2030838465971653ba0d7b620d75e6c805ca4b49
[deliverable/binutils-gdb.git] / gdb / doublest.c
1 /* Floating point routines for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Support for converting target fp numbers into host DOUBLEST format. */
25
26 /* XXX - This code should really be in libiberty/floatformat.c,
27 however configuration issues with libiberty made this very
28 difficult to do in the available time. */
29
30 #include "defs.h"
31 #include "doublest.h"
32 #include "floatformat.h"
33 #include "gdb_assert.h"
34 #include "gdb_string.h"
35 #include "gdbtypes.h"
36 #include <math.h> /* ldexp */
37
38 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
39 going to bother with trying to muck around with whether it is defined in
40 a system header, what we do if not, etc. */
41 #define FLOATFORMAT_CHAR_BIT 8
42
43 /* The number of bytes that the largest floating-point type that we
44 can convert to doublest will need. */
45 #define FLOATFORMAT_LARGEST_BYTES 16
46
47 /* Extract a field which starts at START and is LEN bytes long. DATA and
48 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
49 static unsigned long
50 get_field (const bfd_byte *data, enum floatformat_byteorders order,
51 unsigned int total_len, unsigned int start, unsigned int len)
52 {
53 unsigned long result;
54 unsigned int cur_byte;
55 int cur_bitshift;
56
57 /* Caller must byte-swap words before calling this routine. */
58 gdb_assert (order == floatformat_little || order == floatformat_big);
59
60 /* Start at the least significant part of the field. */
61 if (order == floatformat_little)
62 {
63 /* We start counting from the other end (i.e, from the high bytes
64 rather than the low bytes). As such, we need to be concerned
65 with what happens if bit 0 doesn't start on a byte boundary.
66 I.e, we need to properly handle the case where total_len is
67 not evenly divisible by 8. So we compute ``excess'' which
68 represents the number of bits from the end of our starting
69 byte needed to get to bit 0. */
70 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
71 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
72 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
73 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
74 - FLOATFORMAT_CHAR_BIT;
75 }
76 else
77 {
78 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
79 cur_bitshift =
80 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
81 }
82 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
83 result = *(data + cur_byte) >> (-cur_bitshift);
84 else
85 result = 0;
86 cur_bitshift += FLOATFORMAT_CHAR_BIT;
87 if (order == floatformat_little)
88 ++cur_byte;
89 else
90 --cur_byte;
91
92 /* Move towards the most significant part of the field. */
93 while (cur_bitshift < len)
94 {
95 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
96 cur_bitshift += FLOATFORMAT_CHAR_BIT;
97 switch (order)
98 {
99 case floatformat_little:
100 ++cur_byte;
101 break;
102 case floatformat_big:
103 --cur_byte;
104 break;
105 }
106 }
107 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
108 /* Mask out bits which are not part of the field */
109 result &= ((1UL << len) - 1);
110 return result;
111 }
112
113 /* Normalize the byte order of FROM into TO. If no normalization is needed
114 then FMT->byteorder is returned and TO is not changed; otherwise the format
115 of the normalized form in TO is returned. */
116 static enum floatformat_byteorders
117 floatformat_normalize_byteorder (const struct floatformat *fmt,
118 const void *from, void *to)
119 {
120 const unsigned char *swapin;
121 unsigned char *swapout;
122 int words;
123
124 if (fmt->byteorder == floatformat_little
125 || fmt->byteorder == floatformat_big)
126 return fmt->byteorder;
127
128 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
129
130 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
131 words >>= 2;
132
133 swapout = (unsigned char *)to;
134 swapin = (const unsigned char *)from;
135
136 while (words-- > 0)
137 {
138 *swapout++ = swapin[3];
139 *swapout++ = swapin[2];
140 *swapout++ = swapin[1];
141 *swapout++ = swapin[0];
142 swapin += 4;
143 }
144 return floatformat_big;
145 }
146
147 /* Convert from FMT to a DOUBLEST.
148 FROM is the address of the extended float.
149 Store the DOUBLEST in *TO. */
150
151 static void
152 convert_floatformat_to_doublest (const struct floatformat *fmt,
153 const void *from,
154 DOUBLEST *to)
155 {
156 unsigned char *ufrom = (unsigned char *) from;
157 DOUBLEST dto;
158 long exponent;
159 unsigned long mant;
160 unsigned int mant_bits, mant_off;
161 int mant_bits_left;
162 int special_exponent; /* It's a NaN, denorm or zero */
163 enum floatformat_byteorders order;
164 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
165
166 gdb_assert (fmt->totalsize
167 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
168
169 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
170
171 if (order != fmt->byteorder)
172 ufrom = newfrom;
173
174 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
175 fmt->exp_len);
176 /* Note that if exponent indicates a NaN, we can't really do anything useful
177 (not knowing if the host has NaN's, or how to build one). So it will
178 end up as an infinity or something close; that is OK. */
179
180 mant_bits_left = fmt->man_len;
181 mant_off = fmt->man_start;
182 dto = 0.0;
183
184 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
185
186 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
187 we don't check for zero as the exponent doesn't matter. Note the cast
188 to int; exp_bias is unsigned, so it's important to make sure the
189 operation is done in signed arithmetic. */
190 if (!special_exponent)
191 exponent -= fmt->exp_bias;
192 else if (exponent == 0)
193 exponent = 1 - fmt->exp_bias;
194
195 /* Build the result algebraically. Might go infinite, underflow, etc;
196 who cares. */
197
198 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
199 increment the exponent by one to account for the integer bit. */
200
201 if (!special_exponent)
202 {
203 if (fmt->intbit == floatformat_intbit_no)
204 dto = ldexp (1.0, exponent);
205 else
206 exponent++;
207 }
208
209 while (mant_bits_left > 0)
210 {
211 mant_bits = min (mant_bits_left, 32);
212
213 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
214
215 dto += ldexp ((double) mant, exponent - mant_bits);
216 exponent -= mant_bits;
217 mant_off += mant_bits;
218 mant_bits_left -= mant_bits;
219 }
220
221 /* Negate it if negative. */
222 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
223 dto = -dto;
224 *to = dto;
225 }
226 \f
227 static void put_field (unsigned char *, enum floatformat_byteorders,
228 unsigned int,
229 unsigned int, unsigned int, unsigned long);
230
231 /* Set a field which starts at START and is LEN bytes long. DATA and
232 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
233 static void
234 put_field (unsigned char *data, enum floatformat_byteorders order,
235 unsigned int total_len, unsigned int start, unsigned int len,
236 unsigned long stuff_to_put)
237 {
238 unsigned int cur_byte;
239 int cur_bitshift;
240
241 /* Caller must byte-swap words before calling this routine. */
242 gdb_assert (order == floatformat_little || order == floatformat_big);
243
244 /* Start at the least significant part of the field. */
245 if (order == floatformat_little)
246 {
247 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
248 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
249 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
250 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
251 - FLOATFORMAT_CHAR_BIT;
252 }
253 else
254 {
255 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
256 cur_bitshift =
257 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
258 }
259 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
260 {
261 *(data + cur_byte) &=
262 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
263 << (-cur_bitshift));
264 *(data + cur_byte) |=
265 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
266 }
267 cur_bitshift += FLOATFORMAT_CHAR_BIT;
268 if (order == floatformat_little)
269 ++cur_byte;
270 else
271 --cur_byte;
272
273 /* Move towards the most significant part of the field. */
274 while (cur_bitshift < len)
275 {
276 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
277 {
278 /* This is the last byte. */
279 *(data + cur_byte) &=
280 ~((1 << (len - cur_bitshift)) - 1);
281 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
282 }
283 else
284 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
285 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
286 cur_bitshift += FLOATFORMAT_CHAR_BIT;
287 if (order == floatformat_little)
288 ++cur_byte;
289 else
290 --cur_byte;
291 }
292 }
293
294 #ifdef HAVE_LONG_DOUBLE
295 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
296 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
297 frexp, but operates on the long double data type. */
298
299 static long double ldfrexp (long double value, int *eptr);
300
301 static long double
302 ldfrexp (long double value, int *eptr)
303 {
304 long double tmp;
305 int exp;
306
307 /* Unfortunately, there are no portable functions for extracting the exponent
308 of a long double, so we have to do it iteratively by multiplying or dividing
309 by two until the fraction is between 0.5 and 1.0. */
310
311 if (value < 0.0l)
312 value = -value;
313
314 tmp = 1.0l;
315 exp = 0;
316
317 if (value >= tmp) /* Value >= 1.0 */
318 while (value >= tmp)
319 {
320 tmp *= 2.0l;
321 exp++;
322 }
323 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
324 {
325 while (value < tmp)
326 {
327 tmp /= 2.0l;
328 exp--;
329 }
330 tmp *= 2.0l;
331 exp++;
332 }
333
334 *eptr = exp;
335 return value / tmp;
336 }
337 #endif /* HAVE_LONG_DOUBLE */
338
339
340 /* The converse: convert the DOUBLEST *FROM to an extended float
341 and store where TO points. Neither FROM nor TO have any alignment
342 restrictions. */
343
344 static void
345 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
346 const DOUBLEST *from,
347 void *to)
348 {
349 DOUBLEST dfrom;
350 int exponent;
351 DOUBLEST mant;
352 unsigned int mant_bits, mant_off;
353 int mant_bits_left;
354 unsigned char *uto = (unsigned char *) to;
355 enum floatformat_byteorders order = fmt->byteorder;
356
357 if (order == floatformat_littlebyte_bigword)
358 order = floatformat_big;
359
360 memcpy (&dfrom, from, sizeof (dfrom));
361 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
362 / FLOATFORMAT_CHAR_BIT);
363 if (dfrom == 0)
364 return; /* Result is zero */
365 if (dfrom != dfrom) /* Result is NaN */
366 {
367 /* From is NaN */
368 put_field (uto, order, fmt->totalsize, fmt->exp_start,
369 fmt->exp_len, fmt->exp_nan);
370 /* Be sure it's not infinity, but NaN value is irrel */
371 put_field (uto, order, fmt->totalsize, fmt->man_start,
372 32, 1);
373 goto finalize_byteorder;
374 }
375
376 /* If negative, set the sign bit. */
377 if (dfrom < 0)
378 {
379 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
380 dfrom = -dfrom;
381 }
382
383 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
384 {
385 /* Infinity exponent is same as NaN's. */
386 put_field (uto, order, fmt->totalsize, fmt->exp_start,
387 fmt->exp_len, fmt->exp_nan);
388 /* Infinity mantissa is all zeroes. */
389 put_field (uto, order, fmt->totalsize, fmt->man_start,
390 fmt->man_len, 0);
391 goto finalize_byteorder;
392 }
393
394 #ifdef HAVE_LONG_DOUBLE
395 mant = ldfrexp (dfrom, &exponent);
396 #else
397 mant = frexp (dfrom, &exponent);
398 #endif
399
400 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
401 exponent + fmt->exp_bias - 1);
402
403 mant_bits_left = fmt->man_len;
404 mant_off = fmt->man_start;
405 while (mant_bits_left > 0)
406 {
407 unsigned long mant_long;
408 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
409
410 mant *= 4294967296.0;
411 mant_long = ((unsigned long) mant) & 0xffffffffL;
412 mant -= mant_long;
413
414 /* If the integer bit is implicit, then we need to discard it.
415 If we are discarding a zero, we should be (but are not) creating
416 a denormalized number which means adjusting the exponent
417 (I think). */
418 if (mant_bits_left == fmt->man_len
419 && fmt->intbit == floatformat_intbit_no)
420 {
421 mant_long <<= 1;
422 mant_long &= 0xffffffffL;
423 /* If we are processing the top 32 mantissa bits of a doublest
424 so as to convert to a float value with implied integer bit,
425 we will only be putting 31 of those 32 bits into the
426 final value due to the discarding of the top bit. In the
427 case of a small float value where the number of mantissa
428 bits is less than 32, discarding the top bit does not alter
429 the number of bits we will be adding to the result. */
430 if (mant_bits == 32)
431 mant_bits -= 1;
432 }
433
434 if (mant_bits < 32)
435 {
436 /* The bits we want are in the most significant MANT_BITS bits of
437 mant_long. Move them to the least significant. */
438 mant_long >>= 32 - mant_bits;
439 }
440
441 put_field (uto, order, fmt->totalsize,
442 mant_off, mant_bits, mant_long);
443 mant_off += mant_bits;
444 mant_bits_left -= mant_bits;
445 }
446
447 finalize_byteorder:
448 /* Do we need to byte-swap the words in the result? */
449 if (order != fmt->byteorder)
450 {
451 int words;
452 unsigned char *curword = uto;
453 unsigned char tmp;
454
455 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
456 words >>= 2;
457 while (words-- > 0)
458 {
459 tmp = curword[0];
460 curword[0] = curword[3];
461 curword[3] = tmp;
462 tmp = curword[1];
463 curword[1] = curword[2];
464 curword[2] = tmp;
465 curword += 4;
466 }
467 }
468 }
469
470 /* Check if VAL (which is assumed to be a floating point number whose
471 format is described by FMT) is negative. */
472
473 int
474 floatformat_is_negative (const struct floatformat *fmt,
475 const bfd_byte *uval)
476 {
477 enum floatformat_byteorders order;
478 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
479
480 gdb_assert (fmt != NULL);
481 gdb_assert (fmt->totalsize
482 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
483
484 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
485
486 if (order != fmt->byteorder)
487 uval = newfrom;
488
489 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
490 }
491
492 /* Check if VAL is "not a number" (NaN) for FMT. */
493
494 int
495 floatformat_is_nan (const struct floatformat *fmt,
496 const bfd_byte *uval)
497 {
498 long exponent;
499 unsigned long mant;
500 unsigned int mant_bits, mant_off;
501 int mant_bits_left;
502 enum floatformat_byteorders order;
503 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
504
505 gdb_assert (fmt != NULL);
506 gdb_assert (fmt->totalsize
507 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
508
509 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
510
511 if (order != fmt->byteorder)
512 uval = newfrom;
513
514 if (! fmt->exp_nan)
515 return 0;
516
517 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
518 fmt->exp_len);
519
520 if (exponent != fmt->exp_nan)
521 return 0;
522
523 mant_bits_left = fmt->man_len;
524 mant_off = fmt->man_start;
525
526 while (mant_bits_left > 0)
527 {
528 mant_bits = min (mant_bits_left, 32);
529
530 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
531
532 /* If there is an explicit integer bit, mask it off. */
533 if (mant_off == fmt->man_start
534 && fmt->intbit == floatformat_intbit_yes)
535 mant &= ~(1 << (mant_bits - 1));
536
537 if (mant)
538 return 1;
539
540 mant_off += mant_bits;
541 mant_bits_left -= mant_bits;
542 }
543
544 return 0;
545 }
546
547 /* Convert the mantissa of VAL (which is assumed to be a floating
548 point number whose format is described by FMT) into a hexadecimal
549 and store it in a static string. Return a pointer to that string. */
550
551 const char *
552 floatformat_mantissa (const struct floatformat *fmt,
553 const bfd_byte *val)
554 {
555 unsigned char *uval = (unsigned char *) val;
556 unsigned long mant;
557 unsigned int mant_bits, mant_off;
558 int mant_bits_left;
559 static char res[50];
560 char buf[9];
561 enum floatformat_byteorders order;
562 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
563
564 gdb_assert (fmt != NULL);
565 gdb_assert (fmt->totalsize
566 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
567
568 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
569
570 if (order != fmt->byteorder)
571 uval = newfrom;
572
573 if (! fmt->exp_nan)
574 return 0;
575
576 /* Make sure we have enough room to store the mantissa. */
577 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
578
579 mant_off = fmt->man_start;
580 mant_bits_left = fmt->man_len;
581 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
582
583 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
584
585 sprintf (res, "%lx", mant);
586
587 mant_off += mant_bits;
588 mant_bits_left -= mant_bits;
589
590 while (mant_bits_left > 0)
591 {
592 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
593
594 sprintf (buf, "%08lx", mant);
595 strcat (res, buf);
596
597 mant_off += 32;
598 mant_bits_left -= 32;
599 }
600
601 return res;
602 }
603
604 \f
605 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
606
607 If the host and target formats agree, we just copy the raw data
608 into the appropriate type of variable and return, letting the host
609 increase precision as necessary. Otherwise, we call the conversion
610 routine and let it do the dirty work. */
611
612 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
613 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
614 static const struct floatformat *host_long_double_format = GDB_HOST_LONG_DOUBLE_FORMAT;
615
616 void
617 floatformat_to_doublest (const struct floatformat *fmt,
618 const void *in, DOUBLEST *out)
619 {
620 gdb_assert (fmt != NULL);
621 if (fmt == host_float_format)
622 {
623 float val;
624 memcpy (&val, in, sizeof (val));
625 *out = val;
626 }
627 else if (fmt == host_double_format)
628 {
629 double val;
630 memcpy (&val, in, sizeof (val));
631 *out = val;
632 }
633 else if (fmt == host_long_double_format)
634 {
635 long double val;
636 memcpy (&val, in, sizeof (val));
637 *out = val;
638 }
639 else
640 convert_floatformat_to_doublest (fmt, in, out);
641 }
642
643 void
644 floatformat_from_doublest (const struct floatformat *fmt,
645 const DOUBLEST *in, void *out)
646 {
647 gdb_assert (fmt != NULL);
648 if (fmt == host_float_format)
649 {
650 float val = *in;
651 memcpy (out, &val, sizeof (val));
652 }
653 else if (fmt == host_double_format)
654 {
655 double val = *in;
656 memcpy (out, &val, sizeof (val));
657 }
658 else if (fmt == host_long_double_format)
659 {
660 long double val = *in;
661 memcpy (out, &val, sizeof (val));
662 }
663 else
664 convert_doublest_to_floatformat (fmt, in, out);
665 }
666
667 \f
668 /* Return a floating-point format for a floating-point variable of
669 length LEN. If no suitable floating-point format is found, an
670 error is thrown.
671
672 We need this functionality since information about the
673 floating-point format of a type is not always available to GDB; the
674 debug information typically only tells us the size of a
675 floating-point type.
676
677 FIXME: kettenis/2001-10-28: In many places, particularly in
678 target-dependent code, the format of floating-point types is known,
679 but not passed on by GDB. This should be fixed. */
680
681 static const struct floatformat *
682 floatformat_from_length (int len)
683 {
684 const struct floatformat *format;
685 if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
686 format = TARGET_FLOAT_FORMAT;
687 else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
688 format = TARGET_DOUBLE_FORMAT;
689 else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
690 format = TARGET_LONG_DOUBLE_FORMAT;
691 /* On i386 the 'long double' type takes 96 bits,
692 while the real number of used bits is only 80,
693 both in processor and in memory.
694 The code below accepts the real bit size. */
695 else if ((TARGET_LONG_DOUBLE_FORMAT != NULL)
696 && (len * TARGET_CHAR_BIT ==
697 TARGET_LONG_DOUBLE_FORMAT->totalsize))
698 format = TARGET_LONG_DOUBLE_FORMAT;
699 else
700 format = NULL;
701 if (format == NULL)
702 error ("Unrecognized %d-bit floating-point type.",
703 len * TARGET_CHAR_BIT);
704 return format;
705 }
706
707 const struct floatformat *
708 floatformat_from_type (const struct type *type)
709 {
710 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
711 if (TYPE_FLOATFORMAT (type) != NULL)
712 return TYPE_FLOATFORMAT (type);
713 else
714 return floatformat_from_length (TYPE_LENGTH (type));
715 }
716
717 /* If the host doesn't define NAN, use zero instead. */
718 #ifndef NAN
719 #define NAN 0.0
720 #endif
721
722 /* Extract a floating-point number of length LEN from a target-order
723 byte-stream at ADDR. Returns the value as type DOUBLEST. */
724
725 static DOUBLEST
726 extract_floating_by_length (const void *addr, int len)
727 {
728 const struct floatformat *fmt = floatformat_from_length (len);
729 DOUBLEST val;
730
731 floatformat_to_doublest (fmt, addr, &val);
732 return val;
733 }
734
735 DOUBLEST
736 deprecated_extract_floating (const void *addr, int len)
737 {
738 return extract_floating_by_length (addr, len);
739 }
740
741 /* Store VAL as a floating-point number of length LEN to a
742 target-order byte-stream at ADDR. */
743
744 static void
745 store_floating_by_length (void *addr, int len, DOUBLEST val)
746 {
747 const struct floatformat *fmt = floatformat_from_length (len);
748
749 floatformat_from_doublest (fmt, &val, addr);
750 }
751
752 void
753 deprecated_store_floating (void *addr, int len, DOUBLEST val)
754 {
755 store_floating_by_length (addr, len, val);
756 }
757
758 /* Extract a floating-point number of type TYPE from a target-order
759 byte-stream at ADDR. Returns the value as type DOUBLEST. */
760
761 DOUBLEST
762 extract_typed_floating (const void *addr, const struct type *type)
763 {
764 DOUBLEST retval;
765
766 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
767
768 if (TYPE_FLOATFORMAT (type) == NULL)
769 /* Not all code remembers to set the FLOATFORMAT (language
770 specific code? stabs?) so handle that here as a special case. */
771 return extract_floating_by_length (addr, TYPE_LENGTH (type));
772
773 floatformat_to_doublest (TYPE_FLOATFORMAT (type), addr, &retval);
774 return retval;
775 }
776
777 /* Store VAL as a floating-point number of type TYPE to a target-order
778 byte-stream at ADDR. */
779
780 void
781 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
782 {
783 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
784
785 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
786 zero out any remaining bytes in the target buffer when TYPE is
787 longer than the actual underlying floating-point format. Perhaps
788 we should store a fixed bitpattern in those remaining bytes,
789 instead of zero, or perhaps we shouldn't touch those remaining
790 bytes at all.
791
792 NOTE: cagney/2001-10-28: With the way things currently work, it
793 isn't a good idea to leave the end bits undefined. This is
794 because GDB writes out the entire sizeof(<floating>) bits of the
795 floating-point type even though the value might only be stored
796 in, and the target processor may only refer to, the first N <
797 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
798 initialized, GDB would write undefined data to the target. An
799 errant program, refering to that undefined data, would then
800 become non-deterministic.
801
802 See also the function convert_typed_floating below. */
803 memset (addr, 0, TYPE_LENGTH (type));
804
805 if (TYPE_FLOATFORMAT (type) == NULL)
806 /* Not all code remembers to set the FLOATFORMAT (language
807 specific code? stabs?) so handle that here as a special case. */
808 store_floating_by_length (addr, TYPE_LENGTH (type), val);
809 else
810 floatformat_from_doublest (TYPE_FLOATFORMAT (type), &val, addr);
811 }
812
813 /* Convert a floating-point number of type FROM_TYPE from a
814 target-order byte-stream at FROM to a floating-point number of type
815 TO_TYPE, and store it to a target-order byte-stream at TO. */
816
817 void
818 convert_typed_floating (const void *from, const struct type *from_type,
819 void *to, const struct type *to_type)
820 {
821 const struct floatformat *from_fmt = floatformat_from_type (from_type);
822 const struct floatformat *to_fmt = floatformat_from_type (to_type);
823
824 gdb_assert (TYPE_CODE (from_type) == TYPE_CODE_FLT);
825 gdb_assert (TYPE_CODE (to_type) == TYPE_CODE_FLT);
826
827 if (from_fmt == NULL || to_fmt == NULL)
828 {
829 /* If we don't know the floating-point format of FROM_TYPE or
830 TO_TYPE, there's not much we can do. We might make the
831 assumption that if the length of FROM_TYPE and TO_TYPE match,
832 their floating-point format would match too, but that
833 assumption might be wrong on targets that support
834 floating-point types that only differ in endianness for
835 example. So we warn instead, and zero out the target buffer. */
836 warning ("Can't convert floating-point number to desired type.");
837 memset (to, 0, TYPE_LENGTH (to_type));
838 }
839 else if (from_fmt == to_fmt)
840 {
841 /* We're in business. The floating-point format of FROM_TYPE
842 and TO_TYPE match. However, even though the floating-point
843 format matches, the length of the type might still be
844 different. Make sure we don't overrun any buffers. See
845 comment in store_typed_floating for a discussion about
846 zeroing out remaining bytes in the target buffer. */
847 memset (to, 0, TYPE_LENGTH (to_type));
848 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
849 }
850 else
851 {
852 /* The floating-point types don't match. The best we can do
853 (aport from simulating the target FPU) is converting to the
854 widest floating-point type supported by the host, and then
855 again to the desired type. */
856 DOUBLEST d;
857
858 floatformat_to_doublest (from_fmt, from, &d);
859 floatformat_from_doublest (to_fmt, &d, to);
860 }
861 }
862
863 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
864 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
865 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
866 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
867 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
868
869 extern void _initialize_doublest (void);
870
871 extern void
872 _initialize_doublest (void)
873 {
874 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
875 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
876 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
877 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
878 floatformat_arm_ext[BFD_ENDIAN_LITTLE] = &floatformat_arm_ext_littlebyte_bigword;
879 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
880 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
881 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
882 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
883 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
884 }
This page took 0.090958 seconds and 3 git commands to generate.