* amd64-tdep.c (amd64_return_value): Revert previous change
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2-frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "gdb_assert.h"
40
41 #include "objfiles.h"
42
43 #include "solib.h" /* Support for shared libraries. */
44 #include "solib-svr4.h"
45 #include "gdb_string.h"
46 #include "dis-asm.h"
47
48 enum cris_num_regs
49 {
50 /* There are no floating point registers. Used in gdbserver low-linux.c. */
51 NUM_FREGS = 0,
52
53 /* There are 16 general registers. */
54 NUM_GENREGS = 16,
55
56 /* There are 16 special registers. */
57 NUM_SPECREGS = 16,
58
59 /* CRISv32 has a pseudo PC register, not noted here. */
60
61 /* CRISv32 has 16 support registers. */
62 NUM_SUPPREGS = 16
63 };
64
65 /* Register numbers of various important registers.
66 CRIS_FP_REGNUM Contains address of executing stack frame.
67 STR_REGNUM Contains the address of structure return values.
68 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
69 ARG1_REGNUM Contains the first parameter to a function.
70 ARG2_REGNUM Contains the second parameter to a function.
71 ARG3_REGNUM Contains the third parameter to a function.
72 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
73 gdbarch_sp_regnum Contains address of top of stack.
74 gdbarch_pc_regnum Contains address of next instruction.
75 SRP_REGNUM Subroutine return pointer register.
76 BRP_REGNUM Breakpoint return pointer register. */
77
78 enum cris_regnums
79 {
80 /* Enums with respect to the general registers, valid for all
81 CRIS versions. The frame pointer is always in R8. */
82 CRIS_FP_REGNUM = 8,
83 /* ABI related registers. */
84 STR_REGNUM = 9,
85 RET_REGNUM = 10,
86 ARG1_REGNUM = 10,
87 ARG2_REGNUM = 11,
88 ARG3_REGNUM = 12,
89 ARG4_REGNUM = 13,
90
91 /* Registers which happen to be common. */
92 VR_REGNUM = 17,
93 MOF_REGNUM = 23,
94 SRP_REGNUM = 27,
95
96 /* CRISv10 et al. specific registers. */
97 P0_REGNUM = 16,
98 P4_REGNUM = 20,
99 CCR_REGNUM = 21,
100 P8_REGNUM = 24,
101 IBR_REGNUM = 25,
102 IRP_REGNUM = 26,
103 BAR_REGNUM = 28,
104 DCCR_REGNUM = 29,
105 BRP_REGNUM = 30,
106 USP_REGNUM = 31,
107
108 /* CRISv32 specific registers. */
109 ACR_REGNUM = 15,
110 BZ_REGNUM = 16,
111 PID_REGNUM = 18,
112 SRS_REGNUM = 19,
113 WZ_REGNUM = 20,
114 EXS_REGNUM = 21,
115 EDA_REGNUM = 22,
116 DZ_REGNUM = 24,
117 EBP_REGNUM = 25,
118 ERP_REGNUM = 26,
119 NRP_REGNUM = 28,
120 CCS_REGNUM = 29,
121 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
122 SPC_REGNUM = 31,
123 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
124
125 S0_REGNUM = 33,
126 S1_REGNUM = 34,
127 S2_REGNUM = 35,
128 S3_REGNUM = 36,
129 S4_REGNUM = 37,
130 S5_REGNUM = 38,
131 S6_REGNUM = 39,
132 S7_REGNUM = 40,
133 S8_REGNUM = 41,
134 S9_REGNUM = 42,
135 S10_REGNUM = 43,
136 S11_REGNUM = 44,
137 S12_REGNUM = 45,
138 S13_REGNUM = 46,
139 S14_REGNUM = 47,
140 S15_REGNUM = 48,
141 };
142
143 extern const struct cris_spec_reg cris_spec_regs[];
144
145 /* CRIS version, set via the user command 'set cris-version'. Affects
146 register names and sizes. */
147 static int usr_cmd_cris_version;
148
149 /* Indicates whether to trust the above variable. */
150 static int usr_cmd_cris_version_valid = 0;
151
152 static const char cris_mode_normal[] = "normal";
153 static const char cris_mode_guru[] = "guru";
154 static const char *const cris_modes[] = {
155 cris_mode_normal,
156 cris_mode_guru,
157 0
158 };
159
160 /* CRIS mode, set via the user command 'set cris-mode'. Affects
161 type of break instruction among other things. */
162 static const char *usr_cmd_cris_mode = cris_mode_normal;
163
164 /* Whether to make use of Dwarf-2 CFI (default on). */
165 static int usr_cmd_cris_dwarf2_cfi = 1;
166
167 /* CRIS architecture specific information. */
168 struct gdbarch_tdep
169 {
170 int cris_version;
171 const char *cris_mode;
172 int cris_dwarf2_cfi;
173 };
174
175 /* Sigtramp identification code copied from i386-linux-tdep.c. */
176
177 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
178 #define SIGTRAMP_OFFSET0 0
179 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
180 #define SIGTRAMP_OFFSET1 4
181
182 static const unsigned short sigtramp_code[] =
183 {
184 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
185 SIGTRAMP_INSN1 /* break 13 */
186 };
187
188 #define SIGTRAMP_LEN (sizeof sigtramp_code)
189
190 /* Note: same length as normal sigtramp code. */
191
192 static const unsigned short rt_sigtramp_code[] =
193 {
194 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
195 SIGTRAMP_INSN1 /* break 13 */
196 };
197
198 /* If PC is in a sigtramp routine, return the address of the start of
199 the routine. Otherwise, return 0. */
200
201 static CORE_ADDR
202 cris_sigtramp_start (struct frame_info *this_frame)
203 {
204 CORE_ADDR pc = get_frame_pc (this_frame);
205 gdb_byte buf[SIGTRAMP_LEN];
206
207 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
208 return 0;
209
210 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
211 {
212 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
213 return 0;
214
215 pc -= SIGTRAMP_OFFSET1;
216 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
217 return 0;
218 }
219
220 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
221 return 0;
222
223 return pc;
224 }
225
226 /* If PC is in a RT sigtramp routine, return the address of the start of
227 the routine. Otherwise, return 0. */
228
229 static CORE_ADDR
230 cris_rt_sigtramp_start (struct frame_info *this_frame)
231 {
232 CORE_ADDR pc = get_frame_pc (this_frame);
233 gdb_byte buf[SIGTRAMP_LEN];
234
235 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
236 return 0;
237
238 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
239 {
240 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
241 return 0;
242
243 pc -= SIGTRAMP_OFFSET1;
244 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
245 return 0;
246 }
247
248 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
249 return 0;
250
251 return pc;
252 }
253
254 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
255 return the address of the associated sigcontext structure. */
256
257 static CORE_ADDR
258 cris_sigcontext_addr (struct frame_info *this_frame)
259 {
260 struct gdbarch *gdbarch = get_frame_arch (this_frame);
261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
262 CORE_ADDR pc;
263 CORE_ADDR sp;
264 char buf[4];
265
266 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
267 sp = extract_unsigned_integer (buf, 4, byte_order);
268
269 /* Look for normal sigtramp frame first. */
270 pc = cris_sigtramp_start (this_frame);
271 if (pc)
272 {
273 /* struct signal_frame (arch/cris/kernel/signal.c) contains
274 struct sigcontext as its first member, meaning the SP points to
275 it already. */
276 return sp;
277 }
278
279 pc = cris_rt_sigtramp_start (this_frame);
280 if (pc)
281 {
282 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
283 a struct ucontext, which in turn contains a struct sigcontext.
284 Magic digging:
285 4 + 4 + 128 to struct ucontext, then
286 4 + 4 + 12 to struct sigcontext. */
287 return (sp + 156);
288 }
289
290 error (_("Couldn't recognize signal trampoline."));
291 return 0;
292 }
293
294 struct cris_unwind_cache
295 {
296 /* The previous frame's inner most stack address. Used as this
297 frame ID's stack_addr. */
298 CORE_ADDR prev_sp;
299 /* The frame's base, optionally used by the high-level debug info. */
300 CORE_ADDR base;
301 int size;
302 /* How far the SP and r8 (FP) have been offset from the start of
303 the stack frame (as defined by the previous frame's stack
304 pointer). */
305 LONGEST sp_offset;
306 LONGEST r8_offset;
307 int uses_frame;
308
309 /* From old frame_extra_info struct. */
310 CORE_ADDR return_pc;
311 int leaf_function;
312
313 /* Table indicating the location of each and every register. */
314 struct trad_frame_saved_reg *saved_regs;
315 };
316
317 static struct cris_unwind_cache *
318 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
319 void **this_cache)
320 {
321 struct gdbarch *gdbarch = get_frame_arch (this_frame);
322 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
324 struct cris_unwind_cache *info;
325 CORE_ADDR addr;
326 char buf[4];
327 int i;
328
329 if ((*this_cache))
330 return (*this_cache);
331
332 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
333 (*this_cache) = info;
334 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
335
336 /* Zero all fields. */
337 info->prev_sp = 0;
338 info->base = 0;
339 info->size = 0;
340 info->sp_offset = 0;
341 info->r8_offset = 0;
342 info->uses_frame = 0;
343 info->return_pc = 0;
344 info->leaf_function = 0;
345
346 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
347 info->base = extract_unsigned_integer (buf, 4, byte_order);
348
349 addr = cris_sigcontext_addr (this_frame);
350
351 /* Layout of the sigcontext struct:
352 struct sigcontext {
353 struct pt_regs regs;
354 unsigned long oldmask;
355 unsigned long usp;
356 }; */
357
358 if (tdep->cris_version == 10)
359 {
360 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
361 struct pt_regs. */
362 for (i = 0; i <= 13; i++)
363 info->saved_regs[i].addr = addr + ((15 - i) * 4);
364
365 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
366 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
367 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
368 /* Note: IRP is off by 2 at this point. There's no point in correcting
369 it though since that will mean that the backtrace will show a PC
370 different from what is shown when stopped. */
371 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
372 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
373 = info->saved_regs[IRP_REGNUM];
374 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
375 }
376 else
377 {
378 /* CRISv32. */
379 /* R0 to R13 are stored in order at offset (1 * 4) in
380 struct pt_regs. */
381 for (i = 0; i <= 13; i++)
382 info->saved_regs[i].addr = addr + ((i + 1) * 4);
383
384 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
385 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
386 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
387 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
388 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
389 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
390 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
391 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
392 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
393
394 /* FIXME: If ERP is in a delay slot at this point then the PC will
395 be wrong at this point. This problem manifests itself in the
396 sigaltstack.exp test case, which occasionally generates FAILs when
397 the signal is received while in a delay slot.
398
399 This could be solved by a couple of read_memory_unsigned_integer and a
400 trad_frame_set_value. */
401 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
402 = info->saved_regs[ERP_REGNUM];
403
404 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
405 = addr + (25 * 4);
406 }
407
408 return info;
409 }
410
411 static void
412 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
413 struct frame_id *this_id)
414 {
415 struct cris_unwind_cache *cache =
416 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
417 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
418 }
419
420 /* Forward declaration. */
421
422 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
423 void **this_cache, int regnum);
424 static struct value *
425 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum)
427 {
428 /* Make sure we've initialized the cache. */
429 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
430 return cris_frame_prev_register (this_frame, this_cache, regnum);
431 }
432
433 static int
434 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
435 struct frame_info *this_frame,
436 void **this_cache)
437 {
438 if (cris_sigtramp_start (this_frame)
439 || cris_rt_sigtramp_start (this_frame))
440 return 1;
441
442 return 0;
443 }
444
445 static const struct frame_unwind cris_sigtramp_frame_unwind =
446 {
447 SIGTRAMP_FRAME,
448 default_frame_unwind_stop_reason,
449 cris_sigtramp_frame_this_id,
450 cris_sigtramp_frame_prev_register,
451 NULL,
452 cris_sigtramp_frame_sniffer
453 };
454
455 static int
456 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
457 struct frame_info *this_frame)
458 {
459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
460 ULONGEST erp;
461 int ret = 0;
462
463 if (tdep->cris_mode == cris_mode_guru)
464 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
465 else
466 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
467
468 if (erp & 0x1)
469 {
470 /* In delay slot - check if there's a breakpoint at the preceding
471 instruction. */
472 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
473 ret = 1;
474 }
475 return ret;
476 }
477
478 /* The instruction environment needed to find single-step breakpoints. */
479
480 typedef
481 struct instruction_environment
482 {
483 unsigned long reg[NUM_GENREGS];
484 unsigned long preg[NUM_SPECREGS];
485 unsigned long branch_break_address;
486 unsigned long delay_slot_pc;
487 unsigned long prefix_value;
488 int branch_found;
489 int prefix_found;
490 int invalid;
491 int slot_needed;
492 int delay_slot_pc_active;
493 int xflag_found;
494 int disable_interrupt;
495 int byte_order;
496 } inst_env_type;
497
498 /* Machine-dependencies in CRIS for opcodes. */
499
500 /* Instruction sizes. */
501 enum cris_instruction_sizes
502 {
503 INST_BYTE_SIZE = 0,
504 INST_WORD_SIZE = 1,
505 INST_DWORD_SIZE = 2
506 };
507
508 /* Addressing modes. */
509 enum cris_addressing_modes
510 {
511 REGISTER_MODE = 1,
512 INDIRECT_MODE = 2,
513 AUTOINC_MODE = 3
514 };
515
516 /* Prefix addressing modes. */
517 enum cris_prefix_addressing_modes
518 {
519 PREFIX_INDEX_MODE = 2,
520 PREFIX_ASSIGN_MODE = 3,
521
522 /* Handle immediate byte offset addressing mode prefix format. */
523 PREFIX_OFFSET_MODE = 2
524 };
525
526 /* Masks for opcodes. */
527 enum cris_opcode_masks
528 {
529 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
530 SIGNED_EXTEND_BIT_MASK = 0x2,
531 SIGNED_BYTE_MASK = 0x80,
532 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
533 SIGNED_WORD_MASK = 0x8000,
534 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
535 SIGNED_DWORD_MASK = 0x80000000,
536 SIGNED_QUICK_VALUE_MASK = 0x20,
537 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
538 };
539
540 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
541 Bit 15 - 12 Operand2
542 11 - 10 Mode
543 9 - 6 Opcode
544 5 - 4 Size
545 3 - 0 Operand1 */
546
547 static int
548 cris_get_operand2 (unsigned short insn)
549 {
550 return ((insn & 0xF000) >> 12);
551 }
552
553 static int
554 cris_get_mode (unsigned short insn)
555 {
556 return ((insn & 0x0C00) >> 10);
557 }
558
559 static int
560 cris_get_opcode (unsigned short insn)
561 {
562 return ((insn & 0x03C0) >> 6);
563 }
564
565 static int
566 cris_get_size (unsigned short insn)
567 {
568 return ((insn & 0x0030) >> 4);
569 }
570
571 static int
572 cris_get_operand1 (unsigned short insn)
573 {
574 return (insn & 0x000F);
575 }
576
577 /* Additional functions in order to handle opcodes. */
578
579 static int
580 cris_get_quick_value (unsigned short insn)
581 {
582 return (insn & 0x003F);
583 }
584
585 static int
586 cris_get_bdap_quick_offset (unsigned short insn)
587 {
588 return (insn & 0x00FF);
589 }
590
591 static int
592 cris_get_branch_short_offset (unsigned short insn)
593 {
594 return (insn & 0x00FF);
595 }
596
597 static int
598 cris_get_asr_shift_steps (unsigned long value)
599 {
600 return (value & 0x3F);
601 }
602
603 static int
604 cris_get_clear_size (unsigned short insn)
605 {
606 return ((insn) & 0xC000);
607 }
608
609 static int
610 cris_is_signed_extend_bit_on (unsigned short insn)
611 {
612 return (((insn) & 0x20) == 0x20);
613 }
614
615 static int
616 cris_is_xflag_bit_on (unsigned short insn)
617 {
618 return (((insn) & 0x1000) == 0x1000);
619 }
620
621 static void
622 cris_set_size_to_dword (unsigned short *insn)
623 {
624 *insn &= 0xFFCF;
625 *insn |= 0x20;
626 }
627
628 static signed char
629 cris_get_signed_offset (unsigned short insn)
630 {
631 return ((signed char) (insn & 0x00FF));
632 }
633
634 /* Calls an op function given the op-type, working on the insn and the
635 inst_env. */
636 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
637 inst_env_type *);
638
639 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
640 struct gdbarch_list *);
641
642 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
643
644 static void set_cris_version (char *ignore_args, int from_tty,
645 struct cmd_list_element *c);
646
647 static void set_cris_mode (char *ignore_args, int from_tty,
648 struct cmd_list_element *c);
649
650 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
651 struct cmd_list_element *c);
652
653 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
654 struct frame_info *this_frame,
655 struct cris_unwind_cache *info);
656
657 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
658 struct frame_info *this_frame,
659 struct cris_unwind_cache *info);
660
661 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
662 struct frame_info *next_frame);
663
664 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
665 struct frame_info *next_frame);
666
667 /* When arguments must be pushed onto the stack, they go on in reverse
668 order. The below implements a FILO (stack) to do this.
669 Copied from d10v-tdep.c. */
670
671 struct stack_item
672 {
673 int len;
674 struct stack_item *prev;
675 void *data;
676 };
677
678 static struct stack_item *
679 push_stack_item (struct stack_item *prev, void *contents, int len)
680 {
681 struct stack_item *si;
682 si = xmalloc (sizeof (struct stack_item));
683 si->data = xmalloc (len);
684 si->len = len;
685 si->prev = prev;
686 memcpy (si->data, contents, len);
687 return si;
688 }
689
690 static struct stack_item *
691 pop_stack_item (struct stack_item *si)
692 {
693 struct stack_item *dead = si;
694 si = si->prev;
695 xfree (dead->data);
696 xfree (dead);
697 return si;
698 }
699
700 /* Put here the code to store, into fi->saved_regs, the addresses of
701 the saved registers of frame described by FRAME_INFO. This
702 includes special registers such as pc and fp saved in special ways
703 in the stack frame. sp is even more special: the address we return
704 for it IS the sp for the next frame. */
705
706 static struct cris_unwind_cache *
707 cris_frame_unwind_cache (struct frame_info *this_frame,
708 void **this_prologue_cache)
709 {
710 struct gdbarch *gdbarch = get_frame_arch (this_frame);
711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
712 struct cris_unwind_cache *info;
713
714 if ((*this_prologue_cache))
715 return (*this_prologue_cache);
716
717 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
718 (*this_prologue_cache) = info;
719 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
720
721 /* Zero all fields. */
722 info->prev_sp = 0;
723 info->base = 0;
724 info->size = 0;
725 info->sp_offset = 0;
726 info->r8_offset = 0;
727 info->uses_frame = 0;
728 info->return_pc = 0;
729 info->leaf_function = 0;
730
731 /* Prologue analysis does the rest... */
732 if (tdep->cris_version == 32)
733 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
734 else
735 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
736
737 return info;
738 }
739
740 /* Given a GDB frame, determine the address of the calling function's
741 frame. This will be used to create a new GDB frame struct. */
742
743 static void
744 cris_frame_this_id (struct frame_info *this_frame,
745 void **this_prologue_cache,
746 struct frame_id *this_id)
747 {
748 struct cris_unwind_cache *info
749 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
750 CORE_ADDR base;
751 CORE_ADDR func;
752 struct frame_id id;
753
754 /* The FUNC is easy. */
755 func = get_frame_func (this_frame);
756
757 /* Hopefully the prologue analysis either correctly determined the
758 frame's base (which is the SP from the previous frame), or set
759 that base to "NULL". */
760 base = info->prev_sp;
761 if (base == 0)
762 return;
763
764 id = frame_id_build (base, func);
765
766 (*this_id) = id;
767 }
768
769 static struct value *
770 cris_frame_prev_register (struct frame_info *this_frame,
771 void **this_prologue_cache, int regnum)
772 {
773 struct cris_unwind_cache *info
774 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
775 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
776 }
777
778 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
779 frame. The frame ID's base needs to match the TOS value saved by
780 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
781
782 static struct frame_id
783 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
784 {
785 CORE_ADDR sp;
786 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
787 return frame_id_build (sp, get_frame_pc (this_frame));
788 }
789
790 static CORE_ADDR
791 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
792 {
793 /* Align to the size of an instruction (so that they can safely be
794 pushed onto the stack). */
795 return sp & ~3;
796 }
797
798 static CORE_ADDR
799 cris_push_dummy_code (struct gdbarch *gdbarch,
800 CORE_ADDR sp, CORE_ADDR funaddr,
801 struct value **args, int nargs,
802 struct type *value_type,
803 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
804 struct regcache *regcache)
805 {
806 /* Allocate space sufficient for a breakpoint. */
807 sp = (sp - 4) & ~3;
808 /* Store the address of that breakpoint */
809 *bp_addr = sp;
810 /* CRIS always starts the call at the callee's entry point. */
811 *real_pc = funaddr;
812 return sp;
813 }
814
815 static CORE_ADDR
816 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
817 struct regcache *regcache, CORE_ADDR bp_addr,
818 int nargs, struct value **args, CORE_ADDR sp,
819 int struct_return, CORE_ADDR struct_addr)
820 {
821 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
822 int stack_offset;
823 int argreg;
824 int argnum;
825
826 /* The function's arguments and memory allocated by gdb for the arguments to
827 point at reside in separate areas on the stack.
828 Both frame pointers grow toward higher addresses. */
829 CORE_ADDR fp_arg;
830 CORE_ADDR fp_mem;
831
832 struct stack_item *si = NULL;
833
834 /* Push the return address. */
835 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
836
837 /* Are we returning a value using a structure return or a normal value
838 return? struct_addr is the address of the reserved space for the return
839 structure to be written on the stack. */
840 if (struct_return)
841 {
842 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
843 }
844
845 /* Now load as many as possible of the first arguments into registers,
846 and push the rest onto the stack. */
847 argreg = ARG1_REGNUM;
848 stack_offset = 0;
849
850 for (argnum = 0; argnum < nargs; argnum++)
851 {
852 int len;
853 char *val;
854 int reg_demand;
855 int i;
856
857 len = TYPE_LENGTH (value_type (args[argnum]));
858 val = (char *) value_contents (args[argnum]);
859
860 /* How may registers worth of storage do we need for this argument? */
861 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
862
863 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
864 {
865 /* Data passed by value. Fits in available register(s). */
866 for (i = 0; i < reg_demand; i++)
867 {
868 regcache_cooked_write (regcache, argreg, val);
869 argreg++;
870 val += 4;
871 }
872 }
873 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
874 {
875 /* Data passed by value. Does not fit in available register(s).
876 Use the register(s) first, then the stack. */
877 for (i = 0; i < reg_demand; i++)
878 {
879 if (argreg <= ARG4_REGNUM)
880 {
881 regcache_cooked_write (regcache, argreg, val);
882 argreg++;
883 val += 4;
884 }
885 else
886 {
887 /* Push item for later so that pushed arguments
888 come in the right order. */
889 si = push_stack_item (si, val, 4);
890 val += 4;
891 }
892 }
893 }
894 else if (len > (2 * 4))
895 {
896 /* Data passed by reference. Push copy of data onto stack
897 and pass pointer to this copy as argument. */
898 sp = (sp - len) & ~3;
899 write_memory (sp, val, len);
900
901 if (argreg <= ARG4_REGNUM)
902 {
903 regcache_cooked_write_unsigned (regcache, argreg, sp);
904 argreg++;
905 }
906 else
907 {
908 gdb_byte buf[4];
909 store_unsigned_integer (buf, 4, byte_order, sp);
910 si = push_stack_item (si, buf, 4);
911 }
912 }
913 else
914 {
915 /* Data passed by value. No available registers. Put it on
916 the stack. */
917 si = push_stack_item (si, val, len);
918 }
919 }
920
921 while (si)
922 {
923 /* fp_arg must be word-aligned (i.e., don't += len) to match
924 the function prologue. */
925 sp = (sp - si->len) & ~3;
926 write_memory (sp, si->data, si->len);
927 si = pop_stack_item (si);
928 }
929
930 /* Finally, update the SP register. */
931 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
932
933 return sp;
934 }
935
936 static const struct frame_unwind cris_frame_unwind =
937 {
938 NORMAL_FRAME,
939 default_frame_unwind_stop_reason,
940 cris_frame_this_id,
941 cris_frame_prev_register,
942 NULL,
943 default_frame_sniffer
944 };
945
946 static CORE_ADDR
947 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
948 {
949 struct cris_unwind_cache *info
950 = cris_frame_unwind_cache (this_frame, this_cache);
951 return info->base;
952 }
953
954 static const struct frame_base cris_frame_base =
955 {
956 &cris_frame_unwind,
957 cris_frame_base_address,
958 cris_frame_base_address,
959 cris_frame_base_address
960 };
961
962 /* Frames information. The definition of the struct frame_info is
963
964 CORE_ADDR frame
965 CORE_ADDR pc
966 enum frame_type type;
967 CORE_ADDR return_pc
968 int leaf_function
969
970 If the compilation option -fno-omit-frame-pointer is present the
971 variable frame will be set to the content of R8 which is the frame
972 pointer register.
973
974 The variable pc contains the address where execution is performed
975 in the present frame. The innermost frame contains the current content
976 of the register PC. All other frames contain the content of the
977 register PC in the next frame.
978
979 The variable `type' indicates the frame's type: normal, SIGTRAMP
980 (associated with a signal handler), dummy (associated with a dummy
981 frame).
982
983 The variable return_pc contains the address where execution should be
984 resumed when the present frame has finished, the return address.
985
986 The variable leaf_function is 1 if the return address is in the register
987 SRP, and 0 if it is on the stack.
988
989 Prologue instructions C-code.
990 The prologue may consist of (-fno-omit-frame-pointer)
991 1) 2)
992 push srp
993 push r8 push r8
994 move.d sp,r8 move.d sp,r8
995 subq X,sp subq X,sp
996 movem rY,[sp] movem rY,[sp]
997 move.S rZ,[r8-U] move.S rZ,[r8-U]
998
999 where 1 is a non-terminal function, and 2 is a leaf-function.
1000
1001 Note that this assumption is extremely brittle, and will break at the
1002 slightest change in GCC's prologue.
1003
1004 If local variables are declared or register contents are saved on stack
1005 the subq-instruction will be present with X as the number of bytes
1006 needed for storage. The reshuffle with respect to r8 may be performed
1007 with any size S (b, w, d) and any of the general registers Z={0..13}.
1008 The offset U should be representable by a signed 8-bit value in all cases.
1009 Thus, the prefix word is assumed to be immediate byte offset mode followed
1010 by another word containing the instruction.
1011
1012 Degenerate cases:
1013 3)
1014 push r8
1015 move.d sp,r8
1016 move.d r8,sp
1017 pop r8
1018
1019 Prologue instructions C++-code.
1020 Case 1) and 2) in the C-code may be followed by
1021
1022 move.d r10,rS ; this
1023 move.d r11,rT ; P1
1024 move.d r12,rU ; P2
1025 move.d r13,rV ; P3
1026 move.S [r8+U],rZ ; P4
1027
1028 if any of the call parameters are stored. The host expects these
1029 instructions to be executed in order to get the call parameters right. */
1030
1031 /* Examine the prologue of a function. The variable ip is the address of
1032 the first instruction of the prologue. The variable limit is the address
1033 of the first instruction after the prologue. The variable fi contains the
1034 information in struct frame_info. The variable frameless_p controls whether
1035 the entire prologue is examined (0) or just enough instructions to
1036 determine that it is a prologue (1). */
1037
1038 static CORE_ADDR
1039 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1040 struct cris_unwind_cache *info)
1041 {
1042 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1043 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1044
1045 /* Present instruction. */
1046 unsigned short insn;
1047
1048 /* Next instruction, lookahead. */
1049 unsigned short insn_next;
1050 int regno;
1051
1052 /* Is there a push fp? */
1053 int have_fp;
1054
1055 /* Number of byte on stack used for local variables and movem. */
1056 int val;
1057
1058 /* Highest register number in a movem. */
1059 int regsave;
1060
1061 /* move.d r<source_register>,rS */
1062 short source_register;
1063
1064 /* Scan limit. */
1065 int limit;
1066
1067 /* This frame is with respect to a leaf until a push srp is found. */
1068 if (info)
1069 {
1070 info->leaf_function = 1;
1071 }
1072
1073 /* Assume nothing on stack. */
1074 val = 0;
1075 regsave = -1;
1076
1077 /* If we were called without a this_frame, that means we were called
1078 from cris_skip_prologue which already tried to find the end of the
1079 prologue through the symbol information. 64 instructions past current
1080 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1081 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1082
1083 /* Find the prologue instructions. */
1084 while (pc > 0 && pc < limit)
1085 {
1086 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1087 pc += 2;
1088 if (insn == 0xE1FC)
1089 {
1090 /* push <reg> 32 bit instruction. */
1091 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1092 pc += 2;
1093 regno = cris_get_operand2 (insn_next);
1094 if (info)
1095 {
1096 info->sp_offset += 4;
1097 }
1098 /* This check, meant to recognize srp, used to be regno ==
1099 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1100 if (insn_next == 0xBE7E)
1101 {
1102 if (info)
1103 {
1104 info->leaf_function = 0;
1105 }
1106 }
1107 else if (insn_next == 0x8FEE)
1108 {
1109 /* push $r8 */
1110 if (info)
1111 {
1112 info->r8_offset = info->sp_offset;
1113 }
1114 }
1115 }
1116 else if (insn == 0x866E)
1117 {
1118 /* move.d sp,r8 */
1119 if (info)
1120 {
1121 info->uses_frame = 1;
1122 }
1123 continue;
1124 }
1125 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1126 && cris_get_mode (insn) == 0x0000
1127 && cris_get_opcode (insn) == 0x000A)
1128 {
1129 /* subq <val>,sp */
1130 if (info)
1131 {
1132 info->sp_offset += cris_get_quick_value (insn);
1133 }
1134 }
1135 else if (cris_get_mode (insn) == 0x0002
1136 && cris_get_opcode (insn) == 0x000F
1137 && cris_get_size (insn) == 0x0003
1138 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1139 {
1140 /* movem r<regsave>,[sp] */
1141 regsave = cris_get_operand2 (insn);
1142 }
1143 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1144 && ((insn & 0x0F00) >> 8) == 0x0001
1145 && (cris_get_signed_offset (insn) < 0))
1146 {
1147 /* Immediate byte offset addressing prefix word with sp as base
1148 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1149 is between 64 and 128.
1150 movem r<regsave>,[sp=sp-<val>] */
1151 if (info)
1152 {
1153 info->sp_offset += -cris_get_signed_offset (insn);
1154 }
1155 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1156 pc += 2;
1157 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1158 && cris_get_opcode (insn_next) == 0x000F
1159 && cris_get_size (insn_next) == 0x0003
1160 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1161 (gdbarch))
1162 {
1163 regsave = cris_get_operand2 (insn_next);
1164 }
1165 else
1166 {
1167 /* The prologue ended before the limit was reached. */
1168 pc -= 4;
1169 break;
1170 }
1171 }
1172 else if (cris_get_mode (insn) == 0x0001
1173 && cris_get_opcode (insn) == 0x0009
1174 && cris_get_size (insn) == 0x0002)
1175 {
1176 /* move.d r<10..13>,r<0..15> */
1177 source_register = cris_get_operand1 (insn);
1178
1179 /* FIXME? In the glibc solibs, the prologue might contain something
1180 like (this example taken from relocate_doit):
1181 move.d $pc,$r0
1182 sub.d 0xfffef426,$r0
1183 which isn't covered by the source_register check below. Question
1184 is whether to add a check for this combo, or make better use of
1185 the limit variable instead. */
1186 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1187 {
1188 /* The prologue ended before the limit was reached. */
1189 pc -= 2;
1190 break;
1191 }
1192 }
1193 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1194 /* The size is a fixed-size. */
1195 && ((insn & 0x0F00) >> 8) == 0x0001
1196 /* A negative offset. */
1197 && (cris_get_signed_offset (insn) < 0))
1198 {
1199 /* move.S rZ,[r8-U] (?) */
1200 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1201 pc += 2;
1202 regno = cris_get_operand2 (insn_next);
1203 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1204 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1205 && cris_get_opcode (insn_next) == 0x000F)
1206 {
1207 /* move.S rZ,[r8-U] */
1208 continue;
1209 }
1210 else
1211 {
1212 /* The prologue ended before the limit was reached. */
1213 pc -= 4;
1214 break;
1215 }
1216 }
1217 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1218 /* The size is a fixed-size. */
1219 && ((insn & 0x0F00) >> 8) == 0x0001
1220 /* A positive offset. */
1221 && (cris_get_signed_offset (insn) > 0))
1222 {
1223 /* move.S [r8+U],rZ (?) */
1224 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1225 pc += 2;
1226 regno = cris_get_operand2 (insn_next);
1227 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1228 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1229 && cris_get_opcode (insn_next) == 0x0009
1230 && cris_get_operand1 (insn_next) == regno)
1231 {
1232 /* move.S [r8+U],rZ */
1233 continue;
1234 }
1235 else
1236 {
1237 /* The prologue ended before the limit was reached. */
1238 pc -= 4;
1239 break;
1240 }
1241 }
1242 else
1243 {
1244 /* The prologue ended before the limit was reached. */
1245 pc -= 2;
1246 break;
1247 }
1248 }
1249
1250 /* We only want to know the end of the prologue when this_frame and info
1251 are NULL (called from cris_skip_prologue i.e.). */
1252 if (this_frame == NULL && info == NULL)
1253 {
1254 return pc;
1255 }
1256
1257 info->size = info->sp_offset;
1258
1259 /* Compute the previous frame's stack pointer (which is also the
1260 frame's ID's stack address), and this frame's base pointer. */
1261 if (info->uses_frame)
1262 {
1263 ULONGEST this_base;
1264 /* The SP was moved to the FP. This indicates that a new frame
1265 was created. Get THIS frame's FP value by unwinding it from
1266 the next frame. */
1267 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1268 info->base = this_base;
1269 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1270
1271 /* The FP points at the last saved register. Adjust the FP back
1272 to before the first saved register giving the SP. */
1273 info->prev_sp = info->base + info->r8_offset;
1274 }
1275 else
1276 {
1277 ULONGEST this_base;
1278 /* Assume that the FP is this frame's SP but with that pushed
1279 stack space added back. */
1280 this_base = get_frame_register_unsigned (this_frame,
1281 gdbarch_sp_regnum (gdbarch));
1282 info->base = this_base;
1283 info->prev_sp = info->base + info->size;
1284 }
1285
1286 /* Calculate the addresses for the saved registers on the stack. */
1287 /* FIXME: The address calculation should really be done on the fly while
1288 we're analyzing the prologue (we only hold one regsave value as it is
1289 now). */
1290 val = info->sp_offset;
1291
1292 for (regno = regsave; regno >= 0; regno--)
1293 {
1294 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1295 val -= 4;
1296 }
1297
1298 /* The previous frame's SP needed to be computed. Save the computed
1299 value. */
1300 trad_frame_set_value (info->saved_regs,
1301 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1302
1303 if (!info->leaf_function)
1304 {
1305 /* SRP saved on the stack. But where? */
1306 if (info->r8_offset == 0)
1307 {
1308 /* R8 not pushed yet. */
1309 info->saved_regs[SRP_REGNUM].addr = info->base;
1310 }
1311 else
1312 {
1313 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1314 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1315 }
1316 }
1317
1318 /* The PC is found in SRP (the actual register or located on the stack). */
1319 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1320 = info->saved_regs[SRP_REGNUM];
1321
1322 return pc;
1323 }
1324
1325 static CORE_ADDR
1326 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1327 struct cris_unwind_cache *info)
1328 {
1329 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1330 ULONGEST this_base;
1331
1332 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1333 meant to be a full-fledged prologue scanner. It is only needed for
1334 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1335
1336 * PLT stubs (library calls)
1337 * call dummys
1338 * signal trampolines
1339
1340 For those cases, it is assumed that there is no actual prologue; that
1341 the stack pointer is not adjusted, and (as a consequence) the return
1342 address is not pushed onto the stack. */
1343
1344 /* We only want to know the end of the prologue when this_frame and info
1345 are NULL (called from cris_skip_prologue i.e.). */
1346 if (this_frame == NULL && info == NULL)
1347 {
1348 return pc;
1349 }
1350
1351 /* The SP is assumed to be unaltered. */
1352 this_base = get_frame_register_unsigned (this_frame,
1353 gdbarch_sp_regnum (gdbarch));
1354 info->base = this_base;
1355 info->prev_sp = this_base;
1356
1357 /* The PC is assumed to be found in SRP. */
1358 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1359 = info->saved_regs[SRP_REGNUM];
1360
1361 return pc;
1362 }
1363
1364 /* Advance pc beyond any function entry prologue instructions at pc
1365 to reach some "real" code. */
1366
1367 /* Given a PC value corresponding to the start of a function, return the PC
1368 of the first instruction after the function prologue. */
1369
1370 static CORE_ADDR
1371 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1372 {
1373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1374 CORE_ADDR func_addr, func_end;
1375 struct symtab_and_line sal;
1376 CORE_ADDR pc_after_prologue;
1377
1378 /* If we have line debugging information, then the end of the prologue
1379 should the first assembly instruction of the first source line. */
1380 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1381 {
1382 sal = find_pc_line (func_addr, 0);
1383 if (sal.end > 0 && sal.end < func_end)
1384 return sal.end;
1385 }
1386
1387 if (tdep->cris_version == 32)
1388 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1389 else
1390 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1391
1392 return pc_after_prologue;
1393 }
1394
1395 static CORE_ADDR
1396 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1397 {
1398 ULONGEST pc;
1399 pc = frame_unwind_register_unsigned (next_frame,
1400 gdbarch_pc_regnum (gdbarch));
1401 return pc;
1402 }
1403
1404 static CORE_ADDR
1405 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1406 {
1407 ULONGEST sp;
1408 sp = frame_unwind_register_unsigned (next_frame,
1409 gdbarch_sp_regnum (gdbarch));
1410 return sp;
1411 }
1412
1413 /* Use the program counter to determine the contents and size of a breakpoint
1414 instruction. It returns a pointer to a string of bytes that encode a
1415 breakpoint instruction, stores the length of the string to *lenptr, and
1416 adjusts pcptr (if necessary) to point to the actual memory location where
1417 the breakpoint should be inserted. */
1418
1419 static const unsigned char *
1420 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1421 CORE_ADDR *pcptr, int *lenptr)
1422 {
1423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1424 static unsigned char break8_insn[] = {0x38, 0xe9};
1425 static unsigned char break15_insn[] = {0x3f, 0xe9};
1426 *lenptr = 2;
1427
1428 if (tdep->cris_mode == cris_mode_guru)
1429 return break15_insn;
1430 else
1431 return break8_insn;
1432 }
1433
1434 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1435 0 otherwise. */
1436
1437 static int
1438 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1439 struct cris_spec_reg spec_reg)
1440 {
1441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1442 int version = tdep->cris_version;
1443
1444 switch (spec_reg.applicable_version)
1445 {
1446 case cris_ver_version_all:
1447 return 1;
1448 case cris_ver_warning:
1449 /* Indeterminate/obsolete. */
1450 return 0;
1451 case cris_ver_v0_3:
1452 return (version >= 0 && version <= 3);
1453 case cris_ver_v3p:
1454 return (version >= 3);
1455 case cris_ver_v8:
1456 return (version == 8 || version == 9);
1457 case cris_ver_v8p:
1458 return (version >= 8);
1459 case cris_ver_v0_10:
1460 return (version >= 0 && version <= 10);
1461 case cris_ver_v3_10:
1462 return (version >= 3 && version <= 10);
1463 case cris_ver_v8_10:
1464 return (version >= 8 && version <= 10);
1465 case cris_ver_v10:
1466 return (version == 10);
1467 case cris_ver_v10p:
1468 return (version >= 10);
1469 case cris_ver_v32p:
1470 return (version >= 32);
1471 default:
1472 /* Invalid cris version. */
1473 return 0;
1474 }
1475 }
1476
1477 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1478 register, -1 for an invalid register. */
1479
1480 static int
1481 cris_register_size (struct gdbarch *gdbarch, int regno)
1482 {
1483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1484 int i;
1485 int spec_regno;
1486
1487 if (regno >= 0 && regno < NUM_GENREGS)
1488 {
1489 /* General registers (R0 - R15) are 32 bits. */
1490 return 4;
1491 }
1492 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1493 {
1494 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1495 Adjust regno accordingly. */
1496 spec_regno = regno - NUM_GENREGS;
1497
1498 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1499 {
1500 if (cris_spec_regs[i].number == spec_regno
1501 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1502 /* Go with the first applicable register. */
1503 return cris_spec_regs[i].reg_size;
1504 }
1505 /* Special register not applicable to this CRIS version. */
1506 return 0;
1507 }
1508 else if (regno >= gdbarch_pc_regnum (gdbarch)
1509 && regno < gdbarch_num_regs (gdbarch))
1510 {
1511 /* This will apply to CRISv32 only where there are additional registers
1512 after the special registers (pseudo PC and support registers). */
1513 return 4;
1514 }
1515
1516
1517 return -1;
1518 }
1519
1520 /* Nonzero if regno should not be fetched from the target. This is the case
1521 for unimplemented (size 0) and non-existant registers. */
1522
1523 static int
1524 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1525 {
1526 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1527 || (cris_register_size (gdbarch, regno) == 0));
1528 }
1529
1530 /* Nonzero if regno should not be written to the target, for various
1531 reasons. */
1532
1533 static int
1534 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1535 {
1536 /* There are three kinds of registers we refuse to write to.
1537 1. Those that not implemented.
1538 2. Those that are read-only (depends on the processor mode).
1539 3. Those registers to which a write has no effect. */
1540
1541 if (regno < 0
1542 || regno >= gdbarch_num_regs (gdbarch)
1543 || cris_register_size (gdbarch, regno) == 0)
1544 /* Not implemented. */
1545 return 1;
1546
1547 else if (regno == VR_REGNUM)
1548 /* Read-only. */
1549 return 1;
1550
1551 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1552 /* Writing has no effect. */
1553 return 1;
1554
1555 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1556 agent decide whether they are writable. */
1557
1558 return 0;
1559 }
1560
1561 /* Nonzero if regno should not be fetched from the target. This is the case
1562 for unimplemented (size 0) and non-existant registers. */
1563
1564 static int
1565 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1566 {
1567 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1568 || (cris_register_size (gdbarch, regno) == 0));
1569 }
1570
1571 /* Nonzero if regno should not be written to the target, for various
1572 reasons. */
1573
1574 static int
1575 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1576 {
1577 /* There are three kinds of registers we refuse to write to.
1578 1. Those that not implemented.
1579 2. Those that are read-only (depends on the processor mode).
1580 3. Those registers to which a write has no effect. */
1581
1582 if (regno < 0
1583 || regno >= gdbarch_num_regs (gdbarch)
1584 || cris_register_size (gdbarch, regno) == 0)
1585 /* Not implemented. */
1586 return 1;
1587
1588 else if (regno == VR_REGNUM)
1589 /* Read-only. */
1590 return 1;
1591
1592 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1593 /* Writing has no effect. */
1594 return 1;
1595
1596 /* Many special registers are read-only in user mode. Let the debug
1597 agent decide whether they are writable. */
1598
1599 return 0;
1600 }
1601
1602 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1603 of data in register regno. */
1604
1605 static struct type *
1606 cris_register_type (struct gdbarch *gdbarch, int regno)
1607 {
1608 if (regno == gdbarch_pc_regnum (gdbarch))
1609 return builtin_type (gdbarch)->builtin_func_ptr;
1610 else if (regno == gdbarch_sp_regnum (gdbarch)
1611 || regno == CRIS_FP_REGNUM)
1612 return builtin_type (gdbarch)->builtin_data_ptr;
1613 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1614 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1615 /* Note: R8 taken care of previous clause. */
1616 return builtin_type (gdbarch)->builtin_uint32;
1617 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1618 return builtin_type (gdbarch)->builtin_uint16;
1619 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1620 return builtin_type (gdbarch)->builtin_uint8;
1621 else
1622 /* Invalid (unimplemented) register. */
1623 return builtin_type (gdbarch)->builtin_int0;
1624 }
1625
1626 static struct type *
1627 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1628 {
1629 if (regno == gdbarch_pc_regnum (gdbarch))
1630 return builtin_type (gdbarch)->builtin_func_ptr;
1631 else if (regno == gdbarch_sp_regnum (gdbarch)
1632 || regno == CRIS_FP_REGNUM)
1633 return builtin_type (gdbarch)->builtin_data_ptr;
1634 else if ((regno >= 0 && regno <= ACR_REGNUM)
1635 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1636 || (regno == PID_REGNUM)
1637 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1638 /* Note: R8 and SP taken care of by previous clause. */
1639 return builtin_type (gdbarch)->builtin_uint32;
1640 else if (regno == WZ_REGNUM)
1641 return builtin_type (gdbarch)->builtin_uint16;
1642 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1643 return builtin_type (gdbarch)->builtin_uint8;
1644 else
1645 {
1646 /* Invalid (unimplemented) register. Should not happen as there are
1647 no unimplemented CRISv32 registers. */
1648 warning (_("crisv32_register_type: unknown regno %d"), regno);
1649 return builtin_type (gdbarch)->builtin_int0;
1650 }
1651 }
1652
1653 /* Stores a function return value of type type, where valbuf is the address
1654 of the value to be stored. */
1655
1656 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1657
1658 static void
1659 cris_store_return_value (struct type *type, struct regcache *regcache,
1660 const void *valbuf)
1661 {
1662 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1663 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1664 ULONGEST val;
1665 int len = TYPE_LENGTH (type);
1666
1667 if (len <= 4)
1668 {
1669 /* Put the return value in R10. */
1670 val = extract_unsigned_integer (valbuf, len, byte_order);
1671 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1672 }
1673 else if (len <= 8)
1674 {
1675 /* Put the return value in R10 and R11. */
1676 val = extract_unsigned_integer (valbuf, 4, byte_order);
1677 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1678 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1679 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1680 }
1681 else
1682 error (_("cris_store_return_value: type length too large."));
1683 }
1684
1685 /* Return the name of register regno as a string. Return NULL for an
1686 invalid or unimplemented register. */
1687
1688 static const char *
1689 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1690 {
1691 int spec_regno;
1692 int i;
1693
1694 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1695 Adjust regno accordingly. */
1696 spec_regno = regno - NUM_GENREGS;
1697
1698 /* Assume nothing about the layout of the cris_spec_regs struct
1699 when searching. */
1700 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1701 {
1702 if (cris_spec_regs[i].number == spec_regno
1703 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1704 /* Go with the first applicable register. */
1705 return cris_spec_regs[i].name;
1706 }
1707 /* Special register not applicable to this CRIS version. */
1708 return NULL;
1709 }
1710
1711 static const char *
1712 cris_register_name (struct gdbarch *gdbarch, int regno)
1713 {
1714 static char *cris_genreg_names[] =
1715 { "r0", "r1", "r2", "r3", \
1716 "r4", "r5", "r6", "r7", \
1717 "r8", "r9", "r10", "r11", \
1718 "r12", "r13", "sp", "pc" };
1719
1720 if (regno >= 0 && regno < NUM_GENREGS)
1721 {
1722 /* General register. */
1723 return cris_genreg_names[regno];
1724 }
1725 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1726 {
1727 return cris_special_register_name (gdbarch, regno);
1728 }
1729 else
1730 {
1731 /* Invalid register. */
1732 return NULL;
1733 }
1734 }
1735
1736 static const char *
1737 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1738 {
1739 static char *crisv32_genreg_names[] =
1740 { "r0", "r1", "r2", "r3", \
1741 "r4", "r5", "r6", "r7", \
1742 "r8", "r9", "r10", "r11", \
1743 "r12", "r13", "sp", "acr"
1744 };
1745
1746 static char *crisv32_sreg_names[] =
1747 { "s0", "s1", "s2", "s3", \
1748 "s4", "s5", "s6", "s7", \
1749 "s8", "s9", "s10", "s11", \
1750 "s12", "s13", "s14", "s15"
1751 };
1752
1753 if (regno >= 0 && regno < NUM_GENREGS)
1754 {
1755 /* General register. */
1756 return crisv32_genreg_names[regno];
1757 }
1758 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1759 {
1760 return cris_special_register_name (gdbarch, regno);
1761 }
1762 else if (regno == gdbarch_pc_regnum (gdbarch))
1763 {
1764 return "pc";
1765 }
1766 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1767 {
1768 return crisv32_sreg_names[regno - S0_REGNUM];
1769 }
1770 else
1771 {
1772 /* Invalid register. */
1773 return NULL;
1774 }
1775 }
1776
1777 /* Convert DWARF register number REG to the appropriate register
1778 number used by GDB. */
1779
1780 static int
1781 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1782 {
1783 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1784 numbering, MOF is 18).
1785 Adapted from gcc/config/cris/cris.h. */
1786 static int cris_dwarf_regmap[] = {
1787 0, 1, 2, 3,
1788 4, 5, 6, 7,
1789 8, 9, 10, 11,
1790 12, 13, 14, 15,
1791 27, -1, -1, -1,
1792 -1, -1, -1, 23,
1793 -1, -1, -1, 27,
1794 -1, -1, -1, -1
1795 };
1796 int regnum = -1;
1797
1798 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1799 regnum = cris_dwarf_regmap[reg];
1800
1801 if (regnum == -1)
1802 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1803
1804 return regnum;
1805 }
1806
1807 /* DWARF-2 frame support. */
1808
1809 static void
1810 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1811 struct dwarf2_frame_state_reg *reg,
1812 struct frame_info *this_frame)
1813 {
1814 /* The return address column. */
1815 if (regnum == gdbarch_pc_regnum (gdbarch))
1816 reg->how = DWARF2_FRAME_REG_RA;
1817
1818 /* The call frame address. */
1819 else if (regnum == gdbarch_sp_regnum (gdbarch))
1820 reg->how = DWARF2_FRAME_REG_CFA;
1821 }
1822
1823 /* Extract from an array regbuf containing the raw register state a function
1824 return value of type type, and copy that, in virtual format, into
1825 valbuf. */
1826
1827 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1828
1829 static void
1830 cris_extract_return_value (struct type *type, struct regcache *regcache,
1831 void *valbuf)
1832 {
1833 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1834 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1835 ULONGEST val;
1836 int len = TYPE_LENGTH (type);
1837
1838 if (len <= 4)
1839 {
1840 /* Get the return value from R10. */
1841 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1842 store_unsigned_integer (valbuf, len, byte_order, val);
1843 }
1844 else if (len <= 8)
1845 {
1846 /* Get the return value from R10 and R11. */
1847 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1848 store_unsigned_integer (valbuf, 4, byte_order, val);
1849 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1850 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1851 }
1852 else
1853 error (_("cris_extract_return_value: type length too large"));
1854 }
1855
1856 /* Handle the CRIS return value convention. */
1857
1858 static enum return_value_convention
1859 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1860 struct type *type, struct regcache *regcache,
1861 gdb_byte *readbuf, const gdb_byte *writebuf)
1862 {
1863 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1864 || TYPE_CODE (type) == TYPE_CODE_UNION
1865 || TYPE_LENGTH (type) > 8)
1866 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1867 goes on the stack. */
1868 return RETURN_VALUE_STRUCT_CONVENTION;
1869
1870 if (readbuf)
1871 cris_extract_return_value (type, regcache, readbuf);
1872 if (writebuf)
1873 cris_store_return_value (type, regcache, writebuf);
1874
1875 return RETURN_VALUE_REGISTER_CONVENTION;
1876 }
1877
1878 /* Calculates a value that measures how good inst_args constraints an
1879 instruction. It stems from cris_constraint, found in cris-dis.c. */
1880
1881 static int
1882 constraint (unsigned int insn, const signed char *inst_args,
1883 inst_env_type *inst_env)
1884 {
1885 int retval = 0;
1886 int tmp, i;
1887
1888 const char *s = inst_args;
1889
1890 for (; *s; s++)
1891 switch (*s)
1892 {
1893 case 'm':
1894 if ((insn & 0x30) == 0x30)
1895 return -1;
1896 break;
1897
1898 case 'S':
1899 /* A prefix operand. */
1900 if (inst_env->prefix_found)
1901 break;
1902 else
1903 return -1;
1904
1905 case 'B':
1906 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1907 valid "push" size. In case of special register, it may be != 4. */
1908 if (inst_env->prefix_found)
1909 break;
1910 else
1911 return -1;
1912
1913 case 'D':
1914 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1915 if (!retval)
1916 return -1;
1917 else
1918 retval += 4;
1919 break;
1920
1921 case 'P':
1922 tmp = (insn >> 0xC) & 0xF;
1923
1924 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1925 {
1926 /* Since we match four bits, we will give a value of
1927 4 - 1 = 3 in a match. If there is a corresponding
1928 exact match of a special register in another pattern, it
1929 will get a value of 4, which will be higher. This should
1930 be correct in that an exact pattern would match better that
1931 a general pattern.
1932 Note that there is a reason for not returning zero; the
1933 pattern for "clear" is partly matched in the bit-pattern
1934 (the two lower bits must be zero), while the bit-pattern
1935 for a move from a special register is matched in the
1936 register constraint.
1937 This also means we will will have a race condition if
1938 there is a partly match in three bits in the bit pattern. */
1939 if (tmp == cris_spec_regs[i].number)
1940 {
1941 retval += 3;
1942 break;
1943 }
1944 }
1945
1946 if (cris_spec_regs[i].name == NULL)
1947 return -1;
1948 break;
1949 }
1950 return retval;
1951 }
1952
1953 /* Returns the number of bits set in the variable value. */
1954
1955 static int
1956 number_of_bits (unsigned int value)
1957 {
1958 int number_of_bits = 0;
1959
1960 while (value != 0)
1961 {
1962 number_of_bits += 1;
1963 value &= (value - 1);
1964 }
1965 return number_of_bits;
1966 }
1967
1968 /* Finds the address that should contain the single step breakpoint(s).
1969 It stems from code in cris-dis.c. */
1970
1971 static int
1972 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1973 {
1974 int i;
1975 int max_level_of_match = -1;
1976 int max_matched = -1;
1977 int level_of_match;
1978
1979 for (i = 0; cris_opcodes[i].name != NULL; i++)
1980 {
1981 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1982 && ((cris_opcodes[i].lose & insn) == 0)
1983 /* Only CRISv10 instructions, please. */
1984 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1985 {
1986 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1987 if (level_of_match >= 0)
1988 {
1989 level_of_match +=
1990 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1991 if (level_of_match > max_level_of_match)
1992 {
1993 max_matched = i;
1994 max_level_of_match = level_of_match;
1995 if (level_of_match == 16)
1996 {
1997 /* All bits matched, cannot find better. */
1998 break;
1999 }
2000 }
2001 }
2002 }
2003 }
2004 return max_matched;
2005 }
2006
2007 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2008 actually an internal error. */
2009
2010 static int
2011 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2012 {
2013 int i;
2014 int offset;
2015 unsigned short insn;
2016 struct gdbarch *gdbarch = get_frame_arch (frame);
2017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2018
2019 /* Create a local register image and set the initial state. */
2020 for (i = 0; i < NUM_GENREGS; i++)
2021 {
2022 inst_env->reg[i] =
2023 (unsigned long) get_frame_register_unsigned (frame, i);
2024 }
2025 offset = NUM_GENREGS;
2026 for (i = 0; i < NUM_SPECREGS; i++)
2027 {
2028 inst_env->preg[i] =
2029 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2030 }
2031 inst_env->branch_found = 0;
2032 inst_env->slot_needed = 0;
2033 inst_env->delay_slot_pc_active = 0;
2034 inst_env->prefix_found = 0;
2035 inst_env->invalid = 0;
2036 inst_env->xflag_found = 0;
2037 inst_env->disable_interrupt = 0;
2038 inst_env->byte_order = byte_order;
2039
2040 /* Look for a step target. */
2041 do
2042 {
2043 /* Read an instruction from the client. */
2044 insn = read_memory_unsigned_integer
2045 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2046
2047 /* If the instruction is not in a delay slot the new content of the
2048 PC is [PC] + 2. If the instruction is in a delay slot it is not
2049 that simple. Since a instruction in a delay slot cannot change
2050 the content of the PC, it does not matter what value PC will have.
2051 Just make sure it is a valid instruction. */
2052 if (!inst_env->delay_slot_pc_active)
2053 {
2054 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2055 }
2056 else
2057 {
2058 inst_env->delay_slot_pc_active = 0;
2059 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2060 = inst_env->delay_slot_pc;
2061 }
2062 /* Analyse the present instruction. */
2063 i = find_cris_op (insn, inst_env);
2064 if (i == -1)
2065 {
2066 inst_env->invalid = 1;
2067 }
2068 else
2069 {
2070 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2071 }
2072 } while (!inst_env->invalid
2073 && (inst_env->prefix_found || inst_env->xflag_found
2074 || inst_env->slot_needed));
2075 return i;
2076 }
2077
2078 /* There is no hardware single-step support. The function find_step_target
2079 digs through the opcodes in order to find all possible targets.
2080 Either one ordinary target or two targets for branches may be found. */
2081
2082 static int
2083 cris_software_single_step (struct frame_info *frame)
2084 {
2085 struct gdbarch *gdbarch = get_frame_arch (frame);
2086 struct address_space *aspace = get_frame_address_space (frame);
2087 inst_env_type inst_env;
2088
2089 /* Analyse the present instruction environment and insert
2090 breakpoints. */
2091 int status = find_step_target (frame, &inst_env);
2092 if (status == -1)
2093 {
2094 /* Could not find a target. Things are likely to go downhill
2095 from here. */
2096 warning (_("CRIS software single step could not find a step target."));
2097 }
2098 else
2099 {
2100 /* Insert at most two breakpoints. One for the next PC content
2101 and possibly another one for a branch, jump, etc. */
2102 CORE_ADDR next_pc
2103 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2104 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2105 if (inst_env.branch_found
2106 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2107 {
2108 CORE_ADDR branch_target_address
2109 = (CORE_ADDR) inst_env.branch_break_address;
2110 insert_single_step_breakpoint (gdbarch,
2111 aspace, branch_target_address);
2112 }
2113 }
2114
2115 return 1;
2116 }
2117
2118 /* Calculates the prefix value for quick offset addressing mode. */
2119
2120 static void
2121 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2122 {
2123 /* It's invalid to be in a delay slot. You can't have a prefix to this
2124 instruction (not 100% sure). */
2125 if (inst_env->slot_needed || inst_env->prefix_found)
2126 {
2127 inst_env->invalid = 1;
2128 return;
2129 }
2130
2131 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2132 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2133
2134 /* A prefix doesn't change the xflag_found. But the rest of the flags
2135 need updating. */
2136 inst_env->slot_needed = 0;
2137 inst_env->prefix_found = 1;
2138 }
2139
2140 /* Updates the autoincrement register. The size of the increment is derived
2141 from the size of the operation. The PC is always kept aligned on even
2142 word addresses. */
2143
2144 static void
2145 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2146 {
2147 if (size == INST_BYTE_SIZE)
2148 {
2149 inst_env->reg[cris_get_operand1 (inst)] += 1;
2150
2151 /* The PC must be word aligned, so increase the PC with one
2152 word even if the size is byte. */
2153 if (cris_get_operand1 (inst) == REG_PC)
2154 {
2155 inst_env->reg[REG_PC] += 1;
2156 }
2157 }
2158 else if (size == INST_WORD_SIZE)
2159 {
2160 inst_env->reg[cris_get_operand1 (inst)] += 2;
2161 }
2162 else if (size == INST_DWORD_SIZE)
2163 {
2164 inst_env->reg[cris_get_operand1 (inst)] += 4;
2165 }
2166 else
2167 {
2168 /* Invalid size. */
2169 inst_env->invalid = 1;
2170 }
2171 }
2172
2173 /* Just a forward declaration. */
2174
2175 static unsigned long get_data_from_address (unsigned short *inst,
2176 CORE_ADDR address,
2177 enum bfd_endian byte_order);
2178
2179 /* Calculates the prefix value for the general case of offset addressing
2180 mode. */
2181
2182 static void
2183 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2184 {
2185 /* It's invalid to be in a delay slot. */
2186 if (inst_env->slot_needed || inst_env->prefix_found)
2187 {
2188 inst_env->invalid = 1;
2189 return;
2190 }
2191
2192 /* The calculation of prefix_value used to be after process_autoincrement,
2193 but that fails for an instruction such as jsr [$r0+12] which is encoded
2194 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2195 mustn't be incremented until we have read it and what it points at. */
2196 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2197
2198 /* The offset is an indirection of the contents of the operand1 register. */
2199 inst_env->prefix_value +=
2200 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2201 inst_env->byte_order);
2202
2203 if (cris_get_mode (inst) == AUTOINC_MODE)
2204 {
2205 process_autoincrement (cris_get_size (inst), inst, inst_env);
2206 }
2207
2208 /* A prefix doesn't change the xflag_found. But the rest of the flags
2209 need updating. */
2210 inst_env->slot_needed = 0;
2211 inst_env->prefix_found = 1;
2212 }
2213
2214 /* Calculates the prefix value for the index addressing mode. */
2215
2216 static void
2217 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2218 {
2219 /* It's invalid to be in a delay slot. I can't see that it's possible to
2220 have a prefix to this instruction. So I will treat this as invalid. */
2221 if (inst_env->slot_needed || inst_env->prefix_found)
2222 {
2223 inst_env->invalid = 1;
2224 return;
2225 }
2226
2227 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2228
2229 /* The offset is the operand2 value shifted the size of the instruction
2230 to the left. */
2231 inst_env->prefix_value +=
2232 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2233
2234 /* If the PC is operand1 (base) the address used is the address after
2235 the main instruction, i.e. address + 2 (the PC is already compensated
2236 for the prefix operation). */
2237 if (cris_get_operand1 (inst) == REG_PC)
2238 {
2239 inst_env->prefix_value += 2;
2240 }
2241
2242 /* A prefix doesn't change the xflag_found. But the rest of the flags
2243 need updating. */
2244 inst_env->slot_needed = 0;
2245 inst_env->xflag_found = 0;
2246 inst_env->prefix_found = 1;
2247 }
2248
2249 /* Calculates the prefix value for the double indirect addressing mode. */
2250
2251 static void
2252 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2253 {
2254
2255 CORE_ADDR address;
2256
2257 /* It's invalid to be in a delay slot. */
2258 if (inst_env->slot_needed || inst_env->prefix_found)
2259 {
2260 inst_env->invalid = 1;
2261 return;
2262 }
2263
2264 /* The prefix value is one dereference of the contents of the operand1
2265 register. */
2266 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2267 inst_env->prefix_value
2268 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2269
2270 /* Check if the mode is autoincrement. */
2271 if (cris_get_mode (inst) == AUTOINC_MODE)
2272 {
2273 inst_env->reg[cris_get_operand1 (inst)] += 4;
2274 }
2275
2276 /* A prefix doesn't change the xflag_found. But the rest of the flags
2277 need updating. */
2278 inst_env->slot_needed = 0;
2279 inst_env->xflag_found = 0;
2280 inst_env->prefix_found = 1;
2281 }
2282
2283 /* Finds the destination for a branch with 8-bits offset. */
2284
2285 static void
2286 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2287 {
2288
2289 short offset;
2290
2291 /* If we have a prefix or are in a delay slot it's bad. */
2292 if (inst_env->slot_needed || inst_env->prefix_found)
2293 {
2294 inst_env->invalid = 1;
2295 return;
2296 }
2297
2298 /* We have a branch, find out where the branch will land. */
2299 offset = cris_get_branch_short_offset (inst);
2300
2301 /* Check if the offset is signed. */
2302 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2303 {
2304 offset |= 0xFF00;
2305 }
2306
2307 /* The offset ends with the sign bit, set it to zero. The address
2308 should always be word aligned. */
2309 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2310
2311 inst_env->branch_found = 1;
2312 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2313
2314 inst_env->slot_needed = 1;
2315 inst_env->prefix_found = 0;
2316 inst_env->xflag_found = 0;
2317 inst_env->disable_interrupt = 1;
2318 }
2319
2320 /* Finds the destination for a branch with 16-bits offset. */
2321
2322 static void
2323 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2324 {
2325 short offset;
2326
2327 /* If we have a prefix or is in a delay slot it's bad. */
2328 if (inst_env->slot_needed || inst_env->prefix_found)
2329 {
2330 inst_env->invalid = 1;
2331 return;
2332 }
2333
2334 /* We have a branch, find out the offset for the branch. */
2335 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2336 inst_env->byte_order);
2337
2338 /* The instruction is one word longer than normal, so add one word
2339 to the PC. */
2340 inst_env->reg[REG_PC] += 2;
2341
2342 inst_env->branch_found = 1;
2343 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2344
2345
2346 inst_env->slot_needed = 1;
2347 inst_env->prefix_found = 0;
2348 inst_env->xflag_found = 0;
2349 inst_env->disable_interrupt = 1;
2350 }
2351
2352 /* Handles the ABS instruction. */
2353
2354 static void
2355 abs_op (unsigned short inst, inst_env_type *inst_env)
2356 {
2357
2358 long value;
2359
2360 /* ABS can't have a prefix, so it's bad if it does. */
2361 if (inst_env->prefix_found)
2362 {
2363 inst_env->invalid = 1;
2364 return;
2365 }
2366
2367 /* Check if the operation affects the PC. */
2368 if (cris_get_operand2 (inst) == REG_PC)
2369 {
2370
2371 /* It's invalid to change to the PC if we are in a delay slot. */
2372 if (inst_env->slot_needed)
2373 {
2374 inst_env->invalid = 1;
2375 return;
2376 }
2377
2378 value = (long) inst_env->reg[REG_PC];
2379
2380 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2381 if (value != SIGNED_DWORD_MASK)
2382 {
2383 value = -value;
2384 inst_env->reg[REG_PC] = (long) value;
2385 }
2386 }
2387
2388 inst_env->slot_needed = 0;
2389 inst_env->prefix_found = 0;
2390 inst_env->xflag_found = 0;
2391 inst_env->disable_interrupt = 0;
2392 }
2393
2394 /* Handles the ADDI instruction. */
2395
2396 static void
2397 addi_op (unsigned short inst, inst_env_type *inst_env)
2398 {
2399 /* It's invalid to have the PC as base register. And ADDI can't have
2400 a prefix. */
2401 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2402 {
2403 inst_env->invalid = 1;
2404 return;
2405 }
2406
2407 inst_env->slot_needed = 0;
2408 inst_env->prefix_found = 0;
2409 inst_env->xflag_found = 0;
2410 inst_env->disable_interrupt = 0;
2411 }
2412
2413 /* Handles the ASR instruction. */
2414
2415 static void
2416 asr_op (unsigned short inst, inst_env_type *inst_env)
2417 {
2418 int shift_steps;
2419 unsigned long value;
2420 unsigned long signed_extend_mask = 0;
2421
2422 /* ASR can't have a prefix, so check that it doesn't. */
2423 if (inst_env->prefix_found)
2424 {
2425 inst_env->invalid = 1;
2426 return;
2427 }
2428
2429 /* Check if the PC is the target register. */
2430 if (cris_get_operand2 (inst) == REG_PC)
2431 {
2432 /* It's invalid to change the PC in a delay slot. */
2433 if (inst_env->slot_needed)
2434 {
2435 inst_env->invalid = 1;
2436 return;
2437 }
2438 /* Get the number of bits to shift. */
2439 shift_steps
2440 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2441 value = inst_env->reg[REG_PC];
2442
2443 /* Find out how many bits the operation should apply to. */
2444 if (cris_get_size (inst) == INST_BYTE_SIZE)
2445 {
2446 if (value & SIGNED_BYTE_MASK)
2447 {
2448 signed_extend_mask = 0xFF;
2449 signed_extend_mask = signed_extend_mask >> shift_steps;
2450 signed_extend_mask = ~signed_extend_mask;
2451 }
2452 value = value >> shift_steps;
2453 value |= signed_extend_mask;
2454 value &= 0xFF;
2455 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2456 inst_env->reg[REG_PC] |= value;
2457 }
2458 else if (cris_get_size (inst) == INST_WORD_SIZE)
2459 {
2460 if (value & SIGNED_WORD_MASK)
2461 {
2462 signed_extend_mask = 0xFFFF;
2463 signed_extend_mask = signed_extend_mask >> shift_steps;
2464 signed_extend_mask = ~signed_extend_mask;
2465 }
2466 value = value >> shift_steps;
2467 value |= signed_extend_mask;
2468 value &= 0xFFFF;
2469 inst_env->reg[REG_PC] &= 0xFFFF0000;
2470 inst_env->reg[REG_PC] |= value;
2471 }
2472 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2473 {
2474 if (value & SIGNED_DWORD_MASK)
2475 {
2476 signed_extend_mask = 0xFFFFFFFF;
2477 signed_extend_mask = signed_extend_mask >> shift_steps;
2478 signed_extend_mask = ~signed_extend_mask;
2479 }
2480 value = value >> shift_steps;
2481 value |= signed_extend_mask;
2482 inst_env->reg[REG_PC] = value;
2483 }
2484 }
2485 inst_env->slot_needed = 0;
2486 inst_env->prefix_found = 0;
2487 inst_env->xflag_found = 0;
2488 inst_env->disable_interrupt = 0;
2489 }
2490
2491 /* Handles the ASRQ instruction. */
2492
2493 static void
2494 asrq_op (unsigned short inst, inst_env_type *inst_env)
2495 {
2496
2497 int shift_steps;
2498 unsigned long value;
2499 unsigned long signed_extend_mask = 0;
2500
2501 /* ASRQ can't have a prefix, so check that it doesn't. */
2502 if (inst_env->prefix_found)
2503 {
2504 inst_env->invalid = 1;
2505 return;
2506 }
2507
2508 /* Check if the PC is the target register. */
2509 if (cris_get_operand2 (inst) == REG_PC)
2510 {
2511
2512 /* It's invalid to change the PC in a delay slot. */
2513 if (inst_env->slot_needed)
2514 {
2515 inst_env->invalid = 1;
2516 return;
2517 }
2518 /* The shift size is given as a 5 bit quick value, i.e. we don't
2519 want the sign bit of the quick value. */
2520 shift_steps = cris_get_asr_shift_steps (inst);
2521 value = inst_env->reg[REG_PC];
2522 if (value & SIGNED_DWORD_MASK)
2523 {
2524 signed_extend_mask = 0xFFFFFFFF;
2525 signed_extend_mask = signed_extend_mask >> shift_steps;
2526 signed_extend_mask = ~signed_extend_mask;
2527 }
2528 value = value >> shift_steps;
2529 value |= signed_extend_mask;
2530 inst_env->reg[REG_PC] = value;
2531 }
2532 inst_env->slot_needed = 0;
2533 inst_env->prefix_found = 0;
2534 inst_env->xflag_found = 0;
2535 inst_env->disable_interrupt = 0;
2536 }
2537
2538 /* Handles the AX, EI and SETF instruction. */
2539
2540 static void
2541 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2542 {
2543 if (inst_env->prefix_found)
2544 {
2545 inst_env->invalid = 1;
2546 return;
2547 }
2548 /* Check if the instruction is setting the X flag. */
2549 if (cris_is_xflag_bit_on (inst))
2550 {
2551 inst_env->xflag_found = 1;
2552 }
2553 else
2554 {
2555 inst_env->xflag_found = 0;
2556 }
2557 inst_env->slot_needed = 0;
2558 inst_env->prefix_found = 0;
2559 inst_env->disable_interrupt = 1;
2560 }
2561
2562 /* Checks if the instruction is in assign mode. If so, it updates the assign
2563 register. Note that check_assign assumes that the caller has checked that
2564 there is a prefix to this instruction. The mode check depends on this. */
2565
2566 static void
2567 check_assign (unsigned short inst, inst_env_type *inst_env)
2568 {
2569 /* Check if it's an assign addressing mode. */
2570 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2571 {
2572 /* Assign the prefix value to operand 1. */
2573 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2574 }
2575 }
2576
2577 /* Handles the 2-operand BOUND instruction. */
2578
2579 static void
2580 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2581 {
2582 /* It's invalid to have the PC as the index operand. */
2583 if (cris_get_operand2 (inst) == REG_PC)
2584 {
2585 inst_env->invalid = 1;
2586 return;
2587 }
2588 /* Check if we have a prefix. */
2589 if (inst_env->prefix_found)
2590 {
2591 check_assign (inst, inst_env);
2592 }
2593 /* Check if this is an autoincrement mode. */
2594 else if (cris_get_mode (inst) == AUTOINC_MODE)
2595 {
2596 /* It's invalid to change the PC in a delay slot. */
2597 if (inst_env->slot_needed)
2598 {
2599 inst_env->invalid = 1;
2600 return;
2601 }
2602 process_autoincrement (cris_get_size (inst), inst, inst_env);
2603 }
2604 inst_env->slot_needed = 0;
2605 inst_env->prefix_found = 0;
2606 inst_env->xflag_found = 0;
2607 inst_env->disable_interrupt = 0;
2608 }
2609
2610 /* Handles the 3-operand BOUND instruction. */
2611
2612 static void
2613 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2614 {
2615 /* It's an error if we haven't got a prefix. And it's also an error
2616 if the PC is the destination register. */
2617 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2618 {
2619 inst_env->invalid = 1;
2620 return;
2621 }
2622 inst_env->slot_needed = 0;
2623 inst_env->prefix_found = 0;
2624 inst_env->xflag_found = 0;
2625 inst_env->disable_interrupt = 0;
2626 }
2627
2628 /* Clears the status flags in inst_env. */
2629
2630 static void
2631 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2632 {
2633 /* It's an error if we have got a prefix. */
2634 if (inst_env->prefix_found)
2635 {
2636 inst_env->invalid = 1;
2637 return;
2638 }
2639
2640 inst_env->slot_needed = 0;
2641 inst_env->prefix_found = 0;
2642 inst_env->xflag_found = 0;
2643 inst_env->disable_interrupt = 0;
2644 }
2645
2646 /* Clears the status flags in inst_env. */
2647
2648 static void
2649 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2650 {
2651 /* It's an error if we have got a prefix. */
2652 if (inst_env->prefix_found)
2653 {
2654 inst_env->invalid = 1;
2655 return;
2656 }
2657
2658 inst_env->slot_needed = 0;
2659 inst_env->prefix_found = 0;
2660 inst_env->xflag_found = 0;
2661 inst_env->disable_interrupt = 1;
2662 }
2663
2664 /* Handles the CLEAR instruction if it's in register mode. */
2665
2666 static void
2667 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2668 {
2669 /* Check if the target is the PC. */
2670 if (cris_get_operand2 (inst) == REG_PC)
2671 {
2672 /* The instruction will clear the instruction's size bits. */
2673 int clear_size = cris_get_clear_size (inst);
2674 if (clear_size == INST_BYTE_SIZE)
2675 {
2676 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2677 }
2678 if (clear_size == INST_WORD_SIZE)
2679 {
2680 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2681 }
2682 if (clear_size == INST_DWORD_SIZE)
2683 {
2684 inst_env->delay_slot_pc = 0x0;
2685 }
2686 /* The jump will be delayed with one delay slot. So we need a delay
2687 slot. */
2688 inst_env->slot_needed = 1;
2689 inst_env->delay_slot_pc_active = 1;
2690 }
2691 else
2692 {
2693 /* The PC will not change => no delay slot. */
2694 inst_env->slot_needed = 0;
2695 }
2696 inst_env->prefix_found = 0;
2697 inst_env->xflag_found = 0;
2698 inst_env->disable_interrupt = 0;
2699 }
2700
2701 /* Handles the TEST instruction if it's in register mode. */
2702
2703 static void
2704 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2705 {
2706 /* It's an error if we have got a prefix. */
2707 if (inst_env->prefix_found)
2708 {
2709 inst_env->invalid = 1;
2710 return;
2711 }
2712 inst_env->slot_needed = 0;
2713 inst_env->prefix_found = 0;
2714 inst_env->xflag_found = 0;
2715 inst_env->disable_interrupt = 0;
2716
2717 }
2718
2719 /* Handles the CLEAR and TEST instruction if the instruction isn't
2720 in register mode. */
2721
2722 static void
2723 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2724 {
2725 /* Check if we are in a prefix mode. */
2726 if (inst_env->prefix_found)
2727 {
2728 /* The only way the PC can change is if this instruction is in
2729 assign addressing mode. */
2730 check_assign (inst, inst_env);
2731 }
2732 /* Indirect mode can't change the PC so just check if the mode is
2733 autoincrement. */
2734 else if (cris_get_mode (inst) == AUTOINC_MODE)
2735 {
2736 process_autoincrement (cris_get_size (inst), inst, inst_env);
2737 }
2738 inst_env->slot_needed = 0;
2739 inst_env->prefix_found = 0;
2740 inst_env->xflag_found = 0;
2741 inst_env->disable_interrupt = 0;
2742 }
2743
2744 /* Checks that the PC isn't the destination register or the instructions has
2745 a prefix. */
2746
2747 static void
2748 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2749 {
2750 /* It's invalid to have the PC as the destination. The instruction can't
2751 have a prefix. */
2752 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2753 {
2754 inst_env->invalid = 1;
2755 return;
2756 }
2757
2758 inst_env->slot_needed = 0;
2759 inst_env->prefix_found = 0;
2760 inst_env->xflag_found = 0;
2761 inst_env->disable_interrupt = 0;
2762 }
2763
2764 /* Checks that the instruction doesn't have a prefix. */
2765
2766 static void
2767 break_op (unsigned short inst, inst_env_type *inst_env)
2768 {
2769 /* The instruction can't have a prefix. */
2770 if (inst_env->prefix_found)
2771 {
2772 inst_env->invalid = 1;
2773 return;
2774 }
2775
2776 inst_env->slot_needed = 0;
2777 inst_env->prefix_found = 0;
2778 inst_env->xflag_found = 0;
2779 inst_env->disable_interrupt = 1;
2780 }
2781
2782 /* Checks that the PC isn't the destination register and that the instruction
2783 doesn't have a prefix. */
2784
2785 static void
2786 scc_op (unsigned short inst, inst_env_type *inst_env)
2787 {
2788 /* It's invalid to have the PC as the destination. The instruction can't
2789 have a prefix. */
2790 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2791 {
2792 inst_env->invalid = 1;
2793 return;
2794 }
2795
2796 inst_env->slot_needed = 0;
2797 inst_env->prefix_found = 0;
2798 inst_env->xflag_found = 0;
2799 inst_env->disable_interrupt = 1;
2800 }
2801
2802 /* Handles the register mode JUMP instruction. */
2803
2804 static void
2805 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2806 {
2807 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2808 you can't have a prefix. */
2809 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2810 {
2811 inst_env->invalid = 1;
2812 return;
2813 }
2814
2815 /* Just change the PC. */
2816 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2817 inst_env->slot_needed = 0;
2818 inst_env->prefix_found = 0;
2819 inst_env->xflag_found = 0;
2820 inst_env->disable_interrupt = 1;
2821 }
2822
2823 /* Handles the JUMP instruction for all modes except register. */
2824
2825 static void
2826 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2827 {
2828 unsigned long newpc;
2829 CORE_ADDR address;
2830
2831 /* It's invalid to do a JUMP in a delay slot. */
2832 if (inst_env->slot_needed)
2833 {
2834 inst_env->invalid = 1;
2835 }
2836 else
2837 {
2838 /* Check if we have a prefix. */
2839 if (inst_env->prefix_found)
2840 {
2841 check_assign (inst, inst_env);
2842
2843 /* Get the new value for the PC. */
2844 newpc =
2845 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2846 4, inst_env->byte_order);
2847 }
2848 else
2849 {
2850 /* Get the new value for the PC. */
2851 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2852 newpc = read_memory_unsigned_integer (address,
2853 4, inst_env->byte_order);
2854
2855 /* Check if we should increment a register. */
2856 if (cris_get_mode (inst) == AUTOINC_MODE)
2857 {
2858 inst_env->reg[cris_get_operand1 (inst)] += 4;
2859 }
2860 }
2861 inst_env->reg[REG_PC] = newpc;
2862 }
2863 inst_env->slot_needed = 0;
2864 inst_env->prefix_found = 0;
2865 inst_env->xflag_found = 0;
2866 inst_env->disable_interrupt = 1;
2867 }
2868
2869 /* Handles moves to special registers (aka P-register) for all modes. */
2870
2871 static void
2872 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2873 inst_env_type *inst_env)
2874 {
2875 if (inst_env->prefix_found)
2876 {
2877 /* The instruction has a prefix that means we are only interested if
2878 the instruction is in assign mode. */
2879 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2880 {
2881 /* The prefix handles the problem if we are in a delay slot. */
2882 if (cris_get_operand1 (inst) == REG_PC)
2883 {
2884 /* Just take care of the assign. */
2885 check_assign (inst, inst_env);
2886 }
2887 }
2888 }
2889 else if (cris_get_mode (inst) == AUTOINC_MODE)
2890 {
2891 /* The instruction doesn't have a prefix, the only case left that we
2892 are interested in is the autoincrement mode. */
2893 if (cris_get_operand1 (inst) == REG_PC)
2894 {
2895 /* If the PC is to be incremented it's invalid to be in a
2896 delay slot. */
2897 if (inst_env->slot_needed)
2898 {
2899 inst_env->invalid = 1;
2900 return;
2901 }
2902
2903 /* The increment depends on the size of the special register. */
2904 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2905 {
2906 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2907 }
2908 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2909 {
2910 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2911 }
2912 else
2913 {
2914 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2915 }
2916 }
2917 }
2918 inst_env->slot_needed = 0;
2919 inst_env->prefix_found = 0;
2920 inst_env->xflag_found = 0;
2921 inst_env->disable_interrupt = 1;
2922 }
2923
2924 /* Handles moves from special registers (aka P-register) for all modes
2925 except register. */
2926
2927 static void
2928 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2929 inst_env_type *inst_env)
2930 {
2931 if (inst_env->prefix_found)
2932 {
2933 /* The instruction has a prefix that means we are only interested if
2934 the instruction is in assign mode. */
2935 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2936 {
2937 /* The prefix handles the problem if we are in a delay slot. */
2938 if (cris_get_operand1 (inst) == REG_PC)
2939 {
2940 /* Just take care of the assign. */
2941 check_assign (inst, inst_env);
2942 }
2943 }
2944 }
2945 /* The instruction doesn't have a prefix, the only case left that we
2946 are interested in is the autoincrement mode. */
2947 else if (cris_get_mode (inst) == AUTOINC_MODE)
2948 {
2949 if (cris_get_operand1 (inst) == REG_PC)
2950 {
2951 /* If the PC is to be incremented it's invalid to be in a
2952 delay slot. */
2953 if (inst_env->slot_needed)
2954 {
2955 inst_env->invalid = 1;
2956 return;
2957 }
2958
2959 /* The increment depends on the size of the special register. */
2960 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2961 {
2962 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2963 }
2964 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2965 {
2966 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2967 }
2968 else
2969 {
2970 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2971 }
2972 }
2973 }
2974 inst_env->slot_needed = 0;
2975 inst_env->prefix_found = 0;
2976 inst_env->xflag_found = 0;
2977 inst_env->disable_interrupt = 1;
2978 }
2979
2980 /* Handles moves from special registers (aka P-register) when the mode
2981 is register. */
2982
2983 static void
2984 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2985 {
2986 /* Register mode move from special register can't have a prefix. */
2987 if (inst_env->prefix_found)
2988 {
2989 inst_env->invalid = 1;
2990 return;
2991 }
2992
2993 if (cris_get_operand1 (inst) == REG_PC)
2994 {
2995 /* It's invalid to change the PC in a delay slot. */
2996 if (inst_env->slot_needed)
2997 {
2998 inst_env->invalid = 1;
2999 return;
3000 }
3001 /* The destination is the PC, the jump will have a delay slot. */
3002 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3003 inst_env->slot_needed = 1;
3004 inst_env->delay_slot_pc_active = 1;
3005 }
3006 else
3007 {
3008 /* If the destination isn't PC, there will be no jump. */
3009 inst_env->slot_needed = 0;
3010 }
3011 inst_env->prefix_found = 0;
3012 inst_env->xflag_found = 0;
3013 inst_env->disable_interrupt = 1;
3014 }
3015
3016 /* Handles the MOVEM from memory to general register instruction. */
3017
3018 static void
3019 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3020 {
3021 if (inst_env->prefix_found)
3022 {
3023 /* The prefix handles the problem if we are in a delay slot. Is the
3024 MOVEM instruction going to change the PC? */
3025 if (cris_get_operand2 (inst) >= REG_PC)
3026 {
3027 inst_env->reg[REG_PC] =
3028 read_memory_unsigned_integer (inst_env->prefix_value,
3029 4, inst_env->byte_order);
3030 }
3031 /* The assign value is the value after the increment. Normally, the
3032 assign value is the value before the increment. */
3033 if ((cris_get_operand1 (inst) == REG_PC)
3034 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3035 {
3036 inst_env->reg[REG_PC] = inst_env->prefix_value;
3037 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3038 }
3039 }
3040 else
3041 {
3042 /* Is the MOVEM instruction going to change the PC? */
3043 if (cris_get_operand2 (inst) == REG_PC)
3044 {
3045 /* It's invalid to change the PC in a delay slot. */
3046 if (inst_env->slot_needed)
3047 {
3048 inst_env->invalid = 1;
3049 return;
3050 }
3051 inst_env->reg[REG_PC] =
3052 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3053 4, inst_env->byte_order);
3054 }
3055 /* The increment is not depending on the size, instead it's depending
3056 on the number of registers loaded from memory. */
3057 if ((cris_get_operand1 (inst) == REG_PC)
3058 && (cris_get_mode (inst) == AUTOINC_MODE))
3059 {
3060 /* It's invalid to change the PC in a delay slot. */
3061 if (inst_env->slot_needed)
3062 {
3063 inst_env->invalid = 1;
3064 return;
3065 }
3066 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3067 }
3068 }
3069 inst_env->slot_needed = 0;
3070 inst_env->prefix_found = 0;
3071 inst_env->xflag_found = 0;
3072 inst_env->disable_interrupt = 0;
3073 }
3074
3075 /* Handles the MOVEM to memory from general register instruction. */
3076
3077 static void
3078 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3079 {
3080 if (inst_env->prefix_found)
3081 {
3082 /* The assign value is the value after the increment. Normally, the
3083 assign value is the value before the increment. */
3084 if ((cris_get_operand1 (inst) == REG_PC)
3085 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3086 {
3087 /* The prefix handles the problem if we are in a delay slot. */
3088 inst_env->reg[REG_PC] = inst_env->prefix_value;
3089 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3090 }
3091 }
3092 else
3093 {
3094 /* The increment is not depending on the size, instead it's depending
3095 on the number of registers loaded to memory. */
3096 if ((cris_get_operand1 (inst) == REG_PC)
3097 && (cris_get_mode (inst) == AUTOINC_MODE))
3098 {
3099 /* It's invalid to change the PC in a delay slot. */
3100 if (inst_env->slot_needed)
3101 {
3102 inst_env->invalid = 1;
3103 return;
3104 }
3105 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3106 }
3107 }
3108 inst_env->slot_needed = 0;
3109 inst_env->prefix_found = 0;
3110 inst_env->xflag_found = 0;
3111 inst_env->disable_interrupt = 0;
3112 }
3113
3114 /* Handles the intructions that's not yet implemented, by setting
3115 inst_env->invalid to true. */
3116
3117 static void
3118 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3119 {
3120 inst_env->invalid = 1;
3121 }
3122
3123 /* Handles the XOR instruction. */
3124
3125 static void
3126 xor_op (unsigned short inst, inst_env_type *inst_env)
3127 {
3128 /* XOR can't have a prefix. */
3129 if (inst_env->prefix_found)
3130 {
3131 inst_env->invalid = 1;
3132 return;
3133 }
3134
3135 /* Check if the PC is the target. */
3136 if (cris_get_operand2 (inst) == REG_PC)
3137 {
3138 /* It's invalid to change the PC in a delay slot. */
3139 if (inst_env->slot_needed)
3140 {
3141 inst_env->invalid = 1;
3142 return;
3143 }
3144 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3145 }
3146 inst_env->slot_needed = 0;
3147 inst_env->prefix_found = 0;
3148 inst_env->xflag_found = 0;
3149 inst_env->disable_interrupt = 0;
3150 }
3151
3152 /* Handles the MULS instruction. */
3153
3154 static void
3155 muls_op (unsigned short inst, inst_env_type *inst_env)
3156 {
3157 /* MULS/U can't have a prefix. */
3158 if (inst_env->prefix_found)
3159 {
3160 inst_env->invalid = 1;
3161 return;
3162 }
3163
3164 /* Consider it invalid if the PC is the target. */
3165 if (cris_get_operand2 (inst) == REG_PC)
3166 {
3167 inst_env->invalid = 1;
3168 return;
3169 }
3170 inst_env->slot_needed = 0;
3171 inst_env->prefix_found = 0;
3172 inst_env->xflag_found = 0;
3173 inst_env->disable_interrupt = 0;
3174 }
3175
3176 /* Handles the MULU instruction. */
3177
3178 static void
3179 mulu_op (unsigned short inst, inst_env_type *inst_env)
3180 {
3181 /* MULS/U can't have a prefix. */
3182 if (inst_env->prefix_found)
3183 {
3184 inst_env->invalid = 1;
3185 return;
3186 }
3187
3188 /* Consider it invalid if the PC is the target. */
3189 if (cris_get_operand2 (inst) == REG_PC)
3190 {
3191 inst_env->invalid = 1;
3192 return;
3193 }
3194 inst_env->slot_needed = 0;
3195 inst_env->prefix_found = 0;
3196 inst_env->xflag_found = 0;
3197 inst_env->disable_interrupt = 0;
3198 }
3199
3200 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3201 The MOVE instruction is the move from source to register. */
3202
3203 static void
3204 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3205 unsigned long source1, unsigned long source2)
3206 {
3207 unsigned long pc_mask;
3208 unsigned long operation_mask;
3209
3210 /* Find out how many bits the operation should apply to. */
3211 if (cris_get_size (inst) == INST_BYTE_SIZE)
3212 {
3213 pc_mask = 0xFFFFFF00;
3214 operation_mask = 0xFF;
3215 }
3216 else if (cris_get_size (inst) == INST_WORD_SIZE)
3217 {
3218 pc_mask = 0xFFFF0000;
3219 operation_mask = 0xFFFF;
3220 }
3221 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3222 {
3223 pc_mask = 0x0;
3224 operation_mask = 0xFFFFFFFF;
3225 }
3226 else
3227 {
3228 /* The size is out of range. */
3229 inst_env->invalid = 1;
3230 return;
3231 }
3232
3233 /* The instruction just works on uw_operation_mask bits. */
3234 source2 &= operation_mask;
3235 source1 &= operation_mask;
3236
3237 /* Now calculate the result. The opcode's 3 first bits separates
3238 the different actions. */
3239 switch (cris_get_opcode (inst) & 7)
3240 {
3241 case 0: /* add */
3242 source1 += source2;
3243 break;
3244
3245 case 1: /* move */
3246 source1 = source2;
3247 break;
3248
3249 case 2: /* subtract */
3250 source1 -= source2;
3251 break;
3252
3253 case 3: /* compare */
3254 break;
3255
3256 case 4: /* and */
3257 source1 &= source2;
3258 break;
3259
3260 case 5: /* or */
3261 source1 |= source2;
3262 break;
3263
3264 default:
3265 inst_env->invalid = 1;
3266 return;
3267
3268 break;
3269 }
3270
3271 /* Make sure that the result doesn't contain more than the instruction
3272 size bits. */
3273 source2 &= operation_mask;
3274
3275 /* Calculate the new breakpoint address. */
3276 inst_env->reg[REG_PC] &= pc_mask;
3277 inst_env->reg[REG_PC] |= source1;
3278
3279 }
3280
3281 /* Extends the value from either byte or word size to a dword. If the mode
3282 is zero extend then the value is extended with zero. If instead the mode
3283 is signed extend the sign bit of the value is taken into consideration. */
3284
3285 static unsigned long
3286 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3287 {
3288 /* The size can be either byte or word, check which one it is.
3289 Don't check the highest bit, it's indicating if it's a zero
3290 or sign extend. */
3291 if (cris_get_size (*inst) & INST_WORD_SIZE)
3292 {
3293 /* Word size. */
3294 value &= 0xFFFF;
3295
3296 /* Check if the instruction is signed extend. If so, check if value has
3297 the sign bit on. */
3298 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3299 {
3300 value |= SIGNED_WORD_EXTEND_MASK;
3301 }
3302 }
3303 else
3304 {
3305 /* Byte size. */
3306 value &= 0xFF;
3307
3308 /* Check if the instruction is signed extend. If so, check if value has
3309 the sign bit on. */
3310 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3311 {
3312 value |= SIGNED_BYTE_EXTEND_MASK;
3313 }
3314 }
3315 /* The size should now be dword. */
3316 cris_set_size_to_dword (inst);
3317 return value;
3318 }
3319
3320 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3321 instruction. The MOVE instruction is the move from source to register. */
3322
3323 static void
3324 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3325 inst_env_type *inst_env)
3326 {
3327 unsigned long operand1;
3328 unsigned long operand2;
3329
3330 /* It's invalid to have a prefix to the instruction. This is a register
3331 mode instruction and can't have a prefix. */
3332 if (inst_env->prefix_found)
3333 {
3334 inst_env->invalid = 1;
3335 return;
3336 }
3337 /* Check if the instruction has PC as its target. */
3338 if (cris_get_operand2 (inst) == REG_PC)
3339 {
3340 if (inst_env->slot_needed)
3341 {
3342 inst_env->invalid = 1;
3343 return;
3344 }
3345 /* The instruction has the PC as its target register. */
3346 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3347 operand2 = inst_env->reg[REG_PC];
3348
3349 /* Check if it's a extend, signed or zero instruction. */
3350 if (cris_get_opcode (inst) < 4)
3351 {
3352 operand1 = do_sign_or_zero_extend (operand1, &inst);
3353 }
3354 /* Calculate the PC value after the instruction, i.e. where the
3355 breakpoint should be. The order of the udw_operands is vital. */
3356 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3357 }
3358 inst_env->slot_needed = 0;
3359 inst_env->prefix_found = 0;
3360 inst_env->xflag_found = 0;
3361 inst_env->disable_interrupt = 0;
3362 }
3363
3364 /* Returns the data contained at address. The size of the data is derived from
3365 the size of the operation. If the instruction is a zero or signed
3366 extend instruction, the size field is changed in instruction. */
3367
3368 static unsigned long
3369 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3370 enum bfd_endian byte_order)
3371 {
3372 int size = cris_get_size (*inst);
3373 unsigned long value;
3374
3375 /* If it's an extend instruction we don't want the signed extend bit,
3376 because it influences the size. */
3377 if (cris_get_opcode (*inst) < 4)
3378 {
3379 size &= ~SIGNED_EXTEND_BIT_MASK;
3380 }
3381 /* Is there a need for checking the size? Size should contain the number of
3382 bytes to read. */
3383 size = 1 << size;
3384 value = read_memory_unsigned_integer (address, size, byte_order);
3385
3386 /* Check if it's an extend, signed or zero instruction. */
3387 if (cris_get_opcode (*inst) < 4)
3388 {
3389 value = do_sign_or_zero_extend (value, inst);
3390 }
3391 return value;
3392 }
3393
3394 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3395 instructions. The MOVE instruction is the move from source to register. */
3396
3397 static void
3398 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3399 inst_env_type *inst_env)
3400 {
3401 unsigned long operand2;
3402 unsigned long operand3;
3403
3404 check_assign (inst, inst_env);
3405 if (cris_get_operand2 (inst) == REG_PC)
3406 {
3407 operand2 = inst_env->reg[REG_PC];
3408
3409 /* Get the value of the third operand. */
3410 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3411 inst_env->byte_order);
3412
3413 /* Calculate the PC value after the instruction, i.e. where the
3414 breakpoint should be. The order of the udw_operands is vital. */
3415 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3416 }
3417 inst_env->slot_needed = 0;
3418 inst_env->prefix_found = 0;
3419 inst_env->xflag_found = 0;
3420 inst_env->disable_interrupt = 0;
3421 }
3422
3423 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3424 OR instructions. Note that for this to work as expected, the calling
3425 function must have made sure that there is a prefix to this instruction. */
3426
3427 static void
3428 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3429 inst_env_type *inst_env)
3430 {
3431 unsigned long operand2;
3432 unsigned long operand3;
3433
3434 if (cris_get_operand1 (inst) == REG_PC)
3435 {
3436 /* The PC will be changed by the instruction. */
3437 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3438
3439 /* Get the value of the third operand. */
3440 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3441 inst_env->byte_order);
3442
3443 /* Calculate the PC value after the instruction, i.e. where the
3444 breakpoint should be. */
3445 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3446 }
3447 inst_env->slot_needed = 0;
3448 inst_env->prefix_found = 0;
3449 inst_env->xflag_found = 0;
3450 inst_env->disable_interrupt = 0;
3451 }
3452
3453 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3454 instructions. The MOVE instruction is the move from source to register. */
3455
3456 static void
3457 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3458 inst_env_type *inst_env)
3459 {
3460 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3461 {
3462 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3463 SUB, AND or OR something weird is going on (if everything works these
3464 instructions should end up in the three operand version). */
3465 inst_env->invalid = 1;
3466 return;
3467 }
3468 else
3469 {
3470 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3471 so use it. */
3472 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3473 }
3474 inst_env->slot_needed = 0;
3475 inst_env->prefix_found = 0;
3476 inst_env->xflag_found = 0;
3477 inst_env->disable_interrupt = 0;
3478 }
3479
3480 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3481 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3482 source to register. */
3483
3484 static void
3485 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3486 inst_env_type *inst_env)
3487 {
3488 unsigned long operand1;
3489 unsigned long operand2;
3490 unsigned long operand3;
3491 int size;
3492
3493 /* The instruction is either an indirect or autoincrement addressing mode.
3494 Check if the destination register is the PC. */
3495 if (cris_get_operand2 (inst) == REG_PC)
3496 {
3497 /* Must be done here, get_data_from_address may change the size
3498 field. */
3499 size = cris_get_size (inst);
3500 operand2 = inst_env->reg[REG_PC];
3501
3502 /* Get the value of the third operand, i.e. the indirect operand. */
3503 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3504 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3505
3506 /* Calculate the PC value after the instruction, i.e. where the
3507 breakpoint should be. The order of the udw_operands is vital. */
3508 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3509 }
3510 /* If this is an autoincrement addressing mode, check if the increment
3511 changes the PC. */
3512 if ((cris_get_operand1 (inst) == REG_PC)
3513 && (cris_get_mode (inst) == AUTOINC_MODE))
3514 {
3515 /* Get the size field. */
3516 size = cris_get_size (inst);
3517
3518 /* If it's an extend instruction we don't want the signed extend bit,
3519 because it influences the size. */
3520 if (cris_get_opcode (inst) < 4)
3521 {
3522 size &= ~SIGNED_EXTEND_BIT_MASK;
3523 }
3524 process_autoincrement (size, inst, inst_env);
3525 }
3526 inst_env->slot_needed = 0;
3527 inst_env->prefix_found = 0;
3528 inst_env->xflag_found = 0;
3529 inst_env->disable_interrupt = 0;
3530 }
3531
3532 /* Handles the two-operand addressing mode, all modes except register, for
3533 the ADD, SUB CMP, AND and OR instruction. */
3534
3535 static void
3536 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3537 inst_env_type *inst_env)
3538 {
3539 if (inst_env->prefix_found)
3540 {
3541 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3542 {
3543 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3544 }
3545 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3546 {
3547 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3548 }
3549 else
3550 {
3551 /* The mode is invalid for a prefixed base instruction. */
3552 inst_env->invalid = 1;
3553 return;
3554 }
3555 }
3556 else
3557 {
3558 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3559 }
3560 }
3561
3562 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3563
3564 static void
3565 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3566 {
3567 unsigned long operand1;
3568 unsigned long operand2;
3569
3570 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3571 instruction and can't have a prefix. */
3572 if (inst_env->prefix_found)
3573 {
3574 inst_env->invalid = 1;
3575 return;
3576 }
3577
3578 /* Check if the instruction has PC as its target. */
3579 if (cris_get_operand2 (inst) == REG_PC)
3580 {
3581 if (inst_env->slot_needed)
3582 {
3583 inst_env->invalid = 1;
3584 return;
3585 }
3586 operand1 = cris_get_quick_value (inst);
3587 operand2 = inst_env->reg[REG_PC];
3588
3589 /* The size should now be dword. */
3590 cris_set_size_to_dword (&inst);
3591
3592 /* Calculate the PC value after the instruction, i.e. where the
3593 breakpoint should be. */
3594 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3595 }
3596 inst_env->slot_needed = 0;
3597 inst_env->prefix_found = 0;
3598 inst_env->xflag_found = 0;
3599 inst_env->disable_interrupt = 0;
3600 }
3601
3602 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3603
3604 static void
3605 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3606 {
3607 unsigned long operand1;
3608 unsigned long operand2;
3609
3610 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3611 instruction and can't have a prefix. */
3612 if (inst_env->prefix_found)
3613 {
3614 inst_env->invalid = 1;
3615 return;
3616 }
3617 /* Check if the instruction has PC as its target. */
3618 if (cris_get_operand2 (inst) == REG_PC)
3619 {
3620 if (inst_env->slot_needed)
3621 {
3622 inst_env->invalid = 1;
3623 return;
3624 }
3625 /* The instruction has the PC as its target register. */
3626 operand1 = cris_get_quick_value (inst);
3627 operand2 = inst_env->reg[REG_PC];
3628
3629 /* The quick value is signed, so check if we must do a signed extend. */
3630 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3631 {
3632 /* sign extend */
3633 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3634 }
3635 /* The size should now be dword. */
3636 cris_set_size_to_dword (&inst);
3637
3638 /* Calculate the PC value after the instruction, i.e. where the
3639 breakpoint should be. */
3640 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3641 }
3642 inst_env->slot_needed = 0;
3643 inst_env->prefix_found = 0;
3644 inst_env->xflag_found = 0;
3645 inst_env->disable_interrupt = 0;
3646 }
3647
3648 /* Translate op_type to a function and call it. */
3649
3650 static void
3651 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3652 unsigned short inst, inst_env_type *inst_env)
3653 {
3654 switch (op_type)
3655 {
3656 case cris_not_implemented_op:
3657 not_implemented_op (inst, inst_env);
3658 break;
3659
3660 case cris_abs_op:
3661 abs_op (inst, inst_env);
3662 break;
3663
3664 case cris_addi_op:
3665 addi_op (inst, inst_env);
3666 break;
3667
3668 case cris_asr_op:
3669 asr_op (inst, inst_env);
3670 break;
3671
3672 case cris_asrq_op:
3673 asrq_op (inst, inst_env);
3674 break;
3675
3676 case cris_ax_ei_setf_op:
3677 ax_ei_setf_op (inst, inst_env);
3678 break;
3679
3680 case cris_bdap_prefix:
3681 bdap_prefix (inst, inst_env);
3682 break;
3683
3684 case cris_biap_prefix:
3685 biap_prefix (inst, inst_env);
3686 break;
3687
3688 case cris_break_op:
3689 break_op (inst, inst_env);
3690 break;
3691
3692 case cris_btst_nop_op:
3693 btst_nop_op (inst, inst_env);
3694 break;
3695
3696 case cris_clearf_di_op:
3697 clearf_di_op (inst, inst_env);
3698 break;
3699
3700 case cris_dip_prefix:
3701 dip_prefix (inst, inst_env);
3702 break;
3703
3704 case cris_dstep_logshift_mstep_neg_not_op:
3705 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3706 break;
3707
3708 case cris_eight_bit_offset_branch_op:
3709 eight_bit_offset_branch_op (inst, inst_env);
3710 break;
3711
3712 case cris_move_mem_to_reg_movem_op:
3713 move_mem_to_reg_movem_op (inst, inst_env);
3714 break;
3715
3716 case cris_move_reg_to_mem_movem_op:
3717 move_reg_to_mem_movem_op (inst, inst_env);
3718 break;
3719
3720 case cris_move_to_preg_op:
3721 move_to_preg_op (gdbarch, inst, inst_env);
3722 break;
3723
3724 case cris_muls_op:
3725 muls_op (inst, inst_env);
3726 break;
3727
3728 case cris_mulu_op:
3729 mulu_op (inst, inst_env);
3730 break;
3731
3732 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3733 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3734 break;
3735
3736 case cris_none_reg_mode_clear_test_op:
3737 none_reg_mode_clear_test_op (inst, inst_env);
3738 break;
3739
3740 case cris_none_reg_mode_jump_op:
3741 none_reg_mode_jump_op (inst, inst_env);
3742 break;
3743
3744 case cris_none_reg_mode_move_from_preg_op:
3745 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3746 break;
3747
3748 case cris_quick_mode_add_sub_op:
3749 quick_mode_add_sub_op (inst, inst_env);
3750 break;
3751
3752 case cris_quick_mode_and_cmp_move_or_op:
3753 quick_mode_and_cmp_move_or_op (inst, inst_env);
3754 break;
3755
3756 case cris_quick_mode_bdap_prefix:
3757 quick_mode_bdap_prefix (inst, inst_env);
3758 break;
3759
3760 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3761 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3762 break;
3763
3764 case cris_reg_mode_clear_op:
3765 reg_mode_clear_op (inst, inst_env);
3766 break;
3767
3768 case cris_reg_mode_jump_op:
3769 reg_mode_jump_op (inst, inst_env);
3770 break;
3771
3772 case cris_reg_mode_move_from_preg_op:
3773 reg_mode_move_from_preg_op (inst, inst_env);
3774 break;
3775
3776 case cris_reg_mode_test_op:
3777 reg_mode_test_op (inst, inst_env);
3778 break;
3779
3780 case cris_scc_op:
3781 scc_op (inst, inst_env);
3782 break;
3783
3784 case cris_sixteen_bit_offset_branch_op:
3785 sixteen_bit_offset_branch_op (inst, inst_env);
3786 break;
3787
3788 case cris_three_operand_add_sub_cmp_and_or_op:
3789 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3790 break;
3791
3792 case cris_three_operand_bound_op:
3793 three_operand_bound_op (inst, inst_env);
3794 break;
3795
3796 case cris_two_operand_bound_op:
3797 two_operand_bound_op (inst, inst_env);
3798 break;
3799
3800 case cris_xor_op:
3801 xor_op (inst, inst_env);
3802 break;
3803 }
3804 }
3805
3806 /* This wrapper is to avoid cris_get_assembler being called before
3807 exec_bfd has been set. */
3808
3809 static int
3810 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3811 {
3812 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3813 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3814 disassembler, even when there is no BFD. Does something like
3815 "gdb; target remote; disassmeble *0x123" work? */
3816 gdb_assert (exec_bfd != NULL);
3817 print_insn = cris_get_disassembler (exec_bfd);
3818 gdb_assert (print_insn != NULL);
3819 return print_insn (addr, info);
3820 }
3821
3822 /* Copied from <asm/elf.h>. */
3823 typedef unsigned long elf_greg_t;
3824
3825 /* Same as user_regs_struct struct in <asm/user.h>. */
3826 #define CRISV10_ELF_NGREG 35
3827 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3828
3829 #define CRISV32_ELF_NGREG 32
3830 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3831
3832 /* Unpack an elf_gregset_t into GDB's register cache. */
3833
3834 static void
3835 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3836 {
3837 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3839 int i;
3840 elf_greg_t *regp = *gregsetp;
3841 static char zerobuf[4] = {0};
3842
3843 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3844 knows about the actual size of each register so that's no problem. */
3845 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3846 {
3847 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3848 }
3849
3850 if (tdep->cris_version == 32)
3851 {
3852 /* Needed to set pseudo-register PC for CRISv32. */
3853 /* FIXME: If ERP is in a delay slot at this point then the PC will
3854 be wrong. Issue a warning to alert the user. */
3855 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3856 (char *)&regp[ERP_REGNUM]);
3857
3858 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3859 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3860 }
3861 }
3862
3863 /* Use a local version of this function to get the correct types for
3864 regsets, until multi-arch core support is ready. */
3865
3866 static void
3867 fetch_core_registers (struct regcache *regcache,
3868 char *core_reg_sect, unsigned core_reg_size,
3869 int which, CORE_ADDR reg_addr)
3870 {
3871 elf_gregset_t gregset;
3872
3873 switch (which)
3874 {
3875 case 0:
3876 if (core_reg_size != sizeof (elf_gregset_t)
3877 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3878 {
3879 warning (_("wrong size gregset struct in core file"));
3880 }
3881 else
3882 {
3883 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3884 cris_supply_gregset (regcache, &gregset);
3885 }
3886
3887 default:
3888 /* We've covered all the kinds of registers we know about here,
3889 so this must be something we wouldn't know what to do with
3890 anyway. Just ignore it. */
3891 break;
3892 }
3893 }
3894
3895 static struct core_fns cris_elf_core_fns =
3896 {
3897 bfd_target_elf_flavour, /* core_flavour */
3898 default_check_format, /* check_format */
3899 default_core_sniffer, /* core_sniffer */
3900 fetch_core_registers, /* core_read_registers */
3901 NULL /* next */
3902 };
3903
3904 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3905
3906 void
3907 _initialize_cris_tdep (void)
3908 {
3909 static struct cmd_list_element *cris_set_cmdlist;
3910 static struct cmd_list_element *cris_show_cmdlist;
3911
3912 struct cmd_list_element *c;
3913
3914 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3915
3916 /* CRIS-specific user-commands. */
3917 add_setshow_uinteger_cmd ("cris-version", class_support,
3918 &usr_cmd_cris_version,
3919 _("Set the current CRIS version."),
3920 _("Show the current CRIS version."),
3921 _("\
3922 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3923 Defaults to 10. "),
3924 set_cris_version,
3925 NULL, /* FIXME: i18n: Current CRIS version
3926 is %s. */
3927 &setlist, &showlist);
3928
3929 add_setshow_enum_cmd ("cris-mode", class_support,
3930 cris_modes, &usr_cmd_cris_mode,
3931 _("Set the current CRIS mode."),
3932 _("Show the current CRIS mode."),
3933 _("\
3934 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3935 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3936 set_cris_mode,
3937 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3938 &setlist, &showlist);
3939
3940 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3941 &usr_cmd_cris_dwarf2_cfi,
3942 _("Set the usage of Dwarf-2 CFI for CRIS."),
3943 _("Show the usage of Dwarf-2 CFI for CRIS."),
3944 _("Set this to \"off\" if using gcc-cris < R59."),
3945 set_cris_dwarf2_cfi,
3946 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3947 for CRIS is %d. */
3948 &setlist, &showlist);
3949
3950 deprecated_add_core_fns (&cris_elf_core_fns);
3951 }
3952
3953 /* Prints out all target specific values. */
3954
3955 static void
3956 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3957 {
3958 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3959 if (tdep != NULL)
3960 {
3961 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3962 tdep->cris_version);
3963 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3964 tdep->cris_mode);
3965 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3966 tdep->cris_dwarf2_cfi);
3967 }
3968 }
3969
3970 static void
3971 set_cris_version (char *ignore_args, int from_tty,
3972 struct cmd_list_element *c)
3973 {
3974 struct gdbarch_info info;
3975
3976 usr_cmd_cris_version_valid = 1;
3977
3978 /* Update the current architecture, if needed. */
3979 gdbarch_info_init (&info);
3980 if (!gdbarch_update_p (info))
3981 internal_error (__FILE__, __LINE__,
3982 _("cris_gdbarch_update: failed to update architecture."));
3983 }
3984
3985 static void
3986 set_cris_mode (char *ignore_args, int from_tty,
3987 struct cmd_list_element *c)
3988 {
3989 struct gdbarch_info info;
3990
3991 /* Update the current architecture, if needed. */
3992 gdbarch_info_init (&info);
3993 if (!gdbarch_update_p (info))
3994 internal_error (__FILE__, __LINE__,
3995 "cris_gdbarch_update: failed to update architecture.");
3996 }
3997
3998 static void
3999 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4000 struct cmd_list_element *c)
4001 {
4002 struct gdbarch_info info;
4003
4004 /* Update the current architecture, if needed. */
4005 gdbarch_info_init (&info);
4006 if (!gdbarch_update_p (info))
4007 internal_error (__FILE__, __LINE__,
4008 _("cris_gdbarch_update: failed to update architecture."));
4009 }
4010
4011 static struct gdbarch *
4012 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4013 {
4014 struct gdbarch *gdbarch;
4015 struct gdbarch_tdep *tdep;
4016 int cris_version;
4017
4018 if (usr_cmd_cris_version_valid)
4019 {
4020 /* Trust the user's CRIS version setting. */
4021 cris_version = usr_cmd_cris_version;
4022 }
4023 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4024 {
4025 cris_version = 32;
4026 }
4027 else
4028 {
4029 /* Assume it's CRIS version 10. */
4030 cris_version = 10;
4031 }
4032
4033 /* Make the current settings visible to the user. */
4034 usr_cmd_cris_version = cris_version;
4035
4036 /* Find a candidate among the list of pre-declared architectures. */
4037 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4038 arches != NULL;
4039 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4040 {
4041 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4042 == usr_cmd_cris_version)
4043 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4044 == usr_cmd_cris_mode)
4045 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4046 == usr_cmd_cris_dwarf2_cfi))
4047 return arches->gdbarch;
4048 }
4049
4050 /* No matching architecture was found. Create a new one. */
4051 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4052 gdbarch = gdbarch_alloc (&info, tdep);
4053
4054 tdep->cris_version = usr_cmd_cris_version;
4055 tdep->cris_mode = usr_cmd_cris_mode;
4056 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4057
4058 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4059 switch (info.byte_order)
4060 {
4061 case BFD_ENDIAN_LITTLE:
4062 /* Ok. */
4063 break;
4064
4065 case BFD_ENDIAN_BIG:
4066 internal_error (__FILE__, __LINE__,
4067 _("cris_gdbarch_init: big endian byte order in info"));
4068 break;
4069
4070 default:
4071 internal_error (__FILE__, __LINE__,
4072 _("cris_gdbarch_init: unknown byte order in info"));
4073 }
4074
4075 set_gdbarch_return_value (gdbarch, cris_return_value);
4076
4077 set_gdbarch_sp_regnum (gdbarch, 14);
4078
4079 /* Length of ordinary registers used in push_word and a few other
4080 places. register_size() is the real way to know how big a
4081 register is. */
4082
4083 set_gdbarch_double_bit (gdbarch, 64);
4084 /* The default definition of a long double is 2 * gdbarch_double_bit,
4085 which means we have to set this explicitly. */
4086 set_gdbarch_long_double_bit (gdbarch, 64);
4087
4088 /* The total amount of space needed to store (in an array called registers)
4089 GDB's copy of the machine's register state. Note: We can not use
4090 cris_register_size at this point, since it relies on gdbarch
4091 being set. */
4092 switch (tdep->cris_version)
4093 {
4094 case 0:
4095 case 1:
4096 case 2:
4097 case 3:
4098 case 8:
4099 case 9:
4100 /* Old versions; not supported. */
4101 internal_error (__FILE__, __LINE__,
4102 _("cris_gdbarch_init: unsupported CRIS version"));
4103 break;
4104
4105 case 10:
4106 case 11:
4107 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4108 P7 (32 bits), and P15 (32 bits) have been implemented. */
4109 set_gdbarch_pc_regnum (gdbarch, 15);
4110 set_gdbarch_register_type (gdbarch, cris_register_type);
4111 /* There are 32 registers (some of which may not be implemented). */
4112 set_gdbarch_num_regs (gdbarch, 32);
4113 set_gdbarch_register_name (gdbarch, cris_register_name);
4114 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4115 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4116
4117 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4118 break;
4119
4120 case 32:
4121 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4122 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4123 and pseudo-register PC (32 bits). */
4124 set_gdbarch_pc_regnum (gdbarch, 32);
4125 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4126 /* 32 registers + pseudo-register PC + 16 support registers. */
4127 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4128 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4129
4130 set_gdbarch_cannot_store_register
4131 (gdbarch, crisv32_cannot_store_register);
4132 set_gdbarch_cannot_fetch_register
4133 (gdbarch, crisv32_cannot_fetch_register);
4134
4135 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4136
4137 set_gdbarch_single_step_through_delay
4138 (gdbarch, crisv32_single_step_through_delay);
4139
4140 break;
4141
4142 default:
4143 internal_error (__FILE__, __LINE__,
4144 _("cris_gdbarch_init: unknown CRIS version"));
4145 }
4146
4147 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4148 have the same ABI). */
4149 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4150 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4151 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4152 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4153
4154 /* The stack grows downward. */
4155 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4156
4157 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4158
4159 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4160 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4161 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4162
4163 if (tdep->cris_dwarf2_cfi == 1)
4164 {
4165 /* Hook in the Dwarf-2 frame sniffer. */
4166 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4167 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4168 dwarf2_append_unwinders (gdbarch);
4169 }
4170
4171 if (tdep->cris_mode != cris_mode_guru)
4172 {
4173 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4174 }
4175
4176 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4177 frame_base_set_default (gdbarch, &cris_frame_base);
4178
4179 set_solib_svr4_fetch_link_map_offsets
4180 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4181
4182 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4183 disassembler, even when there is no BFD. Does something like
4184 "gdb; target remote; disassmeble *0x123" work? */
4185 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4186
4187 return gdbarch;
4188 }
This page took 0.164536 seconds and 5 git commands to generate.