Include string.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2-frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "osabi.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "objfiles.h"
42
43 #include "solib.h" /* Support for shared libraries. */
44 #include "solib-svr4.h"
45 #include "dis-asm.h"
46
47 #include "cris-tdep.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static unsigned int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *const cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* Sigtramp identification code copied from i386-linux-tdep.c. */
169
170 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
171 #define SIGTRAMP_OFFSET0 0
172 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
173 #define SIGTRAMP_OFFSET1 4
174
175 static const unsigned short sigtramp_code[] =
176 {
177 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
178 SIGTRAMP_INSN1 /* break 13 */
179 };
180
181 #define SIGTRAMP_LEN (sizeof sigtramp_code)
182
183 /* Note: same length as normal sigtramp code. */
184
185 static const unsigned short rt_sigtramp_code[] =
186 {
187 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
188 SIGTRAMP_INSN1 /* break 13 */
189 };
190
191 /* If PC is in a sigtramp routine, return the address of the start of
192 the routine. Otherwise, return 0. */
193
194 static CORE_ADDR
195 cris_sigtramp_start (struct frame_info *this_frame)
196 {
197 CORE_ADDR pc = get_frame_pc (this_frame);
198 gdb_byte buf[SIGTRAMP_LEN];
199
200 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
201 return 0;
202
203 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
204 {
205 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= SIGTRAMP_OFFSET1;
209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
210 return 0;
211 }
212
213 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
214 return 0;
215
216 return pc;
217 }
218
219 /* If PC is in a RT sigtramp routine, return the address of the start of
220 the routine. Otherwise, return 0. */
221
222 static CORE_ADDR
223 cris_rt_sigtramp_start (struct frame_info *this_frame)
224 {
225 CORE_ADDR pc = get_frame_pc (this_frame);
226 gdb_byte buf[SIGTRAMP_LEN];
227
228 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
229 return 0;
230
231 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
232 {
233 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
234 return 0;
235
236 pc -= SIGTRAMP_OFFSET1;
237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
238 return 0;
239 }
240
241 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
242 return 0;
243
244 return pc;
245 }
246
247 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
248 return the address of the associated sigcontext structure. */
249
250 static CORE_ADDR
251 cris_sigcontext_addr (struct frame_info *this_frame)
252 {
253 struct gdbarch *gdbarch = get_frame_arch (this_frame);
254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
255 CORE_ADDR pc;
256 CORE_ADDR sp;
257 gdb_byte buf[4];
258
259 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
260 sp = extract_unsigned_integer (buf, 4, byte_order);
261
262 /* Look for normal sigtramp frame first. */
263 pc = cris_sigtramp_start (this_frame);
264 if (pc)
265 {
266 /* struct signal_frame (arch/cris/kernel/signal.c) contains
267 struct sigcontext as its first member, meaning the SP points to
268 it already. */
269 return sp;
270 }
271
272 pc = cris_rt_sigtramp_start (this_frame);
273 if (pc)
274 {
275 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
276 a struct ucontext, which in turn contains a struct sigcontext.
277 Magic digging:
278 4 + 4 + 128 to struct ucontext, then
279 4 + 4 + 12 to struct sigcontext. */
280 return (sp + 156);
281 }
282
283 error (_("Couldn't recognize signal trampoline."));
284 return 0;
285 }
286
287 struct cris_unwind_cache
288 {
289 /* The previous frame's inner most stack address. Used as this
290 frame ID's stack_addr. */
291 CORE_ADDR prev_sp;
292 /* The frame's base, optionally used by the high-level debug info. */
293 CORE_ADDR base;
294 int size;
295 /* How far the SP and r8 (FP) have been offset from the start of
296 the stack frame (as defined by the previous frame's stack
297 pointer). */
298 LONGEST sp_offset;
299 LONGEST r8_offset;
300 int uses_frame;
301
302 /* From old frame_extra_info struct. */
303 CORE_ADDR return_pc;
304 int leaf_function;
305
306 /* Table indicating the location of each and every register. */
307 struct trad_frame_saved_reg *saved_regs;
308 };
309
310 static struct cris_unwind_cache *
311 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
312 void **this_cache)
313 {
314 struct gdbarch *gdbarch = get_frame_arch (this_frame);
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 struct cris_unwind_cache *info;
318 CORE_ADDR addr;
319 gdb_byte buf[4];
320 int i;
321
322 if ((*this_cache))
323 return (*this_cache);
324
325 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
326 (*this_cache) = info;
327 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
328
329 /* Zero all fields. */
330 info->prev_sp = 0;
331 info->base = 0;
332 info->size = 0;
333 info->sp_offset = 0;
334 info->r8_offset = 0;
335 info->uses_frame = 0;
336 info->return_pc = 0;
337 info->leaf_function = 0;
338
339 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
340 info->base = extract_unsigned_integer (buf, 4, byte_order);
341
342 addr = cris_sigcontext_addr (this_frame);
343
344 /* Layout of the sigcontext struct:
345 struct sigcontext {
346 struct pt_regs regs;
347 unsigned long oldmask;
348 unsigned long usp;
349 }; */
350
351 if (tdep->cris_version == 10)
352 {
353 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
354 struct pt_regs. */
355 for (i = 0; i <= 13; i++)
356 info->saved_regs[i].addr = addr + ((15 - i) * 4);
357
358 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
359 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
360 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
361 /* Note: IRP is off by 2 at this point. There's no point in correcting
362 it though since that will mean that the backtrace will show a PC
363 different from what is shown when stopped. */
364 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
365 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
366 = info->saved_regs[IRP_REGNUM];
367 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
368 }
369 else
370 {
371 /* CRISv32. */
372 /* R0 to R13 are stored in order at offset (1 * 4) in
373 struct pt_regs. */
374 for (i = 0; i <= 13; i++)
375 info->saved_regs[i].addr = addr + ((i + 1) * 4);
376
377 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
378 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
379 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
380 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
381 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
383 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
384 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
385 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
386
387 /* FIXME: If ERP is in a delay slot at this point then the PC will
388 be wrong at this point. This problem manifests itself in the
389 sigaltstack.exp test case, which occasionally generates FAILs when
390 the signal is received while in a delay slot.
391
392 This could be solved by a couple of read_memory_unsigned_integer and a
393 trad_frame_set_value. */
394 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
395 = info->saved_regs[ERP_REGNUM];
396
397 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
398 = addr + (25 * 4);
399 }
400
401 return info;
402 }
403
404 static void
405 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
406 struct frame_id *this_id)
407 {
408 struct cris_unwind_cache *cache =
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
411 }
412
413 /* Forward declaration. */
414
415 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
416 void **this_cache, int regnum);
417 static struct value *
418 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
419 void **this_cache, int regnum)
420 {
421 /* Make sure we've initialized the cache. */
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424 }
425
426 static int
427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428 struct frame_info *this_frame,
429 void **this_cache)
430 {
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
436 }
437
438 static const struct frame_unwind cris_sigtramp_frame_unwind =
439 {
440 SIGTRAMP_FRAME,
441 default_frame_unwind_stop_reason,
442 cris_sigtramp_frame_this_id,
443 cris_sigtramp_frame_prev_register,
444 NULL,
445 cris_sigtramp_frame_sniffer
446 };
447
448 static int
449 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
450 struct frame_info *this_frame)
451 {
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 ULONGEST erp;
454 int ret = 0;
455
456 if (tdep->cris_mode == cris_mode_guru)
457 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
458 else
459 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
460
461 if (erp & 0x1)
462 {
463 /* In delay slot - check if there's a breakpoint at the preceding
464 instruction. */
465 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
466 ret = 1;
467 }
468 return ret;
469 }
470
471 /* The instruction environment needed to find single-step breakpoints. */
472
473 typedef
474 struct instruction_environment
475 {
476 unsigned long reg[NUM_GENREGS];
477 unsigned long preg[NUM_SPECREGS];
478 unsigned long branch_break_address;
479 unsigned long delay_slot_pc;
480 unsigned long prefix_value;
481 int branch_found;
482 int prefix_found;
483 int invalid;
484 int slot_needed;
485 int delay_slot_pc_active;
486 int xflag_found;
487 int disable_interrupt;
488 int byte_order;
489 } inst_env_type;
490
491 /* Machine-dependencies in CRIS for opcodes. */
492
493 /* Instruction sizes. */
494 enum cris_instruction_sizes
495 {
496 INST_BYTE_SIZE = 0,
497 INST_WORD_SIZE = 1,
498 INST_DWORD_SIZE = 2
499 };
500
501 /* Addressing modes. */
502 enum cris_addressing_modes
503 {
504 REGISTER_MODE = 1,
505 INDIRECT_MODE = 2,
506 AUTOINC_MODE = 3
507 };
508
509 /* Prefix addressing modes. */
510 enum cris_prefix_addressing_modes
511 {
512 PREFIX_INDEX_MODE = 2,
513 PREFIX_ASSIGN_MODE = 3,
514
515 /* Handle immediate byte offset addressing mode prefix format. */
516 PREFIX_OFFSET_MODE = 2
517 };
518
519 /* Masks for opcodes. */
520 enum cris_opcode_masks
521 {
522 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
523 SIGNED_EXTEND_BIT_MASK = 0x2,
524 SIGNED_BYTE_MASK = 0x80,
525 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
526 SIGNED_WORD_MASK = 0x8000,
527 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
528 SIGNED_DWORD_MASK = 0x80000000,
529 SIGNED_QUICK_VALUE_MASK = 0x20,
530 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
531 };
532
533 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
534 Bit 15 - 12 Operand2
535 11 - 10 Mode
536 9 - 6 Opcode
537 5 - 4 Size
538 3 - 0 Operand1 */
539
540 static int
541 cris_get_operand2 (unsigned short insn)
542 {
543 return ((insn & 0xF000) >> 12);
544 }
545
546 static int
547 cris_get_mode (unsigned short insn)
548 {
549 return ((insn & 0x0C00) >> 10);
550 }
551
552 static int
553 cris_get_opcode (unsigned short insn)
554 {
555 return ((insn & 0x03C0) >> 6);
556 }
557
558 static int
559 cris_get_size (unsigned short insn)
560 {
561 return ((insn & 0x0030) >> 4);
562 }
563
564 static int
565 cris_get_operand1 (unsigned short insn)
566 {
567 return (insn & 0x000F);
568 }
569
570 /* Additional functions in order to handle opcodes. */
571
572 static int
573 cris_get_quick_value (unsigned short insn)
574 {
575 return (insn & 0x003F);
576 }
577
578 static int
579 cris_get_bdap_quick_offset (unsigned short insn)
580 {
581 return (insn & 0x00FF);
582 }
583
584 static int
585 cris_get_branch_short_offset (unsigned short insn)
586 {
587 return (insn & 0x00FF);
588 }
589
590 static int
591 cris_get_asr_shift_steps (unsigned long value)
592 {
593 return (value & 0x3F);
594 }
595
596 static int
597 cris_get_clear_size (unsigned short insn)
598 {
599 return ((insn) & 0xC000);
600 }
601
602 static int
603 cris_is_signed_extend_bit_on (unsigned short insn)
604 {
605 return (((insn) & 0x20) == 0x20);
606 }
607
608 static int
609 cris_is_xflag_bit_on (unsigned short insn)
610 {
611 return (((insn) & 0x1000) == 0x1000);
612 }
613
614 static void
615 cris_set_size_to_dword (unsigned short *insn)
616 {
617 *insn &= 0xFFCF;
618 *insn |= 0x20;
619 }
620
621 static signed char
622 cris_get_signed_offset (unsigned short insn)
623 {
624 return ((signed char) (insn & 0x00FF));
625 }
626
627 /* Calls an op function given the op-type, working on the insn and the
628 inst_env. */
629 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
630 inst_env_type *);
631
632 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
633 struct gdbarch_list *);
634
635 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
636
637 static void set_cris_version (char *ignore_args, int from_tty,
638 struct cmd_list_element *c);
639
640 static void set_cris_mode (char *ignore_args, int from_tty,
641 struct cmd_list_element *c);
642
643 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
644 struct cmd_list_element *c);
645
646 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
647 struct frame_info *this_frame,
648 struct cris_unwind_cache *info);
649
650 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
651 struct frame_info *this_frame,
652 struct cris_unwind_cache *info);
653
654 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
655 struct frame_info *next_frame);
656
657 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
658 struct frame_info *next_frame);
659
660 /* When arguments must be pushed onto the stack, they go on in reverse
661 order. The below implements a FILO (stack) to do this.
662 Copied from d10v-tdep.c. */
663
664 struct stack_item
665 {
666 int len;
667 struct stack_item *prev;
668 void *data;
669 };
670
671 static struct stack_item *
672 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
673 {
674 struct stack_item *si;
675 si = xmalloc (sizeof (struct stack_item));
676 si->data = xmalloc (len);
677 si->len = len;
678 si->prev = prev;
679 memcpy (si->data, contents, len);
680 return si;
681 }
682
683 static struct stack_item *
684 pop_stack_item (struct stack_item *si)
685 {
686 struct stack_item *dead = si;
687 si = si->prev;
688 xfree (dead->data);
689 xfree (dead);
690 return si;
691 }
692
693 /* Put here the code to store, into fi->saved_regs, the addresses of
694 the saved registers of frame described by FRAME_INFO. This
695 includes special registers such as pc and fp saved in special ways
696 in the stack frame. sp is even more special: the address we return
697 for it IS the sp for the next frame. */
698
699 static struct cris_unwind_cache *
700 cris_frame_unwind_cache (struct frame_info *this_frame,
701 void **this_prologue_cache)
702 {
703 struct gdbarch *gdbarch = get_frame_arch (this_frame);
704 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
705 struct cris_unwind_cache *info;
706
707 if ((*this_prologue_cache))
708 return (*this_prologue_cache);
709
710 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
711 (*this_prologue_cache) = info;
712 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
713
714 /* Zero all fields. */
715 info->prev_sp = 0;
716 info->base = 0;
717 info->size = 0;
718 info->sp_offset = 0;
719 info->r8_offset = 0;
720 info->uses_frame = 0;
721 info->return_pc = 0;
722 info->leaf_function = 0;
723
724 /* Prologue analysis does the rest... */
725 if (tdep->cris_version == 32)
726 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
727 else
728 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
729
730 return info;
731 }
732
733 /* Given a GDB frame, determine the address of the calling function's
734 frame. This will be used to create a new GDB frame struct. */
735
736 static void
737 cris_frame_this_id (struct frame_info *this_frame,
738 void **this_prologue_cache,
739 struct frame_id *this_id)
740 {
741 struct cris_unwind_cache *info
742 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
743 CORE_ADDR base;
744 CORE_ADDR func;
745 struct frame_id id;
746
747 /* The FUNC is easy. */
748 func = get_frame_func (this_frame);
749
750 /* Hopefully the prologue analysis either correctly determined the
751 frame's base (which is the SP from the previous frame), or set
752 that base to "NULL". */
753 base = info->prev_sp;
754 if (base == 0)
755 return;
756
757 id = frame_id_build (base, func);
758
759 (*this_id) = id;
760 }
761
762 static struct value *
763 cris_frame_prev_register (struct frame_info *this_frame,
764 void **this_prologue_cache, int regnum)
765 {
766 struct cris_unwind_cache *info
767 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
768 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
769 }
770
771 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
772 frame. The frame ID's base needs to match the TOS value saved by
773 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
774
775 static struct frame_id
776 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
777 {
778 CORE_ADDR sp;
779 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
780 return frame_id_build (sp, get_frame_pc (this_frame));
781 }
782
783 static CORE_ADDR
784 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
785 {
786 /* Align to the size of an instruction (so that they can safely be
787 pushed onto the stack). */
788 return sp & ~3;
789 }
790
791 static CORE_ADDR
792 cris_push_dummy_code (struct gdbarch *gdbarch,
793 CORE_ADDR sp, CORE_ADDR funaddr,
794 struct value **args, int nargs,
795 struct type *value_type,
796 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
797 struct regcache *regcache)
798 {
799 /* Allocate space sufficient for a breakpoint. */
800 sp = (sp - 4) & ~3;
801 /* Store the address of that breakpoint */
802 *bp_addr = sp;
803 /* CRIS always starts the call at the callee's entry point. */
804 *real_pc = funaddr;
805 return sp;
806 }
807
808 static CORE_ADDR
809 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
810 struct regcache *regcache, CORE_ADDR bp_addr,
811 int nargs, struct value **args, CORE_ADDR sp,
812 int struct_return, CORE_ADDR struct_addr)
813 {
814 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
815 int stack_offset;
816 int argreg;
817 int argnum;
818
819 /* The function's arguments and memory allocated by gdb for the arguments to
820 point at reside in separate areas on the stack.
821 Both frame pointers grow toward higher addresses. */
822 CORE_ADDR fp_arg;
823 CORE_ADDR fp_mem;
824
825 struct stack_item *si = NULL;
826
827 /* Push the return address. */
828 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
829
830 /* Are we returning a value using a structure return or a normal value
831 return? struct_addr is the address of the reserved space for the return
832 structure to be written on the stack. */
833 if (struct_return)
834 {
835 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
836 }
837
838 /* Now load as many as possible of the first arguments into registers,
839 and push the rest onto the stack. */
840 argreg = ARG1_REGNUM;
841 stack_offset = 0;
842
843 for (argnum = 0; argnum < nargs; argnum++)
844 {
845 int len;
846 const gdb_byte *val;
847 int reg_demand;
848 int i;
849
850 len = TYPE_LENGTH (value_type (args[argnum]));
851 val = value_contents (args[argnum]);
852
853 /* How may registers worth of storage do we need for this argument? */
854 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
855
856 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
857 {
858 /* Data passed by value. Fits in available register(s). */
859 for (i = 0; i < reg_demand; i++)
860 {
861 regcache_cooked_write (regcache, argreg, val);
862 argreg++;
863 val += 4;
864 }
865 }
866 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
867 {
868 /* Data passed by value. Does not fit in available register(s).
869 Use the register(s) first, then the stack. */
870 for (i = 0; i < reg_demand; i++)
871 {
872 if (argreg <= ARG4_REGNUM)
873 {
874 regcache_cooked_write (regcache, argreg, val);
875 argreg++;
876 val += 4;
877 }
878 else
879 {
880 /* Push item for later so that pushed arguments
881 come in the right order. */
882 si = push_stack_item (si, val, 4);
883 val += 4;
884 }
885 }
886 }
887 else if (len > (2 * 4))
888 {
889 /* Data passed by reference. Push copy of data onto stack
890 and pass pointer to this copy as argument. */
891 sp = (sp - len) & ~3;
892 write_memory (sp, val, len);
893
894 if (argreg <= ARG4_REGNUM)
895 {
896 regcache_cooked_write_unsigned (regcache, argreg, sp);
897 argreg++;
898 }
899 else
900 {
901 gdb_byte buf[4];
902 store_unsigned_integer (buf, 4, byte_order, sp);
903 si = push_stack_item (si, buf, 4);
904 }
905 }
906 else
907 {
908 /* Data passed by value. No available registers. Put it on
909 the stack. */
910 si = push_stack_item (si, val, len);
911 }
912 }
913
914 while (si)
915 {
916 /* fp_arg must be word-aligned (i.e., don't += len) to match
917 the function prologue. */
918 sp = (sp - si->len) & ~3;
919 write_memory (sp, si->data, si->len);
920 si = pop_stack_item (si);
921 }
922
923 /* Finally, update the SP register. */
924 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
925
926 return sp;
927 }
928
929 static const struct frame_unwind cris_frame_unwind =
930 {
931 NORMAL_FRAME,
932 default_frame_unwind_stop_reason,
933 cris_frame_this_id,
934 cris_frame_prev_register,
935 NULL,
936 default_frame_sniffer
937 };
938
939 static CORE_ADDR
940 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
941 {
942 struct cris_unwind_cache *info
943 = cris_frame_unwind_cache (this_frame, this_cache);
944 return info->base;
945 }
946
947 static const struct frame_base cris_frame_base =
948 {
949 &cris_frame_unwind,
950 cris_frame_base_address,
951 cris_frame_base_address,
952 cris_frame_base_address
953 };
954
955 /* Frames information. The definition of the struct frame_info is
956
957 CORE_ADDR frame
958 CORE_ADDR pc
959 enum frame_type type;
960 CORE_ADDR return_pc
961 int leaf_function
962
963 If the compilation option -fno-omit-frame-pointer is present the
964 variable frame will be set to the content of R8 which is the frame
965 pointer register.
966
967 The variable pc contains the address where execution is performed
968 in the present frame. The innermost frame contains the current content
969 of the register PC. All other frames contain the content of the
970 register PC in the next frame.
971
972 The variable `type' indicates the frame's type: normal, SIGTRAMP
973 (associated with a signal handler), dummy (associated with a dummy
974 frame).
975
976 The variable return_pc contains the address where execution should be
977 resumed when the present frame has finished, the return address.
978
979 The variable leaf_function is 1 if the return address is in the register
980 SRP, and 0 if it is on the stack.
981
982 Prologue instructions C-code.
983 The prologue may consist of (-fno-omit-frame-pointer)
984 1) 2)
985 push srp
986 push r8 push r8
987 move.d sp,r8 move.d sp,r8
988 subq X,sp subq X,sp
989 movem rY,[sp] movem rY,[sp]
990 move.S rZ,[r8-U] move.S rZ,[r8-U]
991
992 where 1 is a non-terminal function, and 2 is a leaf-function.
993
994 Note that this assumption is extremely brittle, and will break at the
995 slightest change in GCC's prologue.
996
997 If local variables are declared or register contents are saved on stack
998 the subq-instruction will be present with X as the number of bytes
999 needed for storage. The reshuffle with respect to r8 may be performed
1000 with any size S (b, w, d) and any of the general registers Z={0..13}.
1001 The offset U should be representable by a signed 8-bit value in all cases.
1002 Thus, the prefix word is assumed to be immediate byte offset mode followed
1003 by another word containing the instruction.
1004
1005 Degenerate cases:
1006 3)
1007 push r8
1008 move.d sp,r8
1009 move.d r8,sp
1010 pop r8
1011
1012 Prologue instructions C++-code.
1013 Case 1) and 2) in the C-code may be followed by
1014
1015 move.d r10,rS ; this
1016 move.d r11,rT ; P1
1017 move.d r12,rU ; P2
1018 move.d r13,rV ; P3
1019 move.S [r8+U],rZ ; P4
1020
1021 if any of the call parameters are stored. The host expects these
1022 instructions to be executed in order to get the call parameters right. */
1023
1024 /* Examine the prologue of a function. The variable ip is the address of
1025 the first instruction of the prologue. The variable limit is the address
1026 of the first instruction after the prologue. The variable fi contains the
1027 information in struct frame_info. The variable frameless_p controls whether
1028 the entire prologue is examined (0) or just enough instructions to
1029 determine that it is a prologue (1). */
1030
1031 static CORE_ADDR
1032 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1033 struct cris_unwind_cache *info)
1034 {
1035 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1037
1038 /* Present instruction. */
1039 unsigned short insn;
1040
1041 /* Next instruction, lookahead. */
1042 unsigned short insn_next;
1043 int regno;
1044
1045 /* Is there a push fp? */
1046 int have_fp;
1047
1048 /* Number of byte on stack used for local variables and movem. */
1049 int val;
1050
1051 /* Highest register number in a movem. */
1052 int regsave;
1053
1054 /* move.d r<source_register>,rS */
1055 short source_register;
1056
1057 /* Scan limit. */
1058 int limit;
1059
1060 /* This frame is with respect to a leaf until a push srp is found. */
1061 if (info)
1062 {
1063 info->leaf_function = 1;
1064 }
1065
1066 /* Assume nothing on stack. */
1067 val = 0;
1068 regsave = -1;
1069
1070 /* If we were called without a this_frame, that means we were called
1071 from cris_skip_prologue which already tried to find the end of the
1072 prologue through the symbol information. 64 instructions past current
1073 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1074 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1075
1076 /* Find the prologue instructions. */
1077 while (pc > 0 && pc < limit)
1078 {
1079 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1080 pc += 2;
1081 if (insn == 0xE1FC)
1082 {
1083 /* push <reg> 32 bit instruction. */
1084 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1085 pc += 2;
1086 regno = cris_get_operand2 (insn_next);
1087 if (info)
1088 {
1089 info->sp_offset += 4;
1090 }
1091 /* This check, meant to recognize srp, used to be regno ==
1092 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1093 if (insn_next == 0xBE7E)
1094 {
1095 if (info)
1096 {
1097 info->leaf_function = 0;
1098 }
1099 }
1100 else if (insn_next == 0x8FEE)
1101 {
1102 /* push $r8 */
1103 if (info)
1104 {
1105 info->r8_offset = info->sp_offset;
1106 }
1107 }
1108 }
1109 else if (insn == 0x866E)
1110 {
1111 /* move.d sp,r8 */
1112 if (info)
1113 {
1114 info->uses_frame = 1;
1115 }
1116 continue;
1117 }
1118 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1119 && cris_get_mode (insn) == 0x0000
1120 && cris_get_opcode (insn) == 0x000A)
1121 {
1122 /* subq <val>,sp */
1123 if (info)
1124 {
1125 info->sp_offset += cris_get_quick_value (insn);
1126 }
1127 }
1128 else if (cris_get_mode (insn) == 0x0002
1129 && cris_get_opcode (insn) == 0x000F
1130 && cris_get_size (insn) == 0x0003
1131 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1132 {
1133 /* movem r<regsave>,[sp] */
1134 regsave = cris_get_operand2 (insn);
1135 }
1136 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1137 && ((insn & 0x0F00) >> 8) == 0x0001
1138 && (cris_get_signed_offset (insn) < 0))
1139 {
1140 /* Immediate byte offset addressing prefix word with sp as base
1141 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1142 is between 64 and 128.
1143 movem r<regsave>,[sp=sp-<val>] */
1144 if (info)
1145 {
1146 info->sp_offset += -cris_get_signed_offset (insn);
1147 }
1148 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1149 pc += 2;
1150 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1151 && cris_get_opcode (insn_next) == 0x000F
1152 && cris_get_size (insn_next) == 0x0003
1153 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1154 (gdbarch))
1155 {
1156 regsave = cris_get_operand2 (insn_next);
1157 }
1158 else
1159 {
1160 /* The prologue ended before the limit was reached. */
1161 pc -= 4;
1162 break;
1163 }
1164 }
1165 else if (cris_get_mode (insn) == 0x0001
1166 && cris_get_opcode (insn) == 0x0009
1167 && cris_get_size (insn) == 0x0002)
1168 {
1169 /* move.d r<10..13>,r<0..15> */
1170 source_register = cris_get_operand1 (insn);
1171
1172 /* FIXME? In the glibc solibs, the prologue might contain something
1173 like (this example taken from relocate_doit):
1174 move.d $pc,$r0
1175 sub.d 0xfffef426,$r0
1176 which isn't covered by the source_register check below. Question
1177 is whether to add a check for this combo, or make better use of
1178 the limit variable instead. */
1179 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1180 {
1181 /* The prologue ended before the limit was reached. */
1182 pc -= 2;
1183 break;
1184 }
1185 }
1186 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1187 /* The size is a fixed-size. */
1188 && ((insn & 0x0F00) >> 8) == 0x0001
1189 /* A negative offset. */
1190 && (cris_get_signed_offset (insn) < 0))
1191 {
1192 /* move.S rZ,[r8-U] (?) */
1193 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1194 pc += 2;
1195 regno = cris_get_operand2 (insn_next);
1196 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1197 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1198 && cris_get_opcode (insn_next) == 0x000F)
1199 {
1200 /* move.S rZ,[r8-U] */
1201 continue;
1202 }
1203 else
1204 {
1205 /* The prologue ended before the limit was reached. */
1206 pc -= 4;
1207 break;
1208 }
1209 }
1210 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1211 /* The size is a fixed-size. */
1212 && ((insn & 0x0F00) >> 8) == 0x0001
1213 /* A positive offset. */
1214 && (cris_get_signed_offset (insn) > 0))
1215 {
1216 /* move.S [r8+U],rZ (?) */
1217 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1218 pc += 2;
1219 regno = cris_get_operand2 (insn_next);
1220 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1221 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1222 && cris_get_opcode (insn_next) == 0x0009
1223 && cris_get_operand1 (insn_next) == regno)
1224 {
1225 /* move.S [r8+U],rZ */
1226 continue;
1227 }
1228 else
1229 {
1230 /* The prologue ended before the limit was reached. */
1231 pc -= 4;
1232 break;
1233 }
1234 }
1235 else
1236 {
1237 /* The prologue ended before the limit was reached. */
1238 pc -= 2;
1239 break;
1240 }
1241 }
1242
1243 /* We only want to know the end of the prologue when this_frame and info
1244 are NULL (called from cris_skip_prologue i.e.). */
1245 if (this_frame == NULL && info == NULL)
1246 {
1247 return pc;
1248 }
1249
1250 info->size = info->sp_offset;
1251
1252 /* Compute the previous frame's stack pointer (which is also the
1253 frame's ID's stack address), and this frame's base pointer. */
1254 if (info->uses_frame)
1255 {
1256 ULONGEST this_base;
1257 /* The SP was moved to the FP. This indicates that a new frame
1258 was created. Get THIS frame's FP value by unwinding it from
1259 the next frame. */
1260 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1261 info->base = this_base;
1262 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1263
1264 /* The FP points at the last saved register. Adjust the FP back
1265 to before the first saved register giving the SP. */
1266 info->prev_sp = info->base + info->r8_offset;
1267 }
1268 else
1269 {
1270 ULONGEST this_base;
1271 /* Assume that the FP is this frame's SP but with that pushed
1272 stack space added back. */
1273 this_base = get_frame_register_unsigned (this_frame,
1274 gdbarch_sp_regnum (gdbarch));
1275 info->base = this_base;
1276 info->prev_sp = info->base + info->size;
1277 }
1278
1279 /* Calculate the addresses for the saved registers on the stack. */
1280 /* FIXME: The address calculation should really be done on the fly while
1281 we're analyzing the prologue (we only hold one regsave value as it is
1282 now). */
1283 val = info->sp_offset;
1284
1285 for (regno = regsave; regno >= 0; regno--)
1286 {
1287 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1288 val -= 4;
1289 }
1290
1291 /* The previous frame's SP needed to be computed. Save the computed
1292 value. */
1293 trad_frame_set_value (info->saved_regs,
1294 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1295
1296 if (!info->leaf_function)
1297 {
1298 /* SRP saved on the stack. But where? */
1299 if (info->r8_offset == 0)
1300 {
1301 /* R8 not pushed yet. */
1302 info->saved_regs[SRP_REGNUM].addr = info->base;
1303 }
1304 else
1305 {
1306 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1307 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1308 }
1309 }
1310
1311 /* The PC is found in SRP (the actual register or located on the stack). */
1312 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1313 = info->saved_regs[SRP_REGNUM];
1314
1315 return pc;
1316 }
1317
1318 static CORE_ADDR
1319 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1320 struct cris_unwind_cache *info)
1321 {
1322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1323 ULONGEST this_base;
1324
1325 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1326 meant to be a full-fledged prologue scanner. It is only needed for
1327 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1328
1329 * PLT stubs (library calls)
1330 * call dummys
1331 * signal trampolines
1332
1333 For those cases, it is assumed that there is no actual prologue; that
1334 the stack pointer is not adjusted, and (as a consequence) the return
1335 address is not pushed onto the stack. */
1336
1337 /* We only want to know the end of the prologue when this_frame and info
1338 are NULL (called from cris_skip_prologue i.e.). */
1339 if (this_frame == NULL && info == NULL)
1340 {
1341 return pc;
1342 }
1343
1344 /* The SP is assumed to be unaltered. */
1345 this_base = get_frame_register_unsigned (this_frame,
1346 gdbarch_sp_regnum (gdbarch));
1347 info->base = this_base;
1348 info->prev_sp = this_base;
1349
1350 /* The PC is assumed to be found in SRP. */
1351 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1352 = info->saved_regs[SRP_REGNUM];
1353
1354 return pc;
1355 }
1356
1357 /* Advance pc beyond any function entry prologue instructions at pc
1358 to reach some "real" code. */
1359
1360 /* Given a PC value corresponding to the start of a function, return the PC
1361 of the first instruction after the function prologue. */
1362
1363 static CORE_ADDR
1364 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1365 {
1366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1367 CORE_ADDR func_addr, func_end;
1368 struct symtab_and_line sal;
1369 CORE_ADDR pc_after_prologue;
1370
1371 /* If we have line debugging information, then the end of the prologue
1372 should the first assembly instruction of the first source line. */
1373 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1374 {
1375 sal = find_pc_line (func_addr, 0);
1376 if (sal.end > 0 && sal.end < func_end)
1377 return sal.end;
1378 }
1379
1380 if (tdep->cris_version == 32)
1381 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1382 else
1383 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1384
1385 return pc_after_prologue;
1386 }
1387
1388 static CORE_ADDR
1389 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1390 {
1391 ULONGEST pc;
1392 pc = frame_unwind_register_unsigned (next_frame,
1393 gdbarch_pc_regnum (gdbarch));
1394 return pc;
1395 }
1396
1397 static CORE_ADDR
1398 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1399 {
1400 ULONGEST sp;
1401 sp = frame_unwind_register_unsigned (next_frame,
1402 gdbarch_sp_regnum (gdbarch));
1403 return sp;
1404 }
1405
1406 /* Use the program counter to determine the contents and size of a breakpoint
1407 instruction. It returns a pointer to a string of bytes that encode a
1408 breakpoint instruction, stores the length of the string to *lenptr, and
1409 adjusts pcptr (if necessary) to point to the actual memory location where
1410 the breakpoint should be inserted. */
1411
1412 static const unsigned char *
1413 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1414 CORE_ADDR *pcptr, int *lenptr)
1415 {
1416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1417 static unsigned char break8_insn[] = {0x38, 0xe9};
1418 static unsigned char break15_insn[] = {0x3f, 0xe9};
1419 *lenptr = 2;
1420
1421 if (tdep->cris_mode == cris_mode_guru)
1422 return break15_insn;
1423 else
1424 return break8_insn;
1425 }
1426
1427 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1428 0 otherwise. */
1429
1430 static int
1431 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1432 struct cris_spec_reg spec_reg)
1433 {
1434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1435 unsigned int version = tdep->cris_version;
1436
1437 switch (spec_reg.applicable_version)
1438 {
1439 case cris_ver_version_all:
1440 return 1;
1441 case cris_ver_warning:
1442 /* Indeterminate/obsolete. */
1443 return 0;
1444 case cris_ver_v0_3:
1445 return (version >= 0 && version <= 3);
1446 case cris_ver_v3p:
1447 return (version >= 3);
1448 case cris_ver_v8:
1449 return (version == 8 || version == 9);
1450 case cris_ver_v8p:
1451 return (version >= 8);
1452 case cris_ver_v0_10:
1453 return (version >= 0 && version <= 10);
1454 case cris_ver_v3_10:
1455 return (version >= 3 && version <= 10);
1456 case cris_ver_v8_10:
1457 return (version >= 8 && version <= 10);
1458 case cris_ver_v10:
1459 return (version == 10);
1460 case cris_ver_v10p:
1461 return (version >= 10);
1462 case cris_ver_v32p:
1463 return (version >= 32);
1464 default:
1465 /* Invalid cris version. */
1466 return 0;
1467 }
1468 }
1469
1470 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1471 register, -1 for an invalid register. */
1472
1473 static int
1474 cris_register_size (struct gdbarch *gdbarch, int regno)
1475 {
1476 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1477 int i;
1478 int spec_regno;
1479
1480 if (regno >= 0 && regno < NUM_GENREGS)
1481 {
1482 /* General registers (R0 - R15) are 32 bits. */
1483 return 4;
1484 }
1485 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1486 {
1487 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1488 Adjust regno accordingly. */
1489 spec_regno = regno - NUM_GENREGS;
1490
1491 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1492 {
1493 if (cris_spec_regs[i].number == spec_regno
1494 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1495 /* Go with the first applicable register. */
1496 return cris_spec_regs[i].reg_size;
1497 }
1498 /* Special register not applicable to this CRIS version. */
1499 return 0;
1500 }
1501 else if (regno >= gdbarch_pc_regnum (gdbarch)
1502 && regno < gdbarch_num_regs (gdbarch))
1503 {
1504 /* This will apply to CRISv32 only where there are additional registers
1505 after the special registers (pseudo PC and support registers). */
1506 return 4;
1507 }
1508
1509
1510 return -1;
1511 }
1512
1513 /* Nonzero if regno should not be fetched from the target. This is the case
1514 for unimplemented (size 0) and non-existant registers. */
1515
1516 static int
1517 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1518 {
1519 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1520 || (cris_register_size (gdbarch, regno) == 0));
1521 }
1522
1523 /* Nonzero if regno should not be written to the target, for various
1524 reasons. */
1525
1526 static int
1527 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1528 {
1529 /* There are three kinds of registers we refuse to write to.
1530 1. Those that not implemented.
1531 2. Those that are read-only (depends on the processor mode).
1532 3. Those registers to which a write has no effect. */
1533
1534 if (regno < 0
1535 || regno >= gdbarch_num_regs (gdbarch)
1536 || cris_register_size (gdbarch, regno) == 0)
1537 /* Not implemented. */
1538 return 1;
1539
1540 else if (regno == VR_REGNUM)
1541 /* Read-only. */
1542 return 1;
1543
1544 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1545 /* Writing has no effect. */
1546 return 1;
1547
1548 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1549 agent decide whether they are writable. */
1550
1551 return 0;
1552 }
1553
1554 /* Nonzero if regno should not be fetched from the target. This is the case
1555 for unimplemented (size 0) and non-existant registers. */
1556
1557 static int
1558 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1559 {
1560 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1561 || (cris_register_size (gdbarch, regno) == 0));
1562 }
1563
1564 /* Nonzero if regno should not be written to the target, for various
1565 reasons. */
1566
1567 static int
1568 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1569 {
1570 /* There are three kinds of registers we refuse to write to.
1571 1. Those that not implemented.
1572 2. Those that are read-only (depends on the processor mode).
1573 3. Those registers to which a write has no effect. */
1574
1575 if (regno < 0
1576 || regno >= gdbarch_num_regs (gdbarch)
1577 || cris_register_size (gdbarch, regno) == 0)
1578 /* Not implemented. */
1579 return 1;
1580
1581 else if (regno == VR_REGNUM)
1582 /* Read-only. */
1583 return 1;
1584
1585 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1586 /* Writing has no effect. */
1587 return 1;
1588
1589 /* Many special registers are read-only in user mode. Let the debug
1590 agent decide whether they are writable. */
1591
1592 return 0;
1593 }
1594
1595 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1596 of data in register regno. */
1597
1598 static struct type *
1599 cris_register_type (struct gdbarch *gdbarch, int regno)
1600 {
1601 if (regno == gdbarch_pc_regnum (gdbarch))
1602 return builtin_type (gdbarch)->builtin_func_ptr;
1603 else if (regno == gdbarch_sp_regnum (gdbarch)
1604 || regno == CRIS_FP_REGNUM)
1605 return builtin_type (gdbarch)->builtin_data_ptr;
1606 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1607 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1608 /* Note: R8 taken care of previous clause. */
1609 return builtin_type (gdbarch)->builtin_uint32;
1610 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1611 return builtin_type (gdbarch)->builtin_uint16;
1612 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1613 return builtin_type (gdbarch)->builtin_uint8;
1614 else
1615 /* Invalid (unimplemented) register. */
1616 return builtin_type (gdbarch)->builtin_int0;
1617 }
1618
1619 static struct type *
1620 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1621 {
1622 if (regno == gdbarch_pc_regnum (gdbarch))
1623 return builtin_type (gdbarch)->builtin_func_ptr;
1624 else if (regno == gdbarch_sp_regnum (gdbarch)
1625 || regno == CRIS_FP_REGNUM)
1626 return builtin_type (gdbarch)->builtin_data_ptr;
1627 else if ((regno >= 0 && regno <= ACR_REGNUM)
1628 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1629 || (regno == PID_REGNUM)
1630 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1631 /* Note: R8 and SP taken care of by previous clause. */
1632 return builtin_type (gdbarch)->builtin_uint32;
1633 else if (regno == WZ_REGNUM)
1634 return builtin_type (gdbarch)->builtin_uint16;
1635 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1636 return builtin_type (gdbarch)->builtin_uint8;
1637 else
1638 {
1639 /* Invalid (unimplemented) register. Should not happen as there are
1640 no unimplemented CRISv32 registers. */
1641 warning (_("crisv32_register_type: unknown regno %d"), regno);
1642 return builtin_type (gdbarch)->builtin_int0;
1643 }
1644 }
1645
1646 /* Stores a function return value of type type, where valbuf is the address
1647 of the value to be stored. */
1648
1649 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1650
1651 static void
1652 cris_store_return_value (struct type *type, struct regcache *regcache,
1653 const gdb_byte *valbuf)
1654 {
1655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1656 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1657 ULONGEST val;
1658 int len = TYPE_LENGTH (type);
1659
1660 if (len <= 4)
1661 {
1662 /* Put the return value in R10. */
1663 val = extract_unsigned_integer (valbuf, len, byte_order);
1664 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1665 }
1666 else if (len <= 8)
1667 {
1668 /* Put the return value in R10 and R11. */
1669 val = extract_unsigned_integer (valbuf, 4, byte_order);
1670 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1671 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1672 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1673 }
1674 else
1675 error (_("cris_store_return_value: type length too large."));
1676 }
1677
1678 /* Return the name of register regno as a string. Return NULL for an
1679 invalid or unimplemented register. */
1680
1681 static const char *
1682 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1683 {
1684 int spec_regno;
1685 int i;
1686
1687 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1688 Adjust regno accordingly. */
1689 spec_regno = regno - NUM_GENREGS;
1690
1691 /* Assume nothing about the layout of the cris_spec_regs struct
1692 when searching. */
1693 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1694 {
1695 if (cris_spec_regs[i].number == spec_regno
1696 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1697 /* Go with the first applicable register. */
1698 return cris_spec_regs[i].name;
1699 }
1700 /* Special register not applicable to this CRIS version. */
1701 return NULL;
1702 }
1703
1704 static const char *
1705 cris_register_name (struct gdbarch *gdbarch, int regno)
1706 {
1707 static char *cris_genreg_names[] =
1708 { "r0", "r1", "r2", "r3", \
1709 "r4", "r5", "r6", "r7", \
1710 "r8", "r9", "r10", "r11", \
1711 "r12", "r13", "sp", "pc" };
1712
1713 if (regno >= 0 && regno < NUM_GENREGS)
1714 {
1715 /* General register. */
1716 return cris_genreg_names[regno];
1717 }
1718 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1719 {
1720 return cris_special_register_name (gdbarch, regno);
1721 }
1722 else
1723 {
1724 /* Invalid register. */
1725 return NULL;
1726 }
1727 }
1728
1729 static const char *
1730 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1731 {
1732 static char *crisv32_genreg_names[] =
1733 { "r0", "r1", "r2", "r3", \
1734 "r4", "r5", "r6", "r7", \
1735 "r8", "r9", "r10", "r11", \
1736 "r12", "r13", "sp", "acr"
1737 };
1738
1739 static char *crisv32_sreg_names[] =
1740 { "s0", "s1", "s2", "s3", \
1741 "s4", "s5", "s6", "s7", \
1742 "s8", "s9", "s10", "s11", \
1743 "s12", "s13", "s14", "s15"
1744 };
1745
1746 if (regno >= 0 && regno < NUM_GENREGS)
1747 {
1748 /* General register. */
1749 return crisv32_genreg_names[regno];
1750 }
1751 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1752 {
1753 return cris_special_register_name (gdbarch, regno);
1754 }
1755 else if (regno == gdbarch_pc_regnum (gdbarch))
1756 {
1757 return "pc";
1758 }
1759 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1760 {
1761 return crisv32_sreg_names[regno - S0_REGNUM];
1762 }
1763 else
1764 {
1765 /* Invalid register. */
1766 return NULL;
1767 }
1768 }
1769
1770 /* Convert DWARF register number REG to the appropriate register
1771 number used by GDB. */
1772
1773 static int
1774 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1775 {
1776 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1777 numbering, MOF is 18).
1778 Adapted from gcc/config/cris/cris.h. */
1779 static int cris_dwarf_regmap[] = {
1780 0, 1, 2, 3,
1781 4, 5, 6, 7,
1782 8, 9, 10, 11,
1783 12, 13, 14, 15,
1784 27, -1, -1, -1,
1785 -1, -1, -1, 23,
1786 -1, -1, -1, 27,
1787 -1, -1, -1, -1
1788 };
1789 int regnum = -1;
1790
1791 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1792 regnum = cris_dwarf_regmap[reg];
1793
1794 if (regnum == -1)
1795 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1796
1797 return regnum;
1798 }
1799
1800 /* DWARF-2 frame support. */
1801
1802 static void
1803 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1804 struct dwarf2_frame_state_reg *reg,
1805 struct frame_info *this_frame)
1806 {
1807 /* The return address column. */
1808 if (regnum == gdbarch_pc_regnum (gdbarch))
1809 reg->how = DWARF2_FRAME_REG_RA;
1810
1811 /* The call frame address. */
1812 else if (regnum == gdbarch_sp_regnum (gdbarch))
1813 reg->how = DWARF2_FRAME_REG_CFA;
1814 }
1815
1816 /* Extract from an array regbuf containing the raw register state a function
1817 return value of type type, and copy that, in virtual format, into
1818 valbuf. */
1819
1820 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1821
1822 static void
1823 cris_extract_return_value (struct type *type, struct regcache *regcache,
1824 gdb_byte *valbuf)
1825 {
1826 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1828 ULONGEST val;
1829 int len = TYPE_LENGTH (type);
1830
1831 if (len <= 4)
1832 {
1833 /* Get the return value from R10. */
1834 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1835 store_unsigned_integer (valbuf, len, byte_order, val);
1836 }
1837 else if (len <= 8)
1838 {
1839 /* Get the return value from R10 and R11. */
1840 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1841 store_unsigned_integer (valbuf, 4, byte_order, val);
1842 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1843 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1844 }
1845 else
1846 error (_("cris_extract_return_value: type length too large"));
1847 }
1848
1849 /* Handle the CRIS return value convention. */
1850
1851 static enum return_value_convention
1852 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1853 struct type *type, struct regcache *regcache,
1854 gdb_byte *readbuf, const gdb_byte *writebuf)
1855 {
1856 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1857 || TYPE_CODE (type) == TYPE_CODE_UNION
1858 || TYPE_LENGTH (type) > 8)
1859 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1860 goes on the stack. */
1861 return RETURN_VALUE_STRUCT_CONVENTION;
1862
1863 if (readbuf)
1864 cris_extract_return_value (type, regcache, readbuf);
1865 if (writebuf)
1866 cris_store_return_value (type, regcache, writebuf);
1867
1868 return RETURN_VALUE_REGISTER_CONVENTION;
1869 }
1870
1871 /* Calculates a value that measures how good inst_args constraints an
1872 instruction. It stems from cris_constraint, found in cris-dis.c. */
1873
1874 static int
1875 constraint (unsigned int insn, const char *inst_args,
1876 inst_env_type *inst_env)
1877 {
1878 int retval = 0;
1879 int tmp, i;
1880
1881 const gdb_byte *s = (const gdb_byte *) inst_args;
1882
1883 for (; *s; s++)
1884 switch (*s)
1885 {
1886 case 'm':
1887 if ((insn & 0x30) == 0x30)
1888 return -1;
1889 break;
1890
1891 case 'S':
1892 /* A prefix operand. */
1893 if (inst_env->prefix_found)
1894 break;
1895 else
1896 return -1;
1897
1898 case 'B':
1899 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1900 valid "push" size. In case of special register, it may be != 4. */
1901 if (inst_env->prefix_found)
1902 break;
1903 else
1904 return -1;
1905
1906 case 'D':
1907 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1908 if (!retval)
1909 return -1;
1910 else
1911 retval += 4;
1912 break;
1913
1914 case 'P':
1915 tmp = (insn >> 0xC) & 0xF;
1916
1917 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1918 {
1919 /* Since we match four bits, we will give a value of
1920 4 - 1 = 3 in a match. If there is a corresponding
1921 exact match of a special register in another pattern, it
1922 will get a value of 4, which will be higher. This should
1923 be correct in that an exact pattern would match better that
1924 a general pattern.
1925 Note that there is a reason for not returning zero; the
1926 pattern for "clear" is partly matched in the bit-pattern
1927 (the two lower bits must be zero), while the bit-pattern
1928 for a move from a special register is matched in the
1929 register constraint.
1930 This also means we will will have a race condition if
1931 there is a partly match in three bits in the bit pattern. */
1932 if (tmp == cris_spec_regs[i].number)
1933 {
1934 retval += 3;
1935 break;
1936 }
1937 }
1938
1939 if (cris_spec_regs[i].name == NULL)
1940 return -1;
1941 break;
1942 }
1943 return retval;
1944 }
1945
1946 /* Returns the number of bits set in the variable value. */
1947
1948 static int
1949 number_of_bits (unsigned int value)
1950 {
1951 int number_of_bits = 0;
1952
1953 while (value != 0)
1954 {
1955 number_of_bits += 1;
1956 value &= (value - 1);
1957 }
1958 return number_of_bits;
1959 }
1960
1961 /* Finds the address that should contain the single step breakpoint(s).
1962 It stems from code in cris-dis.c. */
1963
1964 static int
1965 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1966 {
1967 int i;
1968 int max_level_of_match = -1;
1969 int max_matched = -1;
1970 int level_of_match;
1971
1972 for (i = 0; cris_opcodes[i].name != NULL; i++)
1973 {
1974 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1975 && ((cris_opcodes[i].lose & insn) == 0)
1976 /* Only CRISv10 instructions, please. */
1977 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1978 {
1979 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1980 if (level_of_match >= 0)
1981 {
1982 level_of_match +=
1983 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1984 if (level_of_match > max_level_of_match)
1985 {
1986 max_matched = i;
1987 max_level_of_match = level_of_match;
1988 if (level_of_match == 16)
1989 {
1990 /* All bits matched, cannot find better. */
1991 break;
1992 }
1993 }
1994 }
1995 }
1996 }
1997 return max_matched;
1998 }
1999
2000 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2001 actually an internal error. */
2002
2003 static int
2004 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2005 {
2006 int i;
2007 int offset;
2008 unsigned short insn;
2009 struct gdbarch *gdbarch = get_frame_arch (frame);
2010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2011
2012 /* Create a local register image and set the initial state. */
2013 for (i = 0; i < NUM_GENREGS; i++)
2014 {
2015 inst_env->reg[i] =
2016 (unsigned long) get_frame_register_unsigned (frame, i);
2017 }
2018 offset = NUM_GENREGS;
2019 for (i = 0; i < NUM_SPECREGS; i++)
2020 {
2021 inst_env->preg[i] =
2022 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2023 }
2024 inst_env->branch_found = 0;
2025 inst_env->slot_needed = 0;
2026 inst_env->delay_slot_pc_active = 0;
2027 inst_env->prefix_found = 0;
2028 inst_env->invalid = 0;
2029 inst_env->xflag_found = 0;
2030 inst_env->disable_interrupt = 0;
2031 inst_env->byte_order = byte_order;
2032
2033 /* Look for a step target. */
2034 do
2035 {
2036 /* Read an instruction from the client. */
2037 insn = read_memory_unsigned_integer
2038 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2039
2040 /* If the instruction is not in a delay slot the new content of the
2041 PC is [PC] + 2. If the instruction is in a delay slot it is not
2042 that simple. Since a instruction in a delay slot cannot change
2043 the content of the PC, it does not matter what value PC will have.
2044 Just make sure it is a valid instruction. */
2045 if (!inst_env->delay_slot_pc_active)
2046 {
2047 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2048 }
2049 else
2050 {
2051 inst_env->delay_slot_pc_active = 0;
2052 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2053 = inst_env->delay_slot_pc;
2054 }
2055 /* Analyse the present instruction. */
2056 i = find_cris_op (insn, inst_env);
2057 if (i == -1)
2058 {
2059 inst_env->invalid = 1;
2060 }
2061 else
2062 {
2063 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2064 }
2065 } while (!inst_env->invalid
2066 && (inst_env->prefix_found || inst_env->xflag_found
2067 || inst_env->slot_needed));
2068 return i;
2069 }
2070
2071 /* There is no hardware single-step support. The function find_step_target
2072 digs through the opcodes in order to find all possible targets.
2073 Either one ordinary target or two targets for branches may be found. */
2074
2075 static int
2076 cris_software_single_step (struct frame_info *frame)
2077 {
2078 struct gdbarch *gdbarch = get_frame_arch (frame);
2079 struct address_space *aspace = get_frame_address_space (frame);
2080 inst_env_type inst_env;
2081
2082 /* Analyse the present instruction environment and insert
2083 breakpoints. */
2084 int status = find_step_target (frame, &inst_env);
2085 if (status == -1)
2086 {
2087 /* Could not find a target. Things are likely to go downhill
2088 from here. */
2089 warning (_("CRIS software single step could not find a step target."));
2090 }
2091 else
2092 {
2093 /* Insert at most two breakpoints. One for the next PC content
2094 and possibly another one for a branch, jump, etc. */
2095 CORE_ADDR next_pc
2096 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2097 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2098 if (inst_env.branch_found
2099 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2100 {
2101 CORE_ADDR branch_target_address
2102 = (CORE_ADDR) inst_env.branch_break_address;
2103 insert_single_step_breakpoint (gdbarch,
2104 aspace, branch_target_address);
2105 }
2106 }
2107
2108 return 1;
2109 }
2110
2111 /* Calculates the prefix value for quick offset addressing mode. */
2112
2113 static void
2114 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2115 {
2116 /* It's invalid to be in a delay slot. You can't have a prefix to this
2117 instruction (not 100% sure). */
2118 if (inst_env->slot_needed || inst_env->prefix_found)
2119 {
2120 inst_env->invalid = 1;
2121 return;
2122 }
2123
2124 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2125 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2126
2127 /* A prefix doesn't change the xflag_found. But the rest of the flags
2128 need updating. */
2129 inst_env->slot_needed = 0;
2130 inst_env->prefix_found = 1;
2131 }
2132
2133 /* Updates the autoincrement register. The size of the increment is derived
2134 from the size of the operation. The PC is always kept aligned on even
2135 word addresses. */
2136
2137 static void
2138 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2139 {
2140 if (size == INST_BYTE_SIZE)
2141 {
2142 inst_env->reg[cris_get_operand1 (inst)] += 1;
2143
2144 /* The PC must be word aligned, so increase the PC with one
2145 word even if the size is byte. */
2146 if (cris_get_operand1 (inst) == REG_PC)
2147 {
2148 inst_env->reg[REG_PC] += 1;
2149 }
2150 }
2151 else if (size == INST_WORD_SIZE)
2152 {
2153 inst_env->reg[cris_get_operand1 (inst)] += 2;
2154 }
2155 else if (size == INST_DWORD_SIZE)
2156 {
2157 inst_env->reg[cris_get_operand1 (inst)] += 4;
2158 }
2159 else
2160 {
2161 /* Invalid size. */
2162 inst_env->invalid = 1;
2163 }
2164 }
2165
2166 /* Just a forward declaration. */
2167
2168 static unsigned long get_data_from_address (unsigned short *inst,
2169 CORE_ADDR address,
2170 enum bfd_endian byte_order);
2171
2172 /* Calculates the prefix value for the general case of offset addressing
2173 mode. */
2174
2175 static void
2176 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2177 {
2178 /* It's invalid to be in a delay slot. */
2179 if (inst_env->slot_needed || inst_env->prefix_found)
2180 {
2181 inst_env->invalid = 1;
2182 return;
2183 }
2184
2185 /* The calculation of prefix_value used to be after process_autoincrement,
2186 but that fails for an instruction such as jsr [$r0+12] which is encoded
2187 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2188 mustn't be incremented until we have read it and what it points at. */
2189 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2190
2191 /* The offset is an indirection of the contents of the operand1 register. */
2192 inst_env->prefix_value +=
2193 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2194 inst_env->byte_order);
2195
2196 if (cris_get_mode (inst) == AUTOINC_MODE)
2197 {
2198 process_autoincrement (cris_get_size (inst), inst, inst_env);
2199 }
2200
2201 /* A prefix doesn't change the xflag_found. But the rest of the flags
2202 need updating. */
2203 inst_env->slot_needed = 0;
2204 inst_env->prefix_found = 1;
2205 }
2206
2207 /* Calculates the prefix value for the index addressing mode. */
2208
2209 static void
2210 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2211 {
2212 /* It's invalid to be in a delay slot. I can't see that it's possible to
2213 have a prefix to this instruction. So I will treat this as invalid. */
2214 if (inst_env->slot_needed || inst_env->prefix_found)
2215 {
2216 inst_env->invalid = 1;
2217 return;
2218 }
2219
2220 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2221
2222 /* The offset is the operand2 value shifted the size of the instruction
2223 to the left. */
2224 inst_env->prefix_value +=
2225 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2226
2227 /* If the PC is operand1 (base) the address used is the address after
2228 the main instruction, i.e. address + 2 (the PC is already compensated
2229 for the prefix operation). */
2230 if (cris_get_operand1 (inst) == REG_PC)
2231 {
2232 inst_env->prefix_value += 2;
2233 }
2234
2235 /* A prefix doesn't change the xflag_found. But the rest of the flags
2236 need updating. */
2237 inst_env->slot_needed = 0;
2238 inst_env->xflag_found = 0;
2239 inst_env->prefix_found = 1;
2240 }
2241
2242 /* Calculates the prefix value for the double indirect addressing mode. */
2243
2244 static void
2245 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2246 {
2247
2248 CORE_ADDR address;
2249
2250 /* It's invalid to be in a delay slot. */
2251 if (inst_env->slot_needed || inst_env->prefix_found)
2252 {
2253 inst_env->invalid = 1;
2254 return;
2255 }
2256
2257 /* The prefix value is one dereference of the contents of the operand1
2258 register. */
2259 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2260 inst_env->prefix_value
2261 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2262
2263 /* Check if the mode is autoincrement. */
2264 if (cris_get_mode (inst) == AUTOINC_MODE)
2265 {
2266 inst_env->reg[cris_get_operand1 (inst)] += 4;
2267 }
2268
2269 /* A prefix doesn't change the xflag_found. But the rest of the flags
2270 need updating. */
2271 inst_env->slot_needed = 0;
2272 inst_env->xflag_found = 0;
2273 inst_env->prefix_found = 1;
2274 }
2275
2276 /* Finds the destination for a branch with 8-bits offset. */
2277
2278 static void
2279 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2280 {
2281
2282 short offset;
2283
2284 /* If we have a prefix or are in a delay slot it's bad. */
2285 if (inst_env->slot_needed || inst_env->prefix_found)
2286 {
2287 inst_env->invalid = 1;
2288 return;
2289 }
2290
2291 /* We have a branch, find out where the branch will land. */
2292 offset = cris_get_branch_short_offset (inst);
2293
2294 /* Check if the offset is signed. */
2295 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2296 {
2297 offset |= 0xFF00;
2298 }
2299
2300 /* The offset ends with the sign bit, set it to zero. The address
2301 should always be word aligned. */
2302 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2303
2304 inst_env->branch_found = 1;
2305 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2306
2307 inst_env->slot_needed = 1;
2308 inst_env->prefix_found = 0;
2309 inst_env->xflag_found = 0;
2310 inst_env->disable_interrupt = 1;
2311 }
2312
2313 /* Finds the destination for a branch with 16-bits offset. */
2314
2315 static void
2316 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2317 {
2318 short offset;
2319
2320 /* If we have a prefix or is in a delay slot it's bad. */
2321 if (inst_env->slot_needed || inst_env->prefix_found)
2322 {
2323 inst_env->invalid = 1;
2324 return;
2325 }
2326
2327 /* We have a branch, find out the offset for the branch. */
2328 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2329 inst_env->byte_order);
2330
2331 /* The instruction is one word longer than normal, so add one word
2332 to the PC. */
2333 inst_env->reg[REG_PC] += 2;
2334
2335 inst_env->branch_found = 1;
2336 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2337
2338
2339 inst_env->slot_needed = 1;
2340 inst_env->prefix_found = 0;
2341 inst_env->xflag_found = 0;
2342 inst_env->disable_interrupt = 1;
2343 }
2344
2345 /* Handles the ABS instruction. */
2346
2347 static void
2348 abs_op (unsigned short inst, inst_env_type *inst_env)
2349 {
2350
2351 long value;
2352
2353 /* ABS can't have a prefix, so it's bad if it does. */
2354 if (inst_env->prefix_found)
2355 {
2356 inst_env->invalid = 1;
2357 return;
2358 }
2359
2360 /* Check if the operation affects the PC. */
2361 if (cris_get_operand2 (inst) == REG_PC)
2362 {
2363
2364 /* It's invalid to change to the PC if we are in a delay slot. */
2365 if (inst_env->slot_needed)
2366 {
2367 inst_env->invalid = 1;
2368 return;
2369 }
2370
2371 value = (long) inst_env->reg[REG_PC];
2372
2373 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2374 if (value != SIGNED_DWORD_MASK)
2375 {
2376 value = -value;
2377 inst_env->reg[REG_PC] = (long) value;
2378 }
2379 }
2380
2381 inst_env->slot_needed = 0;
2382 inst_env->prefix_found = 0;
2383 inst_env->xflag_found = 0;
2384 inst_env->disable_interrupt = 0;
2385 }
2386
2387 /* Handles the ADDI instruction. */
2388
2389 static void
2390 addi_op (unsigned short inst, inst_env_type *inst_env)
2391 {
2392 /* It's invalid to have the PC as base register. And ADDI can't have
2393 a prefix. */
2394 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2395 {
2396 inst_env->invalid = 1;
2397 return;
2398 }
2399
2400 inst_env->slot_needed = 0;
2401 inst_env->prefix_found = 0;
2402 inst_env->xflag_found = 0;
2403 inst_env->disable_interrupt = 0;
2404 }
2405
2406 /* Handles the ASR instruction. */
2407
2408 static void
2409 asr_op (unsigned short inst, inst_env_type *inst_env)
2410 {
2411 int shift_steps;
2412 unsigned long value;
2413 unsigned long signed_extend_mask = 0;
2414
2415 /* ASR can't have a prefix, so check that it doesn't. */
2416 if (inst_env->prefix_found)
2417 {
2418 inst_env->invalid = 1;
2419 return;
2420 }
2421
2422 /* Check if the PC is the target register. */
2423 if (cris_get_operand2 (inst) == REG_PC)
2424 {
2425 /* It's invalid to change the PC in a delay slot. */
2426 if (inst_env->slot_needed)
2427 {
2428 inst_env->invalid = 1;
2429 return;
2430 }
2431 /* Get the number of bits to shift. */
2432 shift_steps
2433 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2434 value = inst_env->reg[REG_PC];
2435
2436 /* Find out how many bits the operation should apply to. */
2437 if (cris_get_size (inst) == INST_BYTE_SIZE)
2438 {
2439 if (value & SIGNED_BYTE_MASK)
2440 {
2441 signed_extend_mask = 0xFF;
2442 signed_extend_mask = signed_extend_mask >> shift_steps;
2443 signed_extend_mask = ~signed_extend_mask;
2444 }
2445 value = value >> shift_steps;
2446 value |= signed_extend_mask;
2447 value &= 0xFF;
2448 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2449 inst_env->reg[REG_PC] |= value;
2450 }
2451 else if (cris_get_size (inst) == INST_WORD_SIZE)
2452 {
2453 if (value & SIGNED_WORD_MASK)
2454 {
2455 signed_extend_mask = 0xFFFF;
2456 signed_extend_mask = signed_extend_mask >> shift_steps;
2457 signed_extend_mask = ~signed_extend_mask;
2458 }
2459 value = value >> shift_steps;
2460 value |= signed_extend_mask;
2461 value &= 0xFFFF;
2462 inst_env->reg[REG_PC] &= 0xFFFF0000;
2463 inst_env->reg[REG_PC] |= value;
2464 }
2465 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2466 {
2467 if (value & SIGNED_DWORD_MASK)
2468 {
2469 signed_extend_mask = 0xFFFFFFFF;
2470 signed_extend_mask = signed_extend_mask >> shift_steps;
2471 signed_extend_mask = ~signed_extend_mask;
2472 }
2473 value = value >> shift_steps;
2474 value |= signed_extend_mask;
2475 inst_env->reg[REG_PC] = value;
2476 }
2477 }
2478 inst_env->slot_needed = 0;
2479 inst_env->prefix_found = 0;
2480 inst_env->xflag_found = 0;
2481 inst_env->disable_interrupt = 0;
2482 }
2483
2484 /* Handles the ASRQ instruction. */
2485
2486 static void
2487 asrq_op (unsigned short inst, inst_env_type *inst_env)
2488 {
2489
2490 int shift_steps;
2491 unsigned long value;
2492 unsigned long signed_extend_mask = 0;
2493
2494 /* ASRQ can't have a prefix, so check that it doesn't. */
2495 if (inst_env->prefix_found)
2496 {
2497 inst_env->invalid = 1;
2498 return;
2499 }
2500
2501 /* Check if the PC is the target register. */
2502 if (cris_get_operand2 (inst) == REG_PC)
2503 {
2504
2505 /* It's invalid to change the PC in a delay slot. */
2506 if (inst_env->slot_needed)
2507 {
2508 inst_env->invalid = 1;
2509 return;
2510 }
2511 /* The shift size is given as a 5 bit quick value, i.e. we don't
2512 want the sign bit of the quick value. */
2513 shift_steps = cris_get_asr_shift_steps (inst);
2514 value = inst_env->reg[REG_PC];
2515 if (value & SIGNED_DWORD_MASK)
2516 {
2517 signed_extend_mask = 0xFFFFFFFF;
2518 signed_extend_mask = signed_extend_mask >> shift_steps;
2519 signed_extend_mask = ~signed_extend_mask;
2520 }
2521 value = value >> shift_steps;
2522 value |= signed_extend_mask;
2523 inst_env->reg[REG_PC] = value;
2524 }
2525 inst_env->slot_needed = 0;
2526 inst_env->prefix_found = 0;
2527 inst_env->xflag_found = 0;
2528 inst_env->disable_interrupt = 0;
2529 }
2530
2531 /* Handles the AX, EI and SETF instruction. */
2532
2533 static void
2534 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2535 {
2536 if (inst_env->prefix_found)
2537 {
2538 inst_env->invalid = 1;
2539 return;
2540 }
2541 /* Check if the instruction is setting the X flag. */
2542 if (cris_is_xflag_bit_on (inst))
2543 {
2544 inst_env->xflag_found = 1;
2545 }
2546 else
2547 {
2548 inst_env->xflag_found = 0;
2549 }
2550 inst_env->slot_needed = 0;
2551 inst_env->prefix_found = 0;
2552 inst_env->disable_interrupt = 1;
2553 }
2554
2555 /* Checks if the instruction is in assign mode. If so, it updates the assign
2556 register. Note that check_assign assumes that the caller has checked that
2557 there is a prefix to this instruction. The mode check depends on this. */
2558
2559 static void
2560 check_assign (unsigned short inst, inst_env_type *inst_env)
2561 {
2562 /* Check if it's an assign addressing mode. */
2563 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2564 {
2565 /* Assign the prefix value to operand 1. */
2566 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2567 }
2568 }
2569
2570 /* Handles the 2-operand BOUND instruction. */
2571
2572 static void
2573 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2574 {
2575 /* It's invalid to have the PC as the index operand. */
2576 if (cris_get_operand2 (inst) == REG_PC)
2577 {
2578 inst_env->invalid = 1;
2579 return;
2580 }
2581 /* Check if we have a prefix. */
2582 if (inst_env->prefix_found)
2583 {
2584 check_assign (inst, inst_env);
2585 }
2586 /* Check if this is an autoincrement mode. */
2587 else if (cris_get_mode (inst) == AUTOINC_MODE)
2588 {
2589 /* It's invalid to change the PC in a delay slot. */
2590 if (inst_env->slot_needed)
2591 {
2592 inst_env->invalid = 1;
2593 return;
2594 }
2595 process_autoincrement (cris_get_size (inst), inst, inst_env);
2596 }
2597 inst_env->slot_needed = 0;
2598 inst_env->prefix_found = 0;
2599 inst_env->xflag_found = 0;
2600 inst_env->disable_interrupt = 0;
2601 }
2602
2603 /* Handles the 3-operand BOUND instruction. */
2604
2605 static void
2606 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2607 {
2608 /* It's an error if we haven't got a prefix. And it's also an error
2609 if the PC is the destination register. */
2610 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2611 {
2612 inst_env->invalid = 1;
2613 return;
2614 }
2615 inst_env->slot_needed = 0;
2616 inst_env->prefix_found = 0;
2617 inst_env->xflag_found = 0;
2618 inst_env->disable_interrupt = 0;
2619 }
2620
2621 /* Clears the status flags in inst_env. */
2622
2623 static void
2624 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2625 {
2626 /* It's an error if we have got a prefix. */
2627 if (inst_env->prefix_found)
2628 {
2629 inst_env->invalid = 1;
2630 return;
2631 }
2632
2633 inst_env->slot_needed = 0;
2634 inst_env->prefix_found = 0;
2635 inst_env->xflag_found = 0;
2636 inst_env->disable_interrupt = 0;
2637 }
2638
2639 /* Clears the status flags in inst_env. */
2640
2641 static void
2642 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2643 {
2644 /* It's an error if we have got a prefix. */
2645 if (inst_env->prefix_found)
2646 {
2647 inst_env->invalid = 1;
2648 return;
2649 }
2650
2651 inst_env->slot_needed = 0;
2652 inst_env->prefix_found = 0;
2653 inst_env->xflag_found = 0;
2654 inst_env->disable_interrupt = 1;
2655 }
2656
2657 /* Handles the CLEAR instruction if it's in register mode. */
2658
2659 static void
2660 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2661 {
2662 /* Check if the target is the PC. */
2663 if (cris_get_operand2 (inst) == REG_PC)
2664 {
2665 /* The instruction will clear the instruction's size bits. */
2666 int clear_size = cris_get_clear_size (inst);
2667 if (clear_size == INST_BYTE_SIZE)
2668 {
2669 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2670 }
2671 if (clear_size == INST_WORD_SIZE)
2672 {
2673 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2674 }
2675 if (clear_size == INST_DWORD_SIZE)
2676 {
2677 inst_env->delay_slot_pc = 0x0;
2678 }
2679 /* The jump will be delayed with one delay slot. So we need a delay
2680 slot. */
2681 inst_env->slot_needed = 1;
2682 inst_env->delay_slot_pc_active = 1;
2683 }
2684 else
2685 {
2686 /* The PC will not change => no delay slot. */
2687 inst_env->slot_needed = 0;
2688 }
2689 inst_env->prefix_found = 0;
2690 inst_env->xflag_found = 0;
2691 inst_env->disable_interrupt = 0;
2692 }
2693
2694 /* Handles the TEST instruction if it's in register mode. */
2695
2696 static void
2697 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2698 {
2699 /* It's an error if we have got a prefix. */
2700 if (inst_env->prefix_found)
2701 {
2702 inst_env->invalid = 1;
2703 return;
2704 }
2705 inst_env->slot_needed = 0;
2706 inst_env->prefix_found = 0;
2707 inst_env->xflag_found = 0;
2708 inst_env->disable_interrupt = 0;
2709
2710 }
2711
2712 /* Handles the CLEAR and TEST instruction if the instruction isn't
2713 in register mode. */
2714
2715 static void
2716 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2717 {
2718 /* Check if we are in a prefix mode. */
2719 if (inst_env->prefix_found)
2720 {
2721 /* The only way the PC can change is if this instruction is in
2722 assign addressing mode. */
2723 check_assign (inst, inst_env);
2724 }
2725 /* Indirect mode can't change the PC so just check if the mode is
2726 autoincrement. */
2727 else if (cris_get_mode (inst) == AUTOINC_MODE)
2728 {
2729 process_autoincrement (cris_get_size (inst), inst, inst_env);
2730 }
2731 inst_env->slot_needed = 0;
2732 inst_env->prefix_found = 0;
2733 inst_env->xflag_found = 0;
2734 inst_env->disable_interrupt = 0;
2735 }
2736
2737 /* Checks that the PC isn't the destination register or the instructions has
2738 a prefix. */
2739
2740 static void
2741 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2742 {
2743 /* It's invalid to have the PC as the destination. The instruction can't
2744 have a prefix. */
2745 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2746 {
2747 inst_env->invalid = 1;
2748 return;
2749 }
2750
2751 inst_env->slot_needed = 0;
2752 inst_env->prefix_found = 0;
2753 inst_env->xflag_found = 0;
2754 inst_env->disable_interrupt = 0;
2755 }
2756
2757 /* Checks that the instruction doesn't have a prefix. */
2758
2759 static void
2760 break_op (unsigned short inst, inst_env_type *inst_env)
2761 {
2762 /* The instruction can't have a prefix. */
2763 if (inst_env->prefix_found)
2764 {
2765 inst_env->invalid = 1;
2766 return;
2767 }
2768
2769 inst_env->slot_needed = 0;
2770 inst_env->prefix_found = 0;
2771 inst_env->xflag_found = 0;
2772 inst_env->disable_interrupt = 1;
2773 }
2774
2775 /* Checks that the PC isn't the destination register and that the instruction
2776 doesn't have a prefix. */
2777
2778 static void
2779 scc_op (unsigned short inst, inst_env_type *inst_env)
2780 {
2781 /* It's invalid to have the PC as the destination. The instruction can't
2782 have a prefix. */
2783 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2784 {
2785 inst_env->invalid = 1;
2786 return;
2787 }
2788
2789 inst_env->slot_needed = 0;
2790 inst_env->prefix_found = 0;
2791 inst_env->xflag_found = 0;
2792 inst_env->disable_interrupt = 1;
2793 }
2794
2795 /* Handles the register mode JUMP instruction. */
2796
2797 static void
2798 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2799 {
2800 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2801 you can't have a prefix. */
2802 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2803 {
2804 inst_env->invalid = 1;
2805 return;
2806 }
2807
2808 /* Just change the PC. */
2809 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2810 inst_env->slot_needed = 0;
2811 inst_env->prefix_found = 0;
2812 inst_env->xflag_found = 0;
2813 inst_env->disable_interrupt = 1;
2814 }
2815
2816 /* Handles the JUMP instruction for all modes except register. */
2817
2818 static void
2819 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2820 {
2821 unsigned long newpc;
2822 CORE_ADDR address;
2823
2824 /* It's invalid to do a JUMP in a delay slot. */
2825 if (inst_env->slot_needed)
2826 {
2827 inst_env->invalid = 1;
2828 }
2829 else
2830 {
2831 /* Check if we have a prefix. */
2832 if (inst_env->prefix_found)
2833 {
2834 check_assign (inst, inst_env);
2835
2836 /* Get the new value for the PC. */
2837 newpc =
2838 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2839 4, inst_env->byte_order);
2840 }
2841 else
2842 {
2843 /* Get the new value for the PC. */
2844 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2845 newpc = read_memory_unsigned_integer (address,
2846 4, inst_env->byte_order);
2847
2848 /* Check if we should increment a register. */
2849 if (cris_get_mode (inst) == AUTOINC_MODE)
2850 {
2851 inst_env->reg[cris_get_operand1 (inst)] += 4;
2852 }
2853 }
2854 inst_env->reg[REG_PC] = newpc;
2855 }
2856 inst_env->slot_needed = 0;
2857 inst_env->prefix_found = 0;
2858 inst_env->xflag_found = 0;
2859 inst_env->disable_interrupt = 1;
2860 }
2861
2862 /* Handles moves to special registers (aka P-register) for all modes. */
2863
2864 static void
2865 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2866 inst_env_type *inst_env)
2867 {
2868 if (inst_env->prefix_found)
2869 {
2870 /* The instruction has a prefix that means we are only interested if
2871 the instruction is in assign mode. */
2872 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2873 {
2874 /* The prefix handles the problem if we are in a delay slot. */
2875 if (cris_get_operand1 (inst) == REG_PC)
2876 {
2877 /* Just take care of the assign. */
2878 check_assign (inst, inst_env);
2879 }
2880 }
2881 }
2882 else if (cris_get_mode (inst) == AUTOINC_MODE)
2883 {
2884 /* The instruction doesn't have a prefix, the only case left that we
2885 are interested in is the autoincrement mode. */
2886 if (cris_get_operand1 (inst) == REG_PC)
2887 {
2888 /* If the PC is to be incremented it's invalid to be in a
2889 delay slot. */
2890 if (inst_env->slot_needed)
2891 {
2892 inst_env->invalid = 1;
2893 return;
2894 }
2895
2896 /* The increment depends on the size of the special register. */
2897 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2898 {
2899 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2900 }
2901 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2902 {
2903 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2904 }
2905 else
2906 {
2907 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2908 }
2909 }
2910 }
2911 inst_env->slot_needed = 0;
2912 inst_env->prefix_found = 0;
2913 inst_env->xflag_found = 0;
2914 inst_env->disable_interrupt = 1;
2915 }
2916
2917 /* Handles moves from special registers (aka P-register) for all modes
2918 except register. */
2919
2920 static void
2921 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2922 inst_env_type *inst_env)
2923 {
2924 if (inst_env->prefix_found)
2925 {
2926 /* The instruction has a prefix that means we are only interested if
2927 the instruction is in assign mode. */
2928 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2929 {
2930 /* The prefix handles the problem if we are in a delay slot. */
2931 if (cris_get_operand1 (inst) == REG_PC)
2932 {
2933 /* Just take care of the assign. */
2934 check_assign (inst, inst_env);
2935 }
2936 }
2937 }
2938 /* The instruction doesn't have a prefix, the only case left that we
2939 are interested in is the autoincrement mode. */
2940 else if (cris_get_mode (inst) == AUTOINC_MODE)
2941 {
2942 if (cris_get_operand1 (inst) == REG_PC)
2943 {
2944 /* If the PC is to be incremented it's invalid to be in a
2945 delay slot. */
2946 if (inst_env->slot_needed)
2947 {
2948 inst_env->invalid = 1;
2949 return;
2950 }
2951
2952 /* The increment depends on the size of the special register. */
2953 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2954 {
2955 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2956 }
2957 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2958 {
2959 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2960 }
2961 else
2962 {
2963 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2964 }
2965 }
2966 }
2967 inst_env->slot_needed = 0;
2968 inst_env->prefix_found = 0;
2969 inst_env->xflag_found = 0;
2970 inst_env->disable_interrupt = 1;
2971 }
2972
2973 /* Handles moves from special registers (aka P-register) when the mode
2974 is register. */
2975
2976 static void
2977 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2978 {
2979 /* Register mode move from special register can't have a prefix. */
2980 if (inst_env->prefix_found)
2981 {
2982 inst_env->invalid = 1;
2983 return;
2984 }
2985
2986 if (cris_get_operand1 (inst) == REG_PC)
2987 {
2988 /* It's invalid to change the PC in a delay slot. */
2989 if (inst_env->slot_needed)
2990 {
2991 inst_env->invalid = 1;
2992 return;
2993 }
2994 /* The destination is the PC, the jump will have a delay slot. */
2995 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2996 inst_env->slot_needed = 1;
2997 inst_env->delay_slot_pc_active = 1;
2998 }
2999 else
3000 {
3001 /* If the destination isn't PC, there will be no jump. */
3002 inst_env->slot_needed = 0;
3003 }
3004 inst_env->prefix_found = 0;
3005 inst_env->xflag_found = 0;
3006 inst_env->disable_interrupt = 1;
3007 }
3008
3009 /* Handles the MOVEM from memory to general register instruction. */
3010
3011 static void
3012 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3013 {
3014 if (inst_env->prefix_found)
3015 {
3016 /* The prefix handles the problem if we are in a delay slot. Is the
3017 MOVEM instruction going to change the PC? */
3018 if (cris_get_operand2 (inst) >= REG_PC)
3019 {
3020 inst_env->reg[REG_PC] =
3021 read_memory_unsigned_integer (inst_env->prefix_value,
3022 4, inst_env->byte_order);
3023 }
3024 /* The assign value is the value after the increment. Normally, the
3025 assign value is the value before the increment. */
3026 if ((cris_get_operand1 (inst) == REG_PC)
3027 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3028 {
3029 inst_env->reg[REG_PC] = inst_env->prefix_value;
3030 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3031 }
3032 }
3033 else
3034 {
3035 /* Is the MOVEM instruction going to change the PC? */
3036 if (cris_get_operand2 (inst) == REG_PC)
3037 {
3038 /* It's invalid to change the PC in a delay slot. */
3039 if (inst_env->slot_needed)
3040 {
3041 inst_env->invalid = 1;
3042 return;
3043 }
3044 inst_env->reg[REG_PC] =
3045 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3046 4, inst_env->byte_order);
3047 }
3048 /* The increment is not depending on the size, instead it's depending
3049 on the number of registers loaded from memory. */
3050 if ((cris_get_operand1 (inst) == REG_PC)
3051 && (cris_get_mode (inst) == AUTOINC_MODE))
3052 {
3053 /* It's invalid to change the PC in a delay slot. */
3054 if (inst_env->slot_needed)
3055 {
3056 inst_env->invalid = 1;
3057 return;
3058 }
3059 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3060 }
3061 }
3062 inst_env->slot_needed = 0;
3063 inst_env->prefix_found = 0;
3064 inst_env->xflag_found = 0;
3065 inst_env->disable_interrupt = 0;
3066 }
3067
3068 /* Handles the MOVEM to memory from general register instruction. */
3069
3070 static void
3071 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3072 {
3073 if (inst_env->prefix_found)
3074 {
3075 /* The assign value is the value after the increment. Normally, the
3076 assign value is the value before the increment. */
3077 if ((cris_get_operand1 (inst) == REG_PC)
3078 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3079 {
3080 /* The prefix handles the problem if we are in a delay slot. */
3081 inst_env->reg[REG_PC] = inst_env->prefix_value;
3082 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3083 }
3084 }
3085 else
3086 {
3087 /* The increment is not depending on the size, instead it's depending
3088 on the number of registers loaded to memory. */
3089 if ((cris_get_operand1 (inst) == REG_PC)
3090 && (cris_get_mode (inst) == AUTOINC_MODE))
3091 {
3092 /* It's invalid to change the PC in a delay slot. */
3093 if (inst_env->slot_needed)
3094 {
3095 inst_env->invalid = 1;
3096 return;
3097 }
3098 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3099 }
3100 }
3101 inst_env->slot_needed = 0;
3102 inst_env->prefix_found = 0;
3103 inst_env->xflag_found = 0;
3104 inst_env->disable_interrupt = 0;
3105 }
3106
3107 /* Handles the intructions that's not yet implemented, by setting
3108 inst_env->invalid to true. */
3109
3110 static void
3111 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3112 {
3113 inst_env->invalid = 1;
3114 }
3115
3116 /* Handles the XOR instruction. */
3117
3118 static void
3119 xor_op (unsigned short inst, inst_env_type *inst_env)
3120 {
3121 /* XOR can't have a prefix. */
3122 if (inst_env->prefix_found)
3123 {
3124 inst_env->invalid = 1;
3125 return;
3126 }
3127
3128 /* Check if the PC is the target. */
3129 if (cris_get_operand2 (inst) == REG_PC)
3130 {
3131 /* It's invalid to change the PC in a delay slot. */
3132 if (inst_env->slot_needed)
3133 {
3134 inst_env->invalid = 1;
3135 return;
3136 }
3137 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3138 }
3139 inst_env->slot_needed = 0;
3140 inst_env->prefix_found = 0;
3141 inst_env->xflag_found = 0;
3142 inst_env->disable_interrupt = 0;
3143 }
3144
3145 /* Handles the MULS instruction. */
3146
3147 static void
3148 muls_op (unsigned short inst, inst_env_type *inst_env)
3149 {
3150 /* MULS/U can't have a prefix. */
3151 if (inst_env->prefix_found)
3152 {
3153 inst_env->invalid = 1;
3154 return;
3155 }
3156
3157 /* Consider it invalid if the PC is the target. */
3158 if (cris_get_operand2 (inst) == REG_PC)
3159 {
3160 inst_env->invalid = 1;
3161 return;
3162 }
3163 inst_env->slot_needed = 0;
3164 inst_env->prefix_found = 0;
3165 inst_env->xflag_found = 0;
3166 inst_env->disable_interrupt = 0;
3167 }
3168
3169 /* Handles the MULU instruction. */
3170
3171 static void
3172 mulu_op (unsigned short inst, inst_env_type *inst_env)
3173 {
3174 /* MULS/U can't have a prefix. */
3175 if (inst_env->prefix_found)
3176 {
3177 inst_env->invalid = 1;
3178 return;
3179 }
3180
3181 /* Consider it invalid if the PC is the target. */
3182 if (cris_get_operand2 (inst) == REG_PC)
3183 {
3184 inst_env->invalid = 1;
3185 return;
3186 }
3187 inst_env->slot_needed = 0;
3188 inst_env->prefix_found = 0;
3189 inst_env->xflag_found = 0;
3190 inst_env->disable_interrupt = 0;
3191 }
3192
3193 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3194 The MOVE instruction is the move from source to register. */
3195
3196 static void
3197 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3198 unsigned long source1, unsigned long source2)
3199 {
3200 unsigned long pc_mask;
3201 unsigned long operation_mask;
3202
3203 /* Find out how many bits the operation should apply to. */
3204 if (cris_get_size (inst) == INST_BYTE_SIZE)
3205 {
3206 pc_mask = 0xFFFFFF00;
3207 operation_mask = 0xFF;
3208 }
3209 else if (cris_get_size (inst) == INST_WORD_SIZE)
3210 {
3211 pc_mask = 0xFFFF0000;
3212 operation_mask = 0xFFFF;
3213 }
3214 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3215 {
3216 pc_mask = 0x0;
3217 operation_mask = 0xFFFFFFFF;
3218 }
3219 else
3220 {
3221 /* The size is out of range. */
3222 inst_env->invalid = 1;
3223 return;
3224 }
3225
3226 /* The instruction just works on uw_operation_mask bits. */
3227 source2 &= operation_mask;
3228 source1 &= operation_mask;
3229
3230 /* Now calculate the result. The opcode's 3 first bits separates
3231 the different actions. */
3232 switch (cris_get_opcode (inst) & 7)
3233 {
3234 case 0: /* add */
3235 source1 += source2;
3236 break;
3237
3238 case 1: /* move */
3239 source1 = source2;
3240 break;
3241
3242 case 2: /* subtract */
3243 source1 -= source2;
3244 break;
3245
3246 case 3: /* compare */
3247 break;
3248
3249 case 4: /* and */
3250 source1 &= source2;
3251 break;
3252
3253 case 5: /* or */
3254 source1 |= source2;
3255 break;
3256
3257 default:
3258 inst_env->invalid = 1;
3259 return;
3260
3261 break;
3262 }
3263
3264 /* Make sure that the result doesn't contain more than the instruction
3265 size bits. */
3266 source2 &= operation_mask;
3267
3268 /* Calculate the new breakpoint address. */
3269 inst_env->reg[REG_PC] &= pc_mask;
3270 inst_env->reg[REG_PC] |= source1;
3271
3272 }
3273
3274 /* Extends the value from either byte or word size to a dword. If the mode
3275 is zero extend then the value is extended with zero. If instead the mode
3276 is signed extend the sign bit of the value is taken into consideration. */
3277
3278 static unsigned long
3279 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3280 {
3281 /* The size can be either byte or word, check which one it is.
3282 Don't check the highest bit, it's indicating if it's a zero
3283 or sign extend. */
3284 if (cris_get_size (*inst) & INST_WORD_SIZE)
3285 {
3286 /* Word size. */
3287 value &= 0xFFFF;
3288
3289 /* Check if the instruction is signed extend. If so, check if value has
3290 the sign bit on. */
3291 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3292 {
3293 value |= SIGNED_WORD_EXTEND_MASK;
3294 }
3295 }
3296 else
3297 {
3298 /* Byte size. */
3299 value &= 0xFF;
3300
3301 /* Check if the instruction is signed extend. If so, check if value has
3302 the sign bit on. */
3303 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3304 {
3305 value |= SIGNED_BYTE_EXTEND_MASK;
3306 }
3307 }
3308 /* The size should now be dword. */
3309 cris_set_size_to_dword (inst);
3310 return value;
3311 }
3312
3313 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3314 instruction. The MOVE instruction is the move from source to register. */
3315
3316 static void
3317 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3318 inst_env_type *inst_env)
3319 {
3320 unsigned long operand1;
3321 unsigned long operand2;
3322
3323 /* It's invalid to have a prefix to the instruction. This is a register
3324 mode instruction and can't have a prefix. */
3325 if (inst_env->prefix_found)
3326 {
3327 inst_env->invalid = 1;
3328 return;
3329 }
3330 /* Check if the instruction has PC as its target. */
3331 if (cris_get_operand2 (inst) == REG_PC)
3332 {
3333 if (inst_env->slot_needed)
3334 {
3335 inst_env->invalid = 1;
3336 return;
3337 }
3338 /* The instruction has the PC as its target register. */
3339 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3340 operand2 = inst_env->reg[REG_PC];
3341
3342 /* Check if it's a extend, signed or zero instruction. */
3343 if (cris_get_opcode (inst) < 4)
3344 {
3345 operand1 = do_sign_or_zero_extend (operand1, &inst);
3346 }
3347 /* Calculate the PC value after the instruction, i.e. where the
3348 breakpoint should be. The order of the udw_operands is vital. */
3349 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3350 }
3351 inst_env->slot_needed = 0;
3352 inst_env->prefix_found = 0;
3353 inst_env->xflag_found = 0;
3354 inst_env->disable_interrupt = 0;
3355 }
3356
3357 /* Returns the data contained at address. The size of the data is derived from
3358 the size of the operation. If the instruction is a zero or signed
3359 extend instruction, the size field is changed in instruction. */
3360
3361 static unsigned long
3362 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3363 enum bfd_endian byte_order)
3364 {
3365 int size = cris_get_size (*inst);
3366 unsigned long value;
3367
3368 /* If it's an extend instruction we don't want the signed extend bit,
3369 because it influences the size. */
3370 if (cris_get_opcode (*inst) < 4)
3371 {
3372 size &= ~SIGNED_EXTEND_BIT_MASK;
3373 }
3374 /* Is there a need for checking the size? Size should contain the number of
3375 bytes to read. */
3376 size = 1 << size;
3377 value = read_memory_unsigned_integer (address, size, byte_order);
3378
3379 /* Check if it's an extend, signed or zero instruction. */
3380 if (cris_get_opcode (*inst) < 4)
3381 {
3382 value = do_sign_or_zero_extend (value, inst);
3383 }
3384 return value;
3385 }
3386
3387 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3388 instructions. The MOVE instruction is the move from source to register. */
3389
3390 static void
3391 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3392 inst_env_type *inst_env)
3393 {
3394 unsigned long operand2;
3395 unsigned long operand3;
3396
3397 check_assign (inst, inst_env);
3398 if (cris_get_operand2 (inst) == REG_PC)
3399 {
3400 operand2 = inst_env->reg[REG_PC];
3401
3402 /* Get the value of the third operand. */
3403 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3404 inst_env->byte_order);
3405
3406 /* Calculate the PC value after the instruction, i.e. where the
3407 breakpoint should be. The order of the udw_operands is vital. */
3408 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3409 }
3410 inst_env->slot_needed = 0;
3411 inst_env->prefix_found = 0;
3412 inst_env->xflag_found = 0;
3413 inst_env->disable_interrupt = 0;
3414 }
3415
3416 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3417 OR instructions. Note that for this to work as expected, the calling
3418 function must have made sure that there is a prefix to this instruction. */
3419
3420 static void
3421 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3422 inst_env_type *inst_env)
3423 {
3424 unsigned long operand2;
3425 unsigned long operand3;
3426
3427 if (cris_get_operand1 (inst) == REG_PC)
3428 {
3429 /* The PC will be changed by the instruction. */
3430 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3431
3432 /* Get the value of the third operand. */
3433 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3434 inst_env->byte_order);
3435
3436 /* Calculate the PC value after the instruction, i.e. where the
3437 breakpoint should be. */
3438 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3439 }
3440 inst_env->slot_needed = 0;
3441 inst_env->prefix_found = 0;
3442 inst_env->xflag_found = 0;
3443 inst_env->disable_interrupt = 0;
3444 }
3445
3446 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3447 instructions. The MOVE instruction is the move from source to register. */
3448
3449 static void
3450 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3451 inst_env_type *inst_env)
3452 {
3453 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3454 {
3455 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3456 SUB, AND or OR something weird is going on (if everything works these
3457 instructions should end up in the three operand version). */
3458 inst_env->invalid = 1;
3459 return;
3460 }
3461 else
3462 {
3463 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3464 so use it. */
3465 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3466 }
3467 inst_env->slot_needed = 0;
3468 inst_env->prefix_found = 0;
3469 inst_env->xflag_found = 0;
3470 inst_env->disable_interrupt = 0;
3471 }
3472
3473 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3474 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3475 source to register. */
3476
3477 static void
3478 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3479 inst_env_type *inst_env)
3480 {
3481 unsigned long operand1;
3482 unsigned long operand2;
3483 unsigned long operand3;
3484 int size;
3485
3486 /* The instruction is either an indirect or autoincrement addressing mode.
3487 Check if the destination register is the PC. */
3488 if (cris_get_operand2 (inst) == REG_PC)
3489 {
3490 /* Must be done here, get_data_from_address may change the size
3491 field. */
3492 size = cris_get_size (inst);
3493 operand2 = inst_env->reg[REG_PC];
3494
3495 /* Get the value of the third operand, i.e. the indirect operand. */
3496 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3497 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3498
3499 /* Calculate the PC value after the instruction, i.e. where the
3500 breakpoint should be. The order of the udw_operands is vital. */
3501 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3502 }
3503 /* If this is an autoincrement addressing mode, check if the increment
3504 changes the PC. */
3505 if ((cris_get_operand1 (inst) == REG_PC)
3506 && (cris_get_mode (inst) == AUTOINC_MODE))
3507 {
3508 /* Get the size field. */
3509 size = cris_get_size (inst);
3510
3511 /* If it's an extend instruction we don't want the signed extend bit,
3512 because it influences the size. */
3513 if (cris_get_opcode (inst) < 4)
3514 {
3515 size &= ~SIGNED_EXTEND_BIT_MASK;
3516 }
3517 process_autoincrement (size, inst, inst_env);
3518 }
3519 inst_env->slot_needed = 0;
3520 inst_env->prefix_found = 0;
3521 inst_env->xflag_found = 0;
3522 inst_env->disable_interrupt = 0;
3523 }
3524
3525 /* Handles the two-operand addressing mode, all modes except register, for
3526 the ADD, SUB CMP, AND and OR instruction. */
3527
3528 static void
3529 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3530 inst_env_type *inst_env)
3531 {
3532 if (inst_env->prefix_found)
3533 {
3534 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3535 {
3536 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3537 }
3538 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3539 {
3540 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3541 }
3542 else
3543 {
3544 /* The mode is invalid for a prefixed base instruction. */
3545 inst_env->invalid = 1;
3546 return;
3547 }
3548 }
3549 else
3550 {
3551 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3552 }
3553 }
3554
3555 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3556
3557 static void
3558 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3559 {
3560 unsigned long operand1;
3561 unsigned long operand2;
3562
3563 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3564 instruction and can't have a prefix. */
3565 if (inst_env->prefix_found)
3566 {
3567 inst_env->invalid = 1;
3568 return;
3569 }
3570
3571 /* Check if the instruction has PC as its target. */
3572 if (cris_get_operand2 (inst) == REG_PC)
3573 {
3574 if (inst_env->slot_needed)
3575 {
3576 inst_env->invalid = 1;
3577 return;
3578 }
3579 operand1 = cris_get_quick_value (inst);
3580 operand2 = inst_env->reg[REG_PC];
3581
3582 /* The size should now be dword. */
3583 cris_set_size_to_dword (&inst);
3584
3585 /* Calculate the PC value after the instruction, i.e. where the
3586 breakpoint should be. */
3587 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3588 }
3589 inst_env->slot_needed = 0;
3590 inst_env->prefix_found = 0;
3591 inst_env->xflag_found = 0;
3592 inst_env->disable_interrupt = 0;
3593 }
3594
3595 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3596
3597 static void
3598 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3599 {
3600 unsigned long operand1;
3601 unsigned long operand2;
3602
3603 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3604 instruction and can't have a prefix. */
3605 if (inst_env->prefix_found)
3606 {
3607 inst_env->invalid = 1;
3608 return;
3609 }
3610 /* Check if the instruction has PC as its target. */
3611 if (cris_get_operand2 (inst) == REG_PC)
3612 {
3613 if (inst_env->slot_needed)
3614 {
3615 inst_env->invalid = 1;
3616 return;
3617 }
3618 /* The instruction has the PC as its target register. */
3619 operand1 = cris_get_quick_value (inst);
3620 operand2 = inst_env->reg[REG_PC];
3621
3622 /* The quick value is signed, so check if we must do a signed extend. */
3623 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3624 {
3625 /* sign extend */
3626 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3627 }
3628 /* The size should now be dword. */
3629 cris_set_size_to_dword (&inst);
3630
3631 /* Calculate the PC value after the instruction, i.e. where the
3632 breakpoint should be. */
3633 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3634 }
3635 inst_env->slot_needed = 0;
3636 inst_env->prefix_found = 0;
3637 inst_env->xflag_found = 0;
3638 inst_env->disable_interrupt = 0;
3639 }
3640
3641 /* Translate op_type to a function and call it. */
3642
3643 static void
3644 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3645 unsigned short inst, inst_env_type *inst_env)
3646 {
3647 switch (op_type)
3648 {
3649 case cris_not_implemented_op:
3650 not_implemented_op (inst, inst_env);
3651 break;
3652
3653 case cris_abs_op:
3654 abs_op (inst, inst_env);
3655 break;
3656
3657 case cris_addi_op:
3658 addi_op (inst, inst_env);
3659 break;
3660
3661 case cris_asr_op:
3662 asr_op (inst, inst_env);
3663 break;
3664
3665 case cris_asrq_op:
3666 asrq_op (inst, inst_env);
3667 break;
3668
3669 case cris_ax_ei_setf_op:
3670 ax_ei_setf_op (inst, inst_env);
3671 break;
3672
3673 case cris_bdap_prefix:
3674 bdap_prefix (inst, inst_env);
3675 break;
3676
3677 case cris_biap_prefix:
3678 biap_prefix (inst, inst_env);
3679 break;
3680
3681 case cris_break_op:
3682 break_op (inst, inst_env);
3683 break;
3684
3685 case cris_btst_nop_op:
3686 btst_nop_op (inst, inst_env);
3687 break;
3688
3689 case cris_clearf_di_op:
3690 clearf_di_op (inst, inst_env);
3691 break;
3692
3693 case cris_dip_prefix:
3694 dip_prefix (inst, inst_env);
3695 break;
3696
3697 case cris_dstep_logshift_mstep_neg_not_op:
3698 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3699 break;
3700
3701 case cris_eight_bit_offset_branch_op:
3702 eight_bit_offset_branch_op (inst, inst_env);
3703 break;
3704
3705 case cris_move_mem_to_reg_movem_op:
3706 move_mem_to_reg_movem_op (inst, inst_env);
3707 break;
3708
3709 case cris_move_reg_to_mem_movem_op:
3710 move_reg_to_mem_movem_op (inst, inst_env);
3711 break;
3712
3713 case cris_move_to_preg_op:
3714 move_to_preg_op (gdbarch, inst, inst_env);
3715 break;
3716
3717 case cris_muls_op:
3718 muls_op (inst, inst_env);
3719 break;
3720
3721 case cris_mulu_op:
3722 mulu_op (inst, inst_env);
3723 break;
3724
3725 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3726 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3727 break;
3728
3729 case cris_none_reg_mode_clear_test_op:
3730 none_reg_mode_clear_test_op (inst, inst_env);
3731 break;
3732
3733 case cris_none_reg_mode_jump_op:
3734 none_reg_mode_jump_op (inst, inst_env);
3735 break;
3736
3737 case cris_none_reg_mode_move_from_preg_op:
3738 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3739 break;
3740
3741 case cris_quick_mode_add_sub_op:
3742 quick_mode_add_sub_op (inst, inst_env);
3743 break;
3744
3745 case cris_quick_mode_and_cmp_move_or_op:
3746 quick_mode_and_cmp_move_or_op (inst, inst_env);
3747 break;
3748
3749 case cris_quick_mode_bdap_prefix:
3750 quick_mode_bdap_prefix (inst, inst_env);
3751 break;
3752
3753 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3754 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3755 break;
3756
3757 case cris_reg_mode_clear_op:
3758 reg_mode_clear_op (inst, inst_env);
3759 break;
3760
3761 case cris_reg_mode_jump_op:
3762 reg_mode_jump_op (inst, inst_env);
3763 break;
3764
3765 case cris_reg_mode_move_from_preg_op:
3766 reg_mode_move_from_preg_op (inst, inst_env);
3767 break;
3768
3769 case cris_reg_mode_test_op:
3770 reg_mode_test_op (inst, inst_env);
3771 break;
3772
3773 case cris_scc_op:
3774 scc_op (inst, inst_env);
3775 break;
3776
3777 case cris_sixteen_bit_offset_branch_op:
3778 sixteen_bit_offset_branch_op (inst, inst_env);
3779 break;
3780
3781 case cris_three_operand_add_sub_cmp_and_or_op:
3782 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3783 break;
3784
3785 case cris_three_operand_bound_op:
3786 three_operand_bound_op (inst, inst_env);
3787 break;
3788
3789 case cris_two_operand_bound_op:
3790 two_operand_bound_op (inst, inst_env);
3791 break;
3792
3793 case cris_xor_op:
3794 xor_op (inst, inst_env);
3795 break;
3796 }
3797 }
3798
3799 /* This wrapper is to avoid cris_get_assembler being called before
3800 exec_bfd has been set. */
3801
3802 static int
3803 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3804 {
3805 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3806 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3807 disassembler, even when there is no BFD. Does something like
3808 "gdb; target remote; disassmeble *0x123" work? */
3809 gdb_assert (exec_bfd != NULL);
3810 print_insn = cris_get_disassembler (exec_bfd);
3811 gdb_assert (print_insn != NULL);
3812 return print_insn (addr, info);
3813 }
3814
3815 /* Originally from <asm/elf.h>. */
3816 typedef unsigned char cris_elf_greg_t[4];
3817
3818 /* Same as user_regs_struct struct in <asm/user.h>. */
3819 #define CRISV10_ELF_NGREG 35
3820 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3821
3822 #define CRISV32_ELF_NGREG 32
3823 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3824
3825 /* Unpack a cris_elf_gregset_t into GDB's register cache. */
3826
3827 static void
3828 cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp)
3829 {
3830 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3831 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3832 int i;
3833 cris_elf_greg_t *regp = *gregsetp;
3834
3835 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3836 knows about the actual size of each register so that's no problem. */
3837 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3838 {
3839 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3840 }
3841
3842 if (tdep->cris_version == 32)
3843 {
3844 /* Needed to set pseudo-register PC for CRISv32. */
3845 /* FIXME: If ERP is in a delay slot at this point then the PC will
3846 be wrong. Issue a warning to alert the user. */
3847 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3848 (char *)&regp[ERP_REGNUM]);
3849
3850 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3851 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3852 }
3853 }
3854
3855 /* Use a local version of this function to get the correct types for
3856 regsets, until multi-arch core support is ready. */
3857
3858 static void
3859 fetch_core_registers (struct regcache *regcache,
3860 char *core_reg_sect, unsigned core_reg_size,
3861 int which, CORE_ADDR reg_addr)
3862 {
3863 cris_elf_gregset_t gregset;
3864
3865 switch (which)
3866 {
3867 case 0:
3868 if (core_reg_size != sizeof (cris_elf_gregset_t)
3869 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3870 {
3871 warning (_("wrong size gregset struct in core file"));
3872 }
3873 else
3874 {
3875 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3876 cris_supply_gregset (regcache, &gregset);
3877 }
3878
3879 default:
3880 /* We've covered all the kinds of registers we know about here,
3881 so this must be something we wouldn't know what to do with
3882 anyway. Just ignore it. */
3883 break;
3884 }
3885 }
3886
3887 static struct core_fns cris_elf_core_fns =
3888 {
3889 bfd_target_elf_flavour, /* core_flavour */
3890 default_check_format, /* check_format */
3891 default_core_sniffer, /* core_sniffer */
3892 fetch_core_registers, /* core_read_registers */
3893 NULL /* next */
3894 };
3895
3896 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3897
3898 void
3899 _initialize_cris_tdep (void)
3900 {
3901 struct cmd_list_element *c;
3902
3903 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3904
3905 /* CRIS-specific user-commands. */
3906 add_setshow_zuinteger_cmd ("cris-version", class_support,
3907 &usr_cmd_cris_version,
3908 _("Set the current CRIS version."),
3909 _("Show the current CRIS version."),
3910 _("\
3911 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3912 Defaults to 10. "),
3913 set_cris_version,
3914 NULL, /* FIXME: i18n: Current CRIS version
3915 is %s. */
3916 &setlist, &showlist);
3917
3918 add_setshow_enum_cmd ("cris-mode", class_support,
3919 cris_modes, &usr_cmd_cris_mode,
3920 _("Set the current CRIS mode."),
3921 _("Show the current CRIS mode."),
3922 _("\
3923 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3924 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3925 set_cris_mode,
3926 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3927 &setlist, &showlist);
3928
3929 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3930 &usr_cmd_cris_dwarf2_cfi,
3931 _("Set the usage of Dwarf-2 CFI for CRIS."),
3932 _("Show the usage of Dwarf-2 CFI for CRIS."),
3933 _("Set this to \"off\" if using gcc-cris < R59."),
3934 set_cris_dwarf2_cfi,
3935 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3936 for CRIS is %d. */
3937 &setlist, &showlist);
3938
3939 deprecated_add_core_fns (&cris_elf_core_fns);
3940 }
3941
3942 /* Prints out all target specific values. */
3943
3944 static void
3945 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3946 {
3947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3948 if (tdep != NULL)
3949 {
3950 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3951 tdep->cris_version);
3952 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3953 tdep->cris_mode);
3954 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3955 tdep->cris_dwarf2_cfi);
3956 }
3957 }
3958
3959 static void
3960 set_cris_version (char *ignore_args, int from_tty,
3961 struct cmd_list_element *c)
3962 {
3963 struct gdbarch_info info;
3964
3965 usr_cmd_cris_version_valid = 1;
3966
3967 /* Update the current architecture, if needed. */
3968 gdbarch_info_init (&info);
3969 if (!gdbarch_update_p (info))
3970 internal_error (__FILE__, __LINE__,
3971 _("cris_gdbarch_update: failed to update architecture."));
3972 }
3973
3974 static void
3975 set_cris_mode (char *ignore_args, int from_tty,
3976 struct cmd_list_element *c)
3977 {
3978 struct gdbarch_info info;
3979
3980 /* Update the current architecture, if needed. */
3981 gdbarch_info_init (&info);
3982 if (!gdbarch_update_p (info))
3983 internal_error (__FILE__, __LINE__,
3984 "cris_gdbarch_update: failed to update architecture.");
3985 }
3986
3987 static void
3988 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
3989 struct cmd_list_element *c)
3990 {
3991 struct gdbarch_info info;
3992
3993 /* Update the current architecture, if needed. */
3994 gdbarch_info_init (&info);
3995 if (!gdbarch_update_p (info))
3996 internal_error (__FILE__, __LINE__,
3997 _("cris_gdbarch_update: failed to update architecture."));
3998 }
3999
4000 static struct gdbarch *
4001 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4002 {
4003 struct gdbarch *gdbarch;
4004 struct gdbarch_tdep *tdep;
4005 unsigned int cris_version;
4006
4007 if (usr_cmd_cris_version_valid)
4008 {
4009 /* Trust the user's CRIS version setting. */
4010 cris_version = usr_cmd_cris_version;
4011 }
4012 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4013 {
4014 cris_version = 32;
4015 }
4016 else
4017 {
4018 /* Assume it's CRIS version 10. */
4019 cris_version = 10;
4020 }
4021
4022 /* Make the current settings visible to the user. */
4023 usr_cmd_cris_version = cris_version;
4024
4025 /* Find a candidate among the list of pre-declared architectures. */
4026 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4027 arches != NULL;
4028 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4029 {
4030 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4031 == usr_cmd_cris_version)
4032 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4033 == usr_cmd_cris_mode)
4034 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4035 == usr_cmd_cris_dwarf2_cfi))
4036 return arches->gdbarch;
4037 }
4038
4039 /* No matching architecture was found. Create a new one. */
4040 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4041 gdbarch = gdbarch_alloc (&info, tdep);
4042
4043 tdep->cris_version = usr_cmd_cris_version;
4044 tdep->cris_mode = usr_cmd_cris_mode;
4045 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4046
4047 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4048 switch (info.byte_order)
4049 {
4050 case BFD_ENDIAN_LITTLE:
4051 /* Ok. */
4052 break;
4053
4054 case BFD_ENDIAN_BIG:
4055 internal_error (__FILE__, __LINE__,
4056 _("cris_gdbarch_init: big endian byte order in info"));
4057 break;
4058
4059 default:
4060 internal_error (__FILE__, __LINE__,
4061 _("cris_gdbarch_init: unknown byte order in info"));
4062 }
4063
4064 set_gdbarch_return_value (gdbarch, cris_return_value);
4065
4066 set_gdbarch_sp_regnum (gdbarch, 14);
4067
4068 /* Length of ordinary registers used in push_word and a few other
4069 places. register_size() is the real way to know how big a
4070 register is. */
4071
4072 set_gdbarch_double_bit (gdbarch, 64);
4073 /* The default definition of a long double is 2 * gdbarch_double_bit,
4074 which means we have to set this explicitly. */
4075 set_gdbarch_long_double_bit (gdbarch, 64);
4076
4077 /* The total amount of space needed to store (in an array called registers)
4078 GDB's copy of the machine's register state. Note: We can not use
4079 cris_register_size at this point, since it relies on gdbarch
4080 being set. */
4081 switch (tdep->cris_version)
4082 {
4083 case 0:
4084 case 1:
4085 case 2:
4086 case 3:
4087 case 8:
4088 case 9:
4089 /* Old versions; not supported. */
4090 internal_error (__FILE__, __LINE__,
4091 _("cris_gdbarch_init: unsupported CRIS version"));
4092 break;
4093
4094 case 10:
4095 case 11:
4096 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4097 P7 (32 bits), and P15 (32 bits) have been implemented. */
4098 set_gdbarch_pc_regnum (gdbarch, 15);
4099 set_gdbarch_register_type (gdbarch, cris_register_type);
4100 /* There are 32 registers (some of which may not be implemented). */
4101 set_gdbarch_num_regs (gdbarch, 32);
4102 set_gdbarch_register_name (gdbarch, cris_register_name);
4103 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4104 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4105
4106 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4107 break;
4108
4109 case 32:
4110 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4111 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4112 and pseudo-register PC (32 bits). */
4113 set_gdbarch_pc_regnum (gdbarch, 32);
4114 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4115 /* 32 registers + pseudo-register PC + 16 support registers. */
4116 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4117 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4118
4119 set_gdbarch_cannot_store_register
4120 (gdbarch, crisv32_cannot_store_register);
4121 set_gdbarch_cannot_fetch_register
4122 (gdbarch, crisv32_cannot_fetch_register);
4123
4124 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4125
4126 set_gdbarch_single_step_through_delay
4127 (gdbarch, crisv32_single_step_through_delay);
4128
4129 break;
4130
4131 default:
4132 internal_error (__FILE__, __LINE__,
4133 _("cris_gdbarch_init: unknown CRIS version"));
4134 }
4135
4136 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4137 have the same ABI). */
4138 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4139 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4140 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4141 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4142
4143 /* The stack grows downward. */
4144 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4145
4146 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4147
4148 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4149 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4150 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4151
4152 if (tdep->cris_dwarf2_cfi == 1)
4153 {
4154 /* Hook in the Dwarf-2 frame sniffer. */
4155 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4156 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4157 dwarf2_append_unwinders (gdbarch);
4158 }
4159
4160 if (tdep->cris_mode != cris_mode_guru)
4161 {
4162 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4163 }
4164
4165 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4166 frame_base_set_default (gdbarch, &cris_frame_base);
4167
4168 /* Hook in ABI-specific overrides, if they have been registered. */
4169 gdbarch_init_osabi (info, gdbarch);
4170
4171 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4172 disassembler, even when there is no BFD. Does something like
4173 "gdb; target remote; disassmeble *0x123" work? */
4174 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4175
4176 return gdbarch;
4177 }
This page took 0.227405 seconds and 5 git commands to generate.