doc/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 /* To get entry_point_address. */
43 #include "objfiles.h"
44
45 #include "solib.h" /* Support for shared libraries. */
46 #include "solib-svr4.h"
47 #include "gdb_string.h"
48 #include "dis-asm.h"
49
50 enum cris_num_regs
51 {
52 /* There are no floating point registers. Used in gdbserver low-linux.c. */
53 NUM_FREGS = 0,
54
55 /* There are 16 general registers. */
56 NUM_GENREGS = 16,
57
58 /* There are 16 special registers. */
59 NUM_SPECREGS = 16,
60
61 /* CRISv32 has a pseudo PC register, not noted here. */
62
63 /* CRISv32 has 16 support registers. */
64 NUM_SUPPREGS = 16
65 };
66
67 /* Register numbers of various important registers.
68 CRIS_FP_REGNUM Contains address of executing stack frame.
69 STR_REGNUM Contains the address of structure return values.
70 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
71 ARG1_REGNUM Contains the first parameter to a function.
72 ARG2_REGNUM Contains the second parameter to a function.
73 ARG3_REGNUM Contains the third parameter to a function.
74 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
75 gdbarch_sp_regnum Contains address of top of stack.
76 gdbarch_pc_regnum Contains address of next instruction.
77 SRP_REGNUM Subroutine return pointer register.
78 BRP_REGNUM Breakpoint return pointer register. */
79
80 enum cris_regnums
81 {
82 /* Enums with respect to the general registers, valid for all
83 CRIS versions. The frame pointer is always in R8. */
84 CRIS_FP_REGNUM = 8,
85 /* ABI related registers. */
86 STR_REGNUM = 9,
87 RET_REGNUM = 10,
88 ARG1_REGNUM = 10,
89 ARG2_REGNUM = 11,
90 ARG3_REGNUM = 12,
91 ARG4_REGNUM = 13,
92
93 /* Registers which happen to be common. */
94 VR_REGNUM = 17,
95 MOF_REGNUM = 23,
96 SRP_REGNUM = 27,
97
98 /* CRISv10 et. al. specific registers. */
99 P0_REGNUM = 16,
100 P4_REGNUM = 20,
101 CCR_REGNUM = 21,
102 P8_REGNUM = 24,
103 IBR_REGNUM = 25,
104 IRP_REGNUM = 26,
105 BAR_REGNUM = 28,
106 DCCR_REGNUM = 29,
107 BRP_REGNUM = 30,
108 USP_REGNUM = 31,
109
110 /* CRISv32 specific registers. */
111 ACR_REGNUM = 15,
112 BZ_REGNUM = 16,
113 PID_REGNUM = 18,
114 SRS_REGNUM = 19,
115 WZ_REGNUM = 20,
116 EXS_REGNUM = 21,
117 EDA_REGNUM = 22,
118 DZ_REGNUM = 24,
119 EBP_REGNUM = 25,
120 ERP_REGNUM = 26,
121 NRP_REGNUM = 28,
122 CCS_REGNUM = 29,
123 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 SPC_REGNUM = 31,
125 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
126
127 S0_REGNUM = 33,
128 S1_REGNUM = 34,
129 S2_REGNUM = 35,
130 S3_REGNUM = 36,
131 S4_REGNUM = 37,
132 S5_REGNUM = 38,
133 S6_REGNUM = 39,
134 S7_REGNUM = 40,
135 S8_REGNUM = 41,
136 S9_REGNUM = 42,
137 S10_REGNUM = 43,
138 S11_REGNUM = 44,
139 S12_REGNUM = 45,
140 S13_REGNUM = 46,
141 S14_REGNUM = 47,
142 S15_REGNUM = 48,
143 };
144
145 extern const struct cris_spec_reg cris_spec_regs[];
146
147 /* CRIS version, set via the user command 'set cris-version'. Affects
148 register names and sizes. */
149 static int usr_cmd_cris_version;
150
151 /* Indicates whether to trust the above variable. */
152 static int usr_cmd_cris_version_valid = 0;
153
154 static const char cris_mode_normal[] = "normal";
155 static const char cris_mode_guru[] = "guru";
156 static const char *cris_modes[] = {
157 cris_mode_normal,
158 cris_mode_guru,
159 0
160 };
161
162 /* CRIS mode, set via the user command 'set cris-mode'. Affects
163 type of break instruction among other things. */
164 static const char *usr_cmd_cris_mode = cris_mode_normal;
165
166 /* Whether to make use of Dwarf-2 CFI (default on). */
167 static int usr_cmd_cris_dwarf2_cfi = 1;
168
169 /* CRIS architecture specific information. */
170 struct gdbarch_tdep
171 {
172 int cris_version;
173 const char *cris_mode;
174 int cris_dwarf2_cfi;
175 };
176
177 /* Functions for accessing target dependent data. */
178
179 static int
180 cris_version (void)
181 {
182 return (gdbarch_tdep (current_gdbarch)->cris_version);
183 }
184
185 static const char *
186 cris_mode (void)
187 {
188 return (gdbarch_tdep (current_gdbarch)->cris_mode);
189 }
190
191 /* Sigtramp identification code copied from i386-linux-tdep.c. */
192
193 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
194 #define SIGTRAMP_OFFSET0 0
195 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
196 #define SIGTRAMP_OFFSET1 4
197
198 static const unsigned short sigtramp_code[] =
199 {
200 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
201 SIGTRAMP_INSN1 /* break 13 */
202 };
203
204 #define SIGTRAMP_LEN (sizeof sigtramp_code)
205
206 /* Note: same length as normal sigtramp code. */
207
208 static const unsigned short rt_sigtramp_code[] =
209 {
210 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
211 SIGTRAMP_INSN1 /* break 13 */
212 };
213
214 /* If PC is in a sigtramp routine, return the address of the start of
215 the routine. Otherwise, return 0. */
216
217 static CORE_ADDR
218 cris_sigtramp_start (struct frame_info *next_frame)
219 {
220 CORE_ADDR pc = frame_pc_unwind (next_frame);
221 gdb_byte buf[SIGTRAMP_LEN];
222
223 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
224 return 0;
225
226 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
227 {
228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
229 return 0;
230
231 pc -= SIGTRAMP_OFFSET1;
232 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
233 return 0;
234 }
235
236 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
237 return 0;
238
239 return pc;
240 }
241
242 /* If PC is in a RT sigtramp routine, return the address of the start of
243 the routine. Otherwise, return 0. */
244
245 static CORE_ADDR
246 cris_rt_sigtramp_start (struct frame_info *next_frame)
247 {
248 CORE_ADDR pc = frame_pc_unwind (next_frame);
249 gdb_byte buf[SIGTRAMP_LEN];
250
251 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
252 return 0;
253
254 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
255 {
256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
257 return 0;
258
259 pc -= SIGTRAMP_OFFSET1;
260 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
261 return 0;
262 }
263
264 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
265 return 0;
266
267 return pc;
268 }
269
270 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
271 routine, return the address of the associated sigcontext structure. */
272
273 static CORE_ADDR
274 cris_sigcontext_addr (struct frame_info *next_frame)
275 {
276 CORE_ADDR pc;
277 CORE_ADDR sp;
278 char buf[4];
279
280 frame_unwind_register (next_frame,
281 gdbarch_sp_regnum (get_frame_arch (next_frame)), buf);
282 sp = extract_unsigned_integer (buf, 4);
283
284 /* Look for normal sigtramp frame first. */
285 pc = cris_sigtramp_start (next_frame);
286 if (pc)
287 {
288 /* struct signal_frame (arch/cris/kernel/signal.c) contains
289 struct sigcontext as its first member, meaning the SP points to
290 it already. */
291 return sp;
292 }
293
294 pc = cris_rt_sigtramp_start (next_frame);
295 if (pc)
296 {
297 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
298 a struct ucontext, which in turn contains a struct sigcontext.
299 Magic digging:
300 4 + 4 + 128 to struct ucontext, then
301 4 + 4 + 12 to struct sigcontext. */
302 return (sp + 156);
303 }
304
305 error (_("Couldn't recognize signal trampoline."));
306 return 0;
307 }
308
309 struct cris_unwind_cache
310 {
311 /* The previous frame's inner most stack address. Used as this
312 frame ID's stack_addr. */
313 CORE_ADDR prev_sp;
314 /* The frame's base, optionally used by the high-level debug info. */
315 CORE_ADDR base;
316 int size;
317 /* How far the SP and r8 (FP) have been offset from the start of
318 the stack frame (as defined by the previous frame's stack
319 pointer). */
320 LONGEST sp_offset;
321 LONGEST r8_offset;
322 int uses_frame;
323
324 /* From old frame_extra_info struct. */
325 CORE_ADDR return_pc;
326 int leaf_function;
327
328 /* Table indicating the location of each and every register. */
329 struct trad_frame_saved_reg *saved_regs;
330 };
331
332 static struct cris_unwind_cache *
333 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
334 void **this_cache)
335 {
336 struct gdbarch *gdbarch = get_frame_arch (next_frame);
337 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
338 struct cris_unwind_cache *info;
339 CORE_ADDR pc;
340 CORE_ADDR sp;
341 CORE_ADDR addr;
342 char buf[4];
343 int i;
344
345 if ((*this_cache))
346 return (*this_cache);
347
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351
352 /* Zero all fields. */
353 info->prev_sp = 0;
354 info->base = 0;
355 info->size = 0;
356 info->sp_offset = 0;
357 info->r8_offset = 0;
358 info->uses_frame = 0;
359 info->return_pc = 0;
360 info->leaf_function = 0;
361
362 frame_unwind_register (next_frame, gdbarch_sp_regnum (gdbarch), buf);
363 info->base = extract_unsigned_integer (buf, 4);
364
365 addr = cris_sigcontext_addr (next_frame);
366
367 /* Layout of the sigcontext struct:
368 struct sigcontext {
369 struct pt_regs regs;
370 unsigned long oldmask;
371 unsigned long usp;
372 }; */
373
374 if (tdep->cris_version == 10)
375 {
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 struct pt_regs. */
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
389 = info->saved_regs[IRP_REGNUM];
390 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
391 }
392 else
393 {
394 /* CRISv32. */
395 /* R0 to R13 are stored in order at offset (1 * 4) in
396 struct pt_regs. */
397 for (i = 0; i <= 13; i++)
398 info->saved_regs[i].addr = addr + ((i + 1) * 4);
399
400 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
401 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
402 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
403 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
404 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
405 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
406 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
407 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
408 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
409
410 /* FIXME: If ERP is in a delay slot at this point then the PC will
411 be wrong at this point. This problem manifests itself in the
412 sigaltstack.exp test case, which occasionally generates FAILs when
413 the signal is received while in a delay slot.
414
415 This could be solved by a couple of read_memory_unsigned_integer and a
416 trad_frame_set_value. */
417 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
418 = info->saved_regs[ERP_REGNUM];
419
420 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
421 = addr + (25 * 4);
422 }
423
424 return info;
425 }
426
427 static void
428 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
429 struct frame_id *this_id)
430 {
431 struct cris_unwind_cache *cache =
432 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
433 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
434 }
435
436 /* Forward declaration. */
437
438 static void cris_frame_prev_register (struct frame_info *next_frame,
439 void **this_prologue_cache,
440 int regnum, int *optimizedp,
441 enum lval_type *lvalp, CORE_ADDR *addrp,
442 int *realnump, gdb_byte *bufferp);
443 static void
444 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
445 void **this_cache,
446 int regnum, int *optimizedp,
447 enum lval_type *lvalp, CORE_ADDR *addrp,
448 int *realnump, gdb_byte *valuep)
449 {
450 /* Make sure we've initialized the cache. */
451 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
452 cris_frame_prev_register (next_frame, this_cache, regnum,
453 optimizedp, lvalp, addrp, realnump, valuep);
454 }
455
456 static const struct frame_unwind cris_sigtramp_frame_unwind =
457 {
458 SIGTRAMP_FRAME,
459 cris_sigtramp_frame_this_id,
460 cris_sigtramp_frame_prev_register
461 };
462
463 static const struct frame_unwind *
464 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
465 {
466 if (cris_sigtramp_start (next_frame)
467 || cris_rt_sigtramp_start (next_frame))
468 return &cris_sigtramp_frame_unwind;
469
470 return NULL;
471 }
472
473 int
474 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
475 struct frame_info *this_frame)
476 {
477 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
478 ULONGEST erp;
479 int ret = 0;
480 char buf[4];
481
482 if (cris_mode () == cris_mode_guru)
483 {
484 frame_unwind_register (this_frame, NRP_REGNUM, buf);
485 }
486 else
487 {
488 frame_unwind_register (this_frame, ERP_REGNUM, buf);
489 }
490
491 erp = extract_unsigned_integer (buf, 4);
492
493 if (erp & 0x1)
494 {
495 /* In delay slot - check if there's a breakpoint at the preceding
496 instruction. */
497 if (breakpoint_here_p (erp & ~0x1))
498 ret = 1;
499 }
500 return ret;
501 }
502
503 /* Hardware watchpoint support. */
504
505 /* We support 6 hardware data watchpoints, but cannot trigger on execute
506 (any combination of read/write is fine). */
507
508 int
509 cris_can_use_hardware_watchpoint (int type, int count, int other)
510 {
511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
512
513 /* No bookkeeping is done here; it is handled by the remote debug agent. */
514
515 if (tdep->cris_version != 32)
516 return 0;
517 else
518 /* CRISv32: Six data watchpoints, one for instructions. */
519 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
520 || type == bp_hardware_watchpoint) && count <= 6)
521 || (type == bp_hardware_breakpoint && count <= 1));
522 }
523
524 /* The CRISv32 hardware data watchpoints work by specifying ranges,
525 which have no alignment or length restrictions. */
526
527 int
528 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
529 {
530 return 1;
531 }
532
533 /* If the inferior has some watchpoint that triggered, return the
534 address associated with that watchpoint. Otherwise, return
535 zero. */
536
537 CORE_ADDR
538 cris_stopped_data_address (void)
539 {
540 CORE_ADDR eda;
541 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
542 return eda;
543 }
544
545 /* The instruction environment needed to find single-step breakpoints. */
546
547 typedef
548 struct instruction_environment
549 {
550 unsigned long reg[NUM_GENREGS];
551 unsigned long preg[NUM_SPECREGS];
552 unsigned long branch_break_address;
553 unsigned long delay_slot_pc;
554 unsigned long prefix_value;
555 int branch_found;
556 int prefix_found;
557 int invalid;
558 int slot_needed;
559 int delay_slot_pc_active;
560 int xflag_found;
561 int disable_interrupt;
562 } inst_env_type;
563
564 /* Machine-dependencies in CRIS for opcodes. */
565
566 /* Instruction sizes. */
567 enum cris_instruction_sizes
568 {
569 INST_BYTE_SIZE = 0,
570 INST_WORD_SIZE = 1,
571 INST_DWORD_SIZE = 2
572 };
573
574 /* Addressing modes. */
575 enum cris_addressing_modes
576 {
577 REGISTER_MODE = 1,
578 INDIRECT_MODE = 2,
579 AUTOINC_MODE = 3
580 };
581
582 /* Prefix addressing modes. */
583 enum cris_prefix_addressing_modes
584 {
585 PREFIX_INDEX_MODE = 2,
586 PREFIX_ASSIGN_MODE = 3,
587
588 /* Handle immediate byte offset addressing mode prefix format. */
589 PREFIX_OFFSET_MODE = 2
590 };
591
592 /* Masks for opcodes. */
593 enum cris_opcode_masks
594 {
595 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
596 SIGNED_EXTEND_BIT_MASK = 0x2,
597 SIGNED_BYTE_MASK = 0x80,
598 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
599 SIGNED_WORD_MASK = 0x8000,
600 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
601 SIGNED_DWORD_MASK = 0x80000000,
602 SIGNED_QUICK_VALUE_MASK = 0x20,
603 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
604 };
605
606 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
607 Bit 15 - 12 Operand2
608 11 - 10 Mode
609 9 - 6 Opcode
610 5 - 4 Size
611 3 - 0 Operand1 */
612
613 static int
614 cris_get_operand2 (unsigned short insn)
615 {
616 return ((insn & 0xF000) >> 12);
617 }
618
619 static int
620 cris_get_mode (unsigned short insn)
621 {
622 return ((insn & 0x0C00) >> 10);
623 }
624
625 static int
626 cris_get_opcode (unsigned short insn)
627 {
628 return ((insn & 0x03C0) >> 6);
629 }
630
631 static int
632 cris_get_size (unsigned short insn)
633 {
634 return ((insn & 0x0030) >> 4);
635 }
636
637 static int
638 cris_get_operand1 (unsigned short insn)
639 {
640 return (insn & 0x000F);
641 }
642
643 /* Additional functions in order to handle opcodes. */
644
645 static int
646 cris_get_quick_value (unsigned short insn)
647 {
648 return (insn & 0x003F);
649 }
650
651 static int
652 cris_get_bdap_quick_offset (unsigned short insn)
653 {
654 return (insn & 0x00FF);
655 }
656
657 static int
658 cris_get_branch_short_offset (unsigned short insn)
659 {
660 return (insn & 0x00FF);
661 }
662
663 static int
664 cris_get_asr_shift_steps (unsigned long value)
665 {
666 return (value & 0x3F);
667 }
668
669 static int
670 cris_get_clear_size (unsigned short insn)
671 {
672 return ((insn) & 0xC000);
673 }
674
675 static int
676 cris_is_signed_extend_bit_on (unsigned short insn)
677 {
678 return (((insn) & 0x20) == 0x20);
679 }
680
681 static int
682 cris_is_xflag_bit_on (unsigned short insn)
683 {
684 return (((insn) & 0x1000) == 0x1000);
685 }
686
687 static void
688 cris_set_size_to_dword (unsigned short *insn)
689 {
690 *insn &= 0xFFCF;
691 *insn |= 0x20;
692 }
693
694 static signed char
695 cris_get_signed_offset (unsigned short insn)
696 {
697 return ((signed char) (insn & 0x00FF));
698 }
699
700 /* Calls an op function given the op-type, working on the insn and the
701 inst_env. */
702 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
703 inst_env_type *);
704
705 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
706 struct gdbarch_list *);
707
708 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
709
710 static void set_cris_version (char *ignore_args, int from_tty,
711 struct cmd_list_element *c);
712
713 static void set_cris_mode (char *ignore_args, int from_tty,
714 struct cmd_list_element *c);
715
716 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
717 struct cmd_list_element *c);
718
719 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
720 struct frame_info *next_frame,
721 struct cris_unwind_cache *info);
722
723 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
724 struct frame_info *next_frame,
725 struct cris_unwind_cache *info);
726
727 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
728 struct frame_info *next_frame);
729
730 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
731 struct frame_info *next_frame);
732
733 /* When arguments must be pushed onto the stack, they go on in reverse
734 order. The below implements a FILO (stack) to do this.
735 Copied from d10v-tdep.c. */
736
737 struct stack_item
738 {
739 int len;
740 struct stack_item *prev;
741 void *data;
742 };
743
744 static struct stack_item *
745 push_stack_item (struct stack_item *prev, void *contents, int len)
746 {
747 struct stack_item *si;
748 si = xmalloc (sizeof (struct stack_item));
749 si->data = xmalloc (len);
750 si->len = len;
751 si->prev = prev;
752 memcpy (si->data, contents, len);
753 return si;
754 }
755
756 static struct stack_item *
757 pop_stack_item (struct stack_item *si)
758 {
759 struct stack_item *dead = si;
760 si = si->prev;
761 xfree (dead->data);
762 xfree (dead);
763 return si;
764 }
765
766 /* Put here the code to store, into fi->saved_regs, the addresses of
767 the saved registers of frame described by FRAME_INFO. This
768 includes special registers such as pc and fp saved in special ways
769 in the stack frame. sp is even more special: the address we return
770 for it IS the sp for the next frame. */
771
772 struct cris_unwind_cache *
773 cris_frame_unwind_cache (struct frame_info *next_frame,
774 void **this_prologue_cache)
775 {
776 CORE_ADDR pc;
777 struct cris_unwind_cache *info;
778 int i;
779
780 if ((*this_prologue_cache))
781 return (*this_prologue_cache);
782
783 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
784 (*this_prologue_cache) = info;
785 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
786
787 /* Zero all fields. */
788 info->prev_sp = 0;
789 info->base = 0;
790 info->size = 0;
791 info->sp_offset = 0;
792 info->r8_offset = 0;
793 info->uses_frame = 0;
794 info->return_pc = 0;
795 info->leaf_function = 0;
796
797 /* Prologue analysis does the rest... */
798 if (cris_version () == 32)
799 crisv32_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
800 next_frame, info);
801 else
802 cris_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
803 next_frame, info);
804
805 return info;
806 }
807
808 /* Given a GDB frame, determine the address of the calling function's
809 frame. This will be used to create a new GDB frame struct. */
810
811 static void
812 cris_frame_this_id (struct frame_info *next_frame,
813 void **this_prologue_cache,
814 struct frame_id *this_id)
815 {
816 struct cris_unwind_cache *info
817 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
818 CORE_ADDR base;
819 CORE_ADDR func;
820 struct frame_id id;
821
822 /* The FUNC is easy. */
823 func = frame_func_unwind (next_frame, NORMAL_FRAME);
824
825 /* Hopefully the prologue analysis either correctly determined the
826 frame's base (which is the SP from the previous frame), or set
827 that base to "NULL". */
828 base = info->prev_sp;
829 if (base == 0)
830 return;
831
832 id = frame_id_build (base, func);
833
834 (*this_id) = id;
835 }
836
837 static void
838 cris_frame_prev_register (struct frame_info *next_frame,
839 void **this_prologue_cache,
840 int regnum, int *optimizedp,
841 enum lval_type *lvalp, CORE_ADDR *addrp,
842 int *realnump, gdb_byte *bufferp)
843 {
844 struct cris_unwind_cache *info
845 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
846 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
847 optimizedp, lvalp, addrp, realnump, bufferp);
848 }
849
850 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
851 dummy frame. The frame ID's base needs to match the TOS value
852 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
853 breakpoint. */
854
855 static struct frame_id
856 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
857 {
858 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
859 frame_pc_unwind (next_frame));
860 }
861
862 static CORE_ADDR
863 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
864 {
865 /* Align to the size of an instruction (so that they can safely be
866 pushed onto the stack). */
867 return sp & ~3;
868 }
869
870 static CORE_ADDR
871 cris_push_dummy_code (struct gdbarch *gdbarch,
872 CORE_ADDR sp, CORE_ADDR funaddr,
873 struct value **args, int nargs,
874 struct type *value_type,
875 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
876 struct regcache *regcache)
877 {
878 /* Allocate space sufficient for a breakpoint. */
879 sp = (sp - 4) & ~3;
880 /* Store the address of that breakpoint */
881 *bp_addr = sp;
882 /* CRIS always starts the call at the callee's entry point. */
883 *real_pc = funaddr;
884 return sp;
885 }
886
887 static CORE_ADDR
888 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
889 struct regcache *regcache, CORE_ADDR bp_addr,
890 int nargs, struct value **args, CORE_ADDR sp,
891 int struct_return, CORE_ADDR struct_addr)
892 {
893 int stack_alloc;
894 int stack_offset;
895 int argreg;
896 int argnum;
897
898 CORE_ADDR regval;
899
900 /* The function's arguments and memory allocated by gdb for the arguments to
901 point at reside in separate areas on the stack.
902 Both frame pointers grow toward higher addresses. */
903 CORE_ADDR fp_arg;
904 CORE_ADDR fp_mem;
905
906 struct stack_item *si = NULL;
907
908 /* Push the return address. */
909 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
910
911 /* Are we returning a value using a structure return or a normal value
912 return? struct_addr is the address of the reserved space for the return
913 structure to be written on the stack. */
914 if (struct_return)
915 {
916 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
917 }
918
919 /* Now load as many as possible of the first arguments into registers,
920 and push the rest onto the stack. */
921 argreg = ARG1_REGNUM;
922 stack_offset = 0;
923
924 for (argnum = 0; argnum < nargs; argnum++)
925 {
926 int len;
927 char *val;
928 int reg_demand;
929 int i;
930
931 len = TYPE_LENGTH (value_type (args[argnum]));
932 val = (char *) value_contents (args[argnum]);
933
934 /* How may registers worth of storage do we need for this argument? */
935 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
936
937 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
938 {
939 /* Data passed by value. Fits in available register(s). */
940 for (i = 0; i < reg_demand; i++)
941 {
942 regcache_cooked_write (regcache, argreg, val);
943 argreg++;
944 val += 4;
945 }
946 }
947 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
948 {
949 /* Data passed by value. Does not fit in available register(s).
950 Use the register(s) first, then the stack. */
951 for (i = 0; i < reg_demand; i++)
952 {
953 if (argreg <= ARG4_REGNUM)
954 {
955 regcache_cooked_write (regcache, argreg, val);
956 argreg++;
957 val += 4;
958 }
959 else
960 {
961 /* Push item for later so that pushed arguments
962 come in the right order. */
963 si = push_stack_item (si, val, 4);
964 val += 4;
965 }
966 }
967 }
968 else if (len > (2 * 4))
969 {
970 /* Data passed by reference. Push copy of data onto stack
971 and pass pointer to this copy as argument. */
972 sp = (sp - len) & ~3;
973 write_memory (sp, val, len);
974
975 if (argreg <= ARG4_REGNUM)
976 {
977 regcache_cooked_write_unsigned (regcache, argreg, sp);
978 argreg++;
979 }
980 else
981 {
982 gdb_byte buf[4];
983 store_unsigned_integer (buf, 4, sp);
984 si = push_stack_item (si, buf, 4);
985 }
986 }
987 else
988 {
989 /* Data passed by value. No available registers. Put it on
990 the stack. */
991 si = push_stack_item (si, val, len);
992 }
993 }
994
995 while (si)
996 {
997 /* fp_arg must be word-aligned (i.e., don't += len) to match
998 the function prologue. */
999 sp = (sp - si->len) & ~3;
1000 write_memory (sp, si->data, si->len);
1001 si = pop_stack_item (si);
1002 }
1003
1004 /* Finally, update the SP register. */
1005 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
1006
1007 return sp;
1008 }
1009
1010 static const struct frame_unwind cris_frame_unwind =
1011 {
1012 NORMAL_FRAME,
1013 cris_frame_this_id,
1014 cris_frame_prev_register
1015 };
1016
1017 const struct frame_unwind *
1018 cris_frame_sniffer (struct frame_info *next_frame)
1019 {
1020 return &cris_frame_unwind;
1021 }
1022
1023 static CORE_ADDR
1024 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1025 {
1026 struct cris_unwind_cache *info
1027 = cris_frame_unwind_cache (next_frame, this_cache);
1028 return info->base;
1029 }
1030
1031 static const struct frame_base cris_frame_base =
1032 {
1033 &cris_frame_unwind,
1034 cris_frame_base_address,
1035 cris_frame_base_address,
1036 cris_frame_base_address
1037 };
1038
1039 /* Frames information. The definition of the struct frame_info is
1040
1041 CORE_ADDR frame
1042 CORE_ADDR pc
1043 enum frame_type type;
1044 CORE_ADDR return_pc
1045 int leaf_function
1046
1047 If the compilation option -fno-omit-frame-pointer is present the
1048 variable frame will be set to the content of R8 which is the frame
1049 pointer register.
1050
1051 The variable pc contains the address where execution is performed
1052 in the present frame. The innermost frame contains the current content
1053 of the register PC. All other frames contain the content of the
1054 register PC in the next frame.
1055
1056 The variable `type' indicates the frame's type: normal, SIGTRAMP
1057 (associated with a signal handler), dummy (associated with a dummy
1058 frame).
1059
1060 The variable return_pc contains the address where execution should be
1061 resumed when the present frame has finished, the return address.
1062
1063 The variable leaf_function is 1 if the return address is in the register
1064 SRP, and 0 if it is on the stack.
1065
1066 Prologue instructions C-code.
1067 The prologue may consist of (-fno-omit-frame-pointer)
1068 1) 2)
1069 push srp
1070 push r8 push r8
1071 move.d sp,r8 move.d sp,r8
1072 subq X,sp subq X,sp
1073 movem rY,[sp] movem rY,[sp]
1074 move.S rZ,[r8-U] move.S rZ,[r8-U]
1075
1076 where 1 is a non-terminal function, and 2 is a leaf-function.
1077
1078 Note that this assumption is extremely brittle, and will break at the
1079 slightest change in GCC's prologue.
1080
1081 If local variables are declared or register contents are saved on stack
1082 the subq-instruction will be present with X as the number of bytes
1083 needed for storage. The reshuffle with respect to r8 may be performed
1084 with any size S (b, w, d) and any of the general registers Z={0..13}.
1085 The offset U should be representable by a signed 8-bit value in all cases.
1086 Thus, the prefix word is assumed to be immediate byte offset mode followed
1087 by another word containing the instruction.
1088
1089 Degenerate cases:
1090 3)
1091 push r8
1092 move.d sp,r8
1093 move.d r8,sp
1094 pop r8
1095
1096 Prologue instructions C++-code.
1097 Case 1) and 2) in the C-code may be followed by
1098
1099 move.d r10,rS ; this
1100 move.d r11,rT ; P1
1101 move.d r12,rU ; P2
1102 move.d r13,rV ; P3
1103 move.S [r8+U],rZ ; P4
1104
1105 if any of the call parameters are stored. The host expects these
1106 instructions to be executed in order to get the call parameters right. */
1107
1108 /* Examine the prologue of a function. The variable ip is the address of
1109 the first instruction of the prologue. The variable limit is the address
1110 of the first instruction after the prologue. The variable fi contains the
1111 information in struct frame_info. The variable frameless_p controls whether
1112 the entire prologue is examined (0) or just enough instructions to
1113 determine that it is a prologue (1). */
1114
1115 static CORE_ADDR
1116 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1117 struct cris_unwind_cache *info)
1118 {
1119 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1120 /* Present instruction. */
1121 unsigned short insn;
1122
1123 /* Next instruction, lookahead. */
1124 unsigned short insn_next;
1125 int regno;
1126
1127 /* Is there a push fp? */
1128 int have_fp;
1129
1130 /* Number of byte on stack used for local variables and movem. */
1131 int val;
1132
1133 /* Highest register number in a movem. */
1134 int regsave;
1135
1136 /* move.d r<source_register>,rS */
1137 short source_register;
1138
1139 /* Scan limit. */
1140 int limit;
1141
1142 /* This frame is with respect to a leaf until a push srp is found. */
1143 if (info)
1144 {
1145 info->leaf_function = 1;
1146 }
1147
1148 /* Assume nothing on stack. */
1149 val = 0;
1150 regsave = -1;
1151
1152 /* If we were called without a next_frame, that means we were called
1153 from cris_skip_prologue which already tried to find the end of the
1154 prologue through the symbol information. 64 instructions past current
1155 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1156 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1157
1158 /* Find the prologue instructions. */
1159 while (pc > 0 && pc < limit)
1160 {
1161 insn = read_memory_unsigned_integer (pc, 2);
1162 pc += 2;
1163 if (insn == 0xE1FC)
1164 {
1165 /* push <reg> 32 bit instruction */
1166 insn_next = read_memory_unsigned_integer (pc, 2);
1167 pc += 2;
1168 regno = cris_get_operand2 (insn_next);
1169 if (info)
1170 {
1171 info->sp_offset += 4;
1172 }
1173 /* This check, meant to recognize srp, used to be regno ==
1174 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1175 if (insn_next == 0xBE7E)
1176 {
1177 if (info)
1178 {
1179 info->leaf_function = 0;
1180 }
1181 }
1182 else if (insn_next == 0x8FEE)
1183 {
1184 /* push $r8 */
1185 if (info)
1186 {
1187 info->r8_offset = info->sp_offset;
1188 }
1189 }
1190 }
1191 else if (insn == 0x866E)
1192 {
1193 /* move.d sp,r8 */
1194 if (info)
1195 {
1196 info->uses_frame = 1;
1197 }
1198 continue;
1199 }
1200 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1201 && cris_get_mode (insn) == 0x0000
1202 && cris_get_opcode (insn) == 0x000A)
1203 {
1204 /* subq <val>,sp */
1205 if (info)
1206 {
1207 info->sp_offset += cris_get_quick_value (insn);
1208 }
1209 }
1210 else if (cris_get_mode (insn) == 0x0002
1211 && cris_get_opcode (insn) == 0x000F
1212 && cris_get_size (insn) == 0x0003
1213 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1214 {
1215 /* movem r<regsave>,[sp] */
1216 regsave = cris_get_operand2 (insn);
1217 }
1218 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1219 && ((insn & 0x0F00) >> 8) == 0x0001
1220 && (cris_get_signed_offset (insn) < 0))
1221 {
1222 /* Immediate byte offset addressing prefix word with sp as base
1223 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1224 is between 64 and 128.
1225 movem r<regsave>,[sp=sp-<val>] */
1226 if (info)
1227 {
1228 info->sp_offset += -cris_get_signed_offset (insn);
1229 }
1230 insn_next = read_memory_unsigned_integer (pc, 2);
1231 pc += 2;
1232 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1233 && cris_get_opcode (insn_next) == 0x000F
1234 && cris_get_size (insn_next) == 0x0003
1235 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1236 (gdbarch))
1237 {
1238 regsave = cris_get_operand2 (insn_next);
1239 }
1240 else
1241 {
1242 /* The prologue ended before the limit was reached. */
1243 pc -= 4;
1244 break;
1245 }
1246 }
1247 else if (cris_get_mode (insn) == 0x0001
1248 && cris_get_opcode (insn) == 0x0009
1249 && cris_get_size (insn) == 0x0002)
1250 {
1251 /* move.d r<10..13>,r<0..15> */
1252 source_register = cris_get_operand1 (insn);
1253
1254 /* FIXME? In the glibc solibs, the prologue might contain something
1255 like (this example taken from relocate_doit):
1256 move.d $pc,$r0
1257 sub.d 0xfffef426,$r0
1258 which isn't covered by the source_register check below. Question
1259 is whether to add a check for this combo, or make better use of
1260 the limit variable instead. */
1261 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1262 {
1263 /* The prologue ended before the limit was reached. */
1264 pc -= 2;
1265 break;
1266 }
1267 }
1268 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1269 /* The size is a fixed-size. */
1270 && ((insn & 0x0F00) >> 8) == 0x0001
1271 /* A negative offset. */
1272 && (cris_get_signed_offset (insn) < 0))
1273 {
1274 /* move.S rZ,[r8-U] (?) */
1275 insn_next = read_memory_unsigned_integer (pc, 2);
1276 pc += 2;
1277 regno = cris_get_operand2 (insn_next);
1278 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1279 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1280 && cris_get_opcode (insn_next) == 0x000F)
1281 {
1282 /* move.S rZ,[r8-U] */
1283 continue;
1284 }
1285 else
1286 {
1287 /* The prologue ended before the limit was reached. */
1288 pc -= 4;
1289 break;
1290 }
1291 }
1292 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1293 /* The size is a fixed-size. */
1294 && ((insn & 0x0F00) >> 8) == 0x0001
1295 /* A positive offset. */
1296 && (cris_get_signed_offset (insn) > 0))
1297 {
1298 /* move.S [r8+U],rZ (?) */
1299 insn_next = read_memory_unsigned_integer (pc, 2);
1300 pc += 2;
1301 regno = cris_get_operand2 (insn_next);
1302 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1303 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1304 && cris_get_opcode (insn_next) == 0x0009
1305 && cris_get_operand1 (insn_next) == regno)
1306 {
1307 /* move.S [r8+U],rZ */
1308 continue;
1309 }
1310 else
1311 {
1312 /* The prologue ended before the limit was reached. */
1313 pc -= 4;
1314 break;
1315 }
1316 }
1317 else
1318 {
1319 /* The prologue ended before the limit was reached. */
1320 pc -= 2;
1321 break;
1322 }
1323 }
1324
1325 /* We only want to know the end of the prologue when next_frame and info
1326 are NULL (called from cris_skip_prologue i.e.). */
1327 if (next_frame == NULL && info == NULL)
1328 {
1329 return pc;
1330 }
1331
1332 info->size = info->sp_offset;
1333
1334 /* Compute the previous frame's stack pointer (which is also the
1335 frame's ID's stack address), and this frame's base pointer. */
1336 if (info->uses_frame)
1337 {
1338 ULONGEST this_base;
1339 /* The SP was moved to the FP. This indicates that a new frame
1340 was created. Get THIS frame's FP value by unwinding it from
1341 the next frame. */
1342 this_base = frame_unwind_register_unsigned (next_frame, CRIS_FP_REGNUM);
1343 info->base = this_base;
1344 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1345
1346 /* The FP points at the last saved register. Adjust the FP back
1347 to before the first saved register giving the SP. */
1348 info->prev_sp = info->base + info->r8_offset;
1349 }
1350 else
1351 {
1352 ULONGEST this_base;
1353 /* Assume that the FP is this frame's SP but with that pushed
1354 stack space added back. */
1355 this_base = frame_unwind_register_unsigned (next_frame,
1356 gdbarch_sp_regnum (gdbarch));
1357 info->base = this_base;
1358 info->prev_sp = info->base + info->size;
1359 }
1360
1361 /* Calculate the addresses for the saved registers on the stack. */
1362 /* FIXME: The address calculation should really be done on the fly while
1363 we're analyzing the prologue (we only hold one regsave value as it is
1364 now). */
1365 val = info->sp_offset;
1366
1367 for (regno = regsave; regno >= 0; regno--)
1368 {
1369 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1370 val -= 4;
1371 }
1372
1373 /* The previous frame's SP needed to be computed. Save the computed
1374 value. */
1375 trad_frame_set_value (info->saved_regs,
1376 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1377
1378 if (!info->leaf_function)
1379 {
1380 /* SRP saved on the stack. But where? */
1381 if (info->r8_offset == 0)
1382 {
1383 /* R8 not pushed yet. */
1384 info->saved_regs[SRP_REGNUM].addr = info->base;
1385 }
1386 else
1387 {
1388 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1389 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1390 }
1391 }
1392
1393 /* The PC is found in SRP (the actual register or located on the stack). */
1394 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1395 = info->saved_regs[SRP_REGNUM];
1396
1397 return pc;
1398 }
1399
1400 static CORE_ADDR
1401 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1402 struct cris_unwind_cache *info)
1403 {
1404 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1405 ULONGEST this_base;
1406
1407 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1408 meant to be a full-fledged prologue scanner. It is only needed for
1409 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1410
1411 * PLT stubs (library calls)
1412 * call dummys
1413 * signal trampolines
1414
1415 For those cases, it is assumed that there is no actual prologue; that
1416 the stack pointer is not adjusted, and (as a consequence) the return
1417 address is not pushed onto the stack. */
1418
1419 /* We only want to know the end of the prologue when next_frame and info
1420 are NULL (called from cris_skip_prologue i.e.). */
1421 if (next_frame == NULL && info == NULL)
1422 {
1423 return pc;
1424 }
1425
1426 /* The SP is assumed to be unaltered. */
1427 this_base = frame_unwind_register_unsigned (next_frame,
1428 gdbarch_sp_regnum (gdbarch));
1429 info->base = this_base;
1430 info->prev_sp = this_base;
1431
1432 /* The PC is assumed to be found in SRP. */
1433 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1434 = info->saved_regs[SRP_REGNUM];
1435
1436 return pc;
1437 }
1438
1439 /* Advance pc beyond any function entry prologue instructions at pc
1440 to reach some "real" code. */
1441
1442 /* Given a PC value corresponding to the start of a function, return the PC
1443 of the first instruction after the function prologue. */
1444
1445 static CORE_ADDR
1446 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1447 {
1448 CORE_ADDR func_addr, func_end;
1449 struct symtab_and_line sal;
1450 CORE_ADDR pc_after_prologue;
1451
1452 /* If we have line debugging information, then the end of the prologue
1453 should the first assembly instruction of the first source line. */
1454 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1455 {
1456 sal = find_pc_line (func_addr, 0);
1457 if (sal.end > 0 && sal.end < func_end)
1458 return sal.end;
1459 }
1460
1461 if (cris_version () == 32)
1462 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1463 else
1464 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1465
1466 return pc_after_prologue;
1467 }
1468
1469 static CORE_ADDR
1470 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1471 {
1472 ULONGEST pc;
1473 pc = frame_unwind_register_unsigned (next_frame,
1474 gdbarch_pc_regnum (gdbarch));
1475 return pc;
1476 }
1477
1478 static CORE_ADDR
1479 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1480 {
1481 ULONGEST sp;
1482 sp = frame_unwind_register_unsigned (next_frame,
1483 gdbarch_sp_regnum (gdbarch));
1484 return sp;
1485 }
1486
1487 /* Use the program counter to determine the contents and size of a breakpoint
1488 instruction. It returns a pointer to a string of bytes that encode a
1489 breakpoint instruction, stores the length of the string to *lenptr, and
1490 adjusts pcptr (if necessary) to point to the actual memory location where
1491 the breakpoint should be inserted. */
1492
1493 static const unsigned char *
1494 cris_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
1495 {
1496 static unsigned char break8_insn[] = {0x38, 0xe9};
1497 static unsigned char break15_insn[] = {0x3f, 0xe9};
1498 *lenptr = 2;
1499
1500 if (cris_mode () == cris_mode_guru)
1501 return break15_insn;
1502 else
1503 return break8_insn;
1504 }
1505
1506 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1507 0 otherwise. */
1508
1509 static int
1510 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1511 {
1512 int version = cris_version ();
1513
1514 switch (spec_reg.applicable_version)
1515 {
1516 case cris_ver_version_all:
1517 return 1;
1518 case cris_ver_warning:
1519 /* Indeterminate/obsolete. */
1520 return 0;
1521 case cris_ver_v0_3:
1522 return (version >= 0 && version <= 3);
1523 case cris_ver_v3p:
1524 return (version >= 3);
1525 case cris_ver_v8:
1526 return (version == 8 || version == 9);
1527 case cris_ver_v8p:
1528 return (version >= 8);
1529 case cris_ver_v0_10:
1530 return (version >= 0 && version <= 10);
1531 case cris_ver_v3_10:
1532 return (version >= 3 && version <= 10);
1533 case cris_ver_v8_10:
1534 return (version >= 8 && version <= 10);
1535 case cris_ver_v10:
1536 return (version == 10);
1537 case cris_ver_v10p:
1538 return (version >= 10);
1539 case cris_ver_v32p:
1540 return (version >= 32);
1541 default:
1542 /* Invalid cris version. */
1543 return 0;
1544 }
1545 }
1546
1547 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1548 register, -1 for an invalid register. */
1549
1550 static int
1551 cris_register_size (struct gdbarch *gdbarch, int regno)
1552 {
1553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1554 int i;
1555 int spec_regno;
1556
1557 if (regno >= 0 && regno < NUM_GENREGS)
1558 {
1559 /* General registers (R0 - R15) are 32 bits. */
1560 return 4;
1561 }
1562 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1563 {
1564 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1565 Adjust regno accordingly. */
1566 spec_regno = regno - NUM_GENREGS;
1567
1568 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1569 {
1570 if (cris_spec_regs[i].number == spec_regno
1571 && cris_spec_reg_applicable (cris_spec_regs[i]))
1572 /* Go with the first applicable register. */
1573 return cris_spec_regs[i].reg_size;
1574 }
1575 /* Special register not applicable to this CRIS version. */
1576 return 0;
1577 }
1578 else if (regno >= gdbarch_pc_regnum (gdbarch)
1579 && regno < gdbarch_num_regs (gdbarch))
1580 {
1581 /* This will apply to CRISv32 only where there are additional registers
1582 after the special registers (pseudo PC and support registers). */
1583 return 4;
1584 }
1585
1586
1587 return -1;
1588 }
1589
1590 /* Nonzero if regno should not be fetched from the target. This is the case
1591 for unimplemented (size 0) and non-existant registers. */
1592
1593 static int
1594 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1595 {
1596 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1597 || (cris_register_size (gdbarch, regno) == 0));
1598 }
1599
1600 /* Nonzero if regno should not be written to the target, for various
1601 reasons. */
1602
1603 static int
1604 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1605 {
1606 /* There are three kinds of registers we refuse to write to.
1607 1. Those that not implemented.
1608 2. Those that are read-only (depends on the processor mode).
1609 3. Those registers to which a write has no effect.
1610 */
1611
1612 if (regno < 0
1613 || regno >= gdbarch_num_regs (gdbarch)
1614 || cris_register_size (gdbarch, regno) == 0)
1615 /* Not implemented. */
1616 return 1;
1617
1618 else if (regno == VR_REGNUM)
1619 /* Read-only. */
1620 return 1;
1621
1622 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1623 /* Writing has no effect. */
1624 return 1;
1625
1626 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1627 agent decide whether they are writable. */
1628
1629 return 0;
1630 }
1631
1632 /* Nonzero if regno should not be fetched from the target. This is the case
1633 for unimplemented (size 0) and non-existant registers. */
1634
1635 static int
1636 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1637 {
1638 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1639 || (cris_register_size (gdbarch, regno) == 0));
1640 }
1641
1642 /* Nonzero if regno should not be written to the target, for various
1643 reasons. */
1644
1645 static int
1646 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1647 {
1648 /* There are three kinds of registers we refuse to write to.
1649 1. Those that not implemented.
1650 2. Those that are read-only (depends on the processor mode).
1651 3. Those registers to which a write has no effect.
1652 */
1653
1654 if (regno < 0
1655 || regno >= gdbarch_num_regs (gdbarch)
1656 || cris_register_size (gdbarch, regno) == 0)
1657 /* Not implemented. */
1658 return 1;
1659
1660 else if (regno == VR_REGNUM)
1661 /* Read-only. */
1662 return 1;
1663
1664 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1665 /* Writing has no effect. */
1666 return 1;
1667
1668 /* Many special registers are read-only in user mode. Let the debug
1669 agent decide whether they are writable. */
1670
1671 return 0;
1672 }
1673
1674 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1675 of data in register regno. */
1676
1677 static struct type *
1678 cris_register_type (struct gdbarch *gdbarch, int regno)
1679 {
1680 if (regno == gdbarch_pc_regnum (gdbarch))
1681 return builtin_type_void_func_ptr;
1682 else if (regno == gdbarch_sp_regnum (gdbarch)
1683 || regno == CRIS_FP_REGNUM)
1684 return builtin_type_void_data_ptr;
1685 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1686 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1687 /* Note: R8 taken care of previous clause. */
1688 return builtin_type_uint32;
1689 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1690 return builtin_type_uint16;
1691 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1692 return builtin_type_uint8;
1693 else
1694 /* Invalid (unimplemented) register. */
1695 return builtin_type_int0;
1696 }
1697
1698 static struct type *
1699 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1700 {
1701 if (regno == gdbarch_pc_regnum (gdbarch))
1702 return builtin_type_void_func_ptr;
1703 else if (regno == gdbarch_sp_regnum (gdbarch)
1704 || regno == CRIS_FP_REGNUM)
1705 return builtin_type_void_data_ptr;
1706 else if ((regno >= 0 && regno <= ACR_REGNUM)
1707 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1708 || (regno == PID_REGNUM)
1709 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1710 /* Note: R8 and SP taken care of by previous clause. */
1711 return builtin_type_uint32;
1712 else if (regno == WZ_REGNUM)
1713 return builtin_type_uint16;
1714 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1715 return builtin_type_uint8;
1716 else
1717 {
1718 /* Invalid (unimplemented) register. Should not happen as there are
1719 no unimplemented CRISv32 registers. */
1720 warning (_("crisv32_register_type: unknown regno %d"), regno);
1721 return builtin_type_int0;
1722 }
1723 }
1724
1725 /* Stores a function return value of type type, where valbuf is the address
1726 of the value to be stored. */
1727
1728 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1729
1730 static void
1731 cris_store_return_value (struct type *type, struct regcache *regcache,
1732 const void *valbuf)
1733 {
1734 ULONGEST val;
1735 int len = TYPE_LENGTH (type);
1736
1737 if (len <= 4)
1738 {
1739 /* Put the return value in R10. */
1740 val = extract_unsigned_integer (valbuf, len);
1741 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1742 }
1743 else if (len <= 8)
1744 {
1745 /* Put the return value in R10 and R11. */
1746 val = extract_unsigned_integer (valbuf, 4);
1747 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1748 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1749 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1750 }
1751 else
1752 error (_("cris_store_return_value: type length too large."));
1753 }
1754
1755 /* Return the name of register regno as a string. Return NULL for an invalid or
1756 unimplemented register. */
1757
1758 static const char *
1759 cris_special_register_name (int regno)
1760 {
1761 int spec_regno;
1762 int i;
1763
1764 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1765 Adjust regno accordingly. */
1766 spec_regno = regno - NUM_GENREGS;
1767
1768 /* Assume nothing about the layout of the cris_spec_regs struct
1769 when searching. */
1770 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1771 {
1772 if (cris_spec_regs[i].number == spec_regno
1773 && cris_spec_reg_applicable (cris_spec_regs[i]))
1774 /* Go with the first applicable register. */
1775 return cris_spec_regs[i].name;
1776 }
1777 /* Special register not applicable to this CRIS version. */
1778 return NULL;
1779 }
1780
1781 static const char *
1782 cris_register_name (struct gdbarch *gdbarch, int regno)
1783 {
1784 static char *cris_genreg_names[] =
1785 { "r0", "r1", "r2", "r3", \
1786 "r4", "r5", "r6", "r7", \
1787 "r8", "r9", "r10", "r11", \
1788 "r12", "r13", "sp", "pc" };
1789
1790 if (regno >= 0 && regno < NUM_GENREGS)
1791 {
1792 /* General register. */
1793 return cris_genreg_names[regno];
1794 }
1795 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1796 {
1797 return cris_special_register_name (regno);
1798 }
1799 else
1800 {
1801 /* Invalid register. */
1802 return NULL;
1803 }
1804 }
1805
1806 static const char *
1807 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1808 {
1809 static char *crisv32_genreg_names[] =
1810 { "r0", "r1", "r2", "r3", \
1811 "r4", "r5", "r6", "r7", \
1812 "r8", "r9", "r10", "r11", \
1813 "r12", "r13", "sp", "acr"
1814 };
1815
1816 static char *crisv32_sreg_names[] =
1817 { "s0", "s1", "s2", "s3", \
1818 "s4", "s5", "s6", "s7", \
1819 "s8", "s9", "s10", "s11", \
1820 "s12", "s13", "s14", "s15"
1821 };
1822
1823 if (regno >= 0 && regno < NUM_GENREGS)
1824 {
1825 /* General register. */
1826 return crisv32_genreg_names[regno];
1827 }
1828 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1829 {
1830 return cris_special_register_name (regno);
1831 }
1832 else if (regno == gdbarch_pc_regnum (gdbarch))
1833 {
1834 return "pc";
1835 }
1836 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1837 {
1838 return crisv32_sreg_names[regno - S0_REGNUM];
1839 }
1840 else
1841 {
1842 /* Invalid register. */
1843 return NULL;
1844 }
1845 }
1846
1847 /* Convert DWARF register number REG to the appropriate register
1848 number used by GDB. */
1849
1850 static int
1851 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1852 {
1853 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1854 numbering, MOF is 18).
1855 Adapted from gcc/config/cris/cris.h. */
1856 static int cris_dwarf_regmap[] = {
1857 0, 1, 2, 3,
1858 4, 5, 6, 7,
1859 8, 9, 10, 11,
1860 12, 13, 14, 15,
1861 27, -1, -1, -1,
1862 -1, -1, -1, 23,
1863 -1, -1, -1, 27,
1864 -1, -1, -1, -1
1865 };
1866 int regnum = -1;
1867
1868 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1869 regnum = cris_dwarf_regmap[reg];
1870
1871 if (regnum == -1)
1872 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1873
1874 return regnum;
1875 }
1876
1877 /* DWARF-2 frame support. */
1878
1879 static void
1880 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1881 struct dwarf2_frame_state_reg *reg,
1882 struct frame_info *next_frame)
1883 {
1884 /* The return address column. */
1885 if (regnum == gdbarch_pc_regnum (gdbarch))
1886 reg->how = DWARF2_FRAME_REG_RA;
1887
1888 /* The call frame address. */
1889 else if (regnum == gdbarch_sp_regnum (gdbarch))
1890 reg->how = DWARF2_FRAME_REG_CFA;
1891 }
1892
1893 /* Extract from an array regbuf containing the raw register state a function
1894 return value of type type, and copy that, in virtual format, into
1895 valbuf. */
1896
1897 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1898
1899 static void
1900 cris_extract_return_value (struct type *type, struct regcache *regcache,
1901 void *valbuf)
1902 {
1903 ULONGEST val;
1904 int len = TYPE_LENGTH (type);
1905
1906 if (len <= 4)
1907 {
1908 /* Get the return value from R10. */
1909 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1910 store_unsigned_integer (valbuf, len, val);
1911 }
1912 else if (len <= 8)
1913 {
1914 /* Get the return value from R10 and R11. */
1915 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1916 store_unsigned_integer (valbuf, 4, val);
1917 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1918 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1919 }
1920 else
1921 error (_("cris_extract_return_value: type length too large"));
1922 }
1923
1924 /* Handle the CRIS return value convention. */
1925
1926 static enum return_value_convention
1927 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1928 struct type *type, struct regcache *regcache,
1929 gdb_byte *readbuf, const gdb_byte *writebuf)
1930 {
1931 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1932 || TYPE_CODE (type) == TYPE_CODE_UNION
1933 || TYPE_LENGTH (type) > 8)
1934 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1935 goes on the stack. */
1936 return RETURN_VALUE_STRUCT_CONVENTION;
1937
1938 if (readbuf)
1939 cris_extract_return_value (type, regcache, readbuf);
1940 if (writebuf)
1941 cris_store_return_value (type, regcache, writebuf);
1942
1943 return RETURN_VALUE_REGISTER_CONVENTION;
1944 }
1945
1946 /* Calculates a value that measures how good inst_args constraints an
1947 instruction. It stems from cris_constraint, found in cris-dis.c. */
1948
1949 static int
1950 constraint (unsigned int insn, const signed char *inst_args,
1951 inst_env_type *inst_env)
1952 {
1953 int retval = 0;
1954 int tmp, i;
1955
1956 const char *s = inst_args;
1957
1958 for (; *s; s++)
1959 switch (*s)
1960 {
1961 case 'm':
1962 if ((insn & 0x30) == 0x30)
1963 return -1;
1964 break;
1965
1966 case 'S':
1967 /* A prefix operand. */
1968 if (inst_env->prefix_found)
1969 break;
1970 else
1971 return -1;
1972
1973 case 'B':
1974 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1975 valid "push" size. In case of special register, it may be != 4. */
1976 if (inst_env->prefix_found)
1977 break;
1978 else
1979 return -1;
1980
1981 case 'D':
1982 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1983 if (!retval)
1984 return -1;
1985 else
1986 retval += 4;
1987 break;
1988
1989 case 'P':
1990 tmp = (insn >> 0xC) & 0xF;
1991
1992 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1993 {
1994 /* Since we match four bits, we will give a value of
1995 4 - 1 = 3 in a match. If there is a corresponding
1996 exact match of a special register in another pattern, it
1997 will get a value of 4, which will be higher. This should
1998 be correct in that an exact pattern would match better that
1999 a general pattern.
2000 Note that there is a reason for not returning zero; the
2001 pattern for "clear" is partly matched in the bit-pattern
2002 (the two lower bits must be zero), while the bit-pattern
2003 for a move from a special register is matched in the
2004 register constraint.
2005 This also means we will will have a race condition if
2006 there is a partly match in three bits in the bit pattern. */
2007 if (tmp == cris_spec_regs[i].number)
2008 {
2009 retval += 3;
2010 break;
2011 }
2012 }
2013
2014 if (cris_spec_regs[i].name == NULL)
2015 return -1;
2016 break;
2017 }
2018 return retval;
2019 }
2020
2021 /* Returns the number of bits set in the variable value. */
2022
2023 static int
2024 number_of_bits (unsigned int value)
2025 {
2026 int number_of_bits = 0;
2027
2028 while (value != 0)
2029 {
2030 number_of_bits += 1;
2031 value &= (value - 1);
2032 }
2033 return number_of_bits;
2034 }
2035
2036 /* Finds the address that should contain the single step breakpoint(s).
2037 It stems from code in cris-dis.c. */
2038
2039 static int
2040 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2041 {
2042 int i;
2043 int max_level_of_match = -1;
2044 int max_matched = -1;
2045 int level_of_match;
2046
2047 for (i = 0; cris_opcodes[i].name != NULL; i++)
2048 {
2049 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2050 && ((cris_opcodes[i].lose & insn) == 0)
2051 /* Only CRISv10 instructions, please. */
2052 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2053 {
2054 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2055 if (level_of_match >= 0)
2056 {
2057 level_of_match +=
2058 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2059 if (level_of_match > max_level_of_match)
2060 {
2061 max_matched = i;
2062 max_level_of_match = level_of_match;
2063 if (level_of_match == 16)
2064 {
2065 /* All bits matched, cannot find better. */
2066 break;
2067 }
2068 }
2069 }
2070 }
2071 }
2072 return max_matched;
2073 }
2074
2075 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2076 actually an internal error. */
2077
2078 static int
2079 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2080 {
2081 int i;
2082 int offset;
2083 unsigned short insn;
2084 struct gdbarch *gdbarch = get_frame_arch (frame);
2085
2086 /* Create a local register image and set the initial state. */
2087 for (i = 0; i < NUM_GENREGS; i++)
2088 {
2089 inst_env->reg[i] =
2090 (unsigned long) get_frame_register_unsigned (frame, i);
2091 }
2092 offset = NUM_GENREGS;
2093 for (i = 0; i < NUM_SPECREGS; i++)
2094 {
2095 inst_env->preg[i] =
2096 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2097 }
2098 inst_env->branch_found = 0;
2099 inst_env->slot_needed = 0;
2100 inst_env->delay_slot_pc_active = 0;
2101 inst_env->prefix_found = 0;
2102 inst_env->invalid = 0;
2103 inst_env->xflag_found = 0;
2104 inst_env->disable_interrupt = 0;
2105
2106 /* Look for a step target. */
2107 do
2108 {
2109 /* Read an instruction from the client. */
2110 insn = read_memory_unsigned_integer
2111 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2);
2112
2113 /* If the instruction is not in a delay slot the new content of the
2114 PC is [PC] + 2. If the instruction is in a delay slot it is not
2115 that simple. Since a instruction in a delay slot cannot change
2116 the content of the PC, it does not matter what value PC will have.
2117 Just make sure it is a valid instruction. */
2118 if (!inst_env->delay_slot_pc_active)
2119 {
2120 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2121 }
2122 else
2123 {
2124 inst_env->delay_slot_pc_active = 0;
2125 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2126 = inst_env->delay_slot_pc;
2127 }
2128 /* Analyse the present instruction. */
2129 i = find_cris_op (insn, inst_env);
2130 if (i == -1)
2131 {
2132 inst_env->invalid = 1;
2133 }
2134 else
2135 {
2136 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2137 }
2138 } while (!inst_env->invalid
2139 && (inst_env->prefix_found || inst_env->xflag_found
2140 || inst_env->slot_needed));
2141 return i;
2142 }
2143
2144 /* There is no hardware single-step support. The function find_step_target
2145 digs through the opcodes in order to find all possible targets.
2146 Either one ordinary target or two targets for branches may be found. */
2147
2148 static int
2149 cris_software_single_step (struct frame_info *frame)
2150 {
2151 inst_env_type inst_env;
2152
2153 /* Analyse the present instruction environment and insert
2154 breakpoints. */
2155 int status = find_step_target (frame, &inst_env);
2156 if (status == -1)
2157 {
2158 /* Could not find a target. Things are likely to go downhill
2159 from here. */
2160 warning (_("CRIS software single step could not find a step target."));
2161 }
2162 else
2163 {
2164 /* Insert at most two breakpoints. One for the next PC content
2165 and possibly another one for a branch, jump, etc. */
2166 CORE_ADDR next_pc =
2167 (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (get_frame_arch (frame))];
2168 insert_single_step_breakpoint (next_pc);
2169 if (inst_env.branch_found
2170 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2171 {
2172 CORE_ADDR branch_target_address
2173 = (CORE_ADDR) inst_env.branch_break_address;
2174 insert_single_step_breakpoint (branch_target_address);
2175 }
2176 }
2177
2178 return 1;
2179 }
2180
2181 /* Calculates the prefix value for quick offset addressing mode. */
2182
2183 static void
2184 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2185 {
2186 /* It's invalid to be in a delay slot. You can't have a prefix to this
2187 instruction (not 100% sure). */
2188 if (inst_env->slot_needed || inst_env->prefix_found)
2189 {
2190 inst_env->invalid = 1;
2191 return;
2192 }
2193
2194 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2195 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2196
2197 /* A prefix doesn't change the xflag_found. But the rest of the flags
2198 need updating. */
2199 inst_env->slot_needed = 0;
2200 inst_env->prefix_found = 1;
2201 }
2202
2203 /* Updates the autoincrement register. The size of the increment is derived
2204 from the size of the operation. The PC is always kept aligned on even
2205 word addresses. */
2206
2207 static void
2208 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2209 {
2210 if (size == INST_BYTE_SIZE)
2211 {
2212 inst_env->reg[cris_get_operand1 (inst)] += 1;
2213
2214 /* The PC must be word aligned, so increase the PC with one
2215 word even if the size is byte. */
2216 if (cris_get_operand1 (inst) == REG_PC)
2217 {
2218 inst_env->reg[REG_PC] += 1;
2219 }
2220 }
2221 else if (size == INST_WORD_SIZE)
2222 {
2223 inst_env->reg[cris_get_operand1 (inst)] += 2;
2224 }
2225 else if (size == INST_DWORD_SIZE)
2226 {
2227 inst_env->reg[cris_get_operand1 (inst)] += 4;
2228 }
2229 else
2230 {
2231 /* Invalid size. */
2232 inst_env->invalid = 1;
2233 }
2234 }
2235
2236 /* Just a forward declaration. */
2237
2238 static unsigned long get_data_from_address (unsigned short *inst,
2239 CORE_ADDR address);
2240
2241 /* Calculates the prefix value for the general case of offset addressing
2242 mode. */
2243
2244 static void
2245 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2246 {
2247
2248 long offset;
2249
2250 /* It's invalid to be in a delay slot. */
2251 if (inst_env->slot_needed || inst_env->prefix_found)
2252 {
2253 inst_env->invalid = 1;
2254 return;
2255 }
2256
2257 /* The calculation of prefix_value used to be after process_autoincrement,
2258 but that fails for an instruction such as jsr [$r0+12] which is encoded
2259 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2260 mustn't be incremented until we have read it and what it points at. */
2261 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2262
2263 /* The offset is an indirection of the contents of the operand1 register. */
2264 inst_env->prefix_value +=
2265 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2266
2267 if (cris_get_mode (inst) == AUTOINC_MODE)
2268 {
2269 process_autoincrement (cris_get_size (inst), inst, inst_env);
2270 }
2271
2272 /* A prefix doesn't change the xflag_found. But the rest of the flags
2273 need updating. */
2274 inst_env->slot_needed = 0;
2275 inst_env->prefix_found = 1;
2276 }
2277
2278 /* Calculates the prefix value for the index addressing mode. */
2279
2280 static void
2281 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2282 {
2283 /* It's invalid to be in a delay slot. I can't see that it's possible to
2284 have a prefix to this instruction. So I will treat this as invalid. */
2285 if (inst_env->slot_needed || inst_env->prefix_found)
2286 {
2287 inst_env->invalid = 1;
2288 return;
2289 }
2290
2291 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2292
2293 /* The offset is the operand2 value shifted the size of the instruction
2294 to the left. */
2295 inst_env->prefix_value +=
2296 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2297
2298 /* If the PC is operand1 (base) the address used is the address after
2299 the main instruction, i.e. address + 2 (the PC is already compensated
2300 for the prefix operation). */
2301 if (cris_get_operand1 (inst) == REG_PC)
2302 {
2303 inst_env->prefix_value += 2;
2304 }
2305
2306 /* A prefix doesn't change the xflag_found. But the rest of the flags
2307 need updating. */
2308 inst_env->slot_needed = 0;
2309 inst_env->xflag_found = 0;
2310 inst_env->prefix_found = 1;
2311 }
2312
2313 /* Calculates the prefix value for the double indirect addressing mode. */
2314
2315 static void
2316 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2317 {
2318
2319 CORE_ADDR address;
2320
2321 /* It's invalid to be in a delay slot. */
2322 if (inst_env->slot_needed || inst_env->prefix_found)
2323 {
2324 inst_env->invalid = 1;
2325 return;
2326 }
2327
2328 /* The prefix value is one dereference of the contents of the operand1
2329 register. */
2330 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2331 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2332
2333 /* Check if the mode is autoincrement. */
2334 if (cris_get_mode (inst) == AUTOINC_MODE)
2335 {
2336 inst_env->reg[cris_get_operand1 (inst)] += 4;
2337 }
2338
2339 /* A prefix doesn't change the xflag_found. But the rest of the flags
2340 need updating. */
2341 inst_env->slot_needed = 0;
2342 inst_env->xflag_found = 0;
2343 inst_env->prefix_found = 1;
2344 }
2345
2346 /* Finds the destination for a branch with 8-bits offset. */
2347
2348 static void
2349 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2350 {
2351
2352 short offset;
2353
2354 /* If we have a prefix or are in a delay slot it's bad. */
2355 if (inst_env->slot_needed || inst_env->prefix_found)
2356 {
2357 inst_env->invalid = 1;
2358 return;
2359 }
2360
2361 /* We have a branch, find out where the branch will land. */
2362 offset = cris_get_branch_short_offset (inst);
2363
2364 /* Check if the offset is signed. */
2365 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2366 {
2367 offset |= 0xFF00;
2368 }
2369
2370 /* The offset ends with the sign bit, set it to zero. The address
2371 should always be word aligned. */
2372 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2373
2374 inst_env->branch_found = 1;
2375 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2376
2377 inst_env->slot_needed = 1;
2378 inst_env->prefix_found = 0;
2379 inst_env->xflag_found = 0;
2380 inst_env->disable_interrupt = 1;
2381 }
2382
2383 /* Finds the destination for a branch with 16-bits offset. */
2384
2385 static void
2386 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2387 {
2388 short offset;
2389
2390 /* If we have a prefix or is in a delay slot it's bad. */
2391 if (inst_env->slot_needed || inst_env->prefix_found)
2392 {
2393 inst_env->invalid = 1;
2394 return;
2395 }
2396
2397 /* We have a branch, find out the offset for the branch. */
2398 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2399
2400 /* The instruction is one word longer than normal, so add one word
2401 to the PC. */
2402 inst_env->reg[REG_PC] += 2;
2403
2404 inst_env->branch_found = 1;
2405 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2406
2407
2408 inst_env->slot_needed = 1;
2409 inst_env->prefix_found = 0;
2410 inst_env->xflag_found = 0;
2411 inst_env->disable_interrupt = 1;
2412 }
2413
2414 /* Handles the ABS instruction. */
2415
2416 static void
2417 abs_op (unsigned short inst, inst_env_type *inst_env)
2418 {
2419
2420 long value;
2421
2422 /* ABS can't have a prefix, so it's bad if it does. */
2423 if (inst_env->prefix_found)
2424 {
2425 inst_env->invalid = 1;
2426 return;
2427 }
2428
2429 /* Check if the operation affects the PC. */
2430 if (cris_get_operand2 (inst) == REG_PC)
2431 {
2432
2433 /* It's invalid to change to the PC if we are in a delay slot. */
2434 if (inst_env->slot_needed)
2435 {
2436 inst_env->invalid = 1;
2437 return;
2438 }
2439
2440 value = (long) inst_env->reg[REG_PC];
2441
2442 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2443 if (value != SIGNED_DWORD_MASK)
2444 {
2445 value = -value;
2446 inst_env->reg[REG_PC] = (long) value;
2447 }
2448 }
2449
2450 inst_env->slot_needed = 0;
2451 inst_env->prefix_found = 0;
2452 inst_env->xflag_found = 0;
2453 inst_env->disable_interrupt = 0;
2454 }
2455
2456 /* Handles the ADDI instruction. */
2457
2458 static void
2459 addi_op (unsigned short inst, inst_env_type *inst_env)
2460 {
2461 /* It's invalid to have the PC as base register. And ADDI can't have
2462 a prefix. */
2463 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2464 {
2465 inst_env->invalid = 1;
2466 return;
2467 }
2468
2469 inst_env->slot_needed = 0;
2470 inst_env->prefix_found = 0;
2471 inst_env->xflag_found = 0;
2472 inst_env->disable_interrupt = 0;
2473 }
2474
2475 /* Handles the ASR instruction. */
2476
2477 static void
2478 asr_op (unsigned short inst, inst_env_type *inst_env)
2479 {
2480 int shift_steps;
2481 unsigned long value;
2482 unsigned long signed_extend_mask = 0;
2483
2484 /* ASR can't have a prefix, so check that it doesn't. */
2485 if (inst_env->prefix_found)
2486 {
2487 inst_env->invalid = 1;
2488 return;
2489 }
2490
2491 /* Check if the PC is the target register. */
2492 if (cris_get_operand2 (inst) == REG_PC)
2493 {
2494 /* It's invalid to change the PC in a delay slot. */
2495 if (inst_env->slot_needed)
2496 {
2497 inst_env->invalid = 1;
2498 return;
2499 }
2500 /* Get the number of bits to shift. */
2501 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2502 value = inst_env->reg[REG_PC];
2503
2504 /* Find out how many bits the operation should apply to. */
2505 if (cris_get_size (inst) == INST_BYTE_SIZE)
2506 {
2507 if (value & SIGNED_BYTE_MASK)
2508 {
2509 signed_extend_mask = 0xFF;
2510 signed_extend_mask = signed_extend_mask >> shift_steps;
2511 signed_extend_mask = ~signed_extend_mask;
2512 }
2513 value = value >> shift_steps;
2514 value |= signed_extend_mask;
2515 value &= 0xFF;
2516 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2517 inst_env->reg[REG_PC] |= value;
2518 }
2519 else if (cris_get_size (inst) == INST_WORD_SIZE)
2520 {
2521 if (value & SIGNED_WORD_MASK)
2522 {
2523 signed_extend_mask = 0xFFFF;
2524 signed_extend_mask = signed_extend_mask >> shift_steps;
2525 signed_extend_mask = ~signed_extend_mask;
2526 }
2527 value = value >> shift_steps;
2528 value |= signed_extend_mask;
2529 value &= 0xFFFF;
2530 inst_env->reg[REG_PC] &= 0xFFFF0000;
2531 inst_env->reg[REG_PC] |= value;
2532 }
2533 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2534 {
2535 if (value & SIGNED_DWORD_MASK)
2536 {
2537 signed_extend_mask = 0xFFFFFFFF;
2538 signed_extend_mask = signed_extend_mask >> shift_steps;
2539 signed_extend_mask = ~signed_extend_mask;
2540 }
2541 value = value >> shift_steps;
2542 value |= signed_extend_mask;
2543 inst_env->reg[REG_PC] = value;
2544 }
2545 }
2546 inst_env->slot_needed = 0;
2547 inst_env->prefix_found = 0;
2548 inst_env->xflag_found = 0;
2549 inst_env->disable_interrupt = 0;
2550 }
2551
2552 /* Handles the ASRQ instruction. */
2553
2554 static void
2555 asrq_op (unsigned short inst, inst_env_type *inst_env)
2556 {
2557
2558 int shift_steps;
2559 unsigned long value;
2560 unsigned long signed_extend_mask = 0;
2561
2562 /* ASRQ can't have a prefix, so check that it doesn't. */
2563 if (inst_env->prefix_found)
2564 {
2565 inst_env->invalid = 1;
2566 return;
2567 }
2568
2569 /* Check if the PC is the target register. */
2570 if (cris_get_operand2 (inst) == REG_PC)
2571 {
2572
2573 /* It's invalid to change the PC in a delay slot. */
2574 if (inst_env->slot_needed)
2575 {
2576 inst_env->invalid = 1;
2577 return;
2578 }
2579 /* The shift size is given as a 5 bit quick value, i.e. we don't
2580 want the the sign bit of the quick value. */
2581 shift_steps = cris_get_asr_shift_steps (inst);
2582 value = inst_env->reg[REG_PC];
2583 if (value & SIGNED_DWORD_MASK)
2584 {
2585 signed_extend_mask = 0xFFFFFFFF;
2586 signed_extend_mask = signed_extend_mask >> shift_steps;
2587 signed_extend_mask = ~signed_extend_mask;
2588 }
2589 value = value >> shift_steps;
2590 value |= signed_extend_mask;
2591 inst_env->reg[REG_PC] = value;
2592 }
2593 inst_env->slot_needed = 0;
2594 inst_env->prefix_found = 0;
2595 inst_env->xflag_found = 0;
2596 inst_env->disable_interrupt = 0;
2597 }
2598
2599 /* Handles the AX, EI and SETF instruction. */
2600
2601 static void
2602 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2603 {
2604 if (inst_env->prefix_found)
2605 {
2606 inst_env->invalid = 1;
2607 return;
2608 }
2609 /* Check if the instruction is setting the X flag. */
2610 if (cris_is_xflag_bit_on (inst))
2611 {
2612 inst_env->xflag_found = 1;
2613 }
2614 else
2615 {
2616 inst_env->xflag_found = 0;
2617 }
2618 inst_env->slot_needed = 0;
2619 inst_env->prefix_found = 0;
2620 inst_env->disable_interrupt = 1;
2621 }
2622
2623 /* Checks if the instruction is in assign mode. If so, it updates the assign
2624 register. Note that check_assign assumes that the caller has checked that
2625 there is a prefix to this instruction. The mode check depends on this. */
2626
2627 static void
2628 check_assign (unsigned short inst, inst_env_type *inst_env)
2629 {
2630 /* Check if it's an assign addressing mode. */
2631 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2632 {
2633 /* Assign the prefix value to operand 1. */
2634 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2635 }
2636 }
2637
2638 /* Handles the 2-operand BOUND instruction. */
2639
2640 static void
2641 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2642 {
2643 /* It's invalid to have the PC as the index operand. */
2644 if (cris_get_operand2 (inst) == REG_PC)
2645 {
2646 inst_env->invalid = 1;
2647 return;
2648 }
2649 /* Check if we have a prefix. */
2650 if (inst_env->prefix_found)
2651 {
2652 check_assign (inst, inst_env);
2653 }
2654 /* Check if this is an autoincrement mode. */
2655 else if (cris_get_mode (inst) == AUTOINC_MODE)
2656 {
2657 /* It's invalid to change the PC in a delay slot. */
2658 if (inst_env->slot_needed)
2659 {
2660 inst_env->invalid = 1;
2661 return;
2662 }
2663 process_autoincrement (cris_get_size (inst), inst, inst_env);
2664 }
2665 inst_env->slot_needed = 0;
2666 inst_env->prefix_found = 0;
2667 inst_env->xflag_found = 0;
2668 inst_env->disable_interrupt = 0;
2669 }
2670
2671 /* Handles the 3-operand BOUND instruction. */
2672
2673 static void
2674 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2675 {
2676 /* It's an error if we haven't got a prefix. And it's also an error
2677 if the PC is the destination register. */
2678 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2679 {
2680 inst_env->invalid = 1;
2681 return;
2682 }
2683 inst_env->slot_needed = 0;
2684 inst_env->prefix_found = 0;
2685 inst_env->xflag_found = 0;
2686 inst_env->disable_interrupt = 0;
2687 }
2688
2689 /* Clears the status flags in inst_env. */
2690
2691 static void
2692 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2693 {
2694 /* It's an error if we have got a prefix. */
2695 if (inst_env->prefix_found)
2696 {
2697 inst_env->invalid = 1;
2698 return;
2699 }
2700
2701 inst_env->slot_needed = 0;
2702 inst_env->prefix_found = 0;
2703 inst_env->xflag_found = 0;
2704 inst_env->disable_interrupt = 0;
2705 }
2706
2707 /* Clears the status flags in inst_env. */
2708
2709 static void
2710 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2711 {
2712 /* It's an error if we have got a prefix. */
2713 if (inst_env->prefix_found)
2714 {
2715 inst_env->invalid = 1;
2716 return;
2717 }
2718
2719 inst_env->slot_needed = 0;
2720 inst_env->prefix_found = 0;
2721 inst_env->xflag_found = 0;
2722 inst_env->disable_interrupt = 1;
2723 }
2724
2725 /* Handles the CLEAR instruction if it's in register mode. */
2726
2727 static void
2728 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2729 {
2730 /* Check if the target is the PC. */
2731 if (cris_get_operand2 (inst) == REG_PC)
2732 {
2733 /* The instruction will clear the instruction's size bits. */
2734 int clear_size = cris_get_clear_size (inst);
2735 if (clear_size == INST_BYTE_SIZE)
2736 {
2737 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2738 }
2739 if (clear_size == INST_WORD_SIZE)
2740 {
2741 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2742 }
2743 if (clear_size == INST_DWORD_SIZE)
2744 {
2745 inst_env->delay_slot_pc = 0x0;
2746 }
2747 /* The jump will be delayed with one delay slot. So we need a delay
2748 slot. */
2749 inst_env->slot_needed = 1;
2750 inst_env->delay_slot_pc_active = 1;
2751 }
2752 else
2753 {
2754 /* The PC will not change => no delay slot. */
2755 inst_env->slot_needed = 0;
2756 }
2757 inst_env->prefix_found = 0;
2758 inst_env->xflag_found = 0;
2759 inst_env->disable_interrupt = 0;
2760 }
2761
2762 /* Handles the TEST instruction if it's in register mode. */
2763
2764 static void
2765 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2766 {
2767 /* It's an error if we have got a prefix. */
2768 if (inst_env->prefix_found)
2769 {
2770 inst_env->invalid = 1;
2771 return;
2772 }
2773 inst_env->slot_needed = 0;
2774 inst_env->prefix_found = 0;
2775 inst_env->xflag_found = 0;
2776 inst_env->disable_interrupt = 0;
2777
2778 }
2779
2780 /* Handles the CLEAR and TEST instruction if the instruction isn't
2781 in register mode. */
2782
2783 static void
2784 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2785 {
2786 /* Check if we are in a prefix mode. */
2787 if (inst_env->prefix_found)
2788 {
2789 /* The only way the PC can change is if this instruction is in
2790 assign addressing mode. */
2791 check_assign (inst, inst_env);
2792 }
2793 /* Indirect mode can't change the PC so just check if the mode is
2794 autoincrement. */
2795 else if (cris_get_mode (inst) == AUTOINC_MODE)
2796 {
2797 process_autoincrement (cris_get_size (inst), inst, inst_env);
2798 }
2799 inst_env->slot_needed = 0;
2800 inst_env->prefix_found = 0;
2801 inst_env->xflag_found = 0;
2802 inst_env->disable_interrupt = 0;
2803 }
2804
2805 /* Checks that the PC isn't the destination register or the instructions has
2806 a prefix. */
2807
2808 static void
2809 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2810 {
2811 /* It's invalid to have the PC as the destination. The instruction can't
2812 have a prefix. */
2813 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2814 {
2815 inst_env->invalid = 1;
2816 return;
2817 }
2818
2819 inst_env->slot_needed = 0;
2820 inst_env->prefix_found = 0;
2821 inst_env->xflag_found = 0;
2822 inst_env->disable_interrupt = 0;
2823 }
2824
2825 /* Checks that the instruction doesn't have a prefix. */
2826
2827 static void
2828 break_op (unsigned short inst, inst_env_type *inst_env)
2829 {
2830 /* The instruction can't have a prefix. */
2831 if (inst_env->prefix_found)
2832 {
2833 inst_env->invalid = 1;
2834 return;
2835 }
2836
2837 inst_env->slot_needed = 0;
2838 inst_env->prefix_found = 0;
2839 inst_env->xflag_found = 0;
2840 inst_env->disable_interrupt = 1;
2841 }
2842
2843 /* Checks that the PC isn't the destination register and that the instruction
2844 doesn't have a prefix. */
2845
2846 static void
2847 scc_op (unsigned short inst, inst_env_type *inst_env)
2848 {
2849 /* It's invalid to have the PC as the destination. The instruction can't
2850 have a prefix. */
2851 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2852 {
2853 inst_env->invalid = 1;
2854 return;
2855 }
2856
2857 inst_env->slot_needed = 0;
2858 inst_env->prefix_found = 0;
2859 inst_env->xflag_found = 0;
2860 inst_env->disable_interrupt = 1;
2861 }
2862
2863 /* Handles the register mode JUMP instruction. */
2864
2865 static void
2866 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2867 {
2868 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2869 you can't have a prefix. */
2870 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2871 {
2872 inst_env->invalid = 1;
2873 return;
2874 }
2875
2876 /* Just change the PC. */
2877 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2878 inst_env->slot_needed = 0;
2879 inst_env->prefix_found = 0;
2880 inst_env->xflag_found = 0;
2881 inst_env->disable_interrupt = 1;
2882 }
2883
2884 /* Handles the JUMP instruction for all modes except register. */
2885
2886 static void
2887 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2888 {
2889 unsigned long newpc;
2890 CORE_ADDR address;
2891
2892 /* It's invalid to do a JUMP in a delay slot. */
2893 if (inst_env->slot_needed)
2894 {
2895 inst_env->invalid = 1;
2896 }
2897 else
2898 {
2899 /* Check if we have a prefix. */
2900 if (inst_env->prefix_found)
2901 {
2902 check_assign (inst, inst_env);
2903
2904 /* Get the new value for the the PC. */
2905 newpc =
2906 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2907 4);
2908 }
2909 else
2910 {
2911 /* Get the new value for the PC. */
2912 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2913 newpc = read_memory_unsigned_integer (address, 4);
2914
2915 /* Check if we should increment a register. */
2916 if (cris_get_mode (inst) == AUTOINC_MODE)
2917 {
2918 inst_env->reg[cris_get_operand1 (inst)] += 4;
2919 }
2920 }
2921 inst_env->reg[REG_PC] = newpc;
2922 }
2923 inst_env->slot_needed = 0;
2924 inst_env->prefix_found = 0;
2925 inst_env->xflag_found = 0;
2926 inst_env->disable_interrupt = 1;
2927 }
2928
2929 /* Handles moves to special registers (aka P-register) for all modes. */
2930
2931 static void
2932 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2933 inst_env_type *inst_env)
2934 {
2935 if (inst_env->prefix_found)
2936 {
2937 /* The instruction has a prefix that means we are only interested if
2938 the instruction is in assign mode. */
2939 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2940 {
2941 /* The prefix handles the problem if we are in a delay slot. */
2942 if (cris_get_operand1 (inst) == REG_PC)
2943 {
2944 /* Just take care of the assign. */
2945 check_assign (inst, inst_env);
2946 }
2947 }
2948 }
2949 else if (cris_get_mode (inst) == AUTOINC_MODE)
2950 {
2951 /* The instruction doesn't have a prefix, the only case left that we
2952 are interested in is the autoincrement mode. */
2953 if (cris_get_operand1 (inst) == REG_PC)
2954 {
2955 /* If the PC is to be incremented it's invalid to be in a
2956 delay slot. */
2957 if (inst_env->slot_needed)
2958 {
2959 inst_env->invalid = 1;
2960 return;
2961 }
2962
2963 /* The increment depends on the size of the special register. */
2964 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2965 {
2966 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2967 }
2968 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2969 {
2970 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2971 }
2972 else
2973 {
2974 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2975 }
2976 }
2977 }
2978 inst_env->slot_needed = 0;
2979 inst_env->prefix_found = 0;
2980 inst_env->xflag_found = 0;
2981 inst_env->disable_interrupt = 1;
2982 }
2983
2984 /* Handles moves from special registers (aka P-register) for all modes
2985 except register. */
2986
2987 static void
2988 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2989 inst_env_type *inst_env)
2990 {
2991 if (inst_env->prefix_found)
2992 {
2993 /* The instruction has a prefix that means we are only interested if
2994 the instruction is in assign mode. */
2995 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2996 {
2997 /* The prefix handles the problem if we are in a delay slot. */
2998 if (cris_get_operand1 (inst) == REG_PC)
2999 {
3000 /* Just take care of the assign. */
3001 check_assign (inst, inst_env);
3002 }
3003 }
3004 }
3005 /* The instruction doesn't have a prefix, the only case left that we
3006 are interested in is the autoincrement mode. */
3007 else if (cris_get_mode (inst) == AUTOINC_MODE)
3008 {
3009 if (cris_get_operand1 (inst) == REG_PC)
3010 {
3011 /* If the PC is to be incremented it's invalid to be in a
3012 delay slot. */
3013 if (inst_env->slot_needed)
3014 {
3015 inst_env->invalid = 1;
3016 return;
3017 }
3018
3019 /* The increment depends on the size of the special register. */
3020 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3021 {
3022 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3023 }
3024 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3025 {
3026 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3027 }
3028 else
3029 {
3030 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3031 }
3032 }
3033 }
3034 inst_env->slot_needed = 0;
3035 inst_env->prefix_found = 0;
3036 inst_env->xflag_found = 0;
3037 inst_env->disable_interrupt = 1;
3038 }
3039
3040 /* Handles moves from special registers (aka P-register) when the mode
3041 is register. */
3042
3043 static void
3044 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3045 {
3046 /* Register mode move from special register can't have a prefix. */
3047 if (inst_env->prefix_found)
3048 {
3049 inst_env->invalid = 1;
3050 return;
3051 }
3052
3053 if (cris_get_operand1 (inst) == REG_PC)
3054 {
3055 /* It's invalid to change the PC in a delay slot. */
3056 if (inst_env->slot_needed)
3057 {
3058 inst_env->invalid = 1;
3059 return;
3060 }
3061 /* The destination is the PC, the jump will have a delay slot. */
3062 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3063 inst_env->slot_needed = 1;
3064 inst_env->delay_slot_pc_active = 1;
3065 }
3066 else
3067 {
3068 /* If the destination isn't PC, there will be no jump. */
3069 inst_env->slot_needed = 0;
3070 }
3071 inst_env->prefix_found = 0;
3072 inst_env->xflag_found = 0;
3073 inst_env->disable_interrupt = 1;
3074 }
3075
3076 /* Handles the MOVEM from memory to general register instruction. */
3077
3078 static void
3079 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3080 {
3081 if (inst_env->prefix_found)
3082 {
3083 /* The prefix handles the problem if we are in a delay slot. Is the
3084 MOVEM instruction going to change the PC? */
3085 if (cris_get_operand2 (inst) >= REG_PC)
3086 {
3087 inst_env->reg[REG_PC] =
3088 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3089 }
3090 /* The assign value is the value after the increment. Normally, the
3091 assign value is the value before the increment. */
3092 if ((cris_get_operand1 (inst) == REG_PC)
3093 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3094 {
3095 inst_env->reg[REG_PC] = inst_env->prefix_value;
3096 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3097 }
3098 }
3099 else
3100 {
3101 /* Is the MOVEM instruction going to change the PC? */
3102 if (cris_get_operand2 (inst) == REG_PC)
3103 {
3104 /* It's invalid to change the PC in a delay slot. */
3105 if (inst_env->slot_needed)
3106 {
3107 inst_env->invalid = 1;
3108 return;
3109 }
3110 inst_env->reg[REG_PC] =
3111 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3112 4);
3113 }
3114 /* The increment is not depending on the size, instead it's depending
3115 on the number of registers loaded from memory. */
3116 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3117 {
3118 /* It's invalid to change the PC in a delay slot. */
3119 if (inst_env->slot_needed)
3120 {
3121 inst_env->invalid = 1;
3122 return;
3123 }
3124 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3125 }
3126 }
3127 inst_env->slot_needed = 0;
3128 inst_env->prefix_found = 0;
3129 inst_env->xflag_found = 0;
3130 inst_env->disable_interrupt = 0;
3131 }
3132
3133 /* Handles the MOVEM to memory from general register instruction. */
3134
3135 static void
3136 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3137 {
3138 if (inst_env->prefix_found)
3139 {
3140 /* The assign value is the value after the increment. Normally, the
3141 assign value is the value before the increment. */
3142 if ((cris_get_operand1 (inst) == REG_PC) &&
3143 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3144 {
3145 /* The prefix handles the problem if we are in a delay slot. */
3146 inst_env->reg[REG_PC] = inst_env->prefix_value;
3147 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3148 }
3149 }
3150 else
3151 {
3152 /* The increment is not depending on the size, instead it's depending
3153 on the number of registers loaded to memory. */
3154 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3155 {
3156 /* It's invalid to change the PC in a delay slot. */
3157 if (inst_env->slot_needed)
3158 {
3159 inst_env->invalid = 1;
3160 return;
3161 }
3162 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3163 }
3164 }
3165 inst_env->slot_needed = 0;
3166 inst_env->prefix_found = 0;
3167 inst_env->xflag_found = 0;
3168 inst_env->disable_interrupt = 0;
3169 }
3170
3171 /* Handles the intructions that's not yet implemented, by setting
3172 inst_env->invalid to true. */
3173
3174 static void
3175 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3176 {
3177 inst_env->invalid = 1;
3178 }
3179
3180 /* Handles the XOR instruction. */
3181
3182 static void
3183 xor_op (unsigned short inst, inst_env_type *inst_env)
3184 {
3185 /* XOR can't have a prefix. */
3186 if (inst_env->prefix_found)
3187 {
3188 inst_env->invalid = 1;
3189 return;
3190 }
3191
3192 /* Check if the PC is the target. */
3193 if (cris_get_operand2 (inst) == REG_PC)
3194 {
3195 /* It's invalid to change the PC in a delay slot. */
3196 if (inst_env->slot_needed)
3197 {
3198 inst_env->invalid = 1;
3199 return;
3200 }
3201 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3202 }
3203 inst_env->slot_needed = 0;
3204 inst_env->prefix_found = 0;
3205 inst_env->xflag_found = 0;
3206 inst_env->disable_interrupt = 0;
3207 }
3208
3209 /* Handles the MULS instruction. */
3210
3211 static void
3212 muls_op (unsigned short inst, inst_env_type *inst_env)
3213 {
3214 /* MULS/U can't have a prefix. */
3215 if (inst_env->prefix_found)
3216 {
3217 inst_env->invalid = 1;
3218 return;
3219 }
3220
3221 /* Consider it invalid if the PC is the target. */
3222 if (cris_get_operand2 (inst) == REG_PC)
3223 {
3224 inst_env->invalid = 1;
3225 return;
3226 }
3227 inst_env->slot_needed = 0;
3228 inst_env->prefix_found = 0;
3229 inst_env->xflag_found = 0;
3230 inst_env->disable_interrupt = 0;
3231 }
3232
3233 /* Handles the MULU instruction. */
3234
3235 static void
3236 mulu_op (unsigned short inst, inst_env_type *inst_env)
3237 {
3238 /* MULS/U can't have a prefix. */
3239 if (inst_env->prefix_found)
3240 {
3241 inst_env->invalid = 1;
3242 return;
3243 }
3244
3245 /* Consider it invalid if the PC is the target. */
3246 if (cris_get_operand2 (inst) == REG_PC)
3247 {
3248 inst_env->invalid = 1;
3249 return;
3250 }
3251 inst_env->slot_needed = 0;
3252 inst_env->prefix_found = 0;
3253 inst_env->xflag_found = 0;
3254 inst_env->disable_interrupt = 0;
3255 }
3256
3257 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3258 The MOVE instruction is the move from source to register. */
3259
3260 static void
3261 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3262 unsigned long source1, unsigned long source2)
3263 {
3264 unsigned long pc_mask;
3265 unsigned long operation_mask;
3266
3267 /* Find out how many bits the operation should apply to. */
3268 if (cris_get_size (inst) == INST_BYTE_SIZE)
3269 {
3270 pc_mask = 0xFFFFFF00;
3271 operation_mask = 0xFF;
3272 }
3273 else if (cris_get_size (inst) == INST_WORD_SIZE)
3274 {
3275 pc_mask = 0xFFFF0000;
3276 operation_mask = 0xFFFF;
3277 }
3278 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3279 {
3280 pc_mask = 0x0;
3281 operation_mask = 0xFFFFFFFF;
3282 }
3283 else
3284 {
3285 /* The size is out of range. */
3286 inst_env->invalid = 1;
3287 return;
3288 }
3289
3290 /* The instruction just works on uw_operation_mask bits. */
3291 source2 &= operation_mask;
3292 source1 &= operation_mask;
3293
3294 /* Now calculate the result. The opcode's 3 first bits separates
3295 the different actions. */
3296 switch (cris_get_opcode (inst) & 7)
3297 {
3298 case 0: /* add */
3299 source1 += source2;
3300 break;
3301
3302 case 1: /* move */
3303 source1 = source2;
3304 break;
3305
3306 case 2: /* subtract */
3307 source1 -= source2;
3308 break;
3309
3310 case 3: /* compare */
3311 break;
3312
3313 case 4: /* and */
3314 source1 &= source2;
3315 break;
3316
3317 case 5: /* or */
3318 source1 |= source2;
3319 break;
3320
3321 default:
3322 inst_env->invalid = 1;
3323 return;
3324
3325 break;
3326 }
3327
3328 /* Make sure that the result doesn't contain more than the instruction
3329 size bits. */
3330 source2 &= operation_mask;
3331
3332 /* Calculate the new breakpoint address. */
3333 inst_env->reg[REG_PC] &= pc_mask;
3334 inst_env->reg[REG_PC] |= source1;
3335
3336 }
3337
3338 /* Extends the value from either byte or word size to a dword. If the mode
3339 is zero extend then the value is extended with zero. If instead the mode
3340 is signed extend the sign bit of the value is taken into consideration. */
3341
3342 static unsigned long
3343 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3344 {
3345 /* The size can be either byte or word, check which one it is.
3346 Don't check the highest bit, it's indicating if it's a zero
3347 or sign extend. */
3348 if (cris_get_size (*inst) & INST_WORD_SIZE)
3349 {
3350 /* Word size. */
3351 value &= 0xFFFF;
3352
3353 /* Check if the instruction is signed extend. If so, check if value has
3354 the sign bit on. */
3355 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3356 {
3357 value |= SIGNED_WORD_EXTEND_MASK;
3358 }
3359 }
3360 else
3361 {
3362 /* Byte size. */
3363 value &= 0xFF;
3364
3365 /* Check if the instruction is signed extend. If so, check if value has
3366 the sign bit on. */
3367 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3368 {
3369 value |= SIGNED_BYTE_EXTEND_MASK;
3370 }
3371 }
3372 /* The size should now be dword. */
3373 cris_set_size_to_dword (inst);
3374 return value;
3375 }
3376
3377 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3378 instruction. The MOVE instruction is the move from source to register. */
3379
3380 static void
3381 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3382 inst_env_type *inst_env)
3383 {
3384 unsigned long operand1;
3385 unsigned long operand2;
3386
3387 /* It's invalid to have a prefix to the instruction. This is a register
3388 mode instruction and can't have a prefix. */
3389 if (inst_env->prefix_found)
3390 {
3391 inst_env->invalid = 1;
3392 return;
3393 }
3394 /* Check if the instruction has PC as its target. */
3395 if (cris_get_operand2 (inst) == REG_PC)
3396 {
3397 if (inst_env->slot_needed)
3398 {
3399 inst_env->invalid = 1;
3400 return;
3401 }
3402 /* The instruction has the PC as its target register. */
3403 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3404 operand2 = inst_env->reg[REG_PC];
3405
3406 /* Check if it's a extend, signed or zero instruction. */
3407 if (cris_get_opcode (inst) < 4)
3408 {
3409 operand1 = do_sign_or_zero_extend (operand1, &inst);
3410 }
3411 /* Calculate the PC value after the instruction, i.e. where the
3412 breakpoint should be. The order of the udw_operands is vital. */
3413 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3414 }
3415 inst_env->slot_needed = 0;
3416 inst_env->prefix_found = 0;
3417 inst_env->xflag_found = 0;
3418 inst_env->disable_interrupt = 0;
3419 }
3420
3421 /* Returns the data contained at address. The size of the data is derived from
3422 the size of the operation. If the instruction is a zero or signed
3423 extend instruction, the size field is changed in instruction. */
3424
3425 static unsigned long
3426 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3427 {
3428 int size = cris_get_size (*inst);
3429 unsigned long value;
3430
3431 /* If it's an extend instruction we don't want the signed extend bit,
3432 because it influences the size. */
3433 if (cris_get_opcode (*inst) < 4)
3434 {
3435 size &= ~SIGNED_EXTEND_BIT_MASK;
3436 }
3437 /* Is there a need for checking the size? Size should contain the number of
3438 bytes to read. */
3439 size = 1 << size;
3440 value = read_memory_unsigned_integer (address, size);
3441
3442 /* Check if it's an extend, signed or zero instruction. */
3443 if (cris_get_opcode (*inst) < 4)
3444 {
3445 value = do_sign_or_zero_extend (value, inst);
3446 }
3447 return value;
3448 }
3449
3450 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3451 instructions. The MOVE instruction is the move from source to register. */
3452
3453 static void
3454 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3455 inst_env_type *inst_env)
3456 {
3457 unsigned long operand2;
3458 unsigned long operand3;
3459
3460 check_assign (inst, inst_env);
3461 if (cris_get_operand2 (inst) == REG_PC)
3462 {
3463 operand2 = inst_env->reg[REG_PC];
3464
3465 /* Get the value of the third operand. */
3466 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3467
3468 /* Calculate the PC value after the instruction, i.e. where the
3469 breakpoint should be. The order of the udw_operands is vital. */
3470 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3471 }
3472 inst_env->slot_needed = 0;
3473 inst_env->prefix_found = 0;
3474 inst_env->xflag_found = 0;
3475 inst_env->disable_interrupt = 0;
3476 }
3477
3478 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3479 OR instructions. Note that for this to work as expected, the calling
3480 function must have made sure that there is a prefix to this instruction. */
3481
3482 static void
3483 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3484 inst_env_type *inst_env)
3485 {
3486 unsigned long operand2;
3487 unsigned long operand3;
3488
3489 if (cris_get_operand1 (inst) == REG_PC)
3490 {
3491 /* The PC will be changed by the instruction. */
3492 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3493
3494 /* Get the value of the third operand. */
3495 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3496
3497 /* Calculate the PC value after the instruction, i.e. where the
3498 breakpoint should be. */
3499 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3500 }
3501 inst_env->slot_needed = 0;
3502 inst_env->prefix_found = 0;
3503 inst_env->xflag_found = 0;
3504 inst_env->disable_interrupt = 0;
3505 }
3506
3507 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3508 instructions. The MOVE instruction is the move from source to register. */
3509
3510 static void
3511 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3512 inst_env_type *inst_env)
3513 {
3514 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3515 {
3516 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3517 SUB, AND or OR something weird is going on (if everything works these
3518 instructions should end up in the three operand version). */
3519 inst_env->invalid = 1;
3520 return;
3521 }
3522 else
3523 {
3524 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3525 so use it. */
3526 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3527 }
3528 inst_env->slot_needed = 0;
3529 inst_env->prefix_found = 0;
3530 inst_env->xflag_found = 0;
3531 inst_env->disable_interrupt = 0;
3532 }
3533
3534 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3535 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3536 source to register. */
3537
3538 static void
3539 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3540 inst_env_type *inst_env)
3541 {
3542 unsigned long operand1;
3543 unsigned long operand2;
3544 unsigned long operand3;
3545 int size;
3546
3547 /* The instruction is either an indirect or autoincrement addressing mode.
3548 Check if the destination register is the PC. */
3549 if (cris_get_operand2 (inst) == REG_PC)
3550 {
3551 /* Must be done here, get_data_from_address may change the size
3552 field. */
3553 size = cris_get_size (inst);
3554 operand2 = inst_env->reg[REG_PC];
3555
3556 /* Get the value of the third operand, i.e. the indirect operand. */
3557 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3558 operand3 = get_data_from_address (&inst, operand1);
3559
3560 /* Calculate the PC value after the instruction, i.e. where the
3561 breakpoint should be. The order of the udw_operands is vital. */
3562 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3563 }
3564 /* If this is an autoincrement addressing mode, check if the increment
3565 changes the PC. */
3566 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3567 {
3568 /* Get the size field. */
3569 size = cris_get_size (inst);
3570
3571 /* If it's an extend instruction we don't want the signed extend bit,
3572 because it influences the size. */
3573 if (cris_get_opcode (inst) < 4)
3574 {
3575 size &= ~SIGNED_EXTEND_BIT_MASK;
3576 }
3577 process_autoincrement (size, inst, inst_env);
3578 }
3579 inst_env->slot_needed = 0;
3580 inst_env->prefix_found = 0;
3581 inst_env->xflag_found = 0;
3582 inst_env->disable_interrupt = 0;
3583 }
3584
3585 /* Handles the two-operand addressing mode, all modes except register, for
3586 the ADD, SUB CMP, AND and OR instruction. */
3587
3588 static void
3589 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3590 inst_env_type *inst_env)
3591 {
3592 if (inst_env->prefix_found)
3593 {
3594 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3595 {
3596 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3597 }
3598 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3599 {
3600 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3601 }
3602 else
3603 {
3604 /* The mode is invalid for a prefixed base instruction. */
3605 inst_env->invalid = 1;
3606 return;
3607 }
3608 }
3609 else
3610 {
3611 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3612 }
3613 }
3614
3615 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3616
3617 static void
3618 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3619 {
3620 unsigned long operand1;
3621 unsigned long operand2;
3622
3623 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3624 instruction and can't have a prefix. */
3625 if (inst_env->prefix_found)
3626 {
3627 inst_env->invalid = 1;
3628 return;
3629 }
3630
3631 /* Check if the instruction has PC as its target. */
3632 if (cris_get_operand2 (inst) == REG_PC)
3633 {
3634 if (inst_env->slot_needed)
3635 {
3636 inst_env->invalid = 1;
3637 return;
3638 }
3639 operand1 = cris_get_quick_value (inst);
3640 operand2 = inst_env->reg[REG_PC];
3641
3642 /* The size should now be dword. */
3643 cris_set_size_to_dword (&inst);
3644
3645 /* Calculate the PC value after the instruction, i.e. where the
3646 breakpoint should be. */
3647 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3648 }
3649 inst_env->slot_needed = 0;
3650 inst_env->prefix_found = 0;
3651 inst_env->xflag_found = 0;
3652 inst_env->disable_interrupt = 0;
3653 }
3654
3655 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3656
3657 static void
3658 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3659 {
3660 unsigned long operand1;
3661 unsigned long operand2;
3662
3663 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3664 instruction and can't have a prefix. */
3665 if (inst_env->prefix_found)
3666 {
3667 inst_env->invalid = 1;
3668 return;
3669 }
3670 /* Check if the instruction has PC as its target. */
3671 if (cris_get_operand2 (inst) == REG_PC)
3672 {
3673 if (inst_env->slot_needed)
3674 {
3675 inst_env->invalid = 1;
3676 return;
3677 }
3678 /* The instruction has the PC as its target register. */
3679 operand1 = cris_get_quick_value (inst);
3680 operand2 = inst_env->reg[REG_PC];
3681
3682 /* The quick value is signed, so check if we must do a signed extend. */
3683 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3684 {
3685 /* sign extend */
3686 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3687 }
3688 /* The size should now be dword. */
3689 cris_set_size_to_dword (&inst);
3690
3691 /* Calculate the PC value after the instruction, i.e. where the
3692 breakpoint should be. */
3693 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3694 }
3695 inst_env->slot_needed = 0;
3696 inst_env->prefix_found = 0;
3697 inst_env->xflag_found = 0;
3698 inst_env->disable_interrupt = 0;
3699 }
3700
3701 /* Translate op_type to a function and call it. */
3702
3703 static void
3704 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3705 unsigned short inst, inst_env_type *inst_env)
3706 {
3707 switch (op_type)
3708 {
3709 case cris_not_implemented_op:
3710 not_implemented_op (inst, inst_env);
3711 break;
3712
3713 case cris_abs_op:
3714 abs_op (inst, inst_env);
3715 break;
3716
3717 case cris_addi_op:
3718 addi_op (inst, inst_env);
3719 break;
3720
3721 case cris_asr_op:
3722 asr_op (inst, inst_env);
3723 break;
3724
3725 case cris_asrq_op:
3726 asrq_op (inst, inst_env);
3727 break;
3728
3729 case cris_ax_ei_setf_op:
3730 ax_ei_setf_op (inst, inst_env);
3731 break;
3732
3733 case cris_bdap_prefix:
3734 bdap_prefix (inst, inst_env);
3735 break;
3736
3737 case cris_biap_prefix:
3738 biap_prefix (inst, inst_env);
3739 break;
3740
3741 case cris_break_op:
3742 break_op (inst, inst_env);
3743 break;
3744
3745 case cris_btst_nop_op:
3746 btst_nop_op (inst, inst_env);
3747 break;
3748
3749 case cris_clearf_di_op:
3750 clearf_di_op (inst, inst_env);
3751 break;
3752
3753 case cris_dip_prefix:
3754 dip_prefix (inst, inst_env);
3755 break;
3756
3757 case cris_dstep_logshift_mstep_neg_not_op:
3758 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3759 break;
3760
3761 case cris_eight_bit_offset_branch_op:
3762 eight_bit_offset_branch_op (inst, inst_env);
3763 break;
3764
3765 case cris_move_mem_to_reg_movem_op:
3766 move_mem_to_reg_movem_op (inst, inst_env);
3767 break;
3768
3769 case cris_move_reg_to_mem_movem_op:
3770 move_reg_to_mem_movem_op (inst, inst_env);
3771 break;
3772
3773 case cris_move_to_preg_op:
3774 move_to_preg_op (gdbarch, inst, inst_env);
3775 break;
3776
3777 case cris_muls_op:
3778 muls_op (inst, inst_env);
3779 break;
3780
3781 case cris_mulu_op:
3782 mulu_op (inst, inst_env);
3783 break;
3784
3785 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3786 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3787 break;
3788
3789 case cris_none_reg_mode_clear_test_op:
3790 none_reg_mode_clear_test_op (inst, inst_env);
3791 break;
3792
3793 case cris_none_reg_mode_jump_op:
3794 none_reg_mode_jump_op (inst, inst_env);
3795 break;
3796
3797 case cris_none_reg_mode_move_from_preg_op:
3798 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3799 break;
3800
3801 case cris_quick_mode_add_sub_op:
3802 quick_mode_add_sub_op (inst, inst_env);
3803 break;
3804
3805 case cris_quick_mode_and_cmp_move_or_op:
3806 quick_mode_and_cmp_move_or_op (inst, inst_env);
3807 break;
3808
3809 case cris_quick_mode_bdap_prefix:
3810 quick_mode_bdap_prefix (inst, inst_env);
3811 break;
3812
3813 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3814 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3815 break;
3816
3817 case cris_reg_mode_clear_op:
3818 reg_mode_clear_op (inst, inst_env);
3819 break;
3820
3821 case cris_reg_mode_jump_op:
3822 reg_mode_jump_op (inst, inst_env);
3823 break;
3824
3825 case cris_reg_mode_move_from_preg_op:
3826 reg_mode_move_from_preg_op (inst, inst_env);
3827 break;
3828
3829 case cris_reg_mode_test_op:
3830 reg_mode_test_op (inst, inst_env);
3831 break;
3832
3833 case cris_scc_op:
3834 scc_op (inst, inst_env);
3835 break;
3836
3837 case cris_sixteen_bit_offset_branch_op:
3838 sixteen_bit_offset_branch_op (inst, inst_env);
3839 break;
3840
3841 case cris_three_operand_add_sub_cmp_and_or_op:
3842 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3843 break;
3844
3845 case cris_three_operand_bound_op:
3846 three_operand_bound_op (inst, inst_env);
3847 break;
3848
3849 case cris_two_operand_bound_op:
3850 two_operand_bound_op (inst, inst_env);
3851 break;
3852
3853 case cris_xor_op:
3854 xor_op (inst, inst_env);
3855 break;
3856 }
3857 }
3858
3859 /* This wrapper is to avoid cris_get_assembler being called before
3860 exec_bfd has been set. */
3861
3862 static int
3863 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3864 {
3865 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3866 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3867 disassembler, even when there is no BFD. Does something like
3868 "gdb; target remote; disassmeble *0x123" work? */
3869 gdb_assert (exec_bfd != NULL);
3870 print_insn = cris_get_disassembler (exec_bfd);
3871 gdb_assert (print_insn != NULL);
3872 return print_insn (addr, info);
3873 }
3874
3875 /* Copied from <asm/elf.h>. */
3876 typedef unsigned long elf_greg_t;
3877
3878 /* Same as user_regs_struct struct in <asm/user.h>. */
3879 #define CRISV10_ELF_NGREG 35
3880 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3881
3882 #define CRISV32_ELF_NGREG 32
3883 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3884
3885 /* Unpack an elf_gregset_t into GDB's register cache. */
3886
3887 static void
3888 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3889 {
3890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3892 int i;
3893 elf_greg_t *regp = *gregsetp;
3894 static char zerobuf[4] = {0};
3895
3896 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3897 knows about the actual size of each register so that's no problem. */
3898 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3899 {
3900 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3901 }
3902
3903 if (tdep->cris_version == 32)
3904 {
3905 /* Needed to set pseudo-register PC for CRISv32. */
3906 /* FIXME: If ERP is in a delay slot at this point then the PC will
3907 be wrong. Issue a warning to alert the user. */
3908 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3909 (char *)&regp[ERP_REGNUM]);
3910
3911 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3912 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3913 }
3914 }
3915
3916 /* Use a local version of this function to get the correct types for
3917 regsets, until multi-arch core support is ready. */
3918
3919 static void
3920 fetch_core_registers (struct regcache *regcache,
3921 char *core_reg_sect, unsigned core_reg_size,
3922 int which, CORE_ADDR reg_addr)
3923 {
3924 elf_gregset_t gregset;
3925
3926 switch (which)
3927 {
3928 case 0:
3929 if (core_reg_size != sizeof (elf_gregset_t)
3930 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3931 {
3932 warning (_("wrong size gregset struct in core file"));
3933 }
3934 else
3935 {
3936 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3937 cris_supply_gregset (regcache, &gregset);
3938 }
3939
3940 default:
3941 /* We've covered all the kinds of registers we know about here,
3942 so this must be something we wouldn't know what to do with
3943 anyway. Just ignore it. */
3944 break;
3945 }
3946 }
3947
3948 static struct core_fns cris_elf_core_fns =
3949 {
3950 bfd_target_elf_flavour, /* core_flavour */
3951 default_check_format, /* check_format */
3952 default_core_sniffer, /* core_sniffer */
3953 fetch_core_registers, /* core_read_registers */
3954 NULL /* next */
3955 };
3956
3957 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3958
3959 void
3960 _initialize_cris_tdep (void)
3961 {
3962 static struct cmd_list_element *cris_set_cmdlist;
3963 static struct cmd_list_element *cris_show_cmdlist;
3964
3965 struct cmd_list_element *c;
3966
3967 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3968
3969 /* CRIS-specific user-commands. */
3970 add_setshow_uinteger_cmd ("cris-version", class_support,
3971 &usr_cmd_cris_version,
3972 _("Set the current CRIS version."),
3973 _("Show the current CRIS version."),
3974 _("\
3975 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3976 Defaults to 10. "),
3977 set_cris_version,
3978 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3979 &setlist, &showlist);
3980
3981 add_setshow_enum_cmd ("cris-mode", class_support,
3982 cris_modes, &usr_cmd_cris_mode,
3983 _("Set the current CRIS mode."),
3984 _("Show the current CRIS mode."),
3985 _("\
3986 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3987 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3988 set_cris_mode,
3989 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3990 &setlist, &showlist);
3991
3992 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3993 &usr_cmd_cris_dwarf2_cfi,
3994 _("Set the usage of Dwarf-2 CFI for CRIS."),
3995 _("Show the usage of Dwarf-2 CFI for CRIS."),
3996 _("Set this to \"off\" if using gcc-cris < R59."),
3997 set_cris_dwarf2_cfi,
3998 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3999 &setlist, &showlist);
4000
4001 deprecated_add_core_fns (&cris_elf_core_fns);
4002 }
4003
4004 /* Prints out all target specific values. */
4005
4006 static void
4007 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4008 {
4009 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4010 if (tdep != NULL)
4011 {
4012 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4013 tdep->cris_version);
4014 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4015 tdep->cris_mode);
4016 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4017 tdep->cris_dwarf2_cfi);
4018 }
4019 }
4020
4021 static void
4022 set_cris_version (char *ignore_args, int from_tty,
4023 struct cmd_list_element *c)
4024 {
4025 struct gdbarch_info info;
4026
4027 usr_cmd_cris_version_valid = 1;
4028
4029 /* Update the current architecture, if needed. */
4030 gdbarch_info_init (&info);
4031 if (!gdbarch_update_p (info))
4032 internal_error (__FILE__, __LINE__,
4033 _("cris_gdbarch_update: failed to update architecture."));
4034 }
4035
4036 static void
4037 set_cris_mode (char *ignore_args, int from_tty,
4038 struct cmd_list_element *c)
4039 {
4040 struct gdbarch_info info;
4041
4042 /* Update the current architecture, if needed. */
4043 gdbarch_info_init (&info);
4044 if (!gdbarch_update_p (info))
4045 internal_error (__FILE__, __LINE__,
4046 "cris_gdbarch_update: failed to update architecture.");
4047 }
4048
4049 static void
4050 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4051 struct cmd_list_element *c)
4052 {
4053 struct gdbarch_info info;
4054
4055 /* Update the current architecture, if needed. */
4056 gdbarch_info_init (&info);
4057 if (!gdbarch_update_p (info))
4058 internal_error (__FILE__, __LINE__,
4059 _("cris_gdbarch_update: failed to update architecture."));
4060 }
4061
4062 static struct gdbarch *
4063 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4064 {
4065 struct gdbarch *gdbarch;
4066 struct gdbarch_tdep *tdep;
4067 int cris_version;
4068
4069 if (usr_cmd_cris_version_valid)
4070 {
4071 /* Trust the user's CRIS version setting. */
4072 cris_version = usr_cmd_cris_version;
4073 }
4074 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4075 {
4076 cris_version = 32;
4077 }
4078 else
4079 {
4080 /* Assume it's CRIS version 10. */
4081 cris_version = 10;
4082 }
4083
4084 /* Make the current settings visible to the user. */
4085 usr_cmd_cris_version = cris_version;
4086
4087 /* Find a candidate among the list of pre-declared architectures. */
4088 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4089 arches != NULL;
4090 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4091 {
4092 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4093 == usr_cmd_cris_version)
4094 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4095 == usr_cmd_cris_mode)
4096 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4097 == usr_cmd_cris_dwarf2_cfi))
4098 return arches->gdbarch;
4099 }
4100
4101 /* No matching architecture was found. Create a new one. */
4102 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4103 gdbarch = gdbarch_alloc (&info, tdep);
4104
4105 tdep->cris_version = usr_cmd_cris_version;
4106 tdep->cris_mode = usr_cmd_cris_mode;
4107 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4108
4109 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4110 switch (info.byte_order)
4111 {
4112 case BFD_ENDIAN_LITTLE:
4113 /* Ok. */
4114 break;
4115
4116 case BFD_ENDIAN_BIG:
4117 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4118 break;
4119
4120 default:
4121 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4122 }
4123
4124 set_gdbarch_return_value (gdbarch, cris_return_value);
4125
4126 set_gdbarch_sp_regnum (gdbarch, 14);
4127
4128 /* Length of ordinary registers used in push_word and a few other
4129 places. register_size() is the real way to know how big a
4130 register is. */
4131
4132 set_gdbarch_double_bit (gdbarch, 64);
4133 /* The default definition of a long double is 2 * gdbarch_double_bit,
4134 which means we have to set this explicitly. */
4135 set_gdbarch_long_double_bit (gdbarch, 64);
4136
4137 /* The total amount of space needed to store (in an array called registers)
4138 GDB's copy of the machine's register state. Note: We can not use
4139 cris_register_size at this point, since it relies on gdbarch
4140 being set. */
4141 switch (tdep->cris_version)
4142 {
4143 case 0:
4144 case 1:
4145 case 2:
4146 case 3:
4147 case 8:
4148 case 9:
4149 /* Old versions; not supported. */
4150 internal_error (__FILE__, __LINE__,
4151 _("cris_gdbarch_init: unsupported CRIS version"));
4152 break;
4153
4154 case 10:
4155 case 11:
4156 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4157 P7 (32 bits), and P15 (32 bits) have been implemented. */
4158 set_gdbarch_pc_regnum (gdbarch, 15);
4159 set_gdbarch_register_type (gdbarch, cris_register_type);
4160 /* There are 32 registers (some of which may not be implemented). */
4161 set_gdbarch_num_regs (gdbarch, 32);
4162 set_gdbarch_register_name (gdbarch, cris_register_name);
4163 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4164 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4165
4166 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4167 break;
4168
4169 case 32:
4170 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4171 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4172 and pseudo-register PC (32 bits). */
4173 set_gdbarch_pc_regnum (gdbarch, 32);
4174 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4175 /* 32 registers + pseudo-register PC + 16 support registers. */
4176 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4177 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4178
4179 set_gdbarch_cannot_store_register
4180 (gdbarch, crisv32_cannot_store_register);
4181 set_gdbarch_cannot_fetch_register
4182 (gdbarch, crisv32_cannot_fetch_register);
4183
4184 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4185
4186 set_gdbarch_single_step_through_delay
4187 (gdbarch, crisv32_single_step_through_delay);
4188
4189 break;
4190
4191 default:
4192 internal_error (__FILE__, __LINE__,
4193 _("cris_gdbarch_init: unknown CRIS version"));
4194 }
4195
4196 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4197 have the same ABI). */
4198 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4199 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4200 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4201 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4202
4203 /* The stack grows downward. */
4204 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4205
4206 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4207
4208 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4209 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4210 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4211
4212 if (tdep->cris_dwarf2_cfi == 1)
4213 {
4214 /* Hook in the Dwarf-2 frame sniffer. */
4215 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4216 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4217 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4218 }
4219
4220 if (tdep->cris_mode != cris_mode_guru)
4221 {
4222 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4223 }
4224
4225 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4226 frame_base_set_default (gdbarch, &cris_frame_base);
4227
4228 set_solib_svr4_fetch_link_map_offsets
4229 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4230
4231 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4232 disassembler, even when there is no BFD. Does something like
4233 "gdb; target remote; disassmeble *0x123" work? */
4234 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4235
4236 return gdbarch;
4237 }
This page took 0.126159 seconds and 5 git commands to generate.