename.get (), bfd_errmsg (bfd_get_error ()));
403 }
404
405 current_program_space->cbfd = std::move (temp_bfd);
406
407 core_target *target = new core_target ();
408
409 /* Own the target until it is successfully pushed. */
410 target_ops_up target_holder (target);
411
412 validate_files ();
413
414 /* If we have no exec file, try to set the architecture from the
415 core file. We don't do this unconditionally since an exec file
416 typically contains more information that helps us determine the
417 architecture than a core file. */
418 if (!exec_bfd)
419 set_gdbarch_from_file (core_bfd);
420
421 push_target (std::move (target_holder));
422
423 inferior_ptid = null_ptid;
424
425 /* Need to flush the register cache (and the frame cache) from a
426 previous debug session. If inferior_ptid ends up the same as the
427 last debug session --- e.g., b foo; run; gcore core1; step; gcore
428 core2; core core1; core core2 --- then there's potential for
429 get_current_regcache to return the cached regcache of the
430 previous session, and the frame cache being stale. */
431 registers_changed ();
432
433 /* Build up thread list from BFD sections, and possibly set the
434 current thread to the .reg/NN section matching the .reg
435 section. */
436 bfd_map_over_sections (core_bfd, add_to_thread_list,
437 bfd_get_section_by_name (core_bfd, ".reg"));
438
439 if (inferior_ptid == null_ptid)
440 {
441 /* Either we found no .reg/NN section, and hence we have a
442 non-threaded core (single-threaded, from gdb's perspective),
443 or for some reason add_to_thread_list couldn't determine
444 which was the "main" thread. The latter case shouldn't
445 usually happen, but we're dealing with input here, which can
446 always be broken in different ways. */
447 thread_info *thread = first_thread_of_inferior (current_inferior ());
448
449 if (thread == NULL)
450 {
451 inferior_appeared (current_inferior (), CORELOW_PID);
452 inferior_ptid = ptid_t (CORELOW_PID);
453 add_thread_silent (inferior_ptid);
454 }
455 else
456 switch_to_thread (thread);
457 }
458
459 post_create_inferior (target, from_tty);
460
461 /* Now go through the target stack looking for threads since there
462 may be a thread_stratum target loaded on top of target core by
463 now. The layer above should claim threads found in the BFD
464 sections. */
465 try
466 {
467 target_update_thread_list ();
468 }
469
470 catch (const gdb_exception_error &except)
471 {
472 exception_print (gdb_stderr, except);
473 }
474
475 p = bfd_core_file_failing_command (core_bfd);
476 if (p)
477 printf_filtered (_("Core was generated by `%s'.\n"), p);
478
479 /* Clearing any previous state of convenience variables. */
480 clear_exit_convenience_vars ();
481
482 siggy = bfd_core_file_failing_signal (core_bfd);
483 if (siggy > 0)
484 {
485 gdbarch *core_gdbarch = target->core_gdbarch ();
486
487 /* If we don't have a CORE_GDBARCH to work with, assume a native
488 core (map gdb_signal from host signals). If we do have
489 CORE_GDBARCH to work with, but no gdb_signal_from_target
490 implementation for that gdbarch, as a fallback measure,
491 assume the host signal mapping. It'll be correct for native
492 cores, but most likely incorrect for cross-cores. */
493 enum gdb_signal sig = (core_gdbarch != NULL
494 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
495 ? gdbarch_gdb_signal_from_target (core_gdbarch,
496 siggy)
497 : gdb_signal_from_host (siggy));
498
499 printf_filtered (_("Program terminated with signal %s, %s.\n"),
500 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
501
502 /* Set the value of the internal variable $_exitsignal,
503 which holds the signal uncaught by the inferior. */
504 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
505 siggy);
506 }
507
508 /* Fetch all registers from core file. */
509 target_fetch_registers (get_current_regcache (), -1);
510
511 /* Now, set up the frame cache, and print the top of stack. */
512 reinit_frame_cache ();
513 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
514
515 /* Current thread should be NUM 1 but the user does not know that.
516 If a program is single threaded gdb in general does not mention
517 anything about threads. That is why the test is >= 2. */
518 if (thread_count () >= 2)
519 {
520 try
521 {
522 thread_command (NULL, from_tty);
523 }
524 catch (const gdb_exception_error &except)
525 {
526 exception_print (gdb_stderr, except);
527 }
528 }
529 }
530
531 void
532 core_target::detach (inferior *inf, int from_tty)
533 {
534 /* Note that 'this' is dangling after this call. unpush_target
535 closes the target, and our close implementation deletes
536 'this'. */
537 unpush_target (this);
538
539 /* Clear the register cache and the frame cache. */
540 registers_changed ();
541 reinit_frame_cache ();
542 maybe_say_no_core_file_now (from_tty);
543 }
544
545 /* Try to retrieve registers from a section in core_bfd, and supply
546 them to m_core_vec->core_read_registers, as the register set
547 numbered WHICH.
548
549 If ptid's lwp member is zero, do the single-threaded
550 thing: look for a section named NAME. If ptid's lwp
551 member is non-zero, do the multi-threaded thing: look for a section
552 named "NAME/LWP", where LWP is the shortest ASCII decimal
553 representation of ptid's lwp member.
554
555 HUMAN_NAME is a human-readable name for the kind of registers the
556 NAME section contains, for use in error messages.
557
558 If REQUIRED is true, print an error if the core file doesn't have a
559 section by the appropriate name. Otherwise, just do nothing. */
560
561 void
562 core_target::get_core_register_section (struct regcache *regcache,
563 const struct regset *regset,
564 const char *name,
565 int section_min_size,
566 int which,
567 const char *human_name,
568 bool required)
569 {
570 struct bfd_section *section;
571 bfd_size_type size;
572 char *contents;
573 bool variable_size_section = (regset != NULL
574 && regset->flags & REGSET_VARIABLE_SIZE);
575
576 thread_section_name section_name (name, regcache->ptid ());
577
578 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
579 if (! section)
580 {
581 if (required)
582 warning (_("Couldn't find %s registers in core file."),
583 human_name);
584 return;
585 }
586
587 size = bfd_section_size (section);
588 if (size < section_min_size)
589 {
590 warning (_("Section `%s' in core file too small."),
591 section_name.c_str ());
592 return;
593 }
594 if (size != section_min_size && !variable_size_section)
595 {
596 warning (_("Unexpected size of section `%s' in core file."),
597 section_name.c_str ());
598 }
599
600 contents = (char *) alloca (size);
601 if (! bfd_get_section_contents (core_bfd, section, contents,
602 (file_ptr) 0, size))
603 {
604 warning (_("Couldn't read %s registers from `%s' section in core file."),
605 human_name, section_name.c_str ());
606 return;
607 }
608
609 if (regset != NULL)
610 {
611 regset->supply_regset (regset, regcache, -1, contents, size);
612 return;
613 }
614
615 gdb_assert (m_core_vec != nullptr);
616 m_core_vec->core_read_registers (regcache, contents, size, which,
617 (CORE_ADDR) bfd_section_vma (section));
618 }
619
620 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
621 struct get_core_registers_cb_data
622 {
623 core_target *target;
624 struct regcache *regcache;
625 };
626
627 /* Callback for get_core_registers that handles a single core file
628 register note section. */
629
630 static void
631 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
632 const struct regset *regset,
633 const char *human_name, void *cb_data)
634 {
635 auto *data = (get_core_registers_cb_data *) cb_data;
636 bool required = false;
637 bool variable_size_section = (regset != NULL
638 && regset->flags & REGSET_VARIABLE_SIZE);
639
640 if (!variable_size_section)
641 gdb_assert (supply_size == collect_size);
642
643 if (strcmp (sect_name, ".reg") == 0)
644 {
645 required = true;
646 if (human_name == NULL)
647 human_name = "general-purpose";
648 }
649 else if (strcmp (sect_name, ".reg2") == 0)
650 {
651 if (human_name == NULL)
652 human_name = "floating-point";
653 }
654
655 /* The 'which' parameter is only used when no regset is provided.
656 Thus we just set it to -1. */
657 data->target->get_core_register_section (data->regcache, regset, sect_name,
658 supply_size, -1, human_name,
659 required);
660 }
661
662 /* Get the registers out of a core file. This is the machine-
663 independent part. Fetch_core_registers is the machine-dependent
664 part, typically implemented in the xm-file for each
665 architecture. */
666
667 /* We just get all the registers, so we don't use regno. */
668
669 void
670 core_target::fetch_registers (struct regcache *regcache, int regno)
671 {
672 int i;
673 struct gdbarch *gdbarch;
674
675 if (!(m_core_gdbarch != nullptr
676 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
677 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
678 {
679 fprintf_filtered (gdb_stderr,
680 "Can't fetch registers from this type of core file\n");
681 return;
682 }
683
684 gdbarch = regcache->arch ();
685 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
686 {
687 get_core_registers_cb_data data = { this, regcache };
688 gdbarch_iterate_over_regset_sections (gdbarch,
689 get_core_registers_cb,
690 (void *) &data, NULL);
691 }
692 else
693 {
694 get_core_register_section (regcache, NULL,
695 ".reg", 0, 0, "general-purpose", 1);
696 get_core_register_section (regcache, NULL,
697 ".reg2", 0, 2, "floating-point", 0);
698 }
699
700 /* Mark all registers not found in the core as unavailable. */
701 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
702 if (regcache->get_register_status (i) == REG_UNKNOWN)
703 regcache->raw_supply (i, NULL);
704 }
705
706 void
707 core_target::files_info ()
708 {
709 print_section_info (&m_core_section_table, core_bfd);
710 }
711 \f
712 struct spuid_list
713 {
714 gdb_byte *buf;
715 ULONGEST offset;
716 LONGEST len;
717 ULONGEST pos;
718 ULONGEST written;
719 };
720
721 static void
722 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
723 {
724 struct spuid_list *list = (struct spuid_list *) list_p;
725 enum bfd_endian byte_order
726 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
727 int fd, pos = 0;
728
729 sscanf (bfd_section_name (asect), "SPU/%d/regs%n", &fd, &pos);
730 if (pos == 0)
731 return;
732
733 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
734 {
735 store_unsigned_integer (list->buf + list->pos - list->offset,
736 4, byte_order, fd);
737 list->written += 4;
738 }
739 list->pos += 4;
740 }
741
742 enum target_xfer_status
743 core_target::xfer_partial (enum target_object object, const char *annex,
744 gdb_byte *readbuf, const gdb_byte *writebuf,
745 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
746 {
747 switch (object)
748 {
749 case TARGET_OBJECT_MEMORY:
750 return (section_table_xfer_memory_partial
751 (readbuf, writebuf,
752 offset, len, xfered_len,
753 m_core_section_table.sections,
754 m_core_section_table.sections_end,
755 NULL));
756
757 case TARGET_OBJECT_AUXV:
758 if (readbuf)
759 {
760 /* When the aux vector is stored in core file, BFD
761 represents this with a fake section called ".auxv". */
762
763 struct bfd_section *section;
764 bfd_size_type size;
765
766 section = bfd_get_section_by_name (core_bfd, ".auxv");
767 if (section == NULL)
768 return TARGET_XFER_E_IO;
769
770 size = bfd_section_size (section);
771 if (offset >= size)
772 return TARGET_XFER_EOF;
773 size -= offset;
774 if (size > len)
775 size = len;
776
777 if (size == 0)
778 return TARGET_XFER_EOF;
779 if (!bfd_get_section_contents (core_bfd, section, readbuf,
780 (file_ptr) offset, size))
781 {
782 warning (_("Couldn't read NT_AUXV note in core file."));
783 return TARGET_XFER_E_IO;
784 }
785
786 *xfered_len = (ULONGEST) size;
787 return TARGET_XFER_OK;
788 }
789 return TARGET_XFER_E_IO;
790
791 case TARGET_OBJECT_WCOOKIE:
792 if (readbuf)
793 {
794 /* When the StackGhost cookie is stored in core file, BFD
795 represents this with a fake section called
796 ".wcookie". */
797
798 struct bfd_section *section;
799 bfd_size_type size;
800
801 section = bfd_get_section_by_name (core_bfd, ".wcookie");
802 if (section == NULL)
803 return TARGET_XFER_E_IO;
804
805 size = bfd_section_size (section);
806 if (offset >= size)
807 return TARGET_XFER_EOF;
808 size -= offset;
809 if (size > len)
810 size = len;
811
812 if (size == 0)
813 return TARGET_XFER_EOF;
814 if (!bfd_get_section_contents (core_bfd, section, readbuf,
815 (file_ptr) offset, size))
816 {
817 warning (_("Couldn't read StackGhost cookie in core file."));
818 return TARGET_XFER_E_IO;
819 }
820
821 *xfered_len = (ULONGEST) size;
822 return TARGET_XFER_OK;
823
824 }
825 return TARGET_XFER_E_IO;
826
827 case TARGET_OBJECT_LIBRARIES:
828 if (m_core_gdbarch != nullptr
829 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
830 {
831 if (writebuf)
832 return TARGET_XFER_E_IO;
833 else
834 {
835 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
836 readbuf,
837 offset, len);
838
839 if (*xfered_len == 0)
840 return TARGET_XFER_EOF;
841 else
842 return TARGET_XFER_OK;
843 }
844 }
845 /* FALL THROUGH */
846
847 case TARGET_OBJECT_LIBRARIES_AIX:
848 if (m_core_gdbarch != nullptr
849 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
850 {
851 if (writebuf)
852 return TARGET_XFER_E_IO;
853 else
854 {
855 *xfered_len
856 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
857 readbuf, offset,
858 len);
859
860 if (*xfered_len == 0)
861 return TARGET_XFER_EOF;
862 else
863 return TARGET_XFER_OK;
864 }
865 }
866 /* FALL THROUGH */
867
868 case TARGET_OBJECT_SPU:
869 if (readbuf && annex)
870 {
871 /* When the SPU contexts are stored in a core file, BFD
872 represents this with a fake section called
873 "SPU/<annex>". */
874
875 struct bfd_section *section;
876 bfd_size_type size;
877 char sectionstr[100];
878
879 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
880
881 section = bfd_get_section_by_name (core_bfd, sectionstr);
882 if (section == NULL)
883 return TARGET_XFER_E_IO;
884
885 size = bfd_section_size (section);
886 if (offset >= size)
887 return TARGET_XFER_EOF;
888 size -= offset;
889 if (size > len)
890 size = len;
891
892 if (size == 0)
893 return TARGET_XFER_EOF;
894 if (!bfd_get_section_contents (core_bfd, section, readbuf,
895 (file_ptr) offset, size))
896 {
897 warning (_("Couldn't read SPU section in core file."));
898 return TARGET_XFER_E_IO;
899 }
900
901 *xfered_len = (ULONGEST) size;
902 return TARGET_XFER_OK;
903 }
904 else if (readbuf)
905 {
906 /* NULL annex requests list of all present spuids. */
907 struct spuid_list list;
908
909 list.buf = readbuf;
910 list.offset = offset;
911 list.len = len;
912 list.pos = 0;
913 list.written = 0;
914 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
915
916 if (list.written == 0)
917 return TARGET_XFER_EOF;
918 else
919 {
920 *xfered_len = (ULONGEST) list.written;
921 return TARGET_XFER_OK;
922 }
923 }
924 return TARGET_XFER_E_IO;
925
926 case TARGET_OBJECT_SIGNAL_INFO:
927 if (readbuf)
928 {
929 if (m_core_gdbarch != nullptr
930 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
931 {
932 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
933 offset, len);
934
935 if (l >= 0)
936 {
937 *xfered_len = l;
938 if (l == 0)
939 return TARGET_XFER_EOF;
940 else
941 return TARGET_XFER_OK;
942 }
943 }
944 }
945 return TARGET_XFER_E_IO;
946
947 default:
948 return this->beneath ()->xfer_partial (object, annex, readbuf,
949 writebuf, offset, len,
950 xfered_len);
951 }
952 }
953
954 \f
955
956 /* Okay, let's be honest: threads gleaned from a core file aren't
957 exactly lively, are they? On the other hand, if we don't claim
958 that each & every one is alive, then we don't get any of them
959 to appear in an "info thread" command, which is quite a useful
960 behaviour.
961 */
962 bool
963 core_target::thread_alive (ptid_t ptid)
964 {
965 return true;
966 }
967
968 /* Ask the current architecture what it knows about this core file.
969 That will be used, in turn, to pick a better architecture. This
970 wrapper could be avoided if targets got a chance to specialize
971 core_target. */
972
973 const struct target_desc *
974 core_target::read_description ()
975 {
976 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
977 {
978 const struct target_desc *result;
979
980 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
981 if (result != NULL)
982 return result;
983 }
984
985 return this->beneath ()->read_description ();
986 }
987
988 std::string
989 core_target::pid_to_str (ptid_t ptid)
990 {
991 struct inferior *inf;
992 int pid;
993
994 /* The preferred way is to have a gdbarch/OS specific
995 implementation. */
996 if (m_core_gdbarch != nullptr
997 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
998 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
999
1000 /* Otherwise, if we don't have one, we'll just fallback to
1001 "process", with normal_pid_to_str. */
1002
1003 /* Try the LWPID field first. */
1004 pid = ptid.lwp ();
1005 if (pid != 0)
1006 return normal_pid_to_str (ptid_t (pid));
1007
1008 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1009 only if it isn't a fake PID. */
1010 inf = find_inferior_ptid (ptid);
1011 if (inf != NULL && !inf->fake_pid_p)
1012 return normal_pid_to_str (ptid);
1013
1014 /* No luck. We simply don't have a valid PID to print. */
1015 return "<main task>";
1016 }
1017
1018 const char *
1019 core_target::thread_name (struct thread_info *thr)
1020 {
1021 if (m_core_gdbarch != nullptr
1022 && gdbarch_core_thread_name_p (m_core_gdbarch))
1023 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1024 return NULL;
1025 }
1026
1027 bool
1028 core_target::has_memory ()
1029 {
1030 return (core_bfd != NULL);
1031 }
1032
1033 bool
1034 core_target::has_stack ()
1035 {
1036 return (core_bfd != NULL);
1037 }
1038
1039 bool
1040 core_target::has_registers ()
1041 {
1042 return (core_bfd != NULL);
1043 }
1044
1045 /* Implement the to_info_proc method. */
1046
1047 bool
1048 core_target::info_proc (const char *args, enum info_proc_what request)
1049 {
1050 struct gdbarch *gdbarch = get_current_arch ();
1051
1052 /* Since this is the core file target, call the 'core_info_proc'
1053 method on gdbarch, not 'info_proc'. */
1054 if (gdbarch_core_info_proc_p (gdbarch))
1055 gdbarch_core_info_proc (gdbarch, args, request);
1056
1057 return true;
1058 }
1059
1060 void
1061 _initialize_corelow (void)
1062 {
1063 add_target (core_target_info, core_target_open, filename_completer);
1064 }
This page took 0.055626 seconds and 5 git commands to generate.