2003-07-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Contributed by Martin Hunt, hunt@cygnus.com */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdb_string.h"
34 #include "value.h"
35 #include "inferior.h"
36 #include "dis-asm.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "remote.h"
43 #include "floatformat.h"
44 #include "gdb/sim-d10v.h"
45 #include "sim-regno.h"
46 #include "disasm.h"
47 #include "trad-frame.h"
48
49 #include "gdb_assert.h"
50
51 struct gdbarch_tdep
52 {
53 int a0_regnum;
54 int nr_dmap_regs;
55 unsigned long (*dmap_register) (void *regcache, int nr);
56 unsigned long (*imap_register) (void *regcache, int nr);
57 };
58
59 /* These are the addresses the D10V-EVA board maps data and
60 instruction memory to. */
61
62 enum memspace {
63 DMEM_START = 0x2000000,
64 IMEM_START = 0x1000000,
65 STACK_START = 0x200bffe
66 };
67
68 /* d10v register names. */
69
70 enum
71 {
72 R0_REGNUM = 0,
73 R3_REGNUM = 3,
74 D10V_FP_REGNUM = 11,
75 LR_REGNUM = 13,
76 D10V_SP_REGNUM = 15,
77 PSW_REGNUM = 16,
78 D10V_PC_REGNUM = 18,
79 NR_IMAP_REGS = 2,
80 NR_A_REGS = 2,
81 TS2_NUM_REGS = 37,
82 TS3_NUM_REGS = 42,
83 /* d10v calling convention. */
84 ARG1_REGNUM = R0_REGNUM,
85 ARGN_REGNUM = R3_REGNUM,
86 RET1_REGNUM = R0_REGNUM,
87 };
88
89 static int
90 nr_dmap_regs (struct gdbarch *gdbarch)
91 {
92 return gdbarch_tdep (gdbarch)->nr_dmap_regs;
93 }
94
95 static int
96 a0_regnum (struct gdbarch *gdbarch)
97 {
98 return gdbarch_tdep (gdbarch)->a0_regnum;
99 }
100
101 /* Local functions */
102
103 extern void _initialize_d10v_tdep (void);
104
105 static void d10v_eva_prepare_to_trace (void);
106
107 static void d10v_eva_get_trace_data (void);
108
109 static CORE_ADDR
110 d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
111 {
112 /* Align to the size of an instruction (so that they can safely be
113 pushed onto the stack. */
114 return sp & ~3;
115 }
116
117 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
118 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
119 and TYPE is the type (which is known to be struct, union or array).
120
121 The d10v returns anything less than 8 bytes in size in
122 registers. */
123
124 static int
125 d10v_use_struct_convention (int gcc_p, struct type *type)
126 {
127 long alignment;
128 int i;
129 /* The d10v only passes a struct in a register when that structure
130 has an alignment that matches the size of a register. */
131 /* If the structure doesn't fit in 4 registers, put it on the
132 stack. */
133 if (TYPE_LENGTH (type) > 8)
134 return 1;
135 /* If the struct contains only one field, don't put it on the stack
136 - gcc can fit it in one or more registers. */
137 if (TYPE_NFIELDS (type) == 1)
138 return 0;
139 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
140 for (i = 1; i < TYPE_NFIELDS (type); i++)
141 {
142 /* If the alignment changes, just assume it goes on the
143 stack. */
144 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
145 return 1;
146 }
147 /* If the alignment is suitable for the d10v's 16 bit registers,
148 don't put it on the stack. */
149 if (alignment == 2 || alignment == 4)
150 return 0;
151 return 1;
152 }
153
154
155 static const unsigned char *
156 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
157 {
158 static unsigned char breakpoint[] =
159 {0x2f, 0x90, 0x5e, 0x00};
160 *lenptr = sizeof (breakpoint);
161 return breakpoint;
162 }
163
164 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
165 when the reg_nr isn't valid. */
166
167 enum ts2_regnums
168 {
169 TS2_IMAP0_REGNUM = 32,
170 TS2_DMAP_REGNUM = 34,
171 TS2_NR_DMAP_REGS = 1,
172 TS2_A0_REGNUM = 35
173 };
174
175 static const char *
176 d10v_ts2_register_name (int reg_nr)
177 {
178 static char *register_names[] =
179 {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
183 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
184 "imap0", "imap1", "dmap", "a0", "a1"
185 };
186 if (reg_nr < 0)
187 return NULL;
188 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
189 return NULL;
190 return register_names[reg_nr];
191 }
192
193 enum ts3_regnums
194 {
195 TS3_IMAP0_REGNUM = 36,
196 TS3_DMAP0_REGNUM = 38,
197 TS3_NR_DMAP_REGS = 4,
198 TS3_A0_REGNUM = 32
199 };
200
201 static const char *
202 d10v_ts3_register_name (int reg_nr)
203 {
204 static char *register_names[] =
205 {
206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
207 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
208 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
209 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
210 "a0", "a1",
211 "spi", "spu",
212 "imap0", "imap1",
213 "dmap0", "dmap1", "dmap2", "dmap3"
214 };
215 if (reg_nr < 0)
216 return NULL;
217 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
218 return NULL;
219 return register_names[reg_nr];
220 }
221
222 /* Access the DMAP/IMAP registers in a target independent way.
223
224 Divide the D10V's 64k data space into four 16k segments:
225 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
226 0xc000 -- 0xffff.
227
228 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
229 0x7fff) always map to the on-chip data RAM, and the fourth always
230 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
231 unified memory or instruction memory, under the control of the
232 single DMAP register.
233
234 On the TS3, there are four DMAP registers, each of which controls
235 one of the segments. */
236
237 static unsigned long
238 d10v_ts2_dmap_register (void *regcache, int reg_nr)
239 {
240 switch (reg_nr)
241 {
242 case 0:
243 case 1:
244 return 0x2000;
245 case 2:
246 {
247 ULONGEST reg;
248 regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, &reg);
249 return reg;
250 }
251 default:
252 return 0;
253 }
254 }
255
256 static unsigned long
257 d10v_ts3_dmap_register (void *regcache, int reg_nr)
258 {
259 ULONGEST reg;
260 regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, &reg);
261 return reg;
262 }
263
264 static unsigned long
265 d10v_ts2_imap_register (void *regcache, int reg_nr)
266 {
267 ULONGEST reg;
268 regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, &reg);
269 return reg;
270 }
271
272 static unsigned long
273 d10v_ts3_imap_register (void *regcache, int reg_nr)
274 {
275 ULONGEST reg;
276 regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, &reg);
277 return reg;
278 }
279
280 /* MAP GDB's internal register numbering (determined by the layout fo
281 the REGISTER_BYTE array) onto the simulator's register
282 numbering. */
283
284 static int
285 d10v_ts2_register_sim_regno (int nr)
286 {
287 /* Only makes sense to supply raw registers. */
288 gdb_assert (nr >= 0 && nr < NUM_REGS);
289 if (nr >= TS2_IMAP0_REGNUM
290 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
291 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
292 if (nr == TS2_DMAP_REGNUM)
293 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
294 if (nr >= TS2_A0_REGNUM
295 && nr < TS2_A0_REGNUM + NR_A_REGS)
296 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
297 return nr;
298 }
299
300 static int
301 d10v_ts3_register_sim_regno (int nr)
302 {
303 /* Only makes sense to supply raw registers. */
304 gdb_assert (nr >= 0 && nr < NUM_REGS);
305 if (nr >= TS3_IMAP0_REGNUM
306 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
307 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
308 if (nr >= TS3_DMAP0_REGNUM
309 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
310 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
311 if (nr >= TS3_A0_REGNUM
312 && nr < TS3_A0_REGNUM + NR_A_REGS)
313 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
314 return nr;
315 }
316
317 /* Return the GDB type object for the "standard" data type
318 of data in register N. */
319
320 static struct type *
321 d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
322 {
323 if (reg_nr == D10V_PC_REGNUM)
324 return builtin_type_void_func_ptr;
325 if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM)
326 return builtin_type_void_data_ptr;
327 else if (reg_nr >= a0_regnum (gdbarch)
328 && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS))
329 return builtin_type_int64;
330 else
331 return builtin_type_int16;
332 }
333
334 static int
335 d10v_daddr_p (CORE_ADDR x)
336 {
337 return (((x) & 0x3000000) == DMEM_START);
338 }
339
340 static int
341 d10v_iaddr_p (CORE_ADDR x)
342 {
343 return (((x) & 0x3000000) == IMEM_START);
344 }
345
346 static CORE_ADDR
347 d10v_make_daddr (CORE_ADDR x)
348 {
349 return ((x) | DMEM_START);
350 }
351
352 static CORE_ADDR
353 d10v_make_iaddr (CORE_ADDR x)
354 {
355 if (d10v_iaddr_p (x))
356 return x; /* Idempotency -- x is already in the IMEM space. */
357 else
358 return (((x) << 2) | IMEM_START);
359 }
360
361 static CORE_ADDR
362 d10v_convert_iaddr_to_raw (CORE_ADDR x)
363 {
364 return (((x) >> 2) & 0xffff);
365 }
366
367 static CORE_ADDR
368 d10v_convert_daddr_to_raw (CORE_ADDR x)
369 {
370 return ((x) & 0xffff);
371 }
372
373 static void
374 d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
375 {
376 /* Is it a code address? */
377 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
378 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
379 {
380 store_unsigned_integer (buf, TYPE_LENGTH (type),
381 d10v_convert_iaddr_to_raw (addr));
382 }
383 else
384 {
385 /* Strip off any upper segment bits. */
386 store_unsigned_integer (buf, TYPE_LENGTH (type),
387 d10v_convert_daddr_to_raw (addr));
388 }
389 }
390
391 static CORE_ADDR
392 d10v_pointer_to_address (struct type *type, const void *buf)
393 {
394 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
395 /* Is it a code address? */
396 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
397 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
398 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
399 return d10v_make_iaddr (addr);
400 else
401 return d10v_make_daddr (addr);
402 }
403
404 /* Don't do anything if we have an integer, this way users can type 'x
405 <addr>' w/o having gdb outsmart them. The internal gdb conversions
406 to the correct space are taken care of in the pointer_to_address
407 function. If we don't do this, 'x $fp' wouldn't work. */
408 static CORE_ADDR
409 d10v_integer_to_address (struct type *type, void *buf)
410 {
411 LONGEST val;
412 val = unpack_long (type, buf);
413 return val;
414 }
415
416 /* Write into appropriate registers a function return value
417 of type TYPE, given in virtual format.
418
419 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
420
421 static void
422 d10v_store_return_value (struct type *type, struct regcache *regcache,
423 const void *valbuf)
424 {
425 /* Only char return values need to be shifted right within the first
426 regnum. */
427 if (TYPE_LENGTH (type) == 1
428 && TYPE_CODE (type) == TYPE_CODE_INT)
429 {
430 bfd_byte tmp[2];
431 tmp[1] = *(bfd_byte *)valbuf;
432 regcache_cooked_write (regcache, RET1_REGNUM, tmp);
433 }
434 else
435 {
436 int reg;
437 /* A structure is never more than 8 bytes long. See
438 use_struct_convention(). */
439 gdb_assert (TYPE_LENGTH (type) <= 8);
440 /* Write out most registers, stop loop before trying to write
441 out any dangling byte at the end of the buffer. */
442 for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
443 {
444 regcache_cooked_write (regcache, RET1_REGNUM + reg,
445 (bfd_byte *) valbuf + reg * 2);
446 }
447 /* Write out any dangling byte at the end of the buffer. */
448 if ((reg * 2) + 1 == TYPE_LENGTH (type))
449 regcache_cooked_write_part (regcache, reg, 0, 1,
450 (bfd_byte *) valbuf + reg * 2);
451 }
452 }
453
454 /* Extract from an array REGBUF containing the (raw) register state
455 the address in which a function should return its structure value,
456 as a CORE_ADDR (or an expression that can be used as one). */
457
458 static CORE_ADDR
459 d10v_extract_struct_value_address (struct regcache *regcache)
460 {
461 ULONGEST addr;
462 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
463 return (addr | DMEM_START);
464 }
465
466 static int
467 check_prologue (unsigned short op)
468 {
469 /* st rn, @-sp */
470 if ((op & 0x7E1F) == 0x6C1F)
471 return 1;
472
473 /* st2w rn, @-sp */
474 if ((op & 0x7E3F) == 0x6E1F)
475 return 1;
476
477 /* subi sp, n */
478 if ((op & 0x7FE1) == 0x01E1)
479 return 1;
480
481 /* mv r11, sp */
482 if (op == 0x417E)
483 return 1;
484
485 /* nop */
486 if (op == 0x5E00)
487 return 1;
488
489 /* st rn, @sp */
490 if ((op & 0x7E1F) == 0x681E)
491 return 1;
492
493 /* st2w rn, @sp */
494 if ((op & 0x7E3F) == 0x3A1E)
495 return 1;
496
497 return 0;
498 }
499
500 static CORE_ADDR
501 d10v_skip_prologue (CORE_ADDR pc)
502 {
503 unsigned long op;
504 unsigned short op1, op2;
505 CORE_ADDR func_addr, func_end;
506 struct symtab_and_line sal;
507
508 /* If we have line debugging information, then the end of the */
509 /* prologue should the first assembly instruction of the first source line */
510 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
511 {
512 sal = find_pc_line (func_addr, 0);
513 if (sal.end && sal.end < func_end)
514 return sal.end;
515 }
516
517 if (target_read_memory (pc, (char *) &op, 4))
518 return pc; /* Can't access it -- assume no prologue. */
519
520 while (1)
521 {
522 op = (unsigned long) read_memory_integer (pc, 4);
523 if ((op & 0xC0000000) == 0xC0000000)
524 {
525 /* long instruction */
526 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
527 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
528 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
529 break;
530 }
531 else
532 {
533 /* short instructions */
534 if ((op & 0xC0000000) == 0x80000000)
535 {
536 op2 = (op & 0x3FFF8000) >> 15;
537 op1 = op & 0x7FFF;
538 }
539 else
540 {
541 op1 = (op & 0x3FFF8000) >> 15;
542 op2 = op & 0x7FFF;
543 }
544 if (check_prologue (op1))
545 {
546 if (!check_prologue (op2))
547 {
548 /* if the previous opcode was really part of the prologue */
549 /* and not just a NOP, then we want to break after both instructions */
550 if (op1 != 0x5E00)
551 pc += 4;
552 break;
553 }
554 }
555 else
556 break;
557 }
558 pc += 4;
559 }
560 return pc;
561 }
562
563 struct d10v_unwind_cache
564 {
565 /* The previous frame's inner most stack address. Used as this
566 frame ID's stack_addr. */
567 CORE_ADDR prev_sp;
568 /* The frame's base, optionally used by the high-level debug info. */
569 CORE_ADDR base;
570 int size;
571 /* How far the SP and r11 (FP) have been offset from the start of
572 the stack frame (as defined by the previous frame's stack
573 pointer). */
574 LONGEST sp_offset;
575 LONGEST r11_offset;
576 int uses_frame;
577 /* Table indicating the location of each and every register. */
578 struct trad_frame_saved_reg *saved_regs;
579 };
580
581 static int
582 prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
583 CORE_ADDR addr)
584 {
585 int n;
586
587 /* st rn, @-sp */
588 if ((op & 0x7E1F) == 0x6C1F)
589 {
590 n = (op & 0x1E0) >> 5;
591 info->sp_offset -= 2;
592 info->saved_regs[n].addr = info->sp_offset;
593 return 1;
594 }
595
596 /* st2w rn, @-sp */
597 else if ((op & 0x7E3F) == 0x6E1F)
598 {
599 n = (op & 0x1E0) >> 5;
600 info->sp_offset -= 4;
601 info->saved_regs[n + 0].addr = info->sp_offset + 0;
602 info->saved_regs[n + 1].addr = info->sp_offset + 2;
603 return 1;
604 }
605
606 /* subi sp, n */
607 if ((op & 0x7FE1) == 0x01E1)
608 {
609 n = (op & 0x1E) >> 1;
610 if (n == 0)
611 n = 16;
612 info->sp_offset -= n;
613 return 1;
614 }
615
616 /* mv r11, sp */
617 if (op == 0x417E)
618 {
619 info->uses_frame = 1;
620 info->r11_offset = info->sp_offset;
621 return 1;
622 }
623
624 /* st rn, @r11 */
625 if ((op & 0x7E1F) == 0x6816)
626 {
627 n = (op & 0x1E0) >> 5;
628 info->saved_regs[n].addr = info->r11_offset;
629 return 1;
630 }
631
632 /* nop */
633 if (op == 0x5E00)
634 return 1;
635
636 /* st rn, @sp */
637 if ((op & 0x7E1F) == 0x681E)
638 {
639 n = (op & 0x1E0) >> 5;
640 info->saved_regs[n].addr = info->sp_offset;
641 return 1;
642 }
643
644 /* st2w rn, @sp */
645 if ((op & 0x7E3F) == 0x3A1E)
646 {
647 n = (op & 0x1E0) >> 5;
648 info->saved_regs[n + 0].addr = info->sp_offset + 0;
649 info->saved_regs[n + 1].addr = info->sp_offset + 2;
650 return 1;
651 }
652
653 return 0;
654 }
655
656 /* Put here the code to store, into fi->saved_regs, the addresses of
657 the saved registers of frame described by FRAME_INFO. This
658 includes special registers such as pc and fp saved in special ways
659 in the stack frame. sp is even more special: the address we return
660 for it IS the sp for the next frame. */
661
662 static struct d10v_unwind_cache *
663 d10v_frame_unwind_cache (struct frame_info *next_frame,
664 void **this_prologue_cache)
665 {
666 struct gdbarch *gdbarch = get_frame_arch (next_frame);
667 CORE_ADDR pc;
668 ULONGEST prev_sp;
669 ULONGEST this_base;
670 unsigned long op;
671 unsigned short op1, op2;
672 int i;
673 struct d10v_unwind_cache *info;
674
675 if ((*this_prologue_cache))
676 return (*this_prologue_cache);
677
678 info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
679 (*this_prologue_cache) = info;
680 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
681
682 info->size = 0;
683 info->sp_offset = 0;
684
685 info->uses_frame = 0;
686 for (pc = frame_func_unwind (next_frame);
687 pc > 0 && pc < frame_pc_unwind (next_frame);
688 pc += 4)
689 {
690 op = get_frame_memory_unsigned (next_frame, pc, 4);
691 if ((op & 0xC0000000) == 0xC0000000)
692 {
693 /* long instruction */
694 if ((op & 0x3FFF0000) == 0x01FF0000)
695 {
696 /* add3 sp,sp,n */
697 short n = op & 0xFFFF;
698 info->sp_offset += n;
699 }
700 else if ((op & 0x3F0F0000) == 0x340F0000)
701 {
702 /* st rn, @(offset,sp) */
703 short offset = op & 0xFFFF;
704 short n = (op >> 20) & 0xF;
705 info->saved_regs[n].addr = info->sp_offset + offset;
706 }
707 else if ((op & 0x3F1F0000) == 0x350F0000)
708 {
709 /* st2w rn, @(offset,sp) */
710 short offset = op & 0xFFFF;
711 short n = (op >> 20) & 0xF;
712 info->saved_regs[n + 0].addr = info->sp_offset + offset + 0;
713 info->saved_regs[n + 1].addr = info->sp_offset + offset + 2;
714 }
715 else
716 break;
717 }
718 else
719 {
720 /* short instructions */
721 if ((op & 0xC0000000) == 0x80000000)
722 {
723 op2 = (op & 0x3FFF8000) >> 15;
724 op1 = op & 0x7FFF;
725 }
726 else
727 {
728 op1 = (op & 0x3FFF8000) >> 15;
729 op2 = op & 0x7FFF;
730 }
731 if (!prologue_find_regs (info, op1, pc)
732 || !prologue_find_regs (info, op2, pc))
733 break;
734 }
735 }
736
737 info->size = -info->sp_offset;
738
739 /* Compute the previous frame's stack pointer (which is also the
740 frame's ID's stack address), and this frame's base pointer. */
741 if (info->uses_frame)
742 {
743 /* The SP was moved to the FP. This indicates that a new frame
744 was created. Get THIS frame's FP value by unwinding it from
745 the next frame. */
746 frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
747 /* The FP points at the last saved register. Adjust the FP back
748 to before the first saved register giving the SP. */
749 prev_sp = this_base + info->size;
750 }
751 else
752 {
753 /* Assume that the FP is this frame's SP but with that pushed
754 stack space added back. */
755 frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base);
756 prev_sp = this_base + info->size;
757 }
758
759 /* Convert that SP/BASE into real addresses. */
760 info->prev_sp = d10v_make_daddr (prev_sp);
761 info->base = d10v_make_daddr (this_base);
762
763 /* Adjust all the saved registers so that they contain addresses and
764 not offsets. */
765 for (i = 0; i < NUM_REGS - 1; i++)
766 if (trad_frame_addr_p (info->saved_regs, i))
767 {
768 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
769 }
770
771 /* The call instruction moves the caller's PC in the callee's LR.
772 Since this is an unwind, do the reverse. Copy the location of LR
773 into PC (the address / regnum) so that a request for PC will be
774 converted into a request for the LR. */
775 info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM];
776
777 /* The previous frame's SP needed to be computed. Save the computed
778 value. */
779 trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM,
780 d10v_make_daddr (prev_sp));
781
782 return info;
783 }
784
785 static void
786 d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
787 struct frame_info *frame, int regnum, int all)
788 {
789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
790 if (regnum >= 0)
791 {
792 default_print_registers_info (gdbarch, file, frame, regnum, all);
793 return;
794 }
795
796 {
797 ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
798 frame_read_unsigned_register (frame, D10V_PC_REGNUM, &pc);
799 frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
800 frame_read_unsigned_register (frame, frame_map_name_to_regnum (frame, "rpt_s", -1), &rpt_s);
801 frame_read_unsigned_register (frame, frame_map_name_to_regnum (frame, "rpt_e", -1), &rpt_e);
802 frame_read_unsigned_register (frame, frame_map_name_to_regnum (frame, "rpt_c", -1), &rpt_c);
803 fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
804 (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
805 (long) rpt_s, (long) rpt_e, (long) rpt_c);
806 }
807
808 {
809 int group;
810 for (group = 0; group < 16; group += 8)
811 {
812 int r;
813 fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
814 for (r = group; r < group + 8; r++)
815 {
816 ULONGEST tmp;
817 frame_read_unsigned_register (frame, r, &tmp);
818 fprintf_filtered (file, " %04lx", (long) tmp);
819 }
820 fprintf_filtered (file, "\n");
821 }
822 }
823
824 /* Note: The IMAP/DMAP registers don't participate in function
825 calls. Don't bother trying to unwind them. */
826
827 {
828 int a;
829 for (a = 0; a < NR_IMAP_REGS; a++)
830 {
831 if (a > 0)
832 fprintf_filtered (file, " ");
833 fprintf_filtered (file, "IMAP%d %04lx", a,
834 tdep->imap_register (current_regcache, a));
835 }
836 if (nr_dmap_regs (gdbarch) == 1)
837 /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
838 fprintf_filtered (file, " DMAP %04lx\n",
839 tdep->dmap_register (current_regcache, 2));
840 else
841 {
842 for (a = 0; a < nr_dmap_regs (gdbarch); a++)
843 {
844 fprintf_filtered (file, " DMAP%d %04lx", a,
845 tdep->dmap_register (current_regcache, a));
846 }
847 fprintf_filtered (file, "\n");
848 }
849 }
850
851 {
852 char num[MAX_REGISTER_SIZE];
853 int a;
854 fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
855 for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++)
856 {
857 int i;
858 fprintf_filtered (file, " ");
859 frame_read_register (frame, a, num);
860 for (i = 0; i < register_size (gdbarch, a); i++)
861 {
862 fprintf_filtered (file, "%02x", (num[i] & 0xff));
863 }
864 }
865 }
866 fprintf_filtered (file, "\n");
867 }
868
869 static void
870 show_regs (char *args, int from_tty)
871 {
872 d10v_print_registers_info (current_gdbarch, gdb_stdout,
873 get_current_frame (), -1, 1);
874 }
875
876 static CORE_ADDR
877 d10v_read_pc (ptid_t ptid)
878 {
879 ptid_t save_ptid;
880 CORE_ADDR pc;
881 CORE_ADDR retval;
882
883 save_ptid = inferior_ptid;
884 inferior_ptid = ptid;
885 pc = (int) read_register (D10V_PC_REGNUM);
886 inferior_ptid = save_ptid;
887 retval = d10v_make_iaddr (pc);
888 return retval;
889 }
890
891 static void
892 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
893 {
894 ptid_t save_ptid;
895
896 save_ptid = inferior_ptid;
897 inferior_ptid = ptid;
898 write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val));
899 inferior_ptid = save_ptid;
900 }
901
902 static CORE_ADDR
903 d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
904 {
905 ULONGEST sp;
906 frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp);
907 return d10v_make_daddr (sp);
908 }
909
910 /* When arguments must be pushed onto the stack, they go on in reverse
911 order. The below implements a FILO (stack) to do this. */
912
913 struct stack_item
914 {
915 int len;
916 struct stack_item *prev;
917 void *data;
918 };
919
920 static struct stack_item *push_stack_item (struct stack_item *prev,
921 void *contents, int len);
922 static struct stack_item *
923 push_stack_item (struct stack_item *prev, void *contents, int len)
924 {
925 struct stack_item *si;
926 si = xmalloc (sizeof (struct stack_item));
927 si->data = xmalloc (len);
928 si->len = len;
929 si->prev = prev;
930 memcpy (si->data, contents, len);
931 return si;
932 }
933
934 static struct stack_item *pop_stack_item (struct stack_item *si);
935 static struct stack_item *
936 pop_stack_item (struct stack_item *si)
937 {
938 struct stack_item *dead = si;
939 si = si->prev;
940 xfree (dead->data);
941 xfree (dead);
942 return si;
943 }
944
945
946 static CORE_ADDR
947 d10v_push_dummy_code (struct gdbarch *gdbarch,
948 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
949 struct value **args, int nargs,
950 struct type *value_type,
951 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
952 {
953 /* Allocate space sufficient for a breakpoint. */
954 sp = (sp - 4) & ~3;
955 /* Store the address of that breakpoint taking care to first convert
956 it into a code (IADDR) address from a stack (DADDR) address.
957 This of course assumes that the two virtual addresses map onto
958 the same real address. */
959 (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp));
960 /* d10v always starts the call at the callee's entry point. */
961 (*real_pc) = funaddr;
962 return sp;
963 }
964
965 static CORE_ADDR
966 d10v_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
967 struct regcache *regcache, CORE_ADDR bp_addr,
968 int nargs, struct value **args, CORE_ADDR sp, int struct_return,
969 CORE_ADDR struct_addr)
970 {
971 int i;
972 int regnum = ARG1_REGNUM;
973 struct stack_item *si = NULL;
974 long val;
975
976 /* Set the return address. For the d10v, the return breakpoint is
977 always at BP_ADDR. */
978 regcache_cooked_write_unsigned (regcache, LR_REGNUM,
979 d10v_convert_iaddr_to_raw (bp_addr));
980
981 /* If STRUCT_RETURN is true, then the struct return address (in
982 STRUCT_ADDR) will consume the first argument-passing register.
983 Both adjust the register count and store that value. */
984 if (struct_return)
985 {
986 regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
987 regnum++;
988 }
989
990 /* Fill in registers and arg lists */
991 for (i = 0; i < nargs; i++)
992 {
993 struct value *arg = args[i];
994 struct type *type = check_typedef (VALUE_TYPE (arg));
995 char *contents = VALUE_CONTENTS (arg);
996 int len = TYPE_LENGTH (type);
997 int aligned_regnum = (regnum + 1) & ~1;
998
999 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
1000 if (len <= 2 && regnum <= ARGN_REGNUM)
1001 /* fits in a single register, do not align */
1002 {
1003 val = extract_unsigned_integer (contents, len);
1004 regcache_cooked_write_unsigned (regcache, regnum++, val);
1005 }
1006 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1007 /* value fits in remaining registers, store keeping left
1008 aligned */
1009 {
1010 int b;
1011 regnum = aligned_regnum;
1012 for (b = 0; b < (len & ~1); b += 2)
1013 {
1014 val = extract_unsigned_integer (&contents[b], 2);
1015 regcache_cooked_write_unsigned (regcache, regnum++, val);
1016 }
1017 if (b < len)
1018 {
1019 val = extract_unsigned_integer (&contents[b], 1);
1020 regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
1021 }
1022 }
1023 else
1024 {
1025 /* arg will go onto stack */
1026 regnum = ARGN_REGNUM + 1;
1027 si = push_stack_item (si, contents, len);
1028 }
1029 }
1030
1031 while (si)
1032 {
1033 sp = (sp - si->len) & ~1;
1034 write_memory (sp, si->data, si->len);
1035 si = pop_stack_item (si);
1036 }
1037
1038 /* Finally, update the SP register. */
1039 regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM,
1040 d10v_convert_daddr_to_raw (sp));
1041
1042 return sp;
1043 }
1044
1045
1046 /* Given a return value in `regbuf' with a type `valtype',
1047 extract and copy its value into `valbuf'. */
1048
1049 static void
1050 d10v_extract_return_value (struct type *type, struct regcache *regcache,
1051 void *valbuf)
1052 {
1053 int len;
1054 if (TYPE_LENGTH (type) == 1)
1055 {
1056 ULONGEST c;
1057 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
1058 store_unsigned_integer (valbuf, 1, c);
1059 }
1060 else
1061 {
1062 /* For return values of odd size, the first byte is in the
1063 least significant part of the first register. The
1064 remaining bytes in remaining registers. Interestingly, when
1065 such values are passed in, the last byte is in the most
1066 significant byte of that same register - wierd. */
1067 int reg = RET1_REGNUM;
1068 int off = 0;
1069 if (TYPE_LENGTH (type) & 1)
1070 {
1071 regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
1072 (bfd_byte *)valbuf + off);
1073 off++;
1074 reg++;
1075 }
1076 /* Transfer the remaining registers. */
1077 for (; off < TYPE_LENGTH (type); reg++, off += 2)
1078 {
1079 regcache_cooked_read (regcache, RET1_REGNUM + reg,
1080 (bfd_byte *) valbuf + off);
1081 }
1082 }
1083 }
1084
1085 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1086 understands. Returns number of bytes that can be transfered
1087 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1088 (segmentation fault). Since the simulator knows all about how the
1089 VM system works, we just call that to do the translation. */
1090
1091 static void
1092 remote_d10v_translate_xfer_address (struct gdbarch *gdbarch,
1093 struct regcache *regcache,
1094 CORE_ADDR memaddr, int nr_bytes,
1095 CORE_ADDR *targ_addr, int *targ_len)
1096 {
1097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1098 long out_addr;
1099 long out_len;
1100 out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache,
1101 tdep->dmap_register, tdep->imap_register);
1102 *targ_addr = out_addr;
1103 *targ_len = out_len;
1104 }
1105
1106
1107 /* The following code implements access to, and display of, the D10V's
1108 instruction trace buffer. The buffer consists of 64K or more
1109 4-byte words of data, of which each words includes an 8-bit count,
1110 an 8-bit segment number, and a 16-bit instruction address.
1111
1112 In theory, the trace buffer is continuously capturing instruction
1113 data that the CPU presents on its "debug bus", but in practice, the
1114 ROMified GDB stub only enables tracing when it continues or steps
1115 the program, and stops tracing when the program stops; so it
1116 actually works for GDB to read the buffer counter out of memory and
1117 then read each trace word. The counter records where the tracing
1118 stops, but there is no record of where it started, so we remember
1119 the PC when we resumed and then search backwards in the trace
1120 buffer for a word that includes that address. This is not perfect,
1121 because you will miss trace data if the resumption PC is the target
1122 of a branch. (The value of the buffer counter is semi-random, any
1123 trace data from a previous program stop is gone.) */
1124
1125 /* The address of the last word recorded in the trace buffer. */
1126
1127 #define DBBC_ADDR (0xd80000)
1128
1129 /* The base of the trace buffer, at least for the "Board_0". */
1130
1131 #define TRACE_BUFFER_BASE (0xf40000)
1132
1133 static void trace_command (char *, int);
1134
1135 static void untrace_command (char *, int);
1136
1137 static void trace_info (char *, int);
1138
1139 static void tdisassemble_command (char *, int);
1140
1141 static void display_trace (int, int);
1142
1143 /* True when instruction traces are being collected. */
1144
1145 static int tracing;
1146
1147 /* Remembered PC. */
1148
1149 static CORE_ADDR last_pc;
1150
1151 /* True when trace output should be displayed whenever program stops. */
1152
1153 static int trace_display;
1154
1155 /* True when trace listing should include source lines. */
1156
1157 static int default_trace_show_source = 1;
1158
1159 struct trace_buffer
1160 {
1161 int size;
1162 short *counts;
1163 CORE_ADDR *addrs;
1164 }
1165 trace_data;
1166
1167 static void
1168 trace_command (char *args, int from_tty)
1169 {
1170 /* Clear the host-side trace buffer, allocating space if needed. */
1171 trace_data.size = 0;
1172 if (trace_data.counts == NULL)
1173 trace_data.counts = XCALLOC (65536, short);
1174 if (trace_data.addrs == NULL)
1175 trace_data.addrs = XCALLOC (65536, CORE_ADDR);
1176
1177 tracing = 1;
1178
1179 printf_filtered ("Tracing is now on.\n");
1180 }
1181
1182 static void
1183 untrace_command (char *args, int from_tty)
1184 {
1185 tracing = 0;
1186
1187 printf_filtered ("Tracing is now off.\n");
1188 }
1189
1190 static void
1191 trace_info (char *args, int from_tty)
1192 {
1193 int i;
1194
1195 if (trace_data.size)
1196 {
1197 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1198
1199 for (i = 0; i < trace_data.size; ++i)
1200 {
1201 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1202 i,
1203 trace_data.counts[i],
1204 (trace_data.counts[i] == 1 ? "" : "s"),
1205 paddr_nz (trace_data.addrs[i]));
1206 }
1207 }
1208 else
1209 printf_filtered ("No entries in trace buffer.\n");
1210
1211 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1212 }
1213
1214 static void
1215 d10v_eva_prepare_to_trace (void)
1216 {
1217 if (!tracing)
1218 return;
1219
1220 last_pc = read_register (D10V_PC_REGNUM);
1221 }
1222
1223 /* Collect trace data from the target board and format it into a form
1224 more useful for display. */
1225
1226 static void
1227 d10v_eva_get_trace_data (void)
1228 {
1229 int count, i, j, oldsize;
1230 int trace_addr, trace_seg, trace_cnt, next_cnt;
1231 unsigned int last_trace, trace_word, next_word;
1232 unsigned int *tmpspace;
1233
1234 if (!tracing)
1235 return;
1236
1237 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1238
1239 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1240
1241 /* Collect buffer contents from the target, stopping when we reach
1242 the word recorded when execution resumed. */
1243
1244 count = 0;
1245 while (last_trace > 0)
1246 {
1247 QUIT;
1248 trace_word =
1249 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1250 trace_addr = trace_word & 0xffff;
1251 last_trace -= 4;
1252 /* Ignore an apparently nonsensical entry. */
1253 if (trace_addr == 0xffd5)
1254 continue;
1255 tmpspace[count++] = trace_word;
1256 if (trace_addr == last_pc)
1257 break;
1258 if (count > 65535)
1259 break;
1260 }
1261
1262 /* Move the data to the host-side trace buffer, adjusting counts to
1263 include the last instruction executed and transforming the address
1264 into something that GDB likes. */
1265
1266 for (i = 0; i < count; ++i)
1267 {
1268 trace_word = tmpspace[i];
1269 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1270 trace_addr = trace_word & 0xffff;
1271 next_cnt = (next_word >> 24) & 0xff;
1272 j = trace_data.size + count - i - 1;
1273 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1274 trace_data.counts[j] = next_cnt + 1;
1275 }
1276
1277 oldsize = trace_data.size;
1278 trace_data.size += count;
1279
1280 xfree (tmpspace);
1281
1282 if (trace_display)
1283 display_trace (oldsize, trace_data.size);
1284 }
1285
1286 static void
1287 tdisassemble_command (char *arg, int from_tty)
1288 {
1289 int i, count;
1290 CORE_ADDR low, high;
1291
1292 if (!arg)
1293 {
1294 low = 0;
1295 high = trace_data.size;
1296 }
1297 else
1298 {
1299 char *space_index = strchr (arg, ' ');
1300 if (space_index == NULL)
1301 {
1302 low = parse_and_eval_address (arg);
1303 high = low + 5;
1304 }
1305 else
1306 {
1307 /* Two arguments. */
1308 *space_index = '\0';
1309 low = parse_and_eval_address (arg);
1310 high = parse_and_eval_address (space_index + 1);
1311 if (high < low)
1312 high = low;
1313 }
1314 }
1315
1316 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1317
1318 display_trace (low, high);
1319
1320 printf_filtered ("End of trace dump.\n");
1321 gdb_flush (gdb_stdout);
1322 }
1323
1324 static void
1325 display_trace (int low, int high)
1326 {
1327 int i, count, trace_show_source, first, suppress;
1328 CORE_ADDR next_address;
1329
1330 trace_show_source = default_trace_show_source;
1331 if (!have_full_symbols () && !have_partial_symbols ())
1332 {
1333 trace_show_source = 0;
1334 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1335 printf_filtered ("Trace will not display any source.\n");
1336 }
1337
1338 first = 1;
1339 suppress = 0;
1340 for (i = low; i < high; ++i)
1341 {
1342 next_address = trace_data.addrs[i];
1343 count = trace_data.counts[i];
1344 while (count-- > 0)
1345 {
1346 QUIT;
1347 if (trace_show_source)
1348 {
1349 struct symtab_and_line sal, sal_prev;
1350
1351 sal_prev = find_pc_line (next_address - 4, 0);
1352 sal = find_pc_line (next_address, 0);
1353
1354 if (sal.symtab)
1355 {
1356 if (first || sal.line != sal_prev.line)
1357 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1358 suppress = 0;
1359 }
1360 else
1361 {
1362 if (!suppress)
1363 /* FIXME-32x64--assumes sal.pc fits in long. */
1364 printf_filtered ("No source file for address %s.\n",
1365 local_hex_string ((unsigned long) sal.pc));
1366 suppress = 1;
1367 }
1368 }
1369 first = 0;
1370 print_address (next_address, gdb_stdout);
1371 printf_filtered (":");
1372 printf_filtered ("\t");
1373 wrap_here (" ");
1374 next_address += gdb_print_insn (next_address, gdb_stdout);
1375 printf_filtered ("\n");
1376 gdb_flush (gdb_stdout);
1377 }
1378 }
1379 }
1380
1381 static CORE_ADDR
1382 d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1383 {
1384 ULONGEST pc;
1385 frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc);
1386 return d10v_make_iaddr (pc);
1387 }
1388
1389 /* Given a GDB frame, determine the address of the calling function's
1390 frame. This will be used to create a new GDB frame struct. */
1391
1392 static void
1393 d10v_frame_this_id (struct frame_info *next_frame,
1394 void **this_prologue_cache,
1395 struct frame_id *this_id)
1396 {
1397 struct d10v_unwind_cache *info
1398 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1399 CORE_ADDR base;
1400 CORE_ADDR func;
1401 struct frame_id id;
1402
1403 /* The FUNC is easy. */
1404 func = frame_func_unwind (next_frame);
1405
1406 /* This is meant to halt the backtrace at "_start". Make sure we
1407 don't halt it at a generic dummy frame. */
1408 if (func <= IMEM_START || inside_entry_file (func))
1409 return;
1410
1411 /* Hopefully the prologue analysis either correctly determined the
1412 frame's base (which is the SP from the previous frame), or set
1413 that base to "NULL". */
1414 base = info->prev_sp;
1415 if (base == STACK_START || base == 0)
1416 return;
1417
1418 id = frame_id_build (base, func);
1419
1420 /* Check that we're not going round in circles with the same frame
1421 ID (but avoid applying the test to sentinel frames which do go
1422 round in circles). Can't use frame_id_eq() as that doesn't yet
1423 compare the frame's PC value. */
1424 if (frame_relative_level (next_frame) >= 0
1425 && get_frame_type (next_frame) != DUMMY_FRAME
1426 && frame_id_eq (get_frame_id (next_frame), id))
1427 return;
1428
1429 (*this_id) = id;
1430 }
1431
1432 static void
1433 d10v_frame_prev_register (struct frame_info *next_frame,
1434 void **this_prologue_cache,
1435 int regnum, int *optimizedp,
1436 enum lval_type *lvalp, CORE_ADDR *addrp,
1437 int *realnump, void *bufferp)
1438 {
1439 struct d10v_unwind_cache *info
1440 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1441 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1442 optimizedp, lvalp, addrp, realnump, bufferp);
1443 }
1444
1445 static const struct frame_unwind d10v_frame_unwind = {
1446 NORMAL_FRAME,
1447 d10v_frame_this_id,
1448 d10v_frame_prev_register
1449 };
1450
1451 static const struct frame_unwind *
1452 d10v_frame_p (CORE_ADDR pc)
1453 {
1454 return &d10v_frame_unwind;
1455 }
1456
1457 static CORE_ADDR
1458 d10v_frame_base_address (struct frame_info *next_frame, void **this_cache)
1459 {
1460 struct d10v_unwind_cache *info
1461 = d10v_frame_unwind_cache (next_frame, this_cache);
1462 return info->base;
1463 }
1464
1465 static const struct frame_base d10v_frame_base = {
1466 &d10v_frame_unwind,
1467 d10v_frame_base_address,
1468 d10v_frame_base_address,
1469 d10v_frame_base_address
1470 };
1471
1472 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1473 dummy frame. The frame ID's base needs to match the TOS value
1474 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1475 breakpoint. */
1476
1477 static struct frame_id
1478 d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1479 {
1480 return frame_id_build (d10v_unwind_sp (gdbarch, next_frame),
1481 frame_pc_unwind (next_frame));
1482 }
1483
1484 static gdbarch_init_ftype d10v_gdbarch_init;
1485
1486 static struct gdbarch *
1487 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1488 {
1489 struct gdbarch *gdbarch;
1490 int d10v_num_regs;
1491 struct gdbarch_tdep *tdep;
1492 gdbarch_register_name_ftype *d10v_register_name;
1493 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1494
1495 /* Find a candidate among the list of pre-declared architectures. */
1496 arches = gdbarch_list_lookup_by_info (arches, &info);
1497 if (arches != NULL)
1498 return arches->gdbarch;
1499
1500 /* None found, create a new architecture from the information
1501 provided. */
1502 tdep = XMALLOC (struct gdbarch_tdep);
1503 gdbarch = gdbarch_alloc (&info, tdep);
1504
1505 switch (info.bfd_arch_info->mach)
1506 {
1507 case bfd_mach_d10v_ts2:
1508 d10v_num_regs = 37;
1509 d10v_register_name = d10v_ts2_register_name;
1510 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1511 tdep->a0_regnum = TS2_A0_REGNUM;
1512 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1513 tdep->dmap_register = d10v_ts2_dmap_register;
1514 tdep->imap_register = d10v_ts2_imap_register;
1515 break;
1516 default:
1517 case bfd_mach_d10v_ts3:
1518 d10v_num_regs = 42;
1519 d10v_register_name = d10v_ts3_register_name;
1520 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1521 tdep->a0_regnum = TS3_A0_REGNUM;
1522 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1523 tdep->dmap_register = d10v_ts3_dmap_register;
1524 tdep->imap_register = d10v_ts3_imap_register;
1525 break;
1526 }
1527
1528 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1529 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1530 set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp);
1531
1532 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1533 set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM);
1534 set_gdbarch_register_name (gdbarch, d10v_register_name);
1535 set_gdbarch_register_type (gdbarch, d10v_register_type);
1536
1537 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1538 set_gdbarch_addr_bit (gdbarch, 32);
1539 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1540 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1541 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
1542 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1543 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1544 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1545 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1546 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1547 double'' is 64 bits. */
1548 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1549 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1550 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1551 switch (info.byte_order)
1552 {
1553 case BFD_ENDIAN_BIG:
1554 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1555 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1556 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1557 break;
1558 case BFD_ENDIAN_LITTLE:
1559 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1560 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1561 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1562 break;
1563 default:
1564 internal_error (__FILE__, __LINE__,
1565 "d10v_gdbarch_init: bad byte order for float format");
1566 }
1567
1568 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1569 set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code);
1570 set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
1571 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1572 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1573 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1574
1575 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1576 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1577 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1578 set_gdbarch_function_start_offset (gdbarch, 0);
1579 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1580
1581 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1582
1583 set_gdbarch_frame_args_skip (gdbarch, 0);
1584 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1585
1586 set_gdbarch_frame_align (gdbarch, d10v_frame_align);
1587
1588 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1589
1590 set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
1591
1592 frame_unwind_append_predicate (gdbarch, d10v_frame_p);
1593 frame_base_set_default (gdbarch, &d10v_frame_base);
1594
1595 /* Methods for saving / extracting a dummy frame's ID. The ID's
1596 stack address must match the SP value returned by
1597 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1598 set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
1599
1600 /* Return the unwound PC value. */
1601 set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
1602
1603 set_gdbarch_print_insn (gdbarch, print_insn_d10v);
1604
1605 return gdbarch;
1606 }
1607
1608 void
1609 _initialize_d10v_tdep (void)
1610 {
1611 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1612
1613 target_resume_hook = d10v_eva_prepare_to_trace;
1614 target_wait_loop_hook = d10v_eva_get_trace_data;
1615
1616 deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
1617 "info registers");
1618
1619 add_com ("itrace", class_support, trace_command,
1620 "Enable tracing of instruction execution.");
1621
1622 add_com ("iuntrace", class_support, untrace_command,
1623 "Disable tracing of instruction execution.");
1624
1625 add_com ("itdisassemble", class_vars, tdisassemble_command,
1626 "Disassemble the trace buffer.\n\
1627 Two optional arguments specify a range of trace buffer entries\n\
1628 as reported by info trace (NOT addresses!).");
1629
1630 add_info ("itrace", trace_info,
1631 "Display info about the trace data buffer.");
1632
1633 add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display,
1634 "Set automatic display of trace.\n",
1635 "Show automatic display of trace.\n",
1636 NULL, NULL, &setlist, &showlist);
1637 add_setshow_boolean_cmd ("itracesource", no_class,
1638 &default_trace_show_source,
1639 "Set display of source code with trace.\n",
1640 "Show display of source code with trace.\n",
1641 NULL, NULL, &setlist, &showlist);
1642 }
This page took 0.062936 seconds and 4 git commands to generate.