Eliminate make_cleanup_obstack_free, introduce auto_obstack
[deliverable/binutils-gdb.git] / gdb / d-exp.y
1 /* YACC parser for D expressions, for GDB.
2
3 Copyright (C) 2014-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This file is derived from c-exp.y, jv-exp.y. */
21
22 /* Parse a D expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "d-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "charset.h"
53 #include "block.h"
54
55 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
56 #define parse_d_type(ps) builtin_d_type (parse_gdbarch (ps))
57
58 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
59 etc). */
60 #define GDB_YY_REMAP_PREFIX d_
61 #include "yy-remap.h"
62
63 /* The state of the parser, used internally when we are parsing the
64 expression. */
65
66 static struct parser_state *pstate = NULL;
67
68 int yyparse (void);
69
70 static int yylex (void);
71
72 void yyerror (const char *);
73
74 static int type_aggregate_p (struct type *);
75
76 %}
77
78 /* Although the yacc "value" of an expression is not used,
79 since the result is stored in the structure being created,
80 other node types do have values. */
81
82 %union
83 {
84 struct {
85 LONGEST val;
86 struct type *type;
87 } typed_val_int;
88 struct {
89 DOUBLEST dval;
90 struct type *type;
91 } typed_val_float;
92 struct symbol *sym;
93 struct type *tval;
94 struct typed_stoken tsval;
95 struct stoken sval;
96 struct ttype tsym;
97 struct symtoken ssym;
98 int ival;
99 int voidval;
100 struct block *bval;
101 enum exp_opcode opcode;
102 struct stoken_vector svec;
103 }
104
105 %{
106 /* YYSTYPE gets defined by %union */
107 static int parse_number (struct parser_state *, const char *,
108 int, int, YYSTYPE *);
109 %}
110
111 %token <sval> IDENTIFIER UNKNOWN_NAME
112 %token <tsym> TYPENAME
113 %token <voidval> COMPLETE
114
115 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
116 but which would parse as a valid number in the current input radix.
117 E.g. "c" when input_radix==16. Depending on the parse, it will be
118 turned into a name or into a number. */
119
120 %token <sval> NAME_OR_INT
121
122 %token <typed_val_int> INTEGER_LITERAL
123 %token <typed_val_float> FLOAT_LITERAL
124 %token <tsval> CHARACTER_LITERAL
125 %token <tsval> STRING_LITERAL
126
127 %type <svec> StringExp
128 %type <tval> BasicType TypeExp
129 %type <sval> IdentifierExp
130 %type <ival> ArrayLiteral
131
132 %token ENTRY
133 %token ERROR
134
135 /* Keywords that have a constant value. */
136 %token TRUE_KEYWORD FALSE_KEYWORD NULL_KEYWORD
137 /* Class 'super' accessor. */
138 %token SUPER_KEYWORD
139 /* Properties. */
140 %token CAST_KEYWORD SIZEOF_KEYWORD
141 %token TYPEOF_KEYWORD TYPEID_KEYWORD
142 %token INIT_KEYWORD
143 /* Comparison keywords. */
144 /* Type storage classes. */
145 %token IMMUTABLE_KEYWORD CONST_KEYWORD SHARED_KEYWORD
146 /* Non-scalar type keywords. */
147 %token STRUCT_KEYWORD UNION_KEYWORD
148 %token CLASS_KEYWORD INTERFACE_KEYWORD
149 %token ENUM_KEYWORD TEMPLATE_KEYWORD
150 %token DELEGATE_KEYWORD FUNCTION_KEYWORD
151
152 %token <sval> DOLLAR_VARIABLE
153
154 %token <opcode> ASSIGN_MODIFY
155
156 %left ','
157 %right '=' ASSIGN_MODIFY
158 %right '?'
159 %left OROR
160 %left ANDAND
161 %left '|'
162 %left '^'
163 %left '&'
164 %left EQUAL NOTEQUAL '<' '>' LEQ GEQ
165 %right LSH RSH
166 %left '+' '-'
167 %left '*' '/' '%'
168 %right HATHAT
169 %left IDENTITY NOTIDENTITY
170 %right INCREMENT DECREMENT
171 %right '.' '[' '('
172 %token DOTDOT
173
174 \f
175 %%
176
177 start :
178 Expression
179 | TypeExp
180 ;
181
182 /* Expressions, including the comma operator. */
183
184 Expression:
185 CommaExpression
186 ;
187
188 CommaExpression:
189 AssignExpression
190 | AssignExpression ',' CommaExpression
191 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
192 ;
193
194 AssignExpression:
195 ConditionalExpression
196 | ConditionalExpression '=' AssignExpression
197 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
198 | ConditionalExpression ASSIGN_MODIFY AssignExpression
199 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
200 write_exp_elt_opcode (pstate, $2);
201 write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
202 ;
203
204 ConditionalExpression:
205 OrOrExpression
206 | OrOrExpression '?' Expression ':' ConditionalExpression
207 { write_exp_elt_opcode (pstate, TERNOP_COND); }
208 ;
209
210 OrOrExpression:
211 AndAndExpression
212 | OrOrExpression OROR AndAndExpression
213 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
214 ;
215
216 AndAndExpression:
217 OrExpression
218 | AndAndExpression ANDAND OrExpression
219 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
220 ;
221
222 OrExpression:
223 XorExpression
224 | OrExpression '|' XorExpression
225 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
226 ;
227
228 XorExpression:
229 AndExpression
230 | XorExpression '^' AndExpression
231 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
232 ;
233
234 AndExpression:
235 CmpExpression
236 | AndExpression '&' CmpExpression
237 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
238 ;
239
240 CmpExpression:
241 ShiftExpression
242 | EqualExpression
243 | IdentityExpression
244 | RelExpression
245 ;
246
247 EqualExpression:
248 ShiftExpression EQUAL ShiftExpression
249 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
250 | ShiftExpression NOTEQUAL ShiftExpression
251 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
252 ;
253
254 IdentityExpression:
255 ShiftExpression IDENTITY ShiftExpression
256 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
257 | ShiftExpression NOTIDENTITY ShiftExpression
258 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
259 ;
260
261 RelExpression:
262 ShiftExpression '<' ShiftExpression
263 { write_exp_elt_opcode (pstate, BINOP_LESS); }
264 | ShiftExpression LEQ ShiftExpression
265 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
266 | ShiftExpression '>' ShiftExpression
267 { write_exp_elt_opcode (pstate, BINOP_GTR); }
268 | ShiftExpression GEQ ShiftExpression
269 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
270 ;
271
272 ShiftExpression:
273 AddExpression
274 | ShiftExpression LSH AddExpression
275 { write_exp_elt_opcode (pstate, BINOP_LSH); }
276 | ShiftExpression RSH AddExpression
277 { write_exp_elt_opcode (pstate, BINOP_RSH); }
278 ;
279
280 AddExpression:
281 MulExpression
282 | AddExpression '+' MulExpression
283 { write_exp_elt_opcode (pstate, BINOP_ADD); }
284 | AddExpression '-' MulExpression
285 { write_exp_elt_opcode (pstate, BINOP_SUB); }
286 | AddExpression '~' MulExpression
287 { write_exp_elt_opcode (pstate, BINOP_CONCAT); }
288 ;
289
290 MulExpression:
291 UnaryExpression
292 | MulExpression '*' UnaryExpression
293 { write_exp_elt_opcode (pstate, BINOP_MUL); }
294 | MulExpression '/' UnaryExpression
295 { write_exp_elt_opcode (pstate, BINOP_DIV); }
296 | MulExpression '%' UnaryExpression
297 { write_exp_elt_opcode (pstate, BINOP_REM); }
298
299 UnaryExpression:
300 '&' UnaryExpression
301 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
302 | INCREMENT UnaryExpression
303 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
304 | DECREMENT UnaryExpression
305 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
306 | '*' UnaryExpression
307 { write_exp_elt_opcode (pstate, UNOP_IND); }
308 | '-' UnaryExpression
309 { write_exp_elt_opcode (pstate, UNOP_NEG); }
310 | '+' UnaryExpression
311 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
312 | '!' UnaryExpression
313 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
314 | '~' UnaryExpression
315 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
316 | TypeExp '.' SIZEOF_KEYWORD
317 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
318 | CastExpression
319 | PowExpression
320 ;
321
322 CastExpression:
323 CAST_KEYWORD '(' TypeExp ')' UnaryExpression
324 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
325 /* C style cast is illegal D, but is still recognised in
326 the grammar, so we keep this around for convenience. */
327 | '(' TypeExp ')' UnaryExpression
328 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
329
330 ;
331
332 PowExpression:
333 PostfixExpression
334 | PostfixExpression HATHAT UnaryExpression
335 { write_exp_elt_opcode (pstate, BINOP_EXP); }
336 ;
337
338 PostfixExpression:
339 PrimaryExpression
340 | PostfixExpression '.' COMPLETE
341 { struct stoken s;
342 mark_struct_expression (pstate);
343 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
344 s.ptr = "";
345 s.length = 0;
346 write_exp_string (pstate, s);
347 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
348 | PostfixExpression '.' IDENTIFIER
349 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
350 write_exp_string (pstate, $3);
351 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
352 | PostfixExpression '.' IDENTIFIER COMPLETE
353 { mark_struct_expression (pstate);
354 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
355 write_exp_string (pstate, $3);
356 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
357 | PostfixExpression '.' SIZEOF_KEYWORD
358 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
359 | PostfixExpression INCREMENT
360 { write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
361 | PostfixExpression DECREMENT
362 { write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
363 | CallExpression
364 | IndexExpression
365 | SliceExpression
366 ;
367
368 ArgumentList:
369 AssignExpression
370 { arglist_len = 1; }
371 | ArgumentList ',' AssignExpression
372 { arglist_len++; }
373 ;
374
375 ArgumentList_opt:
376 /* EMPTY */
377 { arglist_len = 0; }
378 | ArgumentList
379 ;
380
381 CallExpression:
382 PostfixExpression '('
383 { start_arglist (); }
384 ArgumentList_opt ')'
385 { write_exp_elt_opcode (pstate, OP_FUNCALL);
386 write_exp_elt_longcst (pstate, (LONGEST) end_arglist ());
387 write_exp_elt_opcode (pstate, OP_FUNCALL); }
388 ;
389
390 IndexExpression:
391 PostfixExpression '[' ArgumentList ']'
392 { if (arglist_len > 0)
393 {
394 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
395 write_exp_elt_longcst (pstate, (LONGEST) arglist_len);
396 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
397 }
398 else
399 write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
400 }
401 ;
402
403 SliceExpression:
404 PostfixExpression '[' ']'
405 { /* Do nothing. */ }
406 | PostfixExpression '[' AssignExpression DOTDOT AssignExpression ']'
407 { write_exp_elt_opcode (pstate, TERNOP_SLICE); }
408 ;
409
410 PrimaryExpression:
411 '(' Expression ')'
412 { /* Do nothing. */ }
413 | IdentifierExp
414 { struct bound_minimal_symbol msymbol;
415 char *copy = copy_name ($1);
416 struct field_of_this_result is_a_field_of_this;
417 struct block_symbol sym;
418
419 /* Handle VAR, which could be local or global. */
420 sym = lookup_symbol (copy, expression_context_block, VAR_DOMAIN,
421 &is_a_field_of_this);
422 if (sym.symbol && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
423 {
424 if (symbol_read_needs_frame (sym.symbol))
425 {
426 if (innermost_block == 0
427 || contained_in (sym.block, innermost_block))
428 innermost_block = sym.block;
429 }
430
431 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
432 write_exp_elt_block (pstate, sym.block);
433 write_exp_elt_sym (pstate, sym.symbol);
434 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
435 }
436 else if (is_a_field_of_this.type != NULL)
437 {
438 /* It hangs off of `this'. Must not inadvertently convert from a
439 method call to data ref. */
440 if (innermost_block == 0
441 || contained_in (sym.block, innermost_block))
442 innermost_block = sym.block;
443 write_exp_elt_opcode (pstate, OP_THIS);
444 write_exp_elt_opcode (pstate, OP_THIS);
445 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
446 write_exp_string (pstate, $1);
447 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
448 }
449 else
450 {
451 /* Lookup foreign name in global static symbols. */
452 msymbol = lookup_bound_minimal_symbol (copy);
453 if (msymbol.minsym != NULL)
454 write_exp_msymbol (pstate, msymbol);
455 else if (!have_full_symbols () && !have_partial_symbols ())
456 error (_("No symbol table is loaded. Use the \"file\" command"));
457 else
458 error (_("No symbol \"%s\" in current context."), copy);
459 }
460 }
461 | TypeExp '.' IdentifierExp
462 { struct type *type = check_typedef ($1);
463
464 /* Check if the qualified name is in the global
465 context. However if the symbol has not already
466 been resolved, it's not likely to be found. */
467 if (TYPE_CODE (type) == TYPE_CODE_MODULE)
468 {
469 struct bound_minimal_symbol msymbol;
470 struct block_symbol sym;
471 const char *type_name = TYPE_SAFE_NAME (type);
472 int type_name_len = strlen (type_name);
473 char *name;
474
475 name = xstrprintf ("%.*s.%.*s",
476 type_name_len, type_name,
477 $3.length, $3.ptr);
478 make_cleanup (xfree, name);
479
480 sym =
481 lookup_symbol (name, (const struct block *) NULL,
482 VAR_DOMAIN, NULL);
483 if (sym.symbol)
484 {
485 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
486 write_exp_elt_block (pstate, sym.block);
487 write_exp_elt_sym (pstate, sym.symbol);
488 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
489 break;
490 }
491
492 msymbol = lookup_bound_minimal_symbol (name);
493 if (msymbol.minsym != NULL)
494 write_exp_msymbol (pstate, msymbol);
495 else if (!have_full_symbols () && !have_partial_symbols ())
496 error (_("No symbol table is loaded. Use the \"file\" command."));
497 else
498 error (_("No symbol \"%s\" in current context."), name);
499 }
500
501 /* Check if the qualified name resolves as a member
502 of an aggregate or an enum type. */
503 if (!type_aggregate_p (type))
504 error (_("`%s' is not defined as an aggregate type."),
505 TYPE_SAFE_NAME (type));
506
507 write_exp_elt_opcode (pstate, OP_SCOPE);
508 write_exp_elt_type (pstate, type);
509 write_exp_string (pstate, $3);
510 write_exp_elt_opcode (pstate, OP_SCOPE);
511 }
512 | DOLLAR_VARIABLE
513 { write_dollar_variable (pstate, $1); }
514 | NAME_OR_INT
515 { YYSTYPE val;
516 parse_number (pstate, $1.ptr, $1.length, 0, &val);
517 write_exp_elt_opcode (pstate, OP_LONG);
518 write_exp_elt_type (pstate, val.typed_val_int.type);
519 write_exp_elt_longcst (pstate,
520 (LONGEST) val.typed_val_int.val);
521 write_exp_elt_opcode (pstate, OP_LONG); }
522 | NULL_KEYWORD
523 { struct type *type = parse_d_type (pstate)->builtin_void;
524 type = lookup_pointer_type (type);
525 write_exp_elt_opcode (pstate, OP_LONG);
526 write_exp_elt_type (pstate, type);
527 write_exp_elt_longcst (pstate, (LONGEST) 0);
528 write_exp_elt_opcode (pstate, OP_LONG); }
529 | TRUE_KEYWORD
530 { write_exp_elt_opcode (pstate, OP_BOOL);
531 write_exp_elt_longcst (pstate, (LONGEST) 1);
532 write_exp_elt_opcode (pstate, OP_BOOL); }
533 | FALSE_KEYWORD
534 { write_exp_elt_opcode (pstate, OP_BOOL);
535 write_exp_elt_longcst (pstate, (LONGEST) 0);
536 write_exp_elt_opcode (pstate, OP_BOOL); }
537 | INTEGER_LITERAL
538 { write_exp_elt_opcode (pstate, OP_LONG);
539 write_exp_elt_type (pstate, $1.type);
540 write_exp_elt_longcst (pstate, (LONGEST)($1.val));
541 write_exp_elt_opcode (pstate, OP_LONG); }
542 | FLOAT_LITERAL
543 { write_exp_elt_opcode (pstate, OP_DOUBLE);
544 write_exp_elt_type (pstate, $1.type);
545 write_exp_elt_dblcst (pstate, $1.dval);
546 write_exp_elt_opcode (pstate, OP_DOUBLE); }
547 | CHARACTER_LITERAL
548 { struct stoken_vector vec;
549 vec.len = 1;
550 vec.tokens = &$1;
551 write_exp_string_vector (pstate, $1.type, &vec); }
552 | StringExp
553 { int i;
554 write_exp_string_vector (pstate, 0, &$1);
555 for (i = 0; i < $1.len; ++i)
556 free ($1.tokens[i].ptr);
557 free ($1.tokens); }
558 | ArrayLiteral
559 { write_exp_elt_opcode (pstate, OP_ARRAY);
560 write_exp_elt_longcst (pstate, (LONGEST) 0);
561 write_exp_elt_longcst (pstate, (LONGEST) $1 - 1);
562 write_exp_elt_opcode (pstate, OP_ARRAY); }
563 | TYPEOF_KEYWORD '(' Expression ')'
564 { write_exp_elt_opcode (pstate, OP_TYPEOF); }
565 ;
566
567 ArrayLiteral:
568 '[' ArgumentList_opt ']'
569 { $$ = arglist_len; }
570 ;
571
572 IdentifierExp:
573 IDENTIFIER
574 ;
575
576 StringExp:
577 STRING_LITERAL
578 { /* We copy the string here, and not in the
579 lexer, to guarantee that we do not leak a
580 string. Note that we follow the
581 NUL-termination convention of the
582 lexer. */
583 struct typed_stoken *vec = XNEW (struct typed_stoken);
584 $$.len = 1;
585 $$.tokens = vec;
586
587 vec->type = $1.type;
588 vec->length = $1.length;
589 vec->ptr = (char *) malloc ($1.length + 1);
590 memcpy (vec->ptr, $1.ptr, $1.length + 1);
591 }
592 | StringExp STRING_LITERAL
593 { /* Note that we NUL-terminate here, but just
594 for convenience. */
595 char *p;
596 ++$$.len;
597 $$.tokens
598 = XRESIZEVEC (struct typed_stoken, $$.tokens, $$.len);
599
600 p = (char *) malloc ($2.length + 1);
601 memcpy (p, $2.ptr, $2.length + 1);
602
603 $$.tokens[$$.len - 1].type = $2.type;
604 $$.tokens[$$.len - 1].length = $2.length;
605 $$.tokens[$$.len - 1].ptr = p;
606 }
607 ;
608
609 TypeExp:
610 '(' TypeExp ')'
611 { /* Do nothing. */ }
612 | BasicType
613 { write_exp_elt_opcode (pstate, OP_TYPE);
614 write_exp_elt_type (pstate, $1);
615 write_exp_elt_opcode (pstate, OP_TYPE); }
616 | BasicType BasicType2
617 { $$ = follow_types ($1);
618 write_exp_elt_opcode (pstate, OP_TYPE);
619 write_exp_elt_type (pstate, $$);
620 write_exp_elt_opcode (pstate, OP_TYPE);
621 }
622 ;
623
624 BasicType2:
625 '*'
626 { push_type (tp_pointer); }
627 | '*' BasicType2
628 { push_type (tp_pointer); }
629 | '[' INTEGER_LITERAL ']'
630 { push_type_int ($2.val);
631 push_type (tp_array); }
632 | '[' INTEGER_LITERAL ']' BasicType2
633 { push_type_int ($2.val);
634 push_type (tp_array); }
635 ;
636
637 BasicType:
638 TYPENAME
639 { $$ = $1.type; }
640 ;
641
642 %%
643
644 /* Return true if the type is aggregate-like. */
645
646 static int
647 type_aggregate_p (struct type *type)
648 {
649 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
650 || TYPE_CODE (type) == TYPE_CODE_UNION
651 || TYPE_CODE (type) == TYPE_CODE_MODULE
652 || (TYPE_CODE (type) == TYPE_CODE_ENUM
653 && TYPE_DECLARED_CLASS (type)));
654 }
655
656 /* Take care of parsing a number (anything that starts with a digit).
657 Set yylval and return the token type; update lexptr.
658 LEN is the number of characters in it. */
659
660 /*** Needs some error checking for the float case ***/
661
662 static int
663 parse_number (struct parser_state *ps, const char *p,
664 int len, int parsed_float, YYSTYPE *putithere)
665 {
666 ULONGEST n = 0;
667 ULONGEST prevn = 0;
668 ULONGEST un;
669
670 int i = 0;
671 int c;
672 int base = input_radix;
673 int unsigned_p = 0;
674 int long_p = 0;
675
676 /* We have found a "L" or "U" suffix. */
677 int found_suffix = 0;
678
679 ULONGEST high_bit;
680 struct type *signed_type;
681 struct type *unsigned_type;
682
683 if (parsed_float)
684 {
685 const char *suffix;
686 int suffix_len;
687 char *s, *sp;
688
689 /* Strip out all embedded '_' before passing to parse_float. */
690 s = (char *) alloca (len + 1);
691 sp = s;
692 while (len-- > 0)
693 {
694 if (*p != '_')
695 *sp++ = *p;
696 p++;
697 }
698 *sp = '\0';
699 len = strlen (s);
700
701 if (! parse_float (s, len, &putithere->typed_val_float.dval, &suffix))
702 return ERROR;
703
704 suffix_len = s + len - suffix;
705
706 if (suffix_len == 0)
707 {
708 putithere->typed_val_float.type
709 = parse_d_type (ps)->builtin_double;
710 }
711 else if (suffix_len == 1)
712 {
713 /* Check suffix for `f', `l', or `i' (float, real, or idouble). */
714 if (tolower (*suffix) == 'f')
715 {
716 putithere->typed_val_float.type
717 = parse_d_type (ps)->builtin_float;
718 }
719 else if (tolower (*suffix) == 'l')
720 {
721 putithere->typed_val_float.type
722 = parse_d_type (ps)->builtin_real;
723 }
724 else if (tolower (*suffix) == 'i')
725 {
726 putithere->typed_val_float.type
727 = parse_d_type (ps)->builtin_idouble;
728 }
729 else
730 return ERROR;
731 }
732 else if (suffix_len == 2)
733 {
734 /* Check suffix for `fi' or `li' (ifloat or ireal). */
735 if (tolower (suffix[0]) == 'f' && tolower (suffix[1] == 'i'))
736 {
737 putithere->typed_val_float.type
738 = parse_d_type (ps)->builtin_ifloat;
739 }
740 else if (tolower (suffix[0]) == 'l' && tolower (suffix[1] == 'i'))
741 {
742 putithere->typed_val_float.type
743 = parse_d_type (ps)->builtin_ireal;
744 }
745 else
746 return ERROR;
747 }
748 else
749 return ERROR;
750
751 return FLOAT_LITERAL;
752 }
753
754 /* Handle base-switching prefixes 0x, 0b, 0 */
755 if (p[0] == '0')
756 switch (p[1])
757 {
758 case 'x':
759 case 'X':
760 if (len >= 3)
761 {
762 p += 2;
763 base = 16;
764 len -= 2;
765 }
766 break;
767
768 case 'b':
769 case 'B':
770 if (len >= 3)
771 {
772 p += 2;
773 base = 2;
774 len -= 2;
775 }
776 break;
777
778 default:
779 base = 8;
780 break;
781 }
782
783 while (len-- > 0)
784 {
785 c = *p++;
786 if (c == '_')
787 continue; /* Ignore embedded '_'. */
788 if (c >= 'A' && c <= 'Z')
789 c += 'a' - 'A';
790 if (c != 'l' && c != 'u')
791 n *= base;
792 if (c >= '0' && c <= '9')
793 {
794 if (found_suffix)
795 return ERROR;
796 n += i = c - '0';
797 }
798 else
799 {
800 if (base > 10 && c >= 'a' && c <= 'f')
801 {
802 if (found_suffix)
803 return ERROR;
804 n += i = c - 'a' + 10;
805 }
806 else if (c == 'l' && long_p == 0)
807 {
808 long_p = 1;
809 found_suffix = 1;
810 }
811 else if (c == 'u' && unsigned_p == 0)
812 {
813 unsigned_p = 1;
814 found_suffix = 1;
815 }
816 else
817 return ERROR; /* Char not a digit */
818 }
819 if (i >= base)
820 return ERROR; /* Invalid digit in this base. */
821 /* Portably test for integer overflow. */
822 if (c != 'l' && c != 'u')
823 {
824 ULONGEST n2 = prevn * base;
825 if ((n2 / base != prevn) || (n2 + i < prevn))
826 error (_("Numeric constant too large."));
827 }
828 prevn = n;
829 }
830
831 /* An integer constant is an int or a long. An L suffix forces it to
832 be long, and a U suffix forces it to be unsigned. To figure out
833 whether it fits, we shift it right and see whether anything remains.
834 Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or
835 more in one operation, because many compilers will warn about such a
836 shift (which always produces a zero result). To deal with the case
837 where it is we just always shift the value more than once, with fewer
838 bits each time. */
839 un = (ULONGEST) n >> 2;
840 if (long_p == 0 && (un >> 30) == 0)
841 {
842 high_bit = ((ULONGEST) 1) << 31;
843 signed_type = parse_d_type (ps)->builtin_int;
844 /* For decimal notation, keep the sign of the worked out type. */
845 if (base == 10 && !unsigned_p)
846 unsigned_type = parse_d_type (ps)->builtin_long;
847 else
848 unsigned_type = parse_d_type (ps)->builtin_uint;
849 }
850 else
851 {
852 int shift;
853 if (sizeof (ULONGEST) * HOST_CHAR_BIT < 64)
854 /* A long long does not fit in a LONGEST. */
855 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
856 else
857 shift = 63;
858 high_bit = (ULONGEST) 1 << shift;
859 signed_type = parse_d_type (ps)->builtin_long;
860 unsigned_type = parse_d_type (ps)->builtin_ulong;
861 }
862
863 putithere->typed_val_int.val = n;
864
865 /* If the high bit of the worked out type is set then this number
866 has to be unsigned_type. */
867 if (unsigned_p || (n & high_bit))
868 putithere->typed_val_int.type = unsigned_type;
869 else
870 putithere->typed_val_int.type = signed_type;
871
872 return INTEGER_LITERAL;
873 }
874
875 /* Temporary obstack used for holding strings. */
876 static struct obstack tempbuf;
877 static int tempbuf_init;
878
879 /* Parse a string or character literal from TOKPTR. The string or
880 character may be wide or unicode. *OUTPTR is set to just after the
881 end of the literal in the input string. The resulting token is
882 stored in VALUE. This returns a token value, either STRING or
883 CHAR, depending on what was parsed. *HOST_CHARS is set to the
884 number of host characters in the literal. */
885
886 static int
887 parse_string_or_char (const char *tokptr, const char **outptr,
888 struct typed_stoken *value, int *host_chars)
889 {
890 int quote;
891
892 /* Build the gdb internal form of the input string in tempbuf. Note
893 that the buffer is null byte terminated *only* for the
894 convenience of debugging gdb itself and printing the buffer
895 contents when the buffer contains no embedded nulls. Gdb does
896 not depend upon the buffer being null byte terminated, it uses
897 the length string instead. This allows gdb to handle C strings
898 (as well as strings in other languages) with embedded null
899 bytes */
900
901 if (!tempbuf_init)
902 tempbuf_init = 1;
903 else
904 obstack_free (&tempbuf, NULL);
905 obstack_init (&tempbuf);
906
907 /* Skip the quote. */
908 quote = *tokptr;
909 ++tokptr;
910
911 *host_chars = 0;
912
913 while (*tokptr)
914 {
915 char c = *tokptr;
916 if (c == '\\')
917 {
918 ++tokptr;
919 *host_chars += c_parse_escape (&tokptr, &tempbuf);
920 }
921 else if (c == quote)
922 break;
923 else
924 {
925 obstack_1grow (&tempbuf, c);
926 ++tokptr;
927 /* FIXME: this does the wrong thing with multi-byte host
928 characters. We could use mbrlen here, but that would
929 make "set host-charset" a bit less useful. */
930 ++*host_chars;
931 }
932 }
933
934 if (*tokptr != quote)
935 {
936 if (quote == '"' || quote == '`')
937 error (_("Unterminated string in expression."));
938 else
939 error (_("Unmatched single quote."));
940 }
941 ++tokptr;
942
943 /* FIXME: should instead use own language string_type enum
944 and handle D-specific string suffixes here. */
945 if (quote == '\'')
946 value->type = C_CHAR;
947 else
948 value->type = C_STRING;
949
950 value->ptr = (char *) obstack_base (&tempbuf);
951 value->length = obstack_object_size (&tempbuf);
952
953 *outptr = tokptr;
954
955 return quote == '\'' ? CHARACTER_LITERAL : STRING_LITERAL;
956 }
957
958 struct token
959 {
960 const char *oper;
961 int token;
962 enum exp_opcode opcode;
963 };
964
965 static const struct token tokentab3[] =
966 {
967 {"^^=", ASSIGN_MODIFY, BINOP_EXP},
968 {"<<=", ASSIGN_MODIFY, BINOP_LSH},
969 {">>=", ASSIGN_MODIFY, BINOP_RSH},
970 };
971
972 static const struct token tokentab2[] =
973 {
974 {"+=", ASSIGN_MODIFY, BINOP_ADD},
975 {"-=", ASSIGN_MODIFY, BINOP_SUB},
976 {"*=", ASSIGN_MODIFY, BINOP_MUL},
977 {"/=", ASSIGN_MODIFY, BINOP_DIV},
978 {"%=", ASSIGN_MODIFY, BINOP_REM},
979 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
980 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
981 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
982 {"++", INCREMENT, BINOP_END},
983 {"--", DECREMENT, BINOP_END},
984 {"&&", ANDAND, BINOP_END},
985 {"||", OROR, BINOP_END},
986 {"^^", HATHAT, BINOP_END},
987 {"<<", LSH, BINOP_END},
988 {">>", RSH, BINOP_END},
989 {"==", EQUAL, BINOP_END},
990 {"!=", NOTEQUAL, BINOP_END},
991 {"<=", LEQ, BINOP_END},
992 {">=", GEQ, BINOP_END},
993 {"..", DOTDOT, BINOP_END},
994 };
995
996 /* Identifier-like tokens. */
997 static const struct token ident_tokens[] =
998 {
999 {"is", IDENTITY, BINOP_END},
1000 {"!is", NOTIDENTITY, BINOP_END},
1001
1002 {"cast", CAST_KEYWORD, OP_NULL},
1003 {"const", CONST_KEYWORD, OP_NULL},
1004 {"immutable", IMMUTABLE_KEYWORD, OP_NULL},
1005 {"shared", SHARED_KEYWORD, OP_NULL},
1006 {"super", SUPER_KEYWORD, OP_NULL},
1007
1008 {"null", NULL_KEYWORD, OP_NULL},
1009 {"true", TRUE_KEYWORD, OP_NULL},
1010 {"false", FALSE_KEYWORD, OP_NULL},
1011
1012 {"init", INIT_KEYWORD, OP_NULL},
1013 {"sizeof", SIZEOF_KEYWORD, OP_NULL},
1014 {"typeof", TYPEOF_KEYWORD, OP_NULL},
1015 {"typeid", TYPEID_KEYWORD, OP_NULL},
1016
1017 {"delegate", DELEGATE_KEYWORD, OP_NULL},
1018 {"function", FUNCTION_KEYWORD, OP_NULL},
1019 {"struct", STRUCT_KEYWORD, OP_NULL},
1020 {"union", UNION_KEYWORD, OP_NULL},
1021 {"class", CLASS_KEYWORD, OP_NULL},
1022 {"interface", INTERFACE_KEYWORD, OP_NULL},
1023 {"enum", ENUM_KEYWORD, OP_NULL},
1024 {"template", TEMPLATE_KEYWORD, OP_NULL},
1025 };
1026
1027 /* This is set if a NAME token appeared at the very end of the input
1028 string, with no whitespace separating the name from the EOF. This
1029 is used only when parsing to do field name completion. */
1030 static int saw_name_at_eof;
1031
1032 /* This is set if the previously-returned token was a structure operator.
1033 This is used only when parsing to do field name completion. */
1034 static int last_was_structop;
1035
1036 /* Read one token, getting characters through lexptr. */
1037
1038 static int
1039 lex_one_token (struct parser_state *par_state)
1040 {
1041 int c;
1042 int namelen;
1043 unsigned int i;
1044 const char *tokstart;
1045 int saw_structop = last_was_structop;
1046 char *copy;
1047
1048 last_was_structop = 0;
1049
1050 retry:
1051
1052 prev_lexptr = lexptr;
1053
1054 tokstart = lexptr;
1055 /* See if it is a special token of length 3. */
1056 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1057 if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
1058 {
1059 lexptr += 3;
1060 yylval.opcode = tokentab3[i].opcode;
1061 return tokentab3[i].token;
1062 }
1063
1064 /* See if it is a special token of length 2. */
1065 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1066 if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
1067 {
1068 lexptr += 2;
1069 yylval.opcode = tokentab2[i].opcode;
1070 return tokentab2[i].token;
1071 }
1072
1073 switch (c = *tokstart)
1074 {
1075 case 0:
1076 /* If we're parsing for field name completion, and the previous
1077 token allows such completion, return a COMPLETE token.
1078 Otherwise, we were already scanning the original text, and
1079 we're really done. */
1080 if (saw_name_at_eof)
1081 {
1082 saw_name_at_eof = 0;
1083 return COMPLETE;
1084 }
1085 else if (saw_structop)
1086 return COMPLETE;
1087 else
1088 return 0;
1089
1090 case ' ':
1091 case '\t':
1092 case '\n':
1093 lexptr++;
1094 goto retry;
1095
1096 case '[':
1097 case '(':
1098 paren_depth++;
1099 lexptr++;
1100 return c;
1101
1102 case ']':
1103 case ')':
1104 if (paren_depth == 0)
1105 return 0;
1106 paren_depth--;
1107 lexptr++;
1108 return c;
1109
1110 case ',':
1111 if (comma_terminates && paren_depth == 0)
1112 return 0;
1113 lexptr++;
1114 return c;
1115
1116 case '.':
1117 /* Might be a floating point number. */
1118 if (lexptr[1] < '0' || lexptr[1] > '9')
1119 {
1120 if (parse_completion)
1121 last_was_structop = 1;
1122 goto symbol; /* Nope, must be a symbol. */
1123 }
1124 /* FALL THRU into number case. */
1125
1126 case '0':
1127 case '1':
1128 case '2':
1129 case '3':
1130 case '4':
1131 case '5':
1132 case '6':
1133 case '7':
1134 case '8':
1135 case '9':
1136 {
1137 /* It's a number. */
1138 int got_dot = 0, got_e = 0, toktype;
1139 const char *p = tokstart;
1140 int hex = input_radix > 10;
1141
1142 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1143 {
1144 p += 2;
1145 hex = 1;
1146 }
1147
1148 for (;; ++p)
1149 {
1150 /* Hex exponents start with 'p', because 'e' is a valid hex
1151 digit and thus does not indicate a floating point number
1152 when the radix is hex. */
1153 if ((!hex && !got_e && tolower (p[0]) == 'e')
1154 || (hex && !got_e && tolower (p[0] == 'p')))
1155 got_dot = got_e = 1;
1156 /* A '.' always indicates a decimal floating point number
1157 regardless of the radix. If we have a '..' then its the
1158 end of the number and the beginning of a slice. */
1159 else if (!got_dot && (p[0] == '.' && p[1] != '.'))
1160 got_dot = 1;
1161 /* This is the sign of the exponent, not the end of the number. */
1162 else if (got_e && (tolower (p[-1]) == 'e' || tolower (p[-1]) == 'p')
1163 && (*p == '-' || *p == '+'))
1164 continue;
1165 /* We will take any letters or digits, ignoring any embedded '_'.
1166 parse_number will complain if past the radix, or if L or U are
1167 not final. */
1168 else if ((*p < '0' || *p > '9') && (*p != '_')
1169 && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z')))
1170 break;
1171 }
1172
1173 toktype = parse_number (par_state, tokstart, p - tokstart,
1174 got_dot|got_e, &yylval);
1175 if (toktype == ERROR)
1176 {
1177 char *err_copy = (char *) alloca (p - tokstart + 1);
1178
1179 memcpy (err_copy, tokstart, p - tokstart);
1180 err_copy[p - tokstart] = 0;
1181 error (_("Invalid number \"%s\"."), err_copy);
1182 }
1183 lexptr = p;
1184 return toktype;
1185 }
1186
1187 case '@':
1188 {
1189 const char *p = &tokstart[1];
1190 size_t len = strlen ("entry");
1191
1192 while (isspace (*p))
1193 p++;
1194 if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
1195 && p[len] != '_')
1196 {
1197 lexptr = &p[len];
1198 return ENTRY;
1199 }
1200 }
1201 /* FALLTHRU */
1202 case '+':
1203 case '-':
1204 case '*':
1205 case '/':
1206 case '%':
1207 case '|':
1208 case '&':
1209 case '^':
1210 case '~':
1211 case '!':
1212 case '<':
1213 case '>':
1214 case '?':
1215 case ':':
1216 case '=':
1217 case '{':
1218 case '}':
1219 symbol:
1220 lexptr++;
1221 return c;
1222
1223 case '\'':
1224 case '"':
1225 case '`':
1226 {
1227 int host_len;
1228 int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
1229 &host_len);
1230 if (result == CHARACTER_LITERAL)
1231 {
1232 if (host_len == 0)
1233 error (_("Empty character constant."));
1234 else if (host_len > 2 && c == '\'')
1235 {
1236 ++tokstart;
1237 namelen = lexptr - tokstart - 1;
1238 goto tryname;
1239 }
1240 else if (host_len > 1)
1241 error (_("Invalid character constant."));
1242 }
1243 return result;
1244 }
1245 }
1246
1247 if (!(c == '_' || c == '$'
1248 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1249 /* We must have come across a bad character (e.g. ';'). */
1250 error (_("Invalid character '%c' in expression"), c);
1251
1252 /* It's a name. See how long it is. */
1253 namelen = 0;
1254 for (c = tokstart[namelen];
1255 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1256 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));)
1257 c = tokstart[++namelen];
1258
1259 /* The token "if" terminates the expression and is NOT
1260 removed from the input stream. */
1261 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1262 return 0;
1263
1264 /* For the same reason (breakpoint conditions), "thread N"
1265 terminates the expression. "thread" could be an identifier, but
1266 an identifier is never followed by a number without intervening
1267 punctuation. "task" is similar. Handle abbreviations of these,
1268 similarly to breakpoint.c:find_condition_and_thread. */
1269 if (namelen >= 1
1270 && (strncmp (tokstart, "thread", namelen) == 0
1271 || strncmp (tokstart, "task", namelen) == 0)
1272 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t'))
1273 {
1274 const char *p = tokstart + namelen + 1;
1275
1276 while (*p == ' ' || *p == '\t')
1277 p++;
1278 if (*p >= '0' && *p <= '9')
1279 return 0;
1280 }
1281
1282 lexptr += namelen;
1283
1284 tryname:
1285
1286 yylval.sval.ptr = tokstart;
1287 yylval.sval.length = namelen;
1288
1289 /* Catch specific keywords. */
1290 copy = copy_name (yylval.sval);
1291 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
1292 if (strcmp (copy, ident_tokens[i].oper) == 0)
1293 {
1294 /* It is ok to always set this, even though we don't always
1295 strictly need to. */
1296 yylval.opcode = ident_tokens[i].opcode;
1297 return ident_tokens[i].token;
1298 }
1299
1300 if (*tokstart == '$')
1301 return DOLLAR_VARIABLE;
1302
1303 yylval.tsym.type
1304 = language_lookup_primitive_type (parse_language (par_state),
1305 parse_gdbarch (par_state), copy);
1306 if (yylval.tsym.type != NULL)
1307 return TYPENAME;
1308
1309 /* Input names that aren't symbols but ARE valid hex numbers,
1310 when the input radix permits them, can be names or numbers
1311 depending on the parse. Note we support radixes > 16 here. */
1312 if ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1313 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))
1314 {
1315 YYSTYPE newlval; /* Its value is ignored. */
1316 int hextype = parse_number (par_state, tokstart, namelen, 0, &newlval);
1317 if (hextype == INTEGER_LITERAL)
1318 return NAME_OR_INT;
1319 }
1320
1321 if (parse_completion && *lexptr == '\0')
1322 saw_name_at_eof = 1;
1323
1324 return IDENTIFIER;
1325 }
1326
1327 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
1328 typedef struct
1329 {
1330 int token;
1331 YYSTYPE value;
1332 } token_and_value;
1333
1334 DEF_VEC_O (token_and_value);
1335
1336 /* A FIFO of tokens that have been read but not yet returned to the
1337 parser. */
1338 static VEC (token_and_value) *token_fifo;
1339
1340 /* Non-zero if the lexer should return tokens from the FIFO. */
1341 static int popping;
1342
1343 /* Temporary storage for yylex; this holds symbol names as they are
1344 built up. */
1345 static auto_obstack name_obstack;
1346
1347 /* Classify an IDENTIFIER token. The contents of the token are in `yylval'.
1348 Updates yylval and returns the new token type. BLOCK is the block
1349 in which lookups start; this can be NULL to mean the global scope. */
1350
1351 static int
1352 classify_name (struct parser_state *par_state, const struct block *block)
1353 {
1354 struct block_symbol sym;
1355 char *copy;
1356 struct field_of_this_result is_a_field_of_this;
1357
1358 copy = copy_name (yylval.sval);
1359
1360 sym = lookup_symbol (copy, block, VAR_DOMAIN, &is_a_field_of_this);
1361 if (sym.symbol && SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)
1362 {
1363 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1364 return TYPENAME;
1365 }
1366 else if (sym.symbol == NULL)
1367 {
1368 /* Look-up first for a module name, then a type. */
1369 sym = lookup_symbol (copy, block, MODULE_DOMAIN, NULL);
1370 if (sym.symbol == NULL)
1371 sym = lookup_symbol (copy, block, STRUCT_DOMAIN, NULL);
1372
1373 if (sym.symbol != NULL)
1374 {
1375 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1376 return TYPENAME;
1377 }
1378
1379 return UNKNOWN_NAME;
1380 }
1381
1382 return IDENTIFIER;
1383 }
1384
1385 /* Like classify_name, but used by the inner loop of the lexer, when a
1386 name might have already been seen. CONTEXT is the context type, or
1387 NULL if this is the first component of a name. */
1388
1389 static int
1390 classify_inner_name (struct parser_state *par_state,
1391 const struct block *block, struct type *context)
1392 {
1393 struct type *type;
1394 char *copy;
1395
1396 if (context == NULL)
1397 return classify_name (par_state, block);
1398
1399 type = check_typedef (context);
1400 if (!type_aggregate_p (type))
1401 return ERROR;
1402
1403 copy = copy_name (yylval.ssym.stoken);
1404 yylval.ssym.sym = d_lookup_nested_symbol (type, copy, block);
1405
1406 if (yylval.ssym.sym.symbol == NULL)
1407 return ERROR;
1408
1409 if (SYMBOL_CLASS (yylval.ssym.sym.symbol) == LOC_TYPEDEF)
1410 {
1411 yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
1412 return TYPENAME;
1413 }
1414
1415 return IDENTIFIER;
1416 }
1417
1418 /* The outer level of a two-level lexer. This calls the inner lexer
1419 to return tokens. It then either returns these tokens, or
1420 aggregates them into a larger token. This lets us work around a
1421 problem in our parsing approach, where the parser could not
1422 distinguish between qualified names and qualified types at the
1423 right point. */
1424
1425 static int
1426 yylex (void)
1427 {
1428 token_and_value current;
1429 int last_was_dot;
1430 struct type *context_type = NULL;
1431 int last_to_examine, next_to_examine, checkpoint;
1432 const struct block *search_block;
1433
1434 if (popping && !VEC_empty (token_and_value, token_fifo))
1435 goto do_pop;
1436 popping = 0;
1437
1438 /* Read the first token and decide what to do. */
1439 current.token = lex_one_token (pstate);
1440 if (current.token != IDENTIFIER && current.token != '.')
1441 return current.token;
1442
1443 /* Read any sequence of alternating "." and identifier tokens into
1444 the token FIFO. */
1445 current.value = yylval;
1446 VEC_safe_push (token_and_value, token_fifo, &current);
1447 last_was_dot = current.token == '.';
1448
1449 while (1)
1450 {
1451 current.token = lex_one_token (pstate);
1452 current.value = yylval;
1453 VEC_safe_push (token_and_value, token_fifo, &current);
1454
1455 if ((last_was_dot && current.token != IDENTIFIER)
1456 || (!last_was_dot && current.token != '.'))
1457 break;
1458
1459 last_was_dot = !last_was_dot;
1460 }
1461 popping = 1;
1462
1463 /* We always read one extra token, so compute the number of tokens
1464 to examine accordingly. */
1465 last_to_examine = VEC_length (token_and_value, token_fifo) - 2;
1466 next_to_examine = 0;
1467
1468 current = *VEC_index (token_and_value, token_fifo, next_to_examine);
1469 ++next_to_examine;
1470
1471 /* If we are not dealing with a typename, now is the time to find out. */
1472 if (current.token == IDENTIFIER)
1473 {
1474 yylval = current.value;
1475 current.token = classify_name (pstate, expression_context_block);
1476 current.value = yylval;
1477 }
1478
1479 /* If the IDENTIFIER is not known, it could be a package symbol,
1480 first try building up a name until we find the qualified module. */
1481 if (current.token == UNKNOWN_NAME)
1482 {
1483 name_obstack.clear ();
1484 obstack_grow (&name_obstack, current.value.sval.ptr,
1485 current.value.sval.length);
1486
1487 last_was_dot = 0;
1488
1489 while (next_to_examine <= last_to_examine)
1490 {
1491 token_and_value *next;
1492
1493 next = VEC_index (token_and_value, token_fifo, next_to_examine);
1494 ++next_to_examine;
1495
1496 if (next->token == IDENTIFIER && last_was_dot)
1497 {
1498 /* Update the partial name we are constructing. */
1499 obstack_grow_str (&name_obstack, ".");
1500 obstack_grow (&name_obstack, next->value.sval.ptr,
1501 next->value.sval.length);
1502
1503 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1504 yylval.sval.length = obstack_object_size (&name_obstack);
1505
1506 current.token = classify_name (pstate, expression_context_block);
1507 current.value = yylval;
1508
1509 /* We keep going until we find a TYPENAME. */
1510 if (current.token == TYPENAME)
1511 {
1512 /* Install it as the first token in the FIFO. */
1513 VEC_replace (token_and_value, token_fifo, 0, &current);
1514 VEC_block_remove (token_and_value, token_fifo, 1,
1515 next_to_examine - 1);
1516 break;
1517 }
1518 }
1519 else if (next->token == '.' && !last_was_dot)
1520 last_was_dot = 1;
1521 else
1522 {
1523 /* We've reached the end of the name. */
1524 break;
1525 }
1526 }
1527
1528 /* Reset our current token back to the start, if we found nothing
1529 this means that we will just jump to do pop. */
1530 current = *VEC_index (token_and_value, token_fifo, 0);
1531 next_to_examine = 1;
1532 }
1533 if (current.token != TYPENAME && current.token != '.')
1534 goto do_pop;
1535
1536 name_obstack.clear ();
1537 checkpoint = 0;
1538 if (current.token == '.')
1539 search_block = NULL;
1540 else
1541 {
1542 gdb_assert (current.token == TYPENAME);
1543 search_block = expression_context_block;
1544 obstack_grow (&name_obstack, current.value.sval.ptr,
1545 current.value.sval.length);
1546 context_type = current.value.tsym.type;
1547 checkpoint = 1;
1548 }
1549
1550 last_was_dot = current.token == '.';
1551
1552 while (next_to_examine <= last_to_examine)
1553 {
1554 token_and_value *next;
1555
1556 next = VEC_index (token_and_value, token_fifo, next_to_examine);
1557 ++next_to_examine;
1558
1559 if (next->token == IDENTIFIER && last_was_dot)
1560 {
1561 int classification;
1562
1563 yylval = next->value;
1564 classification = classify_inner_name (pstate, search_block,
1565 context_type);
1566 /* We keep going until we either run out of names, or until
1567 we have a qualified name which is not a type. */
1568 if (classification != TYPENAME && classification != IDENTIFIER)
1569 break;
1570
1571 /* Accept up to this token. */
1572 checkpoint = next_to_examine;
1573
1574 /* Update the partial name we are constructing. */
1575 if (context_type != NULL)
1576 {
1577 /* We don't want to put a leading "." into the name. */
1578 obstack_grow_str (&name_obstack, ".");
1579 }
1580 obstack_grow (&name_obstack, next->value.sval.ptr,
1581 next->value.sval.length);
1582
1583 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1584 yylval.sval.length = obstack_object_size (&name_obstack);
1585 current.value = yylval;
1586 current.token = classification;
1587
1588 last_was_dot = 0;
1589
1590 if (classification == IDENTIFIER)
1591 break;
1592
1593 context_type = yylval.tsym.type;
1594 }
1595 else if (next->token == '.' && !last_was_dot)
1596 last_was_dot = 1;
1597 else
1598 {
1599 /* We've reached the end of the name. */
1600 break;
1601 }
1602 }
1603
1604 /* If we have a replacement token, install it as the first token in
1605 the FIFO, and delete the other constituent tokens. */
1606 if (checkpoint > 0)
1607 {
1608 VEC_replace (token_and_value, token_fifo, 0, &current);
1609 if (checkpoint > 1)
1610 VEC_block_remove (token_and_value, token_fifo, 1, checkpoint - 1);
1611 }
1612
1613 do_pop:
1614 current = *VEC_index (token_and_value, token_fifo, 0);
1615 VEC_ordered_remove (token_and_value, token_fifo, 0);
1616 yylval = current.value;
1617 return current.token;
1618 }
1619
1620 int
1621 d_parse (struct parser_state *par_state)
1622 {
1623 int result;
1624 struct cleanup *back_to;
1625
1626 /* Setting up the parser state. */
1627 gdb_assert (par_state != NULL);
1628 pstate = par_state;
1629
1630 /* Note that parsing (within yyparse) freely installs cleanups
1631 assuming they're run here (below). */
1632 back_to = make_cleanup (null_cleanup, NULL);
1633
1634 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
1635 parser_debug);
1636 make_cleanup_clear_parser_state (&pstate);
1637
1638 /* Initialize some state used by the lexer. */
1639 last_was_structop = 0;
1640 saw_name_at_eof = 0;
1641
1642 VEC_free (token_and_value, token_fifo);
1643 popping = 0;
1644 name_obstack.clear ();
1645
1646 result = yyparse ();
1647 do_cleanups (back_to);
1648 return result;
1649 }
1650
1651 void
1652 yyerror (const char *msg)
1653 {
1654 if (prev_lexptr)
1655 lexptr = prev_lexptr;
1656
1657 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1658 }
1659
This page took 0.071542 seconds and 5 git commands to generate.