2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 #include "objfiles.h"
43
44 #include "solib.h" /* Support for shared libraries. */
45 #include "solib-svr4.h"
46 #include "gdb_string.h"
47 #include "dis-asm.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* CRIS architecture specific information. */
169 struct gdbarch_tdep
170 {
171 int cris_version;
172 const char *cris_mode;
173 int cris_dwarf2_cfi;
174 };
175
176 /* Sigtramp identification code copied from i386-linux-tdep.c. */
177
178 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179 #define SIGTRAMP_OFFSET0 0
180 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
181 #define SIGTRAMP_OFFSET1 4
182
183 static const unsigned short sigtramp_code[] =
184 {
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
187 };
188
189 #define SIGTRAMP_LEN (sizeof sigtramp_code)
190
191 /* Note: same length as normal sigtramp code. */
192
193 static const unsigned short rt_sigtramp_code[] =
194 {
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
197 };
198
199 /* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
201
202 static CORE_ADDR
203 cris_sigtramp_start (struct frame_info *this_frame)
204 {
205 CORE_ADDR pc = get_frame_pc (this_frame);
206 gdb_byte buf[SIGTRAMP_LEN];
207
208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
209 return 0;
210
211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
212 {
213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
214 return 0;
215
216 pc -= SIGTRAMP_OFFSET1;
217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
218 return 0;
219 }
220
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
222 return 0;
223
224 return pc;
225 }
226
227 /* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
229
230 static CORE_ADDR
231 cris_rt_sigtramp_start (struct frame_info *this_frame)
232 {
233 CORE_ADDR pc = get_frame_pc (this_frame);
234 gdb_byte buf[SIGTRAMP_LEN];
235
236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
237 return 0;
238
239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
240 {
241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
242 return 0;
243
244 pc -= SIGTRAMP_OFFSET1;
245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
246 return 0;
247 }
248
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
250 return 0;
251
252 return pc;
253 }
254
255 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
257
258 static CORE_ADDR
259 cris_sigcontext_addr (struct frame_info *this_frame)
260 {
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
263 CORE_ADDR pc;
264 CORE_ADDR sp;
265 char buf[4];
266
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
269
270 /* Look for normal sigtramp frame first. */
271 pc = cris_sigtramp_start (this_frame);
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
280 pc = cris_rt_sigtramp_start (this_frame);
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
291 error (_("Couldn't recognize signal trampoline."));
292 return 0;
293 }
294
295 struct cris_unwind_cache
296 {
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
311 CORE_ADDR return_pc;
312 int leaf_function;
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
316 };
317
318 static struct cris_unwind_cache *
319 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
320 void **this_cache)
321 {
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
325 struct cris_unwind_cache *info;
326 CORE_ADDR pc;
327 CORE_ADDR sp;
328 CORE_ADDR addr;
329 char buf[4];
330 int i;
331
332 if ((*this_cache))
333 return (*this_cache);
334
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
338
339 /* Zero all fields. */
340 info->prev_sp = 0;
341 info->base = 0;
342 info->size = 0;
343 info->sp_offset = 0;
344 info->r8_offset = 0;
345 info->uses_frame = 0;
346 info->return_pc = 0;
347 info->leaf_function = 0;
348
349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
350 info->base = extract_unsigned_integer (buf, 4, byte_order);
351
352 addr = cris_sigcontext_addr (this_frame);
353
354 /* Layout of the sigcontext struct:
355 struct sigcontext {
356 struct pt_regs regs;
357 unsigned long oldmask;
358 unsigned long usp;
359 }; */
360
361 if (tdep->cris_version == 10)
362 {
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
364 struct pt_regs. */
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
367
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
376 = info->saved_regs[IRP_REGNUM];
377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
378 }
379 else
380 {
381 /* CRISv32. */
382 /* R0 to R13 are stored in order at offset (1 * 4) in
383 struct pt_regs. */
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
386
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
396
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
400 the signal is received while in a delay slot.
401
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
405 = info->saved_regs[ERP_REGNUM];
406
407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
408 = addr + (25 * 4);
409 }
410
411 return info;
412 }
413
414 static void
415 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
417 {
418 struct cris_unwind_cache *cache =
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
421 }
422
423 /* Forward declaration. */
424
425 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427 static struct value *
428 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
430 {
431 /* Make sure we've initialized the cache. */
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
434 }
435
436 static int
437 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
439 void **this_cache)
440 {
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
443 return 1;
444
445 return 0;
446 }
447
448 static const struct frame_unwind cris_sigtramp_frame_unwind =
449 {
450 SIGTRAMP_FRAME,
451 cris_sigtramp_frame_this_id,
452 cris_sigtramp_frame_prev_register,
453 NULL,
454 cris_sigtramp_frame_sniffer
455 };
456
457 static int
458 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
459 struct frame_info *this_frame)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 ULONGEST erp;
463 int ret = 0;
464
465 if (tdep->cris_mode == cris_mode_guru)
466 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
467 else
468 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
469
470 if (erp & 0x1)
471 {
472 /* In delay slot - check if there's a breakpoint at the preceding
473 instruction. */
474 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
475 ret = 1;
476 }
477 return ret;
478 }
479
480 /* Hardware watchpoint support. */
481
482 /* We support 6 hardware data watchpoints, but cannot trigger on execute
483 (any combination of read/write is fine). */
484
485 int
486 cris_can_use_hardware_watchpoint (int type, int count, int other)
487 {
488 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
489
490 /* No bookkeeping is done here; it is handled by the remote debug agent. */
491
492 if (tdep->cris_version != 32)
493 return 0;
494 else
495 /* CRISv32: Six data watchpoints, one for instructions. */
496 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
497 || type == bp_hardware_watchpoint) && count <= 6)
498 || (type == bp_hardware_breakpoint && count <= 1));
499 }
500
501 /* The CRISv32 hardware data watchpoints work by specifying ranges,
502 which have no alignment or length restrictions. */
503
504 int
505 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
506 {
507 return 1;
508 }
509
510 /* If the inferior has some watchpoint that triggered, return the
511 address associated with that watchpoint. Otherwise, return
512 zero. */
513
514 CORE_ADDR
515 cris_stopped_data_address (void)
516 {
517 CORE_ADDR eda;
518 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
519 return eda;
520 }
521
522 /* The instruction environment needed to find single-step breakpoints. */
523
524 typedef
525 struct instruction_environment
526 {
527 unsigned long reg[NUM_GENREGS];
528 unsigned long preg[NUM_SPECREGS];
529 unsigned long branch_break_address;
530 unsigned long delay_slot_pc;
531 unsigned long prefix_value;
532 int branch_found;
533 int prefix_found;
534 int invalid;
535 int slot_needed;
536 int delay_slot_pc_active;
537 int xflag_found;
538 int disable_interrupt;
539 int byte_order;
540 } inst_env_type;
541
542 /* Machine-dependencies in CRIS for opcodes. */
543
544 /* Instruction sizes. */
545 enum cris_instruction_sizes
546 {
547 INST_BYTE_SIZE = 0,
548 INST_WORD_SIZE = 1,
549 INST_DWORD_SIZE = 2
550 };
551
552 /* Addressing modes. */
553 enum cris_addressing_modes
554 {
555 REGISTER_MODE = 1,
556 INDIRECT_MODE = 2,
557 AUTOINC_MODE = 3
558 };
559
560 /* Prefix addressing modes. */
561 enum cris_prefix_addressing_modes
562 {
563 PREFIX_INDEX_MODE = 2,
564 PREFIX_ASSIGN_MODE = 3,
565
566 /* Handle immediate byte offset addressing mode prefix format. */
567 PREFIX_OFFSET_MODE = 2
568 };
569
570 /* Masks for opcodes. */
571 enum cris_opcode_masks
572 {
573 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
574 SIGNED_EXTEND_BIT_MASK = 0x2,
575 SIGNED_BYTE_MASK = 0x80,
576 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
577 SIGNED_WORD_MASK = 0x8000,
578 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
579 SIGNED_DWORD_MASK = 0x80000000,
580 SIGNED_QUICK_VALUE_MASK = 0x20,
581 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
582 };
583
584 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
585 Bit 15 - 12 Operand2
586 11 - 10 Mode
587 9 - 6 Opcode
588 5 - 4 Size
589 3 - 0 Operand1 */
590
591 static int
592 cris_get_operand2 (unsigned short insn)
593 {
594 return ((insn & 0xF000) >> 12);
595 }
596
597 static int
598 cris_get_mode (unsigned short insn)
599 {
600 return ((insn & 0x0C00) >> 10);
601 }
602
603 static int
604 cris_get_opcode (unsigned short insn)
605 {
606 return ((insn & 0x03C0) >> 6);
607 }
608
609 static int
610 cris_get_size (unsigned short insn)
611 {
612 return ((insn & 0x0030) >> 4);
613 }
614
615 static int
616 cris_get_operand1 (unsigned short insn)
617 {
618 return (insn & 0x000F);
619 }
620
621 /* Additional functions in order to handle opcodes. */
622
623 static int
624 cris_get_quick_value (unsigned short insn)
625 {
626 return (insn & 0x003F);
627 }
628
629 static int
630 cris_get_bdap_quick_offset (unsigned short insn)
631 {
632 return (insn & 0x00FF);
633 }
634
635 static int
636 cris_get_branch_short_offset (unsigned short insn)
637 {
638 return (insn & 0x00FF);
639 }
640
641 static int
642 cris_get_asr_shift_steps (unsigned long value)
643 {
644 return (value & 0x3F);
645 }
646
647 static int
648 cris_get_clear_size (unsigned short insn)
649 {
650 return ((insn) & 0xC000);
651 }
652
653 static int
654 cris_is_signed_extend_bit_on (unsigned short insn)
655 {
656 return (((insn) & 0x20) == 0x20);
657 }
658
659 static int
660 cris_is_xflag_bit_on (unsigned short insn)
661 {
662 return (((insn) & 0x1000) == 0x1000);
663 }
664
665 static void
666 cris_set_size_to_dword (unsigned short *insn)
667 {
668 *insn &= 0xFFCF;
669 *insn |= 0x20;
670 }
671
672 static signed char
673 cris_get_signed_offset (unsigned short insn)
674 {
675 return ((signed char) (insn & 0x00FF));
676 }
677
678 /* Calls an op function given the op-type, working on the insn and the
679 inst_env. */
680 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
681 inst_env_type *);
682
683 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
684 struct gdbarch_list *);
685
686 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
687
688 static void set_cris_version (char *ignore_args, int from_tty,
689 struct cmd_list_element *c);
690
691 static void set_cris_mode (char *ignore_args, int from_tty,
692 struct cmd_list_element *c);
693
694 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
695 struct cmd_list_element *c);
696
697 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
698 struct frame_info *this_frame,
699 struct cris_unwind_cache *info);
700
701 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
702 struct frame_info *this_frame,
703 struct cris_unwind_cache *info);
704
705 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
706 struct frame_info *next_frame);
707
708 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
709 struct frame_info *next_frame);
710
711 /* When arguments must be pushed onto the stack, they go on in reverse
712 order. The below implements a FILO (stack) to do this.
713 Copied from d10v-tdep.c. */
714
715 struct stack_item
716 {
717 int len;
718 struct stack_item *prev;
719 void *data;
720 };
721
722 static struct stack_item *
723 push_stack_item (struct stack_item *prev, void *contents, int len)
724 {
725 struct stack_item *si;
726 si = xmalloc (sizeof (struct stack_item));
727 si->data = xmalloc (len);
728 si->len = len;
729 si->prev = prev;
730 memcpy (si->data, contents, len);
731 return si;
732 }
733
734 static struct stack_item *
735 pop_stack_item (struct stack_item *si)
736 {
737 struct stack_item *dead = si;
738 si = si->prev;
739 xfree (dead->data);
740 xfree (dead);
741 return si;
742 }
743
744 /* Put here the code to store, into fi->saved_regs, the addresses of
745 the saved registers of frame described by FRAME_INFO. This
746 includes special registers such as pc and fp saved in special ways
747 in the stack frame. sp is even more special: the address we return
748 for it IS the sp for the next frame. */
749
750 static struct cris_unwind_cache *
751 cris_frame_unwind_cache (struct frame_info *this_frame,
752 void **this_prologue_cache)
753 {
754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
756 CORE_ADDR pc;
757 struct cris_unwind_cache *info;
758 int i;
759
760 if ((*this_prologue_cache))
761 return (*this_prologue_cache);
762
763 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
764 (*this_prologue_cache) = info;
765 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
766
767 /* Zero all fields. */
768 info->prev_sp = 0;
769 info->base = 0;
770 info->size = 0;
771 info->sp_offset = 0;
772 info->r8_offset = 0;
773 info->uses_frame = 0;
774 info->return_pc = 0;
775 info->leaf_function = 0;
776
777 /* Prologue analysis does the rest... */
778 if (tdep->cris_version == 32)
779 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
780 else
781 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
782
783 return info;
784 }
785
786 /* Given a GDB frame, determine the address of the calling function's
787 frame. This will be used to create a new GDB frame struct. */
788
789 static void
790 cris_frame_this_id (struct frame_info *this_frame,
791 void **this_prologue_cache,
792 struct frame_id *this_id)
793 {
794 struct cris_unwind_cache *info
795 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
796 CORE_ADDR base;
797 CORE_ADDR func;
798 struct frame_id id;
799
800 /* The FUNC is easy. */
801 func = get_frame_func (this_frame);
802
803 /* Hopefully the prologue analysis either correctly determined the
804 frame's base (which is the SP from the previous frame), or set
805 that base to "NULL". */
806 base = info->prev_sp;
807 if (base == 0)
808 return;
809
810 id = frame_id_build (base, func);
811
812 (*this_id) = id;
813 }
814
815 static struct value *
816 cris_frame_prev_register (struct frame_info *this_frame,
817 void **this_prologue_cache, int regnum)
818 {
819 struct cris_unwind_cache *info
820 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
821 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
822 }
823
824 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
825 frame. The frame ID's base needs to match the TOS value saved by
826 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
827
828 static struct frame_id
829 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
830 {
831 CORE_ADDR sp;
832 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
833 return frame_id_build (sp, get_frame_pc (this_frame));
834 }
835
836 static CORE_ADDR
837 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
838 {
839 /* Align to the size of an instruction (so that they can safely be
840 pushed onto the stack). */
841 return sp & ~3;
842 }
843
844 static CORE_ADDR
845 cris_push_dummy_code (struct gdbarch *gdbarch,
846 CORE_ADDR sp, CORE_ADDR funaddr,
847 struct value **args, int nargs,
848 struct type *value_type,
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
851 {
852 /* Allocate space sufficient for a breakpoint. */
853 sp = (sp - 4) & ~3;
854 /* Store the address of that breakpoint */
855 *bp_addr = sp;
856 /* CRIS always starts the call at the callee's entry point. */
857 *real_pc = funaddr;
858 return sp;
859 }
860
861 static CORE_ADDR
862 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
863 struct regcache *regcache, CORE_ADDR bp_addr,
864 int nargs, struct value **args, CORE_ADDR sp,
865 int struct_return, CORE_ADDR struct_addr)
866 {
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int stack_alloc;
869 int stack_offset;
870 int argreg;
871 int argnum;
872
873 CORE_ADDR regval;
874
875 /* The function's arguments and memory allocated by gdb for the arguments to
876 point at reside in separate areas on the stack.
877 Both frame pointers grow toward higher addresses. */
878 CORE_ADDR fp_arg;
879 CORE_ADDR fp_mem;
880
881 struct stack_item *si = NULL;
882
883 /* Push the return address. */
884 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
885
886 /* Are we returning a value using a structure return or a normal value
887 return? struct_addr is the address of the reserved space for the return
888 structure to be written on the stack. */
889 if (struct_return)
890 {
891 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
892 }
893
894 /* Now load as many as possible of the first arguments into registers,
895 and push the rest onto the stack. */
896 argreg = ARG1_REGNUM;
897 stack_offset = 0;
898
899 for (argnum = 0; argnum < nargs; argnum++)
900 {
901 int len;
902 char *val;
903 int reg_demand;
904 int i;
905
906 len = TYPE_LENGTH (value_type (args[argnum]));
907 val = (char *) value_contents (args[argnum]);
908
909 /* How may registers worth of storage do we need for this argument? */
910 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
911
912 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
913 {
914 /* Data passed by value. Fits in available register(s). */
915 for (i = 0; i < reg_demand; i++)
916 {
917 regcache_cooked_write (regcache, argreg, val);
918 argreg++;
919 val += 4;
920 }
921 }
922 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
923 {
924 /* Data passed by value. Does not fit in available register(s).
925 Use the register(s) first, then the stack. */
926 for (i = 0; i < reg_demand; i++)
927 {
928 if (argreg <= ARG4_REGNUM)
929 {
930 regcache_cooked_write (regcache, argreg, val);
931 argreg++;
932 val += 4;
933 }
934 else
935 {
936 /* Push item for later so that pushed arguments
937 come in the right order. */
938 si = push_stack_item (si, val, 4);
939 val += 4;
940 }
941 }
942 }
943 else if (len > (2 * 4))
944 {
945 /* Data passed by reference. Push copy of data onto stack
946 and pass pointer to this copy as argument. */
947 sp = (sp - len) & ~3;
948 write_memory (sp, val, len);
949
950 if (argreg <= ARG4_REGNUM)
951 {
952 regcache_cooked_write_unsigned (regcache, argreg, sp);
953 argreg++;
954 }
955 else
956 {
957 gdb_byte buf[4];
958 store_unsigned_integer (buf, 4, byte_order, sp);
959 si = push_stack_item (si, buf, 4);
960 }
961 }
962 else
963 {
964 /* Data passed by value. No available registers. Put it on
965 the stack. */
966 si = push_stack_item (si, val, len);
967 }
968 }
969
970 while (si)
971 {
972 /* fp_arg must be word-aligned (i.e., don't += len) to match
973 the function prologue. */
974 sp = (sp - si->len) & ~3;
975 write_memory (sp, si->data, si->len);
976 si = pop_stack_item (si);
977 }
978
979 /* Finally, update the SP register. */
980 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
981
982 return sp;
983 }
984
985 static const struct frame_unwind cris_frame_unwind =
986 {
987 NORMAL_FRAME,
988 cris_frame_this_id,
989 cris_frame_prev_register,
990 NULL,
991 default_frame_sniffer
992 };
993
994 static CORE_ADDR
995 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
996 {
997 struct cris_unwind_cache *info
998 = cris_frame_unwind_cache (this_frame, this_cache);
999 return info->base;
1000 }
1001
1002 static const struct frame_base cris_frame_base =
1003 {
1004 &cris_frame_unwind,
1005 cris_frame_base_address,
1006 cris_frame_base_address,
1007 cris_frame_base_address
1008 };
1009
1010 /* Frames information. The definition of the struct frame_info is
1011
1012 CORE_ADDR frame
1013 CORE_ADDR pc
1014 enum frame_type type;
1015 CORE_ADDR return_pc
1016 int leaf_function
1017
1018 If the compilation option -fno-omit-frame-pointer is present the
1019 variable frame will be set to the content of R8 which is the frame
1020 pointer register.
1021
1022 The variable pc contains the address where execution is performed
1023 in the present frame. The innermost frame contains the current content
1024 of the register PC. All other frames contain the content of the
1025 register PC in the next frame.
1026
1027 The variable `type' indicates the frame's type: normal, SIGTRAMP
1028 (associated with a signal handler), dummy (associated with a dummy
1029 frame).
1030
1031 The variable return_pc contains the address where execution should be
1032 resumed when the present frame has finished, the return address.
1033
1034 The variable leaf_function is 1 if the return address is in the register
1035 SRP, and 0 if it is on the stack.
1036
1037 Prologue instructions C-code.
1038 The prologue may consist of (-fno-omit-frame-pointer)
1039 1) 2)
1040 push srp
1041 push r8 push r8
1042 move.d sp,r8 move.d sp,r8
1043 subq X,sp subq X,sp
1044 movem rY,[sp] movem rY,[sp]
1045 move.S rZ,[r8-U] move.S rZ,[r8-U]
1046
1047 where 1 is a non-terminal function, and 2 is a leaf-function.
1048
1049 Note that this assumption is extremely brittle, and will break at the
1050 slightest change in GCC's prologue.
1051
1052 If local variables are declared or register contents are saved on stack
1053 the subq-instruction will be present with X as the number of bytes
1054 needed for storage. The reshuffle with respect to r8 may be performed
1055 with any size S (b, w, d) and any of the general registers Z={0..13}.
1056 The offset U should be representable by a signed 8-bit value in all cases.
1057 Thus, the prefix word is assumed to be immediate byte offset mode followed
1058 by another word containing the instruction.
1059
1060 Degenerate cases:
1061 3)
1062 push r8
1063 move.d sp,r8
1064 move.d r8,sp
1065 pop r8
1066
1067 Prologue instructions C++-code.
1068 Case 1) and 2) in the C-code may be followed by
1069
1070 move.d r10,rS ; this
1071 move.d r11,rT ; P1
1072 move.d r12,rU ; P2
1073 move.d r13,rV ; P3
1074 move.S [r8+U],rZ ; P4
1075
1076 if any of the call parameters are stored. The host expects these
1077 instructions to be executed in order to get the call parameters right. */
1078
1079 /* Examine the prologue of a function. The variable ip is the address of
1080 the first instruction of the prologue. The variable limit is the address
1081 of the first instruction after the prologue. The variable fi contains the
1082 information in struct frame_info. The variable frameless_p controls whether
1083 the entire prologue is examined (0) or just enough instructions to
1084 determine that it is a prologue (1). */
1085
1086 static CORE_ADDR
1087 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1088 struct cris_unwind_cache *info)
1089 {
1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1092
1093 /* Present instruction. */
1094 unsigned short insn;
1095
1096 /* Next instruction, lookahead. */
1097 unsigned short insn_next;
1098 int regno;
1099
1100 /* Is there a push fp? */
1101 int have_fp;
1102
1103 /* Number of byte on stack used for local variables and movem. */
1104 int val;
1105
1106 /* Highest register number in a movem. */
1107 int regsave;
1108
1109 /* move.d r<source_register>,rS */
1110 short source_register;
1111
1112 /* Scan limit. */
1113 int limit;
1114
1115 /* This frame is with respect to a leaf until a push srp is found. */
1116 if (info)
1117 {
1118 info->leaf_function = 1;
1119 }
1120
1121 /* Assume nothing on stack. */
1122 val = 0;
1123 regsave = -1;
1124
1125 /* If we were called without a this_frame, that means we were called
1126 from cris_skip_prologue which already tried to find the end of the
1127 prologue through the symbol information. 64 instructions past current
1128 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1129 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1130
1131 /* Find the prologue instructions. */
1132 while (pc > 0 && pc < limit)
1133 {
1134 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1135 pc += 2;
1136 if (insn == 0xE1FC)
1137 {
1138 /* push <reg> 32 bit instruction. */
1139 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1140 pc += 2;
1141 regno = cris_get_operand2 (insn_next);
1142 if (info)
1143 {
1144 info->sp_offset += 4;
1145 }
1146 /* This check, meant to recognize srp, used to be regno ==
1147 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1148 if (insn_next == 0xBE7E)
1149 {
1150 if (info)
1151 {
1152 info->leaf_function = 0;
1153 }
1154 }
1155 else if (insn_next == 0x8FEE)
1156 {
1157 /* push $r8 */
1158 if (info)
1159 {
1160 info->r8_offset = info->sp_offset;
1161 }
1162 }
1163 }
1164 else if (insn == 0x866E)
1165 {
1166 /* move.d sp,r8 */
1167 if (info)
1168 {
1169 info->uses_frame = 1;
1170 }
1171 continue;
1172 }
1173 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1174 && cris_get_mode (insn) == 0x0000
1175 && cris_get_opcode (insn) == 0x000A)
1176 {
1177 /* subq <val>,sp */
1178 if (info)
1179 {
1180 info->sp_offset += cris_get_quick_value (insn);
1181 }
1182 }
1183 else if (cris_get_mode (insn) == 0x0002
1184 && cris_get_opcode (insn) == 0x000F
1185 && cris_get_size (insn) == 0x0003
1186 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1187 {
1188 /* movem r<regsave>,[sp] */
1189 regsave = cris_get_operand2 (insn);
1190 }
1191 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1192 && ((insn & 0x0F00) >> 8) == 0x0001
1193 && (cris_get_signed_offset (insn) < 0))
1194 {
1195 /* Immediate byte offset addressing prefix word with sp as base
1196 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1197 is between 64 and 128.
1198 movem r<regsave>,[sp=sp-<val>] */
1199 if (info)
1200 {
1201 info->sp_offset += -cris_get_signed_offset (insn);
1202 }
1203 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1204 pc += 2;
1205 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1206 && cris_get_opcode (insn_next) == 0x000F
1207 && cris_get_size (insn_next) == 0x0003
1208 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1209 (gdbarch))
1210 {
1211 regsave = cris_get_operand2 (insn_next);
1212 }
1213 else
1214 {
1215 /* The prologue ended before the limit was reached. */
1216 pc -= 4;
1217 break;
1218 }
1219 }
1220 else if (cris_get_mode (insn) == 0x0001
1221 && cris_get_opcode (insn) == 0x0009
1222 && cris_get_size (insn) == 0x0002)
1223 {
1224 /* move.d r<10..13>,r<0..15> */
1225 source_register = cris_get_operand1 (insn);
1226
1227 /* FIXME? In the glibc solibs, the prologue might contain something
1228 like (this example taken from relocate_doit):
1229 move.d $pc,$r0
1230 sub.d 0xfffef426,$r0
1231 which isn't covered by the source_register check below. Question
1232 is whether to add a check for this combo, or make better use of
1233 the limit variable instead. */
1234 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1235 {
1236 /* The prologue ended before the limit was reached. */
1237 pc -= 2;
1238 break;
1239 }
1240 }
1241 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1242 /* The size is a fixed-size. */
1243 && ((insn & 0x0F00) >> 8) == 0x0001
1244 /* A negative offset. */
1245 && (cris_get_signed_offset (insn) < 0))
1246 {
1247 /* move.S rZ,[r8-U] (?) */
1248 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1249 pc += 2;
1250 regno = cris_get_operand2 (insn_next);
1251 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1252 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1253 && cris_get_opcode (insn_next) == 0x000F)
1254 {
1255 /* move.S rZ,[r8-U] */
1256 continue;
1257 }
1258 else
1259 {
1260 /* The prologue ended before the limit was reached. */
1261 pc -= 4;
1262 break;
1263 }
1264 }
1265 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1266 /* The size is a fixed-size. */
1267 && ((insn & 0x0F00) >> 8) == 0x0001
1268 /* A positive offset. */
1269 && (cris_get_signed_offset (insn) > 0))
1270 {
1271 /* move.S [r8+U],rZ (?) */
1272 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1273 pc += 2;
1274 regno = cris_get_operand2 (insn_next);
1275 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1276 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1277 && cris_get_opcode (insn_next) == 0x0009
1278 && cris_get_operand1 (insn_next) == regno)
1279 {
1280 /* move.S [r8+U],rZ */
1281 continue;
1282 }
1283 else
1284 {
1285 /* The prologue ended before the limit was reached. */
1286 pc -= 4;
1287 break;
1288 }
1289 }
1290 else
1291 {
1292 /* The prologue ended before the limit was reached. */
1293 pc -= 2;
1294 break;
1295 }
1296 }
1297
1298 /* We only want to know the end of the prologue when this_frame and info
1299 are NULL (called from cris_skip_prologue i.e.). */
1300 if (this_frame == NULL && info == NULL)
1301 {
1302 return pc;
1303 }
1304
1305 info->size = info->sp_offset;
1306
1307 /* Compute the previous frame's stack pointer (which is also the
1308 frame's ID's stack address), and this frame's base pointer. */
1309 if (info->uses_frame)
1310 {
1311 ULONGEST this_base;
1312 /* The SP was moved to the FP. This indicates that a new frame
1313 was created. Get THIS frame's FP value by unwinding it from
1314 the next frame. */
1315 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1316 info->base = this_base;
1317 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1318
1319 /* The FP points at the last saved register. Adjust the FP back
1320 to before the first saved register giving the SP. */
1321 info->prev_sp = info->base + info->r8_offset;
1322 }
1323 else
1324 {
1325 ULONGEST this_base;
1326 /* Assume that the FP is this frame's SP but with that pushed
1327 stack space added back. */
1328 this_base = get_frame_register_unsigned (this_frame,
1329 gdbarch_sp_regnum (gdbarch));
1330 info->base = this_base;
1331 info->prev_sp = info->base + info->size;
1332 }
1333
1334 /* Calculate the addresses for the saved registers on the stack. */
1335 /* FIXME: The address calculation should really be done on the fly while
1336 we're analyzing the prologue (we only hold one regsave value as it is
1337 now). */
1338 val = info->sp_offset;
1339
1340 for (regno = regsave; regno >= 0; regno--)
1341 {
1342 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1343 val -= 4;
1344 }
1345
1346 /* The previous frame's SP needed to be computed. Save the computed
1347 value. */
1348 trad_frame_set_value (info->saved_regs,
1349 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1350
1351 if (!info->leaf_function)
1352 {
1353 /* SRP saved on the stack. But where? */
1354 if (info->r8_offset == 0)
1355 {
1356 /* R8 not pushed yet. */
1357 info->saved_regs[SRP_REGNUM].addr = info->base;
1358 }
1359 else
1360 {
1361 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1362 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1363 }
1364 }
1365
1366 /* The PC is found in SRP (the actual register or located on the stack). */
1367 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1368 = info->saved_regs[SRP_REGNUM];
1369
1370 return pc;
1371 }
1372
1373 static CORE_ADDR
1374 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1375 struct cris_unwind_cache *info)
1376 {
1377 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1378 ULONGEST this_base;
1379
1380 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1381 meant to be a full-fledged prologue scanner. It is only needed for
1382 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1383
1384 * PLT stubs (library calls)
1385 * call dummys
1386 * signal trampolines
1387
1388 For those cases, it is assumed that there is no actual prologue; that
1389 the stack pointer is not adjusted, and (as a consequence) the return
1390 address is not pushed onto the stack. */
1391
1392 /* We only want to know the end of the prologue when this_frame and info
1393 are NULL (called from cris_skip_prologue i.e.). */
1394 if (this_frame == NULL && info == NULL)
1395 {
1396 return pc;
1397 }
1398
1399 /* The SP is assumed to be unaltered. */
1400 this_base = get_frame_register_unsigned (this_frame,
1401 gdbarch_sp_regnum (gdbarch));
1402 info->base = this_base;
1403 info->prev_sp = this_base;
1404
1405 /* The PC is assumed to be found in SRP. */
1406 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1407 = info->saved_regs[SRP_REGNUM];
1408
1409 return pc;
1410 }
1411
1412 /* Advance pc beyond any function entry prologue instructions at pc
1413 to reach some "real" code. */
1414
1415 /* Given a PC value corresponding to the start of a function, return the PC
1416 of the first instruction after the function prologue. */
1417
1418 static CORE_ADDR
1419 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1420 {
1421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1422 CORE_ADDR func_addr, func_end;
1423 struct symtab_and_line sal;
1424 CORE_ADDR pc_after_prologue;
1425
1426 /* If we have line debugging information, then the end of the prologue
1427 should the first assembly instruction of the first source line. */
1428 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1429 {
1430 sal = find_pc_line (func_addr, 0);
1431 if (sal.end > 0 && sal.end < func_end)
1432 return sal.end;
1433 }
1434
1435 if (tdep->cris_version == 32)
1436 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1437 else
1438 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1439
1440 return pc_after_prologue;
1441 }
1442
1443 static CORE_ADDR
1444 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1445 {
1446 ULONGEST pc;
1447 pc = frame_unwind_register_unsigned (next_frame,
1448 gdbarch_pc_regnum (gdbarch));
1449 return pc;
1450 }
1451
1452 static CORE_ADDR
1453 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1454 {
1455 ULONGEST sp;
1456 sp = frame_unwind_register_unsigned (next_frame,
1457 gdbarch_sp_regnum (gdbarch));
1458 return sp;
1459 }
1460
1461 /* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1466
1467 static const unsigned char *
1468 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1469 CORE_ADDR *pcptr, int *lenptr)
1470 {
1471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1472 static unsigned char break8_insn[] = {0x38, 0xe9};
1473 static unsigned char break15_insn[] = {0x3f, 0xe9};
1474 *lenptr = 2;
1475
1476 if (tdep->cris_mode == cris_mode_guru)
1477 return break15_insn;
1478 else
1479 return break8_insn;
1480 }
1481
1482 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1483 0 otherwise. */
1484
1485 static int
1486 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1487 struct cris_spec_reg spec_reg)
1488 {
1489 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1490 int version = tdep->cris_version;
1491
1492 switch (spec_reg.applicable_version)
1493 {
1494 case cris_ver_version_all:
1495 return 1;
1496 case cris_ver_warning:
1497 /* Indeterminate/obsolete. */
1498 return 0;
1499 case cris_ver_v0_3:
1500 return (version >= 0 && version <= 3);
1501 case cris_ver_v3p:
1502 return (version >= 3);
1503 case cris_ver_v8:
1504 return (version == 8 || version == 9);
1505 case cris_ver_v8p:
1506 return (version >= 8);
1507 case cris_ver_v0_10:
1508 return (version >= 0 && version <= 10);
1509 case cris_ver_v3_10:
1510 return (version >= 3 && version <= 10);
1511 case cris_ver_v8_10:
1512 return (version >= 8 && version <= 10);
1513 case cris_ver_v10:
1514 return (version == 10);
1515 case cris_ver_v10p:
1516 return (version >= 10);
1517 case cris_ver_v32p:
1518 return (version >= 32);
1519 default:
1520 /* Invalid cris version. */
1521 return 0;
1522 }
1523 }
1524
1525 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1526 register, -1 for an invalid register. */
1527
1528 static int
1529 cris_register_size (struct gdbarch *gdbarch, int regno)
1530 {
1531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1532 int i;
1533 int spec_regno;
1534
1535 if (regno >= 0 && regno < NUM_GENREGS)
1536 {
1537 /* General registers (R0 - R15) are 32 bits. */
1538 return 4;
1539 }
1540 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1541 {
1542 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1543 Adjust regno accordingly. */
1544 spec_regno = regno - NUM_GENREGS;
1545
1546 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1547 {
1548 if (cris_spec_regs[i].number == spec_regno
1549 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1550 /* Go with the first applicable register. */
1551 return cris_spec_regs[i].reg_size;
1552 }
1553 /* Special register not applicable to this CRIS version. */
1554 return 0;
1555 }
1556 else if (regno >= gdbarch_pc_regnum (gdbarch)
1557 && regno < gdbarch_num_regs (gdbarch))
1558 {
1559 /* This will apply to CRISv32 only where there are additional registers
1560 after the special registers (pseudo PC and support registers). */
1561 return 4;
1562 }
1563
1564
1565 return -1;
1566 }
1567
1568 /* Nonzero if regno should not be fetched from the target. This is the case
1569 for unimplemented (size 0) and non-existant registers. */
1570
1571 static int
1572 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1573 {
1574 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1575 || (cris_register_size (gdbarch, regno) == 0));
1576 }
1577
1578 /* Nonzero if regno should not be written to the target, for various
1579 reasons. */
1580
1581 static int
1582 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1583 {
1584 /* There are three kinds of registers we refuse to write to.
1585 1. Those that not implemented.
1586 2. Those that are read-only (depends on the processor mode).
1587 3. Those registers to which a write has no effect. */
1588
1589 if (regno < 0
1590 || regno >= gdbarch_num_regs (gdbarch)
1591 || cris_register_size (gdbarch, regno) == 0)
1592 /* Not implemented. */
1593 return 1;
1594
1595 else if (regno == VR_REGNUM)
1596 /* Read-only. */
1597 return 1;
1598
1599 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1600 /* Writing has no effect. */
1601 return 1;
1602
1603 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1604 agent decide whether they are writable. */
1605
1606 return 0;
1607 }
1608
1609 /* Nonzero if regno should not be fetched from the target. This is the case
1610 for unimplemented (size 0) and non-existant registers. */
1611
1612 static int
1613 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1614 {
1615 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1616 || (cris_register_size (gdbarch, regno) == 0));
1617 }
1618
1619 /* Nonzero if regno should not be written to the target, for various
1620 reasons. */
1621
1622 static int
1623 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1624 {
1625 /* There are three kinds of registers we refuse to write to.
1626 1. Those that not implemented.
1627 2. Those that are read-only (depends on the processor mode).
1628 3. Those registers to which a write has no effect. */
1629
1630 if (regno < 0
1631 || regno >= gdbarch_num_regs (gdbarch)
1632 || cris_register_size (gdbarch, regno) == 0)
1633 /* Not implemented. */
1634 return 1;
1635
1636 else if (regno == VR_REGNUM)
1637 /* Read-only. */
1638 return 1;
1639
1640 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1641 /* Writing has no effect. */
1642 return 1;
1643
1644 /* Many special registers are read-only in user mode. Let the debug
1645 agent decide whether they are writable. */
1646
1647 return 0;
1648 }
1649
1650 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1651 of data in register regno. */
1652
1653 static struct type *
1654 cris_register_type (struct gdbarch *gdbarch, int regno)
1655 {
1656 if (regno == gdbarch_pc_regnum (gdbarch))
1657 return builtin_type (gdbarch)->builtin_func_ptr;
1658 else if (regno == gdbarch_sp_regnum (gdbarch)
1659 || regno == CRIS_FP_REGNUM)
1660 return builtin_type (gdbarch)->builtin_data_ptr;
1661 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1662 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1663 /* Note: R8 taken care of previous clause. */
1664 return builtin_type (gdbarch)->builtin_uint32;
1665 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1666 return builtin_type (gdbarch)->builtin_uint16;
1667 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1668 return builtin_type (gdbarch)->builtin_uint8;
1669 else
1670 /* Invalid (unimplemented) register. */
1671 return builtin_type (gdbarch)->builtin_int0;
1672 }
1673
1674 static struct type *
1675 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1676 {
1677 if (regno == gdbarch_pc_regnum (gdbarch))
1678 return builtin_type (gdbarch)->builtin_func_ptr;
1679 else if (regno == gdbarch_sp_regnum (gdbarch)
1680 || regno == CRIS_FP_REGNUM)
1681 return builtin_type (gdbarch)->builtin_data_ptr;
1682 else if ((regno >= 0 && regno <= ACR_REGNUM)
1683 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1684 || (regno == PID_REGNUM)
1685 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1686 /* Note: R8 and SP taken care of by previous clause. */
1687 return builtin_type (gdbarch)->builtin_uint32;
1688 else if (regno == WZ_REGNUM)
1689 return builtin_type (gdbarch)->builtin_uint16;
1690 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1691 return builtin_type (gdbarch)->builtin_uint8;
1692 else
1693 {
1694 /* Invalid (unimplemented) register. Should not happen as there are
1695 no unimplemented CRISv32 registers. */
1696 warning (_("crisv32_register_type: unknown regno %d"), regno);
1697 return builtin_type (gdbarch)->builtin_int0;
1698 }
1699 }
1700
1701 /* Stores a function return value of type type, where valbuf is the address
1702 of the value to be stored. */
1703
1704 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1705
1706 static void
1707 cris_store_return_value (struct type *type, struct regcache *regcache,
1708 const void *valbuf)
1709 {
1710 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1712 ULONGEST val;
1713 int len = TYPE_LENGTH (type);
1714
1715 if (len <= 4)
1716 {
1717 /* Put the return value in R10. */
1718 val = extract_unsigned_integer (valbuf, len, byte_order);
1719 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1720 }
1721 else if (len <= 8)
1722 {
1723 /* Put the return value in R10 and R11. */
1724 val = extract_unsigned_integer (valbuf, 4, byte_order);
1725 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1726 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1727 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1728 }
1729 else
1730 error (_("cris_store_return_value: type length too large."));
1731 }
1732
1733 /* Return the name of register regno as a string. Return NULL for an
1734 invalid or unimplemented register. */
1735
1736 static const char *
1737 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1738 {
1739 int spec_regno;
1740 int i;
1741
1742 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1743 Adjust regno accordingly. */
1744 spec_regno = regno - NUM_GENREGS;
1745
1746 /* Assume nothing about the layout of the cris_spec_regs struct
1747 when searching. */
1748 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1749 {
1750 if (cris_spec_regs[i].number == spec_regno
1751 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1752 /* Go with the first applicable register. */
1753 return cris_spec_regs[i].name;
1754 }
1755 /* Special register not applicable to this CRIS version. */
1756 return NULL;
1757 }
1758
1759 static const char *
1760 cris_register_name (struct gdbarch *gdbarch, int regno)
1761 {
1762 static char *cris_genreg_names[] =
1763 { "r0", "r1", "r2", "r3", \
1764 "r4", "r5", "r6", "r7", \
1765 "r8", "r9", "r10", "r11", \
1766 "r12", "r13", "sp", "pc" };
1767
1768 if (regno >= 0 && regno < NUM_GENREGS)
1769 {
1770 /* General register. */
1771 return cris_genreg_names[regno];
1772 }
1773 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1774 {
1775 return cris_special_register_name (gdbarch, regno);
1776 }
1777 else
1778 {
1779 /* Invalid register. */
1780 return NULL;
1781 }
1782 }
1783
1784 static const char *
1785 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1786 {
1787 static char *crisv32_genreg_names[] =
1788 { "r0", "r1", "r2", "r3", \
1789 "r4", "r5", "r6", "r7", \
1790 "r8", "r9", "r10", "r11", \
1791 "r12", "r13", "sp", "acr"
1792 };
1793
1794 static char *crisv32_sreg_names[] =
1795 { "s0", "s1", "s2", "s3", \
1796 "s4", "s5", "s6", "s7", \
1797 "s8", "s9", "s10", "s11", \
1798 "s12", "s13", "s14", "s15"
1799 };
1800
1801 if (regno >= 0 && regno < NUM_GENREGS)
1802 {
1803 /* General register. */
1804 return crisv32_genreg_names[regno];
1805 }
1806 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1807 {
1808 return cris_special_register_name (gdbarch, regno);
1809 }
1810 else if (regno == gdbarch_pc_regnum (gdbarch))
1811 {
1812 return "pc";
1813 }
1814 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1815 {
1816 return crisv32_sreg_names[regno - S0_REGNUM];
1817 }
1818 else
1819 {
1820 /* Invalid register. */
1821 return NULL;
1822 }
1823 }
1824
1825 /* Convert DWARF register number REG to the appropriate register
1826 number used by GDB. */
1827
1828 static int
1829 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1830 {
1831 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1832 numbering, MOF is 18).
1833 Adapted from gcc/config/cris/cris.h. */
1834 static int cris_dwarf_regmap[] = {
1835 0, 1, 2, 3,
1836 4, 5, 6, 7,
1837 8, 9, 10, 11,
1838 12, 13, 14, 15,
1839 27, -1, -1, -1,
1840 -1, -1, -1, 23,
1841 -1, -1, -1, 27,
1842 -1, -1, -1, -1
1843 };
1844 int regnum = -1;
1845
1846 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1847 regnum = cris_dwarf_regmap[reg];
1848
1849 if (regnum == -1)
1850 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1851
1852 return regnum;
1853 }
1854
1855 /* DWARF-2 frame support. */
1856
1857 static void
1858 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1859 struct dwarf2_frame_state_reg *reg,
1860 struct frame_info *this_frame)
1861 {
1862 /* The return address column. */
1863 if (regnum == gdbarch_pc_regnum (gdbarch))
1864 reg->how = DWARF2_FRAME_REG_RA;
1865
1866 /* The call frame address. */
1867 else if (regnum == gdbarch_sp_regnum (gdbarch))
1868 reg->how = DWARF2_FRAME_REG_CFA;
1869 }
1870
1871 /* Extract from an array regbuf containing the raw register state a function
1872 return value of type type, and copy that, in virtual format, into
1873 valbuf. */
1874
1875 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1876
1877 static void
1878 cris_extract_return_value (struct type *type, struct regcache *regcache,
1879 void *valbuf)
1880 {
1881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1883 ULONGEST val;
1884 int len = TYPE_LENGTH (type);
1885
1886 if (len <= 4)
1887 {
1888 /* Get the return value from R10. */
1889 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1890 store_unsigned_integer (valbuf, len, byte_order, val);
1891 }
1892 else if (len <= 8)
1893 {
1894 /* Get the return value from R10 and R11. */
1895 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1896 store_unsigned_integer (valbuf, 4, byte_order, val);
1897 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1898 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1899 }
1900 else
1901 error (_("cris_extract_return_value: type length too large"));
1902 }
1903
1904 /* Handle the CRIS return value convention. */
1905
1906 static enum return_value_convention
1907 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1908 struct type *type, struct regcache *regcache,
1909 gdb_byte *readbuf, const gdb_byte *writebuf)
1910 {
1911 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1912 || TYPE_CODE (type) == TYPE_CODE_UNION
1913 || TYPE_LENGTH (type) > 8)
1914 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1915 goes on the stack. */
1916 return RETURN_VALUE_STRUCT_CONVENTION;
1917
1918 if (readbuf)
1919 cris_extract_return_value (type, regcache, readbuf);
1920 if (writebuf)
1921 cris_store_return_value (type, regcache, writebuf);
1922
1923 return RETURN_VALUE_REGISTER_CONVENTION;
1924 }
1925
1926 /* Calculates a value that measures how good inst_args constraints an
1927 instruction. It stems from cris_constraint, found in cris-dis.c. */
1928
1929 static int
1930 constraint (unsigned int insn, const signed char *inst_args,
1931 inst_env_type *inst_env)
1932 {
1933 int retval = 0;
1934 int tmp, i;
1935
1936 const char *s = inst_args;
1937
1938 for (; *s; s++)
1939 switch (*s)
1940 {
1941 case 'm':
1942 if ((insn & 0x30) == 0x30)
1943 return -1;
1944 break;
1945
1946 case 'S':
1947 /* A prefix operand. */
1948 if (inst_env->prefix_found)
1949 break;
1950 else
1951 return -1;
1952
1953 case 'B':
1954 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1955 valid "push" size. In case of special register, it may be != 4. */
1956 if (inst_env->prefix_found)
1957 break;
1958 else
1959 return -1;
1960
1961 case 'D':
1962 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1963 if (!retval)
1964 return -1;
1965 else
1966 retval += 4;
1967 break;
1968
1969 case 'P':
1970 tmp = (insn >> 0xC) & 0xF;
1971
1972 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1973 {
1974 /* Since we match four bits, we will give a value of
1975 4 - 1 = 3 in a match. If there is a corresponding
1976 exact match of a special register in another pattern, it
1977 will get a value of 4, which will be higher. This should
1978 be correct in that an exact pattern would match better that
1979 a general pattern.
1980 Note that there is a reason for not returning zero; the
1981 pattern for "clear" is partly matched in the bit-pattern
1982 (the two lower bits must be zero), while the bit-pattern
1983 for a move from a special register is matched in the
1984 register constraint.
1985 This also means we will will have a race condition if
1986 there is a partly match in three bits in the bit pattern. */
1987 if (tmp == cris_spec_regs[i].number)
1988 {
1989 retval += 3;
1990 break;
1991 }
1992 }
1993
1994 if (cris_spec_regs[i].name == NULL)
1995 return -1;
1996 break;
1997 }
1998 return retval;
1999 }
2000
2001 /* Returns the number of bits set in the variable value. */
2002
2003 static int
2004 number_of_bits (unsigned int value)
2005 {
2006 int number_of_bits = 0;
2007
2008 while (value != 0)
2009 {
2010 number_of_bits += 1;
2011 value &= (value - 1);
2012 }
2013 return number_of_bits;
2014 }
2015
2016 /* Finds the address that should contain the single step breakpoint(s).
2017 It stems from code in cris-dis.c. */
2018
2019 static int
2020 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2021 {
2022 int i;
2023 int max_level_of_match = -1;
2024 int max_matched = -1;
2025 int level_of_match;
2026
2027 for (i = 0; cris_opcodes[i].name != NULL; i++)
2028 {
2029 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2030 && ((cris_opcodes[i].lose & insn) == 0)
2031 /* Only CRISv10 instructions, please. */
2032 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2033 {
2034 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2035 if (level_of_match >= 0)
2036 {
2037 level_of_match +=
2038 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2039 if (level_of_match > max_level_of_match)
2040 {
2041 max_matched = i;
2042 max_level_of_match = level_of_match;
2043 if (level_of_match == 16)
2044 {
2045 /* All bits matched, cannot find better. */
2046 break;
2047 }
2048 }
2049 }
2050 }
2051 }
2052 return max_matched;
2053 }
2054
2055 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2056 actually an internal error. */
2057
2058 static int
2059 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2060 {
2061 int i;
2062 int offset;
2063 unsigned short insn;
2064 struct gdbarch *gdbarch = get_frame_arch (frame);
2065 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2066
2067 /* Create a local register image and set the initial state. */
2068 for (i = 0; i < NUM_GENREGS; i++)
2069 {
2070 inst_env->reg[i] =
2071 (unsigned long) get_frame_register_unsigned (frame, i);
2072 }
2073 offset = NUM_GENREGS;
2074 for (i = 0; i < NUM_SPECREGS; i++)
2075 {
2076 inst_env->preg[i] =
2077 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2078 }
2079 inst_env->branch_found = 0;
2080 inst_env->slot_needed = 0;
2081 inst_env->delay_slot_pc_active = 0;
2082 inst_env->prefix_found = 0;
2083 inst_env->invalid = 0;
2084 inst_env->xflag_found = 0;
2085 inst_env->disable_interrupt = 0;
2086 inst_env->byte_order = byte_order;
2087
2088 /* Look for a step target. */
2089 do
2090 {
2091 /* Read an instruction from the client. */
2092 insn = read_memory_unsigned_integer
2093 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2094
2095 /* If the instruction is not in a delay slot the new content of the
2096 PC is [PC] + 2. If the instruction is in a delay slot it is not
2097 that simple. Since a instruction in a delay slot cannot change
2098 the content of the PC, it does not matter what value PC will have.
2099 Just make sure it is a valid instruction. */
2100 if (!inst_env->delay_slot_pc_active)
2101 {
2102 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2103 }
2104 else
2105 {
2106 inst_env->delay_slot_pc_active = 0;
2107 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2108 = inst_env->delay_slot_pc;
2109 }
2110 /* Analyse the present instruction. */
2111 i = find_cris_op (insn, inst_env);
2112 if (i == -1)
2113 {
2114 inst_env->invalid = 1;
2115 }
2116 else
2117 {
2118 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2119 }
2120 } while (!inst_env->invalid
2121 && (inst_env->prefix_found || inst_env->xflag_found
2122 || inst_env->slot_needed));
2123 return i;
2124 }
2125
2126 /* There is no hardware single-step support. The function find_step_target
2127 digs through the opcodes in order to find all possible targets.
2128 Either one ordinary target or two targets for branches may be found. */
2129
2130 static int
2131 cris_software_single_step (struct frame_info *frame)
2132 {
2133 struct gdbarch *gdbarch = get_frame_arch (frame);
2134 struct address_space *aspace = get_frame_address_space (frame);
2135 inst_env_type inst_env;
2136
2137 /* Analyse the present instruction environment and insert
2138 breakpoints. */
2139 int status = find_step_target (frame, &inst_env);
2140 if (status == -1)
2141 {
2142 /* Could not find a target. Things are likely to go downhill
2143 from here. */
2144 warning (_("CRIS software single step could not find a step target."));
2145 }
2146 else
2147 {
2148 /* Insert at most two breakpoints. One for the next PC content
2149 and possibly another one for a branch, jump, etc. */
2150 CORE_ADDR next_pc
2151 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2152 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2153 if (inst_env.branch_found
2154 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2155 {
2156 CORE_ADDR branch_target_address
2157 = (CORE_ADDR) inst_env.branch_break_address;
2158 insert_single_step_breakpoint (gdbarch,
2159 aspace, branch_target_address);
2160 }
2161 }
2162
2163 return 1;
2164 }
2165
2166 /* Calculates the prefix value for quick offset addressing mode. */
2167
2168 static void
2169 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2170 {
2171 /* It's invalid to be in a delay slot. You can't have a prefix to this
2172 instruction (not 100% sure). */
2173 if (inst_env->slot_needed || inst_env->prefix_found)
2174 {
2175 inst_env->invalid = 1;
2176 return;
2177 }
2178
2179 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2180 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2181
2182 /* A prefix doesn't change the xflag_found. But the rest of the flags
2183 need updating. */
2184 inst_env->slot_needed = 0;
2185 inst_env->prefix_found = 1;
2186 }
2187
2188 /* Updates the autoincrement register. The size of the increment is derived
2189 from the size of the operation. The PC is always kept aligned on even
2190 word addresses. */
2191
2192 static void
2193 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2194 {
2195 if (size == INST_BYTE_SIZE)
2196 {
2197 inst_env->reg[cris_get_operand1 (inst)] += 1;
2198
2199 /* The PC must be word aligned, so increase the PC with one
2200 word even if the size is byte. */
2201 if (cris_get_operand1 (inst) == REG_PC)
2202 {
2203 inst_env->reg[REG_PC] += 1;
2204 }
2205 }
2206 else if (size == INST_WORD_SIZE)
2207 {
2208 inst_env->reg[cris_get_operand1 (inst)] += 2;
2209 }
2210 else if (size == INST_DWORD_SIZE)
2211 {
2212 inst_env->reg[cris_get_operand1 (inst)] += 4;
2213 }
2214 else
2215 {
2216 /* Invalid size. */
2217 inst_env->invalid = 1;
2218 }
2219 }
2220
2221 /* Just a forward declaration. */
2222
2223 static unsigned long get_data_from_address (unsigned short *inst,
2224 CORE_ADDR address,
2225 enum bfd_endian byte_order);
2226
2227 /* Calculates the prefix value for the general case of offset addressing
2228 mode. */
2229
2230 static void
2231 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2232 {
2233
2234 long offset;
2235
2236 /* It's invalid to be in a delay slot. */
2237 if (inst_env->slot_needed || inst_env->prefix_found)
2238 {
2239 inst_env->invalid = 1;
2240 return;
2241 }
2242
2243 /* The calculation of prefix_value used to be after process_autoincrement,
2244 but that fails for an instruction such as jsr [$r0+12] which is encoded
2245 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2246 mustn't be incremented until we have read it and what it points at. */
2247 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2248
2249 /* The offset is an indirection of the contents of the operand1 register. */
2250 inst_env->prefix_value +=
2251 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2252 inst_env->byte_order);
2253
2254 if (cris_get_mode (inst) == AUTOINC_MODE)
2255 {
2256 process_autoincrement (cris_get_size (inst), inst, inst_env);
2257 }
2258
2259 /* A prefix doesn't change the xflag_found. But the rest of the flags
2260 need updating. */
2261 inst_env->slot_needed = 0;
2262 inst_env->prefix_found = 1;
2263 }
2264
2265 /* Calculates the prefix value for the index addressing mode. */
2266
2267 static void
2268 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2269 {
2270 /* It's invalid to be in a delay slot. I can't see that it's possible to
2271 have a prefix to this instruction. So I will treat this as invalid. */
2272 if (inst_env->slot_needed || inst_env->prefix_found)
2273 {
2274 inst_env->invalid = 1;
2275 return;
2276 }
2277
2278 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2279
2280 /* The offset is the operand2 value shifted the size of the instruction
2281 to the left. */
2282 inst_env->prefix_value +=
2283 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2284
2285 /* If the PC is operand1 (base) the address used is the address after
2286 the main instruction, i.e. address + 2 (the PC is already compensated
2287 for the prefix operation). */
2288 if (cris_get_operand1 (inst) == REG_PC)
2289 {
2290 inst_env->prefix_value += 2;
2291 }
2292
2293 /* A prefix doesn't change the xflag_found. But the rest of the flags
2294 need updating. */
2295 inst_env->slot_needed = 0;
2296 inst_env->xflag_found = 0;
2297 inst_env->prefix_found = 1;
2298 }
2299
2300 /* Calculates the prefix value for the double indirect addressing mode. */
2301
2302 static void
2303 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2304 {
2305
2306 CORE_ADDR address;
2307
2308 /* It's invalid to be in a delay slot. */
2309 if (inst_env->slot_needed || inst_env->prefix_found)
2310 {
2311 inst_env->invalid = 1;
2312 return;
2313 }
2314
2315 /* The prefix value is one dereference of the contents of the operand1
2316 register. */
2317 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2318 inst_env->prefix_value
2319 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2320
2321 /* Check if the mode is autoincrement. */
2322 if (cris_get_mode (inst) == AUTOINC_MODE)
2323 {
2324 inst_env->reg[cris_get_operand1 (inst)] += 4;
2325 }
2326
2327 /* A prefix doesn't change the xflag_found. But the rest of the flags
2328 need updating. */
2329 inst_env->slot_needed = 0;
2330 inst_env->xflag_found = 0;
2331 inst_env->prefix_found = 1;
2332 }
2333
2334 /* Finds the destination for a branch with 8-bits offset. */
2335
2336 static void
2337 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2338 {
2339
2340 short offset;
2341
2342 /* If we have a prefix or are in a delay slot it's bad. */
2343 if (inst_env->slot_needed || inst_env->prefix_found)
2344 {
2345 inst_env->invalid = 1;
2346 return;
2347 }
2348
2349 /* We have a branch, find out where the branch will land. */
2350 offset = cris_get_branch_short_offset (inst);
2351
2352 /* Check if the offset is signed. */
2353 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2354 {
2355 offset |= 0xFF00;
2356 }
2357
2358 /* The offset ends with the sign bit, set it to zero. The address
2359 should always be word aligned. */
2360 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2361
2362 inst_env->branch_found = 1;
2363 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2364
2365 inst_env->slot_needed = 1;
2366 inst_env->prefix_found = 0;
2367 inst_env->xflag_found = 0;
2368 inst_env->disable_interrupt = 1;
2369 }
2370
2371 /* Finds the destination for a branch with 16-bits offset. */
2372
2373 static void
2374 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2375 {
2376 short offset;
2377
2378 /* If we have a prefix or is in a delay slot it's bad. */
2379 if (inst_env->slot_needed || inst_env->prefix_found)
2380 {
2381 inst_env->invalid = 1;
2382 return;
2383 }
2384
2385 /* We have a branch, find out the offset for the branch. */
2386 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2387 inst_env->byte_order);
2388
2389 /* The instruction is one word longer than normal, so add one word
2390 to the PC. */
2391 inst_env->reg[REG_PC] += 2;
2392
2393 inst_env->branch_found = 1;
2394 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2395
2396
2397 inst_env->slot_needed = 1;
2398 inst_env->prefix_found = 0;
2399 inst_env->xflag_found = 0;
2400 inst_env->disable_interrupt = 1;
2401 }
2402
2403 /* Handles the ABS instruction. */
2404
2405 static void
2406 abs_op (unsigned short inst, inst_env_type *inst_env)
2407 {
2408
2409 long value;
2410
2411 /* ABS can't have a prefix, so it's bad if it does. */
2412 if (inst_env->prefix_found)
2413 {
2414 inst_env->invalid = 1;
2415 return;
2416 }
2417
2418 /* Check if the operation affects the PC. */
2419 if (cris_get_operand2 (inst) == REG_PC)
2420 {
2421
2422 /* It's invalid to change to the PC if we are in a delay slot. */
2423 if (inst_env->slot_needed)
2424 {
2425 inst_env->invalid = 1;
2426 return;
2427 }
2428
2429 value = (long) inst_env->reg[REG_PC];
2430
2431 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2432 if (value != SIGNED_DWORD_MASK)
2433 {
2434 value = -value;
2435 inst_env->reg[REG_PC] = (long) value;
2436 }
2437 }
2438
2439 inst_env->slot_needed = 0;
2440 inst_env->prefix_found = 0;
2441 inst_env->xflag_found = 0;
2442 inst_env->disable_interrupt = 0;
2443 }
2444
2445 /* Handles the ADDI instruction. */
2446
2447 static void
2448 addi_op (unsigned short inst, inst_env_type *inst_env)
2449 {
2450 /* It's invalid to have the PC as base register. And ADDI can't have
2451 a prefix. */
2452 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2453 {
2454 inst_env->invalid = 1;
2455 return;
2456 }
2457
2458 inst_env->slot_needed = 0;
2459 inst_env->prefix_found = 0;
2460 inst_env->xflag_found = 0;
2461 inst_env->disable_interrupt = 0;
2462 }
2463
2464 /* Handles the ASR instruction. */
2465
2466 static void
2467 asr_op (unsigned short inst, inst_env_type *inst_env)
2468 {
2469 int shift_steps;
2470 unsigned long value;
2471 unsigned long signed_extend_mask = 0;
2472
2473 /* ASR can't have a prefix, so check that it doesn't. */
2474 if (inst_env->prefix_found)
2475 {
2476 inst_env->invalid = 1;
2477 return;
2478 }
2479
2480 /* Check if the PC is the target register. */
2481 if (cris_get_operand2 (inst) == REG_PC)
2482 {
2483 /* It's invalid to change the PC in a delay slot. */
2484 if (inst_env->slot_needed)
2485 {
2486 inst_env->invalid = 1;
2487 return;
2488 }
2489 /* Get the number of bits to shift. */
2490 shift_steps
2491 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2492 value = inst_env->reg[REG_PC];
2493
2494 /* Find out how many bits the operation should apply to. */
2495 if (cris_get_size (inst) == INST_BYTE_SIZE)
2496 {
2497 if (value & SIGNED_BYTE_MASK)
2498 {
2499 signed_extend_mask = 0xFF;
2500 signed_extend_mask = signed_extend_mask >> shift_steps;
2501 signed_extend_mask = ~signed_extend_mask;
2502 }
2503 value = value >> shift_steps;
2504 value |= signed_extend_mask;
2505 value &= 0xFF;
2506 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2507 inst_env->reg[REG_PC] |= value;
2508 }
2509 else if (cris_get_size (inst) == INST_WORD_SIZE)
2510 {
2511 if (value & SIGNED_WORD_MASK)
2512 {
2513 signed_extend_mask = 0xFFFF;
2514 signed_extend_mask = signed_extend_mask >> shift_steps;
2515 signed_extend_mask = ~signed_extend_mask;
2516 }
2517 value = value >> shift_steps;
2518 value |= signed_extend_mask;
2519 value &= 0xFFFF;
2520 inst_env->reg[REG_PC] &= 0xFFFF0000;
2521 inst_env->reg[REG_PC] |= value;
2522 }
2523 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2524 {
2525 if (value & SIGNED_DWORD_MASK)
2526 {
2527 signed_extend_mask = 0xFFFFFFFF;
2528 signed_extend_mask = signed_extend_mask >> shift_steps;
2529 signed_extend_mask = ~signed_extend_mask;
2530 }
2531 value = value >> shift_steps;
2532 value |= signed_extend_mask;
2533 inst_env->reg[REG_PC] = value;
2534 }
2535 }
2536 inst_env->slot_needed = 0;
2537 inst_env->prefix_found = 0;
2538 inst_env->xflag_found = 0;
2539 inst_env->disable_interrupt = 0;
2540 }
2541
2542 /* Handles the ASRQ instruction. */
2543
2544 static void
2545 asrq_op (unsigned short inst, inst_env_type *inst_env)
2546 {
2547
2548 int shift_steps;
2549 unsigned long value;
2550 unsigned long signed_extend_mask = 0;
2551
2552 /* ASRQ can't have a prefix, so check that it doesn't. */
2553 if (inst_env->prefix_found)
2554 {
2555 inst_env->invalid = 1;
2556 return;
2557 }
2558
2559 /* Check if the PC is the target register. */
2560 if (cris_get_operand2 (inst) == REG_PC)
2561 {
2562
2563 /* It's invalid to change the PC in a delay slot. */
2564 if (inst_env->slot_needed)
2565 {
2566 inst_env->invalid = 1;
2567 return;
2568 }
2569 /* The shift size is given as a 5 bit quick value, i.e. we don't
2570 want the the sign bit of the quick value. */
2571 shift_steps = cris_get_asr_shift_steps (inst);
2572 value = inst_env->reg[REG_PC];
2573 if (value & SIGNED_DWORD_MASK)
2574 {
2575 signed_extend_mask = 0xFFFFFFFF;
2576 signed_extend_mask = signed_extend_mask >> shift_steps;
2577 signed_extend_mask = ~signed_extend_mask;
2578 }
2579 value = value >> shift_steps;
2580 value |= signed_extend_mask;
2581 inst_env->reg[REG_PC] = value;
2582 }
2583 inst_env->slot_needed = 0;
2584 inst_env->prefix_found = 0;
2585 inst_env->xflag_found = 0;
2586 inst_env->disable_interrupt = 0;
2587 }
2588
2589 /* Handles the AX, EI and SETF instruction. */
2590
2591 static void
2592 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2593 {
2594 if (inst_env->prefix_found)
2595 {
2596 inst_env->invalid = 1;
2597 return;
2598 }
2599 /* Check if the instruction is setting the X flag. */
2600 if (cris_is_xflag_bit_on (inst))
2601 {
2602 inst_env->xflag_found = 1;
2603 }
2604 else
2605 {
2606 inst_env->xflag_found = 0;
2607 }
2608 inst_env->slot_needed = 0;
2609 inst_env->prefix_found = 0;
2610 inst_env->disable_interrupt = 1;
2611 }
2612
2613 /* Checks if the instruction is in assign mode. If so, it updates the assign
2614 register. Note that check_assign assumes that the caller has checked that
2615 there is a prefix to this instruction. The mode check depends on this. */
2616
2617 static void
2618 check_assign (unsigned short inst, inst_env_type *inst_env)
2619 {
2620 /* Check if it's an assign addressing mode. */
2621 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2622 {
2623 /* Assign the prefix value to operand 1. */
2624 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2625 }
2626 }
2627
2628 /* Handles the 2-operand BOUND instruction. */
2629
2630 static void
2631 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2632 {
2633 /* It's invalid to have the PC as the index operand. */
2634 if (cris_get_operand2 (inst) == REG_PC)
2635 {
2636 inst_env->invalid = 1;
2637 return;
2638 }
2639 /* Check if we have a prefix. */
2640 if (inst_env->prefix_found)
2641 {
2642 check_assign (inst, inst_env);
2643 }
2644 /* Check if this is an autoincrement mode. */
2645 else if (cris_get_mode (inst) == AUTOINC_MODE)
2646 {
2647 /* It's invalid to change the PC in a delay slot. */
2648 if (inst_env->slot_needed)
2649 {
2650 inst_env->invalid = 1;
2651 return;
2652 }
2653 process_autoincrement (cris_get_size (inst), inst, inst_env);
2654 }
2655 inst_env->slot_needed = 0;
2656 inst_env->prefix_found = 0;
2657 inst_env->xflag_found = 0;
2658 inst_env->disable_interrupt = 0;
2659 }
2660
2661 /* Handles the 3-operand BOUND instruction. */
2662
2663 static void
2664 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2665 {
2666 /* It's an error if we haven't got a prefix. And it's also an error
2667 if the PC is the destination register. */
2668 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2669 {
2670 inst_env->invalid = 1;
2671 return;
2672 }
2673 inst_env->slot_needed = 0;
2674 inst_env->prefix_found = 0;
2675 inst_env->xflag_found = 0;
2676 inst_env->disable_interrupt = 0;
2677 }
2678
2679 /* Clears the status flags in inst_env. */
2680
2681 static void
2682 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2683 {
2684 /* It's an error if we have got a prefix. */
2685 if (inst_env->prefix_found)
2686 {
2687 inst_env->invalid = 1;
2688 return;
2689 }
2690
2691 inst_env->slot_needed = 0;
2692 inst_env->prefix_found = 0;
2693 inst_env->xflag_found = 0;
2694 inst_env->disable_interrupt = 0;
2695 }
2696
2697 /* Clears the status flags in inst_env. */
2698
2699 static void
2700 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2701 {
2702 /* It's an error if we have got a prefix. */
2703 if (inst_env->prefix_found)
2704 {
2705 inst_env->invalid = 1;
2706 return;
2707 }
2708
2709 inst_env->slot_needed = 0;
2710 inst_env->prefix_found = 0;
2711 inst_env->xflag_found = 0;
2712 inst_env->disable_interrupt = 1;
2713 }
2714
2715 /* Handles the CLEAR instruction if it's in register mode. */
2716
2717 static void
2718 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2719 {
2720 /* Check if the target is the PC. */
2721 if (cris_get_operand2 (inst) == REG_PC)
2722 {
2723 /* The instruction will clear the instruction's size bits. */
2724 int clear_size = cris_get_clear_size (inst);
2725 if (clear_size == INST_BYTE_SIZE)
2726 {
2727 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2728 }
2729 if (clear_size == INST_WORD_SIZE)
2730 {
2731 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2732 }
2733 if (clear_size == INST_DWORD_SIZE)
2734 {
2735 inst_env->delay_slot_pc = 0x0;
2736 }
2737 /* The jump will be delayed with one delay slot. So we need a delay
2738 slot. */
2739 inst_env->slot_needed = 1;
2740 inst_env->delay_slot_pc_active = 1;
2741 }
2742 else
2743 {
2744 /* The PC will not change => no delay slot. */
2745 inst_env->slot_needed = 0;
2746 }
2747 inst_env->prefix_found = 0;
2748 inst_env->xflag_found = 0;
2749 inst_env->disable_interrupt = 0;
2750 }
2751
2752 /* Handles the TEST instruction if it's in register mode. */
2753
2754 static void
2755 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2756 {
2757 /* It's an error if we have got a prefix. */
2758 if (inst_env->prefix_found)
2759 {
2760 inst_env->invalid = 1;
2761 return;
2762 }
2763 inst_env->slot_needed = 0;
2764 inst_env->prefix_found = 0;
2765 inst_env->xflag_found = 0;
2766 inst_env->disable_interrupt = 0;
2767
2768 }
2769
2770 /* Handles the CLEAR and TEST instruction if the instruction isn't
2771 in register mode. */
2772
2773 static void
2774 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2775 {
2776 /* Check if we are in a prefix mode. */
2777 if (inst_env->prefix_found)
2778 {
2779 /* The only way the PC can change is if this instruction is in
2780 assign addressing mode. */
2781 check_assign (inst, inst_env);
2782 }
2783 /* Indirect mode can't change the PC so just check if the mode is
2784 autoincrement. */
2785 else if (cris_get_mode (inst) == AUTOINC_MODE)
2786 {
2787 process_autoincrement (cris_get_size (inst), inst, inst_env);
2788 }
2789 inst_env->slot_needed = 0;
2790 inst_env->prefix_found = 0;
2791 inst_env->xflag_found = 0;
2792 inst_env->disable_interrupt = 0;
2793 }
2794
2795 /* Checks that the PC isn't the destination register or the instructions has
2796 a prefix. */
2797
2798 static void
2799 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2800 {
2801 /* It's invalid to have the PC as the destination. The instruction can't
2802 have a prefix. */
2803 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2804 {
2805 inst_env->invalid = 1;
2806 return;
2807 }
2808
2809 inst_env->slot_needed = 0;
2810 inst_env->prefix_found = 0;
2811 inst_env->xflag_found = 0;
2812 inst_env->disable_interrupt = 0;
2813 }
2814
2815 /* Checks that the instruction doesn't have a prefix. */
2816
2817 static void
2818 break_op (unsigned short inst, inst_env_type *inst_env)
2819 {
2820 /* The instruction can't have a prefix. */
2821 if (inst_env->prefix_found)
2822 {
2823 inst_env->invalid = 1;
2824 return;
2825 }
2826
2827 inst_env->slot_needed = 0;
2828 inst_env->prefix_found = 0;
2829 inst_env->xflag_found = 0;
2830 inst_env->disable_interrupt = 1;
2831 }
2832
2833 /* Checks that the PC isn't the destination register and that the instruction
2834 doesn't have a prefix. */
2835
2836 static void
2837 scc_op (unsigned short inst, inst_env_type *inst_env)
2838 {
2839 /* It's invalid to have the PC as the destination. The instruction can't
2840 have a prefix. */
2841 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2842 {
2843 inst_env->invalid = 1;
2844 return;
2845 }
2846
2847 inst_env->slot_needed = 0;
2848 inst_env->prefix_found = 0;
2849 inst_env->xflag_found = 0;
2850 inst_env->disable_interrupt = 1;
2851 }
2852
2853 /* Handles the register mode JUMP instruction. */
2854
2855 static void
2856 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2857 {
2858 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2859 you can't have a prefix. */
2860 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2861 {
2862 inst_env->invalid = 1;
2863 return;
2864 }
2865
2866 /* Just change the PC. */
2867 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2868 inst_env->slot_needed = 0;
2869 inst_env->prefix_found = 0;
2870 inst_env->xflag_found = 0;
2871 inst_env->disable_interrupt = 1;
2872 }
2873
2874 /* Handles the JUMP instruction for all modes except register. */
2875
2876 static void
2877 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2878 {
2879 unsigned long newpc;
2880 CORE_ADDR address;
2881
2882 /* It's invalid to do a JUMP in a delay slot. */
2883 if (inst_env->slot_needed)
2884 {
2885 inst_env->invalid = 1;
2886 }
2887 else
2888 {
2889 /* Check if we have a prefix. */
2890 if (inst_env->prefix_found)
2891 {
2892 check_assign (inst, inst_env);
2893
2894 /* Get the new value for the the PC. */
2895 newpc =
2896 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2897 4, inst_env->byte_order);
2898 }
2899 else
2900 {
2901 /* Get the new value for the PC. */
2902 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2903 newpc = read_memory_unsigned_integer (address,
2904 4, inst_env->byte_order);
2905
2906 /* Check if we should increment a register. */
2907 if (cris_get_mode (inst) == AUTOINC_MODE)
2908 {
2909 inst_env->reg[cris_get_operand1 (inst)] += 4;
2910 }
2911 }
2912 inst_env->reg[REG_PC] = newpc;
2913 }
2914 inst_env->slot_needed = 0;
2915 inst_env->prefix_found = 0;
2916 inst_env->xflag_found = 0;
2917 inst_env->disable_interrupt = 1;
2918 }
2919
2920 /* Handles moves to special registers (aka P-register) for all modes. */
2921
2922 static void
2923 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2924 inst_env_type *inst_env)
2925 {
2926 if (inst_env->prefix_found)
2927 {
2928 /* The instruction has a prefix that means we are only interested if
2929 the instruction is in assign mode. */
2930 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2931 {
2932 /* The prefix handles the problem if we are in a delay slot. */
2933 if (cris_get_operand1 (inst) == REG_PC)
2934 {
2935 /* Just take care of the assign. */
2936 check_assign (inst, inst_env);
2937 }
2938 }
2939 }
2940 else if (cris_get_mode (inst) == AUTOINC_MODE)
2941 {
2942 /* The instruction doesn't have a prefix, the only case left that we
2943 are interested in is the autoincrement mode. */
2944 if (cris_get_operand1 (inst) == REG_PC)
2945 {
2946 /* If the PC is to be incremented it's invalid to be in a
2947 delay slot. */
2948 if (inst_env->slot_needed)
2949 {
2950 inst_env->invalid = 1;
2951 return;
2952 }
2953
2954 /* The increment depends on the size of the special register. */
2955 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2956 {
2957 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2958 }
2959 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2960 {
2961 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2962 }
2963 else
2964 {
2965 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2966 }
2967 }
2968 }
2969 inst_env->slot_needed = 0;
2970 inst_env->prefix_found = 0;
2971 inst_env->xflag_found = 0;
2972 inst_env->disable_interrupt = 1;
2973 }
2974
2975 /* Handles moves from special registers (aka P-register) for all modes
2976 except register. */
2977
2978 static void
2979 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2980 inst_env_type *inst_env)
2981 {
2982 if (inst_env->prefix_found)
2983 {
2984 /* The instruction has a prefix that means we are only interested if
2985 the instruction is in assign mode. */
2986 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2987 {
2988 /* The prefix handles the problem if we are in a delay slot. */
2989 if (cris_get_operand1 (inst) == REG_PC)
2990 {
2991 /* Just take care of the assign. */
2992 check_assign (inst, inst_env);
2993 }
2994 }
2995 }
2996 /* The instruction doesn't have a prefix, the only case left that we
2997 are interested in is the autoincrement mode. */
2998 else if (cris_get_mode (inst) == AUTOINC_MODE)
2999 {
3000 if (cris_get_operand1 (inst) == REG_PC)
3001 {
3002 /* If the PC is to be incremented it's invalid to be in a
3003 delay slot. */
3004 if (inst_env->slot_needed)
3005 {
3006 inst_env->invalid = 1;
3007 return;
3008 }
3009
3010 /* The increment depends on the size of the special register. */
3011 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3012 {
3013 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3014 }
3015 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3016 {
3017 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3018 }
3019 else
3020 {
3021 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3022 }
3023 }
3024 }
3025 inst_env->slot_needed = 0;
3026 inst_env->prefix_found = 0;
3027 inst_env->xflag_found = 0;
3028 inst_env->disable_interrupt = 1;
3029 }
3030
3031 /* Handles moves from special registers (aka P-register) when the mode
3032 is register. */
3033
3034 static void
3035 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3036 {
3037 /* Register mode move from special register can't have a prefix. */
3038 if (inst_env->prefix_found)
3039 {
3040 inst_env->invalid = 1;
3041 return;
3042 }
3043
3044 if (cris_get_operand1 (inst) == REG_PC)
3045 {
3046 /* It's invalid to change the PC in a delay slot. */
3047 if (inst_env->slot_needed)
3048 {
3049 inst_env->invalid = 1;
3050 return;
3051 }
3052 /* The destination is the PC, the jump will have a delay slot. */
3053 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3054 inst_env->slot_needed = 1;
3055 inst_env->delay_slot_pc_active = 1;
3056 }
3057 else
3058 {
3059 /* If the destination isn't PC, there will be no jump. */
3060 inst_env->slot_needed = 0;
3061 }
3062 inst_env->prefix_found = 0;
3063 inst_env->xflag_found = 0;
3064 inst_env->disable_interrupt = 1;
3065 }
3066
3067 /* Handles the MOVEM from memory to general register instruction. */
3068
3069 static void
3070 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3071 {
3072 if (inst_env->prefix_found)
3073 {
3074 /* The prefix handles the problem if we are in a delay slot. Is the
3075 MOVEM instruction going to change the PC? */
3076 if (cris_get_operand2 (inst) >= REG_PC)
3077 {
3078 inst_env->reg[REG_PC] =
3079 read_memory_unsigned_integer (inst_env->prefix_value,
3080 4, inst_env->byte_order);
3081 }
3082 /* The assign value is the value after the increment. Normally, the
3083 assign value is the value before the increment. */
3084 if ((cris_get_operand1 (inst) == REG_PC)
3085 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3086 {
3087 inst_env->reg[REG_PC] = inst_env->prefix_value;
3088 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3089 }
3090 }
3091 else
3092 {
3093 /* Is the MOVEM instruction going to change the PC? */
3094 if (cris_get_operand2 (inst) == REG_PC)
3095 {
3096 /* It's invalid to change the PC in a delay slot. */
3097 if (inst_env->slot_needed)
3098 {
3099 inst_env->invalid = 1;
3100 return;
3101 }
3102 inst_env->reg[REG_PC] =
3103 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3104 4, inst_env->byte_order);
3105 }
3106 /* The increment is not depending on the size, instead it's depending
3107 on the number of registers loaded from memory. */
3108 if ((cris_get_operand1 (inst) == REG_PC)
3109 && (cris_get_mode (inst) == AUTOINC_MODE))
3110 {
3111 /* It's invalid to change the PC in a delay slot. */
3112 if (inst_env->slot_needed)
3113 {
3114 inst_env->invalid = 1;
3115 return;
3116 }
3117 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3118 }
3119 }
3120 inst_env->slot_needed = 0;
3121 inst_env->prefix_found = 0;
3122 inst_env->xflag_found = 0;
3123 inst_env->disable_interrupt = 0;
3124 }
3125
3126 /* Handles the MOVEM to memory from general register instruction. */
3127
3128 static void
3129 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3130 {
3131 if (inst_env->prefix_found)
3132 {
3133 /* The assign value is the value after the increment. Normally, the
3134 assign value is the value before the increment. */
3135 if ((cris_get_operand1 (inst) == REG_PC)
3136 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3137 {
3138 /* The prefix handles the problem if we are in a delay slot. */
3139 inst_env->reg[REG_PC] = inst_env->prefix_value;
3140 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3141 }
3142 }
3143 else
3144 {
3145 /* The increment is not depending on the size, instead it's depending
3146 on the number of registers loaded to memory. */
3147 if ((cris_get_operand1 (inst) == REG_PC)
3148 && (cris_get_mode (inst) == AUTOINC_MODE))
3149 {
3150 /* It's invalid to change the PC in a delay slot. */
3151 if (inst_env->slot_needed)
3152 {
3153 inst_env->invalid = 1;
3154 return;
3155 }
3156 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3157 }
3158 }
3159 inst_env->slot_needed = 0;
3160 inst_env->prefix_found = 0;
3161 inst_env->xflag_found = 0;
3162 inst_env->disable_interrupt = 0;
3163 }
3164
3165 /* Handles the intructions that's not yet implemented, by setting
3166 inst_env->invalid to true. */
3167
3168 static void
3169 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3170 {
3171 inst_env->invalid = 1;
3172 }
3173
3174 /* Handles the XOR instruction. */
3175
3176 static void
3177 xor_op (unsigned short inst, inst_env_type *inst_env)
3178 {
3179 /* XOR can't have a prefix. */
3180 if (inst_env->prefix_found)
3181 {
3182 inst_env->invalid = 1;
3183 return;
3184 }
3185
3186 /* Check if the PC is the target. */
3187 if (cris_get_operand2 (inst) == REG_PC)
3188 {
3189 /* It's invalid to change the PC in a delay slot. */
3190 if (inst_env->slot_needed)
3191 {
3192 inst_env->invalid = 1;
3193 return;
3194 }
3195 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3196 }
3197 inst_env->slot_needed = 0;
3198 inst_env->prefix_found = 0;
3199 inst_env->xflag_found = 0;
3200 inst_env->disable_interrupt = 0;
3201 }
3202
3203 /* Handles the MULS instruction. */
3204
3205 static void
3206 muls_op (unsigned short inst, inst_env_type *inst_env)
3207 {
3208 /* MULS/U can't have a prefix. */
3209 if (inst_env->prefix_found)
3210 {
3211 inst_env->invalid = 1;
3212 return;
3213 }
3214
3215 /* Consider it invalid if the PC is the target. */
3216 if (cris_get_operand2 (inst) == REG_PC)
3217 {
3218 inst_env->invalid = 1;
3219 return;
3220 }
3221 inst_env->slot_needed = 0;
3222 inst_env->prefix_found = 0;
3223 inst_env->xflag_found = 0;
3224 inst_env->disable_interrupt = 0;
3225 }
3226
3227 /* Handles the MULU instruction. */
3228
3229 static void
3230 mulu_op (unsigned short inst, inst_env_type *inst_env)
3231 {
3232 /* MULS/U can't have a prefix. */
3233 if (inst_env->prefix_found)
3234 {
3235 inst_env->invalid = 1;
3236 return;
3237 }
3238
3239 /* Consider it invalid if the PC is the target. */
3240 if (cris_get_operand2 (inst) == REG_PC)
3241 {
3242 inst_env->invalid = 1;
3243 return;
3244 }
3245 inst_env->slot_needed = 0;
3246 inst_env->prefix_found = 0;
3247 inst_env->xflag_found = 0;
3248 inst_env->disable_interrupt = 0;
3249 }
3250
3251 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3252 The MOVE instruction is the move from source to register. */
3253
3254 static void
3255 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3256 unsigned long source1, unsigned long source2)
3257 {
3258 unsigned long pc_mask;
3259 unsigned long operation_mask;
3260
3261 /* Find out how many bits the operation should apply to. */
3262 if (cris_get_size (inst) == INST_BYTE_SIZE)
3263 {
3264 pc_mask = 0xFFFFFF00;
3265 operation_mask = 0xFF;
3266 }
3267 else if (cris_get_size (inst) == INST_WORD_SIZE)
3268 {
3269 pc_mask = 0xFFFF0000;
3270 operation_mask = 0xFFFF;
3271 }
3272 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3273 {
3274 pc_mask = 0x0;
3275 operation_mask = 0xFFFFFFFF;
3276 }
3277 else
3278 {
3279 /* The size is out of range. */
3280 inst_env->invalid = 1;
3281 return;
3282 }
3283
3284 /* The instruction just works on uw_operation_mask bits. */
3285 source2 &= operation_mask;
3286 source1 &= operation_mask;
3287
3288 /* Now calculate the result. The opcode's 3 first bits separates
3289 the different actions. */
3290 switch (cris_get_opcode (inst) & 7)
3291 {
3292 case 0: /* add */
3293 source1 += source2;
3294 break;
3295
3296 case 1: /* move */
3297 source1 = source2;
3298 break;
3299
3300 case 2: /* subtract */
3301 source1 -= source2;
3302 break;
3303
3304 case 3: /* compare */
3305 break;
3306
3307 case 4: /* and */
3308 source1 &= source2;
3309 break;
3310
3311 case 5: /* or */
3312 source1 |= source2;
3313 break;
3314
3315 default:
3316 inst_env->invalid = 1;
3317 return;
3318
3319 break;
3320 }
3321
3322 /* Make sure that the result doesn't contain more than the instruction
3323 size bits. */
3324 source2 &= operation_mask;
3325
3326 /* Calculate the new breakpoint address. */
3327 inst_env->reg[REG_PC] &= pc_mask;
3328 inst_env->reg[REG_PC] |= source1;
3329
3330 }
3331
3332 /* Extends the value from either byte or word size to a dword. If the mode
3333 is zero extend then the value is extended with zero. If instead the mode
3334 is signed extend the sign bit of the value is taken into consideration. */
3335
3336 static unsigned long
3337 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3338 {
3339 /* The size can be either byte or word, check which one it is.
3340 Don't check the highest bit, it's indicating if it's a zero
3341 or sign extend. */
3342 if (cris_get_size (*inst) & INST_WORD_SIZE)
3343 {
3344 /* Word size. */
3345 value &= 0xFFFF;
3346
3347 /* Check if the instruction is signed extend. If so, check if value has
3348 the sign bit on. */
3349 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3350 {
3351 value |= SIGNED_WORD_EXTEND_MASK;
3352 }
3353 }
3354 else
3355 {
3356 /* Byte size. */
3357 value &= 0xFF;
3358
3359 /* Check if the instruction is signed extend. If so, check if value has
3360 the sign bit on. */
3361 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3362 {
3363 value |= SIGNED_BYTE_EXTEND_MASK;
3364 }
3365 }
3366 /* The size should now be dword. */
3367 cris_set_size_to_dword (inst);
3368 return value;
3369 }
3370
3371 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3372 instruction. The MOVE instruction is the move from source to register. */
3373
3374 static void
3375 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3376 inst_env_type *inst_env)
3377 {
3378 unsigned long operand1;
3379 unsigned long operand2;
3380
3381 /* It's invalid to have a prefix to the instruction. This is a register
3382 mode instruction and can't have a prefix. */
3383 if (inst_env->prefix_found)
3384 {
3385 inst_env->invalid = 1;
3386 return;
3387 }
3388 /* Check if the instruction has PC as its target. */
3389 if (cris_get_operand2 (inst) == REG_PC)
3390 {
3391 if (inst_env->slot_needed)
3392 {
3393 inst_env->invalid = 1;
3394 return;
3395 }
3396 /* The instruction has the PC as its target register. */
3397 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3398 operand2 = inst_env->reg[REG_PC];
3399
3400 /* Check if it's a extend, signed or zero instruction. */
3401 if (cris_get_opcode (inst) < 4)
3402 {
3403 operand1 = do_sign_or_zero_extend (operand1, &inst);
3404 }
3405 /* Calculate the PC value after the instruction, i.e. where the
3406 breakpoint should be. The order of the udw_operands is vital. */
3407 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3408 }
3409 inst_env->slot_needed = 0;
3410 inst_env->prefix_found = 0;
3411 inst_env->xflag_found = 0;
3412 inst_env->disable_interrupt = 0;
3413 }
3414
3415 /* Returns the data contained at address. The size of the data is derived from
3416 the size of the operation. If the instruction is a zero or signed
3417 extend instruction, the size field is changed in instruction. */
3418
3419 static unsigned long
3420 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3421 enum bfd_endian byte_order)
3422 {
3423 int size = cris_get_size (*inst);
3424 unsigned long value;
3425
3426 /* If it's an extend instruction we don't want the signed extend bit,
3427 because it influences the size. */
3428 if (cris_get_opcode (*inst) < 4)
3429 {
3430 size &= ~SIGNED_EXTEND_BIT_MASK;
3431 }
3432 /* Is there a need for checking the size? Size should contain the number of
3433 bytes to read. */
3434 size = 1 << size;
3435 value = read_memory_unsigned_integer (address, size, byte_order);
3436
3437 /* Check if it's an extend, signed or zero instruction. */
3438 if (cris_get_opcode (*inst) < 4)
3439 {
3440 value = do_sign_or_zero_extend (value, inst);
3441 }
3442 return value;
3443 }
3444
3445 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3446 instructions. The MOVE instruction is the move from source to register. */
3447
3448 static void
3449 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3450 inst_env_type *inst_env)
3451 {
3452 unsigned long operand2;
3453 unsigned long operand3;
3454
3455 check_assign (inst, inst_env);
3456 if (cris_get_operand2 (inst) == REG_PC)
3457 {
3458 operand2 = inst_env->reg[REG_PC];
3459
3460 /* Get the value of the third operand. */
3461 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3462 inst_env->byte_order);
3463
3464 /* Calculate the PC value after the instruction, i.e. where the
3465 breakpoint should be. The order of the udw_operands is vital. */
3466 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3467 }
3468 inst_env->slot_needed = 0;
3469 inst_env->prefix_found = 0;
3470 inst_env->xflag_found = 0;
3471 inst_env->disable_interrupt = 0;
3472 }
3473
3474 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3475 OR instructions. Note that for this to work as expected, the calling
3476 function must have made sure that there is a prefix to this instruction. */
3477
3478 static void
3479 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3480 inst_env_type *inst_env)
3481 {
3482 unsigned long operand2;
3483 unsigned long operand3;
3484
3485 if (cris_get_operand1 (inst) == REG_PC)
3486 {
3487 /* The PC will be changed by the instruction. */
3488 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3489
3490 /* Get the value of the third operand. */
3491 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3492 inst_env->byte_order);
3493
3494 /* Calculate the PC value after the instruction, i.e. where the
3495 breakpoint should be. */
3496 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3497 }
3498 inst_env->slot_needed = 0;
3499 inst_env->prefix_found = 0;
3500 inst_env->xflag_found = 0;
3501 inst_env->disable_interrupt = 0;
3502 }
3503
3504 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3505 instructions. The MOVE instruction is the move from source to register. */
3506
3507 static void
3508 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3509 inst_env_type *inst_env)
3510 {
3511 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3512 {
3513 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3514 SUB, AND or OR something weird is going on (if everything works these
3515 instructions should end up in the three operand version). */
3516 inst_env->invalid = 1;
3517 return;
3518 }
3519 else
3520 {
3521 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3522 so use it. */
3523 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3524 }
3525 inst_env->slot_needed = 0;
3526 inst_env->prefix_found = 0;
3527 inst_env->xflag_found = 0;
3528 inst_env->disable_interrupt = 0;
3529 }
3530
3531 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3532 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3533 source to register. */
3534
3535 static void
3536 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3537 inst_env_type *inst_env)
3538 {
3539 unsigned long operand1;
3540 unsigned long operand2;
3541 unsigned long operand3;
3542 int size;
3543
3544 /* The instruction is either an indirect or autoincrement addressing mode.
3545 Check if the destination register is the PC. */
3546 if (cris_get_operand2 (inst) == REG_PC)
3547 {
3548 /* Must be done here, get_data_from_address may change the size
3549 field. */
3550 size = cris_get_size (inst);
3551 operand2 = inst_env->reg[REG_PC];
3552
3553 /* Get the value of the third operand, i.e. the indirect operand. */
3554 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3555 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3556
3557 /* Calculate the PC value after the instruction, i.e. where the
3558 breakpoint should be. The order of the udw_operands is vital. */
3559 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3560 }
3561 /* If this is an autoincrement addressing mode, check if the increment
3562 changes the PC. */
3563 if ((cris_get_operand1 (inst) == REG_PC)
3564 && (cris_get_mode (inst) == AUTOINC_MODE))
3565 {
3566 /* Get the size field. */
3567 size = cris_get_size (inst);
3568
3569 /* If it's an extend instruction we don't want the signed extend bit,
3570 because it influences the size. */
3571 if (cris_get_opcode (inst) < 4)
3572 {
3573 size &= ~SIGNED_EXTEND_BIT_MASK;
3574 }
3575 process_autoincrement (size, inst, inst_env);
3576 }
3577 inst_env->slot_needed = 0;
3578 inst_env->prefix_found = 0;
3579 inst_env->xflag_found = 0;
3580 inst_env->disable_interrupt = 0;
3581 }
3582
3583 /* Handles the two-operand addressing mode, all modes except register, for
3584 the ADD, SUB CMP, AND and OR instruction. */
3585
3586 static void
3587 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3588 inst_env_type *inst_env)
3589 {
3590 if (inst_env->prefix_found)
3591 {
3592 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3593 {
3594 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3595 }
3596 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3597 {
3598 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3599 }
3600 else
3601 {
3602 /* The mode is invalid for a prefixed base instruction. */
3603 inst_env->invalid = 1;
3604 return;
3605 }
3606 }
3607 else
3608 {
3609 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3610 }
3611 }
3612
3613 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3614
3615 static void
3616 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3617 {
3618 unsigned long operand1;
3619 unsigned long operand2;
3620
3621 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3622 instruction and can't have a prefix. */
3623 if (inst_env->prefix_found)
3624 {
3625 inst_env->invalid = 1;
3626 return;
3627 }
3628
3629 /* Check if the instruction has PC as its target. */
3630 if (cris_get_operand2 (inst) == REG_PC)
3631 {
3632 if (inst_env->slot_needed)
3633 {
3634 inst_env->invalid = 1;
3635 return;
3636 }
3637 operand1 = cris_get_quick_value (inst);
3638 operand2 = inst_env->reg[REG_PC];
3639
3640 /* The size should now be dword. */
3641 cris_set_size_to_dword (&inst);
3642
3643 /* Calculate the PC value after the instruction, i.e. where the
3644 breakpoint should be. */
3645 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3646 }
3647 inst_env->slot_needed = 0;
3648 inst_env->prefix_found = 0;
3649 inst_env->xflag_found = 0;
3650 inst_env->disable_interrupt = 0;
3651 }
3652
3653 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3654
3655 static void
3656 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3657 {
3658 unsigned long operand1;
3659 unsigned long operand2;
3660
3661 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3662 instruction and can't have a prefix. */
3663 if (inst_env->prefix_found)
3664 {
3665 inst_env->invalid = 1;
3666 return;
3667 }
3668 /* Check if the instruction has PC as its target. */
3669 if (cris_get_operand2 (inst) == REG_PC)
3670 {
3671 if (inst_env->slot_needed)
3672 {
3673 inst_env->invalid = 1;
3674 return;
3675 }
3676 /* The instruction has the PC as its target register. */
3677 operand1 = cris_get_quick_value (inst);
3678 operand2 = inst_env->reg[REG_PC];
3679
3680 /* The quick value is signed, so check if we must do a signed extend. */
3681 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3682 {
3683 /* sign extend */
3684 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3685 }
3686 /* The size should now be dword. */
3687 cris_set_size_to_dword (&inst);
3688
3689 /* Calculate the PC value after the instruction, i.e. where the
3690 breakpoint should be. */
3691 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3692 }
3693 inst_env->slot_needed = 0;
3694 inst_env->prefix_found = 0;
3695 inst_env->xflag_found = 0;
3696 inst_env->disable_interrupt = 0;
3697 }
3698
3699 /* Translate op_type to a function and call it. */
3700
3701 static void
3702 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3703 unsigned short inst, inst_env_type *inst_env)
3704 {
3705 switch (op_type)
3706 {
3707 case cris_not_implemented_op:
3708 not_implemented_op (inst, inst_env);
3709 break;
3710
3711 case cris_abs_op:
3712 abs_op (inst, inst_env);
3713 break;
3714
3715 case cris_addi_op:
3716 addi_op (inst, inst_env);
3717 break;
3718
3719 case cris_asr_op:
3720 asr_op (inst, inst_env);
3721 break;
3722
3723 case cris_asrq_op:
3724 asrq_op (inst, inst_env);
3725 break;
3726
3727 case cris_ax_ei_setf_op:
3728 ax_ei_setf_op (inst, inst_env);
3729 break;
3730
3731 case cris_bdap_prefix:
3732 bdap_prefix (inst, inst_env);
3733 break;
3734
3735 case cris_biap_prefix:
3736 biap_prefix (inst, inst_env);
3737 break;
3738
3739 case cris_break_op:
3740 break_op (inst, inst_env);
3741 break;
3742
3743 case cris_btst_nop_op:
3744 btst_nop_op (inst, inst_env);
3745 break;
3746
3747 case cris_clearf_di_op:
3748 clearf_di_op (inst, inst_env);
3749 break;
3750
3751 case cris_dip_prefix:
3752 dip_prefix (inst, inst_env);
3753 break;
3754
3755 case cris_dstep_logshift_mstep_neg_not_op:
3756 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3757 break;
3758
3759 case cris_eight_bit_offset_branch_op:
3760 eight_bit_offset_branch_op (inst, inst_env);
3761 break;
3762
3763 case cris_move_mem_to_reg_movem_op:
3764 move_mem_to_reg_movem_op (inst, inst_env);
3765 break;
3766
3767 case cris_move_reg_to_mem_movem_op:
3768 move_reg_to_mem_movem_op (inst, inst_env);
3769 break;
3770
3771 case cris_move_to_preg_op:
3772 move_to_preg_op (gdbarch, inst, inst_env);
3773 break;
3774
3775 case cris_muls_op:
3776 muls_op (inst, inst_env);
3777 break;
3778
3779 case cris_mulu_op:
3780 mulu_op (inst, inst_env);
3781 break;
3782
3783 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3784 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3785 break;
3786
3787 case cris_none_reg_mode_clear_test_op:
3788 none_reg_mode_clear_test_op (inst, inst_env);
3789 break;
3790
3791 case cris_none_reg_mode_jump_op:
3792 none_reg_mode_jump_op (inst, inst_env);
3793 break;
3794
3795 case cris_none_reg_mode_move_from_preg_op:
3796 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3797 break;
3798
3799 case cris_quick_mode_add_sub_op:
3800 quick_mode_add_sub_op (inst, inst_env);
3801 break;
3802
3803 case cris_quick_mode_and_cmp_move_or_op:
3804 quick_mode_and_cmp_move_or_op (inst, inst_env);
3805 break;
3806
3807 case cris_quick_mode_bdap_prefix:
3808 quick_mode_bdap_prefix (inst, inst_env);
3809 break;
3810
3811 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3812 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3813 break;
3814
3815 case cris_reg_mode_clear_op:
3816 reg_mode_clear_op (inst, inst_env);
3817 break;
3818
3819 case cris_reg_mode_jump_op:
3820 reg_mode_jump_op (inst, inst_env);
3821 break;
3822
3823 case cris_reg_mode_move_from_preg_op:
3824 reg_mode_move_from_preg_op (inst, inst_env);
3825 break;
3826
3827 case cris_reg_mode_test_op:
3828 reg_mode_test_op (inst, inst_env);
3829 break;
3830
3831 case cris_scc_op:
3832 scc_op (inst, inst_env);
3833 break;
3834
3835 case cris_sixteen_bit_offset_branch_op:
3836 sixteen_bit_offset_branch_op (inst, inst_env);
3837 break;
3838
3839 case cris_three_operand_add_sub_cmp_and_or_op:
3840 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3841 break;
3842
3843 case cris_three_operand_bound_op:
3844 three_operand_bound_op (inst, inst_env);
3845 break;
3846
3847 case cris_two_operand_bound_op:
3848 two_operand_bound_op (inst, inst_env);
3849 break;
3850
3851 case cris_xor_op:
3852 xor_op (inst, inst_env);
3853 break;
3854 }
3855 }
3856
3857 /* This wrapper is to avoid cris_get_assembler being called before
3858 exec_bfd has been set. */
3859
3860 static int
3861 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3862 {
3863 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3864 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3865 disassembler, even when there is no BFD. Does something like
3866 "gdb; target remote; disassmeble *0x123" work? */
3867 gdb_assert (exec_bfd != NULL);
3868 print_insn = cris_get_disassembler (exec_bfd);
3869 gdb_assert (print_insn != NULL);
3870 return print_insn (addr, info);
3871 }
3872
3873 /* Copied from <asm/elf.h>. */
3874 typedef unsigned long elf_greg_t;
3875
3876 /* Same as user_regs_struct struct in <asm/user.h>. */
3877 #define CRISV10_ELF_NGREG 35
3878 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3879
3880 #define CRISV32_ELF_NGREG 32
3881 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3882
3883 /* Unpack an elf_gregset_t into GDB's register cache. */
3884
3885 static void
3886 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3887 {
3888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3889 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3890 int i;
3891 elf_greg_t *regp = *gregsetp;
3892 static char zerobuf[4] = {0};
3893
3894 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3895 knows about the actual size of each register so that's no problem. */
3896 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3897 {
3898 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3899 }
3900
3901 if (tdep->cris_version == 32)
3902 {
3903 /* Needed to set pseudo-register PC for CRISv32. */
3904 /* FIXME: If ERP is in a delay slot at this point then the PC will
3905 be wrong. Issue a warning to alert the user. */
3906 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3907 (char *)&regp[ERP_REGNUM]);
3908
3909 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3910 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3911 }
3912 }
3913
3914 /* Use a local version of this function to get the correct types for
3915 regsets, until multi-arch core support is ready. */
3916
3917 static void
3918 fetch_core_registers (struct regcache *regcache,
3919 char *core_reg_sect, unsigned core_reg_size,
3920 int which, CORE_ADDR reg_addr)
3921 {
3922 elf_gregset_t gregset;
3923
3924 switch (which)
3925 {
3926 case 0:
3927 if (core_reg_size != sizeof (elf_gregset_t)
3928 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3929 {
3930 warning (_("wrong size gregset struct in core file"));
3931 }
3932 else
3933 {
3934 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3935 cris_supply_gregset (regcache, &gregset);
3936 }
3937
3938 default:
3939 /* We've covered all the kinds of registers we know about here,
3940 so this must be something we wouldn't know what to do with
3941 anyway. Just ignore it. */
3942 break;
3943 }
3944 }
3945
3946 static struct core_fns cris_elf_core_fns =
3947 {
3948 bfd_target_elf_flavour, /* core_flavour */
3949 default_check_format, /* check_format */
3950 default_core_sniffer, /* core_sniffer */
3951 fetch_core_registers, /* core_read_registers */
3952 NULL /* next */
3953 };
3954
3955 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3956
3957 void
3958 _initialize_cris_tdep (void)
3959 {
3960 static struct cmd_list_element *cris_set_cmdlist;
3961 static struct cmd_list_element *cris_show_cmdlist;
3962
3963 struct cmd_list_element *c;
3964
3965 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3966
3967 /* CRIS-specific user-commands. */
3968 add_setshow_uinteger_cmd ("cris-version", class_support,
3969 &usr_cmd_cris_version,
3970 _("Set the current CRIS version."),
3971 _("Show the current CRIS version."),
3972 _("\
3973 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3974 Defaults to 10. "),
3975 set_cris_version,
3976 NULL, /* FIXME: i18n: Current CRIS version
3977 is %s. */
3978 &setlist, &showlist);
3979
3980 add_setshow_enum_cmd ("cris-mode", class_support,
3981 cris_modes, &usr_cmd_cris_mode,
3982 _("Set the current CRIS mode."),
3983 _("Show the current CRIS mode."),
3984 _("\
3985 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3986 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3987 set_cris_mode,
3988 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3989 &setlist, &showlist);
3990
3991 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3992 &usr_cmd_cris_dwarf2_cfi,
3993 _("Set the usage of Dwarf-2 CFI for CRIS."),
3994 _("Show the usage of Dwarf-2 CFI for CRIS."),
3995 _("Set this to \"off\" if using gcc-cris < R59."),
3996 set_cris_dwarf2_cfi,
3997 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3998 for CRIS is %d. */
3999 &setlist, &showlist);
4000
4001 deprecated_add_core_fns (&cris_elf_core_fns);
4002 }
4003
4004 /* Prints out all target specific values. */
4005
4006 static void
4007 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4008 {
4009 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4010 if (tdep != NULL)
4011 {
4012 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4013 tdep->cris_version);
4014 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4015 tdep->cris_mode);
4016 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4017 tdep->cris_dwarf2_cfi);
4018 }
4019 }
4020
4021 static void
4022 set_cris_version (char *ignore_args, int from_tty,
4023 struct cmd_list_element *c)
4024 {
4025 struct gdbarch_info info;
4026
4027 usr_cmd_cris_version_valid = 1;
4028
4029 /* Update the current architecture, if needed. */
4030 gdbarch_info_init (&info);
4031 if (!gdbarch_update_p (info))
4032 internal_error (__FILE__, __LINE__,
4033 _("cris_gdbarch_update: failed to update architecture."));
4034 }
4035
4036 static void
4037 set_cris_mode (char *ignore_args, int from_tty,
4038 struct cmd_list_element *c)
4039 {
4040 struct gdbarch_info info;
4041
4042 /* Update the current architecture, if needed. */
4043 gdbarch_info_init (&info);
4044 if (!gdbarch_update_p (info))
4045 internal_error (__FILE__, __LINE__,
4046 "cris_gdbarch_update: failed to update architecture.");
4047 }
4048
4049 static void
4050 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4051 struct cmd_list_element *c)
4052 {
4053 struct gdbarch_info info;
4054
4055 /* Update the current architecture, if needed. */
4056 gdbarch_info_init (&info);
4057 if (!gdbarch_update_p (info))
4058 internal_error (__FILE__, __LINE__,
4059 _("cris_gdbarch_update: failed to update architecture."));
4060 }
4061
4062 static struct gdbarch *
4063 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4064 {
4065 struct gdbarch *gdbarch;
4066 struct gdbarch_tdep *tdep;
4067 int cris_version;
4068
4069 if (usr_cmd_cris_version_valid)
4070 {
4071 /* Trust the user's CRIS version setting. */
4072 cris_version = usr_cmd_cris_version;
4073 }
4074 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4075 {
4076 cris_version = 32;
4077 }
4078 else
4079 {
4080 /* Assume it's CRIS version 10. */
4081 cris_version = 10;
4082 }
4083
4084 /* Make the current settings visible to the user. */
4085 usr_cmd_cris_version = cris_version;
4086
4087 /* Find a candidate among the list of pre-declared architectures. */
4088 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4089 arches != NULL;
4090 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4091 {
4092 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4093 == usr_cmd_cris_version)
4094 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4095 == usr_cmd_cris_mode)
4096 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4097 == usr_cmd_cris_dwarf2_cfi))
4098 return arches->gdbarch;
4099 }
4100
4101 /* No matching architecture was found. Create a new one. */
4102 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4103 gdbarch = gdbarch_alloc (&info, tdep);
4104
4105 tdep->cris_version = usr_cmd_cris_version;
4106 tdep->cris_mode = usr_cmd_cris_mode;
4107 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4108
4109 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4110 switch (info.byte_order)
4111 {
4112 case BFD_ENDIAN_LITTLE:
4113 /* Ok. */
4114 break;
4115
4116 case BFD_ENDIAN_BIG:
4117 internal_error (__FILE__, __LINE__,
4118 _("cris_gdbarch_init: big endian byte order in info"));
4119 break;
4120
4121 default:
4122 internal_error (__FILE__, __LINE__,
4123 _("cris_gdbarch_init: unknown byte order in info"));
4124 }
4125
4126 set_gdbarch_return_value (gdbarch, cris_return_value);
4127
4128 set_gdbarch_sp_regnum (gdbarch, 14);
4129
4130 /* Length of ordinary registers used in push_word and a few other
4131 places. register_size() is the real way to know how big a
4132 register is. */
4133
4134 set_gdbarch_double_bit (gdbarch, 64);
4135 /* The default definition of a long double is 2 * gdbarch_double_bit,
4136 which means we have to set this explicitly. */
4137 set_gdbarch_long_double_bit (gdbarch, 64);
4138
4139 /* The total amount of space needed to store (in an array called registers)
4140 GDB's copy of the machine's register state. Note: We can not use
4141 cris_register_size at this point, since it relies on gdbarch
4142 being set. */
4143 switch (tdep->cris_version)
4144 {
4145 case 0:
4146 case 1:
4147 case 2:
4148 case 3:
4149 case 8:
4150 case 9:
4151 /* Old versions; not supported. */
4152 internal_error (__FILE__, __LINE__,
4153 _("cris_gdbarch_init: unsupported CRIS version"));
4154 break;
4155
4156 case 10:
4157 case 11:
4158 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4159 P7 (32 bits), and P15 (32 bits) have been implemented. */
4160 set_gdbarch_pc_regnum (gdbarch, 15);
4161 set_gdbarch_register_type (gdbarch, cris_register_type);
4162 /* There are 32 registers (some of which may not be implemented). */
4163 set_gdbarch_num_regs (gdbarch, 32);
4164 set_gdbarch_register_name (gdbarch, cris_register_name);
4165 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4166 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4167
4168 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4169 break;
4170
4171 case 32:
4172 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4173 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4174 and pseudo-register PC (32 bits). */
4175 set_gdbarch_pc_regnum (gdbarch, 32);
4176 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4177 /* 32 registers + pseudo-register PC + 16 support registers. */
4178 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4179 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4180
4181 set_gdbarch_cannot_store_register
4182 (gdbarch, crisv32_cannot_store_register);
4183 set_gdbarch_cannot_fetch_register
4184 (gdbarch, crisv32_cannot_fetch_register);
4185
4186 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4187
4188 set_gdbarch_single_step_through_delay
4189 (gdbarch, crisv32_single_step_through_delay);
4190
4191 break;
4192
4193 default:
4194 internal_error (__FILE__, __LINE__,
4195 _("cris_gdbarch_init: unknown CRIS version"));
4196 }
4197
4198 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4199 have the same ABI). */
4200 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4201 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4202 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4203 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4204
4205 /* The stack grows downward. */
4206 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4207
4208 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4209
4210 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4211 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4212 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4213
4214 if (tdep->cris_dwarf2_cfi == 1)
4215 {
4216 /* Hook in the Dwarf-2 frame sniffer. */
4217 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4218 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4219 dwarf2_append_unwinders (gdbarch);
4220 }
4221
4222 if (tdep->cris_mode != cris_mode_guru)
4223 {
4224 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4225 }
4226
4227 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4228 frame_base_set_default (gdbarch, &cris_frame_base);
4229
4230 set_solib_svr4_fetch_link_map_offsets
4231 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4232
4233 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4234 disassembler, even when there is no BFD. Does something like
4235 "gdb; target remote; disassmeble *0x123" work? */
4236 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4237
4238 return gdbarch;
4239 }
This page took 0.111819 seconds and 5 git commands to generate.