Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / d-exp.y
1 /* YACC parser for D expressions, for GDB.
2
3 Copyright (C) 2014-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This file is derived from c-exp.y, jv-exp.y. */
21
22 /* Parse a D expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "d-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "charset.h"
53 #include "block.h"
54 #include "type-stack.h"
55 #include "expop.h"
56
57 #define parse_type(ps) builtin_type (ps->gdbarch ())
58 #define parse_d_type(ps) builtin_d_type (ps->gdbarch ())
59
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
61 etc). */
62 #define GDB_YY_REMAP_PREFIX d_
63 #include "yy-remap.h"
64
65 /* The state of the parser, used internally when we are parsing the
66 expression. */
67
68 static struct parser_state *pstate = NULL;
69
70 /* The current type stack. */
71 static struct type_stack *type_stack;
72
73 int yyparse (void);
74
75 static int yylex (void);
76
77 static void yyerror (const char *);
78
79 static int type_aggregate_p (struct type *);
80
81 using namespace expr;
82
83 %}
84
85 /* Although the yacc "value" of an expression is not used,
86 since the result is stored in the structure being created,
87 other node types do have values. */
88
89 %union
90 {
91 struct {
92 LONGEST val;
93 struct type *type;
94 } typed_val_int;
95 struct {
96 gdb_byte val[16];
97 struct type *type;
98 } typed_val_float;
99 struct symbol *sym;
100 struct type *tval;
101 struct typed_stoken tsval;
102 struct stoken sval;
103 struct ttype tsym;
104 struct symtoken ssym;
105 int ival;
106 int voidval;
107 enum exp_opcode opcode;
108 struct stoken_vector svec;
109 }
110
111 %{
112 /* YYSTYPE gets defined by %union */
113 static int parse_number (struct parser_state *, const char *,
114 int, int, YYSTYPE *);
115 %}
116
117 %token <sval> IDENTIFIER UNKNOWN_NAME
118 %token <tsym> TYPENAME
119 %token <voidval> COMPLETE
120
121 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
122 but which would parse as a valid number in the current input radix.
123 E.g. "c" when input_radix==16. Depending on the parse, it will be
124 turned into a name or into a number. */
125
126 %token <sval> NAME_OR_INT
127
128 %token <typed_val_int> INTEGER_LITERAL
129 %token <typed_val_float> FLOAT_LITERAL
130 %token <tsval> CHARACTER_LITERAL
131 %token <tsval> STRING_LITERAL
132
133 %type <svec> StringExp
134 %type <tval> BasicType TypeExp
135 %type <sval> IdentifierExp
136 %type <ival> ArrayLiteral
137
138 %token ENTRY
139 %token ERROR
140
141 /* Keywords that have a constant value. */
142 %token TRUE_KEYWORD FALSE_KEYWORD NULL_KEYWORD
143 /* Class 'super' accessor. */
144 %token SUPER_KEYWORD
145 /* Properties. */
146 %token CAST_KEYWORD SIZEOF_KEYWORD
147 %token TYPEOF_KEYWORD TYPEID_KEYWORD
148 %token INIT_KEYWORD
149 /* Comparison keywords. */
150 /* Type storage classes. */
151 %token IMMUTABLE_KEYWORD CONST_KEYWORD SHARED_KEYWORD
152 /* Non-scalar type keywords. */
153 %token STRUCT_KEYWORD UNION_KEYWORD
154 %token CLASS_KEYWORD INTERFACE_KEYWORD
155 %token ENUM_KEYWORD TEMPLATE_KEYWORD
156 %token DELEGATE_KEYWORD FUNCTION_KEYWORD
157
158 %token <sval> DOLLAR_VARIABLE
159
160 %token <opcode> ASSIGN_MODIFY
161
162 %left ','
163 %right '=' ASSIGN_MODIFY
164 %right '?'
165 %left OROR
166 %left ANDAND
167 %left '|'
168 %left '^'
169 %left '&'
170 %left EQUAL NOTEQUAL '<' '>' LEQ GEQ
171 %right LSH RSH
172 %left '+' '-'
173 %left '*' '/' '%'
174 %right HATHAT
175 %left IDENTITY NOTIDENTITY
176 %right INCREMENT DECREMENT
177 %right '.' '[' '('
178 %token DOTDOT
179
180 \f
181 %%
182
183 start :
184 Expression
185 | TypeExp
186 ;
187
188 /* Expressions, including the comma operator. */
189
190 Expression:
191 CommaExpression
192 ;
193
194 CommaExpression:
195 AssignExpression
196 | AssignExpression ',' CommaExpression
197 { pstate->wrap2<comma_operation> (); }
198 ;
199
200 AssignExpression:
201 ConditionalExpression
202 | ConditionalExpression '=' AssignExpression
203 { pstate->wrap2<assign_operation> (); }
204 | ConditionalExpression ASSIGN_MODIFY AssignExpression
205 {
206 operation_up rhs = pstate->pop ();
207 operation_up lhs = pstate->pop ();
208 pstate->push_new<assign_modify_operation>
209 ($2, std::move (lhs), std::move (rhs));
210 }
211 ;
212
213 ConditionalExpression:
214 OrOrExpression
215 | OrOrExpression '?' Expression ':' ConditionalExpression
216 {
217 operation_up last = pstate->pop ();
218 operation_up mid = pstate->pop ();
219 operation_up first = pstate->pop ();
220 pstate->push_new<ternop_cond_operation>
221 (std::move (first), std::move (mid),
222 std::move (last));
223 }
224 ;
225
226 OrOrExpression:
227 AndAndExpression
228 | OrOrExpression OROR AndAndExpression
229 { pstate->wrap2<logical_or_operation> (); }
230 ;
231
232 AndAndExpression:
233 OrExpression
234 | AndAndExpression ANDAND OrExpression
235 { pstate->wrap2<logical_and_operation> (); }
236 ;
237
238 OrExpression:
239 XorExpression
240 | OrExpression '|' XorExpression
241 { pstate->wrap2<bitwise_ior_operation> (); }
242 ;
243
244 XorExpression:
245 AndExpression
246 | XorExpression '^' AndExpression
247 { pstate->wrap2<bitwise_xor_operation> (); }
248 ;
249
250 AndExpression:
251 CmpExpression
252 | AndExpression '&' CmpExpression
253 { pstate->wrap2<bitwise_and_operation> (); }
254 ;
255
256 CmpExpression:
257 ShiftExpression
258 | EqualExpression
259 | IdentityExpression
260 | RelExpression
261 ;
262
263 EqualExpression:
264 ShiftExpression EQUAL ShiftExpression
265 { pstate->wrap2<equal_operation> (); }
266 | ShiftExpression NOTEQUAL ShiftExpression
267 { pstate->wrap2<notequal_operation> (); }
268 ;
269
270 IdentityExpression:
271 ShiftExpression IDENTITY ShiftExpression
272 { pstate->wrap2<equal_operation> (); }
273 | ShiftExpression NOTIDENTITY ShiftExpression
274 { pstate->wrap2<notequal_operation> (); }
275 ;
276
277 RelExpression:
278 ShiftExpression '<' ShiftExpression
279 { pstate->wrap2<less_operation> (); }
280 | ShiftExpression LEQ ShiftExpression
281 { pstate->wrap2<leq_operation> (); }
282 | ShiftExpression '>' ShiftExpression
283 { pstate->wrap2<gtr_operation> (); }
284 | ShiftExpression GEQ ShiftExpression
285 { pstate->wrap2<geq_operation> (); }
286 ;
287
288 ShiftExpression:
289 AddExpression
290 | ShiftExpression LSH AddExpression
291 { pstate->wrap2<lsh_operation> (); }
292 | ShiftExpression RSH AddExpression
293 { pstate->wrap2<rsh_operation> (); }
294 ;
295
296 AddExpression:
297 MulExpression
298 | AddExpression '+' MulExpression
299 { pstate->wrap2<add_operation> (); }
300 | AddExpression '-' MulExpression
301 { pstate->wrap2<sub_operation> (); }
302 | AddExpression '~' MulExpression
303 { pstate->wrap2<concat_operation> (); }
304 ;
305
306 MulExpression:
307 UnaryExpression
308 | MulExpression '*' UnaryExpression
309 { pstate->wrap2<mul_operation> (); }
310 | MulExpression '/' UnaryExpression
311 { pstate->wrap2<div_operation> (); }
312 | MulExpression '%' UnaryExpression
313 { pstate->wrap2<rem_operation> (); }
314
315 UnaryExpression:
316 '&' UnaryExpression
317 { pstate->wrap<unop_addr_operation> (); }
318 | INCREMENT UnaryExpression
319 { pstate->wrap<preinc_operation> (); }
320 | DECREMENT UnaryExpression
321 { pstate->wrap<predec_operation> (); }
322 | '*' UnaryExpression
323 { pstate->wrap<unop_ind_operation> (); }
324 | '-' UnaryExpression
325 { pstate->wrap<unary_neg_operation> (); }
326 | '+' UnaryExpression
327 { pstate->wrap<unary_plus_operation> (); }
328 | '!' UnaryExpression
329 { pstate->wrap<unary_logical_not_operation> (); }
330 | '~' UnaryExpression
331 { pstate->wrap<unary_complement_operation> (); }
332 | TypeExp '.' SIZEOF_KEYWORD
333 { pstate->wrap<unop_sizeof_operation> (); }
334 | CastExpression
335 | PowExpression
336 ;
337
338 CastExpression:
339 CAST_KEYWORD '(' TypeExp ')' UnaryExpression
340 { pstate->wrap2<unop_cast_type_operation> (); }
341 /* C style cast is illegal D, but is still recognised in
342 the grammar, so we keep this around for convenience. */
343 | '(' TypeExp ')' UnaryExpression
344 { pstate->wrap2<unop_cast_type_operation> (); }
345 ;
346
347 PowExpression:
348 PostfixExpression
349 | PostfixExpression HATHAT UnaryExpression
350 { pstate->wrap2<exp_operation> (); }
351 ;
352
353 PostfixExpression:
354 PrimaryExpression
355 | PostfixExpression '.' COMPLETE
356 {
357 structop_base_operation *op
358 = new structop_ptr_operation (pstate->pop (), "");
359 pstate->mark_struct_expression (op);
360 pstate->push (operation_up (op));
361 }
362 | PostfixExpression '.' IDENTIFIER
363 {
364 pstate->push_new<structop_operation>
365 (pstate->pop (), copy_name ($3));
366 }
367 | PostfixExpression '.' IDENTIFIER COMPLETE
368 {
369 structop_base_operation *op
370 = new structop_operation (pstate->pop (), copy_name ($3));
371 pstate->mark_struct_expression (op);
372 pstate->push (operation_up (op));
373 }
374 | PostfixExpression '.' SIZEOF_KEYWORD
375 { pstate->wrap<unop_sizeof_operation> (); }
376 | PostfixExpression INCREMENT
377 { pstate->wrap<postinc_operation> (); }
378 | PostfixExpression DECREMENT
379 { pstate->wrap<postdec_operation> (); }
380 | CallExpression
381 | IndexExpression
382 | SliceExpression
383 ;
384
385 ArgumentList:
386 AssignExpression
387 { pstate->arglist_len = 1; }
388 | ArgumentList ',' AssignExpression
389 { pstate->arglist_len++; }
390 ;
391
392 ArgumentList_opt:
393 /* EMPTY */
394 { pstate->arglist_len = 0; }
395 | ArgumentList
396 ;
397
398 CallExpression:
399 PostfixExpression '('
400 { pstate->start_arglist (); }
401 ArgumentList_opt ')'
402 {
403 std::vector<operation_up> args
404 = pstate->pop_vector (pstate->end_arglist ());
405 pstate->push_new<funcall_operation>
406 (pstate->pop (), std::move (args));
407 }
408 ;
409
410 IndexExpression:
411 PostfixExpression '[' ArgumentList ']'
412 { if (pstate->arglist_len > 0)
413 {
414 std::vector<operation_up> args
415 = pstate->pop_vector (pstate->arglist_len);
416 pstate->push_new<multi_subscript_operation>
417 (pstate->pop (), std::move (args));
418 }
419 else
420 pstate->wrap2<subscript_operation> ();
421 }
422 ;
423
424 SliceExpression:
425 PostfixExpression '[' ']'
426 { /* Do nothing. */ }
427 | PostfixExpression '[' AssignExpression DOTDOT AssignExpression ']'
428 {
429 operation_up last = pstate->pop ();
430 operation_up mid = pstate->pop ();
431 operation_up first = pstate->pop ();
432 pstate->push_new<ternop_slice_operation>
433 (std::move (first), std::move (mid),
434 std::move (last));
435 }
436 ;
437
438 PrimaryExpression:
439 '(' Expression ')'
440 { /* Do nothing. */ }
441 | IdentifierExp
442 { struct bound_minimal_symbol msymbol;
443 std::string copy = copy_name ($1);
444 struct field_of_this_result is_a_field_of_this;
445 struct block_symbol sym;
446
447 /* Handle VAR, which could be local or global. */
448 sym = lookup_symbol (copy.c_str (),
449 pstate->expression_context_block,
450 VAR_DOMAIN, &is_a_field_of_this);
451 if (sym.symbol && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
452 {
453 if (symbol_read_needs_frame (sym.symbol))
454 pstate->block_tracker->update (sym);
455 pstate->push_new<var_value_operation> (sym);
456 }
457 else if (is_a_field_of_this.type != NULL)
458 {
459 /* It hangs off of `this'. Must not inadvertently convert from a
460 method call to data ref. */
461 pstate->block_tracker->update (sym);
462 operation_up thisop
463 = make_operation<op_this_operation> ();
464 pstate->push_new<structop_ptr_operation>
465 (std::move (thisop), std::move (copy));
466 }
467 else
468 {
469 /* Lookup foreign name in global static symbols. */
470 msymbol = lookup_bound_minimal_symbol (copy.c_str ());
471 if (msymbol.minsym != NULL)
472 pstate->push_new<var_msym_value_operation> (msymbol);
473 else if (!have_full_symbols () && !have_partial_symbols ())
474 error (_("No symbol table is loaded. Use the \"file\" command"));
475 else
476 error (_("No symbol \"%s\" in current context."),
477 copy.c_str ());
478 }
479 }
480 | TypeExp '.' IdentifierExp
481 { struct type *type = check_typedef ($1);
482
483 /* Check if the qualified name is in the global
484 context. However if the symbol has not already
485 been resolved, it's not likely to be found. */
486 if (type->code () == TYPE_CODE_MODULE)
487 {
488 struct block_symbol sym;
489 const char *type_name = TYPE_SAFE_NAME (type);
490 int type_name_len = strlen (type_name);
491 std::string name
492 = string_printf ("%.*s.%.*s",
493 type_name_len, type_name,
494 $3.length, $3.ptr);
495
496 sym =
497 lookup_symbol (name.c_str (),
498 (const struct block *) NULL,
499 VAR_DOMAIN, NULL);
500 pstate->push_symbol (name.c_str (), sym);
501 }
502 else
503 {
504 /* Check if the qualified name resolves as a member
505 of an aggregate or an enum type. */
506 if (!type_aggregate_p (type))
507 error (_("`%s' is not defined as an aggregate type."),
508 TYPE_SAFE_NAME (type));
509
510 pstate->push_new<scope_operation>
511 (type, copy_name ($3));
512 }
513 }
514 | DOLLAR_VARIABLE
515 { pstate->push_dollar ($1); }
516 | NAME_OR_INT
517 { YYSTYPE val;
518 parse_number (pstate, $1.ptr, $1.length, 0, &val);
519 pstate->push_new<long_const_operation>
520 (val.typed_val_int.type, val.typed_val_int.val); }
521 | NULL_KEYWORD
522 { struct type *type = parse_d_type (pstate)->builtin_void;
523 type = lookup_pointer_type (type);
524 pstate->push_new<long_const_operation> (type, 0); }
525 | TRUE_KEYWORD
526 { pstate->push_new<bool_operation> (true); }
527 | FALSE_KEYWORD
528 { pstate->push_new<bool_operation> (false); }
529 | INTEGER_LITERAL
530 { pstate->push_new<long_const_operation> ($1.type, $1.val); }
531 | FLOAT_LITERAL
532 {
533 float_data data;
534 std::copy (std::begin ($1.val), std::end ($1.val),
535 std::begin (data));
536 pstate->push_new<float_const_operation> ($1.type, data);
537 }
538 | CHARACTER_LITERAL
539 { struct stoken_vector vec;
540 vec.len = 1;
541 vec.tokens = &$1;
542 pstate->push_c_string (0, &vec); }
543 | StringExp
544 { int i;
545 pstate->push_c_string (0, &$1);
546 for (i = 0; i < $1.len; ++i)
547 free ($1.tokens[i].ptr);
548 free ($1.tokens); }
549 | ArrayLiteral
550 {
551 std::vector<operation_up> args
552 = pstate->pop_vector ($1);
553 pstate->push_new<array_operation>
554 (0, $1 - 1, std::move (args));
555 }
556 | TYPEOF_KEYWORD '(' Expression ')'
557 { pstate->wrap<typeof_operation> (); }
558 ;
559
560 ArrayLiteral:
561 '[' ArgumentList_opt ']'
562 { $$ = pstate->arglist_len; }
563 ;
564
565 IdentifierExp:
566 IDENTIFIER
567 ;
568
569 StringExp:
570 STRING_LITERAL
571 { /* We copy the string here, and not in the
572 lexer, to guarantee that we do not leak a
573 string. Note that we follow the
574 NUL-termination convention of the
575 lexer. */
576 struct typed_stoken *vec = XNEW (struct typed_stoken);
577 $$.len = 1;
578 $$.tokens = vec;
579
580 vec->type = $1.type;
581 vec->length = $1.length;
582 vec->ptr = (char *) malloc ($1.length + 1);
583 memcpy (vec->ptr, $1.ptr, $1.length + 1);
584 }
585 | StringExp STRING_LITERAL
586 { /* Note that we NUL-terminate here, but just
587 for convenience. */
588 char *p;
589 ++$$.len;
590 $$.tokens
591 = XRESIZEVEC (struct typed_stoken, $$.tokens, $$.len);
592
593 p = (char *) malloc ($2.length + 1);
594 memcpy (p, $2.ptr, $2.length + 1);
595
596 $$.tokens[$$.len - 1].type = $2.type;
597 $$.tokens[$$.len - 1].length = $2.length;
598 $$.tokens[$$.len - 1].ptr = p;
599 }
600 ;
601
602 TypeExp:
603 '(' TypeExp ')'
604 { /* Do nothing. */ }
605 | BasicType
606 { pstate->push_new<type_operation> ($1); }
607 | BasicType BasicType2
608 { $$ = type_stack->follow_types ($1);
609 pstate->push_new<type_operation> ($$);
610 }
611 ;
612
613 BasicType2:
614 '*'
615 { type_stack->push (tp_pointer); }
616 | '*' BasicType2
617 { type_stack->push (tp_pointer); }
618 | '[' INTEGER_LITERAL ']'
619 { type_stack->push ($2.val);
620 type_stack->push (tp_array); }
621 | '[' INTEGER_LITERAL ']' BasicType2
622 { type_stack->push ($2.val);
623 type_stack->push (tp_array); }
624 ;
625
626 BasicType:
627 TYPENAME
628 { $$ = $1.type; }
629 ;
630
631 %%
632
633 /* Return true if the type is aggregate-like. */
634
635 static int
636 type_aggregate_p (struct type *type)
637 {
638 return (type->code () == TYPE_CODE_STRUCT
639 || type->code () == TYPE_CODE_UNION
640 || type->code () == TYPE_CODE_MODULE
641 || (type->code () == TYPE_CODE_ENUM
642 && type->is_declared_class ()));
643 }
644
645 /* Take care of parsing a number (anything that starts with a digit).
646 Set yylval and return the token type; update lexptr.
647 LEN is the number of characters in it. */
648
649 /*** Needs some error checking for the float case ***/
650
651 static int
652 parse_number (struct parser_state *ps, const char *p,
653 int len, int parsed_float, YYSTYPE *putithere)
654 {
655 ULONGEST n = 0;
656 ULONGEST prevn = 0;
657 ULONGEST un;
658
659 int i = 0;
660 int c;
661 int base = input_radix;
662 int unsigned_p = 0;
663 int long_p = 0;
664
665 /* We have found a "L" or "U" suffix. */
666 int found_suffix = 0;
667
668 ULONGEST high_bit;
669 struct type *signed_type;
670 struct type *unsigned_type;
671
672 if (parsed_float)
673 {
674 char *s, *sp;
675
676 /* Strip out all embedded '_' before passing to parse_float. */
677 s = (char *) alloca (len + 1);
678 sp = s;
679 while (len-- > 0)
680 {
681 if (*p != '_')
682 *sp++ = *p;
683 p++;
684 }
685 *sp = '\0';
686 len = strlen (s);
687
688 /* Check suffix for `i' , `fi' or `li' (idouble, ifloat or ireal). */
689 if (len >= 1 && tolower (s[len - 1]) == 'i')
690 {
691 if (len >= 2 && tolower (s[len - 2]) == 'f')
692 {
693 putithere->typed_val_float.type
694 = parse_d_type (ps)->builtin_ifloat;
695 len -= 2;
696 }
697 else if (len >= 2 && tolower (s[len - 2]) == 'l')
698 {
699 putithere->typed_val_float.type
700 = parse_d_type (ps)->builtin_ireal;
701 len -= 2;
702 }
703 else
704 {
705 putithere->typed_val_float.type
706 = parse_d_type (ps)->builtin_idouble;
707 len -= 1;
708 }
709 }
710 /* Check suffix for `f' or `l'' (float or real). */
711 else if (len >= 1 && tolower (s[len - 1]) == 'f')
712 {
713 putithere->typed_val_float.type
714 = parse_d_type (ps)->builtin_float;
715 len -= 1;
716 }
717 else if (len >= 1 && tolower (s[len - 1]) == 'l')
718 {
719 putithere->typed_val_float.type
720 = parse_d_type (ps)->builtin_real;
721 len -= 1;
722 }
723 /* Default type if no suffix. */
724 else
725 {
726 putithere->typed_val_float.type
727 = parse_d_type (ps)->builtin_double;
728 }
729
730 if (!parse_float (s, len,
731 putithere->typed_val_float.type,
732 putithere->typed_val_float.val))
733 return ERROR;
734
735 return FLOAT_LITERAL;
736 }
737
738 /* Handle base-switching prefixes 0x, 0b, 0 */
739 if (p[0] == '0')
740 switch (p[1])
741 {
742 case 'x':
743 case 'X':
744 if (len >= 3)
745 {
746 p += 2;
747 base = 16;
748 len -= 2;
749 }
750 break;
751
752 case 'b':
753 case 'B':
754 if (len >= 3)
755 {
756 p += 2;
757 base = 2;
758 len -= 2;
759 }
760 break;
761
762 default:
763 base = 8;
764 break;
765 }
766
767 while (len-- > 0)
768 {
769 c = *p++;
770 if (c == '_')
771 continue; /* Ignore embedded '_'. */
772 if (c >= 'A' && c <= 'Z')
773 c += 'a' - 'A';
774 if (c != 'l' && c != 'u')
775 n *= base;
776 if (c >= '0' && c <= '9')
777 {
778 if (found_suffix)
779 return ERROR;
780 n += i = c - '0';
781 }
782 else
783 {
784 if (base > 10 && c >= 'a' && c <= 'f')
785 {
786 if (found_suffix)
787 return ERROR;
788 n += i = c - 'a' + 10;
789 }
790 else if (c == 'l' && long_p == 0)
791 {
792 long_p = 1;
793 found_suffix = 1;
794 }
795 else if (c == 'u' && unsigned_p == 0)
796 {
797 unsigned_p = 1;
798 found_suffix = 1;
799 }
800 else
801 return ERROR; /* Char not a digit */
802 }
803 if (i >= base)
804 return ERROR; /* Invalid digit in this base. */
805 /* Portably test for integer overflow. */
806 if (c != 'l' && c != 'u')
807 {
808 ULONGEST n2 = prevn * base;
809 if ((n2 / base != prevn) || (n2 + i < prevn))
810 error (_("Numeric constant too large."));
811 }
812 prevn = n;
813 }
814
815 /* An integer constant is an int or a long. An L suffix forces it to
816 be long, and a U suffix forces it to be unsigned. To figure out
817 whether it fits, we shift it right and see whether anything remains.
818 Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or
819 more in one operation, because many compilers will warn about such a
820 shift (which always produces a zero result). To deal with the case
821 where it is we just always shift the value more than once, with fewer
822 bits each time. */
823 un = (ULONGEST) n >> 2;
824 if (long_p == 0 && (un >> 30) == 0)
825 {
826 high_bit = ((ULONGEST) 1) << 31;
827 signed_type = parse_d_type (ps)->builtin_int;
828 /* For decimal notation, keep the sign of the worked out type. */
829 if (base == 10 && !unsigned_p)
830 unsigned_type = parse_d_type (ps)->builtin_long;
831 else
832 unsigned_type = parse_d_type (ps)->builtin_uint;
833 }
834 else
835 {
836 int shift;
837 if (sizeof (ULONGEST) * HOST_CHAR_BIT < 64)
838 /* A long long does not fit in a LONGEST. */
839 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
840 else
841 shift = 63;
842 high_bit = (ULONGEST) 1 << shift;
843 signed_type = parse_d_type (ps)->builtin_long;
844 unsigned_type = parse_d_type (ps)->builtin_ulong;
845 }
846
847 putithere->typed_val_int.val = n;
848
849 /* If the high bit of the worked out type is set then this number
850 has to be unsigned_type. */
851 if (unsigned_p || (n & high_bit))
852 putithere->typed_val_int.type = unsigned_type;
853 else
854 putithere->typed_val_int.type = signed_type;
855
856 return INTEGER_LITERAL;
857 }
858
859 /* Temporary obstack used for holding strings. */
860 static struct obstack tempbuf;
861 static int tempbuf_init;
862
863 /* Parse a string or character literal from TOKPTR. The string or
864 character may be wide or unicode. *OUTPTR is set to just after the
865 end of the literal in the input string. The resulting token is
866 stored in VALUE. This returns a token value, either STRING or
867 CHAR, depending on what was parsed. *HOST_CHARS is set to the
868 number of host characters in the literal. */
869
870 static int
871 parse_string_or_char (const char *tokptr, const char **outptr,
872 struct typed_stoken *value, int *host_chars)
873 {
874 int quote;
875
876 /* Build the gdb internal form of the input string in tempbuf. Note
877 that the buffer is null byte terminated *only* for the
878 convenience of debugging gdb itself and printing the buffer
879 contents when the buffer contains no embedded nulls. Gdb does
880 not depend upon the buffer being null byte terminated, it uses
881 the length string instead. This allows gdb to handle C strings
882 (as well as strings in other languages) with embedded null
883 bytes */
884
885 if (!tempbuf_init)
886 tempbuf_init = 1;
887 else
888 obstack_free (&tempbuf, NULL);
889 obstack_init (&tempbuf);
890
891 /* Skip the quote. */
892 quote = *tokptr;
893 ++tokptr;
894
895 *host_chars = 0;
896
897 while (*tokptr)
898 {
899 char c = *tokptr;
900 if (c == '\\')
901 {
902 ++tokptr;
903 *host_chars += c_parse_escape (&tokptr, &tempbuf);
904 }
905 else if (c == quote)
906 break;
907 else
908 {
909 obstack_1grow (&tempbuf, c);
910 ++tokptr;
911 /* FIXME: this does the wrong thing with multi-byte host
912 characters. We could use mbrlen here, but that would
913 make "set host-charset" a bit less useful. */
914 ++*host_chars;
915 }
916 }
917
918 if (*tokptr != quote)
919 {
920 if (quote == '"' || quote == '`')
921 error (_("Unterminated string in expression."));
922 else
923 error (_("Unmatched single quote."));
924 }
925 ++tokptr;
926
927 /* FIXME: should instead use own language string_type enum
928 and handle D-specific string suffixes here. */
929 if (quote == '\'')
930 value->type = C_CHAR;
931 else
932 value->type = C_STRING;
933
934 value->ptr = (char *) obstack_base (&tempbuf);
935 value->length = obstack_object_size (&tempbuf);
936
937 *outptr = tokptr;
938
939 return quote == '\'' ? CHARACTER_LITERAL : STRING_LITERAL;
940 }
941
942 struct token
943 {
944 const char *oper;
945 int token;
946 enum exp_opcode opcode;
947 };
948
949 static const struct token tokentab3[] =
950 {
951 {"^^=", ASSIGN_MODIFY, BINOP_EXP},
952 {"<<=", ASSIGN_MODIFY, BINOP_LSH},
953 {">>=", ASSIGN_MODIFY, BINOP_RSH},
954 };
955
956 static const struct token tokentab2[] =
957 {
958 {"+=", ASSIGN_MODIFY, BINOP_ADD},
959 {"-=", ASSIGN_MODIFY, BINOP_SUB},
960 {"*=", ASSIGN_MODIFY, BINOP_MUL},
961 {"/=", ASSIGN_MODIFY, BINOP_DIV},
962 {"%=", ASSIGN_MODIFY, BINOP_REM},
963 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
964 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
965 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
966 {"++", INCREMENT, OP_NULL},
967 {"--", DECREMENT, OP_NULL},
968 {"&&", ANDAND, OP_NULL},
969 {"||", OROR, OP_NULL},
970 {"^^", HATHAT, OP_NULL},
971 {"<<", LSH, OP_NULL},
972 {">>", RSH, OP_NULL},
973 {"==", EQUAL, OP_NULL},
974 {"!=", NOTEQUAL, OP_NULL},
975 {"<=", LEQ, OP_NULL},
976 {">=", GEQ, OP_NULL},
977 {"..", DOTDOT, OP_NULL},
978 };
979
980 /* Identifier-like tokens. */
981 static const struct token ident_tokens[] =
982 {
983 {"is", IDENTITY, OP_NULL},
984 {"!is", NOTIDENTITY, OP_NULL},
985
986 {"cast", CAST_KEYWORD, OP_NULL},
987 {"const", CONST_KEYWORD, OP_NULL},
988 {"immutable", IMMUTABLE_KEYWORD, OP_NULL},
989 {"shared", SHARED_KEYWORD, OP_NULL},
990 {"super", SUPER_KEYWORD, OP_NULL},
991
992 {"null", NULL_KEYWORD, OP_NULL},
993 {"true", TRUE_KEYWORD, OP_NULL},
994 {"false", FALSE_KEYWORD, OP_NULL},
995
996 {"init", INIT_KEYWORD, OP_NULL},
997 {"sizeof", SIZEOF_KEYWORD, OP_NULL},
998 {"typeof", TYPEOF_KEYWORD, OP_NULL},
999 {"typeid", TYPEID_KEYWORD, OP_NULL},
1000
1001 {"delegate", DELEGATE_KEYWORD, OP_NULL},
1002 {"function", FUNCTION_KEYWORD, OP_NULL},
1003 {"struct", STRUCT_KEYWORD, OP_NULL},
1004 {"union", UNION_KEYWORD, OP_NULL},
1005 {"class", CLASS_KEYWORD, OP_NULL},
1006 {"interface", INTERFACE_KEYWORD, OP_NULL},
1007 {"enum", ENUM_KEYWORD, OP_NULL},
1008 {"template", TEMPLATE_KEYWORD, OP_NULL},
1009 };
1010
1011 /* This is set if a NAME token appeared at the very end of the input
1012 string, with no whitespace separating the name from the EOF. This
1013 is used only when parsing to do field name completion. */
1014 static int saw_name_at_eof;
1015
1016 /* This is set if the previously-returned token was a structure operator.
1017 This is used only when parsing to do field name completion. */
1018 static int last_was_structop;
1019
1020 /* Depth of parentheses. */
1021 static int paren_depth;
1022
1023 /* Read one token, getting characters through lexptr. */
1024
1025 static int
1026 lex_one_token (struct parser_state *par_state)
1027 {
1028 int c;
1029 int namelen;
1030 unsigned int i;
1031 const char *tokstart;
1032 int saw_structop = last_was_structop;
1033
1034 last_was_structop = 0;
1035
1036 retry:
1037
1038 pstate->prev_lexptr = pstate->lexptr;
1039
1040 tokstart = pstate->lexptr;
1041 /* See if it is a special token of length 3. */
1042 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1043 if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
1044 {
1045 pstate->lexptr += 3;
1046 yylval.opcode = tokentab3[i].opcode;
1047 return tokentab3[i].token;
1048 }
1049
1050 /* See if it is a special token of length 2. */
1051 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1052 if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
1053 {
1054 pstate->lexptr += 2;
1055 yylval.opcode = tokentab2[i].opcode;
1056 return tokentab2[i].token;
1057 }
1058
1059 switch (c = *tokstart)
1060 {
1061 case 0:
1062 /* If we're parsing for field name completion, and the previous
1063 token allows such completion, return a COMPLETE token.
1064 Otherwise, we were already scanning the original text, and
1065 we're really done. */
1066 if (saw_name_at_eof)
1067 {
1068 saw_name_at_eof = 0;
1069 return COMPLETE;
1070 }
1071 else if (saw_structop)
1072 return COMPLETE;
1073 else
1074 return 0;
1075
1076 case ' ':
1077 case '\t':
1078 case '\n':
1079 pstate->lexptr++;
1080 goto retry;
1081
1082 case '[':
1083 case '(':
1084 paren_depth++;
1085 pstate->lexptr++;
1086 return c;
1087
1088 case ']':
1089 case ')':
1090 if (paren_depth == 0)
1091 return 0;
1092 paren_depth--;
1093 pstate->lexptr++;
1094 return c;
1095
1096 case ',':
1097 if (pstate->comma_terminates && paren_depth == 0)
1098 return 0;
1099 pstate->lexptr++;
1100 return c;
1101
1102 case '.':
1103 /* Might be a floating point number. */
1104 if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
1105 {
1106 if (pstate->parse_completion)
1107 last_was_structop = 1;
1108 goto symbol; /* Nope, must be a symbol. */
1109 }
1110 /* FALL THRU. */
1111
1112 case '0':
1113 case '1':
1114 case '2':
1115 case '3':
1116 case '4':
1117 case '5':
1118 case '6':
1119 case '7':
1120 case '8':
1121 case '9':
1122 {
1123 /* It's a number. */
1124 int got_dot = 0, got_e = 0, toktype;
1125 const char *p = tokstart;
1126 int hex = input_radix > 10;
1127
1128 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1129 {
1130 p += 2;
1131 hex = 1;
1132 }
1133
1134 for (;; ++p)
1135 {
1136 /* Hex exponents start with 'p', because 'e' is a valid hex
1137 digit and thus does not indicate a floating point number
1138 when the radix is hex. */
1139 if ((!hex && !got_e && tolower (p[0]) == 'e')
1140 || (hex && !got_e && tolower (p[0] == 'p')))
1141 got_dot = got_e = 1;
1142 /* A '.' always indicates a decimal floating point number
1143 regardless of the radix. If we have a '..' then its the
1144 end of the number and the beginning of a slice. */
1145 else if (!got_dot && (p[0] == '.' && p[1] != '.'))
1146 got_dot = 1;
1147 /* This is the sign of the exponent, not the end of the number. */
1148 else if (got_e && (tolower (p[-1]) == 'e' || tolower (p[-1]) == 'p')
1149 && (*p == '-' || *p == '+'))
1150 continue;
1151 /* We will take any letters or digits, ignoring any embedded '_'.
1152 parse_number will complain if past the radix, or if L or U are
1153 not final. */
1154 else if ((*p < '0' || *p > '9') && (*p != '_')
1155 && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z')))
1156 break;
1157 }
1158
1159 toktype = parse_number (par_state, tokstart, p - tokstart,
1160 got_dot|got_e, &yylval);
1161 if (toktype == ERROR)
1162 {
1163 char *err_copy = (char *) alloca (p - tokstart + 1);
1164
1165 memcpy (err_copy, tokstart, p - tokstart);
1166 err_copy[p - tokstart] = 0;
1167 error (_("Invalid number \"%s\"."), err_copy);
1168 }
1169 pstate->lexptr = p;
1170 return toktype;
1171 }
1172
1173 case '@':
1174 {
1175 const char *p = &tokstart[1];
1176 size_t len = strlen ("entry");
1177
1178 while (isspace (*p))
1179 p++;
1180 if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
1181 && p[len] != '_')
1182 {
1183 pstate->lexptr = &p[len];
1184 return ENTRY;
1185 }
1186 }
1187 /* FALLTHRU */
1188 case '+':
1189 case '-':
1190 case '*':
1191 case '/':
1192 case '%':
1193 case '|':
1194 case '&':
1195 case '^':
1196 case '~':
1197 case '!':
1198 case '<':
1199 case '>':
1200 case '?':
1201 case ':':
1202 case '=':
1203 case '{':
1204 case '}':
1205 symbol:
1206 pstate->lexptr++;
1207 return c;
1208
1209 case '\'':
1210 case '"':
1211 case '`':
1212 {
1213 int host_len;
1214 int result = parse_string_or_char (tokstart, &pstate->lexptr,
1215 &yylval.tsval, &host_len);
1216 if (result == CHARACTER_LITERAL)
1217 {
1218 if (host_len == 0)
1219 error (_("Empty character constant."));
1220 else if (host_len > 2 && c == '\'')
1221 {
1222 ++tokstart;
1223 namelen = pstate->lexptr - tokstart - 1;
1224 goto tryname;
1225 }
1226 else if (host_len > 1)
1227 error (_("Invalid character constant."));
1228 }
1229 return result;
1230 }
1231 }
1232
1233 if (!(c == '_' || c == '$'
1234 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1235 /* We must have come across a bad character (e.g. ';'). */
1236 error (_("Invalid character '%c' in expression"), c);
1237
1238 /* It's a name. See how long it is. */
1239 namelen = 0;
1240 for (c = tokstart[namelen];
1241 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1242 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));)
1243 c = tokstart[++namelen];
1244
1245 /* The token "if" terminates the expression and is NOT
1246 removed from the input stream. */
1247 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1248 return 0;
1249
1250 /* For the same reason (breakpoint conditions), "thread N"
1251 terminates the expression. "thread" could be an identifier, but
1252 an identifier is never followed by a number without intervening
1253 punctuation. "task" is similar. Handle abbreviations of these,
1254 similarly to breakpoint.c:find_condition_and_thread. */
1255 if (namelen >= 1
1256 && (strncmp (tokstart, "thread", namelen) == 0
1257 || strncmp (tokstart, "task", namelen) == 0)
1258 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t'))
1259 {
1260 const char *p = tokstart + namelen + 1;
1261
1262 while (*p == ' ' || *p == '\t')
1263 p++;
1264 if (*p >= '0' && *p <= '9')
1265 return 0;
1266 }
1267
1268 pstate->lexptr += namelen;
1269
1270 tryname:
1271
1272 yylval.sval.ptr = tokstart;
1273 yylval.sval.length = namelen;
1274
1275 /* Catch specific keywords. */
1276 std::string copy = copy_name (yylval.sval);
1277 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
1278 if (copy == ident_tokens[i].oper)
1279 {
1280 /* It is ok to always set this, even though we don't always
1281 strictly need to. */
1282 yylval.opcode = ident_tokens[i].opcode;
1283 return ident_tokens[i].token;
1284 }
1285
1286 if (*tokstart == '$')
1287 return DOLLAR_VARIABLE;
1288
1289 yylval.tsym.type
1290 = language_lookup_primitive_type (par_state->language (),
1291 par_state->gdbarch (), copy.c_str ());
1292 if (yylval.tsym.type != NULL)
1293 return TYPENAME;
1294
1295 /* Input names that aren't symbols but ARE valid hex numbers,
1296 when the input radix permits them, can be names or numbers
1297 depending on the parse. Note we support radixes > 16 here. */
1298 if ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1299 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))
1300 {
1301 YYSTYPE newlval; /* Its value is ignored. */
1302 int hextype = parse_number (par_state, tokstart, namelen, 0, &newlval);
1303 if (hextype == INTEGER_LITERAL)
1304 return NAME_OR_INT;
1305 }
1306
1307 if (pstate->parse_completion && *pstate->lexptr == '\0')
1308 saw_name_at_eof = 1;
1309
1310 return IDENTIFIER;
1311 }
1312
1313 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
1314 struct token_and_value
1315 {
1316 int token;
1317 YYSTYPE value;
1318 };
1319
1320
1321 /* A FIFO of tokens that have been read but not yet returned to the
1322 parser. */
1323 static std::vector<token_and_value> token_fifo;
1324
1325 /* Non-zero if the lexer should return tokens from the FIFO. */
1326 static int popping;
1327
1328 /* Temporary storage for yylex; this holds symbol names as they are
1329 built up. */
1330 static auto_obstack name_obstack;
1331
1332 /* Classify an IDENTIFIER token. The contents of the token are in `yylval'.
1333 Updates yylval and returns the new token type. BLOCK is the block
1334 in which lookups start; this can be NULL to mean the global scope. */
1335
1336 static int
1337 classify_name (struct parser_state *par_state, const struct block *block)
1338 {
1339 struct block_symbol sym;
1340 struct field_of_this_result is_a_field_of_this;
1341
1342 std::string copy = copy_name (yylval.sval);
1343
1344 sym = lookup_symbol (copy.c_str (), block, VAR_DOMAIN, &is_a_field_of_this);
1345 if (sym.symbol && SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)
1346 {
1347 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1348 return TYPENAME;
1349 }
1350 else if (sym.symbol == NULL)
1351 {
1352 /* Look-up first for a module name, then a type. */
1353 sym = lookup_symbol (copy.c_str (), block, MODULE_DOMAIN, NULL);
1354 if (sym.symbol == NULL)
1355 sym = lookup_symbol (copy.c_str (), block, STRUCT_DOMAIN, NULL);
1356
1357 if (sym.symbol != NULL)
1358 {
1359 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1360 return TYPENAME;
1361 }
1362
1363 return UNKNOWN_NAME;
1364 }
1365
1366 return IDENTIFIER;
1367 }
1368
1369 /* Like classify_name, but used by the inner loop of the lexer, when a
1370 name might have already been seen. CONTEXT is the context type, or
1371 NULL if this is the first component of a name. */
1372
1373 static int
1374 classify_inner_name (struct parser_state *par_state,
1375 const struct block *block, struct type *context)
1376 {
1377 struct type *type;
1378
1379 if (context == NULL)
1380 return classify_name (par_state, block);
1381
1382 type = check_typedef (context);
1383 if (!type_aggregate_p (type))
1384 return ERROR;
1385
1386 std::string copy = copy_name (yylval.ssym.stoken);
1387 yylval.ssym.sym = d_lookup_nested_symbol (type, copy.c_str (), block);
1388
1389 if (yylval.ssym.sym.symbol == NULL)
1390 return ERROR;
1391
1392 if (SYMBOL_CLASS (yylval.ssym.sym.symbol) == LOC_TYPEDEF)
1393 {
1394 yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
1395 return TYPENAME;
1396 }
1397
1398 return IDENTIFIER;
1399 }
1400
1401 /* The outer level of a two-level lexer. This calls the inner lexer
1402 to return tokens. It then either returns these tokens, or
1403 aggregates them into a larger token. This lets us work around a
1404 problem in our parsing approach, where the parser could not
1405 distinguish between qualified names and qualified types at the
1406 right point. */
1407
1408 static int
1409 yylex (void)
1410 {
1411 token_and_value current;
1412 int last_was_dot;
1413 struct type *context_type = NULL;
1414 int last_to_examine, next_to_examine, checkpoint;
1415 const struct block *search_block;
1416
1417 if (popping && !token_fifo.empty ())
1418 goto do_pop;
1419 popping = 0;
1420
1421 /* Read the first token and decide what to do. */
1422 current.token = lex_one_token (pstate);
1423 if (current.token != IDENTIFIER && current.token != '.')
1424 return current.token;
1425
1426 /* Read any sequence of alternating "." and identifier tokens into
1427 the token FIFO. */
1428 current.value = yylval;
1429 token_fifo.push_back (current);
1430 last_was_dot = current.token == '.';
1431
1432 while (1)
1433 {
1434 current.token = lex_one_token (pstate);
1435 current.value = yylval;
1436 token_fifo.push_back (current);
1437
1438 if ((last_was_dot && current.token != IDENTIFIER)
1439 || (!last_was_dot && current.token != '.'))
1440 break;
1441
1442 last_was_dot = !last_was_dot;
1443 }
1444 popping = 1;
1445
1446 /* We always read one extra token, so compute the number of tokens
1447 to examine accordingly. */
1448 last_to_examine = token_fifo.size () - 2;
1449 next_to_examine = 0;
1450
1451 current = token_fifo[next_to_examine];
1452 ++next_to_examine;
1453
1454 /* If we are not dealing with a typename, now is the time to find out. */
1455 if (current.token == IDENTIFIER)
1456 {
1457 yylval = current.value;
1458 current.token = classify_name (pstate, pstate->expression_context_block);
1459 current.value = yylval;
1460 }
1461
1462 /* If the IDENTIFIER is not known, it could be a package symbol,
1463 first try building up a name until we find the qualified module. */
1464 if (current.token == UNKNOWN_NAME)
1465 {
1466 name_obstack.clear ();
1467 obstack_grow (&name_obstack, current.value.sval.ptr,
1468 current.value.sval.length);
1469
1470 last_was_dot = 0;
1471
1472 while (next_to_examine <= last_to_examine)
1473 {
1474 token_and_value next;
1475
1476 next = token_fifo[next_to_examine];
1477 ++next_to_examine;
1478
1479 if (next.token == IDENTIFIER && last_was_dot)
1480 {
1481 /* Update the partial name we are constructing. */
1482 obstack_grow_str (&name_obstack, ".");
1483 obstack_grow (&name_obstack, next.value.sval.ptr,
1484 next.value.sval.length);
1485
1486 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1487 yylval.sval.length = obstack_object_size (&name_obstack);
1488
1489 current.token = classify_name (pstate,
1490 pstate->expression_context_block);
1491 current.value = yylval;
1492
1493 /* We keep going until we find a TYPENAME. */
1494 if (current.token == TYPENAME)
1495 {
1496 /* Install it as the first token in the FIFO. */
1497 token_fifo[0] = current;
1498 token_fifo.erase (token_fifo.begin () + 1,
1499 token_fifo.begin () + next_to_examine);
1500 break;
1501 }
1502 }
1503 else if (next.token == '.' && !last_was_dot)
1504 last_was_dot = 1;
1505 else
1506 {
1507 /* We've reached the end of the name. */
1508 break;
1509 }
1510 }
1511
1512 /* Reset our current token back to the start, if we found nothing
1513 this means that we will just jump to do pop. */
1514 current = token_fifo[0];
1515 next_to_examine = 1;
1516 }
1517 if (current.token != TYPENAME && current.token != '.')
1518 goto do_pop;
1519
1520 name_obstack.clear ();
1521 checkpoint = 0;
1522 if (current.token == '.')
1523 search_block = NULL;
1524 else
1525 {
1526 gdb_assert (current.token == TYPENAME);
1527 search_block = pstate->expression_context_block;
1528 obstack_grow (&name_obstack, current.value.sval.ptr,
1529 current.value.sval.length);
1530 context_type = current.value.tsym.type;
1531 checkpoint = 1;
1532 }
1533
1534 last_was_dot = current.token == '.';
1535
1536 while (next_to_examine <= last_to_examine)
1537 {
1538 token_and_value next;
1539
1540 next = token_fifo[next_to_examine];
1541 ++next_to_examine;
1542
1543 if (next.token == IDENTIFIER && last_was_dot)
1544 {
1545 int classification;
1546
1547 yylval = next.value;
1548 classification = classify_inner_name (pstate, search_block,
1549 context_type);
1550 /* We keep going until we either run out of names, or until
1551 we have a qualified name which is not a type. */
1552 if (classification != TYPENAME && classification != IDENTIFIER)
1553 break;
1554
1555 /* Accept up to this token. */
1556 checkpoint = next_to_examine;
1557
1558 /* Update the partial name we are constructing. */
1559 if (context_type != NULL)
1560 {
1561 /* We don't want to put a leading "." into the name. */
1562 obstack_grow_str (&name_obstack, ".");
1563 }
1564 obstack_grow (&name_obstack, next.value.sval.ptr,
1565 next.value.sval.length);
1566
1567 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1568 yylval.sval.length = obstack_object_size (&name_obstack);
1569 current.value = yylval;
1570 current.token = classification;
1571
1572 last_was_dot = 0;
1573
1574 if (classification == IDENTIFIER)
1575 break;
1576
1577 context_type = yylval.tsym.type;
1578 }
1579 else if (next.token == '.' && !last_was_dot)
1580 last_was_dot = 1;
1581 else
1582 {
1583 /* We've reached the end of the name. */
1584 break;
1585 }
1586 }
1587
1588 /* If we have a replacement token, install it as the first token in
1589 the FIFO, and delete the other constituent tokens. */
1590 if (checkpoint > 0)
1591 {
1592 token_fifo[0] = current;
1593 if (checkpoint > 1)
1594 token_fifo.erase (token_fifo.begin () + 1,
1595 token_fifo.begin () + checkpoint);
1596 }
1597
1598 do_pop:
1599 current = token_fifo[0];
1600 token_fifo.erase (token_fifo.begin ());
1601 yylval = current.value;
1602 return current.token;
1603 }
1604
1605 int
1606 d_parse (struct parser_state *par_state)
1607 {
1608 /* Setting up the parser state. */
1609 scoped_restore pstate_restore = make_scoped_restore (&pstate);
1610 gdb_assert (par_state != NULL);
1611 pstate = par_state;
1612
1613 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
1614 parser_debug);
1615
1616 struct type_stack stack;
1617 scoped_restore restore_type_stack = make_scoped_restore (&type_stack,
1618 &stack);
1619
1620 /* Initialize some state used by the lexer. */
1621 last_was_structop = 0;
1622 saw_name_at_eof = 0;
1623 paren_depth = 0;
1624
1625 token_fifo.clear ();
1626 popping = 0;
1627 name_obstack.clear ();
1628
1629 int result = yyparse ();
1630 if (!result)
1631 pstate->set_operation (pstate->pop ());
1632 return result;
1633 }
1634
1635 static void
1636 yyerror (const char *msg)
1637 {
1638 if (pstate->prev_lexptr)
1639 pstate->lexptr = pstate->prev_lexptr;
1640
1641 error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
1642 }
1643
This page took 0.062381 seconds and 4 git commands to generate.