Centralize yacc interface names remapping (yyparse, yylex, yyerror, etc)
[deliverable/binutils-gdb.git] / gdb / d-exp.y
1 /* YACC parser for D expressions, for GDB.
2
3 Copyright (C) 2014-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This file is derived from c-exp.y, jv-exp.y. */
21
22 /* Parse a D expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "d-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "charset.h"
53 #include "block.h"
54
55 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
56 #define parse_d_type(ps) builtin_d_type (parse_gdbarch (ps))
57
58 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
59 etc). */
60 #define GDB_YY_REMAP_PREFIX d_
61 #include "yy-remap.h"
62
63 /* The state of the parser, used internally when we are parsing the
64 expression. */
65
66 static struct parser_state *pstate = NULL;
67
68 int yyparse (void);
69
70 static int yylex (void);
71
72 void yyerror (char *);
73
74 static int type_aggregate_p (struct type *);
75
76 %}
77
78 /* Although the yacc "value" of an expression is not used,
79 since the result is stored in the structure being created,
80 other node types do have values. */
81
82 %union
83 {
84 struct {
85 LONGEST val;
86 struct type *type;
87 } typed_val_int;
88 struct {
89 DOUBLEST dval;
90 struct type *type;
91 } typed_val_float;
92 struct symbol *sym;
93 struct type *tval;
94 struct typed_stoken tsval;
95 struct stoken sval;
96 struct ttype tsym;
97 struct symtoken ssym;
98 int ival;
99 int voidval;
100 struct block *bval;
101 enum exp_opcode opcode;
102 struct stoken_vector svec;
103 }
104
105 %{
106 /* YYSTYPE gets defined by %union */
107 static int parse_number (struct parser_state *, const char *,
108 int, int, YYSTYPE *);
109 %}
110
111 %token <sval> IDENTIFIER UNKNOWN_NAME
112 %token <tsym> TYPENAME
113 %token <voidval> COMPLETE
114
115 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
116 but which would parse as a valid number in the current input radix.
117 E.g. "c" when input_radix==16. Depending on the parse, it will be
118 turned into a name or into a number. */
119
120 %token <sval> NAME_OR_INT
121
122 %token <typed_val_int> INTEGER_LITERAL
123 %token <typed_val_float> FLOAT_LITERAL
124 %token <tsval> CHARACTER_LITERAL
125 %token <tsval> STRING_LITERAL
126
127 %type <svec> StringExp
128 %type <tval> BasicType TypeExp
129 %type <sval> IdentifierExp
130 %type <ival> ArrayLiteral
131
132 %token ENTRY
133 %token ERROR
134
135 /* Keywords that have a constant value. */
136 %token TRUE_KEYWORD FALSE_KEYWORD NULL_KEYWORD
137 /* Class 'super' accessor. */
138 %token SUPER_KEYWORD
139 /* Properties. */
140 %token CAST_KEYWORD SIZEOF_KEYWORD
141 %token TYPEOF_KEYWORD TYPEID_KEYWORD
142 %token INIT_KEYWORD
143 /* Comparison keywords. */
144 /* Type storage classes. */
145 %token IMMUTABLE_KEYWORD CONST_KEYWORD SHARED_KEYWORD
146 /* Non-scalar type keywords. */
147 %token STRUCT_KEYWORD UNION_KEYWORD
148 %token CLASS_KEYWORD INTERFACE_KEYWORD
149 %token ENUM_KEYWORD TEMPLATE_KEYWORD
150 %token DELEGATE_KEYWORD FUNCTION_KEYWORD
151
152 %token <sval> DOLLAR_VARIABLE
153
154 %token <opcode> ASSIGN_MODIFY
155
156 %left ','
157 %right '=' ASSIGN_MODIFY
158 %right '?'
159 %left OROR
160 %left ANDAND
161 %left '|'
162 %left '^'
163 %left '&'
164 %left EQUAL NOTEQUAL '<' '>' LEQ GEQ
165 %right LSH RSH
166 %left '+' '-'
167 %left '*' '/' '%'
168 %right HATHAT
169 %left IDENTITY NOTIDENTITY
170 %right INCREMENT DECREMENT
171 %right '.' '[' '('
172 %token DOTDOT
173
174 \f
175 %%
176
177 start :
178 Expression
179 | TypeExp
180 ;
181
182 /* Expressions, including the comma operator. */
183
184 Expression:
185 CommaExpression
186 ;
187
188 CommaExpression:
189 AssignExpression
190 | AssignExpression ',' CommaExpression
191 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
192 ;
193
194 AssignExpression:
195 ConditionalExpression
196 | ConditionalExpression '=' AssignExpression
197 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
198 | ConditionalExpression ASSIGN_MODIFY AssignExpression
199 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
200 write_exp_elt_opcode (pstate, $2);
201 write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
202 ;
203
204 ConditionalExpression:
205 OrOrExpression
206 | OrOrExpression '?' Expression ':' ConditionalExpression
207 { write_exp_elt_opcode (pstate, TERNOP_COND); }
208 ;
209
210 OrOrExpression:
211 AndAndExpression
212 | OrOrExpression OROR AndAndExpression
213 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
214 ;
215
216 AndAndExpression:
217 OrExpression
218 | AndAndExpression ANDAND OrExpression
219 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
220 ;
221
222 OrExpression:
223 XorExpression
224 | OrExpression '|' XorExpression
225 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
226 ;
227
228 XorExpression:
229 AndExpression
230 | XorExpression '^' AndExpression
231 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
232 ;
233
234 AndExpression:
235 CmpExpression
236 | AndExpression '&' CmpExpression
237 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
238 ;
239
240 CmpExpression:
241 ShiftExpression
242 | EqualExpression
243 | IdentityExpression
244 | RelExpression
245 ;
246
247 EqualExpression:
248 ShiftExpression EQUAL ShiftExpression
249 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
250 | ShiftExpression NOTEQUAL ShiftExpression
251 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
252 ;
253
254 IdentityExpression:
255 ShiftExpression IDENTITY ShiftExpression
256 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
257 | ShiftExpression NOTIDENTITY ShiftExpression
258 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
259 ;
260
261 RelExpression:
262 ShiftExpression '<' ShiftExpression
263 { write_exp_elt_opcode (pstate, BINOP_LESS); }
264 | ShiftExpression LEQ ShiftExpression
265 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
266 | ShiftExpression '>' ShiftExpression
267 { write_exp_elt_opcode (pstate, BINOP_GTR); }
268 | ShiftExpression GEQ ShiftExpression
269 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
270 ;
271
272 ShiftExpression:
273 AddExpression
274 | ShiftExpression LSH AddExpression
275 { write_exp_elt_opcode (pstate, BINOP_LSH); }
276 | ShiftExpression RSH AddExpression
277 { write_exp_elt_opcode (pstate, BINOP_RSH); }
278 ;
279
280 AddExpression:
281 MulExpression
282 | AddExpression '+' MulExpression
283 { write_exp_elt_opcode (pstate, BINOP_ADD); }
284 | AddExpression '-' MulExpression
285 { write_exp_elt_opcode (pstate, BINOP_SUB); }
286 | AddExpression '~' MulExpression
287 { write_exp_elt_opcode (pstate, BINOP_CONCAT); }
288 ;
289
290 MulExpression:
291 UnaryExpression
292 | MulExpression '*' UnaryExpression
293 { write_exp_elt_opcode (pstate, BINOP_MUL); }
294 | MulExpression '/' UnaryExpression
295 { write_exp_elt_opcode (pstate, BINOP_DIV); }
296 | MulExpression '%' UnaryExpression
297 { write_exp_elt_opcode (pstate, BINOP_REM); }
298
299 UnaryExpression:
300 '&' UnaryExpression
301 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
302 | INCREMENT UnaryExpression
303 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
304 | DECREMENT UnaryExpression
305 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
306 | '*' UnaryExpression
307 { write_exp_elt_opcode (pstate, UNOP_IND); }
308 | '-' UnaryExpression
309 { write_exp_elt_opcode (pstate, UNOP_NEG); }
310 | '+' UnaryExpression
311 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
312 | '!' UnaryExpression
313 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
314 | '~' UnaryExpression
315 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
316 | TypeExp '.' SIZEOF_KEYWORD
317 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
318 | CastExpression
319 | PowExpression
320 ;
321
322 CastExpression:
323 CAST_KEYWORD '(' TypeExp ')' UnaryExpression
324 { write_exp_elt_opcode (pstate, UNOP_CAST);
325 write_exp_elt_type (pstate, $3);
326 write_exp_elt_opcode (pstate, UNOP_CAST); }
327 /* C style cast is illegal D, but is still recognised in
328 the grammar, so we keep this around for convenience. */
329 | '(' TypeExp ')' UnaryExpression
330 { write_exp_elt_opcode (pstate, UNOP_CAST);
331 write_exp_elt_type (pstate, $2);
332 write_exp_elt_opcode (pstate, UNOP_CAST); }
333 ;
334
335 PowExpression:
336 PostfixExpression
337 | PostfixExpression HATHAT UnaryExpression
338 { write_exp_elt_opcode (pstate, BINOP_EXP); }
339 ;
340
341 PostfixExpression:
342 PrimaryExpression
343 | PostfixExpression '.' COMPLETE
344 { struct stoken s;
345 mark_struct_expression (pstate);
346 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
347 s.ptr = "";
348 s.length = 0;
349 write_exp_string (pstate, s);
350 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
351 | PostfixExpression '.' IDENTIFIER
352 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
353 write_exp_string (pstate, $3);
354 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
355 | PostfixExpression '.' IDENTIFIER COMPLETE
356 { mark_struct_expression (pstate);
357 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
358 write_exp_string (pstate, $3);
359 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
360 | PostfixExpression '.' SIZEOF_KEYWORD
361 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
362 | PostfixExpression INCREMENT
363 { write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
364 | PostfixExpression DECREMENT
365 { write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
366 | CallExpression
367 | IndexExpression
368 | SliceExpression
369 ;
370
371 ArgumentList:
372 AssignExpression
373 { arglist_len = 1; }
374 | ArgumentList ',' AssignExpression
375 { arglist_len++; }
376 ;
377
378 ArgumentList_opt:
379 /* EMPTY */
380 { arglist_len = 0; }
381 | ArgumentList
382 ;
383
384 CallExpression:
385 PostfixExpression '('
386 { start_arglist (); }
387 ArgumentList_opt ')'
388 { write_exp_elt_opcode (pstate, OP_FUNCALL);
389 write_exp_elt_longcst (pstate, (LONGEST) end_arglist ());
390 write_exp_elt_opcode (pstate, OP_FUNCALL); }
391 ;
392
393 IndexExpression:
394 PostfixExpression '[' ArgumentList ']'
395 { if (arglist_len > 0)
396 {
397 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
398 write_exp_elt_longcst (pstate, (LONGEST) arglist_len);
399 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
400 }
401 else
402 write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
403 }
404 ;
405
406 SliceExpression:
407 PostfixExpression '[' ']'
408 { /* Do nothing. */ }
409 | PostfixExpression '[' AssignExpression DOTDOT AssignExpression ']'
410 { write_exp_elt_opcode (pstate, TERNOP_SLICE); }
411 ;
412
413 PrimaryExpression:
414 '(' Expression ')'
415 { /* Do nothing. */ }
416 | IdentifierExp
417 { struct bound_minimal_symbol msymbol;
418 char *copy = copy_name ($1);
419 struct field_of_this_result is_a_field_of_this;
420 struct block_symbol sym;
421
422 /* Handle VAR, which could be local or global. */
423 sym = lookup_symbol (copy, expression_context_block, VAR_DOMAIN,
424 &is_a_field_of_this);
425 if (sym.symbol && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
426 {
427 if (symbol_read_needs_frame (sym.symbol))
428 {
429 if (innermost_block == 0
430 || contained_in (sym.block, innermost_block))
431 innermost_block = sym.block;
432 }
433
434 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
435 write_exp_elt_block (pstate, sym.block);
436 write_exp_elt_sym (pstate, sym.symbol);
437 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
438 }
439 else if (is_a_field_of_this.type != NULL)
440 {
441 /* It hangs off of `this'. Must not inadvertently convert from a
442 method call to data ref. */
443 if (innermost_block == 0
444 || contained_in (sym.block, innermost_block))
445 innermost_block = sym.block;
446 write_exp_elt_opcode (pstate, OP_THIS);
447 write_exp_elt_opcode (pstate, OP_THIS);
448 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
449 write_exp_string (pstate, $1);
450 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
451 }
452 else
453 {
454 /* Lookup foreign name in global static symbols. */
455 msymbol = lookup_bound_minimal_symbol (copy);
456 if (msymbol.minsym != NULL)
457 write_exp_msymbol (pstate, msymbol);
458 else if (!have_full_symbols () && !have_partial_symbols ())
459 error (_("No symbol table is loaded. Use the \"file\" command"));
460 else
461 error (_("No symbol \"%s\" in current context."), copy);
462 }
463 }
464 | TypeExp '.' IdentifierExp
465 { struct type *type = check_typedef ($1);
466
467 /* Check if the qualified name is in the global
468 context. However if the symbol has not already
469 been resolved, it's not likely to be found. */
470 if (TYPE_CODE (type) == TYPE_CODE_MODULE)
471 {
472 struct bound_minimal_symbol msymbol;
473 struct block_symbol sym;
474 const char *type_name = TYPE_SAFE_NAME (type);
475 int type_name_len = strlen (type_name);
476 char *name;
477
478 name = xstrprintf ("%.*s.%.*s",
479 type_name_len, type_name,
480 $3.length, $3.ptr);
481 make_cleanup (xfree, name);
482
483 sym =
484 lookup_symbol (name, (const struct block *) NULL,
485 VAR_DOMAIN, NULL);
486 if (sym.symbol)
487 {
488 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
489 write_exp_elt_block (pstate, sym.block);
490 write_exp_elt_sym (pstate, sym.symbol);
491 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
492 break;
493 }
494
495 msymbol = lookup_bound_minimal_symbol (name);
496 if (msymbol.minsym != NULL)
497 write_exp_msymbol (pstate, msymbol);
498 else if (!have_full_symbols () && !have_partial_symbols ())
499 error (_("No symbol table is loaded. Use the \"file\" command."));
500 else
501 error (_("No symbol \"%s\" in current context."), name);
502 }
503
504 /* Check if the qualified name resolves as a member
505 of an aggregate or an enum type. */
506 if (!type_aggregate_p (type))
507 error (_("`%s' is not defined as an aggregate type."),
508 TYPE_SAFE_NAME (type));
509
510 write_exp_elt_opcode (pstate, OP_SCOPE);
511 write_exp_elt_type (pstate, type);
512 write_exp_string (pstate, $3);
513 write_exp_elt_opcode (pstate, OP_SCOPE);
514 }
515 | DOLLAR_VARIABLE
516 { write_dollar_variable (pstate, $1); }
517 | NAME_OR_INT
518 { YYSTYPE val;
519 parse_number (pstate, $1.ptr, $1.length, 0, &val);
520 write_exp_elt_opcode (pstate, OP_LONG);
521 write_exp_elt_type (pstate, val.typed_val_int.type);
522 write_exp_elt_longcst (pstate,
523 (LONGEST) val.typed_val_int.val);
524 write_exp_elt_opcode (pstate, OP_LONG); }
525 | NULL_KEYWORD
526 { struct type *type = parse_d_type (pstate)->builtin_void;
527 type = lookup_pointer_type (type);
528 write_exp_elt_opcode (pstate, OP_LONG);
529 write_exp_elt_type (pstate, type);
530 write_exp_elt_longcst (pstate, (LONGEST) 0);
531 write_exp_elt_opcode (pstate, OP_LONG); }
532 | TRUE_KEYWORD
533 { write_exp_elt_opcode (pstate, OP_BOOL);
534 write_exp_elt_longcst (pstate, (LONGEST) 1);
535 write_exp_elt_opcode (pstate, OP_BOOL); }
536 | FALSE_KEYWORD
537 { write_exp_elt_opcode (pstate, OP_BOOL);
538 write_exp_elt_longcst (pstate, (LONGEST) 0);
539 write_exp_elt_opcode (pstate, OP_BOOL); }
540 | INTEGER_LITERAL
541 { write_exp_elt_opcode (pstate, OP_LONG);
542 write_exp_elt_type (pstate, $1.type);
543 write_exp_elt_longcst (pstate, (LONGEST)($1.val));
544 write_exp_elt_opcode (pstate, OP_LONG); }
545 | FLOAT_LITERAL
546 { write_exp_elt_opcode (pstate, OP_DOUBLE);
547 write_exp_elt_type (pstate, $1.type);
548 write_exp_elt_dblcst (pstate, $1.dval);
549 write_exp_elt_opcode (pstate, OP_DOUBLE); }
550 | CHARACTER_LITERAL
551 { struct stoken_vector vec;
552 vec.len = 1;
553 vec.tokens = &$1;
554 write_exp_string_vector (pstate, $1.type, &vec); }
555 | StringExp
556 { int i;
557 write_exp_string_vector (pstate, 0, &$1);
558 for (i = 0; i < $1.len; ++i)
559 free ($1.tokens[i].ptr);
560 free ($1.tokens); }
561 | ArrayLiteral
562 { write_exp_elt_opcode (pstate, OP_ARRAY);
563 write_exp_elt_longcst (pstate, (LONGEST) 0);
564 write_exp_elt_longcst (pstate, (LONGEST) $1 - 1);
565 write_exp_elt_opcode (pstate, OP_ARRAY); }
566 | TYPEOF_KEYWORD '(' Expression ')'
567 { write_exp_elt_opcode (pstate, OP_TYPEOF); }
568 ;
569
570 ArrayLiteral:
571 '[' ArgumentList_opt ']'
572 { $$ = arglist_len; }
573 ;
574
575 IdentifierExp:
576 IDENTIFIER
577 ;
578
579 StringExp:
580 STRING_LITERAL
581 { /* We copy the string here, and not in the
582 lexer, to guarantee that we do not leak a
583 string. Note that we follow the
584 NUL-termination convention of the
585 lexer. */
586 struct typed_stoken *vec = XNEW (struct typed_stoken);
587 $$.len = 1;
588 $$.tokens = vec;
589
590 vec->type = $1.type;
591 vec->length = $1.length;
592 vec->ptr = (char *) malloc ($1.length + 1);
593 memcpy (vec->ptr, $1.ptr, $1.length + 1);
594 }
595 | StringExp STRING_LITERAL
596 { /* Note that we NUL-terminate here, but just
597 for convenience. */
598 char *p;
599 ++$$.len;
600 $$.tokens
601 = XRESIZEVEC (struct typed_stoken, $$.tokens, $$.len);
602
603 p = (char *) malloc ($2.length + 1);
604 memcpy (p, $2.ptr, $2.length + 1);
605
606 $$.tokens[$$.len - 1].type = $2.type;
607 $$.tokens[$$.len - 1].length = $2.length;
608 $$.tokens[$$.len - 1].ptr = p;
609 }
610 ;
611
612 TypeExp:
613 '(' TypeExp ')'
614 { /* Do nothing. */ }
615 | BasicType
616 { write_exp_elt_opcode (pstate, OP_TYPE);
617 write_exp_elt_type (pstate, $1);
618 write_exp_elt_opcode (pstate, OP_TYPE); }
619 | BasicType BasicType2
620 { $$ = follow_types ($1);
621 write_exp_elt_opcode (pstate, OP_TYPE);
622 write_exp_elt_type (pstate, $$);
623 write_exp_elt_opcode (pstate, OP_TYPE);
624 }
625 ;
626
627 BasicType2:
628 '*'
629 { push_type (tp_pointer); }
630 | '*' BasicType2
631 { push_type (tp_pointer); }
632 | '[' INTEGER_LITERAL ']'
633 { push_type_int ($2.val);
634 push_type (tp_array); }
635 | '[' INTEGER_LITERAL ']' BasicType2
636 { push_type_int ($2.val);
637 push_type (tp_array); }
638 ;
639
640 BasicType:
641 TYPENAME
642 { $$ = $1.type; }
643 ;
644
645 %%
646
647 /* Return true if the type is aggregate-like. */
648
649 static int
650 type_aggregate_p (struct type *type)
651 {
652 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
653 || TYPE_CODE (type) == TYPE_CODE_UNION
654 || (TYPE_CODE (type) == TYPE_CODE_ENUM
655 && TYPE_DECLARED_CLASS (type)));
656 }
657
658 /* Take care of parsing a number (anything that starts with a digit).
659 Set yylval and return the token type; update lexptr.
660 LEN is the number of characters in it. */
661
662 /*** Needs some error checking for the float case ***/
663
664 static int
665 parse_number (struct parser_state *ps, const char *p,
666 int len, int parsed_float, YYSTYPE *putithere)
667 {
668 ULONGEST n = 0;
669 ULONGEST prevn = 0;
670 ULONGEST un;
671
672 int i = 0;
673 int c;
674 int base = input_radix;
675 int unsigned_p = 0;
676 int long_p = 0;
677
678 /* We have found a "L" or "U" suffix. */
679 int found_suffix = 0;
680
681 ULONGEST high_bit;
682 struct type *signed_type;
683 struct type *unsigned_type;
684
685 if (parsed_float)
686 {
687 const struct builtin_d_type *builtin_d_types;
688 const char *suffix;
689 int suffix_len;
690 char *s, *sp;
691
692 /* Strip out all embedded '_' before passing to parse_float. */
693 s = (char *) alloca (len + 1);
694 sp = s;
695 while (len-- > 0)
696 {
697 if (*p != '_')
698 *sp++ = *p;
699 p++;
700 }
701 *sp = '\0';
702 len = strlen (s);
703
704 if (! parse_float (s, len, &putithere->typed_val_float.dval, &suffix))
705 return ERROR;
706
707 suffix_len = s + len - suffix;
708
709 if (suffix_len == 0)
710 {
711 putithere->typed_val_float.type
712 = parse_d_type (ps)->builtin_double;
713 }
714 else if (suffix_len == 1)
715 {
716 /* Check suffix for `f', `l', or `i' (float, real, or idouble). */
717 if (tolower (*suffix) == 'f')
718 {
719 putithere->typed_val_float.type
720 = parse_d_type (ps)->builtin_float;
721 }
722 else if (tolower (*suffix) == 'l')
723 {
724 putithere->typed_val_float.type
725 = parse_d_type (ps)->builtin_real;
726 }
727 else if (tolower (*suffix) == 'i')
728 {
729 putithere->typed_val_float.type
730 = parse_d_type (ps)->builtin_idouble;
731 }
732 else
733 return ERROR;
734 }
735 else if (suffix_len == 2)
736 {
737 /* Check suffix for `fi' or `li' (ifloat or ireal). */
738 if (tolower (suffix[0]) == 'f' && tolower (suffix[1] == 'i'))
739 {
740 putithere->typed_val_float.type
741 = parse_d_type (ps)->builtin_ifloat;
742 }
743 else if (tolower (suffix[0]) == 'l' && tolower (suffix[1] == 'i'))
744 {
745 putithere->typed_val_float.type
746 = parse_d_type (ps)->builtin_ireal;
747 }
748 else
749 return ERROR;
750 }
751 else
752 return ERROR;
753
754 return FLOAT_LITERAL;
755 }
756
757 /* Handle base-switching prefixes 0x, 0b, 0 */
758 if (p[0] == '0')
759 switch (p[1])
760 {
761 case 'x':
762 case 'X':
763 if (len >= 3)
764 {
765 p += 2;
766 base = 16;
767 len -= 2;
768 }
769 break;
770
771 case 'b':
772 case 'B':
773 if (len >= 3)
774 {
775 p += 2;
776 base = 2;
777 len -= 2;
778 }
779 break;
780
781 default:
782 base = 8;
783 break;
784 }
785
786 while (len-- > 0)
787 {
788 c = *p++;
789 if (c == '_')
790 continue; /* Ignore embedded '_'. */
791 if (c >= 'A' && c <= 'Z')
792 c += 'a' - 'A';
793 if (c != 'l' && c != 'u')
794 n *= base;
795 if (c >= '0' && c <= '9')
796 {
797 if (found_suffix)
798 return ERROR;
799 n += i = c - '0';
800 }
801 else
802 {
803 if (base > 10 && c >= 'a' && c <= 'f')
804 {
805 if (found_suffix)
806 return ERROR;
807 n += i = c - 'a' + 10;
808 }
809 else if (c == 'l' && long_p == 0)
810 {
811 long_p = 1;
812 found_suffix = 1;
813 }
814 else if (c == 'u' && unsigned_p == 0)
815 {
816 unsigned_p = 1;
817 found_suffix = 1;
818 }
819 else
820 return ERROR; /* Char not a digit */
821 }
822 if (i >= base)
823 return ERROR; /* Invalid digit in this base. */
824 /* Portably test for integer overflow. */
825 if (c != 'l' && c != 'u')
826 {
827 ULONGEST n2 = prevn * base;
828 if ((n2 / base != prevn) || (n2 + i < prevn))
829 error (_("Numeric constant too large."));
830 }
831 prevn = n;
832 }
833
834 /* An integer constant is an int or a long. An L suffix forces it to
835 be long, and a U suffix forces it to be unsigned. To figure out
836 whether it fits, we shift it right and see whether anything remains.
837 Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or
838 more in one operation, because many compilers will warn about such a
839 shift (which always produces a zero result). To deal with the case
840 where it is we just always shift the value more than once, with fewer
841 bits each time. */
842 un = (ULONGEST) n >> 2;
843 if (long_p == 0 && (un >> 30) == 0)
844 {
845 high_bit = ((ULONGEST) 1) << 31;
846 signed_type = parse_d_type (ps)->builtin_int;
847 /* For decimal notation, keep the sign of the worked out type. */
848 if (base == 10 && !unsigned_p)
849 unsigned_type = parse_d_type (ps)->builtin_long;
850 else
851 unsigned_type = parse_d_type (ps)->builtin_uint;
852 }
853 else
854 {
855 int shift;
856 if (sizeof (ULONGEST) * HOST_CHAR_BIT < 64)
857 /* A long long does not fit in a LONGEST. */
858 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
859 else
860 shift = 63;
861 high_bit = (ULONGEST) 1 << shift;
862 signed_type = parse_d_type (ps)->builtin_long;
863 unsigned_type = parse_d_type (ps)->builtin_ulong;
864 }
865
866 putithere->typed_val_int.val = n;
867
868 /* If the high bit of the worked out type is set then this number
869 has to be unsigned_type. */
870 if (unsigned_p || (n & high_bit))
871 putithere->typed_val_int.type = unsigned_type;
872 else
873 putithere->typed_val_int.type = signed_type;
874
875 return INTEGER_LITERAL;
876 }
877
878 /* Temporary obstack used for holding strings. */
879 static struct obstack tempbuf;
880 static int tempbuf_init;
881
882 /* Parse a string or character literal from TOKPTR. The string or
883 character may be wide or unicode. *OUTPTR is set to just after the
884 end of the literal in the input string. The resulting token is
885 stored in VALUE. This returns a token value, either STRING or
886 CHAR, depending on what was parsed. *HOST_CHARS is set to the
887 number of host characters in the literal. */
888
889 static int
890 parse_string_or_char (const char *tokptr, const char **outptr,
891 struct typed_stoken *value, int *host_chars)
892 {
893 int quote;
894
895 /* Build the gdb internal form of the input string in tempbuf. Note
896 that the buffer is null byte terminated *only* for the
897 convenience of debugging gdb itself and printing the buffer
898 contents when the buffer contains no embedded nulls. Gdb does
899 not depend upon the buffer being null byte terminated, it uses
900 the length string instead. This allows gdb to handle C strings
901 (as well as strings in other languages) with embedded null
902 bytes */
903
904 if (!tempbuf_init)
905 tempbuf_init = 1;
906 else
907 obstack_free (&tempbuf, NULL);
908 obstack_init (&tempbuf);
909
910 /* Skip the quote. */
911 quote = *tokptr;
912 ++tokptr;
913
914 *host_chars = 0;
915
916 while (*tokptr)
917 {
918 char c = *tokptr;
919 if (c == '\\')
920 {
921 ++tokptr;
922 *host_chars += c_parse_escape (&tokptr, &tempbuf);
923 }
924 else if (c == quote)
925 break;
926 else
927 {
928 obstack_1grow (&tempbuf, c);
929 ++tokptr;
930 /* FIXME: this does the wrong thing with multi-byte host
931 characters. We could use mbrlen here, but that would
932 make "set host-charset" a bit less useful. */
933 ++*host_chars;
934 }
935 }
936
937 if (*tokptr != quote)
938 {
939 if (quote == '"' || quote == '`')
940 error (_("Unterminated string in expression."));
941 else
942 error (_("Unmatched single quote."));
943 }
944 ++tokptr;
945
946 /* FIXME: should instead use own language string_type enum
947 and handle D-specific string suffixes here. */
948 if (quote == '\'')
949 value->type = C_CHAR;
950 else
951 value->type = C_STRING;
952
953 value->ptr = (char *) obstack_base (&tempbuf);
954 value->length = obstack_object_size (&tempbuf);
955
956 *outptr = tokptr;
957
958 return quote == '\'' ? CHARACTER_LITERAL : STRING_LITERAL;
959 }
960
961 struct token
962 {
963 char *oper;
964 int token;
965 enum exp_opcode opcode;
966 };
967
968 static const struct token tokentab3[] =
969 {
970 {"^^=", ASSIGN_MODIFY, BINOP_EXP},
971 {"<<=", ASSIGN_MODIFY, BINOP_LSH},
972 {">>=", ASSIGN_MODIFY, BINOP_RSH},
973 };
974
975 static const struct token tokentab2[] =
976 {
977 {"+=", ASSIGN_MODIFY, BINOP_ADD},
978 {"-=", ASSIGN_MODIFY, BINOP_SUB},
979 {"*=", ASSIGN_MODIFY, BINOP_MUL},
980 {"/=", ASSIGN_MODIFY, BINOP_DIV},
981 {"%=", ASSIGN_MODIFY, BINOP_REM},
982 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
983 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
984 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
985 {"++", INCREMENT, BINOP_END},
986 {"--", DECREMENT, BINOP_END},
987 {"&&", ANDAND, BINOP_END},
988 {"||", OROR, BINOP_END},
989 {"^^", HATHAT, BINOP_END},
990 {"<<", LSH, BINOP_END},
991 {">>", RSH, BINOP_END},
992 {"==", EQUAL, BINOP_END},
993 {"!=", NOTEQUAL, BINOP_END},
994 {"<=", LEQ, BINOP_END},
995 {">=", GEQ, BINOP_END},
996 {"..", DOTDOT, BINOP_END},
997 };
998
999 /* Identifier-like tokens. */
1000 static const struct token ident_tokens[] =
1001 {
1002 {"is", IDENTITY, BINOP_END},
1003 {"!is", NOTIDENTITY, BINOP_END},
1004
1005 {"cast", CAST_KEYWORD, OP_NULL},
1006 {"const", CONST_KEYWORD, OP_NULL},
1007 {"immutable", IMMUTABLE_KEYWORD, OP_NULL},
1008 {"shared", SHARED_KEYWORD, OP_NULL},
1009 {"super", SUPER_KEYWORD, OP_NULL},
1010
1011 {"null", NULL_KEYWORD, OP_NULL},
1012 {"true", TRUE_KEYWORD, OP_NULL},
1013 {"false", FALSE_KEYWORD, OP_NULL},
1014
1015 {"init", INIT_KEYWORD, OP_NULL},
1016 {"sizeof", SIZEOF_KEYWORD, OP_NULL},
1017 {"typeof", TYPEOF_KEYWORD, OP_NULL},
1018 {"typeid", TYPEID_KEYWORD, OP_NULL},
1019
1020 {"delegate", DELEGATE_KEYWORD, OP_NULL},
1021 {"function", FUNCTION_KEYWORD, OP_NULL},
1022 {"struct", STRUCT_KEYWORD, OP_NULL},
1023 {"union", UNION_KEYWORD, OP_NULL},
1024 {"class", CLASS_KEYWORD, OP_NULL},
1025 {"interface", INTERFACE_KEYWORD, OP_NULL},
1026 {"enum", ENUM_KEYWORD, OP_NULL},
1027 {"template", TEMPLATE_KEYWORD, OP_NULL},
1028 };
1029
1030 /* This is set if a NAME token appeared at the very end of the input
1031 string, with no whitespace separating the name from the EOF. This
1032 is used only when parsing to do field name completion. */
1033 static int saw_name_at_eof;
1034
1035 /* This is set if the previously-returned token was a structure operator.
1036 This is used only when parsing to do field name completion. */
1037 static int last_was_structop;
1038
1039 /* Read one token, getting characters through lexptr. */
1040
1041 static int
1042 lex_one_token (struct parser_state *par_state)
1043 {
1044 int c;
1045 int namelen;
1046 unsigned int i;
1047 const char *tokstart;
1048 int saw_structop = last_was_structop;
1049 char *copy;
1050
1051 last_was_structop = 0;
1052
1053 retry:
1054
1055 prev_lexptr = lexptr;
1056
1057 tokstart = lexptr;
1058 /* See if it is a special token of length 3. */
1059 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1060 if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
1061 {
1062 lexptr += 3;
1063 yylval.opcode = tokentab3[i].opcode;
1064 return tokentab3[i].token;
1065 }
1066
1067 /* See if it is a special token of length 2. */
1068 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1069 if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
1070 {
1071 lexptr += 2;
1072 yylval.opcode = tokentab2[i].opcode;
1073 return tokentab2[i].token;
1074 }
1075
1076 switch (c = *tokstart)
1077 {
1078 case 0:
1079 /* If we're parsing for field name completion, and the previous
1080 token allows such completion, return a COMPLETE token.
1081 Otherwise, we were already scanning the original text, and
1082 we're really done. */
1083 if (saw_name_at_eof)
1084 {
1085 saw_name_at_eof = 0;
1086 return COMPLETE;
1087 }
1088 else if (saw_structop)
1089 return COMPLETE;
1090 else
1091 return 0;
1092
1093 case ' ':
1094 case '\t':
1095 case '\n':
1096 lexptr++;
1097 goto retry;
1098
1099 case '[':
1100 case '(':
1101 paren_depth++;
1102 lexptr++;
1103 return c;
1104
1105 case ']':
1106 case ')':
1107 if (paren_depth == 0)
1108 return 0;
1109 paren_depth--;
1110 lexptr++;
1111 return c;
1112
1113 case ',':
1114 if (comma_terminates && paren_depth == 0)
1115 return 0;
1116 lexptr++;
1117 return c;
1118
1119 case '.':
1120 /* Might be a floating point number. */
1121 if (lexptr[1] < '0' || lexptr[1] > '9')
1122 {
1123 if (parse_completion)
1124 last_was_structop = 1;
1125 goto symbol; /* Nope, must be a symbol. */
1126 }
1127 /* FALL THRU into number case. */
1128
1129 case '0':
1130 case '1':
1131 case '2':
1132 case '3':
1133 case '4':
1134 case '5':
1135 case '6':
1136 case '7':
1137 case '8':
1138 case '9':
1139 {
1140 /* It's a number. */
1141 int got_dot = 0, got_e = 0, toktype;
1142 const char *p = tokstart;
1143 int hex = input_radix > 10;
1144
1145 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1146 {
1147 p += 2;
1148 hex = 1;
1149 }
1150
1151 for (;; ++p)
1152 {
1153 /* Hex exponents start with 'p', because 'e' is a valid hex
1154 digit and thus does not indicate a floating point number
1155 when the radix is hex. */
1156 if ((!hex && !got_e && tolower (p[0]) == 'e')
1157 || (hex && !got_e && tolower (p[0] == 'p')))
1158 got_dot = got_e = 1;
1159 /* A '.' always indicates a decimal floating point number
1160 regardless of the radix. If we have a '..' then its the
1161 end of the number and the beginning of a slice. */
1162 else if (!got_dot && (p[0] == '.' && p[1] != '.'))
1163 got_dot = 1;
1164 /* This is the sign of the exponent, not the end of the number. */
1165 else if (got_e && (tolower (p[-1]) == 'e' || tolower (p[-1]) == 'p')
1166 && (*p == '-' || *p == '+'))
1167 continue;
1168 /* We will take any letters or digits, ignoring any embedded '_'.
1169 parse_number will complain if past the radix, or if L or U are
1170 not final. */
1171 else if ((*p < '0' || *p > '9') && (*p != '_')
1172 && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z')))
1173 break;
1174 }
1175
1176 toktype = parse_number (par_state, tokstart, p - tokstart,
1177 got_dot|got_e, &yylval);
1178 if (toktype == ERROR)
1179 {
1180 char *err_copy = (char *) alloca (p - tokstart + 1);
1181
1182 memcpy (err_copy, tokstart, p - tokstart);
1183 err_copy[p - tokstart] = 0;
1184 error (_("Invalid number \"%s\"."), err_copy);
1185 }
1186 lexptr = p;
1187 return toktype;
1188 }
1189
1190 case '@':
1191 {
1192 const char *p = &tokstart[1];
1193 size_t len = strlen ("entry");
1194
1195 while (isspace (*p))
1196 p++;
1197 if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
1198 && p[len] != '_')
1199 {
1200 lexptr = &p[len];
1201 return ENTRY;
1202 }
1203 }
1204 /* FALLTHRU */
1205 case '+':
1206 case '-':
1207 case '*':
1208 case '/':
1209 case '%':
1210 case '|':
1211 case '&':
1212 case '^':
1213 case '~':
1214 case '!':
1215 case '<':
1216 case '>':
1217 case '?':
1218 case ':':
1219 case '=':
1220 case '{':
1221 case '}':
1222 symbol:
1223 lexptr++;
1224 return c;
1225
1226 case '\'':
1227 case '"':
1228 case '`':
1229 {
1230 int host_len;
1231 int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
1232 &host_len);
1233 if (result == CHARACTER_LITERAL)
1234 {
1235 if (host_len == 0)
1236 error (_("Empty character constant."));
1237 else if (host_len > 2 && c == '\'')
1238 {
1239 ++tokstart;
1240 namelen = lexptr - tokstart - 1;
1241 goto tryname;
1242 }
1243 else if (host_len > 1)
1244 error (_("Invalid character constant."));
1245 }
1246 return result;
1247 }
1248 }
1249
1250 if (!(c == '_' || c == '$'
1251 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1252 /* We must have come across a bad character (e.g. ';'). */
1253 error (_("Invalid character '%c' in expression"), c);
1254
1255 /* It's a name. See how long it is. */
1256 namelen = 0;
1257 for (c = tokstart[namelen];
1258 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1259 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));)
1260 c = tokstart[++namelen];
1261
1262 /* The token "if" terminates the expression and is NOT
1263 removed from the input stream. */
1264 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1265 return 0;
1266
1267 /* For the same reason (breakpoint conditions), "thread N"
1268 terminates the expression. "thread" could be an identifier, but
1269 an identifier is never followed by a number without intervening
1270 punctuation. "task" is similar. Handle abbreviations of these,
1271 similarly to breakpoint.c:find_condition_and_thread. */
1272 if (namelen >= 1
1273 && (strncmp (tokstart, "thread", namelen) == 0
1274 || strncmp (tokstart, "task", namelen) == 0)
1275 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t'))
1276 {
1277 const char *p = tokstart + namelen + 1;
1278
1279 while (*p == ' ' || *p == '\t')
1280 p++;
1281 if (*p >= '0' && *p <= '9')
1282 return 0;
1283 }
1284
1285 lexptr += namelen;
1286
1287 tryname:
1288
1289 yylval.sval.ptr = tokstart;
1290 yylval.sval.length = namelen;
1291
1292 /* Catch specific keywords. */
1293 copy = copy_name (yylval.sval);
1294 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
1295 if (strcmp (copy, ident_tokens[i].oper) == 0)
1296 {
1297 /* It is ok to always set this, even though we don't always
1298 strictly need to. */
1299 yylval.opcode = ident_tokens[i].opcode;
1300 return ident_tokens[i].token;
1301 }
1302
1303 if (*tokstart == '$')
1304 return DOLLAR_VARIABLE;
1305
1306 yylval.tsym.type
1307 = language_lookup_primitive_type (parse_language (par_state),
1308 parse_gdbarch (par_state), copy);
1309 if (yylval.tsym.type != NULL)
1310 return TYPENAME;
1311
1312 /* Input names that aren't symbols but ARE valid hex numbers,
1313 when the input radix permits them, can be names or numbers
1314 depending on the parse. Note we support radixes > 16 here. */
1315 if ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1316 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))
1317 {
1318 YYSTYPE newlval; /* Its value is ignored. */
1319 int hextype = parse_number (par_state, tokstart, namelen, 0, &newlval);
1320 if (hextype == INTEGER_LITERAL)
1321 return NAME_OR_INT;
1322 }
1323
1324 if (parse_completion && *lexptr == '\0')
1325 saw_name_at_eof = 1;
1326
1327 return IDENTIFIER;
1328 }
1329
1330 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
1331 typedef struct
1332 {
1333 int token;
1334 YYSTYPE value;
1335 } token_and_value;
1336
1337 DEF_VEC_O (token_and_value);
1338
1339 /* A FIFO of tokens that have been read but not yet returned to the
1340 parser. */
1341 static VEC (token_and_value) *token_fifo;
1342
1343 /* Non-zero if the lexer should return tokens from the FIFO. */
1344 static int popping;
1345
1346 /* Temporary storage for yylex; this holds symbol names as they are
1347 built up. */
1348 static struct obstack name_obstack;
1349
1350 /* Classify an IDENTIFIER token. The contents of the token are in `yylval'.
1351 Updates yylval and returns the new token type. BLOCK is the block
1352 in which lookups start; this can be NULL to mean the global scope. */
1353
1354 static int
1355 classify_name (struct parser_state *par_state, const struct block *block)
1356 {
1357 struct block_symbol sym;
1358 char *copy;
1359 struct field_of_this_result is_a_field_of_this;
1360
1361 copy = copy_name (yylval.sval);
1362
1363 sym = lookup_symbol (copy, block, VAR_DOMAIN, &is_a_field_of_this);
1364 if (sym.symbol && SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)
1365 {
1366 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1367 return TYPENAME;
1368 }
1369 else if (sym.symbol == NULL)
1370 {
1371 /* Look-up first for a module name, then a type. */
1372 sym = lookup_symbol (copy, block, MODULE_DOMAIN, NULL);
1373 if (sym.symbol == NULL)
1374 sym = lookup_symbol (copy, block, STRUCT_DOMAIN, NULL);
1375
1376 if (sym.symbol != NULL)
1377 {
1378 yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1379 return TYPENAME;
1380 }
1381
1382 return UNKNOWN_NAME;
1383 }
1384
1385 return IDENTIFIER;
1386 }
1387
1388 /* Like classify_name, but used by the inner loop of the lexer, when a
1389 name might have already been seen. CONTEXT is the context type, or
1390 NULL if this is the first component of a name. */
1391
1392 static int
1393 classify_inner_name (struct parser_state *par_state,
1394 const struct block *block, struct type *context)
1395 {
1396 struct type *type;
1397 char *copy;
1398
1399 if (context == NULL)
1400 return classify_name (par_state, block);
1401
1402 type = check_typedef (context);
1403 if (!type_aggregate_p (type))
1404 return ERROR;
1405
1406 copy = copy_name (yylval.ssym.stoken);
1407 yylval.ssym.sym = d_lookup_nested_symbol (type, copy, block);
1408
1409 if (yylval.ssym.sym.symbol == NULL)
1410 return ERROR;
1411
1412 if (SYMBOL_CLASS (yylval.ssym.sym.symbol) == LOC_TYPEDEF)
1413 {
1414 yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
1415 return TYPENAME;
1416 }
1417
1418 return IDENTIFIER;
1419 }
1420
1421 /* The outer level of a two-level lexer. This calls the inner lexer
1422 to return tokens. It then either returns these tokens, or
1423 aggregates them into a larger token. This lets us work around a
1424 problem in our parsing approach, where the parser could not
1425 distinguish between qualified names and qualified types at the
1426 right point. */
1427
1428 static int
1429 yylex (void)
1430 {
1431 token_and_value current;
1432 int last_was_dot;
1433 struct type *context_type = NULL;
1434 int last_to_examine, next_to_examine, checkpoint;
1435 const struct block *search_block;
1436
1437 if (popping && !VEC_empty (token_and_value, token_fifo))
1438 goto do_pop;
1439 popping = 0;
1440
1441 /* Read the first token and decide what to do. */
1442 current.token = lex_one_token (pstate);
1443 if (current.token != IDENTIFIER && current.token != '.')
1444 return current.token;
1445
1446 /* Read any sequence of alternating "." and identifier tokens into
1447 the token FIFO. */
1448 current.value = yylval;
1449 VEC_safe_push (token_and_value, token_fifo, &current);
1450 last_was_dot = current.token == '.';
1451
1452 while (1)
1453 {
1454 current.token = lex_one_token (pstate);
1455 current.value = yylval;
1456 VEC_safe_push (token_and_value, token_fifo, &current);
1457
1458 if ((last_was_dot && current.token != IDENTIFIER)
1459 || (!last_was_dot && current.token != '.'))
1460 break;
1461
1462 last_was_dot = !last_was_dot;
1463 }
1464 popping = 1;
1465
1466 /* We always read one extra token, so compute the number of tokens
1467 to examine accordingly. */
1468 last_to_examine = VEC_length (token_and_value, token_fifo) - 2;
1469 next_to_examine = 0;
1470
1471 current = *VEC_index (token_and_value, token_fifo, next_to_examine);
1472 ++next_to_examine;
1473
1474 /* If we are not dealing with a typename, now is the time to find out. */
1475 if (current.token == IDENTIFIER)
1476 {
1477 yylval = current.value;
1478 current.token = classify_name (pstate, expression_context_block);
1479 current.value = yylval;
1480 }
1481
1482 /* If the IDENTIFIER is not known, it could be a package symbol,
1483 first try building up a name until we find the qualified module. */
1484 if (current.token == UNKNOWN_NAME)
1485 {
1486 obstack_free (&name_obstack, obstack_base (&name_obstack));
1487 obstack_grow (&name_obstack, current.value.sval.ptr,
1488 current.value.sval.length);
1489
1490 last_was_dot = 0;
1491
1492 while (next_to_examine <= last_to_examine)
1493 {
1494 token_and_value *next;
1495
1496 next = VEC_index (token_and_value, token_fifo, next_to_examine);
1497 ++next_to_examine;
1498
1499 if (next->token == IDENTIFIER && last_was_dot)
1500 {
1501 /* Update the partial name we are constructing. */
1502 obstack_grow_str (&name_obstack, ".");
1503 obstack_grow (&name_obstack, next->value.sval.ptr,
1504 next->value.sval.length);
1505
1506 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1507 yylval.sval.length = obstack_object_size (&name_obstack);
1508
1509 current.token = classify_name (pstate, expression_context_block);
1510 current.value = yylval;
1511
1512 /* We keep going until we find a TYPENAME. */
1513 if (current.token == TYPENAME)
1514 {
1515 /* Install it as the first token in the FIFO. */
1516 VEC_replace (token_and_value, token_fifo, 0, &current);
1517 VEC_block_remove (token_and_value, token_fifo, 1,
1518 next_to_examine - 1);
1519 break;
1520 }
1521 }
1522 else if (next->token == '.' && !last_was_dot)
1523 last_was_dot = 1;
1524 else
1525 {
1526 /* We've reached the end of the name. */
1527 break;
1528 }
1529 }
1530
1531 /* Reset our current token back to the start, if we found nothing
1532 this means that we will just jump to do pop. */
1533 current = *VEC_index (token_and_value, token_fifo, 0);
1534 next_to_examine = 1;
1535 }
1536 if (current.token != TYPENAME && current.token != '.')
1537 goto do_pop;
1538
1539 obstack_free (&name_obstack, obstack_base (&name_obstack));
1540 checkpoint = 0;
1541 if (current.token == '.')
1542 search_block = NULL;
1543 else
1544 {
1545 gdb_assert (current.token == TYPENAME);
1546 search_block = expression_context_block;
1547 obstack_grow (&name_obstack, current.value.sval.ptr,
1548 current.value.sval.length);
1549 context_type = current.value.tsym.type;
1550 checkpoint = 1;
1551 }
1552
1553 last_was_dot = current.token == '.';
1554
1555 while (next_to_examine <= last_to_examine)
1556 {
1557 token_and_value *next;
1558
1559 next = VEC_index (token_and_value, token_fifo, next_to_examine);
1560 ++next_to_examine;
1561
1562 if (next->token == IDENTIFIER && last_was_dot)
1563 {
1564 int classification;
1565
1566 yylval = next->value;
1567 classification = classify_inner_name (pstate, search_block,
1568 context_type);
1569 /* We keep going until we either run out of names, or until
1570 we have a qualified name which is not a type. */
1571 if (classification != TYPENAME && classification != IDENTIFIER)
1572 break;
1573
1574 /* Accept up to this token. */
1575 checkpoint = next_to_examine;
1576
1577 /* Update the partial name we are constructing. */
1578 if (context_type != NULL)
1579 {
1580 /* We don't want to put a leading "." into the name. */
1581 obstack_grow_str (&name_obstack, ".");
1582 }
1583 obstack_grow (&name_obstack, next->value.sval.ptr,
1584 next->value.sval.length);
1585
1586 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1587 yylval.sval.length = obstack_object_size (&name_obstack);
1588 current.value = yylval;
1589 current.token = classification;
1590
1591 last_was_dot = 0;
1592
1593 if (classification == IDENTIFIER)
1594 break;
1595
1596 context_type = yylval.tsym.type;
1597 }
1598 else if (next->token == '.' && !last_was_dot)
1599 last_was_dot = 1;
1600 else
1601 {
1602 /* We've reached the end of the name. */
1603 break;
1604 }
1605 }
1606
1607 /* If we have a replacement token, install it as the first token in
1608 the FIFO, and delete the other constituent tokens. */
1609 if (checkpoint > 0)
1610 {
1611 VEC_replace (token_and_value, token_fifo, 0, &current);
1612 if (checkpoint > 1)
1613 VEC_block_remove (token_and_value, token_fifo, 1, checkpoint - 1);
1614 }
1615
1616 do_pop:
1617 current = *VEC_index (token_and_value, token_fifo, 0);
1618 VEC_ordered_remove (token_and_value, token_fifo, 0);
1619 yylval = current.value;
1620 return current.token;
1621 }
1622
1623 int
1624 d_parse (struct parser_state *par_state)
1625 {
1626 int result;
1627 struct cleanup *back_to;
1628
1629 /* Setting up the parser state. */
1630 gdb_assert (par_state != NULL);
1631 pstate = par_state;
1632
1633 back_to = make_cleanup (null_cleanup, NULL);
1634
1635 make_cleanup_restore_integer (&yydebug);
1636 make_cleanup_clear_parser_state (&pstate);
1637 yydebug = parser_debug;
1638
1639 /* Initialize some state used by the lexer. */
1640 last_was_structop = 0;
1641 saw_name_at_eof = 0;
1642
1643 VEC_free (token_and_value, token_fifo);
1644 popping = 0;
1645 obstack_init (&name_obstack);
1646 make_cleanup_obstack_free (&name_obstack);
1647
1648 result = yyparse ();
1649 do_cleanups (back_to);
1650 return result;
1651 }
1652
1653 void
1654 yyerror (char *msg)
1655 {
1656 if (prev_lexptr)
1657 lexptr = prev_lexptr;
1658
1659 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1660 }
1661
This page took 0.077807 seconds and 5 git commands to generate.